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Abstract The residential building sector regularly satisfies a diverse range of housing needs 6 

whilst addressing respective capital-cost considerations. Designers and builders must also be 7 

aware of the environmental implications of their design specifications; the work here adds to a 8 

body of knowledge concerned with carbon footprint and embodied energy demand, specifically 9 

through an examination of alternative roof covering materials. A life-cycle assessment (LCA) 10 

has been carried out, within a West Australian context, to compare impacts for the roof-11 

specification options of: clay-tile; concrete-tile; and, sheet-metal. In locations where recycling 12 

facilities are unavailable and thus disregarded, it is found that clay tiles have the lowest carbon 13 

footprint of 4.4 t of CO2 equivalent (CO2 e-) and embodied energy demand of 52.7 Mega Joule 14 

(MJ) per 100 m2, while sheet-metal roofing has the highest carbon-footprint (9.85 t of CO2 e-15 

), with concrete roof tiles having the highest embodied-energy demand (83 MJ). Findings 16 

confirm that a sheet-metal roof can obtain significant carbon and embodied energy saving 17 

benefits (i.e. 71-73%) compared to clay tile or concrete roof covers through ongoing 18 

encouragement of recycling strategies and increased local recycling facilities able to embrace 19 

residual cradle-to-cradle material re-use. 20 
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Introduction 24 

 25 

The construction industry globally consumes 40% of natural materials, 40% of the total 26 

primary energy, 15% of the world’s fresh water resources, generates  25%  of  all  wastes  and  27 

emits  40-50%  of  GHG  (Ding, 2014); the design team is thus charged to adopt an 28 

environmentally responsible approach to their design solutions and construction materials’ 29 

specification choices.   30 

The building sector is responsible for 20% of Australia’s total energy demand and 23% 31 

greenhouse gas (GHG) emissions (Lawania and Biswas, 2016). It is projected that 460,000 new 32 

houses will be constructed in Western Australia (WA) by 2030, which will necessarily increase 33 

demand for construction materials and impact energy usage (NHSC, 2011). Without due 34 

consideration of environmentally-conscious specification choices, the construction industry in 35 

Western Australia will experience significant GHG emissions increases; there will be   36 

depletion of finite resources, and landfill over flow.  This will result in a challenging situation 37 

requiring ongoing federal government and local authorities’ ‘green’ tendering guidelines and 38 

not least, requires respective design-teams and builders to make informed decisions when 39 

specifying materials. 40 

Life-cycle assessment (LCA) is a decision-making tool that can assist stakeholders in 41 

identifying opportunities to make sustainability gains for built assets by selecting the most 42 

environmentally-friendly option (Seidel, 2016). It quantifies and accesses the inputs and 43 

outputs affecting environmental performance associated with a product, process or activity 44 

throughout its life-cycle (Whyte, 2012) . Whilst the LCA technique is somewhat commonly 45 

available, uptake by industry remains still limited. Case-study examples such as those 46 

presented here can be argued to increase the profile of LCA application and, by extension, 47 

encourage a more sustainable design process (Crawford et al., 2016). 48 



Roofing accounts for 6% of a low-rise building’s volume and, typically, 7% of a 49 

residential building’s GHG emissions (from mining to material production) (Lawania and 50 

Biswas, 2018). Saiz conducted an LCA of a so-called ‘green’ roof in Madrid, finding that its 51 

low solar absorbance resulted in a reduced level of energy demand for the building (Saiz et al. 52 

2015). Chenani (2014) similarly determined the environmental performance of two lightweight 53 

‘green’ roof systems and found that an environmental impact reduction, through layers’ 54 

configurations review, was possible.  Another recent LCA study found that the use of vaulted 55 

roofs can reduce embodied energy by over 40% relative to flat slabs (Huberman et al., 2015). 56 

 However, to the best of our knowledge, no study to date studied how life-cycle 57 

environmental performance(s) of roofing varies with materials choices. For WA’s housing 58 

sector, roofs of three different types are common: sheet-metal, concrete-tile and clay-tiles; 59 

these alternatives are compared in this current study to determine the environmental 60 

implications of different specification options for West Australian climatic conditions. 61 

The next section outlines the methodology to assess the alternative roofing specifications 62 

in terms of carbon footprint and embodied energy demand comparisons. Carbon footprints of 63 

roofing options are compared, both with and without recycling factored-in since many areas in 64 

WA have no available local recycling facilities. 65 

 66 

Methodology 67 

 68 

The LCA conducted here follows the guidelines outlined in ISO14040-44 (ISO 2006) which 69 

consists of four steps, namely: goal and scope; inventory analysis; impact assessment; and, 70 

interpretation.  71 



Goal and scope 72 

 73 

The goal of this study is to assess the environmental impact involved with the use of roof-74 

covering materials in WA residential houses. Three roof-covering materials are considered: 75 

clay tile; concrete tile; and, sheet-metal.    76 

The system boundary of the LCA study covers the entire life-cycle of the product. This 77 

is broken down into several stages including raw material acquisition, manufacturing and 78 

processing of construction materials, transportation of these materials to the construction site, 79 

construction phase, usage stage, and ultimately disposal/recycling residual considerations.   80 

The functional unit of this study is 100m2 of roof-covering materials and the timber 81 

structure framework supporting it; the environmental impacts of respective (typically) timber 82 

framework(s) will be analysed with the roof-covering material options. The reason for choosing 83 

this functional unit was that approximately 50 % of average houses in Perth have this size of 84 

roof area (Department of Water and Environmental Regulation, 2017). Other dwelling 85 

superstructure elements are not analysed.   This is a process-based LCA, where energy and 86 

chemical inputs of all stages during the life cycle of roof covering materials, have been utilised 87 

in assessing global warming impacts and embodied energy demand (Suh et al., 2014; Majeau-88 

Bettez et al., 2011). 89 

Quantities of the structural timber framework supporting the roof-covering materials are 90 

calculated in accordance with typical sections made available by local governments in Western 91 

Australia. Each item was classified according to its base material (treated pine, concrete, zinc, 92 

and aluminium). Natural gas and electrical energy are included where appropriate in 93 

consideration of the manufacture processing and installation of roof-coverings (Life Cycle 94 

Strategy, 2015; BPIC, 2014).  95 



Construction locations are urban; local suppliers were contacted to determine respective 96 

manufacturers/ fabricators factory locations. Some industry representatives who provided 97 

materials and transportation related information will not be released in the paper due to requests 98 

for confidentiality. Where appropriate (raw) materials are deemed to have been shipped to 99 

(Fremantle) port and then road-transported to distributors/site. Timber/structural frameworks 100 

and roof-covering material installation is deemed by tradesman in-situ; (steel/ nail) fixings to 101 

install the roof-covering material have been included.  102 

 It is beyond the scope of this LCA to consider 100% data directly and indirectly 103 

associated with the production and use of these roofing materials. Therefore the GHG 104 

emissions and embodied energy demand values that have been calculated using available data 105 

are relative values and these results were used for comparison purposes (Sue et al., 2014; 106 

Majeau-Bettez et al., 2011).  107 

 108 

Life-cycle inventory 109 

 110 

LCIs were conducted for clay tiles, concrete tiles and sheet-metal on residential buildings to 111 

calculate energy and material consumption in all stages of roof life cycle.  112 

Mining to material production 113 

Composition and percentages of raw materials used in clay tiles, sheet-metal and concrete tiles 114 

respectively, were assessed (Table 1). For concrete and clay tiles roof, raw material quantities 115 

were calculated; the number of tiles per metre square multiplied by the mass per tile gives the 116 

total mass of tiles; the total mass then multiplied by relevant percentages finds raw materials 117 

required in 100m2 (Whyte, 2015). The timber frame to support the clay tiles, concrete tiles and 118 

sheet-metal were sourced from typical sections and drawings from the City of Melville, 119 



Western Australia, alongside AS 1684.4 (Whyte, 2015). A sample calculation has been 120 

provided in Appendix A. 121 

Table 2 shows the amount of natural gas and electricity that was required to produce 100 122 

m2 of clay tile, concrete tile and sheet-metal from raw materials (BPIC, 2014; Altas Steel, 123 

2014).  124 

Transportation 125 

Construction sites for roof erections is Western Australian urban/metropolitan; shipping freight 126 

transportation is assumed from the (interstate) manufacturer/fabricator to WA (Fremantle) port. 127 

In order to estimate the tonnes-km (i.e. tkm) travelled by land, and sea Google Earth was used 128 

for calculating the distances in kilometres between origins and destinations. Local WA industry 129 

representatives (Boral and BlueScope Steel and others) noted that, typically clay tiles and 130 

sheet-metal are manufactured in New South Wales, with concrete tiles made in Victoria. 131 

Shipping distance between NSW and WA (Fremantle) has been calculated as 2,195 nautical 132 

miles (4065.14km), and between Victoria Melbourne and Fremantle – 1,681 nautical miles 133 

(3,113.2km). Upon arrival at (Fremantle) port, articulated trucked road transportation of 134 

materials from the port to distributor/site is calculated as 22.6km. 135 

Construction 136 

The construction stage involves the construction of the timber framework supporting the roof-137 

covering materials, and the installing of the roof-covering materials, typically: marking-out 138 

(tape/ pencil/ chalk-line) the timber; cutting the timber (drop saws/ power saws/ hand saws); 139 

and, nailing members together (hammers/nail guns, with two galvanised steel nails per 140 

tile/length or alternatively, nails by mass of mild steel sheet).  141 



The energy consumed in in-situ tradesman installation and tile/sheet connection is deemed 142 

nominal; effectively: positioning and installing the tile/sheet; and nailing the tile/sheet onto the 143 

battens is a manual process with nominal electrical equipment used.  144 

Use 145 

The usage stage quantifies the effects of varying solar reflectance of roofing materials (clay 146 

tile, concrete tile, sheet-metal). This research shows that an effective R factor (thermal 147 

resistance of roofing material) affects heat loss and heat gain of each roofing material. Physical 148 

data and assumptions are inputs in equation 1 (below) to calculate heat lost and heat gain.   149 

𝑞 = 𝑈[(𝑇2 − 𝑇1) +  
𝜕𝐺

𝐻
]          (1) 150 

q = rate of heat flow per square metre from roof to the inside  151 

U = the overall heat transfer coefficient between the ambient and inside (W/m2.K) 152 

1/U = the thermal resistance  153 

T2 = Annual average ambient temperature °C 154 

T1 = Required level of temperature that needs to be maintained inside the house °C 155 

H = Outside transfer coefficient between roof and ambient (W/m2.K)  156 

𝜕 = rate of absorption to solar radiation  157 

G = Solar radiation per unit area (W/m2) 158 

Table 3 shows the cooling and heating loads of each roofing material in terms electricity 159 

consumption. Fossil and renewable energy account for 95.5% and 4.5% of the total primary 160 

energy sources for electricity generation (Grant, 2015). Appendix B shows a sample calculation 161 

for how the cooling load has been calculated for clay tiles. Since the thermal modelling 162 

software was unavailable during the time of the study, the heating and cooling load at hourly 163 



levels was not determined (for more accurate analysis) and hence it is considered as a limitation 164 

of this analysis (Robati et al. 2016; Robati et al. 2017). Also it should be noted that the usage 165 

stage has only been considered to capture variation in cooling and heating energy demand due 166 

to use of different roof covering materials over their life cycles. This variation was found very 167 

infinitesimal when comparing with impacts resulting from other life cycle stages. Therefore, 168 

the exclusion of the detailed thermal modelling analysis can be argued as not significantly 169 

affecting the overall outcomes of this LCA study. 170 

The timeframe of use is deemed the life-cycle of such construction materials. According 171 

to multiple sources (Boral, 2014; Blue Scope Steel, 2014), clay tile has an average of lifetime 172 

of 65 years, compared to concrete tile and sheet-metal life-cycles of 50 years and 45 years 173 

respectively. For the purposes of this comparative assessment, the greatest value is adopted, 174 

assuming a total lifetime of 65 years which implies the need for 1.3 and 1.45 times more 175 

concrete roof tiles and sheet tiles than clay tiles during this period, respectively. 176 

End of Life 177 

A non-recycling approach is adopted if no local facilities exist, resultantly in such a scenario 178 

construction materials are disposed directly to landfill.  179 

In the case of demolition of roofs and the transportation of demolition waste to landfill, 180 

two major activities were considered such as the use of tools and equipment used for demolition 181 

of roofs and then its transportation for disposal to landfill site (Lawania and Biswas 2017). 182 

Alternatively, if recycling facilities do exist, values in Table 4 (below) are developed 183 

towards recycling databases for the 3 different roof types. Table 4 presents the construction & 184 

demolition (C&D) materials recovered and disposed in WA for the 2008-09 financial year 185 

(Hyder Consultant, 2009). 186 



For recycling waste clay tiles, this study has determined that the tile will be crushed for 187 

aggregates towards potential replacement with limestone in road construction work. Therefore 188 

energy required to produce 3% of a clay tile has been reduced from the total raw material 189 

acquisition to calculate a net amount of energy.    190 

In the case of concrete tiles, 45% of concrete tiles are typically recovered and recycled. 191 

Potentially all fines/sand waste-arisings from the concrete tile will be recovered and reused. 192 

Metal is potentially 100% recyclable (Biswas 2014), however for this study a practicable 193 

local recycling rate of 78% is used (as Table 4); thus, energy consumed to produce 78% of 194 

metal has been taken away from a raw material acquisition stage to calculate the net energy for 195 

sheeting.  196 

  197 

Impact assessment  198 

 199 

Input and output life-cycle inventory data was entered into Simapro LCA software (Pre-200 

consultant, 2015); application requires relevant materials to be linked to Australian libraries to 201 

ensure representative WA conditions. Where libraries did not exist, new libraries were 202 

developed from similar LCA studies. Table 5 (below) shows that most of the emission 203 

databases were sourced from Australian unit process libraries (Stephan and Stephan 2014) 204 

except for: silica and Iron-nickel-chromium alloy (where Eco-invent was used); and, natural 205 

gas (using Pré-Consultants 2015). Data concerning product residual uptake (cradle-to-cradle) 206 

was input to the software (i.e. chemicals, energy demand and heating and cooling loss) and 207 

linked to relevant libraries, towards the generation of associated impacts. The libraries are 208 

emission factor databases which include all upstream emissions and embodied energy demand 209 

of these inputs. The Intergovernmental Panel on Climate Change -IPCC2007- global warming 210 



potential (GWP)- method was used to calculate the associated environmental impact(s) of the 211 

product(s) (IPCC 2007). The cumulative energy demand method was also used to generate the 212 

embodied energy of the products.   213 

Equation (2) shows the conversion of masses of different greenhouse gases associated 214 

with the production and use of material and energy inputs into global warming potential (GWP) 215 

(Fatimah and Biswas 2016), which is a single carbon dioxide-equivalent metric (CO2 e-) 216 

(Stephan and Stephan 2014). 217 

𝐺𝑊𝑃 (𝐶𝑂2 𝑒 −) = ∑ ∑ 𝐼𝑖𝐸𝐹𝑖𝑗
𝑗=𝑀
𝑗=1

𝑖=𝑁
𝑖=1 x 𝐶𝐹𝑗      (2) 218 

where, I is the amount of an input 219 

i  :1,2,…..N; type of inputs (e.g. cement, concrete, aluminium, electricity, 220 

natural gas) 221 

EFij : Emission factor = Amount of emission of GHG type ‘j’ per kg of input of 222 

type ‘i’   223 

CFj : CF1, CF2, ……. CFM; characterization factors of GHGs (e.g. CF is 1 for CO2, 28 224 

for CH4, 265 for N2O) 225 

Following cumulative energy demand method (Fatimah and Biswas 2016), all inputs in 226 

the life-cycle inventory have been multiplied by the corresponding energy demand values to 227 

find out the total embodied energy demand of a roof cover 228 

𝐸𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐼𝑖
𝑁
𝑖=1  x 𝐸𝐸𝑖         (3) 229 

where, EEi is the embodied energy demand of an input i.  230 

 231 



Results and discussions 232 

 233 

Carbon footprint of roof cover materials 234 

 235 

Respective carbon footprints of roof cover materials have been estimated for both traditional 236 

(residual landfill) and also recycling approaches to determine carbon saving benefits. 237 

Traditional approach  238 

As can been seen in the above Figures 1 a, b and c, the total carbon footprints of one hundred 239 

square metre of sheet-metals, concrete tiles  and clay tiles are 9.85 t CO2e-, 9.33 t CO2e-and 240 

4.39 t CO2e-, respectively. Sheet-metal roofing is the most carbon intensive roofing material, 241 

because it is made of aluminium, which is 16 and 12 times more carbon intensive than concrete 242 

and clay blocks, respectively (NZAS, 2011; Dunlop, 2013; FISIS, 2013). 243 

 Raw material acquisition accounted for a significant portion (96%) of the total carbon 244 

footprint of one hundred metre square of sheet-metal roof, followed by manufacture and 245 

processing (2.6%), transportation (0.77%), construction (0.18%) usage (0.02%) and demolition 246 

and disposal stages (0.19%). Raw material acquisition for sheet-metal is very high due to 247 

aluminium production typically in Victoria State smelters using electricity generated from 248 

brown coal. This stage of the life-cycle is a significant source of carbon dioxide emissions and 249 

consequently the use of virgin sheet-metal is the least environmentally friendly roof material 250 

specification for residential buildings in WA, in locations where no recycling facilities exist.  251 

Whilst less timber structural framework is required to support a lightweight sheet-metal roof, 252 

this does not contribute to the overall reduction of GHG emissions.  The use of carbon intensive 253 

sheet-metal roofs outweighs the benefit associated with use of light, structural roof carcassing 254 

materials. Like other studies (Stephan and Stephan 2014), this study also found that the 255 

demolition and disposal stage accounts for the very tiny portion (≤1%) of the overall impact. 256 



Followed by sheet-metal, concrete tile use ranked second in terms of output of carbon 257 

foot print 9.33 tonne of CO2 e-. Acquiring the required materials alongside manufacturing to 258 

final product is deemed energy-intensive. Whilst raw material acquisition accounted for 51%, 259 

a significant portion of carbon footprint was produced during the manufacturing stage (43% of 260 

the overall carbon footprint). The is due to the use of large amounts of natural gas (1.5 times 261 

more than clay tiles and 4 times more than sheet-metal) to fire the kilns used to burn the 262 

limestone, clay shale and other materials.  263 

Comparing these three options, clay tiles produced the lowest carbon footprint of 4.44 t 264 

of CO2e-.  A large proportion of which is linked to the manufacturing and processing stage(s) 265 

(76%) followed by raw material acquisition (10%), transportation (10%), construction (2%), 266 

the usage  (0.03%) and demolition and disposal stage (1%). Figure 1c has identified that the 267 

combustion of natural gas in the furnace for clay tiles production contributed a large portion of 268 

the overall carbon footprint. In addition, the LCA analysis has also highlighted that 269 

transportation contributed 10% of the overall carbon footprint, which is significantly higher 270 

than the emissions from the transportation of sheet-metal and concrete roofs. This is due to the 271 

heavy mass of clay tiles and long travel distance from the manufacturing factory to the 272 

construction site (tonnes x km travelled).   273 

 274 

Recycling approach 275 

Where local residual processing-facilities exist, a recycling approach for roof material 276 

assessment is considered below, towards full environmental burden analysis of these materials.  277 

Sheet-metal has the potential to be 100% recovered, reused and recycled. This study 278 

however considered a more practicable local WA recycling rate of ~78% (Hyder Consulting, 279 

2009); subsequently this significant amount of carbon footprint offset can be attained. This 280 



LCA confirms that there is much potential for reducing GHG emissions from sheet-metal 281 

roofing (73%) through a recycling approach that reduces emissions from mining and 282 

processing of such energy intensive metals. It is noted that the raw material acquisition stage 283 

of highly recyclable sheet metal materials such as aluminium and zinc is an environmental 284 

‘hotspot’ for this roof type, and so recycling significantly reduces the carbon footprint of a 285 

sheet-metal roof covering.  286 

Concrete and clay tiles after their respective end-of-life, are unlikely to be re-used again 287 

as roof materials specifically and therefore, recycling/crushing for alternative infrastructure 288 

applications can be considered. In the case of concrete tiles, 45% of the waste generated can 289 

be recycled/ recovered as fine aggregate-s (e.g. sand) through concrete-tile crushing, separation 290 

and grading for reuse as either sub-base file or as aggregate-fines in recycled concrete. 291 

Consideration of this recycling strategy offsets emissions from the acquisition of the raw 292 

material stage. Once this recycling strategy has been considered, the overall GHG emissions 293 

from the use of 100 m2 of concrete tiles can be reduced to 8.44 t of CO2e- (i.e. by 10%). 294 

To recycle clay tiles, the waste-arising is crushed and graded into aggregates towards 295 

(localised) percentage replacement for virgin limestone in road construction. The amount of 296 

energy that could be avoided due to crushing clay tiles instead of limestone is only 3%. The 297 

material acquisition stage accounts for only 10% of the total GHG emission and so reducing 298 

(only) 3% of the total energy demand of raw material acquisition due to this recycling approach 299 

does not appear to decrease the overall GHG emission of clay tile roof.  300 

For these three roof covering materials, GHG emissions associated with the demolition 301 

and disposal decreased due to decreases in the amount of demolition wastes going to landfill. 302 

The emissions from the transportation of construction materials have been decreased for the 303 

sheet metal roofs only, as recycled sheet metal is used for building roof application, which in 304 



turn would avoid the shipping of virgin materials from the eastern state. This is not the case for 305 

concrete and clay tiles, as recycled versions of these materials are used for different 306 

applications.  307 

 308 

Embodied energy demand 309 

 310 

When residual-processing facilities are not available and a recycling approach is not 311 

considered, it is not the sheet-metal roof, but rather the concrete roof that is found to have the 312 

highest embodied energy demand (83 GJ), followed by sheet-metal (58.6 GJ) and clay tiles 313 

(52.7 GJ). The embodied energy impact of a sheet-metal roof is not as great as its carbon 314 

footprint because GHG emissions are due to electricity generated from brown coal for 315 

aluminium production; on the other hand, as mentioned above the manufacturing energy for 316 

concrete is significantly higher than that for sheet-metal and clay tiles. Concrete manufacturing 317 

involves the use of energy for crushing aggregates and mixing concrete constituents in batching 318 

plants. Since higher percentages of sheet-metal can be recycled (than concrete tiles) with very 319 

high energy intensities (i.e. 240 MJ/kg for sheet-metal, as opposed to cement for concrete of 320 

7.5 MJ/kg, and clay of 0.05 MJ/kg), the use of recycling approaches are argued to be able to 321 

significantly reduce the embodied energy demand of sheet-metal (i.e. 71%). Crushing and 322 

recycling of concrete and clay waste-arisings reduces insignificant amounts of the embodied 323 

energy (concrete by 7% and clay tiles by 0.04%) due to the fact that most of the energy was 324 

consumed in the manufacturing stage of these materials. 325 

 326 

  327 



Conclusions 328 

 329 

This paper discusses how Life-cycle Assessment (LCA) tool application can help inform the 330 

design process and specification choices of building materials in Western Australia, with 331 

particular regard to assessing key environmental impacts such as carbon footprint and 332 

embodied energy demand. This research compares three different roof alternatives which can 333 

be used as a guide for future study for a quick comparison, to guide choice of alternative 334 

specifications for (low carbon impact) roofing materials.  335 

Where waste-processing facilities are not available and recycling strategies are not 336 

considered, this LCA analysis confirms that sheet-metal is the most carbon intensive roof cover 337 

material, whilst concrete roof tiling has the highest embodied energy demand. Where residual 338 

processing facilities do exist on the other hand, recycling strategies are found to be most 339 

effective for sheet-metal roof covering, as 73% of GHG emissions and 71% of embodied 340 

energy demand can be reduced by recycling. However, a similar recycling of waste arisings 341 

approach makes less significant environmental savings (i.e. ≤10%) for concrete-tile or clay-342 

tiles; albeit respective energy conservation during manufacture (of concrete and clay tiles) can 343 

reduce overall environmental impacts where waste recycling facilities exist  344 

The work here raises an awareness of the use of a simplified (off-the-peg software 345 

application) LCA approach, towards ongoing encouragement of designers and building 346 

materials specification stakeholders to incorporate environmental assessment into their 347 

decision-making process.   348 
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(a) Sheet-metal tiles 

  



 
 

 

 

(b) Concrete tiles  



  

 

 

(c) Clay tiles  

 Fig. 1. Carbon footprint and embodied energy demand of a) sheet-metal tiles b) concrete tiles 

and c) clay tiles  

 



Table 1 

Bill of materials for clay, concrete and sheet-metal tiles 

Raw material  Amount of Material required 

in 100m2 

Clay tiles  

Quartz 2.21 t 

Clay 1.48 t 

Timber 1.65 t 

Concrete tiles  

Quartz 3.65 t 

Portland cement 1.50 t 

Timber 1.65 t 

Sheet-metal  

Aluminium 0.34 t 

Zinc 0.27 t 

Silicon 0.01 t 

Timber 1.53 t 

 

  



Table 2  

Manufacturing and transportation information for clay, concrete and sheet-metal tiles 

Materials Manufacturing Energy  GJ/100m2 

Clay Natural Gas 9.3 

 Electricity 6.2 

Concrete Natural Gas 14.2 

 Electricity 2.9 

Metal Natural Gas 3.5 

 Electricity 1.2 

Transportation Mode Distance (km) tkm 

Clay tile   

Freight, shipping 4064.14 15,010 

Freight, articulated truck 22.6 83.5 

Concrete Tile   

Freight, shipping 3113.2 16,042 

Freight, articulated truck 22.6 116.5 

Metal   

Freight, shipping 4064.14 2,520 

Freight, articulated truck 22.6 14 

Construction Total weight of mild steel nail (kg) 

Clay tiles 32 

Concrete tiles 25.3 

Sheet-metal 5.7 

 

  



Table 3 

Heating and cooling load of 100m2 clay, concrete and sheet-metal roof covers 

Cooling Output Input, COP: 3.25  

Clay 215.86 66.42 GJ 

Concrete 227.41 
 

69.97 GJ 

Sheet-metal 143.67 
 

44.21 GJ 

Heating    

Clay 127.29 36.37 GJ 

Concrete 139.03 39.72 GJ 

Sheet-metal 53.90 15.40 GJ 

Note: COP = co-efficient of performance = It is a ratio of useful heating or cooling provided to work required. 

  



Table 4 

 Recycling rate of materials in WA for the 2008-2009 financial year 

Materials  Tiles % of Recycling 

Masonry materials Clay Bricks/Tiles 3% 

 Concrete 45% 

Metals  78% 

 

  



Table 5 

Emission factors of inputs for this LCA analysis 

 

 Carbon footprint (kg CO2 e-) Embodied energy 

consumption (MJ) 

1 kg Clay, at mine/AU U (of project Australasian 

Unit Process LCI) 

0.00313 0.0495 

1 kg Silica sand, at plant/DE U (of project 

Ecoinvent unit processes) 

0.021 0.323 

1 kg Strutural pine, u=12%, at mill/AU  S (of 

project Australasian System Process LCI) 

0.25 8.98 

1 MJ Electricity (natural gas) (of project LCA Food 

DK) 

0.182 2.37 

1 MJ Electricity, black coal NSW, sent out /AU U 

(of project Australasian Unit Process LCI) 

0.273 0.294 

1 tkm Articulated truck, 28 tonne load on 30 tonne 

truck, 90% rural operation, (freight task)/AU U (of 

project Australasian Unit Process LCI) 

0.116 1.98 

1 tkm Shipping, Domestic Freight/AU U (of project 

Australasian Unit Process LCI) 

0.0292 0.0491 

1 kg Iron-nickel-chromium alloy, at plant/RER U 

(of project Ecoinvent unit processes) 

4.62E 0.821 

1 kg Cement, Portland, at plant/AU U (of project 

Australasian Unit Process LCI) 

0.905 7.47 

1 MJ Electricity, high voltage, Western 

Australia/AU U (of project Australasian Unit 

Process LCI) 

0.242 1.16 

1 kg Aluminium, at plant/AU U (of project 

Australasian Unit Process LCI) 

0.217 240 

1 kg Zinc, primary, at regional storage/RER 

U/Adapted/AU U (of project Australasian Unit 

Process LCI) 

6.50 78.2 

 

  



 

1 kg Clay, at mine/AU U (of project Australasian Unit Process LCI) 0.003 0.05 

1 kg Silica sand, at plant/DE U (of project Ecoinvent unit processes) 0.02 0.32 

1 kg Strutural pine, u=12%, at mill/AU  S (of project Australasian System 

Process LCI) 

0.25 8.98 

1 MJ Electricity (natural gas) (of project LCA Food DK) 0.18 2.37 

1 MJ Electricity, black coal NSW, sent out /AU U (of project Australasian Unit 

Process LCI) 

0.27 2.94 

1 tkm Articulated truck, 28 tonne load on 30 tonne truck, 90% rural operation, 

(freight task)/AU U (of project Australasian Unit Process LCI) 

0.12 1.98 

1 tkm Shipping, Domestic Freight/AU U (of project Australasian Unit Process 

LCI) 

0.03 0.46 

1 kg Iron-nickel-chromium alloy, at plant/RER U (of project Ecoinvent unit 

processes) 

4.62 82.10 

1 kg Cement, Portland, at plant/AU U (of project Australasian Unit Process 

LCI) 

0.91 7.47 

1 MJ Electricity, high voltage, Western Australia/AU U (of project Australasian 

Unit Process LCI) 

0.24 1.16 

1 kg Aluminium, at plant/AU U (of project Australasian Unit Process LCI) 21.70 240.00 

1 kg Zinc, primary, at regional storage/RER U/Adapted/AU U (of project 

Australasian Unit Process LCI) 

6.50 78.2 

 

  



Appendix A: A sample calculation of timber structure 

Details and specification were provided by drawings and the Design Engineer from City of 

Melville.  

General specification of a residential house:  

Joist Spacing – 600mm  

Rafter Spacing – 600mm  

70/75mm frame  

Pitch Angle – 20 degrees  

Single Storey  

Specification of material:  

Top plates (AS 1684.4 Table A22)  

Roof Type: sheet-metal roof   

Rafter Span = 9,000mm   

Timber size: MGP10 2/45x70 

Roof Type: Clay and concrete Tile 

Rafter Span = 9000mm  

Timber size: MGP10 3/45x70  

Ceiling Joists (AS 1684.4 Table A27)   

Joist Span – 3,600mm  

Timber size: MGP10 120x45  

Hanging Beam (AS 1684.4 Table A28)  

Ceiling Joist span – 3,600mm  

Hanging Beam span – 3,600mm   

Timber size: MGP10 240x35  

Strutting Beams (AS 1684.4 Table A32)  

Sheet Roof Strutting beam span – 4,800mm  

Timber size: Sheet-metal– MGP10 2/190x35  

Timber size: Clay and concrete Tile – MGP10 2/240x45 Underpurlins (AS 1684.4 TA33) 

Strut Spacing – 2,400mm  

Timber size: Sheet-metal– MGP10 2/90x45  

Timber size: Clay and concrete Tile – MGP10 2/140x35 Rafters (HySPAN)  



Timber size: sheet-metal - MGP10 120x35   

Timber size: Clay and concrete Tile – MGP10 120x35  Ridge Beam (AS 1684.4 Table A36)  

Beam Spacing – 2,400mm  

Beam Span – 3,600mm  

Timber size: sheet-metal – MGP10 2/190x45  

Timber size: Clay and concrete Tile – MGP10 2/240x45 Batten (AS 1684.4 Table A37)  

Rafter spacing – 600mm  

Batten spacing – 900mm  

Timber size: sheet-metal - MGP 45x70 

Rafter spacing – 600 mm  

Batten spacing – 330mm  

Timber size: Clay and concrete Tile -MGP10 35x42 Hip or Valley Rafters (HySPAN)  

Timber size: sheet-metal – MGP10 190x45  

Timber size: Clay and concrete Tile – MGP10 240x45 Roof Struts  

Timber size: MGP10 90 x45 

 

 

The timber frame required was calculated by measuring the drawings to calculate the length 

and then calculating the volume using the dimension of the timber frame in the above section.   

Timber frame required (TILE – CONCRETE & CLAY):  

Total length of Top Plate (MGP10 2/45x70) = 43.2m  

Total volume of Top plate = 43.2 x 0.045 x 0.07 = 0.136m3  

Total length of Ceiling Joists (MGP10 120x45) = 204m  

Total volume of Ceiling Joists = 204 x 0.12 x 0.045 = 1.1m3  



Total length of Hanging Beam (MGP10 240x35) = 44.6m  

Total volume of Hanging Beam = 44.6 x 0.24 x 0.035 = 0.375m3 

Total length of Strutting Beam (240 x 45) = 13.45m  

Total volume of Strutting Beam = 13.45 x 0.24 x 0.045 = 0.145 m3  

Total length of Underpurlin (MGP10 140 x 35) = 60.7m  

Total volume of Underpurlin = 60.7 x 0.14 x 0.035 = 0.3 m3  

Total length of rafter (MGP10 120x 35) = 197 m   

Total volume of rafter = 197 x 0.12 x 0.035 = 0.83 m3  

Total length of Ridge Beam (MGP10 240 x 45) = 3.22m  

Total volume of Ridge Beam = 3.22 x 0.24 x 0.045 = 0.035 m3  

Total length of Batten (MGP10 35 x 42) = 317m  

Total volume of Batten = 317 x 0.035 x 0.042 = 0.47 m3  

Total length of Valley Rafter (MGP10 240x45) = 26m  

Total volume of Valley Rafter = 26 x 0.24 x 0.045 = 0.28 m3  

Total length of roof struts (MGP10 90 x 45) = 36m  

Total volume of roof struts = 36 x 0.09 x 0.045 = 0.15 m3  

TOTAL TIMBER VOLUME = 3.821 m3 

Timber frame required (sheet-metal):  

Total length of Top Plate (MGP10 3/45x70) = 43.2m 

Roof Cladding required:  

Clay Tiles:  

No. of tiles per m2: 11.9  

No of tiles required: 11.9 x 150 = 1785 tiles  

Mass per tile: 3.1kg   

Total mass of tiles = 3.1 x 1785  

Total mass of tiles = 5533.5 kg  

Total mass of quartz (60%) = 5533.5 x 0.6  

Total mass of quartz (60%) = 3320.1kg  

Total mass of clay minerals (40%) = 5533.5 x 0.4 Total mass of clay minerals (40%) = 

2213.4kg Concrete Tiles:  

No. of tiles per m2: 9.4  



No of tiles required: 9.4 x 150 = 1410 tiles  

Mass per tile: 5.55kg   

Total mass of tiles = 5.55 x 1410  

Total mass of tiles = 7825.5 kg 

Total mass of quartz (70%) = 7825.5 x 0.7  

Total mass of quartz (70%) = 5,477.85kg  

Total mass of Portland cement (30%) = 7,825.5x 0.3 Total mass of Portland cement (30%) = 

2347.65kg Steel Roofing:  

Required steel roofing: 150m2 

Mass: 4.3 kg/m2  

Total mass of metal roofing: 150 x 4.3  

Total mass of metal roofing: 645kg  

Total mass of Aluminium (55%):  354.75kg  

Total mass of Zinc (43.5%): 280.575kg 

Total mass of Silicon (1.5%): 9.675kg  

  



Appendix B: Calculation of the effects of varying solar reflectance of roofing materials  

Physical Data: Physical data assumptions are detailed below for input into equation 1.   

Temperature readings are taken from the (WA) Bureau of Meteorology (BOM). The 

temperature (T1) is the average temperature recorded at 3pm from 1994 – 2011 at Perth 

Metro WA each month. Industry representatives (thanks to TT Air-conditioning), the 

conformable temperature will vary individual to individual. However industry representatives 

note that many buildings are set at a room temperature of 24 degrees C.   

Average radiation figures for areas in Perth metro WA have been derived from BOM. A 

figure of 625 W/m2 for a 6 hour day is typical. BOM has also provided data that the heat flow 

transfer coefficient is 25 W/m2.K.   

The Building code of Australia, 2005 notes that roofing requires a total R Value (=1/U) of 

2.2m2. K/W.  

According to Selby (2006) the absorption rate for clay tile, concrete tile and sheet-metaling is 

0.63, 0.67, and 0.38  

Q = rate of heat flow per square metre from roof to the inside  

U = the overall heat transfer coefficient between the ambient and inside (W/m2/K) Note that 

1/U = R (the thermal resistance)  

H = Outside transfer coefficient between roof and ambient (W/m2/K)  

𝜕 = rate of absorption to solar radiation  

G = Solar radiation per unit area   

Calculation for January (Clay Tile): 

Average temperature at 3pm: 29 degrees  

Comfortable Temperature: 24 degrees  

Change in temperature = 29 – 24 = 5 degrees (Cooling)  

α = 0.63 (Clay Tile)  

h = 25 W/m2 .K    

G = 625 watts/m2  

R = 1/U = 2.2 m2 K/W (Building code of Australia, 2005)  

Roof Area = 100m2  

Heat Loss = (1/2)*((0.63*635/25)+5)  

Heat Loss = 9.43 W  

Heat Loss = 0.94 kW  

Heat Loss over 6 hrs = -0.94 x 6 = 5.66 GJr  

Heat Loss in a month = -5.66 * 31 days = 175.43 GJr  



Heat Loss in 65 years = -175.43 x 65 years = 11403.07 GJr  

Total Cooling in 65 years during the month that requires cooling = 59961.61 GJr 

Calculation for applied energy  

1 x Mitsubishi 4.2kW Air Conditioner  

Energy Efficiency (Coolinsg) - 2 stars (Sourced from TT air-conditioning)  

COP – 3.25 (Energy Aus)  

Energy Efficiency (Heating) – 2.5 Stars (Sourced from TT air-conditioning)  

COP – 3.5 (Energy Aus)  

Cool Capacity – 4.2 kW  

Heating Capacity – 5.4 kW  

Total Output Energy for Clay (Cooling): 59961.61 GJr  

COP = Output/Input  

3.25 = 59961.61 GJr / Input  

Input = 18449.73 GJr 

 

 


