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PREAMBLE 

This study aims to evaluate the technical feasibility of culturing locally available 

seaweeds in inland saline water (ISW) of Western Australia and in ionically modified 

ISW. Although, there are lower additional input resources required for existing 

agricultural farmers to culture seaweed in ISW than other higher order fish, shrimp 

and molluscan species, there is no comprehensive published information available to 

culture local seaweed species under ISW environment in Western Australia.  

The present thesis is structured so that the information flows easily from one chapter 

to another within the context of some entire chapters or certain sections of the chapters 

have been published, therefore there is a possibility of certain duplication, particularly 

in terms of introduction and methodology. 

The thesis is organized into ten (10) chapters. 

Chapter 1 is general introduction to the research that includes the background 

information, justification of the study, the aim, and the objectives of the research. 

Chapter 2 reviews the relevant literature on the topic and related research areas 

including quality of ISW in Australia and Western Australia, and current global 

aquaculture practice in ISW. Information about the ionic composition and 

environmental factors influencing characteristics of ISW are also reviewed. This 

chapter also provides an overview about six studied seaweed species and their potential 

uses and aquaculture practices.  

Chapter 3 presents methodology and summarises the general methods used in the 

experiments, data collection, and data analysis. This chapter includes a common 

section of Materials and Methods of subsequent chapters. This attempts to avoid 

repeating of some of the common protocols followed in rest of the chapters. 

Selecting potentially suitable seaweeds species that could be grown in ISW was the 

first step in order to achieve the aim of this research. Chapter 4 describes the selection 

procedure for seaweeds to be investigated for their technical feasibility to culture in 

ISW around Perth region in Western Australia. Five genera of seaweed consist of six 

species representing green, red and brown seaweeds were shortlisted to be cultured in 
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ISW and potassium-fortified ISW (K+ISW). These six species of seaweed are 

Cystophora subfarcinata, Sargassum linearifolium, Sargassum podacanthum, Ulva 

lactuca, Glateroupia suspectinata, Fushisunagia catenata (basionym Lomentaria 

catenata) (Appendix 1). As the species of Fushisunagia catenata was identified after 

the publication of the article on Lomentaria sp., Lomentaria catenata will be used as 

the name of this species throughout the thesis. Chapter 4 also explores the effects of 

two sources of K+ as K2SO4 and KCl to fortify ISW. Both sources of K+ to make 

100%K+ISW result in a similar specific growth rate (SGR) for both S. linearifolium 

and S. podacanthum as if cultured in ocean water (OW).  

The remaining part of the thesis is divided into three sections. Section 1 focusses on 

Sargassum spp. and comprises of chapters 5 to 7. Section 2 includes Chapter 8 which 

describes the experiments conducted on Lomentaria catenata. Section 3 consists of 

Chapter 9 which containes two sections: (i) – a preliminary study of culturing Ulva 

lactuca in OW, and (ii) – cultural feasibility of U. lactuca in ISW.  

Chapter 5 investigates the productivity of Sargassum spp. in K+ISW at 100%, 66% 

and 33% of [K+] as in OW. Sargassum spp. can sustain a similar growth rate as in OW 

in K+ISW at 100% of K+ concentration. The SGR of S. linearifolium’s is higher than 

S. podacanthum at all K+ISW levels. The section related to the S. linearifolum in this 

chapter, entitled “Productivity of Sargassum linearifolium in potassium-fortified 

inland saline water under laboratory conditions”, is published in the journal of 

Aquaculture Research as a research article (Appendix 2.1). 

Chapter 6 focuses on the culture of S. linearifolium and S. podacanthum in 100% 

K+ISW and OW, which are enriched weekly by ammonium:phosphate, at the levels of 

80:8, 120:12, 160:10, 200:20 and 240:24 µM. The higher nutrient supplementation in 

OW works better than in K+ISW in terms of Sargassum biomass, however, there is no 

interaction between water types (OW and K+ISW) and supplementation of nutrient 

levels. S. padocanthum grows better than S. linerifolium in both OW and K+ISW 

nutrient-enriched environment. The main segment of this chapter centered on S. 

podacanthum, entitled “Effects of nitrogen and phosphorus enrichment on the growth 

of Sargassum podacanthum cultured in potassium-fortified inland saline water” has 

been published in American Journal of Applied Science as a research article (Appendix 

2.2). 
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Chapter 7 describes the research on effects of temperature and pH on the growth of S. 

linearifolium and S. podacanthum cultured in K+ISW. Temperature of 20–22oC and 

ambient water pH levels of 7.0–8.2 of K+ISW are suitable for cultivating Sargassum 

spp. This chapter has been published in American Journal of Applied Science as a 

research article entitled “Effects of temperature and pH on the growth of Sargassum 

linearifolium and S. podacanthum in potassium-fortified inland saline water” 

(Appendix 2.3).  

Chapter 8 analyses the growth feasibility of Lomentaria catenata in ISW, K+ISW at 

100%, 66% and 33% of [K+] as in OW, the effect of ammonium- and phosphate-

enriched K+ISW, and temperature on L. catenata’s growth. L. catenata requires 66% 

of K+ISW, ammonium enrichment at 100 µM under temperature of 20–26oC in ISW. 

This chapter has been published in The Journal of Aquaculture and Environment Risk 

Assessment and Remediation as a research article entitled “The growth feasibility of 

Lomentaria sp. in laboratory conditions” (Appendix 2.4). This species was identified 

after the article published as Lomentaria catenata, first recorded in Western Australia 

by the author of this study, and this species has recently been moved to a separate 

genus as Fushisunagia catenata.  

Chapter 9 consists of two trials. The first trial is a preliminary trial to culture Ulva 

lactuca in ISW by testing the culture feasibility of U. lactuca in OW at three salinities, 

four stocking densities and three ammonium levels. The most suitable salinity of 30–

35 ppt, stocking density of 0.2 kg m-2 and ammonium requirement of 56 µM of 

culturing U. lactuca in OW were applied to culture the same species under ISW 

environment. The second trial investigated the effects of temperature and K+ISW on 

the growth of U. lactuca under two levels of temperature and three levels of K+ 

fortification. U. lactuca is able to be cultivated in ISW at 30% K+ISW under 25–26oC. 

Chapter 10 provides a general and comparative discussion on the culture of four 

seaweed species in K+ISW, nutrient-enriched K+ISW; the effects of different 

environmental factors, as well as the seasonal effects on the growth of seaweed under 

laboratory conditions. The environmental conditions to culture each seaweed species 

and the limitations of this study are then summerised. This chapter also concludes the 

study by the conclusions and recommendations, highlights the significance sections of 

the study, and provides suggestions for the further research. 

This thesis was proofread by Proof-Reading-Service.com Ltd (Appendix 3). 
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ABSTRACT 

Increasing salinisation has negatively affected agricultural land, wildlife habitats and 

native vegetation in Australia. Mariculture using inland saline water (ISW) is 

considered a potential expansion and diversification of aquaculture, including seaweed 

farming. The seaweed culture can utilise existing agricultural farms where saline water 

is accessible, as it is less constrained by the requirement for any additional resource(s) 

and changes in the existing infrastructure. Therefore, cultivating seaweed in ISW can 

provide an additional source of income and raw seaweed for the aquaculture/-seaweed 

industry, with a lower capital investment than farming in the sea. This diversification 

stream of farming income may constitute a convenient choice for farmers, and for 

environmental protection in Australia. Six naturally distributed seaweed species, 

representative of green, red and brown seaweeds including Ulva lactuca, Glateroupia 

suspectinata, Fushisunagia catenata (Basionym Lomentaria catenata), Cystophora 

subfarcinata, Sargassum linearifolium, Sargassum podacanthum, in Western 

Australia, were selected to test their cultural feasibility under ISW conditions. These 

species were identified by Western Australia Herbarium. Four species, U. lactuca, L. 

catenata, S. linearifolium, S. podacanthum, were selected for further studies, to 

investigate the culture feasibility in potassium-fortified ISW (K+ISW), nutrient 

enriched ISW, under different temperature and pH levels of ISW.  

As potassium (K+) deficiency is a major problem for marine species cultivation in 

ISW, testing the growth feasibility of the target seaweed species in K+ fortification for 

ISW is the main preference of this study. Five different experiments were set up for 

seaweed cultured in K+ fortification ISW under laboratory conditions consisting of five 

studied treatments in triplicates or quadruplicates depending on the experimental 

design and capacity of the culture system. The seaweeds were tested in three levels of 

K+ fortification in ISW. These levels were 100, 66 and 33% of K+ concentration similar 

as in ocean water (OW) at a similar salinity by the addition of KCl, and were referred 

as ISW100, ISW66, ISW33, presented three treatments of the experiment, with two 

controlled treatments of ambient ISW (ISW0) and ambient OW (OW).  

The first experiment was to culture all six seaweed species and the results showed that 

S. linearifolium, S. podacanthum, L. catenata and U. lactuca were most suitable for 
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further studies as these four species presented higher specific growth rate (SGR) and 

longer survival period in K+ISW. Further four experiments were conducted separately 

and independently one for each seaweed species at different times and different salinity 

levels (35 ppt for Sargassum spp. and 30–31 ppt for U. lactuca and L. catenata).  

The K+ deficiency in ISW showed an adverse impact on the growth of seaweeds and 

all of them died in ISW0 during the first fortnight of culture period. K+ fortifications 

at 100%, 66% and  33% of the K+ concentrations as in OW at a similar salinity were 

required for a positive biomass growth of U. lactuca, L. catenata up to 42 days and up 

to 56 days for Sargassum spp., respectively. The effect of two sources of K+, KCl and 

K2SO4 at ISW100 on the growth of two Sargassum spp., was also investigated under 

outdoor conditions, which resulted in a similar growth of two Sargassum spp. in both 

K+ISW and in OW.  

The effects of nutrient supplementation on the growth of these four selected seaweed 

species in K+ISW were then investigated. The weekly supplementation of two sources 

of nutrients including ammonium (NH4-N) and phosphate (PO4
3--P) supplied by 

NH4Cl and NaH2PO4, respectively, was investigated on the Sargassum spp. growth.  

Five weekly nutrient enrichment levels of 80:8, 120:12, 160:16, 200:20 and 240:24 

µM of NH4-N:PO4
3--P in ISW100 and in OW were tested and results, after 84 days,  

showed that  S. podacanthum was unable to grow without nutrient enrichment, and a 

weekly supplementation of 160:16 µM of NH4-N:PO4
3--P in ISW100 resulted in a 

higher but similar standing biomass and SGR as in OW. However, S. linearifolium for 

up to 56 days, did not require any nutrient enrichment for its normal growth in ISW100.  

L. catenata was cultured in OW, ISW and ISW66 enriched with 100 µM NH4-N to test 

the NH4-N requirement of L. catenata. The results showed that NH4-N 

supplementation presented significant effect in ISW66 which resulted in highest 

biomass than all other waters. NH4-N:PO4
3--P requirement for L. catenata was tested 

at three levels of 75:7.5, 150:15, 300:30 in ISW66. However, this combination of  

NH4-N:PO4
3--P had no effect on the growth of L. catenata in ISW66. U. lactuca 

growth was tested in weekly enrichment of 0, 28 and 56 µM of  NH4-N in OW and the 

results indicated that 56 µM of NH4-N was essential for optimum development.  
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The effect of temperature on the seaweed growth was also tested independently for 

each seaweed species. The two Sargassum spp. were cultured in ISW100 fortified by 

K2SO4 under two temperature regimes of 20–22oC and 24–26oC and two pH levels of 

ambient pH 7.0–8.2 and low pH at 5.5–6.5. The ambient pH of ISW and temperature 

20–22oC were ideal for Sargassum spp. culture as these conditions resulted in higher 

SGR of Sargassum spp.  Sargassum spp. could not survive under higher temperature 

of 24–26oC longer than 14 days. The SGR of S. linearifolium was higher than SGR of 

S. podacanthum under both temperature regimes at ambient pH. There was no 

significant difference in L. catenata biomass and length cultured in ISW66 and OW 

and enriched weekly by 100 µM NH4-N under the two temperature regimes. The 

temperature effect on the growth of U. lactuca was determined in OW and ISW 

enriched with 56 µM NH4-N, under two temperature regimes. The results showed that 

the temperature of 25–26oC was preferable for U. lactuca.  

Hence, this research concluded that it is possible to cultivate certain local species 

seaweed in ISW of Western Australia, however, its growth is dependent on seasons 

and K+ fortification of ISW from 33–100% [K+] as of OW at a similar salinity is 

essential. The K+ fortification source could either be KCl or K2SO4. The requirement 

for weekly nutrient enrichment is species-specific, at 56 and 100 µM NH4-N for U. 

lactuca in ISW33, L. catenata in ISW66, and 160:16 µM of NH4-N:PO4
3--P for S. 

podacanthum in ISW100, respectively. Seaweed grow well at the ambient pH of 

K+ISW, under temperature from 20–22oC for Sargassum spp., 25–26oC for U. lactuca 

and 20–26oC for L. catenata. S. linearifolium is the best candidate to be cultivated in 

ISW100 as its SGR is higher and requires no nutrient enrichment.  
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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

The annual growth rate of Australian aquaculture production was 25% between 2004–

2005 and 2011–2012 (Australian Bureau of Agricultural and Resource Economics and 

Sciences [ABARES], 2016), and the aquaculture production contribution increased 

about 20% in the last decade of the 20th century (Lymbery et al., 2007). The value of 

Australian aquaculture production in 2015–2016 was $1.3 billion, a rise of 20% from 

2012–2013 (ABARES, 2017), to which the Western Australia (WA) contributed 8% 

in values (Department of Fisheries, 2015) and 19% in production (ABARES, 2017). 

The aquaculture (fish, crustacean and molluscs) contributed 43% of the total seafood 

in value and 35% in production in both years 2014–2015 and 2015–2016 (ABARES, 

2017). The five core aquaculture species including Southern Bluefin tuna, pearls, 

Atlantic salmon, prawns and edible oysters in the 20th century (Love & Langenkamp, 

2003) have shifted to salmonids, tuna, prawns, edible oysters, pearl oysters in terms of 

values in 2015–2016 (ABARES, 2017). In this year, seafood consumption was 13.8 

kg per capita, which was ranked fourth of the main animal protein sources for 

Australian consumption, with the acceptance of seaweed (ABARES, 2017). Imported 

seaweeds are the main supply source of seaweeds for the Australian market. In 

2006/07, the import of seaweed reached over 5,000 tonnes with a total value of AU$14 

million (Lee, 2008), which shows the high demand for seaweeds in the Australian 

market. The development of an alternative land-based source of seaweed culture is 

necessary for both domestic consumption and export (Lee, 2008). 

In Australia, 5.7 million ha of the total 770 million ha of land area were salinized in 

2000. This figure may increase to 17 million ha in 2050 (Timms, 2005). The inland 

saline water (ISW) is inexhaustible in natural rivers, lakes and shallow aquifers (Allan 

et al., 2001). Two main regions of underground ISW in Australia are the wheat-belt in 

WA, which accounts for 70% of national ISW and covers approximately 18 million 

hectares (Doupé et al., 2005; Lymbery et al., 2006), and Murray-Darling basin (Allan 

et al., 2001). About 14% (or 20,000) of national farms in Australia has a sign of salinity 

(Trewin, 2002).  
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Saline land can be used for aquaculture (Allan et al., 2008; Smith, 1997). Although 

ISW is seasonal, as most saline water lakes dry in summer (Jenkins, 1997), ISW 

availability from underground water provides a potential water source for domestic 

aquaculture (Doupé, Lymbery, Sarre, et al., 2003; Partridge, Lymbery, & George, 

2008; Pitman & Läuchli, 2002). ISW aquaculture can help to offset the costs of the 

salinisation adverse effects such as the costs for ISW treatments (Doupé, Lymbery, 

Sarre, et al., 2003). ISW aquaculture is more cost effective than coastal aquaculture. It 

is also more effective in reducing the risks of tides, storms and disease expansion than 

coastal aquaculture (Ogburn, 1997). ISW aquaculture has gradually developed in 

Australia, focusing primarily on fish and shrimp (Allan et al., 2001; Allan et al., 2008). 

However, its economic contribution to national fisheries is still minor (Doupé, 

Lymbery, Sarre, et al., 2003). About 29 shrimp, fish, molluscs and algae species have 

been researched and commercially cultured in ISW in Australia as summaried by Dinh 

(2016). It has to be noted that the ambient temperature in most of the salinity-affected 

areas of Australia is not suitable for shrimp farming (Partridge & Lymbery, 2008; Roy 

et al., 2010), but could be utilised for cultivating seaweeds.  

Marine species cultured in ISW have produced mixed results, due to the fact that most 

of the ISW is in the temperate area (Partridge, Lymbery, & George, 2008), or does not 

contain enough potassium (K+) for marine species (Dinh, 2016; Doroudi et al., 2006; 

Fielder et al., 2001; Forsberg et al., 1996; Ingram et al., 2002; Partridge & Creeper, 

2004; Partridge & Lymbery, 2008; Roy et al., 2007; Shakeeb Ur et al., 2005; Tantulo 

& Fotedar, 2007). ISW contains lower K+ concentration than ocean water (OW) at the 

similar salinity (Boyd et al., 2007; Fielder et al., 2001; Fotedar et al., 2011; Ingram et 

al., 2002; Partridge & Lymbery, 2008; Prangnell & Fotedar, 2006a; Saoud et al., 

2003). In order to cultivate marine species ISW must be fortified by K+ of similar 

concentration in OW (Dinh, 2016; Fielder & Allan, 2003; Fielder et al., 2001; Mourad 

et al., 2012). In addition, the red seaweed Gracilaria cliftonii can also develop in ISW, 

but would be better in K+ fortification ISW (Kumar et al., 2010). 

Up to date, research on seaweed culture in Australian ISW is restricted to only 

Gracilaria cliftonii Withell, Miller and Kraft (Cordover, 2007; Kumar et al., 2010), 

even though there are several studies on seaweed growth, chemical and nutrient 

uptakes worldwide. Seaweed culture in ISW could be an effective way of conserving 
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the natural inland resources of water and reducing the risk of typhoons in the open sea. 

Growing algae, including seaweed in ISW, is one of the choices to initiate their culture 

in Australia, contributing to natural resource management and expanding the resource 

base for aquaculture (Borowitzka, 1997). Furthermore, cultivating seaweed in ISW 

can provide a natural source of seaweed for the industry, which requires lower capital 

investment compared to building farms in the sea (Borowitzka, 1997).  

Seaweeds provide organic carbon for aquatic food chain (Duarte, 1995; Graham et al., 

2009). They have been a healthy source of protein for Asian people for centuries. 

Seaweeds have been gradually introduced to the western markets as nori rolls, salads, 

agar gels, and provides the sources for the texture industry, plant fertilizers, folders, 

medicines and biofuels (Huisman, 2000; Lee, 2008). Out of the 221 species (32 

chlorophytes, 125 rhodophytes and 64 phaeophytes) of seaweeds that have been used 

worldwide so far, 145 species (28 chlorophytes, 79 rhodophytes, and 38 phaeophytes) 

can be used as food and 101 species for phycocolloid production. 25 species have been 

used in agriculture, and in the manufacturing of paper (Ara et al., 1997; Lindsey 

Zemke-White & Ohno, 1999). The extracts from seaweeds can be used for cosmetic 

industry and to produce medicine (Hur et al., 2008; Thuy et al., 2015; B. Wang et al., 

2010; Wiltshire et al., 2015; Yende et al., 2014). Seaweeds can clean water discharged 

from aquaculture by their ability to uptake nutrients and heavy metals (Neori et al., 

2004; Partridge, Lymbery, & George, 2008; Troell et al., 1999; Van Khoi & Fotedar, 

2011), so they can be cultured with other marine species (Cruz-Suárez et al., 2010; Jin 

& Dong, 2003; Kitadai & Kadowaki, 2007; Mai et al., 2010; Neori et al., 2004; Neori 

et al., 1996).  

Apart from salinity, temperature and pH of water are also important factors that affect 

the maturation, reproduction and growth of seaweeds (Bird et al., 1978; Cui et al., 

2014; Ding et al., 2013; Uchida, 1993). The salinity and temperature can influence the 

growth of seaweed by affecting the nutrient uptake (Jie et al., 2008), the photosynthesis 

(Scherner et al., 2013; Simon et al., 1999), chlorophyll-a content, spore biomass and 

the heavy metal absorption of seaweeds (Kamer & Fong, 2001; Mamboya et al., 2009; 

Scherner et al., 2013; Sousa et al., 2007). Seaweeds’ requirement of salinity varies 

widely depending on species. For example, Ulva requires only 5–40 ppt (Choi et al., 
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2010; Kamer & Fong, 2001), whereas Sargassum requires from 24–42 ppt for its 

growth (Hanisak & Samuel, 1987).  

Temperature needs also vary depending on species. For instance, in the same genus of 

Ulva, the U. rigida develops well from 7 to 250C and reaches the optimum growth at 

170C (de Casabianca et al., 2002). On the other hand, U. curvata growth is inferior at 

low temperature and grows best at 25°C. The optimal temperature for growth of U. 

lactuca, U. rigida and U. scandinavica is 10°C (Malta et al., 1999), while U. 

scandinavica can grow at -5°C for 2 weeks in the darkness while in contact with anoxia 

and sulphide, and can live under the freezing winter condition (Kamermans et al., 

1998; Vermaat & Sand-Jensen, 1987).  

The pH also affects the photosynthesis, growth of seaweed and seaweeds’ ability to 

absorb heavy metals (Davis et al., 2000; Drechsler & Beer, 1991; Figueira et al., 1997; 

Hidayat et al., 2015; Maberly, 1992). 

Seaweeds need 18 nutritional elements to grow, of which some ions (potassium, 

calcium, sodium, magnesium, hydrogen, carbon, oxygen, and sulphur) are available in 

water. However, the natural level of nitrogen and phosphorus found in the water is not 

enough to meet the demand required by algae (Robards et al., 1994). The two common 

types of nitrogen found in OW are ammonium (NH4-N) and nitrate (NO3
--N) (Burgess 

et al., 2003). Seaweeds prefer NH4-N to NO3
--N (Ahmad et al., 2011) and require high 

concentration of NH4-N (Campbell, 2001).  

Studies on seaweed growth and nutrient uptakes have been widely researched over the 

last few decades (Ahmad et al., 2011; Bird et al., 1978; Campbell, 1999; Coffaro & 

Sfriso, 1997; Coutinho & Zingmark, 1993; Dailer et al., 2012; de Casabianca et al., 

2002; Flindt et al., 1997; Gordillo et al., 2001; Kitadai & Kadowaki, 2007; Larned, 

1998; Pérez-Mayorga et al., 2011; Perini & Bracken, 2014). The effect of ecological 

factors, light intensity, salinity, and temperature on the growth and chemical 

compositions of some seaweed species in OW have been well studied (Andrew & 

Viejo, 1998; Chen & Zou, 2014; Choi et al., 2010; Cui et al., 2014; Gao & Hua, 1997; 

Hanisak & Samuel, 1987; Rao & Rao, 2002; Yuan et al., 2014). In addition, research 

on the effect of nutrients on the growth of some seaweed species has also been 

conducted (Lapointe, 1986, 1995; Lapointe et al., 2014). However, no research has 
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been done on the nutrient requirement of seaweeds and K+ fortification in ISW except 

Gracilaria cliftonii (Kumar et al., 2010). Whereas, there are 1,300 species of red 

seaweeds, 2,000 species of green seaweeds and 350 species of brown seaweeds 

recorded in Australia (Huisman, 2000; Womersley, 1987). Of these, Grateloupia 

subpectinata, Lomentaria catenata, Ulva lactuca, Cystophora subfacinata, Sargassum 

linearifolium and Sargassum podacanthum are either native or naturally distributed in 

WA (Huisman, 2000; Womersley, 1987).  

To date, studies on the ISW aquaculture in Australia have been centred on fish, 

mollusc, shrimp and crustacean (Allan et al., 2001; Allan et al., 2008; Dinh, 2016; 

Ingram et al., 2002; Kumar, 2008; Partridge, Lymbery, & Bourke, 2008; Partridge et 

al., 2006; Prangnell & Fotedar, 2006b), and are limited to only one species of red 

seaweed Gracilaria cliftonii in ISW by mixing with OW (Kumar et al., 2010). No 

study has been conducted on cultivating the local distributed seaweeds in K+-fortified 

ISW (K+ISW) yet opening a direction for this current study. 

1.2 Aims and Scope of the Study 

The aim of the present study was to examine the feasibility of cultivating local 

seaweeds of WA in ISW and to find the suitable candidates for seaweed culture in 

Australian ISW. To do this, the study examined the growth of candidate seaweeds in 

K+ISW, and the effects of pH and temperature on the growth of candidate seaweeds 

under the laboratory conditions, as well as to identify their nutrient requirements in 

K+ISW. 

Aim 

The aim of this study is to investigate the growth feasibility of local seaweed species 

of WA in ISW, which will contribute the technical knowledge of seaweed aquaculture 

using ISW by: 

- Providing the understanding of the need of K+ fortification for culturing 

Sargassum linearifolium, Sargassum podacanthum, Lomentaria catenata and 

Ulva lactuca in ISW. 
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- Providing the suitable temperature and pH range for culturing the above 

species in K+ISW 

- Providing information about the nutrient requirement for culturing the above 

seaweed species in K+ISW. 

Objectives of the Study 

1. To investigate the suitable candidates of seaweed species for culturing in WA 

ISW 

2. To investigate the relationship between the growth of chosen seaweed species 

and K+-fortification in ISW in WA. 

3. To examine the effects of ammonium and phosphate enrichment on the growth 

of chosen seaweed species in K+ISW in WA. 

4. To determine the effect of pH and temperature of K+ISW on the growth of 

chosen seaweed species in WA.  
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CHAPTER 2 LITERATURE REVIEWS 

2.1 Inland Saline Water  

Inland saline water (ISW), where the salinity of water in the inland areas is above 3 

ppt, is found all over the world including Australia (Waiser & Robarts, 2009) (Table 

2-1). In Australia, salination expansion is considered one of the biggest environmental 

problems, and one possible way of reducing the negative effect of ISW is to pump the 

ISW into large reservoirs (Allan et al., 2008). In the last five years, the inland water 

storage of Australia gradually decreased from 80% of its capacity in 2012 to 65% in 

2016 (Argent, 2017).  

Table 2-1. Distribution of salinised areas in the three largest affected countries  

Country  Total area 

(km2) 

Cultivated 

land (km2) 

Arable 

land (%) 

Irrigated 

land 

(km2) 

Percentage of 

salinised affected 

land (%) 

Australia 7,617,930 471,550 6.15 237.8 8.70 

India 3,287,240 1,535,063 42.1 6526.3 16.60 

USA 9,826,675 1,669,302 18.1 2259.0 23.00 

(Ghassemi et al., 1995) 

Salinity-affected land areas were over 2.5 million hectares in 1995 (Nulsen, 1997), 5.7 

million hectares in 2000 and is forecasted to be more than 17 million hectares in 2050, 

at about 80% of lakes and wetlands salinised (Timms, 2005) (Figure 2-1) which has 

negatively affected agriculture and ecology (Department of Agriculture and Food, 

2013; Nulsen, 1997). However, it opens up an opportunity for inland aquaculture 

(Doupé, Lymbery, & Starcevich, 2003; Kolkovski, 2010). In WA, the development of 

an aquaculture industry has huge potential, based upon the availability of a large ISW 

resource, suitable soil and water salinity, and adequate existing farm and road 

infrastructure (Doupé, Lymbery, Sarre, et al., 2003). The salinization of agricultural 

and public land has expanded since 1998 (Robertson et al., 2010), covering more than 

one million hectares in the south-west of WA (Furby et al., 2010) and can potentially 

be up to 2.8–4.5 million hectares (George et al., 2005).  
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Figure 2-1. Distribution of forecast salinised areas in Australia in 2050 

Source: (National Land and Water Resources Audit [NLWRA], 2001) 

The quality of ISW varies extensively and depends on location and depth. Generally, 

pH, salinity and ionic concentration increase along the depth of the groundwater 

(Nulsen, 1997). For instance, the pH of the ISW in the Merredin catchment (WA) is 

from 3.9 at 6 metres depth to 4.7 at 17 metres depth, and 6.3 at 33 and 45 metres depth 

(Nulsen, 1997). ISW in Outokumpu, Kerimaki, is slightly alkaline and this gradually 

increases with depth (Nurmi et al., 1988).  

ISW salinity differs widely. Generally, salinity is lower than 35 ppt (Nulsen, 1997), in 

a range of 0–320 ppt, and the salinity of two-thirds of the ISW that is suitable for 

marine aquaculture in WA is 5–40 ppt (Mazor & George, 1992). In particular, the ISW 

salinity in the East Belka catchment (WA) is 3–13 ppt (George, 1992).  
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Ionic concentration changes along the depth of the groundwater, undergoing extreme 

fluctuation. In WA, calcium concentration is more than 300 mg L-1 at less than 45 

metres depth, or in some places, it is only 28 mg L-1 (Nulsen, 1997). However, it is 

more than 3000 mg L-1 at deeper than 1000 metres in Fennoscandian Shield (Nurmi et 

al., 1988). The concentration of sulphate (SO4) in ISW is lower in WA (Partridge, 

Lymbery, & Bourke, 2008; Prangnell & Fotedar, 2006b) but is significantly higher 

than ocean water (OW) in Texas (Forsberg et al., 1996; Saoud et al., 2003). Nitrogen 

in ISW in WA is quite low, from zero to 3 mg L-1 in terms of nitrate concentration in 

the depth of shallower than 45 metres (Nulsen, 1997) (Table 2-2).  

Table 2-2. Ionic profile (mg L-1) of ISW in WA 

Parameter 
30 ppt (*) 32 ppt (**) 35 ppt (*) 

ISW OW ISW OW ISW OW 

Osmolality1  805.67 941.00 890.00 890.00 927.67 1140.33 

Na+  7720.00 8803.00 8856.00 9306.00 9385.00 10190.00 

K+  77.26 313.00 72.00 390.00 92.32 356.10 

Ca2+  530.80 320.90 469.00 355.00 640.60 363.90 

Mg2+  1375.00 1015.00 1650.00 1126.00 1674.00 1172.00 

S2+  560.00 706.30   647.40 819.30 

Na+: K+ ratio 99.92:1 28.12:1 122.42:1 23.86:1 101.66:1 28.62:1 

Mg2+: Ca2+ ratio 2.59:1 3.16:1 3.18:1 3.52:1 2.61:1 3.22:1 

Source: (*) Dinh, (2016) – original ISW salinity 45 ppt; (**) Prangnell & Fotedar, 

(2006b); (1) - mOsm kg-1 

The concentration of inorganic carbon (C) in groundwater is 100 times higher than 

organic carbon (Robards et al., 1994). The alkalinity of water is presented by the 

concentration of calcium carbonate (CaCO3), which is much higher than in OW at the 

same salinity level (Bottomley et al., 1994; Roy et al., 2010). The bicarbonate (HCO3) 

concentration of ISW varies due to the location, and is almost equal to or lower than 

its concentration in normal OW (Boyd & Thunjai, 2003). 

At the same salinity, the core trace-metal compositions of zinc (Zn), arsenic (As), 

copper (Cu), nickel (Ni) and lead (Pb) in ISW are lower than in OW. However, 
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manganese (Mn), barium (Ba), selenium (Se) and cobalt (Co) concentrations are 

higher (Partridge, Lymbery, & Bourke, 2008; Roy et al., 2010; Saoud et al., 2003).  

2.2 Causes and Impacts of Inland Salinity 

Salt in Australian land is common at 100–15,000 tonnes ha-1, due mainly to the winds 

from the ocean and accumulated over years (Pannel, 2001). Secondary salinity (or 

salinisation of land and water) occurs as a sequence of human activities, for instance, 

irrigation or tree clearance (Kolkovski, 2010; Lymbery et al., 2007; Podmore, 2009). 

Plant clearance and the shallow-root crops using less rainfall water cause an increase 

in the level of groundwater, and the water is then salinised due to salts leaching from 

surrounding areas (Kumar, 2008) (Figure 2-2). In addition, a reduction of rainfall in 

the near future and temperature prediction cause more stress on the inland water 

(Argent, 2017). The salinity exhibits remarkable variation (Timms, 2009), owing to 

changes in rainfall and solar radiation (Prangnell, 2007), calcium concentrations 

fluctuation, and potassium ions (K+) deficiency relatively to OW (Nulsen, 1997; 

Prangnell & Fotedar, 2006a). Rainfall reduction, irrigation water demand increase 

bring the higher salinity for inland water (Hillel et al., 2008).   

 

Figure 2-2. Cause of dryland salinity 

Source: Primary Industries and Resources South Australia (1999) 
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Figure 2-3. Salinity risk zone of south-west irrigation areas in southern part of 

WA 

Source: George et al. (1997) 

It is agreed that salinisation is one of the greatest environmental problems in Australia 

(Allan et al., 2008). Salinisation has spread from North Queensland to Tasmania, along 

the great Murray Darling River Basin and south-west Western Australia (Watts et al., 

2001) (for example see Figure 2-3). In Australia, land and water salinisation have 

severely negative influenced on wetlands, agriculture, water resources, infrastructure, 

biodiversity and communities (Allan et al., 2001; Kolkovski, 2010; NLWRA, 2001) 

(Table 2-3), with an estimated loss of around AUD12 billion year-1 (Ghassemi et al., 

1995), and hundreds of million dollars for the Murray Darling Basin (Allan et al., 

2008). The salinised area biological richness is threatened with extinction (Halse et 

al., 2003), including aquatic invertebrates (Timms, 2009), aquatic insects (Carver et 

al., 2009), waterbirds and plants (Halse et al., 2003). 20,000 farms in Australia show 

signs of salinity, and account for 14% of total national farms (Trewin, 2002). The 

Government had launched a National Action Plan for Salinity and Water Quality as a 

first and important step to tackle the salinisation (Watts et al., 2001). In Queensland, 
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the modelling and broadscale of natural resources have been created based upon the 

soil mapping, soils and landscape attribute (Brough et al., 2006). The catchment 

management plan in WA is developed based upon the collected hydrological and 

ecological data in the period 1996–2006, target to maintaining the existing biodiversity 

richness of the areas affected by salinisation, reducing the biodiversity decline rate, 

and recovering the existing species richness (Wallace et al., 2011).  

There are 81 aquatic invertebrate families in these salinised ISWs (Kay et al., 2001), 

such as brine shrimp Parartemia sp., copepod Calamoecia tilobata, ostracod 

Australocpris bennetti, Daphnia (Daphniopsis) truncate, Haloniscus searlei and 

Coxiella glauerti (Timms, 2009), and diatom communities (Fourtanier & Kociolek, 

1999; John et al., 2000; Lange-Bertalot et al., 2003; Taukulis & John, 2009). Those 

species has been significantly affected by the rainfall and salinity (Kay et al., 2001). 

Table 2-3. Aspects influenced by salinisation  

Aspects 2000 2020 2050 

Agricultural land (*1000 ha) 4650 6371 13660 

Remnant and planted perennial vegetation (*1000 ha) 631 770 2020 

Length of streams and lake perimeters (*1000 km) 11.8 20 41.3 

Rail (*1000 km) 1.6 2.1 5.1 

Roads (*1000 km) 19.9 26.6 67.4 

Towns (number) 68 125 219 

Important wetlands (number) 80 81 130 

Source: NLWRA (2001), Watts et al. (2001). 

The upper south-east part of the South Australia is a main salinised area which is 

forecasted to rise by 60% if the groundwater continues to expand at the pace in late 20 

century (NLWRA, 2001). The salt interception schemes (SIS) have been developed in 

the state to reduce the negative impact of salinisation (Hutchinson, 1997). Wetlands 

are becoming saline wastelands, as it is predicted that in South Australia half the native 

vegetation of Chowilla wetlands will disappear (Watts et al., 2001). 

Victoria’s affected areas are mainly in the western, south-western, north-central and 

north-western parts (Gooley et al., 1997). The water tables has increased which caused 
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a serious problem for irrigated farms and has attributed more risk of salinisation in 

these areas. The state government has studied and built pumping stations to alleviate 

the negative effect of water tables increasing and uses ISW for aquacultural activity 

(Gooley et al., 1997). 

Queensland is still unaffected, with the exception of small salinised areas in the eastern 

region, but it is predicted to be at high risk of salinised areas expansion in the near 

future (NLWRA, 2001; Watts et al., 2001).  

The northern and southern regions of New South Wales’s have two huge underground 

basins, Great Artesian and Murray, respectively (Allan & Fielder, 1997), whereas the 

salinisation has also affected Sydney’s western suburbs (Watts et al., 2001). 

Adelaide’s water supplies have been affected by salinisation in the past 20 years, 

despite huge efforts and resources being spent to reduce the negative effects of 

salinisation (Watts et al., 2001). 

In Australia, the WA occupies the largest salinised areas (Figure 2-1). About 30% 

(equivalent to 5.7 million hectares) (NLWRA, 2001) of the land and lakes in south-

west WA is affected by salinisation (Timms, 2005), and increase 14,000 ha annually 

(Furby et al., 2010). It was estimated that $1.5 billion of agriculture productivity was 

lost due to salinity expansion (Kay et al., 2001). The largest and most severely salinity 

effect in Australia is the wheat-belt, which accounts for 70% of the Australian salinised 

area (Doupé, Lymbery, & Starcevich, 2003; Kay et al., 2001), and is expected to be 

50% of the national salinisation area in 2050 (Pannel, 2001). The affected area 

comprises of 38 affected towns (George et al., 2005), 6,918 farms and 1.24 million 

hectares of agricultural land is salinized (Trewin, 2002), and has rainfall of 300–700 

mm annually (Halse et al., 2003; Kay et al., 2001). The South West of WA has 

experienced a reduction of rainfall since 1970 which resulted in a decline of water 

volume in reservoirs (Bennett & Gardner, 2014). The Northern, Central and the east 

of the Agricultural Regions of the South West WA are facing the highest salinity risk 

(Raper et al., 2014). The areas of 567,000 hectares (45.7% of agricultural land affected 

by salinilization) are unable to be used for agricultural production (Trewin, 2002). In 

WA, 98,000 km of levees, bank and drains have been built for to prevent salinisation, 

which will cause the disappearance of 450 plant species in WA in the next 30 years 
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(Trewin, 2002). Hundreds of other plant species are subject to genetic changes and at 

risk of extinction as a result of salinisation (Watts et al., 2001). Salinisation also affects 

the richness of animal species (reduced by a third) by damaging their habitats. It is 

predicted that 60 water-bird species are at risk of extinction (Watts et al., 2001). One-

third of aquatic invertebrate species is forecasted to be extinct in WA (Halse et al., 

2003). About 850 plant and animal species has been threated to be extinct in WA 

(Wallace et al., 2011). 

2.3 Potassium in Inland Saline Water 

In comparison to the OW at the same salinity level, the ionic ratio of chloride (Cl), 

calcium (Ca), sodium (Na+), sulphur (S) and bromine (Br) in ISW in Australia is 

almost the same (Fielder et al., 2001; Nulsen, 1997; Prangnell & Fotedar, 2006b). 

However, potassium (K+) deficiency in ISW is common (Fielder et al., 2001; Nulsen, 

1997; Saoud et al., 2003) due to clay soils’ uptake of Na+ (Stumm & Morgan, 1995) 

(Table 2-4).  

The [K+] in the raw ground water is much lower than that in OW at the same salinity 

(Boyd et al., 2007; Fielder et al., 2001; Ingram et al., 2002), and varies as per the depth 

(Nulsen, 1997; Nurmi et al., 1988). The [K+] in inland saline groundwater is 9.2 mg 

L-1 in New South Wales (Fielder et al., 2001), 25 mg L-1 in Victoria (Ingram et al., 

2002), and 26–331 mg L-1 in WA (Nulsen, 1997).  

Potassium deficiency in ISW adversely influences the growth and causes mortality of 

aquatic animals (Doroudi et al., 2006; Fielder et al., 2001; Forsberg et al., 1996; 

Ingram et al., 2002; Mourad et al., 2012; Partridge & Creeper, 2004; Roy et al., 2007; 

Shakeeb Ur et al., 2005; Tantulo & Fotedar, 2007). ISW should be fortified by K+ from 

50% to similar K+ concentration in OW to cultivate fish, shrimp, molluscs (Dinh, 2016; 

Fielder & Allan, 2003; Fielder et al., 2001; Shakeeb Ur et al., 2005; Tantulo & Fotedar, 

2006). Shrimps cultured in ISW with K+ fortification at the same [K+] in OW have 

similar survival and growth rates as those cultured in OW, and the shrimp’s osmo-

regulation capacity is increased (Prangnell & Fotedar, 2006b; Tantulo & Fotedar, 

2006).  
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Table 2-4. Potassium deficiency in ISW worldwide 

Country                                                                      Location Sources 

Australia   New South Wales Doroudi et al. (2006); Doroudi et al. (2007); 

Fielder et al. (2001) 

 Victoria Ingram et al. (2002) 

 Western Australia George (1992); Prangnell and Fotedar (2005); 

Tantulo and Fotedar (2006)  

China  Boyd and Thunjai (2003) 

Thailand  Boyd and Thunjai (2003) 

Ecuador  Boyd and Thunjai (2003) 

India  Jain et al. (2002) 

USA Alabama  Boyd and Thunjai (2003); Davis et al. (2005); 

McNevin et al. (2004); Saoud et al. (2003)  

 Arizona  Boyd and Thunjai (2003) 

 Florida Boyd and Thunjai (2003) 

 Mississippi Saoud et al. (2003) 

 Texas        Boyd and Thunjai (2003); Forsberg et al. 

(1996); Saoud et al. (2003) 

Although K+ is vital to survival and growth rates and the osmo-regulation capacity of 

shrimp and fish, K+ does not solely affect these mechanisms but does so in conjunction 

with [Na+]. When K+ is deficient in ISW, [Na+] in the haemolymph of shrimp increases 

which results in shrimp death (Tantulo & Fotedar, 2007). K+ addition to blue algae 

cultured media, in accordance with the reduction of Na+:K+ ratio, increases the algae 

biomass (Subhashini & Kaushik, 1986). The low [K+] breaks the Na+:K+ ratio that 

causes the death of fish (Mourad et al., 2012). In ISW, K+ is one of the three most 

important cations for the survival rates of Panaeus monodon (Shakeeb Ur et al., 2005) 

(Table 2-5, Table 2-8). 
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Table 2-5. Potassium (mg L-1) range for optimal growth rate of marine species  

Species Range Ref. 

Bostrychia radicans 400–500 at 25ppt Mourad et al. (1980) 

Caloglossa    leprieurii 200–400 at 15ppt Yarish et al. (1980) 

Chrysopkvys major Dispensable in diet Sakamoto and Yone (1978) 

Argyrosomus japonicus >50% of [K+] in OW Doroudi et al. (2006) 

Litopenaeus vannamei Na:K = 40:1–80:1 Perez-Velazquez et al. 

(2012) 

Penaeus japonicas 10 g kg-1 diet supple-

mentation 

Deshimaru and Yone (1978) 

Panaeus monodon 200 (at 12.5 ppt) Shakeeb Ur et al. (2005) 

2.4 Local Seaweed Species 

2.4.1 Taxonomy and Distribution of Six Local Seaweed Species in 

Western Australia 

Seaweeds, including the macroscopic plants inhabiting the intertidal regions of 

seashore, are algae (Fuhrer, 1981), which are divided into three main groups based 

upon their colors: the red algae, green algae, and brown algae (Huisman, 2000). In 

Australia, the red algae (Division Rhodophyta) consists of 1,300 species (out of 5,000–

5,500 species worldwide); the brown algae (Division Heterokontophyta, class 

Phaeophyceae) includes 350 species (out of 1,500–2,000 species worldwide). 

Approximately, a quarter of the 8,000 species of the world’s green algae (Division 

Chlorophyta) are considered to live in Australia (Huisman, 2000). Of these, six local 

species, Grateloupia subpectinata, Lomentaria catenata (a basionym of Fushisunagia 

catenata), Ulva lactuca, Cystophora subfacinata, Sargassum linearifolium and 

Sargassum podacanthum which are native or naturally distributed in Australia in 

generally, and in WA in particular, were chosen for this study. They were collected 

from the beaches and rivers of WA (Table 2-11).  

Lomentaria genus includes approximately 40 species, three of which are distributed in 

southern Australia (Womersley, 1996). The L. australis grows wildly in Elliston 

(South Australia), Port Philip Heads (Victoria), and around Tasmania. L. pyramidalis 

can be found naturally in Point Peron (WA) and Flinders (Victoria) (Womersley, 
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1996). L. monochlamypdea is mainly located in Port Stanvac (South Australia), Port 

Phillip Heads (Victoria), and Coffs Harbour (New South Wales) (Millar, 1990; Millar 

& Kraft, 1993). The species L. catenata was considered as L. australis and as L. 

ramsayana from Port Jackson (Millar & Kraft, 1993). In Australia, the L. catenata is 

distributed in New South Wales (Millar & Kraft, 1993) and was first recorded in WA 

by the author of this study. This species is now moved to a separate genus as 

Fushisunagia catenata, originated in Japan (Filloramo & Saunders, 2016), however, 

the name L. catenata is used throughout the thesis. L. catenata is distributed in Korea 

(Lee, 1978; Yoo et al., 2006), Japan and the Gulf of California (Lee, 1978), China 

(Guiry & Guiry, 2018). 

Grateloupia is the largest genus in Halymeniaceae (Wilkes et al., 2005). Its two main 

types, G. subpectinata and G. luxurians, are synonymous based upon their morphology 

and rbcL sequences (Verlaque et al., 2005). The G. subpectinata originated in China 

and Korea, introduced to Australia initially at the harbour areas (Nelson et al., 2013). 

It can now be found also in Tauranga, New Zealand (Guiry & Guiry, 2016; Nelson et 

al., 2013). G. subpectinata is a native species in WA, mainly distributed in the South 

West of WA (https://florabase.dpaw.wa.gov.au/browse/profile/36701, accessed on 11 

Nov 2016).  

Ulva is the widespread genera of the order Ulvales (Sze, 1998). It is difficult to identify 

Ulva to species due to the similarity in blade morphology among the species (Heesch 

et al., 2009; Kraft et al., 2010; Malta et al., 1999).  50 of the 140 recorded Ulva species 

have been recognized worldwide (Hayden et al., 2003). 562 Ulva species are named 

in AlgaeBase, 98 species of which are taxonomically recorded (Guiry & Guiry, 2016). 

6 species (U. australis Aresch., U. compressa Forssk., U. faciata Delile, U. intestinalis 

L., U. laetevirens Aresch., U. tanneri H. S. Hayden et J. R. Waaland) in the Southern 

Australia are presented in GenBank accession data (Kraft et al., 2010). Ulva is 

naturally distributed in various locations in Australia (Kraft et al., 2010) such as WA, 

New South Wales and Tasmania in the depth of up to five meters below water surface. 

Southern sea lettuce (U. australis) is common in low intertidal and shallow subtidal 

habitats such as rocky shores or sheltered bays with moderate to strong waves 

(Morrison & Storrie, 2010). U. lactuca is also naturally found all over Australia 

including WA (Guiry & Guiry, 2016).  

https://florabase.dpaw.wa.gov.au/browse/profile/36701
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According to Womersley (1987, p. 366), Cystophora belongs to the Cystoseiraceae 

Family, while Edgar (2000) places it under phylum Phaeophyta. According to Egda 

(2000, p. 67), C. subfarcinata is a “dominant plant in the shallow subtidal zone of 

many areas of the southern coast” and grows naturally in Nickol Bay (WA), Wilsons 

Promontory (Victoria), and around Tasmania. Among the Cystophora genus, C. 

subfacinata is considered the most common species in the coast of Southern Australia 

(Baker & Gurgel, 2010; Womersley, 1987). 

Sargassum is distributed all over Australia (Womersley, 1987). Its most common sub-

species, S. linearifolium, is a shallow low-intertidal to subtidal species (Martin-Smith, 

1993) and is commonly found in “in rock pools or the uppermost sublittoral on coasts 

of strong to moderate water movement” (Womersley, 1987, p. 441). S. linearifolium 

can be found in Port Denison, Houtman Abrolhos (WA), around southern Australia to 

New South Wale, possibly in the North coast of Tasmania (Baker & Gurgel, 2010; 

Huisman, 2000; Womersley, 1987). The distribution of the other sub-species of 

Sargassum, S. podacanthum, is narrower, from Point Peron (WA) to Port Noarlunga 

(South Australia) (Womersley, 1987). The Sargassum genus taxonomy is uncertain 

between and within “species” (Kilar & Hanisak, 1988). 

2.4.2 Morphology 

The family Lomentarianceaen algae is identified “with hollow thalli divided by 

multirowed cellular septa. Spermatangial sori are borne on specialized fertile ramuli” 

(Filloramo & Saunders, 2016, p. 348). Genus Lomentaria is described in detail by 

Womersley (1996) as “erecting or forming entangled clumps, much branched, with or 

without percurrent axes, branches terete or compressed, hollow, basally constricted 

with solid septa; holdfast discoid or hapteroid” (p. 134). The Australian species is 

distinguished by “thallus structure, external cystocarps and depressed tetrasporangial 

sori” (p135). The Lomentaria catenata is now described as Fushisunagia catenata 

(Filloramo & Saunders, 2016). The genus Fushisunagia, which is accommodated L. 

catenata, is “uniques from other lomentariaceaen taxa” (Filloramo & Saunders, 2016, 

p. 351).  L. catenata is “thallus intertangled, forming a tufted mass, consisting of erect 

and creeping parts, cylindrical, cartilaginous, branching three to five times, 

monopodial in growth”… “attaching to substratum be means of discoid holdfast” (Lee, 

1978, p. 125). 
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Grateloupia has the “mature auxiliary cell […] oblong in shape and conspicuously 

larger (13–15 µm long × 7–8 µm wide) than the other cells in the ampulla” (Faye et 

al., 2004, p. 63). The axes are “flattened (15–40 cm high, 4.5–10 mm wide, up to 1300 

µm thick) with the mucilaginous texture, up to 17 cm long, 1–3 mm wide (common 

on the surfaces, up to 4.5 cm long, 1–2 mm wide)” (Faye et al., 2004, p. 61). From a 

discoid holdfast, up to 28 axes can be arisen (Faye et al., 2004). 

Order Ulvales are characterized by basal bodies in the counterclockwise direction and 

the arrangement of micro tubular roots (Sze, 1998). Ulva spp. blades are composed of 

two cell layers, and the length can be up to one meter (Graham et al., 2009; Loughnane 

et al., 2008). Only U. curvata is attached to the stable substrates by rhizoidal branches 

(holdfast) (Graham et al., 2009; Malta et al., 1999; Skinner & Entwisle, 2007). All the 

other Ulva spp. are floating or lying on the sediments (Malta et al., 1999). Ulva spp. 

are unstable seaweeds. Their seasonal morphologies change under the environmental 

conditions (Loughnane et al., 2008; Malta et al., 1999). Womersley (1984) provides 

detailed description of the morphology of Ulva lactuca. 

Cystophora subfarcinata has a special zigzag structure with wide axis ranging from 2 

to 7 mm and thin main axis of 1–2 mm and lateral branches (Edgar, 2000; Womersley, 

1987). The discoid-conical holdfast is not divided or lacerate. The basic type of 

Cystophora is the arrangement of conceptacles in two rows.  

Sargassum have many branches growing from a short stipe (Huisman, 2000, p. 224). 

For more details of the morphology of Sargassum, see Womersley (1987, p. 418–419). 

The length of Sargassum’s thallus is about “0.1–2.0 m, while its stipes are 1–20 cm 

long from a discoid-conical holdfast”. The typical structure of the S. linearifolium’s 

primary branches is terete. “Branches of S. podacanthum are also typically terete, but 

more angular at the top, usually with short, scatted spines, which branch out radically” 

(Womersley, 1987, p. 418).
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Table 2-6. Taxonomy of the studied local seaweed 

Taxonomy F. catenata (L. catenata) G. subpectinata U. lactuca C. subfarcinata Sargassum spp. 

Empire Eukaryota 

Kingdom Plantae Chromista 

Phylum Rhodophyta Chlorophyta Ochrophyta 

Subphylum Eurhodophytina Eurhodophytina Chlorophytina   

Class Florideophyceae Florideophyceae Ulvophycae Phaeophyceae 

Subclass Rhodymeniophycidae Rhodymeniophycidae  Fucophycidae 

Order Rhodymeniales Halymeniales Ulvales Fucales 

Family Lomentariaceae Halymeniaceae Ulvaceae Sargassaceae 

Genus Fushitsunagia/Lomentaria Grateloupia Ulva Cystophora Sargassum 

Subgenus     Sargassum 

Source: Guiry and Guiry (2018), Womersley (1987) 

http://www.algaebase.org/browse/taxonomy/?id=8371
http://www.algaebase.org/browse/taxonomy/?id=86701
http://www.algaebase.org/browse/taxonomy/?id=1
http://www.algaebase.org/browse/taxonomy/?id=86704
http://www.algaebase.org/browse/taxonomy/?id=97240
http://www.algaebase.org/browse/taxonomy/?id=99581
http://www.algaebase.org/browse/taxonomy/?id=92220
http://www.algaebase.org/browse/taxonomy/?id=92220
http://www.algaebase.org/browse/taxonomy/?id=142048
http://www.algaebase.org/browse/taxonomy/?id=4364
http://www.algaebase.org/browse/taxonomy/?id=4364
http://www.algaebase.org/browse/taxonomy/?id=4360
http://www.algaebase.org/browse/taxonomy/?id=4391
http://www.algaebase.org/browse/taxonomy/?id=4391
http://www.algaebase.org/browse/taxonomy/?id=126796
http://www.algaebase.org/browse/taxonomy/?id=4608
http://www.algaebase.org/browse/taxonomy/?id=4613
http://www.algaebase.org/browse/taxonomy/?id=4574
http://www.algaebase.org/browse/taxonomy/?id=5173
http://www.algaebase.org/browse/taxonomy/?id=5213
http://www.algaebase.org/browse/taxonomy/?id=5187
http://www.algaebase.org/search/genus/detail/?genus_id=R58d9943895d59482
http://www.algaebase.org/browse/taxonomy/?id=8371
http://www.algaebase.org/browse/taxonomy/?id=7834
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2.4.3 Reproduction and Growth Rate 

Reproduction of Lomentaria is carpogonial branches 3-celled, tetrahedrally divided, 

gametangial thalli dioecious. Its life cycle is triphasic with isomorphic gametophytes 

and tetrasporophytes (Womersley, 1996). L. catenata is tetrasporic. One important 

character of L. catenata is the fertile ramuli development in spermatangium formation 

(Lee, 1978). Biomass growth is in winter and spring (Yoo et al., 2006). In the north 

hemisphere, the non-growth season is from March to August, and the tetrasporangia 

or spermatangia appear from September to January, the young cystocarps appear since 

October to December. In January and February, the branches are regenerated and a 

quick reduction of the number of fonds is recorded, particularly in March (Lee, 1978).  

The G. subpectinata grow from the whole thalli except the basal and distal ends 

(Adharini et al., 2016; Faye et al., 2004). The life stages of Grateloupia are isomorphic 

(Kawaguchi et al., 2001), with an alternation of gametophytes and sporophytes 

(Adharini et al., 2016). October and November are the best time for the 

tetrasporophytes growth, while September and March are the season for the dominance 

of carposporophytes (Adharini et al., 2016).  

Ulva spp. reproduction is typically isomorphic alternation of generations (Graham et 

al., 2009; Sze, 1998) and includes the sporophyte and gametophyte phases. Spores are 

produced in the sporophyte phase by meiosis and anisogametes are produced by 

mitosis during the gametophyte phase. The zoospores and gametes are produced from 

the cells in the edge of thallus. Haploid, biflagellate swimming gametes are produced 

from the haploid Ulva spp. individuals (Druehl, 2000). Female gamete is dark green 

while male gamete is yellow green due to its prominent eyespot (Pettett, 2009). The 

haploid male and female gametes fuse to become a diploid zygote which then develops 

to the diploid sporophyte. Then the diploid sporophytes produce quadriflagellate 

swimming haploid zoospores by meiosis. The zoospores grow into gametophyte of 

different sexes and they produce male and female biflagellate gametes by mitosis. The 

haploid form and diploid sporophyte are similar in morphology (Druehl, 2000) (Figure 

2-4 (A). 

Ulva spore release is dependent on the environmental conditions, particularly light, 

temperature and salinity (Han et al., 2008). The light requirements for sporulation and 
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growth are similar. The maximal spore release is found at the light level of >30 µmol 

photon m-2 s-1, pH level of 7–9, salinity level of 25–35 ppt and temperature from 15–

20oC (Han et al., 2008). Ulva spp. has high reproduction rate, and can produce 

swarmers all year round from their tissues (Ramus & Venable, 1987). 

Reproduction of Cystophora is sexual, oogamous and diplontic (Hotchkiss, 1999). Its 

sub-species, C. subfacinata, reproduces all year round (Shepherd & Edgar, 2013). The 

conceptacles of C. subfacinata are biosexual or occasionally unisexual, “with the 

ostioles scattered or in two rows near the base” and “thalli monoecious”, 

“receptacles simple or often branched” (Womersley, 1987, p. 400). The growth rate of 

C. subfacinata shows no seasonal changes. It has two stages of growth, the length 

growth is in summer-autumn and the tissues is reproductive after the autumn 

(Hotchkiss, 1999; Shepherd & Edgar, 2013) (Figure 2-4 (B).   

The Sargassum’s growth and development population are seasonal (Vuki & Price, 

1994) and varies according to the species (McCourt, 1984). The fertile receptacles of 

temperate Sargassum are shed in summer and the tropical Sargassum is abundant in 

winter (McCourt, 1984). The annual life cycle of S. yezoense peaks in length and 

density in May–June when the water is about 12–15oC and is at its lowest in 

September–December, when the temperature is about 16–20oC. The germination and 

the maturation of S. yezoense peak when the maximum water temperature is 22oC, in 

June to August, and then decline as the temperature drops. The germination picks up 

again in spring when the temperature is about 15oC (Agatsuma et al., 2002). S. 

fulvellum releases the eggs in early summer (March–April) (Hwang et al., 2007). For 

the S. baccularia, the annual growth phase is in spring (Schaffelke & Klumpp, 1998). 

The maximal biomass and reproduction of Australian Sargassum, S. tenerrimum, S. 

fissifolium, S. olygocystum attain in December–February and March–May. Differently, 

only S. linearifolium receives the peak biomass in June–September and reproduction 

from September to January (Martin-Smith, 1993).  

The reproduction of S. linearifolium is described as  

“Thalli monoecious. Receptacles unisexual or bisexual, forming dense clusters 3–

10 mm long. Much branched furcately or laterally, terete, 0.6–1.2 mm in diameter, 

drying slightly verrucose apices rounded, with scattered ostioles. Conceptacles 

unisexual; oogonia sessile, ovoid to subspherical, (100–) 160–240 µm long and 
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(60–) 90–220 µm in diameter, few per conceptacle; antheridia sessile or on short, 

branched paraphyses, avoid, (18–) 20–28 µm long and (8–) 10–18 µm in diameter” 

(Womersley, 1987, p. 441).  

S. podacanthum is also thalli monoecious with biosexual receptacles, simple or 

branched. Its conceptacles are unisexual (p. 444), similar to those of S. linearifolium 

(Womersley, 1987) (Figure 2-4 (C). 

The specific growth rate (SGR) of Sargassum is significantly affected by temperature 

and nutrients (Hwang et al., 2004). The SGR of S. baccularia in continuous nutrient 

supply of 0–22 µM ammonium in 30 days is from 2.5% to 9% d-1. At the field, the 

SGR of S. baccularia thalli are high from October to May, reaching their maximum of 

3% d-1 from December to March, so the nutrient requirement is also higher than in 

winter (Schaffelke & Klumpp, 1998). The SGR of G. subpectinata reaches 2.4–2.8% 

d-1 at 20oC (Adharini & Kim, 2016) (Table 2-12). 

2.4.4 Seasonality of Local Seaweed Species 

L. catenata growth season is from September to December in Japan, at the same time 

with the development of the new branches from tetraporangia (Lee, 1978). The G. 

subpectinata reaches the maximal growth in September in Korea and continues 

growing in autumn and winter (Adharini et al., 2016). Ulva’s growing season is 

summer, when longer photoperiod and high temperature are expected (Ramus, 1978; 

Vermaat & Sand-Jensen, 1987). Ulva spp. die in winter under the icing surface, bury 

in the bottom of the water body and bloom again in the summer (Kamermans et al., 

1998). Sometimes, Ulva spp. can survive up to two months under the dark during 

winter in European coastline, and resume to grow when re-exposed to the light 

(Kamermans et al., 1998). U. lactuca can grow and photosynthesize at the minimum 

range of 0.6–1.7 µE m-2 s-1 (Vermaat & Sand-Jensen, 1987). 

In Australia, the Cystophora’s standing biomass reaches its peak in spring and declines 

in summer. Unlike Cystophora, C. subfarcinata achieves its maximal biomass in late 

winter and shrinks in spring (Hotchkiss, 1999). S. linearifolium also grows well in late 

winter, but reaches its maximal size and reproduction rate in spring (Martin-Smith, 

1993). In contrast, other Sargassum spp. starts growing in summer, reaching its 

maximal growth rate in autumn. More specifically, its length peaks from January to 

March and bottoms out from July–September (Martin-Smith, 1993).  
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(A) (B) (C)  

Figure 2-4. The life cycles of (A) Ulva lactuca, (B) Cystophora, (C) Sargassum fusiforme  

(Source: (A) http://cronodon.com/BioTech/Algal_Bodies.html; downloaded 24/07/2012, 1:56PM), (B) Hotchkiss (1999), (C) Bast (2014) 

 

http://cronodon.com/BioTech/Algal_Bodies.html
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Table 2-7. The growth rate of some seaweed species 

Species Place Growth rate Condition References 

G. subpectinata Lab 2.38–2.83% d-1 20°C, 40 μmol photon m-2 s-1 irradiance, 12:12 

light:dark 

Adharini and Kim (2016) 

S. cymosum  Lab 0.0944±0.0105*  24oC, 150–600 PDF µE m-2 s-1 Hanisak and Samuel (1987) 

S.  filipendula   Lab 0.1071 ±0.0030* 30oC  Hanisak and Samuel (1987) 

S. fluitans Lab 0.1089±0.0027*  Hanisak and Samuel (1987) 

S. fluitans Neritic  0.041–0.091*  Lapointe et al. (2014) 

S. honeri Ocean 4.6% d-1  Gao and Hua (1997) 

S. natans Lab 0.0727 ± 0.0049* 24oC, 36–42 ppt; 300–600 PDF µE m-2 s-1 Hanisak and Samuel (1987) 

S. natans Neritic 0.031–0.093*  Lapointe et al. (2014) 

S. natans Ocean 0.005–0.020*  Lapointe et al. (2014) 

S. polyceratium Lab 0.0787 ±0.0153*  Hanisak and Samuel (1987) 

S. pteropleuron Lab 0.1117 ± 0.0080* 18oC, 24–36ppt Hanisak and Samuel (1987) 

U. rigida Field 0.75–2.91% d-1 15–21oC, 30–37ppt, 256–854 µE m-2 s-1  de Casabianca et al. (2002) 

U. lactuca Lab 54.42±3.82 mg d-1 22±2oC, 14:10 light:dark Kaladharan and Gireesh (2003) 

U. lactuca Lab 0.013–0.0014* 

0.042–0.043* 

0.094–0.121* 

   

17 µE m-2 s-1  

75 µE m-2 s-1 

563 µE m-2 s-1 

Natural and inorganic N-enrich 0.56 mg L-1 water 

Vermaat and Sand-Jensen (1987) 

U. lactuca Lab 16.4±0.18% d-1 

9.40±0.72% d-1 

50 µM N by NH4Cl 

50 µM N by NaNO3 
Ale et al. (2011) 

(*) (doublings d-1) 
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Table 2-8. The optimal environmental factors for seaweed growth 

Factors Range Result References 

Salinity    

U. lactuca 35–40 Optimal Friedlander (1992) 

U. lactuca 17–34 Cultured germlings and young blades grow well Koeman and van den Hoek (1981) 

S. thunbergia 30 Optimal growth Cui et al. (2014) 

S. ilicifolium 30 Oospore/receptacle/day: optimal  Ragaiah et al. (2012) 

S. wightii 30–40 (25–35oC) Maximum shedding of oospores  Sukumaran and Kaliaperumal (2000) 

S. muticum (Yendo) 34 Optimum growth Hales and Fletcher (1989) 

Temperature (oC) 

G. subpectinata 16–22 Maximal growth Adharini et al. (2016) 

U. lactuca 10 Optimum growth Malta et al. (1999) 

S. thunbergii 22 germling growth 7–9% day-1 Li et al. (2014) 

S. sandei 25 Maximum growth Hwang et al. (2004) 

S. berberifolium 20–25   

S. polycystum 25   

S. siliqousum 30   

Light    

U. lactuca 0.6–1.7 Optimum growth Vermaat and Sand-Jensen (1987) 
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Table 2-9. Water quality parameters for growth of seaweed 

Parameter Species Range  Results References 

NH4-N Ulva sp. Winter: max 3.6   Optimal growth  Campbell (2001) 

NH4-N Ulva sp. 7.8 µM m-2 d-1   Optimal growth Bartoli et al. (2005) 

NH4-N U. curvata  Significantly correlated Ramus and Venable (1987) 

NH4-N S. enerve 200 (N:P=16:1) Increase 0.70g Liu et al. (2004) 

NH4-N S. hemiphyllum 3.97±0.81 µM 0.28% d-1 in length, 1.65% d-1 in weight Yu et al. (2013) 

NH4-N S. hemiphyllum 0.5±0.24 µM 0.92 % d-1 in length, 0.62% d-1 in weight Yu et al. (2013) 

NH4Cl S. horneri 50–100 mg L-1 Inhibit germination Ogawa (1984) 

NH4-N S . hemiphyllum 25 mg L-1 Inhibit germination Ogawa (1984) 

NH4-N S. thunbergii 25 mg L-1 Inhibit germination Ogawa (1984) 

NO3
--N S. enerve 200 (N:P=16:1) Increase 0.56 g Liu et al. (2004) 

NO3
--N+NH4-N S. sandei 12 µM Maximum growth Hwang et al. (2004) 

PO4
3--P  0.6 µM Maximum growth Hwang et al. (2004) 

NO3
--N+NH4-N S. baccularia 3–5 µM Maximum growth 

Schaffelke and Klumpp (1998) 
PO4

3--P S. baccularia 0.3–0.5 µM Maximum growth 

K+ Ulva sp. 400–500 mg L-1 Maximum growth Yamashita et al. (2009) 

PO4
3--P U. reticulate 10 µM PO4

3--P + 50 µM NO3
--N Ahmad et al. (2011) 
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Table 2-10. Proximate compositions of seaweed (% dry weight) 

Species Carbohydrate Fibres Protein Sugar Lipid Ash References 

G. turuturu   60.4 22.9  2.6 18.5 Denis et al. (2010) 

G. turuturu 1.61–4.16  16.2–21.8  2.81–5.44 14.4–15.9 Munier et al. (2013) 

G. doryphore 41.82–54.72  22.9–30  0.81-1.3 6.98–11.85 Perfeto (1998) 

S. echinocarpum 10.5±1.3  10.3±0.7  3.8±0.2  McDermid and Stuercke (2003) 

S. hemiphyllum  56.8–62.9 9.76–10.1  3.04–4.42 19.6–21.5 Chan et al. (1997) 

S. horneri   1.00  0.10 3.4 Murakami et al. (2011) 

S. longifolium 16.8±0.7  18.65±1.21  8.2±1.57  Narasimman and Murugaiyan 

(2012) 

S. naozhouense 47.73 4.83 11.20  1.06 35.18 Peng et al. (2013) 

S. obtusifolium 12.3±1.1  13.0±1.1  2.6±0.2  McDermid and Stuercke (2003) 

S. oligocystum  9.40±1.39 5.64±0.19   13.8±2.74 Muraguri et al. (2016) 

S. polycystum  8.47±1.21 5.40 ± 0.07  0.29±0.01 42.40±0.41 Matanjun et al. (2009) 

S. vulgare        

S. wightii 25.5±1.37  16.59±0.86    Murugaiyan et al. (2012) 

Ulva spp. (hot water extraction)   4.30 41.70  23.70 Lahaye and Axelos (1993) 

U. lactuca (insoluble fraction)   40.50 36.10  9.40 Lahaye et al. (1994) 

U. lactuca  (soluble fraction)  15.80 16.80   23.00 Lahaye and Jegou (1993) 

U. lactuca   7.06  1.64 21.30 Wong and Cheung (2000) 

U. lactuca  54.00 8.46  7.90 19.59 Yaich et al. (2011) 

U. lactuca   10–21    Castro-González et al. (1996) 
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Species Carbohydrate Fibres Protein Sugar Lipid Ash References 

U. fasciata  17.1–20.6  8.8–12.3  3.6-5.1 25.4–32.2 McDermid and Stuercke (2003) 

U. fasciata  7.10±0.32 10.06±0.90   19.92±3.42 Muraguri et al. (2016) 

U. reticulate 15.37 ± 0.41  13.47±0.60    Manivannan et al. (2009) 

U. fasciata 70.1  14.7  0.5  Rameshkumar et al. (2012) 

Ulva sp.  6.9±4.1 18.6±7.3   23±7.4 Makkar et al. (2016) 

U. compressa  26.62 41.16    Patarra et al. (2011) 

U. stenophylla 66.9±1.66  20.43±4.85  1.24±0.59 22.1±0.88 Smith et al. (2010) 
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Table 2-11. Mineral composition (% dry weight) of seaweed species 

Species N P K Mg Na Ca S References 

G. doryphora  0.075–0.20 0.16–1.27     Perfeto (1998) 

G. lithophila   3.82  6.56   Sivakumar and Arunkumar (2009) 

S. echinocarpum                  1.53 0.14 9.50 1.16  1.31 1.16 McDermid and Stuercke (2003) 

S. hemiphyllum   0.06 0.01 0.01 0.02  Chan et al. (1997) 

S. horneri    1.21–1.98  1.03–1.47  Murakami et al. (2011) 

S. longifolium   6.38  6.10   Sivakumar and Arunkumar (2009) 

S. myriocystum   12.14  5.60   Sivakumar and Arunkumar (2009) 

S. muticum   7.46 1.94 1.39 1.68  Gorham and Lewey (1984) 

S. obtusifolium                    1.67 0.14 7.90 0.93  1.50 1.41 McDermid and Stuercke (2003) 

S. polycytum   8.37 0.50 1.36 3.79  Matanjun et al. (2009) 

S. vulgare 2.00±0.11       Lourenço et al. (2002) 

S. wightii   3.59  4.63   Sivakumar and Arunkumar (2009) 

Ulva sp.  2.7±2.1 22.1 16.7±3.2   29.2±28.9  Makkar et al. (2016) 

U. fasciata                                      3.62–3.74 0.22 2.87–3.15 2.19–2.94  0.39–0.47 5.24–5.51 McDermid and Stuercke (2003) 

U. lactuca   2.25  2.59   Sivakumar and Arunkumar (2009) 

U. reticulate   5.04  8.85   Sivakumar and Arunkumar (2009) 

U. stenophylla   7.9±3.9 192.3±142.1 1.9±1.8 12.9±3.6  Smith et al. (2010) 
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Table 2-12. Heavy metals composition (mg kg-1) in seaweed 

Species Cu Zn Fe Mn References 

G. doryphora 14.0±1.0 300±100 295±123  Caliceti et al. (2002) 

Sargassum sp. (at Nha Trang Bay) 1.9–4.0 6.2–46.5 93–779 17.9–284.3 Chernova and Sergeeva (2008) 

Sargassum sp. (at the Great Bay-Japan) 1.6–4.9 12.5–27.3 155–549 8.8–965.0 Chernova and Sergeeva (2008) 

Sargassum sp.   813–2895  García-Casal et al. (2007) 

S. binderi 10.2 2.8 31 3.6 Al-Shwafi and Rushdi (2008) 

S. boveamum 17.2 7.4 60 5.4 Al-Shwafi and Rushdi (2008) 

S. echinocarpum 11.0 7.0 92 6.0 McDermid and Stuercke (2003) 

S. hemiphyllum 0.30 1.4–1.8 19.4–26.0 1.7–2.0 Chan et al. (1997) 

S. horneri  3.49–5.52   Murakami et al. (2011) 

S. longifolium 2.21 1.79 69.05 2.82 Murugaiyan and Narasimman (2012) 

S. obtusifolium 9.0 16.0 129 15.0 McDermid and Stuercke (2003) 

S. polycytum 0.30 21.5 682.1  Matanjun et al. (2009) 

Enteromorpha compressa (at Romel) 65.7 58.5 3866  Khaled et al. (2014) 

E. compressa (at El-Boussit) 4.0 5.0 1284  Khaled et al. (2014) 

E. compressa 17.5 8.1 36 12.9 Al-Shwafi and Rushdi (2008) 

E. compressa 13.8–20.1 37.8–47.2 449–1628 134.9–166.7 Abdallah and Abdallah (2008) 

Enteromorpha sp. (southwest Sardinia) 1.9–41.3 28.2–722.0   Schintu et al. (2010) 
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Species Cu Zn Fe Mn References 

Ulva sp. 7–17 28–61 1052–1440 101.0 Makkar et al. (2016) 

U. fasciata 1.0–5.0 6.0–9.0 86–141 12.0–17.0 McDermid and Stuercke (2003) 

U. lactuca 7.2–14.5 27.4–63.1 515–709 33.2–74.0 Abdallah and Abdallah (2008) 

U. rigida (southwest Sardinia)  1.9–4.2 28.2–50.7   Schintu et al. (2010) 

U. rigida 3.1–3.2 5.6–6.1   Besada et al. (2009) 

U. rigida C. Ag. 13.0±7.0 64.0±55.0 1033±564  Caliceti et al. (2002) 

U. stenophylla 11.0±2.8 61.0±22.7 1227±522 192.3±142.1 Smith et al. (2010) 
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Table 2-13. Carbon, nitrogen and phosphorus concentration (% dry wt) and total C:N:P ratios in seaweed 

Species N P N:P C:N:P References 

S. baccularia 0.65–1.05 0.05–0.12   Atkinson and Smith (1983) 

S. berberifolium 1.67 0.12 14:1  Hwang et al. (2004) 

S. echinocarpum 1.32 ±0.08 0.08±0.01 38:1  Larned (1998) 

S. fluitans    271:10:1 (neritic water) Lapointe et al. (2014) 

S. fluitans    875:19:1 (oceanic water) Lapointe et al. (2014) 

S. natants    268:10:1 (neritic water) Lapointe et al. (2014) 

S. natants    719:17:1 (oceanic water) Lapointe et al. (2014) 

S. polycystum  1.99 0.15 13:1  Hwang et al. (2004) 

S. sandei 1.38 0.16 9:1  Hwang et al. (2004) 

S. siliqousum 2.36 0.19 12:1  Hwang et al. (2004) 

S. siliquosum    1278:33:1 Martin-Smith (1993) 

U. fasciata 2.69±0.29 0.12±0.01 48:1  Larned (1998) 
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2.4.5 Environmental Variables Affecting Seaweed Growth 

2.4.5.1 Salinity 

Salinity is the most important parameter that has a significant effect on seaweeds’ 

growth, photosynthesis, chlorophyll-a content, spore biomass and their ability to 

absorb heavy metals (Kamer & Fong, 2001; Mamboya et al., 2009; Scherner et al., 

2013; Sousa et al., 2007). Seaweeds’ tolerance to salinity is dependent on the species. 

Grateloupia is able to resist the high variation of salinity in short-term, and grows well 

in 25–37ppt (Simon et al., 2001; Simon et al., 1999). Ulva grows well in salted water 

of 5–40ppt (Choi et al., 2010; Kamer & Fong, 2001). Salinity toleration of U. lactuca 

and U. ridiga can be wide but these species prefer open-sea water (Friedlander, 1992; 

Zavodnik, 1975). On the other hand, U. curvata, U. scandinavica and U. rigida thrive 

in polyhaline water such as man-made lagoon and estuarine areas, but not in the open-

sea water (Koeman & van den Hoek, 1981). Generally, salinity level of 30 ppt is 

supposed to be ideal for most of the Ulva species (Malta et al., 1999). The minimal 

salinity level that U. scandinavica can tolerate is 5 ppt, while at this level U. curvata 

would die (Malta et al., 1999). Like Ulva, Sargassum also grows well in a broad range 

of salinity levels, from 24 to 42 ppt (Hanisak & Samuel, 1987), but prefers salinity 

levels of 30–34 ppt for optimal growth (Cui et al., 2014; Hales & Fletcher, 1989) 

(Table 2-13). 

The salinity of ISW in Australia widely varies with two-thirds of those areas has 

salinity 5–40 ppt (Mazor & George, 1992) are in the range of suitability for the above 

seaweed species to grow. 

2.4.5.2 Temperature and pH 

The effect of temperature on the growth of seaweeds varies depending on the species. 

The G. subpectinata prefers high temperature, growing best in hot seasons (summer 

and autumn), albeit with less density (Adharini et al., 2016). Ulva, on the other hand, 

grows better in the cooler weather, with temperature ranging from below zero up to 

25oC, depending on the species. U. rigida, for example, grows well in the temperature 

range of 7 to 25oC and reaches the highest growth rate at 17oC (de Casabianca et al., 

2002), while the U. curvata’s growth peaks at 25oC and decreases when the 

temperature is lower. The optimal temperature for the growth of U. lactuca, U. rigida 
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and U. scandinavica is 10oC (Malta et al., 1999). U. scandinavica survival is recorded 

at -5oC for 2 weeks in the darkness, anoxia and sulphide contact and can live under the 

freezing condition of winter (Kamermans et al., 1998; Vermaat & Sand-Jensen, 1987).  

The effect of the temperature on Sargassum also varies significantly depending on the 

species. The ideal temperature for S. thunbergii’s germling growth is 22oC (Li et al., 

2014) with the germlings SGR in the range of 7–9% d-1. At 15oC, S. horneri’s optimal 

SGR is 5% d-1 (Choi et al., 2009; Yamauchi, 1984), and at 20–25oC, SGR is negative 

after 12 days of cultivation (Choi et al., 2009). The optimal growth of S. muticum is 

achieved at 25oC (Hales & Fletcher, 1989), and S. patens grows best at 20–30oC (Endo 

et al., 2013) (Table 2-13). 

The pH of water is another factor influencing the growth of seaweeds. Red seaweed 

Gracilaria tikvahiae prefers the pH level of 7.0–8.0 for high production (Lignell & 

Pedersén, 1989), and the G. secundata reaches its maximum growth rate at pH 8.0 

(Skirrow, 1975). The maximal growth rate of G. manilaensis is recorded at pH 7.6–

7.8 at 1.3% d-1 (Hidayat et al., 2015). S. fulvellum quantum yield is similar in the pH 

of 4–10 (Hwang et al., 2006). A pH level of below 4 inhibits the zygote germination 

of S. honeri, which prefers the pH level of 5–10 (Ogawa, 1984). Ulva can grow in a 

high pH environment (Beer & Israel, 1990). However, when the pH is above 9, the 

growth of Ulva is negatively affected (Berndt, 1991; Maberly, 1992).  

The pH also affects seaweeds’ photosynthesis through the appearance of CO2 or HCO3
-

(Aizawa & Miyachi, 1986; Drechsler & Beer, 1991), which in turn influences the 

growth of seaweed (Chen & Durbin, 1994). The concentration of CO2 in air and water 

is 0.03–0.04% and 10–12 µmol at 25°C, respectively (Aizawa & Miyachi, 1986) and 

14 µmol m-3 at 15°C (Axelsson et al., 1995; Beer & Israel, 1990). These variations are 

caused by the changes in temperature and pH (Aizawa & Miyachi, 1986). Seaweeds 

have a CO2-concentrating system, and CO2 is the main source feeding into the cells 

through plasmalemma (Beer & Israel, 1990). However, HCO3
- is the main source of 

carbon for photosynthesis of macroalgae in the high pH condition of OW (Björk et al., 

1992). Therefore, HCO3
- concentration strongly affects seaweed photosynthesis 

(Maberly, 1992). The pH also affects the ion absorption of seaweed (Basha & Murthy, 

2007). The metal absorption of Sargassum peaks at pH 4.5 (Davis et al., 2000; Figueira 

et al., 1997).  
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The temperature and pH are vital in the growth of seaweeds (Cui et al., 2014; Ding et 

al., 2013), and those factors vary widely in ISW in Australia (Nulsen, 1997; Nurmi et 

al., 1988; Taukulis & John, 2009). Currently, there is no information recorded about 

the effect of those factors to the seaweed growth in ISW yet. In addition to the species 

dependent effect, different species of seaweeds would need to be tested to finalize their 

growth ability in ISW, as well as the similarity and differences of temperature and pH 

effects in OW and ISW to seaweed growth.  

2.4.5.3 Nutrients Uptake Capacity of Seaweeds 

In the OW, the most common type of ammonia (NH3-N) is ammonium (NH4-N) 

(Burgess et al., 2003) which is the most preferable nitrogen source of Ulva (Ahmad et 

al., 2011; Liu et al., 2004) and Sargassum (Liu et al., 2004). Ulva requires high NH4-

N concentration for growing (Campbell, 2001), and the growth of Ulva is significantly 

correlated with NH4-N uptake (Ramus & Venable, 1987). Nitrogen (N) required for 

maximal growth of Ulva in winter is 3.6 µM (Campbell, 2001). Ulva can consume up 

to 7.8 mmol m-2 of N per day-1 (Bartoli et al., 2005). The presence of 10 μM phosphate 

(PO4
3--P) in media of 50 μM NO3

--N or 50 μM NH4-N increases the U. reticulata’s 

capacity to absorb NO3
--N/NH4-N, better than that in the environment where NO3

--N 

or NH4-N is solely presented (Ahmad et al., 2011).  U. lactuca’s ability to accumulate 

chlorophyll is positively linear with the nitrogen concentration in water (Ahmad et al., 

2011). Nitrogen required for the maximal growth of Ulva in winter is 3.3 mg g-1 dry 

weight d-1 (Campbell, 2001). U. lactuca can reduce the NH3-N concentration in water 

similar to zeolite (Burgess et al., 2003). The Sargassum’s growth rate drops when the 

continuously supplied NH4-N is out of the range of 3–5 µM (Schaffelke & Klumpp, 

1998) (Table 2-14).  

As the importance of the NH4-N and PO4
3--P in the growth of the seaweed, it is worth 

to value the effect of those parameters into the growth of seaweed in ISW to test the 

growth feasibility of seaweeds in ISW and their optimal growth condition for marine 

aquaculture application. In addition, there may be some differences of the effects of 

NH4-N and PO4
3--P in OW and ISW on the seaweed growth that may take into account 

to determine.   
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2.4.5.4 The Role of Potassium in Seaweed Growth 

K+ cannot be replaced physiologically by other chemicals for algae growth (Yarish et 

al., 1980).   The [K+] makes up 1–2 % of dry biomass of plants (Evans & Sorger, 1966) 

and it plays a crucial role in the growth of the terrestrial plants (Blumwald et al., 2000; 

Talling, 2010). It has been found to have an effect on the growth of Platymonas 

subordiformis and marine red alga Porphyra leucosticta (Escassi et al., 2002; Kirst, 

1977). It has also been recognised as an important internal cation in algae (Kirst, 1977), 

which accounts for 85 and 59% of the tropical seaweed Eucheuma cottonii and 

Sargassum polycystum major cations, respectively (Matanjun et al., 2009). In brown 

seaweeds, such as Fucus vesiculosus, Laminaria digitata and Undaria pinnatifida, K+ 

accounts for 37, 67 and 49% of their internal total cations, respectively, whilst in red 

algae such as Chondrus crispus and Porphyra tenera the figures are 37 and 43%, 

respectively (Rupérez, 2002). The K+ content can make up 3.2% of the dry weight of 

Ulva, and the tissue K+ maybe 20 times higher than its concentration in OW 

(Yamashita et al., 2009). U. ohnoi grows best in OW, where the Na:K ratio is 47:1, 

and cannot grow where the  Na:K ratio is 2:1 (Yamashita et al., 2009).  

The  physiological dependence on the K+ to support seaweed growth is comparable to 

higher plants. In the higher plants, the role of K+ is important in photosynthesis and 

respiration by activating several enzymes to synthesise protein and carbohydrates 

(Checchetto et al., 2013). The intracellular [K+] is regulated by K+ exchange 

mechanism between internal and external [K+] (Blumwald et al., 2000; Tromballa, 

1978). During this regulatory process, the [K+] in the outside medium determines a 

gradient between the internal and external environment of the cells, allowing the 

exchange between Na+ and K+. The different gradient is an important mean of nutrient 

transport within intracellular cells (Blumwald et al., 2000). The K+ plays an important 

role in maintaining an osmotic gradient of aquatic plant cells (Malhotra & Glass, 1995) 

facilitated by keeping a  normal ratio between Na+ and K+ internally, i.e. high K+ (100–

200 mM) and low Na+ (1–10 mM) (Blumwald et al., 2000). The H+-ATPase activities 

are also highly affected by [K+] (Sekler & Pick, 1993), it allows active extrusion of H+ 

out of cells which generate gradient to induce the Na+/H+ antiporters that move the H+ 

into the cells while at the same time extrudes Na+ out of cells (Blumwald, 2000; 

Blumwald et al., 2000).  
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A reduction in [K+] of the external culture medium of estuarine red algae Bostrychia 

radicans Montagne and Caloglossa leprieurii (Montagne) J. Agardh leads to a 

reduction in their intracellular [K+] (Yarish et al., 1980). A lower cells [K+] (66.2–90.5 

mmol) is exhibited when the external [K+] ranges from 0.008 to 0.390 mmol (Allison 

& Walsby, 1981). Conversely, rising external [K+] increases the [K+] accumulation 

rate in Anabaena flosaquae cells up to 20 folds (107.6 mmol) compared with the initial 

external [K+] (3–6 mmol) (Allison & Walsby, 1981).The [K+] required for the protein 

synthesis is in the range of 100–150 mmol (Blumwald et al., 2000). In unicellular 

marine algae, [K+] is accumulated internally and can be up to around 14 folds (110–

120 mmol) of its external concentration (8.2 mmol) in lower salinity containing NaCl 

0.1–0.3 mol. The [K+] in cells rises up 25 folds (210 mmol) when external NaCl 

increases to 0.4–0.6 mol (Kirst, 1977). 

Although the importance of the K+ is recorded in the growth of seaweeds in OW, the 

efficient K+ level in ISW to seaweed growth has not been studied yet, whereas the K+ 

deficiency is common in ISW in Australia (Boyd et al., 2007; Fotedar et al., 2011; 

Ingram et al., 2002; Partridge & Lymbery, 2008; Saoud et al., 2003). In the purpose 

of growing seaweed in ISW, it is vital to determine the effect of K+ levels in ISW to 

the growth of seaweeds, which is now still lacking in literature. Those information 

gaps will be filled by this study up to six species of seaweeds. 

2.4.6 Proximate and Ionic Compositions of Seaweeds 

The proximate and chemical compositions of seaweed varies with seasons and species 

(Perfeto, 1998). The nitrogen of L. catenata tissue is varied from 2.7–3.8% depending 

on the dissolved inorganic nitrogen concentration of water (Kim et al., 2014). In 

autumn and winter, higher concentrations of protein, ashes, and phosphorus are 

recorded in Grateloupia doryphore whereas the carbohydrate reaches its maximal 

value in summer (Perfeto, 1998). 

Four main components are fibre, ash, protein, and lipid, which account for 54, 20, 8.5, 

and 8%, respectively, in U. lactuca (Yaich et al., 2011). The total fibre content (soluble 

and insoluble extraction) is about 40% of the dry weight of U. lactuca (Lahaye & 

Axelos, 1993). Of the aqueous extraction of U. lactuca, sugars accounts for 36–42%, 

including gluco, sylose, rhamnose, and anduronic acid at 57, 11, 9, and 7 mol%, 

respectively (Lahaye & Axelos, 1993).  
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Sulphate share is 41.5% of the ash and 16% of extraction in the dry weight of the 

Ulva (Lahaye & Axelos, 1993). The dried Ulva also contains 12.2% polysaccharides 

(Lahaye & Axelos, 1993; Lahaye & Jegou, 1993), which is also known as Ulvan 

(Lahaye & Axelos, 1993; Ray & Lahaye, 1995). Ulva also contains vitamins, trace 

elements, enzymatic resistant proteins in their fibres (Lahaye & Jegou, 1993; Ray & 

Lahaye, 1995) and all the essential amino acids (except tryptophan) (Wong & 

Cheung, 2000; Yaich et al., 2011).  

The total lipid and fatty acid of Ulva is 1.85–1.95 and 0.54–0.71 percent of dry 

weight, respectively (Fleurence et al., 1994). Palmitic acid and oleic acid share in 

Ulva fatty acids is 60 and 16% of, respectively (Yaich et al., 2011). In U. rotundata 

neutral lipids, glycol lipid, and phosphor lipid account for 46, 38 and 16%, 

respectively of the total lipid (Fleurence et al., 1994).  

The tissue-N of Ulva in Port Phillip Bay (WA) is 43.78 and 28.27 mg g-1 dry weight 

in the winter and summer, respectively (Campbell, 2001). Potassium and sodium 

contents in Ulva are about 0.21 and 0.089 M, respectively, depending on fresh weight 

specimen. In addition, the contents of potassium and sodium in Ulva are stable, and 

they are not affected by salinity and Na/K ratio in water (Yamashita et al., 2009). 

The proximate compositions of Sargassum, likewise, vary widely among species, with 

protein ranging 5.4 to 14% of protein and lipid from 0.29 to 3% (Matanjun et al., 2009; 

McDermid & Stuercke, 2003). The [K+] in Sargassum ranges from 7.9–9.5% of dry 

weight (McDermid & Stuercke, 2003), much higher than in Ulva and Grateloupia, 

however the tissue-N and tissue-P are much lower (McDermid & Stuercke, 2003; 

Perfeto, 1998). These parameters will be measured in seaweeds culturing in ISW to 

see the effect of ISW to the [K+], tissue-N and tissue-P of the seaweeds, under the 

different condition of temperature, pH and K+ levels (Table 2-15, Table 2-16, Table 2-

17, Table 2-18). 
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2.4.7 Uses and Benefits of seaweeds 

Seaweeds provide organic carbon for aquatic food chain (Duarte, 1995; Graham et al., 

2009). They can be used as food, produce phycocolloid, for agriculture (Lindsey 

Zemke-White & Ohno, 1999), and can also be used as a biofilter for aquacultured 

species (Neori et al., 2004).   

2.4.7.1 As a Source of Food and Medicine 

Seaweeds have been used as a healthy source of protein for Asian people for centuries, 

gradually introduced into the western markets as nori rolls, salads, and agar gels (Lee, 

2008).  

The red seaweed Grateloupia, including G. subpectinata, is used as a high price source 

of food in Korea (Adharini et al., 2016). So is G. filicina, which has a potential 

antioxidant activity (Athukorala et al., 2003).   

Ulva is more widely used for human food and medicine in Vietnam, Italy, Portugal, 

Argentina, Canada, Chile, Hawaii, Japan, Malaysia, Indonesia and Philippines 

(Lahaye et al., 1994; Lindsey Zemke-White & Ohno, 1999; Sze, 1998). U. lactuca, 

which contains similar protein and energy to Lucerne hay, can be used as cattle-feed 

(Ventura & Castañón, 1998). As the consequence of the capability of holding K+ in 

their thalli, Ulva presents itself a potential candidate for space agriculture (Yamashita 

et al., 2009). 

The brown seaweeds, include Cystophora and Sargassum, have also been used 

commonly in Asia as a source of medicine for human and to produce alginate 

(Wiltshire et al., 2015; Yende et al., 2014). Sargassum has been cultivated in many 

countries, such as Korea, Japan, and India for human consumption (Bast, 2014). For 

instance, the S. naozhouense and S. fusiforme have been used widely as a source of 

food in Korea, Japan, China (Bast, 2014; B. Wang et al., 2010). The S. 

naozhouense has been used as a source of food and drugs for traditional orientation 

treatments (Hur et al., 2008; B. Wang et al., 2010). Sargassum also provides a source 

of sargaquinoic acid, sargachromenol for neurite growth and survival (Hur et al., 

2008).  
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2.4.7.2 Extracts of Seaweeds 

The extracts of seaweeds are useful for various purposes. For example, the extract of 

G. lithophila has effects against the mosquito larva (Poonguzhali & Nisha, 2012). The 

U. fenestrate extract has been found to possess allelopathic properties that inhibit 

growth and/or development of other macroalgae and animal larvae (Nelson et al., 

2003). Water-soluble polysaccharides with good gelling properties extracted from 

cell-wall of Ulva spp. (Lahaye & Axelos, 1993) can be used to produce compost, paper 

and gel (Ray & Lahaye, 1995) as well as enzyme for human digestion (Lahaye et al., 

1994). Ulvan, which is the main polysaccharide, is simple and low cost to extract 

by using hot water (Paradossi et al., 1999). Ulva by-products can reduce the oxidative 

stress and atherosclerosis development in hamsters (Godard et al., 2009). The lipid in 

Ulva can be used as biodiesel (Petrus & Noordermeer, 2006). Ulva biomass can also 

be converted to fuels for transport and chemistry (Chung et al., 2011).  

The methanolic and aqueous extracts of L. catenata obtained at 20oC contains 

angiotensin-converting enzyme, which is important in blood pressure control (Cha et 

al., 2006). This species can also be used to produce DL-galactan hybrids (Cosenza et 

al., 2017), polysaccharide PS1 and PS2 (Takano et al., 1994), anticoagulant 

polysaccharide, which is sulfated proteoglycan containing high sulfate and protein 

content, that plays a crucial role in blood coagulation (Pushpamali et al., 2008). The 

extract of L. catenata also contains the antiviral against the pathogenic infectious 

hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) 

of fish (Kang et al., 2008) and antioxidant source (Kim et al., 2008). L catenata 

biomass can also be used to produce bioethanol (Sunwoo et al., 2017).  

The extract from Sargassum can be used as in the treatment of neurological disorders 

(Natarajan et al., 2009), dementia (Pangestuti & Kim, 2010), and HIV (Thuy et al., 

2015). It also provides important biochemical compounds for agriculture (Ara et al., 

1997). The fact that Sargassum is active in antioxidant activity, cholinesterase 

inhibition activity, neuroprotective activity, anti-cancer and cytotoxic activity has 

made it a popular ingredient in health enhancement products (Yende et al., 2014). 
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2.4.7.3 As a Source for Fertilizer 

Brown seaweeds, typically Sargassum, are commonly used as a source of fertilizers 

and soil conditioners (Huisman, 2000). Ulva has also been widely used for agriculture 

as soil conditioners, fertilizers, and water cleansers (Lindsey Zemke-White & Ohno, 

1999; Sze, 1998).  

2.4.7.4 As a Source of Bio-filter 

Ulva is a “good colonizer and tolerates pollution better than most macroalgae, often 

thriving where competition with other species is reduced” (Sze, 1998, p. 78). The 

bloom of Ulva can serve as an indication of water pollution (Ho, 1990; Villares et al., 

2001; Wan et al., 2017). In addition, the high density of Ulva’s population may reduce 

the growth of eelgrass and other unbeneficial marine vegetables (Sugimoto et al., 

2007). Dried green algae and active carbon of U. lactuca can be used to remove Cr6+ 

in wastewater and other water solution (El-Sikaily et al., 2007).  

Seaweeds, including Ulva and Sargassum, can clean the water discharged from 

aquaculture (Neori et al., 2004; Partridge, 2008; Troell et al., 1999; Van Khoi & 

Fotedar, 2011). Ulva can also absorb trace metals in polluted water, such as sewage 

runoffs and marshes (Ho, 1984). Therefore, they can be cultured together with shrimp, 

seabream, or seabream and abalone; or seabream and sea urchin; which would result 

in higher aquaculture yields and income (Cruz-Suárez et al., 2010; Jin & Dong, 2003; 

Kitadai & Kadowaki, 2007; Mai et al., 2010; Neori et al., 2004; Neori et al., 1996). 

Like Ulva, Sargassum also has the ability to absorb heavy metals (Davis et al., 2000) 

such as lead (Pb2+) (Martins et al., 2006), Cadmium (Cd) (Lodeiro et al., 2006), copper 

(Cu2+) (Karthikeyan et al., 2007; Padilha et al., 2005; Vijayaraghavan & Prabu, 2006), 

and zinc (Zn) (Valdman et al., 2001). 

2.4.8 Seaweed Aquaculture 

Aquaculture remains the fastest food producing industry. In 2013, aquaculture 

produced 97.92 million tonnes of food, not including aquatic plants, accounting for 

43% of fisheries food supply (FAO, 2015). While the marine capture production 

reduced gradually over the last decade, the marine aquaculture production steadily 
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increased (FAO, 2014). The marine aquaculture accounted for nearly 37% of total 

aquaculture production in 2012 (FAO, 2014). In 2012-2013, the aquaculture 

production of Australia was 80,066 tonnes, valued at $1 billion, accounting for 35 and 

43% of the fisheries production and values (Stephan & Hobsbawn, 2014). The Oceania 

produced more mariculture production than the inland aquaculture, sharing 97.67% of 

total live weight aquaculture production in 2013 (FAO, 2015). However, the total 

aquatic plants produced by Oceania share only 0.07% of global aquatic plants 

production and 0.02% of its value (FAO, 2017). Aquatic plants, 95.5% of which were 

seaweed, contributed 27 million tonnes live weight to the total aquaculture production 

in 2013, an increase of 13.4% from 2012, valued at approximately USD 6.655 billion 

(FAO, 2015). This exceeded the 2013’s estimated production (26.1 million tonnes) by 

almost a million tonnes (FAO, 2014). Mariculture of aquatic plants share 95.73% of 

total aquatic plants production and 97.19% of its values (FAO, 2017). 

The Asian-Pacific dominated the world’s aquaculture, contributing 89% to the world’s 

total production (FAO, 2015) and nearly 80% to the total seaweed production (Chung 

et al., 2011). China is the world’s largest seaweed producer, accounting for more than 

a half of the global seaweed production, followed by Indonesia, Philippines, Korea, 

Japan (FAO, 2015). In 2015, China still was the lead in aquatic plants producer, 

accounted for 47% of the global production and 50% of values (FAO, 2017). Japan is 

the second-most important seaweed producer in terms of value due to the Nori 

production (FAO, 2010). Seaweeds produced in Asia have been exported to Western 

markets, which have gradually accepted seaweeds as a food product, opening a 

potential growth for seaweed industry (Lee, 2010). 

In 2008/09, the import of seaweed to Australia reached over 5,000 tonnes, valued at 

AU$17 million, mainly the fresh, dried or chilled seaweeds, from the major providers 

in China, Japan, Korea and Ireland (Lee, 2010). As the main source of seaweed 

consumption in Australia comes from import, the development of an alternative land-

based source of seaweed culture in Australia is necessary for both domestic 

consumption and for export (Lee, 2008). Although it has been a potential food industry 

(Lee & Momdjian, 1997), seaweed culture in Australia has not been commercially 

developed. Currently, seaweed culture is limited to four major industries. These 

include (1) alginates by Australian kelps such as Durvillea sp. in Tasmania, (2) 
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fertilisers and feeds for agriculture by the bull kelp Durvillea sp. as liquid fertilizer 

and animal feed in Australia, (3) fucoidanc bioactive compounds extraction by 

Undaria pinnatifida in Tasmania, and (4) beta-caroten by micro-algae Dunaliella 

salina in WA (Lee, 2010). The seaweed culture in Australia is facing various market 

factor constraints, such as being the minor industry, the habit of using seaweed as food, 

application of seaweed food, and impacts of seaweed culture ecologically and 

sustainably, as well as the economic assessment of seaweed culture (Lee & Momdjian, 

1997). Today, seaweed is becoming one of the hottest new trend in culinary landscape 

(Belton, 2013). However, in Western Australia, collecting the wild live seaweeds 

needs licence from both Department of Parks and Wildlife and the Department of 

Fisheries as well as the permission from relevant land managers. Therefore, growing 

seaweeds in ISW can contribute to environmental protection of not only the ISW 

expansion prevention but also reduce natural collection of seaweeds.  

Ulva grows freely in the coastal pools and need substrates or rocks to live on (Sze, 

1998). Their growth rate could reach 30% d-1 in northern region (Bruhn et al., 2011) 

or 9.63 g m-2 d-1 in Japan (Yamashita et al., 2009). Suitable stocking densities for U. 

lactuca Linnaeus growth are from 0.13 to 4.5 kg wet weight m-2 (Lapointe & Tenore, 

1981). At the stocking density of 0.8 kg wet weight m-2, U. lactuca provides maximal 

yield of 4.6 g C m-2 day-1. At at higher stocking density its yield starts to decline 

(Lapointe & Tenore, 1981). The global Ulva culture production is not documented, 

but Japan has been reported to solely produce 1,500 tonnes of dry weight of Ulva spp. 

annually (Lindsey Zemke-White & Ohno, 1999). 

L. catenata have been widely studied on seasonal growth (Chang Geun et al., 2010), 

the extracts (Cha et al., 2006; Kang et al., 2008; Kim et al., 2008; Khan et al., 2008; 

Pushpamali et al., 2008), phylogenetics (Filloramo & Saunders, 2016; Gall et al., 

2008; Kanagasabhapathy et al., 2008). However, the cultivation of this species has not 

been practiced yet opening a potential study subject in the future. 

Seaweed can be grown as monoculture, such as Laminaria, Porphyra, Gracilaria, 

Eucheuma in China (Xiu-geng et al., 1999), Chondrus crispus in land-based tanks and 

ponds in Canada (Chopin et al., 1999), Gracilaria in tanks in USA (Capo et al., 1999). 

China is the largest producer in the world of Laminaria japonica (Tseng, 2001). 

Seaweed can also be used as a biofilter for aquaculture species (Neori et al., 2004), 
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and can be integrated with shrimp (Cruz-Suárez et al., 2010; Mai et al., 2010; Van 

Khoi & Fotedar, 2011), seabream and shellfish, salmon (Neori et al., 2004), marine 

fish (Al-Hafedh et al., 2012). Sargassum have been cultivated, such as S. fulvellum in 

Korea (Hwang, Baek, et al., 2007; Hwang, Park, et al., 2007) and S. fusiforme (Pang 

et al., 2006), S. horneri (Pang et al., 2009), S. naozhouense (B. Wang et al., 2010) and 

S. thunbergii  (Li et al., 2010) in China.  

Farming of C. subfacinata and S. linearifolium has not been historically recorded, 

except for the growing of these seaweeds as transplanted material to be threaded onto 

rope in South Australia and the field growth rate is low (Wiltshire et al., 2015). The S. 

linearifolium grows poorly in summer and is only suitable for short-term culture 

(Wiltshire et al., 2015). Growing these seaweed species in ISW is not only contribute 

to the mariculture production, but also contribute to literature of recording the first 

attempt to grow those species in artificial conditions.   

2.5 Inland Saline Water Aquaculture  

Aquaculture remains the fastest growing food-production industry. Total production in 

2009 was 55.1 million tonnes, excluding aquatic plants, and accounted for 46% of 

fisheries food supply (FAO, 2010), which was increased to 76.6 million tonnes in 2015, 

valued at US$163 billion (FAO, 2017). Although marine capture production has 

reduced stably over last decade, aquaculture production has steadily increased at the 

pace of 5.9% annually (FAO, 2010, 2017). Marine aquaculture accounted for nearly 

40% of total aquaculture production in 2009, which was 8.1 kg per capita supply. Out 

of the above total recorded aquaculture production, aquatic plant production in 2008 

was 15.8 million tonnes live weight, valued at approximately US$7.4 billion, and 

consisting of 99.6% total production of seaweed (FAO, 2010). In 2015, the aquatic 

plants production (mainly seaweeds) was double of that in 2008. 96% of the aquatic 

plants production was from aquaculture, which accounted for 27.7% of total 

aquaculture volume (FAO, 2017). Inland marine aquaculture using the ISW can 

contribute to salinisation management by helping to reduce agricultural land 

degradation and opening up a new farming practice for farmers (Doupé, Lymbery, & 

Starcevich, 2003). 
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Table 2-14. Species cultured in ISW worldwide  

Common name Scientific name States Reference 

Brine shrimp  Artemia salina USA Brune et al. (1981) 

Barramundi Lates calcarifer India Jain et al. (2006) 

Chinese shrimp  Fenneropenaeus 

chinensis 

China Liu (2001) 

European carp Cyprinus carpio India Swivedi and Lingaraju 

(1986) 

Fathead minnow  Pimephales promela USA Burnham and Peterka 

(1975) 

Giant freshwater 

prawn 

Macrobrachium 

rosenbergii 

India Jain et al. (2007) 

Grey mullet Mugil cephalus India Barman et al. (2005); 

Swivedi and Lingaraju 

(1986)  

Manila clam  Venerupis (Ruditapes) 

philippinarum 

Netherlands Van der Hiele et al. 

(2014) 

Marine diatom  Phaeodacrylum 

tricomutum 

USA Brune et al. (1981) 

Pearl spot Etroplus suratensis India Swivedi and Lingaraju 

(1986) 

Red drum  Sciaenops ocellatus USA Forsberg et al. (1996) 

Tiger prawn P. monodon India Dwivedi and Trombetta 

(2006); Shakeeb Ur et al. 

(2005) 

White shrimp  Litopenaeus vannamei USA Davis et al. (2005); Gong 

et al. (2004); Roy et al. 

(2009) 

  China Liu et al. (2014) 

Source: Dinh (2016)  
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Table 2-15 Cultured species in ISW in Australia  

Common name Scientific name State Reference 

Agar Gracilaria cliftonii  WA Kumar et al. (2010) 

Atlantic salmon Salmo salar VIC Ingram et al. (2002) 

Australian bass Macquaria 

novemaculeata 

VIC Ingram et al. (2002) 

Australian snapper Pagrus auratus NSW Fielder et al. (2001) 
  

SA  Hutchinson and Flowers (2008)  

  VIC Ingram et al. (2002) 

  WA Partridge et al. (2006) 

Barramundi Lates calcarifer WA  Partridge and Lymbery 

(2008); Partridge et al. (2006) 

  SA Hutchinson (1997) 

Black bream Acanthopagrus butcheri WA Doupé et al. (2005) 

Blue mussel Mytilus edulis WA Dinh and Fotedar (2016) 

Brine shrimp Artemia salina VIC Gooley et al. (1997)  

Banana prawn Penaeus merguiensis Qld Collins et al. (2005) 

European carp Cyprinus carpio VIC McKinnon et al. (1998) 

Greenlip abalone Haliotis laevigata WA Fotedar et al. (2008) 

Greenback flounder Rhombosolea tapirina SA  Hutchinson (1997) 

  VIC Ingram et al. (2002) 

Kuruma prawn P. japonicus VIC Ingram et al. (2002) 

Marron Cherax tenuimanus WA Paust (1997) 

Microalgae Dunaliella salina SA Kolkovski (2010) 

  WA Paust (1997) 

Mulloway Argyrosomus 

japonicas 

NSW  Doroudi et al. (2006)  

 SA Hutchinson and Flowers (2008) 

  WA Partridge et al. (2006) 

Pacific oyster Crassostrea gigas VIC Ingram et al. (2002) 

Rainbow trout Oncorhynchus mykiss VIC 

WA 

Ingram et al. (2002); Lymbery 

et al. (2007); Partridge et al. 

(2006) 

Sand whiting Sillago ciliata VIC Ingram et al. (2002) 
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Common name Scientific name State Reference 

Silver perch Bidyanus bidyanus VIC Ingram et al. (2002), Doroudi 

et al. (2007) 

  SA Hutchinson (1997) 

Sydney rock oyster Saccostrea glomerata VIC Ingram et al. (2002) 

Tommy 

rough/Australian 

herring  

Arripis georgiana SA Hutchinson (1997) 

Tiger prawn Penaeus monodon WA Tantulo and Fotedar (2006) 

Trochus Trochus niloticus NT Lee (1996) 

Western rock lobster Panulirus cygnus WA Tantulo and Fotedar (2007) 

Western king prawn Penaeus latisulcatus WA Prangnell and Fotedar 

(2006b); Prangnell and 

Fotedar (2005) 

Yabby Cherax albidus WA Paust (1997) 

Yellow-fin whiting  Sillago schombergkii SA Hutchinson (1997) 

Yellowtail kingfish Seriola lalandi  Hutchinson (1997) 

NSW: New South Wales; NT: Northern Territory; Qld: Queensland; SA: South 

Australia; VIC: Victoria; WA: Western Australia. 

(Modified from Dinh (2016) 

Inland saline aquaculture has been practiced worldwide for many years. In the USA, 

experiments have been conducted on culturing marine prawn in low salinity water, 

such as on the Pacific white shrimp (Litopenaeus vannamei Boone) with potassium 

and magnesium fertiliser supplementation (Roy et al., 2010). Red drum aquaculture 

development is vitally based upon salinity and has expanded successfully using 

groundwater (Forsberg et al., 1996; Forsberg & Neill, 1997). Bivalve (Ruditapes 

philippinarum) (Baud & Bacher, 1990) and marbled spinefoot rabbitfish (Mourad et 

al., 2012) have also been trialed. In Australia, ISW aquaculture has gradually 

developed all over the country (Allan et al., 2001). Rainbow trout (Oncorhynchus 

mykiss) have been grown in WA (Allan et al., 2001), in addition to barramundi, 

mulloway, snapper and algae (Borowitzka, 1997; Partridge, Lymbery, & George, 

2008; Partridge et al., 2006), Atlantic salmon (Salmo salar), Australian bass 
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(Macquaria novemaculeata), black bream (Acanthopagrus butcheri) (Ingram et al., 

2002), and king prawn (Penaeus latisulcatus Kishinouye) (Prangnell & Fotedar, 

2006b). Oysters have also been trialed in ISW but do not have good growth and 

survival rates (Ingram et al., 2002). Blue mussels Mytilus edulis (Linnaeus, 1758) can 

also survive and grow in ISW fortified with K+ at similar concentrations as OW (Dinh, 

2016) (Table 2-14). 

In Australia, fish, crustaceans, and seaweed have been cultured in ISW (Table 2-15). 

However, their economic contribution to Australian national fisheries is still minor 

(Doupé, Lymbery, & Starcevich, 2003). Of these, seaweed is one of the good options 

because of its high nutrients and easy cultivation (Cordover, 2007), particularly in WA, 

which has abundant ISW and sunlight (Table 2-17, Table 2-18). Algae can also be a 

biofilter that cleans water for other aquaculture species development (Neori et al., 

2004). Matting Rush (Juncus kraussii) has shown good results for removing nutrients 

and salinity from aquaculture effluent in WA wetlands. However, Matting Rush only 

grows well in salinity lower than 20 ppt (Lymbery et al., 2006), whereas in WA, the 

ISW salinity level may be higher during summer (Mazor & George, 1992). Forsberg 

et al. (1996) and Mourad et al. (2012) recommend that salinity and specific ion 

concentrations should be measured for potential aquaculture in ISW. 
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Table 2-16. Effect of K+ in aquaculture 

Criteria Species Method Result Ref. 

Osmoregulation, 

ionregulation 

Penaeus latisulcatus 

Kishinouye 

K+-fortified ISW at 

80 and 100% of [K+] 

in OW at 20, 25, 

27ppt and raw ISW 

dependent on K+ in cultured 

medium 

Prangnell and Fotedar 

(2006a) 

Growth and survival  Penaeus latisulcatus 

Kishinouye 

K+-fortified ISW at 

80 and 100% of [K+] 

in OW 

is significantly dependent on the 

medium [K+] 

Prangnell and Fotedar 

(2006b) 

Haemolymph K+ Penaeus latisulcatus 

Kishinouye 

Sudden change in K+ 

in K+-fortified ISW 

at 80 and 100% of 

[K+] in OW at 32 ppt 

is crucial for osmolality 

maintenance  

Significantly increase the ingestion 

rate of prawns  

Effect the osmoregulatory capacity 

of prawns 

Prangnell & Fotedar (2009) 

Growth and survival Penaeus monodon 

Fabricius 

Increasing K+ 

 

Improve growth and survival Shakeeb Ur et al. (2005) 

Growth and survival Litopenaeus vannamei 

Boone 

Increasing K+ Improve growth and survival Saoud et al. (2003) 
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Criteria Species Method Result Ref. 

Mortality Americamysis bahia 

Molenock 

K+ deficiency or 

excess 

Significant mortality of mysid 

shrimp 

Pillard et al. (2002) 

Hemolymph K+ (euryhaline green 

crab) Carcinus 

maenas Linnaeus 

K+ reduced in 

haemolymph 

is not toxic (less than 24 h) Lovett et al. (2006) 
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Table 2-17. Algal species that could be grown in saline groundwater sources 

Species Product or market Salinity (g L-1 NaCl) Status 

Dunaliella salina                Beta-carotene                                     >200      Commercial 

Aphanothece halophytica Polysaccharides, phycobilin pigments > 200        Research & Development 

Isochrysis, Tetraselmis 

Chaetoceras, Pavlova        

Feed used in the aquaculture of molluscs, 

crustaceans & fish                               

about 30      Presently produced in various hatcheries 

 

Spirulina platensis              Health food up to 30 Commercial (in USA, Thailand, China, 

India) 

Porphyridium  cruentum    Polysaccharides, pigments for cosmetics up to 30      Research & Development 

Gracilaria  spp. Feed used in aquaculture of abalone; source of agar about 30 Mainly wild harvest, but also some abalone; 

source of agar culture overseas 

Ulva spp. Feed used in aquaculture of abalone         about 30      Some small-scale production of abalone 

overseas 

Caulerpa spp.                    Luxury food (sold mainly in Japan) about 30      Presently farmed in the Philippines 

Source: Borowitzka (1997, p. 36) 
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Table 2-18. 8 Potential seaweed species cultured in Integrated Multitrophic Aquaculture systems 

Species Family Remarks 

Ulva  spp. (Green) Ulvaceae It contains 15% protein, 50% sugar and starch, <1% fat, high in some ion, vitamins, 

and trace elements 

Gracilaria sp. (Red) Gracilariaceae About 70% of the world’s agar is produced from this species 

Porphyra sp. (Red) Bangiaceae Some other species: Martensia sp., Calosiphonaceae (Schmitzia japonica), Caulerpa 

filiformis, Rhodoglossum (Red tongue), Placonium, Branchioglossum, Kallymenia 

rosea 

Asparogpsis armata (Red) Bonnemaisoniaceae Can be called as Falkenbergia rufolanosa 

Grateloupia sp. (Red) Halymeniaceae  

Geluduaceae Red alga family  

Ecklonia radiate (Brown kelp) Alariaceae Abundant local species. Can be integrated cultured with abalone. It has large 

morphology so not convenient to culture in tanks  

Sargassum sp. (Brown) Sargassaceae Provide a source of sea urchin food 

Source: Winberg et al. (2009) 
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CHAPTER 3 METHODOLOGY  

3.1 Preparation of Seaweed 

Six local seaweed species were randomly collected along the Perth beaches and Swan 

river representative for brown, green and red seaweeds. These seaweeds were 

identified by Western Australia (WA) Herbarium as brown seaweed Cystophora 

subfarcinata, Sargassum linearifolium, Sargassum podacanthum, green seaweed Ulva 

lactuca, and red seaweed Glateroupia suspectinata and Lomentaria catenata. 

Brown seaweed C. subfarcinata, S. linearifolium, S. podacanthum and red seaweed G. 

suspectinata whole thalli were collected from Point Peron, WA (latitude 32o16.3S, 

longitude 115o41.2E). The red seaweed L. catenata and green seaweed U. lactuca were 

collected from Matilda Bay, Swan River, WA (latitude 31o97.9S, longitude 

115o82.2E). Some U. lactuca was also collected at Cottesloe beach (latitude 31o99.4S, 

longitude 115o75.1E) depended on the seasons. The seaweeds were transported in 

tanks holding ambient local salty water to Curtin Aquatic Research Laboratory 

(CARL) within two hours of collection. Upon arrival at the laboratory, the seaweeds 

were thoroughly cleaned in ocean water (OW) and all epibiotic were removed.  

The seaweeds were then acclimated for one to three days in aerated OW at 22oC in 

white plastic 114 L aquaria, under a downwelling photo-lux of 120 µmol photon m-2 

s-1 and a 14:10 h light:dark cycle, before use in experiments (Hanisak & Samuel, 

1987). 

After acclimation, the seaweed was removed and cut into pieces to achieve a pre-

determined weight approximately 3,500 mg L-1 for cultivating in beakers or the whole 

thalli would be used for cultivating in the tanks, and was then immediately transferred 

into the trial beakers/tanks depend on the experiment.  

3.2 Preparation of Culture Media 

Inland saline water (ISW) at 45 ppt was procured from a lake in Wannamal, WA 

(31°15.8S, 116°05.0E). OW at 35 ppt was procured from Hillary Habour (31o83S, 

115o74E). Both waters were brought to CARL, where the trials were carried out. The 

waters were stored and aged in separate 10,000 L reservoirs. OW, ISW and fresh water 
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were filtered through a 0.5 µm glass fibre membrane. ISW and OW were then diluted 

with filtered fresh water to achieve the required salinity of cultured media for each 

experiment.  

3.2.1 Potassium-fortified Inland Saline Water 

Potassium chloride (KCl) or potash of sulphate (K2SO4) were used to fortify ISW, the 

required K+ were calculated from the difference between K+ concentrations of OW and 

ISW and converted to equivalent quantities of KCl or K2SO4.  

Potassium chloride (KCl) (Sigma-aldrich Pty. Ltd., Australia, holding 52.45% K+) was 

used to fortify ISW (contain K+ 84.4 mg L-1) to approximately 100%, 66%, 33% 

(ISW100, ISW66, ISW33, respectively) of the [K+] in ocean water (OW) at 351 mg L-

1. 508.5, 280.90, 59.99 mg L-1 of KCl were respectively added to ISW 35 ppt to achieve 

ISW100, ISW66, ISW33. This water preparation was applied for experiments in 

Chapter 4 to 6. 

Cultured media at 30 ppt were prepared for red seaweed L. catenata and green seaweed 

U. lactuca. [K+] at 30 ppt in OW and ISW was 313 and 77 mg L-1, respectively. 

Therefore, 451, 248 and 50 mg L-1 of KCl were used to fortify ISW 30 ppt to achieve 

ISW100, ISW66, ISW33, respectively, for the waters using in Chapter 8, 9 and 10.  

K2SO4 (Richgro soluble powder sulphate of potash 0-0-41-17, holding 41.5% K+) 642 

mg L-1 was used to fortify ISW 35 ppt to achieve ISW100 to use for water preparation 

in Chapter 4 and Chapter 7.  

3.2.2 Nutrient Enrichment for Potassium-fortified Inland Saline Water 

After finding the required [K+] for each seaweed species growth in ISW, the nutrient 

enrichment experiments were set up.   

Ammonium chloride (NH4Cl) and sodium dihydrogen phosphate (NaH2PO4) were the 

sources of nitrogen and phosphorus provided in optimum K+-fortified ISW (K+ISW) 

for each studied species, to test the effect of nutrient enrichments on seaweeds. Each 

species required different concentrations of ammonium and phosphate, therefore the 

detail of experiment set up would be placed at related sections.  
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3.3 Experimental Setup 

The experiments were conducted at CARL, for the time depend on each species and 

the tested criteria. The ambient OW and ambient ISW were used as control. The 

experiment set up was depended, and could be triplicates for the tanks or four 

replication in beakers.  

The beakers/tanks were put under down-welling photo-lux density 90 µmol photon   

m-2 s-1 in a 14:10 h light:dark cycle (Hanisak & Samuel, 1987). During the experiment, 

salinity was maintained at 34–35 ppt or 30–31 ppt, dependent on cultured species, by 

adding fresh water to compensate for evaporation.  

3.4 Data Collection 

3.4.1 Water Quality 

Nitrogen included ammonium (NH4-N), nitrate (NO3
--N), nitrite (NO2

--N), and 

phosphorus (PO4
3--P) were measured every 14 days, using a Hach DR890 hand-held 

meter (Hach, Loveland, Colorado, USA). The Cadmium Reduction Method (Method 

8171 and Method 8039) was used to measure NO3
--N at low (0–5 mg L-1) and higher 

concentrations, respectively. The Diazotization Method (Method 8507) was used to 

measure NO2
--N at a lower range (0–0.350 mg L-1), and the Ferrous Sulfate Method 

(method 8153) was used to measure NO2
--N at a higher range (0–150 mg L-1). The 

Salicylate Method (Method 8155; Method 10023) was used for NH4-N at 0–0.05 mg 

L-1 and higher concentrations, and PO4
3--P was measured by the Amino Acid Method 

(Method 8178). Total Kjeldahl Nitrogen (TKN) in water was also determined every 

14 days according to the Official Method of the AOAC (Helrich, 1990) (method 

937.48) by analyzing N using a Kjeltec Auto 1030 analyzer (Foss Tecator, Höganäs, 

Sweden). 

The pH and salinity were recorded daily at 9–11AM using a pH meter (CyberScan pH 

300, Eutech Instrument, Singapore), and a portable refractometer (RHS-10ATC, 

Xiamen Ming Xin Instrument, Xiamen, Fujian, China), respectively. 

The temperature was recorded hourly by data loggers (HOBO Pendant 

temperature/light Data Logger UA-002-08, UA-002-64). 
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The ionic profile of cultured medium was analysed using inductively coupled plasma 

(ICP) spectroscopy at CSBP Soil and Plant Laboratory, Bibra Lake, WA. 

In addition, the total solids (TS), total volatile solids (TVS), total suspended solids (TSS) 

and volatile suspended solids (VSS) were also determined according to standard methods 

(American Public Health Association [APHA], 1998). 

3.4.2 Seaweed Growth 

The weight of seaweed was determined fortnightly, and at the termination of the 

experiment. All thalli were removed from the culture beakers/tanks by a small net and 

then dried using soft hand towels (Ahmad et al., 2011). All seaweed thalli were 

instantly weighed in a weighing scale (AW220, d=0.1 mg, Shimazu, Japan).  

The specific growth rates (SGR) were calculated as: µa=(lnAt-lnAo)×100/t.  

Where: µa is the SGR of seaweed (% d-1),  

At: the weight of seaweed (mg) at the current time (t, day),  

Ao: the weight of seaweed (mg) at the beginning of the calculated period (0, 

day), 

t: the time of the calculated period (days). 

3.4.3 Nutrient Analysis of Seaweed 

The seaweeds were dried at 60oC for 72 h to obtain a stable dried weight. All samples 

were weighed, ground with a pestle and mortar to a fine powder, and then stored in a 

freezer at -18oC until analysis of the proximate and chemical compositions.  

The standard methods described in Official Method of the AOAC (Helrich, 1990) were 

applied to measure the dried content and ash of the seaweeds. The dried content was 

calculated relative to the fresh biomass. The ash content was determined by burning 

dried seaweed at 550oC for 30 min relative to the dried content. 

A bomb calorimeter (C2000, IKA, Staufen, Germany) was used to determine the gross 

energy of the seaweeds. 
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Tissue N was determined according to the AOAC (Method 937.48) (Helrich, 1990) 

using a Kjeltec Auto 1030 analyser (Foss Tecator, Höganäs, Sweden). Crude protein 

was calculated by total N multiplied by 6.25. 

The ionic compositions of the seaweed were analysed using the prepared freeze fine 

powder by ICP spectroscopy at the CSBP Soil and Plant Laboratory, Bibra Lake, WA. 

The total nitrogen and carbon contents of seaweed were also analysed at the CSBP 

Soil and Plant Laboratory, Bibra Lake, WA. 

3.5 Data Analysis 

The SPSS for Windows version 24.0 was used to analyse data. The significant 

differences among the means of variables at level of P<0.05 were tested by Analysis 

of variance (ANOVA, MANOVA), paired sample t-tests and least significant 

difference (LSD) post hoc tests. The normality and homogeneity of the data were 

tested by Shapiro-Wilk Test of Normality and the Lenene’s test. When the data was 

not normally distributed, the overall difference was tested by Kruskal-Wallis test. 

When the homogeneity was violated, the Robust Test of Equality of Means was 

applied for means comparison instead of ANOVA. The relationships of the variables 

over time were determined by regression analysis.  

 



 

 59 

CHAPTER 4 SELECTION OF SEAWEED SPECIES AND 

POTASSIUM SOURCE FOR CULTIVATION OF SEAWEED 

IN INLAND SALINE WATER 

4.1 Introduction 

Inland saline water (ISW) is considered as a potential source for aquaculture 

development in Australia, particularly for the agricultural farms where water is salty-

affected (Allan et al., 2001; Partridge, Lymbery, & George, 2008). However, the 

deficiency of potassium (K+) in ISW is the major constraint in culturing marine aquatic 

species (Davis et al., 2005; Partridge & Lymbery, 2008; Prangnell & Fotedar, 2006b). 

In order to remove the constraint, the K+ concentration in ISW has to be increased to a 

level that similar to at least 50% of K+ concentration in ocean water (OW) to culture 

marine species (Dinh, 2016; Prangnell & Fotedar, 2006b; Tantulo & Fotedar, 2006). 

Dinh (2016) has summarised 29 marine species that have been cultivated in ISW with 

an exception of only one seaweed species Gracilaria cliftonii (Kumar et al., 2010), 

opening a chance for seaweed inland aquaculture development. It is important to find 

suitable seaweed species to culture in ISW, take into account their feasibility of 

cultivation in ISW as well as their contributions to aquaculture. 

For the marine species culture using ISW, three sources of K+ can be used to increase 

the [K+] in water. These sources are muriate of potash KCl (holding 49.8% of K+ and 

45.2% Cl-), potassium sulfate K2SO4 (holding 42% K+ and 51% SO4
2-), and sulfate of 

potash magnesia K2SO4.2MgSO4 (holding 17.8% K+, 10% Mg2+, 63.6%SO4
2-) (Boyd 

& Thunjai, 2003). Grade KCl (containing 52.5% K+) (Sigma-aldrich Pty. Ltd. (Aus) is 

common used salt to fortify ISW to culture marine species in laboratory (Dinh, 2016; 

Doroudi et al., 2006; Fielder et al., 2001; Mourad et al., 2012; Prangnell & Fotedar, 

2005, 2006b; Shakeeb Ur et al., 2005; Tantulo & Fotedar, 2006), whereas K2SO4 in 

the form of Kmag® (containing 18.3% of K+) has only been used to fertilize shrimp 

pond with muriate of potash (KCl) (Boyd et al., 2007; McNevin et al., 2004), although 

the K2SO4 is commercially cheaper than KCl. In Australia, the sulphate of potash 

K2SO4 (Richgro soluble powder sulphate of potash 0-0-41-17) contains 96% of K2SO4 

and less than 4% of KCl, sharing 41.5% of K+ and 17% of S (in the form of SO4
2-), 

and is used to fertilise the soil. Since sulphate of potash K2SO4 has not been commonly 
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solely used in K+ fortification for ISW, there has been no comparison of KCl and 

K2SO4 for ISW K+ fortification yet.  

This study attempts to examine the feasibility of cultivating the local seaweed species 

collected from beaches and rivers in Perth region in ISW, and testing the effects of two 

different sources of K+ on the growth of seaweeds.  

4.2 Materials and Methods 

Two independent trials were set up to achieve two targets of this Chapter. 

4.2.1 Seaweed Selection to Cultivate in Inland Saline Water 

The trial was conducted in 42 days in winter in order to find out the candidate seaweed 

species who were able to cultivate in ISW and potassium-fortified inland saline water 

(K+ISW) for further study. Six local seaweed species (as mentioned in Chapter 3), 

were used. Seaweed collection, culture media preparation of K+ISW at 100%, 66%, 

33% (termed as ISW100, ISW66, ISW33, respectively) of the [K+] in ocean water 

(OW) at 35 ppt fortified by KCl, experimental setup, data collection and data analysis 

were described in Chapter 3. Five treatments were set up in four replicates, including 

four K+ levels of ISW100, ISW66, ISW33 and ambient ISW (ISW0), and control 

treatment of ambient OW (OW). 

After acclimation, Sargassum linearifolium, S. podacanthum, and Cystophora 

subfarcinata were cut in pieces, whereas the whole thalli of Ulva lactuca, Lomentaria 

catenata, and Grateloupia suspectinata were selected, to achieve the expected weight 

at a relative stocking density of 3,000 mg L-1 (Table 4-1). The seaweeds were 

transferred into 1.5 L beakers holding 1 L of culture media, which were randomly 

placed under the ambient room temperature was 20–22oC. 

4.2.2 Sources of Potassium Fortification for Inland Saline Water  

4.2.2.1 Experiment Setup 

The outcome of the previous trial shown that two Sargassum spp. presented the highest 

specific growth rate (SGR) in K+ISW. Therefore, this experiment was conducted using 

Sargassum spp. only. S. linearifolium and S. podacanthum were collected from Point 
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Peron and were identified, treated as described in Chapter 3. The whole Sargassum 

spp. thallus, including holdfast, were chosen at the pre-selected weight of approximate 

200 g a fond. Sargassum spp. thalli with a similar height and weight were used, and 

their holdfasts were attached to gravel to keep them submerged in water. 

The ISW 35 ppt was also prepared follow the protocols in Chapter 3 using 642.65 mg 

L-1 K2SO4 or 508.5 mg L-1 KCl, termed as ISW_K2SO4, ISW_KCl, respectively,. 

4.2.2.2 Experiment Design 

The trial was conducted for 70 days in early summer under outdoor conditions. Six 

treatments, including two Sargassum species (S. linearifolium and S. podacanthum) 

and three water types (ISW_K2SO4, ISW_KCl and a controlled OW), were set up in 

four replications. A total of 24 white round plastic tanks of 114 L, holding 100 L of 

K+ISW were randomly placed. 

Data collection, included seaweed biomass, SGR, the water quality including the 

concentrations of ammonium (NH4-N), nitrate (NO3
--N), nitrite (NO2

--N), phosphate 

(PO4
3--P), total Kjeldahl nitrogen (TKN) in water, the pH, salinity, temperature and 

light intensity of culture media were determined as methods described in Chapter 3. 

Data analysis was followed as in Chapter 3, section 3.5. 

4.3 Results and Discussion 

4.3.1 Seaweed Selection 

Among the five treatments, each species of seaweed had a similar fresh biomass at the 

beginning of the trials. L. catenata and U. lactuca presented no significant difference 

in SGR as the trial progressed. G. subpectinata grew better in OW than in ISW in the 

first 14 days; however, total mortality occurred at this point. In the first 14 days, C. 

subfarinata grew significantly (P<0.05) higher in OW and ISW100 than ISW0, and 

the SGR of Sargassum in OW and ISW100 were significantly (P<0.05) higher than in 

ISW0 and ISW33. S. linearifolium cultured in OW resulted in higher SGR than in 

ISW100 in the first 14 days, but these became similar after this point (Table 4-1).  

Of the six seaweed species, brown seaweed S. linearifolium, S. podacanthum and C. 

subfarinata survived after 42 days of growing in K+ISW, and presented no significant 
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(P>0.05) difference from SGR in OW. However, all seaweeds died in ISW0. A 

positive SGR was only present in OW and ISW100 for Sargassum. Although C. 

subfarinata survived until day 42, the biomass decreased from day 28 onward. Total 

mortality of L. catenata and U. lactuca was recorded at day 42 in all treatments, and 

all G. subpectinata died in the second fortnight.  

A repetition of the trial, culturing approximately 3.5 g L-1 G. subpectinata in OW, 

IWS0 and ISW100 at 35 ppt, was conducted in 14 days, and all G. subpectinata died 

in ISW0 in the second week. The SGR of G. subpectinata in ISW100 was 1.14% d-1, 

which was similar to its SGR in OW but higher than the ISW100 from the initial 

experiment (data was not presented). Under similar conditions of temperature and 

light, the length SGR of G. subpectinata gametophyte culturing in OW is 2.38% d-1 

(Adharini & Kim, 2016), a value higher than the weight SGR of mature thalli G. 

subpectinata from this study. G. subpectinata proved not to be able to successfully 

culture in ISW, since total mortality happened during the first month of the cultured 

period.  

The L. catenata had a similar SGR as G. subpectinata in the first fortnight, although 

SGRs were all negative in all waters. However, L. catenata showed higher ISW 

tolerance than G. subpectinata, since the tissues lived longer.  



 

 63 

Table 4-1. Initial biomass (g) and the SGR (% d-1) of seaweeds 

Treatments G. suspectinata L. catenata U. lactuca C. subfarinata S. linearifolium S. podacanthum 

Initial biomass  

OW 3.53±0.76 3.03±0.01 3.05±0.01 3.45±0.10 3.17±0.13 2.88±0.13 

ISW0 2.85±0.22 3.05±0.01 3.04±0.01 3.33±0.12 3.23±0.04 2.81±0.23 

ISW33 2.70±0.26 3.03±0.01 3.05±0.01 3.40±0.07 3.01±0.20 3.06±0.04 

ISW66 2.62±0.54 3.04±0.02 3.03±0.02 3.40±0.12 3.18±0.07 2.76±0.15 

ISW100 3.42±0.70 3.02±0.01 3.05±0.01 3.30±0.17 2.92±0.13 2.83±0.12 

SGR day 114 

OW 10.65±0.29a -0.87±0.23a -0.12±0.01a 
11.23±0.16ab 

12.29±0.08b 0.32±0.50ab 

ISW0 12-0.95±0.40ab -1.19±0.86a -0.32±0.17abc 
20.16±0.25bc 

121.69±0.19d 0.12±0.72c 

ISW33 2-1.70±0.67a -1.48±0.23a 0.00±0.38b 
230.49±0.17b 

121.41±0.57c 0.40±0.12b 

ISW66 120.55±0.94bc -1.28±0.30a -0.25±0.03ab 120.75±0.17bc 
121.59±0.57c -0.13±0.12ab 

ISW100 2-1.50±0.83a -1.83±0.69a -0.48±0.05ab 
131.04±0.22bc 

21.05±0.28c 0.43±0.32bc 

SGR day 128 

OW  -0.87±0.23a -0.66±0.07a -0.20±0.15a 
10.04±0.09b 

10.52±0.32b 

ISW0  -1.00±0.34a -0.59±0.15a -0.59±0.14a 
10.27±0.15b 

2-0.37±0.33b 

ISW33  -1.53±0.23a -0.25±0.25b -0.52±0.11b 
2-0.65±0.36b 

12-0.16±0.12b 

ISW66  -0.97±0.14a -0.38±0.19b -0.41±0.15b 
10.17±0.08b 

120.20±0.31b 
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Treatments G. suspectinata L. catenata U. lactuca C. subfarinata S. linearifolium S. podacanthum 

ISW100  -1.43±0.49a -0.52±0.11b -0.43±0.21bc 
10.06±0.13bc 

120.26±0.20c 

SGR day 142 

OW    -0.30±0.30 0.12±0.14 0.28±0.20 

ISW33    -0.44±0.44 -0.49±0.49 -0.08±0.07 

ISW66    -0.09±0.09 -0.04±0.13 0.07±0.19 

ISW100    -0.54±0.32a 0.13±0.06ab 0.13±0.17b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at one time sharing 

a common subscript are not significantly different (LSD test; P>0.05; n=4) 
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The only representative of green seaweeds, U. lactuca, showed a decline in biomass 

from the first fortnight, and total mortality was encountered in the third fortnight. In 

the first two fortnights, when the survival of U. lactuca was recorded, its SGR was 

significantly (P<0.05) higher than the SGR of red seaweed cultured in K+ISW, and 

similar to the brown seaweeds. This SGR was lower than previously found for U. 

lactuca growing in nitrogen enriched OW medium (Ale et al., 2011; Nielsen et al., 

2011). The higher SGR of U. lactuca is recorded at lower temperature which is 

constant at 15°C, light ranging 120–150 μmol photons m-2 s-1, and salinity of 20 ppt 

(Nielsen et al., 2011), these environmental factors are different from the conditions of 

this study, opening a potential direction for further study. 

Of the six studied species, brown seaweeds presented higher tolerance in captivity, and 

more successful culturing in ISW than the red and green seaweeds. In the first 

fortnight, only brown seaweeds had a positive SGR in either OW or K+ISW, and 

Sargrassum spp. had a significantly (P<0.05) higher SGR than red seaweeds in all 

waters. In the second fortnight, the brown seaweeds resulted in a significantly (P<0.05) 

higher SGR than the remaining red seaweed, L. catenata. Of the brown seaweeds, 

Sargassum presented a significantly (P<0.05) higher SGR than C. subfarinata in OW 

and ISW0. 

4.3.2 Sources of Potassium Fortification 

4.3.2.1 The Growth of Two Sargassum spp. and Potassium Fortification 

This study is the first attempt to compare the growth of S. linearifolium and S. 

podacanthum culturing in ISW fortified by either KCl or K2SO4 that resulted the same 

growth between these two species of Sargassum. 

Previous research has shown the importance of K+ on the growth, photosynthesis, 

respiration, chlorophyll content, etc., of plants (Gierth & Mäser, 2007; Jin et al., 2011; 

Onanuga et al., 2012; Sideris & Young, 1945; Terry & Ulrich, 1973; Zhao et al., 2001; 

Zhao et al., 2016), including seaweeds (Yarish et al., 1980; Zimmermann & Steudle, 

1971). However, KCl has been commonly used for fortifying ISW than other K+ 

sources (Table 4-2), and sulphate of potash K2SO4 has not been used in ISW yet. 

Although the standing biomass of S. linearifolium and S. podacanthom cultured in the 

three water types (OW, ISW_KCl, and ISW_K2SO2) varied during the experiment, no 
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significant (t-test, P>0.05) differences in the biomass of the two species were found in 

any of the types of water, and no significant (LSD test, P>0.05) differences of biomass 

of one Sargassum species were observed among three water types.  

The two Sargassum spp. biomass reached maximum at days 28–42, and then declined 

(P<0.05) towards the end of the experiment. The standing biomass of S. linearifolium 

cultured in K+ISW significantly (P<0.05) increased as time progressed, reaching the 

maximum at day 42. S. podacanthum showed a significant (P<0.05) increase at days 

1–28. The biomass of Sargassum correlated (R2>0.70) with time; however, no 

significant (P>0.05) difference of the correlations was observed among different water 

types (Table 4-3, Figure 4-1).  

 

Figure 4-1. Correlation of the biomass (y) (g) of Sargassum spp. cultured in OW 

and two sources of K+ISW over time (x) (days)  (SL stands for S. linearifolium, 

SP stands for S. podacanthum) 

Only during the first 14 days, there was a significant (P<0.05) effect of water on the 

SGR of both Sargassum spp. S. linearifolium in OW produced higher SGR and 

biomass increase than in ISW_K2SO4, whereas the SGR and biomass increase of S. 

padocanthum in OW was higher (P<0.05) than in ISW_KCl (Table 4-4). There were 

no significant differences in SGR or biomass between the two species in any of the 

three water types, except at between days 28–42, ISW_K2SO4 resulted in higher SGR 
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of S. linearifolium than S. podacanthum. In all time periods of the culture, Sargassum 

spp. SGRs were not significantly (P>0.05) influenced by either water types or species 

(Table 4-4, Table 4-8). 

The needed quantity of K2SO4 (642 mg L-1) was 1.26 times more than KCl (508.5 mg 

L-1) to fortify the same volume of ISW to OW-equivalent [K+]. However, the price of 

KCl is AU$115 kg-1, which is 10.53 times expensive than K2SO4
 (AU$10.92 kg-1). 

Therefore, using the K2SO4 would be 8.33 times cheaper than KCl in order to receive 

the same [K+] in ISW. As both sources of K+ from KCl and K2SO4 resulted in a similar 

effect on the growth of both Sargassum spp., K2SO4 can also be used to fortify ISW. 

However, finance was not an issue for this research as all experiments had been 

conducted under laboratory conditions where KCl is available, therefore, KCl had been 

used throughout the thesis experiments more than K2SO4.  

The other possible way to increase the [K+] in ISW is mixing the OW with ISW to 

achieve the required K+ concentration. However, this solution is only suitable when 

the required [K+] is less than the [K+] in OW, for instance for culturing snapper (Pagrus 

auratus) in ISW (Fielder et al., 2001). 

4.3.2.2 Water Quality  

The average temperature of cultured media collected at 9.30 AM was 24oC and there 

was no significant difference in the temperature among the 6 treatments (Table 4-5). 

The average daily temperature over the experimental period recorded was 22.5oC. 

However, the variation of temperature was extremely high. The largest range of 

temperature variation in a day was 20oC. The maximum and minimum temperatures 

were 38.71 and 13.65oC, respectively. The highest and lowest daily temperatures were 

recorded at approximately 2–4PM and 4–6AM, respectively.
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Table 4-2. Sources of K+ to fortify ISW to grow marine species  

Species Source of K+ Results Reference 

Blue mussels (Mytilus 

edulis (Linnaeus, 1758)   

KCl K+-ISW increases the survival and size of settling of blue mussel larvae Dinh and 

Fotedar (2016) 

Black tiger prawn (P. 

monodon (Fabricius, 

1798) juveniles 

KCl 100% K+-ISW results in similarity of survival, SGR and osmoregulatory 

capacity of juvenile tiger shrimp as in OW at similar salinity except 

osmoregulatory capacity at 25 ppt 

Tantulo and 

Fotedar (2006) 

Juvenile mulloway 

(Argyrosomus japonicas) 

KCl [K+] in ISW > 14 ppt greater than 38% of [K+] in OW resulted in the survival 

rate 96% of juvenile mulloway after 8 months culture 

Doroudi et al. 

(2006) 

Snapper  (Pagrus auratus) KCl 40–100% K+-ISW at 20 ppt results in similar survival rate of snapper as culturing 

in OW  

Fielder et al. 

(2001) 

Pacifc white shrimp 

(Litopenaeus vannamei) 

KCl The K+ fortification significant inceases the postlarvae and juvenile white shrimp 

survival and growth culturing in low salinity waters 

Roy et al. 

(2007) 

Post larvae (PL) Black 

tiger prawn (Penaeus 

monodon) 

KCl At 12.5 ppt, the survival rate and growth of length and weight of PL shrimp in 

116.3% K+-ISW is similar to that in OW, higher than 87.3 and 58.2% K+-ISW 

Shakeeb Ur et 

al. (2005), 

Rabbitfish (Siganus 

rivulatus)   

KCl Survival and length of rabbitfish in ISW_40 and ISW_100 are similar to that in 

OW at 15ppt after 10 weeks of culture period, whereas rabbitfish total mortality 

in ISW_0 occurs after 8 weeks.  

Mourad et al. 

(2012) 
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Species Source of K+ Results Reference 

Western king prawn 

(Penaeus latisulcatus) 

KCl The survival rate of prawn in ISW_100 is significantly higer than in ISW60 and 

ISW40. K+-ISW greater than 76% of [K+] in OW is necessary for prawn survival 

rate as similar as in OW. 

Prangnell and 

Fotedar (2005) 

Western king prawn  KCl Similarity of prawn survival rate is recorded at 80 and 100% K+-ISW and OW 

at 32 ppt.  

Prangnell and 

Fotedar (2006b) 

Western king prawn  KCl Sudden increase of [K+] from ambient ISW to 80 and 100% of  [K+] in OW does 

not affect the prawn survival rate osmoregulatory capacity, and ISW_100 results 

in higher prawn survival rate and osmoregulatory capacity than lower K+-ISW 

levels 

Prangnell and 

Fotedar (2009) 

Shrimp Muriate of 

potash, 

Kmag®  

K+ addition (muriate of potash holds 49.8 %K and potassium-magienium sulfate 

which holds 17.8%K) is necessary for shrimp pond using inland saline well 

water 

Boyd et al. 

(2007) 

Shrimp Muriate of 

potash and 

K-Mag 

K+ addition (from initial of 6.25 to 40 mg L-1) using muriate of potash (372–560 

kg ha-1) and K-Mag (0–1650–1868 kg ha-1) significantly increases the survival 

and production of shrimp in pond using saline well water 2–8 ppt in Alabama 

McNevin et al. 

(2004) 
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Table 4-3. Standing biomass (g)  and biomass gain (g d-1) of Sargassum spp. cultured in OW and K+ISW fortified by two sources of K+  

Time 
S. linearifolium S. padocanthum 

OW ISW_KCl ISW_K2SO4 OW ISW_KCl ISW_K2SO4 

Standing biomass  

Day 1 12207.18±1.78 12213.48±4.98 
1220.90±15.30 

13211.15±13.40 1222.42±9.37 
1212.97±12.48 

Day 14 1247.00±11.54 23237.68±7.78 
12230.30±17.88 

12251.48±11.58 1235.14±14.72 
12241.61±11.32 

Day 28 1251.94±32.22 34289.75±16.46 
1225.60±25.18 

2316.24±15.06 1260.16±24.66 
2287.38±30.86 

Day 42 1277.47±49.39 4330.38±40.33 
2355.93±94.47 

2271.80±20.24 
1256.31±32.27 

12276.87±17.32 

Day 56 2144.71±43.22 
569.62±13.84 

385.83±20.51 
34136.67±55.29 

2112.96±8.23 
3161.60±26.79 

Day 70 2118.65±36.39 
552.82±14.33 

363.02±18.10 
484.88±49.16 

296.37±13.23 
3127.58±25.72 

R2 0.77±0.05 0.72±0.05 0.71±0.14 0.82±0.03 0.84±0.04 0.84±0.04 

Biomass gain 

Day 1-14 12.84±0.94a 11.73±0.23ab 120.67±0.28b 122.88±0.54a 10.91±0.47b 12.05±0.45ab 

Day 1-28 121.60±1.09 12.72±0.42 120.17±1.02 13.75±0.63 11.35±0.62 12.66±1.45 

Day 1-42 11.67±1.14 12.78±0.94 13.21±2.31 21.44±0.40 10.81±0.61 121.52±0.61 

Day 1-56 23-1.12±0.74 2-2.57±0.28 2-2.41±0.58 3-1.33±0.84 2-1.95±0.05 23-0.92±0.69 

Day 1-70 3-1.26±0.50 2-2.30±0.23 2-2.26±0.43 3-1.80±0.51 2-1.80±0.07 3-1.22±0.52 

R2 is the significant value of the regression between the Sargassum biomass y (g) over time x (days). Values (mean±SE) within a row at one Sargassum sp. sharing a common 

superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not significantly different 

(LSD test; P>0.05; n=4).  



 

 71 

Table 4-4. SGR (% d-1) of Sargassum spp. cultured in OW and ISW fortified by two sources of K+  

Time 
S. linearifolium S. podacanthum 

OW ISW_KCl ISW_K2SO4 OW ISW_KCl ISW_K2SO4 

Day 1-14 11.23±0.38a 
10.76±0.09ab 

10.28±0.12b 
11.27±0.25a 

10.37±0.19b 
10.91±0.12ab 

Day 15-28 2-0.05±1.39 21.39±0.19 2-0.20±0.79 11.63±0.25 10.67±0.27 11.13±0.93 

Day 29-42 10.50±0.53 10.82±0.94 32.58±1.65 12-1.12±0.81 2-0.18±0.24 2-0.18±0.41 

Day 43-56 3-5.86±1.89 3-11.35±1.26 4-10.13±3.33 3-7.31±3.13 3-5.74±0.48 3-4.13±1.13 

Day 57-70 2-1.92±0.74 4-2.44±0.86 2-2.82±0.88 2-4.00±2.74 4-1.29±0.52 4-1.81±0.50 

Day 1-28 0.59±0.51 1.08±0.13 0.04±0.42 1.45±0.24 0.52±0.23 1.02±0.55 

Day 1-42 0.56±0.47 0.99±0.28 0.89±0.67 0.59±0.15 0.29±0.23 0.62±0.24 

Day 1-56 -1.05±0.78 -2.10±0.34 -1.87±0.59 -1.38±0.84 -1.22±0.06 -0.57±0.42 

Day 1-70 -1.22±0.75 -2.16±0.41 -2.06±0.63 -1.90±0.63 -1.23±0.15 -0.81±0.36 

 Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column sharing a common 

subscript (number) are not significantly different (LSD test; P>0.05; n=4). 
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 The light:dark was approximately 14:10 h per day, photoperiod was from 5AM to 

7PM. The light intensity was highest at 9AM–3PM, at approximately 15,000 lux, and 

some days it was up to 20,000 lux (Table 4-5). 

Table 4-5. Environmental factors measured daily at 9:30AM  

 S. linearifolium S. padocanthum 

Time OW ISW_KCl ISW_K2SO4 OW ISW_KCl ISW_K2SO4 

Light (lux)  

Surface 3453±302 3420±222 3516±172 4024±444 3931±431 4218±383 

Bottom 1255±137 941±99 2783±1933 1359±283 736±153 1063±149 

pH  8.23±0.02 8.25±0.01 8.21±0.02 8.23±0.03 8.25±0.03 8.26±0.01 

oC 23.71±0.59 23.94±0.61 24.53±0.63 23.47±0.55 23.69±0.59 23.39±0.60 

Throughout the experiment, the light, pH and temperature of the waters were similar 

in all treatments. 

The two K+ISWs ionic profile were identical (Table 4-6). Of the main ions of saline 

waters, higher Na+ and S were recorded in OW than in ISW, whereas the K+ deficiency 

was clear in ISW than OW, and Ca2+ and Mg2+ in ISW were higher than in OW. The 

[Cl-] in ISW was lower than in OW, and it was added to ISW_KCl to a similar 

concentration as in OW. [S] in ISW was also lower than in OW, and the K2SO4 

addition elevated [S] in ISW_ K2SO4 was closed to that in OW (Table 4-6).  

Study about main ions in OW related to seaweed limited on K+ (Chen & Yeh, 2005; 

Ma & Liu, 2002; Scott & Hayward, 1953; Yamashita et al., 2009; Yarish et al., 1980), 

Ca2+ (Yarish et al., 1980), Ca2+ affects Zn2+ biosorption of Sargassum sp. (da Costa et 

al., 2001; Pessôa de França et al., 2002), Na+ (Scott & Hayward, 1953, 1954; 

Yamashita et al., 2009), and some other studies also concern on transport of Na+, K+ 

and Cl- ions in seaweed (Barr & Broyer, 1964; Gutknecht, 1966; MacRobbie & Dainty, 

1958). Although the K+ and Na+ concentrations in OW and K+ISW were different, 

their effects were not discussed in this current Chapter but the following ones. The 

only difference of the two K+ISWs was [Cl-] in ISW_KCl higher was than in 

ISW_K2SO4 and [SO4
2-] in ISW_K2SO4 was higher than in ISW_KCl. As these anion 

concentrations in ISW were lower than in OW at the same salinity, fortifying the ISW 

by either KCl or K2SO4 elevated respective [Cl-] or [SO4
2-] in ISW closed to its 
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concentration in OW. There is no published information about the effect of anion, like 

Cl- and SO4
2-, on the growth of seaweed yet. 

Table 4-6. Ionic profile (mg L-1) in waters before culturing Sargassum spp.  

Parameters OW  ISW  ISW_KCl ISW_K2SO4 

Bo 3.95 0.66 0.68 0.66 

Ca 371.6 583.00 587.60 583.00 

Cl 19679.5 18297.0 19077.6 17907.8 

Cu <0.05 <0.05 <0.05 <0.05 

Fe <0.05 <0.05 <0.05 <0.05 

Mg 1168 1525 1579 1565 

Mn <0.05 <0.05 <0.05 <0.05 

P <0.05 0.07 0.07 0.07 

K 351.1 84.4 359.8 353.3 

Na 10010 8719 8610 8574 

S 805.4 602.4 642.6 769.2 

Zn <0.05 <0.05 <0.05 <0.05 

Source: Modified from Dinh (2016) 

Cl- is the most abundant ion in the OW, with the average concentration of 19,000 mg 

L-1 (Feth, 1981) (Table 4-7), sharing 55.04% of total ions in OW (Brown et al., 1989). 

Study of the Cl- in ISW is limited. The role of Cl- in the survival of red drum (Sciaenops 

ocellatus) in saline ground water is not clear. Increasing the Cl- in saline ground water 

from 639 to 1,296 mg L-1 in conjunction with Ca2+ elevation from 36 to 336 mg L-1 

significantly enhanced the survival of red drum, whereas the combination of Cl- and 

Na+ just slightly increase red drum survival (Forsberg et al., 1996). Although KCl is 

more commonly used salt to fortify the ISW to culture marine species (Table 4-2), the 

role of K+ is clearer to the fish growth and performance than the Cl-. Cl- and K+ in ISW 

affect the growth of Australian snapper (Pagrus auratus) and the suitable K+/Cl- ratio 

is 0.007–0.018 (Fielder et al., 2001). At 45 ppt, [Cl-] in ISW is 25,000 mg L-1, which 

causes more severe chloride cell hyperplasia in juvenile barramundi (Lates calcarifer) 

than OW (Partridge & Creeper, 2004). However, as the SGRs of the two Sargassum 

spp. were the same in ISW_KCl and OW, which showed that Cl- did not play any 

significant role on the growth of the two Sargassum spp.  
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Table 4-7. Cl- and SO4
2- concentrations in OW and ISW 

Water Salinity (ppt)  Concentration (mg L-1) Reference 

Cl- 

OW 35 19,370 Harvey (1957) 

OW 35 18,980 Brown et al. (1989) 

OW  19,000 Feth, 1981; Goldberg (1966) 

OW 35.3 20,000 Fielder et al. (2001) 

OW 19.6 11,105 Fielder et al. (2001) 

ISW 19.6 11,000 Fielder et al. (2001) 

SO4
2- 

OW 35  2,710 Harvey (1957) 

OW 35  2,649 Brown et al. (1989) 

OW   2,655 Goldberg (1966) 

OW 35.3  2,500 Fielder et al. (2001) 

OW 19.6  1,388 Fielder et al. (2001) 

ISW 19.6  1,100 Fielder et al. (2001) 

The third most abundant ion in OW is SO4
2- which is 2,560 mg L-1 (Feth, 1981; 

McGraw & Scarpa, 2003) (Table 4-7), sharing 7.68% of total ions in OW (Brown et 

al., 1989).  SO4
2- accounts for more than 80% of total sulfur (S) in domestic water, 

includes precipitation (97%) and snow (88%) (Edwards et al., 1992). However, SO4
2- 

plays no role in shrimp hemolymph at the salinity lower than 25 ppt (Dall & Smith, 

1981). The SO4
2- itself also shows no significant effect on the short-term survival of 

Pacific white shrimp Litopenaeus vannamei (Boone), although in addition to the K+, 

SO4
2- and K+ together strongly enhance the survival of white shrimp in freshwater 

(McGraw & Scarpa, 2003). SO4
2- concentration of 0.46 mg L-1 in natural water at 2.56 

ppt is fortified by Kmag® 1,650 kg ha-1 levels up to 75 mg L-1 and then reduces to 50 

mg L-1 stably, has no significant influence on shrimp production as K+, which results 

in higher survival and growth of shrimp when higher K+ is applied (McNevin et al., 

2004).  

The role of Cl- and SO4
2- on the performance of plants have been investigated, such as 

in tobacco (Nicotiana tabacum), where the low [SO4
2-] significantly affects the leaf 

length and weight of tobacco but it should not exceed 96 ppm, and 280 ppm Cl- is good 
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for tobacco leaf length and weight increase (Wedin & Struckmeyer, 1958). Although 

the high Cl- shows inhibitive effect on tobacco leaf burn but not SO4
2- (Wedin & 

Struckmeyer, 1958), higher Cl- in the ISW_KCl did not affect the two Sargassum spp. 

growth in K+ISW. The SO4
2- deficiency (9.6 mg L-1) provided by watering four times 

a day significantly reduces the photosynthesis capacity, lower chlorophyll a and b of 

tomato plants (Lycopersicon esculentum Mill. Cv. Trust) (Xu et al., 1996). However, 

the lower SO4
2- in the ISW_KCl than in OW and ISW_K2SO4 showed no significant 

effect on growth of the two Sargassum spp. when the SGRs of these two Sargassum 

spp. were similar at all water types. Therefore, it can be concluded that Cl- and SO4
2- 

played no significant role in the growth of the two Sargassum spp. in K+ISW as the 

same growth rates were observed by two species.  

The nitrogen and phosphorus of waters measured fortnightly were presented in Table 

4-8. The [NO2
--N] significantly (P<0.05) increased toward the end of the experiment 

and it was correlated (P<0.05) with the Sargassum spp. biomass. There was only one 

significant (P<0.05) difference in [NO2
--N] between OW and ISW_KCl culturing S. 

linearifolium. No significant difference of [NO2
--N] in waters was found between three 

water types or two species. Similar to NO2
--N, the NO3

--N and PO4
3--P concentrations 

significantly (P<0.05) rose by the end of the experiment. However, there was no 

significant (P>0.05) effect between water types and species on NO3
--N, and no 

significant (P>0.05) difference of NO3
--N concentration in water among water types 

of one Sargassum species, or between two species in one type of water. The only 

significant (P<0.05) difference in PO4
3--P between two species at OW was recorded at 

the day 28. The concentrations of NH4-N and TKN were similar in all treatments, and 

they did not change over the duration of the experiment. The t-test showed no 

significant (P>0.05) difference of TKN between two species in a water. Although the 

concentrations of nitrogen and phosphorus in culture media including NO2
--N, NO3

--

N, NH4-N, TKN and PO4
3--P were significantly (P<0.05) correlated to biomass and 

SGR of the two Sargassum spp. (Table 4-9), there will be more detail discussion in the 

following Chapters. 

.
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Table 4-8. The quality parameters of OW and ISW fortified by two sources of K+ cultured Sargassum spp.  

Param-

eters 
Time 

S. linearifolium S. padocanthum 

OW ISW_KCl ISW_K2SO4 OW ISW_KCl ISW_K2SO4 

 Day 1 10.003±0.001 10.006±0.002 10.007±0.002 10.003±0.001 10.006±0.002 10.006±0.002 

 Day 14 120.007±0.001 10.007±0.001 10.007±0.002 10.006±0.001 120.009±0.002 10.006±0.001 

NO2
--N Day 28 120.007±0.000 10.006±0.001 10.007±0.001 10.006±0.001 120.008±0.001 120.007±0.001 

 Day 42 120.008±0.002 10.010±0.002 10.011±0.002 20.012±0.001 10.006±0.001 120.010±0.002 

 Day 56 230.012±0.002 10.020±0.007 120.028±0.014 20.015±0.002 20.052±0.036 20.017±0.003 

 Day 70 30.018±0.004a
 20.046±0.014b

 20.037±0.011ab
 20.016±0.002 120.028±0.007 30.023±0.007 

NO3
--N 

Day 1 12.33±0.18 11.85±0.22 11.95±0.25 12.38±0.10 11.98±0.25 12.38±0.17 

Day 14 11.60±0.31 12.25±0.41 12.25±0.35 12.08±0.17 11.65±0.24 12.25±0.27 

Day 28 12.08±0.17 12.38±0.31 12.15±0.22 12.04±0.32 12.37±0.10 12.32±0.18 

Day 42 12.03±0.24 12.21±0.29 12.27±0.17 12.15±0.32 12.00±0.12 12.15±0.37 

Day 56 11.68±0.36 15.63±2.67 13.53±1.12 122.46±0.37 12.91±0.38 12.59±0.75 

Day 70 23.95±1.15 211.63±4.09 28.80±3.17 33.40±0.53 26.31±1.94 24.95±1.68 

NH4-N 

Day 1 10.01±0.01 10.01±0.01 10.00±0.00 10.01±0.01 10.01±0.01 0.01±0.01 

Day 14 10.00±0.00 10.00±0.00 10.00±0.00 10.00±0.00 10.01±0.01 0.01±0.01 

Day 28 20.05±0.02 120.12±0.01 20.08±0.02 20.09±0.00 10.05±0.03 0.09±0.04 

Day 42 30.09±0.01 30.17±0.03 30.18±0.03 20.10±0.02 20.21±0.07 0.09±0.03 

Day 56 120.03±0.02 120.06±0.04 20.07±0.03 10.00±0.00 10.04±0.02 0.09±0.06 

Day 70 10.01±0.01 10.02±0.01 120.02±0.02 10.00±0.00 10.00±0.00 0.00±0.00 
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Param-

eters 
Time 

S. linearifolium S. padocanthum 

OW ISW_KCl ISW_K2SO4 OW ISW_KCl ISW_K2SO4 

TKN 

Day 1 0.81±0.21 11.09±0.18 121.12±0.09 0.81±0.23 1.00±0.18 121.12±0.04 

Day 14 0.95±0.24 11.17±0.27 121.13±0.25 0.85±0.27 0.93±0.24 121.27±0.06 

Day 28 1.18±0.57 10.96±0.41 10.57±0.33 1.25±0.42 0.36±0.14 10.55±0.29 

Day 42 1.38±0.33 121.73±0.20 21.95±0.22 1.47±0.23 1.66±0.48 21.90±0.44 

Day 56 2.08±0.80 22.29±0.38 34.56±0.44 1.55±0.65 3.19±1.14 33.05±0.54 

Day 70 0.80±0.32 121.78±0.29 21.89±0.32 1.05±0.18 1.85±0.10 121.48±0.22 

PO4
3--P 

Day 1 10.45±0.12 10.75±0.17 10.60±0.18 10.58±0.03 10.73±0.16 10.58±0.03 

Day 14 10.68±0.09 10.85±0.22 10.75±0.16 10.58±0.17 10.83±0.12 10.85±0.05 

Day 28 10.36±0.05 10.55±0.06 10.42±0.07 10.72±0.16 10.51±0.04 10.48±0.07 

Day 42 21.47±0.43 11.11±0.26 11.28±0.32 10.93±0.31 11.26±0.19 21.58±0.10 

Day 56 130.77±0.06a
 11.69±0.50b

 121.38±0.14ab
 10.82±0.25 10.93±0.21 10.92±0.17 

Day 70 231.43±0.33a
 23.71±1.12b

 22.65±0.98ab
 21.47±0.18 22.18±0.52 21.71±0.43 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column sharing a common 

subscript (number) are not significantly different (LSD test; P>0.05; n=4).



 

 78 

Table 4-9. Pearson correlations of Sargassum spp. biomass and water quality 

parameters 

Criteria 
Dependent 

variable 
NO2

--N NO3
--N PO4

3--P NH4-N TKN 

Biomass 

All -0.424** -0.459** -0.372** 0.358** -0.275** 

SL_OW -0.414* -0.382 0.133 0.215 0.153 

SL_ISW_KCl -0.641** -0.616** -0.626** 0.484* -0.352 

SL_ISW_K2SO4 -0.486* -0.420* -0.292 0.467* -0.347 

SP_OW -0.492* -0.474* -0.396 0.545** -0.164 

SP_ISW_KCl -0.380 -0.430* -0.351 0.249 -0.510* 

SP_ISW_K2SO4 -0.652** -0.624** -0.456* 0.276 -0.378 

SGR 

All -0.420** -0.417** -0.368** 0.246** -0.312** 

SL_OW -0.474* -0.367 0.040 -0.015 0.053 

SL_ISW_KCl -0.622** -0.587** -0.610** 0.433 -0.413 

SL_ISW_K2SO4 -0.439 -0.357 -0.242 0.488* -0.310 

SP_OW -0.722** -0.544* -0.445* 0.445* -0.148 

SP_ISW_KCl -0.396 -0.419 -0.375 0.218 -0.508* 

SP_ISW_K2SO4 -0.622** -0.517* -0.521* 0.019 -0.525* 

(*) – 2-tail significance (P<0.05) (**) – 2-tail significance (P<0.001) SL – S. linearifolium SP – S. 

podacanthum 

4.4 Conclusions 

Among the six studied species, Sargassum is the most suitable candidate to cultivate 

in ISW. In addition, L. catenata showed longer survival than G. subpectinata, thus L. 

catenata can be chosen as a representative of the red seaweeds. Same SGR of S. 

linearifolium and S. podacanthum was achieved when cultured in ISW fortified by 

either KCl or K2SO4 to OW-equivalent [K+]. The potash of sulphate K2SO4 is 

recommended to fortify ISW as an alternate for KCl.  
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CHAPTER 5 *PRODUCTIVITY OF Sargassum linearifolium 

AND S. podacanthum IN POTASSIUM-FORTIFIED INLAND 

SALINE WATER 

5.1 Introduction 

Inland saline water (ISW) in Australia is abundant in natural rivers, lakes and in 

shallow aquifers (Nulsen, 1997). Over 2.5 million hectares of land is salt-affected as a 

consequence of a reduction in perennial, deep-rooted natural vegetation (Nulsen, 

1997). The increase in inland saline areas has negatively affected agricultural land, 

wildlife habitats and native vegetation (Allan et al., 2008).   

One possible way to convert ISW-affected land into a valuable resource is to use the 

same land for aquaculture of marine species (Allan et al., 2008). ISW is available in 

the form of large reserves of underground water (Nulsen, 1997), which could provide 

a source of water for inland marine aquaculture (Partridge, 2008). At the same salinity, 

the ionic profile of ISW is similar to seawater, except for the lower [K+] in ISW (Boyd 

et al., 2007; Fielder et al., 2001; Fotedar et al., 2011; Ingram et al., 2002; Partridge & 

Lymbery, 2008; Prangnell & Fotedar, 2006b), which is around 26–331 mg L-1 in 

Western Australia (WA) (Nulsen, 1997). The K+ deficiency in ISW has been shown to 

negatively affect survival and growth of juvenile mulloway (Argyrosomus 

hololeptidotus) (Doroudi et al., 2006), juvenile snapper (Pagrus auratus) (Fielder et 

al., 2001), and red drum (Sciaenopsocellatus) (Forsberg et al., 1996). Similarly, 

mortalities of giant tiger prawn (Panaeus monodon) (Ingram et al., 2002; Shakeeb Ur 

et al., 2005; Tantulo & Fotedar, 2007), Japanese tiger prawn (Marsupenaeus 

aponicus), Pacific white shrimp (Litopenaeus vannamei) (Roy et al., 2007), 

barramundi (Lates calcarifer) (Partridge & Creeper, 2004; Partridge & Lymbery, 

2008) and snapper (Fielder et al., 2001) in ISW have been recorded due to K+ 

deficiency. It is necessary to add K+ to ISW, equivalent to 50–100% that of ocean 

water (OW) for culturing snapper (Fielder & Allan, 2003; Fielder et al., 2001), shrimp 

                                                 

* A part of this Chapter entitled ‘Productivity of Sargassum linearifolium in Potassium-Fortified Inland 

Saline Water under Laboratory Conditions’, was previously published in the journal of Aquaculture 

Research as a research article, 2017, volume 48, issue 11, pages 5631–5639. 
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(Shakeeb Ur et al., 2005; Tantulo & Fotedar, 2006), mulloway (Doroudi et al., 2006), 

and rabbitfish (Siganus rivulatus) (Mourad et al., 2012). Prawn (Penaeus latisulcatus, 

Penaeus monodon) cultured in OW-equivalent K+ISW yields a similar survival and 

growth rate as in OW due to increasing osmo-regulation capacities (Prangnell & 

Fotedar, 2006b; Tantulo & Fotedar, 2006). K+ can be supplemented by adding muriate 

of potash, a product that contains at least 95% KCl (49.8% K+) (Boyd et al., 2007; 

McNevin et al., 2004; Partridge & Creeper, 2004), Kmag, a product that holds 18.3% 

of K+ (Boyd et al., 2007; McNevin et al., 2004), or chemical grade potassium chloride 

(KCl) holding 52.3% K+ (Prangnell & Fotedar, 2006a, 2006b; Tantulo & Fotedar, 

2007).  

The ambient temperature in most of the salinity-affected areas of Australia is 12.3–

28.4oC (Partridge et al., 2006), and may not be suitable for shrimp farming (Partridge, 

Lymbery, & George, 2008), but this temperature may be suitable for seaweed culture. 

ISW aquaculture has gradually developed in Australia, mainly targeting fish and 

shrimp (Allan et al., 2001; Allan et al., 2008). To date, 29 shrimp, fish, and mollusc 

species have been researched and some have been commercially cultured in ISW in 

Australia as summarized by Dinh (2016), yet the research on seaweed culture in ISW 

remains restricted to only Gracilaria cliftonii (Kumar et al., 2010).  

Of the 350 species of brown seaweeds in Australia, the order Fucales (including genera 

Sargassum and Cystophora) are common in Southern Australia (Huisman, 2000). The 

growth, chemical and nutrient uptakes have been studied worldwide on seaweed 

(Ahmad et al., 2011; Bird et al., 1978; Campbell, 1999; Coffaro & Sfriso, 1997; 

Coutinho & Zingmark, 1993; Dailer et al., 2012; de Casabianca et al., 2002; Flindt et 

al., 1997; Gordillo et al., 2001; Kitadai & Kadowaki, 2007; Larned, 1998; Pérez-

Mayorga et al., 2011; Perini & Bracken, 2014), and Sargassum spp. in particular 

(Andrew & Viejo, 1998; Chen & Zou, 2014; Choi et al., 2009; Cui et al., 2014; Gao 

& Hua, 1997; Hanisak & Samuel, 1987; Keesing et al., 2011; Lapointe, 1986; Rao & 

Rao, 2002; Reef et al., 2012; Schaffelke & Klumpp, 1998; Yuan et al., 2014). 

However, there is no available information about growing Sargassum in ISW, whereas 

the K+ deficiency in ISW is currently a concern in using ISW for aquaculture.    

As in animals, the role of K+ is important to terrestrial plants and seaweed (Blumwald 

et al., 2000; Talling, 2010). K+ is physiologically important for algal growth and 



 

 82 

cannot be totally substituted by any other chemical element as it is an “activator and 

cofactor of enzymes in respiration and carbohydrate metabolism” (Yarish et al., 1980, 

p. 236). The K+ concentration in water is an important factor in maintaining turgor 

regulation and external osmotic pressure of Chaetomorpha linum, a littoral green alga 

(Zimmermann & Steudle, 1971). K+ is also important in photosynthesis and respiration 

as it activates several enzymes to synthesise protein and carbohydrates (Checchetto et 

al., 2013). Similarly, K+ is important in regulating the osmotic pressure of Platymonas 

subordiformis and Chlamydomonas reinhardtii (Kirst, 1977; Malhotra & Glass, 1995). 

Therefore, this laboratory-based study was conducted to investigate the relationship 

between the growth of S. linearifolium and S. podacanthum and the levels of K+-

fortification in ISW in order to provide a platform to cultivate Sargassum spp. in ISW. 

These results would be fundamental for further research on seaweed aquaculture. 

5.2 Materials and Methods 

Two separate trials were conducted in winter of two years for two Sargassum spp. 

Seaweed collection, water preparation at 35 ppt, data collection and data analysis were 

followed as described previously in Chapter 3. 

5.2.1 Experiment Setup 

The growth rate of Sargassum spp. was determined in three levels of K+-fortified ISW 

(K+ISW). Five treatments were OW, ambient ISW (ISW0), ISW fortified with K+ as 

100, 66, 33% of the [K+] in OW at 35 ppt, by KCl 508.5, 280.90, 59.99 mg L-1 

respectively, namely ISW100, ISW66, ISW33.  

5.2.1.1 S. linearifolium Cultured in Potassium-fortified Inland Saline Water 

After acclimation, S. linearifolium was removed and cut into pieces to achieve the pre-

determined weight of approximate 3,500 mg L-1 and then transferred immediately into 

1.5 L beakers. Similar parts of the thallus and from the same stage of development, 

hence the same physiological state, was used in all treatments. A total of 20 1.5 L glass 

beakers were used for the trial of 84 days.  
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5.2.1.2 S. podacanthum Cultured in Potassium-fortified Inland Saline Water 

A similar trial lasting 56 days of the following year was repeated with S. podacanthum 

in 15 L tanks, using the whole thalli of S. podacanthum at stocking density of 3,500 

mg L-1, in order to have sufficient S. podacanthum tissue for analysing protein and 

chemical compositions during and at the end of the experiment.  

5.2.2 Data Collection 

The ammonium (NH4-N), nitrate (NO3
--N), nitrite (NO2

--N) and phosphate (PO4
3--P), 

Total Kjeldahl Nitrogen (TKN) concentration in water, Sargassum spp. biomass, 

Sargassum spp. dried powder, Sargassum spp. specific growth rates (SGR), crude 

protein, gross energy, the pH, temperature and salinity of cultured media, the total 

solids (TS), total volatile solids (TVS), total suspended solids (TSS) and volatile 

suspended solids (VSS) were determined as presented in Chapter 3. 

In the S. podacanthum experiment, the ionic profile of cultured media, ionic 

compositions of the S. podacanthum, total nitrogen and carbon contents of S. 

podacanthum were analysed as described in chapter 3. 

. 

5.3 Results 

5.3.1 S. linearifolium Cultured in Potassium-fortified Inland Saline Water  

5.3.1.1 Biomass of S. linearifolium 

Since the commencement of the trial, the biomass of the S. linearifolium increased 

significantly (P<0.05) in ISW100 and OW. Culturing S. linearifolium in ISW100 and 

ambient OW resulted in significantly (P<0.05) higher biomass than in the other water 

types (Table 5-1). The S. linearifolium biomass in ISW100 and OW shared similar 

growth pattern and reached a peak around the third fortnight and then remained static 

for the rest of the trial before declining. From the second fortnight, S. linearifolium 

cultured in ISW100 grew significantly (P<0.05) lower than in OW. In the last fortnight 

of the trial, the biomass of S. linearifolium cultured in ISW100 declined at a rate of 

1.5% and became significantly (P<0.05) lower than in OW.   
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Table 5-1. Biomass (mg) of S. linearifolium cultured in OW and K+ISW 

Time OW  ISW0  ISW33  ISW66 ISW100 

Day 1 13.38±0.10a 13.38±0.12a 13.16±0.10a 13.39±0.06a 13.28±0.09a 

Day 14 24.50±0.26a 
13.38±0.20b 

24.52±0.55a 
234.51±0.21a 

2,34.81±0.38a 

Day 28  36.46±0.51a 
22.46±0.32b 

13.34±0.09b 
234.56±0.15c 

2,3,45.39±0.20c 

Day 42 47.91±0.44a 
31.43±0.55b 

12.62±0.17c 
234.28±0.21d 

3,45.79±0.38e 

Day 56  47.84±0.30a 
31.23±0.47b 

31.44±0.60b 
133.93±0.36c 

45.90±0.51d 

Day 70 347.15±0.21a 
40

b 
40

b 
133.76±0.26c 

45.83±0.42d 

Day 84 346.97±0.50a 
40

b 
40

b 
13.34±0.57c 

24.74±0.28d 

R2 0.91±0.01ac 0.93±0.01a 0.83±0.03bc 0.70±0.07b 0.88±0.03ac 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript are not significantly 

different (LSD test; P>0.05; n=4). R2 is the power regression correlation coefficient between biomass 

(y) and time (fortnight) (the data were transformed to arcsin before conducting comparison) 

As the time progressed, lower [K+] in ISW resulted in lower S. linearifolium biomass. 

During the first three fortnights, S. linearifolium biomass cultured in ISW100 and 

ISW66 showed a hyperbolic trend as the time progressed, plateaued around three to 

five fortnights and then declined (Figure 5-1). There was no significant (P>0.05) 

difference in S. linearifolium biomass between the ambient ISW and ISW33 except at 

second and fourth fortnights, where S. linearifolium biomass was significantly 

(P<0.05) higher in ISW33 than in ISW. Complete mortality was observed in ISW and 

ISW33 at the day 56 of the trial (Table 5-3). 

The relationship between biomass and time was correlated (R2 >0.7) in all water types 

(Figure 5-1), however it was significantly (P<0.05) stronger when no K+ was fortified 

to ISW (Table 5-1). 
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Figure 5-1. The correlation of S. linearifolium biomass (y) cultured in K+ISW 

with time in days (x) (R2 is the power regression correlation coefficient between biomass (y) 

and time (fortnight).  

5.3.1.2 Specific Growth Rate of S. linearifolium  

The SGR of S. linearifolium steadily declined in all water types, however, it was 

positive in OW and ISW100, and negative in the other types of ISW (Table 5-2). In 

the OW, the S. linearifolium grew at a constant rate of 2% d-1 from the commencement 

to the third fortnight and then fell to 1% d-1, but was significantly (P<0.05) higher than 

in ISW and in ISW33. The SGR of S. linearifolium in the ISW100 and ISW66 was 

similar to OW in the first four fortnights, and significantly (P<0.05) lower in all types 

of ISW from the fifth fortnight onward. 

The S. linearifolium biomass and SGR were significantly (P<0.01) correlated with pH 

and the concentrations of NO3
--N and TKN in water whereas PO4

3--P showed 

significantly (P<0.05) less strong relationship (Table 5-3).  
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Table 5-2. Cumulative SGR (% d-1) of S. linearifolium in K+ISW 

Time OW ISW0 ISW33 ISW66 ISW100 

Day 1–14 1.92±0.12a
 -0.01±1.62b

 2.31±0.71a
 1.91±0.96a

 2.57±0.66a
 

Day 1–28  12.29±0.18a 
1-1.22±0.50b 

10.19±0.14c 
21.06±0.06d 

121.78±0.05ad 

Day 1–42 12.02±0.10a 
2-3.78±2.33b 

12-0.46±0.17a 
230.55±0.10a 

231.34±0.14a 

Day 1–56 121.50±0.03a 
2-3.15±1.80b 

2-2.95±1.99b 
340.24±0.19ab 

231.03±0.14a 

Day 1–70 231.07±0.03a   
340.14±0.12b 

230.81±0.09c 

Day 1–84 31.03±0.08a   4-0.08±0.27b 
30.52±0.09c 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript are not significantly 

different (LSD test; P>0.05; n=4) 

Table 5-3. Pearson correlations of S. linearifolium biomass and water quality 

parameters of K+ISW (N=140) 

Dependent 

variable 
pH 

Tempe-

rature 
NO2

--N NO3
--N PO4

3--P NH4-N TKN 

Biomass 0.255** -0.140 -0.064 -0.321** -0.210* 0.145 -0.394** 

SGR 0.319** -0.026 -0.111 -0.529** -0.356** 0.249** -0.537** 

(*)  2-tail significance (P<0.05)  (**)  2-tail significance (P<0.001) 

5.3.1.3 Quality of Potassium-fortified Inland Saline Water 

The pH, NO3
--N, TKN and PO4

3--P were significantly (P<0.05) correlated to S. 

linearifolium biomass; whereas the NO2
--N, NH4-N were not (Table 5-3). The [K+] 

showed no significant fluctuation over time in all treatments.  

At the beginning and termination of the trial, pH of the water were similar among 

different water types. Except ISW100, pH of the water increased in all water types at 

the end of the trial (Table 5-4).  

The NH4-N concentration showed negligible value in all types of waters over the trial 

period. Except in ISW, the NO2
--N level in all water types were low and similar to the 

initial value by the termination of the trial (Table 5-4).  

The NO3
--N increased significantly (P<0.05) as the trial progressed and remained 

higher than the initial values at all water types. In the ISW and ISW33, nitrate was 
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highest at the end of the second fortnight, when the S. linearifolium died and then 

remained constant over the rest of the trial (Table 5-4).   

TKN significantly increased over the trial period and was significantly different among 

water types due to the presence of organic nitrogen. The TKN concentration was 

highest in ISW and ISW33, and rapidly increased right from the first fortnight and 

reached the peak when S. linearifolium biomass declined. TKN was significantly 

correlated with the growth of S. linearifolium and its concentration in OW and ISW66 

were significantly (R2>0.75) correlated with the progression of time (Table 5-4). 

Table 5-4. Water quality parameters of K+ISW cultured S. linearifolium  

Par. OW ISW0 ISW33 ISW66 ISW100 

pH 

Day 1 17.92±0.01 18.04±0.03 17.95±0.00 17.97±0.00 18.06±0.01 

Day 14 238.84±0.04a
 28.48±0.02b

 1238.36±0.02d
 28.56±0.04b

 28.73±0.03d
 

Day 28  28.70±0.04a
 28.44±0.01b

 28.44±0.03b
 38.36±0.03c

 238.61±0.01d
 

Day 42  38.85±0.05 38.63±0.05 238.37±0.20 28.53±0.06 38.52±0.11 

Day 56  238.83±0.08 48.83±0.02 48.80±0.07 48.71±0.01 28.76±0.07 

Day 70 48.24±0.03 58.27±0.03 1238.23±0.02 58.24±0.01 18.21±0.02 

Day 84 28.55±0.24 58.30±0.04 1238.27±0.03 358.27±0.03 18.25±0.02 

NO2
--N (mg L-1) 

Day 1 140.021±0.002 10.044±0.018 10.022±0.002 130.021±0.001 10.028±0.006 

Day 14 10.027±0.007a 20.705±0.208b 20.199±0.066a 10.023±0.005a 20.041±0.006a 

Day 28  120.028±0.005a
 10.135±0.021b

 230.112±0.005b
 20.035±0.004a

 20.036±0.003a
 

Day 42  30.008±0.000a
 10.024±0.002a

 130.043±0.013b
 30.014±0.001a

 30.008±0.000a
 

Day 56  340.011±0.001a
 10.014±0.002ab

 10.023±0.003c
 130.020±0.001bc

 130.013±0.002a
 

Day 70 340.013±0.000a
 10.017±0.000ab

 10.017±0.001ab
 130.019±0.003b

 130.014±0.001ab
 

Day 84 1240.021±0.007 20.017±0.004 10.023±0.005 10.027±0.001 130.014±0.003 

NO3
--N (mg L-1) 

Day 1 11.20±0.10a
 142.10±0.22b

 12.05±0.22b
 122.13±0.10b

 11.47±0.13a
 

Day 14 21.75±0.21 142.70±0.39 132.43±0.43 22.05±0.09 122.05±0.41 

Day 28  21.33±.14a
 28.88±1.78b

 27.38±0.13b
 122.2±0.40a

 131.67±0.13a
 

Day 42  121.53±0.62a
 35.80±1.25b

 256.03±0.77b
 122.80±0.49a

 242.93±0.53a
 

Day 56 32.80±0.22ab
 343.77±0.33a

 353.83±0.53a
 122.90±0.37ab

 2352.47±0.17b
 

Day 70 33.18±0.13 1343.98±0.20 33.43±0.56 13.200±0.55 43.63±0.33 

Day 84 45.70±1.52 1343.80±0.68 55.47±0.93 45.13±0.85 453.60±0.84 
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Par. OW ISW0 ISW33 ISW66 ISW100 

NH4-N (mg L-1) 

Day 1 10.825±0.175a
 Neg.b Neg.b Neg.b Neg.b 

Day 14 2Neg.b 0.250±0.250 Neg.b Neg.b 0.250±0.250 

Day 28  30.500±0.289 Neg. Neg. Neg. 0.500±0.289 

Day 42  2Neg. Neg. Neg. Neg. Neg. 

Day 56 2Neg. Neg. Neg. Neg. 0.250±0.250 

Day 70 2Neg. Neg. Neg. Neg. Neg. 

Day 84 0.005±0.005 Neg. 0.005±0.005 Neg. Neg. 

TKN (mg L-1) 

Day 1 10.21±0.05 10.21±0.06 10.14±0.07 10.21±0.04 10.14±0.09 

Day 14 10.08±0.03a
 241.56±0.19b

 21.77±0.05b
 230.84±0.26c

 21.05±0.13c
 

Day 28  10.26±0.06a
 352.90±0.07b

 32.69±0.07b
 230.86±0.15c

 31.84±0.23d
 

Day 42  20.72±0.24a
 252.15±.027bc

 32.80±0.29b
 21.17±0.06a

 351.61±0.22ac
 

Day 56 10.26±0.06a
 41.19±0.33bc

 21.31±0.44c
 130.58±0.11ac

 120.54±0.18ac
 

Day 70 31.63±0.08a
 32.97±0.04b

 32.85±0.03b
 42.12±0.02c

 42.64±1.10b
 

Day 84 31.59±0.58ab
 52.71±0.66ab

 32.92±0.72a
 53.25 ±0.42a

 251.10±0.25b
 

PO4
3--P (mg L-1) 

Day 1 121.50±0.09a
 11.68±0.05ac

 12.00±0.15b
 131.78±0.08bc

 11.55±0.05ac
 

Day 10 121.50±0.21ab
 132.08±0.15ac

 12.07±0.29ac
 11.45±0.13b

 12.23±0.18c
 

Day 28  1231.70±0.37a
 24.30±0.68b

 123.43±0.30b
 131.70±0.29a

 12.30±0.19a
 

Day 42  21.30±0.08a
 132.10±0.29bc

 12.50±0.29b
 11.43±0.12ac

 12.10±0.35bc
 

Day 56 131.97±0.08a
 342.97±0.19ab

 24.57±1.07b
 23.03±0.35ab

 24.33±1.40ab
 

Day 70 32.10±0.15a
 243.32±0.41b

 12.50±0.16a
 32.18±0.10a

 122.53±0.29a
 

Day 84 32.80±0.64 132.23±0.13 12.60±0.28 32.20±0.21 12.30±0.39 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4). Par. Means parameters 

The PO4
3--P concentration in water varied significantly among water types and over 

the trial period, and was higher when the S. linearifolium biomass started to decline. It 

remained constantly in the first three fortnights and then increased significantly in OW 

and ISW66. The PO4
3--P fluctuated slightly during the middle of the trial in ISW, 

ISW33 and ISW100 but had the similar concentration at the termination as at the 

commencement of the trial. The PO4
3--P was significantly higher in ISW, ISW33 than 

in other water types (Table 5-4).  



 

 89 

There was no significant (P>0.05) difference among treatments of some other water 

parameters measured at the end of the experiment, including TSS, VSS, TS, TVS, 

chlorophyll-a and primary productivity, except the respiration (Table 5-5). 

Table 5-5. Other water parameters (mg L-1) at the end of the experiment tested 

the growth of S. linearifolium in K+ISW 

Time OW  ISW  ISW33  ISW66  ISW100  

TSS 621±39 653±35 748±112 746±26 662±33 

VSS 374±60 397±35 455±45 391±15 389±38 

TS 68456±7990 41670±11563 76204±20522 83346±23113 52167±17787 

TVS 38259±1820 20104±7975 27321±6848 40123±22238 46958±15555 

Chlorophy-

ll-a 

0.0027± 

0.0027 

0.0181± 

0.0128 

0.0227± 

0.0227 

0.0470± 

0.0279 

0.0171± 

0.0155 

Primary Productivity  

Gross 1.32±0.14 1.90±0.13 1.22±0.28 2.50±0.50 2.75±1.24 

Net 1.00±0.10 1.10±0.10 0.79±0.19 1.54±0.34 1.62±0.77 

Respiration 0.32±0.13a 0.80±0.07ab 0.44±0.10ab 0.96±0.22ab 1.13±0.49b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4).  

5.3.2 S. podacanthum Cultured in Potassium-fortified Inland Saline 

Water  

5.3.2.1 Biomass and Growth Rate of S. podacanthum  

The fresh biomass of S. podacanthum did not change as the trial progressed in OW 

and ISW100. There was no significant (P>0.05) difference of the standing biomass 

and SGR of S. podacanthum between the OW and ISW100. Total mortality of S. 

podacanthum cultured in ISW0 was recorded in the first 14 days of the trial, whereas 

in ISW33 and ISW66, it occurred in the following 14 days. In addition, a decline 

biomass was recorded from the day 14, along with a negative SGR, which was 

significantly (P<0.05) lower than the SGR in OW and ISW100 (Table 5-6, Table 5-7). 
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Table 5-6. Fresh biomass (g L-1) of S. podacanthum cultured in K+ISW  

Time OW  ISW0  ISW33  ISW66 ISW100 

Day 1 3.38±0.13 13.38±0.04 13.344±0.11 
13.40±0.10 3.38±0.08 

Day 14 3.54±0.27ad 
20.00b 

21.55±0.54c 
22.28±0.14ac 3.60±0.05d 

Day 28  2.91±0.64 
20.00 

30.00 
30.00 2.86±0.39 

Day 42 2.94±0.77 20.00 
30.00 

30.00 3.39±0.65 

Day 56 2.92±0.78 20.00 
30.00 

30.00 2.96±0.48 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4). 

Table 5-7. SGR (% d-1) of S. podacanthum in K+ISW 

Time OW  ISW0  ISW33  ISW66 ISW100 

Day 1–14 -0.16±0.43a  -5.68±3.93b -2.20±1.08ab 0.97±0.41a 

Day 1–28 -0.47±0.71    -0.46±0.47 

Day 1–42  -0.32±0.54    -0.17±0.33 

Day 1–56 -0.26±0.41    -0.17±0.24 

Day 14–28 -0.77±1.44    -1.90±1.13 

Day 28–42 -0.03±0.38    0.42±0.97 

Day 42–56 -0.08±0.11    -0.19±0.05 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4). 

The dried content and protein of S. podacanthum remained unchanged over time in 

OW and ISW100, and no significant (P>0.05) difference of the dried content and 

protein between the two waters was recorded except the dried content at day 14 (Table 

5-8). Also, the energy of dried S. podacanthum did not change as time progressed, and 

it remained as 10,500 J g-1. 

The detail of certain chemical compositions of dried S. podacanthum were presented 

in Table 5-9, of which C and N were slightly increased after 28 days of culturing, 

whereas P decreased. Therefore, the C:N:P ratio was higher at the day 28 than at the 

beginning of the trial. In addition, the [K] in S. podacanthum declined as time 

progressed (Table 5-9). 
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Table 5-8. Dried content (%) and protein (%) of S. podacanthum cultured in 

K+ISW  

Time OW  ISW  ISW33  ISW66 ISW100 

Dried content 

Day 1 13.32±0.28 13.32±0.28 13.32±0.28 13.32±0.28 13.32±0.28 

Day 14 12.46±0.37a  14.35±0.19b 14.64±0.01b 14.32±0.50b 

Day 56  14.28±0.13    14.19±0.19 

Protein      

Day 1 9.41±1.10 9.41±1.10 9.41±1.10 9.41±1.10 9.41±1.10 

Day 14 11.38±0.10  11.48±0.10 11.36±1.00 11.42±0.16 

Day 56  8.44±0.06    10.33±0.14 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4). 

Table 5-9. Chemical composition of S. podacanthum cultured in K+ISW  

Ion Units Day 1 
Day 14 Day 28 

OW ISW33 ISW66 ISW100 OW ISW100 

Bo mg kg-1 115.29 153.22 244.00 189.24 131.85 213.89 106.42 

Ca % 1.62 1.34 2.84 1.56 1.57 1.55 1.62 

C % 26.60 28.00 30.90 26.80 29.90 29.10 29.30 

Cu mg kg-1 50.55 11.71 19.33 12.57 12.74 12.18 10.28 

Fe mg kg-1 80.31 42.87 144.28 55.32 57.49 49.33 52.15 

Mg % 0.68 0.68 1.25 1.20 0.86 0.89 0.80 

Mn mg kg-1 7.95 6.52 36.86 30.44 18.05 14.94 23.48 

P % 0.14 0.12 0.12 0.15 0.13 0.11 0.11 

K % 12.17 11.36 3.40 7.02 8.14 8.35 7.92 

Na % 2.39 2.20 2.61 4.76 1.88 1.81 1.60 

S % 1.12 1.24 1.46 1.56 1.40 1.48 1.30 

Total N % 1.31 1.11 1.75 1.94 1.58 1.28 1.67 

Zn mg kg-1 29.08 459.43 546.21 805.20 474.55 1087.17 584.56 

C:N:P 190:9:1 233:9:1 258:15:1 179:13:1 230:12:1 265:12:1 266:15:1 
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5.3.2.2 Quality of Potassium-fortified Inland Saline Water  

The environmental factors, temperature, light intensity, dissolved oxygen and pH of 

the water cultured S. podacanthum were presented in Table 5-10 and Figure 5-2, 

Figure 5-3, Figure 5-4. No significant difference of these factors were found among 

the treatments. 

As S. podacanthum died in ISW0, ISW33 and ISW66 at day 28 therefore no water 

quality parameter from these treatments was collected. The ionic profile of waters was 

presented in Table 5-11, which showed a significant variation in terms of higher K+ 

and lower Na+ in ISW100 at day 28 than the day 1. 

Table 5-10. Environmental factors in the trial tested S. podacanthum growth in 

K+ISW 

Factors OW  ISW  ISW33  ISW66 ISW100 

Temperature (oC) 20.58±0.06 20.70±0.07 20.80±0.07 21.00±0.08 20.90±0.09 

DO (mg L-1) 7.27±0.01 7.24±0.02 7.24±0.01 7.22±0.01 7.22±0.01 

pH  7.98±0.04 7.94±0.03 7.94±0.03 7.91±0.04 7.89±0.04 

 

Figure 5-2. Hourly temperature variation of the K+ISW cultivating S. 

podacanthum 



 

 93 

 

Figure 5-3. Hourly DO variation of the K+ISW cultivating S. podacanthum  

 

Figure 5-4. Hourly pH variation of the K+ISW cultivating S. podacanthum  

Since day 28 of the trial, [NO2
--N] in OW and ISW100 significantly (P<0.05) declined, 

contrary to [NO3
--N]. However, both of them remained unchanged from day 28 until 

the end of the trial. Meanwhile, [PO4
3--P] fluctuated during the trial period and, 

together with [NO3
--N], they were significantly higher at the end of the trial than at the 

beginning. No significant differences in the water quality parameters between OW and 

ISW100 were recorded as the trial progressed (Table 5-12). 

  



 

 94 

Table 5-11. Ionic profile (mg L-1) in waters cultured S. podacanthum  

Parameters OW day 1 ISW100 day 1 OW day 28 ISW100 day 28 

Bo 3.95 0.66 0.91 0.74 

Ca 371.6 583.00 549.70 537.70 

Cu <0.05 <0.05 <0.05 <0.05 

Fe <0.05 <0.05 <0.05 <0.05 

Mg 1168 1525 1671.00 1424.00 

Mn <0.05 <0.05 <0.05 <0.05 

P <0.05 0.07 <0.05 <0.05 

K 351.1 351.5 369.50 410.80 

Na 10010 8719 9506.00 8144.00 

S 805.4 602.4 887.60 620.2 

Zn <0.05 <0.05 <0.05 <0.05 

Table 5-12. Quality parameters (mg L-1) of water cultured S. podacanthum 

Par. OW ISW0 ISW33 ISW66 ISW100 

NO2
--N      

Day 1 10.022±0.002 10.041±0.024 0.023±0.002 0.022±0.003 120.026±0.010 

Day 14 10.028±0.006a 0.016±0.004a 0.163±0.066b 0.026±0.005a 
10.032±0.006a 

Day 28  20.001±0.001a 
   30.007±0.002b 

Day 42 20.007±0.003a 
   230.018±0.002b 

Day 56 20.011±0.001    230.016±0.005 

NO3
--N      

Day 1 11.10±0.00a 2.17±0.30b 2.13±0.28b 2.13±0.15b 
11.40±0.16a 

Day 14 11.83±0.18a 3.30±0.15c 2.83±0.15bc 2.17±0.15ab 
11.76±0.18a 

Day 28  23.60±0.29    24.30±0.46 

Day 42 23.46±0.19    33.30±0.27 

Day 56 23.17±0.41    33.13±0.15 

PO4
3--P      

Day 1 11.47±0.12a 1.70±0.06a 2.10±0.26b 1.80±0.10ab 
11.57±0.12a 

Day 14 121.60±0.21a 2.50±0.23b 2.50±0.23b 1.80±0.15a 
22.23±0.20ab 

Day 28  120.97±0.12    30.97±0.07 

Day 42 121.33±0.23    11.70±0.23 

Day 56 21.80±0.31    22.27±0.18 

Par. means parameters  

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column sharing a common subscript (number) are not 

significantly different (LSD test; P>0.05; n=4). 
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Table 5-13. Comparison of the cumulative SGR (% d-1) of the two Sargassum spp. cultured in K+ISW  

Time 
OW ISW ISW33 ISW66 ISW100 

S. L S. P S. L S. P S. L S. P S. L S. P S. L S. P 

Day 1–14 1.92±0.12a -0.16±0.43b -0.01±1.62  2.31±0.71a -5.68±3.93b 1.91±0.96a -2.20±1.08ab 2.57±0.66a 0.97±0.41a 

Day 1–28  2.29±0.18a -0.47±0.71b -1.22±0.50 
 0.19±0.14 

 1.06±0.06 
 1.78±0.05a -1.90±1.13b 

Day 1–42 2.02±0.10a -0.32±0.54b -3.78±2.33 
 -0.46±0.17 

 0.55±0.10 
 1.34±0.14a 0.42±0.97b 

Day 1–56 1.50±0.03a -0.26±0.41b -3.15±1.80 
 -2.95±1.99 

 0.24±0.19 
 1.03±0.14a -0.19±0.05b 

S. L – S. linearifolium; S. P – S. podacanthum 

Values (mean±SE) within a row at one water type sharing a common superscript are not significantly different (t-test; P>0.05; n=4). 

Table 5-14. Comparison of the discrete SGR (% d-1) of the two Sargassum spp. cultured in K+ISW  

Time 
OW ISW0 ISW33 ISW66 ISW100 

S. L S. P S. L S. P S. L S. P S. L S. P S. L S. P 

Day 1–14 11.92±0.12a -0.16±0.43b 
1-0.01±1.62  12.31±0.71a

 -5.68±3.93b 11.91±0.96a
 -2.20±1.08b 12.57±0.66a

 0.97±0.41b 

Day 15–28  12.53±0.57a -0.77±1.44b 
12-2.00±0.66 

 12-1.18±0.61 
 20.51±0.22 

 21.26±0.34a -0.46±0.47b 

Day 29–42 11.48±0.38a -0.03±0.38b 
2-8.90±6.51 

 12-1.77±0.55 
 23-0.48±0.24 

 230.48±0.43a -0.17±0.33b 

Day 43–56 2-0.05±0.41 -0.08±0.11 12-1.24±0.30 
 2-10.41±7.61 

 3-0.69±0.50 
 2340.09±0.28 -0.17±0.24 

S. L – S. linearifolium; S. P – S. podacanthum 

Values (mean±SE) within a row at one water type sharing a common superscript are not significantly different (t-test; P>0.05; n=4). Values (mean±SE) within a column sharing 

a common subscript are not significantly different (LSD test; P>0.05; n=4). 
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5.4 Discussion  

Since K+ is important in the growth of algae in general, this study demonstrated that 

the concentration of K+ in water strongly affected Sargassum growth. K+ release may 

damage the cell membrane (Peterson et al., 1995), but K+ in the form of potassium 

permanganate would help to aggregate the cells of algae (Chen & Yeh, 2005). The 

demand for K+ depends on marine species for the optimal growth rates (Yarish et al., 

1980). In this study, at 35 ppt Sargassum showed similar K+ needs to the red seaweed 

Caloglossa leprieurii (Montagne) J. Agardh at [K+] 230–350 mg L-1 (Yarish et al., 

1980). However, the red seaweeds Bostrychia radicans Montagne grow better at 400–

500 mg L-1 (Yarish et al., 1980), a higher [K+] than in natural OW.  

After reaching a peak, biomass of Sargassum spp. constantly declined over time in all 

water types, and this decline was associated with the [K+] in the culture medium, as a 

result of K+ being uptaken and accumulated internally by Sargassum spp. The decline 

in growth and the low survival rate of Sargassum spp. biomass cultured in K+-deficient 

ISW may be due to [K+] in ISW being too low to support growth and survival of the 

cultured Sargassum spp. The [K+] of Sargassum tissues reduced over the culture 

period, due to the release of K+ from internal cells to the environment, resulting in a 

reduction of the Sargassum spp. biomass and an increase in [K+] in water as the trial 

progressed in the low [K+] ISW. K+ is actively and passively uptaken in both low and 

high [K+] media, hence K+ can be accumulated and maintained at high concentrations 

in cells, while Na+ is extruded and kept at lower concentrations (Tromballa, 1978). As 

K+ was accumulated intracellularly by Sargassum spp., the tissue K+ became depleted 

below the threshold levels and was no longer able to support the growth of Sargassum 

spp. The active uptake of K+ by Sargassum spp. in the lower [K+] medium in K+-

deficient ISW needed proportionally higher energy compared to the passive K+ uptake 

in the higher [K+] medium in OW or ISW100. The demand of energy for this active 

K+ uptake resulted in the poor survival and growth of Sargassum spp. in ISW, which 

only occurred for S. linearifolium until day 56 and S. podacanthum in the first 14 days. 

The low concentration of medium [K+] caused intercellular K+ to be released from 

higher concentrations, which was then replaced by Na+ accumulation from the culture 

medium. The inhibition of nutrient transport due to the K+ deficiency in ISW caused 

lower survival Sargassum spp. in ISW, ISW33 and ISW66. As the S. podacanthum 
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total mortality was observed after the first 14 days in ISW and ISW33, a higher [K+] 

requirement was indicated for this species than for S. linearifolium. In addition, the 

survival of S. linearifolium for a longer duration in ISW100 with a positive cumulative 

SGR until day 84, without the nutrient supplement, showed its higher ability for 

growing in K+ISW than S. podacanthum. The results of the positive growth of S. 

linearifolium until day 56 was applied for the S. podacanthum trial, which was run for 

56 days to achieve sufficient biomass until the termination of the trial. The S. 

linearifolium presented higher SGR than S. podacanthum at all periods of cultured 

duration in OW and ISW100 (Table 5-13, Table 5-14), showing S. linearifolium has a 

higher potential to be cultured in ISW. 

The [K+] in ISW100 was similar to [K+] in OW, but Sargassum spp. growth was 

significantly (P<0.05) lower, indicating other factors influence the growth of 

Sargassum spp. in ISW. The concentration of Na+ in ISW (8,719 mg L-1) is 13% lower 

than [Na+] in OW (10,010 mg L-1) at 35 ppt. In normal OW, the intercellular K+ is 

maintained at a high concentration (Allison & Walsby, 1981). Under normal growth 

conditions, Chlorella pyrenoidosa maintains a high intracellular K+ level, whilst Na+ 

is maintained at a lower concentration by active and passive Na+ influx and efflux 

(Barber & Shieh, 1973). The Sargassum spp. cultured in ISW100 spent more energy 

to accumulate Na+ in cells through the Na+ exchange mechanism, which in turn 

negatively affected the survival and growth of Sargassum spp. Moreover, the [Na+] in 

ISW was lower than ambient [Na+] in OW, and coupled with lower [K+], a disruption 

in the exchange mechanism between Na+ and K+ in Sargassum spp. cells may occur. 

The concentration of Na+ in S. podacanthum tissues increased by day 14 in ISW33, 

compared with the beginning of the experiment. As a result, cells may accumulate and 

exceed the [Na+] that is required for proper protein synthesis (Blumwald et al., 2000), 

which could contribute to the mortality of Sargassum spp. cultured in ISW and ISW33.  

Although the biomass and SGR of Sargassum spp. cultured in ISW100 was lower than 

in OW, both growth trends exhibited similar patterns over time, as they plateaued and 

started to decrease towards the end of the trial. This growth pattern follows the life 

cycle of sub-tropical and temperate Sargassum, where their maximum growth occurs 

during late winter and early spring, and starts to decline in early summer (Agatsuma 

et al., 2002; Martin-Smith, 1994). The life cycle of Sargassum and the different growth 
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period when cultured in indoor conditions were affected by daylight (Uchida, 1993). 

This experiment was conducted indoors where the daylight was constantly regulated 

using fluorescent lights of 90 µmol photon m-2 s-1 on a 14:10 h light:dark cycle, 

following the method proposed by Hanisak and Samuel (1987) under constant 

temperature, hence the light and temperature influences on Sargassum spp. were 

negated in these experiments. The water temperature was around 20–22oC with no 

significant (P>0.05) difference among any water types, reflecting the same OW 

temperature during this season, similar to suitable temperature conditions for 

Sargassum yezoense maximum growth (Agatsuma et al., 2002).    

During the trial, there was an evidence that other macronutrients, such as N and P, also 

had an important influence on the growth of Sargassum spp. As enrichment with N 

and P increases both nutrient concentrations in Fucus vesiculosus tissues (Perini & 

Bracken, 2014). N is a limiting factor in the Sargassum spp. growth in Taiwan (Hwang 

et al., 2004). NH4-N is a more preferable source of N for seaweed than NO3
--N (Liu et 

al., 2004); however, the [NH4-N] in the experiment water was usually negligible. 

When NH4-N is limited, the seaweed can use NO3
--N instead (Jie et al., 2008). In 

natural water, NO3
--N is more prevalent than NO2

--N or NH3-N (Robards et al., 1994). 

In these experiments, [NO3
--N] increased significantly over culture periods, giving an 

indication of the negative correlation with the biomass of Sargassum spp. At the end 

of experiment, [NO3
--N] in OW and ISW100 increased by 5.7- and 2.4-fold compared 

with their initial levels in S. linearifolium culture in the K+ fortification experiment. 

These results are similar to the increase in Gracilaria lemaneiformis growth rate when 

[NO3
--N] in OW is elevated from 300 to 600 µM (Zheng & Gao, 2009). The [NO3

--N] 

in K+-deficient ISW and ISW33 showed significant increases compared to NO3
--N 

levels in OW, ISW66 and ISW100. The [NO3
--N] increase in ISW and ISW33 only 

occurred when Sargassum spp. decomposed, releasing NO3
--N back into the medium. 

In contrast, lower [NO3
--N] in both OW and ISW100 during the trial showed that NO3

-

-N was either uptaken by Sargassum spp. or converted to free nitrogen by nitrifying 

bacteria (Zhang et al., 2014). This is similar to the increased biomass of Ulva rigida 

C. Agardh, which resulted in the simultaneous depletion of [NO3
--N] from the water 

column (Naldi & Viaroli, 2002).    
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The growth of Sargassum spp. in these trials was lower than in natural OW (Gao & 

Hua, 1997), as the only source of nutrients in the trial were those leached from 

decomposing of Sargassum spp. The P limitation on macroalgae growth and 

productivity is more common than N limitation (Lapointe, 1986). In this trial, P was 

also produced by the decomposition of Sargassum spp. As a consequence, Sargassum 

spp. biomass decreasing over the trial time, the [P] significantly increased and was 

negatively correlated with the Sargassum spp. biomass. Also, the availability of P in 

the culture medium was positivelly correlated with [NO3
--N]. The [P] increased when 

the [NO3
--N] occurred above the detectable limit concentration in the water column, 

whilst P in Fucus vesiculosus tissues also increase when the ambient concentration of 

NO3
--N increased (Perini & Bracken, 2014). A stable [P] in S. podacanthum tissues in 

the first 28 days of the culture period indicated a similar growth rate of Sargassum in 

OW and ISW100. However, the accumulation of N in S. podacanthum tissues in ISW 

and ISW33 was negatively correlated with the growth of S. podacanthum: the higher 

the N, the lower the SGR.   

These trials have shown the negative effects of [K+] deficiency in ISW on the survival 

and growth of Sargassum spp. cultured in ISW. This effect was species dependent, 

since there was a higher SGR in S. linearifolium than in S. podacanthum at all culture 

periods, as well as a longer survival time in both ISW and K+ISW (Table 5-13, Table 

5-14). The role of K+ in the growth of Sargassum spp. was important for supporting 

the survival of Sargassum spp., and had a complexity in terms of its relation and 

compounded effect to other cations such as Na+, and H+. Therefore, a comprehensive 

understanding of interaction process among the cations in an intercelullar context, in 

relation to K+ deficiency ISW in Sargassum culture, requires further investigation. 

5.5 Conclusions 

To sustain the growth of S. linearifolium and S. podacanthum in ISW, K+ fortification 

to similar concentrations found in OW is necessary. S. linearifolium grows faster and 

survived longer than S. podacanthum in ISW100. However, neither of them could live 

in ISW without K+ fortification. It is recommended that the Sargassum culture should 

be considered for two months only to obtain higher biomass and less investment, as 

the species shows seasonality of growth. 
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CHAPTER 6 * PRODUCTIVITY OF Sargassum linearifolium 

AND S. podacanthum IN NUTRIENT ENRICHED POTASSIUM-

FORTIFIED INLAND SALINE WATER  

6.1 Introduction 

Mariculture, including seaweed culture, in inland saline water (ISW) is considered as 

a potential expansion and diversification of aquaculture industry in Australia (Allan et 

al., 2001). Seaweed culture can make use of salt-affected agricultural farms as it is less 

constrained by additional requirement for resources and changes in infrastructure than 

the culture of marine finfish and crustacean species. Therefore, growing Sargassum 

spp., in ISW can provide another source of commodity to the farmers with a lower 

capital investment than farming in the sea (Borowitzka, 1997) and can be an additional 

tool to protect the inland environment in Australia by combating the salinity problems 

(Ogburn, 1997).  

At the same salinity, the level of potassium (K+) concentration in ISW is lower than in 

ocean water (OW) in Australia (Allan & Fielder, 1997; Dinh, 2016), and USA (Boyd 

& Thunjai, 2003; Forsberg et al., 1996) although other ionic profiles can be similar 

(Fotedar et al., 2011; Prangnell & Fotedar, 2006a). K+ is vital for aquaculture and K+ 

deficiency in ISW can negatively affect the growth of the aquatic animals (Mourad et 

al., 2012). For example, the survival of juvenile mulloway (Argyrosomus 

hololeptidotus) (Doroudi et al., 2006), juvenile snapper (Pagrus auratus) (Fielder et 

al., 2001), and red drum (Sciaenops ocellatus) (Forsberg et al., 1996) are adversely 

affected when cultured in low K+ environment. Therefore, fotifying ISW with K+ to 

achieve similar concentration in OW is essential to sustain the growth of shrimp 

(Prangnell & Fotedar, 2006b; Tantulo & Fotedar, 2006), fish (Fielder & Allan, 2003), 

                                                 

* A part of this Chaper entitle ‘Effects of enriching nitrogen and phosphorus on the growth of Sargassum 

podacanthum cultured in potassium-fortified inland saline water’ has been published by the American 

Journal of Applied Sciences, 2018, volume 13, issue 3, pages 149-161.  
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red seaweed Lomentaria catenata (Bui, Luu, & Fotedar, 2017) and brown seaweed 

Sargassum linearifolium (Bui, Luu, Fotedar, et al., 2017). 

Sargassum spp. commonly used as a source of fertilizers and soil conditioners 

(Huisman, 2000), are the dominant taxa in nearshore reef areas along Perth beaches 

(Womersley, 1996). Sargassum spp. are prevalent sources of compounds used in 

pharmaceutical (Hur et al., 2008), and agriculture industries (Ara et al., 1997). The 

extraction from Sargassum spp. can be used as in the treatment of neurological 

disorders (Natarajan et al., 2009), dementia (Pangestuti & Kim, 2010), and HIV (Thuy 

et al., 2015). The fact that Sargassum spp. are active in antioxidant activity, 

cholinesterase inhibition activity, neuroprotective activity, anti-cancer, and cytotoxic 

activity has made it a popular ingredient in health enhancement products (Yende et al., 

2014). S. fusiforme has been cultivated in Korea and Japan as a food source (Bast, 

2014). 

Sargassum has many branches growing from a short stipe (Huisman, 2000). The length 

of Sargassum’s thallus is about 0.1–2 m, while its stipes are 1–20 cm long from a 

discoid-conical holdfast (Womersley, 1987). Of the Sargassum species, S. 

podacanthum is distributed from Point Peron (Western Australia (WA) to Port 

Noarlunga (South Australia) (Womersley, 1987), and thus can be an important 

candidate for growing in local ISW. The branches of S. podacanthum are typically 

terete, but more angular at the top, usually with short, scatter spines, which branch out 

radically (Womersley, 1987). S. podacanthum’s thallus is monoecious with bisexual 

receptacles, simple or branched, and its conceptacles are unisexual (Womersley, 

1987). Although nutrient uptake and nutrient enrichment of various species of 

seaweeds, including some Sargassum spp. have been extensively studied (Coutinho & 

Zingmark, 1993; Pérez-Mayorga et al., 2011; Perini & Bracken, 2014; Reef et al., 

2012; Schaffelke & Klumpp, 1998), there is no information available on the impacts 

of ammonium (NH4-N) and phosphate (PO4
3--P) supplementation on S. podacanthum 

productivity, particularly when cultured in K+-fortified ISW (K+ISW). 

Nitrogen (N) and phosphorus (P) in the water are not always present in appropriate 

quantities to meet algal demand (Robards et al., 1994) and are limiting factors in 

photosynthesis of seaweeds (Larned, 1998). N is a limiting nutrient in the growth of 

Sargassum spp. cultured in Hawaii (Larned, 1998) and Taiwan (Hwang et al., 2004), 
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P is also considered a limiting factor for S. natans and S. fluitans growth in the western 

North Atlantic (Lapointe, 1986). The range of atomic N:P ratio of Sagassum spp. 

varies from 20:1 to 38:1 and the average requirement of N:P for seaweed, in general, 

is from 10:1 to 30:1 (Atkinson & Smith, 1983). In OW, the most common type of 

ammonia is ammonium (NH4-N), as a result of its relation to pH, and it is less toxic 

than unionized ammonia (Burgess et al., 2003), and is more preferably consumed by 

seaweed (Liu et al., 2004). The phosphate (PO4
3--P) concentration in media, alongside 

nitrate (NO3
--N) or NH4-N, increase the seaweed NO3

--N/NH4-N uptake capacity, 

respectively, better than in environments where the availability of only either NO3
--N 

or NH4-N is presented (Ahmad et al., 2011). As nutrient limitation on the growth of 

seaweed is species dependent (Larned, 1998), the majority of seaweed species grow 

faster in ammonium-enriched than in phosphate-enriched media (Larned, 1998). 

Supplying NH4-N is more efficient than nitrate (NO3
--N) for seaweed growth 

(Atkinson & Smith, 1983). Thus, the combined NH4-N and PO4
3--P has a stronger 

effect on the growth of S. baccularia than a single nutrient (Schaffelke & Klumpp, 

1998). However, the information on the impacts of nutrient supplementation during 

Sargassum spp. culture, in K+-fortified ISW (K+ISW), is lacking. The present study 

aims to examine the effects of different N and P concentrations, through the 

supplementation of NH4-N and PO4
3--P, on the growth of S. linearifolium and S. 

podacanthum cultured in K+ISW of Western Australia (WA) under the laboratory 

conditions.  

6.2 Materials and Methods  

S. linearifolium and S. podacanthum were collected and identified as described in 

Chapter 3. ISW at 355 ppt was also prepared followed the methods in Chapter 3. 

K+ISW was prepared as fortifying ISW at 100% of [K+] in OW by adding 508.5 mg 

L-1 of anhydrous potassium chloride as in Chapter 3.  

A total of 96 1.5 L glass beakers with 1 L of water were used for the 84-day trial in 

late autumn and early summer. The growth of Sargassum spp. was determined at five 

levels of nutrients in OW and K+ISW. The nutrients were provided as molar NH4-

N:PO4
3--P equal to 10:1 by the weekly addition of ammonium chloride (NH4Cl) and 

sodium dihydrogen phosphate (NaH2PO4) mixtures (Campbell, 2001). Five different 
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concentrations of NH4-N:PO4
3--P were 80:8, 120:12, 160:16, 200:20, and 240:24 µM 

(Liu et al., 2004). The required amounts of NH4Cl and NaH2PO4 for NH4-N:PO4
3--P 

80:8, 120:12, 160:16, 200:20, and 240:24 µM were, respectively, 4.28 and 0.96, 6.42 

and 1.44, 8.56 and 1.92, 10.70 and 2.40, 12.84 and 2.88 mg L-1, weighed and stirred 

to dilute in a part of the cultured media which were taken out from the cultured beakers. 

The waters were then returned back to the beakers and diluted in the 1 L cultured 

medium by using a small glass stick to stir water. Twelve treatments were set up in 

four replicates (including five nutrient concentrations in OW (OW_80, OW_120, 

OW_160, OW_200, OW_240), five nutrient concentrations in K+ISW (ISW_80, 

ISW_120, ISW_160, ISW_200, ISW_240), and the controls of ambient OW (OW_0), 

ambient K+ISW (ISW_0), without any supplementation of nutrients.   

Experimental setup, data collection and data analysis were followed as described in 

Chapter 3.  

6.3 Results 

6.3.1 Biomass and Growth Rate of S. linearifolium  

Two water types (OW and K+ISW) did not affect the fresh biomass of S. linearifolium 

in the first 28 days of culture period, but they strongly (P<0.05) affected the S. 

linearifolium biomass from the day 42. The concentrations of nutrient enrichment were 

highly (P<0.05) affected the S. linearifolium biomass. However, no interaction 

between water types and nutrient-enriched levels in water was found as the experiment 

progressed (Table 6-1). The biomass of S. linearifolium was correlated (R2>0.7) with 

the time progress of the experiment expressed in fortnight (Table 6-2). 

The only S. linearifolium fresh biomass increase was recorded in OW_0 in the first 28 

days of the experiment, an average of 3 mg d-1. Also, only in this water, total mortality 

did not occur in all replicates. In the nutrient enriched waters, the S. linearifolium 

biomass remained the same in the first 28 days in OW and in the first 14 days in 

K+ISW, and then decreased significantly (P<0.05) as the experiment progressed (Table 

6-3). 
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Table 6-1. P-values of two way ANOVA tests the effects of water types and 

nutrient enrich levels on biomass of S. linearifolium cultured in NH4-N:PO4
3--N 

enrichment waters 

Factor Day 14 Day 28 Day 42 Day 56 Day 70 Day 84 

Water 0.008 0.002 0.000 0.000 0.000 0.064 

Nutrient 0.301 0.059 0.008 0.002 0.000 0.192 

Water * nutrient 0.758 0.413 0.211 0.305 0.002 0.192 

Table 6-2. The regression correlation of the S. linearifolium biomass in mg (y) 

with the time in fortnight (x) in OW and K+ISW at controls and five additional 

nutrient levels of NH4-N:PO4
3--P (µM) 

Water NH4-N:PO4-P Regression R2 

OW 

Control y = -20.90x2 + 88.18x + 483.84            R2 = 0.96 

80:8 y = -26.10x2 + 130.72x + 418.10          R2 = 0.99 

120:12 y = -21.05x2 + 59.30x + 537.02        R2 = 0.92 

160:16 y = -14.90x2 + 18.60x + 563.86        R2 = 0.95 

200:20 y = -9.42x2 + 18.60x + 575.35             R2 = 0.94 

240:24 y = -14.28x2 + 5.91x + 587.30        R2 = 0.92 

K+ 

ISW 

Control y = -23.19x2 + 96.08x + 436.81            R2 = 0.97 

80:8 y = 3.70x2 -125.61x + 673.01                R2 = 0.94 

120:12 y = -1.90x2 - 93.89x + 683.43            R2 = 0.91 

160:16 y = -4.20x2 – 73.16x + 654.00        R2 = 0.93 

200:20 y = 12.36x2 – 202.394x + 774.08            R2 = 0.91 

240:24 y = -0.11x2 – 108.83x + 711.44            R2 = 0.90 

When nutrient enrichment levels were higher, total mortality occurred sooner. From 

day 70, total mortality was recorded in the two highest nutrient enrichment levels in 

OW, and all nutrient enrichment levels in K+ISW.  

The SGR of S. linearifolium showed no significant difference among the nutrient 

enrichment levels in the same water types in the first 14 days. However, the nutrient 

enrichment levels significantly affected the SGR of S. linearifolium in OW since the 

day 56 onward, and in K+ISW from the day 28. The higher nutrient enrichment levels 

resulted in a greater reduction rate of S. linearifolium biomass than the lower nutrient 
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levels. The SGR of S. linearifolium in OW was higher than in K+ISW at the 80:8 level 

over the experimental period, and they were similar in other nutrient enrichment levels 

(Table 6-4). The biomass and SGR of the S. linearifolium were significantly (P<0.05) 

correlated with the pH, temperature of culture media, and all measured water quality 

parameter (Table 6-10). 

6.3.2 The Quality of Water Culturing S. linearifolium 

The pH and temperature varied during the culture period, but were similar among the 

different treatments in the S. linearifolium cultured medium, except a higher pH in 

ISW_240 than ISW_0 and ISW_80 from day 56 onward was recorded (Figure 6-1).  

The water quality parameters varied widely during the culture period, and more so in 

K+ISW. Nitrite (NO2
--N) remained unchanged in the first 28 days in OW and 70 days 

in K+ISW and then significantly rose by the end of the experiment, particularly in 

control of OW and K+ISW (Table 6-5).  

NO3
--N was greater in higher nutrient enrichment levels, and was significantly higher 

at the end of the experiment than at the beginning in 200:20 and 240:24 levels. NO3
--

N in K+ISW was higher than in OW at the same nutrient enriched levels (Table 6-6).  

Only in the non-enriched level was TKN in K+ISW similar to OW, and in all other 

levels, TKN in K+ISW was higher than in OW at the same nutrient enriched levels. 

TKN rose significantly (P<0.05) toward the end of the experiment (Table 6-7). 

At the beginning, the NH4-N level was greater in the higher nutrient enrichment levels; 

however, its concentration became negligible over the first 28 days of the culture 

period, and then remained less than 0.3 mg L-1. At the same nutrient enriched level, 

NH4-N was similar in both OW and K+ISW, except a higher concentration was 

recorded in ISW_160 than in OW_160 (Table 6-8). 
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Figure 6-1. The pH (a) and temperature (b) of the nutrient-enriched waters 

culturing S. linearifolium 

In contrast with the increasing trend of all sources of N in waters, the PO4
3--P remained 

the same in the non-enriched level, and was reduced by the end compared to the 

beginning in all other waters, except ISW_200. However, PO4
3--P concentrations in 

K+ISW were significantly higher than in OW at the same nutrient levels, and higher 

than for the 120:12 level (Table 6-9).  

(a) 

(b) 
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Table 6-3 Fresh standing biomass (g) of S. linearifolium cultured in control and five enriched levels of NH4-N:PO4
3--P (µM) waters 

 Water Time Control 80:8 120:12 160:16 200:20 240:24 

OW 

Day 1 133.59±0.01 13.60±0.05 123.62±0.03 13.62±0.07 13.61±0.03 13.66±0.07 

Day 14 24.42±0.26 14.20±0.23 14.35±0.13 14.31±0.30 13.76±0.13 234.22±0.29 

Day 28 234.22±0.20a 14.04±0.32ab 124.19±0.48a 13.67±0.22ab 22.95±0.25b 133.81±0.31ab 

Day 42 143.21±0.22 13.48±0.54 23.24±0.35 232.40±0.37 32.28±0.14 42.37±0.13 

Day 56 42.71±0.14ab 13.14±0.63a 31.65±0.68b 32.10±0.30ab 41.88±0.09ab 41.93±0.15ab 

Day 70 51.79±0.24a 21.75±0.29a
 40.32±0.32b 40.63±0.36b 50

b
 50

b 

Day 84 50.67±0.39a 30.41±0.41ab
 40

b 40
b 50

b
 50

b 

K+ISW 

Day 1 13.59±0.05 13.58±0.09 13.63±0.11 13.61±0.03 13.57±0.18 13.64±0.05 

Day 14 13.71±0.36 13.65±0.27 13.88±0.12 13.85±0.21 13.57±0.18 14.20±0.30 

Day 28 13.65±0.63a 22.13±0.73b
 13.28±0.09ab 13.35±0.56a 22.51±0.31ab

 13.27±0.23ab 

Day 42 13.12±0.56a 21.36±0.50ab
 22.00±0.12ab 21.96±0.32abc 30.76±0.45c

 21.36±0.79bc 

Day 56 12.73±0.47a 21.30±0.48b
 30.48±0.48bc 30.88±0.57bc 40

c
 21.01±0.58bc 

Day 70 20.77±0.46a 30
b
 40

b 30
b 40

b
 30

b 

Day 84 20 30 40 30 40 30 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one water-type 

sharing a common subscript are not significantly different (LSD-test; P>0.05; n=4) 
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Table 6-4. SGR (% d-1) of S. linearifolium at control and five enriched levels of NH4-N:PO4
3--P (µM) waters 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1–14 
OW 11.44±0.41a 1.08±0.44ab 1.32±0.20ab 1.20±0.43ab 0.28±0.26b 0.98±0.38ab 

K+ISW 20.12±0.66 0.09±0.37 0.47±0.26 0.44±0.40 -0.01±0.38 0.97±0.48 

Day 1–28 
OW 0.57±0.16a 

10.38±0.28ab
 0.45±0.45a 0.03±0.19ab -0.76±0.26b 0.11±0.32ab 

K+ISW -0.16±0.76a 
2-2.69±1.60b

 -0.37±0.17ab -0.39±0.26ab -1.33±0.40ab -0.41±0.25ab 

Day 1–42 
OW -0.29±0.17 1-0.16±0.35a

 1-0.30±0.27 -1.09±0.42 1-1.11±0.12 -1.04±0.17 

K+ISW -0.47±0.46a 
2-1.68±0.45b

 2-1.43±0.14b -1.54±0.35b 
2-2.01±0.17b -0.72±0.24ab 

Day 1–56 
OW -0.51±0.10ab 

1-0.34±0.33a
 -1.01±0.42b -1.04±0.28b -1.17±0.10b -1.16±0.17b 

K+ISW -0.58±0.32a 
2-1.35±0.36b

 - -1.42±0.67b - -1.07±0.10 

Day 1–70 
OW -1.01±0.20a -1.05±0.21a

 - - -1.47±0.08b - 

K+ISW -1.21±0.28 - - - - - 

Day 1–84 
OW -1.18±0.10 -0.91±0.09 - - - - 

K+ISW - - - - - - 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one time period 

sharing a common subscript are not significantly different (t-test; P>0.05; n=4) (The SGR could not be calculated for some cases when mortality occurred in one or more 

replicates)  



 

 109 

Table 6-5. The [NO2
--N] (mg L-1) in waters cultured S. linearifolium at control and five enriched levels of NH4-N:PO4

3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 0.011±0.001a 10.007±0.000b 10.006±0.000b 10.007±0.000b 10.007±0.000b 0.006±0.000b 

K+ISW 0.012±0.000ab 20.012±0.000ab 20.014±0.000c 20.011±0.002b 20.015±0.001c 0.007±0.001d 

Day 14 
OW 0.009±0.001ab 10.008±0.001ab 10.007±0.001a 10.009±0.001ab 0.009±0.001ab 0.010±0.001b 

K+ISW 0.008±0.001a 20.014±0.001b 20.012±0.001bc 20.012±0.001b 0.009±0.001ac 0.013±0.001b 

Day 28 
OW 10.007±0.000a 0.007±0.000a 10.006±0.001a 0.009±0.000ab 0.007±0.001ab 10.010±0.001b 

K+ISW 20.012±0.001a 0.008±0.000b 20.021±0.002c 0.009±0.001a 0.009±0.001a 20.016±0.003d
 

Day 42 
OW 10.022±0.002a 10.017±0.002ab 20.021±0.001a 0.014±0.002b 10.015±0.001b 0.018±0.001ab

 

K+ISW 20.015±0.001a 20.010±0.001b
 20.013±0.001a

 0.014±0.001a 20.021±0.001c
 0.022±0.004c

 

Day 56 
OW 0.018±0.003a 0.012±0.002b

 10.017±0.004a
 0.016±0.002ab 0.015±0.001ab

 0.019±0.001a
 

K+ISW 0.015±0.002ab 0.010±0.001a
 20.010±0.001a

 0.014±0.000ab 0.014±0.001ab
 0.016±0.002b

 

Day 70 
OW 0.023±0.001a 10.007±0.000b

 0.009±0.000b
 0.009±0.002b 10.009±0.001b

 0.006±0.001b
 

K+ISW 0.020±0.000ab 20.026±0.002b 0.019±0.004ab
 0.014±0.002a 20.042±0.0012c

 0.009±0.001a
 

Day 84 
OW 0.046±0.003a 10.013±0.001b

 0.020±0.001b
 0.015±0.005b 0.021±0.000b

 0.010±0.000b
 

K+ISW 0.042±0.004a 20.029±0.003ab 0.027±0.002b
 0.019±0.001b 0.033±0.014 0.019±0.004b

 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4)  
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Table 6-6. The [NO3
--N] (mg L-1) in waters cultured S. linearifolium at control and five enriched levels of NH4-N:PO4

3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 12.17±0.08a 

13.50±0.04b 
12.47±0.06c 

11.67±0.06d 
11.83±0.02e 

11.47±0.02f 

K+ISW 22.37±0.06ac 
22.27±0.02a 

21.73±0.08b 
22.30±0.07a 

22.47±0.02c 
22.27±0.05a 

Day 14 
OW 2.46±0.29ac 3.03±0.35a 2.47±0.29a 

13.93±0.48b 2.27±0.25ac 1.81±0.08c 

K+ISW 1.87±0.10a 2.60±0.11ab 2.83±0.13ab 
22.07±0.10ab 3.63±0.22b 2.40±0.12ab 

Day 28 
OW 12.83±0.14 2.47±0.21 2.30±0.11 

12.53±0.25 
12.53±0.27 

12.60±0.15 

K+ISW 21.93±0.18a 2.17±0.25ac 2.80±0.19b 
23.17±0.37bc 

23.47±0.24c 
23.73±0.13c 

Day 42 
OW 2.67±0.18a 

14.17±0.65bc 
14.70±0.25b 3.73±0.13bc 

13.20±0.12ac 3.93±0.29bc 

K+ISW 3.20±0.15ac 
22.60±0.29a 

23.10±0.15ac 3.23±0.29ac 
25.23±0.72b 3.63±0.25c 

Day 56 
OW 4.27±0.71ab 3.50±0.52a 

15.17±0.15b 4.30±0.59ab 
14.43±0.27ab 5.17±0.35b 

K+ISW 3.83±0.25ac 3.93±0.49ac 
23.27±0.12a 3.30±0.25a 

26.63±0.98b 5.00±0.33c 

Day 70 
OW 12.53±0.16a 

12.30±0.08a 2.63±0.17a 2.93±0.18a 2.83±0.12a 
14.63±0.66b 

K+ISW 24.83±0.58a 
24.90±1.13a 3.33±0.08b 4.23±0.41ab 3.57±0.22ab 

26.57±0.56c 

Day 84 
OW 2.23±0.52a 2.63±0.17a 

15.20±0.67bc 2.20±0.11a 5.90±1.68b 
13.80±0.25ac 

K+ISW 2.70±0.65a 3.03±0.23a 
22.20±0.07a 2.67±0.66a 5.93±1.02b 

26.70±0.62b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4) 
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Table 6-7. The [TKN] (mg L-1) in waters cultured S. linearifolium at control and five enriched levels of NH4-N:PO4
3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 0.42±0.03a 

11.07±0.02b 
11.84±0.04c 

12.33±0.02d 
12.71±0.02e 

13.01±0.06f 

K+ISW 0.54±0.07a 
21.80±0.02b 

21.98±0.04c 
22.17±0.03d 

23.39±0.04e 
23.60±0.10f 

Day 14 
OW 1.58±0.53 

11.32±0.41 
11.00±0.06 

11.38±0.34 
11.34±0.04 1.42±0.17 

K+ISW 1.20±0.05a 
22.32±0.10bc 

22.67±0.22b 
22.19±0.15bc 

22.84±0.39b 1.73±0.04ac 

Day 28 
OW 10.47±0.28a 

10.98±0.03bc 
10.79±0.03ac 

11.42±0.04d 
11.24±0.07cd 

11.59±0.07d 

K+ISW 21.61±0.08a 
22.87±0.10b 

22.54±0.04b 
25.14±0.22c 

23.53±0.07d 
23.90±0.19e 

Day 42 
OW 1.59±0.18a 

12.15±0.12a 
13.55±0.18b 4.16±0.14b 

13.55±0.14b 
13.88±0.14b 

K+ISW 2.05±0.09a 
24.48±0.30b 

25.00±0.17b 4.62±0.06b 
26.91±0.68c 

26.12±0.36c 

Day 56 
OW 1.63±0.09ac 

11.31±0.07a 
12.66±0.21b 

13.13±0.39b 
12.05±0.24c 

15.65±0.24d 

K+ISW 1.63±0.12a 
22.89±0.07b 

23.60±0.23c 
24.20±0.00d 

24.53±0.14d 
26.35±0.09e 

Day 70 
OW 1.91±0.33a 3.17±0.65b 4.02±0.76b 

13.08±0.55ab 3.0821ab 5.65±0.21c 

K+ISW 2.47±0.38a 3.78±0.56b 4.39±0.26b 
24.95±0.37bc 4.06±0.41b 5.74±0.06c 

Day 84 
OW 2.66±1.50 2.87±0.50 3.26±0.23 3.71±1.24 2.70±1.10 4.81±0.54 

K+ISW 3.36±0.78 3.40±0.69 3.55±1.19 3.62±0.29 4.00±0.45 4.73±0.49 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4)  
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Table 6-8. The [NH4-N] (mg L-1) in waters cultured S. linearifolium at control and five enriched levels of NH4-N:PO4
3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW Negligiblea 

10.977±0.009b 
11.717±0.014c 

12.087±0.005d 
12.643±0.005e 2.750±0.000f 

K+ISW Negligiblea 
21.003±0.005b 

21.617±0.009c 
21.987±0.010d 

22.607±0.006e 2.750±0.000f 

Day 14 
OW Negligible Negligible Negligible Negligible Negligible Negligible 

K+ISW Negligible Negligible Negligible Negligible Negligible Negligible 

Day 28 
OW Negligible Negligible Negligible Negligible Negligible Negligible 

K+ISW Negligible Negligible Negligible Negligible Negligible Negligible 

Day 42 
OW Negligiblea 0.013±0.002a 0.030±0.007ab 0.058±0.022b 

10.003±0.002a  0.057±0.017b 

K+ISW Negligiblea 0.033±0.005b 0.040±0.011b 0.083±0.020c 20.073±0.008c 0.063±0.000c 

Day 56 
OW 0.017±0.012ab 0.015±0.002ab Negligiblea 

10.017±0.005ab 0.047±0.002b 0.037±0.002ab 

K+ISW 0.003±0.002a 
2Negligiblea 0.003±0.002a 

20.070±0.046b 0.037±0.022ab 0.007±0.005a 

Day 70 
OW 1Negligiblea 0.053±0.019ab 0.103±0.043b 0.093±0.032b 0.033±0.005ab 0.092±0.023b 

K+ISW 20.117±0.041a 0.060±0.029ab 0.067±0.012ab 0.090±0.032a 0.015±0.006b 0.031±0.018b 

Day 84 
OW 0.044±0.027a 0.040±0.008a 

10.106±0.027ab 
10.023±0.014a 0.200±0.074b 0.097±0.017ab 

K+ISW 0.189±0.067ab 0.173±0.065ab 
20.286±0.089a 

20.188±0.082ab 0.090±0.032b 0.203±0.005ab 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4)  
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Table 6-9. The [PO4
3--P] (mg L-1) in waters cultured S. linearifolium at control and five enriched levels of NH4-N:PO4

3--P (µM)  

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 1.00±0.00a 

12.57±0.05b 
12.50±0.12b 2.70±0.07bc 

12.47±0.02b 
12.83±0.02c 

K+ISW 1.07±0.02a 
22.80±0.04b 

22.67±0.02bc 2.60±0.00c 
23.17±0.02d 

23.27±0.05d 

Day 14 
OW 1.18±0.19 1.11±0.03 1.00±0.09 1.22±0.06 1.03±0.08 

10.96±0.07 

K+ISW 1.25±0.10abc 1.33±0.07ac 1.09±0.08ab 1.28±0.05ac 0.95±0.07b 
21.47±0.25c 

Day 28 
OW 11.03±0.06ac 1.17±0.10a 1.03±0.15ac 

10.67±0.06b 0.77±0.12bc 
10.80±0.04bc 

K+ISW 21.43±0.12a 1.27±0.02ab 0.93±0.12c 
11.43±0.05a 1.00±0.12bc 

21.33±0.06a 

Day 42 
OW 0.97±0.06a 1.30±0.23ad 1.53±0.02bd 

11.73±0.06b 
11.00±0.15a 

12.13±0.12c 

K+ISW 1.00±0.12a 1.13±0.06a 1.47±0.25c 
21.37±0.09bc 

21.67±0.02c 
21.07±0.05ab 

Day 56 
OW 11.67±0.08ac 1.40±0.12ab 

11.47±0.14ab 
11.07±0.02b 1.67±0.08ac 

11.97±0.16c 

K+ISW 23.90±0.24a 1.20±0.29b 
20.73±0.13c 

21.93±0.14d 1.30±0.18b 
21.30±0.15b 

Day 70 
OW 0.53±0.02a 0.83±0.09a 0.63±0.02a 0.87±0.13a 2.43±1.26b 2.27±0.12b 

K+ISW 1.20±0.04ab 0.73±0.06a 1.23±0.06ab 1.17±0.37ab 2.67±0.69c 2.00±0.20bc 

Day 84 
OW 1.37±0.26ab 1.43±0.05ab 1.73±0.35ab 1.63±0.22ab 

12.23±0.54a 1.33±0.12b 

K+ISW 1.70±0.11ab 2.07±0.10a 1.30±0.23ab 1.77±0.08ab 
24.87±0.68c 1.07±0.06b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4) 
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Table 6-10. Pearson correlation of S. linearifolium biomass and quality parameters of waters enriched NH4-N:PO4
3--P (N=48)  

Dependent variable pH Temperature NO2
--N NO3

--N PO4
3--P NH4-N TKN 

Biomass -0.577** -0.427** -0.454** -0.440** -0.186** 0.237** -0.582** 

SGR -0.300** -0.386** -0.339** -0.339** -0.289** -0.344** -0.539** 

 (**) – Correlation is significant at the 0.01 level (2-tailed); (*) - Correlation is significant at the 0.05 level (2-tailed) (P<0.05) 

Table 6-11. Pearson correlation of S. podacanthum biomass and quality parameters of waters enriched NH4-N:PO4
3--P (N=48)  

Dependent variable pH Temperature NO2
--N NO3

--N PO4
3--P NH4-N TKN 

Biomass 0.012 0.226** -0.365** -0.121* -0.273** -0.110* -0.197** 

SGR -0.157** 0.163** -0.234** -0.115 -0.134* -0.207** -0.630** 

(**) – Correlation is significant at the 0.01 level (2-tailed); (*) - Correlation is significant at the 0.05 level (2-tailed) (P<0.05) 
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Table 6-12. Fresh standing biomass (g) of S. podacanthum cultured in control and five enriched levels of NH4-N:PO4
3--P (µM) waters 

Water Time Control 80:8 120:12 160:16 200:20 240:24 

OW 

Day 1 3.55±0.03 123.56±0.08 13.63±0.03 13.59±0.02 123.59±0.02 3.62±0.06 

Day 14 3.81±0.03ab 123.97±0.13ab 13.68±0.21ab 124.15±0.17b 13.61±0.28a 4.08±0.24b 

Day 28 3.97±0.30 123.96±0.36 124.34±0.41 1234.58±0.27 1233.86±0.51 4.59±0.26 

Day 42 3.88±0.36 123.97±0.36 124.83±0.46 1234.87±0.34 1234.08±0.66 14.78±0.34 

Day 56 3.48±0.47a 14.39±0.46ab 25.50±0.53b 234.97±0.34ab 234.64±0.43ab 4.99±0.32ab 

Day 70 3.25±0.44a 123.75±0.16a
 25.55±0.90b 35.22±0.52b 34.91±0.335b

 14.63±0.50ab 

Day 84 2.95±0.46a 23.17±0.10ab
 124.72±0.51c 1234.54±0.40c 1234.28±0.40bc

 14.23±0.62bc 

K+ISW 

Day 1 123.58±0.08 13.54±0.13 123.54±0.11 13.57±0.08 3.57±0.09 13.58±0.03 

Day 14 13.84±0.11abc 13.41±0.18a
 123.91±0.30bc 24.56±0.35c 3.25±0.26a

 13.95±0.22bc 

Day 28 13.74±0.07ab 13.40±0.16a
 14.14±0.29ab 24.84±0.35b 3.25±0.30a

 13.97±0.23ab 

Day 42 233.58±0.22a 13.12±0.32a
 123.77±0.31ab 25.11±0.47b 3.29±0.27a

 123.40±0.18ab 

Day 56 1233.52±0.37a 122.87±0.36a
 13.91±0.36ab 24.99±0.47b 22.99±0.42a

 13.58±0.38ab 

Day 70 1233.07±0.11ab 122.67±0.35a
 123.16±0.64ab 124.31±0.22b 22.38±0.85a

 123.25±0.17ab 

Day 84 32.85±0.13ab 32.31±0.25a
 22.68±0.52ab 13.61±0.13b 22.14±0.80a

 22.70±0.17ab 
Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one water-type 

sharing a common subscript are not significantly different (LSD-test; P>0.05; n=4) 
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Table 6-13. SGR (% d-1) of S. podacanthum cultured in control and five enriched levels of NH4-N:PO43--P (µM) waters 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1–14 
OW 0.49±0.08 0.77±0.22 0.06±0.45 1.01±0.27 -0.03±0.54 0.83±0.43 

K+ISW 0.49±0.22a -0.29±0.27ac 0.66±0.64ab 1.70±0.64b -0.74±0.53c 0.66±0.45ab 

Day 1–28 
OW 0.36±0.26 0.34±0.29 0.59±0.32 0.85±0.20 0.15±0.49 0.83±0.19 

K+ISW 0.15±0.13ac
 -0.15±0.21ac

 0.54±0.18ab
 1.06±0.31b

 -0.38±0.30c
 0.35±0.23abc

 

Day 1–42 
OW 0.18±0.21 0.23±0.18 0.65±0.21 0.71±0.16 0.19±0.42 10.65±0.16a

 

K+ISW -0.01±0.12a
 -0.34±0.28a

 0.13±0.18a
 0.83±0.25b

 -0.21±0.15a
 2-0.13±0.13a

 

Day 1–56 
OW -0.08±0.22a

 10.34±0.19ab
 10.72±0.17b

 0.57±0.12b
 10.43±0.16ab

 10.57±0.11b
 

K+ISW -0.06±0.18ab
 2-0.41±0.26a

 20.16±0.19bc
 0.57±0.18c

 2-0.37±0.26ab
 2-0.03±0.18ab

 

Day 1–70 
OW -0.16±0.17a

 10.07±0.09ab
 10.54±0.19b

 0.50±0.16b
 10.42±0.10b

 10.32±0.16ab
 

K+ISW -0.22±0.02ab
 2-0.42±0.21a

 2-0.27±0.37a
 0.26±0.09b

 2-0.19±0.15a
 2-0.14±0.07ab

 

Day 1–84 
OW -0.27±0.17a

 -0.14±0.12ac
 10.30±0.12b

 0.27±0.11bc
 10.20±0.11bc

 10.15±0.19abc
 

K+ISW -0.28±0.06ab
 -0.54±0.16a

 2-0.43±0.30a
 0.01±0.06b

 2-0.32±0.18ab
 2-0.35±0.08ab

 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one time period 

sharing a common subscript are not significantly different at P<0.05 (t-test, n=4) 
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Table 6-14. The [NO2
--N] (mg L-1) in waters cultured S. podacanthum at control and five enriched levels of NH4-N:PO4

3--P (µM)  

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 0.011±0.001a 0.007±0.000b 0.006±0.000b 0.007±0.000b 0.007±0.000b 0.006±0.000b 

K+ISW 0.012±0.000bc 0.012±0.000bc 0.014±0.000a 0.011±0.002b 0.015±0.001a 0.007±0.001d 

Day 14 
OW 0.011±0.001b 0.007±0.001c 0.007±0.001c 0.012±0.001b 0.028±0.001a 0.008±0.001c 

K+ISW 0.008±0.001b 0.015±0.001a 0.010±0.000b 0.013±0.000a 0.010±0.001b 0.008±0.000b 

Day 28 
OW 0.007±0.000b 0.007±0.000b 0.007±0.001b 0.009±0.000ab 0.010±0.001a 0.011±0.002a 

K+ISW 0.012±0.002b 0.008±0.000d 0.013±0.000b 0.011±0.001bc 0.009±0.001cd 0.026±0.001a 

Day 42 
OW 0.008±0.000 10.009±0.000 0.006±0.000 0.008±0.000 0.008±0.001 0.010±0.001 

K+ISW 0.011±0.001b 
20.013±0.001b 0.018±0.002a 0.015±0.001a 0.010±0.001b 0.016±0.001a 

Day 56 
OW 0.004±0.001bc 

10.007±0.002a 0.004±0.001bc 0.006±0.002ab 0.003±0.001bc 0.002±0.002c 

K+ISW 0.022±0.005b 
20.013±0.001c 0.008±0.003d 0.014±0.002c 0.031±0.004a 0.002±0.001e 

Day 70 
OW 0.020±0.000a 0.007±0.000b 0.007±0.000b 0.006±0.000b 0.006±0.001b 0.005±0.001b 

K+ISW 0.018±0.002b 0.009±0.000d 0.019±0.005b 0.013±0.001c 0.044±0.006a 0.005±0.000e 

Day 84 
OW 0.033±0.003a 0.011±0.002c 0.015±0.003bc 0.006±0.002d 0.020±0.005b 0.007±0.000d 

K+ISW 0.038±0.002a 0.026±0.002b 0.016±0.001c 0.014±0.002c 0.041±0.003a 0.013±0.001c 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4) 
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Table 6-15. The [NO3
--N] (mg L-1) in waters cultured S. podacanthum at control and five enriched levels of NH4-N:PO4

3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 12.17±0.08a 

13.50±0.04b 
12.47±0.06c 

11.67±0.06d 
11.83±0.02e 

11.47±0.02f 

K+ISW 22.37±0.06ac 
22.27±0.02a 

21.73±0.08b 
22.30±0.07a 

22.47±0.02c 
22.27±0.05a 

Day 14 
OW 2.07±0.13ab 2.63±0.06bc 

11.90±0.11a 
12.90±0.23c 

12.37±0.15b 
11.83±0.10a 

K+ISW 1.87±0.10a 2.60±0.11bc 
22.83±0.13c 

22.07±0.10ab 
23.63±0.22d 

22.40±0.12b 

Day 28 
OW 12.10±0.37a 1.93±0.10a 2.33±0.06a 2.23±0.19a 

11.77±0.06a 
12.90±0.19b 

K+ISW 21.47±0.05a 2.33±0.12bc 2.67±0.25c 1.93±0.08ab 
23.43±0.06d 

23.90±0.13d 

Day 42 
OW 1.53±0.19ab 2.57±0.66c 2.33±0.47bc 

11.60±0.23ab 1.03±0.05a 2.90±0.23c 

K+ISW 2.13±0.25b 2.80±0.16b 2.00±0.11b 
22.53±0.08b 1.13±0.06a 3.63±0.13c 

Day 56 
OW 2.77±0.16b 2.73±0.14b 3.07±0.62b 

11.80±0.11a 5.03±0.12c 2.87±0.37b 

K+ISW 3.53±0.22bc 2.47±0.13a 3.93±0.13c 
23.97±0.63c 5.30±0.49d 2.70±0.15ab 

Day 70 
OW 12.37±0.22b 

11.80±0.07a 
12.63±0.17b 

12.23±0.08ab 2.73±0.08b 
11.97±0.12a 

K+ISW 24.20±0.37c 
23.50±0.08ab 

23.20±0.12b 
23.90±0.12bc 2.90±0.27a 

23.13±0.16a 

Day 84 
OW 1.85±0.39ab 2.40±0.15b 

13.63±0.94bc 1.77±0.10a 4.83±1.25c 3.47±0.33bc 

K+ISW 2.47±0.73ac 2.80±0.33ac 
21.53±0.17a 1.03±0.43a 6.13±1.13b 3.10± 0.08c 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4) 
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Table 6-16. The [TKN] (mg L-1) in waters cultured S. podacanthum at control and five enriched levels of NH4-N:PO4
3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 0.42±0.03a 

11.07±0.02b 
11.84±0.04c 

12.33±0.02d 
12.71±0.02e 

13.01±0.06f 

K+ISW 0.54±0.07a 
21.80±0.02b 

21.98±0.04c 
22.17±0.03d 

23.39±0.04e 
23.60±0.10f 

Day 14 
OW 2.03±0.06a 

12.45±0.14b 2.10±0.06ab 
12.36±0.05ab 

12.45±0.09b 
13.15±0.19c 

K+ISW 2.36±0.23a 
23.55±0.07b 2.47±0.23a 

23.13±0.06c 
24.27±0.03d 

23.74±0.09b 

Day 28 
OW 10.23±0.06a 

11.12±0.10b 
10.96±0.07b 

11.17±0.16b 
11.31±0.03bc 

11.59±0.04c 

K+ISW 21.70±0.15a 
21.70±0.17a 

22.75±0.17c 
22.40±0.03b 

23.10±0.12d 
23.31±0.15e 

Day 42 
OW 11.82±0.21a 

12.57±0.42a 
12.15±0.29a 

12.15±0.09a 
14.02±0.23b 

12.19±0.34a 

K+ISW 23.74±0.09a 
24.53±0.29ab 

25.09±0.66c 
24.30±0.14a 

27.52±0.34d 
25.14±0.37c 

Day 56 
OW 10.37±0.03a 

12.29±0.44bc 
11.59±0.09b 

11.96±0.23bc 
12.80±0.41c 

14.02±0.23d 

K+ISW 23.27±0.26a 
23.31±0.23a 

23.74±0.18a 
24.76±0.06b 

25.18±0.66b 
26.54±0.43c 

Day 70 
OW 11.59±0.09ab 4.11±0.34bc 5.51±0.69c 

11.54±0.21a 
12.94±0.21b 

10.61±0.17a 

K+ISW 23.27±0.09a 4.25±0.14ab 5.56±0.52b 
24.81±0.18b 

24.11±0.41ab 
24.76±1.45ab 

Day 84 
OW 11.88±0.46a 

13.41±0.36bc 
13.41±0.60bc 

13.02±0.37ab 3.36±0.55bc 4.76±0.66c 

K+ISW 24.61±0.49a 
26.76±0.30b 

25.26±0.73a 
24.82±0.73a 4.25±0.26a 5.18±0.21a 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4) 
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Table 6-17. The [NH4-N] (mg L-1) in waters cultured S. podacanthum at control and five enriched levels of NH4-N:PO4
3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW Negligiblea 

10.977±0.009b 
11.717±0.014c 

12.087±0.005d 
12.643±0.005e 2.750±0.000f 

K+ISW Negligiblea 
21.003±0.005b 

21.617±0.009c 
21.987±0.010d 

22.607±0.006e 2.750±0.000f 

Day 14 
OW Negligible Negligible Negligible Negligible Negligible Negligible 

K+ISW Negligible Negligible Negligible Negligible Negligible Negligible 

Day 28 
OW Negligible Negligible Negligible Negligible Negligible Negligible 

K+ISW Negligible Negligible Negligible Negligible Negligible Negligible 

Day 42 
OW 0.017±0.002 0.007±0.002 0.010±0.007 

10.010±0.007 
10.030±0.021 0.033±0.017 

K+ISW 0.010±0.004a 0.040±0.028a 0.080±0.018ab 
20.173±0.062bc 20.193±0.110c 0.033±0.009a 

Day 56 
OW Negligiblea 

10.040±0.028b 0.010±0.007a Negligiblea Negligiblea 0.027±0.015ab 

K+ISW Negligiblea 
2Negligiblea Negligiblea Negligiblea 0.020±0.014ab 0.037±0.012b 

Day 70 
OW 1Negligiblea 0.063±0.023b 

10.133±0.046c 
10.093±0.023bc 0.043±0.010b 0.127±0.002c 

K+ISW 20.137±0.029b 0.080±0.015ab 
20.047±0.006ab 

20.207±0.010c 0.035±0.007a 0.103±0.017b 

Day 84 
OW 0.053±1.650 

10.030±0.004 0.133±0.028 
10.033±0.013 0.207±0.104 

10.073±0.025 

K+ISW 0.179±0.036 
20.248±0.021 0.249±0.085 

20.191±0.067 0.137±0.015 
20.217±0.017 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4)  
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Table 6-18. The [PO4
3--P] (mg L-1) in waters cultured S. podacanthum at control and five enriched levels of NH4-N:PO4

3--P (µM) 

Time Water Control 80:8 120:12 160:16 200:20 240:24 

Day 1 
OW 1.00±0.00a 

12.57±0.05bc 
12.50±0.12b 2.70±0.07cd 

12.47±0.02b 
12.83±0.02d 

K+ISW 1.07±0.02a 
22.80±0.04c 

22.67±0.02cd 2.60±0.00d 
23.17±0.02b 

23.27±0.05b 

Day 14 
OW 11.03±0.02c 

11.17±0.02d 
11.10±0.04cd 

10.63±0.02a 
10.83±0.02b 

10.83±0.02b 

K+ISW 21.20±0.04a 
21.30±0.04b 

21.00±0.04c 
21.30±0.04b 

21.10±0.04d 
21.23±0.02a 

Day 28 
OW 10.93±0.08ac 1.10±0.07a 0.97±0.13ac 

10.67±0.02bc 
10.60±0.11b 

10.83±0.02c 

K+ISW 21.17±0.02ac 1.30±0.04a 0.87±0.13b 
21.30±0.04a 

20.97±0.08bc 
21.23±0.02a 

Day 42 
OW 0.30±0.11a 0.33±0.02a 

10.37±0.13a 
10.33±0.08a 

10.57±0.02a 
11.23±0.06b 

K+ISW 0.50±0.22ab 0.27±0.06a 
20.77±0.10bc 

20.83±0.02c 
21.03±0.02c 

21.53±d0.05 

Day 56 
OW 0.60±0.11a 0.90±0.12a 0.97±0.08a 0.53±0.06a 

10.77±0.18a 0.57±0.10a 

K+ISW 1.03±0.17ab 1.13±0.20ab 1.07±0.18ab 1.27±0.16ab 
21.10±0.45a 0.77±0.02a 

Day 70 
OW 0.47±0.02a 0.73±0.08a 

10.43±0.05a 0.60±0.11a 
10.50±0.04a 0.43±0.08a 

K+ISW 1.13±0.02a 0.63±0.02a 
21.37±0.17b 0.87±0.33a 

22.53±0.63c 0.57±0.02a 

Day 84 
OW 1.17±0.33ab 1.27±0.02ab 1.43±0.34ab 1.30±0.32ab 

11.87±0.46b 1.07±0.17a 

K+ISW 1.43±0.05ab 1.90±0.15b 1.23±0.25ab 1.43±0.06ab 
23.50±0.36c 0.93±0.08a 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at a time sharing a 

common subscript are not the significantly different at P<0.05 (t-test, n=4)
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6.3.3 Biomass and Growth Rate of S. podacanthum  

Although the standing biomass of the S. podacanthum varied as the time progressed, 

different nutrient enrichments resulted in significant (P<0.05) differences in the 

growth of S. podacanthum. The standing biomass of S. podacanthum increased with 

increased nutrient supplementation concentrations. The ratio 160:16 resulted in a 

significantly (P<0.05) higher S. podacanthum standing biomass than the S. 

podacanthum exposed to all other nutrient concentrations throughout the trial. 

In OW, S. podacanthum showed a significantly (P<0.05) higher biomass in OW_120, 

OW_160, OW_200 than the other nutrient concentrations in the second half of the trial 

period, and reached the maximum biomass at day 70, and then declined (Table 6-12). 

In K+ISW, the S. podacanthum biomass was significantly higher in ISW_160 

throughout the trial, and the biomass at the end was similar to that at the beginning. 

However, at all other nutrient concentrations, the biomass did not change during the 

first 70 days, and then significantly declined (Table 6-12). 

Two water types (OW or K+ISW) did not show any effect on the standing biomass of 

S. podacanthum in the first 28 days, but significantly (P<0.05) affected its biomass 

from day 42. Furthermore, higher concentrations of nutrients were significantly 

(P<0.05) affected the standing biomass of S. podacanthum (Table 6-11). From the day 

56 until the end of the trial, the standing biomass of S. podacanthum was significantly 

higher in OW than in K+ISW at high nutrient concentrations (120:12, 200:20, 240:24), 

except when enriched with NH4-N:PO4
3--P 160:16 µM. No nutrient supplementation 

into culture medium and the ratio of 160:16, the standing biomass of S. podacanthum 

grown in OW showed no significant differences from that of S. podacanthum grown 

in K+ISW.  

The biomass of S. podacanthum was significantly correlated (R2>0.7) with time (in 

fortnights) (Table 6-19), and was significantly (P<0.05) affected by water temperature, 

and the concentrations of NO2
--N, NH4-N, TKN and PO4

3--P in waters (Table 6-11).  

  



 

 123 

Table 6-19. The regression correlation of the S. podacanthum biomass in mg (y) 

with the time in fortnight (x) at control and five additional nutrient levels of NH4-

N:PO4
3--P (µM) waters 

Water NH4-N:PO4
3--P Regression R2 

OW 

Control  y = -7.89x2 + 48.02x + 407.40            R2 = 0.94 

80:8 y = -10.71x2 + 80.38x + 367.69          R2 = 0.77 

120:12 y = -10.53x2 + 120.39x + 301.52        R2 = 0.82 

160:16 y = -11.08x2 + 112.51x + 337.68        R2 = 0.94 

200:20 y = -3.66x2 + 53.34x +373.94             R2 = 0.74 

240:24 y = -12.73x2 + 116.69x + 336.53        R2 = 0.97 

K+ISW 

Control y = -4.98x2 + 11.94x + 422.08            R2 = 0.93 

80:8 y = -2.98x2 -1.50x + 443.74                R2 = 0.99 

120:12 y = -12.07x2 + 77.30x + 377.8            R2 = 0.93 

160:16 y = -20.80x2 + 165.37x + 304.67        R2 = 0.98 

200:20 y = -4.98x2 + 11.94x + 422.08            R2 = 0.93 

240:24 y = -7.14x2 + 37.42x + 426.48            R2 = 0.86 

(**) – Correlation is significant at the 0.01 level (2-tailed); (*) - Correlation is significant at the 0.05 

level (2-tailed) (P<0.05) 

The SGR of the S. podacanthum decreased towards the end of the trial and varied 

significantly (P<0.5) with the nutrient levels in two water types (Table 6-13). The SGR 

was significantly correlated with the water pH, temperature, and water quality 

parameters, with the exception of NO3
--N (Table 6-11). The SGR ranged from negative 

values to 1.70% d-1, recorded in the first 14 days in ISW_160. The S. podacanthum 

SGR was significantly (P<0.01) affected by the water types from day 42 onwards, 

except at the waters without nutrient supplementation and the ratio of 160:16. 

At OW_120 and OW_240, the SGR of S. podacanthum remained positive during the 

entire trial. No effects of nutrient enrichments on SGR of S. podacanthum were 

observed in the first 42 days, however, from the day 42, the higher nutrient enrichment 

resulted in significantly (P<0.05) higher SGR. 

A negative SGR of S. podacanthum was recorded in ISW_80, ISW_200 and ISW_240, 

as the trial progressed. In other nutrient levels in K+ISW the SGR gradually decreased 



 

 124 

from the beginning to the end of the trial. An exception SGR data were recorded at 

ISW_160, where highest (P<0.05) SGR among five nutrient concentrations over time 

were observed, and showed the only positive SGR of the S. podacanthum in K+ISW 

during the whole trial (Table 6-13). 

6.3.4 The Quality of Water Culturing S. podacanthum 

The pH of the OW was similarly in five different nutrient concentrations and control 

during the trial. However, from the day 42 onwards, the pH in the ISW_240 was 

significantly (P<0.05) higher than that in all other supplementation levels in K+ISW 

(Figure 6-2a).  

The temperature of the culture media was similar in all the nutrient concentrations, 

ranging from 20 to 26oC (Figure 6-2b). 

At the commencement of the trial, the NO2
--N, NO3

--N, NH4-N, TKN and PO4
3--P 

concentrations in raw ISW were similar in OW_0 and ISW_0. After two weeks, the 

concentrations of NO2
--N, TKN and PO4

3--P significantly (P<0.05) increased while 

NO3
--N and NH4-N remained unchanged in raw ISW. 

The [N] remained unchanged in the early stages of the trial and significantly (P<0.05) 

increased by the end of the trial in both water types. During the trial, [NO2
--N] was 

similar at all the nutrient levels. Both NO2
--N and NO3

--N varied widely in K+ISW, 

but in ISW_160, NO2
--N was stable as the time progressed (Table 6-14), while NO3

--

N decreased significantly by the end of the trial (Table 6-15).  

The NH4-N and TKN concentrations significantly rose with increasing nutrient 

enrichment levels and were higher in K+ISW than in OW. However, after releasing S. 

podacanthum into the water, [NH4-N] was approximately negligible over the first 56 

days, then increased to a maximum of 0.25 mg L-1, which was lower than at the 

commencement of the trial (Table 6-16). Conversely, TKN decreased to a minimal 

value at day 28, and significantly (P<0.05) increased by the end of the trial (Table 6-

17).  
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The [PO4
3--P] in both water types decreased significantly (P<0.05) during the trial 

compared to the beginning of the trial. It was higher in K+ISW than OW at all nutrient 

supplementation concentrations greater than 80:8 (Table 6-18). 

  

  

Figure 6-2. The pH (a) and temperature (b) of the nutrient enrichment waters 

culturing S. podacanthum 

6.4 Discussion 

Taking advantage of the short-seasonal growth of Sargassum (Martin-Smith, 1993), 

farming Sargassum spp. in salt-affected farms can provide several uses of additional 

seaweed crop, including by-product for cattle feed (Huisman, 2000). As nutrient 

requirements of Sargassum spp. in ISW have not yet been researched, the results of 

this study can be significant in improving technical feasibility of Sargassum spp. 

culture in ISW. The result of this study has shown that NH4-N and PO4
3--P enrichment 

plays an important role for growing Sargassum spp. in K+ISW under laboratory 

conditions.  

(a) 

(b) 
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K+ is essential for the growth of plants (Blumwald et al., 2000; Talling, 2010), 

particularly for marine algae, as it is recognised as an important internal cation (Kirst, 

1977) playing a role in protein and starch synthesis, and metabolic processes in living 

cells (Evans & Sorger, 1966). Moreover, K+ balances the osmotic gradient of aquatic 

plant cells (Malhotra & Glass, 1995), and maintains the standard sodium to potassium 

ratio in plant cells (Blumwald et al., 2000). The [K+] in ISW significantly affected the 

growth of both Sargassum species, particularly S. linearifolium, which reached an 

optimal growth in K+ISW at a similar concentration of K+ in OW (Bui, Luu, Fotedar, 

et al., 2017). Therefore, Sargassum spp. must be grown in K+ISW at similar 

concentrations in OW at the same salinity, before adding nutrients - N and P, into ISW.  

The range of N:P atomic ratio of Sargassum spp. is 20:1 to 38:1, while the average 

N:P for seaweed growth is from 10:1 to 30:1 (Atkinson & Smith, 1983), and the N:P 

(in moles) in OW is 37:1 on average (Downing, 1997). The nutrient supplementation 

NH4-N:PO4
3--P ratio of 10:1 was adapted from similar research of Schaffelke and 

Klumpp (1998) and Schaffelke (1999), where the N and P demand for S. baccularia is 

from 2.9–15.0 and 0.10–0.68 µmol g-1 dry weight per day in August to December 

(Schaffelke & Klumpp, 1998). The S. everve grow faster in NH4-N 200 µM than in 80 

µM enriched OW (Liu et al., 2004), which were the basis level nutrient 

supplementation for this study. In the media where the K+ISW was enriched with   

NH4-N and PO4
3--P, the growth of both Sargassum spp. was significantly correlated 

with the nutrient concentrations but in different trend. The effect of nutrients within 

the range 120:12–160:16 µM resulted in higher and sustainable growth for S. 

podacanthum than all other nutrient levels. 

In the short-term, nutrient enrichment in OW or K+ISW resulted in no difference in 

the standing biomass of the two Sargassum spp. The effect of nutrient enrichment on 

Sargassum spp. was species dependent, shown by the significant difference between 

the standing biomass of the two Sargassum species. The effect of nutrients within the 

range 120:12–160:16 µM, was visible after one month of cultivation of S. 

podacanthum biomass than in other nutrient levels in K+ISW, prevalent the effect of 

these nutrient levels on S. podacanthum growth. Whereas, the S. linearifolium biomass 

did not increase at any nutrient enriched level, and was severely reduced after one 

month in culture.  

The growth of both Sargassum species in OW_0 and ISW_0, without nutrient addition 

showed similar life cycles in terms of growth patterns as any other sub-tropical and/or 
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temperate Sargassum spp., wherein their maximum growth occurred during the late 

winter and early spring (August–October), and then started to decline in November 

(Martin-Smith, 1994), similar to S. linearifolium (Bui, Luu, Fotedar, et al., 2017). The 

experiments lasted from September to December, and the growths of S. podacanthum 

and S. linearifolium significantly increased in the first 28 days, and then decreased 

from late October. In the nutrient enrichment condition, the growth stage of S. 

podacanthum lasted up to 70 days, similar to in the natural environment, which shows 

the significant effect of nutrients on the growth of S. podacanthum as this growth 

period was much longer than that in the K+ fortification experiment (Section 5.3.2). 

This result demonstrated that the seasonal growth cycle of S. podacanthum in the 

laboratory condition was similar to the wild. However, S. linearifolium was sustained 

for 56 days in no or low nutrient enrichment levels, after which the biomass declined, 

similar to its growth pattern in the K+ fortification experiment ((Bui, Luu, Fotedar, et 

al., 2017). These results demonstrated the need for NH4-N:PO4
3--P enrichment for S. 

podacanthum growth, while S. linearifolium grew well in non-enriched waters.    

The biomass of S. podacanthum was strongly correlated with the water temperature, 

which is similar to S. polysystum, S. binderi and S. siliquosum in the natural 

environment (May-lin & Ching-lee, 2013). The water temperature, with no significant 

differences among water types, was 20–25oC, without any controlled mechanism in 

place. This temperature range reflected similar OW temperatures during this season 

(https://www.seatemperature.org/australia-pacific/australia/western-australia/, 

downloaded 23 Dec 2016). This is also a suitable temperature for the maximum growth 

of Sargassum spp. (Hanisak & Samuel, 1987). Although the pH was in a suitable range 

for seaweed growth (Lignell & Pedersén, 1989), pH was lowest at day 28 in control, 

and at the 80:8, 120:12 and 200:20 enriched levels in both water types for S. 

podacanthum and in K+ISW for S. linearifolium, which coincided with the occurrence 

of Sargassum spp. mortality. In contrast, S. podacanthum grew well in ISW_160, 

where the pH was relatively stable over time.  

The growth rates of Sargassum are species-specific (Hanisak & Samuel, 1987). The 

SGR of S. horneri (Turner) C. Agardh in the natural environment is 4.7% d-1 from 

August to December (Gao & Hua, 1997; Yamauchi, 1984). These were similar 

temperatures, but higher SGRs than found in our trial conditions. S. baccularia reaches 

twice its growth in a NH4-N:PO4
3--P ratio of 10:1, in 3–5 µM NH4-N, whereas the 

growth rate is reduced when NH4-N and PO4
3--P are supplemented beyond these 

ranges (Schaffelke & Klumpp, 1998). The SGR of S. baccularia (Schaffelke & 

https://www.seatemperature.org/australia-pacific/australia/western-australia/
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Klumpp, 1998) is higher than that of S. podacanthum, when [NH4-N] was lower but 

[PO4
3--P] was higher than the preferable range for the species, again highlighting the 

different nutrient requirements among various species of Sargassum. The SGR of S. 

podacanthum in OW in the first month, and in ISW_160 in the first 70 days was around 

0.3% d-1, which is similar to the SGR of the adult stage of S. muticum under natural 

OW for five months (Yamauchi, 1984), where the PO4
3--P was lower than this 

experiment and N (including NO3
--N and NH4-N) was similar. Conversely, S. 

linearifolium did not respond to the nutrient enrichment in either OW or K+ISW, and 

presented a lower SGR than S. podacanthum in OW at all nutrient levels, and in K+ISW 

at nutrient enrichment from 80:8 to 200:20 (Table 10-4). Due to the mortality that 

occurred in S. linearifolium cultured in all K+ISW, and in OW at nutrient levels higher 

than 80:8, the SGR could not be calculated; therefore, the statistical comparison 

between SGRs of the two species could not be performed.  

In addition to the weekly-supplementation of nutrients, the N and P in water were also 

produced by the decomposition process of dead S. podacanthum in some treatments. 

The soluble N and P concentrations in water are difficult to stabilise and measure as 

they are quickly cycled by living microbes (Downing, 1997). N and P have been 

consumed at different rates (Smith et al., 1986), for example, at the same 

concentrations, NH4-N uptake is faster than PO4
3--P (Wallentinus, 1984). S. 

podacanthum and bacteria in water quickly consumed the provided PO4
3--P and NH4-

N, resulting in a [PO4
3--P] level reduced to amounts found in natural OW throughout 

the trial, particularly in ISW_160, and NH4-N quickly decreased to negligible levels 

after enrichment. The [PO4
3--P] in the cultured media was lowest from day 42 to day 

70, also indicating a high biomass, in the form of a standing crop of S. podacanthum 

in both water types. In turn, towards the end of the trial, when a reduction of the S. 

podacanthum biomass was recorded, the PO4
3--P and NH4-N supplements were not 

totally consumed and in turn, resulted in the increase of PO4
3--P and NH4-N during 

this period. A sharp increase in PO4
3--P and NO3

--N in ISW_200 towards the end of 

the trial showed a strong negative correlation with the highest reduction in the S. 

podacanthum biomass. The orthophosphate in Australian OW is 0.001–0.016 mg L-1 

(Robards et al., 1994) and is much lower than the provided PO4
3--P concentration in 

water at the beginning of the trial. Similarly, NH4-N was also highest at the trial 

commencement, and NH4-N is the preferred source of N for seaweed over NO3
--N (Liu 

et al., 2004). 
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Nitrogen becomes the limiting factor in the ecosystem when the N:P molar ratio is 

lower than 16:1 (Downing, 1997). The present study confirmed that the main factor 

for the highest standing biomass of S. podacanthum in real-time was limited by N, 

represented by NO3
--N and NO2

--N rather than NH4-N, as seaweed can consume NO3
-

-N instead of NH4-N when NH4-N is insufficient (Jie et al., 2008) or is lower than 

0.135 mg L-1 (Balode et al., 1998). During the present trial, NH4-N was usually 

negligible and [NO3
--N] was always available at 2–4 mg L-1, which met the 

requirements of S. podacanthum. The [NO3
--N] in water was found to be significantly 

correlated with the S. podacanthum biomass, given that [NO3
--N] and the biomass of 

S. podacanthum were both unchanged at all nutrient levels in the first half of the trial. 

The increase of [NO3
--N] towards the end of the trial resulted in a reduction of S. 

podacanthum biomass in both water types. In ISW_160, [NO3
--N] was stable over the 

first 56 days, and then increased, indicating that the S. podacanthum biomass 

decreased after reaching its maximum biomass at day 56.  

The enrichment of NH4-N and PO4
3--P from 120:12 to 200:20 in OW and 120:12 to 

160:16 in K+ISW in the culture of S. podacanthum resulted in a higher growth rate. It 

was clear from the trial that the nutrient levels lower or higher than the above 

mentioned concentrations reduced the growth of S. podacanthum, particularly in 

K+ISW, and also caused mortality from the early stages of the culture period. This 

result supports the claims that high nutrient levels inhibit the growth of S. baccularia 

(Schaffelke & Klumpp, 1998) and S. siliquosum (Diaz-Pulido & McCook, 2005). The 

present study shows that ISW_160 retained the most suitable water for growing S. 

podacanthum in K+ISW, when the standing biomass increased until the day 70, the 

highest among the K+ISW waters, and the SGR of S. podacanthum in ISW_160 in the 

culture period was the only positive SGR among all nutrient supplementations K+ISW. 

6.5 Conclusions 

The nutrient enrichment of 160:16 µM of NH4-N:PO4
3--P, using NH4Cl and NaH2PO4, 

in ISW which was fortified with K+ at similar K+ concentration in OW at the same 

salinity, results in a similar biomass and SGR of S. podacanthum cultured in OW. This 

nutrient level is the suitable water for growing S. podacanthum in K+ISW. However, 

no nutrient supplementation is needed for S. linearifolium to grow in K+ISW.  
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CHAPTER 7 *EFFECTS OF TEMPERATURE AND pH ON 

THE GROWTH OF THE Sargassum linearifolium AND S. 

podacanthum IN POTASSIUM-FORTIFIED INLAND SALINE 

WATER  

7.1 Introduction 

Australia has a significant inland saline water (ISW) resource (Allan et al., 2001; 

Nulsen, 1997; Timms, 2005). The wheat-belt area in Western Australia (WA), 

covering approximately 18 million hectares is the largest underground source of ISW 

(Doupé, Lymbery, & Starcevich, 2003; Lymbery et al., 2006) that could provide a 

source of water for inland marine aquaculture (Partridge, 2008). Targeting to the farm 

sustainability and environmental protection, the land management of nearly 30,000 

farms in Australia has changed to prevent the expansion of salinization, 470,000 

hectares of land were fenced and 210,000 km of levees, banks, drains for salinity 

management have been built (Trewin, 2002), providing an available water source for 

ISW aquaculture. Building onshore farms to culture seaweeds is cheaper than seaweed 

farms in the open sea (Borowitzka, 1997), as well as contributing to environmental 

protection by reducing the salinity contamination (Ogburn, 1997). 

Sargassum, includes S. naozhouense and S. fusiforme, have been cultivated in many 

countries, such as Korea, Japan, and India, for human consumption (Bast, 2014; B. 

Wang et al., 2010). The Sargassum have been used commonly in Asia as a source of 

alginate and medicine for human (Wiltshire et al., 2015; Yende et al., 2014). For 

instance, S. naozhouense has been used as a source of food and drugs for traditional 

orientation treatments (Hur et al., 2008; J. Wang et al., 2010). Sargassum also provides 

a source of sargaquinoic acid, sargachromenol for neurite growth (Hur et al., 2008). 

                                                 

* This chapter has been published as a research article: Bui et al., 2018. “Effects of temperature and pH 

on the growth of Sargassum linearifolium and S. podacanthum in potassium-fortified inland saline 

water”, American Journal of Applied Science, 13 (3), 186-197. 
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Sargassum can also be used for agriculture as biochemical compounds for soil 

amendment, cattle food, fertilizer (Ara et al., 1997; Huisman, 2000).  

Both S. linearifolium and S. podacanthum can be found in Western Australia including 

around Perth beaches (Womersley, 1987). In the ocean of South Australia, S. 

linearifolium was trialled in rope-culture which showed the low specific growth rate 

(Wiltshire et al., 2015), specially during summer months, when the temperature is 

from 28–32oC (Martin-Smith, 1993; Wiltshire et al., 2015). However, little is known 

about the culture potential and the environmental requirements for these two species, 

particularly the environment around ISW conditions has not been investigated. Both 

species of Sargassum could be ideal species for culture as plenty of available ISW 

during the winter months, meet the requirements under 28oC of the S. linearifolium 

(Martin-Smith, 1993).  

At the same salinity, the ISW ionic profile in Australia is similar to the ocean water 

(OW) (Fielder et al., 2001; Prangnell & Fotedar, 2006a), but the potassium 

concentration ([K+]) is lower (Boyd et al., 2007; Ingram et al., 2002), and varies 

(Nulsen, 1997; Nurmi et al., 1988). Hence, it is not feasible for marine shrimp, fish 

and mollucs to survive and grow without K+ fortification, similar to K+ levels to OW 

(Dinh, 2016; Doroudi et al., 2006; Fielder & Allan, 2003; Prangnell & Fotedar, 

2006b). The S. linearifolium also needs K+-fortified at similar K+ concentration as in 

OW to sustain its growth in ISW (Bui, Luu, Fotedar, et al., 2017). In southwest WA, 

while the pH of OW is stable from 7.8–8.2, salinity from 35.5–36.5 (Hoang et al., 

2016), and temperature of 22.0–32.0oC (Martin-Smith, 1993), the pH, salinity and 

temperature of ISW in the wheat-belt of WA are generally varied by the depth and 

location of the groundwater (Nulsen, 1997; Nurmi et al., 1988; Taukulis & John, 

2009). The pH varies from 3.9 to 9.7 in the wheat belt of WA (Nulsen, 1997; Taukulis 

& John, 2006), or 7.4 at 35 ppt in Broome (Lee, 1997; Taukulis & John, 2006). The 

pH of ISW is lower and unstable than OW (Lee, 1997). The salinity of inland water in 

WA varies from 0 to 320 ppt, and two-thirds of those areas has salinity of 5–40 ppt 

(Mazor & George, 1992), suitable for the growth of seaweed, including Sargassum 

(Hwang et al., 2006; Jie et al., 2008). The temperature of ISW in WA is from 6.3–

28.1oC with an average of 17.69oC (Taukulis & John, 2009). The pH and temperature 
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are the two environmental factors that strongly influence the growth and heavy metal 

biosorption of Sargassum spp. (Davis et al., 2000). In OW, the chlorophyll 

fluorescence of S. fusiforme and S. fulvellum varies little over in the pH of 4–10 

(Hwang et al., 2015), and the pH 5–10 is suitable for S. honeri zygote germination 

(Ogawa, 1984). Similarly, the temperature is a vital factor affecting Sargassum growth 

(Uchida, 1993). The optimal growth temperature for S. muticum is at 25oC (Hales & 

Fletcher, 1989), while S. patents preference is 20–30oC (Endo et al., 2013).   

ISW in WA is characterized by high changes in pH and temperature influenced by 

locations and seasons. In order to be use ISW for aquaculture and to reduce the adverse 

impact of salinization (Kolkovski, 2010), an attempt to grow the Sargassum in K+-

fortified ISW (K+ISW) has been investigated. This study aims to evaluate the effects 

of temperature and pH on the growth of S. linearifolium and S. podacanthum and water 

quality in K+ISW.  

7.2 Materials and Methods  

7.2.1 Sargassum spp. Collection 

Sargassum linearifolium and S. podacanthum were hand-picked from Point Peron, 

WA (latitude 32o 16.3’S, longitude 115o 41.2’E), and then transported withn two hours 

in containers filled with OW to Curtin Aquatic Research Laboratory (CARL). At 

CARL, the species were rinsed with OW to remove all surface fouling, sediments, and 

epiphytic algae. Next, the Sargassum were acclimated for three days in aerated OW 

under indoor laboratory conditions (ambient room temperature, the light provided by 

plant white fluorescent lights of 90 µmol photon m-2 s-1 on a 14:10 hours light : dark 

cycle, one third of OW was exchanged everyday), and then treated according to the 

procedures of Schaffelke and Klumpp (1998) to clean the thalli followed by (1) 

discarding all visible macro-epiphytes, (2) wipping with soft tissue, (3) washing in 

filtered OW and then quickly washed in fresh water, (4) and puting into filtered OW 

for one day to recover. 

The whole Sargassum thallus including holdfasts was chosen at the pre-selected 

weight of about 145g fond-1, dried by paper towel, weighed (Model GX-4000, A&D 
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Company Limited, Tokyo, Japan), and then placed into tanks to get stocking densities 

of 0.8kg m-2. The Sargassum thalli with similar height and weight were selected and 

their holdfasts were attached to gravel particles to keep them submerged in water.  

7.2.2 Preparation of Inland Saline Water  

The ISW at a salinity of 45 ppt was procured from a lake in Wannamal, WA (31°15″ 

S, 116°05″ E) and transported to CARL. The ISW was stored and aged in a reservoir 

of 10,000L for the duration of the experiment. The ISW was filtered through a 0.5µm 

glass fibre membrane, then diluted with filtered fresh water to get the 35 ppt water 

used in this experiment. The [K+] in ISW was fortified to a level of 100% of the [K+] 

in OW by adding potash of sulphate K2SO4
 to receive cultured media K+ISW. As the 

[K+] in OW and ISW at 35 ppt is 351.1 and 84.4 mg L-1 respectively; therefore, 642 

mg L-1 K2SO4 was added into ISW to achieve the desired [K+] of ISW. The nitric acid 

HNO3 was then added to water to reduce the pH to 5.5–6.5, and maintained at this pH 

level during the whole trial by adding HNO3 daily at noon. During the experiment, the 

salinity of K+ISW was maintained within a range of 34–35 ppt in all the experimental 

tanks by adding fresh water to compensate for any increases in salinity due to 

evaporation.  

7.2.3 Experimental Setup 

The experiments were conducted for 42 days using a total of 24 glass tanks of 54 L 

(60×30×30 cm), each holding 45 L of K+ ISW. The treatments included two levels of 

pH (ambient of about 8 and lower at 5.5–6.5, of which the lower level is the natural 

acidity of ISW in many places (Partridge, Lymbery, & George, 2008), two water 

temperatures (ambient room temperature 21–22oC and higher at 26–27oC, which is the 

upper temperature level of ISW in WA (Taukulis & John, 2006), and two species of 

Sargassum (S. linearifolium and S. podacanthum). These eight treatments were 

randomly triplicated (Table 7-1). The tanks were aerated by two airstones in two sides 

of each tank and exposed to a plant white fluorescent lights of 90 µmol photon m-2 s-1 

on a 14:10 hours light:dark cycle (Hanisak & Samuel, 1987). One submersible 



 

134 

 

automatic heater (Sonpar. Model: HA-200, Zhongshan, Guangdong, China) was used 

for a tank to maintain a higher temperature of 26–27oC.  

Table 7-1 pH and temperature of waters in eight treatments testing pH and 

temperature effects on the growth of Sargassum spp. in K+ISW 

Treatment Species pH (*) Temperature (**) 

T1 S. linearifolium 

S. linearifolium 

S. linearifolium 

S. linearifolium 

7.94 ± 0.01 21.67 ± 0.08 

T2 6.12 ± 0.06 21.54 ± 0.08 

T3 7.93 ± 0.00 26.67 ± 0.09 

T4 6.30 ± 0.03 26.73 ± 0.06 

T1 S. podacanthum 

S. podacanthum 

S. podacanthum 

S. podacanthum 

7.91 ± 0.02 21.73 ± 0.08 

T2 6.04 ± 0.08 21.68 ± 0.12 

T3 7.91 ± 0.04 26.71 ± 0.11 

T4 6.02 ± 0.20 26.73 ± 0.04 

(*) – No significant difference of the pH at the same levels (Ambient pH: T1 and T3; 

Lower pH: T2 and T4) (t-test, P>0.05, N=3) 

(**) – No significant difference of the temperature at the same levels (Ambient 

temperature: T1 and T2; higher temperature: T3 and T4) (t-test, P>0.05, N=3) 

7.2.4 Data Collection 

Nitrogen (NO3
--N, NO2

--N, NH4-N), and phosphorus (PO4
3--P) were measured every 

14 days, using a Hach DR890 hand-held meter (Hach, Loveland, Colorado, USA). 

The Cadmium Reduction Method (Method 8171 and Method 8039) was used to 

measure NO3
--N at low (0–5 mg L-1) and higher concentrations. The Diazotization 

Method (Method 8507) was used to measure NO2
--N at a lower range (0–0.350 mg L-

1), and the Ferrous Sulfate Method (method 8153) was used to measure NO2
--N at a 

higher range (0–150 mg L-1). The Salicylate Method (Method 8155; Method 10023) 

was used for NH4-N at 0–0.05 mg L-1 and higher concentrations, and PO4
3--P was 

measured by the Amino Acid Method (Method 8178). Method 937.48 from the 

Official Method of the AOAC (Helrich, 1990) to analyze total Kjeldahl nitrogen 
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(TKN) in water using a Kjeltec Auto 1030 analyzer (Foss Tecator, Höganäs, Sweden) 

every 14 days. 

Salinity and dissolved oxygen (DO) were recorded daily from 9:00–11:00 using a 

portable refractometer (RHS-10ATC, Xiamen Ming Xin Instrument, Xiamen, Fujian, 

China), and a DO meter (YSI model 58, Yellow Springs Instrument Co., Ohio, USA), 

respectively. The temperature was recorded hourly by data loggers (HOBO Pendant 

temperature/light Data Logger UA-002-08, UA-002-64). The pH was recorded daily 

at 9:00–11:00 and 13:00–15:00 using a pH meter (CyberScan pH 300, Eutech 

Instrument, Singapore). Once a fortnight, the pH and DO variations in a day was 

collected hourly. 

The ionic profile of cultured medium was analyzed using Inductively Coupled Plasma 

(ICP) spectroscopy at CSBP Soil and Plant Laboratory, Bibra Lake, WA. 

The fresh biomass of Sargassum spp. was measured every 14 days to calculate specific 

growth rate (SGR) by collecting the whole thalli in each tank by a small net and then 

dried by paper towels. The thalli were weighed using a scale (AW220, d=0.1 mg, 

Shimazu, Japan) and returned to their respective tanks.  

The SGR of Sargassum was calculated as: µa=(lnAt-lnAo)×100/t. Where: µa was the 

SGR (% d-1); A0 and At were the initial and final dried weights (mg) of the Sargassum 

in a fortnight; t=14 (days).  

Samples of approximately 10% of the fresh Sargassum were dried at 60oC for 72 hours 

to get stable dried weights. They were then grounded with a mortar and pestle to a fine 

powder, and stored in a freezer at -18°C until the proximate composition was 

analyzed. The dried content of Sargassum was calculated by the ratio of the dried 

weight to fresh biomass. The ash content was determined by burning dried Sargassum 

at 550oC for 30 minutes. 

Tissue N was determined every 14 days according to the Official Method of the AOAC 

(Helrich, 1990) (method 937.48) by analyzing N using a Kjeltec Auto 1030 analyzer 



 

136 

 

(Foss Tecator, Höganäs, Sweden). The percentage of protein over the dried weight 

was calculated by multiplying the percent of N with a factor of 6.25.  

At the commencement and day 28 of the experiment, the ionic composition of the 

Sargassum was analyzed using the prepared freeze fine powder by ICP spectroscopy 

at CSBP Soil and Plant Laboratory, Bibra Lake, WA. The total N and total C of 

Sargassum were also analyzed at the CSBP Soil and Plant Laboratory, Bibra Lake, 

WA. 

7.2.5 Data Analysis 

The SPSS for Windows version 24.0 was used to analyze data. Before applying 

parametric and non-parametric tests, the data were tested for normality and 

homoscedasticity as appropriate. Multivariate Analysis of Variance (MANOVA), pair 

samples t-test and Least Significant Difference post hoc tests were used to determine 

the significant differences at P<0.05 among the means of tested variables. Regresssion 

correlations were used to find out the significant relationships among variables. The 

one-way ANCOVA (analysis of covariance) was used to determine the significance 

difference between the treatments of the water quality parameters on the SGR of the 

seaweeds. 

Percentage data were arcsine-transformed, and the homogeneity of variances 

confirmed with Cochran's test. Where the numeral data did not have a normal 

distribution and homogeneous variance, the Kruskal–Wallis (KW test) was used to 

verify the overall difference of all treatments, and data were transformed by log (x+10) 

before conducting MANOVA test. 

7.3 Results 

7.3.1 Biomass of the two Sargassum spp.  

At the commencement of the experiment, the fresh biomass (approximately 145 g  

tank-1) of the two Sargassum spp. was similar among the eight treatments. The pH and 

temperature significantly (P<0.05) affected Sargassum biomass in the first 28 days, 

and the pH and Sargassum species significantly (P<0.05) interacted at day 28 of the 
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trial. At the ambient temperature, the lower pH resulted in significantly (P<0.05) 

higher standing biomass of both species than the ambient pH of 7–8. The fresh 

standing biomass of both species at ambient temperature was significantly greater than 

at higher temperature over the trial period. The higher temperature resulted in a 

reduction of S. podacanthum and S. linearifolium biomass from the first and second 

week, respectively, followed by the total mortality by day 42. The S. podacanthum 

showed 100% motality in the ambient pH and higher temperatures during the day 14–

28 of the experiment, whereas after the day 28, the S. linearifolium survived longer 

than S podacanthum at both pH levels. However, none of them could survive after 42 

days under higher temperature levels.  

The fresh standing biomass of S. linearifolium was significantly (P<0.05) higher than 

the S. podacanthum as the experiment progressed under ambient pH, and under 

ambient temperature. The standing biomass of both species was not affected by the 

higher temperature and lower pH during the second fortnight but was significantly 

different in the first 14 days. 

There was no significant (P>0.05) interaction in the three-way interaction among 

species, pH and temperature on Sargassum SGR F(2, 24)=0.43 at the first 14 days. Due 

to the total mortality in some tanks, the three-way ANOVA could not be performed 

after 28 days. The pH and temperature had significantly (P<0.05) interactive effects 

on the SGR of the Sargassum.  

The SGR of the S. linearifolium was significantly (P<0.05) higher than the S. 

podacanthum in the first 14 days; however, due to the mortality at high temperature, 

the comparison between the two species could not be drawn. Only at the ambient 

temperature and ambient pH conditions, where the Sargassum spp. grew continuously, 

the S. linearifolium presented significantly (P<0.05) higher SGR than S. podacanthum 

over the experiment period. The SGRs of the two species were similar in other 

treatments as the experiment progressed (Table 7-2).  

The effects of treatments on SGR of the Sargassum were only recorded at the first 14 

days. By that time, the SGR of S. linearifolium was positive under the ambient 

temperature, which was significantly (P<0.05) higher than under higher temperature. 
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At ambient temperature, SGR of S. podacanthum in lower pH was significantly higher 

than in ambient pH.   

7.3.2 Compositions of the Sargassum spp. 

The dried weight of Sargassum was about 13% of the total fresh biomass at the 

commencement of the experiment and was similar in both species. The dried weight 

of S. linearifolium was significantly (P < 0.05) reduced at both higher temperature and 

lower pH. The dried weight of S. podacanthum remained unchanged in all treatments 

(Table 7-2).    

The ash content of the S. linearifolium (37.06±0.49%) was significantly (P<0.05) 

lower than S. podacanthum (44.14±0.67%) at the commencement of the trial, but 

became similar during the rest of the experiment, except at ambient temperature and 

low pH in the second fortnight (Table 7-2). A significant (P<0.05) reduction in ash 

content over time occurred in all treatments, but to the greatest extent in lower pH and 

higher temperature. The energy of the Sargassum was approximate 10,356 ± 29.25 J 

g-1 and remained unchanged over the experiment period.  

The protein contents of S. linearifolium and S. podacanthum at the commencement of 

the trial were similar (8.05±1.01 and 7.74±0.48%, respectively), and then significantly 

(P<0.05) increased as the experiment progressed. The ambient pH resulted in a higher 

(P<0.05) protein than the lower pH in S. podacanthum, and high temperature resulted 

in higher (P<0.05) protein in S. linearifolium than S. podacanthum.  

The chemical composition of the Sargassum is presented in Table 7-3, of which, after 

one month of cultivation, the N content increased, the P reduced, and C either 

remained unchanged or increased. Overall, the C:N:P ratios were higher than at the 

commencement of the trial. The Cu contents in both Sargassum spp. reduced 

significantly after a month in cultivation, however the Zn was accumulated from the 

water which resulted in higher Zn concentration in Sargassum at day 28 than at the 

commencement of the trial.  
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Table 7-2. SGR, dried matter, ash and protein content of the Sargassum spp. cultured in K+ISW at two levels of pH and temperature 

Criteria 

S. lineariforlium S. podacanthum 

21–22oC 26–27oC 21–22oC 26–27oC 

pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 

SGR (% d-1)       

Day 1-14 1.60±0.08a 
11.56±1.09a 

1-1.26±0.51b -0.10±0.23ab -1.97±1.38a 0.37±0.44b -3.52±0.000a -1.51±0.49ab 

Day 14-28 -0.39±0.59a 
1,2-0.90±1.08a 

2-4.94±0.38a -4.08±0.37a -9.23±6.39a 0.38±1.35b  -3.21±2.55ab 

Day 28-42 -0.22±0.23a 
2-5.27±3.44a   -4.64±0.86a -2.04±1.16a   

Dried matter (%)       

Day 1 13.31±0.80 113.31±0.80 113.31±0.80 113.31±0.80 1,212.98±0.19 112.98±0.19 112.98±0.19 112.98±0.19 

Day 14 12.68±0.15a 
210.33±0.54b 

1,212.95±0.26a 
1,211.06±0.52b 

111.15±0.23 111.41±0.72 111.98±0.00 111.62±0.56 

Day 28 13.23±0.27a 
1,210.98±0.49ab 

211.35±0.10ab 
29.09±0.30b 

1,212.62±1.24 111.20±1.36  112.89±2.03 

Day 42 14.42±0.47 1,212.75±0.80   213.27±0.96 112.72±1.29   

Ash (%)         

Day 1 137.06±0.49 137.06±0.49 137.06±0.49 137.06±0.49 144.14±0.67 144.14±0.67 144.14±0.67 144.14±0.67 

Day 14 230.77±0.44 232.11±0.12 230.79±0.43 132.10±3.30 235.25±2.95 235.73±0.54 234.44±0.00 234.07±1.48 

Day 28 230.68±0.11a 
326.98±0.69bc 

229.51±1.64ac 
224.20±0.98b 

331.49±0.29a 
332.94±1.22a  327.24±1.55b 

Day 42 1,233.99±0.29 135.05±1.78   331.36±0.69a 
238.11±0.83b   

Protein (%)       

Day 1 18.05±1.01 18.05±1.01 18.05±1.01 18.05±1.01 17.74±0.48 17.74±0.48 7.74±0.48 7.74±0.48 

Day 14 29.75±0.54 210.76±0.26 210.79±0.50 1,29.98±0.16 210.45±0.28a 
29.76±0.16a 7.65±0.00b 9.49±0.64a 

Day 28 210.48±0.18 210.97±0.20 211.87±0.47 211.88±0.61 212.00±0.22a 
311.40±0.71a  9.39±0.98b 

Day 42 1,29.39±0.33 19.22±0.28   210.56±0.98a 
128.48±0.26b   

Values (mean±SE) within a row in one species sharing a common superscript are not significantly different (LSD test; P>0.05; n=3). Values (mean±SE) within 

a column of one parameter sharing a common subscript are not significantly different (LSD test or t-test; P>0.05; n=3).  
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Table 7-3. The chemical compositions of the Sargassum spp. cultured in K+ISW at two levels of pH and temperature by day 1 and day 28 

of the experiment 

Param-

eters 
Unit 

S. linearifolium S. podacanthum 

Day 1 

Day 28 

Day 1 

Day 28 

21–22oC 26–27oC 21–22oC 26–27oC 

pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 5.5–6.5 

B mg/kg 172.14 233.92 134.22 176.98 280.00 115.29 207.50 89.90 141.67 

Ca % 1.80 1.93 1.81 2.39 2.50 1.62 2.68 1.89 2.23 

C % 28.60 28.60 29.50 30.10 33.40 26.60 29.90 28.60 27.50 

Cu mg/kg 135.00 13.96 19.32 13.72 38.31 50.55 20.86 21.88 17.59 

Fe mg/kg 80.00 211.18 460.59 153.65 717.50 80.31 178.75 635.29 494.89 

Mg % 1.30 1.31 1.53 1.20 1.54 0.68 1.34 1.22 1.50 

Mn mg/kg 11.54 20.68 9.09 28.03 6.29 7.95 15.24 10.55 6.26 

P % 0.18 0.14 0.11 0.13 0.10 0.14 0.15 0.11 0.08 

K % 9.05 7.38 3.93 5.08 1.07 12.17 6.47 8.05 2.31 

Na % 1.84 2.45 7.15 2.51 3.44 2.39 2.85 3.70 6.69 

S % 1.67 1.66 1.77 1.35 1.87 1.12 1.49 1.61 1.40 

Total N % 1.43 1.48 1.67 1.73 1.86 1.31 1.77 1.59 1.25 

Zn mg/kg 65.00 468.90 392.21 444.83 510.00 29.08 755.13 497.72 370.88 

C:N:P  159:8:1 204:11:1 268:15:1 232:13:1 334:19:1 190:9:1 199:12:1 260:14:1 344:16:1 

Note: The total mortality of S. podacanthum in cultured in K+ISW water at 26–27oC, water pH of 8 at day 28 providing no samples for analysis 
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7.3.3 Water Quality  

The ionic composition of water is provided in Table 7-4. After one month of 

cultivating Sargassum, the potassium and sodium ions were different from the 

beginning, and the heavy metals remained less than 0.05 mg L-1 except for Zn in water 

cultured S. linearifolium under low pH and low temperature and in water culture S. 

podacanthum under low pH and high temperature. 

The water quality parameters, including NO3
--N, NO2

--N, NH4-N, TKN and PO4
3--N 

showed no correlation with SGR of the Sargassum. The [NO3
--N] at the lower pH was 

about 10–20 times higher than the ambient pH. The [NO2
--N] increased significantly 

(P<0.05) as the experiment progressed, and the higher temperature resulted in higher 

nitrite (Table 7-5). 

The NH4-N was negligible in the first month and close to 0.1 mg L-1 at the completion 

of the trial. The TKN significantly (P<0.05) decreased at the lower pH. The PO4
3--P 

remained unchanged as the time progressed and presented no significant differences 

in various pH and temperatures; the exception being that in S. linearifolium where it 

was higher in low pH than ambient pH at the same temperature (Table 7-5).  

The lower pH significantly (P<0.05) resulted in higher NO3
--N, NO2

--N TKN, and 

PO4
3--P concentrations in water than ambient pH due to the HNO3 provided. However, 

no water quality parameter shown a significant effects on the SGR of the Sargassum 

(Table 7-6). The one-way ANCOVA results reproved the no significant (P>0.05) 

effect of NO3
--N or NO2

--N on the SGR of the seaweeds between two pH groups, 

neither nor among eight treatments (Table 7-7). The temperature presented no effect 

on these water quality parameters. 
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Table 7-4. Ionic profile (mg L-1) of the K+ISW cultured Sargassum spp. at two levels of pH and temperature by day 1 and day 28 

Para-

meters 
Day 1 

Day 28 

S. lineariforlium S. podacanthum 

21–22oC 26–27oC 21–22oC 26–27oC 

pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 

B 0.68 0.76 0.72 0.86 0.86 0.77 0.67 0.81 0.84 

Ca 584 554 520 576 606 570 474 536 618 

Cu <0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

Fe <0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

Mg 1565 1384 1304 1526 1540 1492 1229 1464 1680 

Mn <0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 

P 0.07 < 0.05 < 0.05 0.09 0.11 < 0.05 < 0.05 < 0.05 0.05 

K 353.3 351 361 369 366 359 347 364 359 

Na 8574 7886 7282 8591 8838 7251 7141 8308 9452 

S 769 763 716 824 818 765 791 780 816 

Zn <0.05 < 0.05 0.12 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 0.24 
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Table 7-5. Nitrogen metabolites and phostphates (mg L-1) in K+ISW cultured Sargassum spp. at two levels of pH and temperature  

Para-

meters 

S. lineariforlium S. podacanthum 

21–22oC 26–27oC 21–22oC 26–27oC 

pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 

NO2
--N         

Day 1 10.020±0.002a 
10.150±0.021b 

10.020±0.002a 
120.150±0.021b 

10.020±0.002a 
10.150±0.021b 

10.020±0.002a 
10.150±0.021b 

Day 14 20.005±0.002a 
10.018±0.005ab 

10.026±0.007ab 
10.055±0.015b 

10.016±0.003a 
10.013±0.004a 

20.081±0.026b 
10.115±0.025b 

Day 28 20.002±0.000a 
10.317±0.030b 

20.102±0.033ac 
20.166±0.073c 

10.015±0.003a 
10.184±0.098b 

30.375±0.000c 
20.375±0.000c 

Day 42 30.013±0.003a 
25.333±0.667b   20.008±0.002a 

25.333±0.667b   

NO3
--N         

Day 1 12.53±0.12a 27.67±0.44b 
12.53±0.12a 27.67±0.44b 

12.53±0.12a 
127.67±0.44b 

12.53±0.12a 27.67±0.44b 

Day 14 21.03±0.24a 27.87±0.37b 
21.07±0.09a 33.13±0.95b 

21.43±0.12a 
1225.37±1.23b 

12.40±0.38a 19.47±8.00b 

Day 28 30.27±0.18a 28.53±2.47b 
12.40±0.15c 25.17±1.13b 

21.07±0.12a 
223.47±1.05b 

23.47±0.55c 25.67±0.35b 

Day 42 12.30±0.25a 25.40±0.42b   12.53±0.18a 
222.27±1.22b   

NH4-N
         

Day 1 10.01±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 10.00±0.00 10.01±0.00 10.00±0.00 

Day 14 10.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 10.00±0.00 10.01±0.01 120.02±0.02 

Day 28 20.04±0.03 0.00±0.00 0.02±0.02 0.01±0.01 0.00±0.00a 
20.11±0.03b 0.208±0.00bc 

20.04±0.02ac 

Day 42 120.01±0.01a 0.00±0.00b   0.00±0.00a 
30.05±0.03b   
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Para-

meters 

S. lineariforlium S. podacanthum 

21–22oC 26–27oC 21–22oC 26–27oC 

pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 pH 8 pH 5.5–6.5 

TKN         

Day 1 1.14±0.16a 
110.48±0.06b 

11.14±0.16a 
110.48±0.06b 1.14±0.16a 

110.48±0.06b 
11.14±0.16a 

110.48±0.06b 

Day 14 1.40±0.41a 
19.85±0.12b 

121.42±0.21a 
18.68±1.28b 1.66±0.17a 

19.97±0.71b 
121.73±0.18a 

19.34±1.03b 

Day 28 1.61±0.35a 
22.17±0.11ab 

21.77±0.20a 
23.67±1.22b 1.56±0.45a 

21.70±0.17a 
22.45a 

22.10±0.18a 

Day 42 1.77±0.19a 
22.19±0.06a   1.91±0.05a 

21.77±0.25a   

PO4
3--P         

Day 1 10.93±0.09 11.13±0.03 0.93±0.09 1.13±0.03 10.93±0.09 1.13±0.03 10.93±0.09 1.13±0.03 

Day 14 20.30±0.06a 
10.67±0.12a 0.60±0.26ab 3.17±2.45b 

20.37±0.03 0.83±0.30 21.57±0.29 0.87±0.18 

Day 28 11.00±0.06ac 
22.50±0.52b 0.93±0.20a 1.60±0.29c 

31.30±0.06 1.00±0.00 121.13±0.07 1.57±0.03 

Day 42 10.93±0.19 10.73±0.03   10.83±0.07 1.00±0.06   

Values (mean±SE) within a row in one species sharing a common superscript are not significantly different (LSD test; P>0.05; n=3). Values 

(mean±SE) within a column sharing a common subscript are not significantly different (LSD test or t-test; P>0.05; n=3). (Data was transformed to 

log (x+10) before conducting ANOVA test)  
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Table 7-6. Pearson correlation of SGR (% d-1) of the Sargassum spp. cultured in 

K+ISW at two levels of pH and temperature, and water quality parameters 

Criteria NO2
--N NO3

--N PO4
-3-P NH4-N TKN 

Pearson correlation -0.120 0.145 -0.027 -0.052 0.235 

Significant (2-tailed) 0.387 0.296 0.847 0.710 0.085 

N 54 54 54 53 55 

Table 7-7. The effect of nitrogen on the SGR of the Sargassum spp. cultured in 

K+ISW between the two pH levels and among the eight treatments 

Group Source 
Type III Sum 

of Squares 
df 

Mean 

Square 
F 

Signi-

ficant 

Partial Eta 

Squared 

Two pH 

levels 

NO3
--N 0.00008 1 0.00008 0.050 0.825 0.001 

NO2
--N 0.00300 1 0.00300 1.746 0.192 0.033 

Eight 

treatments 

NO3
--N 0.00100 1 0.00100 0.293 0.591 0.006 

NO2
--N 0.00500 1 0.00500 3.676 0.062 0.076 

At high temperatures, the DO gradually increased from early afternoon to noon of the 

next day; whereas, at ambient temperature, DO was reduced at night and rose in the 

morning. During a day, the pH was normally increased in the morning, reached a peak 

at noon and decreased in the afternoon, lowest by 5.30 PM.  

7.4 Discussion 

Temperature and pH strongly influence the growth of Sargassum (Chen & Zou, 2014; 

Choi et al., 2009; Hwang et al., 2015). The Sargassum growth rate is strongly affected 

by the variation of temperature (Endo et al., 2013; Uchida, 1993), and the effect of 

temperature within the tested range was stronger than the pH, shown by the 

significantly different SGR of Sargassum at different temperature levels. The 

temperature affects many aspects of the growth of seaweeds, such as the 

photosynthetic activity (Ding et al., 2013), ammonium and nitrogen uptake rate (Duke 

et al., 1989; Hwang et al., 2004). The range of studied temperature was within a 

preferred range of 20–30oC for S. patens, resulting in higher SGR (Endo et al., 2013). 

In the open sea, the S. linearifolium maximum biomass increases in May, when 
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temperature is about 22–24oC, and reaches maximum wet weight and length in August 

to November when the temperature ranges from 24–28oC and ceases in summer when 

temperature reaches over 29oC (Martin-Smith, 1993). The temperature window in this 

experiment at 20–22oC, given the higher growth rate of Sargassum than the higher 

temperature of 26–27oC, is similar to the natural maximal growth rate condition. Both 

Sargassum species could not be sustained after a month at a high temperature of 26–

27oC in ISW. Similarly, the growth of young seedlings S. henslowianum reduced when 

temperature increased to 30oC (Chen & Zou, 2014). The SGR of the Sargassum in this 

trial, were at adult stages, at 20–22oC is higher than the adult stage of S. muticum 

(Yamauchi, 1984) but is lower than the juvenile S. horneri (Choi et al., 2009) and 

juvenile S. muticum (Hales & Fletcher, 1989) at 15oC, presented the lower SGR of 

adults thalli and juvenile, which is similar to S. horneri (Choi et al., 2009). This implies 

a limitation of this study to lower temperatures, where more than 60% of WA inland 

saline ground water has the temperature lower than 20oC (Taukulis & John, 2009).  

The lack of changes in the dried weight, ash, and protein of the S. linearifolium as the 

trial progressed in the ambient temperature associating with the higher SGR than at 

higher temperature indicates the ambient room temperature 20–22oC is preferred for 

the growth of S. linearifolium than a higher temperature. The dried weight and crude 

protein of Sargassum in this trial is similar with Sargassum spp. from Casas-Valdez et 

al. (2006) (89% and 8%, respectively), but protein is lower than S. naozhouense 

(11.2%) (Peng et al., 2013). Although the pH and temperature do not affect the protein 

of the S. linearifolium, the effect on protein is similar to Porphyra (Kim et al., 2007), 

the S. podacanthum reduced protein shown a negatively affect by the high temperature 

and low pH. The protein level of the Sargassum increases significantly as the trial 

progressed. This indicates the protein of Sargassum under the laboratory conditions is 

better than in the wild, although no independent supplementary nutrients were 

provided.  

Seaweed culture in ISW is expecting to be a potential means in the attempt to reduce 

the adverse effect of ISW in the agricultural farms (Borowitzka, 1997). The K+ 

deficiency is in common in Australia and USA (Ingram et al., 2002) although the ionic 

profile of ISW can be similar to OW at the same salinity (Boyd & Thunjai, 2003; 
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Fielder et al., 2001). Therefore, ISW should be fortified with K+ at similar or about 

33–66% of the K+ concentration in OW at the same salinity for proper growth of S. 

linearifolium and L. catenata, respectively (Bui, Luu, & Fotedar, 2017; Bui, Luu, 

Fotedar, et al., 2017). The K+ plays a major role in the growth of algae and cannot be 

substituted by any other ion (Yarish et al., 1980). The K+ is important in the 

photosynthesis of the marine diatom (Overnell, 1975), and higher plants through the 

mechanism of enzyme activation in protein synthesis (Checchetto et al., 2013). The 

low range of pH changes (within 0.5) do not affect the K+ movement within cells 

(Tromballa, 1978); however, the two different pH levels at 8.0 and 6.0 may cause the 

differential movement of K+, which in turn can affect the growth of Sargassum. As the 

K+ movement at pH 10.0 is slower than at pH 6.5 (Tromballa, 1978), it is expected 

that in this trial, at the pH 6.0, the K+ movement from the medium to the cell is faster 

than in the ambient pH of 8.0. This movement supports the photosynthesis of the 

Sargassum. In addition, the pH affects seaweed photosynthesis through the appearance 

of CO2 or HCO3. At low pH where a higher concentration of CO2 is available, the 

affinity for inorganic carbon is greater than at high pH (Aizawa & Miyachi, 1986; 

Drechsler & Beer, 1991), which is proved by Ulva rigida thalli photosynthesis rate 

(Björk et al., 1992). Thus, providing a higher biomass of Sargassum at low pH than 

the ambient pH in a short-term. Under the pH and temperature effect, the biomass of 

the Sagassum has varied significantly as time progressed.  

The SGR of S. linearifolium in the ambient pH and ambient temperature of this study 

was much lower than S. linearifolium (Bui, Luu, Fotedar, et al., 2017), although the 

environmental conditions and growing season (during different years) were similar 

showing the different growth feasibility of whole thalli (this study) and small piece 

(Bui, Luu, Fotedar, et al., 2017). 

The ambient pH of 7.0–8.0 is suitable pH for long-term growth of Sargassum in ISW 

than the lower ones. This pH range is similar to the red seaweed Gracilaria tikvahiae, 

G. secundata and G. manilaensis needs for high production and maximum growth rate 

(Hidayat et al., 2015; Lignell & Pedersén, 1989; Skirrow, 1975). Their maximal 

growth rate is 1.3% d-1 (Hidayat et al., 2015), lower than S. linearifolium but higher 

than S. podacanthum at the ambient pH in this trial. The S. linearifolium biomass does 
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not significantly respond to the pH variation in the first month, but S. podacanthum 

biomass reduction rate was significantly slower in low pH than in ambient pH. The S. 

linearifolium showed a higher SGR than S. podacanthum at both pH levels, suggesting 

S. linearifolium is a potential pH adaptation species in a culture where the pH variation 

is wide. The pH also affects the ionic absorption by seaweed (Basha & Murthy, 2007) 

which peaks at pH 4.5 (Davis et al., 2000; Figueira et al., 1997). The Sargassum 

accumulated iron and zinc, particularly at low pH, but released the copper to the 

environment when copper in water is lower than 0.05 mg L-1, which is a possible 

explanation for lower copper concentration in the Sargassum tissues at the day 28 than 

the commencement. It is a role as a biosorbent of Sargassum in terms of environmental 

protection from the heavy metal pollution (Davis et al., 2003; Vijayaraghavan et al., 

2009). 

Hydrochloric acid HCl was used in the preliminary experiment, however, it proved to 

be strong and reduced the water pH quickly and could not stabilize the pH. On the 

other hand, acetic acid CH3COOH was too weak. Therefore, instead of HCl and 

CH3COOH, HNO3 was used to reduce pH which potentially could result in higher 

NO3
--N and NO2

--N concentrations than under the ambient pH treatments. However 

using statistical analysis, addition of HNO3 has neither influence SGR of Sargassum 

spp. nor it influence the significant level pH and temperature on the SGR of Sargassum 

spp. Both the Pearson correlation and one-way ANCOVA presented no significant 

effect of NO3
--N or NO2

--N concentrations on the SGR of the Sargassum spp. 

Therefore using HNO3 did not affect the outcomes of the experiment. The [NO3
--N] 

was sufficient for Sargassum under the both low and ambient pH treatments, as 

Sargassum consumes NO3
--N when NH4-N is not available (Jie et al., 2008). As the 

N:P ratios under the low pH regime were much higher than the N:P ratios in the 

ambient pH, the nutrient consumption of the Sargassum was affected when the N:P 

ratio was high, resulting in higher biomass of the Sargassum in very short term.  

The N:P ratio of the Sargassum in this study was much lower than the N:P of S. 

echinocarpum (Larned, 1998) and much lower than the C:N:P ratio for Australian 

Sargassum (Atkinson & Smith, 1983). The reason is the P content of Sargassum in 

this study was much higher whereas the C and N contents were similar. These can be 
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explained by the N:P in this study was lower than 30:1, the Sargassum growth is N-

limited (Harrison & Hurd, 2001), and the surplus P was stored in Sargassum tissue. 

7.5 Conclusions 

The S. linearifolium and S. podacanthum grow faster in K+ISW 35 ppt at pH 7.0–8.2 

and temperature 20–22oC than in lower pH and higher temperature, which are suitable 

for the growing season of Sargassum in the early summer, and the availability of ISW 

after the rainy season. The low pH negatively affects the growth of Sargassum and 

significantly affects the water quality and the chemical composition of Sargassum. 

Only S. linearifolium can grow in either low pH (5.5–6.5) or at the temperature of 26–

27oC in K+ISW up to 28 days. A further study about the higher than the ambient pH 8 

and temperature of 15oC of K+ISW effects on the growth feasibility of Sargassum spp. 

is recommended. 
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CHAPTER 8 *THE CULTIVATION FEASIBILITY OF 

Lomentaria catenata UNDER LABORATORY CONDITIONS   

8.1 Introduction 

Of 5,000 red seaweed Rhodophyta species, 1,300 species are found in Australian 

waters (Huisman, 2000). Rhodymeniales, which contains three families and 38 genera, 

17 genera have been recorded in Australia, of which three species of Lomentaria genus 

have been identified in Southern Australia, including L. australis, L. pyramidalis, L. 

monochlamypdea (Womersley, 1996). The Lomentaria thallus “erect or forming 

entangled clumps, much branched, with or without percurrent axes, branches terete or 

compressed, hollow, basally constricted with solid septa; holdfast discoid or hapteroid. 

Structure multiaxial, with a cluster of apical cells developing an inner cortex 2–3 cells 

thick and an outer cortex of small cells sometimes forming rosettes” (p. 34) with a life 

cycle of isomorphic gametophytes and tetrasporophytes (Womersley, 1996). The red 

seaweed can be used as a source of food, to extract agar, and producing fertilizers 

(Huisman, 2000). The L. catenata is distributed at New South Wales (Pushpamali et 

al., 2008), and this study is the first record in Western Australia. Little is known about 

the benefit of L. catenata, and there has been no record on growing L. catenata either 

in ocean water (OW) and or in inland saline water (ISW).  

In Australia, ISW is available in natural rivers, lakes and aquifers (Nulsen, 1997). 

About 2.2 and 5.7 million hectares of land was salt-affected in 1996 and 2000, 

respectively (Nulsen, 1997; Timms, 2005), which is expected to be 17 million hectares 

in 2050 (Timms, 2005). Agricultural land, wildlife habitats and native vegetation are 

adversely affected due to ISW areas rising (Allan et al., 2008). ISW is available in 

reserves of underground water (Nulsen, 1997), which could provide a source of water 

for inland marine aquaculture (Partridge, 2008). 

                                                 

* This Chapter was published in The Journal of Aquaculture and Environment Risk Assessment and 

Remediation as a research article entitle “The growth feasibility of Lomentaria sp. in laboratory 

conditions”, 2017, volume 1, issue 2, pages 47–55. As the articles was published before the species is 

identified, the basionym Lomenteria catenata of Fushitsunagia catenata is still used in this Chapter. 

http://www.algaebase.org/search/genus/detail/?genus_id=R58d9943895d59482
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Potassium (K+) is crucial for algal growth (Talling, 2010), and it shares 1–2% of dry 

plant biomass (Evans & Sorger, 1966). K+ is an important internal cation in algae 

(Kirst, 1977), and in the red algae Chondrus crispus and Porphyra tenera, it comprises 

37 and 43%, respectively, of total internal cations (Rupérez, 2002). K+ plays an 

important role in photosynthesis and respiration of the plant (Checchetto et al., 2013). 

With the presence of calcium, [K+] of 230–350 mg L-1 at 15 ppt is suitable for the red 

seaweed Caloglossa leprieurii (Montagne) J. Agardh growth, but another red seaweed, 

Bostrychia radicans Montagne, prefers higher [K+] at 400–500 mg L-1 at 25 ppt 

(Yarish et al., 1980). K+ fortification for ISW to sustain the growth of marine species 

is needed (Dinh, 2016; Fielder & Allan, 2003; Mourad et al., 2012; Tantulo & Fotedar, 

2006) when K+-deficient ISW is common in Australia (Dinh & Fotedar, 2016; 

Prangnell & Fotedar, 2005; Tantulo & Fotedar, 2007). Studies on the effects of K+ is 

important to determine the requirement of [K+] for seaweed growth.  

Ammonium (NH4-N), the most common type of ammonia (NH3) in OW (Burgess et 

al., 2003), and phosphate (PO4
3--P) are the preferred source of nitrogen (N) and 

phosphorus (P) for seaweed growth (Campbell, 2001; Kim et al., 2007; Ramus & 

Venable, 1987; Schaffelke & Klumpp, 1998). However, N and P in water do not 

always meet the algal demand (Robards et al., 1994). For higher seaweed growth, 

supplying NH4-N is more efficient than nitrate (NO3
--N) (Atkinson & Smith, 1983). 

In addition, the combination of NH4-N and PO4
3--P have a positive effect on the growth 

of Sargassum baccularia than either NH4-N or PO4
3--P alone (Schaffelke & Klumpp, 

1998). As it is the first study on cultivating L. catenata, it is necessary to identify the 

needs of NH4-N and PO4
3--P for optimal L. catenata growth. 

Temperature strongly affects the growth of algae (Uchida, 1993). The temperature of 

ISW in Western Australia (WA) is approximately 18oC, and varies around 6.3–28.1oC 

(Taukulis & John, 2009). These temperatures levels are suitable for the growth of 

many red seaweeds. Hypnea cervicornis and Gracilaria tikvahiae prefer 20–25oC for 

optimal growth (Bird et al., 1978; Ding et al., 2013), when Hypnea musciformis and 

Gracilaria cornea grow well in the Florida Keys at 15–25oC (Dawes et al., 1998; de 

Faveri et al., 2015). At 15oC, Chondrus crispus and Furcellaria lumbricalis reach their 

maximum growths (Bird et al., 1978). However, at temperature exceeding 30oC, an 
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inferior growth of Hypnea cervicornis and H. musciformis is recorded (de Faveri et 

al., 2015; Ding et al., 2013). 

Studies on seaweed culture in ISW in Australian is limited to Gracilaria cliftonii 

Withell, Miller and Kraft (Cordover, 2007; Kumar et al., 2010), and Sargassum 

linearifolium (Bui, Luu, Fotedar, et al., 2017) even though there are abundant studies 

about seaweed growth, chemical and nutrient uptakes worldwide (Ahmad et al., 2011; 

Coutinho & Zingmark, 1993; Cruz-Suárez et al., 2010; Pérez-Mayorga et al., 2011; 

Perini & Bracken, 2014; Reef et al., 2012; Schaffelke & Klumpp, 1998). This study is 

the first attempt to grow L. catenata in the laboratory, testing the growth feasibility of 

L. catenata in OW and ISW, at different K+ concentrations, nutrient and temperature 

levels, targeting on consuming the available ISW source to reduce adverse impacts of 

ISW on environment and agriculture.  

8.2 Materials and Methods 

8.2.1 Seaweed Collection 

L. catenata was collected at Matilda Bay, Swan River, Western Australia (WA) 

(latitude 31o 97.9S, longitude 115o 82.2E). This species is currently identified by WA 

Herbarium as L. catenata Harvey 1857, a basionym of Fushitsugiana catenata (Guiry 

& Guiry, 2018).  The L. catenata was transported in tanks holding ambient river salty 

water to Curtin Aquatic Research Laboratory (CARL) immediately after collection. 

The L. catenata were thoroughly cleaned in OW 30 ppt to remove all epibiotics.  

Before using in experiments, the L. catenata was acclimated for one day in aerated 

OW 30 ppt at 22oC in 114 L aquaria, under a downwelling photo-lux density of 120 

µmol photon m-2 s-1 and a 14:10 h light:dark cycle (Hanisak & Samuel, 1987). 

8.2.2  Experimental Setup 

ISW had a salinity of 45 ppt and was procured from a lake at Wannamal, WA (31°15S, 

116°05E). OW had a salinity of 35 ppt was procured at Hillary Habour (31o.83S, 

115o.74E). They were both brought to CARL, and were stored and aged in separate 

10,000 L reservoirs. All waters were filtered through a 0.5 µm glass fibre membrane 

http://www.algaebase.org/search/species/detail/?species_id=Hf108d3bb1524b2de
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before being used in the experiments. OW and ISW were then diluted with filtered 

fresh water to achieve needed waters at 30 ppt. 

A series of four experiments were conducted in order to determine suitable [K+] levels 

for growing L. catenata in ISW, the growth feasibility of L. catenata in NH4-N 

enriched water at suitable K+-fortified ISW (K+ISW), the effects of temperature on the 

growth of L. catenata in the NH4-N enriched OW and suitable K+ISW, and the effects 

of NH4-N and PO4
3--P enrichment on the growth of L. catenata in OW and suitable 

K+ISW. 

Water salinity in all experiments was maintained at 30–31 ppt, similar to the salinity 

of Swan River where the L. catenata was collected, by adding filtered fresh water to 

compensate for evaporation. The tanks were exposed to light at 90 µmol photon m-2  

s-1 on the surface and 22.5 µmol photon m-2 s-1 at the bottom. 

Automatic heaters (Sonpar, HA-200, Zhongshan, Guangdong, China) were used to 

maintain temperatures levels at 25–26oC or 21–22oC. 

8.2.2.1 L. catenata Growth in Potassium-fortified Inland Saline Water 

A total of 20 glass beakers, with a capacity of 1.5 L, holding 1 L culture medium were 

used for 70 days in late winter. The experiment determined the growth rate of L. 

catenata in four replicates at three levels of K+ISW with two controls of OW and ISW 

at 30 ppt in ambient room temperature. KCl was used to fortify ISW to approximately 

100%, 66%, and 33% (termed as ISW100, ISW66, and ISW33, respectively) of [K+] 

in OW at 30 ppt salinity. [K+] at 30 ppt in OW and ISW was 313 and 77 mg L-1, 

respectively. Therefore, 451, 248 and 50 mg L-1 of KCl were used to fortify ISW 30 

ppt to achieve ISW100, ISW66, ISW33, respectively.  

8.2.2.2 Effect of Ammonium Enrichment on the Growth of L. catenata  

L. catenata was cultured in 24 glass tanks, including six treatments in four replicates, 

in 28 days in autumn. The six treatments were OW, ISW, ISW66 (ISW was fortified 

with K+ by KCl at 66% of the [K+] in OW at 30 ppt) as controls, and the 100 µM NH4-
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N weekly enriched OW, ISW, ISW66 waters by NH4Cl termed as OW_NH4, 

ISW_NH4, and ISW66_NH4. Approximately 180 g of L. catenata was cultured in one 

tank holding 45 L water with aeration provided, in room temperature of 18–20oC.  

The water salinity was maintained at 30–32 ppt by adding filtered fresh water for 

compensation of water evaporation. 

8.2.2.3 Effects of Temperature on L. catenata Growth  

The effects of temperature and NH4-N enrichment on the growth of L. catenata were 

determined in two experiments. 

The first experiment was conducted over four weeks in spring. Approximately 180 g 

tank-1 of L. catenata was placed in a 45 L cultured medium. Total 24 tanks were used, 

combining of six treatments (two water types and three temperature levels) in four 

replicate, aeration provided. Three temperature regimes were 25–26oC, 21–22oC and 

18–19oC. The two water types at salinity 30 ppt were used, including OW, and OW 

enriched with NH4-N 100 µM by NH4Cl, termed OW_NH4.  

The second experiment was conducted in 45 days in early summer. Total 24 beakers, 

included six treatments in four replication, were placed under two temperature regimes 

(25–26oC and 21–22oC) (which was achieved from the first temperature experiment).  

Three water types at salinity 30 ppt included OW, OW_NH4, and ISW that was 

fortified with K+ by KCl at 66% of the [K+] in OW at 30 ppt, termed as ISW66_NH4. 

The last two waters were weekly enriched with NH4-N 100 µM by NH4Cl. The L. 

catenata was selected by whole fond weight of approximately 3.5 g L-1, cultivated in 

1.5 L beakers holding 1 L of cultured medium and the beakers were placed in tank 

holding water. An automatic heater (Sonpar, HA-200, Zhongshan, Guangdong, China) 

was used in each tank to maintain the temperature.  

8.2.2.4 Effects of Ammonium and Phosphate Enrichment on the Growth of L. 

catenata in Potassium-fortified Inland Saline Water  

A total of 24 1.5 L beakers were used for eight treatments in three replicates for the 

experiment in 28 days in early summer. L. catenata was cultured at a density of 3.5 g 

L-1. The beakers were placed randomly into tanks filled with water. One automatic 
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heater (Sonpar, HA-200, Zhongshan, Guangdong, China) and a pump (Grant Model 

GD 120, England) were used in each tank to maintain water temperature at 25–26oC. 

The water salinity was kept constant at 30–31 ppt by adding filtered fresh water to 

compensate for evaporation.  

Three levels of NH4-N:PO4
3--P at ratio of 10:1 were supplied weekly for OW and 

ISW66, which was ISW fortified with K+ by KCl at 66% of the [K+] in OW at 30 ppt, 

by NH4Cl and Na2HPO4 at 75:7.5, 150:15 and 300:30 µM termed as T2, T3, and T4, 

with the control treatment T1 was ambient OW and ISW66 at 30ppt.  

8.2.3 Data Collection 

8.2.3.1 Water Quality 

The NH4-N, NO3
--N, NO2

--N and PO4
3--P concentrations in water were determined 

fortnightly using a Hach DR890 hand-held meter (Hach, Loveland, Colorado, USA). 

The Cadmium Reduction Method (Method 8171 and Method 8039) was used to 

measure NO3
--N. The Diazotization Method (Method 8507) and the Ferrous Sulfate 

Method (method 8153) were used to measure NO2
--N. The Salicylate Method (Method 

8155; Method 10023) was used for NH4-N, and the Amino Acid Method (Method 

8178) was used to measure PO4
3--P. Total Kjeldahl Nitrogen (TKN) in water was also 

determined every 14 days according to the Official Method of the AOAC (Helrich, 

1990) (method 937.48) by analyzing N using a Kjeltec Auto 1030 analyzer (Foss 

Tecator, Höganäs, Sweden). 

The pH and salinity were recorded daily at 9–11AM using a pH meter (CyberScan pH 

300, Eutech Instrument, Singapore), and a portable refractometer (RHS-10ATC, 

Xiamen Ming Xin Instrument, Xiamen, Fujian, China), respectively. 

Temperature was recorded hourly by data loggers (HOBO Pendant temperature/light 

Data Logger UA-002-08, UA-002-64). 
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8.2.3.2 L. catenata Growth 

The weight of L. catenata was determined fortnightly, and at the termination of the 

experiment. All thalli were removed from the culture beakers/tanks by a small net and 

then dried using soft hand towels (Ahmad et al., 2011). The thalli were immediately 

transferred to a weighing scale (AW220, d=0.1 mg, Shimazu, Japan).  

The specific growth rates (SGR) were calculated as: µa = (lnAt - lnAo) × 100/t.  

Where: µa is the SGR of seaweed (% d-1); At and A0 are the weight (mg) or length 

(mm) at the current time (t, day), and the commencement of the experiment (0, day); t 

is the current time of the trial (days). 

8.2.4 Data Analysis 

All data were analysed using SPSS for Windows version 24.0. Data were tested for 

normality and homoscedasticity before applying parametric and non-parametric tests 

as appropriate. Analysis of variance (ANOVA), paired sample t-tests and least 

significant difference (LSD) post hoc tests were used to determine significant 

differences at P<0.05 among the means of variables (Mean±SE). Correlations were 

used to find out the significant relationships among variables. Where the data did not 

have normal distribution and homogeneous variance, the Kruskal-Wallis (KW) test 

was used to test the overall difference in all treatments. In the case of significant 

treatment effects, a Mann-Whitney test was applied to analyse the significant 

differences among the means of all variables. 

8.3 Results 

8.3.1 L. catenata Growth in Potassium-fortified Inland Saline Water 

8.3.1.1 Biomass of L. catenata 

L. catenata biomass remained unchanged in the first 56 days of the culture period, and 

a significant (P<0.05) reduction of the biomass was recorded in the last 14 days in 

OW, ISW and ISW100. Only ISW33 and ISW66 resulted in a significant (P<0.05) 

increase in the biomass during the culture period, by day 42 and day 14–42, 

respectively. After that, the biomass reduced quickly (P<0.05). ISW66 also resulted in 

the highest (P<0.05) biomass at day 28 among the five treatments (Table 8-1). On 

average, ISW66 resulted in higher biomass growth than other waters in the first 56 

days. 
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Table 8-1. The biomass (g) of L. catenata in K+ISW 

Time OW ISW ISW33  ISW66  ISW100 

Day 1 123.30±0.62 123.32±0.40 13.30±0.47 13.31±0.65 1233.28±0.58 

Day 14  14.03±0.41ab 
123.56±0.15a 

13.70±0.12a 
24.47±1.88b 

23.97±0.30ab 

Day 28  13.51±0.23a 
123.63±0.12a 

13.84±0.25ab 
24.26±0.17b 

1233.29±0.23a 

Day 42 13.83±0.39 13.91±0.28 24.51±0.28 24.49±0.35 23.75±0.27 

Day 56 13.47±0.32ab 
23.01±0.42a 

13.79±0.24ab 
123.94±0.20b 

23.58±0.29ab 

Day 70 22.33±0.61ab 
31.57±0.36a 

32.51±0.18ab 
32.53±0.29ab 

32.86±0.22b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=4).  

Table 8-2. The SGR (% d-1) of L. catenata in K+ISW  

Time OW ISW  ISW33      ISW66        ISW100  

Fortnightly      

Day 1–14  11.44±0.20ab 
10.49±0.38a 

10.78±0.29a 
12.08±0.18b 

11.31±0.54ab 

Day 15–28 2-1.12±.57ab 
10.15±0.41ac 

10.27±0.33c 
 23-0.32±0.30abc 

2-1.45±0.44b 

Day 29–42 120.60±0.43 10.52±0.62 21.24±0.16 20.35±0.32 11.02±0.35 

Day 43–56 2-0.68±1.11 22.03±0.66 3-1.26±0.26 3-0.90±0.30 2-0.35±0.30 

Day 57–70 3-4.09±2.34 3-4.97±1.88 4-2.95±0.39 4-3.27±0.53 3-1.59±0.38 

Cumulative SGR 

Day 1–14 11.44±0.20ab 
10.49±0.38a 

10.78±0.29a 
12.08±0.18b 

11.31±0.54ab 

Day 1–28 20.20±0.21a 
10.31±0.13ab 

10.52±0.26ab 
20.89±0.13b 

2-0.02±0.22b 

Day 1–42 20.32±0.25 
10.37±0.16 10.73±0.16 230.71±0.19 20.31±0.17 

Day 1–56 20.07±0.16ab 
1-0.23±0.24a 

10.23±0.12ab 
30.30±0.07b 

20.14±0.15ab 

Day 1–70 3-1.05±0.58 2-1.28±0.31 2-0.56±0.07 4-0.83±0.13 2-0.47±0.09 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=4).  

In the first two fortnights, the SGR of L. catenata was significantly higher than the rest 

of the experimental periods in all waters. ISW66 resulted in the highest SGR in the 

first fortnight, but ISW33 gave a higher SGR in the following fortnight. The L. 

catenata presented a similar fortnightly SGR over the last three fortnights of the 
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experiment (Table 8-2). In the first 42 days of the culture period for growing L. 

catenata, either ISW66 or ISW33 gave higher biomass gains than other water sources. 

8.3.1.2 The Quality of Potassium-fortified Inland Saline Water  

The pH of cultured media was similar over the experimental period, except on day 14, 

when ISW66 resulted in the highest (P<0.05) pH among the five waters. As the 

experiment was conducted in ambient room temperature, it reflected daily temperature 

changes during the winter time. The temperature was significantly higher during the 

middle of the experiment, but the water temperature among the five treatments was 

similar as the experiment progressed (Table 8-3). 

Table 8-3. The water pH and temperature in K+ISW for culturing L. catenata 

Time OW ISW  ISW33 ISW66 ISW100 

pH      

Day 1 17.92±0.01 18.04±0.03 17.95±0.00 17.97±0.00 18.06±0.01 

Day 14  28.46±0.04ab 
28.42±0.01a 

28.39±0.01a 
28.49±0.04b 

28.40±0.02ab 

Day 28  28.45±0.03 28.39±0.04 28.48±0.04 28.41±0.05 28.41±0.03 

Day 42 38.82±0.07 38.71±0.04 38.71±0.06 38.72±0.02 38.72±0.05 

Day 56 38.72±0.08 48.85±0.02 48.83±0.03 38.79±0.08 48.83±0.06 

Day 70 38.70±0.02 8.92±0.26 8.72±0.02 8.79±0.08 8.67±0.04 

Temperature (oC) 

Day 1 118.95±0.45 118.55±0.35 118.50±0.00 118.50±0.00 118.55±0.35 

Day 14  2320.35±0.09 2320.33±0.06 2320.35±0.10 2320.43±0.09 2420.30±0.06 

Day 28  320.95±0.59 2320.30±0.31 2320.65±0.59 320.88±0.47 320.98±0.21 

Day 42 2320.60±0.15 220.63±0.11 320.85±0.10 320.80±0.15 2320.73±0.14 

Day 56 1219.88±0.11 319.70±0.04 2419.85±0.14 219.88±0.11 419.75±0.03 

Day 70 1219.68±0.09 319.53±0.06 419.65±0.10 219.68±0.17 419.53±0.14 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=4). 
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The ionic profile of three waters at the same salinity is almost identical in terms of 

heavy metals. However, the Ca2+ and S in ISW were higher than in OW, whereas K+ 

and Na+ in ISW are deficient than in OW (Table 8-4).  

Table 8-4. The ionic profile (mg L-1) of waters at 30 ppt 

Parameters Swan River OW  ISW  

Bo 3.01 3.60 0.59 

Ca 272.4 320.9 530.8 

Cl 15809.5   

Cu <0.05 <0.05 <0.05 

Fe 0.08 <0.05 <0.05 

Mg 992.7 1015.0 1375.0 

Mn 2.93 <0.05 <0.05 

P 0.61 <0.05 <0.05 

K 331.3 313.0 77.3 

Na 8668 8803.0 7720 

S 929.3 706.3 560.0 

Zn <0.05 <0.05 <0.05 

Modified from Dinh (2016) 

The N concentration in water varied differently at different points of the culture period. 

NH4-N was negligible as the experiment progressed, whereas NO2
--N decreased and 

NO3
--N increased in all waters toward the end of the experiment. There was no 

significant difference of [NO3
--N] among water types during the first 42 days of the 

culture period, whereas, at day 56 and day 70, ISW66 and ISW33, respectively, 

resulted in higher [NO3
--N] than other waters. However, NO3

--N showed no significant 

correlation with the biomass of L. catenata, but NO2
--N did (Table 8-5).  

PO4
3--P was significantly reduced during the middle of the experiment; however, it 

increased towards the end of the experiment, and showed a significant correlation with 

the biomass of L. catenata.   
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Table 8-5. The quality of water cultured L. catenata in K+ISW experiment 

Time OW ISW ISW33 ISW66 ISW100  

NO2
--N      

Day 1  120.021±0.002 10.042±0.017 120.022±0.002 130.021±0.001 10.021±0.002 

Day 14  10.063±0.033 10.038±0.005 10.038±0.014 20.040±0.008 20.040±0.000 

Day 28  120.034±0.003ab 
10.041±0.004a 

120.028±0.007b 
120.028±0.005ab 

30.045±0.002a 

Day 42 20.005±0.000a 
20.009±0.001b 

20.006±0.000ac 
30.005±0.000a 

40.007±0.001c 

Day 56 20.006±0.000 
20.006±0.000 

20.007±0.001 
30.007±0.001 

40.007±0.001 

Day 70 10.002±0.000a 
20.004±0.001bd 

20.007±0.000c 
30.004±0.001b 

40.006±0.000c 

NH4-N      

Day 1 10.825±0.175a Neg.b Neg.b 1Neg.b Neg.b 

Day 14  2Neg. Neg. Neg. 1Neg. Neg. 

Day 28  20.003±0.003 Neg. Neg. 10.010±0.004 Neg. 

Day 42 2Neg.a Neg.a Neg.a 20.333±0.236b
 Neg.a 

Day 56 2Neg. Neg. Neg. 1Neg. Neg. 

Day 70 2Neg. Neg. Neg. 1Neg. Neg. 

NO3
--N      

Day 1     11.23±0.13a  2.10±0.22b  2.05±0.22b   2.03±0.15bc 
 131.50±0.15ac 

Day 14  232.28±0.46 2.31±0.44 2.02±0.45 1.64±0.35 11.87±0.18 

Day 28    22.69±0.29 2.23±0.09 2.03±0.13 2.10±0.43 22.37±0.09 

Day 42 131.67±0.19 2.60±0.58 1.70±0.15 1.13±0.06 11.73±0.03 

Day 56     11.18±0.10a   2.88±0.80ab    1.33±0.32ab   3.60±1.08b 
 31.13±0.13a 

Day 70 11.53±0.10a 1.67±0.16a 3.03±0.27b 1.80±0.11c 
22.30±0.26bc 

PO4
3--P      

Day 1 1.55±0.12a 11.68±0.05a 12.08±0.11bc 11.83±0.08ac 11.65±0.10a 

Day 14  1.83±0.20 11.78±0.16 131.69±0.11 11.83±0.23 11.68±0.06 

Day 28  1.30±0.06 21.17±0.13 21.23±0.20 21.23±0.08 121.23±0.10 

Day 42 2.30±0.85 21.03±0.17 231.40±0.12 31.40±0.20 21.20±0.29 

Day 56 1.50±0.15a    11.73±0.06ab
 11.80±0.08b

 21.50±0.04a
 121.60±0.08ab

 

Day 70 1.53±0.14a 11.47±0.14a
 43.77±0.20b

 43.97±0.32b
 32.33±0.10c

 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=4). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=4).  
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8.3.2 Effect of Ammonium Enrichment on the Growth of L. catenata 

The temperature and pH of cultured medium was similar among the treatments over 

the cultured period (Table 8-6). 

Table 8-6. pH and temperature in NH4-N enriched water cultured L. catenata 

Waters NH4-N (µM) addition pH Temp (oC) 

OW 0 8.10±0.02 19.00±0.01 

OW_NH4
 100 8.07±0.02 19.10±0.01 

ISW 0 7.95±0.03 18.99±0.01 

ISW_NH4 100 7.97±0.04 18.97±0.01 

ISW66 0 8.21±0.02 18.93±0.01 

ISW66_NH4 100 8.19±0.02 18.95±0.01 

NH4-N did not affect the growth of L. catenata in OW, but it did show a significant 

effect on L. catenata growth in ISW. Both ISW_NH4 and ISW66_NH4 resulted in 

significantly higher biomass and SGRw of L. catenata than ISW and ISW66, 

respectively. NH4-N presented the highest effectiveness when used in ISW66; this 

resulted in higher biomass and SGRw of L. catenata by the end of the experiment than 

OW_NH4 and ISW_NH4. However, a significant reduction was found in the biomass 

of L. catenata over the experimental period in all waters (Table 8-7).  

8.3.3 Effects of Temperature on L. catenata Growth 

In the first experiment with three levels of temperature were tested, the temperature 

significantly (P<0.05) affected the biomass and growth rate of L. catenata during the 

four weeks growing in the tanks. The ambient temperature of 18–19oC resulted in the 

lowest L. catenata biomass and SGRw
 in both OW and OW_NH4. However in the 

OW_NH4 water, the temperature of 25–26oC gave a higher L. catenata biomass and 

SGR than at 21–22oC (Table 8-8). 

The pH and temperature of waters at the same temperature levels were similar over the 

experimental period (Table 8-9).
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Table 8-7. Biomass (g) and SGRw (% d-1) of L. catenata in ambient and NH4-N enriched OW, ISW, ISW66 

Parameters 
OW ISW ISW66 

Ambient NH4-N Ambient NH4-N Ambient NH4-N 

Biomass day 1 1180.69±0.09 1180.45±0.12 1180.16±0.13 1180.37±0.19 1180.30±0.15 1180.50±0.14 

Biomass day 28 2118.66±11.77a 
2131.22±3.09a

 2109.93±10.78a 
2134.51±5.13b 

2126.22±8.57a 
2161.61±4.08b  

SGRw -1.48±0.33a -1.10±0.08a -1.74±0.35a -1.02±0.12b -1.24±0.23a -0.38±0.09b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=3). Values (mean±SE) within a column at one time sharing 

a common subscript are not significantly different (t test; P>0.05; n=3). 

Table 8-8. Biomass and SGRw (% d-1) of L. catenata in OW and OW_NH4 under three temperature levels 

Parameters 25–26oC 21–22oC 18-19oC 

 OW OW_NH4 OW OW_NH4 OW OW_NH4 

Biomass day 1 1180.44 ±0.23 1180.15 ±0.43 1180.16±0.13 1180.50 ±0.27 1180.69 ±0.09 1180.45  ±0.12 

Biomass day 28 2152.73 ±1.36a 
2150.99 ±3.16a 

2156.21 ±2.36a 
2113.97 ±2.48b 

2118.66 ±11.77a 
2131.22 ±3.09a 

SGRw -0.58±0.03a -0.61±0.07a -0.49±0.05a -1.59±0.07b -1.48±0.33a -1.10±0.48a 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at one time sharing 

a common subscript are not significantly different (t-test; P>0.05; n=4). 
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Table 8-9. pH and temperature of ammonium enriched OW cultured L. catenata 

under threee temperature levels 

Waters NH4-N (µM) addition pH Temperature (oC) 

OW 0 8.14±0.04 25.07±0.01 

OW_NH4 100 8.16±0.02 25.31±0.00 

OW 0 8.18±0.01 21.75±0.02 

OW_NH4
 100 8.14±0.02 21.63±0.01 

OW 0 8.10±0.02 19.00±0.01 

OW_NH4
 100 8.07±0.02 19.10±0.01 

In the second experiment where two temperature levels of 25–26oC and 21–22oC were 

used for three water types, OW, OW_NH4, ISW66_NH4, the pH and temperature of 

the three waters were similar at the same temperature levels (Table 8-10).  

Table 8-10. pH and temperature of OW and K+ISW at two levels of temperature 

Factors 
21–22oC  25–26oC  

OW OW_NH4 ISW66_NH4 OW OW_NH4 ISW66_NH4 

Tempera

-ture (oC) 

21.64 

±0.13 

21.64 

±0.06 

21.69   

±0.16 

25.78 

±0.22 

25.67 

±0.03 

25.50 

±0.06 

pH 8.61±0.03 8.74±0.03 8.71±0.03 8.47±0.05 8.49±0.05 8.45±0.04 

The mortality of L. catenata started occurring on day 25. By day 45, there was no sign 

of living L. catenata in the beakers; therefore, the data of biomass and SGRw were 

collected by day 25 of the experimental. At the 25–26oC, both OW and OW_NH4 

resulted in a significant increase of biomass than at the beginning. However, these 

increases did not result in a significantly higher SGRw of L. catenata than in 

ISW66_NH4. On the other hand, the temperature showed no effect on the growth of L. 

catenata in all waters, where at the same temperature levels the three water sources 

resulted in a similar SGWw. The length of the L. catenata showed no significant change 

over the culture period in all waters and temperatures (Table 8-11). 
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8.3.4 Effects of Ammonium and Phosphate Enrichment on the Growth of 

L. catenata in Potassium-fortified Inland Saline Water  

In order to get enough fresh biomass to have adequate dried biomass of L. catenata, 

this experiment lasted for 25 days. By the end of the experiment, with no nutrient 

enrichment, ISW66 resulted in a significantly higher biomass and SGRw of L. catenata, 

and [NO2
--N] and [PO4

3--P] than in OW; however, these were similar at other nutrient 

levels (Table 8-12, Table 8-13).  

Nutrient enrichment did not significantly affect the growth of L. catenata in ISW66. 

The biomass, SGRw and dried content of L. catenata were similar after 25 days of 

culture in three NH4-N:PO4
3--P levels. In OW, the ratio of 75:7.5 resulted in the highest 

biomass and SGR, and the dried content of L. catenata cultured in 300:30 was lowest.  

Although NH4-N was provided weekly, NH4-N levels in water were insignificant. By 

the beginning of the experiment, [NO3
--N] in ISW66 was higher than in OW. However, 

by day 25, [NO3
--N] in ISW66 was only higher than OW at the nutrient enriched of 

150:15, and lower at 300:30. [NO2
--N] was negligible in the lower nutrient enrichment 

levels at the beginning, and showed no significant difference among the nutrient levels 

as the experiment progressed. There was a significant reduction of [PO4
3--P] during 

the experiment, and [PO4
3--P] was significantly correlated with the biomass of the L. 

catenata. 
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Table 8-11. Biomass (g), length (mm) and SGR (% d-1) of L. catenata cultured in OW, OW_NH4 and ISW66_NH4 at temperatures 21–

22oC and 25–26oC 

Criteria 
21–22oC 25–26oC 

OW OW_NH4 ISW66_NH4 OW OW_NH4 ISW66_NH4 

Biomass day 1  3.49±0.07 3.49±0.26 3.53±0.07 13.20±0.13 13.23±0.12 3.60±0.14 

Biomass day 25  4.53±0.50 4.89±0.77 5.01±0.70 24.71±0.49 24.19±0.29 4.39±0.43 

SGRW 1.01±0.57 1.40±0.25 1.32±0.56 1.59±0.16 1.08±0.08 0.80±0.17 

Length day 1  10.88±0.52 13.50±1.10 13.60±0.39 11.32±0.66 12.43±1.49 12.83±0.60 

Length day 25  11.98±0.30 13.13±1.20 14.28±0.47 11.67±0.67 13.00±1.53 13.00±0.64 

SGRL 0.41±0.10a -0.12±0.22b 0.20±0.09ab 0.13±0.09 0.19±0.02 0.05±0.03 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at one time sharing 

a common subscript are not significantly different (LSD test; P>0.05; n=4). 
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Table 8-12. Biomass (g), SGRw (% d-1) and dried content (%) of L. catenata cultured in three NH4-N:PO4
3--P (µM) enriched levels 

Criteria 
OW ISW66 

Ambient  75:7.5 150:15 300:30 Ambient 75:7.5 150:15 300:30 

Biomass 

Day 1  3.37±0.01 13.38±0.02 3.40±0.01 13.40±0.02 13.35±0.01 3.38±0.01 3.37±0.00 3.36±0.01 

Day 25  3.30±0.28a 
24.28±0.12b 3.87±0.36a 

24.10±0.13a 
24.21±0.19 4.14±0.50 3.65±0.29 3.75±0.17 

SGRW -0.12±0.16a 0.94±0.14b 0.49±0.40a 0.75±0.12a 0.91±0.16a 0.71±0.50ab 0.29±0.32b 0.43±0.18b 

Dried content       

Day 1 114.77±0.11 14.77±0.11 114.77±0.11 114.77±0.11 14.77±0.11 14.77±0.11 14.77±0.11 14.77±0.11 

Day 25  216.04±0.64a 14.51±0.56ab 
216.45±2.10a 

212.18±1.15b 14.21±0.62 14.26±0.47 14.16±0.74 15.14±0.63 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=3) in one water. Values (mean±SE) within a column at one 

parameter sharing a common subscript are not significantly different (t-test; P>0.05; n=3). 
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Table 8-13. The quality of OW and ISW66 cultured L. catenata at three NH4-N:PO4
3--P (µM) enriched levels 

Criteria 
OW ISW66 

Ambient  75:7.5 150:15 300:30 Ambient  75:7.5 150:15 300:30 

NO3
--N 

Day 1  10.97±0.03a 1.47±0.03ab 1.60±0.06b 2.10±0.00c 2.13±0.12a 2.27±0.07b 2.53±0.03b 
12.90±0.31c 

Day 25  21.17±0.03a 1.13±0.30ab 1.33±0.27b 1.43±0.27b 1.50±0.21 1.87±0.32 2.53±0.62 21.00±0.06 

NO2
--N 

Day 1  Neg.a 1.00±0.00b 0.33±0.00ab 0.33±0.00ab Neg. Neg. 0.33±0.00 0.33±0.00 

Day 25 Neg. 0.09±0.08 0.01±0.01 0.12±0.05 0.42±0.41 0.01±0.00 0.16±0.16 0.06±0.03 

PO4
3--P 

Day 1  12.17±0.09a 
12.53±0.29a 

12.97±0.09a 
13.93±0.20b 2.23±0.09a 2.73±0.09ab 

13.17±0.43b 
14.47±0.52c 

Day 25 21.30±0.10 21.03±0.09 21.23±0.12 21.23±0.13 3.17±0.94a 2.00±0.40b 
21.73±0.03b 

21.73±0.28b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=3) in one water. Values (mean±SE) within a column at one 

parameter sharing a common subscript are not significantly different (t-test; P>0.05; n=3).
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8.4 Discussion 

This is the first study of culturing L. catenata in ISW. L. catenata showed the ability 

to be cultivated in ISW under special conditions of K+ISW and seasonal temperatures. 

Potassium fortification was needed for ISW to sustain the growth of L. catenata. The 

ISW66 resulted in higher L. catenata biomass than OW at the day 28, and the biomass 

of L. catenata was similar between these two waters. The growth of seaweed is 

significantly affected by [K+], which plays an important role in photosynthesis and 

regulation of osmotic pressure of the seaweed cells (Checchetto et al., 2013; Kirst, 

1977; Malhotra & Glass, 1995). The [K+] in the seaweed cells should be between 100–

200 mM for proper protein synthesis (Blumwald et al., 2000). Intracellular [K+] is 

regulated by internal and external [K+] exchange mechanisms, which are determined 

by external [K+] (Blumwald et al., 2000; Tromballa, 1978). The osmotic gradient of 

aquatic plant cells is maintained by [K+], and is facilitated by a suitable ratio between 

Na+ and K+ internally (Blumwald et al., 2000; Malhotra & Glass, 1995). Marine 

animals need the ISW to be fortified to 50–100% of [K+] in OW at the same salinity 

to obtain sufficient [K+] for a balanced osmo-regulation for a capacity to grow (Dinh, 

2016; Fielder & Allan, 2003; Prangnell & Fotedar, 2006a, 2006b; Tantulo & Fotedar, 

2006). Similarly, L. catenata also required a higher amount of [K+] than in ambient 

ISW for cultivating. In this study, the concentration of K+ of 103–206 mg L-1 (the Na:K 

ratio is 37:1–75:1) provided a higher biomass gain and SGRw
 of L. catenata than higher 

or lower [K+], and it is similar to the preferred Na:K for Ulva growth at 47:1 

(Yamashita et al., 2009). This [K+] range is lower than required by other red seaweeds 

Caloglossa leprieurii and Bostrychia radicans (Yarish et al., 1980). If the culture 

period was less than one month, ISW66 would be a better choice than ISW33. 

However, L. catenata should not be cultured longer than 42 days for a higher biomass 

gain. 

Ammonium is preferred source of N for seaweed growth over NO3
--N (Liu et al., 

2004), which is why NH4-N in water was negligible over the culture period, even in 

the waters supplied weekly with NH4-N. The red seaweed Gelidium amansii grow 

faster at NH4-N 80 µM than at 200 µM (Liu et al., 2004). However, in this study, the 

L. catenata showed no response in NH4-N 100 µM in both OW and ISW66 in the 

tanks. This can be explained by the effect of the low temperature, since the ammonium-

effect experiment was conducted at ambient room temperature in winter, when the 



 

170 

 

temperature was approximately 19oC. This result was demonstrated in the 

temperature-effect experiment, where the reduction rate of L. catenata cultured in 18–

19oC was higher than other two higher temperature levels. As the L. catenata cultured 

in tanks holding OW and OW_NH4 showed different responses to the 21–22oC and 

25–26oC temperatures, the second experiment was conducted in beakers at these two 

temperature levels. In addition, ISW66_NH4 provided the lowest reduction SGR in the 

NH4-N-effect experiment, was also tested. A similar SGRw was found for L. catenata 

cultured in one water source at two temperature levels and cultured in four different 

water sources at one temperature level, and this revealed that the suitable temperature 

for L. catenata cultured in captivity was 21–26oC. This preferred temperature range 

was similar to the green seaweeds Ulva curvata (Malta et al., 1999), Ulva lactuca (Van 

Khoi & Fotedar, 2011), and Ulva pertusa (Liu & Dong, 2001), and the red seaweed 

Hypnea cervicornis J Agardh (Ding et al., 2013), but was higher than the need of the 

red seaweeds Phycodrys rubens and Membranoptera alata (Lüning, 1984).  

Contrary to the negative SGR found in L. catenata cultured in all temperature 

conditions in tanks, the L. catenata cultured in beakers at 21–26oC in the temperature 

effect experiment and K+-fortification effect experiment at 18.5–21oC resulted in a 

positive SGRw, revealing the scale of growing L. catenata. This can only be explained 

by the different seasons of sampling. The L. catenata were collected from the field 2–

3 days before the beginning of each experiment, reflecting the seasonal growth of L. 

catenata at different stages. The experiment conducted in the tanks were from the 

middle of winter to the end of autumn, whereas the beaker experiments were in early 

winter and late autumn to early summer. Observations in the field in early summer 

showed that the L. catenata grew quickly and the canopy was largest. Furthermore, the 

L. catenata standing crop decreased gradually by the end of summer, and reappeared 

in the spring. This is similar to the L. catenata seasonal growth in Japan (Lee, 1978), 

although it is conducted in different hemispheres. 

At 21–22oC, the length of L. catenata cultured in OW_NH4 were reduced, resulting 

from apical cell breakage; however, the biomass gain was positive, indicating weight 

growth of the L. catenata. The similarity of the SGRw and SGRL of the L. catenata 

cultured in ISW66_NH4 and the sources of OW showed the ability of L. catenata to 

grow in ISW66_NH4.  
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Although NH4-N was necessary for L. catenata growth in ISW66, the combination of 

NH4-N and PO4
3--P did not result in higher biomass than using only NH4-N. In addition 

to the weekly supplied NH4-N and PO4
3--P, N and P in water were also produced by 

the decomposition of L. catenata. NH4-N combines with PO4
3--P result in a higher 

growth rate of Sargassum baccularia than single nutrient sources (Schaffelke & 

Klumpp, 1998). The living microbes in water sequence the soluble N and P quickly, 

therefore N and P concentrations are not stable, then difficult to measure (Downing, 

1997). Seaweeds uptake NH4-N is faster than PO4
3--P when they are available in water 

at similar concentrations (Wallentinus, 1984). Consequently, NH4-N levels in water 

were nigligible as the trial progressed, NO3
--N levels were reduced over the culture 

period, and [PO4
3--P] were lower at the termination of the experiment than at the 

beginning in the NH4-N:PO4
3--P effect trial, showing L. catenata growth.  

In OW, the NH4-N:PO4
3--P ratio at 75:7.5 µM resulted in the highest SGR and a 

significant increase of biomass at the end of the experiment compared with the 

beginning. These nutrient concentrations were similar to those needed by the red 

seaweed Gelidium amansii (Liu et al., 2004). However, in ISW66, NH4-N:PO4
3--P 

enrichment showed no effect on the growth of L. catenata, since water not enriched 

with nutrients resulted in a significant gain of biomass over the culture period. This 

result verified those of the previous experiment, where ISW66_NH4 gained a similar 

SGR of L. catenata to OW and OW_NH4 at 21–26oC.  

8.5 Conclusions 

This study identifies the suitable environmental and chemical parameters to grow L. 

catenata under laboratory conditions with temperature levels of 21–26oC, salinity level 

of 30–31 ppt and supplied NH4-N concentrations of no greater than 100 µM in both 

OW and K+ISW. The K+ fortification for ISW is needed at 33–66% of [K+] in OW at 

the same salinity for higher L. catenata biomass gain in the culture period of no longer 

than 42 days. 
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CHAPTER 9 CULTIVATION FEASIBILITIES OF Ulva lactuca 

IN INLAND SALINE WATER 

9.1 Introduction 

Ulva and Enterromorpha are the two most widespread genera of the order Ulvales 

(Sze, 1998), and they should be considered as one genera (Graham et al., 2009; 

Hayden et al., 2003; Kraft et al., 2010). There are 140 species and 135 species, 

respectively, in the Ulva and Enteromorpha genera: of these, 50 and 35 species are 

identified respectively (Hayden et al., 2003). However, Kraft et al. (2010) and 

Loughnane et al. (2008) state that Ulva genera should include 127 species, of which 6 

species are found in Southern Australia (Kraft et al., 2010).  

Ulva spp. are cosmopolitan species, widely distributed in different environments 

(Morrison & Storrie, 2010) and  are naturally distributed in Europe (Koeman & van 

den Hoek, 1981; Loughnane et al., 2008; Malta et al., 1999), Japan (Hiraoka & Oka, 

2008), Australia (Kraft et al., 2010), America (Sousa et al., 2007) and in inland water 

in Poland (Messyasz & Rybak, 2009). In Australia, Ulva spp. are naturally distributed 

in Western Australia (WA), New South Wales and Tasmania at depths of up to five 

meters (Kraft et al., 2010; Womersley, 1984). 

Ulva is the most commonly used seaweeds, including human food, medicine, 

conditioners for soil, manure and water cleaner (Lahaye et al., 1994; Lindsey Zemke-

White & Ohno, 1999; Sze, 1998). The polysaccharides extracted from Ulva can be 

used in industries and for human (Lahaye & Axelos, 1993; Lahaye et al., 1994; 

Lindsey Zemke-White & Ohno, 1999; Ray & Lahaye, 1995) and the lipids in Ulva can 

be converted to biodiesel (Petrus & Noordermeer, 2006). U. lactuca contains similar 

protein and energy as lucerne hay and can be used as cattle-feed (Ventura & Castañón, 

1998). Ulva can accumulate trace metals in polluted water (Ho, 1990; Mamboya et al., 

2009). In addition, Ulva can be integrated cultured with other species to clean the 

water discharge and increase yield of both species (Neori et al., 1996; Van Khoi & 

Fotedar, 2011).  

Ulva has been studied widely in ocean water (OW), in terms of taxonomy (Heesch et 

al., 2009; Koeman & van den Hoek, 1981; Kraft et al., 2010; Loughnane et al., 2008; 
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Malta et al., 1999; Phillips, 1988), growth rate (Ahmad et al., 2011; de Casabianca et 

al., 2002), seasonal variation (Duke et al., 1987; Villares et al., 2002), nutrient uptakes 

(Ale et al., 2011; Pérez-Mayorga et al., 2011), pollution removal (Bartoli et al., 2005; 

Blackmore, 1998; Burgess et al., 2003; Ho, 1990), photosynthesis (Axelsson et al., 

1995; Beer & Israel, 1990; Larsson et al., 1997), life cycle (Bendoricchio et al., 1994), 

and chemical composition and nutrition (Aguilera-Morales et al., 2005; Lahaye & 

Jegou, 1993; Ray & Lahaye, 1995; Robic et al., 2008; Ventura & Castañón, 1998; 

Yaich et al., 2011). Particularly, the bicarbonate uptake of Ulva (Axelsson et al., 1995; 

Björk et al., 1993; Drechsler et al., 1993) and in the integrated culture of Ulva with 

other marine species have been studied broadly (Cruz-Suárez et al., 2010; Neori et al., 

1996; Wang et al., 2007; Yokoyama & Ishihi, 2010).  

Salinity is the most important parameter significantly affecting growth, 

photosynthesis, chlorophyll-a content, spore biomass and heavy metal absorption of 

Ulva (Choi et al., 2010; Kamer & Fong, 2001; Mamboya et al., 2009; Scherner et al., 

2013; Sousa et al., 2007). The salinity requirement is species specific. U. lactuca and 

U. ridiga can withstand large salinity ranges (Friedlander, 1992; Zavodnik, 1975). U. 

curvata and U. scandinavica grow well in salinity level of 17–34 ppt, but U. rigida 

tolerates lower salinity levels, from 4 to 34 ppt (Koeman & van den Hoek, 1981). 

Therefore, re-testing the salinity requirement for local U. lactuca is needed for its 

aquaculture practice.  

Ulva prefers NH4-N (Ahmad et al., 2011), and requires 3.6 µM supplied continuously 

for maximal growth in winter (Campbell, 2001), and the growth of Ulva is 

significantly correlated with NH4-N uptake (Ramus & Venable, 1987). The presence 

of phosphate (PO4
3--P) in cultured media of providing NH4-N increases the U. 

reticulata NH4-N uptake capacity (Ahmad et al., 2011). The local OW contains [PO4
3-

-P] more than 1 mg L-1 (Bui, Luu, Fotedar, et al., 2017), which is sufficient for Ulva 

requirement (Ahmad et al., 2011; Campbell, 2001), therefore the source of nutrient for 

Ulva culture just need to focus on NH4-N.  

Furthermore, agricultural land and farms are showing signs of higher salinity in 

Western Australia (WA) and Australia (Trewin, 2002), which negatively affects 

agriculture and other industries (Allan et al., 2001; Allan et al., 2008; Borowitzka, 
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1997; Cordover, 2007; NLWRA, 2001). In order to prevent salinization, hundred 

thousand kilometers of banks have been built around Australia farms (Trewin, 2002), 

providing an available water resources to culture seaweed. However, attempt to culture 

seaweed in inland saline water (ISW) is still limited.  

Of the seaweed species, U. lactuca is a possible candidate to culture in ISW as a source 

of feed for abalone (Borowitzka, 1997). Ulva can be integrated with marine fish 

Oreochromis spilurus (Al-Hafedh et al., 2012), western king prawn (Penaeus 

latisulcatus) (Van Khoi & Fotedar, 2011) and abalone (Robertson-Andersson et al., 

2009), and these marine species, as well as many other marine speices, have been 

successfully cultured in ISW in Australia (Doroudi et al., 2006; Fielder et al., 2001; 

Fotedar et al., 2008; Ingram et al., 2002; Partridge, Lymbery, & George, 2008; 

Partridge et al., 2006). The effects of salinity and temperature on the growth of Ulva 

have also been studied but the results are species dependent (Choi et al., 2010; Duke 

et al., 1989; Xia et al., 2004). In addition, the temperature of ISW is varied widely, 

from 6.3–28.1oC (Taukulis & John, 2009). Finding out the suitable temperature for 

local U. lactuca cultivation in ISW is necessary to develop its aquaculture potential.  

K+ deficiency in Australian ISW is common (Fielder et al., 2001; Nulsen, 1997; Saoud 

et al., 2003), so the ISW needs to be fortified to around 50–100% of K+ concentrations 

in ocean water (OW) to cultivate fish (Fielder & Allan, 2003; Fielder et al., 2001), and 

shrimp (Shakeeb Ur et al., 2005; Tantulo & Fotedar, 2006). The presence of potassium 

(K+) in water is crucial for algal growth (Talling, 2010), without any exception to Ulva. 

The ratio of Na:K of 47 provides the best growth rate for U. ohnoi, which cannot grow 

in the low Na:K ratio of 2 (Yamashita et al., 2009). Ulva has the ability to accumulate 

K+, so it can be present in 3.2% of the Ulva dry weight, 20 times higher than its 

concentration in ocean water (OW) (Yamashita et al., 2009). The Na:K of ISW in WA 

is about 100:1 at salinity 30–35 ppt (Dinh, 2016), much higher than the prefer Na:K 

ratio of U. ohnoi (Yamashita et al., 2009), therefore it is necessary to test the K+ need 

of U. lactuca in order to develop its aquaculture practice. 

This study was divided into two sections. The first one was aimed to find a suitable 

salinity, stocking density and nutrient requirements for U. lactuca in OW. This section 

was further used as a base line research in section 2 to cultivate the same species in 

ISW and K+-fortified ISW (K+ISW). 
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9.2 Materials and Methods 

The whole fond of U. lactuca including holdfast was collected as described in Chapter 

3. The water preparation, data collection and data analysis were followed as in Chapter 

3. 

9.2.1 U. lactuca Culture in Ocean Water 

The feasibility of U. lactuca cultivation in OW was determined in two different trials. 

9.2.1.1 Effect of Salinity on the Growth of U. lactuca  

This trial was conducted in a fortnight in early autumn. Whole thalli of U. lactuca at 

approximately 36 g each was attached to gravel to submerge whole fond in water and 

placed into 54 L glass tanks holding 45 L of water. Three salinity levels of 30, 35 and 

40 ppt formed the three studied treatments to be tested in triplicates. OW at 35 ppt was 

exposed to sunlight to obtain 40 ppt of OW due to evaporation. OW at 35 ppt was 

diluted with filtered fresh water to achieve 30 ppt. The tanks were placed under the 

ambient room temperature of 18–24oC, under the lights of 120 µmol photon m-2 s-1 

provided by white fluorescent in a cycle of 14:10 h light:dark (Kraemer & Yarish, 

1999). 

9.2.1.2 Effects of Stocking Densities and Ammonium Enrichment on the 

Growth of U. lactuca   

This trial was conducted for 14 days in winter using OW at 30 ppt by diluting filtered 

OW at 35ppt with the filtered fresh water. A total of 12 treatments, in triplicates, 

combining four U. lactuca stocking densities of 0.2, 0.4, 0.8 and 1.6 kg m-2 at thee 

water types, which were two NH4-N weekly enriched levels of 28 and 56 µM supplied 

by NH4Cl (Campbell, 2001) and a control of ambient OW. The whole fond of U. 

lactuca at the same development stage of 36, 72, 144 and 288 g were placed in glass 

tanks of 54 L (60×30×30 cm) holding 45 L of OW. The tanks was placed under the 

light of 120 µmol photon m-2 s-1 white fluorescent in a cycle of 14:10 h light:dark 
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(Kraemer & Yarish, 1999). The temperature was maintained at 24–26oC by automatic 

heaters (Sonpar, HA-200, Zhongshan, Guangdong, China).  

9.2.2 Feasibility of Cultivating U. lactuca in Inland Saline Water 

ISW was diluted with filtered freshwater to achieve 30–31 ppt. Two independent trials 

were set up. 

9.2.2.1 Effect of Temperature on the Growth of U. lactuca  

Whole thalli of U. lactuca, at approximately 36 g tank-1, were placed into 54 L glass 

tanks holding 45 L of water at 30–31 ppt, and was conducted in a fortnight in early 

autumn. Eight treatments included four water types and two temperature levels in three 

replicates each were conducted, requiring 24 tanks. Four water types were OW and 

ISW, and were weekly enriched with NH4-N 56 µM by adding NH4Cl. These water 

types were termed as OW_NH4 and ISW_NH4. The other two water types were 

ambient OW and ISW. All tanks were exposed to two temperature levels; high 

temperature of 25–26oC and ambient temperature 20–21oC. The high temperature of 

25–26oC was maintained by using automatic heaters (Sonpar, HA-200, Zhongshan, 

Guangdong, China). 

9.2.2.2 Effects of Potassium Fortification on the Growth of U. lactuca in Inland 

Saline Water 

Approximately 36 g U. lactuca whole thalli were cultured in one tank during 42 days 

in early winter. Total of 15 glass tanks of 54 L were used, each tank held 45 L of water, 

included five treatments in triplicate. Three levels of K+ISW were used at 33, 66 and 

100% of the [K+] of OW at 30 ppt termed as ISW33, ISW66 and ISW100, and the 

control of ambient ISW termed as ISW0, and OW. The cultured media were weekly 

supplied NH4Cl at [NH4-N] 56 µM. Automatic heaters (Sonpar, HA-200, Zhongshan, 

Guangdong, China) was used to maintain the cultured media temperature at 24–26oC.  
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9.3 Results 

9.3.1 U. lactuca Culture in Ocean Water 

9.3.1.1 Effect of Salinity on the Growth of U. lactuca 

Salinity had a significant (P<0.05) effect on the growth of U. lactuca in OW, where 

seaweed biomass at all treatments declined by the end of the experiment. The salinity 

level of 40 ppt resulted in the highest reduction of biomass, and the lowest SGR among 

the three salinities. On day 14th, the biomass and SGR of U. lactuca at 30 and 35 ppt 

were similar, but significantly (P<0.05) higher than at 40 ppt (Table 9-1).  

Table 9-1. The biomass (g) and SGR (% d-1) of U. lactuca in three salinity levels 

in OW 

Criteria 30 ppt 35 ppt 40 ppt 

Biomass day 1 36.21±0.21 36.44±0.04 136.19±0.17 

Biomass day 14 30.50±1.46a 26.62±2.17a 
213.78±0.53b 

SGR -1.24±0.34a -2.31±0.63a -6.90±0.27b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=3). Values of biomass (mean±SE) within a column sharing a common subscript are not 

significantly different (t-test; P>0.05; n=3). 

Table 9-2. The ionic profile (mg L-1) of natural waters at different salinities 

Parameters Swan River 31ppt OW 30 ppt OW 35 ppt  OW 40 ptt 

Bo 3.01 3.60 3.95 4.32 

Ca 272.4 320.9 371.6 406.3 

Cl 15809.5  19679.5 22095.3 

Cu <0.05 <0.05 <0.05 <0.05 

Fe 0.08 <0.05 <0.05 <0.05 

Mg 992.7 1015.0 1168.0 1302.0 

Mn 2.93 <0.05 <0.05 <0.05 

P 0.61 <0.05 <0.05 <0.05 

K 331.3 313.0 351.1 410.1 

Na 8668 8803.0 10010 11040 

S 929.3 706.3 805.4 924.7 

Zn <0.05 <0.05 <0.05 <0.05 

(Modified from Dinh (2016)  
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Table 9-3. Biomass (g) and SGR (% d-1) of U. lactuca at four stocking densities (kg m-2) and three levels of NH4-N (µM) 

Criteria 
0.2 kg m-2

 0.4 kg m-2
 0.8 kg m-2 1.6 kg m-2

 

0 28 56 0 28 56 0 28 56 0 28 56 

Biomas

s day 1  

36.08± 

0.03 

36.13± 

0.04 

136.14±

0.03 

172.24±

0.04 

172.22±

0.15 

172.22±

0.07 

1144.25

±0.03 

1144.22

±0.08 

1144.25

±0.09 

1288.24

±0.09 

1288.54

±0.03 

1288.23

±0.16 

Biomass 

day 14  

36.83± 

0.37a 

37.27± 

1.25a 

241.17± 

1.20b 

256.15± 

3.41 

254.01± 

2.68 

261.56±

4.02 

2130.5±

4.73a 

2137.04 

±2.80a 

2115.69

±5.61b 

2253.14

±5.83 

2256.71

±5.42 

2230.53

±32.69 

SGR  0.16± 

0.07a 

0.24± 

0.26a 

1.08± 

0.25b 

-1.61± 

0.37 

-1.84± 

0.30 

-1.04± 

0.40 

-0.64± 

0.23a 

-0.32± 

0.12a 

-1.40± 

0.32b 

-0.82± 

0.14 

-0.73± 

0.13 

-1.64± 

1.06 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column at one time sharing 

a common subscript are not significantly different (LSD test; P>0.05; n=4). 

Table 9-4. Biomass (g) and SGR (% d-1) of U. lactuca under two temperature levels 

Criteria 
25–26oC 20–21oC 

OW OW_NH4 ISW ISW_NH4 OW OW_NH4 ISW ISW_NH4 

Biomass         

Day 1  36.13±0.03a 36.21±0.01a 36.23±0.10a 36.14±0.08a 
136.16±0.01a 

136.08±0.04a 
136.13±0.10a 

136.20±0.06a 

Day 14  37.35±0.45ab 39.41±1.24a 33.83±2.79b 37.39±1.76ab 
223.98±0.51a 

221.21±0.85a 
222.44±0.62a 

225.46±1.50a 

SGR 0.24±0.08ab 0.60±0.22a -0.54±0.61b 0.23±0.36ab 0.13±20a -2.94±0.15a -3.81±0.29a -3.41±0.21a 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values of biomass (mean±SE) within a column at one 

time sharing a common subscript are not significantly different (LSD test; P>0.05; n=4). 
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9.3.1.2 Effects of Stocking Densities and Ammonium Enrichment on the Growth 

of U. lactuca  

The SGR of U. lactuca responded differently (P<0.05) depending on the density and 

the amount of NH4-N provided. By the end of the experiment, the SGR was similar in 

all NH4-N levels at densities of 0.4 and 1.6 kg m-2. However, SGR in 56 µM NH4-N 

was significantly (P<0.05) higher than the other two NH4-N levels at 0.2 kg m-2, but 

was lower in 0.8 kg m-2. A significant reduction of biomass was recorded over the 

experimental period at all stocking density except at the lowest one. At 0.2 kg m-2, the 

biomass of U. lactuca remained the same apart from a significant (P<0.05) increase in 

the NH4-N level of 56 µM. The higher biomass found at 56 µM NH4-N at density of 

0.2 kg m-2 resulted in a highest SGR (Table 9-3), and this stocking density and         

NH4-N level were selected for further studies.  

9.3.2 Feasibility of Cultivating U. lactuca in Inland Saline Water 

9.3.2.1 Effect of Temperature on the Growth of U. lactuca 

Temperature had a significant (P<0.05) effect on biomass growth and SGR of U. 

lactuca. In one water type, the 25–26oC resulted in significantly higher biomass at the 

end of the experiment and higher SGR than the 20–21oC with an exception of OW. No 

effect of water or NH4-N was found on the biomass and SGR of U. lactuca at 20–21oC, 

however, at the 25–26oC the OW_NH4 resulted in higher biomass and SGR than ISW 

(Table 9-4).  

NH4-N concentrations were negligible in all water types, and there was no significant 

difference among water types and temperature levels. At 25–26oC, the highest         

NO3
--N and PO4

3--P levels were found in ISW_NH4. However, at 20–21oC, only     

NO2
--N showed a high concentration in ISW_NH4.  

The pH, temperature, dissolved oxygen (DO) and salinity were similar among the 

treatments at the same temperature level. In ambient temperature levels of 18.0–

22.3oC, the pH was in the range 7.80–8.58, DO was 6.62–8.95 mg L-1. At higher 

temperature levels of 24.1–26.6oC, pH was 7.94–8.26, and DO was 5.50–6.00 mg L-1 

(Table 9-5).  
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Table 9-5. The environmental factors of the temperature effect experiment  

Criteria OW OW_NH4 ISW ISW_NH4 

Ambient room treatment    

Temperature (oC) 20.58±0.26 20.51±0.26 20.42±0.26 20.46±0.25 

pH  8.20±0.06 8.23±0.05 8.24±0.05 8.22±0.05 

DO (mg L-1) 6.95±0.10 6.90±0.08 6.91±0.08 6.92±0.07 

High temperature treatment    

Temperature (oC) 25.12±0.38 25.17±0.40 25.12±0.38 25.18±0.39 

pH  8.08±0.04 8.08±0.03 8.08±0.04 8.08±0.03 

DO (mg L-1) 5.73±0.06 5.73±0.06 5.74±0.06 5.74±0.06 

9.3.2.2 Effects of Potassium Fortification on the Growth of U. lactuca in Inland 

Saline Water  

U. lactuca responded differently (P<0.05) to the K+ fortification in the NH4-N 56 µM 

enriched ISW; a higher (P<0.05) biomass was found in the ISW33 than other waters 

during the experiment. Except ISW33 and ISW66, a significant reduction was found 

in U. lactuca biomass in all water types (Table 9-6). As a result, the SGR of U. lactuca 

in ISW33 and ISW66 was significantly higher than in OW and ISW100 by the 

termination of the experiment. From day 14, the U. lactuca biomass was reduced 

gradually, resulting in a similar SGR for U. lactuca among the lower K+ water media 

(ISW33 and ISW66) and higher K+ (OW and ISW100) (Table 9-7).  

Table 9-6. Standing biomass (g) of U. lactuca in K+ fortification ISW 

Time OW ISW0 ISW33 ISW66 ISW100 

Day 1 1236.36±0.22 136.38±0.16 36.49±0.14 36.29±0.17 1236.48±0.07 

Day 14 237.28±0.14 137.21±0.71 37.83±0.25 36.70±0.09 137.28±0.51 

Day 28 134.76±0.66a 
234.38±0.48a 36.89±0.68b 34.87±0.13a 

2334.93±0.77a 

Day 42 332.90±0.91a 
332.55±0.70a 37.01±1.37b 33.30±2.12ab 

333.53±0.70ab 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=3). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=3). 
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Table 9-7. SGR (% d-1) and dried content (%) of U. lactuca in K+ fortification 

ISW  

 Time OW ISW0 ISW33 ISW66 ISW100 

S

G

R  

Day 1–14 0.18 ±0.07 0.16±0.11 0.26±0.12 0.08±0.06 0.17±0.15 

Day 1–28 -0.16±0.09ab -0.20±0.04a 0.04±0.11b -0.14±0.02ab -0.16±0.02ab 

Day 1–42 -0.24±0.08a
 -0.27±0.06ac

 0.03±0.09b
 -0.22±0.16bc

 -0.20±0.05a
 

Dried content 21.25±2.45 20.37±1.04 17.21±0.95 19.52±0.61 17.49±0.37 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=3) 

Table 9-8. The quality parameters of K+ISW cultured U. lactuca 

Par. Time OW ISW0 ISW33 ISW66 ISW100 

N
H

4
-N

 

Day 1 1.00±.00a 2.00±1.00b 1.00±.00a 1.00±.00a 1.50±0.50b 

Day 7 2.55±2.45b 1.00±0.00a 0.50±0.50a Neg.a Neg.a 

Day 14  Neg. Neg. Neg. Neg. Neg. 

Day 28  Neg. Neg. Neg. Neg. Neg. 

Day 42 Neg. Neg. Neg. Neg. Neg. 

N
O

2
- -

N
 

Day 1 10.05±0.01 10.03±0.00 10.03±0.00 10.03±0.00 10.03±0.01 

Day 7 2Neg. 10.50±0.50 10.50±0.50 10.50±0.50 10.50±0.14 

Day 14  31.00±0.00ab 10.50±0.50ab 10.50±0.50ab 121.00±0.00ab 21.50±0.50b 

Day 28  31.00±0.00 21.00±0.00 10.50±0.00 121.00±0.00 121.00±0.00 

Day 42 30.67±0.33 21.33±0.88 21.00±0.00 21.33±0.33 121.00±0.58 

N
O

3
- -

N
 

Day 1 10.70±0.10b 11.40±0.00a 12.45±0.75a 11.95±0.45a 12.10±0.30a 

Day 7 21.85±0.55b 11.85±0.25b 12.10±0.00b 11.85±0.15b 11.85±0.05b 

Day 14  33.25±0.55ab 24.70±0.40b 23.50±1.30ab 24.05±1.45ab 23.45±0.85ab 

Day 28  33.70±1.40 25.15±0.95 122.95±0.55 23.35±0.45 24.95±2.65 

Day 42 32.87±0.32ab 33.50±0.30ab 23.80±0.85b 23.40±1.06ab 23.90±0.55b 

P
O

4
3

- -
P

 

Day 1 10.80±.20b 11.10±0.00d 11.30±0.00bcd 11.30±0.00bcd 11.50±0.40cd 

Day 7 10.55±0.25a 10.95±0.15ab 11.30±0.00b 11.20±0.40ab 11.35±0.15b 

Day 14  121.20±0.00a 21.65±0.05a 21.60±0.10a 11.95±0.25ab 22.45±0.55b 

Day 28  21.50±0.00a 32.15±0.25b 21.85±0.35ab 11.90±0.10ab 11.80±0.10ab 

Day 42 21.50±0.21a 21.70±0.15ab 21.70±0.12ab 11.77±0.15ab 11.83±0.28ab 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; 

P>0.05; n=3). Values (mean±SE) within a column at one time sharing a common subscript are not 

significantly different (LSD test; P>0.05; n=3). Par. means parameters. Neg. means negligible.  

There was no significant effect of K+ fortification on the dried biomass of the U. 

lactuca, presenting no significant difference of U. lactuca dried biomass among 

different water types (Table 9-7). 
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Although the water was enriched with NH4-N, its concentration was negligible during 

the experimental period, whereas except for in OW, NO2
--N, NO3

--N and PO4
3--P 

increased toward the end of the experiment (Table 9-8). 

9.4 Discussion 

Ulva is one of the most common genera in green seaweeds, providing a source of food 

and extraction of chemicals for human needs, as well as products for agriculture 

(Lahaye et al., 1994; Lindsey Zemke-White & Ohno, 1999; Sze, 1998). Although U. 

lactuca prefers the open sea water with salinity level of 34–40 ppt for optimal growth 

(Friedlander, 1992), the ambient salinity of Swan River at the time of U. lactuca 

collection was 30–31 ppt, similar to the optimal salinity for Ulva spp. growth (Choi et 

al., 2010; Malta et al., 1999). Ulva can be cultured in a wide range of salinity levels 

(5–40 ppt) (Choi et al., 2010; Koeman & van den Hoek, 1981), and this study indicated 

that local U. lactuca preferred 31–35 ppt for higher salinity.  

Optimal stocking density for U. lactuca Linnaeus cultured in outdoor conditions is 0.8 

kg wet weight m-2, within the suitable range of 0.13–4.50 kg wet weight m-2 (Lapointe 

& Tenore, 1981). In the current study, the only positive SGR of U. lactuca at 0.2 kg 

m-2 presented a potential stocking density for growing U. lactuca in captivity, whereas 

there was no significant difference in the negative SGR of U. lactuca cultured at higher 

stocking densities. This is similar to U. lactuca cultured in integrated with western 

king prawn (Penaeus latisulcatus Kishinouye, 1986), where the lowest stocking 

density of U. lactuca of 0.25 kg m-2 results in the highest SGR in the first week, and 

the biomass decreases up to day 42 of the culture period (Van Khoi & Fotedar, 2011). 

As a negative SGR was presented in higher stocking density, the effect of NH4-N 

enrichment was not clear, except at 0.8 kg m-2, which is the optimal stocking density 

for U. fasciata at a temperature of 14±1oC (Lapointe & Tenore, 1981). The higher 

NH4-N concentrations resulted in a greater biomass reduction rate. In order to 

eliminate the effect of light, a fixed saturating light intensity of 120 µm photon m-2 s-1 

(Kraemer & Yarish, 1999) was chosen for application in all experiments. Since the 

light is similar for all stocking density, for higher stocking density less light was 

available for U. lactuca photosynthesis, and nutrient competition occurred, which may 

be the main effects on the negative growth of U. lactuca.  
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Ulva prefers NH4-N as a source of nitrogen, and the presence of PO4
3--P stimulates 

nitrogen uptake (Ahmad et al., 2011). [PO4
3--P] in OW was approximate 1 mg L-1 (Bui, 

Luu, Fotedar, et al., 2017), which met Ulva demands (Ahmad et al., 2011; Campbell, 

2001), and it was therefore not supplied. When NH4-N is not sufficient, Ulva consumes 

NO3
--N, and the concentration of NO3

--N and PO4
3--P in water (Bui, Luu, Fotedar, et 

al., 2017) were sufficient for Ulva needs (Ahmad et al., 2011). NH4-N showed a 

significant effect on the growth of U. lactuca at the stocking density of 0.2 kg m-2, 

whereas the highest NH4-N level resulted in the highest SGR. The [NH4-N] for        

Ulva sp. optimal growth is 28 µM provided continuously at 15oC, pH 8.3 (Campbell, 

2001) was the value applied in the NH4-N enriched experiment. In this study, the 

weekly supplied NH4-N was consumed immediately after releasing, which caused the 

[NH4-N] in cultured media to be negligible during the cultured period. This can be 

explained by nutrient uptake of U. lactuca (Kim et al., 2007). 

This study showed that the suitable temperature for U. lactuca growing in captivity 

was 25oC. The temperature effect was also achieved from the previous trials. In the 

trial of effect of stocking density and ammonium enrich, OW_NH4 56 µM resulted in 

highest and positive SGR of U. lactuca during the first 14 days, where the temperature 

was maintained at 24–26oC. However, in trial of effects of salinity, when the ambient 

room temperature of 18–24oC was set up and the variation of day/night temperature 

was larger, U. lactuca died during the first 14 days. In ISW, U. lactuca showed a 

significantly higher SGR at 25–26oC than at 20–21oC. This result is similar to U. 

curvata (Malta et al., 1999) and the temperature condition for U. lactuca in an 

integrated system with prawn (Van Khoi & Fotedar, 2011), and U. pertusa (Liu & 

Dong, 2001). The temperature of 25oC is higher than U. rigida temperature 

requirement (de Casabianca et al., 2002), and different from U. lactuca in the 

Netherlands (Malta et al., 1999). The high temperature level is similar to the summer 

sea surface temperature in WA (https://www.seatemperature.org/australia-

pacific/australia/), when it is the growing season of Ulva (Ramus, 1978; Vermaat & 

Sand-Jensen, 1987; Yoshida et al., 2015).  

This study demonstrated that the [K+] in water is correlated to U. lactuca growth, since 

U. lactuca died in ambient ISW from the first week, but was sustained for longer in 

higher [K+] ISWs, similar to the demand of other marine species culturing in ISW 

(Dinh, 2016; Fielder & Allan, 2003; Tantulo & Fotedar, 2007). U. lactuca in this study 



 

185 

 

required 33% of [K+] in OW as only ISW33 resulted in positive SGR of U. lactuca. 

Similarly to U. ohnoi which prefers the Na:K at 47:1 (Yamashita et al., 2009), the 

ratios of Na:K in OW and ISW100 were 27:1 and 25:1, respectively, which resulted in 

lower SGR for U. lactuca than the ISW33, which provided a higher ratio of Na:K of 

77:1 for U. lactuca growth in ISW33. The higher external K+ may damage the cell 

membrane (Peterson et al., 1995), although the intracellular Na:K of Ulva is not 

affected by the ratio of Na:K in cultured medium (Yamashita et al., 2009). The biomass 

presented were collected before the termination of K+ effect trial, in reality, the K+ 

fortification effect lasted until total mortality of U. lactuca happened at all tanks, 

therefore, no U. lactuca tissue remained for proximate composition analysis, which 

was a limitation of this study. 

The SGR of U. lactuca in this study was lower than U. rotundata and U. intestinalis 

(Hernández et al., 2002), and U. pertusa cultured in OW under laboratory conditions 

(Kim & Han, 1999; Liu & Dong, 2001), but was similar to U. lactuca in Denmark 

(0.044–0.199% d-1) (Geertz-Hansen et al., 1993). The difference  amongst these was 

due to the fact that U. lactuca used in these experiments were mature blades, where 

the thalli were over 10 cm, and these blades grow more slowly than young blades 

(Kraemer & Yarish, 1999). Moreover, the U. lactuca in this study was not freely 

floating in water with aeration provided, another factor that may affect the growth of 

U. lactuca, as floating U. pertusa grows in the ocean (Hiraoka et al., 2004; Yoshida et 

al., 2015). 

9.5 Conclusions 

Salinity levels of 30–35 ppt, stocking density of 0.2 kg m-2 and nutrient enrichment of 

NH4-N at 56 µM are suitable for culturing U. lactuca in OW, and they are 

recommended to evaluate the growth feasibility of U. lactuca in ISW.  

In ISW, U. lactuca develop better under temperature of 25–26oC than the lower one 

of 21–22oC. K+ fortification of 33% of [K+] as in OW at the same salinity is required 

for U. lactuca cultured in ISW. U. lactuca is unable to grow in captivity longer than 

42 days in either OW or K+ISW, so a short culture season is recommended.
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CHAPTER 10 GENERAL DISCUSSION, 

RECOMMENDATIONS AND CONCLUSIONS 

Culturing seaweed in inland saline water (ISW) is expected to be one way to reduce 

the adverse impacts of salinisation on agriculture (Borowitzka, 1997) to generate 

additional income for farmers. This is the first study to culture native or naturally 

distributed seaweed species in Western Australia (WA), under different environmental 

parameters, prevalent under ISW environment. Comparisons of the culture feasibilities 

of four targeted species including one green, two brown and one red seaweeds are 

discussed in this chapter to highlight their requirements forthe selected environmental 

variales. 

10.1 Seasonal Effects on Growth of Seaweeds 

The seasons significantly influence the growth of the seaweeds under similar 

experimental conditions. The SGR of U. lactuca during the first 14 days in the ocean 

water (OW) enriched 56 µM ammonium (NH4-N) (OW_NH4) was significant (P<0.5) 

difference between trial “effect of temperature on growth of U. lactuca” (0.60±0.22) 

conducting in early autumn (Table 9.4) and trial “effect of potassium (K+) fortification 

on growth of U. lactuca” conducting in early winter (0.18±0.07) (Table 9-7). Although 

the environmental factors (temperature, light) of the trials were the same, the natural 

growth of blades of U. lactuca collected from the field were different depending on 

the time of trials. U. lactuca also responded differently to the ammonium enrichment 

depend on seasons: in the trial effect of stocking density and NH4-N enrichment, 

conducted during winter, the NH4-N 56 µM gave a significantly higher SGR of U. 

lactuca than ambient OW (Table 9.3). However, in the trial of effect of temperature 

on U. lactuca growth, conducted in early autumn, there was no NH4-N enrichment 

effect on the growth of U. lactuca (Table 9.4).  
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The seasonal effect showed more clearly in case of L. catenata. When L. catenata was 

cultured in late winter, regarding the similar conditions of the K+ fortification, L. 

catenata showed positive growth (Chapter 8) than when it was cultured in the early 

winter (Chapter 4). Early winter significantly affected the growth of L. catenata since 

L. catenata died in all water types from the first 14 days, including ISW66, where it 

showed the highest SGR during 56 days of culture in late winter (Table 10-1). 

According to the observations from Matilda Bay, Swan River, WA, the growth season 

for L. catenata is from spring to early summer, which is similar to Japanese L. catenata 

(Lee, 1978). 

Similarly, Sargassum was also affected by the seasons. Under the same K+ levels and 

environmental factors, S. linearifolium was cultured in early summer that resulted in a 

significantly lower SGR than corresponding numbers in midwinter or early spring 

(Table 10-2). S. linearifolium’s growing season in the wild is from August to 

November (Martin-Smith, 1993) that proved the growth of Sargassum under 

laboratory conditions is similar to that in the wild. 

The stagnant growth of S. linearifolium in the non-enriched OW and K+ISW during 

the period from 29-42th day (Chapter 6) again proved that the seasonal growth of S. 

linearifolium under the laboratory conditions is similar to that under the outdoor 

natural conditions, where the biomass growth season ends by October (Martin-Smith, 

1994). The seasons did not show a significant effect on the S. podacanthum growth 

that demonstrated a similar growth in winter and summer seasons. However, the 

biomass of S. podacanthum increased in very early summer and then decreased 

afterward, reflecting the growth of S. podacanthum was similar to S. linearifolium 

(Table 10-2).  
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Table 10-1. Seasonal effects on L. catenata growth in the OW and K+ISW 

SGR Season OW ISW0 ISW33 ISW66 ISW100 

Day 1–14 
Early winter (Chapter 4) 1-0.87±0.23a 1-1.19±0.86a 1-1.48±0.23a 1-1.28±0.30a 1-1.83±0.69a 

Late winter (Chapter 8) 21.44±0.20ab 20.49±0.38a 20.78±0.29a 22.08±0.18b 21.31±0.54ab 

Day 1–28 
Early winter (Chapter 4) 1-0.87±0.23a 1-1.00±0.34a 1-1.53±0.23a 1-0.97±0.14a 1-1.43±0.49a 

Late winter (Chapter 8) 20.20±0.21a 20.31±0.13ab 20.52±0.26ab 20.89±0.13b 20.02±0.22b 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one time period 

sharing a common subscript are not significantly different at P<0.05 (t-test, n=4) 

Table 10-2. SGR (% d-1) of Sargassum spp. in different seasons 

SGR 

S. linearifolium S. podacanthum 

OW ISW100 OW ISW100 

Winter Early summer Winter Early summer Winter Early summer Winter Early summer 

Day 1–14 1.92±0.12 1.44±0.41 2.57±0.66a 0.12±0.66b -0.16±0.43a 0.49±0.08b 0.97±0.41 0.49±0.22 

Day 1–28  2.29±0.18 0.57±0.16 1.78±0.05a
 -0.16±0.76b

 -0.47±0.71 0.36±0.26 -0.46±0.47 0.15±0.13 

Day 1–42 2.02±0.10a
 -0.29±0.17b

 1.34±0.14a
 -0.47±0.46b

 -0.32±0.54 0.18±0.21 -0.17±0.33 -0.01±0.12 

Day 1–56 1.50±0.03a
 -0.51±0.10b

 1.03±0.14a
 -0.58±0.32b

 -0.26±0.41 -0.08±0.22 -0.17±0.24 -0.06±0.18 

Day 1–70 1.07±0.03a
 -1.01±0.20b

 0.81±0.09a
 -1.21±0.28b

  -0.16±0.17  -0.22±0.02 

Day 1–84 1.03±0.08a
 -1.18±0.10b

 0.52±0.09c
   -0.27±0.17  -0.28±0.06 

Values (mean±SE) within a row in the same water of one species sharing a common superscript are not significantly different (t-test; P>0.05; n=4). 
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10.2 Feasibility of Cultivating the Four Different Species in the Inland 

Saline Water: Comparative Analysis of Potassium Fortification, 

Temperature and Nutrient Effects 

Potassium (K+) is important for the growth of algae, which plays a crucial role in 

photosynthesis (Checchetto et al., 2013) and protein synthesis (Blumwald et al., 2000), 

and cannot be replaced by any other cations (Yarish et al., 1980). This study proves 

that the growth of all the studied seaweed species was adversely affected by the K+ 

deficiency in the ISW, similar to other marine animal species (Dinh, 2016; Fielder & 

Allan, 2003; Prangnell & Fotedar, 2006b; Tantulo & Fotedar, 2006), when all the 

studied seaweed species died in the non-fortified ISW during the first 14 days.  

External [K+] determines the internal and external cell gradient that allows Na+ and K+ 

exchange (Blumwald, 2000). In crustaceans, the normal ratio between Na+ and K+ is 

regulated by the Na+/K+ ATPase enzyme (Burton, 1995; Roer & Dillaman, 1993). 

Similarly, this is also true for higher plants and seaweeds specieswhere the gradient is 

regulated by the internal exchange mechanism between Na+ and K+ (Blumwald et al., 

2000). The different ionic gradient is crucial for nutrient transport within cells 

(Blumwald et al., 2000). Since the [K+] in the ambient ISW in our trials were too low 

to support the differential gradient, leading to inhibition of the nutrient transport into 

cells for protein synthesis, resulting in lower survival and growth in ISW. The low 

[K+] in ISW also inhibits the normal physiological processes of cultured algae. For 

instance, the marine diatom Phaeodactylum tricornutum releases K+ from its cell when 

exposed to a free K+ solution and looses its photosynthetic capacity (Overnell, 1975). 

Similarly, lower [K+] in the cultured medium decreases Bostrychia radicans and 

Caloglossa leprieurii intracellular [K+] (Yarish et al., 1980). 

The K+ is actively and passively uptaken in both the low and high [K+] media, hence 

the K+ can be accumulated and maintained at high concentrations in cells, while Na+ 

can be extruded and kept at lower concentrations (Tromballa, 1978). In a lower K+ 

medium, the intercellular K+ decreases (Zimmermann & Steudle, 1971), and Na+ is 

accumulated from the medium (Nuccitelli & Jaffe, 1976), the tissue K+ is reduced and 
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unable to assist the seaweed growth. A rapid decline in the diatom Asterionella 

formosa growth rate occured in a culture medium after a proportional depletion of [K+] 

(Jaworski et al., 2003; Talling, 2010). The demand of energy for K+ uptake resulted in 

the poor survival and growth of seaweed in the ambient ISW in S. linearifolium until 

day 56th, and S. podacanthum, L. catenata, U. lactuca in the first 14 days of the culture. 

The longer survival time of S. linearifolium in the ISW100 with a positive cumulative 

specific growth rate (SGR) until day 84th, without the nutrient supplement, showed its 

relative higher ability to grow in the K+ISW than L. catenata and U. lactuca  wherein 

the growth was limited until the day 42th (Table 10-3). 

The need of ther K+ in water for the seaweed growth varies by species to species 

(Yarish et al., 1980), similar to higher plants where the K+ deficiency impacts are 

species specific (Sale & Campbell, 1987). Brown seaweed Sargassum required a 

similar concentration of K+ in OW to sustain its growth, whereas red seaweed L. 

catenata and green seaweed Ulva lactuca required lower [K+], from 33 to 66% in OW 

at the same salinity. This different requirements of K+ in ISW of the seaweeds can be 

explained by the differences of the impact of the K+ on the photosynthesis and protein 

synthesis of the seaweeds (Blumwald et al., 2000; Checchetto et al., 2013). The 

physiological mechanisms of seaweeds, in terms of their dependency on K+ as a 

macronutrient to support their growth, is comparable and similar to higher plants. The 

K+ deficiency significantly reduce the chlorophyll a and b formation in cotton 

Gosypium hirsutum (Onanuga et al., 2012), maize (Zea Mays L.) (Zhao et al., 2016), 

and causes chlorophyll break-down in Ananas comosus L. (Sideris & Young, 1945). 

The K+ activates enzymes for protein and carbohydrates synthesis (Checchetto et al., 

2013), and affects the CO2 assimilation rate of Carya cathayensis leaves (Jin et al., 

2011). All the seaweeds have a chloroplast envelope, but only green and red algae have 

chloroplast eukaryotic (Sze, 1998). The red, green and brown seaweeds have 

chlorophyll as the principal photosynthetic pigments, in addition, the red seaweed has 

phycoerythrobilin, and the green seaweed has chlorophyll a, whereas the brow 

seaweed has chlorophyll c1, c2 and fucoxanthin (Sze, 1998). Those differences in 

photosynthesis pigments of the brown seaweed from the green and red seaweeds may 

lead to a higher need of [K+] in ISW for the growth of S. linearifolium than U. lactuca 
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and L. catenata, where the similarity in chloroplast eukaryotic of the red and green 

seaweeds may result in a similar need for K+ in ISW of U. lactuca and L. catenata. 

The low K+ supply results in a low K+ content and low chlorophyll a+b which leads to 

a lower CO2 assimilation rate and a low total soluble protein content in leaves of Carya 

cathayensis (Jin et al., 2011). 

The previous experiments have revealed that the different effects of low [K+] in ISW 

on the survival and growth of seaweed cultured in different [K+] levels in ISW (Bui, 

Luu, & Fotedar, 2017; Bui, Luu, Fotedar, et al., 2017) and as described in Chapter 9. 

The K+ effect could be species dependent. There was a higher SGR of S. linearifolium 

than L. catenata and U. lactuca during all culture periods, as well as a longer survival 

time of S. linearifolium in ISW100. Whereas a lower SGR of S. linearifolium than L. 

catenata and U. lactuca was recorded in lower [K+] ISWs (ISW0 and ISW33). The 

role of the K+ in the growth of seaweeds is important for supporting the survival of 

these three seaweed species, and has a complexity in terms of its relation and the 

compounded effect to other cations, which requires further investigation.  

L. catenata presented a higher SGR than U. lactuca under similar conditions of K+ 

fortification in the first 35 days of the cultured period. During that period, a positive 

SGR of L. catenata proved having higher sustainable growth feasibility than a negative 

SGR of U. lactuca in all the K+ISW levels. U. lactuca responded to K+ISW in a similar 

way to S. podacanthum, where the positive SGR of S. podacanthum only presented in 

the ISW100 in the first fortnight, and then a negative SGR remained over the rest of 

the cultured period in all other K+ISW waters. The study also proved that S. 

podacanthum needs nutrient supplementation to be grown in the K+ISW (Table 6-13), 

as K+ISW cannot sustain a positive growth rate of S. podacanthum after 14 days (Table 

5-7), whereas S. linearifolium showed a similar response in the ISW as L. catenata, 

whereby these two species grew for up to 56 days in the ISW100.  

Of the four seaweed species that were cultured in K+ISW, S. linearifolium sustained 

longest in the ISW, and showed the highest growth rate (mg d-1 L-1). Under the optimal 

K+ISW (ISW100), S. linearifolium increased its biomass until day 56th and the growth 

rate gradually decreased over time, as in the OW (Figure 10-1 and Figure 10-5). L. 
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catenata exhibited positive growth up to day 42th in ISW33 and reached its highest 

growth rate at day 42th then declined (Figure 10-3). K+ played a more important role 

in the growth of S. podacanthum than S. linearifolium, as S. podacanthum died in the 

K+ deficiency conditions sooner than S. linearifolium (Figure 10-2, Figure 10-4) and 

the growth rate in ISW100 of S. podacanthum was significantly lower than S. 

linearifloium in the first 28 days (Figure 10-5).  

 

 

Figure 10-1. Growth rate (mg d-1 L-1) of the four seaweed species in OW 

Values (mean±SE) in bars sharing a common letter in a fortnight are not significantly different (LSD 

test; P>0.05)  
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Figure 10-2. Growth rate (mg d-1 L-1) of the four seaweed species in ISW 

Values (mean±SE) in bars sharing a common letter at a fortnight are not significantly different (LSD 

test; P>0.05)  

 

Figure 10-3. Growth rate (mg d-1 L-1) of the four seaweed species in ISW33 

Values (mean±SE) in bars sharing a common letter at a fortnight are not significantly different (LSD 

test; P>0.05)  
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Figure 10-4. Growth rate (mg d-1 L-1) of the four seaweed species in ISW66 

Values (mean±SE) in bars sharing a common letter at a fortnight are not significantly different (LSD 

test; P>0.05)  

 

Figure 10-5. Growth rate (mg d-1 L-1) of the four seaweed species in ISW100 

Values (mean±SE) in bars sharing a common letter at a fortnight are not significantly different (LSD 

test; P>0.05)       
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Table 10-3. Comparison of cummulative SGR (% d-1) of the selected seaweed species culturing in OW and K+ISW  

Time Species OW ISW0 ISW33 ISW66 ISW100 

Day 1–28  

S. linearifolium 12.29±0.18a
 1-1.22±0.50b

 10.19±0.14c
 11.06±0.06d

 11.78±0.05ad
 

S. podacanthum 2-0.47±0.71    
2-0.46±0.47 

L. catenata 30.20±0.21a 
20.31±0.13ab 

10.52±0.26ab 
10.89±0.13b 

3-0.02±0.22b 

U. lactuca 23-0.16±0.09a 
2-0.20±0.04ab 

10.03±0.06b 
    2-0.14±0.02ab 

2-0.16±0.09a 

Day 1–42  

S. linearifolium 12.02±0.10a
 1-3.78±2.33b

 -0.46±0.17a 0.55±0.10a 11.34±0.14a 

S. podacanthum 2-0.32±0.54    
2-0.17±0.33 

L. catenata 120.32±0.25 
20.37±0.16 0.73±0.16 0.71±0.19 120.31±0.17 

U. lactuca 2-0.24±0.08a
 2-0.27±0.06ac

 0.03±0.09b
 -0.22±0.16bc

 2-0.20±0.05a
 

Day 1–56 

S. linearifolium 11.50±0.03a
 -3.15±1.80b -2.95±1.99b 0.24±0.19ab 11.03±0.14a

 

S. podacanthum 2-0.26±0.41    
2-0.17±0.24 

L. catenata 20.07±0.16ab -0.23±0.24a 0.23±0.12ab 0.30±0.07b 
20.14±0.15ab 

Day 1–70 
S. linearifolium 11.07±0.03a   

10.14±0.12b 
10.81±0.09c 

L. catenata 2-1.05±0.58 -1.28±0.31 -0.56±0.07 2-0.83±0.13 2-0.47±0.09 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one time period 

sharing a common subscript are not significantly different at P<0.05 (t-test, n=4) 
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Table 10-4. Comparison of SGR (% d-1) between two Sargassum species in NH4-N:PO4
3--P (µM) enriched K+ISW 

Time Species Control 80:8 120:12 160:16 200:20 240:24 

Day 1–14 
SL 0.12±0.66 0.09±0.37 0.47±0.26 0.44±0.40 -0.01±0.38 0.97±0.48 

SP 0.49±0.22a -0.29±0.27ac 0.66±0.64ab 1.70±0.64b -0.74±0.53c 0.66±0.45ab 

Day 1–28 
SL -0.16±0.76a

 -2.69±1.60b
 1-0.37±0.17ab

 -0.39±0.26ab
 -1.33±0.40ab

 -0.41±0.25ab
 

SP 0.15±0.13ac
 -0.15±0.21ac

 20.54±0.18ab
 1.06±0.31b

 -0.38±0.30c
 0.35±0.23abc

 

Day 1–42 
SL -0.47±0.46a

 1-1.68±0.45b
 1-1.43±0.14b

 1-1.54±0.35b
 1-2.01±0.17b

 -0.72±0.24ab
 

SP -0.01±0.12a
 2-0.34±0.28a

 20.13±0.18a
 20.83±0.25b

 2-0.21±0.15a
 2-0.13±0.13a

 

Day 1–56 
SL -0.58±0.32a

 -1.35±0.36b
 - -1.42±0.67b

 - -1.07±0.10 

SP -0.06±0.18ab
 -0.41±0.26a

 0.16±0.19bc
 0.57±0.18c

 -0.37±0.26ab
 -0.03±0.18ab

 

Day 1–70 
SL -1.21±0.28 - - - - - 

SP -0.22±0.02ab
 -0.42±0.21a

 -0.27±0.37a
 0.26±0.09b

 -0.19±0.15a
 -0.14±0.07ab

 

Values (mean±SE) within a row sharing a common superscript are not significantly different (LSD test; P>0.05; n=4). Values (mean±SE) within a column of one time period 

sharing a common subscript are not significantly different at P<0.05 (t-test, n=4) 
SL: S. linearifoium; SP – S. podacanthum.  
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The water quality of the nutrient-enriched media of S. linearifolium and S. 

podacanthum was similar in terms of nitrite (NO2
--N) in both OW and K+ISW. 

However, the nitrate (NO3
--N) and PO4

3--P concentrations in waters culturing S. 

podacanthum were lower than in waters culturing S. linearifolium, and were positively 

correlated to the decrease in the Sargassum, whereas higher NO3
--N and PO4

3--P 

concentrations were linked to the higher mortality rate of the Sargassum (Table 6-10, 

Table 6-11). In the case of U. lactuca, this conclusion was again proved when a 

significant increase of [NO3
--N] in the K+ISW culturing U. lactuca at the termination 

of the experiment simulated the negative SGR of U. lactuca (Table 9-8). 

The need for NH4-N and PO4
3--P was species-dependent, and U. lactuca and L. 

catenata did not need the supplement of NH4-N and PO4
3--P for their higher growth 

rates. U. lactuca grew faster at the NH4-N 56 µM, which was similar to the conclusion 

of Campbell (2001). 

L. catenata also responded similarly to all enriched nutrient levels, without a 

requirement of PO4
3--P supplementation in K+ISW. For L. catenata better growth, no 

greater than a concentration of NH4-N 100 µM weekly supplementation was 

recommended. As this is the first indoor study on L. catenata culture, these preliminary 

results are useful and serve as a baseline for future research.  

Sargassum responded differently to the nutrient enrichment, represented by NH4-N 

and PO4
3--P supplementation. S. linearifolium did not response to the nutrient 

enrichment. S. linearifolium biomass decreased in all the nutrient-enriched waters 

toward the termination of the cultured period, and received no significant influence 

from the nutrient supplementation. In addition, no S. linearifolium biomass gain was 

recorded over the experiment period, except for ambient OW during the first 14 days. 

However, S. podacanthum grew fastest at 160:16 µM NH4-N:PO4
3--P, where the SGR 

of S. podacanthum showed no significant difference from K+ISW and OW. In other 

nutrient levels, the S. podacanthum grew faster in OW than in K+ISW. Generally, S. 

podacanthum responded better than S. linearifolium to the nutrient enrichment, 

resulting in higher SGR at all nutrient-enriched levels in both OW and K+ISW (Table 

10-4). In addition to the K+ fortification to ISW, S. podacanthum required NH4-
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N:PO4
3--P 160:16 µM for higher growth, whereas S. linearifolium grew well in non-

enriched K+ISW. However, S. baccularia required NH4-N:PO4
3--P from 3:0.3 to 5:0.5 

µM, which was continuously provided in the cultured media (Schaffelke & Klumpp, 

1998), and this [PO4
3--P] was lower than the [PO4

3--P] in the cultured media for S. 

linearfolium and S. podacanthum (Table 5-4, Table 5-12). 

In addition to the salinity, pH and temperature are important to the growth and nutrient 

uptake of seaweeds (Ding et al., 2013; Endo et al., 2013; Hidayat et al., 2015; Hwang 

et al., 2015; Lignell & Pedersén, 1989). The temperature affects the growth of 

seaweeds through the effects on the photosynthetic activity (Ding et al., 2013) and the 

nutrient uptake (Duke et al., 1989; Hwang et al., 2004). Each seaweed species prefers 

a range of temperature and pH for the optimal growth, including different species 

within the same family. The ambient pH of ISW at about 8 was suitable for all the 

studied seaweeds. Whereas the temperature preference is species-specific. For 

instance, U. lactuca from this study preferred 25–26oC for a higher growth rate. The 

temperature preference of U. lactuca in this study was similar to U. curvata (de 

Casabianca et al., 2002), whereas U. rigida reached a higher growth rate at 17oC (de 

Casabianca et al., 2002). A temperature of 20–22oC was preferred for Sargassum spp. 

growth, which was higher than the requirement for S. thunbergia, which reached its 

maximal growth rate at 15oC (Choi et al., 2009; Yamauchi, 1984). The preferred 

temperature range is 20–30oC for S. patens (Endo et al., 2013), 22–28oC for S. 

linearifolium (Martin-Smith, 1993). The S. linearifolium could not survive in 

temperature higher than 29oC (Martin-Smith, 1993). Similarly, young seedlings of S. 

henslowianum showed reduced growth at temperature of 30oC (Chen & Zou, 2014). 

Although temperature was not studied in Chapter 4, Section 4.2.2, wide water 

temperature fluctuations were considered a factor that affected the growth of two 

Sargassum spp. Under the outdoor conditions, as a consequence of the large variation 

of temperature (13–38oC), the Sargassum spp. could grow in the period of no longer 

than 42 days. In the nutrient enriched experiments (Chapter 6), the temperature trend 

of the cultured media was different between the two Sargassum species. The cultured 

media of S. podacanthum had the temperature increased during the middle of the 

experiments. A high temperature of 25oC for S. podacanthum was maintained for 28 
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days, from day 43th to 70th, and was then reduced to the preferred range of Sargassum 

spp. at the end of the trial, similar to the commencement. However, this short-term 

high temperature of the cultured media did not negatively affect the growth of S. 

podacanthum (Table 6-11). Under the effect of high temperature for a longer period, 

which remained at about 25oC from the day 28th to the end of the experiment, the high 

temperature did negatively affect the SGR of S. linearifolium (Table 6-4), which could 

be one of the causes of the deceased S. linearifolium from day 56 of the cultured period. 

These results again proved that the Sargassum can sustain a short period (of about 28 

days) under a high temperature of 25–26oC (see Conclusion in Chapter 7). Only L. 

catenata could stand a broad range of temperature, from 20–26oC, without any 

significant difference of L. catenata SGR in this range of temperature. 

In general, the seaweed species were cultured at the same stocking density of 0.2 kg 

m-2 (equivalent to 0.8 kg m-3). The green seaweed U. lactuca and red seaweed L. 

catenata preferred the salinity of 30–32 ppt and the K+ fortification for ISW at the 33–

66% of the [K+] in OW. These seaweed species grew faster in the nutrient enriched 

33–66% K+ISW, at the level of weekly enriched NH4-N 56 µM and 100 µM for U. 

lactuca and L. catenata, respectively. Whereas the S. podacanthum required a weekly 

supplementation of a combination of NH4-N and PO4
3--P at 160:16 µM in 100% 

K+ISW. However, S. linearifolium did not require any nutrient supplementation in 

100% K+ISW (Table 10-5). 

Table 10-5. Selected physical and chemical conditions where the seaweeds 

achieved the higher SGR (% d-1) 

Criteria L. catenata  U. lactuca S. linearifolium S. podacanthum 

Salinity (ppt) 30–31 30–31 34–35 34–35 

Temperature (oC) 21–22 25–26 20–22 20–22 

Nutrient 

enrichment (µM) 

NH4-N 

100 

NH4-N   

56 
Non 

NH4-N:PO4
3--P 

160:16 

K+ fortification 

(% of [K+] in OW) 

66 33 100 100 
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Figure 10-6. The SGR (% d-1) of the four seaweed species under their preferable 

conditions (SGR values (mean±SE) within a time frame sharing a common letter are 

not significantly different (LSD test or t-test; P>0.05; n=3) 

The S. linearifolium presented the most suitable candidate to grow in K+ISW, 

following by S. podacanthum, and L. catenata (Figure 10-6), respectively. In the 

K+ISW at the OW-equivalence [K+], at favourite temperature of 20–22oC, without 

nutrient enrichment, the SGR of the S. linearifolium in 84 days was higher than the 

SGR of S. podacanthum under favourable NH4-N:PO4
3--P 160:16 µM enrichment in 

K+ISW. The SGRs of the two Sargassum species were similar to the SGR of L. 

catenata in the first month of the cultured period, and higher than the SGR of U. 

lactuca in the period of 42 days (Figure 10-6).  In this study, the brown seaweed 

survived longer in the K+ISW than the red and green seaweeds, in addition to the 

higher SGR, the Sargassum spp. presented as a potential candidate to grow in ISW in 

WA. Although the green seaweed U. lactuca was more common than the three other 

seaweed species, towards its tolerance to K+ISW was shortest.   
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10.3 Conclusions 

This study presented the first attempt to culture seaweeds in ISW in WA. Particularly, 

this has been the first study to culture L. catenata indoors.  

The K+ deficiency in ISW results in the mortality of seaweeds during the early period 

of the cultivation and hence, the K+ fortification either by the grade KCl or the potash 

of sulphate K2SO4 is necessary to sustain the growth. However, the need for the K+ is 

species-dependent. The red seaweed Grateloupia suspectinata and brown seaweed 

Cystophora subfacinata presented lower toletance in ISW and K+ISW than other 

species of red seaweed and brown seaweed, such as L. catenata and Sargassum, 

respectively. Therefore G. suspectinata and C. subfacinata were not studied further. 

The green seaweed U. lactuca and the red seaweed L. catenata prefer the [K+] in ISW 

equivalent to 33–66% of the [K+] of OW at a similar salinity. However, Sargassum 

spp. requires a higher concentration of the K+, at a level similar to its concentration in 

OW at the same salinity. Among the six candidates of seaweed species selected to be 

tested for their culture potential in ISW, Sargassum spp. presented the highest SGR 

and longest survival time in K+ISW.  

It is possible to grow seaweed species in K+ISW of WA at the ambient pH and 

temperature ranging from 20–26oC. The temperature requirement for seaweed culture 

depends on the species. For example, U. lactuca prefers a temperature of 24–26oC to 

grow and Sargassum spp. grows faster at 20–22oC, whereas a temperature of 21–26oC 

is suitable for the L. catenata growth.  

Seaweed species are able to grow in K+ISW in a salinity similar or a lower salinity 

than OW. As the Sargassum was collected from the open sea, where salinity was 35 

ppt, salinity was not a factor for its growth. However, U. lactuca and L. catenata were 

collected from a river at a lower salinity, and this study proved that the salinity of 30–

35 ppt and 30–31 ppt were also suitable for U. lactuca and L. catenata culture, 

respectively.  

Ammonium chloride and sodium dihydrogen phosphate can be used as nutrients to 

sufficiently provide NH4-N and PO4
3--P for seaweed growth. A supplemented NH4-N 

concentration of no greater than 100 µM for L. catenata and 56 µM for U. lactuca are 
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required. L. catenata and U. lactuca do not demand additional PO4
3--P in K+ISW. 

However, S. podacanthum rrequires a combination of NH4-N:PO4
3--P 160:16 µM in 

K+ISW, whereas the ambient nutrient concentration is enough for S. linearifolium in 

K+ISW. 

The results in this study confirmed that seaweed growth is subjected to a seasonality. 

Early summer is growing season of L. catenata and Sargassum spp. A culture period 

of no longer than 42 days and 56 days are sufficient for L. catenata, and Sargassum 

spp., respectively, to grow.  

10.4 Limitations of the Study and Future Research Recommendations  

In the light of the following limitations of the present study and recommendations of 

the future research, it is envisaged that a few locally available seaweed species, around 

Perth metropolitical region, do have technical possibility to be cultured in K+ISW. 

However, broad recommendation of the study would be to validate and demonstrate 

the outcomes of the present research under a commercial envorinment, where 

bioeconomic of the seaweed production is included.  

The mortality of seaweeds toward the termination of the experiments resulted in a lack 

of adequate of sample quantities to conduct a proximate composition analysis. The 

nutrient and K+ uptake by seaweed could not be determined due to this limitation. No 

comparison of the K+ variation in the culture medium and seaweed tissues could be 

made, therefore the role of the K+ in the cells could not be further investigated. 

Although NH4-N and PO4
3--P were supplemented, NH4-N and PO4

3--P uptake could 

not be measured, which was a limitation of this study. 

The compounded effect of the K+ to other cations in water, such as Na+, and H+, which 

are related to the Na+/K+ exchange and H+ATPase activities at different levels of the 

K+. A comprehensive understanding and detailing of the process of interactions among 

the cations in an intercelullar context, in relation to the effect of the K+ deficiency ISW 

in seaweed culture, requires further investigation.  
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Further study on the K+ and nutrient uptake of the seaweeds cultured in ISW is needed 

to assimilate the Na+/K+ roles, as well as clarify the mechanism of nutrient efflux and 

influx in seaweed tissues that may affect the seaweed growth. These require large-

scale experiments to receive enough seaweed samples at each stage of the cultured 

period. 

The study of salinity, pH and temperature are crucial for seaweed culture, particularly 

in a new cultured media such as the ISW. However, a salinity lower than 30 ppt has 

not been tested so far, whereas the U. lactuca may grow in a salinity of 5–40 ppt in the 

OW (Choi et al., 2010; Koeman & van den Hoek, 1981), and can also grow in an 

integrated system at 25 ppt salinity of the OW (Van Khoi & Fotedar, 2011). The 

growth of seaweeds should be further studied at a salinity range from 10–25 ppt as the 

salinity of the ISW is lower during the winter season. An ambient pH of ISW in this 

study was 7.0 to 8.4 that is considered the most suitable pH for all the targeted species. 

However, a very low pH under 5.5 or a higher pH above 9 can also be studied, to 

investigate whether the seaweeds can sustain their growth in nature where the ISW pH 

varies widely. A higher temperature than 26oC and a lower temperature at about 15oC 

are suggested to study for the application of growing seaweeds in the ISW in fields, 

where those parameters fluctuate widely.  

Therefore, it is also recommended that more salinity, temperature, pH, nutrient and 

ionic profiles should be studied under K+ISW environment in order to develop culture 

ranges of the selected seaweed species. It is also recommended that ionic composition 

of the selected seaweed species be conducted with the ionic profiles of the ISW.   
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APPENDICES 

Appendix 1. Seaweed Collections and Experiments 

Species Seaweeds Collection Experiments 

 

Cystophora 

subfacinata 
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Species Seaweeds Collection Experiments 

 

Ulva lactuca 

   

Grateloupia 

suspectinata 

 
 



 

258 

 

Species Seaweeds Collection Experiments 

Lomentaria 

catenata 

 

 

  

Sargassum 

linearifolium 
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Species Seaweeds Collection Experiments 

 

Sargassum 

podacanthum 
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Species Seaweeds Collection Experiments 
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and S. linearifolium 

cultured oudoor 
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