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Abstract 

Photodynamic therapy (PDT) offers an alternative or adjuvant treatment option to 

other cancer therapies due to its known ability to provide targeted therapy to the organ 

and its related tissues with minimal invasiveness. PDT involves a photosensitizer (PS), 

a light source to activate the PS within the diseased tissue in the presence of oxygen.  

In recent years, nanoparticles of semiconductor metal oxides that have appealing 

photophysical properties have been increasingly studied as a new class nano 

photosensitizer (nano-PS) in PDT. Most studies have been limited to the materials 

design and in vitro assessment of the suitability of such materials as PSs.  The aim of 

this project was to evaluate the pharmaceutical and biological properties of a novel 

class of semiconductor-based nano-PS consisting of a hybrid zinc oxide (ZnO) and 

iron oxide (Fe3O4) nanocore that was surface coated with silica and conjugated with 

folic acid (FA), and to determine how they can be effectively utilised to produce 

cancer-killing effects upon exposure to UV-A irradiation, both in vitro and in vivo.   

 

On characterization of the hybrid NPs, Fe3O4-ZnO (FZ), silica-coated FZ (FZSi) and 

folic acid modified FZSi (FZSiFA25 and FZSiFA50) NPs were found to be 13-19 nm 

in size determined by dynamic light scattering (DLS); while, silanization and folate 

modification led to some change in morphology, size and zeta potential. Stability of 

those NPs in the culture medium, Dulbecco’s modified Eagle’s medium (DMEM), was 

reasonable and none exceeded 50 nm of particle size in 24 hours, indicating that the 

results of our experimental work were unlikely affected by the stability of NPs.      

 

Cellular responses of the hybrid NPs were studied in mouse melanoma cells (B16-

F10), Caco-2 and 3T3 cells. The results indicated a dose and time-dependent toxicity 

of the hybrid NPs. UV-A irradiation of the hybrid NPs resulted in a drastic reduction 

in B16-F10 and Caco-2 cell viability, demonstrating a synergistic effect between the 

NPs and UV-A irradiation. FA conjugation enhanced the photo-induced toxicity in 

melanoma cells at low NPs dose, indicating greater NPs-cell interactions facilitated by 

the targeting ligand. Singlet oxygen quantum yield determined by the chemical 

trapping method confirmed the production of singlet oxygen by hybrid NPs which is 

expected to be one of the main cell killing mechanisms of hybrid NPs. Furthermore, 

the production of reactive oxygen species (ROS) by the hybrid NPs were detected in 
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cells (both in the dark and in PDT), likely contributed to the cell-killing ability of nano-

PSs. Such ROS induced cell-killing effect of hybrid NPs was confirmed by the 

observation of enhanced cell viability associated with the pre-treatment of N-acetyl 

cysteine (NAC), an antioxidant commonly used for ROS study, which led to a 

significant decrease in ROS production. Results also showed that double and triple 

irradiation conditions produced better, and more drastic cell-killing compared to single 

radiation, confirming repeatability of the photo-killing of nano- PSs in PDT.  

 

Cellular uptake study confirmed the time-dependent uptake of NPs in the cancer cells 

and the FA; modified hybrid NPs exhibited better cellular uptake compared to those 

without FA. NPs localisation in cells was qualitatively confirmed by the confocal 

microscopy images after NPs treatment. The detection of the elevated level of total 

cell-associated zinc and iron further confirmed the cellular uptake of FZSiFA50 NPs 

and the enhancement of cell-associated metal levels might be a significant contributing 

factor towards the cellular toxicity. Cell metal content study also revealed that FZSi 

NPs appeared to undergo faster decomposition than FZSi FA50 NPs, under the UV-A 

irradiation, in B16-F10 cells. Flow cytometry study revealed that apoptosis process led 

to the dose and time-based cell death by hybrid NPs. The morphological changes of 

the cells on treatment with hybrid NPs further confirmed the cell death involved 

apoptosis. The caspase-dependent apoptosis pattern of cell death was evident in B16-

F10 cells following treatment with the hybrid NPs and UV-A irradiation. FZSi and 

FZSiFA50 NPs showed different apoptotic and necrotic pattern. These in vitro 

findings warranted the selection of FZSi and FZSiFA50 NPs for the further in vivo 

study.   

 

The antitumour effects of PDT with hybrid NPs were assessed using a melanoma 

mouse model (B16-F10) in C57BL/6 male mice. A dose of 2 mg/kg NPs was 

administered to the mice intratumorally. The UV-A radiation was given immediately 

to UVD0 groups and after 3 days interval for UVD3 groups following NPs treatment. 

The results indicate that up to day 16 the FZSiFA50 NPs with UVD3 group had the 

strongest antitumour effect with 95% tumour volume inhibitory rate as compared to 

the UV-A alone (65%) and FZSiFA50 NPs alone (58%) groups, suggesting FA surface 

modification of hybrid NPs may have enhanced its tumour cell uptake, together with 

the photoreactivity of hybrid NPs, which led to strong tumour inhibition.  Over the 
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whole period of study, however, both FZSi and FZSiFA50 NPs with UVD3 showed 

strong antitumour effects with life prolongation rate of 44.5% and 31.2% respectively, 

which are significantly greater than the rest (UV alone 21.3%, FZSi & FZSiFA50 NPs 

alone 0 &15.6%, FZSi & FZSiFA50NPs with UVD0 15.6% & 5.8%). Our animal 

study demonstrated that the interval between the UV-A irradiation and NPs treatment 

is playing a pivotal role in augmenting the antitumour effect of PDT with hybrid NPs. 

 

Overall, we concluded that the developed novel hybrid NPs had fulfilled the criteria to 

be effective PSs for PDT with UV-A against cancer cells in vitro and in vivo. They are 

promising candidates to be developed into a clinically applicable PS for cancer PDT. 

The studies of these hybrid NPs in this PhD project provide us a better understanding 

in designing the semiconductor metal oxides-based nano-PS for PDT. 
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1.1 Cancer and cancer treatment 

Cancer is a devastating disease affecting the world, and the cancer cases are increasing 

at an alarming rate globally. Cancer as the global health challenge refers to more than 

277 different types of the disease.  It causes the second most extensive mortality in the 

world.  This tissue level disease presents challenges in accurate diagnosis and effective 

treatments (Hassanpour et al., 2017, Parvanian et al., 2017).  Cancer caused 8.8 million 

deaths in 2015 and 1 in 6 deaths worldwide (WHO, 2017). In Australia, 134,174 cases 

have been diagnosed with cancer so far in 2017. According to statistics skin cancer 

such as melanoma had caused 1839 deaths in 2017, which counts for 10.4% of total 

cancer cases (Cancer Australia, 2017). Although there is a broad understanding of 

cancer, there is an unmet need for research. 

 

Extensive research in cancer has led to the fast development of treatment modalities 

in areas such as chemotherapy, radiotherapy, gene therapy and immunotherapy 

(Cancer Council Australia, 2017). Many conventional cancer therapies are suffering 

from limitations such as poor drug solubility, fast deactivation of the drug, 

unfavourable biodistribution, pharmacokinetics and being toxic to healthy cells which 

all contribute to many unwanted side effects. Photodynamic therapy (PDT), delivered 

by nanotechnology, is a promising alternative solution and can be used in combination 

with the existing treatment to overcome the limitations facing cancer therapy (Arruebo 

et al., 2011).  

 

1.1.1 Chemotherapy 

Chemotherapy has offered increased survival rate to patients with distinct types of 

cancer, though it causes severe side effects and declines in cognitive functions (Vitali 

et al., 2017). They are provided to patients at the maximum tolerated dose (MTD) (Wu 

et al., 2017; Chen et al., 2017; Lambert et al., 2017). Systemic side effects include 

acute and delayed nausea, mouth ulcerations and cognitive impairments and long-term 

side effects can lead to developing other type cancers (Wang et al., 2016). Also, 

chemotherapy has reported relapse and developed resistance with 90% of the drugs, 

especially in metastatic cancers (Wu et al., 2017; Chen et al., 2017).  Targeting tumour 

vascular cells rather than tumour cells can reduce the relapse, drug resistance and 

barriers that prevent anti-cancer effects. This provides the basis for metronomic 

chemotherapeutic treatment, targeting tumour vascular cells with low doses of 
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chemotherapeutic agents for a prolonged time (Abu Lila & Ishida, 2017), a concept 

which potentially can be used in combination therapy of PDT with chemotherapy. 

 

1.1.2 Radiotherapy 

In radiotherapy, high-energy X-rays are delivered in fractions to a local region. The 

fractions are delivered in brief time points within 10-15 min. Sometimes chemotherapy 

is given along radiotherapy called chemo-radiation (Smith & Prewett, 2017). Almost 

50% cancer patients receive radiotherapy as part of their treatment, and 40% receive 

towards curative treatment (Baskar et al., 2012). It is an excellent treatment option for 

patients with significant risk disease and those who cannot tolerate surgery. The 

biggest advantage of radiotherapy is the provision of local treatment, although may 

not be selective enough. The major limitation is it cannot be used for the treatment of 

disseminated disease as irradiation of the whole body with appropriate doses is not 

possible (Chummun & Mc Lean, 2017; Craythome & Al-Niami, 2017).  Radiotherapy 

can be delivered in two ways, externally through high-energy radiation source to the 

site of action and internally through radioactive sources sealed in catheters called 

brachytherapy (Song et al., 2017). Radiotherapy mechanism of action is the 

destruction of deoxyribonucleic acid (DNA) permanently, which leads the cells to 

apoptosis.  Radiotherapy may damage the healthy cells at or near the treatment area of 

ionizing radiation, causing detrimental effects including fatigue and skin problems, 

which is often suffered by patients (Mazonakis et al., 2017; Baskar et al., 2012).  

Biological effects of radiation depend on linear energy transfer (LET), dose, dose 

fractionation and sensitivity of the treated tissues or organ (Baskar et al., 2012).  Side 

effects of radiation therapy may include skin toxicity, mucositis, diarrhoea and dry 

mouth (Wang et al., 2016).  High dose of radiation could lead to the risk of developing 

secondary cancer during the radiation therapy (Ng & Suryak, 2015). These 

consequences of conventional cancer treatments led to the extensive development of 

PDT as an alternative treatment strategy against many types of cancer. 

 

1.2 PDT  

1.2.1 History of PDT 

In 1907, Von Tappeiner and Jodlbauer defined PDT, and Lipson is largely responsible 

for initiating the modern era of PDT (Dougherty, 1993). In the 1960s Lipson and his 

colleagues have studied the PS, hematoporphyrin derivative (HpD) (Dougherty, 1993; 
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Triesscheijn et al., 2006; Moan & Peng, 2003). He has looked for a diagnostic agent 

towards tumour detection. Dougherty and his colleagues, (1989) developed PDT 

further in 1975, by treating experimental animal tumours (Dougherty, 1989). In 1978, 

Dougherty first demonstrated the clinical effectiveness of PDT by performing 

treatments on patients with cutaneous or subcutaneous tumours and observed partial 

or complete recovery in the majority of the patients (Dougherty et al., 1978). Photofrin 

(HpD), was the first PS in PDT used for bladder cancer in Canada introduced in 1993. 

Since then there have been more than 200 PDT clinical trial studies involving other 

types of PSs, and PDT is continually gaining clinical acceptance (Agostinis et al., 

2011). 

 

1.2.2 Mechanism of PDT 

Unlike radiation therapy which uses high energy of the radiation, PDT uses a lower 

energy radiation and can be repeated at the same site several times if required 

(American cancer society, 2017). The clinical PDT involves a combination of light 

and PSs as drugs to achieve selective damage to diseased/target cells and tissues 

(Allison et al., 2008). There are three phases involved in PDT: excitation of the 

photosensitizer (PS) by a given dose of light of a suitable wavelength, generation of 

toxic oxygen species and cell death (Paszko et al., 2011).  The presence of adequate 

molecular oxygen in tissues is a requirement for a successful PDT.  Because of the use 

of localised light and photosensitizers (PSs), PDT can provide a better-targeted 

treatment than chemotherapy or radiation therapy with fewer side effects. However, 

the localised effect of PDT, on the other hand, also leads to its limitation in treating 

large tumours due to the limited penetration of light and it cannot treat a tumour that 

has metastasized already. Regarding cancer treatment, PDT is most suitable for skin-

related cancers such as Bowen’s disease, basal cell cancers and actinic keratosis, head 

and neck cancer and, oesophagal and non-small cell lung cancer (Oniszczuk et al., 

2016; Yang et al., 2017). 

 

In PDT, the light source is chosen to coincide with the maximum absorption 

wavelength of the PS. The PS works by transferring the absorbed photon energy to 

oxygen molecules to generate reactive oxygen species (ROS) including singlet oxygen 

(1O2), which leads to apoptosis and necrosis in the photosensitized cells (Lim et al., 

2013; Shibu et al., 2013). The ROS are highly reactive, and hence they react with the 
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biomolecules inside tumour tissues, leading to their destruction (Shibu et al., 2013). 

Some PSs may selectively accumulate in tumour tissues, possibly due to the leaky 

vasculature, poor lymphatic drainage and abnormal stromal composition of tumour 

tissues (Brown et al., 2004). 

  

PS is a critical component of PDT; its chemical and physical nature can significantly 

influence the effectiveness as well as the application of PDT. For instance, soluble PS 

and particulate PS could have entirely different biodistribution, resulting in the 

different regional therapy (Abrahamse & Hamblin, 2016). It was suggested that PS 

delivered via appropriate receptor-mediated carrier systems, could bind to the 

receptors up-regulated in the disease tissues. They could be used for PDT in treating 

conditions like atherosclerosis, autoimmune diseases, parasitic and bacterial infections 

and age-related macular degeneration (Sharman, 2004).  Figure 1.1 illustrates the 

working mechanisms of PDT.   

 

 

 

          

 

 

 

Figure 1.1 Mechanism of PDT (Dai et al., 2012) 

The PS when exposed to the light of adequate wavelength gets excited from ground 

singlet state to excited singlet state. Intersystem crossover leads to the conversion of 

excited singlet state to an excited triplet state, which lasts a longer time. The PS at 

excited triplet state can undergo two types of reactions with the surrounding molecules. 

The type 1 reaction occurs through a hydrogen or electron transfer, leading to the 

production of free radicals like hydroxyl, hydrogen peroxide (H2O2) and superoxide. 

The type 2 reaction occurs due to the energy transfer to the oxygen molecule leading 

to the formation of (1O2).  The 1O2 is extremely active and has a very short lifetime 

(<40 ns) and can diffuse only 0.02 µm in cells before getting deactivated.  The 1O2 and 
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free radicals formed are collectively called ROS (Nonell & Flors, 2016). The ROS 

damages its site of generation and other intracellular components along with proteins, 

lipids and DNA and plays vital roles in PDT assisted cancer cell killing (Zhao & He, 

2010; Allison & Moghissi, 2013).  

 

PDT offers many advantages over conventional cancer therapies (American Cancer 

Society, 2017). These include:  

• It is a highly localized therapy and used for specific tumour treatments  

• Repetition of PDT therapy without cumulative toxicity is possible  

• PDT is often an outpatient therapy which means the patient spends less 

time in the hospital. 

• PSs can be modified to have multiple functions with the possibility of 

carrying drugs or diagnostic agents at the same time, providing 

metronomic chemotherapy or diagnosis. 

• PDT can induce immunity, thus contributing to long-term tumour 

control, sparing extracellular tissue matrix that allows post-PDT 

regeneration of healthy tissue.  

• PDT therapy provides cost-effectiveness compared to the conventional 

therapies. 

• PDT is used as a single treatment modality and as an adjuvant treatment 

at various stages in cancer patient management.  

 

The major limitations of PDT include (Paszko et al., 2011): 

• PDT has a limitation in treating deep-seated tumours and solid tumours 

due to inaccessibility of light  

• It is restricted by the localisation and distribution of PSs in vivo 

• It is not possible to treat metastasized cancers with PDT 

• Photosensitivity of skin over a prolonged period of exposure to a light 

source can affect the patient health post-treatment 

The major factor that determines the efficacy of PDT is the selectivity and 

effectiveness of delivering PS to the target site and the production of ROS by the PS 

under the light. Many factors contribute to the generation of ROS which includes 

nature and chemistry of the PS used, light source intensity and wavelength, the 
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distance between light source and PS and oxygen concentration in the tissues (Zhu et 

al., 2007).   

 

1.2.3 Light wavelength in PDT 

The primary requirement for treatment with PDT is to make sure the light is delivered 

to the target tissue and can activate PS. Each PS has an optimal wavelength and 

intensity of light activation (Wan & Lin, 2014). The choice of the light source in PDT 

is based on the nature of PS. The efficacy of PDT is dependent on dosimetry, which 

includes total light dose, light exposure time and delivery mode of light (single or 

multiple irradiations). The effects of the light source can affect the therapeutic effects 

of PDT (Henderson et al., 2006).  The currently approved PSs absorb in the spectral 

regions between 600-800 nm, where light penetration into the skin is few millimetres, 

limiting PDT to treating skin lesions alone. Most tissue chromophores, including 

oxyhemoglobin, deoxyhemoglobin, melanin and fat, absorb weakly in the near-

infrared (NIR) spectral range (700-1100 nm), the wavelengths where the deepest 

penetration of light is achieved, but most PSs have absorption bands at wavelengths 

shorter than 800 nm (Chatterjee et al., 2008). 

 

Nowadays, lasers are widely explored as a PDT light source.  Modern diode lasers are 

portable and do not require separate electric supply, providing excellent stable power 

output for more extended time (Mang, 2004). Diode lasers are approved for use in 

human oesophageal (630 nm, Photofrin) and lung cancer (652 nm, Foscan) (Yoon et 

al., 2013).  Alternatives for lasers include light emitting diodes (LED) where light is 

produced by electroluminescence. LEDs are compact, lightweight and require less 

energy than lasers.  LEDs are manufactured with different wavelength output (630 nm, 

670 nm, 690 nm) that can be used in PDT for irradiation (Yoon et al., 2013). However, 

such powerful light sources require specially designed PS in PDT (Allison & 

Moghissi, 2013).  

 

Light delivery for a large surface, such as skin surface was reportedly by using broad-

spectrum fluorescent lamps. The higher irradiance from sunlight was used in 

conventional phototherapy (See et al., 2016). Phototherapy also uses middle wave 

ultraviolet rays (UV) (UVB, 290-315 nm) and long wave UV (UVA, 315-400 nm) 

(Krutmann & Morita, 1999). Many metal oxides semiconductors, including ZnO NPs, 
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are responsive to the lights within this range of wavelengths. UV-A radiation has 

certain advantages such as 1) many PSs absorb UV-A radiation better than UV-B; 2) 

sunlight naturally contains more UV-A than UV-B; 3) it has better penetration across 

dermis layer of skin than UV-B (Maddodi et al., 2012). UV-A is also used in the 

treatment of skin lymphoma, in combination with psoralen, known as PUVA 

(American cancer society, 2017). However, the limited penetration depth of UV-A 

radiation is a major limitation (Smith et al., 2012) and hence deep-seated solid tumours 

cannot be reached. However, such limitation may be compensated to a certain extent 

when an effective and powerful PS is employed. Once the light source is selected, the 

ultimate success of PDT then relied on the delivery and property of PS. In the 

following sections, the focus will be on PS. 

 

1.3 Photosensitizers for PDT 

1.3.1 First generation PSs 

The first-generation PSs are Hp and its related derivatives isolated from haemoglobin.  

Later, porphyrin dimers and oligomers isolated from HpD were introduced as 

photofrin (Zhang et al., 2017). Even though photofrin is used in treating different 

cancers it suffered severe limitations due to the lack of chemical purity as it is a mixture 

containing more than 60 molecules. The long half-life of photofrin and occurrence of 

strong skin accumulation led to skin photosensitization even for 2 to 3 months after 

photofrin treatment. An effective skin penetration with the first generation PSs is not 

obtained due to the short wavelength activation (Allison et al., 2008; Shibhu et al., 

2013).  

 

1.3.2 Second generation PSs 

The second-generation PSs are derived from Hp but with less toxicity and unwanted 

tissue accumulation due to their high purity. They include phthalocyanines, 

napthalocyanine and chlorines. They are effective in the generation of 1O2 and has a 

strong absorption wavelength range of 650-800 nm. They also exhibited selectivity 

towards diseased tissues and fast elimination from body reducing their side effects 

(Allison et al., 2008). The second-generation PSs acquired clinically are 

aminolevulinic acid, porphycenes, and phthalocyanines (Shibhu et al., 2013). The 

drawbacks of the currently available second-generation PSs (Allison et al., 2008) are: 

• Difficulty in synthesizing and manufacturing a stable product 
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• The poor photoactivity of the PSs hence, activation energy required 

prolonged illumination times 

• Inappropriate tissue half-lives causing difficulty in optimizing 

illumination schedule 

• Tissue retention causing problems in post-therapy for patients 

• Hydrophobicity of PS 

1.3.3 New development of PSs 

More recent research in PDT focuses on developing next-generation PSs that can be 

activated with light of longer wavelength, higher ROS production and have better 

tumour specificity. To achieve this, many approaches have been reported, including 1) 

modifying the already existing PSs with bioconjugates like peptides, antibody or 

antisense; 2) encapsulation of PS in carriers or chemical conjugation of PS to carriers 

that can transport the PSs effectively to the target site (Lucky et al., 2015; Zhang et 

al., 2017). Some of the recently developed anti-cancer PSs include chlorin, 

phthalocyanine and distyryl boron dipyrromethene (BODIPY) derivatives (Zhang et 

al., 2017). Different nano strategies have been studied for PDT and being assessed 

both in vitro and in vivo. The different nano delivery systems include micelles, 

liposomes, quantum dots, metal-based NPs, polymer NPs, dendrimer NPs, carbon 

nanotubes, silica NPs and hybrid NPs (Shibhu et al., 2013). Multifunctional nature of 

NPs may open options for personalized diagnosis and treatment of cancer, including 

via PDT. Major areas where NPs can provide significant breakthroughs include 

(Parvanian et al., 2017; Ramirez-Garcia et al., 2017): 

• As carriers of specific biomarkers for cancer detection 

• As contrast agents for tumour imaging 

• As PSs for PDT 

• As adjuvants for vaccine delivery 

• As delivery systems and acting as therapeutic agents to target cells  

• As molecular imaging agents for monitoring of treatment  
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Figure 1.2 Different modifications with NPs (Chatterjee et al., 2014) 

 

1.4 Nanomaterials as PSs  

NPs hold promising strategies in PDT which include 1) large surface area that can be 

modified for biochemical features; 2) enhanced cellular uptake due to the smaller size 

and large distribution volumes; 3) accumulation of nano-PSs in tumour site due to 

enhanced permeability and retention (EPR) effect (Li, 2013). The NPs used in PDT 

serve as either active or passive NPs. The active NPs themselves function as a PS while 

the passive NPs function as a carrier for the PSs which can be either soluble and 

insoluble (Thakor & Gambhir, 2013; Shibhu et al.,2013). The active NPs for PDT are 

further sub-classified as PS NPs, upconversion NPs and self-lighting NPs (Li, 2013). 

As a drug carrier, nanomaterials can be used for soluble and even insoluble PS (Shibhu 

et al., 2013). Details are discussed in the following section. 

 

1.4.1 Metal oxide-based NPs  

Semiconductor metal oxide NPs based PS is another upcoming approach in PDT.  The 

widely studied semiconductor nano-PS includes titanium oxide (TiO2), ZnO and 

graphene oxide (GO) (Smith et al., 2012; Kalluru et al., 2016). The nanosize of the 

metal oxides helps them in cell penetration and ROS production on irradiation (Zheng 

et al., 2016). Metal oxide NPs can act as photosensitizing agents in place of PS 

molecules and kill tumour cells in vitro and in vivo.  They can be directed to the tumour 
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site via attached tumour-targeting ligands. Compared to other type of materials, metal 

oxides are more efficient in producing photosensitization due to their better 

photocatalytic property (wide band gap), on illumination with light source leads to 

production of large amounts of ROS, ultimately leading to cell apoptosis (Vinardell & 

Mitjans, 2015).  Graphene oxide-(polyethylene glycol-folic acid) PEG-FA mediated 

PDT upon NIR light (980 nm) resulted in a reduction of cell viability in B16-F10 

tumour model (Kalluru et al., 2016).  ZnO NPs modified with metal ions like iron (Fe), 

Ag, lead (Pb) and cobalt (Co) has proved to induce an anti-proliferative effect on 

HepG2 cells irradiated with UV rays (320-400 nm). A significant increase in H2O2, 

nitric oxide (NO) and superoxide dismutase (SOD) levels and a significant reduction 

in catalase (CAT), glutathione peroxidase (GSH-Px) levels are reported with the 

metals modified ZnO NPs and attributed for their anti-proliferative effects (Ismail et 

al., 2014). Table 1.1 illustrates the different types of metal oxide-based NPs used in 

PDT and their implications.  

Table 1.1 Different metal oxide-based NPs in PDT 

 

Type of metal oxide-

based nano-PS 

PDT Effects reported Reference 

Graphene oxide 

coated with PEG-FA 

(~100 nm) 

808 nm, NIR 

lasers, 288 

J/cm2. 

980 nm, NIR 

laser, 345.6 

J/cm2 

In B16-F10 cells.  No cellular 

death in the dark. PDT at 808 nm: 

35 % viability at 75 µg/mL. 

980 nm: 85% cell death at 75 

µg/mL 

Kalluru et 

al., 2016 

Titanium oxide NPs Germicidal 

UV lamp,  

3 min 

In SMMC-7721 cells. 

10% cell death with TiO2 NPs 

alone (25 µg/mL, 48 h). 

TiO2 with UV radiation at 

similar condition 35% cell death 

Zhang et 

al., 2014 

Iron oxide modified 

pyropheophorbide  

(74 nm) 

675 nm laser,  

9 J/cm2 

In human ovarian cancer cells 

(SKOV-3).  At 32 µg/mL 15% 

cell death in dark. With PDT 

65% cell death observed 

Tan et al., 

2016 

FA-GO-ZnO Visible light 

radiation 

In HeLa cells ˃90% cell viability 

in the dark (100 µg/mL). After 

light exposure 19.6% cell 

viability. 

Hu et al., 

2013 

Ag-ZnO 

Fe-ZnO 

Pb-ZnO 

UV light In HepG2 cells, IC50 42.6 (Fe-

ZnO), 37.2 (Ag-ZnO), 72.2 (Pb-

ZnO). 

Ismail et 

al., 2014 

Au-ZnO UV light In HeLa cells at dark (100 

µg/mL) ˃80% cell viability. 

After light exposure 28% cell 

viability  

Kang et al., 

2015 
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1.4.2 ZnO NPs  

ZnO is an inorganic metal oxide classified as a semiconductor in group II-VI, with 

covalence in the boundary between ionic and covalent semiconductors. A broad energy 

band (3.37 eV), high bond energy (60 meV) and high thermal and mechanical stability 

at room temperature make it attractive for potential use in electronics, optoelectronics 

and laser technology (Mirzaei & Darroudi, 2017). The piezo and pyroelectric 

properties of ZnO makes it suitable as a sensor, energy generator and photocatalyst in 

hydrogen production (Radzimska et al., 2014). ZnO has broad applications in 

cosmetics and sunscreens, food industry, paints, optoelectronic, electronic devices and 

biomedical industries.  

 

Physicochemical properties of ZnO NPs such as size and charge have a strong 

influence on its stability, targeting ability, biodistribution and elimination. For 

instance, the dissolution rate of ZnO NPs is size dependent, where smaller size NPs 

exhibited better dissolution rate in artificial gastric fluid (Wang et al., 2007). 

Furthermore, it is critical for cell internalisation. It is reported that the entry of ZnO 

NPs into cells was based on size with small sized 20 nm, positively charged NPs 

entering the cells better than 70 nm NPs (Yu et al., 2011). The size played a crucial 

role in their elimination. 20 nm sized ZnO particles were eliminated faster than 70 nm 

NPs (Paek et al., 2013). Also, the harmful effect of ZnO NPs to healthy body cells was 

related to its size, with size range, 4-20 nm caused more harm (Hong et al., 2013). 

Yuan et al. (2010) reported that cytotoxicity against HELF cells was independent of 

the size of the ZnO NPs in size range 20-40 nm. In another study, Baek et al. (2012) 

demonstrated that the ZnO NPs mainly accumulated in liver, lungs and kidney and size 

of the NPs (20 nm & 70 nm) did not play a significant role in its distribution characters, 

even at high dosage. 

 

Naturally, ZnO NPs are stable in the aqueous state due to the high density of electric 

charge (Akhtar et al., 2012). ZnO NPs with a negative surface charge is better absorbed 

into systemic circulation compared to positive charged NPs although the tissue 

distribution is not based on the charge. The faecal excretion of positive charged ZnO 

NPs is higher than the negative charged ZnO NPs (Paek et al., 2013). A detailed report 

about ZnO NPs as an experimental therapeutic agent can be found in the recent review 

by Zheng et al. (2016). 
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ZnO NPs in PDT 

ZnO is cheap, stable and has photoluminescence. It absorbs UV-A and UV-B 

radiation, and facilitates the production of ROS, acting as a PS (Gupta et al., 2013). 

Zhang et al. (2014) reported ZnO NPs as a new class of PS. ZnO with its photocatalytic 

property is induced by a light source to produce cancer cell destruction in PDT. There 

are substantial amounts of data indicating ZnO alone or in combination with UV light 

can produce anticancer effects (Kalluru et al., 2016; Guo et al., 2008; Vijayaraghavan 

et al., 2015; Hariharan et al., 2013).   

 

Table 1.2 shows the compilation involving ZnO as a PS in PDT and its effects. Yang 

and Ma, (2014) demonstrated that the cytotoxicity of ZnO NPs is dose, time and 

irradiation wavelength dependent.  The irradiation enhanced cytotoxicity within first 

8 to 16 h, with photocatalytic reactions being the dominant factor during the early stage 

of cell destruction (Yang & Ma, 2014). The light excited PS resulted in ROS 

generation which was responsible for cellular and molecular events leading to selective 

tumour destruction (Yang & Ma, 2014; Li et al., 2010). It is suggested that the 

irradiation treatment assisted ZnO NPs to gain better dispersion conditions that may 

promote the uptake of NPs into cells and elicit a higher cell death rate. ZnO suspension 

generated a more significant number of oxyradicals when irradiated with visible light 

at 400-500 nm compared to ZnO alone (Yang & Ma, 2014).  

 

A study examining the combination of UV-A mediated photocatalytic therapy and 

chemotherapy with paclitaxel or cisplatin showed elimination of tumour cells at low 

concentration levels of ZnO was possible. The cell lines did not show a reduction in 

cell viability following UV-A treatment alone or when exposed to ZnO NPs without 

UV-A irradiation (Hackenberg et al., 2012). Another study by Guo et al. (2008) using 

photoexcited ZnO NPs and daunorubicin demonstrated the synergistic effect on 

leukaemia cell lines. Even though ZnO NPs inhibited cancer growth, UV irradiation 

enhanced this effect.  
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Table 1.2 ZnO NPs in PDT

Cell lines used PDT Effects reported References 

HLaC 78 laryngeal 

squamous cell carcinoma 

 

Cal-27 human tongue 

squamous cell carcinoma 

4 KW UV lamp of  

light intensity 20 mW/cm2 used. 

UVA radiation for 15 min, 

filtered to wavelength between 

340 -440 nm 

ZnO (0.2 µg/mL) +UV-A, IC50 1.2 µg/mL in HLAC 78 

cell line 

 

ZnO (0.2 µg/mL) +UV-A, IC50 1.6 µg/mL in Cal-27 cell 

line 

 

(Hackenberg et al., 

2012) 

A549 human 

bronchoalveolar carcinoma 

UVGL-58 UVA, 366 nm 

UVGL-25 UVC,254 nm 

Cells irradiated with UVA (53.5% viable cells), UVC 

(49.1% viable cells) had higher cytotoxicity under 

equivalent dose (25 µg/mL) and time conditions (3 h) 

compared to dark control group (85.9% viable cells). 

(Yang & Ma, 2014)  

HeLa cells 150W mercury vapour lamp and 

tungsten halogen lamp (spectral 

window 300-700 nm) 

ZnO/PVP nanorod at 50 µg/mL, viable cells more than 

80% 

ZnO/PVP nanocomposite with daunorubicin loaded at 50 

µg/mL, viable cells less than 30%. 

Free daunorubicin at same concentration was above 40%  

(Hariharan et al., 

2013)  

SMMC-7721 cancer cells Germicidal lamp (UVC=254 

nm). 0.1 mW/cm2  

ZnO (20 nm), only ZnO NPs at 25 µg/mL, cell viability 

above 60%, with ZnO NPs+UV less than 40% viable cells. 

ZnO (60 nm), only ZnO NPs at 25 µg/mL, viable cells 

close to 60%, with ZnO NPs+UV less than 40 % viable 

cells. 

ZnO (100 nm), only ZnO NPs at 25 µg/mL, viable cells 

50%, with ZnO NPs+UV less than 30% viable cells. 

(Li et al., 2010)  

SMMC-7721 

hepatocarcinoma cells 

Germicidal UV lamp (0.1 

mW/cm2, for 3 min) 

ZnO at 100 µg/mL had no impact on cell viability (more 

than 90% viable cells).  

ZnO+UV at 100 µg/mL cell viability reduced to nearly 

50%. 

(Zhang et al., 2014)  
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Figure 1.3 ZnO nano-PS in PDT (Bhat et al., 2017). 

 

1.4.3 Hybrid NPs 

Hybrid NPs are nanostructures whose biological effects are better than the individual 

components. When individual components are used in the treatment of cancer, they 

have limited use and multiple systems like hybrid NPs may serve the purpose better 

(Sailor & Park, 2012). The advantages of hybrid NPs are: 1) multiple components can 

be integrated into a mono system; 2) monitoring the progress and efficacy of therapy 

throughout the entire treatment course is possible (Sailor & Park, 2012). Feng et al. 

(from Professor Xia Lou’s group) reported TiO2-SiO2 core-shell structures that 

suppress human nasopharyngeal epidermoid cancer cells (KB) in vitro. These NPs are 

non-toxic in dark conditions in KB and L929 cells and exerted toxicity only when 

irradiated with UV light; due to the super photo optic properties of the core materials 

of TiO2. Later, they developed Fe3O4-ZnO hybrid NPs and reported that it has 

significantly improved photophysical properties of ZnO, which provided the strong 

basis for using such hybrid NPs as a PS in PDT (Feng et al., 2014). The hybrid ZnO 

NPs are developed to decrease recombination rate of photogenerated electron-hole 

pairs and segregating the charge carriers for ROS formation. Enhanced ROS formation 

leads to better photo-killing against cancer cells (Zheng et al., 2016). Further studies 

on the cytotoxic activity of Fe3O4-ZnO hybrid NPs against Caco-2 exhibited cell death 

of more than 85% 24 h post-NPs treatment (50 µg/mL) with UV-A irradiation (10 

J/cm2) (Patel et al., 2017). These results demonstrated that the hybrid semiconductor 
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nanomaterials could serve as a potential PS against cancer, although further study 

needs to be conducted using different cancer cell lines. Also, a combination of NPs 

and its incorporated therapeutic agents, have been reported to show synergistic effect 

with the potential to address drug resistance and tumour heterogeneity (He et al., 

2015).   

 

Studies on hybrid semiconductor NPs include the work by Gao et al. (2017) who 

developed a special type of oxygen generating hybrid NPs to improve PDT efficiency, 

with manganese dioxide NPs in indocyanine green modified hyaluronic acid NPs and 

tested it against SCC7 tumour model. When irradiated with a laser, 808 nm, 300 J/cm2 

more than 86.83% cells were killed. Work by Karbalaei et al. (2016) demonstrated 

that graphene oxide-TiO2 hybrid NPs could serve as a PS against A375 melanoma 

cells. Even at a low dose of 1 µg/mL the hybrid, PS exhibited 25% cell death at UV 

light dose for 10 min. Kang et al. (2015) reported that nanorods made of Au-ZnO 

hybrid were able to reduce the HeLa cell viability to 28%, after 2 min UV light 

irradiation.  

 

1.4.4 Silica NPs 

Silica NPs has attracted a lot of attention in the biomedical field due to its 

hydrophilicity and versatility which renders it with biocompatibility, good chemical 

stability and easier surface modification (Wang et al., 2008). It has been used as a drug 

carrier, for gene delivery (Csogor et al., 2003) and as fluorescent probe. Silica NPs are 

transparent and do not function as a PS, however, encapsulating PS in silica NPs is a 

common approach for PS delivery (Shibhu et al., 2013). For instance, silica has been 

used for better delivery of complex organic PS drugs such as phthalocyanine (Pc4), 

5,10,15,20-meta-tetra(hydroxyphenyl)chlorin (m-THPC), protoporphyrin IX (PpIX) 

and (2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a) (HPPH) (Roy et al., 2003; 

Simon et al., 2010). Deng et al. (2013) also reported the beneficial effect of loading 

PS polyhematoporphyrin (C34H38N4NaO5, Photosan-II, PS) in hollow silica (hs) NPs 

against human cholangiocarcinoma QBC939 cells in PDT (630 nm laser as light 

source, dose 10 J/cm2). There is a significant difference in the cell killing with PS 

loaded hs NPs killed 95.3% cells whereas free PS could kill only 55.7% cells. Despite 

its use as carrier for various purposes, in the design of hybrid NPs used in this study, 

SiO2 was used to improve the dispersion and biocompatibility of the hybrid NPs 
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(Wang et al., 2008; Han et al., 2008), and as a precursor for the further conjugation of 

the targeting ligand FA. 

 

1.5 Cell killing mechanisms in PDT 

The cell death post PDT treatment involves multiple pathways. The different cell death 

mechanisms activated by PDT are discussed below. The different processes that 

destroy tumours by PDT are direct cellular damage, indirect vascular shutdown and 

activation of immune responses against tumour cells (Dougherty et al., 1998; Dolmans 

et al., 2003). The three major processes controlling the cell death are apoptosis, 

necrosis and autophagy. Apoptosis and necrosis are classified according to cellular, 

morphological and biochemical characters.  Necrosis involves extensive cell lysis and 

cell death associated with membrane damage, leakage of cellular components to 

extracellular space and cell swelling at the endpoint (Majno & Joris, 1995). Apoptosis 

is a more regulated form of cell death, associated with mitochondrial dysfunction, loss 

of mitochondrial membrane potential and respiratory chain inhibition, cellular 

shrinkage, DNA fragmentation and membrane blebbing (Majno & Joris, 1995). 

Apoptosis or necrosis can occur in response to treatment in a dose-dependent fashion. 

The cells that fail to undergo cell death through apoptosis undergo autophagy, where 

the cells are recycled (Kessel & Oleinick, 2018).  

 

1.5.1 PDT and apoptosis 

Apoptosis is initiated by death receptors activation or mitochondrial release of 

cytochrome c. These events ultimately activate the executioner caspases (caspase-3, -

6 and -7). The caspases on activation cleave the cellular substrates, leading to 

morphological and biochemical changes observed in dying cells (Mroz et al., 2011).  

Bcl-2 and other members of the family inhibit apoptosis and PDT is believed to 

photodamage Bcl-2 and other anti-apoptotic proteins and activate pro-apoptotic 

proteins (Kessel & Oleinick, 2018). After PDT, the opening of the mitochondrial 

membrane permeability pores occurs and results in dissolution of mitochondrial 

membrane potential, which is expected to be the main reason behind cytochrome c 

release (Mroz et al., 2011). Death receptors belong to tumour necrosis factor receptor 

(TNFR) family, and TNFR signalling is believed to be an important factor in immune 

response, inducing apoptosis (Mroz et al., 2011). Studies have revealed ultrastructural 
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and biochemical features of apoptosis following PDT. PDT of tumour cells resulted in 

immediate or early apoptosis, within 30-60 min of initial treatment (Luo et al., 1996).  

 

Protein kinase pathways in PDT induced apoptosis 

Activation of mitogen-activated protein kinase (MAPK) pathways is a character of 

oxidant-induced apoptosis. H2O2 treatment resulted in sustained activation of all three 

major MAPK pathways (extracellular signal-regulated kinases (ERK ½), JNK and p38 

MAPK) in HeLa cells (Purdom & Chen, 2005).  H2O2 induced JNK activation, may 

involve the participation of death receptors, receptor tyrosine kinases and redox-

related molecules (Shen & Liu, 2006). ROS signalling interacts with other 

physiological signalling pathways by acting on different protein phosphatases (Rhee 

et al., 2005). 

 

1.5.2 PDT and Necrosis 

Although the factors that lead the cells to PDT mediated necrosis is not clear, it is 

believed either high concentration of PS or high light dose or a combination of both is 

believed to cause necrotic cell death.  High dose of PDT may inactivate the enzymes 

responsible for inducing caspase and related events, ultimately inhibiting apoptosis 

and the cells undergo necrosis (Morz et al., 2011). Direct photodamage of the plasma 

membrane also leads to necrotic cell death.  Many PDT protocols do not reply on 

necrotic cell death mechanism as it can be a nonspecific effect, leading to adverse 

effects on healthy cells (Kessel & Oleinick, 2018). 

 

1.5.3 PDT and Autophagy 

Autophagy has a two-sided effect where it can defend against ROS damage clearing 

the cell of damaged organelles or induce autophagic cell death.  Many PSs target 

autophagy-related organelles lysosomes and endosomes (Morz et al., 2011).  

Autophagy can offer partial protection against mitochondrial damage after PDT but 

not when lysosomes are the PDT target. Thus, targeting lysosomes may result in lethal 

photodamage (Kessel & Oleinick, 2018).   

 

PDT and ROS 

ROS generated in mitochondria or elsewhere in cells, can induce damage to cellular 

components including nucleic acids, phospholipids and proteins (Orrenius et al., 
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2011).  ROS produced by a PS upon radiation consists of a list of oxidative species 

which includes superoxide anion, hydroxyl radical, H2O2, hypochlorous acid and 1O2. 

The major factors behind NP induced ROS may vary from one type to another. For the 

semiconductor metal oxides, it includes the nature of the core NPs, the NP-cell 

interactions, and the coating (shell) component. The coating has a negative impact on 

the ROS generation by the core NP, as reported by Feng et al. 2015a, it also affects 

the NP-cell interaction, mostly in a positive way especially when a targeting ligand is 

present. NPs due to their smaller size, therefore, high surface to volume ratio, have 

been reported to generate a higher level of ROS, than the same material in powder 

form (Wilson et al., 2002). Upon light activation, the PSs undergo photochemical 

reaction to generate ROS under aerobic condition, dominated by 1O2.  The 

photochemical ROS generation leads to direct cell killing at the site of PS activation.  

The main therapeutic value of PDT is targeted cell killing, controlled by site-specific 

generation of ROS (Gomer et al., 1989).  

 

The complete mechanism of PS in PDT in vivo is yet to be elucidated, although tumour 

cellular events, vascular inflammation and systemic immune effects have been 

proposed (Allison & Moghissi, 2013). However, it is known that inflammatory and 

immune responses together could maximise the tumour damage with PDT (Brown et 

al., 2004). 

 

1.6 PDT in skin cancer treatment 

Skin cancer occurs when skin is damaged or excessively exposed to UV radiation. 

Skin cancer is of three types: basal cell carcinoma (BCC), squamous cell carcinoma 

(SCC) and melanoma, the most dreadful one. The BCC and SCC are classified as non-

melanoma skin cancers (Chummun & Mc Lean, 2017). 80% of new cancers diagnosed 

in Australia are skin cancers, and Australia has the highest occurrence rate of skin 

cancers globally (Cancer Council, Australia).  The exact sequence of events that 

transform melanocytes to malignant melanoma is unknown, though it is believed to 

have genetic mutations which alter cell growth, differentiation and death and enhance 

its susceptibility to UV radiation (Chummun & Mc Lean, 2017; Craythome & Al-

Niami, 2017). Surgery is the only curative option for melanoma currently. 

Electrochemotherapy (ECT) is effective in treating melanomas which involves short 
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electrical pulse, which destabilizes the cell membrane and enhances the cell 

permeability of cytotoxic drugs (Chummun & Mc Lean, 2017).   

 

To avoid prolonged photo sensitivity on systemic administration, topically applied PSs 

have been developed for skin cancer therapy.  The commercially available PSs for skin 

cancer include ALA and methyl ester methyl 5-aminolevulinate (MAL) (Zhao & He, 

2010). ALA-PDT is mainly used to treat dermatological cancers in human beings 

(Morton et al., 2013; Wan & Lin, 2014). ALA-PDT in the treatment of human 

Bowen’s disease (SCC in situ) has been successful with response rates between 82-

100% in 1 to 2 years (Salim et al., 2003). PDT is used for the treatment of BCC as a 

single agent or as an adjuvant (Berroeta et al., 2007). 

  

Skin cancer treatment can obviously be benefited from PDT as the cancer tissues are 

easily accessible to the light, plus, currently, there is an urgent need for better treatment 

in skin cancer like melanoma. In a recent study, the hybrid NPs in combination with 

UV light has shown a better anticancer effect against A375 melanoma cells. For 

instance, graphene oxide-TiO2 hybrid NPs (1 & 100 µg/mL, 24 h) in combination with 

UV light (10 min) exhibited 20% and 50% cell growth inhibition, whereas, only hybrid 

NPs exhibited 10% and 25% cell growth inhibition (Karbalaei et al., 2016). This PhD 

project will investigate the potential application of the new class hybrid Fe3O4-ZnO 

NPs as an effective nano-PS against melanoma cells and other cancer cells. 
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1.7 OVERALL OBJECTIVES 

The principle aim of the research is to study systemically, both in vitro and in vivo, the 

pharmaceutical and biological properties of a new class nano-PSs that are composed 

of Fe3O4 and ZnO and further conjugated with a targeting ligand FA through a silica 

precursor. As shown in Figure 1.4, the hybrid NPs contain Fe3O4 and ZnO in a mass 

ratio of (1:4) with a silica shell thickness of 4-5 nm (Feng et al., 2015a). The research 

was firstly focused on the in vitro characterisation of the hybrid Fe3O4-ZnO NPs, to 

understand their pharmaceutical and biological properties, and how they could be 

utilised efficiently to produce cancer-killing effects in cells. The study was then 

extended to an animal cancer model via intra-tumour administration of the selected 

NPs for further investigation of the PDT effect on melanoma tumours.  

 

Figure 1.4: A schematic illustration of the nano-PS: Fe3O4-ZnO hybrid NPs 

The project was designed to answer the following questions: 

• How effective can the new class nano-PS be as an anticancer drug 

attenuated by UV irradiation under designated wavelength? 

• How does the nature of nano-PS influence its cytotoxicity? 

• Does targeting ligand FA enhance cancer cells killing of nano-PS? 

• What is the major mechanism of cell killing effects of new class nano-

PS and how it affects its cellular uptake? 

• To what extent the surface modification of the nano-PS has an impact 

on cytotoxicity and it's in vivo anticancer activity?  

• What are the therapeutic effects of PDT with the new class hybrid nano- 

PS in an animal model? 

• How does the time interval between treatment of nano-PS and UV-A 

irradiation affect the therapeutic outcome of PDT? 
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1. Materials  

1.1 Chemicals used in In vitro studies 

The following materials were used in in vitro studies. Those chemicals were purchased 

from Sigma-Aldrich (Castle Hill, Australia): 2,7-Dichlorofluorescin diacetate (DCFH-

DA, D6883, 50 MG, ≥ 97%), 1,3-Diphenylisobenzofuran (DPBF, 105481-1 G), N-

Acetyl-L-Cysteine (NAC ≥ 99%, A7250, 5G), Propidium iodide (PI, P4170,10MG), 

3-(4,5-dimethylthiazol-2-yl)-5-(3-cayboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium (MTT, ≥ 97.5%, M2128), Dulbecco’s modified eagle’s medium-high 

glucose (DMEM, D5671), Phosphate buffered saline (PBS, 806552, 1L), Hank’s 

Balanced salt solution (HBSS, H6648), Penicillin-Streptomycin (P4333), Fluorescein 

isothiocyanate (F7250, 50 MG), L-Glutamine (G7513-100 mL), Trypan blue (T6146), 

Triton X-100 (T8787), Bovine serum albumin (BSA, A2153, › 96%), radio-immune 

precipitation assay buffer (RIPA buffer, R0278), Paraformaldehyde (PFA, P6148, ≥ 

94.0%), Tetraethyl orthosilicate (131903,-1L, 98%) and Trypsin-EDTA (T4299, 100 

mL). Ethanol, methanol and DMSO were sourced from VWR, Australia. Foetal bovine 

serum (FBS, FBS-001-AU) was obtained from SerANA (WA) Pty Ltd (Bunbury, 

Australia).  Distilled water was purified from tap water by Hydro-Check Systems 

(Model no.414R, Hydro-Check Systems, Inc., Carlsbad, USA) and further sterilised 

by autoclave at 121°C for 1 h.   

 

Vectashield antifade mounting medium (H-1000) was purchased from Vector 

Laboratories, Inc. (Burlingame, USA).  Tryple express enzyme (12604-021) was 

obtained from Life Technologies Australia Pty Ltd (Scoresby, Australia).  HyClone 

PBS (SH30256.02) was procured from GE Healthcare Australia Pty Ltd. (Parramatta, 

Australia).  FITC Annexin V (556419, 200 tests) was purchased from BD Biosciences, 

Australia. Nitric acid (70% w/w/) was acquired from Ajax chemicals, Australia. The 

Caspase 3/7 reagent (Ac-DEVD-AFC, ALX-260-032-M005, 5 mg) was purchased 

from Cayman Chemicals (14459), Australia. Confocal microscopy glass slides and 

coverslips (22 mm), Ibidi micro-dish (35 mm) were procured from Ibidi, Germany. 

The Corning T25, T75 and T175 tissue culture plates, 96 and 24 well plates, 96 well 

black plates (used for ROS assay) were purchased from Sigma-Aldrich (Castle Hill, 

Australia). 
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1.2 Chemicals used in in vivo studies 

B16-F10 melanoma mouse tumour cell line (ATCC CRL 6475) was purchased from 

ATCC, US through In Vitro Technologies, Australia. DMEM high glucose (D5671, 

Sigma), Penicillin-Streptomycin (P4333, Sigma), L-Glutamine (G7513, Sigma) were 

purchased from Sigma Aldrich, Australia. Tryple Express Enzyme (catalogue no 

12604013, Thermo Fisher) was purchased from Life Technologies, Australia. Fetal 

bovine serum (FBS, FBS-001-AU) was obtained from SerANA (WA) Pty Ltd 

(Bunbury, Australia).  T75, T175 flasks, sterile pipettes (5 ml) were purchased from 

Interpath, Australia. UV LED SMART, 365 nm with breakout box was purchased from 

Opsytec Dr Grobel, Germany. I.R.Thermometer was purchased from Thermo Fisher 

(Catalog no.15-077-968, Australia). Digital vernier calliper was acquired from 

Kincrome (part. No. K11100, Australia). 

 

Dissecting scissors, 115 mm, straight (Catalog no. T104-2, ProSciTech) was 

purchased from ProSciTech, Australia. R & D systems Cultrex PathClear Basement 

membrane extract with phenol red (Matrigel) (Catalog no. RDS343200501P, In Vitro 

Technologies) was purchased from In vitro Technologies, Australia. Sterile scalpel 

blades no. 20 (Catalog no. 16827, BD Biosciences) and ultra-fine needle insulin 

syringe (Catalog no. 16296, BD Biosciences) were purchased from BD Biosciences, 

Australia.  All other chemicals used in the experiments were of molecular biology 

grade and used as received unless otherwise specified. 

 

Male C57BL/6 mice aged four weeks were purchased from Animal Resource Centre, 

Perth, Australia. All the animal purchase and studies were duly reviewed and approved 

by Animal Ethics Committee of Curtin University before the start of the animal study 

(Approval number AEC 2016-41). The animal ethics approval letter is attached in 

Appendix 8. 

1.3 Hybrid NPs used in in vitro and in vivo studies 

The novel hybrid NPs studied in this thesis work were provided by Professor Xia Lou 

of the Department of Chemical Engineering, Curtin University. Details of the synthesis 

and characterisation methods can be found in previous publications (Feng et al., 

2015b, Patel et al., 2017). 
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2. Methods  

In vitro studies 

2.1 Cell culture 

B16-F10, 3T3 and Caco-2 cell lines were procured from the ATCC. The culture details 

for the three cell lines are presented in Table 2.1. Cell growth, morphology and 

confluency were regularly monitored with a Nikon inverted microscope (Eclipse 

TS100, Nikon Instruments Inc., Tokyo, Japan) and images were captured with the 

attached Nikon digital sight camera (DS-Fi2) and controller (DS-L3).  Mycoplasma 

was routinely tested for in the facility by genomic PCR using cells cultured in an 

antibiotic-free medium.  Sample preparation for the mycoplasma testing is explained 

in Appendix 2. 

Table 2.1. The B16-F10, 3T3 and Caco-2 cell culture details 

 B16-F10 3T3 Caco-2 

Cell type Mouse skin 

Melanoma 

Mouse Embryo 

Fibroblasts 

Human epithelial 

colorectal 

adenocarcinoma 

cells 

Origin ATCC ATCC ATCC 

Passage number 1-10 20-30 81-91 

Culturing flasks 

(medium volume) 

 

Frequency of 

medium change 

                                   Corning T25 (5-6 mL) 

Corning T75 (8-10 mL) 

Corning T175 (20 mL) 

 

                                      Every 2 to 3 days 

Cytotoxicity   

(96 well) 

✓                                           ✓                                       ✓ 

Uptake studies  

(24 well) 

ROS detection (96 

well black) 

Confocal 

Microscopy 

         ✓                                           -                                          ✓ 

 

         ✓                                           -                                           ✓ 

 

Performed only                               -                                          - 

in B16-F10 cells 

Culture medium DMEM-high 

glucose  

DMEM-high 

glucose 

DMEM-high 

glucose 

Serum 10% (v/v) FBS                10% (v/v) FBS                10% (v/v) FBS 

Supplements 1% (v/v) P/S                

1% (v/v) glutamine 

1% (v/v) P/S                

1% (v/v) glutamine 

1% (v/v) P/S                

1% (v/v) glutamine 

 

After reaching 70-80% confluency, the B16-F10, 3T3 and Caco-2 cells were 

trypsinized, centrifuged (Allegra X-12 Centrifuge, Beckman Coulter, Inc., Brea, USA) 

and cultured by seeding into appropriate plates for experiments. The specific culture 

medium and culture conditions are summarised in Table 2.1. The culture was carried 
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out at 37°C with, 5% CO2 and 95% humidified air in an incubator (Lab friend, C170, 

Australia). Cryopreservation and thawing of cells are described in Appendix 4. 

 

2.2 UV chamber optimization 

A UV chamber (UV BS02 chamber from UV Groebel, Germany) with controllable 

dose setting was used in the study. It was supplied with UV-A lamps (365 nm, 8x15W 

output) to our requirement. The UV chamber employed in the experiment was 

approved by the radiation safety officer, Curtin University (Appendix 5). The time 

taken to reach the fixed dose of 10 J/cm2 was investigated under different conditions:  

variable distance between light source and cell culture plates, temperature change in 

the culture well due to the heat generated from the light source and time of UV-A 

exposure. The temperature of the medium in cell culture plates was measured using an 

IR thermometer (4470CC, Infrared traceable thermometer gun, ThermoFisher, 

Australia) before and after light exposure. 

 

2.3 Pharmaceutical evaluation of hybrid NPs 

Stability of NPs in different medium 

The stability of NPs is highly critical as it may impact on NPs uptake by cells, their 

toxicity and availability of NPs at the cellular level. The stability of NPs was analysed 

in two different medium PBS and DMEM high glucose. The DMEM was 

supplemented with 10% FBS and 1% L-Glutamine. The NP suspensions were stored 

at 37°C in stability chamber (Challenge 700, Angelantoni Industrie spa, Italy) for 

various time periods (0 h, 6 h, and 24 h). The hydrodynamic particle size was assessed 

via dynamic light scattering (DLS) using a Zetasizer Nano ZS (Malvern Instruments, 

UK). Zeta potential measurement was carried out using the same instrument. The size 

and zeta-potential experiments were conducted with a concentration of 100 µg/mL 

NPs suspension. Samples were dispersed in the medium using an ultrasonic bath 

(Unisonics, Australia) for 5 min before measurement.  

 

2.4 Evaluation of cytotoxicity 

Cytotoxicity of NPs under investigation was assessed by 3-(4,5-dimethylthiazol-2-yl)-

5-(3-cayboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTT) assay as 

described by Mosmann (Mosmann et al., 1983; Hackenberg et al., 2012), with some 
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modifications. NPs at 12.5 – 100 µg/mL were tested in three cell lines and at two-time 

points (6 h and 24 h). The test procedure followed is described below: 

1. MTT was dissolved in PBS (pH 7.4) to obtain a stock concentration of 1 

mg/mL in a sterile container and wrapped in aluminium foil for protection 

against the light (refer Appendix 6 for the detailed procedure of MTT stock 

solution preparation). 

2. Corning 96-well plates were used for cell seeding and the assessment. The 

seeding density of various cells is specified in the next section.  

3. After 70-80% cell growth in the 96 well plates, the cell medium was replaced 

with 100 µL of medium containing different concentrations of the NPs. 

4. At predetermined time points (6 h and 24 h) after NPs treatment, 100 µL of 

MTT solution was added to the cells in the culture, attaining a final MTT 

concentration of 0.5 mg/mL, and further incubated for 3 h.   

5. After 3 h, the medium in each well was aspirated, and cells were washed twice 

with PBS (100 µL per well each time) and replaced with 100 µL DMSO and 

left for 10 min at the incubator to completely dissolve the MTT formazan 

crystals. 

6. The quantity of formed formazan crystal is directly proportional to the number 

of viable cells and measured by recording absorbance at 570 nm using the 

Enspire ® 2300 multimode plate reader (Perkin Elmer Corporation, Wellesley, 

USA). 

7. Simultaneously, wells containing NPs in medium without cells were used as 

the NPs blank. The blank data was subtracted from each corresponding NPs 

sample data to obtain the net absorbance data. 

8. The cells treated with medium served as the control and medium alone served 

as the blank. 

9. Cell viability was calculated following Equation 2.1: 

Cell Viability (%) =
Atest−ANP 𝑏𝑙𝑎𝑛𝑘

Acontrol−Amedium blank
x 100 (Equation 2.1) 

Where A 
test is the absorbance of the formazan produced by cells incubated with NPs 

in medium, A NP blank is the absorbance associated with just NPs in medium without 

cells, A control is the absorbance of just cells in medium and A 
medium blank corresponded 
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to the absorbance of the DMEM medium. The results were reported as an average of 

four replicates with STD. 

 

(i) Cytotoxicity in B16-F10 cells 

5 x 103 cells per well were seeded in 96-well plates and incubated for 48 h. After 70-

80 % confluency, the cell medium was completely removed and replaced with fresh 

medium containing hybrid NPs (FZ, FZSi, FZSiFA25 and FZSiFA50 NPs at 

concentrations of 12.5, 25, 50 and 100 µg/mL) and treated for 6 h and 24 h. After NPs 

treatment, MTT solution 100 µL (1 mg/mL) was added per well and incubated for 3 h 

at 37oC. The resulting formazan product was dissolved in DMSO (100 µL per well). 

The absorbance was quantified at 570 nm using a microplate reader (Perkin Elmer, 

US).  The entire experimental set up was replicated, and unpaired t-test was performed 

using the two sets of quadruplicate results.  If the first two data sets were statistically 

different (P < 0.05), then another replicate was carried out. 

 

(ii) Cytotoxicity in Caco-2 and 3T3 cells 

The same procedure was carried out in both Caco-2 and 3T3 cells.  The initial cell 

density was 5000 cells per well and 2000 cells per well for Caco-2 and 3T3 

respectively. Other conditions were same as above. 

 

2.5 Evaluation of hybrid NPs in PDT 

The toxicity of photoactivated NPs was assessed using MTT procedure following the 

UV-A radiation. The study was carried out in B16-F10 and Caco-2 cells at 24 h post 

treatment only.  For both cell lines, 5x103 cells per well were seeded and allowed to 

grow for 48 h. The cell culture medium was replaced with fresh medium containing 

FZ, FZSi, FZSiFA25 and FZSiFA50 NPs at concentrations of 12.5, 25, 50 and 100 

µg/mL. After the exposure of the cells with NPs for 24 h, the plates were treated with 

UV-A radiation (365 nm) at a dose of 10 J/cm2 in a BS-02 UV chamber (8 x 15 W 

lamps at 120 W total power output) for 9.18 min (at 10 cm distance from the UV-A 

lights). Chamber temperature was monitored using an IR thermometer (4470CC, 

Infrared traceable thermometer gun, ThermoFisher, Australia) and maintained via 

circulating fan within the chamber. The cells were cultured further for 24 h, and cell 

viability was assessed via the MTT assay described in Section 2.4.  
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2.6 Evaluation of PDT of hybrid NPs with multiple UV-A irradiations 

One of the advantages of using hybrid NPs in PDT is that the administration of a single 

dose of NPs or PS permits repeated application of multiple doses of PDT. This is 

achieved simply by repeated irradiation of light source, resulting in continuous 

anticancer effects. Hence the impact of multiple irradiations on the hybrid NPs was 

studied in this experiment. Double radiation was given with a 2 h interval, and triple 

radiation was given 2 h post second radiation. The irradiation dose and conditions were 

followed as per the phototoxicity protocol used for single irradiation (Section 2.5). 

This study was carried out only at the lowest concentration (12.5 µg/mL) in B16-F10 

cells, where the percentage of viable cells remained higher compared to the other 

doses. Cell viability was calculated according to equation 2.1 with A 
test corresponded 

to the cells incubated with NPs in a medium that is exposed to multiple UV-A 

radiations. The cells treated with multiple irradiations alone served as an additional 

control. 

 

2.7 Morphology change of cells after hybrid NPs and UV-A treatment 

To study morphology, change of cells, after treatment with hybrid NPs, B16-

F10/Caco-2 cells were seeded (5x103), (3T3 cells, 2x103) in DMEM high glucose 

complete medium. NPs treatment and conditions were maintained similar to 

cytotoxicity in B16-F10 cells described in section 2.4. Cells were observed 

immediately after the treatment of NPs using (20X magnification) phase contrast 

microscopy (Eclipse TS100, Nikon Instruments Inc., Tokyo, Japan). Morphology 

changes concerning a different dose of NPs and different conditions (dark 6 h & 24h, 

UV-A light) were recorded. 

 

2.8 Singlet oxygen detection   

Singlet oxygen is believed to be one of the main reasons behind cellular toxicity of 

NPs and the singlet oxygen production ability of the investigated NPs outside cells 

was analysed using the chemical trapping method, known as the 1,3-diphenyl 

isobenzofuran (DPBF) method.  The singlet oxygen generating ability of a PS was 

measured by its quantum yield as reported in the literature (De Rosa, & Crutchley, 

2002; Nadhman et al., 2014).  
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Singlet oxygen quantification was carried out as per the method described by Xiao 

(Xiao et al., 2011; Nadhman et al., 2014), with some modifications. DPBF solution 

was prepared by dissolving 0.15 mM DPBF in ethanol. Hybrid NPs (12.5 μg/ mL, 100 

µL) was dispersed in 200 µL of DPBF solution. The mixture was placed in a sealed 

quartz cuvette and exposed to UV-A light source (BS02 UV chamber, 365 nm).  After 

every 30-s exposure to UV-A, the absorbance of the mixture was measured at 410 nm, 

for up to 180 s, by a UV 3000 spectrophotometer (ORI, Germany). The UV-A lamp 

cuts off when the chamber door is opened at any particular time point, and this 

provision was used for the short time points between 30 s and 180 s. The absorbance 

of NPs in the dark was deducted from the absorbance of photo-irradiated NPs. The 

decrease in absorbance caused by photobleaching of DPBF was measured in the hybrid 

NPs. The natural logarithm values of absorption of DPBF were plotted against the 

irradiation time and fit by a first order linear least-squares model to obtain the decay 

rate of the photosensitized process (Nadhman et al., 2014). Rose Bengal was used as 

the standard at the same concentration as the NPs, exposed to UV-A light and 

absorbance was measured at 410 nm for the degradation of DPBF. 

 

 ΦΔN = ΦΔstandard x (kN/kstandard)           (Equation 2.2) 

ΦΔN is the singlet oxygen quantum yield of NPs  

ΦΔ standard is the singlet oxygen quantum yield of Rose Bengal (0.86)  

 Kstandard is the slope of standard (Rose Bengal) 

 kN is the slope of NPs 

kstandard and kN were determined from the slopes of the time-dependent decrease of 

DPBF plots, expressed as the decrease of absorbance at 410 nm. 

 

2.9 ROS detection by DCFH-DA 

2’,7’-dichlorofluorescein diacetate (DCFH-DA) is a fluorogenic dye that measures 

hydroxyl radical, peroxyl radical and hydrogen peroxide activity within the cell 

(Gomes et al., 2005). Generation of ROS species was measured following oxidation 

of 2’,7’-dichlorofluorescein (DCFH) and its diacetate form (DCFH-DA) inside cells 

(Yang & Ma, 2014).  The DCFH-DA is cell permeable and hydrolysed by cellular 

esterase to DCFH, a compound which is unable to cross the cellular membrane.  This 
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non- fluorescent DCFH, oxidized by intracellular ROS converts to a highly fluorescent 

compound, 2’,7’-dichlorofluorescein (DCF).  

 

A DCFH-DA stock solution in methanol of 10 mM was diluted 500-fold in HBSS 

without any other additive to yield a 20 µM working solution.  Cells were washed 

twice with HBSS and then incubated with DCFH-DA working solution for 1 h in an 

incubator under dark environment (37°C). The extracellular DCFH-DA was removed 

by washing with HBSS and followed by treatment with hybrid NPs dissolved in cell 

culture medium. The NPs were treated with different doses 12.5, 25 and 50 µg/mL for 

various time periods of 0 h, 2 h, 6 h and 24 h.  After NPs treatment, free NPs were 

removed by HBSS washing and fluorescence was measured at 485 nm excitation and 

520 nm emission using a microplate reader. Cells with no NPs treatment at each time 

point was used as the control and medium was used as the blank. Serum in medium 

has been reported capable of producing fluorescence in DCF assay without presence 

of cells (Tetz et al., 2013). Chemical activation of DCFH-DA to DCF is also possible. 

Hence cell free controls are important when using DCF assay. 0 h represents 5 min 

time point of NPs treatment. ROS generation was measured in the dark and under UV-

A light-exposed conditions in B16-F10 and Caco-2 cells. UV-A radiation was given 

immediately following NPs treatment. Black 96 well plates with clear bottom were 

used for fluorescence detection. 

 

DCF fluorescence intensity (%) =
Ftest−FNP 𝑏𝑙𝑎𝑛𝑘

Fcontrol−Fmedium blank
X100 (Equation 2.3) 

Where F 
test is the DCF fluorescence intensity produced in cells treated with NPs in 

medium, F NP blank is the DCF fluorescence associated with just NPs in medium without 

cells, F control is the DCF fluorescence of just cells in medium and F 
medium blank 

corresponded to the DCF fluorescence of the DMEM medium.  

 

With UV-A treated samples: F 
test is the DCF fluorescence intensity produced in cells 

treated with NPs+UV-A irradiation in medium, F control is the DCF fluorescence of just 

cells in the medium. DCF fluorescence of the cells in DMEM medium exposed to UV-

A irradiation served as an additional control. 
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2.10 ROS quenching by NAC 

This study was designed for the confirmation of NPs ability to generate ROS. N-acetyl-

L-cysteine (NAC) can interact directly with ROS and RNS because it is a quencher of 

oxygen free radicals (Ostrovsky et al., 2009; Heim et al., 2015). NAC stock solution 

5 mM was prepared in DMEM medium. After 48 h of cell growth, 100 µL NAC was 

added to each well and left for 24 h in the incubator. NAC solution was removed, and 

cells were washed twice with HBSS and then incubated with DCFH-DA working 

solution for 1 h in an incubator under dark environment (37°C). The extracellular 

DCFH-DA was removed by washing with HBSS and followed by treatment with 

hybrid NPs dissolved in cell culture medium. The NPs were treated with different 

doses 12.5, 25 and 50 µg/mL for various time periods of 0 h, 2 h, 6 h and 24 h.  After 

NPs treatment, free NPs were removed by HBSS washing and fluorescence was 

measured at 485 nm excitation and 520 nm emission using a microplate reader. ROS 

generation after pre-treatment with NAC (ROS quencher) was measured in the dark 

and under UV-A, given immediately following NPs treatment) light-exposed 

conditions in B16-F10 and Caco-2 cells. The ROS quenching by NAC was assessed 

with unmodified (FZ NPs) and surface modified (FZSi NPs). Cells with no NPs 

treatment served as the control and medium served as the blank. The cells irradiated 

with UV-A radiation served as an additional control for UV treated samples. The DCF 

fluorescence intensity was calculated according to the equation 2.3. Black 96 well 

plates with clear bottom were used for the experiment. 

 

2.11 NAC treated cytotoxicity assay 

A separate cytotoxicity study involving pre-treatment of cells with ROS quencher 

NAC was performed to confirm the impact of ROS on cell cytotoxicity. The NPs 

concentration 100 µg/mL that exhibited a maximum reduction in cell viability was 

used for the study.  Briefly, B16-F10 cells after 48 h of cell growth were replaced with 

NAC (100 µL, 5 mM & 15 mM dissolved in DMEM medium). The NAC treated wells 

were incubated for 24 h followed by washing with PBS and replaced with fresh 

medium containing NPs (at the concentration of 100 µg/mL). The B16-F10 cells 

treated with NAC served as the control and B16-F10 cells treated with 100 µL NPs 

(no NAC) served as an additional control. The cell viability MTT assay (described in 

section 3.2.2(iv)) after NAC pre-treatment was carried out in B16-F10 cells (dark 

only).  
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Cell Viability (%) =
Atest−ANP 𝑏𝑙𝑎𝑛𝑘

Acontrol−Amedium blank
x100 (Equation 2.4) 

Where A 
test is the absorbance of the formazan produced by cells pre-treated with NAC 

and incubated with NPs in medium, A NP blank is the NAC pre-treated absorbance 

associated with just NPs in medium without cells, A control is the absorbance of cells 

pre-treated with NAC in medium and A 
medium blank corresponding to the NAC pre-

treated absorbance of the DMEM medium alone. 

 

2.12 Evaluation of cellular uptake of hybrid NPs 

Two types of study were conducted to assess the effect of NP ligands and incubation 

time on the cellular uptake of the NPs.  They are a) quantitative assay involving 

fluorescence measurement of the NPs uptaken by the cells using a plate reader 

spectrophotometer and b) the qualitative assay, using confocal laser scanning 

microscopy (CLSM) for visual confirmation of the NP internalisation and cellular 

localisation. Both quantitative and qualitative study was performed in B16-F10 

melanoma cells. 

 

Fluorescein isothiocyanate (FITC) attached FZSi NPs (FZSi-FITC) and FZSiFA50 

NPs were used for the cellular uptake experiments, as they contain FITC and FA, as 

the respective fluorescent moieties. FZSi-FITC NPs were prepared by chemically 

attaching the fluorophore molecules within the silica shell. In brief, 0.1500 g of FZSi 

NPs were dispersed in 40 mL of milli-q water to which 1.65 mL of ammonium 

hydroxide solution (25% wt) was added. 1.5 mg of FITC was dissolved in 20 mL 

ethanol and added to the NP dispersion, and the resulting solution was stirred 

mechanically for 15 min. 35 µL of TEOS was mixed with 20 mL of ethanol, and the 

solution was added dropwise over a 10 min period to the NP dispersion containing the 

FITC. The reaction was allowed to proceed for 3 h in the dark with continual 

mechanical stirring. Finally, the FITC- labelled NPs were washed to remove non-

bound FITC and air dried. The FZSi-FITC labelling was carried out in the Department 

of Chemical Engineering.  
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a) Quantitative analysis  

The quantitative assay was conducted by determining the amount of NPs uptake per 

mg of cell protein using the procedure below (Kooijmans et al., 2012): 

1. The cells were seeded onto a nunc-24 well plate at a density of 5,000 cells/well 

with DMEM high glucose medium with appropriate supplements (Table 2.1). 

2. The medium was replaced every third day, and cells were maintained at 37°C, 

5% CO2 and 95% humidified air until they become nearly 70-80% confluent 

(2-3 days). 

3. The medium was removed, and cells were rinsed twice with 500 µL of pre-

warmed HBSS. The cells were incubated for 30 min in HBSS at 37°C for 

equilibration. 

4. After 30 min, the HBSS was replaced with 500 µL of HBSS containing NPs at 

a concentration of 100 µg/mL. 

5. After 2 and 6 h incubation time (UV-A irradiation was given immediately 

following NPs treatment), the medium was aspirated, and cells were washed 

quickly three times with cold PBS to remove excess NPs. 

6. 200 µL RIPA buffer was added to each well and shaken on platform mixer 

(Ratek platform mixer, OM6, Ratek Instruments Pty Ltd, Boronia, Australia) 

for 10 min to solubilize the cells (Eigenmann et al., 2013). 

7. The plate was centrifuged for 5 min at 3200 g, and the supernatant was used 

for analysis of cell protein and NPs content. 

 

Protein analysis: 10 µL supernatant was placed in a 96-well plate and 150 µL Pierce 

TM 660 nm protein assay reagent was added.  The plate was incubated for 5 min at RT 

and absorbance was determined at 660 nm using the plate reader.   BSA standards were 

placed on the same plate and analysed similarly to obtain a calibration curve. The cell 

protein quantity in each well was determined using the constructed calibration curve. 

 

NP analysis: 50 µL supernatant was placed in a black 96-well microplate, and the 

fluorescence intensity was measured at excitation/emission wavelength of 283/451 nm 

for FZSiFA50 NPs (Patel et al., 2017) and 492/518 nm for FZSi-FITC NPs (Baird et 

al., 2012) using the plate reader. Known concentrations of NPs (10 to 300 µg/mL in 

RIPA buffer) were prepared and analysed similarly to the samples to generate a 

calibration curve. The NPs uptake in each well was determined using the constructed 
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calibration curve. The cells in culture medium without NPs treatment were used as the 

control. For each type of NPs at each time point, the microgram of NPs uptake per mg 

of cell protein was calculated. 

 

Cell uptake study design for hybrid NPs with different time points, NPs and conditions 

are described below: 

• Incubation temperature : 37°C 

• Time points  : 2 h and 6 h 

• NP1   : (FZSi-FITC) no targeting ligand 

• NP2   : (FZSiFA50) FA was the targeting ligand.  

• NPs concentration used : 100 µg/mL  

• Experiment condition :Dark and UV-A irradiated conditions  

• Cell lines   : B16-F10 and Caco-2 cells 

 

b) Qualitative analysis  

This study was performed to assess the internalisation and localisation of two 

fluorescent labelled NPs (FZSi-FITC and FZSiFA50), which exerted relatively better 

cytotoxic activity in B16-F10 cells.  The cell nucleus was stained with a propidium 

iodide solution (50 µg/mL), and the NPs with fluorescent ligands FA and FITC were 

used in this study.  The solution preparation procedures are briefly described below: 

 

Propidium iodide working solution 

The propidium iodide stock solution was prepared with deionized water at a 

concentration of 1mg/mL. The solution was protected from light wrapped in 

aluminium foil and stored at 4°C. Saline sodium citrate buffer (0.3 M NaCl, 0.03 M 

sodium citrate, pH 7.0) was prepared separately and used for the dilution of propidium 

iodide to produce a working concentration of 50 µg/mL. 

 

Hybrid NPs preparation 

FZSiFITC and FZSiFA50 NPs were dispersed in DMEM medium free of FBS, to 

prevent any serum interaction with the staining reagents. The hybrid NPs were used at 

a concentration of 100 µg/mL and dispersed in a sonic bath for 15 min before cells 

treatment. 
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(i) Immunostaining procedure for cells grown on coverslip 

1. B16-F10 cells (5000 cells/well) were seeded on the ethanol-sterilized glass 

coverslips (ProSciTech, Cat.G408, Dia-22 mm) placed in a 6-well plate. The 

experiment commenced when the cells reached 70-80% confluency. 

2. The medium was removed, and cells were rinsed twice and equilibrated with 

PBS (1mL) for 30 min at 37°C. 

3. After the removal of PBS solution, 1 mL of NPs in DMEM serum free medium 

(100 µg/mL) was replaced in each well (UV-A treated) and incubated for 6 h. 

4. The medium was removed, and cells were rinsed twice with 2 mL of cold PBS 

quickly. The quick washes ensured that the cells retained their original 

morphology and did not deform/shrink due to the absence of essential nutrients 

and ions. 

5. 2 mL of warm (37°C) methanol: glacial acetic acid (3:1) was added to the cells 

for fixation (fixation dehydrates cells/tissues, causing proteins to denature and 

precipitate in situ) and permeabilization and incubated for 15 min at RT in the 

dark and washed twice with 2 mL water each time.  

6. 2 mL of cold (4°C) 0.1% Triton X-100/PBS was added and incubated for 

exactly 3 min to permeabilize the cells.  Longer treatment could cause the 

propidium iodide to stain all the cellular components. 

7. Cells were rinsed twice with 2 mL PBS; the coverslip was removed carefully 

and placed in a new dry well.  Precaution was taken to keep the slides always 

wet. 

8. Propidium iodide working solution (20 µL) was added and incubated for 5 min 

and rinsed with 2 mL PBS. 

9. 8 µL of mounting medium (Vectashield, Vector Laboratories, US) was placed 

on a clean microscope slide. 

10. The coverslip containing cells was removed from the well and mounted on the 

slide with mounting medium with cells face upside down so that the cells touch 

the mounting medium avoiding any air bubble. 

11. The slide was left in the open (but in the dark) to evaporate the excess moisture 

for 4-5 h and then clear nail polish was used to seal the coverslip to avoid 

further moisture loss entirely. 

12. After the nail polish was completely dried, the prepared slides were stored at 

4°C to prevent the complete loss of moisture from the slide. The image was 
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taken with a Nikon A1 Confocal Laser Microscope (Nikon Instruments Inc., 

Tokyo, Japan).  

 

(ii) Immunostaining procedure for cells grown in Ibidi micro-dish 

1. In 35 mm Ibidi, micro-dish cells were seeded at 5000 cells per micro-dish.  The 

experiment commenced when the cells reached 70-80% confluency.  

2. Steps 2-8 (described in immunostaining procedure for cells grown on 

coverslip) were followed. 

3. Images were taken with the Nikon A1 Confocal Laser Microscope.  

 

2.13 Apoptosis assay by Flow cytometry 

Annexin V-FITC/PI assay was performed for the detection and discrimination of 

apoptotic and dead cells.  Apoptotic cells are otherwise undetectable by staining with 

propidium iodide. 

1. B16-F10 cells (2x105/ well) were seeded in a 6-well plate. After reaching 70-

80% cell confluency, 1 mL medium was replaced with equal volume of 

medium containing hybrid NPs (FZSi & FZSiFA50 NPs, 12.5 & 100 µg/mL, 

incubated 6 h & 24 h). Separate 6-well plates were used for NPs treated in the 

dark and NPs activated with UV-A irradiation. Cells were  incubated further 

for 6 h and 24 h after UV-A treatment. 

2. The cell supernatant was collected, followed by addition of Tryple-X (~1mL 

per well) to detach any attached cells at the bottom of the plates, followed by 

the addition of DMEM medium. 

3. The cell suspension was transferred to 15 mL centrifuge tubes and centrifuged 

at 3750 g for 5 min. 

4. The supernatant was removed, and the cell pellet was washed by addition of 

PBS (1 mL each time) twice. 

5. The pellet was resuspended in 100 µL of 1 X binding buffer (refer Appendix 7 

for preparation of 10 X binding buffer) and maintained in cold condition. 

6. 5 µL of FITC Annexin V was added to each sample, followed by the addition 

of 10 µL of propidium iodide (50 µg/mL). 

7. The samples were maintained in the dark for 15 min at RT. 
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8. Finally, 400 µL of 1X binding buffer was added to each tube and sample was 

analysed using CANTO-II cell analyser (BD FACSCanto II, Australia) within 

1 h. 

9. The apoptosis assay was carried out in B16-F10 cells, and the cells with no 

hybrid NPs treatment served as the control. 

 

2.14 Total cell associated zinc and iron measurement by ICP 

The total elemental zinc and iron content within the cells after NPs treatment was 

measured by ICP-OES (Perkin Elmer Optima 8300 spectrometer, US). The analysis 

was performed at the wavelengths of 238.2 and 206.2 nm for iron and zinc, 

respectively. The cellular uptake of the hybrid NPs and the impact of UV-A radiation 

on the uptake was analysed. 

1. The cells (B16-F10 and Caco-2) were seeded onto a nunc-24 well plate at a 

density of 5000 cells per well with DMEM high glucose medium and 

appropriate supplements (Table 2.1). 

2. The medium was replaced every three days, and cells were maintained at 37°C, 

5% CO2 and 95% humidified air until 70% to 80% confluency (2-3 days). 

3. The medium was removed, and cells were rinsed twice with 500 µL of pre-

warmed HBSS. The cells were incubated for 30 min in HBSS at 37°C for 

equilibration. 

4. After 30 min, the HBSS was replaced with 500 µL of HBSS containing NPs at 

a concentration of 100 µg/mL. 

5. After a predetermined incubation time (2 h and 6 h), (UV-A irradiation given 

immediately after NPs treatment), the medium was aspirated, and cells were 

washed quickly three times with cold PBS to remove excess NPs. 

6. 1000 µL RIPA buffer was added to each well and shaken on platform mixer 

for 10 min to solubilize the cells (Eigenmann et al., 2013). 

7. Concentrated nitric acid (70% w/w, 2 mL) was added to the samples to dissolve 

the zinc and iron metals and heated at 60°C for 2 h until a clear solution was 

formed and further diluted as required with milli-Q water before analysis 

8. The ICP-OES analysis was conducted in the Department of Chemical 

Engineering, Curtin University using ICP-OES (Perkin Elmer Optima 8300 

spectrometer, US). Zinc and iron standards were analysed in the concentration 

range between 50 ppb to 300 ppb. 
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9. B16-F10 and Caco-2 cells with no hybrid NPs treatment served as the control. 

 

2.15 Caspase 3/7 assay  

The caspase 3/7 assay is used for the apoptosis analysis in NPs treated cells. It is a 

luminescent assay used to measure caspase-3 activity in purified enzyme preparations 

or cultures of adherent or suspension cells. The assay kit provided a proluminescent 

caspase-3/7 substrate, which contained the tetrapeptide sequence DEVD.  

1. B16-F10 cells were seeded in 6 well plates (5000 cells per well), after reaching 

80% confluency the DMEM high glucose medium was replaced with medium 

containing hybrid NPs (FZSi & FZSiFA50, in two different concentrations 

12.5 & 100 µg/mL) and incubated for 1 h and 2 h respectively.  Cells were  

incubated further for 1 h and 2 h after UV-A treatment. 

2. Change in morphology of the cells after NPs treatment was captured through 

Nikon inverted microscope and images were captured with attached Nikon 

digital sight camera (DS-Fi2). 

3. The supernatant was removed, and RIPA buffer containing protease inhibitor 

(100 µg/mL) was added (200 µL per well), and the plate was maintained on 

ice for 5 min. 

4. Any cells at the bottom of the plate were scraped with a cell scraper. 

5. Cell lysate and cells were centrifuged at 12,000 g for 10 min at 4°C. 

6. The supernatant or cell lysate was collected for cell protein analysis. 

7. A small aliquot of the supernatant (10 µL) was taken for protein concentration 

analysis using Pierce protein assay reagent, left at RT for 5 min and absorbance 

measured at 660 nm. The standard calibration curve was plotted using BSA 

dissolved in RIPA buffer. 

8. Then, the samples were diluted with RIPA buffer to make sure the protein 

levels are the same in all the wells. 

9. 25 µL caspase reagent Ac-DEVD-AFC (50 µM, final concentration) dissolved 

in a reagent buffer (20 mM HEPES, 10% glycerol, 2 mM DTT, pH 7.5) was 

added to 96- well plate (black side, clear bottom), followed by addition of 50 

µL cell lysate and incubated at 37°C for 1 h. 

10. The AFC fluorescence was measured using a plate reader (Perkin Elmer, UK) 

with 400/ 505 nm excitation/emission wavelength. Ac-DEVD-AFC reagent 



Chapter 2 – Materials and Methods 

40 
 

with buffer was used as the blank. The cells with no NPs treatment were used 

as the control. 

11. The experiment was carried out in the same manner for both dark and UV 

irradiated samples.  

 

In vivo study 

2.16 Preparation of B16-F10 mouse melanoma tumour cells 

B16-F10 melanoma tumour cells, originally derived from mice were grown using 

DMEM high glucose medium containing 1% PEN-STREP, 1% glutamine and 10 % 

bovine serum (Overwijk et al., 2001). The medium was changed every third day. On 

80% confluency, the cells were trypsinized using Tryple-X (~3 min). Double volume 

of complete medium (ie for 1 mL Tryple-X, 2 mL complete medium was added for 

neutralisation) was added, and centrifuged at 3,200 g for 5 min. The generated cell 

pellet was washed twice with HBSS. The cell pellet was redispersed in HBSS to 

produce cell density of 2x107 cells/mL. The 1mL volume of cell suspension was mixed 

with equal volume of Matrigel and transferred to the icebox for inoculation on mice. 

The Matrigel permits high local concentration of tumour cells to produce a more solid 

tumour mass. 

 

2.17 Animals and tumour inoculation 

C57BL/6 male mice (4 weeks old) were obtained from the Animal Resource Centre, 

Perth, Australia.  Animals were acclimatized, monitored and housed according to the 

standard operating husbandry procedures in the animal house at Curtin University and 

weighed before implanting tumour cells with an electronic balance. The experiments 

were performed according to the Australian Code of Practice for the care and use of 

animals for scientific purposes. Health monitoring scorecards were used to ensure 

consistency in monitoring procedures (Appendix 9).  Animals were monitored at least 

three times a week, every day or every second day after treatments.  A schematic 

diagram of the mice treatment since they arrived at the animal facility in Curtin 

University is given in Figure 2.1: 
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Figure 2.1. Schematic representation of the animal treatment 

Anaesthesia 

According to the standard operating procedure (SOP) (Research facility manual, 

Curtin University, 2014), animals were placed carefully in the anaesthetic chamber, 

and a mixture of oxygen (1.5-3L/min) and isoflurane (4%) was pumped into the 

chamber from the vaporiser.  Once the animal was anaesthetised, the animal was 

removed from the chamber and anaesthesia was maintained using a nose mask 

(vaporiser) with a mixture of isoflurane (1-2.5%) and oxygen (0.5-1L/min).  Reflexes 

of the animal were tested before starting the procedure. After tumour inoculation, 

treatment and tumour measurement the animal was immediately removed from nose 

mask and allowed to recover freely in the cage and monitored. The animal was 

observed until full recovery for any residual effect from the anaesthesia and procedure. 

 

Tumour inoculation in mice 

Each mouse was anaesthetized, the dorsal mid-back region of mice was shaved and 

wiped with ethanol and then injected subcutaneously 5 × 105 of murine B16-F10 cells 

suspended in 50 µL (50% Matrigel/ HBSS) on the dorsal mid-back region (Fahmy et 

al., 2003; Yu et al., 2014). After inoculation tumours were monitored visually 

according to the SOP TEC-05, Curtin University. Tumour growth was measured every 

second-day using a digital calliper and calculated using the Equation 2.5 (Yu et al., 

2014).  

Tumour volume (V) = L * W * H* π/6 (Equation 2.5) 

Where L is the length of the tumour; W is the width of the tumour; H is the depth of 

tumour and π value is 3.14. 

 

Upon subcutaneous administration of tumour cells, bleb appeared on the spot of 

injection (Overwijk et al., 2001). The animal with no bleb was excluded from the 

study.  The intratumor treatment started once a tumour reached an average size of 20 
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mm3 (day 6). The tumour size, tumour appearance, the body weight, activity was also 

monitored every alternate day during the study. 

 

2.18 Preparation studies for UV-A irradiation 

The UV-A radiation source (UV LED SMART) employed in the experiment had been 

approved by the radiation safety officer, Curtin University, before the study (Appendix 

10). To easily deliver the UV dose to mice, we used a handhold UV-A irradiation 

device UV LED SMART (Figure 2.2) and developed a specific protocol for its delivery 

of UV-A irradiation, which can be applied to a clinical setting in the future.  

 

 
 

 

Figure 2.2. Image showing the UV LED SMART which was used as the UV-A radiation light 

source for animal study. Break out box helps to use the UV LED SMART without the need for a 

computer during irradiation. 

 

 

The use of UV LED SMART was optimised with C57BL/6 male mice skin (with and 

without hair) first before the animal study. The mice skin was provided by a researcher 

of our group who worked with B16-F10 melanoma tumour in the same strain of mice. 

The skin tissue was collected from a tumour grown region (after removal of a tumour 

beneath). The skin was ~ 1mm thick and used for study immediately on the day it was 

collected. The skin samples collected from three different animals with tumour burden 

on the same day immediately after mice were sacrificed, were tested for UV-A 

penetration through the mice skin. 

 

The time taken to reach the fixed dose of 10 J/cm2 on the base of the skin was 

investigated using both mouse skin with and without hair. The impact of distance 

between UV-A light source and mouse skin at the time to reach the dose was studied. 

In all setup experiments the tumour skin was mounted on the sensor of the UV BS02 

chamber (UV irradiation chamber, Opsytec, BS02) (UV chamber used for the in vitro 
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study, Appendix 11) to permit the measurement of the irradiated dose. The UV LED 

SMART was mounted at 1 cm distance to prevent any direct heating effect. The 

experimental set up used in the study is described below in Figure 2.3. The parameters 

of distance between light source and mouse skin, heat generated from the light source, 

duration of light exposure and the diameter of the light beam on the skin were taken 

into consideration to optimise the study. The temperature of the light beam on the 

mouse skin was measured using an I.R Thermometer (Thermo Fisher, Australia) 

before and after light exposure. 

 
Figure 2.3. The experimental design used in optimising the UV LED SMART system. The sensor 

was connected to UV Chamber BS02, which displays the UV dose and time taken to reach the 

dose. 

 

The UV-A light dose used for the animal study was 10 J/cm2 mimicking exactly the 

light dose used in in vitro studies. From the pilot study, the dose of 10 J/cm2 was 

reached at a time of 3 min 42 seconds. The temperature of the skin was measured 

before and after UV-A radiation treatment, to assess if hyperthermia was produced and 

if there was any temperature rise which could cause any discomfort to the animal.  

 

2.19 Experimental design for in vivo studies 

Tumour-bearing male mice C57 BL/6 were divided into nine groups, six each with 

body weight ranging 20-25 mg (n=6). The mice in control and UV treatment groups 

were administered saline to mimic the experimental procedures in the other groups. 

Mice were sacrificed according to the guidelines of research facility manual, Curtin 

University when any mice with a tumour greater than 100 mm3 in size or the body 

weight of mice reduced by more than 10%, or more than 50% tumour turned necrotic. 

Therefore, the termination time (i.e. endpoint) of mice might be different in a group, 

depending on conditions of a tumour and animal welfare. 
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    Figure 2.4. The schematic treatment plan and the end point for in vivo studies  

2.20 Administration of hybrid NPs and assessment of tumour growth 

The NPs dose used in the study was 2 mg/kg. The hybrid NPs were dispersed in PBS 

(5 mg/mL) and subjected to sonication in a bath sonicator for 15 min, before use. 

According to the body weight, the hybrid NPs were injected into each animal using a 

0.3 mL insulin syringe and the maximum volume injected was 10 µL. The intratumor 

administration of hybrid NPs started on the 6th day at an average, when a tumour 

reached 20 mm3 size.  The NPs were injected approximately in the middle of a tumour, 

and UV-A irradiation for the respective treatment groups was given immediately or 

three days later.  The tumour size was measured every alternate day using a digital 

calliper. The tumour volume was determined using the formula stated in section 2.17. 

The tumour region was shaved and maintained in a wet condition with 70% ethanol 

during the measurement using a calliper to facilitate better detection of a tumour 

(Overwijk et al., 2001). Injection and irradiation of UV-A light were carried out with 

mice under anaesthesia by isoflurane vaporiser to reduce the stress caused by the 

procedure. 

Table 2.2. Animal experimental design of different treatment groups 

Treatment Group Treatment Received (intratumor administration) 

Control (Saline) Saline was given on treatment day 0 

Saline+UVD0 Saline+UV-A radiation was given on treatment day 0  

FZSiNPs D0 FZSi NPs were given on treatment day 0 

FZSiFA50NPs D0 FZSiFA50 NPs were given on treatment day 0 

FZSiNPs + UVD0 FZSiNPs and UV-A radiation was given on treatment day 

0 

FZSiFA50NPs + UVD0 FZSiFA50NPs and UV-A radiation was given on 

treatment day 0 

SalineD0+UVD3 Saline was given on treatment day 0, and UV-A radiation 

was given on treatment day 3   

FZSiNPsD0 + UVD3 FZSiNPs were given on treatment day 0, and UV-A 

radiation was given on treatment day 3   

FZSiFA50NPsD0 + UVD3 FZSiFA50NPs were given on treatment day 0, and UV-A 

radiation was given on treatment day 3   
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The treatment day 0 corresponds to day 6 post tumour inoculation in mice.  Treatment day 3 

corresponds to day 9 post tumour inoculation in mice. The terms D0 and D3 will be used in the 

text from now on. 

 

The animals were sacrificed at the endpoint which varies from one mice to another 

because of reasons stated previously. Therefore, results were analysed in different 

ways to allow comparison as below: 

• Tumour growth pattern during the whole study (26 days) 

• Tumour growth pattern up to day 16 post tumour cell inoculation 

• Tumour growth delay and inhibition 

• Animal survival and life prolongation rate 

• Body weight changes and organs weight 

Tumour growth and antitumour effect of treatments were assessed using various 

approaches including tumour growth plot, tumour weight at the sacrificed time, tumour 

volume inhibitory rate (TVI%) and life prolongation rate (%). 

 

Tumour volume inhibitory rate (TVI %) = (1-Tvt/Tvc) x100 (Equation 2.6) 

(Li et al., 2017) 

Tvt= Tumour volume average of treatment group at time t 

Tvc= Tumour volume average of control at time t 

 

Life prolongation rate (%) = (Ctreated/ Ccontrol – 1) x100 (Equation 2.7) 

(Li et al., 2017) 

Ctreated = Average survival days of treated mice 

Ccontrol = Average survival days of control mice 

 

2.21 Collection of biological samples 

After the animals were sacrificed, the organs were collected for future biodistribution 

studies. Briefly, the animal was anaesthetized and tested for reflexes. Once the animal 

was confirmed anaesthetized, blood was collected from the heart from the left lateral 

thoracic wall near the point of the flexed elbow using a suitable gauge needle and 

syringe (23-25G and 1-3 ml syringe for mice).  A V-cut through the skin and 

abdominal wall was made, and a volume of saline was slowly injected into the heart 

to flush out the remaining blood from the circulation. After flushing out all the blood, 

various organs (lungs, kidney and liver) and tumour (in mice) were harvested, wiped 
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with filter paper, weighed and stored in labelled glass vials at -80ᵒC until further 

analysis. Blood was collected in tubes containing, ethylenediamine tetraacetate 

(EDTA) (10% w/v) and centrifuged at 3,000 x g for 10 min, and the serum was 

separated and stored at -80 o C. Due to the limitation of resources, time, further analysis 

of the blood and organ samples were planned in the future studies. 

 

2.22 Statistical analysis 

In vitro data were analysed using two-way-ANOVA, via Tukey's multiple 

comparisons test (GraphPad Prism V 7.03). Statistical significance was considered at 

p < 0.05. The animal group results were statistically compared with one-way ANOVA 

followed by a Tuckey’s multiple comparisons test, using GraphPad Prism statistical 

software (v 7.03, GraphPad Inc., CA, USA). 
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3.1 Cell cultures 

The cell culture experiments were conducted in a physical containment level 2 (PC2) 

cell culture laboratory with the highest possible quality of the media, cell-line, cell 

culture consumables and personal hygiene.  The mycoplasma testing was conducted 

regularly to ensure the cells were free of any microbial contamination and the results 

were reliable. 

3.2 UV CHAMBER optimization 

UV irradiation chamber BS02 (UV-A, 365 nm) was purchased from UV Grobel, 

Germany. The key features and advantages of UV BS02 chamber are summarised 

below: 

• The irradiation chamber BS-02 is small and robust equipment and can 

function with time- or dose-controlled irradiation of samples with UV light. 

• The chamber operates at about 25°C, and the chamber contains a 

circulating fan which minimizes thermal damage to the samples.  

• The optional feature UV -MAT can be connected externally to the chamber 

and be used for precise dose and time measurement. It maintains a constant 

dose independent of lamp ageing, temperature, and pollution. 

• The chamber has inbuilt calibrated radiometer sensors for dose 

measurement, and it is designed with an excellent safety feature; the UV 

lamps cut off if the door is opened during the study. 

Figure 3.1 UV Irradiation BS02 chamber and UV MAT 
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 Figure 3.2 The set-up of UV irradiation chamber BS02 during the experiment.   

The complete set up was enclosed inside the UV chamber. The mounting base was 

made using cardboard boxes wrapped in aluminium foil to achieve the 10-cm distance 

required for the experiment. 

Table 3.1. UV CHAMBER BS02: Operation conditions  

Distance Irradiance 

(mW/cm2) 

Time (min) Dose produced 

(J/cm2) 

5 cm 24.47 1.34 2  

 25.57 3.23 5  

 25.74 6.34 10  

10 cm 18.39 1.51 2  

 18.46 4.34 5  

 18.48 9.18 10  

15 cm 14.28 2.25 2  

 14.42 5.54 5  

 14.43 11.37 10  

20 cm 11.89 2.51 2  

 11.95 7.02 5 

 11.99 14.12 10 

 

UV irradiance is the radiant power of UV arriving at the sample surface per unit area.  

It is photon flux, expressed in mW/cm2. The UV dose known as energy density is 

calculated by multiplying irradiance and time of exposure (in seconds) (Bolton & 

Lindon, 2003). As shown in Figure 3.2 the sensor and the cell culture plates were 

maintained at the same level during the experiment, to monitor the UV dose accurately. 

The temperature was recorded before and after irradiation in the cell culture plates 

during the experiment. Our trial study had recorded only negligible increase (1-2°C) 

in the temperature after UV irradiation treatment. However, the temperature was 

monitored for PDT experiments. 
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The radiation dose was directly affected by both time and distance. When the dose was 

fixed at 10 J/cm2 and the distance was varied: 5 cm distance took 6.34 min, 10 cm 

distance took 9.18 min, 15 cm distance took 11.37 min, and 20 cm distance took 14.12 

min. It took 2.84 min more to reach the dose when distance was increased from 5 to 

10 cm. The time increased nearly 2-fold when distance increased from 5 to 20 cm 

(Table 3.1). We decided to use 10 cm distance between the UV-A lamps and cell 

culture plates for all experiments as it had a minimum increase of time to reach 10 

J/cm2 UV-A dose and negligible rise in temperature. We selected this dose to enhance 

the effect of nano-PS with UV-A irradiation while ensuring the UV dose alone does 

not kill the cells insignificant amount (at 10 J/cm2 UV dose, the B16-F10 and Caco-2 

cells maintained 96.79% and 95.32% cell viability, described in section 3.6). The 

instrument setting ensured that the UV irradiation chamber consistently offered 

reproducible UV doses during the study.  

 

3.3 Characterisation of hybrid NPs as nano-PSs 

Physical properties and morphology 

The physical properties of hybrid NPs were examined before the cellular studies. The 

morphology was studied using TEM, and hydrodynamic particle size and size 

distribution were determined via dynamic light scattering (DLS) using Zetasizer Nano-

ZS (Malvern Instruments, UK). FA content was analysed by Thermogravimetric 

analysis (TGA) curve (Appendix 1), and optical properties of the NPs were studied by 

UV-vis diffuse reflectance spectroscopy in the department of Chemical Engineering 

(Table 3.2).  The structure of the hybrid NPs and the XRD analysis highlighting the 

distribution of Fe and Zn are shown in Appendix 1. 

 

TEM images (Figure 3.4) showed electron photomicrographs of hybrid NPs used in 

this study. The presence of silica layer had increased the particle size of silica modified 

FZ NPs (Table 3.2).  Pure ZnO exhibits absorbance at 400 nm with band gap energy 

3.1 eV. Fe3O4 exhibits absorbance between 350 and 650 nm region. The hybrid NPs 

used in the study had absorbance related to both ZnO and Fe3O4 (Figure 3.5, 430 nm, 

2.9 eV band gap energy) (Patel et al., 2017) confirming their potential to be used as 

PSs. 
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                    Table 3.2 Information about the hybrid NPs 

Nanoparticle Particle 

size 

(nm)a 

Zeta 

potential(mV) 

Optical 

property 

(nm)b 

Folate contentc 

FZ NPs 13.0 ± 1.1 -0.91 430 none 

FZSi NPs 17.6 ± 2.0 -16.5 430 none 

FZSiFA25 NPs 18.7 ± 2.2 -17.2 430 0.059 mmol/g 

FZSiFA50 NPs 18.9 ± 1.3 -20.6 430 0.085 mmol/g 

 a particle size was measured by DLS; b optical property was measured by UV-Visible diffuse 

reflectance spectroscopy; c folate content was measured by thermogravimetric analysis curve;  

 

 

 

 

 

 

 

 

 

Figure 3.3 Particle size distribution (DLS spectra) of FZNPs and silica coated FZSi-FA100 NPs. 
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Figure 3.4 TEM images of A: FZ, B: FZSi, C: FZSiFA25 and D: FZSiFA50 NPs (Patel et al., 2017) 

 
 

Figure 3.5 UV-visible diffuse reflectance spectroscopy spectra of ZnO (Patel et al., 2017) 

 

3.4 Stability of hybrid NPs in different medium 

DMEM high glucose medium was used in the cell culture studies, and the stability of 

hybrid NPs in this cell culture medium was compared with that in PBS (Table 3.3 & 

3.4). The pH of both the medium was measured as ~ 7.2 and 7.6. The particle size of 

the FZSi, FZSiFA25 and FZSiFA50 NPs increased due to silica and FA coating 

compared to uncoated FZNPs (Table 3.3), consistent with the earlier reported work 

(Feng et al., 2015b).  

 

 

 

 

 

 

C D 
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Table 3.3 Stability study of hybrid NPs in different medium at 37 0C 

All data are mean ± SD of three individual experiments. The measurements were undertaken at 

room temperature using DLS. 

 

The NPs which exerted higher negative zeta potential values showed better stability in 

DMEM containing FBS compared to PBS across all types of NPs and time points 

(Table 3.4). BSA, the primary component of fetal bovine serum (FBS), exerts negative 

charge at higher pH values (˃5.1). Hence negative charge on the NPs surface could 

indicate adsorption of FBS components.  

Table 3.4 Stability study of hybrid NPs in different medium (Zeta potential) 

All data are mean ± SD of three individual experiments. The measurements were undertaken at 

room temperature by DLS. 

 

The adsorption of BSA onto NPs could also provide protective colloid effect 

(Dominguez-Medina et al., 2013), further stabilizing NPs via steric stabilization.   

Similar observations were reported by other research groups (Anders et al., 2015; Chia 

et al., 2016a; Pandey et al., 2016; Chia et al., 2016b), where serum proteins were also 

used. As expected, the increase in folate content from FA25 to FA50 increased the 

negative charge of the NPs. Greater the magnitude of zeta potential, higher 

electrostatic repulsion and better stability of the NPs was observed. It was not 

surprising to see that significant aggregation of NPs at 24 h in PBS with uncoated FZ 

NPs, due to the less negative charge on the surface compared to the silica modified 

NP 

formulation 

Diameter of the particles (nm) ± SD         

PBS                                               DMEM   
0 h 6 h 24 h 0 h 6 h 24 h 

FZ 13.0±1.3 33.7±2.3 56.6±11.1 15.4±1.1 28.1±2.3 35.0±10.1 

FZSi 17.6±2.1 28.4±1.4 29.3±1.0 17.8±1.3 26.4±1.4 32.7±1.0 

FZSiFA25 18.7±2.5 24.6±1.5 28.7±9.2 19.1±4.2 19.8±6.6 26.7±3.3 

FZSiFA50 18.9±1.4 25.3±6.2 25.9±2.1 19.9±2.4 25.4±3.7 27.0±2.4 

NP  Surface charge ± SD(mV)         

PBS                                               DMEM  
 

0 h 6 h 24 h 0 h 6 h 24 h 

FZ -0.91±0.1 -0.83±0.2 -0.76±0.1 -0.9±0.1 -0.92±0.2 -0.97±0.2 

FZSi -16.5±2.2 -16.4±1.0 -16.0±0.8 -16.3±1.6 -16.4±3.2 -17.7±1.3 

FZSiFA25 -17.2±2.1 -16.7±1.3 -16.4±3.2 -17.1±4.1 -17.8±2.6 -18.5±3.2 

FZSiFA50 -20.6±4.3 -20.4±3.2 -20.1±2.1 -20.8±2.7 -22.4±3.2 -23.7±1.2 
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NPs. A stabilizing agent or a capping agent like PEG may enhance the stability of 

hybrid NPs.  

 

The physical dimensions of the aggregates formed can affect the reactive surface area, 

reactivity, bioavailability and toxicity of the NPs (Gatoo et al., 2014). In this study, all 

NPs stayed below 60 nm during the 24 h study. For FZSi and FZSiFA NPs, their 

particle size had remained below 35 nm during 24 h. Therefore, it could be concluded 

these hybrid NPs were reasonably stable in culture medium over 24 h. As we expected 

the cell uptake of NPs would be completed by 24 h, it may suggest that the cellular 

response of hybrid NPs would not be affected by NPs stability in the culture medium.      

 

3.5 Evaluation of cytotoxicity 

The cellular toxicity level of hybrid NPs was assessed in B16-F10, Caco-2 and 3T3 

cell lines using an MTT based cell viability assay. Cell viability was assessed after 

incubation in the presence of FZ, FZSi, FZSiFA25 and FZSiFA50 NPs for 6 h and 24 

h at various concentrations.  

 

(i) Cytotoxicity of hybrid NPs in B16-F10 cells  

As shown in Figure 3.6 the hybrid NPs exhibited time and concentration-dependent 

cytotoxicity towards B16-F10 melanoma cells. Higher the concentration of hybrid NPs 

greater was their cell killing ability.   

 

Median effective dose (ED50) values were determined for the NPs by plotting the dose-

response curve (cell viability against concentration of NPs) and using line of best fit 

to calculate the NP dose which killed 50% of cell population in both the conditions 

(dark, NPs with UV-A irradiation) (Appendix 12). The ED50 value for FZ NPs was 

45.00 µg/mL and 49.34 µg/mL for FZSi NPs. The ED50 values for FZSiFA25 and 

FZSiFA50NPs were 36.28 µg/mL and 21.44 µg/mL at 6 h respectively.  Noteworthy, 

the FZSiFA50 NPs ED50 was nearly half the ED50 value compared to FZ NPs (21.44 

µg/mL & 45.00 µg/mL), which showed the impact of FA attached hybrid NPs in 

melanoma cells.   

 

Increasing the exposure time from 6 h to 24 h (Figure. 3.6B) attenuated the cell 

viability across all NPs concentrations. As the hybrid NPs were in contact with the 
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cells for a longer time and more of NPs would have been taken up by cancer cells. As 

a result, the ED50 values were decreased to17.99 µg/mL and 17.15 µg/mL respectively 

for FZ and FZSiFA25 NPs. Stronger cytotoxicity was observed at 24 h with FZSi, and 

FZSiFA50 NPs and their ED50 values were 13.76 and 15.18 µg/mL respectively. 

Although at 24 h, 25, 50 and 100 µg/mL concentrations, FZ NPs exhibited a slightly 

better cell killing effect than FZSiFA50 NPs, the difference was not statistically 

significant. More importantly, as the test was conducted in the cell culture, the effect 

of targeting ligands would be expected to be shown in the early hours. In addition, 

folic acid is a known molecule promoting cell growth, which may have attributed more 

to the cell viability at 24 h than that at 6 h, resulting in less difference between FA-

coated and non FA-coated NPs.  At high dose 100 µg/mL the cell viability reduced to 

less than 10% across all the hybrid NPs. However, the difference was observed 

significantly even with the low dose 12.5 µg/mL. For instance, FZ NPs cell viability 

was 79.08% at 12.5 µg/mL dose, and FZSiFA50 NPs reduced cell viability to 61.61% 

with 12.5 µg/mL dose.  It requires careful selection of dose as the hybrid NPs can exert 

cytotoxic effect even at the low dose against melanoma cells.  

 

Our results agree with Alarifi et al. (2013) who reported 41.40% cell viability when 

A375 melanoma cells were treated with 20 µg/mL ZnO NPs. Our study reports 35.28% 

cell viability in B16 melanoma cells when treated with 25 µg/mL FZ NPs.  Cloudman 

S91 melanoma cells treated with 25, 50 and 100 µg/mL ZnO NPs for 24 h reported 

50%, 20% and almost10% cell viability respectively (Wahab et al., 2013).  Our results 

indicate 38.84%, 14.90% and 9.35% cell viability at the similar conditions treated with 

FZSiFA50 NPs against B16-F10 melanoma cells. 
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Figure. 3.6 The viability of B16-F10 cells upon exposure to various NPs for 6 h (A) and 24 h (B) 

at different concentrations. Data are represented as mean ±SD (n=4). Compared to untreated 

control group all four NPs were significant at all concentrations. * indicates p<0.05; *** indicates 

p˂0.001 when FZ NPs 6 h & 24 h (12.5 & 25 µg/mL) groups were compared to other three NPs 

groups 6 h & 24 h (12.5 & 25 µg/mL) cell viability.  

 

The results of this study support modification of hybrid FZ NPs with silica and FA as 

modified NPs showed enhanced anti-cancer activity against B16-F10 melanoma cells 

at 12.5 µg/mL dose (Figure 3.6). 

 

 

(ii) Cytotoxicity of hybrid NPs in Caco-2 cells  

Again, the hybrid NPs exhibited time and concentration-dependent cytotoxicity in 

Caco-2 However, the cytotoxic effect of hybrid NPs towards Caco-2 cells was less 
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compared to B16-F10 melanoma cells, and the dose-response curves were flatter 

(Appendix 13). 

 

Increasing the exposure time to 24 h (Figure. 3.7B) attenuated cell viability for all the 

NPs, across all concentrations, compared to the 6 h treated group (p< 0.05). For 

instance, at 100 µg/mL dose and 6 h, FZ NPs had 63.53% cell viability, which reduced 

to 3.38% at 24 h (21-fold drop in viable cells).  A huge change (up to 50%) in the 

reduction of cell viability was seen when the NPs concentration increased from 25 to 

50 µg/mL at 24 h. For instance, FZ NPs which produced 86.40% cell viability at 25 

µg/mL treatment reduced the cell viability to 29.99% with the dose doubled at 50 

µg/mL. Interestingly, such a change was absent at 6 h. This implies 24 h may be needed 

to produce the strong cell killing effects against Caco-2 for hybrid NPs. 

 

According to Kang et al. (2013), the 30 nm ZnO NPs at 12.5, 25, 50 and 100 µg/mL 

doses against Caco-2 cells recorded above 60%, less than 40%, less than 10% and less 

than 1% cell viability. In the present investigation, the FZSiNPs less than 20 nm size 

in similar concentrations had 83.38%, 71.84%, 24.10% and 0.91% cell viability. Song 

et al. (2014) treated Caco-2 cells with 90 nm ZnO NPs (50 & 100 µg/mL) and reported 

cell viability of 18.21% and 17.87% after 24 h.  In our work, FZ NPs produced 29.99% 

and 3.38% cell viability under similar conditions, indicating severe and greater 

cytotoxicity at high dose by the hybrid NPs. Also, it was interesting to note that in this 

study silica and FA modified hybrid NPs were significantly more potent than FZ NPs 

against Caco-2 cells at 25 µg/mL.    

   

 

 

 



Chapter 3 – Results and Discussion 

58 
 

 

Figure. 3.7 The viability of Caco-2 cells upon exposure to various NPs for 6 h (A) and 24 h (B) at 

different concentrations. Data are represented as mean ±SD (n=4). Compared to untreated 

control group all four NPs were significant at all concentrations at 24 h and only at higher doses 

at 6 h (50 & 100 µg/mL). * indicates p<0.05, ** indicates p˂0.01, *** indicates p˂0.001 when FZ 

NPs 6 h & 24 h (12.5 & 25 µg/mL) groups were compared to other three NPs groups 6 h & 24 h 

(12.5 & 25 µg/mL) cell viability.  

 

(iii) Cytotoxicity of hybrid NPs in 3T3 cells  

A strong reduction in cell viability of 3T3 cells was observed across all NPs and 

concentrations at 6 h and 24 h compared to the control (p< 0.001). The nature of the 

cell line played a prominent role as such a cytotoxic effect was not observed with B16-

0

20

40

60

80

100

120

Control FZ FZSi FZSiFA25 FZSiFA50

C
e

ll 
vi

ab
ili

ty
 (

%
)

12.5 µg/ml 25 µg/ml 50 µg/ml 100 µg/mlA

* 

6 h 

0

20

40

60

80

100

120

Control FZ FZSi FZSiFA25 FZSiFA50

C
e

ll 
vi

ab
ili

ty
 (

%
)

12.5 µg/ml 25 µg/ml 50 µg/ml 100 µg/ml

***

B 24 h

***
** 

*** 



Chapter 3 – Results and Discussion 

59 
 

F10 and Caco-2 cells when treated with the hybrid NPs.  Such cytotoxic effects were 

reflected by the ED50 values: 15.21 µg/mL and 15.75 µg/mL for FZ and FZSiFA50 

NPs respectively after 6 h treatment; 20.85 µg/mL and 25.11 µg/mL for FZSi and 

FZSiFA25 NPs.    

 

Post 24 h treatment, the cell viability attenuated to 20 - 30% for the NPs at the low 

dose of 12.5 µg/mL. However, a drastic reduction in cell viability occurred when the 

NP concentrations were >25 µg/mL (Figure.3.8). No statistically significant difference 

was detected between the NPs at all concentrations.  

 

Many groups of researchers have reported in vitro toxicity of silica-based NPs in 3T3 

cells. Stepnik et al. (2012) reported toxicity (35%-60% reduction in cell viability) in 

3T3 cells with silica NPs between concentrations 10 – 40 µg/mL. Kim et al.(2015) 

reported strong toxicity of silica NPs on 3T3 cells:  4.5% cell viability in 3T3 cells 

after 24 h treatment of silica NPs at 50 µg/mL concentration and 60 nm particle size.  

Pandurangan et al. (2015) reported changed cell morphology, and almost all cells were 

dead when 3T3 cells were treated with ZnO NPs at concertation above 30 µg/mL.  The 

toxicity of ZnO NPs against 3T3 cells at 12.8 µg/mL concentration (36 h) was reported 

by Chandrasekaran & Pandurangan, (2016) where more than 50% cells were inhibited. 

Our results indicate nearly 70% cell death after 24 h treatment with 12.5 µg/mL FZ 

hybrid NPs which is not surprising considering the 80% component of hybrid NPs is 

ZnO.  The toxicity of ZnO NPs towards 3T3 may be attributed to the disruption of 

zinc-dependent enzymes and transcription factors when ZnO dissolves intracellularly 

(Pandurangan & Kim, 2015). Also, the cell toxicity may arise from soluble metal ions 

like Zn and Fe (Lu et al., 2015; Malvindi et al., 2014). 
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Figure. 3.8 The viability of 3T3 cells upon exposure to various NPs for 6 h (A) and 24 h (B) at 

different concentrations. Data are represented as mean ±SD (n=4).  Compared to untreated 

control group all four NPs were significant (***p˂0.001) at all concentrations. ** indicates p˂0.01, 

*** indicates p˂0.001 when FZ NPs 6 h (12.5 & 25 µg/mL) groups were compared to other three 

NPs groups 6 h (12.5 & 25 µg/mL) cell viability. 

 

3.6 Phototoxic effect of hybrid NPs 

The impact of UV-A irradiation  on the cytotoxic effect of hybrid NPs in cells was 

analysed by the phototoxicity study. This study would confirm the ability of the hybrid 

NPs to be used in PDT against cancer as a PS. Given the stronger reduction in cell 

viability was seen with longer treatment time (24 h) of hybrid NPs (Figure 3.6, 3.7, 3.8 

B), 24 h was chosen for phototoxicity studies. Figure 3.9 A & B highlights the 

photoinduced cell viability reduction by hybrid NPs compared to the only UV treated 

cells and control (no hybrid NPs treatment) in B16-F10 and Caco-2 cells. The photo-

killing effect was concentration dependent as expected.  
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To compare the photodynamic action of the hybrid NPs, phototoxic index (PI) was 

calculated by the ratio of ED50 in the dark over ED50 in the light and has been used for 

the evaluation of PS (Mion et al., 2015). Appendices 12 and 13 show the dose response 

curve of the respective NPs used to calculate the ED50. Use of this approach requires 

at least two assay concentration responses be above 50% of the control (ie 50% cell 

viability) and two below 50% (Sebaugh, 2011). However, our data does not always 

fulfil such criteria. Therefore, we could only use the estimated PI for comparison and 

exercise caution in its interpretation.  

 

(i) Phototoxic effect of hybrid NPs in B16-F10 cells 

The phototoxic effect of hybrid NPs was highly significant (p<0.001) across all 

concentrations when compared to the UV treated B16-F10 cells.  

 

At 12.5 µg/mL dose, FZ NPs cell viability was 73.23%. When doubling the dose to 25 

µg/mL, there was a remarkable decrease in cell viability in FZ NPs (from 73.23% to 

15.28%).  The PI values for FZ and FZSi NPs were 1.5 and 1.4, and for FZSiFA25 and 

FZSiFA50 NPs were 1.2 and 2.0. Based on the PI values, FZSiFA50 NPs exhibited 

the best phototoxic effect in B16-F10 cells which is also consistent with its strong cell 

killing effect shown at the lowest dose tested. Such photokilling effect of FZSiFA50 

could be attributed to FA coating which may have facilitated the interaction of NPs 

with cells and consequent cellular uptake.   

 

To be an effective nano-PS, concomitant treatment of hybrid NPs with UV-A 

irradiation should produce a synergistic therapeutic effect that is more than just the 

sum of effects from hybrid NP and UV-A. The synergistic effect of hybrid NPs+UV-

A irradiation is demonstrated (Table 3.5) by calculation of the ratio of phototoxicity 

measured over the sum of cytotoxicity of NPs treatment alone with that of UV-A 

treatment alone. This ratio produces the fold of cell killing by PDT using hybrid NPs 

as nano-PSs. Only UV-A radiation killing in B16-F10 cells was 3.21%. The fold 

increase represents the synergistic effect between hybrid NPs and UV-A radiation 

compared to combined cell killing by NPs alone+ UV-A. No increase indicates the 

combined cell killing by NPs alone + UV-A radiation better than cell killing by hybrid 

NPs+UV-A (Table 3.5). 
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The stronger synergistic effect was observed at low doses 12.5 and 25 µg/mL. For 

instance,1.47 and 1.2 folds of cell killing were achieved with PDT using FZSiFA50 at 

NPs dose of 12.5 and 25 µg/mL respectively, while only 1.0 and 1.02 folds of cell 

killing were seen with 50 and 100 µg/mL dose respectively. PDT intends to use the 

low dose of PS. Therefore, we can conclude the two most effective PSs at 12.5 µg/mL 

were FZSi and FZSiFA50 NPs as they produced not only strongest synergistic effect 

but also strongest actual photokilling effects, while both with high PIs. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.3.9 Photoinduced reduction in viability of (A) B16-F10 and (B) Caco-2 cells after 24 h upon 

exposure to hybrid NPs and UV-A irradiation at the dose of 10J/cm2. ** indicates p˂0.01 and *** 

indicates p˂0.001 compared to the control and only UV treated group with the four NPs at all 

concentrations and FZ NPs treated group (12.5 µg/mL) compared with other three NPs (12.5 

µg/mL) cell viability. 
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Table 3.5 Synergistic effect of hybrid NPs & UV-A irradiation in                                     

photokilling of B16-F10 cells 

Nanoparticle Concentration 

(µg/mL) 

aCell 

killing by 

hybrid 

NPs alone 

(%) 

bCombined 

cell killing 

by hybrid 

NPs + UV-A 

(%) 

cCell 

killing by 

UV-A 

activated 

hybrid 

NPs (%) 

dFold 

increase in 

cell killing 

FZ 12.5 20.92 24.13 26.77 01.11 

 25 64.72 67.93 84.72 01.25 

 50 85.40 88.61 95.53 01.08 

 100 92.11 95.32 97.06 01.02 

      

FZSi 12.5 33.41 36.62 43.31 01.18 

 25 67.97 71.18 80.88 01.14 

 50 90.37 93.58 91.36 no increase 

 100 94.73 97.94 96.73 no increase 

      

FZSiFA25 12.5 31.20 34.41 33.70 no increase 

 25 60.30 63.51 70.10 01.10 

 50 84.10 87.31 90.20 01.03 

 100 90.20 93.41 95.80 01.02 

      

FZSiFA50 12.5 38.39 41.60 61.00 01.47 

 25 61.16 64.37 77.01 01.20 

 50 85.01 88.22 89.10 01.00 

 100 90.65 93.96 96.38 01.02 
a represents the percentage of cell death by hybrid NPs alone 

b represents the combined percentage of cell death by hybrid NPs & UV-A (i.e cell death by 

hybrid NPs alone+ cell death by UV-A alone) 

c represents the photokilling of cells by UV-A activated hybrid NPs 

d represents the fold increase in cell killing. It was calculated as d = c/b 

 

(ii) Phototoxic effect of hybrid NPs in Caco-2 cells 

Figure 3.9B highlights the synergistic photoinduced cell killing effects of NPs in PDT 

with UV-A (calculation explained in Table 3.6). Only UV-A radiation killing in Caco-

2 cells was 4.68%. The fold increase represents the synergistic effect between hybrid 

NPs and UV-A radiation compared to combined cell killing by NPs alone+ UV-A. NA 

represents the combined cell killing by NPs alone + UV-A radiation better than cell 

killing by hybrid NPs+UV-A (Table 3.6). 
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For instance, 15.4% cells were killed by combining the dead cell data of FZ NPs alone 

(12.5 µg/mL) and UV-A alone. However, 83% cells were killed when 12.5 µg/mL FZ 

NPs was irradiated with UV-A radiation. The strongest synergistic effect against Caco-

2 cell was seen at the lowest NP dose with FZ NPs (5.37 folds), followed by FZSiFA25 

(3.86 folds), FZSi & FZSiFA50 (both 3.06 folds) (Table 3.6). The PI index was high 

for FZ NPs with 12.8, followed by FZSiFA50 NPs with 7.9.  FZSi and FZSiFA25 NPs 

had 4.5 and 4.9 PI values respectively (Table 3.7). Even though the synergistic effect 

of FZSiFA50 was not the strongest, its actual photokilling effect was greater than FZSi 

and FZSiFA25 (Figure 3.9B). This suggests FA coating may have increased NPs 

uptake by cells via folate receptor-mediated endocytosis.     

Table 3.6 Synergistic effect of hybrid NPs & UV-A irradiation in                                     

photokilling of Caco-2 cells 

Nanoparticle Concentration 

(µg/mL) 

aCell 

killing by 

hybrid NPs 

alone (%) 

bCombined cell 

killing by 

hybrid NPs+ 

UV-A (%)  

cCell killing 

by UV-A 

activated 

hybrid NPs 

(%) 

dFold 

increase in 

cell killing 

FZ 12.5 10.76 15.44 82.96 05.37 

 25 13.60 18.28 85.02 04.65 

 50 70.01 74.69 93.90 01.26 

 100 96.62 100.00 96.98 no increase 

      

FZSi 12.5 16.62 21.30 65.15 03.06 

 25 28.16 32.84 72.11 02.19 

 50 75.90 80.58 96.59 01.20 

 100 99.09 100.00 99.41 no increase 

      

FZSiFA25 12.5 12.94 17.62 68.01 03.86 

 25 25.57 30.25 69.54 02.30 

 50 68.05 72.73 88.89 01.22 

 100 95.52 100.00 99.13 no increase 

      

FZSiFA50 12.5 21.04 25.72 78.62 03.06 

 25 29.53 34.21 79.84 02.33 

 50 68.58 73.26 96.55 01.32 

 100 96.78 100.00 99.37 no increase 

a represents the percentage of cell death by hybrid NPs alone 

b represents the combined percentage of cell death by hybrid NPs & UV-A (i.e cell death by 

hybrid NPs alone+ cell death by UV-A alone) 

c represents the photokilling of cells by UV-A activated hybrid NPs 

d represents the fold increase in cell killing. It was calculated as d = c/b 

 

Comparing the photokilling effects of hybrid NPs in Caco-2 with that in B16-F10, it 

is evident that Caco-2 cells are more sensitive or responsive to PDT with our hybrid 
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NPs than B16-F10 melanoma cells, especially at the lowest dose tested (12.5 µg/mL). 

This again highlights the complexity of cancer cells, and their sensitivity and response 

to PS alone and PS in PDT could be vastly different. Such phenomena had been 

reported in the literature before (Mion et al., 2015). 

 Table 3.7 ED50 and PI calculation in B16-F10 and Caco-2 cells 

 

PI represents phototoxic index calculated by (ED50 in dark)/(ED50 in light). 

ED50 represents the median effective dose that produces effect in 50 % of population. 

ED50 dark was calculated from the cell viability of hybrid NPs in dark Vs the concentration of 

NPs (dose response curve and line of best fit in GraphPad). 

ED50 light was calculated from the cell viability of hybrid NPs after UV-A Irradiation Vs the 

concentration of NPs (dose response curve and line of best fit in GraphPad). 

* indicates the groups where less than two values were above 50% cell viability when calculating 

ED50. 

# indicates the groups where all the values were above 50 % cell viability when calculating ED50. 

 

The phototoxicity study confirmed the significant synergistic effect existing between 

the NPs and UV-A irradiation was at the low dose (12.5 µg/mL) of NPs and 10 J/cm2 

UV-A dose. The best PI value was observed with FZ NPs in Caco-2 cells. However, 

the exact molecular mechanisms behind the synergistic action (NPs+ UV-A 

irradiation) remains to be determined. Better cytotoxicity under the UV-A light (PDT) 

compared to dark is considered the best feature of PSs. The developed hybrid NPs 

(nano-PSs) seems to serve the purpose efficiently in both the cell lines studied. To 

study the mechanism of cellular deaths mediated by NPs upon UV-A irradiation, the 

intracellular ROS were monitored which is the topic of later section.  

 

3.7 Phototoxic effect of hybrid NPs in B16-F10 cells after multiple irradiations 

To compare the effects of multiple irradiations, the low concentration of NPs 12.5 

µg/mL (24 h treatment) was selected, the radiation source and conditions were 

Nanoparticle ED50 in dark 

6h (µg/mL) 

ED50 in dark 

24 h (µg/mL) 

ED50 in UV-A 

treated 24 h 

(µg/mL) 

PI  

In B16-F10 cells  

FZ 45.00 17.99 11.48 1.57  

FZSi 49.34 13.76 9.65 1.42  

FZSiFA25 36.28 17.16 13.27 1.29  

FZSiFA50 21.44 15.19 7.41* 2.05  

In Caco-2 cells  

FZ 248.40# 39.25 3.06* 12.83  

FZSi 172.30# 29.83 6.63* 4.50  

FZSiFA25 226.40# 35.23 7.06* 4.99  

FZSiFA50 191.30# 31.00 3.88* 7.99  
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followed as per single radiation used in photo killing study.  The cell viability reduced 

as the PDT sessions (double and triple condition) increased in a pattern similar to that 

increased dose of NPs. The biggest reduction in cell viability (more than 50%) was 

observed when cells received hybrid NPs with double irradiation treatment. The 3rd 

UV-A irradiation produced a much smaller further reduction of cell viability, 

suggesting cells may develop PDT resistance. Again, it was noticed that FZSiFA50 

showed a relatively stronger photokilling effect with repeat UV irradiation. The cell 

viability changes had statistical significance (p< 0.001) when multiple irradiated NPs 

were compared to dark and single radiation. Our results agree with the finding of 

Chang et al.(2014) who also reported better phototoxicity with HP-NPs under double 

irradiation conditions in HepG2 cells.  

 

From the above cytotoxicity and phototoxicity experiments, we could conclude that 

the developed hybrid NPs have fulfilled the criteria to be effective PSs for PDT with 

UV-A against cancer cells. The nature of nano-PS influenced not only its own 

cytotoxicity but also its PDT effect significantly. The repeat UV-A irradiation 

produced further cell killing effect in a pattern similar to the increase of NP’s dose.  

Cell viability studies also demonstrated that high level of FA (0.085mmol/g NPs) 

enhanced the cell killing effect with the strongest effect at a low dose of PS.  

 

Figure 3.10 Cell viability of B16-F10 cells after multiple UV-A irradiations upon exposure to 12.5 

µg/mL NPs for 24 h. Data are represented as mean ±SD (n=4). ***p˂0.001 compared to NPs in 

the dark.  
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3.8 Singlet oxygen generation by hybrid NPs in PDT 

To elucidate the mechanisms of hybrid NPs in PDT, studies were conducted to detect 

singlet oxygen and ROS in treated cells.  DPBF is commonly used as singlet oxygen 

and hydroxyl radical trapping reagent, as it can scavenge both 1O2 and OH. (Okada et 

al., 1998; Nadhman et al., 2014).  On excitation with UV-A light, the hybrid NPs are 

photo enhanced into a singlet energy state and went through the inter-system, crossing 

to the triplet state, and this energy from the excited PS is transferred to the triplet 

oxygen state and is converted to 1O2. The released singlet oxygen molecules react with 

the DPBF and initiate its degradation (Xiao et al., 2011). The production of singlet 

oxygen is normally quantified using quantum yield, which is the number of singlet 

oxygen produced per absorbed photon (Huarac et al., 2010).  In this study, Rose 

Bengal was used as a standard as its quantum yield (0.86) is well characterised (Xiao 

et al., 2011).  

 

The singlet oxygen production depends on the nature of the PS used and concentration 

of PS (De Rosa & Crutchley, 2002). By employing Rose Bengal as the standard, it was 

possible to validate the method for quantification of the singlet oxygen quantum yields. 

Table 3.8 displays the singlet oxygen quantum yield of hybrid NPs. FZ NPs produced 

0.85, while the surface modified FZSi produced 0.29.  It appears that the silica coating 

and FA modification had an impact on the generation of singlet oxygen. The further 

modification of hybrid NPs with FA increased a little of singlet oxygen yield from 

0.29 to 0.40 and 0.46 for FZSiFA50 and FZSiFA25 NPs respectively, which may be 

attributed to the presence of FA in NPs. Although, FA was reported to undergo 

photodegradation and change its fluorescent property upon UV-A irradiation (Vorobei 

& Vorobei, 2011), the photodegradation of FA does not appear to have much impact 

on the UV absorbance at 410 nm (Off et al., 2005), the wavelength which was used in 

determination of singlet oxygen quantum yield using DPBF method. 

 

Singlet oxygen quantum yield of 0.13 is reported by Nadhman and his colleagues 

(2014), when 10 µg/mL of ZnO is dissolved in 2 mL DPBF, detected by chemical 

trapping method. Luengas et al. (2014) reported 0.71 singlet oxygen quantum yield for 

15 µg/mL of ZnO, detected by fluorimetry analysis. In our study, the FZ hybrid NPs 

(0.85) had 6.5-fold better yield and 5-fold better yield compared to ZnO NPs (0.13) 

(Nadhman et al., 2014) and porous silica NPs (0.17) (Xiao et al., 2010). The singlet 
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oxygen yield of 0.28 by Fe3O4/ZnO NPs was reported by Huarac and his group (2010), 

much lower than quantum yield of 0.85 by the FZ NPs studied in this work. The results 

confirmed the ability of the hybrid NPs to generate singlet oxygen and therefore, the 

production of singlet oxygen could contribute to their cytotoxicity. 

 

Figure 3.11 Absorbance of DPBF exposed to hybrid NPs and UV-A irradiation 

Table 3.8. Singlet oxygen quantum yield of hybrid NPs 

No Nanoparticle Singlet oxygen quantum yield Reference 

1. FZ 0.85 Present work 

2. FZSi 0.29 Present work 

3. FZSiFA25 0.46 Present work 

4. FZSiFA50 0.40 Present work 

 

3.9 Intracellular ROS production by hybrid NPs in PDT 

ROS plays a vital role in influencing biochemical functions in cells. DCF assay is 

highly sensitive, linear and specific for measuring oxidative stress in irradiated cells. 

The responses of cells to oxidative stress varies depending on the magnitude of the 

stress and could either be upregulated or downregulated.  Thus, the level of oxidative 

stress or ROS determines whether cells likely undergo proliferation, differentiation, 

senescence or cell death (Mellier & Pervaiz, 2012). Numerous agents that induce 

apoptosis stimulate intracellular production of ROS, most frequently leading to an 

accumulation of H2O2 (Indran et al., 2011). 

 

The DCFH-DA was used to assess the intracellular ROS generation after cells were 

exposed to FZ, FZSi, FZSiFA25 and FZSiFA50 NPs at 12.5, 25 and 50 µg/mL 

concentrations under dark and UV-A irradiation conditions in both B16-F10 and Caco-

2 cell lines. Although the starting time point in the study was 0 h, in practice, it should 

be considered as 5 min time point. The ROS generated by the hybrid NPs in medium 

(without cells) (both dark and UV-A treated) in comparison to ROS generated by B16-
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F10 and Caco-2 cells is described in Appendix 15 and 17 respectively. Comparing to 

the ROS generated by cells alone (100%), hybrid NPs showed relatively low and 

consistently level about 15-30% in the dark over 24 h; and increased to about 40-70% 

with UV-A irradiation in the first 6 h, then reduced to 5-17% at 24 h. There was no 

correlation with NPs dose.     

 

(i) Intracellular ROS production in B16-F10 cells 

Compared to the control (cells), ROS level, as shown by DCF intensity, in hybrid NP 

treated melanoma cells was enhanced, though not significant, over time in the first 6 h 

(Figure 3.12) A significant drop of DCF intensity (down to <12%) was seen at 24 h, 

implying that NPs may neutralise ROS generated by cells at 24 h. No significant 

differences were observed with coated and uncoated hybrid NPs or different doses.  

Upon UV-A irradiation, a different trend emerged. Although UV alone didn’t change 

ROS level, cells received treatment of hybrid NPs, and UV-A showed elevated ROS 

with the increase of dose and time (up to 6 h) as indicated by high DCF intensity 

(Figure 3.13). The DCF intensity of cells treated with NPs was maintained close to 

that of control even at 24 h in most cases.  

 

Overall, the UV-A irradiated hybrid NPs generated better ROS compared to hybrid 

NPs in the dark at all concentrations, which was significant. After UV-A irradiation, 

dose and time-dependent ROS generation were demonstrated strongly in FZSiFA25 

and FZSiFA50 NPs until 6 h, but not in FZ and FZSi NPs. FZSiFA50 NPs recorded 

108%, 118%, 123% ROS at dark and increased to 149%, 211%, and 246% (1.49, 2.11 

and 2.45-fold increase in ROS generation) after UV-A exposure (10 J/cm2) (Figure 

3.13, D).  

 

A synergistic effect was not observed in ROS generation by photoactivated hybrid NPs 

compared to the ROS generated by NPs in the dark plus that generated by UV-A alone.  

There appears to be an inverse correlation between the decrease in cell viability and 

increase in ROS production until 6 h, but the relationship reversed at 24 h. For instance, 

FZSiFA50 NPs cell viability at 6 h (50 µg/mL) was 18.37 %, and the ROS yield in the 

similar condition was 123%. However, at 24 h (50 µg/mL) cell viability was 14.99 %, 

and the ROS yield was 10.3%. This could be because the effect of ROS may take time 

to be transferred into the cell viability. The FA surface attachment may have enhanced 



Chapter 3 – Results and Discussion 

70 
 

the cell interaction with NPs, therefore, resulting more uptake of NPs by cells which 

led to higher level of ROS production with NPs modified with FA.  However, one 

cannot completely exclude the possibility that the high DCF intensity seen with FA 

modified NPs was partially a result of FA’s photo degradation. A process known to 

potentially produce strong fluorescence (Vorobei & Vorobei, 2011). The photo 

degradation products of FA are 6-formylpterin and pterin-6-carboxylic acid which 

absorb UV-A radiation, and exhibit fluorescence at 445 nm (Vorobei & Vorobei, 

2011). In comparison, the ROS detection was performed at 485 nm excitation and 520 

nm emission.  

 

Pal et al. (2016) reported a decrease in ROS production after 3 h when primary mouse 

keratinocytes were treated with ZnO NPs and UV-B radiation. Aranda et al. (2013) 

reported masking effect on fluorescence quantification after significant TiO2, Fe3O4 

NPs internalization. Further, Fe3O4 and Au NPs had been reported that their aggregated 

particles quenched the fluorescence of DCFH-DA (Aranda et al., 2013).  

 

The accumulation of NPs in melanoma cells may be a reason triggering the production 

of ROS. Melanoma cells were suggested to be more sensitive to ROS-induced cell 

death than melanocytes, a vulnerability that can be exploited for the development of 

new anti-melanoma chemotherapeutics (Liu et al., 2012; Yamaura et al., 2009).  
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Figure 3.12 ROS generation in B16-F10 cells (dark) upon exposure to various NPs (A) FZ NPs (B) 

FZSi NPs (C) FZSiFA25 NPs (D) FZSiFA50 NPs for 0, 2, 6 and 24 h at various concentrations. 

Data are represented as mean ±SD (n=4). Highly significant difference was observed only at 24 h. 
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Figure 3.13 ROS generation in B16-F10 cells after treatment with UV-A irradiation activated NPs 

(A) FZ NPs (B) FZSi NPs (C) FZSiFA25 NPs (D) FZSiFA50 NPs for 0, 2, 6 and 24 h at various 

concentrations. Data are represented as mean ±SD (n=4). *p˂0.05 and ** p˂0.01 compared to the 

untreated (control) group. 

 

(ii) Intracellular ROS production in Caco-2 cells 

Like that seen with B16-F10 cells, DCF intensity in Caco-2 cells was also increased 

with time and NPs dose up to 6 h (Figure 3.14 & 3.15, Appendix 14). Compared to 

control, DCF fluorescent intensities increased to 123%, 138%, and 144% at 0, 2 and 6 

h for FZ NPs at 50 µg/mL concentration (Figure 3.14 A). However, the ROS yield 

reduced to 84% at 24 h. A similar reduction in ROS (between 100 µg/mL and 200 

µg/mL ZnO) when treating Caco-2 cells was reported by Song and his colleagues 

(2014). They reported the severe cytotoxicity and more dead cells after 200 µg/mL 

treatment and hence an adequate number of viable cells are not available to generate 

ROS. We do speculate a similar reason behind the drop of ROS at 24 h as the cell 

viability in FZ, FZSi, FZSiFA25 and FZSiFA50 NPs at 100 µg/mL (dark) were 3.38%, 

0.91%, 4.48% and 3.22% respectively.  
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ROS can be generated in three ways:  

1) Radiation alone: ROS was generated following radiation exposure (Yang & Ma, 

2014). 

2) Cells: ROS generated from cells naturally (Liou & Storz, 2010) are affected by cell 

viability and decreases with time as cell viability reduces by time on treatment with 

NPs. 

3) NPs: ROS are generated by NPs themselves (Yang & Ma, 2014) and as NPs are 

constantly producing ROS, so this type of ROS appears to be long lasting compared 

to the other two factors. 

Possible reasons behind the reduction of ROS levels are listed below: 

• Data in Table 3.9 showed intracellular zinc and iron content in B16-F10 and 

Caco-2 cells upon the exposure to UV-A. We observed a drop in intracellular 

level of zinc level at 6 h in Caco-2 cells. The partial dissolution of NPs (if the 

reduction of intracellular zinc level could be attributed to its dissolution) may 

have contributed, to a certain extent to the reduction of ROS production in 

Caco-2 cells at 24 h.  

• Aggregation of NPs by time may lead to reduced ROS production.  

• The ROS yield is short lived, and the maximum ROS yield may have been 

missed between the 6 h and 24 h time points.  

 

After UV-A irradiation the DCF fluorescent intensities of FZ NPs increased to 125%, 

154%, 147% at 0, 2 and 6 h at 50 µg/mL concentration (Figure 3.15 A).  
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Figure 3.14 ROS generation in Caco-2 cells (dark) upon exposure to various NPs (A) FZ NPs (B) 

FZSi NPs (C) FZSiFA25 NPs (D) FZSiFA50 NPs for 0, 2, 6 and 24 h at various concentrations. 

Data are represented as mean ±SD (n=4). * indicates p˂0.05, ** indicates p<0.01 and *** indicates 

p<0.001 compared to the untreated (control) group. At 24 h all the samples were significant 

compared to control. 
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Figure 3.15 ROS generation in Caco-2 cells after treatment with UV-A irradiation activated NPs 

(A) FZ NPs (B) FZSi NPs (C) FZSiFA25 NPs (D) FZSiFA50 NPs for 0, 2, 6 and 24 h at various 

concentrations. Data are represented as mean ±SD (n=4). *** indicates p<0.001 compared to the 

untreated (control) group. 

 

Synergistic effect of photoactivated hybrid NPs was not observed. Oxidative stress 

plays a crucial role in NPs-induced cytotoxicity, which leads to an imbalance between 

ROS generation and antioxidant system (Yang & Ma, 2014; Akhtar et al., 2012). Our 

results demonstrated that ROS was generated in B16-F10 and Caco-2 cells by hybrid 

NPs which may have contributed to decreased cell proliferation or even cell death 

possibly via apoptotic or necrotic pathways. Based on the nature of the cells the ROS 

generation differs. The ROS generation will result in damage to cellular organelles and 

cellular membrane which will eventually cause cell death (Ai et al., 2017).  
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ZnO are direct bandgap semiconductors, which under UV irradiation produces a hole 

(h+) in the valence band and an electron (e-) in the conduction band, namely 

electron/hole pairs. These electron/hole pairs induce a series of photochemical 

reactions in an aqueous suspension of NPs, generating ROS (Zhang et al., 2014; 

Akhtar et al., 2012; Zhang et al., 2016). De Berardis and colleagues (2010) had 

reported significant oxidative stress instigated by ZnO NPs, apparently due to direct 

interaction of NPs with some components on the cell surface altering mitochondria 

and endoplasmic reticulum functions and produced intracellular signals activation. 

Thus, ZnO, the major component of the hybrid NPs, could have assisted in making the 

hybrid NPs a promising PS for PDT against cancer. 

 

The singlet oxygen quantum yield by the hybrid NPs and the ROS production by the 

hybrid NPs suggests the possibility of both the type-I and type-II reactions occurring 

during the energy transfer from excited PS. The detailed mechanism by which the 

hybrid NPs generate ROS and the role played by each specific free radicals and singlet 

oxygen inside cells needs further investigation.   

 

(iii) Confirmation of ROS production in cells 

To confirm the ROS dependent cell death after NPs exposure, NAC an antioxidant was 

pretreated in each well (5 mM, 24 h), followed by DCFH-DA and NPs treatment (6 h) 

(Figure 3.16 & 3.17). Only FZ and FZSi NPs were used in the study. Based on our 

data (Figure 3.12 & 3.13 for B16-F10 and Figure 3.14 & 3.15 for Caco-2) the time 

point which produced the highest level of ROS production, 6 h, was chosen for the 

study. The ROS production (measured by DCF intensity) reduced nearly 50% in both 

the NPs and across all concentrations in both the cell lines when pre-treated with NAC 

(Figure 3.16 & Figure 3.17). For instance, in FZ NPs+UV-A treated B16-F10 cells, at 

6 h (50 µg/mL) the ROS was 152%, which reduced to 81% on NAC pre-treatment 

while the control cells which were pre-treated with NAC only exhibited < 16% drop 

in DCF intensity or ROS level. A similar effect of NAC in reducing the ROS 

production was observed in Caco-2 cells. For instance, FZSi NPs + UV-A (6 h, 25 

µg/mL) recorded 162% ROS which reduced significantly to 53% on NAC pre-

treatment while the control cell reduced <16%. These results confirmed that significant 

level of ROS was generated by the hybrid NPs, a process which may have played a 

vital role in inducing cytotoxicity in B16-F10 and Caco-2 cells.  ROS generation may 
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be one of the pathways through which hybrid NPs trigger cell death in both the cell 

lines. 

 

 

 

 

 

 

 

Figure 3.16 ROS detection in B16-F10 cells after 5 mM NAC pre-treatment and different 

concentration of A) FZ and B) FZSi NPs (6 h) treatment. Data are represented as mean ±SD (n=3). 

A significant difference was observed when 6 h (no NAC) group was compared to 6 h (with NAC) 

group. Control represents B16-F10 cells with cell culture medium and no NPs. Both the dark and 

UV treated groups are together represented in the graphs. 

 

 

   

 

 

 

 

Figure 3.17 ROS detection in Caco-2 cells after 5 mM NAC pre-treatment and different 

concentration of A) FZ and B) FZSi NPs (6 h) treatment. Data are represented as mean ±SD n=3). 

Control represents Caco-2 cells with cell culture medium and no NPs. Both the dark and UV 

treated groups are together represented in the graphs. 

 

Similar studies using cells pre-treated with NAC were also reported with ZnO NPs to 

confirm the generation of ROS by ZnO NPs in astrocytes and human T cells. (Wang 

et al., 2014; Hanley et al., 2008). Heim et al. (2015) reported a significant reduction 

in ROS production across all time points (from 140% to 100% at 6 h) in A549 alveolar 

cell line pre-treated with NAC then treated with ZnO NPs (100 µg/mL). The ROS 

production in cells is successfully countered by elevated GSH levels on NAC pre-

treatment (Sivalingappa et al., 2012).   
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3.10 Cytotoxicity of hybrid NPs after ROS quenching 

Remediation effects of the antioxidant NAC were further studied in a cell viability 

recovery test (Yang & Ma, 2014). As the previous study showed that the maximum 

reduction in cell viability was observed at 24 h with 100 µg/mL of NPs, hence 100 

µg/mL dose of NPs was chosen, and the cytotoxicity study was carried out for 24 h.   

 

The cell viability of all the NPs increased when pre-treated with antioxidant NAC (5 

mM and 15 mM) followed by treatment with NPs at 100 µg/mL (Figure 3.18). The 

cell viability enhanced when cells pre-treated with NAC in different concentrations, 

which was statistically significant (P<0.001) in comparison with only NPs treated 

group. Cell viability increased nearly 3-4-fold (from 10% increased to 40%) when pre-

treated with 5 mM NAC; whereas 5-6-fold (from 10% increased to 60%), when pre-

treated with 15 mM NAC.  

 

Our result is consistent with that reported by Wang et al. (2014) who reported an 

increase in cell viability in astrocytes pre-treated with NAC (5 mM) then treated with 

ZnO NPs. Fukui et al. (2012) reported a similar reduction in cell death when pre-

treated with 2 mM NAC in A549 lung carcinoma cells. Literature suggested that 

reduction in glutathione (GSH) levels lead to ROS production and apoptotic cell death 

can be blocked by NAC (Sivalingappa et al., 2012). As a result, the ROS generation 

in cells was reduced on pre-treatment with NAC, enhancing the cell viability. Our data 

support the hypothesis that the production of ROS is a major mechanism of 

cytotoxicity of PDT generated by hybrid NPs under UV-A irradiation.      

 

Figure 3.18 Cell viability of B16-F10 cells after 5 mM NAC, 15 mM NAC and 100 µg/mL NPs 

treated and only NPs treated for 24 h. Data are represented as mean ±SD (n=4). ***p˂0.001 

compared to the group without NAC treatment. 
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3.11 Morphological changes of cells after treatment with hybrid NPs and UV-A 

light         

Morphology changes in cells are the first sign of the impact of NPs treatment, 

highlighting any cytotoxicity in the cells. Time and concentration-based morphology 

changes were visible across the three cell lines after 6 h and 24 h NPs treatment. The 

control cells were of high density and with distinct morphology characters (Figure 3.19 

A-C, Appendix 18-20). Cells displayed a circular shape upon exposure to NPs (Figure 

3.19 D-I). Once the cells were exposed to UV-A radiation (10 J/cm2), even at low 

concentration of NPs, cells appeared to change morphology and detached from the 

substrate, in a large amount, indicating destruction of the cells (Figure 3.19 J-L). 

Morphological changes were observed in stages, starting with the rounded and swollen 

appearance of cells (mainly on 6 h NPs treatment), followed by cells detachment from 

culture plates (24 h NPs treatment), ultimately resulting in few cells in the plates (UV-

A irradiated). Our observation of morphology changes was in complete agreement 

with Alarifi et al. (2013) who noticed notable morphological changes in A375 

melanoma cells after treatment with ZnO NPs at 5 µg/mL after 24 h. Further exposure 

to high concentration ZnO (10 µg/mL) after 48 h changed the shape of cells and 

detached them from the surface.  

 

It is accepted that morphological changes are evidence of NPs induced toxicity in B16-

F10 cells (Shrikhande et al., 2015). Dark spots were visible inside the cells which 

correspond to the NPs, that may have aggregated by time. Our stability data of NPs in 

DMEM medium suggests the minor tendency of NPs to aggregate over time without 

the presence of cells. (Table 3.3). Ivankovic et al. (2006) spotted the similar 

appearance of vanadium oxide NPs as aggregates accumulated inside the B16-F10 

cells. Similar changes in morphology of the three cell lines treated with FZSi, 

FZSiFA25, and FZSiFA50 NPs can be seen in Appendix 18-20.  The reduction in cell 

viability over time and dose of NPs correlated well with the morphology changes of 

three cell lines studied. 
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Figure 3.19 Morphology changes of B16-F10 cells before and after treatment with UV, FZNPs 

and both: (A-C) Control at 6h, 24h and 24h after UV-A radiation exposure (10 J/cm2). (D-F) FZ 

NPs 25, 50,100 µg/mL after 6h treatment. (G-I) FZ NPs 25, 50,100 µg/mL after 24h treatment. (J-

L) FZ NPs 25, 50, 100 µg/mL after 24 h treatment and UV-A radiation exposure. 

 

3.12 Quantitative investigation of cellular uptake of hybrid NPs in PDT  

The cellular uptake of hybrid NPs will be one of the prime factor influencing their 

cytotoxicity on cell lines.  This study was conducted to examine the effect of targeting 

ligand, FA, on cellular uptake of Hybrid NPs at 2 h and 6 h and if such effect was 

influenced by UV-A irradiation.  The study was carried with B16-F10 and Caco-2 cells 

and two NPs (FZSiFA50, FZSi-FITC) and two separate conditions (NPs alone, NPs+ 

UV-A irradiation). The NPs FZSiFA50 have FA as the targeting ligand, and 

fluorescent property of FA and FITC were used for the quantification of the NPs in the 

cellular uptake study.  The FA and FITC quantification were carried out by measuring 

the fluorescence intensity of the samples and concentrations of NPs were calculated 

from the calibration curve (Appendix 21). 
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(i) Effects of targeting ligand and time on cell uptake of NPs 

The FZSi-FITC NPs without any targeting ligand were expected to be taken up by 

cells via endocytosis, which can be used as passive targeting for tumours via the 

enhanced permeability and retention (EPR) effect, consequently, increase 

accumulation in tumour cells.  Surface modification of NPs with site-specific targeting 

ligands like FA have demonstrated enhanced cellular uptake (Chen et al., 2011). In 

our study with B16-F10 cells, at 6 h, FZSi NPs with FA targeting ligand demonstrated 

enhanced cell uptake, which was about 53% greater than NPs without any targeting 

ligand (Figure 3.20) whereas at 2 h there was no significant difference. The cellular 

uptake was almost same in both the NPs at 2 h (Figure 3.20). This suggested that the 

initial phase of cellular uptake of NPs, i.e. interaction between NPs and cells which 

takes time. Later, the effect of targeting ligand took place and resulted in better cellular 

uptake compared to the NPs without a targeting ligand. This indicates the ligand-

mediated cell uptake is time-dependent. Because the further increase of uptake was 

found to be associated with UV-A irradiation, it was thought UV irradiation might 

have enhanced the cell membrane permeability (Yang & Ma, 2014) or provide energy 

for endocytosis. 

 

It appears that both time exposure and UV-A irradiation had an impact on hybrid NPs 

cellular uptake. Longer exposure time, higher NPs uptake. Application of UV-A also 

increased cellular uptake of NPs, the largest increase was seen at 6 h.  In Caco-2 cells, 

the FZSiFA50 NPs in the dark had greater cellular uptake only at 6 h (25% better 

compared to FZSi-FITC NPs) and less cellular uptake at 2 h (Figure 3.21). When 

FZSiFA50 NPs  6 h treatment was compared to that of 2 h, there was a 3.5-fold better 

uptake and further enhanced by FZSiFA50 NPs plus UV-A irradiation (10 J/cm2) 

treatment with a 5.9-fold better uptake (Figure 3.21). When FZSi-FITC NPs, after 6 h 

treatment was compared to that of 2 h, there was a 1.8-fold increase in uptake in the 

dark and 2-fold in UV-A irradiation conditions (Figure 3.21).  

 

Our results agree with Hu et al. (2013) who reported a remarkable improvement in 

tumour targeting using FA-conjugated graphene oxide-ZnO hybrid NPs in PDT.  Ma 

(2015) reported FA-conjugated ZnO quantum dots provided successful targeting of 

cancer in the MCF-7 cancer cell. It is well-known that folate receptors are highly 

expressed in many cancer cells, therefore, can serve as an active target for cancer 



Chapter 3 – Results and Discussion 

82 
 

treatment (Daiana & Koiti, 2015; Zwickie et al., 2012). Khaing Oo et al. (2012) 

reported better cellular uptake (Gold NPs conjugated with PpIX) ultimately lead to the 

better generation of singlet oxygen and ROS at the cellular level, destructing the 

human breast cancer cells. Our data supports this point, with high ROS production 

being recorded at 6 h at the cellular level in both the tested cell lines in our study. 

Inverted phase contrast microscopy images after treatment (6 h) with hybrid NPs 

proved more cellular swelling and damage to cell membranes which confirmed the 

intracellular presence of NPs.  

 

 Figure 3.20 Cellular uptake of FZSiFA50 & FZSi-FITC NPs at different time points in B16-F10 

cells (both dark and UV).  Data are represented as mean ±SD (n=3). ** p< 0.01 and ***p˂0.001 

compared to FZSiFA50 2h (dark) and FZSi-FITC 2h (dark).  

 
Figure 3.21 Cellular uptake of FZSiFA50 & FZSi-FITC NPs at different time points in Caco-2 

cells (both dark and UV).  Data are represented as mean ±SD (n=3). ** p< 0.01 and ***p˂0.001 

compared to FZSiFA50 2 h (dark) and FZSi-FITC 2 h (dark). 
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The cellular uptake study was conducted for 6 h because the assay medium (DMEM-

high glucose) lacked serum and other growth factors vital for the long-term cell 

viability. From this study, we concluded 

a) The NPs with the targeting ligand FA had a greater cellular uptake compared 

to the NPs without a targeting ligand in both cell lines. 

b) The UV-A irradiation had enhanced cellular uptake in both cell lines. 

c) The cellular uptake of NPs was time dependent. 

 

3.13 Qualitative investigation of cellular uptake of hybrid NPs  

The cellular uptake of FA50 and FITC attached FZSi NPs were further confirmed by 

qualitative analysis by confocal microscopy. Confocal laser scanning microscopy 

(CLSM) is a powerful technique that allows capturing in-depth cross-section image of 

cells and provides valuable information on the particle localisation in the cells.  It can 

provide selective optical sectioning, high resolution and in-depth imaging of cellular 

microstructures without the need to physically sectioning the sample. Labelling the 

nuclei with propidium iodide (red) and the NPs with FA (blue) and FITC (green), the 

localisation of NPs were visualised. The CLSM study demonstrated that the FA and 

FITC attached NPs were internalised rather than attached to the cell surface (Figure 

3.22 - 3.27). The cellular uptake images were captured after 6 h of treatment with 

hybrid NPs in DMEM medium, resembling our treatment time with NPs in cell 

viability study. The cells were viewed using 60 x oil immersion lens. Cells grown on 

Ibidi micro dish were treated with FZSiFA50 NPs and cells grown on cover slip were 

treated with FZSi-FITC NPs.  

 

The fluorescence emission intensity of FZSiFA50 NPs was higher than FZ and FZSi 

NPs, due to the combined fluorescence emission from FA and ZnO, which had been 

reported earlier (Patel et al., 2017). When the NPs were tagged with fluorescent 

component (FA and FITC), a high fluorescence was observed in the B16-F10 cells 

indicating the NPs have penetrated the melanoma cells. The cellular uptake of NPs had 

increased by time. As expected, fluorescence was detected with FZSi-FITC NPs, due 

to the presence of FITC. The small size of the NPs (~20 nm) had well supported the 

cellular uptake of the NPs. The Z stack images of FZSiFA50 NPs alone and UV-A 

irradiated in B16-F10 cells can be seen in Figure 3.23 & 3.26. The Z stack pictures of 

FZSi-FITC NPs alone and UV-A irradiated in B16-F10 cells can be seen in Figure 
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3.24 & 3.27. These images confirmed the localisation of NPs inside the cells by cellular 

uptake. 

 

 

Figure 3.22 CLSM images of B16-F10 cells after 6 h treatment with FZSiFA50 (blue coloured) 

and FZSi-FITC (green coloured) NPs. (A) Only nucleus stained (control), (B) merged image of 

FZSiFA50 NPs treated B16-F10 cells, (C) Merged image of FZSi-FITC NPs treated B16-F10 cells.  

The scale bars correspond to 20 µm. Images in A & B were captured from cells grown in ibidi 

micro-dish and C was captured from cells grown in the cover slip. 
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Figure 3.23 Z-stack images of B16-F10 cells treated with FZSiFA50 NPs in the dark. Intracellular 

distribution of FZSiFA50 NPs in B16-F10 cells after incubation for 6 h at 37°C as observed by 

CLSM.  Blue colour indicates the localisation of NPs inside the cells. Twelve superimposed images 

of optical sections taken in the vertical axis at intervals of 0.6 µm from the apical surface (left to 

right; top to bottom, depths 0, 0.6, 1.2, 1.8, 2.4, 3, 3.6. 4.2, 4.8, 5.4, 6 and 6.6 µm from apical 

surface) confirming the internalisation of blue particles. The nucleus is stained with PI (red). 

Magnification = 200X. Images were captured from cells grown in ibidi micro-dish. 
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Figure 3.24 Z-stack images of B16-F10 cells treated with FZSiFITC NPs in the dark. Intracellular 

distribution of FZSi-FITC NPs in B16-F10 cells after incubation for 6 h at 37°C as observed by 

CLSM.  Green colour indicates the localisation of NPs inside the cells. Twelve superimposed 

images of optical sections taken in the vertical axis at intervals of 0.6 µm from the apical surface 

(left to right; top to bottom, depths 0, 0.6, 1.2, 1.8, 2.4, 3, 3.6. 4.2, 4.8, 5.4, 6 and 6.6 µm from apical 

surface) confirming the internalisation of green particles. The nucleus is stained with PI (red). 

Magnification = 200X. Images were captured from cells grown in the cover slip. 
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Figure 3.25 CLSM images of B16-F10 cells after 6 h treatment with FZSiFA50 (blue coloured) 

and FZSi-FITC (green coloured) NPs+UV-A irradiation. (A) Only nucleus stained, (B) merged 

image of FZSiFA50 NPs treated B16-F10 cells, (C) Merged image of FZSi-FITC NPs treated B16-

F10 cells. The scale bars correspond to 20 µm. Images in A & B were captured from cells grown 

in ibidi micro-dish and C was captured from cells grown in the cover slip. 
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Figure 3.26 Z-stack images of B16-F10 cells treated with FZSiFA50 NPs under UV-A. 

Intracellular distribution of FZSiFA50 NPs in B16-F10 cells after incubation for 6 h at 37°C as 

observed by CLSM.  Blue colour indicates the localisation of NPs inside the cells. Twelve 

superimposed images of optical sections taken in the vertical axis at intervals of 0.6 µm from the 

apical surface (left to right; top to bottom, depths 0, 0.6, 1.2, 1.8, 2.4, 3, 3.6. 4.2, 4.8, 5.4, 6 and 6.6 

µm from apical surface) confirming the internalisation of blue particles. The nucleus was stained 

with PI (red). Magnification = 200X. Images were captured from cells grown in ibidi micro-dish. 
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Figure 3.27 Z-stack images of B16-F10 cells treated with FZSiFITC NPs in UV. Intracellular 

distribution of FZSi-FITC NPs in B16-F10 cells after incubation for 6 h at 37°C as observed by 

CLSM.  Green colour indicates the localisation of NPs inside the cells. Twelve superimposed 

images of optical sections taken in the vertical axis at intervals of 0.6 µm from the apical surface 

(left to right; top to bottom, depths 0, 0.6, 1.2, 1.8, 2.4, 3, 3.6. 4.2, 4.8, 5.4, 6 and 6.6 µm from apical 

surface) confirming the internalisation of green particles. The nucleus was stained with PI (red). 

Magnification = 200X. Images were captured from cells grown in the cover slip. 
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3.14 Total cell associated zinc and iron in PDT          

ICP-OES is an analytical technique used for detection of trace metals. It uses emission 

spectra to identify and quantify the elements present in the sample. The results 

discussed here is based on the radial detector values, which measures concentrations 

of elements in samples (Trevizan & Nubrega, 2007). To make sure that we detect metal 

element derived from NPs at the intracellular level we did study with the high NPs 

concentration (100 µg/mL) in both cell lines and at two-time points (2 h & 6 h). The 

ICP-OES results also provide us with information on the cellular uptake of NPs and 

the impact of treatment time.  

 

Different trends were seen in two cell lines. In B16-F10 cells received treatment of 

FZSi-FTIC and FZSiFA50 NPs, higher Zn content was detected at 6 h when cells were 

treated with NPs alone. However, upon UV-A irradiation, the higher level of Zn was 

recorded at 2 h not 6 h. The photodegradation of Zn may be the possible reason for 

this reduction.  In comparison, the iron levels increased from 0.09 mg/L at 2 h to 0.12 

mg/L at 6 h. NPs with UV-A irradiation treatment enhanced the iron levels from 0.10 

mg/L at 2 h to 0.25 mg/L at 6 h. The cell-associated iron content data supports the 

cellular uptake study presented in Figure 3.20. For instance, FZSiFA50 NPs in the dark 

had 7.63% cellular uptake at 2 h which enhanced to 33.01% after 6 h, providing close 

to 4-fold enhanced cellular uptake.  
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Table 3.9 Total intracellular metal content in B16-F10 and Caco-2 cells following NP treatment 

 

Cell line 

 

Metal 

 Metal content (mg/L) 

Control* FZSiFITC (dark) FZSiFITC 

(UV) 

FZSiFA50 (dark) FZSiFA50 (UV) 

 2h 6h 2h 6h 2h 6h 2h 6h 

 

B16-F10 

Iron 0.043±0.01 0.099±0.00 0.143±0.02 0.353±0.05 0.108±0.02 0.093±0.00 0.122±0.02 0.096±0.01 0.247±0.03 

Zinc 0.033±0.01 0.241±0.05 0.305±0.07 0.286±0.04 0.191±0.03 0.163±0.05 0.301±0.04 0.206±0.02 0.201±0.04 

 

Caco-2 

Iron 0.074±0.02 0.098±0.01 0.219±0.02 0.165±0.02 0.078±0.00 0.091±0.03 0.151±0.02 0.128±0.03 0.211±0.02 

Zinc 0.010±0.00 0.263±0.06 0.173±0.01 0.190±0.06 0.127±0.02 0.233±0.06 0.104±0.01 0.055±0.01 0.052±0.01 

*Control represents cells without NPs treatment 
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In Caco-2 cells after 2 h of FZSiFA50 NPs treatment, there was a 23-fold increase in 

zinc level compared to untreated sample, i.e. cell, (0.01 mg/L to 0.23 mg/L). However, 

2 h NPs with UV-A treatment recorded drastic drop in the Zn levels compared to 2 h 

NPs treatment. A similar trend with drop-in Zn levels was also observed with, 6 h NPs 

treatment and 6 h NPs+ UV-A treatment (0.1 mg/L, 0.05 mg/L Zn levels respectively) 

compared to 2 h of NPs treatment. The drop in intracellular levels of Zn was not 

directly reflected in the cellular uptake study. However, the possible reasons behind 

this reduction in Zn levels other than photodegradation of Zn may be related to: 

1) The photodegradation of hybrid NPs was enhanced with the presence of a 

Fe3O4 component, due to the suppressed recombination of the photoinduced 

electron-hole pairs by the dissolved iron (Feng et al., 2014; Patel et al., 2017). 

2) In the intracellular environment, endosomal pH ranges at 6 to 4 in lysosomes. 

ZnO NPs is expected to be highly unstable in such low pH conditions.  

Literature has reported at such low pH levels NPs were dissolved entirely (Luo 

et al., 2014; Shen et al., 2013). 

The above two processes may have produced soluble Zn which may have effluxed 

from cells (Eide, 2006). In turn, the Zn level dropped. 

 

The increase in Zn levels from both the NPs at 2 h confirmed the cellular uptake of the 

NPs. It is interesting to note that the trend of iron levels was different from that of Zn. 

In FZSiFA50 NPs there was no reduction in the iron levels at 6 h. They enhanced by 

time (0.09 mg/L at 2 h to 0.15 mg/L at 6 h) and with UV-A irradiation (0.13 mg/L at 

2 h UV-A to 0.21 mg/L at 6 h UV-A), 

 

The trend was similar with FZSi-FITC NPs, except the dropped iron levels after UV-

A radiation at 6 h. The different levels of Zn and iron metals detected in the two cell 

lines confirmed the cellular uptake is dependent on the nature of the cell line under 

study.  

 

3.15. Apoptosis study and caspase 3/7 activity in PDT  

The annexin V- PI assay was carried out using the flow cytometry to quantitatively 

analyse apoptotic and necrotic cells after hybrid NPs treatment alone and in 

combination with UV-A irradiation.  The apoptosis potential of FZSi and FZSiFA50 

NPs was investigated by Annexin-V/FITC and PI staining.   
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Annexin-V/PI plots were divided into four quadrants to distinguish living cells 

(annexin-V-/PI-, low left quadrant, Q4), early apoptotic cells (annexin-V+/PI-, low right 

quadrant, Q3), late apoptotic (annexin-v+/PI+, upper right quadrant, Q2) and necrotic 

cells (Q1). Two different NPs concentration (12.5 and 100 µg/mL) and two different 

experimental conditions (dark and UV-A irradiated) were applied. For the discussion, 

the apoptotic cell percentage was calculated as a sum of both the early apoptotic and 

late apoptotic cells percentage.  

 

As seen in Figure 3.28, no significant apoptosis (3.5%) was observed in untreated 

control cells, and 96.2% cells were present in the viable chamber. The FZSiNPs treated 

cells, however, showed increased apoptosis of B16-F10 cells over time (Figure 3.28), 

the dose of NPs and on exposure to UV-A radiation (Figure 3.29). At 6 h of 12.5 

µg/mL, NPs dose treatment 6.5% apoptotic cells were present, which nearly doubled 

to 12.1% after 24 h. On treatment with FZSi NPs +UV-A radiation (24 h) 10.9%, 

apoptotic cells were present, along with a considerable amount of 16.5% cells reaching 

the necrotic chamber.  FZSi NPs after, 6 h of 100 µg/mL dose treatment 15.6% cells 

were present in the apoptotic chamber which enhanced to 88.1% after 24 h and further 

raised to 94% on exposure to UV-A irradiation after 24 h.  The ameliorated apoptotic 

and necrotic levels were significant in both NPs treated groups compared to untreated 

control and UV exposed control (p<0.001) at 6 h and 24 h. 

 

FZSiFA50NPs at12.5 µg/mL showed 8.82% apoptotic cells at 6 h, which increased to 

12.7% apoptotic cells after 24 h (Figure 3.28). On treatment with FZSiFA50 NPs 100 

µg/mL dose for 6 h, 24.5% apoptotic cells were present (Figure 3.29), (a 3-fold 

increase compared to 12.5 µg/mL treatment) and at 24 h 24.7% apoptotic cells (a 

single fold increase compared to 12.5 µg/mL) were present, with a significant 69.8% 

cells in the necrotic chamber (Figure 3.30).  Upon UV-A irradiation of the same dose 

of NPs, 17.9% apoptotic cells were present at 6 h, which enhanced to 28.9% apoptotic 

cells and 68% cells in the necrotic chamber at 24 h (Figure 3.31). 

 

Wang et al. (2014) reported a rise in apoptotic cell population from 5.8% to 72.8% 

when ZnO NPs concentration was increased from 4 to 12 µg/mL in astrocytes. 
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Hackenberg et al. (2010) observed a significant increase in necrotic cells from 11.7% 

without ZnO NPs to 30.2% for ZnO NPs at 2 µg/mL in the human neck and head 

squamous carcinoma cells. 

 

On 24 h exposure to 100 µg/mL, NPs (both in dark and UV-A irradiated) the pattern 

of cell death differed depending on the type of NPs. The FZSi NPs produced apoptotic 

cell death as the dominant mechanism, and FZSiFA50 NPs produced necrotic cell 

death (10 fold more compared to FZSi at dark and 16-fold more compared to FZSi 

after UV-A treatment) as the dominant mechanism (Figure 3.30). The high proportion 

of positive necrotic cells for FA-attached FZSiNPs (at 24 h and 100 µg/mL) was 

mainly attributed to the higher intracellular uptake of the NPs that might increase the 

intracellular level of metal NPs and thereby higher cytotoxic effect. Moreover, the 

presence of folate as a targeting ligand which led to high level of cellular uptake may 

be a reason behind the different pattern of death produced by the two NPs on high 

concentration and UV-A exposure.  

 

As shown in Figure 3.19, the morphological analysis of B16-F10 cells exhibited 

typical characteristic apoptotic changes, such as the fragmented nucleus, apoptotic 

bodies, and cells detached from the bottom of the plate after both NPs and NPs with 

UV-A irradiation treatment. Literature provides evidence that singlet oxygen and ROS 

are essential for initiation of apoptosis in cancer cells (Simon et al., 2000; Cadenas & 

Davies, 2000). ROS generated by hybrid NPs and with UV-A irradiation in B16-F10 

cells has been described earlier in Figure 3.12 and 3.13. Hence, we can speculate the 

role of singlet oxygen and ROS generated by hybrid NPs and with UV-A irradiation 

in fostering apoptosis in melanoma cells. 
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Figure 3.28 B16-F10 cells after nanoparticles treatment with 12.5 µg/mL concentration A: 

Control, B & C: FZSi NPs treated 6 h and 24 h.  D & E: FZSiFA50 NPs treated 6 h and 24 h. 
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Figure 3.29 B16-F10 cells after nanoparticles treatment with 12.5 µg/mL concentration and UV-

A irradiation. A: Control, B & C: FZSi NPs treated 6 h and 24 h.  D & E: FZSiFA50 NPs treated 

6 h and 24 h. 
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Figure 3.30 B16-F10 cells after nanoparticles treatment with 100 µg/mL concentration. A: 

Control, B & C: FZSi NPs treated 6 h and 24 h.  D & E: FZSiFA50 NPs treated 6 h and 24 h.  
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Figure 3.31 B16-F10 cells after nanoparticles treatment with 100 µg/mL concentration and UV-A 

irradiation. A: Control, B & C: FZSi NPs treated 6 h and 24 h.  D & E: FZSiFA50 NPs treated 6 

h and 24 h. 
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Figure 3.32 Compilation of apoptosis levels in B16-F10 cells after treatment with A: FZSi NPs 

and B: FZSiFA50 NPs (12.5 and 100 µg/mL) at 6 h and 24 h (dark, UV irradiation condition 

10J/cm2). Data are represented as mean ±SD (n=3). * indicates p<0.05, *** indicates p˂0.001 when 

untreated (6 h) and the only UV exposed (6 h) late apoptotic cells (%) were compared with all the 

other treatment groups late apoptotic cells (%). 

 

Caspase 3/7 activity   

Caspase 3/7 activity is a fluorescent assay that detects the activity of caspase 3/7 in 

cell lysates. Caspases, a family of aspartic acid specific proteases, are the significant 

effectors of apoptosis (Ai et al., 2017; Yang et al., 2015). Caspase 3 is execution 

caspase involved in cleaving substrates, leading to alteration changes linked with 

apoptosis and ultimately cell death (Anbu et al., 2016). Caspase 3 which plays a crucial 
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role in apoptotic pathway (Zhang et al., 2014; Yang et al., 2015), was induced 

following treatment with hybrid NPs (Figure 3.33). Caspase-3/7 activated apoptosis 

was observed in the B16-F10 cells after hybrid NPs treatment, during Annexin-V/PI 

staining. The movement of cells in all the three stages (viable cells – early apoptosis – 

late apoptosis/dead) further confirmed apoptosis. With the treatment of hybrid NPs 

and UV-A irradiation, the caspase -3/7 activity was enhanced further and statistically 

significant compared to control group (p<0.001) (Figure 3.33 A and B). When cells 

were treated with 12.5 and 100 µg/mL FZSi and FZSiFA50 NPs for 1 and 2 h, the 

activity of caspase-3/7 increased in a concentration-dependent and time-dependent 

manner.  Compared to control FZSi NPs after 1 h, showed a 2-fold increase in caspase-

3/7 activity at 12.5 µg/mL and a 3-fold increase at 100 µg/mL; after 2 h, the increase 

was 2.1-fold for 12.5 µg/mL and 3.2-fold for 100 µg/mL.   

 

The detection of enhanced caspase -3/7 activities in B16-F10 cells following hybrid 

NPs treatment, with or without UV-A, supports apoptosis finding by the flow 

cytometry study discussed early.  The cell death seen in cytotoxicity study could be 

caused by the apoptotic process. The cell morphology changes after NPs treatment, 

featuring swollen rounded cells (Figure 3.31, Appendix 22) further confirms the 

apoptotic pathway of cell death. Similar Caspase-3 activity was also reported in A375 

human melanoma cells by Alarifi et al. (2013), who observed time and concentration-

dependent rise in Caspase-3 activity following ZnO NPs treatment. Akhtar et al. 

(2012) reported increased caspase-3 activity when HepG2 cells were treated with ZnO 

NPs. In the current study, cell death by hybrid NPs and with UV-A irradiation was 

concentration dependent (Figure 3.6 & 3.9) and closely related to caspase-3 activation. 
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Figure 3.33 Caspase 3/7 activity in B16-F10 cells treated with FZSi and FZSiFA50 NPs (12.5 and 

100 µg/mL) for (A) 1h and (B) 2 h (dark and UV irradiated, 10 J/cm2). Data are represented as 

mean ±SD (n=3). Compared to untreated control and only UV groups, both FZSi & FZSiFA50 

NPs were statistically significant at both the concentrations (12.5 & 100 µg/mL). *** indicates 

p˂0.001 when FZSi & FZSiFA50 NPs dark at both the concentrations were compared to FZSi 

and FZSiFA50 NPs UV. 
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Figure 3.34 Cell morphology changes in B16-F10 cells after FZSi, FZSiFA50 NPs treatment (12.5 

and 100 µg/mL) for 1h (dark). A: Control, B: only UV exposed, C&D: FZSi NPs treated with 12.5 

& 100 µg/mL. E&F FZSiFA50 NPs treated with 12.5 & 100 µg/mL. 

 

3.16 Selection of melanoma animal model for in-vivo studies 

The anticancer effect of each formulation was initially assessed using cell culture 

studies in Chapter 2.  However, to fully evaluate the potential of the formulation on 

live tumour tissues, in vivo studies are necessary as cell cultures cannot mimic the 

biological system and the nature of a tumour in a live body. In vitro anticancer cell 

studies cannot be extrapolated into in vivo.  

  

Mouse melanoma cell B16-F10 was originally derived from C57BL/6 mice, and it is 

one of the most malignant forms of cancer in mice. Researchers considered this 

melanoma mice model as a good representation of human melanoma, and it has been 

used by other groups for assessing the effect of PDT (Zhang et al., 2017, Oh et al., 

2017, Woodburn et al., 1998, Beack et al., 2015). On this basis, we chose this model 

for evaluation of hybrid NPs in PDT in our animal studies. 
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3.17 UV LED SMART optimization 

The key features and advantages of UV LED SMART are summarised below: 

• It can function without a computer using a breakout box during irradiation 

• The UV LED SMART can also be triggered using an external foot switch or 

an ON/OFF button in the instrument 

• Weightless instrument, ~130 g 

• Maximum irradiance can be achieved within a brief time 

To determine the optimum conditions for UV LED SMART and to deliver 10J/cm2 we 

examined the following parameters: 

     1) Effects of hair on the skin  

     2) Temperature change 

     3) Impact of distance on delivery time for the UV dose   

 

It was found that the hair of mice had a major impact on light penetration through the 

tumour tissue. It took nearly 10-fold time for the skin with hair to reach 10 J/cm2 

compared to the tumour skin without hair (Table 3.10).  Accordingly, the hair of mice 

was shaved before tumour inoculation, before treatment of NPs and UV-A to assist in 

injection and the light penetration during irradiation step. To ensure accurate 

measurement of tumour volume, the mice were shaved before determination of tumour 

size using a digital calliper. 

 

An inversely proportional relationship existed between the distance (distance between 

light source and skin) and the skin temperature. With the increase in distance between 

the UV light source and skin, the rise in temperature decreased (Table 3.10).  

 

The pilot study showed that the shaved tumour skin delayed the UV-A dose delivery 

by 3 seconds (at 5 cm distance) compared to UV light directly exposed to the sensor 

(Table 3.10). This confirmed the penetrating power of the UV-A irradiation and the 

suitability of the instrument for this study. Also, with an increase in distance (between 

light source and skin), the time to reach 10 J/cm2 dose increased. For these reasons the 

selected radiation parameters for in vivo study were 10 J/cm2 and UV light source 

maintained at 1 cm distance from the mice. 
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Table 3.10. UV LED SMART optimization 

Condition 

followed 

Distance 

(cm) 

Dose 

(J/cm2) 

Timea (min) Initial 

Tempb (°C) 

Final 

Tempb (°C) 

Tumour 

skin shaved  

1 10 3.42 ± 0.03 37.3 ± 0.3 38.3 ± 0.2 

2 10 3.47 ± 0.02 37.4 ± 0.1 38.0 ± 0.0 

5 10 3.52 ± 0.01 37.0 ± 0.1 37.2 ± 0.2 

Tumour 

skin with 

hair  

1 10 35.67 ± 1.26 36.7 ± 0.2 38.8 ± 0.2 

 

No skin 

1 10 3.37 ± 0.01 36.6 ± 0.1 38.8± 0.0 

2 10 3.41±0.02 36.5±0.3 38.8±0.1 

5 10 3.49±0.01 36.3±0.2 38.5±0.2 

a Time taken to generate the dose 10J/cm2 on the base of the mice skin; b Temperature at skin 

surface before and after UV-A dose delivery 

  

 

 

 

 

 

Figure 3.35 Image showing the UV LED SMART and a mouse irradiated with the UV LED 

SMART.  

 

 

3.18 Antitumour activity of hybrid NPs alone and in combination with UV-A  

Melanoma shows characteristics of high-level proliferation; and strong survival, the 

potential to metastasize, chemoresistance and ability to resist apoptosis (Davids et al., 

2011). The presence of melanin is associated with the higher death rate of cutaneous 

melanoma. Melanocytes can progress to metastatic malignant melanoma which 

invades dermis (Davids et al., 2011). Two growth phases, radial and vertical, are 

commonly seen with skin melanoma but does not appear in other tumours (Urso, 

2004).  Because of such unique growth pattern melanoma, individual mouse’s 

melanoma cell growth pattern can be variable, and their response to the treatment could 

be diverse, especially in male mice of C57 BL/6 (Oliveira et al., 2011). We did observe 

the aberrant growth of melanoma tumour after day 14, which is consistent to reported 

studies in the literature, indicating the metastatic nature of growth of melanoma 

(Simeos et al., 2015). As a result, the mice in the same and separate groups had to be 

sacrificed on different days due to the different tumour growth pattern observed after 
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treatment. The animal had to be sacrificed according to the animal ethics protocol as 

stated in Figure 2.4. This presented a challenge in generating data for comparison. 

Therefore, we had attempted to use different approaches to compare the treatments 

from different angles to reveal the full picture of treatment effects. 

 

(i) Tumour growth pattern during the whole study  

Tumour growth patterns of treated groups up to the end point are plotted individually 

below (Figure 3.36). The dots represent the size of tumour measured in the study.  

Animals were culled at different time point due to the different tumour growth pattern 

observed in different treatment groups. Therefore, the number of animals culled at the 

endpoint was different too among the groups to be useful for producing meaningful 

comparison data. Therefore, TVI rate up to day 16 (post tumour inoculation) was 

calculated first and used for comparison to determine the impact of each treatment on 

tumour growth in the first 16 days when almost all animals were alive.  

 

Some general trend could be seen during the whole study.  1) NPs and UV treatment 

groups had more mice survival up to or beyond day 22 compared to the control group. 

2) Treatment with PDT of FZSiFA50 NPs delayed the tumour growth and resulted in 

tighter growth pattern. For comparison purpose, the average survival time of animals 

in each treated group, life prolongation rate and average tumour weight of mice in each 

treated group are summarised in Table 3.11. The life enhancement by 25% or more in 

comparison to control was considered an effective antitumour response (Geran et al., 

1972). 
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Figure 3.36 The tumour growth pattern of individual treatment groups over the whole study period.  Each colour represents an animal in the group. All treatments were 

administered via intra tumour and hybrid NPs dose was 2 mg/kg in 10 µL. UV-A irradiation was given on sixth day (D0) and ninth day (D3) tumour inoculation, which is equivalent 

to 0 day and 3 days post NP treatment at a dose of 10 J/cm2.  
dose of 10 J/cm2.  
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(ii) Tumour growth pattern up to day 16 post-treatment 

Tumour growth pattern of treated groups up to day 16 are plotted individually in 

Appendix 23. The average growth of six animals in each group, except 

FZSiNPs+UVD0 in which five animals survived on day 16 is presented in Figure 3.37. 

The dots represent tumour size measured on the day stated in the study.   

 

Figure 3.37 The compilation of tumour growth of different treatment groups up to day 16 post 

tumour cell inoculation.  The treatment started when a tumour reached an average size of 20 mm3 

(day six after tumour cell inoculation). D0 represented the 6th day after tumour inoculation when 

NPs and UV-A treatment started. D3 represented the 9th day after tumour inoculation when UV-

A treatment was provided. Error bars represent standard error (n=6). 

 

Compared to the initial tumour volume (20 mm3), on day 16 the tumour volume was 

330 mm3 in control group, a 15.5-fold increase in tumour size (Table 3.11, Appendix 

23).  The tumour growth inhibition (expressed as TVI) was promising with 

FZSiFA50NPs (58.2%) compared to FZSiNPs (31.7%) (Table 3.11). The significant 

antitumour effect of FZSiFA50 NPs may be attributed to the folate presence, which 

can target the folate receptors highly expressed in melanoma cells, resulting in better 

cellular uptake and cytotoxicity. In combination with UV-A irradiation, an even 

stronger tumour growth inhibition was shown with hybrid NPs. The FZSiFA50 NPs 

with UV-A given on day 3 produced the strongest antitumour effect (95.2% TVI rate), 

compared to its NPs alone (58.2% TVI rate), and UV-A day 3 alone (48.8% TVI rate).  

 

In comparison to the control, UV-A irradiated groups (UV-D0 and UV-D3) had 65.5% 

and 48.8% tumour inhibitory effect respectively (Table 3.11). The TVI rate for 

FZSiNPs+UVD0 was 58.1%, whereas, FZSiNPs+UVD3 group had TVI of 91.8%, 
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almost comparable to FZSiFA50 NPs+UVD3.  This suggests that the hybrid NPs may 

not have reached inside the tumour cells at the adequate level when the UV dose was 

given immediately after NP treatment and an interval time is necessary for the hybrid 

NPs to accumulate in the tumour cells even administered locally (intra tumour).  UVD0 

not only appeared to be potent to a tumour but also showed stronger tumour inhibitory 

effect than that of NPs alone up to day 16. Scar formation was observed in the mice 

treated with UV-A irradiation (Appendix:24). The UVD0 which had stronger tumour 

reduction compared to UVD3 indicates the timing of UV-A irradiation is important in 

inhibiting the tumour growth. Probably, at the UVD3 treatment the tumour had already 

well established and started metastasis, whereas, during UVD0 the tumour was at the 

development stage. 

 

The treatment groups with a 3-day interval between NPs and UV-A dose provided the 

most potent tumour inhibition among all, in both TVI rate and percentage tumour 

volume to control on day 16 (Table.3.11). The difference in tumour volume between 

the treatment groups also increased with time, which can be seen when the tumour size 

of all the groups was compared up to day 16 (Figure 3.37). This confirmed that 

developed hybrid NPs are effective nano-PSs for PDT with UV-A.  Up to day 16, it is 

evident that FZSiFA50 NPs is more effective than FZSi NPs, either alone or with UV-

A (Table 3.11). This could be attributed to the effect of FA which enhanced cellular 

uptake of hybrid NPs seen in in vitro study. The trend seen in the animal study up to 

day 16 is consistent with results obtained in phototoxicity study, singlet oxygen 

quantum yield, ROS generation, cellular uptake and apoptosis/necrosis study in vitro, 

where FZSiFA50 NPs showed the superior effect to FZSi NPs. 

 

The analysis of data up to day 16 showed that synergistic effect existed between FZSi 

NPs and UV-A only.  Whether this is the case for the full study is to be confirmed by 

other methods. This leads us to use other approaches such as the study of average 

survival time and life prolongation for evaluation and comparison of different 

treatment over the full treatment period. 
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Table 3.11 Summary of tumour volume and TVI effect on day 16 of the study 

Groups Tumour volume 

on day 16 (mm3) 

TVI rate (%) on 

day 16 

Tumour volume 

to the control on 

day 16 (%) 

Control 329.9±56.9  100 

Saline+UVD0 114.0±66.3 65.5±9.4 34.6±9.5 

FZSiNPs D0 225.4±35.2 31.7±22.1 68.3±21.8 

FZSiFA50NPs D0 138.2±68.6 58.2±17.6 41.9±17.4 

FZSiNPs + UVD0 138.5±90.6 58.1±12.0 42.0±11.9 

FZSiFA50NPs + UVD0 125.8±17.2 61.9±15.1 38.1±15.2 

SalineD0+UVD3 169.1±35.2 48.8±28.5 51.2±28.4 

FZSiNPsD0+ UVD3 27.1±5.2*** 91.8±6.3*** 8.2±6.3*** 

FZSiFA50NPsD0+ UVD3 16.1±4.3*** 95.2±4.2*** 4.9±4.3*** 

Each group contains six animals. The data are represented as mean ± SE.  Tumour volume was 

significant in all the treatment groups compared to the control group. *** indicates means are 

significantly different (P< 0.001) compared to the salineD0+UVD3 group. There was no 

significant difference between the FZSi and FZSiFA50 NPs treated with UVD3 groups. The FZSi 

and FZSiFA50 NPs treated with UVD3 were significant compared to saline+UVD0 (P<0.05). 

 

(iii) Tumour weight reduction by hybrid NPs 

Tumour mass reduction either at a specific time point or end point of study often 

indicates the level of antitumour effect. The tumour weights were obtained at endpoint 

after the mice reached culling criteria. The criteria for which the mice had to be culled 

has been described already in Figure 2.4. This posed, a limitation on data collection as 

lateral culled tumour tends to growth erratically with bigger variation even in the same 

group as shown in Figure 3.38. As the tumour weight at endpoint was determined by 

direct weighing, it would be more directly reflecting the true size of tumour than those 

determined using a digital calliper. Therefore, we pooled all tumour weight data of 

endpoint together and presented in a scatter plot (Figure 3.38) to show the distribution 

of tumour weights. Caution must be taken when interpreting this data as the tumours 

were not from the mice culled at the same time. 

 

Figure 3.36 showed the tumour weight distribution pattern of each animal in the treated 

groups. Tumour weight in the control group was spread in a wide range compared to 

that with the NPs only treated group, where the data points were together.  The group 

treated with saline and UVD3 also exhibited a spread pattern relative to the unison 

pattern with that of NPs+UVD3. The spread pattern showed the variation in tumour 

weight, between animals in the same group, and the unison pattern showed the effect 

of NPs similar to a group even though it contained 6 different animals. The spread 
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pattern existed in the NPs+UVD0 groups, which was like control and UVD0 treated 

groups. The results suggest both hybrid NPs alone produced significant antitumour 

activity with narrow end tumour weights, which was comparable to or even better than 

that of UVA irradiation alone. The PDT effect was stronger also with narrow end 

tumour weight when nano-PS was irradiated on day 3 than on day 0.  The high levels 

of apoptotic (94.9% in FZSi NPs) and necrotic cells (65.4% in FZSiFA50 NPs) after 

24 h NPs+ UV-A treatment generated in vitro may have attributed to this reduction in 

tumour weight (Figure 3.32). The comparison must be made with caution as the 

endpoints were different. Those endpoints (e.g. day 18) labelled on Figure 3.38 were 

indications of the average day when mice were culled. 

 

Figure 3.39 shows the tumour images of the treated groups against control after the 

animals were sacrificed.  The tumours in the control group were massive compared to 

the treatment groups.  It was noticed when the tumour burden increased the tumour 

extruded from the surface of the skin and started to spread all over the body of the 

mice. The literature states this stage of melanoma as the last step of its progression 

termed metastatic melanoma. It is featured with the spread of melanoma from the 

primary site to distant site (Damsky et al., 2011). Thus, the massive weight of 

melanoma along with the spreading growth of melanoma away from the primary site 

serves as an indicator that it has progressed to a metastatic stage. Our observation of a 

metastatic tumour in control group (day 14) exactly matched Yoshiura and his group, 

(2009) who reported, metastatic appearance in the B16-F10 melanoma tumour on14th 

day. 
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Figure 3.38 The compiled tumour weight in each treated group at the endpoint (an average value 

of 6 animals). The animals were sacrificed (day of sacrifice provided on top of each group) and 

tumour collected when the size of a tumour crossed an average 100 mm3 size. Six animals were 

present in each group, and each dot represents an animal within the group, and their tumour 

weight which varied as the animals were sacrificed on a different day according to their tumour 

growth. Error bar represents SEM), *** indicate means are significantly different (P< 0.001) 

compared to control. A) NPs alone were compared to the control (no treatment) B) Control Vs 

saline+UVD0, FZSiNPs+UVD0 and FZSiFA50NPs+UVD0 groups C) Control Vs 

salineD0+UVD3, FZSiNPSD0+UVD3 and FZSiFA50NPsD0+UVD3 groups. 
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Figure 3.39 The image shows examples of the tumour size of different treated groups after 

sacrifice. Control and Saline D0+UVD3 groups were culled on the 18th day. FZSiNPsD0 treated 

group was culled on the 20th day. Saline+UVD0, FZSiNPsD0 and FZSiFA50NPs/FZSiNPs + UVD0 

groups were culled on the 22nd day. The FZSiNPsD0+ UVD3 and FZSiFA50NPsD0+ UVD3 groups 

were culled on the 24th day following tumour cell inoculation. 

 

(iv) The impact of treatments on animal survival and life prolongation rate 

The therapeutic effects of the photodynamic effect of the NPs on tumour-bearing 

mouse models would be reflected in survival time and life prolongation rate. In fact, 

that animal survival time and life prolongation rate were calculated using data from all 

mice, therefore more reflective of the overall impact of treatments. We took notice of 

any changes with treatments. Black scar layer was visible on the site of UV-A 

treatment two days post PDT (in all the groups irradiated with UV-A), which indicated 

a vascular PDT (PSs accumulate in the endothelial cells of vascular tissue allowing 

vascular targeted PDT) regimen (Lepor, 2008) (Appendix 24). The black scar layer 

was present in the animals until the end point, probably that black scar was a necrotic 

scab. A pronounced swelling was visible on the tumour site immediately after PDT 

due to the acute inflammation reaction in mice, which disappeared the following day 

after PDT.   

 

In our study (Table 3.12) FZSi NPs alone had a survival time of 17 days which is 

almost identical to that of control, UVD0 and UVD3, whereas, FZSiNPs+ UVD0 and 

FZSiNPs +UVD3 showed 20 and 25 days respectively (8 days better), which was 

significant (P<0.001). FZSiFA50NPs+UVD0 and FZSiFA50NPs+UVD3 group had 

an average survival time of 18 and 23 days. Administering UV-A dose on day 0 instead 

of day 3, increased the survival time by 25% (additional 5 days), which is a significant 

enhancement (P<0.01).  

 

The hybrid NPs themselves had certain anti-tumour effect, which further enhanced 

when irradiated with UV-A light source. Possibly due to 1O2 and ROS generated inside 

cells due to NPs uptake by cells and impact of time (confirmed from our in vitro 

studies), and finally, apoptosis was induced by NPs in PDT.  
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Table 3.12 Survival time and life prolongation over the whole period 

Each group contains six animals. The data are represented as mean ± SE. Life prolongation rate 

was calculated using the Equation 2.7 in section 2.20. It is the survival time of treatment groups 

with respect to that of the control. Life prolongation rate of FZSiNPsD0+UVD3 was significantly 

different compared to the FZSiFA50NPsD0+UVD3 group. *** indicates (life prolongation rate) 

means are significantly different at (P< 0.001) when FZSiNPsD0+UVD3 and 

FZSiFA50NPsD0+UVD3 were compared to the FZSiNPsD0, FZSiFA50NPsD0 and 

salineD0+UVD3 groups. The average survival time was calculated from each mouse within the 

group with consideration of their time of culling and then averaged. The FZSiNPsD0+UVD3 

(P<0.001) and FZSiFA50NPsD0+UVD3 (P<0.01) groups were significantly different compared to 

salineD0+UVD3. FZSiNPsD0+UVD3 (P<0.05) was also significantly different compared to 

saline+UVD0 group. 

 

The tumour growth of control (only saline) group was rapid, while tumours of mice 

treated with hybrid NPs+UV-A irradiation grew slowly with occasional tumour 

necrosis. The necrotic appearance in melanoma tumours suggested the possibility of 

vascular damage (Yoshiura et al., 2009).  

 

The life prolongation rate was almost similar for NPs and NPs+UVD0 (15.6%), 

whereas, the FZSiNPs+UVD3 group had a 3-fold and FZSiFA50NPs+UVD3 had 2-

fold better life prolongation rate in comparison with NPs and NPs+UVD0. Such a trend 

is consistent with our in vitro results which showed that hybrid NPs, when used in 

combination with UV-A irradiation, was stronger than NPs alone and UV-A alone in 

phototoxicity in B16-F10 cells. The significant extension of survival time and life 

prolongation rate by FZSi NPs and FZSiFA50 NPs with UV-A irradiation on day 3 

demonstrated the synergistic effect of hybrid NPs as PS with UV-A in PDT. 

 

When comparing the tumour inhibtion data of TVI (up to day 16) with the life 

prolongation rate (of whole study), we see a direct correlation in treatment groups of 

NPs without UV. For instance, the FZSiFA50 NPs alone produced tumour inhibition 

58.2% and life prolongation 15.6%, while, FZSi NPs offered only 31.7% tumour 

Groups Average survival 

time (days) 

Life prolongation rate 

(%) 

Control (Saline) 17.3± 1.0  

Saline+UVD0 21.0±3.3 21.3± 3.3 

FZSiNPs D0 17.3± 1.6    0.0 

FZSiFA50NPs D0 20.0± 2.2 15.6± 2.2 

FZSiNPs + UVD0 20.0± 2.4 15.6± 2.4 

FZSiFA50NPs + UVD0 18.3± 2.7 5.8± 2.7 

SalineD0+UVD3 18.0± 0.0 4.0± 0.0 

FZSiNPsD0+ UVD3  25.0± 1.7 *** 44.5± 1.7*** 

FZSiFA50NPsD0+ UVD3 22.7± 1.0 ** 31.2± 1.0*** 
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inhibition with 0% life prolongation. However, the trend is different with NPs in PDT.  

The FZSiNPs +UVD0 produced 58.1% in TVI and 15.6% in life prolongation, while, 

FZSiFA50 NPs+UVD0 produced 61.9% in TVI but only 5.8% in life prolongation 

respectively. The TVI rates were 91.8 and 95.2 respectively for FZSi NPs+UVD3 and 

FZSiFA50 NPs+UVD3, corresponding to the life prolongation of 44.5% by FZSi 

NPs+UVD3 and 31.2% by FZSiFA50 NPs+UVD3 (Table 3.12). Because the life 

prolongation rate was calculated by survival days of mice which was very much 

influenced by conditions set for the end point (in our case it is 100 mm3 and necrotic 

appearance of tumour). It was noticed in fact some of the necrotic tumour was peeling 

off and mice could recover from the cancer if kept longer. Closely inspect the raw data 

in Figure 3.33, both FZSiFA50 NPs group (+UVD0 and +UVD3) showed relatively 

small tumour growth variation than that of FZSi NPs (+UVD0 and +UVD3) but being 

culled earlier therefore resulting in lower life prolongation rate. Therefore, TVI (up to 

day 16) was considered as a better parameter for assessing the efficacy of the treatment 

as it included all mice. 

 

Based on TVI, we concluded that FZSiFA50 NPs, alone and with UV, is more 

effective in inhbiting tuomur growth than that of FZSi NPs. In addition, hybrid NPs in 

combination with UV-A irradiation can inhibit tumour growth in vivo significantly 

better when UV-A was given 3 days post NPs treatment, instead of given at the same 

time with NPs.  These results proved that hybrid NPs in combination with UV-A 

radiation can be used as a potential effective antitumour treatment regimen in PDT.   

 

(v) Impact of treatments on the health of the animal  

In assessing the effectiveness of treatment, it is important to evaluate the overall health 

of animals to investigate potential side effects a treatment may bring.  For assessing 

treatment of subcutaneous tumours, in addition to the tumour volume, tumour 

ulceration, mobility of an animal and body weight were constantly monitored during 

the study.  The body weight of animal has always been considered as an indicator of 

the overall health status of the animal (Paster et al., 2009). The body weight of mice 

was measured from the day of arrival in the facility and groups categorised 

accordingly. Henceforth, after tumour inoculation, the body weight was monitored 

every alternate day using a digital weighing balance. The drop-in body weight by more 
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than 10% on any day of study was considered an endpoint for the animal in our study 

design.  

 

Body weight data alone cannot be used to study the toxicity of the hybrid NPs. 

However, it is certain that any significant drop in body weight of mice could be related 

to the toxicity of NPs. As indicated in Figure 3.40, during the whole study, there was 

no significant difference between treatment groups on any particular day of the study 

compared to control group. However, there was a small drop in body weight of mice 

(but insignificant) in FZSiNPsD0 group towards endpoint (day 18) and 

FZSiNPs+UVD0 from day 22 towards endpoint (day 26). The results suggested that 

the hybrid NPs were well tolerated by the mice when given via intra tumour 

administration. We speculate the non-significant changes in body weight for two 

reasons: 1) the hybrid NPs and UV-A treatment were given intra tumour (localised 

treatment) and not systemically. 2) with tumour burden increasing the body weight 

would plateau or increase, which could compensate for any smaller drop in body 

weight. However, none of the animals showed any distress, difficulty in mobility or 

discomfort during the entire study.  
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Figure 3.40 Change in body weight of mice bearing B16-F10 melanoma tumour after cell 

inoculation. The body weight of mice was measured every alternate day starting from the day of 

tumour cell inoculation using digital weight balance.  n=6 and all data are presented as mean ± 

SD. A) Control Vs FZSiNPsD0 and FZSiFA50NPsD0 groups B) Control Vs saline+UVD0, 

FZSiNPs+UVD0 and FZSiFA50NPs+UVD0 groups C) Control Vs salineD0+UVD3, 

FZSiNPSD0+UVD3 and FZSiFA50NPsD0+UVD3 groups. 
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It is too early to speculate the hybrid NPs are completely safe considering they were 

only given intra tumorally. Further studies involving i.v administration of different 

high doses of hybrid NPs should provide more information on their toxicity. 

 

We assessed the impact of treatments on the weight of major organs such as liver, 

lungs, kidney and spleen whose weights were collected from each animal at the 

endpoint. The weight of organs (liver, lungs, kidney and spleen) is summarised in 

Table 3.13. The lungs and kidney did not show any statistical significance compared 

to control group.   

 

The liver weight in the FZSiNPsD0+UVD3 group showed the most significant 

difference compared to the control. The liver has a physiological function to capture 

small particles of 10-20 nm size for clearance (Ajdari & Ghahnavieh, 2014). The 

chemical composition and size range of each NP may affect its distribution and 

properties in vivo (Longmire et al., 2008).  The chemical nature and size of FZSi NPs 

and their exposure to UVA on day 3 may have led to decomposition of NPs and 

solubilisation of components of NPs and consequently caused undesirable effect on 

liver compared to other groups. Interestingly, the coating composition of NPs and iron 

particles have different clearance mechanisms in the body (Longmire et al., 2008). 

Both our hybrid NPs have iron oxide and silica coating and only one conjugated with 

FA. Conjugation of FA involves chemical bond which may make NPs less susceptible 

to the degradation by UV-A. This could be a reason behind hepatic effect seen with 

FZSi NPs in combination with UVD3. There is also a possibility of antitumour effect 

related mechanism occurring due to PDT, affecting the liver as well. Spleen weight 

was statistically significant only in the group treated with FZSiNPs D0 when compared 

to control (P<0.01).    

 

Based on body weight change, organ weight variation among the mice, it appears 

FZSiNPs may have relatively higher toxicity than FZSiFA50 NPs especially after 

exposure to UVA. The surface modification of FZSiNPs with targeting ligand FA may 

have rendered the FZSiFA50 NPs lesser toxic than FZSiNPs. Smaller size, larger 

surface area, therefore, quicker decomposition under UVA and may be easier uptake 

by macrophages. NPs trigger ROS production which can lead to oxidative stress, 

which can cause injuries to organs (Ajdari & Ghahnavieh, 2014). From our in vitro 
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study, we know that the hybrid NPs produce ROS in combination with UV-A 

irradiation. We speculate these factors are potential reasons behind the impact of FZSi 

NPs in liver and spleen weight reduction. The images of different organs of individual 

treatment groups after the sacrifice is shown in Figure 3.41. 
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Table 3.13 Body weight and organs weight of different treatment groups 

Groups Body weight (g) Liver 

weight (g) 

Spleen 

weight (g) 

Lungs 

weight (g) 

Kidney 

weight (g) 

Tumour 

weight (g) Start                End 

Control 22.25± 1.72 25.00± 2.15 1.27±0.11 0.10±0.02 0.18±0.01 0.30±0.03 1.73± 0.35 

Saline+UVD0 22.00± 2.11 25.60± 1.10 1.00±0.21* 0.10±0.02 0.20±0.02 0.28± 0.03 1.04± 0.18*** 

FZSiNPs D0 22.01± 2.31 22.60± 0.70 1.14±0.16 0.13± 0.03*** 0.16±0.05 0.30± 0.05 0.83± 0.14*** 

FZSiFA50NPs D0 21.87± 2.16 25.72± 2.43 1.18±0.19 0.11± 0.03 0.18±0.03 0.30±0.02 0.70± 0.07*** 

FZSiNPs + UVD0 20.86± 2.16 23.30± 3.18 1.23±0.06 0.10±0.02 0.18±0.03 0.31± 0.03 0.70± 0.20*** 

FZSiFA50NPs + UVD0 20.83± 1.55 24.15± 0.63 1.03±0.13* 0.11± 0.03 0.16±0.03 0.26± 0.06 0.67± 0.33*** 

SalineD0+UVD3 20.25± 0.91 26.20± 1.64 1.13±0.11* 0.10±0.01 0.16±0.03 0.30±0.02 1.05± 0.29*** 

FZSiNPsD0+ UVD3  21.15± 0.69 24.73± 2.40 0.82±0.16*** 0.10±0.01 0.20±0.01 0.30±0.01 0.70± 0.13*** 

FZSiFA50NPsD0+ 

UVD3 

20.68± 1.02 24.00± 1.69 1.04±0.13* 0.10±0.01 0.20±0.01 0.30±0.01 0.72±0.09*** 

Each group contains six animals. The body weight (start) indicates the weight of the animal at the commencement of the study and (end) indicates the weight 

of the animal at the endpoint of the study. The tumour weight indicated is the average tumour weight of the animals in each group but sacrificed on different 

days according to tumour growth. Accordingly, the other organs (lungs, spleen, kidney, liver) were also collected the same day tumour was collected. The 

tumour weight data are represented as mean ± SEM.* indicate means are significantly different at P< 0.05 and *** indicate means are significantly different 

at P < 0.001 compared to control.   
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Figure 3.41 Images are showing the organ profile (spleen, kidney, lungs, liver) (top-bottom) of 

different treatment groups after sacrifice.  The culling day represents the average day of culling 

of animals from each group. Control and Saline D0+UVD3 groups were culled on the 18th day. 

FZSiNPsD0 treated group was culled on the 20th day. Saline+UVD0, FZSiNPsD0 and 

FZSiFA50NPs/FZSiNPs + UVD0 groups were culled on the 22nd day. The FZSiNPsD0+ UVD3 

and FZSiFA50NPsD0+ UVD3 groups were culled on the 24th day following tumour cell 

inoculation. 

 

None of the animals showed signs of trouble with posture, movement, eating/drinking, 

breathing, alertness and dehydration during the entire study period.  So, we conclude, 

the hybrid NPs and its dose (2 mg/kg) were well tolerated administered through the 

intra tumour route, and they demonstrated the significant photodynamic effect on the 

tumour cells UV-A radiation (365 nm, 10 J/cm2 given on day 3). The benefit of using 

these nano-sized PS through the intra tumour route in PDT also demonstrated by the 

minmum toxic effect seen on the weight of body and organ including lung, liver, 

kidney and spleen.   
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Lungs 

Liver 
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Figure 3.42 The image is showing the growth of B16-F10 melanoma tumour in C57BL/6 mice. 

 

3.19 General Discussion 

The hybrid NPs were highly cytotoxic against B16-F10 and Caco-2 cancer cells.  

Cytotoxicity was also observed in 3T3 cells as well, highlighting the need for 

optimizing the dose of hybrid NPs towards each type of cell line. The UV-A light 

source used was sufficient enough for activation of hybrid NPs to generate 

phototoxicity in cancer cells. Significant reduction in cell viability was observed even 

at the lowest dose (12.5 µg/mL) of hybrid NPs when they were irradiated with UV-A 

light. Silica modification of FZ NPs reduced, insignificantly, phototoxicity against 

melanoma and colon cancer cells when compared to FZ NPs which is consistent with 

the fact that the surface modification had affected the photocatalytic property of the 

hybrid NPs. When compared to FZ NPs the FA modified hybrid NPs, at 12.5 µg/mL 

dose, exhibited strongest phototoxicity against melanoma cells, but not in Caco-2 cells. 

 

The cellular uptake assay indicated the enhanced cellular uptake of FZSiFA50 NPs 

compared to FZSi-FITC NPs was associated with FA attachment to the surface of NPs.  

Confocal microscopy images generated after 6 h treatment of B16-F10 cells with 

hybrid NPs confirmed the cellular uptake and proved a significant amount of the NPs 

were present inside the cells, many closely associated with nucleus. We speculate that 

FA might have contributed to the better cellular uptake via targeting the folate 

receptors which expressed at high levels in these cancer cell lines.  The total cell 

associated metal levels correlated well with the cellular uptake of hybrid NPs as 

indicated by the significant higher levels of Zn and Fe detected with cells treated with 

hybrid NPs. The data also suggests that cellular uptake process occurred up to 6 h post 

NPs treatment and UV irradiation may have facilitated the photo degradation of NPs, 

releasing soluble metal.  Soluble free metal might be a significant contributing factor 
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towards the cellular toxicity and systemic toxicity in animals. Ng et al. (2017) reported 

earlier that the free Zn were more cytotoxic than ZnO NPs. 

 

The surface modification of hybrid NPs had affected their production of singlet oxygen 

quantum yield, with FZ NPs generating the maximum quantum yield of singlet oxygen 

compared to the FA and silica modified FZ NPs. This was not totally unexpected as 

Chadwick et al. (2016) also reported a similar observation in their work with Au NPs.  

 

ROS generation is considered as an up-stream event for apoptotic signalling in cells 

(Wang et al., 2014). The ROS could attack cancer cells, resulting in anti-cancer effect 

in a caspase-dependent manner (Alarifi et al., 2017). In this study, significant ROS 

production induced by the hybrid NPs under UV-A irradiation was confirmed by pre-

NAC treatment and found to be highest post 6 h treatment with NPs in both B16-F10 

and Caco-2 cells. Silica and FA modified NPs showed even greater level of ROS 

production, particularly in B16-F10 cells. The cytotoxicity study of hybrid NPs after 

ROS quenching by NAC supports the hypothesis that cell proliferation inhibition by 

hybrid NPs was via the production and effect of ROS. 

 

The repeated photo killing ability of NPs through PDT was confirmed when hybrid 

NPs were treated with double and triple radiation. Double radiation exhibited more 

drastic cell killing compared to single radiation. Silica and FA coated FZ NPs exhibited 

the similar trend of phototoxicity during multiple irradiations. When compared to FZ 

NPs the surface modified silica and FA attached FZ NPs exhibited significantly better 

reduction in cell viability. This supports the use of a single dose of NPs with multiple 

irradiations to provide continuous treatment in a clinical setting. In addition to the 

surface modification of hybrid NPs, the final destination of the NPs and their 

immediate proximity and interaction with UV-A may well provide the difference in 

the pattern of cell death and the difference in cytotoxicity and phototoxicity. 

 

Drastic changes in cellular morphology was observed, especially when the NPs were 

irradiated with UV-A light. These morphology changes were well supported by the 

higher percentage of apoptotic cells noted during apoptosis assay, when melanoma 

cells were treated with NPs and irradiated with UV-A radiation. After treatment with 

high dose (100 µg/mL) of NPs and UV-A for 24 h, the FZSi NPs recorded more 
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apoptotic cells and FZSiFA50 NPs recorded more necrotic cells, indicating the NPs 

may have undergone different cell death pathways. Enhanced caspase 3/7 activity 

levels were detected after NPs were irradiated with UV-A light, suggesting a possible 

caspase activated apoptosis. 

 

All in vitro studies suggested that FZSiFA50 NPs are good potential PSs for PDT. We 

then examined FZSiFA50 and FZSi NPs with and without UV-A irradiation in a 

melanoma animal model to assess the PDT effects of hybrid NPs. Melanoma tumour 

model was selected for its ease access to UV-A irradiation. However, its cells are 

associated with rapid growth and diversified growth pattern, and they tend to develop 

resistance to treatment over time (Perrotta et al., 2016). Despite of these, under the 

currently applied PDT conditions, the FZSiFA50NPs+UVD3 showed the highest 

tumour inhibition (TVI rate) up to day 16 (95%), compared to FZSiNPs+UVD3 (92%), 

UV-A alone (UVD0 65.6%; UVD3 48.8%) and NPs alone (FZSiFA50NPs 58.2%; 

FZSiNPs 31.7%), which was correlated well with in vitro phototoxicity study, cellular 

uptake, singlet oxygen quantum yield, ROS generation, apoptosis and caspase3/7 

acitivity. In terms of life prolongation, FZSiNPsD0+UVD3 was the best with 44.5% 

while FZSiFA50NPs+UVD3 provided 31%, UVD0 21.3%, UVD3 4%, FZSiNPs 0% 

and FZSiFA50NPs 15.6%.  However, because other factors such as the end point 

parameters were influencing the value of life prolongation, TVI rate is considered to 

be the most reliable and unbiased value for the comparison as it was calculated with 

inclusion of all animals. Systemic toxicity study, which was conducted by examining 

the weight change of the mice and its various organs, revealed that 

FZSiFA50NPsD0+UVD3 had less impact on liver compared to FZSiNPsD0+UVD3 

and both showed no significant effect on body weight.   

 

Animal study results also suggest that the time of treatment with UV-A irradiation is 

vital to produce maximum impact on tumour growth inhibition. Having a 3 days 

interval seems more efficient than giving NPs and UV-A at the same time.  

 

Overall the extensive in vitro and in vivo studies proved our hypothesis that the hybrid 

NPs can be used as an effective nano–PS in PDT with UV-A. Such treatment regime 

provides an advantage over UV-A or NPs alone. It allows more targeted and flexible 

delivery of PDT. In comparison to those reported in the literature which studied NPs-
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PDT effect (Table 3.14), with multiple dose irradiations in combination with a high 

dose of NPs, our hybrid NPs in PDT has produced a promising antitumour effect even 

with single irradiation and a low dose of NPs. However, factors such as different 

nanomaterials, light source, irradiation dose and NPs dose need to be taken into 

account. 

Table 3.14 Comparison of our hybrid NPs with the other reported NPs in 

melanoma tumour model 

NPs Light 

source 

and dose 

Antitumour 

effect 

Significance Data 

source 

C60-IONP-

PEG-HMME 

(4mg/kg, i.v 

every 2 days 

for 10 days) 

532 nm 

Laser, 300 

J/cm2 

(every 2 

days for 10 

days) 

After 10 days: 

control 

group:1127 

mm3 

NPs group:272 

mm3 

Treatment started after 

reaching 100 mm3. The four-

fold decrease in tumour 

volume in NPs treated group 

compared to control in a 

B16F10 tumour model. 

Shi et 

al., 

2013 

Rose Bengal as 

photosensitizer 

(100 µM) 

(treated 2nd 

and 4th day) 

68.4 J/cm2, 

Red light 

BL1000A 

lamp, 630 

nm 

After 6 days: 

400 % larger 

tumours 

Treatment started after 

reaching 246 mm3 sizes. 

A four-fold increase in 

tumour size after PDT in a 

B16F10 tumour model. 

Mc 

Ewan 

et al., 

2016 

FZSi NPs (2 

mg/kg day 0) 

UV LED 

SMART, 

365 nm 

(10J/cm2, 

single dose 

day 3) 

After 16 days 

control: 329.96 

mm3 

NPs group: 

27.06 mm3 

Twelve-fold decrease in 

tumour volume compared to 

control in NPs group 

Current 

study 

FZSiFA50 NPs 

(2 mg/kg day 

0) 

Same as 

above 

After 16 days 

control: 329.96 

mm3 

NPs group: 

16.12 mm3 

Twenty-fold decrease in 

tumour volume compared to 

control in NPs group 

Current 

study 

C60 = Fullerene, IONP = Iron oxide, HMME = Hematoporphyrin monomethyl ether; All the 

compared data were performed on C57BL6 strain mice only. 
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4.1. General Summary 

In this PhD research, semiconducting hybrid NPs containing Fe3O4-ZnO were 

investigated, both in vitro and in vivo, for the potential applications as a new class PSs 

for PDT. Particle size distribution was determined by DLS and confirmed to be 

between 13 - 19 nm in size. The hybrid NPs were stable over 24 h period at 37 0C in 

the DMEM medium containing FBS.  

 

Three cell lines B16-F10, Caco-2 and 3T3 were used for assessing the cytotoxicity. 

The former two were also used in studies including phototoxicity, cellular uptake and 

ROS generation. Further, B16-F10 cells were also used for apoptosis and caspase 

activity studies of the hybrid NPs. The MTT assay confirmed the cellular toxicity of 

the hybrid NPs in the three cell lines, which was time and concentration-dependent. 

Although the hybrid NPs exerted cell killing ability against melanoma and colon 

cancer cells, they were also highly toxic to 3T3 cells, which is a concern that needs to 

be addressed.  

 

The phototoxicity experiments were successfully conducted with 10 J/cm2 UV-A dose 

(365 nm) in the BS02 UV IRRADIATION CHAMBER. The study showed that there 

was a synergistic effect between the hybrid NPs and UV-A radiation. The cytotoxicity 

and phototoxicity of the hybrid NPs confirmed they are an effective new class of nano-

PS which can function as an anticancer drug, further attenuated by UV-A radiation at 

low dose.  

 

Our study demonstrated that FA attached NPs in combination with UV-A radiation 

produced stronger cancer cell killing effect than that by UV-A radiation alone or those 

NPs without FA modification. Furthermore, ROS was detected and correlated to the 

cancer cell killing ability of the NPs. Singlet oxygen quantum yield study confirmed 

the production of singlet oxygen by hybrid NPs in PDT although the surface 

modification with silica and FA reduced its level. The ROS effect was quenched using 

antioxidant NAC. The NAC pre-treated cells reduced ROS and enhanced cell viability, 

which upheld the ROS generation by hybrid NPs and its role in cellular toxicity.  

 

The cellular uptake study revealed that the FA significantly enhanced the hybrid NPs 

uptake, possibly via receptor mediated endocytosis process. Confocal microscopy 
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further confirmed the results of cellular uptake study and proved that most NPs were, 

internalised instead of attached on the cell surface. This was further supported by the 

data from total cell associated zinc and iron analysis with and without UV-A 

irradiation. The latter study also showed that the uptake of hybrid NPs may continue 

for up to 6 h but significant zinc dissolution occurred in Caco-2 cells, not B16-F10, 

after 2 h treatment of NPs. Photo degradation of hybrid NPs appeared to be occurring 

potentially producing soluble metals. This could contribute to the toxicity of hybrid 

NPs in vitro and in vivo.    

 

With increased time and concentration, the NPs induced remarkable variations in the 

cellular morphology. The cells were swollen, broken and showed a reduction in cell 

number and finally lifted from the cell surface. The morphology changes featured the 

apoptotic events of cells treated with NPs. The caspase dependent apoptosis pattern of 

cell death was evident in B16-F10 cells following treatment with the hybrid NPs and 

UV-A irradiation confirmed by Annexin-V/FITC and caspase 3/7 assays. The pattern 

of cell death differed between FZSi and FZSiFA50 NPs at the high dose of NPs (100 

µg/mL, 24 h) and in combination with UV-A irradiation. The FZSiFA50NPs exerted 

necrotic pattern cell death, and the FZSi NPs exerted apoptotic mode of cell death. 

These in vitro findings warranted the selection of FZSi and FZSiFA50 NPs for the 

further in vivo study.   

 

B16-F10 melanoma animal model in C57BL/6 male mice was used for the in vivo 

study of the hybrid NPs. This is the first in vivo study reporting anti-cancer effects of 

hybrid NPs with and without UV-A. A clinically applicable UV LED SMART device 

was used as the UV-A light source in PDT animal study. Because of the diverse growth 

pattern of the melanoma tumour, the animals had to be sacrificed on different days. 

Therefore, the TVI rate up to day 16 was found to be the most reliable data for 

evaluating the therapeutic efficacy of hybrid NPs alone and in PDT as it included the 

data from all mice. 

 

Data from animal study showed that FZSiFA50 NPs had stronger antitumour activity 

than FZSiNPs, exhibiting TVI rate of 58.2% over 31.7%. When these two NPs were 

activated by UV-A, therapeutic efficiacy was further improved with 

FZSiFA50NPs+UVD3 and FZSiNPs+UVD3 reaching TVI rate of 95% and 91% 
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respectively. In comparison, UV-A alone only had 65.6% (UVD0) and 48.8% 

(UVD3). These results showed correlation with various in vitro studies, suggesting 

hybrid NPs are indeed effective nano-PSs for PDT of cancer treatment. Their strong 

antitumour activity could be attributed to the ability of producing ROS in the tumour 

tissues/cells.     

 

In the animal study, we also examined the time interval between UV irradiation and 

administration of a single dose of hybrid NPs on the antitumour activity of the hybrid 

NPs. UV-A irradiation of NPs with the 3-day interval proved to be more effective in 

tumour inhibition than no interval. Separating UV-A irradiation dosing from NPs 

treatment allowed the spread of treatment and probably served as two doses of 

treatment. Further, it provides time for the hybrid NPs to accumulate inside the tumour 

cells. During the entire study, there was no significant change in the body weight of 

the treatment groups compared to the control group, which proved the hybrid NPs were 

well tolerated by the mice when administered intra-tumourally. In terms of liver 

toxicity, the FZSiNPs+UVD3 group exhibited the most significant reduction in liver 

weight. This could be due to the toxicity arising from soluble zinc and iron as FZSi 

appeared to be decomposed faster than FZSi FA50, under the UV-A irradiation, in 

B16-F10 cells according to metal content study.  

 

The objectives of the study were accomplished as the hybrid NPs have proved to be 

strong nano-PSs candidates for PDT, exhibiting effective antitumour activity against 

melanoma cells (both in vitro and in vivo) when activated by UV-A. This study 

confirmed the important role targeting ligand FA played in cellular uptake, cell 

apoptosis, necrosis and consequent impact on phototoxicity and antitumour activity. 

These hybrid NPs provide us better understanding in designing the semiconductor 

metal oxides-based nano-PS for PDT. 
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4.2 Limitations of the study and future work 

This research project has successfully explored some of the unique features of using 

hybrid NPs as PSs in PDT and opens new research leads which could be investigated 

in the future. During this project, a few challenges were encountered and resolved.  

However, there are still some that remained. For instance, though we collected the vital 

organs during the animal study, we could not analyse the distribution of NPs in organs 

due to the time constrain. As the study involved PDT, multiple irradiation conditions 

should have been carried out in vivo. However, due to the limited resources towards 

the end of the project, we could not complete those tasks. Therefore, we propose the 

future studies to include: 

• Anticancer effect of hybrid NPs with multiple radiation conditions with a 

designated time interval in animals. 

• Quantitative assessment of the effect and oxidative stress caused by each free 

radical in ROS. 

• Singlet oxygen generation in cells and the mechanisms behind cytotoxicity in 

3T3 cells. 

• Effect of nano PSs in vivo when administered by different routes of 

administration like i.v or i.p alone and in combination with PDT. 

• Biodistribution of hybrid NPs in different organs and blood. Hematoxylin & 

Eosin (HE) staining of cellular and sub-cellular components in the organ 

tissues to study histological changes. 

• Determination of the soluble metal ion concentrations in the tissues and 

tumours using ICP-MS. 

• The influence of FA photodegradation on cytotoxicity and ROS. 

• The antitumour effect of hybrid NPs being used as drug carrier as well as PSs 

in PDT in a combination therapy. 

 

Although, this Ph.D has made a significant contribution to the knowledge base 

pertaining to the development of hybrid NPs as PSs in PDT against cancer. We expect 

that above-suggested research leads would further expand the knowledge and 

information that could guide the development of the next generation nano-PS in PDT. 

With the possibility of entrapping chemotherapeutic drugs inside the hybrid NPs, the 
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dual therapy (chemotherapy + PDT) will further extend the potential of the hybrid NPs 

used in this study. 

 

4.3 Conclusion 

To our best knowledge, to date, this is the first report on Fe3O4-ZnO hybrid NPs in 

combination with UV-A radiation against melanoma cells and melanoma tumours in 

an animal model. This study highlights the potential of silica and FA modified hybrid 

NPs as effective nano-PSs in PDT and important role the targeting ligand FA may 

play. The research in this thesis demonstrated phototoxicity of the nano-PSs and their 

synergistic effect with UV-A radiation which effectively inhibit the growth of 

melanoma cancer cells. This work also emphasized the importance of the time interval 

between NPs and UV-A irradiation in vivo. However, further in-depth in vivo studies 

are still required to explore the full potential of hybrid NPs as PSs in PDT, especially 

under multiple irradiation conditions with different route of administration and various 

tumours.  

 

Overall this study has demonstrated that silica and FA modified hybrid NPs has 

fulfilled the criteria to be an effective nano-PS for PDT and its potential to be 

developed into a clinically relevant nano-PS in PDT. 
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Appendix 1: Structure, TGA curve and XRD analysis of the hybrid NPs  

(Data from Patel et al., 2017) 

 

 

 

 

A) Synthetic scheme outlining preparation of FZ-S and FZ-SFA NPs, B) TGA 

curves & C) XRD diffraction patterns for Fe3O4, FZ and Zn NPs. 
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Appendix 2: Sample Preparation for Mycoplasma Testing 

Mycoplasmas can drastically alter DNA, RNA and protein synthesis as well as can 

compete with host cells for biosynthetic precursors, nutrients, amino acid and ATP.  

As a result, research results can be skewed and become non-reproducible.  Although 

the proper aseptic technique was always employed in the laboratory work and 

antibiotic was always present in the medium to prevent bacterial infection, regular 

(three monthly) testing of all cell cultures was performed to ensure the absence of 

mycoplasma.  The procedure followed was as below: 

• Cells were cultured for two weeks without any antibiotics.  The B16-F10 and 

3T3 cells grew fast so they were split as usual and continued growing in the 

medium without antibiotics. 

• Samples were prepared when cells were 70-80% confluent. 

• 100 µL of cell conditioned medium was collected into 1.5 mL Eppendorf tube 

and boiled for 5 min at 95°C using bench heat block.  The sample was stored 

at 4°C and tested within one week. 

• Cells were washed with PBS and removed by cell scraper into PBS.  An aliquot 

was used for cell counting and the rest was centrifuged at 2000 rpm for 5 

minutes at 4°C. 

• Cells were resuspended in PBS and approximately 1x106 cells were placed into 

a 1.5 ml Eppendorf tube. 

• The tube was centrifuged at 3750 g for 1 min at 4°C, the supernatant was 

removed, the cell pellet was resuspended in 1 mL PBS and centrifuged again. 

• Finally, the supernatant was removed, and the cell pellet was stored at 4°C for 

mycoplasma testing was carried out within one week. 

• Optimised PCR-based technique was used for mycoplasma detection, which 

was performed by CHIRI facility researcher, Curtin University. 

 

The results presented in this chapter were generated from mycoplasma negative 

cell lines which were regularly checked by the facility, figure below shows an 

example of the mycoplasma negative results of cell lines used in this study.  
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PCR gel image of B16-F10 and Caco-2 mycoplasma negative result.  1st lane (left): 100 base pair 

(bp) ladder, 2nd lane: B16-F10 cells, 3rd lane: Caco-2, 4th lane: only medium, 5th lane: negative 

control, 6th lane: positive control.  The upper band of 500 bp is an internal positive control showing 

that PCR reaction has worked; the lower band (second from the bottom) of 250 bp is a 

mycoplasma positive band. 
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             Appendix 3: Calibration curve of B16-F10, Caco-2 and 3T3 cells 
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Appendix 4: Cryopreservation and thawing of cells 

Cryopreservation of cells 

A sterile freezing medium containing 95% FBS and 5% filter-sterilised DMSO as 

cryopreservant was prepared.  For cryopreservation, cells at the last step during 

culturing procedure were resuspended in the freezing medium instead of a regular 

medium. The cell suspension was then transferred into 1.8 mL cryopreservation vials 

and placed in a -80°C freezer to allow controlled cooling of the vials down to -80°C.  

Cells were stored at -80°C if needed to be revived within next 1-4 months.  For long 

term preservation, after -80°C overnight storage, the vials were then transferred into a 

liquid nitrogen tank. 

 

Thawing of cells 

The cryovials were removed from the -80°C freezer or liquid nitrogen tank and placed 

at the room temperature (inside biosafety hood) to thaw the cell suspension. The 

melted cell suspension was immediately diluted into pre-warmed cell medium in a 15-

mL falcon tube and was centrifuged at 3270 g for 5 minutes to get rid of the toxic 

DMSO.  The cell pellet was then resuspended in pre-warmed cell medium (3.5 mL) 

and transferred into a T25 flask.  Following addition of 5-6 mL of culture medium, the 

flask was incubated at 37°C temperature with 5% CO2 in the humidified atmosphere 

in a cell culture incubator.  Culture medium was replaced twice a week. 
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Appendix 5: UV CHAMBER BS02 Radiation officer approval 

Hi Behin 

  

Thanks for the information. We don’t need to register this equipment. 

  

We do need to confirm that there is no possibility of exposure to UV. I understand there is a 

safety interlock feature that automatically switches off the UV lights if the door is opened. 

Can you confirm this is operational. I’m happy to come over and have a look if you are not 

sure. 

  

We will have to write up some working rules if there is the possibility of UV exposure – I can 

help with this if required. Otherwise I’ll just advise you to use the device in accordance with 

the manufacturer’s instructions and to refrain from using the instrument if there are any 

suspected or known faults. 

  

Kind regards 

Matt 

  

Dr Matt Carroll 
Radiation Safety Advisor | Office of Research and Development 

 
Curtin University 

Tel | +61 8 9266 1708  

Mobile | 0424 537 431   

 

Email | matthew.carroll@curtin.edu.au  

Web | http://curtin.edu.au 

 

Curtin University is a trademark of Curtin University of Technology.  

CRICOS Provider Code 00301J (WA), 02637B (NSW) 
 

 

 

 

 

 

 

 

 

mailto:matthew.carroll@curtin.edu.au
http://curtin.edu.au/
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Appendix 6: MTT solution preparation and storage 

According to the manufacturer website- “Reconstituted MTT solution is stable for at 

least 6 months when stored frozen (-20°C). Storage of reconstituted MTT solution at 

2-8°C for more than 2 weeks may cause decomposition and yield erroneous results”.  

So, the following procedure was carried out in a biosafety cabinet (where applicable) 

always protecting the reagent from light: 

100 mg of MTT was weighed out in a 50-ml glass beaker and dissolved in 100 ml PBS 

(pH 7.4) on a magnetic stirrer to obtain a stock concentration of 1 mg/mL. 

The MTT solution was filter-sterilized using 0.2 µm syringe tip filter directly into 4 

mL sterile containers and wrapped with aluminium foil for light protection. 

The stock solution was stored, at 4°C for frequent usage within 7 days or at -20°C for 

long term storage (up to 3 months), in a light protected container. 

 

Appendix 7: 10X binding buffer preparation for apoptosis assay 

1.4 M sodium chloride, 25 mM calcium chloride dihydrate and 0.1 M HEPES was 

weighed and made up to 100 mL using deionised water and stored in 4°C for further 

use. 

For the apoptosis assay 1X binding buffer was prepared and used by dilution with 

deionised water as per requirement. 
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Appendix 8: Animal ethics approval 
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Appendix 9: Animal health monitoring score card 

AEC APPROVAL #:   ________ 

Criteria for euthanasia:  Assessment score of 3 for any of the following clinical observations: Movement/Gait, 

Breathing, Alertness, Body weight loss is equal to or greater than 10% .  

Immediate veterinary treatment required:  A score of 2-3 for clinical observations listed above.  
References:   

• https://research.unsw.edu.au/unsw-acec-examples-animal-monitoring-sheets 

• http://www.dpi.vic.gov.au/agriculture/about-agriculture/legislation-regulation/animal-welfare-legislation/codes-of-practice-animal-

welfare/care-of-laboratory-mice-rats-guinea-pigs-rabbits 

• Morton D.B.  2000. A systematic approach for establishing humane endpoints.  ILAR Journal 41(2):  80-86. 

• Morton D.B., and P.H.M. Griffiths. 1985. Guidelines on the recognition of pain, distress, and discomfort in experimental animals and a 

hypothesis for assessment. Veterinary Record 116:431-36. 

 

 

Investigator: Phone:  

Email: 

Cage#/Box#/Animal ID Species/Strain/Sex/Age 

 

Procedure: Pre-procedure Date performed: 

Clinical Observation   Day

x 

Day

x 

Day

x 

Day

x 

Day

x 

Day

x 

Dayx Day

x 

Date         

UNDISTURBED 

Activity (Normal=0,; isolated=1;  

huddled/inactive=2; moribund/fitting/=3) 

        

Posture (Normal = 0; hunched = 2; 

trembling=3) 

        

Movement/Gait (Normal=0; slight 

incoordination=1; tiptoe walking or reluctance 

to move=2; staggering/limb 

dragging/paralysis=3)  

        

Coat condition (Normal/groomed=0; 

rough=1; ruffled/unkempt=2; bleeding or 

infected wounds or self mutilation=3) 

        

Eating/drinking (normal=0; decreased intake 

during the 1st 24 hrs day=1; decreased intake  

more than 1 day=2; decreased intake over 

48hrs=3) 

        

Breathing (normal=0; rapid,shallow=1; 

rapid,abdominal breathing=2; laboured, 

irregular,skin blue=3) 

        

ON HANDLING 

Alertness (normal=0; dull or depressed=1; 

little response to handling=2; unconscious=3) 

        

Body weight (gm or kg / Score)  

(normal weight & growth rate=0; reduced 

growth weight=1; chronic weight loss>5% 

=2;weight loss = or >10%=3) 

        

Dehydration (none=0; skin less elastic=1; 

skin tenting=2; skin tenting & sunken eyes=3) 

        

Eyes, Nose (normal=0; wetness or dull 

eyes=1; discharge/squinty eyes=2; coagulated 

nasal discharge/matted eyes=3) 

        

Faeces (normal=0; moist but formed=1;loose, 

soiled peri-anal area or mucoid=2; watery or 

no faeces for 48hrs  or blood=3) 

        

Urine (normal = 0; Increased/decreased = 3)         

Treatment/support 

(e.g. fluids, antibiotics, mushy food, hydrating 

gels,etc.) 

        

Monitored by:         

Other  Comments         

http://www.dpi.vic.gov.au/agriculture/about-agriculture/legislation-regulation/animal-welfare-legislation/codes-of-practice-animal-welfare/care-of-laboratory-mice-rats-guinea-pigs-rabbits
http://www.dpi.vic.gov.au/agriculture/about-agriculture/legislation-regulation/animal-welfare-legislation/codes-of-practice-animal-welfare/care-of-laboratory-mice-rats-guinea-pigs-rabbits
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Appendix 10: Radiation safety approval for UV LED SMART 

Hi Behin 
  
There are no registration or licencing requirements with this instrument. At 365 nm the 
recommended occupational exposure limit is 27 J/cm2. As you will be operating at 10 J/cm2 
there are no other special safety requirements. 
  
For equipment such as this our advice is that if it is used in accordance with the 
manufacturer’s instructions then it  is sufficient to ensure users have read the safe working 
procedures and risk assessments for the apparatus and undergo training on its use. 
  
Kind regards 
Matt 
  
Dr Matt Carroll 
Radiation Safety Advisor | Office of Research and Development 

 
Curtin University 
Tel | +61 8 9266 1708 
 
Email | matthew.carroll@curtin.edu.au  

Web | http://curtin.edu.au 

 
Curtin University is a trademark of Curtin University of Technology.  
CRICOS Provider Code 00301J (WA) 

 

 

mailto:matthew.carroll@curtin.edu.au
http://curtin.edu.au/
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Appendix 11: BS02 UV CHAMBER-SENSOR, UV-MAT and UV LED SMART 

company manuals
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BS02 CHAMBER-UV MAT 
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UV LED SMART  
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 Calibration certificate from UV GROBEL 
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Appendix 12: 

Dose response curves of hybrid NPs at 24 h dark and 24 h UV-A treated in B16-

F10 cells 
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Appendix 13 

Dose response curves of hybrid NPs at 24 h dark and 24 h UV-A treated in 

Caco-2 cells 
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Appendix 14: ROS generation in B16-F10 cells by hybrid NPs alone and in combination with UV-A irradiation 

aDark represents the ROS generated in B16-F10 cells upon treatment with hybrid NPs.  
bUV-A irradiated represents the ROS generated in B16-F10 cells upon treatment with hybrid NPs and UV-A irradiation at the dose of (10 J/cm2).  

Control represents B16-F10 cells in culture growth medium without NPs treatment. 

UV-A irradiated groups contain only UV-A exposed B16-F10 cells as the control. 

Data are represented as mean ±SD (n=4). The ROS yield from only NPs in DMEM medium (no cells) and ROS yield from only NPs in DMEM medium exposed to 

UV-A radiation (10 J/cm2) (no cells) have been deducted from ROS generated by samples in dark (in cells), and in UV-A irradiated (in cells) respectively.   

 

 

 

 

Nanoparticle  Darka UV-A irradiatedb 

 Control 

(%) 

0 h (%) 2 h (%) 6 h (%) 24 h (%) 0 h (%) 2 h (%) 6 h (%) 24 h (%) 

FZ 12.5 µg/mL 

FZ 25 µg/mL 

FZ 50 µg/mL 

100 

 

101.94±8.37 

107.34±9.25 

108.51±5.87 

104.05±4.19 

109.41±3.52 

111.40±5.36 

104.12±5.30 

111.82±11.10 

135.86±7.05 

5.73±1.25 

10.75±1.46 

11.01±0.48 

107.15±3.87 

118.81±1.73 

136.55±2.16 

113.34±1.33 

121.82±4.54 

146.66±3.21 

120.18±5.34 

124.36±2.80 

152.33±3.40 

89.59±1.51 

92.18±4.38 

107.56±1.26 

FZSi 12.5 µg/mL 

FZSi 25 µg/mL 

FZSi 50 µg/mL 

 102.80±2.33 

104.89±3.14 

110.60±3.51 

107.24±2.09 

114.99±2.62 

118.97±10.64 

104.67±4.46 

113.87±6.67 

130.61±11.01 

9.31±1.84 

9.75±3.10 

10.17±1.88 

109.13±9.38 

112.59±2.49 

128.78±4.47 

110.76±1.79 

113.37±6.58 

134.74±11.02 

112.36±3.01 

129.83±1.64 

156.08±2.61 

74.09±4.08 

79.92±3.54 

99.95±7.54 

FZSiFA25 12.5 µg/mL 

FZSiFA25 25 µg/mL 

FZSiFA25 50 µg/mL 

 103.03±7.04 

110.42±9.37 

113.72±2.61 

109.27±4.58 

111.22±7.12 

119.92±10.42 

104.09±4.74 

115.74±5.00 

121.18±7.87 

4.95±1.48 

10.96±2.59 

11.09±0.74 

127.62±2.90 

136.13±2.44 

143.02±5.83 

138.50±2.53 

155.92±3.52 

218.40±5.58 

143.76±3.64 

190.51±1.45 

237.29±7.40 

104.70±5.93 

109.89±6.57 

124.16±2.68 

FZSiFA50 12.5 µg/mL 

FZSiFA50 25 µg/mL 

FZSiFA50 50 µg/mL 

 100.81±6.07 

100.95±3.57 

108.01±2.46 

101.99±5.33 

107.46±4.54 

118.07±6.38 

103.74±5.24 

111.46±4.50 

123.01±5.33 

6.22±0.95 

8.25±1.32 

10.39±0.37 

132.51±6.51 

143.83±2.64 

149.53±9.39 

159.41±7.85 

178.27±9.08 

211.21±13.54 

188.73±2.51 

196.30±4.71 

245.65±19.96 

87.00±1.97 

102.99±4.08 

113.19±7.99 

Only UV      101.44±1.33 108.21±2.85 109.11±3.44 99.31±2.87 
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Appendix 15: 

ROS generation in DMEM medium treated with NPs (no cells) 

 

Dark represents the ROS generated in DMEM medium with hybrid NPs alone. UV-A irradiated represents the ROS generated in DMEM medium with hybrid NPs 

+ UV-A irradiation (10 J/cm2). Data are represented as mean ±SD (n=4). B16-F10 cells not treated with NPs served as the control for the dark and B16-F10 cells 

treated with UV-A radiation served as the control for the UV-A irradiated group.

Nanoparticle  Dark UV-A irradiated 

 Control 0 h (%) 2 h (%) 6 h (%) 24 h (%) 0 h (%) 2 h (%) 6 h (%) 24 h (%) 

FZ 12.5 µg/mL 

FZ 25 µg/mL 

FZ 50 µg/mL 

100 29.66±4.37 

33.38±0.56 

22.92±1.31 

27.04±4.47 

30.82±3.34 

16.85±1.87 

22.20±7.52 

27.37±3.92 

18.76±8.17 

19.27±0.95 

19.45±2.33 

14.32±1.32 

41.27±0.65 

54.40±3.40 

46.91±1.37 

48.77±2.69 

69.95±1.69 

42.54±2.55 

45.83±2.55 

62.62±1.66 

48.35±2.10 

15.89±1.75 

9.05±2.26 

5.52±2.71 

FZSi 12.5 µg/mL 

FZSi 25 µg/mL 

FZSi 50 µg/mL 

 27.54±1.29 

27.56±0.59 

25.72±1.81 

25.85±9.08 

28.02±1.77 

21.13±3.07 

26.52±6.81 

27.66±5.27 

18.77±4.47 

21.96±1.25 

23.58±1.36 

15.98±0.89 

58.82±2.45 

55.42±1.67 

48.47±1.64 

42.58±2.95 

52.46±3.12 

47.01±2.20 

46.10±2.24 

27.13±0.91 

52.82±1.61 

17.12±1.81 

7.31±0.88 

6.39±1.30 

FZSiFA25 12.5 µg/mL 

FZSiFA25 25 µg/mL 

FZSiFA25 50 µg/mL 

 24.76±2.16 

18.43±5.38 

6.76±8.88 

23.45±3.62 

19.73±3.25 

11.56±1.07 

21.66±14.30 

18.49±3.51 

11.82±5.65 

19.31±0.81 

15.99±1.02 

11.87±1.05 

53.89±0.11 

52.51±2.58 

52.16±1.59 

56.40±0.14 

53.10±2.29 

50.71±2.46 

37.20±2.55 

61.98±2.35 

53.83±1.83 

11.52±1.92 

7.54±1.97 

6.23±2.13 

FZSiFA50 12.5 µg/mL 

FZSiFA50 25 µg/mL 

FZSiFA50 50 µg/mL 

 22.11±4.31 

18.35±1.35 

17.25±2.74 

21.09±9.09 

17.95±6.11 

17.41±1.68 

21.87±2.21 

16.97±4.31 

16.08±2.83 

17.71±1.61 

14.69±1.39 

13.93±0.61 

47.91±0.36 

57.93±1.41 

54.51±0.40 

62.20±1.87 

50.32±1.28 

52.98±0.64 

60.07±2.29 

58.30±0.36 

39.93±1.60 

9.72±0.59 

10.56±0.52 

12.65±1.63 
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Appendix 16: ROS generation in Caco-2 cells by hybrid nanoparticles and UV-A irradiation 

 

aDark represents the ROS generated in Caco-2 cells upon treatment with hybrid NPs.  
bUV-A irradiated represents the ROS generated in Caco-2 cells upon treatment with hybrid NPs and UV-A irradiation at the dose of (10 J/cm2).  

Control represents Caco-2 cells in culture growth medium without NPs treatment. 

UV-A irradiated groups contain only UV-A exposed Caco-2 cells as the control. 

Data are represented as mean ±SD (n=4). The ROS yield from only NPs in DMEM medium (no cells) and ROS yield from only NPs in DMEM medium exposed to 

UV-A radiation (10 J/cm2) (no cells) have been deducted from ROS generated by samples in dark (in cells), and in UV-A irradiated (in cells) respectively.   

 

 

 

 

 

Nanoparticle  Darka UV-A irradiatedb 

 Control 0 h (%) 2 h (%) 6 h (%) 24 h (%) 0 h (%) 2 h (%) 6 h (%) 24 h (%) 

FZ 12.5 µg/mL 

FZ 25 µg/mL 

FZ 50 µg/mL 

100 102.56±7.69 

107.69±7.69 

123.07±13.86 

102.83±10.20 

120.75±5.66 

137.73±4.32 

106.38±4.01 

129.78±12.04 

143.61±6.95 

31.75±13.15 

78.83±7.12 

84.30±13.27 

115.70±11.03 

115.92±7.42 

124.78±4.20 

103.74±7.15 

120.97±2.48 

154.15±3.67 

115.26±4.62 

122.79±4.71 

147.09±3.11 

11.55±1.65 

12.83±1.41 

14.32±5.30 

FZSi 12.5 µg/mL 

FZSi  25 µg/mL 

FZSi 50 µg/mL 

 106.41±15.54 

116.66±18.17 

132.05±17.76 

117.92±7.12 

122.64±9.93 

132.07±4.32 

120.74±6.95 

130.31±8.18 

135.63±2.43 

36.49±9.93 

51.45±4.77 

83.21±3.28 

114.86±6.62 

131.08±2.71 

147.33±7.99 

113.46±3.81 

130.44±4.06 

147.65±10.93 

115.04±3.86 

118.65±6.90 

127.01±10.06 

11.85±0.86 

31.35±2.00 

30.46±1.04 

FZSiFA25 12.5 µg/mL 

FZSiFA25 25 µg/mL 

FZSiFA25 50 µg/mL 

 102.56±5.87 

106.41±3.84 

111.53±14.56 

114.15±9.09 

116.03±4.32 

134.90±9.39 

115.95±4.87 

117.55±10.46 

137.76±12.08 

33.21±11.70 

43.79±9.93 

85.03±4.42 

104.18±7.99 

106.84±8.72 

112.58±11.99 

108.79±3.18 

115.04±5.27 

112.33±6.89 

110.63±5.90 

120.53±4.35 

125.26±6.98 

16.56±6.23 

41.22±1.10 

38.98±1.67 

FZSiFA50 12.5 µg/mL 

FZSiFA50 25 µg/mL 

FZSiFA50 50 µg/mL 

 107.69±8.88 

117.94±14.56 

120.51±8.00 

108.49±13.96 

126.41±14.15 

133.96±10.71 

112.76±8.18 

131.38±4.60 

143.08±6.38 

37.59±9.81 

43.79±7.29 

78.10±6.41 

123.81±8.16 

132.39±6.01 

129.26±11.40 

125.16±3.49 

141.01±3.77 

142.90±4.08 

121.99±3.67 

147.73±3.37 

149.75±2.90 

67.08±2.02 

31.70±7.32 

24.20±4.25 
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Appendix 17: 

ROS generation in DMEM medium treated with NPs (no cells) 

Dark represents the ROS generated on treatment with hybrid NPs alone. UV-A irradiated represents the ROS generated on treatment with hybrid NPs + UV-A 

irradiation (10 J/cm2). Data are represented as mean ±SD (n=4).  Caco-2 cells not treated with NPs served as the control for the dark and Caco-2 cells treated with 

UV-A radiation served as the control for the UV-A irradiated group. 

Nanoparticle  Dark UV-A irradiated 

 Control 0 h (%) 2 h (%) 6 h (%) 24 h (%) 0 h (%) 2 h (%) 6 h (%) 24 h (%) 

FZ 12.5 µg/mL 

FZ 25 µg/mL 

FZ 50 µg/mL 

100 31.86±0.64 

26.14±2.83 

22.53±2.33 

24.89±1.66 

17.56±3.77 

26.30±0.65 

53.03±19.58 

20.71±6.74 

16.88±14.55 

21.83±3.19 

13.05±2.03 

9.71±1.05 

43.53±4.79 

41.94±3.73 

41.16±6.63 

46.52±2.03 

44.44±6.95 

43.11±5.22 

31.11±12.47 

45.40±1.86 

45.00±0.85 

27.36±6.70 

24.66±5.93 

22.69±9.13 

FZSi 12.5 µg/mL 

FZSi 25 µg/mL 

FZSi 50 µg/mL 

 23.20±1.96 

17.33±1.87 

31.75±2.14 

34.53±2.22 

23.44±7.25 

25.26±2.10 

33.94±10.06 

24.99±18.01 

31.72±13.93 

19.62±3.19 

8.20±1.01 

25.41±1.93 

36.31±1.87 

48.00±3.52 

40.89±2.23 

44.20±10.51 

66.40±3.22 

42.43±8.27 

27.01±2.80 

31.11±4.18 

44.74±4.83 

30.93±12.01 

33.39±3.21 

31.18±9.22 

FZSiFA25 12.5 µg/mL 

FZSiFA25 25 µg/mL 

FZSiFA25 50 µg/mL 

 30.00±1.67 

35.89±1.75 

21.89±3.89 

17.72±3.88 

18.51±0.43 

8.29±2.56 

28.77±11.02 

28.45±12.45 

13.38±8.69 

13.73±1.84 

11.05±2.60 

5.66±0.69 

44.52±4.96 

45.02±3.36 

49.95±12.71 

40.96±9.23 

49.26±3.72 

43.35±1.15 

38.17±3.71 

43.26±1.50 

46.71±0.56 

28.35±5.64 

34.99±6.30 

24.90±12.78 

FZSiFA50 12.5 µg/mL 

FZSiFA50 25 µg/mL 

FZSiFA50 50 µg/mL 

 20.54±3.15 

21.10±1.35 

23.29±1.05 

29.52±1.92 

11.71±15.97 

11.89±1.76 

35.82±28.64 

28.68±11.54 

31.17±32.31 

11.63±0.22 

16.23±4.51 

12.09±1.65 

45.57±7.90 

44.22±8.22 

41.94±16.36 

48.45±5.04 

46.02±0.88 

47.45±4.49 

40.14±2.14 

47.20±3.16 

42.62±0.75 

26.50±1.85 

38.06±9.72 

32.04±15.90 
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Appendix 18: Morphology of B16-F10 cells after hybrid NPs treatment 

 

 

 

 

 

 

 

 

 

B16-F10 cells after 6 h FZSi NPs treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 
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B16-F10 cells after 6 h FZSiFA50 NPs treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 

B16-F10 cells after 24 h FZSi NPs treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 

B16-F10 cells after 24 h FZSiFA25 NPs treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 
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B16-F10 cells after 24 h FZSiFA50 NPs treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 

A B 

C D 

B16-F10 cells after 24 h FZSi NPs & UV-A treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 

B16-F10 cells after 24 h FZSiFA25 NPs & UV-A treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 
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B16-F10 cells after 24 h FZSiFA50 NPs & UV-A treatment A) 12.5 B) 25 C) 50 D)100 µg/mL 
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C D 
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Appendix 19: Morphology of Caco-2 cells after hybrid NPs treatment 
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Appendix 20: Morphology of 3T3 cells after hybrid NPs treatment
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Appendix 21: Calibration curve of (A) FZSiFA50 and (B) FZSi-FITC NPs in 

RIPA buffer 
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Appendix 22: Morphology of B16-F10 cells after NPs treatment (caspase) 
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Appendix 23: Tumour growth pattern of individual treatment groups up to day 

16 post treatment 
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All treatments were administered via intra tumour and hybrid NPs dose were 2 mg/kg in 10 µL. 

UV-A irradiation was given on sixth (D0) and ninth day (D3) post nanoparticles treatment at a 

dose of 10 J/cm2.  A: Saline, B: FZSiNPsD0, C: FZSiFA50NPsD0, D: Saline+UVD0, E: 

FZSiNPs+UVD0, F: FZSiFA50NPs+UVD0, G:  SalineD0+UVD3, H: FZSiNPsD0+UVD3 and I: 

FZSiFA50NPsD0+UVD3. 
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Appendix 24: Images of melanoma tumour in different treatment groups
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Appendix 25 

Tumour growth delay and average tumour weight at the end of the study 

 

 

Tumour growth delay. Tumour maximum size was set as 200 mm3 and the time taken by each 

treated group to reach the maximum size is calculated as tumour growth delay. A) shows the fixed 

tumour size (200 mm3) reached by each treated group B) illustrates the number of days taken by 

each treated group to arrive at the maximum size. All data are presented as mean ± SEM. ** 

indicate means are significantly different (P < 0.01), *** indicate means are significantly different 

(P< 0.001) compared to the control. 

 

Different treatment groups and their average tumour weight  

Groups Average tumour weight (g) 

Control (Saline) 1.73± 0.35 

Saline+UVD0 1.04± 0.176*** 

FZSiNPs D0 0.83± 0.136*** 

FZSiFA50NPs D0 0.70± 0.070*** 

FZSiNPs + UVD0 0.70± 0.209*** 

FZSiFA50NPs + UVD0 0.67± 0.334*** 

SalineD0+UVD3 1.05± 0.288*** 

FZSiNPsD0+ UVD3  0.70± 0.130*** 

FZSiFA50NPsD0+ UVD3 0.72± 0.093*** 
Tumour weight was noted at the end of culling each animal and the average was calculated for 

each group. *** indicates p<0.001 compared to control group. 
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In the control group, the animals had tumour volume exceeded 100 mm3 by day 18 

and were sacrificed, whereas in the FZSiFA50NPs treated group 40% animals survived 

up to day 22, and in FZSi NPs group 20% animals survived up to day 20 (Figure 

3.38A). In NPs+UVD0 groups, 20% animals survived up to day 22, whereas 40% 

animals survived during the same period in saline+UVD0 group, which is significant 

(P<0.001) (Figure 3.38B).  The animals which received NPs were treated with UV on 

day 3, 66% animals survived up to day 24 in the FZSiFA50 group, and 66% survived 

up to day 26 in FZSi group (Figure 3.38C), which was a significant extension of 

survival time (P< 0.001). The better survival rate of mice treated with hybrid NPs and 

UVD3 confirmed that the tumour burden was significantly reduced compared to 

control group. 
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The survival rate of animals following tumour cell inoculation. A) Control Vs FZSiNPsD0 and 

FZSiFA50NPsD0 groups B) Control Vs saline+UVD0, FZSiNPs+UVD0 and 

FZSiFA50NPs+UVD0 groups C) Control Vs salineD0+UVD3, FZSiNPSD0+UVD3 and 

FZSiFA50NPsD0+UVD3 groups. *** indicate means are significantly different (P< 0.001) 

compared to the control.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

12 14 16 18 20 22 24 26

P
ER

C
EN

T 
SU

R
V

IV
A

L 
(%

)

DAYS POST TUMOUR CELL INOCULATION

Control

SalineD0+
UVD3

FZSiNPsD0+
UVD3

FZSiFA50NPs
D0+ UVD3

*** 

C 



 
 

Appendices 

207 
 
 

Appendix 26: Copyright Clearance 
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