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Abstract 

The present paper studies different types of errors generated on the feature (cylindrical holes) which was fabricated by 

the wire EDM of 2205 duplex stainless steel. Different experimental parameters such as, pulse on time, pulse off time 

and wire tension on the feature as well as the contribution of these parameters on cylindricity error, circularity error 

and diameter error were explored. Moreover, interactions among the input parameters were also considered. It was 

found that the total contributions of interactions between different parameters are reasonably high for all the cases 

which make the modelling process very complex for cylindricity, circularity and diameter errors in term of the range 

of parameter considered in this investigation. Wire tension has highest contribution on cylindricity error which is 

lowest at high value wire tension. Pulse on time has minor contribution on the cylindricity error and it increases with 

the increase of pulse on time. Pulse of time does not have any influence on the cylindricity error. The circularity error 

was lowest at medium pulse off time and medium wire tension; and those two parameters have almost similar and 

highest contributions. The pulse on time has around 14 % contribution on circularity error and the medium value of it 

minimizes the circularity error. The input parameters such has pulse on time, pulse off time and wire tension have 

around 13%, 16% and 7% contributions respectively on diameter error which is minimized at medium pulse on time, 

and low pulse off time and low wire tension.   

Keywords: Duplex stainless steel; errors; wire EDM. 

1. Introduction

Stainless steel is a renowned engineering material for number of structural applications. Duplex stainless steel 

is a special variety of stainless steel which resulted due to continuous development towards obtaining superior 

properties such as, localised corrosion resistance (J Nomani, Alokesh Pramanik, T Hilditch, & G Littlefair, 

2013), high toughness and good hot workability. Since its introduction in structural applications, the demand 
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is ever increasing and supersedes the most popular austenitic stainless steel as a result of low production cost 

due to the requirement of lower amounts of expensive nickel in it. This is foreseen to continue as recent 

development specifies evolving applications of such duplex stainless steels in structural design (Baddoo, 

2008). Duplex stainless steel usually contains higher and lower level of chromium and sulphur to ensure those 

properties. Microstructurally, duplex stainless steels have equal amounts of body-centred cubic (BCC) ferrite 

(α) and face-centred cubic (FCC) austenite (γ) phases and thus offers to exploit the benefit of having dual 

phases simultaneously (Pramanik, Littlefair, & Basak, 2015). The α-ferrite phase has superior resistance to 

pitting and crevice corrosion whereas γ-austenite phase promotes strength and toughness. Stainless steels, in 

general, put an extra challenge during machining operation because of high affinity towards work harden; 

high toughness and comparatively low thermal conductivity and high fracture toughness (Dolinšek, 2003; 

Jiang, Paro, Hänninen, Kauppinen, & Oraskari, 1996; O’Sullivan & Cotterell, 2002; Paro, Hänninen, & 

Kauppinen, 2001). These enhanced material properties upsurge tool/chip interface temperature which causes 

poor surface finish and frequent breaking of chips. Thus family of stainless steel materials are considered as 

difficult to machine materials. On top of the above, duplex stainless steel makes the machining scenarios more 

challenging due to its high strength and to make it worse, duplex stainless steel usually have low carbon 

content without non-metallic inclusions (Nilsson, 1992; Voronenko, 1997). In addition, duplex stainless steel 

has a tendency for built-up edge (BUE) formation which reduces machining efficiency due to material 

adherence to cutting tool and eventually reduce cutting speeds. These result in poor surface finish, low 

dimensional accuracy and accelerated tool wear (J Nomani, Pramanik, Hilditch, & Littlefair, 2016, 2017). It 

is thus apparent that, persistent development in machining technology is foreseen towards further diverse 

applications of duplex stainless steels. Therefore, a better understanding of the process as a whole might lead 

to better machining techniques. At present, limited research is available on traditional machining process of 

these alloys (Junior Nomani, Pramanik, Hilditch, & Littlefair, 2015). Our previous communication in that area 

(J. Nomani, A. Pramanik, T. Hilditch, & G. Littlefair, 2013) identified duplex alloys such as SAF 2507 and 

SAF 2205 experience higher incidences of built-up edge formation compare to austenite 316L which 

accelerates tool wear and poor surface finish. Paro et al. (Paro et al., 2001) also reported similar results and 

adhesion wear of machining tool due to BUE formation as predominant tool failure mechanism in their 

machinability study during drilling of cast duplex stainless steel. Carlborg (Carlborg, 1991) also observed 

such BUE formation during turning operation and blamed higher ferrite content for prompt BUE formation. 

The frequent BUE formation is due to the fact that, materials with two phases experience additional fracture 

along chip-tool rake face whereas single phase materials retain one fracture point only (Williams & Rollason, 

1970).  

Though there are complexities in conventional machining of DSS, the non-traditional material removal 

processes have never been tried for these materials except in (Pramanik, Basak, Dixit, & Chattopadhyaya, 

2018) where only few issues were addressed. Pramanik et al., (Pramanik et al., 2018) investigated WEDM of 
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2205 duplex stainless steel where the effects of pulse-on time, wire tension and pulse-off time on 

surface finish, kerf width and MRR were analysed. However, the other parameters such as, cylindricity, 

circularity and diameter errors are yet to be investigated as these parameters affect the joining processes and 

efficiency significantly (Pramanik et al., 2017). Different non-conventional material removal processes are 

available for a rage of difficult to machine materials (Pramanik, 2014). Among those, electrical 

discharge machining (EDM) is a commonly used non-conventional method which is highly economical 

to remove materials by vaporising through locally generated tiny high temperature sparks (Pramanik, Basak, 

Islam, & Littlefair, 2015; Pramanik & Littlefair, 2016). Therefore, this study aims to investigate accuracy 

of EDM process during machining of DSS at different machining conditions using ANOVA, Taguchi and 

convention methods. This will benefit researchers and professionals to understand the effectiveness of EDM 

to remove DSS material.    

2. Methods and materials

The experiments were conducted using a FANUC ROBOCUT ∝-0iD. Grade 2205 Duplex stainless steel 

disks were in the form of a four inch diameter cylindrical bar. The bar was cut into two disks of 15 mm 

thickness each using a hydraulic saw. The top and bottom surfaces of the both bars were machined to have 

better surface finish, leaving behind two clean and workable 14 mm thick disks. The disks were then marked 

with 14 holes each and 4 mm holes were drilled all the way through. This was aimed at minimising 

machining time. The top edge was de-burred in an attempt to both mark out top side of disk, as well as avoid 

any injuries due to sharp edges. Each of those holes were number stamped with the respective trial number. 

Those holes act as wire-feed positions, so machining can start from the centre of the holes, rather than 

entering from the outside of the disc and manoeuvring to the centre of the hole. A disk is then fixed to the 

machines bed. The wire is then fixed in both top and bottom wire-guides and the required pre-set tension is 

applied by the machine. PC-DMIS coordinate measuring machine (CMM) was used to measure cylindricity, 

circularity and dimensional errors. The chemical compositions of the workpiece material is given in table 1.  

Table 1 Elemental analysis and mechanical properties of workpiece material (J Nomani et al., 2013). 
Alloy C Mn Si S P Ni Cr Mo Fe 

UTS 

(MPa) 

Yield 

(MPa) 

Hardness 

HV100g

SAF 2205 0.02 0.8 0.4 0.01 0.02 5.2 22.4 3.05 Balance 777 556 279 

The experimental design was formulated according to Taguchi’s orthogonal array method with three-level 

three-parameter L27 (33) as shown in table 2. The experimental runs (n = 27) were conducted, providing 

interactions between: (i) pulse on and pulse off times, (ii) pulse on time and wire tension and (iii) pulse off 

time and wire tension of the selected control parameters and levels as summarized in table 3. The machining 
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parameters and the levels of those were selected based on the available information in the literature 

and capacities of the machine tools available in the laboratory. 

Results from this work were analysed using two statistical tools: (i) Pareto ANOVA and (ii) Taguchi’s signal-

to-noise (S/N) ratio analysis. Pareto ANOVA identified the degree to which each control parameter affects the 

cylindricity, circularity and dimension errors of the machined workpiece based on Pareto principle that only 

20% of the total machining configurations would be required to generate 80% of the benefits of completing 

every test configuration (Haughey, 2017). Pareto ANOVA is a simplified form of ANOVA which neither 

requires an ANOVA table nor the use of F-tests. Therefore, detailed knowledge of the ANOVA method is not 

required. An elaborate discussion on Pareto ANOVA method can be found in open literature (Park, 1996). 

Table 2 Machining parameters and their respective levels according to Taguchi’s method. 

Input parameter Symbol Level 0 Level 1 Level 2 

Pulse-on time (µs) A 4 6 8 

Pulse-off time (µs) B 22 44 66 

Wire Tension (gf) C 1000 1400 1800 

In the present study, authors use Taguchi’s statistical method (Taguchi, 1987) to establish optimum cutting 

parameters allowing the machining parameters to be vigorously established on machining outputs (Pramanik 

et al., 2016). Taguchi method applies S/N ratio to enhance the outcome of a manufacturing method according 

to equation 1: 
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Here, observation number is n and observed data is y. The above equation is appropriate for quality 

characteristics in which the saying “the bigger the better” is true. Equation 1 also implies that, greater the 

magnitude of S/N ratio, better the result will be as it produces the top quality with smallest variance.   

Table 3 Experiments details 

Expt. no. Pulse-on time (µs) Pulse-off time (µs) Wire Tension (gf) 

1 4 22 1000 

2 4 22 1400 

3 4 22 1800 

4 4 44 1000 

5 4 44 1400 

6 4 44 1800 

7 4 66 1000 

8 4 66 1400 

9 4 66 1800 
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10 6 22 1000 

11 6 22 1400 

12 6 22 1800 

13 6 44 1000 

14 6 44 1400 

15 6 44 1800 

16 6 66 1000 

17 6 66 1400 

18 6 66 1800 

19 8 22 1000 

20 8 22 1400 

21 8 22 1800 

22 8 44 1000 

23 8 44 1400 

24 8 44 1800 

25 8 66 1000 

26 8 66 1400 

27 8 66 1800 

3. Result

Dimensional accuracy of machined features that are ‘holes’ in the workpiece in present study, are represented 

by cylindricity, circularity and diameter errors as the most important parameters. These terms are explained 

as follows: the dissimilarity between measured and designed diameters is diameter error. Undercutting of the 

hole induces negative error. The diameter error of a machined hole plays most important role during tight fit 

of the components. Another vital quality characteristic is circularity also well-known as roundness. This is 

measured by the distance between rims of two concentric circles in which each circular component of the 

surface should be located (ASME, 2009). The cylindricity represents the circularity along the depth of the 

hole. Too much circularity error generates undesirable vibration and heat in rotating parts (Pramanik et al., 

2016). Thus, these important parameters are engaged to understand the appropriateness of EDM technique for 

fabricating holes in duplex stainless steel.  

3.1 Cylindricity 

Cylindricity is a measure of how much a cylindrical surface varies from an ideal cylinder that is perfectly 

round, perfectly straight and has no taper (Engineering Essentials, 2015). The Pareto ANOVA for cylindricity 

error shown in table 4 signifies that wire tension (C) affected (P  ) cylindricity most significantly. The 

second most contributing parameter is interaction between pulse-off time and wire tension (B×C) which 

contributes P  19%, this is followed by interactions between pulse-on time and pulse-off time (A×B), and 

pulse-on time and wire tension (A×C) with contributions, P  18 and 16 % respectively. In addition to wire 

tension, the other only single parameter pulse-on time (A) contributes only P 10%.  The rest of the 
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contribution comes from the interactions of parameters. The total impact of main effects or effect of individual 

parameter is around 31% and on the other hand, the total influence of interaction effects is 70 %. Therefore, 

it is extremely difficult to optimise the cylindricity errors in this case by selecting input parameters. 

Table 4 Investigation of cylindricity error by Pareto ANOVA 

Sum at factor 
level  

Factor and interaction 

A B AxB AxB C AxC AxC BxC BxC 

0 390.14 370.18 375.48 375.18 374.48 365.28 382.76 378.99 374.02 

1 378.32 388.78 372.68 366.88 365.97 392.54 377.65 375.40 395.42 

2 368.15 377.65 388.45 394.55 396.16 378.79 376.20 382.22 367.17 

Sum of 
squares of 

difference (S) 727.06 525.50 424.66 1210.05 1454.56 1114.81 71.17 69.91 1303.43 

Contribution 
ratio (%) 10.54 7.61 6.15 17.53 21.08 16.15 1.03 1.01 18.89 

 

  

  

  

Cumulative 
contribution 

21.08 39.97 57.50 73.65 84.19 91.80 97.95 98.98 100.00 

Check on significant interaction: AXB two-way table 

Optimum combination of significant factor level: A0B2C2 

Response graph in figure 1 represents the outcomes of Pareto ANOVA, as shown in table 5, and confirms that 

high level of wire tension (C2) is the best variable for minimum cylindricity error. Based on the two-way table 

(details in appendix) of B×C, optimal arrangement of B and C to attain lowermost cylindricity error is found 

as B2C2. Consequently, the paramount arrangement of input parameters for minimal cylindricity error is noted 

as A0B2C2. Though the individual contributions of pulse-on time (A) and pulse-off time (B) are negligible, 

those give lower cylindricity at maximum and medium values, respectively. The variations in cylindricity 

error for all the variables are given in figure 2. The optimal outputs are attained at low pulse-on time. Medium 

pulse-off time gives lower cylindricity error compare to that of high and low values of pulse-off time. The 

21.08
18.89

17.53
16.15

10.54
7.61

6.15

1.03 1.01

C BxC AxB AxC A BxC AxB AxC BxC
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cylindricity error increases with the rise of wire tension but it is minimized when the wire tension increases 

further. These observations are quite similar to those attained from response tables and Pareto ANOVA.  

Table 5 Response table for mean S/N ratios for important interactions and cylindricity error 

Input parameters Symbol Level 0 Level 1 Level 2 max-min 

Pulse-on time (µs) A 43.35 42.04 40.91 2.44 

Pulse-off time (µs) B 41.13 43.20 41.96 2.07 

Wire Tension (gf) C 41.61 40.66 44.02 3.36 

Interaction BXC 42.11 41.71 42.47 0.76 

Fig 1. Response graph of S/N ratios for cylindricity error 

Fig. 2 Average cylindricity errors for all the variables 

3.2 Circularity error 
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Pareto ANOVA analysis of circularity error shown in table 6 points out that the individual contributions of 

pulse-off time (B) and wire tension (C) are almost similar and most significant with P    The third most 

important aspect is the interaction between pulse-on time and pulse-off time (A×B) with P  15%, followed 

by the pulse-on time (A) (P  14%) and the rest are the diverse interactions between different parameters. The 

entire influence of individual parameters is about 53%, but the contribution of interactions is 47% in this case. 

Therefore, it is very problematic to find optimal circularity error by choosing individual input variables. 

Response data presented in Fig. 3 endorses the outcomes of the Pareto ANOVA shown in table 7. The low 

level of pulse-on time (A0) is the best arrangement as presented in table 7. Because of the significant 

interaction between A and B, A×B two-way table is used to find the combination of these two parameters (see 

Appendix). The two-way table shows that the optimal arrangement of A and B to obtain the least circularity 

error is A1B1. Therefore, the optimal arrangement of input parameters is A1B1C1 for lowest circularity error. 

This is medium levels of pulse-on time (6 µs), pulse-off time (44 µs) and wire tension (1400 gf). 

The variation of the circularity error for three input parameters is presented in figure 4. The circularity error 

reduces with the increase of all three parameters and continue to rise with the further increase of these 

parameters. Therefore, the errors were minimized at medium values of input parameters. These outcomes are 

very similar to those attained from response tables as well as Pareto ANOVA.  

Table 6 Pareto ANOVA for circularity error 

Sum at factor level 
Factor and interaction 

A B AxB AxB C AxC AxC BxC BxC 

0 349.16 343.91 360.44 372.52 349.54 351.61 353.10 365.76 356.03 

1 371.42 369.21 357.69 351.69 374.19 367.39 356.83 363.79 368.29 

2 356.63 364.08 359.08 353.00 353.48 358.21 367.28 347.66 352.89 

Sum of squares of 
difference (S) 770.43 1073.20 11.33 817.10 1051.40 377.00 324.06 591.57 397.06 

Contribution ratio 
(%) 14.23 19.83 0.21 15.09 19.42 6.96 5.99 10.93 7.34 

 

19.83 19.42

15.09 14.23

10.93

7.34 6.93 5.99

0.21

B C AxB A BxC BxC AxC AxC AxB
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Cumulative 
contribution 

19.81 39.83 54.34 68.57 79.50 86.84 93.77 99.79 100.00 

Check on significant interaction: AXB two-way table 

Optimum combination of significant factor level : A1B1C1 

Table 7 Response table for mean S/N ratios for circularity error and significant interactions 

Input parameters Symbol Level 0 Level 1 Level 2 max-min 

Pulse-on time (µs) A 38.80 41.27 39.63 2.47 

Pulse-off time (µs) B 38.21 41.02 40.45 2.81 

Wire Tension (gf) C 38.84 41.58 39.28 2.74 

Interaction AXB 41.39 39.08 39.22 2.31 

Fig. 3 Response data of S/N ratios for circularity 

Fig. 4 Average circularity errors 

3.3 Diameter error 

Pareto AVOVA examination of diameter error presented in table 8 clearly exposes that the most significant 

contributor is the first interaction between pulse-off time and wire tension (B×C) (P  19%), and second 

interaction amongst pulse-off time and wire tension (B×C) (P  16%) which is very similar to that of pulse-

off time (B). The individual influence of pulse-on time (A) and wire tension (C) contribute around 13% and 
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7% correspondingly. It is worth to note that, entire effect of individual parameter is around 36%, but the entire 

influence of the interactions around 64%, thus it is also complex to optimize the diameter error by selecting 

input variables. 

The response data for diameter error is shown in table 9 and figure 5, with the gradients of response graphs, 

representing the power to impact as established by ANOVA study in table 9. The medium pulse-on time (A1) 

was in the top to attain a lowest diameter error as presented in figure 5. Subsequently the interaction of A×B 

is substantial. Thus, two-way table of A and B has been used to find optimal levels of A and B (see Appendix). 

The optimum combination of factors A and B in order to achieve lowest diameter error is determined as A1B0. 

As a result, the best arrangement of input parameters to minimise circularity error is A1B0C0. This is medium 

level of pulse-on time (6 µs), lowest level of pulse-off time (22 µs), and low level of wire tension (1000 gf). 

Table 8 Pareto ANOVA analysis for diameter error 

Sum at factor 
level  

Factor and interaction 

A B AxB AxB C AxC AxC BxC BxC 

0 345.22 370.61 336.36 359.05 365.22 355.30 352.42 338.50 336.50 

1 369.19 343.93 368.75 344.41 350.02 350.51 353.08 365.74 363.74 

2 349.20 349.07 358.50 360.15 348.37 357.80 358.10 359.36 363.37 

Sum of squares 
of difference (S) 989.86 1202.78 1644.53 463.20 517.41 82.21 57.94 1217.57 1463.85 

Contribution ratio 
(%) 12.96 15.74 21.53 6.06 6.77 1.08 0.76 15.94 19.16 

Cumulative 
contribution 

21.53 40.69 56.63 72.37 85.33 92.10 98.16 99.24 100.00 

Check on significant interaction: AXB two-way table 

Optimum combination of significant factor level : A1B0C0 

Table 9 Response table for mean S/N ratios for circularity error and significant interactions 

Input parameters Symbol Level 0 Level 1 Level 2 max-min 

Pulse-on time (µs) A 38.36 41.02 38.80 2.66 

Pulse-off time (µs) B 41.18 38.21 38.79 2.97 

Wire Tension (gf) C 40.58 38.89 38.71 1.87 

21.53
19.16

15.94 15.74
12.96

6.77 6.06

1.08 0.76

AxB BxC BxC B A C AxB AxC AxC
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Interaction AXB 39.89 38.27 40.02 1.75 

The average deviation of diameter error through conventional method presents that the medium pulse-on time 

offers smallest errors as presented in Fig. 6. The minimum pulse-off time gives lowest diameter error though 

the diameter error increases and then reduces with further increase of pulse-off time. The diameter error 

reduces with the reduction of wire tension, and minimum at lowermost wire tension (1000 gf).  

Fig. 5 Response graph of S/N ratios for diameter error 

Fig. 6 Average diameter errors for three parameters 
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During EDM process, material is removed by discrete electric sparks that occur in cycles.  Every cycle has an off-time 

and on-time in microseconds range. As material is being melted and vaporized during pulse on-time or pulse duration, 
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and deeper. These will result rougher surface finish compared to that produced by shorter pulse duration. Moreover, 

extended pulse duration also allows more heat to transfer into the work piece and broaden heat affected zone. However, 

excessive pulse duration is counter-productive as material removal rate will be reduced. A longer period may also put 

the electrode into a no-wear state and the electrode grows from plating build-up. Therefore, pulse off-time which is also 
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known as pulse interval is required for efficient material removal. The smaller the interval, the quicker will be the 

machining process. However, in case of too short duration, flow of dielectric fluid may not take away the removed 

material and will not be deionized to stabilize for next spark (Kumar & Choudhury, 2007; Singh & Singh, 2012). Such 

unstable conditions in the process may induce inconsistent cycles and retracts the advancing servo. This slows down 

material removal more than that for longer and stable off-times. Therefore, pulse break must be longer compared to 

deionization time to avert continual sparking at one point (Fuller, 1989). Modern power supplies in EDM equipment 

allow self-determining setting of pulse on-times and off-times with a typical range of 2 to 1000µs. Though in ideal 

situations, each pulse should generate a spark, practically lots of pulses fail if period and intermission are not 

appropriately synchronized, resulting reduced  machining efficiency (Singh & Singh, 2013). The surface roughness on 

machined workpiece is generated as uneven fusing structure, globules of debris, shallow craters, pockmarks, cracks and 

voids. These defects become further prominent with the increase of pulse-on period and pulse current (Pramanik & 

Basak, 2016; Alokesh Pramanik et al., 2015). The tension in wire influences the distortion and rigidity of wire electrode. 

The wire electrode is less rigid and doesn’t distort at lesser tension. Therefore a lengthier and broader area of wire takes 

part to remove material. On the other hand, wire becomes very stiff and its diameter will be reduced at higher tension, 

resulting shorter and narrower area to take part in material removal process and thus reduce material removal rate at 

higher tension. In addition, too much tension in wire electrode may deteriorate its physical properties and reduce the 

capacity to produce expected spark. Conversely, too flexible wire may be unable to retain required spark gap alongside 

its length for effective removal of material (Alokesh Pramanik et al., 2015; Pramanik et al., 2016; Pramanik & Littlefair, 

2016). 

The cylindricity error, a three-dimensional parameter, of a hole generated from wire EDM process depends on the 

straightness of the wire electrode which is achieved at high wire tension. Therefore, the contribution of the wire 

tension is maximum on the cylindricity error and minimum error occurs at higher wire tension. For the considered 

range, the decrease of pulse-on time reduces the cylindricity error by minimizing the material melting uniformly along 

the length of the wire electrode. The pulse off time does not have any noticeable contribution on the cylindricity error 

though the medium value of this parameter minimises the cylindricity error.  The circularity error which is a two 

dimensional parameter, depends on the ability of the wire electrode to follow circular arc. The characteristics of wire 

EDM processes associated to the high and low values of the input parameters is already mentioned. It seems that the 

medium values of pulse on time, pulse off time and wire tension are most suitable to generate a better circle in this 

case. The diameter error is induced due to undercut or overcut during the machining process. The data shows that the 

diameter error in this case is due to over cut which is due to larger kerf width compare to the diameter of wire 

electrode (Pramanik & Basak, 2016). Pulse on time is a deciding factor of induced energy and the pulse off time 

facilitates the material removal process. Therefore, the interaction of these two parameters contributes mostly on 

diameter error. 

5. Conclusion

Wire EDM of duplex 2205 stainless steel was investigated by generating cylindrical holes at different 

machining conditions. The following conclusions can be drawn from this study. 

(a) Interactions between parameters as well as individual parameters affect the cylindricity, circularity and diameter

errors significantly of holes machined in duplex 2205 stainless steel. The contribution of all interactions is
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significantly high compare to that of individual parameters for all the cases which indicates that the modelling 

of the cylindricity, circularity and diameter errors in terms of pulse on time, pulse of time and wire tension for 

the range of parameter considered in this investigation is very complex.     

(b) The tension in wire influences the distortion and rigidity of wire electrode where the lesser tension induces 

higher flexibility. Therefore, wire tension is the most contributing parameter for the cylindricity error which is 

minimized at higher wire tension. Pulse on time has minor contribution on the cylindricity error which increases 

with the increase of pulse on time. Pulse of time does not have any influence on the cylindricity error.

(c) The circularity errors comes into effect due to the non-uniform undercut and overcut which are controlled by 

input parameters. Pulse off time and wire tension have almost similar and highest contribution on the circularity 

error which is minimized at medium pulse off time and wire tension. The contribution of pulse on time in this 

case is around 14 %, the medium value of which also minimizes the circularity error.

(d) The diameter errors occur due to undercut or overcut. The contributions of the pulse on time, pulse off time and 

wire tension on diameter errors are around 13, 16 and 7% respectively. The medium pulse on time, and low 

pulse off time and low wire tension minimize the diameter error.

Appendix: 

BC two-way table for cylindricity 

B0 B1 B2 

C0 38.416 41.938 40.000 120.35 40.915 44.437 37.721 123.07 46.021 41.938 43.10 131.06 

C1 41.938 44.437 37.077 123.45 41.938 40.915 46.021 128.87 46.021 37.721 33.98 117.72 

C2 44.437 40.000 41.938 126.37 44.437 37.721 40.915 123.07 46.021 40.915 41.94 128.87 

AB two-way table for circularity error 

A0 A1 A2 

B0 35.739 44.437 36.100 116.276 39.439 41.938 34.895 116.272 37.501 37.947 35.92 111.37 

B1 37.077 37.077 42.694 116.849 45.460 42.694 43.522 131.676 36.873 43.522 40.29 120.69 

B2 35.918 41.938 38.178 116.034 41.243 41.938 40.294 123.476 40.294 42.694 41.58 124.57 

AB two-way table for diameter error 

A0 A1 A2 

B0 37.501 39.715 38.661 115.87 40.294 46.021 48.715 135.03 37.947 43.098 38.66 119.71 

B1 39.439 35.739 37.721 112.89 47.264 38.416 36.673 122.35 38.178 34.579 35.92 108.67 

B2 41.243 36.287 38.913 116.44 38.913 37.501 35.391 111.80 44.437 38.661 37.72 120.82 
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