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ABSTRACT 

Many dynamic processes exhibit recurrent behaviour. This is an important 

feature that led to the idea that the recurrence of the states is a key element in 

the comprehensive understanding of dynamical systems. Although the 

recurrence has been known for a long time, its prevalence has just seen 

recently due to the advancement of computational technology especially in the 

visualisation of the recurrence of the states.  

The recurrence plot is the most common method in studying the recurrence, 

which are often quantified by using Recurrence Quantification Analysis. 

Although proven effective, these methods only work when the distance matrix 

is compared to the threshold value, a significant parameter that can only be 

defined by the user. This threshold value actually dictate the features of the 

recurrence inside the plot. Although the so-called ‘unthresholded recurrence 

plot’ which is a mere distance matrix has already been proposed, its use is still 

limited due to the absence of reliable method that could extract useful features 

of the recurrence of the states from these plots. This research gap has been the 

motivation in the development of the proposed method which is termed as 

“Recurrence Texture Analysis”. 

Recurrence Texture Analysis was stimulated in the hypothesis that the 

recurrence plots of dynamical systems, whether thresholded or not, are 

governed by a well-defined texture descriptors that can be extracted by some 

algorithms used for texture analysis.  The validation of this premise and the 

evaluation of the method, along with the exploration of the use of deep neural 

networks and other texture extraction algorithms to quantify textures and 

hence the behaviour or dynamics of the time series data, were accomplished 

in this research. More specifically, the applicability of the method to capture 

the structures of complex dynamic process systems represented by time-series 
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and characterise its dynamic behaviour were carried out systematically. These 

were done by transforming the recurrence patterns into sets of feature matrices 

containing the texture features. Conversely, the structures of time series are 

captured via the extraction of variables representing the distances between 

measurements over time. This is achieved through analysis of the structure of 

the data during discrete periods of process observation. These joint 

distributions of the elements in these distance matrices are subsequently 

captured by descriptors or features most often used in the analysis of textures 

from image data.  

Six texture algorithms are considered in this research including the two state-

of-the-art pretrained deep convolutional neural networks. The texture features 

extracted using grey-level co-occurrence matrix, wavelet transforms, local 

binary pattern, textons, CNN-AlexNet and CNN-VGG16 were analysed via 

cluster and classification analysis of the features. To verify the robustness of 

the method in dealing real process datasets, RTA was also applied in some 

datasets of grinding circuits and powder flow to characterise their dynamic 

behaviour. Furthermore, the method was also used as a data pre-processing 

technique in time-series classification task. The method was also extended as 

a core in the development of statistical process monitoring system.  

Over the course of this research, RTA showed its applicability in capturing the 

textural features of recurrence that are relevant in the understanding of the 

dynamical behaviour of dynamic process systems. It has showed substantial 

advantage in the characterisation of the complex and dynamic properties of 

several processes over its counterparts. Specifically, the VGG16 provided that 

most discriminative textural features as demonstrated by its outstanding 

performance, outperforming other RTA methods and even to other published 

methods. Throughout this thesis, it consistently achieved highly competitive 

results against any other considered similar approaches. Furthermore, 
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AlexNet and texton also displayed reliable performance in which they 

satisfactorily performed well over GLCM, wavelet and LBP and even to RQA. 

With this, it can also be said that these are also good candidates for capturing 

the structures of process systems. 

It is also demonstrated in this thesis the applicability and effectiveness of 

pretrained CNNs (VGG16 and AlexNet) in capturing the dynamic behaviour 

of time series data eventhough the distance matrix plots are not included in 

the training stage of these algorithms. This further confirmed that these 

algorithms can be extended to other applications and used to other types of 

datasets. Most importantly, the thesis clearly showed the promising 

application and the pioneering work of recurrence texture analysis to minerals 

processing including grinding circuits, which would open more researches 

with the method and other related methods for minerals engineering 

application. In this work, it proved that the method could form the basis for 

more development of models for applications in minerals processing, which 

could in principle be used and implemented online once calibrated. 
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𝐶𝑐 Cophenetic correlation function 

�̂� Reaction rate or the frequency of the contact of the 

prey and predator 

Cp Controlling parameter 

d Distance 

D Distance matrix 

�̂� Conversion efficiency or the efficiency of predators in 

converting food into offspring 

db4 Daubechies wavelet family 
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G Number of grey level 

h Histogram bin 

I Image 

𝐼𝐺  Greyscale image 
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k Number of principal component retained 
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L Diagonal line length 
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L∞-norm Maximum or Supremum norm 
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md Embedding dimension 
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u Discrete time series 
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�̅� Mean of time series 
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W Transformed function 
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�̇� Number of predator 
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𝝈 Gaussian noise 
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θ Angle of grey levels 
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𝜉𝑖 Slack variable in SVM 

𝜓 Wavelet 

ψ (•) Pre-defined function mapping 
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1. INTRODUCTION 

1.1 Complexity in Dynamical Systems 

Many natural and man-made systems show complex and nonlinear 

behaviour. In process engineering, this includes grinding circuits (Aldrich, 

Burchell, de V. Groenewald, & Yzelle, 2014), fluidized beds (Johnsson, 

Zijerveld, Schouten, van Den Bleek, & Leckner, 2000; Llop, Gascons, & Llauró, 

2015; Pain, Mansoorzadeh, Gomes, & de Oliveira, 2002), multiphase flow 

(Keska, Smith, & Williams, 1999), multistage evaporation of liquor in the Bayer 

process used for alumina production by Alcoa (Kam, 2000) etc. – a cultivating 

idea that encouraged the emergence of the concept of complex systems, an 

area that is concerned with the understanding of the complexity and 

properties of the systems. Atay (2010) describes this subject as a study of any 

process or system that is comprised of numerous parts that produce 

macroscopic behaviour with a manifestation of forming distinctive temporal, 

spatial or functional structures.   

While complex systems can be considered through different metaphors, 

such as bio-inspired algorithms (Cotta & Schaefer, 2017), cellular automata 

(Kotyrba, Volna, & Bujok, 2015), complex network theory (Mei, Zarrabi, Lees, 

& Sloot, 2015), chaos theory (e.g. (Sivakumar, 2004)) and others, the nonlinear 

time series analysis theory developed over the last four decades (e.g. (Kantz, 

2004; Sprott, 2003)) is arguably one of the most important.   

1.2 Phase Space Approach to Time Series Analysis 

The basic point of departure in nonlinear time series analysis is that it 

contains repetitive patterns that can be analysed in a so-called phase space, 

which is simply a projection of the observed time series data onto a new 
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coordinate system consisting of number of lagged time series variables. That 

is,  

 𝑦(𝑡) → [𝑥(𝑡), 𝑥(𝑡 − 𝑘), … 𝑥(𝑡 − (𝑚 − 1)𝑘)]           (1-1) 

Two parameters define the projection, namely the time series lag, 𝑘 and 

the embedding dimension, m of the time series. Most of the time, the time 

series lag k is estimated by either the use of autocorrelation function of the 

average mutual information (Jemwa, 2003). The embedding dimension, m, on 

the other hand, can be assessed by several methods including singular value 

decomposition, and false nearest neighbours. 

The repetition of patterns in the time series data are often referred to as 

“recurrence”, which is considered a fundamental property in many dynamical 

systems. The recurrence is commonly visualised using recurrence plots, which 

are derived from a phase space embedding of the time series data, which are 

constructed based on distance matrix. Although embedding of  the time series 

data is commonly done prior to construction of recurrence plots, this is not 

strictly necessary, as was shown by Iwanski and Bradley (1998) and March, 

Chapman, and Dendy (2005). In general, the recurrence point observed in the 

plot is a distance matrix element having a distance less than or equal to a 

specified neighbourhood size or threshold value, 𝜀. This plot generally gives 

recurrence patterns, which are normally quantified using recurrence 

quantification analysis (RQA).  

Although RQA is a highly versatile tool and has seen considerable 

success in various applications, (Hou, Aldrich, Lepkova, Machuca, & Kinsella, 

2016; Souza, Silva, & Batista, 2014; Webber Jr, Marwan, Facchini, & Giuliani, 

2009), it suffers from two drawbacks when used as a means to generate 

features of predictors for generalized time series analysis. First, thresholding 
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the plot results in a loss of information, which may be important in subsequent 

analysis. Second, powerful as they are, RQA features are essentially hand 

crafted and may not be the optimal features required for a given analysis.  

One of the logical thoughts in addressing these limitations in RQA is to 

eliminate the incorporation of the threshold value in constructing recurrence 

plots. Although the use of so-called “unthresholded recurrence plots (UTRP)” 

has recently been proposed (Sipers, Borm, & Peeters, 2011, 2017),  the 

utilisation and full implementation is limited as yet, as there is still no well-

established quantification method that can be employed to describe the 

features of the recurrences contained within these plots In fact, some 

researchers like Acuña-González, García-Ochoa, and González-Sánchez (2008) 

for example, mention the lack of analytical means explicitly as a reason for not 

using unthresholded recurrence plots. This challenge has motivated the 

development of the proposed method in this thesis. 

1.3 Recurrence Texture Analysis: A Novel Method in 

Characterising the Recurrence 

One could say the UTRP is basically just a distance matrix since each 

element is not compared to a threshold value nor transformed into binary 

form. In fact, the idea of UTRP has been known for quite some time, especially 

in the context of nonlinear data analysis.  

UTRP or distance matrix plots commonly provide noticeable elements 

even to the small variations in the distances between the recurrence points 

(Savari et al., 2017) that sometimes are not reflected in the thresholded 

recurrence plots. While this becomes a significant advantage of UTRP, this is 

not commonly exploited, mainly due to its difficulty in quantifying the 

recurrence features contained in the plot. There is at present no established 
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method that can be employed to extract useful features in UTRPs, since RQA 

is only applicable to thresholded RPs. 

A basic idea that motivated the development of this thesis is that the 

recurrence plot, whether thresholded or not, can also be viewed as a texture, 

the nature of which is determined by the recurrence or repetition of patterns 

in the time series data. This means that a time series, as represented by a 

distance matrix, can be characterised by examining the texture of recurrences. 

For it to make sense, these textures could be extracted for further analysis, 

which could be possible through the use of several texture modelling 

techniques.  

Texture modelling, as commonly used in image analysis and computer 

vision, is considered a novel approach on studying dynamic systems. 

Literature reviews suggested that the incorporation of texture in analysing the 

distance matrix of the time series, and hence of the structure of dynamical 

systems is not well established yet.  

Moreover, the encoding of time series into images allows one to take 

advantage of recent developments in state-of-the-art algorithms in image 

analysis. This includes, in particular, the deep convolutional neural networks 

that are currently enjoying massive interest among researchers and 

developers, owing to their proven ability to quantify discriminative textures 

are also considered an innovative approach for time series analysis.  

The use of recurrence texture analysis explored in this thesis therefore 

aims to take advantage of the fact that the behaviour of time series data can be 

expressed as textures in distance matrices derived from these data. In tandem 

with this, it also aims to explore the use of deep neural networks to quantify 

these textures and hence the behaviour or dynamics of the time series data.  
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1.4 Objectives 

The general aim of this study is to evaluate the applicability of the 

recurrence texture analysis in characterising dynamic process systems and 

subsequent analysis of their dynamic behaviour. 

This main objective will be achieved by the accomplishment of the 

following tasks: 

 The analysis of the method and its performance in analysing 

time series by: 

o extraction of texture features of distance matrix plots 

using several textural extraction algorithms, including those 

based on the use of pretrained deep convolutional neural 

networks 

o evaluation of the influence of parameters of the 

methodology, specifically the window length and type of 

distance metric used on the overall performance of the method. 

o comparison of results to other approaches, particularly 

the use of RQA features, from which this approach is derived. 

 The application of the method in dealing with time series 

analysis typically associated with applications in the process industries, 

namely: 

o time series classification of benchmark data sets 

o application of the proposed method to real datasets such 

as in grinding circuits and solids processing time series data 

 Assessment of the performance of dynamic process monitoring 

systems derived from the method, via: 

o application of the method on simulated data and a 

benchmark process engineering dataset 
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o comparison of the results to other related approaches. 

1.5 Scope 

The thesis, as a whole, is a proof-of-concept study of the proposed 

method, which is mostly concentrated on the evaluation of the method as a 

viable tool in analysing the structures of dynamical systems. In particular, 

although other benchmark datasets are used, the thesis is comprehensively 

focused on the evaluation of the method to dynamic process systems. 

This thesis involves applying the method to time series classification 

employing RTA as data preprocessing method, and dynamic process 

monitoring or fault detection, using actual data sets, simulated and 

benchmarked datasets and public data sets. The thesis primarily focuses on 

applications to minerals engineering time series and consequently on the 

understanding of the nonlinear and dynamic behaviour of minerals 

processing datasets, such as in grinding circuit. In terms of texture modelling, 

the algorithms used to extract textures are limited to texture classification 

algorithms, hence, this specifically excludes spectral feature extraction and 

regression. 

Ultimately, this thesis does not constitute an end-product that is all set 

for application in a real scheme. Rather, this work contributes towards the 

long-term goal of developing more effective methods that deal with nonlinear 

and dynamic behaviour of systems. 

1.6 Outline of Thesis 

This thesis is organised as follows: In Chapter 2, literature review on the 

unthresholded and thresholded recurrence plots and the time series analysis 

based on these plots are presented. Following this, in Chapter 3, the analytical 



 

7 

 

methodology is formalised and explained, including the general approach and 

the texture analytical algorithms considered in the investigation. Subsequent 

chapters deal with the application of the methodology, i.e. Chapter 4 details 

the results of the preliminary study of the method using simulated time series. 

The influence of parameters involved in employing the proposed method are 

studied in this chapter and the results are compared to RQA. In Chapter 5, the 

method is applied to time series classification on publicly available and 

simulated time series data sets. In Chapter 6, the dynamic behaviour of 

powder flow and autogenous mills are characterised using the method. In 

Chapter 7, the method is used as a framework for dynamic process monitoring 

based on the use of principal component models. Finally, Chapter 8 closes with 

the most important conclusions and recommendations from the study.  
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2. RECURRENCE IN DYNAMICAL SYSTEMS 

2.1 Recurrence Plots 

The recurrence plot (RP) is a graphical representation of recurrent 

patterns in a time series. First introduced by Eckmann (1987), the RP can 

visually describe the recurrence characteristic of many dynamical systems. It 

is a two-dimensional squared binary matrix wherein both axes represent time 

which is based on the distance measured. Formally, the recurrence matrix R 

of state �⃑� can be obtained using two time i and j along a phase space trajectory 

such that: 

 𝑹𝒊,𝒋 = 𝚯(𝜺 − ‖�⃑⃑⃑�𝒊  − �⃑⃑⃑�𝒋 ‖) ,            i , j = 1, 2, 3, … N (2-1) 

where N is number of states under consideration, 𝜺 is the threshold 

distance, ‖ ∙ ‖ is the norm in the phase space and 𝚯 is the Heaviside step 

function (Marwan, Kurths, & Foerster, 2015; Schultz, Spiegel, Marwan, & 

Albayrak, 2015). Since the recurrence matrix R is a binarised matrix, the RP is 

then plot using two different colours (i.e. black and white). That is, at 

coordinates (i,j), if 𝑹𝒊,𝒋 = 1, a black dot is drawn as opposed to a white dot if 

𝑹𝒊,𝒋 = 0. Further, the RP always contains a black main diagonal line that 

correspond to 𝑹𝑖,𝑗 = 1|𝑖=1
𝑁 . The diagonal line is commonly referred to as the 

line of identity (LOI). It is important to note that RP generally exhibits 

symmetry with respect to LOI ( 𝑹𝑖,𝑗 = 𝑹𝑗,𝑖). In some cases, although it is not 

required, a phase space reconstruction is carried out in constructing RPs, 

which requires embedding the data to other phase space using embedding 

parameters (e.g. time lag, embedding dimension). 

Based on eqn (2-1) , RP is dependent on the type of norm ‖ ∙ ‖ and 

threshold distance 𝜺. These factors and parameters should always be taken 
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into account when generating RP. In the next subsections, the emphasis on the 

effect of these parameters are discussed in detail.  

2.1.1 The Choice of Norm 

From a theoretical point of view of RPs, the choice of norm is deemed to 

be insignificant. However, it is not the case when it comes to practical purposes 

as the visual characteristic of RPs could change for different norms (Bradley & 

Mantilla, 2002). This is attributed to the fact that the choice of norm (‖ ∙ ‖) 

dictates its structure brought about by the different shapes of neighbourhood.  

 

Figure 2-1. Three norms for the neighbourhood with same radius: L1-norm (A), L2-

norm (B), L∞-norm (C). 

In the comprehensive review of RP made by Marwan, Carmen, Thiel, 

and Kurths (2007), three commonly used norms are considered. These are the 

L1- norm, L2- norm (more commonly known as Euclidean norm) and the L∞-

norm (also known as the Maximum or Supremum norm). As an example, for 

fixed ε, these norms generate different shapes of neighbourhood. The L∞-

norm gave the most number of neighbours, followed by the Euclidean norm 

(L2- norm), and then L1-norm. With this outcome, it is emphasised that L∞-

norm is the best option in constructing RP, mostly because of its computational 

efficiency. At some point, the Euclidean norm was also seen as a good norm 

in many studies involving RPs (Hou et al., 2016; Javorka, Turianikova, 
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Tonhajzerova, Javorka, & Baumert, 2009; Zbilut, Zaldivar-Comenges, & 

Strozzi, 2002).  

2.1.2 The Choice of Threshold Distance  

The neighbourhood size, more commonly known as the threshold 

distance, 𝜺 is another parameter of consideration when constructing RPs. A 

good value of 𝜺 has the capability of retaining more unique dynamically useful 

information while minimising the redundant information that could trigger 

misinterpretation of the features of recurrence (Schultz, Zou, Marwan, & 

Turvey, 2011). Normally, this is a user pre-defined parameter.  

The structures of RPs generally depend on how large or small the chosen 

𝜺 is. For instance, if 𝜺 is too small, recurrence structure becomes futile since no 

recurrence points are observed. On the contrary, 𝜺 being too large would result 

to a lot of artefacts and noise since the space considered is unreasonably vase 

such that every point is considered a neighbour of every other points (Marwan 

et al., 2007). With this, careful consideration is of utmost importance in 

identifying the optimal value of 𝜺.  

A number of researchers have dedicated their efforts to studying this 

parameter and some of them established several “rules of thumb” in 

selecting  𝜺. For most studies, the  𝜺 is selected based on known information 

obtained from RP and phase space. This can be grouped into three: use of 

phase space diameter, use of the standard deviation of the noise present, and 

use of RP structures (i.e. recurrence point density, diagonal line). 

For instance, in the work of Mindlin and Gilmore (1992), they used an 

estimate of  𝜺 by determining a few percent of the diameter of the attractor 

using its minimum and maximum value ( 𝜺 ~ 𝟏𝟎−𝟐𝒙 {𝒎𝒂𝒙[𝒙(𝒊)] −

𝒎𝒊𝒏[𝒙{𝒊)]}). Similarly, Zbilut and Webber (1992) used a small value of  𝜺 
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relative to the noise level. In addition, they noted that the value is generally 

not be greater than 10% of the normalised mean phase space diameter. In the 

work of Schinkel, Dimigen, and Marwan (2008), they inferred that, in the 

context of signal classification and discrimination, the most acceptable 

threshold value 𝜺 is about 5% of the maximum phase space diameter. 

In the study of Thiel et al. (2002) on the effect of observational noise on 

the RPs, they found out that noise could significantly change the features and 

properties of RPs, thus observational noise should be taken into account when 

constructing RPs, particularly in threshold value. They proposed that 𝜺 should 

be at least five times the standard deviation of the observational Gaussian 

noise, σ (𝜺 > 𝟓𝝈).  

The 𝜺  can also be estimated using features obtained in RPs. For instance, 

the use of recurrence point density could approximate the value of 𝜺. A good 

value of 𝜺 is obtained if the recurrence point density is about 1% (Zbilut et al., 

2002). For (quasi-)periodic processes, the information on the diagonal 

structures of RP can also be used to estimate 𝜺. (Marwan et al., 2007) claimed 

that a good value is 𝜺 is one that could minimize the quantity 𝛽(𝜀).  

 
𝛽(𝜀) =

|𝑁𝑛(𝜀) −  𝑁𝑝(𝜀)|

𝑁𝑛(𝜀)
 

(2-2) 

where Np is the number of significant peaks in a certain density plots, Nn is the 

average number of neighbours. In other words, 𝜺 is said to be optimised when 

Np is maximised and Nn approaches Np. While this estimation works well 

especially for de-noising applications, the significant distribution of the 

diagonal lines in RP could be compromised if observational noise is present in 

the signal. To address this, the use of fixed recurrence point density and the 

use of fixed number of neighbours for every point were proposed. With the 
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fixed recurrence point density, more information is preserved, which allows 

for comparison of RPs even without undertaking time series normalisation 

prior to analysis. 

Overall, even though there are already methods and guidelines available 

in determining 𝜺, there is still no strict rule that governs in determining 

optimal 𝜺. It is still largely dependent on the user/s and the type of systems 

being considered. In this sense, 𝜺 is a drawback in RPs, and therefore 

eliminating the use of this value is a good topic to research on as it has not 

been widely explored yet. 

2.2 Unthresholded Recurrence Plots 

The so-called “unthresholded RPs” is one of the variations of RPs. 

Generally speaking, it is referred to the distance plot since these RPs does not 

require any threshold distances and did not undergo binarisation (using 

Heaviside function) (Iwanski & Bradley, 1998). To some, it is also referred to 

as global recurrence plots (Webber Jr & Zbilut, 2003). Formally, the 

unthresholded RPs 𝑹𝑖,𝑗 (𝑢𝑛𝑡ℎ𝑟𝑒𝑠)  is determined using eqn (2-3), which is 

identical to the equation used in calculating distance matrix. 

 𝑹𝑖,𝑗(𝑢𝑛𝑡ℎ𝑟𝑒𝑠) = ‖�⃑⃑⃑�𝒊  − �⃑⃑⃑�𝒋 ‖   𝑓𝑜𝑟 𝑖 = 1, 2, 3 … 𝑁 (2-3) 

where ‖ ∙ ‖ is the norm in the phase space. 

Some researchers have directed their attention to the examination of the 

unthresholded RPs on the basis of possessing and providing as much 

information and explanation on the mechanism of the considered dynamic 

system (or signal) in diverse areas, including the interpretation of financial 

time series (Addo, Billio, & Guégan, 2013), unemployment data (Caraiani & 

Haven, 2013; W.-S. Chen, 2011), electrochemical signals (Acuña-González et 
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al., 2008; Cazares-Ibáñez, Vázquez-Coutiño, & García-Ochoa, 2005), simulated 

stochastic signals (Rohde, Nichols, Dissinger, & Bucholtz, 2008) and the 

monitoring of liquid sprayed spouted beds (Savari et al., 2017). In these 

studies, interpretation of the unthresholded recurrence plots or distance plots 

of the time series data was based on visual inspection of the plots. Sipers et al. 

(2017) conducted a more analytical approach, wherein they studied the 

information content of the unthresholded recurrence plots (Sipers et al., 2011),  

as well as investigating the variation of the information when these plots are 

changed or distorted (Sipers et al., 2017). They have concluded that the 

information of the parent signal can always be represented by an 

unthresholded RPs up to an affine isometry.  

Moreover, the choice of embedding parameters, and the amount of 

frequency exhibited by the original signal dictate the extent of information that 

can be recovered from unthresholded RPs. As the re-constructability of a 

signal is dependent of the embedding parameters, they also noted that the 

issue is resolved when the embedding dimension md is equal to 1. In other 

words, the information which can be offered by thresholded RPs is identical 

to that of unthresholded ones. Additionally, in the state of reconstruction 

distortion, the information obtained from RP is in principle, different from that 

of unthresholded. To address this, they proposed the idea of multi-level 

recurrence plot (MRP) along with the assurance of high data compression rate. 

This idea sprouted from the probe of the possible phenomena when a certain 

unthresholded RP is discretised using multiple thresholds while under 

reconstruction disturbance. 

In general, critical literature review suggest that the idea of 

unthresholded RPs, and its variations, are not yet fully established. A number 

of researchers were able to provide some mathematical equations explaining 

it about it. However, none of them managed to successfully employ this 
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concept in some applications. This is mainly due to the difficulty in getting 

enough information that could holistically represent the parent signal and in 

turn be used for possible applications. This inference is therefore one of the 

areas of research that require in-depth focus from the perspective of nonlinear 

analysis. 

2.3 Analysis of Recurrence Plots 

2.3.1 Visual Interpretation of Recurrence Plots 

The form and visual features of RP can provide a representation of the 

time evolution of trajectories by a certain dynamic system. For example, as 

seen in Figure 2-2, the characteristic typology of a homogenous (or uniformly 

distributed noise) time series differs appreciably from that of periodic, drift, 

or disrupted ones. 

 

Figure 2-2. Sample RPs showing different typology: (A) homogeneous (uniformly 

distributed noise), (B) periodic (super-positioned harmonic oscillations), (C) drift 

(logistic map corrupted with a linearly increasing term), and (D) disrupted 

(Brownian motion). 

In the comprehensive work of Marwan et al. (2007), a list of typical 

visual features of RPs were presented, as summarised in Table 2-1. They also 

defined that RPs contain patterns both in large scale (commonly referred as 

typology) and small scale (commonly referred as texture). The typology gives 

global impression of the system, while the textures collectively refer to the 

single dot, diagonal, vertical, and horizontal lines present in the plot. 
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Table 2-1. Visual Interpretation of recurrence plots 

Type Pattern Interpretation 

Typology 

Homogeneity The system is stationary 

Periodic / quasi-

periodic 

Cyclic system; the time distance 

between periodic patterns 

correspond to the period; different 

distances between long diagonal 

lines reveals quasi-periodic system 

Drift (fading to the 

upper left and lower 

right corners) 

Non-stationary; the system contains 

a trend or a drift 

Disruptions (white 

bands) 

Non-stationary; some states are rare 

of far from the normal; transitions 

may have occurred 

Textures 

Single isolated points 

Strong fluctuation in the system; if 

only single isolated points occur, 

the system may be an uncorrelated 

random or even anti-correlated 

system 

Diagonal lines 

(parallel to LOI) 

The evolution of states is similar at 

different epochs; the process could 

be deterministic; if occurred beside 

single isolated points, the system 

could be chaotic 

 

Diagonal lines 

(orthogonal to LOI) 

The evolution of states is similar at 

different times but with reverse 

time, sometimes an indication for an 

insufficient embedding 

Vertical and 

horizontal 

lines/clusters 

Some states are constant or are 

changing slowly over time; an 

indication of laminar states 

Long bowed line 

structures 

The evolution of states is similar at 

different epochs; with different 

velocity the dynamics of the system 

could be changing 
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2.3.2 Recurrence Quantification Analysis 

Most of the time, it is difficult to visually examine the structures of RPs. 

Furthermore, most of the applications require numerical interpretation of the 

recurrence and statistics of the key features of RPs. Thus, the recurrence 

quantification analysis (RQA) is developed. RQA is a collective term for the 

features and statistics that can be extracted and computed from RPs. The 

features generally describe and measure the complexity of the RP which are 

mostly based on the information derived from the recurrence density (i.e. 

recurrence rate), on the diagonal lines (i.e. determinism, average diagonal line 

lengths, entropy), and on the vertical line (i.e. laminarity, trapping time) (Gao 

& Cai, 2000; Marwan et al., 2007; Webber Jr et al., 2009).  Some of the RQA 

features, along with their descriptions, are listed in Table 2-2.  

Table 2-2. The RQA features, and its corresponding descriptions 

RQA Features Description 

Recurrence Rate Percentage of the recurrence points in the recurrence plot 

Determinism 
Fraction of recurrence points that form diagonal lines 

(measurement for predictability of the system) 

Entropy 

Shannon entropy of the probability distribution of the 

diagonal line length p(l) (measurement of the complexity 

of the recurrence plot with regards to diagonal lines) 

Averaged diagonal 

line length 

The mean of the lengths of the diagonal lines in RPs (often 

referred to as mean prediction time) 

Longest diagonal 

line 

Length of the longest diagonal line in RPs 

Longest vertical 

lines 

Maximal length of the vertical lines in RP (provides the 

degree of complexity of a dynamical system) 

Transitivity 

Coefficient 

Quantify the geometric properties of the attractor in the 

RPs 

Recurrence Time 

Entropy 

Quantify the extent of recurrence and is related to Persin 

dimension 
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Laminarity 
The frequency distribution of the lengths l  of vertical 

structures 

Clustering 

Coefficient 

Measures the probability that two neighbours of any given 

state are also neighbours 

Trapping Time 

Average length of vertical structures which estimates the 

mean time at which a particular system will follow a 

certain state 

Recurrence Time  
Poincaré recurrence time 1 and 2  generally detects non-

stationarity 

2.3.3 Application of texture in recurrence plots 

Even though the use of RQA has proven reliable to a wide range of 

applications (e.g. (Hou et al., 2016; Li et al., 2004; Terrill, Wilson, Suresh, 

Cooper, & Dakin, 2013), there are still studies that explore other approaches to 

describe and analyse the structures of recurrence plots. It is mostly associated 

with the characterisation of time series. One of the approaches is using the 

concept of fractal dimension in the analysis, as it is believed that fractals have 

a natural relationship to recurrence. Fractals, as initially proposed by 

Mandelbrot (1967) and generally defined as “self-similar structures observed 

repeatedly at different scales of magnitude”(Holden, Riley, Gao, & Torre, 

2013), is a mathematical concept that can be used to describe the structures of 

objects. In the study of Babinec, Kucera, and Babincova (2005), this concept is 

used to characterise the recurrence plots of both regular and chaotic systems, 

and is particularly applied in the analysis of human electrocardiogram. In their 

analysis, the recurrence plots are treated as two-dimensional images so that 

the fractal dimensions can be calculated. 

Another contemporary method is the incorporation of the concept of 

texture in the analysis of RP structure. This is motivated by the idea that RPs 

of a certain system have distinct visual texture patterns that can be used to 

analyse its structural changes and thus be used to distinguish from other RPs 
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of different systems. In essence, the method involves understanding of its 

textures, which requires extraction of textural features using several textural 

extraction algorithms that are commonly used in image analysis. Based from 

literature review, it is argued that this idea is quite novel in the research 

community as limited studies relating to it have been presented.  

In the work of Yanhua, Carmona, and Murphy (2006), the co-occurrence 

based temporal textures are extracted from the time series fluorescence 

microscope images and are used as predictors in the classification of 

subcellular location patterns. They regarded the co-occurrence based temporal 

textures as robust features as these give both temporal and spatial information 

which became the basis of attaining high classification accuracy. Similar work 

was done by  Singha, Wu, and Zhang (2017) wherein they used a combination 

of temporal features extracted from coarse resolution time series data and 

spectral  features of fine resolution data for object-based paddy rice mapping 

application. The temporal features are extracted on the Moderate resolution 

imaging spectroradiometer (MODIS) of the remote sensing of paddy rice. 

In terms of utilizing texture algorithms in studying the structures of time 

series, the study of Souza et al. (2014) can be considered the closest one. Coined 

as ‘Texture Features from Recurrence Patterns’ (TFRP), the method used 

textural algorithms to extract the features in the recurrence plots. The 

combination of all extracted features from Local Binary Pattern (LBP), Grey-

Level Co-occurrence Matrix (GLCM), Gabor filters, and Segmentation-based 

Fractal Texture Analysis (SFTA) were employed as predictors in classification 

of the UCR Time Series Archive (Bagnall, Batista, Begum, Chen, Keogh, Hu, & 

Mueen, 2015). Furthermore, TFRP was also compared to other methods they 

have previously developed. One of which is the ‘Recurrence Patterns 

Compression Distance’ (RPCD) Silva, Souza, and Batista (2013), which also use 

recurrence plots, and with the incorporation of 1-NN algorithm to estimate the 

http://www.cs.ucr.edu/~eamonn/
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similarity of the two recurrence plots via employing a video compression 

based distance measure (CK-1). From there, the comparison of the texture 

similarity between two images could be possible in RPCD using the 

Kolmogorov complexity. 

2.3.4 Application of convolutional neural network in recurrence plots 

Due to the promising results, the use of CNN has gained popularity in the 

research community. However, its application to time series analysis, 

specifically its use in texture analysis in time series images, is still in the 

infancy period as only few papers were found in this area. One of which is the 

study of Z. Wang and Oates (2015) where they proposed a framework for 

encoding time series as different types of images, i.e. Gramian Angular 

Summation/Difference Fields (GASF/GADF) and Markov Transition Fields 

(MTF), and used Tiled CNN to learn these time series images. In their study, 

the time series were represented in 2 images: the first is in polar coordinates 

transformed into Gramian matrix to form Gramian Angular Field (GAF) 

images, and the second is in Markov Transition Field (MTF) built by 

discretised Markov matrix of quantile bins. More importantly, their study 

explored the use of Tiled CNN, which uses tiles that are parameterised by a 

tile size k to control the distance over shared weights, and successfully 

achieved competitive results in terms of time series classification against other 

published methods. 

Another related study is the work of Guangliang et al. (2016) where 

they transformed physiological signals such as single-channel 

Electrooculogram (EOG) data into RPs and used CNN to extract its features. 

The CNN architecture consists of 102 x 45 size input layer, 2 convolutional 

layers, 1 max pooling layer, 2 dropout layers and 1 fully connected layers. 

Results showed that their approach attained higher accuracy against other 

methods. 
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Lastly, the study of Hatami, Gavet, and Debayle (2017) is perhaps the 

closest research work by far.  In their paper, the time series are transformed 

into grey-level texture images which is equivalent to unthresholded 

recurrence plots, and eventually used as inputs for texture extraction using 2-

stage CNN. The CNN architecture has 1-channel input of size 28 x 28 and the 

output layer with c neurons. Their proposed approach was applied in time 

series classification and achieved competitive accuracy among advanced 

algorithms. 

2.3.5 Application of texture analysis to minerals processing time series 

While the application of texture analysis in minerals processing 

including grinding and comminution circuits is not a novel idea, the use of 

texture analysis to analyse the time series data of any minerals engineering is 

a novel methodology. As far as the authors are concerned, there are still no 

published related literature that deal with the application of texture analysis 

to any minerals processing time series. Moreover, limited literature were 

found on the characterisation of nonlinear behaviour of any minerals related 

process systems that uses texture analysis and the state-of-the-art 

convolutional neural networks.  

2.4 Research Gap 

As discussed in section 2.2, unthresholded recurrence plots have mostly 

been used qualitatively in the interpretation of time series data. Nonetheless, 

in principle these plots contain more information than their binarized versions 

and if this can be quantified, it should provide a parallel and possibly more 

powerful approach to the recurrence quantification analysis. This is essentially 

what will be explored in this thesis, focusing mostly on time series applications 

in process engineering. 
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A rich framework of analytical methods can be accessed by considering 

the unthresholded recurrence or distance plots as textural images and in this 

investigation, multivariate image analysis based both on engineered features 

via the use of grey level co-occurrence matrices, wavelets, local binary patterns 

and textons, as well as learned features via the use of convolutional neural 

networks are considered.  

The steps involved in this methodology, along with the state-of-the-art 

textural feature extraction algorithms that are considered in the study, are 

described in detail in Chapter 3.  
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3. RECURRENCE TEXTURE ANALYSIS: THE 

METHODOLOGY 

3.1 Introduction 

Dynamic process systems, as usually represented by time series, are 

ubiquitous in nature. As such, it is recognized that the time series provides 

substantial information about the underlying mechanisms of these systems. 

This led to the growth of studying this kind of data, mainly on its properties 

that could be used for further characterisation. As a particular, the use of the 

patterns of recurrence inside the time series has attracted a lot of interest 

among researchers for the past years. As seen in the literature review, the use 

of this characteristic resulted to the massive studies related to it, with emphasis 

on the development of methods that could describe the data in a deeper sense, 

and on its practical applications to several scientific domains. Among these 

methods is the Recurrence plot, which is a graphical representation of the 

recurrence, and the Recurrence Quantification Analysis, which is a quantified 

counterpart of the plots. Although these have achieved considerable success, 

the methods are still encountering a number of challenges (e.g. choice of 

threshold distance, embedding parameters) for full implementation. In this 

sense, exploring alternative methods to study the recurrence patterns and 

subsequently characterise the structures of time series data is deemed 

necessary.  

In this chapter, an alternative method in capturing the dynamic 

behaviour of time series data is introduced. This is termed as Recurrence 

Texture Analysis. The general framework of this method, with detailed 

explanation of the steps involved are thoroughly discussed here. 
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3.2 Motivation 

In the research standpoint, as mentioned in the introduction, the 

complete utilisation of recurrence plots in the analysis of time series is still a 

challenge owing to several issues, particularly in the selection of threshold 

distance. One could say that the said issues would be addressed by using 

unthresholded recurrence plots (or the distance plots/ global recurrence plots) 

(Sipers et al., 2011) which is referred to the distance matrix. From now on, the 

word “distance matrix” is a collective term for unthresholded recurrence plots, 

distance plots or global recurrence plots. However, the use of distance matrix 

alone in the analysis of nonlinear time series is still in the initiation stage, 

mainly due to the insufficient methods that could be used to capture relevant 

information of the time series which are believed to contain in the matrix. 

In another note, it is acknowledged that recurrence plots (or distance 

matrix if unthresholded) contains visual patterns of recurrence, both in large 

and small scales. These patterns, especially the small scale patterns, are very 

important in analysing the structure of the data. These small scale pattern are 

also called textures. In Chapter 2, it is revealed that the concept of texture in 

the context of dynamic system is quite a novel theme in research community 

especially the convolutional neural network. It is in this view that this thesis is 

inspired: to incorporate the concept of texture analysis in analysing dynamic 

system, particularly by use of distance matrix to represent time series. In other 

words, this thesis believes that the time series data, as transformed into 

distance matrix, contain recurrent behaviour that are governed by a well-

defined texture descriptors which can be extracted by use of texture analysis 

algorithms. As a consequence to this, the recurrence texture analysis is then 

developed and proposed here. 
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Another important motivation in this research is the consideration of 

deep convolutional neural network in application to process engineering, and 

to time series analysis in general. Specifically, the use of pretrained CNNs, i.e. 

AlexNet and VGG16, are explored here as contemporary feature extraction 

algorithms to distance matrices that were not initially part of its trained 

images. Lastly, this is also motivated by extending the application of RTA to 

dynamic process monitoring and to its real case application such as in grinding 

circuit and solids processing. 

3.3 Recurrence Texture Analysis 

Recurrence texture analysis (RTA) is a synthesis of two entirely different 

fields: textural analysis and non-linear time series analysis. The concept of 

textural analysis is widely used in machine vision, particularly in image 

analysis whereas the concept of non-linear time series analysis is a broad field 

of study that is originated from the theory of dynamical systems. The use of 

the idea of recurrence inside the data, which triggered the conception of 

recurrence plot analysis, is just a part of a bigger field. This is where the 

proposed method belong.  

This method focuses on capturing the structure of the time series data by 

means of extracting texture features from the distances between 

measurements over time, commonly exemplified by distance matrices. This is 

achieved through analysis of the structure of the data during discrete periods 

of process observation. The general overview of this method is presented in 

Figure 3-1. 

From the definition, RTA requires segmentation of the parent time series 

data into several discrete time series using the windowing parameters. It 

should be noted that the embedding of data can also be incorporated in the 
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method. However, for ease of evaluation, the embedding parameters are set 

always to unity (𝝉 , md=1) throughout the analysis. 
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Figure 3-1. Schematic workflow of the study, comprising the time series data (A), 

segmentation of the data (B), calculation of distance matrix for each time series 

segment (C), and extraction of texture features from each matrix (D). 

The method also requires calculation of distance matrix from these 

discrete time series data. The distance matrix uses distance metric (distance 

measure or similarity measure).  The most common distance metric (also used 

here frequently) is the Euclidean distance, although other distance metrics 

could also be considered (e.g Chebychev, Mahalanobis) as part of the 

optimisation study of the method. Then, the distance matrices are then 

visualised and the textures of the recurrence patterns are analysed. In the 

textural analysis, the information of the textures are extracted using RTA 

algorithms namely GLCM, wavelet, LBP, textons, CNN-AlexNet, and CNN-

VGG16, which are all discussed in this chapter. The extracted information are 

then termed as “feature matrix”, which consequently be used as predictors for 

analysis and other applications. 

3.3.1 Segmentation of the time series 

In this paper, the term “segmentation of time series” refers to the process 

of splitting-up or partitioning the parent time series into several discrete time 

series (termed as segments). The segmentation entails windowing parameters, 

viz. window width (b) and sliding step (m), which would define the dimension 

of the segments.  For the window width b, this parameter is estimated using 

the autocorrelation function. In essence, each segment of discrete time series 

having a width of b should contain the dynamic behaviour of the parent time 

series. More formally, given a time series Y(t) and its lagged counterpart Y(t + 

b), the b is obtained using the eqn (3-1). 
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𝑚𝑖𝑛𝑏(𝐴𝐶𝐹) =  

1

(𝑁 − 𝑏)𝜎2
∑{(𝐘(𝑡) − �̅�)(𝐘(𝑡 + 𝑏) − �̅�)}

N−b

𝑏=1

 
                    

(3-1) 

where �̅� and 𝜎2 are the mean, and standard deviation of the time series 𝐘(𝑡), 

respectively, and N is the number of observations in the time series. 

It should be noted that the value of b should be chosen carefully as it is 

usually dependent on the kind of structural changes the researchers are being 

investigated. Large value of b would correspond to inefficient detection of the 

change in the system. On the contrary, too small value of b would normally 

cause incorporation of outliers which subsequently detected as a structural 

change, thus giving false interpretation of the data (Auret & Aldrich, 2010). 

The sliding step m, on the other hand, dictates the steps on the movement 

of the window. Generally, there are three kinds of windowing approach, viz., 

moving, stationary or fixed, and progressive. Moving window is performed 

when the sliding step is less than window width (m<b). When m=b, fixed 

windowing is done. It is where the segments do not overlap with each other. 

Progressive windowing, on the other hand, is a multiscale type of windowing 

wherein the sliding step is progressively increasing. This computation is very 

expensive, thus it is less preferred. Normally, the choice of the sliding step m 

should be as small as possible. However, it should be noted that the selection 

of m is a trade-off between the information being explained and the 

computational efficiency. Using too small m is computationally expensive. 

Moskvina and Zhigljavsky (2003) remarked that a reasonable value of this 

parameter should be at half of the window width (m=b/2) to give a reliable 

capture on the information of the time series.  

Once the windowing parameters (b, and m) are defined, the parent time 

series are then segmented into N number of segments. Each of this segment 
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contain b elements. In general, given a time series ∈ ℝ𝑛x𝑐 , where n and c are 

the number of rows (sample size or observations) and the number of columns 

(variables or dimensions), respectively and using the defined windowing 

parameters, b and m, a set of N segments, denoted by 𝐋𝑖 ∈ ℝ𝑏x𝑐 for 𝑖 = 1,2, … 𝑁, 

is obtained. The value of N is can be computed according to eqn (3-2). 

 
𝑁 = 𝑅𝑜𝑢𝑛𝑑 𝑑𝑜𝑤𝑛(

𝑛 − 𝑏

𝑚
+ 1)           (3-2) 

In this step, it should be noted that the time series is preferred to be in 

normalised form to avoid misinterpretation of the results. Moreover, since the 

method requires equally divided segments, the remainder of the segments that 

do not have lengths equal to 𝑏 are removed and disregarded in the analysis. 

3.3.2 Calculation of distance matrix 

The distance metric plays an integral part in Recurrence Texture Analysis 

since this will give some knowledge on the shape of the data and will quantify 

the distances of any points in the time series, which eventually led to the 

establishment of recurrence patterns. The calculated distance measurements 

are transformed into matrix called distance matrix and is plotted for analysis. 

To recall, RTA is a variation of an analysis of recurrence plot, which is 

constructed using threshold distance 𝜀, and a norm ‖ ∙ ‖. With RTA, the use of 

threshold distance is omitted, which makes it only dependent on the norm 

‖ ∙ ‖. This norm is now referred to as distance metric. In the review paper of 

Marwan et al. (2007) where they considered three commonly used norms (i.e. 

L1- norm, L2- norm or the Euclidean norm and the L∞-norm or the Maximum 

norm), it is noted that the L∞-norm is preferred due to its high computational 

efficiency. Interestingly, the L2- norm (Euclidean norm) is seen to be a popular 

alternative and has gotten a number of successful applications using this.  
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It is noted that in mathematics, the terms “norm” and “distance” are 

different and should not be used interchangeably. A norm refers to a function 

of one element which is the length of a vector, while distance refers to a 

function of two elements which is the length of the line segments connecting 

these two elements. As a particular, the Euclidean distance uses Euclidean 

norm (L2 norm) to calculate the proximity of a given point xi from another 

point xj to form a distance square dij using the equation below. 

 
𝑑𝑖𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖

2
 

 

(3-3)                    

In contrast, Chebyshev distance uses Maximum norm (L∞-norm) to 

define two points (i.e. 𝑥𝑖 , 𝑥𝑗) where their distance is the maximum of their 

differences (refer to eqn (3-4)). 

 𝑑𝑖𝑗 =  max {‖𝑥𝑖 − 𝑥𝑗‖}     (3-4)                

Generally, the Euclidean distance and Chebyshev distance are both 

derived from Minkowski distance. As seen in eqn (3-5), the formula is equal to 

Euclidean distance when Minkowski distance has p=2. Similarly, Minkowski 

distance takes form the Chebyshev distance when p=∞. 

 

𝑑𝑖𝑗 =  √ ∑ ‖𝑥𝑖 − 𝑥𝑗‖
𝒑

𝑛

𝑖,𝑗=1

𝒑

  (3-5)                

Considered as vital component in the method, the selection of distance metric 

should always be taken into consideration. Thus, studying the effect of 

distance metrics as part of optimisation of the method should be made. A 
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dedicated discussion of this, along with the results, are presented in the 

Chapter 5. 

Nevertheless, regardless of the type of distance metric, a symmetric 

distance matrix in a square form is constantly obtained. This distance matrix 

is computed using each of the points from the segmented time series. In other 

words, given a set of segments Li for i=1, 2, 3…N, and using an appropriate 

distance matrix, each of the segments would take form as distance matrices Di 

for i=1, 2, 3…N, correspondingly after calculation. Once done, it is necessary 

to plot these distance matrices for visual inspection and texture analysis. 

Samples for the distance matrix plots are shown in Figure 3-2. 

 

Figure 3-2. Samples of the distance matrices showing the different structures 

for different classes 

3.3.3 Texture Feature Extraction 

After plotting the distance matrices, the recurrence patterns are then 

analysed. In RTA, several texture extraction methods are employed to 

quantify the texture information present in the distance matrices. In principle, 

these textural features are the numerical representation of the recurrence 

exhibited in each discrete time series, and in the whole parent time series, in 

general. Furthermore, these textural features would serve as predictors in 

analysing the structures of time series, and to other applications, particularly 

in data mining tasks. 
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In this thesis, six textural feature algorithms, which are discussed in 

detail in the next sections, are considered here. These are: 

 Grey-level co-occurrence matrix (GLCM) 

 Wavelet transforms 

 Local Binary Patterns 

 Textons 

 AlexNet 

 VGG16 

It should be noted that the full optimisation of the algorithms (i.e. 

hyperparameters optimisation) is beyond the scope of the study. Although, to 

some extent, this contributes to the overall performance and robustness of the 

proposed method, this is however, less prioritised. In the testing of the 

method, most of the time, the default hyperparameters for these algorithms 

are used. Furthermore, not all algorithms are considered in some studies. In 

one way or another, at least one algorithm is only used during the evaluation 

study of the method to several applications. In time series classification, 

however, these algorithms are all utilised, and their hyperparameters were 

optimised. 

As summarised in Table 3-1, most of the features are extracted using a 

combination of these hyperparameters of the techniques using the default 

values. 

Table 3-1. Hyperparameters of the texture extraction algorithms used in the study 

Algorithm Hyperparameter Default values No. of 

Features 

GLCM Number of grey levels 32 

8 Distance 1 

Directions (degrees) [0, 45, 90, 135] 
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Wavelet Type of wavelet Daubechies (db4) 

9 Level of wavelet 

decomposition 

3 

Local Binary 

Pattern 

Radius of circular local 

pixel neighbourhood 

(R) 

1 

256 No. of sampling points 

in the pixel 

neighbourhood 

8 

Map Type No mapping 

Texton Filter Name Schmid 

40 Filter Size 49 

No. of cluster centers 40 

AlexNet 

No. of Convolutional 

Layer 
5 

4096 

No. of Pooling Layer 3 

No. of Fully Connected 

Layer 
3 

Image Resolution 

(pixel) 
[256 x 256] 

VGG16 

No. of Convolutional 

Layer 
13 

4096 

No. of Pooling Layer 5 

No. of Fully Connected 

Layer 
3 

Image Resolution 

(pixel) 
[224 x 224] 

Once extracted, the features or textural descriptor variables extracted 

from the distance matrices of the time series are aggregated into a feature 

matrix 𝐗 ∈ ℝ𝑁 x 𝐹, where 𝑁 is the number of time series segments, and 𝐹 is the 

number of features depending on the type of algorithms used. In other words, 

the time series matrix 𝐘 ∈ ℝ𝑛 𝐱 𝑐 is converted to a data matrix with dimensions 

𝑁 ≪ 𝑛 and 𝐹 ≫ 𝑐. 
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Some of the works have combined features from two algorithms so that 

more influential texture descriptors can be generated. For instance, in the 

process monitoring study, the GLCM features (𝐺𝐿𝐶𝑀) and wavelet features 

(𝑊) are combined, thus 𝐹 = 𝐺𝐿𝐶𝑀 + 𝑊. 

3.3.4 Data Analysis 

In the context of data analysis, the extracted RTA features are treated as 

predictors to several models, depending on the type of applications being 

considered (e.g, data visualisation, classification, fault detection). As such, this 

requires some of the techniques used in data analysis including 

dimensionality reduction and machine learning techniques. In this subsection, 

those methods that we used in this thesis are discussed in detail. 

Principal Component Analysis 

Principal component analysis (PCA) is one of the most common and 

powerful tools in dimensionality reduction and feature extraction. The 

common goal of this technique is to produce a set of uncorrelated variables or 

components which will represent the variance information of the original 

variables. This is done by projecting the data in a reduced hypersphere that is 

defined by orthogonal vectors called principal component (PC) (Ballabio, 2015; 

Jiang & Yan, 2014). 

In general, PCA works by decomposing an autoscaled data matrix 𝑿 ∈

ℝ𝑁 𝐱 𝑚 into a score matrix 𝑻 ∈ ℝ𝑁 𝐱 𝑘, a loading matrix 𝑷 ∈ ℝ𝑚 𝐱 𝑘 and a residual 

matrix E, where N and m are the number of samples and number of variables 

in a certain data set, respectively, and k is the number of PCs retained. It can 

be written as: 

 𝑿 = 𝑻𝑷𝑻 + 𝑬  (3-6) 
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The k number of PCs retained can be determined through several 

methods. One of which is by cumulative percent variance (CPV) method 

where the first k PCs that represent the major variance information of the 

original data are selected (Jiang & Yan, 2014). It can be formulated as 

 
𝐶𝑃𝑉(%) =

∑ 𝜆𝑖
𝑘
𝑖=1

∑ 𝜆𝑖
𝑚
𝑖=1

𝑥100%  (3-7) 

where 𝜆  is called the eigenvalues, which is the variance of score matrix. 

However, there is no strict rule on how many percent variance is acceptable 

for the k PCs could be retained. 

Linear Discriminant Analysis 

The linear discriminant analysis (LDA) is one of the extensively studied 

and most popular methods used in classification problems and dimensionality 

reduction ((Safo & Ahn, 2016)). In this method, the continuous variables that 

could discriminate the classes are determined. It handles the case where the 

within-class frequencies are unequal. This also provides maximal class 

separability by maximizing the between-class over within-class variances in a 

particular set of data.  

Formally, suppose there is a given data matrix X∈ ℝ𝑁 𝐱 𝑚 of N samples in 

m-dimensional space, then LDA searches for maximum separability via 

looking through a transformation �̇� that maps the matrix X into a lower-

dimensional latent variable f. That is: 

 𝑓 = �̇�𝑇𝑿 + 𝐵 (3-8) 

where B is referred to as a bias term.  

In general, the l- dimensionality of f is satisfied using the eqn (3-9). 
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 𝑓𝑙 = 𝑟 − 1 (3-9) 

where r is the number of classes in the data set.  

Gaussian Mixture Model 

The Gaussian mixture model (GMM) is a probabilistic approach of 

assigning an observation to a certain cluster. Through this method, it is 

possible to fit a number of n-dimensional normal distributions to the data. By 

defining the probability of the observed data from each component 

distribution, clustering is then created. 

Generally, the GMM having K Gaussians can be defined using the 

probability density function (Yu, 2012) which can be expressed as: 

 
𝑝(𝑥|Θ) = ∑ 𝜔𝑖𝑝(𝑥|𝜃𝑖)

𝐾

𝑖=1

  (3-10) 

where 𝜔𝑖 represents the prior probability of the i-th component, and 𝑝(𝑥|𝜃𝑖) 

refers to the probability density functions of the ith component.  This  𝑝(𝑥|𝜃𝑖) 

can be further defined as: 

 𝑝(𝑥|𝜃𝑖) =
1

2𝜋𝐷/2| ∑ |1/2
𝑖

𝑒𝑥𝑝{−1/2(𝑥 − 𝜇𝑖)
𝑇 ∑ (𝑥 − 𝜇𝑖)

−1
𝑖 }   (3-11) 

where D represents the D-dimensional variable of x, 𝜃𝑖 ={μi, ∑i) is the 

probability distribution parameters of ith Gaussian component. It can also be 

noted that the 𝜔𝑖, ∑i  and μi are optimised using the expectation-minimization 

algorithm (Yu, 2012).  

The Gaussian mixture models have to be fitted with care, to ensure that 

neither underfitting (too few Gaussians), nor overfitting (too many Gaussians) 
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becomes a problem. The version of the Akaike information criterion (Akaike, 

1974) that was used to optimize the value of 𝐾, is given by eqn (3-12) (Hurvich 

& Tsai, 1989) .In this equation, the criterion 𝐴𝐼𝐶(𝚯) is minimized, given the 

Gaussian mixture model (𝚯), the probability of the sample 𝐱, given the model 

𝑝(𝐱|𝚯), the number of Gaussians (𝐾), as well as the number of samples (𝐾). 

 𝐴𝐼𝐶(𝚯) = −2 log[𝑝(𝐱|𝚯)] + 2𝐾 (
𝑁

𝑁 − 𝐾 − 1
)  (3-12) 

Support Vector Machine 

The support vector machine (SVM) is a supervised learning method 

where the maximal margin hyperplane is achieved, and the distance from the 

hyperplane to the nearest data points on each side is maximized (Kim, Choi, 

& Lee, 2015; Tax & Duin, 2004). More formally, in building the minimum 

hypersphere with center a, and radius R, an error function can be formulated 

as: 

 𝐹(𝑅, 𝑎) = 𝑅2 + 𝐶𝑝 ∑ 𝜉𝑖

𝑖

, 𝑖 = 1, … , 𝑁 (3-13) 

where 𝜉𝑖 is the slack variable and Cp is the controlling parameter.  However, 

to construe that almost all objects are within the hypersphere, the constraints 

should also be defined as referred to eqn (3-14).  

 ‖𝑥𝑖 − 𝑎‖2 ≤ 𝑅2 + 𝜉𝑖, 𝜉𝑖 ≥ 0, ∀𝑖 (3-14) 

 It is noted that the controlling parameter Cp dictates the adjustment 

between the volume of the hypersphere and the errors. With the maximization 

of the corresponding primal Lagrangian, equation (3-15) could be transformed 

to function L as defined in eqn (3-15). 
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 𝐿 = ∑ 𝛼𝑖(𝑥𝑖 ∙ 𝑥𝑖) − ∑ 𝛼𝑖𝛼𝑖

𝑖,𝑗𝑖

(𝑥𝑖 ∙ 𝑥𝑗) (3-15) 

which has a constraint of 0 ≤ αi ≤ Cp and i=1,…, N. Thus, for a given test object 

z, the object is accepted if the calculated distance to the center of the sphere is 

smaller or equal than the radius R. This is better understand in eqn (3-16). 

 ‖𝒛 − 𝑎‖2 = (𝒛 ∙ 𝒛) − 2 ∑ 𝛼𝑖(𝒛 ∙ 𝑥𝑖)

𝑖

+ ∑ 𝛼𝑖𝛼𝑗(𝑥𝑖 ∙ 𝑥𝑗)

𝑖,𝑗

≤ 𝑅2 

(3-16) 

where i, j =1,…, N . 

The kernel function K (xi, xj) can also be incorporated in SVM. It can 

simply be substituted into the inner products in eqn. (3-17) with a pre-defined 

function mapping ψ ( . ). Having said this, it could be written as:  

 ‖𝜑(𝒛) − 𝑎‖2 = 𝐾(𝒛 ∙ 𝒛) − 2 ∑ 𝛼𝑖𝐾(𝒛 ∙ 𝑥𝑖)

𝑖

+ ∑ 𝛼𝑖𝛼𝑗𝐾(𝑥𝑖 ∙ 𝑥𝑗)

𝑖,𝑗

≤ 𝑅2 
(3-17) 

Note that the kernel function should first satisfy Mercer’s theorem. 

3.4 Grey Level Co-occurrence Matrix 

The grey-level co-occurrence matrix (GLCM) is a well-established 

statistical-based method in examining the texture of an image. Proposed by 

Haralick in 1970s, GLCM is a measure of frequency of the combinations of 

pixel brightness values occuring in an image. It has been widely used in 

information theory, such as in image analysis, e.g. (Jemwa & Aldrich, 2012; 

Kistner, Jemwa, & Aldrich, 2013), in seismic signal interpretation (Eichkitz, 
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Amtmann, & Schreilechner, 2013), and in medical sciences (e.g. (Kovalev, 

Kruggel, Gertz, & Cramon, 2001)), among others. In principle, GLCM provides 

features that are based on the spatial interrelationships of the images pixels at 

which the grey levels occur at a specified displacement (d) and angle (θ) from 

each other. Thus, the direction, adjacent interval and amplitude variation of 

an image (I) with grey levels i and j can then be determined as exemplified in 

eqn (3-18) (Ou, Pan, & Xiao, 2014).  

The GLCM could actually extract up to 14 GLCM features or the Haralick 

set, with energy (ENE), contrast (CON), correlation (COR), and homogeneity 

(HOM) being the most popular GLCM features. These features are usually 

computed over four different orientations, viz. 0°, 45°, 90° and 135°. 

3.4.1 GLCM Calculation 

To further understand how GLCM works, the methodology behind 

GLCM calculations are described in this subsection. Generally, prior 

extracting GLCM features, several calculations are performed, which could be 

divided into three: scaling, image transformation to GLCM image, and 

normalisation. Furthermore, since the GLCM of an image is a function of its 

orientation (i.e. 00, 450, 900, 1350), it is indeed possible to calculate more than 

one GLCM for each image. In fact, Haralick (1979) and others used to calculate 

GLCM for four different displacements, viz., 00, 450, 900, 1350 with a constant 

number of grey level (G). 

  In the scaling process, the image (I) is first converted to a greyscale 

image 𝐼𝐺  which is commonly referred to as 8-bit images with (28 = 256) pixel 

 
𝑃(𝑖, 𝑗, 𝑑, 𝜃) = ∑ ∑{

1, 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + 𝑑 cos 𝜃, 𝑦 + 𝑑𝑠𝑖𝑛𝜃) = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑚

𝑦=0

𝑛

𝑥=0

 (3-18) 
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intensities or grey levels, 𝑔 ( 0 ≤ 𝑔 ≤ 255, 𝑔 ∈ ℝ). The number of grey levels 

(G) is then selected to scale this greyscale image 𝐼𝐺  and subsequently compute 

the GLCM. It should be noted that this parameter is an important factor which 

directs the computational time and the trade-off between the noise reduction 

and the loss of original image information (Clausi, 2002), thus this should be 

optimised. Usually, the G = 8 is used in most GLCM computation. Using the 

eqn (3-19), the scaled greyscale image 𝐼𝑠𝑐 having n x m matrix is then 

computed. 

 𝐼𝑠𝑐 =
𝐼𝐺 −  𝑔𝑚𝑖𝑛

𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛 + 1
 (3-19) 

where 𝑔𝑚𝑖𝑛 refers to the minimum grey level and 𝑔𝑚𝑎𝑥 refers to the maximum 

grey level in the image I. To compute for the GLCM image (𝐼𝐺𝐿𝐶𝑀), a flooring 

operator [. ] is used as shown in the equation below. 

where J is a n x m matrix containing all ones. In turn, 𝐼𝐺𝐿𝐶𝑀 is also a n x m matrix 

containing grey levels 1 ≤ 𝑔 ≤ 𝐺, 𝑔 ∈ ℝ. Once computed, the GLCM is then 

normalised so that the sum of its element should equal to 1 (Kistner, 2013). 

In GLCM, the calculation uses pixel pairs as the pixel neighbourhood. In 

other words, each entry in the GLCM (�̂�𝑖,𝑗) corresponds to the number of 

occurrences where the grey level pair (𝑔𝑖, 𝑔𝑗) is seen in the image for a 

particular displacement (d). For example as shown in Figure 3-3 considering a 

5 x 5 image for a particular displacement d = (0,1) with G = 4, the 4 x 4 GLCM 

is then computed. The entries in the GLCM matrix are the number of times 

that a particular pixel pair has occurred in the image. For instance, the pixel 

pair (1,1) is only found once in the image, thus giving a value of 1 in the GLCM. 

 
𝐼𝐺𝐿𝐶𝑀 = [𝐼𝑠𝑐𝑥 𝐺] + 𝐽 

                        

(3-20) 
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In contrast, the pixel pair (2,1) has occurred twice in the image, thus giving a 

value of 2 in the GLCM. Same goes for other entries. It is also noted that the 

ordering of grey levels (i.e. (2,1) ≠ (1,2)) in this example was considered, thus 

giving a non-linear symmetric matrix. However, it is also possible to disregard 

the ordering, which in turn yields a symmetric co-occurrence matrix.  

 

Figure 3-3. Illustration showing the GLCM calculation 

As mentioned elsewhere, the normalisation of GLCM, given in eqn 

(3-21) is implemented after the calculation so that the GLCM is transformed 

into a probability matrix of joint pixel occurrences. 

 �̂�𝑖 =
𝑃𝑖

∑ 𝑝𝑖,𝑗𝑖,𝑗
    (3-21) 

where �̂�𝑖 is the normalised form of 𝑃𝑖, and 𝑝𝑖,𝑗 is the entry in (i,j). 

3.4.2 GLCM Features 

GLCM features are extracted using the normalised GLCM matrix. Most 

of the works that use GLCM use the Haralick features. The Haralick features, 

as popularised by Haralick (1979), are said to contain strong features that 

could characterise the texture of an image. It originally consisted of 14 features 
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but was eventually reduced to 5, due to its high correlation to other features. 

These 5 features are energy, entropy, contrast, correlation and homogeneity. 

However, in the study of Clausi (2002), the energy and entropy were 

ascertained to be highly correlated as both of these features provide 

information on the uniformity of the GLCM. Accordingly, the entropy can 

then be removed from the feature set.  

Energy is considered as an angular second moment. It measures the 

uniformity of the GLCM. On the other hand, contrast provides the inertia or 

the variance of the average grey level between pixel neighbours. Meanwhile, 

correlation is somewhat similar to contrast since this also measures variance. 

However, correlation describes the differences of a pixel from its neighbour 

with respect to the whole image. Moreover, it uses the mean and standard 

deviation of the GLCM in the computation. Lastly, the homogeneity compares 

the distribution of elements in the GLCM to that of the GLCM diagonal 

(Kistner, 2013). These features are usually computed over four different 

orientations 0°, 45°, 90° and 135°, and their equations are shown in eqns (3-22) 

- (3-25). 

 
𝐸𝑁𝐸 = ∑ �̂�𝑖,𝑗

2

𝑖,𝑗

 
                    

(3-22) 

 𝐶𝑂𝑁 = ∑|𝑖 − 𝑗|2 �̂�𝑖,𝑗

𝑖,𝑗

 (3-23) 

 
𝐶𝑂𝑅 = ∑

(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)�̂�𝑖,𝑗

𝜎𝑖𝜎𝑗
𝑖,𝑗

 (3-24) 

 
𝐻𝑂𝑀 = ∑

�̂�𝑖,𝑗

1 + |𝑖 − 𝑗|
𝑖,𝑗

, (3-25) 
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where �̂�𝑖,𝑗 represents the entry in row 𝑖 and column 𝑗 of the normalised GLCM 

�̂�𝐼, while 𝜇𝑖 and 𝜎𝑖 are the respective mean and standard deviation of the i-th 

row of the GLCM,  and 𝜇𝑗 and 𝜎𝑗 are the mean and standard deviation of the 

j-th column of the GLCM.  

3.5 Wavelet Transforms 

The wavelet transform is a powerful signal and image processing tool 

that is based on mathematical functions which uses a so-called wavelet. 

Properties for real-world signal analysis such as space-scale localisation, 

multiresolution, sparse representation and efficient computation are some of 

the attributes wavelet transforms possess, making this algorithm suitable for 

signal and image processing tasks. There are several recurrent families of 

wavelet transform such as Haar, Daubechies, and Symlet transforms, among 

others. However, several studies have shown that the Daubechies wavelets are 

best used when dealing with signal and image processing tasks (Ruiz de la 

Hermosa González-Carrato, García Márquez, Dimlaye, & Ruiz-Hernández, 

2014).   

The concept of wavelet transform is brought about by the quest for a 

solution on the futility of Fourier transform to deal with non-stationary 

signals. Most of the time, its form is regarded as either continuous or discrete 

wavelet transform. 

3.5.1 Continuous wavelet transform 

The continuous wavelet transform (CWT) analyses the signal using 

wavelets, 𝜓 as analysing function. This wavelet is initially directed to 

transform through dilation or scaling, which involves shifting, compression or 

expansion of the function. Once already transformed, it is then compared to 
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the signal and the similarity between the two signals are then measured. More 

formally, CWT can be written as: 

 𝑊(𝑠, 𝜏) = ∫ 𝑥(𝑡)𝜓𝑠,𝜏
∗ (𝑡)𝑑𝑡 (3-26) 

where 𝑊(𝑠, 𝜏) is an integral of the transformed function of x(t), which is a 

signal in the time domain multiplied by a conjugate transposition of the 

wavelet 𝜓𝑠,𝜏. The expression 𝜏 and s represent the translation and scales of the 

signal, respectively.  

In multi-resolution analysis, the mother wavelet 𝜓 is allowed to 

decompose into different wavelets using varying scales, s and translation, 𝜏 

(Kistner, 2013). The decomposition is exemplified  by eqn (3-27). 

 𝜓𝑠,𝜏(𝑡) =
1

√𝑠
𝜓 (

𝑡 − 𝜏

𝑠
) (3-27) 

CWT can also be discretised by sampling the scale using a uniform 

sampling rate. In this sense, heavy computation could be addressed. 

Furthermore, when the sampling rate is non-uniform, the transform will then 

referred to as discrete wavelet transform. 

3.5.2 Discrete wavelet transforms 

Discrete wavelet transform (DWT) (Croisier, 1976) can be generated by 

sampling the translation-scale plane at non-uniform rate. More formally, DWT 

is: 

 
𝜓𝑗.𝑘(𝑡) =

1

√𝑠0
𝑗

𝜓 (
𝑡 − 𝑘𝜏0𝑠0

𝑗

𝑠0
𝑗

) (3-28) 
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where 𝑠0 and 𝜏0 are constant scaling and translation factors respectively. 𝑠0
𝑗
 

and 𝑘𝜏0 are the new scale and translation factors of the discrete wavelet, while 

𝑗 =1, 2, 3, … 𝐽𝑚𝑎𝑥} indicate the levels of decomposition of the wavelets. 𝐽𝑚𝑎𝑥 is 

the maximum level were the scale becomes too large to analyse. In this 

investigation, values of 𝑠0 = 2 is commonly used, so that the scale is 

discretised on a logarithmic grid with base 2, and only the wavelets at scales 

{2, 4, 8, 16, …} are used for transformation. The translation factor was set at 

𝜏0 = 1.  

3.5.3 Applying wavelet transforms to 2-D image 

The two-dimensional wavelet transform is a straight-forward extension 

of the one-dimensional discrete wavelet. In this case, the vertical and 

horizontal spatial positions in the image correspond to time in a conventional 

signal, while the greyscale intensity corresponds to the amplitude of the 

signal. Moreover, the wavelet transform is performed by applying the 

technique to a matrix instead of a vector, i.e. the row or column vector of the 

pixel intensities of the images are considered the signal. It is performed by 

allowing the rows in the image to pass through a series of low pass and high 

pass filters. Calculation of wavelet coefficients are performed for every pixel 

in the image. Moreover, a columnwise decimation is applied on both matrices, 

such that a retention of one in two columns is ensured. Filtering of two 

columnwise decimated matrices are then executed but this time, in a row-wise 

fashion wherein one in two rows is retained (Aldrich, Marais, Shean, & 

Cilliers, 2010). 

Figure 3-4 shows the 𝑗’th level two-dimensional discrete wavelet 

decomposition of an image. Initialisation of the algorithm takes place by 

setting 𝑐𝐴0 as the original image. A low pass filter 𝑤𝐿 and a high pass filter 

𝑤𝐻 is constructed from the scaling filter 𝑤. The image is convolved with these 
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filters and down sampled. Convolution of an image 𝐼 with any filter 𝜔, yields 

a convolutional output 𝑐 with the same dimensions as 𝐼. An element in the 

convolutional output, 𝒄(𝑦𝑝, 𝑦𝑞), is defined as 

 
𝒄(𝑦𝑝, 𝑦𝑞) = ∑ ∑ 𝐼(𝑖, 𝑗)𝜔(𝑦𝑝 − 𝑖,

∞

𝑗=−∞

∞

𝑖=−∞

𝑦𝑞 − 𝑗) (3-29) 

The computational procedure is illustrated in Figure 3-4. At the 𝑗’th level 

of approximation, the horizontal wavelet coefficients 𝒄𝐻𝑗  are calculated as 

follows. First, the approximation coefficients 𝒄𝐻𝑗−1 are convolved with the low 

pass filter 𝑤𝐿 in a row-wise manner, after which the result is down sampled 

by keeping the evenly indexed columns. These columns are shown in Figure 

3-4 by circles. The down sampled results are convolved column-wise with the 

high pass filter 𝑤𝐻, after which the rows are down sampled by retaining the 

evenly indexed rows. This yields the horizontal approximation coefficients, 

𝒄𝐻𝑗 .  

As indicated by the figure, the approximation image 𝒄𝐴𝑗−1 is 

decomposed into four sets of coefficients at each level j. That is, the 

approximation coefficients 𝒄𝐴𝑗   and the horizontal, vertical and diagonal detail 

coefficients (𝒄𝐻𝑗 , 𝑐𝑉𝑗 and 𝒄𝐷𝑗). Decompositions at the next level j+1 is based on 

the same procedure applied to 𝒄𝐴𝑗 . In wavelet packet analysis, decomposition 

of all four approximations and detail images are done, but this can rapidly 

lead to a very large number of features when j > 2. 
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Figure 3-4. Discrete two-dimensional wavelet decomposition at level j. cA, cH, cV 

and cD  refer to approximation and detail coefficients. wL and wH refer to the high 

pass and low pass filters, respectively. The circles containing “2” and a downward 

arrow indicate down sampling of the coefficients by retaining only every other row 

or column. 

3.6 Local Binary Patterns 

Initially proposed by Ojala, Pietikainen, and Harwood (1994), Local 

Binary Pattern (LBP) is a high-order statistics which captures both structural 

and statistical information of an image by comparing the intensities of its 

pixels to its pixel neigbourhood. It has already been successfully applied to 

several fields, including medical science ((Abbasi & Tajeripour, 2017; Rana et 

al., 2017), face recognition ((L. Liu, Fieguth, Zhao, Pietikäinen, & Hu, 2016), 

and remote sensing ((Vatsavai, Cheriyadat, & Gleason, 2010). 

3.6.1 LBP Features 

Generally, the LBP features are the frequency histogram of the LBP 

image after performing LBP calculation. The LBP operation consists of three 
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major steps: pixel comparison to its pixel neighbourhood, transforming into 

thresholded values, and conversion of the neighbouring pixel values to 

powers of 2. 

In the first step, each of the pixels of the greyscale images is compared 

to its local pixel neighbourhood using the LBP operators. Then, a binary 

thresholding function 𝑠 is applied to the eight neighbouring pixels by 

comparing their intensities 𝑔𝑝 (𝑝 = 0,1, … , 𝑃 − 1) to the intensity of the centre 

pixel (𝑔𝑐): 

Once the thresholded values are calculated, the resultant LBP is then 

computed by converting the neighbouring pixel values to powers of 2 

according to location and summed for the centre pixel, as shown in eqn (3-31). 

In essence, the “LBP image” is referred to the resultant LBPs ranging 

from 0 to 255. This is obtained after applying the LBP operator to each pixel in 

an image. Subsequently, the histogram of the LBP image is then calculated, 

which is considered as the LBP features of an image. 

As an example, Figure 3-5 shows the LBP operation of a single pixel of 

an image. The shaded part is the center pixel while the unshaded parts are its 

neighbouring pixels. In this example, the center pixel has an intensity value of 

6. LBP operation is applied to get the thresholded values in Figure 3-5b. For 

the top-left corner, a thresholded value of 1 is obtained by first comparing 6 to 

 
𝒔(𝑔𝑝 − 𝑔𝑐) = {

1, 𝑔𝑐 ≥ 𝑔𝑝 

0, 𝑔𝑐 < 𝑔𝑝 
 (3-30) 

 
LBP = ∑ 2P−1−p𝐬(gp − gc) 

P−1

p=0

 (3-31) 
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8 in Figure 3-5b. Since 8 is greater than 6, and by using the thresholded 

function, 1 is the result when the neigbouring intensity values are greater than 

that of the center pixel. Furthermore, the conversion weights are computed for 

the center pixel by summing up all its neighbouring pixel values that were 

converted to power of 2 (i.e. 186 = 128 + 32 + 16 + 8 + 2) 

 

Figure 3-5. Local binary pattern operations, showing (a) the intensity values of the 

centre pixel (shaded) and its neighbours in the original image, (b) the corresponding 

thresholded values, and (c) the neighbouring pixel values converted to powers of 2 

according to location and summed for the centre pixel. 

3.6.2 Others LBP Operators 

Extensions and some variations of LBP operators have been developed 

over the past few years.  In the celebrated work of Ojala, Pietikainen, and 

Maenpaa (2002), they proposed several extensions of LBP. These are multi-

scale representation, rotational invariance and proper representation of 

uniform patterns. 

In multi-scale representation, a circular neighbourhood of radius R with 

equally spaced pixels P is used. Using the center pixel as the center of the circle, 

the comparison is facilitated by the circular neighbourhood that lie on its 

circumference. In this LBP variation, the LBP features are obtained by 
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calculating the LBP image and subsequently concatenating the LBP 

histograms of all the LBP images into a single feature vector (Kistner, 2013). 

In the rotational invariance, the transformation is performed by allowing 

each LBP to rotate from a reference position. This is done to ensure that all 

rotated versions of a binary number are the same (Kistner, 2013). In other 

words, the rotational invariance (𝐿𝐵𝑃𝑟𝑖) with respect to P and R can be defined 

as  

where ROR(n,i)  takes the P-bit binary number n and rolls it i times to the 

right. 

Lastly, as an extension of rotational invariance, the representation of 

uniform patterns is also developed (Kistner, 2013; Ojala et al., 2002). In this 

LBP variation, the uniformity measure U is computed using the eqn (3-33) as 

0/1 and 1/0 transition in a binary pattern.  

Incorporating this uniformity measure U to the rotationally invariant 

texture invariant, as exemplified by eqn (3-34), the LBP image is then 

computed. Subsequently, the feature vector is obtained with P+2 dimensions, 

which serves as the LBP feature. 

 𝐿𝐵𝑃𝑃,𝑅
𝑟𝑖 = min{𝑅𝑂𝑅(𝐿𝐵𝑃𝑃,𝑅 , 𝑖)| 𝑖 = 0, 1, … 𝑃 − 1} (3-32) 

 

 

𝑈(𝐿𝐵𝑃𝑃,𝑅) = |𝑠(𝑔𝑐, 𝑔𝑝−1) − 𝑠(𝑔𝑐, 𝑔0)|

+ ∑|𝑠(𝑔𝑐, 𝑔𝑝) − 𝑠(𝑔𝑐, 𝑔𝑝−1)|

𝑃−1

𝑝=1

 
(3-33) 

 
𝐿𝐵𝑃𝑃,𝑅

𝑟𝑖 = {
𝑍(𝐿𝐵𝑃𝑃,𝑅)

𝑃 + 1
   

𝑖𝑓 𝑈(𝐿𝐵𝑃𝑃,𝑅) ≤ 2

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (3-34) 
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where 𝑍 is a function that returns the number of zeros in a binary pattern. 

3.7 Textons  

The textons algorithm is one of the methods that is used to extract the 

features from image data using a filtering approach. The concept behind this 

algorithm is derived from alternative texture perception model, which 

believes that the texture discrimination  is governed by a local process called 

textons instead of a global process that is governed by well-defined higher-

order statistical properties, i.e. image pixel intensities (Julesz, 1984). 

Considered as textural ‘primitives’ including blobs, edges, line terminators 

and line crossings, textons only use its local changes of its density to 

discriminate between textures (Julesz, 1984; Kistner et al., 2013). This 

revolutionary concept carried the theory of texton into the attention of some 

researchers in the fields of machine vision. 

The texton theory attained considerable achievement in binary images of 

synthetically generated textures (Bela, 1981), however, the theory was less 

preferred over other models such as filtering approach, during that time due 

to its deficiency in operational definition for greyscale images. Nevertheless, 

in the work of Leung and Malik (2001), the theory of texton has regained its 

popularity when they merged the concept with filtering approaches. This 

development gave birth to the texton algorithm. In this sense, the textons were 

redefined as cluster centers in a filter response space. Since the algorithm is a 

type of filtering approach, a number of researchers have attempted to optimise 

the algorithm by examining the use of different filter banks ((Leung & Malik, 

2001; Cordelia Schmid, 2001; Varma & Zisserman, 2005). Moreover, researches 

on the application of this algorithm have grown considerably on different 
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fields, including medical science (Fernández-Carrobles et al., 2015; Sudarshan 

et al., 2016), remote sensing (Zeki Yalniz & Aksoy, 2010), minerals processing 

(Kistner et al., 2013) and industrial inspection (Farinella, Allegra, Moltisanti, 

Stanco, & Battiato, 2016). 

 

Figure 3-6. Learning steps involved in extracting texton features 

In general, the textons are learned in the training stage by several steps 

including multivariate representation, building of texton dictionary, and 

histogram computation (Kistner, 2013; Rampun, Zheng, & Malcolm, 2015). 

The textons are defined by performing vector quantization e.g. k-means 

clustering (Hastie, 2009) on the achieved filtered responses of the images from 

the training set. These responses are obtained through convolution with Nf 

oriented linear spatial basis functions arranged in a filter bank wherein each 

pixel is mapped to an Nf-dimensional feature space. The resulting textons 

from each class N are then pooled together to constitute the universal textons 

or the texton dictionary. Filter responses for each image are subsequently 

mapped onto the texton dictionary resulting in a texton frequency 

representation or histogram, which eventually provides the learning model.  

Essentially, for each training image I, the number of pixels in q-th texton 

channel would provide the q-th histogram bin. That is, 

 ℎ𝐼(𝑞) = ∑ 𝐼[𝑇(j) = 𝑞]

𝑗∈𝐼

   (3-35) 
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where I [.], and T(j) are the indicator function and the texton channel 

assigned to pixel j, respectively (Jemwa & Aldrich, 2012). This histogram of 

textons are then considered as the textural features extracted from the set of 

images (Kistner et al., 2013; Varma & Zisserman, 2005).  

It should be noted that during the K-means clustering step, the texton 

algorithm usually incur iterative operations in computing distances between 

all pixels and their closest cluster centers, making it computationally extensive 

and thus, involve longer computer running times. Moreover, the overall 

performance of the algorithm is highly dependent on the design and choice of 

filter bank, which is why the selection of suitable filter banks should also be 

taken into account. In this work, three filter banks are considered namely, 

Schmid, Leung-Malik, and Maximum Response Filter Set, which are discussed 

in this subsection.  

3.7.1 Leung-Malik Filter 

The Leung-Malik (LM) filter bank is designed to have a good texture 

discrimination characteristic. It consists of 48 filters (36 oriented filters, and 8 

center-surround Laplacian of Gausssian or LoG filters, and 4 low-pass 

Gaussian filters).  With the notion that both rotational and spectral selectivity 

are covered in the transformation, this type of filter bank then becomes less 

powerful to reflect some variations in imaging conditions such as in-plane 

rotations and perspective changes (Jemwa & Aldrich, 2012; Leung & Malik, 

2001). 

3.7.2 Schmid Filter Bank 

The Schmid filter set, as proposed by C. Schmid (2001), uses a two-layer 

representation to capture ‘texture-like’ visual structures efficiently. The layers 

consist of descriptors and the joint probability on the frequencies of these over 
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neighbourhoods. In essence, these descriptors are the sets of similar rotational 

invariant feature vectors. In other words, this filter set worked similar to Gabor 

filter which is given by the equation below on the transformation of each pixel 

location. This filter has complete rotational symmetry but lack sensitivity to 

anisotropic features. (Jemwa & Aldrich, 2012).  

 
𝐹(𝑥, 𝑦, �̇�, 𝜎) = 𝐹0(�̇�, 𝜎) + cos(

𝜋�̇�√𝑥2 + 𝑦2

𝜎
) exp (−

𝑥2 + 𝑦2

2𝜎2
) (3-36) 

where �̇� is the cycle count in the harmonic function and 𝐹0(�̇�, 𝜎) is the zero DC 

component guarantor. Note that to avoid high frequency responses, smaller �̇� 

is used at small scales. 

3.7.3 Maximum Response or Root Filter Set 

To address the lack of robustness in variations in Leung-Malik filter 

bank, the maximum response filter set is proposed (Varma & Zisserman, 2005). 

In this type of filter bank, the discriminative power-invariance trade-off is now 

incorporated. This is performed by retaining the maximum filter responses in 

all orientations and scales with the help of a base filter set, a filter set with 3 

subfilters. Unlike Leung-Malik filter bank, this type of filter set only has 38 

filters because only the maximum responses for all subfilters are retained and 

considered. 

This type of filter set demonstrates few advantages compared to Leung-

Malik and Schmid. The advantages include incorporation of both isotropic and 

anisotropic features, its low dimensionality characteristics, and its capability 

to include the maximum response angle, which is valuable in discriminating 

between very similar textures (Jemwa & Aldrich, 2012). 
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3.8 Convolutional Neural Networks 

A convolutional neural network is a deep learning algorithm that is 

inspired from the natural visual perception mechanism of animal cortex. It 

belongs to a class of deep, feed-forward artificial neural networks which 

simulate the activity in layers of neurons in the neocortex, which is responsible 

for detecting lights in the receptive fields (Ferreira & Giraldi, 2017; Gu et al., 

2017). In computer vision, CNN is said to have a power to capture complex 

features from image data. Its potential is underscored by excellent results in 

image classification which can outperform human accuracy in some cases, and 

the reason why it is receiving growing interest in the research community.  

As an example, CNNs has reached a significant milestone in the 

ImageNet Challenge (Russakovsky et al., 2015) where it achieved comparable 

error rates to those of a well-trained human in classifying 100,000 images that 

were only seen by the model for the first time. The ImageNet Challenge is an 

annual image classification competition wherein some 1.2 million images are 

available for training the models to recognise any of a 1000 everyday objects 

in diverse settings and 100,000 images for testing the models. As seen in Figure 

3-7, the classification error rates drastically decreased through the years and 

even surpassed the trained human with error rate of 5.1% beginning 2015.  



 

55 

 

 

Figure 3-7. Historical performance of ImageNet Challenge from 2010 to 2016 

showing both the error rate and the number of layers of the networks. 

 

3.8.1 Basic Components of CNN 

As presented in Figure 3-8, the architecture of CNN is normally made up 

of five groups of layers, viz. an input layer, convolutional layers, pooling 

layers, fully-connected layers, and an output layer.  

 

Figure 3-8. Typical CNN architecture 

Input layer 

The input layer consists of the image data that need to be fed to the 

network. The data can be either raw image pixels or some image 



 

56 

 

transformations through resizing of the image to a specific aspect required in 

the training of the network.  

Convolutional layer 

The convolutional layer is made up of a number of convolution kernels 

which is responsible for the computation of a so-called feature maps. The 

feature maps are generated two steps: first convolving the input with the 

learned kernel which is shared by all spatial locations of the input, and then 

applying an element-wise nonlinear activation function on the convolved 

results. It is worth to highlight that the neuron of a feature map must be 

connected to a region of neighbouring neurons in the previous layer. In 

general, the feature value, 𝑧𝑖,𝑗,𝑘
𝑙  , at location (i,j) in the kth feature map can be 

calculated by:  

 𝑧𝑖,𝑗,𝑘
𝑙 =  𝒘𝑘

𝑙 𝑇
𝒙𝑖,𝑗

𝑙 +  𝑏𝑘
𝑙  (3-37) 

where 𝒘𝑘
𝑙  and 𝑏𝑘

𝑙  are the weight vector and bias term of the kth filter in the lth 

layer, respectively and 𝒙𝑖,𝑗
𝑙  is the input at location (i,j) of the lth layer. The 

feature map also uses activation functions, which is required for multi-layer 

networks to detect nonlinear features.  

Pooling layer 

Pooling is an important concept of CNN which is responsible for its 

computational efficiency through reduction of the number of connections 

between convolutional layers. The pooling layer ensures that the shift-

invariance of the feature maps are achieved. This is normally done by reducing 

the resolution of the feature maps, that is, through summarisation of the data 

by sliding window across the feature maps and application of some linear or 

nonlinear operations, e.g. local mean or max, and by reduction of the its 
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dimensionality. Thus, for each feature map 𝒛𝑚,𝑛,𝑘
𝑙  , the feature value 𝑦𝑖,𝑗,𝑘

𝑙  can 

be obtained from eqn (3-38). 

 𝑦𝑖,𝑗,𝑘
𝑙 = 𝑝𝑜𝑜𝑙(𝑧𝑚,𝑛,𝑘

𝑙 ), ∀(𝑚, 𝑛) ∈ ℛ𝑖,𝑗 (3-38) 

where  ℛ𝑖,𝑗 is a local neighbourhood around location (i,j). Normally, the 

pooling layer is situated between the two convolutional layers.  

Fully-connected layer 

In the fully-connected layer, the neurons in this layer are in full 

connections to all activations in the previous layer. This is purposely 

performed to extract high-level reasoning of the patterns generated by the 

previous layers. More often, the activations uses rectified linear unit (ReLU) to 

facilitate training of CNNs. This is done by applying non-linear functions to 

the outputs for faster convergence. Moreover, transfer learning method can 

also be used in this layer to extract features which can be then be used for 

classification.  

Output layer 

The output layer specify how the network errors are penalised during 

training of the network. Depending on the tasks, this layer uses several loss 

functions such as softmax, Euclidean loss, and Sigmoid cross-entropy. 

3.8.2 Pretrained CNN with transfer learning 

CNNs are preferred over traditional fully connected neural networks 

owing to the convenience in training fewer parameters by use of 

backpropagation and stochastic gradient descent (Rumelhart, Hinton, & 

Williams, 1986). Extraction of high-level and complex features can be 

effectively carried out using convolutional layers with a small kernels which 
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are then fed to fully connected layers. Although considered a powerful state-

of-the-art algorithm in extracting patterns in  image data, the training of CNNs 

usually requires thousands or even millions of labelled data in many domains. 

This is a massive challenge and labelling those data is considered costly 

(Gopalakrishnan, Khaitan, Choudhary, & Agrawal, 2017), on top of the actual 

training of these data which is computationally expensive.  

One of the solutions to this drawback is the use of transfer learning. 

Transfer learning is machine learning which uses additional source of 

information from a pretrained network, apart from the standard training of 

the actual data. It requires the transfer of knowledge from a source task to a 

target task. In a sense, this drives the CNNs to transplant the learned feature 

layers from one CNN to initialise another which does not necessarily need the 

source data; only the source concept is required (Afridi, Ross, & Shapiro, 2018). 

With this concept, it allows other researchers to share and reuse the previously 

learned CNN models freely, and as a result, considerable cost of developing 

large CNNs can be avoided (Y. Fu & Aldrich, 2018).  

Given these advantages, the CNN with use of transfer learning is then 

explored in this thesis. More particularly, the use of ‘off-the-shelf’ CNNs 

namely AlexNet and VGGNet, which are both pretrained on large-scale 

ImageNet datasets are considered. These algorithms are used in extracting 

features from distance matrix plots. 

3.8.3 AlexNet 

Developed by Krizhevsky, Sutskever, and Hinton (2012), AlexNet is a 

convolutional neural network which won the ImageNet Large-Scale Visual 

Recognition Challenge (ILSCRC) in 2012 with an achievement of 16.4% top-5 

test error rate. This model is trained using this ImageNet dataset which consist 

of millions of variable-resolution images. It uses non-saturating neurons and 
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efficient GPU implementation of the convolution operation for efficient 

training of the network, while a drop out method is implemented in the first 2 

fully connected layers to minimise overfitting (Krizhevsky et al., 2012). 

Dropout method is done by setting the output of each hidden layer with 

probability of 0.5 to zero. As a result, drop out neurons do not participate in 

back propagation and do not contribute to the forward pass, which ensued 

different architecture of neural network for every input while all the 

architectures share weights. 

 

Figure 3-9. The architecture of AlexNet 

AlexNet is consist of 5 convolutional layers, 3 max pooling layers and 3 

fully connected layers. The architecture of this CNN along with the sizes of 

each layer is shown in Figure 3-9. The input images entail a fixed resolution of 

256 x 256 pixels. The first convolutional layer contains 96 filters of size 11 x 11. 

Its stride is 4 pixels and its padding of 2 pixels while the remaining four 

convolutional layers have both stride and padding equal to 1 pixel. The size of 

the second convolutional layer is size 5 x 5 while the remaining three layers all 

have 3x3 sizes. The second and fifth convolutional layers both have 256 filters 

while the third and the fourth convolutional layers have 384 filters. Moreover, 

the last fully connected layer connects to a 1000 classes rest of the network can 

be considered as a feature extractor. AlexNet can then produce 4096 feature 
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set for each image, which contains the activations of the hidden layer 

immediately preceding the output layer. 

3.8.4 VGG16 

VGGNet is an ILSCRC 2014 entry which won second place with 7.3% top-

5 error rate. The configuration of the network is the same with AlexNet with 

much deeper architecture. VGG16 consists of 13 convolutional layers, 5 

pooling layers and 3 fully connected layers. Its architecture is simplified in 

Figure 3-10.  

 

Figure 3-10. The simplified diagrams showing the architectures of AlexNet (top) 

and VGG16 (bottom). It highlights the similarity and differences in terms of the 

structures of convolutional (Conv), pooling (Pool), and fully-connected (FC) layers. 

The input data of this network requires a fixed-size of 224 x 224 RGB 

image. All convolutional layers in VGG16 has stride and padding set to 1 pixel. 

Moreover, each group of convolutional layer has pooling layer which is 

carried out over a 2 x 2 window with stride 2. The number of filters of 

convolutional layer group starts from 64 in the first group and then increases 
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by a factor of 2 after each pooling layer, until it reaches 512 (Simonyan & 

Zisserman, 2014). The fully connected layers are the same with AlexNet, thus, 

it also produce 4096 features for each image.  

In this study, both the pretrained AlexNet and VGG16 network are used 

for feature extraction of the distance matrices. All the implementation of 

CNNs are carried out in MATLAB® R2017b. Prior to feature extraction, all 

images are preprocessed by automatically resizing to [227 227] and [224 224] 

for AlexNet and VGG16, respectively. 

3.9 Final Remarks 

In this chapter, the detailed description of the recurrence texture analysis, 

with emphasis on the discussion of the involved steps and on the textural 

feature extraction algorithms, were presented. In order to validate the 

applicability of RTA, the evaluation on the method including the impact of the 

parameters involved in the process and the application of the method to 

dynamic process system datasets should be carried out thoroughly. In other 

words, the next step is to evaluate its applicability to deal with problems 

involving dynamic process systems, which include capturing the dynamics of 

the time series data. In the following 4 chapters, RTA is applied to several 

systems requiring the characterisation of its dynamic behaviour. As an 

alternative to RQA, the RTA features could then be used to explain several 

occurrences of the dynamic process systems wherein the structure of its time 

series could be analysed with the method, and can be extended for developing 

prediction models. However, prior to actual application, it is first necessary to 

evaluate the influence of the parameters involved in RTA as part of the 

optimisation of the method. As seen in this chapter, RTA requires calculation 

of distance matrix which uses a particular distance metric. Moreover, the 

segmentation of the time series entails windowing parameters which may 
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affect how the textural features. These queries need to be addressed prior to 

actual application. In the next chapter, the influence of these RTA parameters 

(e.g. distance metrics, windowing parameters) are investigated. Additionally, 

the results are also compared to RQA.  
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4. EVALUATION OF RECURRENCE TEXTURE 

ANALYSIS 

 

4.1 Introduction 

The recurrence texture analysis is comprised of steps that require input 

of parameters, i.e. distance metrics, window width (b), sliding step (m), 

hyperparameters of textural algorithms. Most of the time, these parameters 

are usually defined by the user, although there are expressions that could 

serve as guides in choosing values for these parameters.  

The effect of segmentation parameters (window width and sliding step) 

and the distance metrics to the overall performance of the method in capturing 

the dynamic behaviour of the system are explored in this chapter. Several sets 

of parameter values are considered in the models representing different 

scenarios, e.g. high, normal, and low. Two different distance metrics are 

considered, namely the Euclidean distance and the Chebychev distance, since 

these are the most commonly used when quantifying the RPs using RQA. 

Moreover, RQA is also implemented and compared with the results to RTA. 

Several threshold values are taken into account in this matter. In this 

undertaking, the time series from the Lotka – Volterra predator-prey system 

is employed as benchmark test dataset in this analysis.  

Both the proposed method and RQA are evaluated from their power to 

cluster and classify data. Qualitative investigation via visualisation of data is 

carried out to assess the quality of clusters, and to explain its reliability to 

cluster features of the same class. Data visualisation is performed by projecting 

the features into 3-D subspace using their first three principal component 

scores. Moreover, classification is also implemented to quantify clusters and 

evaluate the classification performance of the method. The SVM is used as 
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classifier to train and classify the data, and the classification accuracy is 

calculated for each scenarios.  

4.2 Lotka – Volterra predator – prey system 

The Lotka-Volterra model, as proposed by Lindfield (2012) describes 

the interaction between predator and prey species, which is based on the 

following differential equations: 

 𝑑�̇�

𝑑𝑡
= 𝑘1�̇� − �̂��̇��̇�  (4-1) 

 𝑑�̇�

𝑑𝑡
= −𝑘2�̇� + �̂��̇��̇�  (4-2) 

where �̇� and �̇� are the number of prey and the predator, respectively, and the 

k1 and k2 are the prey population growth rate and predator mortality rate, 

respectively. Lastly, �̂� corresponds to the reaction rate or the frequency of the 

contact of the prey and predator, and �̂� is the conversion efficiency or the 

efficiency of predators in converting food into offspring. In this study, 

however, only a univariate time series was considered. It was simulated with 

the ODE45 subroutine in MATLAB R2015a by considering the change in 𝑧1 

with time.  

Throughout the simulation, the number of prey (�̇�) and predator (�̇�) are 

held constant. Only the values of k1, k2, �̂� and �̂� are varied to obtain two change 

conditions. The parameters used in the simulation are summarized in Table 

4-1. 
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Figure 4-1. Simulated observations of the Lotka-Volterra predator-prey 

model. 

The simulation as shown in Figure 4-1 was carried out with equal time 

steps of 0.02 time units. 20 000 samples were generated with the parameters 

shown in the first column of Table 4-1, another 10 000 samples were generated 

with the parameters shown in the second column of Table 4-1. These 

parameters changed linearly over the time interval to yield data 

corresponding to a state of transition. Finally, another 10,000 samples were 

generated with the parameters shown in the last column in Table 4-1. This was 

considered to be a new state of the system.  
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Figure 4-2. Autocorrelation function of Lotka-Volterra Predator-prey system 

In the evaluation, it should be noted that the first 10,000 samples in the 

NOC was eliminated to ensure that the NOC system being considered is in 

steady-state. Thus, each state contains 10,000 samples for analysis. 

 Table 4-1. Summary of the parameters used in three condition states (NOC, state of 

transition and new state) 

Parameters NOC Transition New State 

�̇� 5,000 5,000 5,000 

�̇� 100 100 100 

k1 2 2 to 3 3 

k2 10 10 to 11 11 

�̂� 0.0010 0.0010 to 0.0011 0.0011 

�̂� 0.0020 0.0020 to 0.0021 0.0021 

Time units 0 to 400 400 to 600 600 to 800 
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Figure 4-3. Distance matrix plots of three states of the system using Euclidean 

distance. Top and bottom plots show the 10,000-by-10,000 and 100-by-100 matrix 

plots of the time series, respectively. 

4.3 Effect of Window Width and Step Size 

Three different values of window width b (50, 100, 250) are considered in 

this case study using Euclidean distance and a fixed value of sliding size m of 

50. It should be noted that the window width b=50 are segmented in a fixed 

window fashion. To evaluate further, the influence of window width with the 

same kind of windowing approach was also facilitated. In other words, the 

other window width values were also segmented in a fixed windowing 

fashion. Thus, five different window width – sliding step combination were 

considered in this study.  
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Figure 4-4. RTA feature sets projected in 3-D principal component subspace, using 

different values of window width b: b=50 (left), b=100 (middle), and b=250 (right). 

The distance matrix is constructed using Euclidean distance with fixed sliding step 
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m=50. The legends red (*), blue (+) and green (o) correspond to NOC, state of 

transition, and new state, respectively. 

Based from the plots in Figure 4-4, it seemed that the distinction of clusters 

and its separation to other clusters become more visible as the window width 

increases, which could also mean that the number of observations or distance 

matrix plots are fewer. For example, a huge difference in clusters can be 

discerned from the plots of the features from the segmented time series using 

b=50 and b=100. It is seen that the former could not give reasonable clusters of 

the states whereas the plot using the latter provided the better separation. In 

the case of b=100 and b=250, although a reasonable result is obtained in b=100, 

better clustering and separation of clusters were noticeably seen in b=250. In 

this case study, it can further inferred that for a fixed sliding step, there is a 

linear correlation between the clustering power of the features and window 

width. Thus, better clustering could be achieved using a longer window 

width. This observation is clearly seen in the classification results as 

summarised in Table 4-2. The four RTA features have greatly improved the 

classification performance from b=50 to b=100 and it continued to improve in 

b=250.  

Another way to look at the effect of window width is to segment the time 

series with same value with the sliding step. In other words, the windowing 

method is still fixed windowing approach but the number of observations in 

the segments varied. Once again, the data are visualised and are presented in 

Figure 4-5. It is obvious that the size of window width has a strong influence in 

the clustering of the features. The features are fairly clustered in b=100 while 

distinct clusters are observed in b=250. Moreover, better separation of clusters 

were also seen as window width becomes longer. These results were clearly 

showed in their classification accuracy as presented in Table 4-2. Thus, it is 

generally inferred that window width is an important parameter in RTA that 
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needs to be chosen by the users appropriately in segmenting the time series. 

In other words, the choice of the value of this parameter should be taken 

earnestly since the features are dependent on how the parent time series data 

are represented into sets of discrete time series data.  

As mentioned in the previous chapter, the autocorrelation function could 

be used as a guide in estimating this parameter. The minimum value of lagged 

length b where ACF is at the minimum could be the used as the minimum 

value of the window width. It should be noted that this is only a guide and 

there is no such strict rule in determining the value of this parameter. 

Moreover, the choice of b would greatly depends on the type of RTA 

applications and on the kind of structural changes the researchers are being 

investigated. If window width b is quite large, the probability of missing the 

changes of the time series is high, which could give false information. On the 

other hand, if b is too small, the outlier could indicate as a structural change 

thus also giving a false interpretation (Auret & Aldrich, 2010). Thus, the choice 

of b is also a trade-off between the information being examined and the 

number of features being considered. In the case of this study, although the 

minimum b to where ACF is at the first minimum is seen to be b=50, as shown 

in Figure 4-2, the results somehow gave poor clustering and classification.  

However, the researchers should consider the window width b to be used 

is somewhat close to this value. Thus, it is reasonable to choose b=100 to be the 

window width in this point as this value gave fair clustering and improved 

classification performance as compared to b=50. One could argue that the 

choice of b=250 should be chosen as this window width provided the best 

results among them. This might be true, however, as mentioned elsewhere, the 

choice of b is dependent on the problem being addressed. This value could be 

used if the application is a purely classification problem. If the problem entails 

identifying the structural changes of the time series such as change-point 
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detection problem, the shorter b should be selected. And since this study 

entails evaluation of separation of clusters between states as a means to detect 

the changes of the system, shorter b is an appropriate choice. 

 

Figure 4-5. RTA feature sets projected in 3-D principal component subspace, using 

fixed windowing. The distance matrix is constructed using Euclidean distance with 
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three different window widths, b=50, 100 and 250. Legends are : red (*), blue (+) and 

green (o) correspond to NOC, state of transition, and new state, respectively. 

The effect of sliding step is also investigated in this case study. As shown 

in Figure 4-4 and Figure 4-5, it is noticeable that data are not significantly 

affected by the sliding step.  

For b=100, the clustering and the separation of the clusters of m=100 have 

seen slight to no change with m=100. This observation also held true to b=250. 

Aside from the fact that the number of observations increases when the sliding 

step m decreases, when it comes to clustering capability of the features, this 

parameter is considered not critical in RTA. This inference can also be seen in 

the classification accuracy as summarised in Table 4-2 wherein no general 

trend is observed in terms of their accuracy percentages. For example, a slight 

increase of accuracy percentages is observed in GLCM and LBP features when 

the sliding step is increased. This observation is inversely seen in wavelet and 

textons features. More importantly, the change is marginal that one could say 

that this is due to the change in the number of observations. With all these 

thoughts, it could then be understood that the sliding step is not a critical 

parameter in utilising RTA, other than providing different number of 

segments. In other words, the researchers could use either fixed or moving 

windowing approach which depends on the nature of time series being 

considered and on their computational capability. Shorter parent time series 

should entail moving window while longer time series data could be 

processed using fixed windowing.  

Additionally, the selection of m is a trade-off between computation 

efficiency and the classification performance of the proposed method. 

Normally, m is estimated as half of the window width (m=b/2) to give a reliable 

capture on the information of the time series (Moskvina & Zhigljavsky, 2003).  
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Table 4-2. Influence of windowing parameters to the overall classification 

performance of RTA features (classification accuracy on the test data) 

Window 

Width, b 
b = 50 b = 100 b = 250 

Sliding step, 

m 

m = 50 

(fixed) 

m = 50 

(moving) 

m = 100 

(fixed) 

m = 50 

(moving) 

m = 250 

(fixed) 

No. of 

segments, N 
600 597 300 588 120 

FEATURE 

SETS 
Classification Accuracy (%) 

GLCM 37.8% 68.5% 68.9% 85.2% 88.9% 

Wavelet 50.6% 78.8% 61.6% 89.8% 72.2% 

LBP 61.6% 82.1% 79.0% 85.8% 86.1% 

Texton 75.6% 93.9% 92.2% 97.2% 95.4% 

CNN-

AlexNet 
73.1% 93.3% 93.1% 95.1% 97.1% 

CNN-

VGG16 
73.9% 93.2% 93.0% 97.1% 97.3% 

4.4 Effect of Distance Metric 

The Euclidean distance and the Chebychev distance are used to study the 

effect of the distance metric to the performance of the proposed method. These 

distance metrics are both derived from Minkowski distance, as exemplified in 

eqn (4-3) using p=2 and p=∞ for Euclidean distance and Cheychev distance, 

respectively.  

 

𝑑𝑖𝑗 =  √ ∑ ‖𝑥𝑖 − 𝑥𝑗‖
𝑝

𝑛

𝑖,𝑗=1

𝑝

     (4-3)                

The time series of Lotka-Volterra predator prey system of three 

different system states, i.e. NOC, transition and new state, are segmented 
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according to the parameters in Table 4-3. As a result, a total of 597 segments are 

obtained from this time series with 30,000 observations (10,000 for each state). 

These segments were processed into distance matrices using the said distance 

metrics. Further, texture features of these distance matrices were then 

extracted to form feature matrices, which were visualised in 3-D principal 

component subspace. These were also used as predictors in the classification 

analysis. 

Table 4-3. Parameters used in the study on the influence of distance metric to the 

overall performance of RTA 

Parameters Values 

Distance metric Euclidean, Chebychev 

Window width, b 100 

Sliding step, m 50 

Figure 4-3 and Figure 4-6 show distance matrices of the time series for 

each state calculated using Euclidean distance (Euclidean norm) and 

Chebychev distance (Maximum Norm), respectively. In general, it is difficult 

to pinpoint the differences of the plots calculated using these distance metrics. 

The textures of the plots for each state are somewhat indistinguishable for both 

macroscopic and microscopic viewpoints. For the texture comparison of the 

plots for states, it is apparent that the each state has its distinct recurrence 

textures. The distance matrix texture of the new state is mostly coarse while 

the new state appears to have finer textures.  
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Figure 4-6. Distance matrix plots of three states of the system using Chebychev 

distance or Maximum Norm. Top and bottom plots show the 10,000-by-10,000 and 

100-by-100 matrix plots of the time series, respectively. 

 

Table 4-4. Comparison of the classification performance of the RTA and RQA feature 

sets using Euclidean and Chebychev distance metrics. The reported classification 

accuracy is based on the test datasets. 

Feature Sets 

Classification Accuracy  

Euclidean 

Distance 
Chebychev Distance 

R
T

A
 

GLCM  68.9% 70.9% 

Wavelet 79.3% 73.2% 

LBP 83.2% 80.5% 

Texton 92.2% 90.5% 

AlexNet 93.3% 92.4% 

VGG16 93.2% 92.7% 
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R
Q

A
 

Using ε = 0.1 83.2% 83.8% 

Using ε = 0.2 84.9% 84.4% 

Using ε = 0.5 77.7% 81.6% 

 

As shown in Figure 4-7, the CNN-AlexNet, CNN-VG16, texton and LBP 

features showed distinct clusters representing the three states of the system. 

In LBP and VGG16, the separation is somehow less visible than the other 

feature sets since most of the transition state data are somewhat located in the 

NOC cluster. For the texton and AlexNet, on the other hand, the distinction of 

clusters and also its separation to other clusters are apparent but not totally 

separable. 

With respect to the effect of distance metrics, it is observed that the data 

behaved similarly regardless of the kind of distance metrics. In fact, it is 

apparent that the clusters and its separation for all feature sets are quite alike. 

It is interesting to note the superficial overlapping of the cluster of 

transition state data to both new and NOC clusters. Conversely, the NOC and 

the new state clusters, on the other hand, are entirely separable with each 

other. It could be said that this overlapping is due to the non-steady state 

behaviour of the transition state since the data is still in the stage of shifting 

from NOC to another state. This also happened to transition state and new 

state cluster overlapping, i.e. evolution of state behaviour from transition to 

new state. It could then be regarded that the transition state is a pseudo-steady 

state of the system, while the NOC and new state are already in the steady 

state.  
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Figure 4-7. Visualisation of the RTA feature sets using the Euclidean distance (left) 

and the Chebychev distance (right) as projected into 3-D subspace using the first 3 
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principal component scores. Legends are : red (*), blue (+) and green (o) correspond 

to NOC, state of transition, and new state, respectively. 

While the AlexNet, VGG16, texton and LBP features achieved reliable 

results in clustering the states, the wavelet feature set provided average result 

while the GLCM features gave poor clustering performance. In other words, 

no clusters and distinct separation of clusters are perceived using GLCM 

feature sets. These are also seen in their classification performance in terms of 

accuracy percentages. Regardless of the distance metric used, the power of the 

feature sets to classify the data into respective classes is quite noticeable. 

GLCM seemed to give consistent limited classification. The RTA-wavelet 

features, on the other hand, could provide fair classification. Note that the 

RTA-LBP could also deliver better classification performance. In contrast, it is 

consistent that the RTA-texton, AlexNet and VGG16 features outperformed 

for all scenarios. Both clustering and classification of the data were 

outstanding using these three feature sets. 

In general, both Euclidean and Chebychev distance metrics provided 

good classification performance. Although, the Euclidean-based RTA 

generally obtained higher slightly classification accuracy than Chebychev-

based RTA, the variance, however, is statistically marginal and the results of 

the latter can also be regarded as equivalent to the former. 

Comparison with RQA 

The RQA features are also extracted using the RPs constructed from 

distance matrices. Three threshold values are considered here: 0.1, 0.2, and 0.5. 

Figure 4-8 presents the RPs having these values. It is apparent that as the 

threshold value increases, the coarse texture of RPs also increases. 
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The plots of RQA features in principal component subspace is presented 

in Figure 4-9. Overall, the clusters of the state systems are obvious in both RQA 

using ε of 0.1 and 0.2. On the contrary, the ε=0.5 gave poor clusters and no 

distinct separation are observed in the plots. Furthermore, regardless of ε 

values, it is also observed that the clusters are equivalent for RQA features that 

used Euclidean and Chebychev distances. This observation has seen clearly in 

the classification of the states with only marginal differences are noted in the 

classification accuracy for all ε values. It is also interesting to point out that the 

ε=0.5 obtained the poorest classification performance among the three 

considered ε. This inference could give an idea that the higher values of ε 

would give noise to the RPs, thus providing poor RQA features and may cause 

misinterpretation on the dynamic behaviour of the system.  

 

Figure 4-8. Recurrence plots having different ε: ε=0.1 (left), ε=0.2 (middle), ε=0.5 

(right), using Euclidean norm. Top and bottom plots correspond to 10,000-by-10,000 

and 100-by-100 matrix recurrence plots. 

Comparing the results of RQA to the proposed method, it can be inferred 

that regardless of the distance metric, the results of RTA features gave at par 

classification performance for wavelet and LBP features, and better 

performance for texton, AlexNet and VGG16.  



 

80 

 

To supplement the analysis, the texton are mapped into nonlinear PCA 

to visualise how the features behaved in a nonlinear principal component 

analysis (NLPCA) subspace. Using the circular inverse of NLPCA based on 

autoassociative neural network (AANN), the separation of the clusters using 

texton features projected into NLPCA subspace is very discernible, as 

presented in Figure 4-10. Although some of the transition state data points are 

still seen in the NOC clusters, the isolation between the NOC and new state 

clusters are clearly seen in the plot.  

Overall, some observations can be drawn from this study including 

outperformance of RTA, particularly RTA-texton, AlexNet and VGG16 over 

RQA in giving clusters and classification of the state systems, and the poor 

performance of RQA when higher values of ε (e.g. ε=0.5) are used in 

constructing RPs. Most importantly, it can also be inferred that the type of 

distance metric in calculating the distance matrix is insignificant in the general 

performance of the method and RQA. 
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Figure 4-9. Visualisation of the RQA feature sets with different ε values using the 

Euclidean distance (left) and the Chebychev distance (right) as projected into 3-D 

subspace using the first 3 principal component scores. The time series is segmented 

using b=100 and m=50. Legends are: red (*), blue (+) and green (o) correspond to 

NOC, state of transition, and new state, respectively. 
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Figure 4-10. Texton features as projected into 3-D nonlinear principal component 

subspace using (A) Euclidean distance, and (B) Chebychev distance. Legends are : 

red (*), blue (+) and green (o) correspond to NOC, state of transition, and new state, 

respectively. 

4.6 Application of the method to recurrence plots 

For further evaluation, the proposed method is also applied to the 

recurrence plots and the results are compared to RQA features. This is 

facilitated by constructing a number of recurrence plots with ε = 0.2. RTA and 

RQA features are then derived using these plots. 

 

Figure 4-11. RP plots of three state systems of Lotka-Volterra predator prey system. 

Constructed using Euclidean norm, ε = 0.2. 

Clearly, the RPs of the three state systems exhibit periodic typology and 

the textures of the plots are different from one another. The RPs of NOC tend 

to have smoother texture whereas the RPs of new state have coarser texture 
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appearance. The recurrence are quite prevalent in the new state. The texture 

of the RPs of the transition state, on the other hand, is seen intermediary. 

As presented in Figure 4-12, distinct clusters can be drawn from all 

feature sets with clearer agglomeration of data points seen in texton, VGG16 

and RQA features. The separation between clusters were also well-defined to 

these features. The LBP and Alexnet features also provided reliable clusters of 

the state systems, although some of the features of the transition states were 

quite spread out across the other clusters.  

Table 4-5. Classification performance of RTA features applied to recurrence plots 

Feature Sets (using ε 

= 0.2) 

Classification Accuracy (%) 

Euclidean Distance 

R
T

A
 

GLCM  72.6% 

Wavelet 78.2% 

LBP 73.7% 

Texton 82.6% 

AlexNet 80.1% 

VGG16 87.1% 

RQA 82.7% 

Evidently, these observations were also seen in the classification of the 

clusters. Emphasis could be drawn to VGG16 that achieved outstanding 

accuracy of 87% compared to RQA and other feature sets of only 82%. 

Furthermore, it can also be said that the RTA-texton is at par to RQA.  

In general, it is demonstrated that most of the RTA features are at par to 

the RQA in quantifying the RPs. Highlight could be given to VGG16, AlexNet 

and texton which are consistent in providing reliable results in terms of 

classification and clustering. In other words, this study clearly showed that 

RTA is a versatile method that could quantify the recurrence in the system 

regardless the nature of recurrence plots, e.g. thresholded or unthresholded. 
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Figure 4-12. 3-D plots of different feature sets obtained from recurrence plots: 

GLCM (A), wavelet (B), LBP (C), textons (D), Alexnet (E), VGG16 (F) and RQA (G). 

The plots are constructed in 3-D using the first three principal component scores. 

Legends are : red (*), blue (+) and green (o) correspond to NOC, state of transition, 

and new state, respectively. 

4.7 Conclusions  

In this chapter, the influence of the windowing parameters and the 

distance metrics in the performance of the RTA in terms of data cluster 

analysis and classification are studied in detail. The method is also applied to 

the thresholded recurrence plots to evaluate its versatility in quantifying the 

recurrence contained in the plots. With this preliminary study, the following 

observations were discerned: 

1. The window width b is a critical parameter that needs to be selected 

sensibly. Longer choice of window width b could possibly overlook the 

structural changes of time series, while shorter b could generate false 

indication of change due to outlier. From this case study, it was 

observed that longer window width resulted to better clustering and 

classification of the data. Thus, it can be said that the choice of b is 

application dependent. Longer window width could be selected when 



 

85 

 

investigating time series analysis such as classification. On the other 

hand, shorter window width is favoured in change detection problems.. 

Moreover, the autocorrelation function could be used as a guide in 

estimating this parameter. The acceptable rule is that the minimum 

value of lagged length where ACF is at the minimum should be used as 

the minimum value of b in segmentation of the time series.  

2. The sliding step m or the windowing method does not significantly 

influence the performance of RTA, other than providing greater 

number of segments when smaller m is used. The windowing method 

does not considerably contribute to the overall performance of RTA. 

The use of either fixed or moving windowing approach is on users’ 

discretion which highly depends on the nature of time series being 

studied and on the computational capability. Relatively shorter time 

series may entail moving window to generate more observations for 

analysis. On the other hand, relatively longer time series data could be 

processed using fixed windowing as long as the number of segments 

are enough for subsequent analysis. 

3. The type of distance metrics does not significantly affect the 

performance of the method. In other words, no strong correlation was 

found between the capability of RTA to cluster and classify the data and 

the type of distance metrics used in constructing the distance matrix. 

This observation is also seen when RQA features were considered. 

4. The application of RTA in quantifying the texture of unthresholded 

recurrence plots is found solidly effective. In the clustering of data and 

eventual classification, it was inferred that RTA features, particularly 

the texton features, achieved comparative performance to RQA 

features. 

5. In the application of RTA to recurrence plots, it was found out that 

VGG16 features achieved superior performance against RQA and other 
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RTA features. Moreover, both the classification results using texton and 

AlexNet features are comparable to RQA features. 

6. Overall, VGG16, AlexNet and texton provided remarkable 

performance in this case study, owing to its high classification accuracy 

and good clusters of the data. It outperformed other RTA feature sets 

and even with RQA features. Moreover, the performance using the 

GLCM, wavelet and LBP features were seen at par to the RQA features. 

This preliminary study provided an insight on how the method is 

performed in terms of capturing the structure of the dynamics of data through 

forming the clusters of similar structures.  
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5. APPLICATION: TIME SERIES CLASSIFICATION 

5.1 Introduction 

Time series data exist in many scientific fields, including medicine, 

biology, economy and signal processing, which makes this a good theme of 

study to most data mining-related research.  In fact, in the data mining stance, 

several tasks have already been explored using the time series that have 

provided relevant explanation on how certain processes behave and change 

through time (Esling & Agon, 2012; T.-c. Fu, 2011). These tasks are clustering, 

classification, segmentation, prediction and fault or anomaly detection, among 

others. 

Time series clustering is a process of finding clusters or natural groups 

in a data set. It is looking for the groups with maximum and minimum inter-

cluster and intra-cluster variances, respectively using a suitable clustering 

algorithm. Unlike the conventional clustering for static data, time series 

clustering requires an additional step on data pre-processing via conversion 

of time series data into some variations of static data. This task does not 

necessarily require advanced knowledge of classes in the dataset. In contrast, 

time series classification entails prior information of classes in the training 

stage. In time series classification, a class label is assigned to an unknown time 

series. At first, the data with a known label or class are trained using a 

classifier. Once taught, this trained classifier is then used to identify the class 

of the new data. The performance of the classifier is typically measured by its 

classification accuracy. 

Segmentation or summarisation of time series is also a common data 

mining task which involves generating of approximation of time series. The 

approximation is possible by reducing its dimensionality without losing its 
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important features. This task is usually performed in smoothing the “noisy” 

time series. The prediction task is regarded as one of the most extensively 

studied and applied data mining tasks. Basically, this kind of task uses a model 

in forecasting new values based on the previously observed time series. Lastly, 

anomaly or fault detection is a task where the main goal is to seek abnormal 

or fault subsequence in a time series. In essence, this task could give 

information and pinpoint the irregularities of the series, which qualifies to be 

applied in process monitoring, fault detection and alarm system. 

In this chapter, the proposed method is explored as a means to perform 

one of the time series data mining task which is time series classification. In 

this task, both the UCR Time Series Dataset Archive and simulated 

autocatalytic reaction system are used as time series datasets. Moreover, the 

optimisation of the four RTA texture algorithms is also carried out in this task.  

5.2 Data Description 

5.2.1 UCR Benchmark Datasets 

The UCR Time Series Archive is a database of time series that are used in 

many time series analysis studies, particularly in time series classification. In 

other words, this is an archive of several time series (both simulated and real) 

data sets from different data creators, which were collated through the effort 

of Y. Chen et al. (2015). The time series data sets come in different lengths and 

number of classes and are grouped into training and testing sets.  

In this study, only the time series that represent the dynamic process 

system are considered. These are ECG200, ECG5000 and Chlorine 

concentration datasets. In addition, the yoga datasets is also included to 

evaluate the RTA to non-process time series. More information of the datasets 

are presented in Table 5-1. 
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Figure 5-1. Plots of the training datasets of (A) ECG200, (B) ECG5000, (C) Chlorine 

Concentration, and (D) Yoga time series. The plots are also colour-coded that 

correspond to the classes. 

 

Table 5-1. Summary of the four UCR time series datasets used in this case study 

Datasets 
No. of 

Classes 

window 

width, b 

Size of Datasets 

(No. of segments, N) 

Training Testing 

ECG200 2 96 100 100 

ECG5000 5 140 500 4500 

Chlorine 

Concentration 

3 166 467 3840 

Yoga 2 426 300 3000 
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5.2.2 Autocatalytic Reaction System 

The simulated time series data of an autocatalytic reaction system are 

based from an autocatalytic process of two parallel, isothermal autocatalytic 

reactions in a continuous stirred tank reactor allowing three reactions to occur 

at different rates (Lee & Chang, 1996). The autocatalytic process is represented 

by three differential equations as stated below:  

where x, y, and z are feed concentration variables of the three involved 

chemical species, and a, b, and c are  the scaled time ratios of the reactions. 

Moreover, the 𝛾1 and 𝛾2 represent the scaled feed concentration ratios of the 

involved chemical species. 

In this process, the values of a, b, and c were kept constant throughout 

the reaction. Only the values of 𝛾1 and 𝛾2 were varied. Moreover, only the 

value of x per time was determined to obtain a univariate time-series which 

facilitates simple analysis. The values of a, b, and c were fixed to 18,000, 400, 

and 80, respectively.  By modifying only the values of the feed ratio 

parameters, three states of the system were created. At first, the feed ratio 

parameters 𝛾1 and 𝛾2 were first set to 1.50 and 4.20, respectively, for this first 

100 time units. This system is labelled as the normal operating condition 

(NOC). From there, a linear change on the values of the feed ratios was 

introduced until 150 time units. The 𝛾1 and 𝛾2 were linearly increased to 1.55 

and 4.25, respectively. This is the first change of the condition in the process. 

 𝑑𝑥

𝑑𝑡
= 1 − 𝑥 − 𝑎𝑥𝑧2 

(5-1) 

 𝑑𝑦

𝑑𝑡
= 1 − 𝑦 − 𝑏𝑦𝑧2 

(5-2) 

 𝑑𝑧

𝑑𝑡
= 1 − (1 + 𝑐)𝑧 + 𝛾1𝑎𝑥𝑧2 − 𝛾2𝑏𝑦𝑧2 

(5-3) 
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After this, another change was introduced to the system by keeping the said 

values of the feed ratios constant until 200 time units (2nd change).  

 

Figure 5-2. The Autocatalytic process time-series data 

The simulated time-series data as shown in Figure 5-2 were modelled 

with equal time step of 0.005 time units, thus, creating a total of 40,000 

equidistant values of x. However, the first 10,000 samples (correspond to the 

first 50 time units) were disregarded from the analysis to ensure that the NOC 

samples to be used in the analysis are in steady-state condition. Thus, a total 

of 30,000 samples were used in the analysis with 10,000 samples each for the 3 

states.  
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5.3 Time series Classification 

The classification of time series is regarded as the most common data 

mining task  (Ge & Ge, 2016; Silva et al., 2013). In fact, this task has achieved 

considerable success to several fields, including finance (T.-c. Fu, Law, Chan, 

Chung, & Ng, 2006), medical science (Chaovalitwongse, Pottenger, Wang, Fan, 

& Iasemidis, 2011; Jovic & Jovic, 2017), and agriculture (Tatsumi, Yamashiki, 

Canales Torres, & Taipe, 2015), among others. In time series classification, a 

class label is assigned to an unknown time series. At first, the data with a 

known label or class are first trained using a classifier. Once taught, this 

trained classifier is then used to identify the class of the new data. The 

performance of the classifier is typically measured by its classification 

accuracy. However, unlike the traditional classification problems, time series 

classification requires some representation of data. It is in this regard that the 

recurrence texture analysis is considered. 

5.3.1 Related Works 

Based on literature, the use of textural features of distance matrices as 

predictors in time series classification is a novel theme in data mining world. 

Limited studies have used texture analysis alone in dealing with the problem. 

Moreover, these studies only addressed specific problems. In the work of 

Yanhua et al. (2006), the co-occurrence based temporal textures are extracted 

from time series flourescence microscope images and used as predictors in the 

classification of subcellular location patterns. They regarded the co-occurrence 

based temporal textures as robust features as these give both temporal and 

spatial information which become the basis of attaining high classification 

accuracy. Similar work was done by  Singha et al. (2017) wherein they used a 

combination of temporal features extracted from coarse resolution time series 

data and spectral  features of fine resolution data for object-based paddy rice 
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mapping application. The temporal features are extracted on the Moderate 

resolution imaging spectroradiometer (MODIS) of the remote sensing of 

paddy rice. 

The closest work to the method is method proposed by Souza et al. (2014) 

wherein they used textural algorithms to extract features in the recurrence 

plots. In this work, they used the combination of all extracted features from 

Local Binary Pattern (LBP), Grey-Level Co-occurrence Matrix (GLCM), Gabor 

filters, and Segmentation-based Fractal Texture Analysis (SFTA) as predictors 

in classification of the UCR Time Series Archive. They referred the method as 

“ Texture Features from Recurrence Patterns (TFRP)”. Moreover, the SVM was 

used a classifier in their study and compared to other methods that also 

employ recurrence plots in dealing the classification problem. One of the 

which is the work presented by  Silva et al. (2013) which they named as 

“Recurrence Patterns Compression Distance (RPCD)”. RPCD uses recurrence 

plots to represent the time series data, and 1-NN algorithm to estimate the 

similarity of the two recurrence plots via employing a video compression 

based distance measure (CK-1). Moreover, RPCD compares the texture 

similarity between two images using Kolmogorov complexity. 

5.3.2 Methodology 

Textural Extraction Algorithms 

In this task, the Recurrence Texture Analysis was used as a representation 

of time series to obtain predictors for classification. In essence, the time series 

are represented by a set of distance matrices and its textural features were 

consequently extracted. The texture features are the treated as predictors for 

classification.  
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The four texture extraction algorithms, namely GLCM, wavelet, local 

binary pattern and  texton were employed in this study. The features are 

extracted using a combination of hyperparameters of the techniques with 

varying level of values, as tabulated in Table 5-2.  It was emphasised that some 

of its parameters were optimised in this study.  

Table 5-2. Hyperparameters of the texture extraction algorithms used in the study 

Algorithm Hyperparameter Values used  Remarks 

GLCM 

Number of grey 

levels 
8, 32, 64 

For 

optimisation 

Distance 1  

Directions (degrees) [0, 45, 90, 135]  

Wavelet 

Type of wavelet Daubechies (db4)  

Level of wavelet 

decomposition 
2, 3, 4 

For 

optimisation 

Local Binary 

Pattern 

Radius of circular 

local pixel 

neighbourhood (R) 

0.5, 1, 2 

For 

optimisation 

No. of sampling 

points in the pixel 

neighbourhood 

8 

 

Map Type No mapping  

Texton 

Filter Name 

Schmid, Leung-

Malik, Root Filter 

Set 

For 

optimisation 

Filter Size 49  

No. of cluster 

centers 
40 

 

AlexNet 

No. of 

Convolutional Layer 
5 

 

No. of Pooling Layer 3  

No. of Fully 

Connected Layer 
3 

 

Image Resolution 

(pixel) 
[256 x 256] 
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VGG16 

No. of 

Convolutional Layer 
13 

 

No. of Pooling Layer 5  

No. of Fully 

Connected Layer 
3 

 

Image Resolution 

(pixel) 
[224 x 224] 

 

 

Building of Classification Model 

For the classification part, building of the classification model was done 

using Support Vector Machine which was previously discussed in Chapter 4. 

This classifier was trained using the training data set with known class label. 

Once trained, this was then used to classify another set of data (test data set) 

and the classification accuracy was computed on this matter. 

It should be noted that during the training of the models, the parameters 

of the classifiers should be optimised so that misclassification errors and 

penalty terms are minimised. Moreover, validation technique should also be 

carried out to validate the result and to minimize, if not eliminate, the 

overfitting of data. In this regard, cross-validation is normally used. It works 

by selecting the number of cross-validation folds. The model for each fold are 

trained using all the data outside the fold. Furthermore, the model is tested 

using the data inside the fold and subsequently calculated the average test 

error over all folds, and a good estimate of the classification accuracy is 

achieved. In this case, the study employed five-fold cross validation. The 

trained models are then used to classify the test datasets. The classes were 

predicted and the classification errors were obtained.  
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5.4 Results and Discussion 

5.4.1 Time series Analysis on UCR Time Series Data 

Four datasets were used to exhibit the robustness of RTA to deal with 

time series analysis. RTA features were extracted from their distance matrices 

that were subsequently used as predictors for SVM classification. 

Representative samples of distance matrices for each classes are shown in 

Figure 5-3 . Prior to the classification, the RTA features were optimised by 

optimising the hyperparameters of the four textural extraction algorithms. 

The optimisation of the hyperparameters of these algorithms, as shown 

in Table 5-2, were initially carried out using the training datasets. Moreover, 

the SVM classifier was also optimised by adjusting the box constraint level so 

that the optimised classification accuracy is attained.  

Once the parameters were identified, the classification of test data was 

conducted. The accuracy rates were determined for each texture algorithm and 

were used to compare their performances. Table 5-3 shows the summary of 

the classification accuracy percentages in both training and testing stages. 
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Figure 5-3. Representative samples of distance matrix plots of the training datasets 

of four UCR Time Series Archive used in the study 
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Table 5-3. Results of the classification performance of RTA during the training and 

testing stages 

 ECG200 ECG5000 
Chlorine 

Conc 
Yoga 

T
ra

in
in

g 

GLCM 78.0% 90.4% 58.5% 64.3% 

Wavelet 79.0% 91.2% 58.0% 66.0% 

LBP 79.0% 89.6% 59.3% 63.0% 

Texton 85.0% 94.0% 58.2% 67.7% 

CNN-

AlexNet 
86.0% 94.6% 65.7% 79.0% 

CNN-

VGG16 
87.3% 95.1% 66.2% 83.1% 

T
es

ti
n

g
 

GLCM 77.0% 90.0% 56.3% 62.9% 

Wavelet 74.0% 91.7% 55.1% 65.6% 

LBP 74.0% 91.0% 56.1% 68.2% 

Texton 84.0% 94.1% 55.7% 60.9% 

CNN-

AlexNet 
90.0% 94.2% 71.1% 86.9% 

 
CNN-

VGG16 
93.2% 95.3% 75.2% 89.5% 

The accuracy rates obtained during the testing stage was used to evaluate 

the performances of each texture extraction algorithm. Based on the table 

above, in general, the VGG16 algorithm provided an outstanding result in the 

classification. It obtained the highest classification accuracy  for all the 

considered datasets.  Moreover, the AlexNet and texton features also provided 

average results.  

To present the reliability of the approach further, the results of the RTA 

were also compared to the other published methods which also utilized the 
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same sets of time series data. One of which was the method proposed by Souza 

et al. (2014), referred as TFRP, which employed the texture features of 

recurrence plots. In their paper, they have considered two sets of features, i.e. 

the combination of all texture features and the reduced features amounting to 

20%. Furthermore, the work presented by  Silva et al. (2013), referred as RPCD, 

was also considered in the comparative evaluation. Even though the method 

did not involve extracting texture feature, the method is still valid for 

comparison since they used similar time series data sets in their classification. 

Table 5-4. Comparison of the error rates of the proposed method (RTA) to other 

approaches (TFRP and RPCD) 

Data 

Sets 

RTA TFRP 

RPCD 

G
L

C
M

 

W
av

el
et

 

L
B

P
 

T
ex

to
n

 

A
le

xN
et

 

V
G

G
16

 

A
ll

 

20
%

 

ECG 

200 
0.23 0.26 0.26 0.16 0.1 0.07 0.17 0.17 0.14 

ECG 

5000 
0.10 0.08 0.09 0.06 0.06 0.05 

No 

Data 

No 

Data 

No 

Data 

Cl2 

Conc. 
0.44 0.45 0.44 0.44 0.29 0.25 0.30 0.29 0.49 

Yoga 0.37 0.34 0.32 0.39 0.13 0.11 0.14 0.13 0.13 

Based on the table, TFRP presented a considerable degree of success in 

the classification of the considered UCR datasets as shown by its low error 

rates for most of the datasets. Meanwhile, it was seen that the RTA-texton is at 

par to this method. More importantly, the better performance of both CNN 

features (AlexNet and VGG16) are clearly demonstrated in this undertaking. 

It can be argued that these state of the art methods reliably classify these 

datasets which are found superior even to the published methods. It can also 

be observed here that the VGG16 was found significantly better than AlexNet. 
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This is an interesting inference which is consistent with the premise that better 

classification could be obtained when neural networks are becoming deeper 

(Mehdipour Ghazi, Yanikoglu, & Aptoula, 2017; Simonyan & Zisserman, 

2014). 

In sum, RTA is a reliable method to deal with time series analysis. In fact, 

it was demonstrated that the proposed method signifantly discriminated the 

classes of the UCR time series, and even outperformed some its peer published 

methods. 

5.4.2 Time series analysis on autocatalytic reaction system 

In the pre-processing of the data, a window width of b=25, is used to 

partition the time series with step size of 10, which resulted to 1191 segments. 

Each segment is processed through calculating the distance matrix and 

subsequently extracting the RTA features. Samples of distance matrix plots are 

shown in Figure 5-4. By looking the forms of the distance matrices, it can be 

said that it is difficult to distinguish the differences between classes. The 

prominent cyclic features and textures of the plots are very much alike to one 

another.  

 

Figure 5-4. Exemplary distance matrix plots of the autocatalytic process system 

showing NOC (left), transition (middle) and new state system (right) 

Optimisation of the hyperparamaters of textural extraction algorithms 

was first performed to obtain augmented RTA features to be used in 

classification using SVM classifier. During the classification, the model are 
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trained using the training datasets which composed of 70% of the total datasets 

and was subsequently validated using five-fold cross validation method. The 

remaining 30% of the datasets was then used to test the model and the 

classification accuracy for each RTA algorithms were reported. The results 

were in summarised in Table 6-5. Based from the table, most of the RTA 

features got nearly poor classification on the states of the system, which 

concurred to the difficulty in visual detection in the differences of distance 

matrices of each state. The poor classification may also indicate that a single 

variable of system would not be sufficient for classification problem. In other 

words, more variables (i.e., y and z) could be incorporated to build a more 

reliable classification model using RTA features. 

 Table 5-5. Results of the classification accuracy on the test dataset of autocatalytic 

process 

Feature Set 
No. of 

dimensions 
Classification Accuracy (%) 

RTA – GLCM 8 42.8 % 

RTA – Wavelet 9 39.8% 

RTA – LBP 256 54.5% 

RTA – Texton 38 67.7% 

All RTA features 311 55.6% 

CNN – AlexNet  4096 61.7% 

CNN – VGG16 4096 72.3% 

RQA (ε = 0.1) 12 50.1% 

Among the RTA features, the VGG16 considerably discerned the classes 

of the dataset, followed by texton with 72% and 68% accuracy percentages, 

respectively. Moreover, their classification results, along with AlexNet, are 

even higher than the combined GLCM, wavelet, LBP and texton features with 
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only 56% accuracy, and to the RQA features which only correctly classified 

50% of the datasets.  

Figure 5-5 presents the plots of the first 2 linear discriminant scores of the 

VGG16 and texton features displaying the maximum separation between 

classes. It is apparent that most of the features of transition state (blue ‘+’) are 

scattered in NOC and new state. This inference is consistent to the concept of 

this system since the transition is a pseudo-state where the shifting process 

from one stable state (NOC) to another one (new) is taking place. It is also 

worth to mention that the NOC and new states are completely separable to 

each other in VGG16, which could give an insight that VGG16 could 

essentially differentiate the change of the process and hence, could be used in 

predicting the new state from NOC. 

 

Figure 5-5. RTA-Texton (left) and CNN-VGG16 (right) features showing maximum 

separability between states in linear discriminant subspace 

The RQA was also employed in the time series and the results were 

compared to the RTA feature sets to facilitate comparative evaluation of the 

two similar approaches. Using the same windowing parameters, 12 RQA 

features were extracted from recurrence plots of the time series using different 

threshold value ε, ranging from 0.01 to 0.5, which was optimised prior 

classification. The value of ε = 0.1 was then selected in this regard. Using these 
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RQA features as predictors for SVM classifier, the classification of the states of 

the system resulted to only 50% accuracy, which is only at par to the rest of the 

RTA features. More interestingly, the RQA features did not fairly classify the 

states as compared to two CNN features and to RTA-texton. In this case, it can 

be then said that the RTA is a more robust feature set that can be used in the 

change-point detection and in classification task even when employed in a 

more challenging process system such as in autocatalytic process. In other 

note, the fact that the GLCM, wavelet and LBP also provided at par and 

acceptable results to RQA, those feature sets could also be regarded as 

adequate which could be employed to other time series problems. 

In this case study, it was showed that the RTA is a good alternative 

method that could be used in time series analysis, particularly in time series 

classification. The RTA feature sets are reliable predictors to SVM classification 

models to various time series datasets. In fact, RTA performed well compared 

to other similar approaches.  

5.5 Conclusion and Recommendation 

In this chapter, the RTA is used in time series classification. In this regard, 

RTA is used as a pre-processing tool to extract meaningful information of the 

time series and the features were used for classification. In particular, the 

method is applied to classify some of the public datasets which are often used 

in studying time series analysis. Additionally, the simulated autocatalytic 

process time series is also included in this undertaking to classify the states of 

the system. More importantly, this chapter included the optimisation of the 

hyperparameters of the four textural extraction algorithms (GLCM, wavelet, 

LBP, textons). The classification performance was assessed using SVM and the 

results were compared to other results of other similar approaches. 
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Using the public time series dataset, the evaluation of the technique 

showed that all the four RTA features, AlexNet, and VGG16 generated a 

satisfactory level of success in terms of classifying the classes of time series 

considered in this study. Interestingly, the texton, AlexNet and VGG16 

delivered outstanding classification performance compared to the other three 

algorithms. In the comparative evaluation, the RTA could be regarded as a 

reliable tool in time series classification since the results showed that it was at 

par to the other similar methods, with VGG16 showed a very competent 

method in dealing the classification task, even beating other published 

methods. Moreover, it was also confirmed here that better classification could 

be obtained from deeper neural network (VGG16). However, while these 

observations held true to the four considered, further evaluation of other 

publicly available data sets needs to be pursued to strongly validate this claim. 

Moreover, these RTA features could also be combined which could be served 

as combined predictors, with option to reduce the dimension using some 

appropriate techniques such as PCA.  

In the simulated autocatalytic process time series, it was showed that 

RTA is a reliable method to classify the states of the system, both VGG16 and 

texton displayed the best classification performance among the other feature 

sets. In further evaluation, the method was compared to RQA in terms of the 

power to classify the states. It was showed that VGG16, AlexNet and texton 

provided a better classification accuracy against RQA features. The GLCM, 

wavelet, and LBP, on the other hand, found to be at par to RQA feature sets. 

More importantly, the visualisation of the RTA features into 2-D LDA 

subspace offered a good insight on how the data is clustered which can be 

used as an extension study like process monitoring, change-point detection 

and fault detection. RTA could be used as a base method in constructing 

monitoring tool for dynamic process system.  
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Overall, it was showed in this chapter that RTA features, particularly the 

CNN and texton, is a good alternative method for time series analysis, i.e. time 

series classification. The RTA feature sets are reliable predictors to SVM 

classification models to various time series datasets. Lastly, the method 

performed well in the classification task compared to other similar approaches 

(i.e. RQA, TFRP, RPCD).  
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6. APPLICATION: CAPTURING THE DYNAMICS OF 

SOLIDS PROCESSING DATA 
 

6.1 Overview 

Most natural and chemical processes are considered dynamic systems 

owing to their complex and dynamic characteristics. In particular, processes 

related to solid processing, i.e. milling and powder flow, usually behave in 

complex and nonlinear manner, due to several factors including the 

interaction of the solid particles during the process and the influence of the 

external elements (e.g. temperature, pressure). The dynamic behaviour of the 

processes is actually a major challenge in its precise modelling and 

optimisation of the process.  

In this chapter, the recurrence texture analysis is applied to real data sets 

on solids processing. Three case studies are considered here. The first one is 

the characterisation of the dynamic behaviour of an autogenous mill using 

only one mill parameter. The mill load is used in identifying the mill controller 

states. In the second case study, two mill parameters are then considered: the 

power draw and outlet temperature of the IsaMill. Initially, this study 

employed RTA to characterise the behaviour of the IsaMill using these 

parameters and understand how it interacts with each other. Then, the study 

is extended in predicting the particle sizes of the feed using the labelled P80 

values. In this occasion, the predictive modelling is employed by treating the 

RTA features as predictors in the model. The RTA-texton is used in both case 

studies due to its reliability as shown in the preliminary study. In the last 

study, the powder flow behaviour is characterised using the time series of its 

masses. In this study, all RTA features are considered in the classification 

model. 
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6.2 Identification of autogenous mill controller states using 

mill load data 

The use of autogenous mills has become widespread, owing to their 

capacity and favourable capital and operating costs. Optimal operation of 

these systems is critical, given their high energy consumption and affect on 

downstream processing. A considerable effort has been spent over the years 

in the development of advanced control systems to achieve a better 

performance in this regard. However, despite significant advances, the 

problem still remains challenging, owing to the nonlinear behaviour of the 

system with respect to the mill variables, and, the unmeasured ore variability 

come from the mine.  

The mill load, in particular, can be seen as a state variable of the mill, 

which could be important for; modelling and control, and, important insights 

into the mill behaviour. In this investigation, time series cluster analysis was 

performed using online mill load measurements in order to identify the 

different control states of the mill. More specifically, the RTA-texton is applied 

to the mill load time series data.  These texton features are subsequently be 

used to promptly identify the normal operating conditions from other mill 

states, viz. feed disturbances and feed limited in the mill.  

6.2.1 The Mill Load data 

The load data is generated from a fully autogenous closed-loop mill with 

a recycling load that overflowed from a screen unit. The basic diagram of the 

mill is presented in Figure 6-1. The time series data are used to distinguish the 

type of state conditions of the mill. The mill load data contain a total of 12,600 

observations from three operational states, namely normal operating 

condition (NOC), feed disturbance (FD) and feed limited (FL), as defined by 

an expert mill controller. The NOC state is considered the default state of the 
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mill or when none of the other conditions were flagged by the controller. On 

the other hand, FD is labelled when the combined ore feed rate is in excess of 

the average feed rate by a set threshold. However, when the mill load has the 

load rate of change less than zero while the combined ore feed rate is still in 

excess to the average rate, this is then labelled as FL. 

 

Figure 6-1. Basic diagram of a fully-autogenous mill 

The distribution of the number of observations per states as well as the 

normalised time-series load data were given in Table 6-1 and Figure 6-2, 

respectively.  

 

Figure 6-2. The normalised time-series mill load with labelled states: (I) NOC, (II) 

Feed disturbance, (III) Feed limited 
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This time series was segmented into N segments using fixed windowing, 

thus each segment contains b observations that was estimated using the ACF 

as shown in Figure 6-3. A total of 50 segments, each has a segment length of 

250, are used to calculate the Euclidean distance matrices. 

Table 6-1. Mill load time-series data 

Mill states 
No. of Observations 

(n) 

No. of Segments (N) 

(for b=250) 

Normal Operating 

Condition 
6,000 24 

Feed Disturbance 1,500 6 

Feed Limited 5,100 20 

TOTAL 12,600 50 

 

 

Figure 6-3. The Autocorrelation Function (ACF) of the mill load time series showing 

b=250. 

6.2.2 Results and Discussion 

The time-series load data was used to classify the three mill operational 

states, i.e. normal operating condition, feed disturbance, and feed limited. 

Euclidean distance was used to calculate the distance matrix of the segmented 

time series. The representative plots of the distance matrices are displayed in 

Figure 6-4. It is interesting to note that the visual textural appearance between 



 

110 

 

the distance matrices of NOC and FL are apparently comparable. Moreover, 

the distance matrix of FD look finer than the other two. 

 

Figure 6-4. Representative plot of the Euclidean distance matrices of three 

operational states of the autogenous mill 

The texton features were extracted from these Euclidean distance 

matrices, and subsequently visualised by projecting the linear discriminant 

scores onto 2D space. As presented in Figure 6-5, the NOC state formed a good 

cluster group and acquired total separability to the FD datapoints. However, 

there is an observed overlap with the clusters of FL. Conversely, the FL has 

also generated a quite defined cluster group.  

With this promising result, it could then be discerned that the proposed 

method can potentially characterise the mill states using the mill load 

parameter only. Although this could only be validated if more data points are 

used and calibration of the model is carried out. The sliding window can also 

be considered for in-depth analysis of the data. The fault detection scheme can 

also be derived using this approach via training the NOC data and treating the 

other mill states as faults or abnormal datasets. Control limits can be computed 

in the NOC data and decision boundary can be derived during the training. 

The use of one-class data description (e.g. SVDD, GMM) is a good 

consideration for this approach.  
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Figure 6-5. Visualisation of the texton-schmid feature sets of mill load data as 

projected onto 2D space using the linear discriminant scores. 

One significant interpretation that could be drawn in this case study is 

the use of only one operational variable in evaluating the performance of the 

autogenous mill. The load could alone be used by the controller to monitor the 

operating condition of the mill. Moreover, the models considered here could 

be in principle be implemented online once appropriately calibrated. 

Subsequently, this could form a foundation for more advanced process control 

models for autogenous mill. 
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6.3 Estimation of feed particle sizes in a horizontal stirred 

mill (IsaMill) using power consumption and temperature time 

series data 

Energy consumption in comminution circuits is often the single largest 

component of the energy expenditure in concentrator circuits, owing to the 

inefficiency of the processes used to reduce the size of ore particles (Fuerstenau 

& Abouzeid, 2002), among others. Considerable effort has been expended to 

increase the efficiency of grinding circuits by improvements in the design of 

comminution equipment, as well as smarter operation or better control of 

operations (Aguila-Camacho, Le Roux, Duarte-Mermoud, & Orchard, 2017). 

The limited availability of reliable models is a significant and ongoing 

challenge in these efforts, as comminution circuits can exhibit complex 

nonlinear behavior that can be difficult to capture in first-principles models 

(Aguila-Camacho et al., 2017). 

As a result, the use of data-based process models is increasingly 

attracting attention, as data are becoming abundant and the means to process 

these data are likewise becoming increasingly sophisticated and cheap. Over 

the last decade, a number of studies have appeared in this regard, e.g., in the 

analysis of vibration and acoustic signals from comminution equipment 

(Tang, Chai, Yu, & Zhao, 2012; Zeng & Forssberg, 1994; Zeng & Forssberg, 

1996), and soft sensor approaches to the monitoring of mill operations (Shao, 

2005). 

In many of these studies, nonlinear time series analysis, in one form or 

another, plays a critical role; in this investigation, the recurrence texture 

analysis is applied to explore the behaviour of grinding equipment. In 

particular, this section highlights the estimation of the particle sizes of the feed 

in the stirred horizontal mill (or also known as IsaMill) of an Australian base 
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metal plant using the time series data of both power consumption and outlet 

temperature. Feature extraction algorithms such as texton, CNN-AlexNet, and 

CNN-VGG16 are used in this undertaking, and the results are compared to the 

traditional nonlinear time series method which is the delay vector or lagged 

trajectory coordinates. 

6.3.1 Power draw and outlet temperature of IsaMill 

Two time series both having a length of 74,312 observations from power 

draw (measured in kW) and outlet temperature (in 0C) along with the 

measured P80 values (in μm) ranging from 13 to 21 μm, as indicated in Figure 

6-7, were obtained from a horizontal stirred mill (IsaMill) operating on a base 

metal plant in Australia. The simplified diagram of this IsaMill is shown in 

Figure 6-6.  

 

Figure 6-6. Flow diagram of the IsaMill grinding circuit, showing the 

measuring points of the power, temperature, and P80 particle sizes 

The data are collected over a period of approximately two months 

wherein the product size (P80 values) of the mill was measured off-line once 
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every 24 h and had to be fused with the temperature and power data that were 

collected every minute. This was done based on a ‘hold until updated’ 

approach on the same timeline as the power and temperature samples.  

Prior the application of RTA, the raw data are first plotted into 2-D 

subspace to understand how the two mill parameters are correlated to each 

other. As shown in Figure 6-8, the data are overlapping to each other and is 

difficult to discern the pattern.  

The P80 values were initially divided into three groups that would 

represent the classes or the texture of the feed. The division of the P80 values 

was carried out using a hierarchical clustering approach with ward linkage 

specifying the wanted number of class. As a result, the time series were 

partitioned into 3 groups (fine, intermediate, coarse). The distribution of 

particle sizes are summarized in Table 6-2 and Figure 6-9.  

The analysis of temperature and power draw time series were treated 

separately. As shown in Figure 6-10, both time series has a minimum 

autocorrelation of 720, thus the window width is pegged on that value. For the 

sliding step, the author selected a value equal to 100. As a result, these values 

generated a total of 723 discrete time series (or segments) spread across three 

classes using a moving window segmentation approach. These segments are 

used to calculate Euclidean distance matrices. In addition, the cross-distance 

matrix between these segments are also calculated. This is made to evaluate 

the effect of these two parameters in the capacity to classify the particle size.  
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Figure 6-7. The raw time-series of power draw (top) and temperature (middle) of 

the autogenous mill, and the corresponding particle size measurements (bottom) 

In this study, the particle sizes are estimated using kernel Support 

Vector Machine with the unreduced features as inputs (predictors) and the 

classes of the mean particle sizes as outputs (response). In the classification, 

four sets of each of the texton, AlexNet and VGG16 features are considered, 

i.e. features extracted from power, temperature, and cross distance matrices 

and the combined features of power and temperature. 
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Figure 6-8. The outlet temperature versus power draw plot with corresponding 

colour legends on the particle size classes. 

 

 

Figure 6-9. The distribution of particle sizes showing the partitions of 3 classes (fine, 

intermediate, and coarse) 
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Figure 6-10. The autocorrelation function (left) and false nearest neighbour plots 

(right) of power draw and outlet temperature time series 

Table 6-2. Power Draw and Outlet Temperature data 

Class 

Particle 

size (P80), 

μm 

Class 

mean 

Particle 

Size, μm 

No. of 

observations 

No. of 

segments 

(using b=720, 

m=100) 

1 Fine 
13.068 – 

14.757 
13.91 16,712 160 

2 Intermediate 
15.014 – 

17.647 
16.33 40,320 397 

3 Coarse 
18.037 – 

21.139 
19.59 17,280 166 

 TOTALS   74,312 723 

 

Three classes are made to correspond the texture of particle sizes (fine, 

intermediate, coarse). A total of 50 different P80 values are obtained in this 

undertaking. These P80 values were divided into three that would represent 

the classes or the texture of the feed. The evaluation of the model is facilitated 



 

118 

 

by first randomly splitting the P80 values into 80% of training data and 20% of 

testing data. In other words, the training and testing data contain 40 and 10 

different P80 values, respectively. Using the training dataset, the models are 

trained and optimised by controlling the box constraint level of SVM. Further, 

the cross-validation technique is implemented on the training data sets to 

validate the results and to avoid the overfitting of the data. Cross validation 

works by selecting the number cross validation folds. In this case, five folds of 

cross validation was selected to partition the data where each fold is held out 

for testing. The model for each fold are trained using all the data outside the 

fold. Furthermore, the model is tested using the data inside the fold and 

subsequently calculated the average test error over all folds. In this case, 

overfitting is minimized, thus, provide good estimate of the feed particle size.  

 

Figure 6-11. Distribution of training (black ‘o’) and test (red ‘∗’) data sets. 
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In the testing stage, the prediction is assisted using these built models and 

using the test datasets. Classification accuracy were computed by comparing 

the predicted classes to the true classes of these datasets. 

6.3.2 Delay Vector or Lagged Trajectory Coordinates 

For comparative purposes, the time series was also analysed by means of 

phase space reconstruction. This entailed the construction of a set of predictor 

variables based on lagged copies of the original predictor variables 

themselves, to enable classification of the time series by models of the form 

∁(𝑛)  = 𝑓(𝑦(𝑛), 𝑦(𝑛 − 𝑙𝑒), … , 𝑦(𝑛 − 𝑙𝑒(𝑑𝑒 − 1)). (6-1) 

In equation (6-1), ∁(𝑛) denotes the class to which the time series 

observation 𝑦(𝑛) belongs at time 𝑛. The parameters 𝑙𝑒 and 𝑑𝑒 are referred to as 

the embedding lag and embedding dimension of the time series, respectively. 

The embedding lag parameters were determined via analysis of the 

autocorrelation function of the time series data, while the embedding 

dimension was determined with the method of false nearest neighbours, as 

described by Barnard, Aldrich, and Gerber (2001). 

The observations of the variables and their lagged copies yield a so-called 

lagged trajectory matrix (LTM) that represents a trajectory of the evolution of 

the dynamical system represented by the observed time series (Aldrich & 

Auret, 2013). 

In this study, these variables 𝑦(𝑛 − 𝑙𝑒), … , 𝑦(𝑛 − 𝑙𝑒(𝑑𝑒 − 1) were used as 

predictors to classify the groups of the feed particle sizes. 

 

6.3.2 Results and Discussion 

As shown in Figure 6-12, the small distances are represented by dark blue 

hues, while large distances are indicated by light green and bright yellow. The 
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bright yellow horizontal and vertical lines in the top and middle panels are 

indicative of possible outliers in the data, but these were not removed. 

Moreover, it is also interesting to note that the “drift” typology in these plots 

are apparent, which may mean that the system is non-stationary and may 

contain a trend or a drift. Verification of this visual interpretation is facilitated 

by using RTA, particularly texton, CNN-AlexNet, and CNN-VGG16.  

 

Figure 6-12. Distance matrix plots of 3 classes: fine (left), intermediate (middle) and 

coarse (right) using time series of  power draw (top), outlet temperature (middle) 

and cross distance of these variables (bottom) 
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The bottom panels in the figure show the Euclidean distance matrices 

derived from both variables simultaneously, or the cross distances between 

observations. That is, the distances were determined from 𝑑𝑖𝑗
𝑘 = ‖𝑥𝑖 − 𝑦𝑗‖

𝑘

2
, for 

𝑖, 𝑗 = 1, 2, … , 𝑏, where x = power and y = temperature. 

A total of 11 feature sets were extracted from the distance matrices of the 

power variable (𝐅𝑝𝑜𝑤𝑒𝑟
𝑡𝑒𝑥 ∈ ℝ723×37, 𝐅𝑝𝑜𝑤𝑒𝑟

𝐴𝑙𝑒𝑥 ∈ ℝ723×4096, 𝐅𝑝𝑜𝑤𝑒𝑟
𝑉𝐺𝐺16 ∈ ℝ723×4096), the 

temperature variable (𝐅𝑡𝑒𝑚𝑝
𝑡𝑒𝑥 ∈ ℝ723×37, 𝐅𝑡𝑒𝑚𝑝

𝐴𝑙𝑒𝑥 ∈ ℝ723×4096, 𝐅𝑡𝑒𝑚𝑝
𝑉𝐺𝐺16 ∈ ℝ723×4096), 

cross distance matrices of power and temperature variables (𝐅𝑐𝑟𝑜𝑠𝑠
𝑡𝑒𝑥 ∈

ℝ723×37, 𝐅𝑐𝑟𝑜𝑠𝑠
𝐴𝑙𝑒𝑥 ∈ ℝ723×4096, 𝐅𝑡𝑒𝑚𝑝

𝑉𝐺𝐺16 ∈ ℝ723×4096), and feature sets derived from 

the lagged trajectory (LTM) embeddings of the power and temperature 

variables(𝐅𝑝𝑜𝑤𝑒𝑟
𝐿𝑇𝑀 ∈ ℝ723×10, 𝐅𝑡𝑒𝑚𝑝

𝐿𝑇𝑀 ∈ ℝ723×10). The embedding parameters 𝑙𝑒 =

720 and 𝑙𝑒 = 10 were determined from the autocorrelation functions and by 

use of the false nearest neighbour algorithm as shown in Figure 6-10. The 

above feature matrices were used as predictors in building the classification 

models. 

Since the AlexNet and VGG16 feature sets were comparatively large (4096 

features each), the authors also performed dimensionality reduction of these 

features using principal component analysis, but using the first 20 principal 

component scores of these large feature sets did not result in better SVM 

models than when all the features were used. 

Five-fold cross-validation was used to partition the data. For each fold, a 

model was trained using all the data outside the fold, followed by testing using 

the data inside the fold. The results of using the above features sets to classify 

the P80 values are shown in Table 6-3 to  

Table 6-6. 

Table 6-3. Results of classification (% correct) with predictor sets derived 

from the mill power data and use of a cubic kernel support vector machine. 

RUN          POWER 
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TEXTONS ALEXNET VGG16 LTM 

Train Test Train Test Train Test Train Test 

1 83.3 60.0 71.3 62.7 76.6 63.4 59.5 60.9 

2 86.5 41.9 76.7 47.3 77.9 46.5 65.5 37.1 

3 85.0 44.7 74.2 57.5 78.3 48.1 62.7 53.6 

4 83.7 64.9 71.6 65.0 73.6 66.4 65.4 55.3 

5 84.3 54.2 72.0 58.8 78.1 62.6 62.9 54.6 

AVG 84.6 53.1 73.2 56.3 76.9 57.4 63.2 52.3 

STD 1.26 9.80 2.28 8.39 1.96 9.35 2.46 8.96 

 

Table 6-4. Results of classification (% correct) with predictor sets derived 

from the mill temperature data and use of a cubic kernel support vector 

machine. 

RUN          
TEMPERATURE 

TEXTONS ALEXNET VGG16 LTM 

Train Test Train Test Train Test Train Test 

1 79.1 57.0 72.1 59.2 75.6 59.9 66.3 68.9 

2 84.6 36.6 75.5 46.5 77.9 47.3 69.6 55.4 

3 79.5 48.8 73.9 47.3 76.3 49.6 70.8 58.3 

4 80.3 58.0 78.6 58.0 75.9 62.6 71.3 61.1 

5 79.1 63.4 74.8 60.3 76.0 64.1 68.5 63.5 

AVG 80.5 52.8 75.0 54.3 76.3 56.7 69.3 61.4 

STD 2.33 10.43 2.39 6.77 0.91 7.72 2.00 5.16 

 

Table 6-5. Results of classification (% correct) with predictor sets derived 

from the cross recurrence combination of mill temperature and power data 

and use of a cubic kernel support vector machine. 

RUN          
CROSS 

TEXTONS ALEXNET VGG16 LTM 

Train Test Train Test Train Test Train Test 

1 69.9 59.2 59.0 57.8 69.2 63.1 NA NA 

2 76.4 50.3 65.2 45.0 74.2 46.5 NA NA 

3 74.6 46.5 67.1 46.5 74.6 48.0 NA NA 

4 72.8 64.1 59.8 67.9 73.1 66.4 NA NA 

5 72.4 58.8 63.0 61.8 72.2 60.3 NA NA 
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AVG 73.2 55.8 62.8 55.8 72.7 56.9 NA NA 

STD 2.44 7.18 3.45 9.87 2.15 9.05 NA NA 

 

Table 6-6. Results of classification (% correct) with predictor sets derived 

from combination of the mill temperature and power data and use of a cubic 

kernel support vector machine. 

RUN          
COMBINED POWER AND TEMPERATURE 

TEXTONS ALEXNET VGG16 LTM 

Train Test Train Test Train Test Train Test 

1 86.1 78.9 80.9 77.5 85.2 78.2 60.5 61.3 

2 89.7 45.0 80.6 47.3 86.3 47.3 77.4 41.9 

3 91.1 43.1 80.4 51.9 85.7 52.6 75.3 55.9 

4 89.0 65.0 80.7 59.8 83.4 66.4 72.6 61.2 

5 88.8 74.1 78.9 69.2 86.2 71.8 73.4 51.2 

AVG 88.9 61.2 80.3 61.1 85.4 63.3 71.8 54.3 

STD 1.83 16.5 0.80 12.4 1.18 13.0 6.60 8.10 

 

As indicated in these tables, it is not possible to distinguish statistically 

between the different algorithms based on the average values (% overall 

reliability of the classifiers), owing to the large standard deviations associated 

with these values. However, since the folds were not selected randomly from 

the data, and each fold represents a unique portion of the data set, the 

classifiers could also be scored on their performance based on the folds, with 

the winner allotted a score of 1 and all the others zero. On this basis, the 

algorithms could be ranked as follows (with scores in parentheses): VGG16 

(7.5), LTM (5), ALEX (1.5), and TEX (1). 

It is interesting that the VGG16 performed significantly better than 

AlexNet over all feature sets, which is in keeping with other comparative 

studies between these two algorithms. Also of interest is the fact that the 

VGG16 algorithm scored higher than the LTM approach often used in the 

development of dynamic process models. This observation is consistent with 

the premise that deeper neural networks can lead to better classification 
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models in complex decision spaces (Mehdipour Ghazi et al., 2017; Simonyan 

& Zisserman, 2014) 

The reconstructed attractors for both variables can be visualized by 

plotting the first three dimensions of the trajectory matrix in each case, as 

shown in Figure 18. These plots are not necessarily able to capture all the 

variance in the data, but provide some indication of the segregation of the data 

labels in these phase spaces. 

  

Figure 6-13. The reconstructed attractors of power draw (left) and 

outlet temperature (right) time series data with legend: fine (red ‘∗’), 

intermediate (blue ‘+’), and coarse (green ‘o’). 

 

Figure 6-14. Linear projection of combined power draw and temperature 

texton (I), AlexNet (II) and VGG16 (III)  features showing maximum 

separability between classes: fine (red ‘*’), intermediate (blue ‘+’) and coarse 

(green 'o') 
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6.4 Characterisation of powder flow behaviour 

The understanding of flow of a powder is very important in the powder-

bed-based additive manufacturing particularly in the development of the 

process (Spierings, Voegtlin, Bauer, & Wegener, 2016) and to the powder 

industries, in general, in handling, storage, and processing of powders. Solid 

flow behaviour is complex in nature owing to its dynamic flow characteristics 

and to its non-uniformity with respect to its physical and chemical features. 

The effect of  factors on flow behaviour such as shear properties, particle size, 

and moisture have been identified and are well-understood, but still no single 

property or index value can reliably describe and quantify the flowability of 

powders (Ambrose, Jan, & Siliveru, 2016). One way or another, the relative 

flowability indices (e.g. Hausner’s ratio, Carr index, angle of repose, Jenike 

flow factor) require some measurements of other powder flow properties to 

characterise the flow of the powders. 

The flowability is an integral material property that depends on the dynamic 

behaviour of the flow of the powder. Most of the time, this also depends on its 

bulk properties (e.g. moisture content, shape, particle size distribution) which 

could abruptly change depending on external factors (e.g. temperature, air 

relative humidity) (Ambrose et al., 2016). Given the importance of powder 

flow, it is then relevant to examine and characterise it non-linear dynamic 

behaviour without considering other powder properties and measurements. 

A case study is presented here that evaluate the applicability of RTA in 

capturing the dynamics of the powder flow from flow rate measurements.  

Both the unreduced and PCA-reduced RTA features are considered in the 

analysis for comparison purposes. Cluster analysis and classification are also 

carried out to further assess the applicability of the method. 
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6.4.1 Powder Flow Data 

Five commercially available powders of different particle shapes and 

sizes and known flowability were considered as test powders in this study. 

These are Portland cement, cake flour, maize flour, quartz, and table salt. 

These powders were utilized as subjects to examine the applicability of the 

proposed approach to characterise the powder flow behaviour. 

As shown in the experimental setup in Figure 6-15, the time series were 

obtained through real-time measurement of the mass of the powders in the 

digital balance. In particular, the time series data were gathered by allowing 

the powders to flow through an orifice onto a base plate, from which it 

overflowed onto a digital balance linked to a computer that logged the mass 

in grams instantaneously  

A sum of 33,914 observations that spread across these powders were 

recorded. These were subsequently analysed using the recurrence texture 

analysis.  For the segmentation of the time series, a window width of b = 1000 

was estimated using the autocorrelation function where the sliding step was 

chosen to be m =50. The distribution of segments using the said parameters are 

tabulated in Table 6-7.  A total of 580 segments are considered in this study 

using the estimated windowing dimensions. Each of these segments are 
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transformed into distance matrices using Euclidean distances, from where the 

textural features are extracted. 

 

Figure 6-15. Schematic diagram of the experimental setup showing the a vessel (A) 

powders flow through an orifice (B) onto a base plate (C) and overflow is measured 

in digital balance (D) connected to computer (E) 

 

 Table 6-7. Mass data of the powders 

Type of Powder 

(Acronym) 

No. of 

observations (n) 

No. of Segments (N) 

(using b=1000, m=50) 

Portland Cement (PC) 7,126 123 

Cake Flour (CF) 6,733 115 

Maize Flour (MF) 10,922 199 

Quartz (Q) 6,144 103 

Table Salt (TS) 2,989 40 

TOTAL 33,914 580 
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Figure 6-16. The raw time-series mass data of the five powders 

 

Figure 6-17. The autocorrelation function of the powder time series data, showing 

b=1000. 
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6.4.2 Results and Discussion 

The distance matrices of each powder is presented in Figure 6-18. 

Visually, in general, it seemed that the distance matrices of PC, CF and TS are 

quite identical with regards to its features. The distance matrices of Q and MF, 

on the other hand, appear unique with the latter has the coarsest distance 

matrix among all of them. 

 

Figure 6-18. Euclidean distance matrices (with colour maps) of the Portland cement 

(A), Cake flour (B), Maize flour (C), Quartz (D), and Table salt (E) 

It is apparent that the distance matrix features of PC and CF are quite 

similar, with some resemblance to that of the TS. The textures are relatively 

finer. On the contrary, the textures of MF distance matrix are coarse, while the 

distance matrix of Q is a bit finer than MF but looks coarser than the other 

three. Coarse textures are related to a tendency to avalanche. 
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Figure 6-19. Textural features of (A) GLCM and wavelet, (B) LBP, (C) texton, and 

(D) combined GLCM, wavelet, LBP and texton, (E) AlexNet, and (F) VGG16  as 

projected onto 3-D principal component subspace 

To further study these distance matrices, its textural features were 

extracted. Six texture matrices were obtained, coming from the considered 

textural extraction and CNN algorithms. In this paper, however, the GLCM 

and wavelet features were combined into a single feature matrix due to their 

lesser dimensionality relative to other features. In addition, the GLCM, 

wavelet, Texton and LBP feature matrices were combined to a single matrix 

for comparison. These were analysed thoroughly, by visualisation of data and 
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by classification models. The features are visualised by projecting the features 

into first 3-D principal component subspace, as presented in Figure 6-19. 

From Figure 6-19, although the clusters of portland cement, cake flour, and 

table salt are difficult to identify due to overlapping, it can still be inferred that 

distinct clusters are apparent to maize flour (green) and quartz (black). 

Remarkably, the maize flour are well separated from the other groups for all 

features. The cluster of quartz, on the other hand, is hard to localise in GLCM 

+ Wavelet features but are distinct and quite separable to other clusters (with 

some overlapping) in other features. It is interesting to note that these 

observations supported the visual interpretation of the features of distance 

matrices, that the maize flour, has the coarsest distance matrix, followed by 

quartz, while the other three have finer textures and quite similar to one 

another. 

Another stimulating inference in these plots is the separability of the 

clusters in each plot. In particular, the texton and AlexNet are said to have 

provided better visualisation of data due to enhanced separations of clusters 

present in the plot. The clusters of maize flour are very distinct in this case. For 

cake flour, although some of the points overlapped to other clusters, its cluster 

is still identifiable. This observation is also the same to Portland cement. On 

the contrary, the cluster of table salt is difficult to identify. Thorough 

inspection revealed that a well-formed cluster for this powder is existed as 

well, but was found in the cluster of Portland cement, this it was hard to see 

in the plot. It could be, however, be seen in higher dimensional space (e.g. 4-

D) but visualisation of data is then limited in this case. As an alternative, the 

use of feature selection that maximises inter-class discrimination can be 

performed such as Linear Discriminant Analysis (LDA). In this case, LDA was 

used here in visualising the data. It should be noted, however, that LDA or 

any techniques that accentuate maximising inter-class discrimination (e.g. 
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Eigenvalue-based Mutual Information (EMI)) should be used with caution 

especially when dealing classification of high dimensional image data as it 

could result to overfitting of data (R. Liu & Gillies, 2016). Overfitting of data is 

normally occurred when the sample size is not large enough relative to its 

dimensionality. In this study, there are 580 segments that were analysed, big 

enough to minimise overfitting. Furthermore, the paper only used LDA as 

supplemental tool for visualisation of data. As presented in Figure 6-20, 

distinct clusters are observed, with a varying extent of separability among the 

clusters for each feature set. 

 

Figure 6-20. Linear discriminant projection of RTA features namely (A)  GLCM and 

wavelet, (B) LBP, (C) textons, and (D) all features (GLCM, wavelet, LBP, textons), 

showing maximum separability between the powders. 
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Table 6-8. Classification performance of the feature sets (highlighted the highest 

classification accuracy in the test dataset) 

 GLCM 

+ 

Wavelet 

LBP Texton 

GLCM + 

Wavelet 

+ LBP + 

Texton 

AlexNet VGG16 

No. of 

dimensions 
17 256 40 313 4096 4096 

No. of 

segments, N 
580 580 580 580 580 580 

No. of 

classes 
5 5 5 5 5 5 

Classification 

Accuracy, % 
81.6% 77.0% 94.8% 79.3% 93.3% 94.6% 

 

To characterise the powder flow behaviour, a linear-SVM classification 

model is developed. The analysis is performed using five classes that 

correspond to the five powders, with the SVM as classifier. The classification 

accuracies are determined for each run using the sets of the features using 

holdout method. In this process, the datasets are randomly divided into 

training (70% of the datasets) and testing (remaining 30% of the datasets). Ten-

fold cross validation is implemented in the validation stage to minimise 

overfitting. The trained models are then employed to predict the classes of the 

test data.  

As presented in Table 7-5, it can be understood that, although all the 

features provided reliable results by getting more than 70% classification 

accuracy, the texton, and 2 CNN features have seen to outperform the other 

features including the combination of GLCM, wavelet, texton and LBP 

features. In other words, these three features gave the most discriminative 

features for each powder by obtaining more than 90% classification accuracy. 

Comparison to Recurrence Quantification Analysis 
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To supplement the study, the RQA is also employed in this case and the 

results are compared to the RTA. As shown in Figure 6-21, the recurrence plots 

of Portland cement, cake flour and table salt are apparently comparable to each 

other. In contrast, the recurrence plot of maize flour can easily be differentiate 

to other recurrence plots. In the analysis, 10 RQA features were extracted from 

these recurrence plots. Figure 6-22 visualised these features in 3-D principal 

component subspace. As seen in the figure, the maize flour can be 

distinguished easily from other powders. The RQA features of quarts, on the 

other hand, are fairly scattered in the plot which were seen overlapping to 

most RQA features of other powders.  

 

Figure 6-21. Exemplary samples of recurrence plots of (A) Portland cement, (B) cake 

flour, (C) maize flour, (D) quartz, and (E) table salt. 

 

These RQA features were treated as predictors in SVM classification 

model. Using the same procedure with RTA in the training and testing, the 

model successfully classified the classes of the powders using RQA features 

with accuracy of 81.1%. This result showed that RQA features could also be 
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used to discriminate the classes of the powder which can be used in the 

development of the powder flowability.  

 

Figure 6-22. 3-D plot of the RQA features using the first 3 principal component 

scores. 

In this comparative study, it has seen that the RTA-texton, RTA-AlexNet 

and RTA-VGG16 performed the best in classification with less than 7% error 

rate. Furthermore, the combined GLCM and wavelet also performed well, 

which has seen to be at par to the RQA features, which have both obtained 

81% accuracy. More importantly, this comparative study displayed the 

robustness of RTA over RQA in characterising the dynamic behaviour of the 

process data. 

6.5 Conclusion and Recommendations 

The RTA was employed in this study to characterise the dynamic 

behaviour of the three sets of solids processing time series data sets, which 

constituted the three case studies. From the analysis, in general, it was inferred 

that the RTA demonstrated a robust and reliable technique in capturing the 
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dynamics of these solids processing data. In other words, the case studies 

showed the applicability of RTA in characterising the dynamic behaviour of 

the processes. Specifically, the following insights are gathered: 

 As suggested with the results, the mill load could potentially be used 

as a sole parameter for monitoring the conditions of autogenous mill. 

Conversely, with the encouraging outcome in the first case study, it 

could also be discerned that RTA has a huge opportunity for possible 

application in process control and monitoring. The proposed method 

successfully classified the mill states using the mill load data. 

 The results of the second study proposed that the combined power 

draw and temperature, with incorporation of other mill parameters is a 

reliable parameters for possible estimation of feed particle size. The use 

of the method revealed that the use of CNN-VGG16 features could 

consistently classify the groups of the sizes of the feed which yielded 

the best performance overall. The models presented in this work, could 

in principle be used and implemented online once calibrated, where 

real-time measurement of particle size is generated. Ultimately, with 

this study, it proved that RTA could form the basis for more 

development of models for applications in autogenous mill and in 

minerals processing, in general. 

 The general approach compared favourably with a traditional 

approach in the identification of product size in a horizontal stirred 

mill, although only marginally so. Although the particle sizes could not 

be identified with a high degree of accuracy in this case, the models 

could likely be improved substantially with the availability of more 

plant data.  
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 The third case study showed the applicability of the RTA to characterise 

the dynamic behaviour of the powder flow. Once suitably calibrated, 

the method could then be applied as a complement in powder flow 

measurements available in the market. Additionally, in this case study, 

it was showcased that the mass time series is a reliable variable for 

possible monitoring and measurement of the powder flow, which gave 

some ideas that the mass can be incorporated in the development of 

powder flow indices. Moreover, the reliability of RTA over RQA in the 

classification of process data was clearly demonstrated in this part. 

 Finally, it should be noted that the methodology could be used for time 

series analysis in general, including forecasting, classification, and 

clustering, and this should be confirmed by further investigation on 

larger and more general data sets and systems. 
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7. APPLICATION: DYNAMIC PROCESS 

MONITORING  

7.1 Introduction 

Multivariate statistical process monitoring is key to enhanced process 

safety, process efficiency, and meeting product quality criteria by controlling 

process variation. To this end, large volumes of logged plant data are used to 

build models to enable fault detection and identification in process operations. 

Models based on principal component analysis (PCA) and partial least squares 

(PLS) are commonly used (Groenewald, Coetzer, & Aldrich, 2006; Joe Qin, 

2003). However, since PCA and PLS models can give misleading information 

when applied to highly nonlinear systems exhibiting non-Gaussian behavior, 

a variety of nonlinear extensions to these models have been proposed.  

These include principal curves (Dong & McAvoy, 1996; Harkat, Mourot, 

& Ragot, 2003; Shi, Lv, Fei, & Liang, 2013), independent component analysis 

(Hsu, Chen, & Liu, 2010; Kano, Tanaka, Hasebe, Hashimoto, & Ohno, 2003; L. 

Wang & Shi, 2010), kernel methods (Deng, Tian, & Chen, 2013; Jemwa & 

Aldrich, 2005; Zhang & Qin, 2007), neural networks (Aradhye, Davis, & 

Bakshi, 2002; Groenewald & Aldrich, 2015; Jia, Martin, & Morris, 1998), etc. 

Despite the improvements obtainable by these approaches, they are not 

necessarily designed to deal with the non-stationary and dynamic character of 

many process systems and can fail when measurements are strongly 

autocorrelated (Ku, Storer, & Georgakis, 1995).  

Some of the methods designed to handle these continuous dynamic 

processes attempt to capture the structure of the time series data by 

embedding the data into a phase space of a pseudophase space, such as is the 

case with dynamic principal component analysis, multidimensional scaling 
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(Auret & Aldrich 2010; Zhang, 2014), singular spectrum analysis 

(Krishnannair, Aldrich, & Jemwa, 2016), etc.  

In this chapter, the Recurrence Texture Analysis is used to capture the 

structure of the time series data that subsequently used as a basis in the 

development of a dynamic process monitoring scheme based on principal 

component model. To validate the applicability of the method, two case 

studies are presented using two simulated and benchmark data sets: the 

Lotka-Volterra predator-prey system and the Tennessee Eastman problem. 

The dynamic process monitoring system and the results of this study are 

described in details in this chapter. 

7.2 Dynamic Process Monitoring System 

The process monitoring system proposed here was based on a principal 

component model of the feature matrix that was extracted using the method. 

The general methodology of the dynamic process monitoring scheme is 

presented in Figure 7-1. As an overview, the Recurrence Texture Analysis was 

first employed in time series data, which comprised of dividing the time series 

into a set of contiguous, time series segments and calculating the Euclidean 

distance matrix for each time series segment. These distance matrices are 

subsequently treated as images and algorithms used in textural image analysis 

are used to derive a set of descriptors for each time series segment. These 

descriptors or variables were then collected into a data matrix which were to 

construct principal component models using principal component analysis. 

Process diagnostics were then derived using the models. Both off-line 

calibration and on-line application of the models were carried out as part of 

the dynamic process monitoring system.  

 



 

140 

 

 

Figure 7-1. Extraction of features from time series data (A), by segmentation into 

nonoverlapping segments (B), derivation of Euclidean matrices for all the segments 

(C) and extraction of features from these distance matrices (D). These features or 

variables can subsequently be used to build models (E) and to derive diagnostics (F) 

for process monitoring. 

7.2.1 Composition of Feature matrix 

Two texture extraction algorithms, i.e. GLCM and wavelet, were 

considered in this undertaking. These GLCM and wavelet features or textural 

descriptor variables that were extracted from the distance matrices of the time 

series segments were aggregated  to form a feature matrix 𝐗 ∈ ℝ𝑁 𝐱 𝐹, where 𝑁 

is the number of time series segments, and 𝐹 is the number of GLCM features 
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(𝐶) and wavelet features (𝑊) combined, i.e. 𝐹 = 𝐶 + 𝑊. In other words, the 

time series matrix 𝐘 ∈ ℝ𝑛 𝐱 𝑐 is converted to a data matrix with dimensions 𝑁 ≪

𝑛 and 𝐹 ≫ 𝑐.  

The parameters used during GLCM and wavelet feature extraction are 

summarised in Table 7-1. 

Table 7-1. Hyperparameters used in GLCM and wavelet feature extraction. 

Algorithm Hyperparameter Value 

GLCM 

Number of grey levels 32 

Distance 1 

Directions (degrees) [0, 45, 90, 135] 

Wavelet 

Type of wavelet Daubechies (db4) 

Level of wavelet 

decomposition 
3 

 

7.2.2 Off-line Calibration of the Principal Component Model 

Given that 𝐗 ∈ ℝ𝑁 𝐱 𝐹 is the feature matrix representative of the dynamic 

process, 𝐒 ∈ ℝ𝐹 𝐱 𝐹 is the covariance matrix of the feature variables scaled to 

zero mean and unit variance, 𝐏𝑘 ∈ ℝ𝐹 𝐱 𝑘 is the loading matrix of the first 𝑘 < F 

principal components, 𝚲𝑘 ∈ ℝ𝑘 𝐱 𝑘 is a diagonal matrix containing the 𝑘 

eigenvalues of the decomposition, �̃�𝑘 ∈ ℝ𝐹 𝐱 𝑘 is the loading matrix of the 𝐹-𝑘 

remaining principal components and �̃�𝑘 ∈ ℝ𝑘 𝐱 𝑘 is a diagonal matrix 

containing the 𝐹-𝑘 remaining eigenvalues of the decomposition. Off-line 

model calibration is done with data (𝐗) associated with normal operating 

conditions.  

 𝐒 =
𝐗T𝐗

𝑛 − 1
= 𝐏𝑘𝚲𝑘𝐏𝑘

𝐓 + �̃�𝑘�̃�𝑘�̃�𝑘
𝐓 (7-1) 
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 𝚲𝑘 = [

λ1 0
0 λ2

… 0
… 0

⋮ ⋮
0 0

⋱ ⋮
… λ𝑘

] (7-2) 

 𝐓𝑘 = 𝐗𝐏𝑘 (7-3) 

In eqn (7-1), 𝐓𝑘 ∈ ℝ𝑏 𝐱 𝑘 is the score matrix of the principal component model 

consisting of the first 𝑘 principal components (PCs). The number of PCs 

retained (𝑘) is determined using cumulative percent variance (CPV) method 

which was described in Chapter 4.  

7.2.3 Process Diagnostics and Control Limits 

Using Hotelling’s T2 and Q-statistics 

The Hotelling’s 𝑇𝑘
2 and the 𝑄𝑘 statistics are most often used with 

principal component models, i.e. 

 𝑄𝑘 = (𝐱 − �̂�𝑘)T(𝐱 − �̂�𝑘) = 𝐱T𝐂𝐱, where 𝐂 = 𝐈𝑀 − 𝐏𝒌𝐏𝑘
T (7-4) 

 𝑇𝑘
2 = 𝐭𝑘

T𝚲−1𝐭𝑘 = 𝐱T𝐃𝐱 , where 𝐃 = 𝐏𝑘𝚲𝑘
−1𝐏𝑘

T
 (7-5) 

where 𝑘 ≤ 2, the 𝑄𝑘 diagnostic can be combined with the first two principal 

component score vectors (i.e. the first two columns of 𝐓𝑘), 𝐭1 and 𝐭2, either in 

a three-dimensional map (𝐭1, 𝐭2, 𝑄2) or in two separate maps, viz. a scatterplot 

of 𝐭1 versus 𝐭2, as well as 𝑄2 versus time or sample index.  

Using Gaussian Mixture Models 

Where applicable, the Gaussian mixture models (GMMs), which were 

previously described in Chapter 5, were also fitted to the NOC data in the 𝐭1-

𝐭2 score space. 
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In one-class GMM, the training set is used to define the Gaussian mixture 

model 𝑝(𝑥|Θ) with the optimised K Gaussians. This creates a decision criteria 

and decision boundary onto the dataset. The object is to be considered as target 

if the trained Gaussian mixture model 𝑝(𝑥|Θ) is equal or greater than 

probability distribution parameter of the i-th Gaussian component, 𝜃𝑖. 

Otherwise, the object is classified as outlier or fault (Tax, 2013).  

7.2.4 On-line Application of the Model 

During process monitoring, newly measured data 𝐘𝑛𝑒𝑤 ∈ ℝ𝑛𝑛𝑒𝑤 𝐱 𝑐 are 

also analysed RTA. In other words, the data are also segmented to yield 

𝐋𝑛𝑒𝑤,𝑖 ∈ ℝ𝒃 𝐱 𝒄, for 𝑖 = 1, 2, … 𝑁𝑛𝑒𝑤 from which 𝑁𝑛𝑒𝑤 distance matrices 𝐃𝑛𝑒𝑤,𝑖 ∈

ℝ𝑏 x 𝑏 are calculated. Features are subsequently extracted from the distance 

matrices, to yield a new feature matrix 𝐗𝑛𝑒𝑤 ∈ ℝ𝑏𝑛𝑒𝑤 𝐱 𝐹. These data are 

projected onto the principal component model, to generate the principal 

component scores, 𝐭𝑛𝑒𝑤,𝑖 associated with the new observations for 𝑖 =

1, 2, … 𝑏𝑛𝑒𝑤, i.e. 

 𝐭𝑛𝑒𝑤,𝑖 = 𝐱𝑛𝑒𝑤,𝑖𝐏𝑘 (7-6) 

If this observation falls outside the normal operating condition limits of 

the model, it is flagged as a process deviation or fault condition. A flowchart 

illustrating the general approach is shown in 

Figure 7-2.  

7.2.5 Performance Metrics 

To determine the performance of the proposed monitoring system, 

several metrics are measured during the testing stage. These were the false 

alarm rate (FAR), missing alarm rate (MAR), alarm run lengths (ARL), and an 

area-under-the-curve criterion, as discussed below. For comparison purposes, 
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the diagnostic thresholds were set to correspond to a 5% false alarm rates 

during the validation stage for all diagnostic statistics.  

  

Figure 7-2. General flowchart showing the online application of the dynamic 

process monitoring model 

False Alarm Rate (FAR) 

The FAR is the ratio of NOC samples that are identified as faulty (𝑁𝐹) to 

the total number of NOC samples (𝑇𝑁), i.e.  

 𝐹𝐴𝑅 (%) =
𝑁𝐹

𝑇𝑁
 𝑥 100% (7-7) 

Missing Alarm Rate (MAR 

The MAR, is the ratio of the known fault samples (𝐹𝑁) that are not 

detected to the total number of faulty data (𝑇𝐹).  
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 𝑀𝐴𝑅 (%) =
𝐹𝑁

𝑇𝐹
𝑥 100% (7-8) 

Alarm Run Lengths (ARL) 

To better understand the FAR and MAR, the alarm run lengths are also 

determined. Typically, the ARL is computed for both false alarm and true 

alarm. The ARL for false alarm is the number of consecutive observations 

before an alarm is triggered for NOC data (TN). Generally, it is desirable to get 

a larger ARL for false alarm. 

The ARL for true alarm, on the other hand, refers to the number of 

consecutive samples before an alarm is made for faulty data (TF). In this sense, 

the smaller ARL (true) is desired for an alarm system. 

Receiver Operating Characteristics (ROC) and the Area-Under-The-

Curve (AUC) criterion 

The ROC curve illustrates the performance of classifiers by showing the 

relationships between the number of NOC data and the faulty data that were 

accepted in the calculation. It is a parameterized curve, where a one-sided 

detection threshold is the curve parameter. Normally, the ROC curve is a plot 

of true alarm rates (TAR) against the false alarm rate (FAR). An ideal classifier 

is found in the top left corner of the ROC space with a TAR value of 1 and a 

FAR value of 0. Thus, the closer a certain classifier to the top left of the ROC 

space, the better its performance (Aldrich & Auret, 2013). 

More often than not, the ROC curve is challenging to interpret, as the 

metric is only determined qualitatively. To quantify it, the AUC can be 

calculated. The higher the AUC value, the better the classifier (Tax, 2013). 
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7.3 Case 1: Lotka-Volterra Predator-prey system 

The Lotka-Volterra model explains the interaction between predator and 

prey species, as exemplified in eqns (4-1) and (4-2). In this study, a univariate 

time series of the system was simulated with the ODE45 subroutine in 

MATLAB R2015a by considering the change in �̇̇� with time. 

 

Figure 7-3. Simulated observations of the Lotka-Volterra predator-prey model. 

The time series used here, as shown in Figure 7-3, are similar to the one 

used in Chapter 5 wherein the simulation was done with equal time steps of 

0.02 time units resulting to 40,000 samples that spread across three state 

systems, i.e. NOC, state of transition and new state.  However, the first 10,000 

are not considered in the analysis since the system is said to have unstable 

state in those time frame. The parameters used are summarised in Table 7-2. 

Parameters NOC State of Transition New State 

ẋ 5,000 5,000 5,000 

ẏ 100 100 100 

k1 2 2 to 3 3 
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Table 7-2. Parameter variations used in three condition states (NOC, transition and 

new). 

 

7.3.1 Results 

Representative plots of the distance matrices are shown in Figure 7-4. The 

coarser structure of the distance matrix associated with normal operating 

conditions (NOC) compared to that of the new state on the right, is apparent. 

Table 7-3. Summary of data and model parameters used in the LVPP 

Parameter Description Values 

𝑛 
Number of samples in original data 

set 

10000 

𝑐 
Number of variables in original and 

new data set 

1 

𝑏 Length of time series segment 250 

𝑁 Number of time series segments 40 

𝐹 Number of features 17 

𝑘 Number of PCs retained in model 2 

𝑛𝑛𝑒𝑤 Number of samples in new data set 20000 

𝑁𝑛𝑒𝑤 Number of new time series segments  80 

Process monitoring with two principal components is shown in Figure 

7-5. Collectively, the two components could explain approximately 66.7% of 

the variance in the features. The 95% confidence limit generated with a 2-

GMM (magenta line) is shown enclosing the NOC data (red circles). As can be 

expected, some of the samples from the transition state (‘blue asterisk’) are 

inside the control limit, but the new state (‘black stars’) are completely flagged 

as a new or faulty condition.  

k2 10 10 to 11 11 

Ĉ 0.0010 0.0010 to 0.0011 0.0011 

D̂ 0.0020 0.0020 to 0.0021 0.0021 

Time units 0 to 400 400 to 600 600 to 800 
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Figure 7-4. Exemplary plots of distance matrices of the three conditional states of the 

Lotka-Volterra predator-prey model 

The corresponding T2 and Q diagnostics with 95% control limits are 

shown in Figure 7-6. Both diagnostics could easily discern the new state (‘black 

stars’). Based on the nominal values of the MAR and AUC in Table 7-6, the 

proposed methods performed very similarly to the RQA, SSA and RF methods 

and better than the NLPCA and 1-SVM approaches. To place the results into 

context, the single (upper) limit of ROC curves were considered here for the 

proposed method, SSA, RF, NLPCA and 1-SVM. The RQA, on the other hand, 

is monitored using both upper and lower limits but was simplified to give a 

one-dimensional curve to allow comparison to other approaches. The 

simplification entails enforcing the limits to be symmetrical around the mean 

of the diagnostic statistic distribution. The AUC was used to quantify the ROC 

curves which interpreted as a probabilistic value when a classifier ranks a 

randomly chosen true alarm above a randomly chosen false alarm. 

Table 7-6 gives a summary of the performance of the proposed method 

in terms of the FAR, MAR, AUC, along with other dynamic process 

monitoring methods.  
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Figure 7-5. Plots of the first two principal components scores of the extracted 

features (CPV=66.68%) along with the trained 1-class GMM decision boundary 

(K=2), and its decision criterion plot. 
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Figure 7-6. The Hotelling’s T2 (top) and Q-res (bottom) plots of extracted features. 

7.3.2 Comparison to other approaches 

The proposed method is compared with five other methods for dynamic 

process monitoring, as described in detail in the work of Aldrich and Auret 

(2013). These are the nonlinear principal component analysis (NLPCA), one-

class support vector machine (1-SVM), recurrence quantification analysis 

(RQA), singular spectrum analysis (SSA), and random forests (RF). In the first 
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three approaches (NLPCA, 1-SVM, and RQA), the time series data were 

embedded with a lag time (k) of 5 and embedding dimension (m) of 2. The lag 

time and embedding dimension parameters were determined with an average 

mutual information and false nearest neighbour approach, respectively. 

However, with the SSA and RF methods, the time series was embedded with 

a unity lag (τ = 1) and an embedding dimension of 500, prior to reduction of 

the embedding dimension through principal component analysis and 

multidimensional scaling. 

Singular Spectrum Analysis 

SSA uses data-adaptive basis functions based on the information in the 

spectral coefficients of the data for decomposition of the time series to multiple 

components (Krishnannair et al., 2016). In SSA, the phase space 

characterisation model is defined by embedding parameters, reconstruction 

distances and eigenvectors. The reconstruction distance from the lag-trajectory 

vector is then used as a diagnostic statistic for SSA dynamic monitoring. As 

described elsewhere, SSA uses embedding parameters which subsequently 

used as a feature extractive step that automatically determines the relevant 

weights of lag variables for optimal phase space characterisation. SSA works 

by getting the singular value decomposition of the lag-trajectory matrix. The 

threshold for diagnostic statistic, �̂� is calculated from the validation data by 

getting the quotient between the reconstruction distance e of test and NOC 

data as shown in eqn (7-9). 

 
�̂� =

𝑒(𝑡𝑒𝑠𝑡)/𝑚

𝑒𝑁𝑂𝐶
 

(7-9) 

Random Forest Model 
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The random forest (RF) model is considered as a nonlinear counterpart 

of SSA. The RF features are extracted by applying classical multidimensional 

scaling to the embedded data. Similar to SSA, the RF phase space 

characterisation model is also defined through scaling, embedding, and 

reconstruction of the data. The method also requires mapping and demapping 

models using the random forest with setting parameters defined in Table 7-4. 

Table 7-4. Setting parameters used in Random forest model 

Parameters Value/Method 

Number of randomly selected 

variables 

N/3 

Minimum leaf node size 5 

Number of trees 100 

Like SSA, the RF monitoring is also facilitated by the average and scaled 

reconstruction distance as a diagnostic statistic  (Aldrich & Auret, 2013). In this 

case, all random forest models are carried out using the randomForest package 

(Liaw & Wiener, 2002)  in the R statistical environment (Team, 2010). 

Non-linear Principal Component Analysis 

The nonlinear principal component analysis (NLPCA) is a nonlinear 

feature extraction approach based on the use of an autoassociative neural 

network (AANN). In particular, the circular inverse NLPCA was considered, 

wherein the characterisation of periodic behaviour in an input space is allowed 

in circular nodes in neural network (Scholz, 2007). In dynamic process 

monitoring, the use of circular INLPCA is used to extract the closed-curve one-

dimensional manifold in the phase space which eventually represent a dense 

attractor (Aldrich & Auret, 2013). 
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The training of the network of circular inverse NLPCA is carried out 

according to the setting parameters described in Table 7-5. The trained 

networks denoted both the mapping and demapping models of this method. 

Table 7-5. Setting parameters used in circular inverse NLPCA 

Setting Value/method 

Number of hidden layers 1 

Number of nodes in hidden layer 6 

Activation function of hidden layer nodes Hyperbolic tangent 

Pre-scaling To give maximum standard 

deviation of 0.1 

Weight decay for regularization Weight decay coefficient 

of 0.001 

Similar to SSA and RF, the circular inverse NLPCA phase space 

characterisation model can be carried out to test data through scaling, 

embedding, and reconstruction utilizing the nonlinear PCA toolbox for 

MATLAB (Scholz, 2011). Moreover, the diagnostic statistic is also determined 

using eqn (7-9) from the validation data. 

One class – Support Vector Machine 

The One class-support vector machine (1-SVM) model characterises the 

phase space by data support estimation approach. In this approach, the 

versatility of kernel functions and the rigorous statistical learning framework 

of support vectors are combined. To apply this model to dynamic monitoring, 

the NOC data are used to train the model in order to determine the support of 

the phase space using the optimised kernel width σ. From there, the new data 

in the phase space could then be compared with the 1-SVM NOC support 

(Aldrich & Auret, 2013). Similar with the GMM in the proposed approach, new 

data that found outside the 1-SVM support of NOC could mean that a change 

has happened. 
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The kernel width, σ is searched by grid method with evenly-spaced grid 

with ten values obtained from the distribution of interpoint distances of lag-

trajectory matrix (Belousov, Verzakov, & Von Frese, 2002) along with fivefold 

cross-validation The optimal σ is chosen through getting the largest value 

upon trading off between the minimized mean fraction of false alarms and 

mean fraction of support vectors below 0.1. For determining the diagnostic 

statistic threshold, an approach similar to other methods using the feature 

extraction and reconstruction method is used. In this case, the diagnostic 

statistic threshold was set as the ((1 – α) x 100)-th percentile of validation 

statistic distribution, where α is the design selection for expected false alarm 

rates. 

Recurrence Quantification Analysis 

As previously discussed in Chapter 3, the RQA is a phase space 

characterisation approach that focuses on the feature space for diagnostic 

purpose. It works by determining the recurrence or the repeated occurrences 

of points in the same neighbourhood. The recurrence can be quantified by 

calculating the recurrence rate which could also be used as a diagnostic 

statistic of this approach. The trend of recurrence rate is a useful indicator of 

the dynamics of the data (Aldrich & Auret, 2013). This method requires the 

definition of the neighbourhood size threshold ε to determine the recurrence 

matrices (Schinkel et al., 2008). In this instance, this parameter is estimated by 

obtaining the mean of the interpoint distances of lag-trajectory matrix. As a 

result, the recurrence rate of the lag-trajectory matrix using the obtained 

neighbourhood size ε is then considered the diagnostic statistic. However, 

since both the decrease and increase of the recurrence rate could indicate a 

change, the upper and lower limits of RQA diagnostics were first defined. 

Using a user-defined expected false alarm rate, α, the upper and lower limits 
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were defined as the ((1 – α/2) x 100)-th percentile and ((α/2) x 100)-th percentile 

of the diagnostic statistic distribution, respectively. 

7.3.3 Discussions 

Based on the nominal values of the MAR and AUC in Table 7-6, the 

proposed methods performed very similarly to the RQA, SSA and RF methods 

and better than the NLPCA and 1-SVM approaches. To place the results into 

context, the single (upper) limit of ROC curves were considered here for the 

proposed method, SSA, RF, NLPCA and 1-SVM. The RQA, on the other hand, 

is monitored using both upper and lower limits but was simplified to give a 

one-dimensional curve to allow comparison to other approaches. The 

simplification entails enforcing the limits to be symmetrical around the mean 

of the diagnostic statistic distribution. The AUC was used to quantify the ROC 

curves which interpreted as a probabilistic value when a classifier ranks a 

randomly chosen true alarm above a randomly chosen false alarm. 

Table 7-6. Summary of the performance metrics of the two fault detection methods 

on the Lotka-Volterra predator-prey model time series. 

Performance 

Metrics 

Proposed 

Method 
NLPCA 1-SVM RQA SSA RF 

A
la

rm
 R

at
es

 FAR (%) 5% 1% 3% 35% 1% 4% 

MAR (%) 11.3% 91% 24% 4% 4% 2% 

RL 1000 61 33 43 273 206 

 AUC 0.96 0.63 0.84 0.97 0.98 0.99 

In terms of the RL, it compared less favourably with the other methods. 

Decreasing the window size from b = 250 to b = 100, yielded interesting results, 

as indicated in Figure 7-7. In this figure, it can be seen that the onset of the 

change or transition state is rapidly detected on the Q-index plot in particular.  
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Figure 7-7. The Hotelling’s T2 (top) and Q-index plot (bottom) of extracted features 

with a window width of b = 100.  

Interestingly, once the new state is reached, it becomes somewhat less 

distinguishable. With a shorter window, the method performs as well as any 
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of the other methods in Table 7-6, if not better. Rigorous comparison was not 

further pursued, since it should be treated as a multi-objective optimisation 

problem, which was considered beyond the scope of this proof-of-concept 

study. 

7.4 Case Study 2: Tennessee Eastman Problem 

The Tennessee Eastman (TE) process, as described in Chapter 5, has been 

used as a benchmark in numerous process control and monitoring studies. 

This process is based on an actual chemical process, as initially proposed by 

Downs and Vogel (1993). 

The TE data sets considered here are similar to those used by Aldrich and 

Auret (2013). A total of 22 data sets were used, i.e. one data associated with 

NOC and the remaining 21 associated with different faults conditions. The TE 

data sets comprised 52 variables - 22 of which are continuous process 

measurements, 19 of which are composition measurements and the remaining 

11, which are manipulated variables. Descriptions of the variables are 

presented in Table 7-7. The simulation is sampled at 3 min intervals. Each 

simulated data set (NOC and 21 faults) consists of 960 samples.  

These NOC samples were used to construct the off-line process 

monitoring model. Moreover, an additional 500 samples were generated to 

serve as a validation set in the study. For the 21 faults, simulations were carried 

out by introducing the fault conditions after 160 samples, thus giving 800 

samples related to fault conditions in each data set. The list of faults, as well as 

their descriptions and associated variables are given in Table 7-8. 
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Table 7-7. Description of variables in Tennessee Eastman process. 

Process Measurement 
Compositional 

Measurement 
Manipulative Variable 

Variable No. - Description Variable No. - Description Variable No. - Description 

1 - A Feed 23 - Reactor feed 

component A 

42 - D feed flow 

2 - D Feed 24 - Reactor feed 

component B 

43 - E feed flow 

3 - E Feed 25 - Reactor feed 

component C 

44 - A feed flow 

4 - Total Feed 26 - Reactor feed 

component D 

45 - Total feed flow 

5 - Recycle flow 27 - Reactor feed 

component E 

46 - Compressor recycle 

valve 

6 - Reactor feed rate 28 - Reactor feed 

component F 

47 - Purge valve 

7 - Reactor pressure 29 - Purge component A 48 - Separator product 

liquid flow 

8 - Reactor level 30 - Purge component B 49 - Stripper product 

liquid flow 

9 - Reactor temperature 31 - Purge component C 50 - Stripper steam valve 

10 - Purge rate 32 - Purge component D 51 - Reactor cooling 

water flow 

11 - Separator 

temperature 

33 - Purge component E 52 - Condenser cooling 

water flow 

12 - Separator level 34 - Purge component F 

13 - Separator pressure 35 - Purge component G 

14 - Separator underflow 36 - Purge component H 

15 - Stripper level 37 - Product component 

D 

16 - Stripper pressure 38 - Product component E 

17 - Stripper underflow 39 - Product component F 

18 - Stripper temperature 40 - Product component 

G 

19 - Stripper steam flow 41 - Product component 

H 

20 - Compressor work 

21 - Reactor cooling 

water outlet temperature 

22 - Separator cooling 

water outlet temperature 
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Table 7-8. Description of faults in the Tennessee Eastman process. 

Fault 

No. 

Description Type Variable 

Directly 

Involved 

Additional 

Variables 

Affected 

1 Stripper feed A/C feed 

ratio, B composition 

constant 

Step 

change 

1, 6, 23, 43, 

45 

Most 

2 Stripper feed B 

composition, A/C feed 

ratio constant 

Step 

change 

47 Most 

3 D feed temperature Step 

change 

- - 

4 Reactor cooling water 

inlet temperature 

Step 

change 

9, 21, 51 None 

5 Condenser cooling water 

inlet temperature 

Step 

change 

11, 22, 52 Most 

6 Reactor feed A loss Step 

change 

44 Most 

7 Stripper feed C header 

pressure loss, reduced 

availability 

Step 

change 

- Most 

8 A, B, and C stripper feed 

composition 

Random 

variation 

- Most 

9 Reactor feed D 

temperature 

Random 

variation 

- - 

10 Stripper feed C 

temperature 

Random 

variation 

- - 

11 Reactor cooling water 

inlet temperature 

Random 

variation 

9, 21, 51 None 

12 Condenser cooling water 

inlet temperature 

Random 

variation 

22 - 

13 Reaction kinetics Slow 

drift 

- - 

14 Reactor cooling water 

valve 

Sticking 51 Most 

15 Condenser cooling water 

valve 

Sticking - - 

16-20 Unknown  - - 

21 Stripper feed valve fixed 

at steady-state position 

Constant 

position 

45 - 

 



 

160 

 

7.4.1 Results 

Table 7-9. Summary of data and model parameters used in the Tennessee Eastman 

(TE) process case study. 

Parameter Description Values 

𝑛 
Number of samples in original data 

set 

960 

𝑐 
Number of variables in original and 

new data set 

52 

𝑏 Length of time series segment 80 

𝑁 Number of time series segments 12 

𝐹 Number of features 17 

𝑘 Number of PCs retained in model 2 

𝑛𝑛𝑒𝑤 Number of samples in new data set 20,160 

𝑁𝑛𝑒𝑤 Number of new time series segments  252 

A window width b = 80 was used for all the NOC and faulty datasets of 

the TE process. Examples of images of the distance matrices of the different 

data sets are shown in Figure 7-8. The NOC distance matrix appears similar to 

the distance matrices of faults 1, 2, 3, 4, 9, 15, 19 and 21, suggesting that these 

faults may be more difficult to detect than faults 11, 12, 14 and 17, for example, 

that appear distinctly different from the NOC matrix.  

As before, process monitoring was done with two principal 

components, since collectively, the first two components could explain 

approximately 96.9% of the variance in the features derived from the NOC 

data. The results for the T2 and Q-statistics, as well as principal component 

score plots are shown graphically in Appendices A – C. In the score plots, the 

95% confidence limit generated with a 2-GMM is again shown enclosing the 

NOC data (red ‘’), while most of the faults (blue ‘+’ markers) can be seen lying 

outside the GMM decision boundary. 
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Figure 7-8. Representative plots of distance matrices (80-by-80 matrix) of the NOC 

and faults datasets of TE problem 

 

Table 7-10. Results of the performance of the process monitoring method to the faults 

of TE process using the Hotelling’s T2, Q-residuals, and GMM monitoring statistics. 

FAULT 

No. 

FAULT DETECTION RATES 

Rato and Reis (2013) 
Proposed Method 

PCA DPCA DPCA-DR 

T2 Q T2 Q T2 Q T2 Q GMM AUC 

1 0.991 0.995 0.990 0.994 0.996 0.998 0.5 0.4 0.8 0.85 

2 0.985 0.984 0.984 0.981 0.985 0.983 1 0.8 1 0.957 

3 0.036 0.006 0.035 0.010 0.021 0.016 0.9 1 1 0.914 

4 0.218 0.980 0.165 0.999 0.998 0.999 1 1 1 0.943 

5 0.257 0.217 0.293 0.228 0.999 0.999 0.8 1 1 0.943 

6 0.989 0.999 0.989 0.999 0.999 0.999 1 0.5 1 1 
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7 0.999 0.999 0.986 0.999 0.999 0.999 1 0.9 1 1 

8 0.974 0.968 0.973 0.974 0.985 0.981 1 0.5 1 1 

9 0.034 0.010 0.030 0.002 0.020 0.010 0.9 1 1 0.936 

10 0.367 0.154 0.439 0.172 0.956 0.933 0.9 0.7 1 0.993 

11 0.414 0.638 0.340 0.829 0.965 0.865 0.7 0.7 0.9 0.915 

12 0.985 0.925 0.990 0.964 0.998 0.998 1 1 1 1 

13 0.943 0.950 0.943 0.950 0.958 0.956 1 0.9 1 1 

14 0.988 0.999 0.990 0.999 0.998 0.999 1 1 1 1 

15 0.035 0.007 0.059 0.009 0.385 0.047 1 0.9 1 0.986 

16 0.174 0.137 0.217 0.145 0.976 0.945 1 0.9 1 0.977 

17 0.787 0.905 0.790 0.953 0.976 0.975 1 0.7 1 1 

18 0.893 0.901 0.890 0.898 0.905 0.900 1 0.9 1 0.971 

19 0.115 0.059 0.046 0.298 0.971 0.843 0.9 1 1 0.957 

20 0.340 0.423 0.408 0.493 0.908 0.916 0.7 0.7 1 0.921 

21 0.362 0.414 0.429 0.409 0.539 0.577 1 1 1 1 

 

7.4.2 Comparison to other approaches 

Table 7-10 summarizes the results in Appendices 1-3 and also compare 

them to results reported by Rato and Reis (2013). In their study, the use of 

principal components (PCA), dynamic principal components (DPCA), as well 

as an enhanced version of DPCA (DPCA-DR) were considered. In the DPCA-

DR approach, autocorrelation in the T2 and Q-statistics is accounted for, to 

improve fault detection. 

In the comparison of the results in Table 7-10, it should be borne in mind 

that in the proposed approach, chunks of data were mapped, owing to the use 

of contiguous windows, while individual data points were mapped with the 

methods considered in the study of Rato and Reis (2013). For this reason, the 

detection rates of the proposed method are reported to an accuracy of one 

decimal only. On the whole, the proposed method performed as well as, if not 

better, than the DPCA-DR method. However, it is interesting to note that it 
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performed considerably better on Faults 3, 9 and 15 that are generally 

considered to be difficult to detect (Yin et al., 2012).  

7.5 Summary and Conclusions 

In this chapter, the monitoring of dynamic process systems is proposed, 

based on Recurrence Texture Analysis, which has seen as a flexible method in 

drawing on a rich set of descriptors of the structure of the time series data. 

Only two such approaches, co-occurrence matrices and wavelets were 

considered in this study. 

Conventional statistical process monitoring methods can subsequently 

be used to detect changes in the dynamic system. In the two case studies 

presented here, the potential of the RTA as a solid basis for dynamic process 

monitoring system was clearly demonstrated. It was seen that the Principal 

component models of RTA-extracted descriptors (i.e. GLCM and wavelet 

features) obtained from two simulated systems were able to reliably detect 

most of the fault conditions in two simulated case studies. Moreover, better 

results were obtained when comparing the approach with other methods 

proposed for dynamic process monitoring.  

Although this study provided some respectable results, some 

recommendations for future works are still proposed. These include the 

optimisation of the approach in terms of different (non-Euclidean) distance 

matrices, different approaches to extract textural features from these matrices, 

such as textons, steerable pyramids, local binary patterns, fractal descriptors, 

as well as variants of these and other approaches.   
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8. CONCLUSION AND RECOMMENDATIONS 

8.1 Summary 

This thesis presents a principled approach to analysing the structures of 

time series, as represented by distance or proximity matrices, by use of textural 

extraction algorithms that are commonly used on image data. It can be seen as 

an extension or generalisation of recurrence quantification analysis, which is a 

powerful framework for nonlinear time series analysis proposed in the 1980s. 

More specifically, the method proposed in this thesis, referred to as 

“Recurrence Texture Analysis” uses textural analysis to extract features from 

distance matrices. Six algorithms are considered here: based on the use of grey 

level co-occurrence matrices, wavelets, local binary patterns, textons and two 

pretrained convolutional neural networks, namely AlexNet and VGG16. The 

use of the features extracted from overlapping or non-overlapping segments 

of the time series, or possibly the entire time series depends on the analysis. 

This could be time series classification, cluster analysis, dynamic process 

monitoring or even the development of predictive models. 

Over the course of this thesis, RTA showed robust applicability in 

capturing the structures of data that are relevant in the holistic understanding 

of dynamical behaviour of the system. It has showed substantial advantage in 

the characterisation of the complex and dynamic properties of simulated and 

actual process system data over its counterparts including RQA. In fact, the 

state-of-the-art deep learning algorithms namely AlexNet and VGG16, along 

with RTA-textons were seen superior over RQA and highly competitive 

against other published methods. Additionally, this thesis also demonstrated 

the reliability of the method in dealing with other applications such as time 

series analysis and dynamic process monitoring  
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As a summary, the thesis primarily focused on the evaluation of the 

method on capturing the dynamic behaviour of the system. Chapter 2 critically 

reviewed the related literature on the concept of recurrence along with time 

series analysis using the recurrence plots. In this task, it was found out that 

only limited researches have considered the use of textural analysis in 

extracting textural features in the recurrence plots, specifically in the distance 

matrices, and no research has been made on its application to minerals 

processing. Moreover, as far as the literature review is concerned, the use of 

distance matrices alone in analysing the dynamics has not been considered 

mainly due to the absence of robust method that could quantify the recurrence 

patterns contained into these plots. In addition, the application of deep neural 

network or deep learning has not been considered. These research gaps were 

bridged in Chapter 3 by presenting the RTA as an alternative approach to 

address these problems.  The major steps involved in RTA are also described 

in detail. 

Preliminary study pertaining to the influence of windowing parameters 

and distance metrics were presented in Chapter 4. Additionally, the method 

was also applied in the recurrence plots and the results were compared to 

RQA. In Chapter 5, the method was applied to deal with time series analysis, 

particularly in time series classification. RTA was employed to represent or 

encode some of the public time series datasets into RTA features which 

subsequently used as predictors in the classification. Moreover, the 

optimisation of the hyperparameters of the RTA algorithms was carried out in 

this chapter.  

 In chapter 6, the method was applied to a number of real process 

datasets in grinding circuit and solids processing for the primary goal of 

characterising the dynamic behaviour of the data and subsequently providing 

robust framework model for soft sensor online application. The analysis was 



 

166 

 

carried out by looking the cluster behaviour of the data and further 

quantifying this by classification. Lastly, the method was used as a strong base 

in the development of the principal component model-based dynamic process 

monitoring system. This was clearly presented in Chapter 7. 

8.2 Conclusion 

With the main objective of evaluating the applicability and robustness of 

the Recurrence Texture Analysis in characterising the dynamic process 

systems, that is, to extract the textural features contained in the distance 

matrices via texture analysis, several tasks were then accomplished. The 

conclusions are fully outlined below. 

 Within the limited scope of the study, it was found that the type of 

distance metrics did not significantly affect the performance of the 

method. On the contrary, the windowing parameters, especially the 

window width b, is an important parameter that needs to be selected 

appropriately as the influence of this parameter is quite significant to 

the overall outcome of the problem being addressed. In general, the 

choice of b generally depends on the applications of RTA being 

considered and the kind of structural changes of the time series the 

researchers are being investigated. In this sense, the autocorrelation 

function could be used as a guide in estimating this parameter. The 

acceptable rule is that the minimum value of lagged length where 

ACF is at the minimum should be used as the minimum value of b in 

segmentation of the time series.  

 Throughout the evaluation of the method, it was found out that the 

RTA-VGG16 consistently achieved highest performance over other 

considered RTA feature extraction algorithms. Furthermore, it also 

attained highly competitive results compared to other similar 
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methods considered in this thesis. To some extent, this can be 

expected as VGG16 and AlexNet are supervised approaches to 

functions, as opposed to the other algorithms that are unsupervised.  

 For other RTA features, it was demonstrated that the RTA-GLCM, 

RTA-wavelet, and RTA-LBP also showed satisfactory classification 

performance, which was reliably on par with other similar methods 

that deal with time series analysis. Moreover, the RTA-texton and 

RTA-AlexNet also reliably displayed outstanding classification, 

outperforming RQA and other similar methods.  

 The varying levels of success on the application of RTA to three 

actual solid processing time series data clearly showed that the RTA 

is a reliable method to characterise the dynamic behaviour of 

dynamic process system. Moreover, specific conclusions were made 

in these studies: 

o It was showed that the mill load could potentially be used as a 

sole parameter for monitoring the conditions of autogenous mill. 

Further, it was discerned that the RTA has a huge opportunity 

for possible application in process control and monitoring. The 

proposed method successfully classified the mill states using the 

mill load data. 

o It was also revealed that the RTA features from the combined 

power draw and temperature of the mill, with possible 

incorporation of other mill parameters, could provide reliable 

information in estimating the particle sizes of the feed. 

Moreover, it was seen that the RTA reliably performed better 

over traditional approaches such as lagged trajectory matrix. 

More importantly, the method showed a lot of potential for 

advanced development of real-time monitoring and estimation 

of particle sizes. 
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o The RTA was found reliable in capturing the powder flow 

behaviour. It was also concluded that the use of the time series 

of the powder mass could potentially be used as monitoring 

parameter and subsequent measurement of the powder flow. 

Interestingly, the RTA features performed better than RQA. 

 The RTA showed a reliable method in drawing on a rich set of 

descriptors of the structure of the time series data in the application 

for dynamic process monitoring system. Conversely, the method 

proved its versatility by demonstrating that the RTA features could 

be used as a strong foundation in the development of dynamic 

process monitoring scheme. From a couple of case studies, it was 

seen that the principal component models of RTA features were able 

to reliably detect most of the faults conditions. Moreover, better 

results were obtained when comparing RTA with other methods 

proposed for dynamic process monitoring.  

 It is also noted the VGG16 consistently performed significantly better 

than AlexNet over all considered datasets, which is in keeping with 

other comparative studies between these two algorithms. This 

observation is consistent with the premise that deeper neural 

networks can lead to better classification models in complex decision 

spaces. 

 The use of pretrained CNNs (VGG16 and AlexNet) is found effective 

enough to capture the dynamic behaviour of time series encoded 

through distance matrices. This consequently confirmed that even 

though distance matrix plots are not part in the trained datasets, it 

can be extended to other applications such as in recurrence texture 

analysis through transfer learning.  
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8.3 Recommendations 

In this thesis, it was demonstrated that Recurrence Texture Analysis is a 

reliable method in characterising the dynamic behaviour of dynamic process 

system. Moreover, it was also found out that the method is effective in 

capturing the structures of the time series data. With this, its utilisation to a 

number of applications can be extended for future study. Specifically, further 

works are: 

 Partial retraining of VGG16 and AlexNet networks as part of 

parameter optimisation of these CNNs. 

 Improvement of the performance of RTA by considering other 

textural features like fractal descriptors, and variety of these, e.g. use 

of dynamic feature extraction algorithms, steerable pyramids. 

Optimisation of the hyperparameters of the textural extraction 

algorithms considered in this thesis should also be taken into 

consideration. 

 Clearly, further optimisation of the methodology needs to be 

considered with respect to guidelines for the selection of the optimal 

distance metric, window width and step size, depending on the case 

study. 

 Development and subsequent implementation of a real-time 

measurement and monitoring scheme and using the fundamentals 

of RTA for possible application in minerals processing, particularly 

autogenous mill. 

 Exploration and possible application of the RTA to other time series 

data mining tasks (e.g. segmentation, indexing, forecasting). 

 In-depth comparative study of RTA with other methods of nonlinear 

time series analysis (e.g. Random Forest, surrogate data). 
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 Possible application of the method to several scientific fields that deal 

with dynamic systems and time series data (e.g. stock market 

analysis, ECG classification). 
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10. APPENDICES 

Appendix A. Plots of NOC and faulty data samples of TE process onto 2D PCA 

subspace along with the trained 1-class GMM (K=2) decision boundary 
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Appendix B. Plots of Hotelling’s T2 of the NOC (blue) and faulty (orange) data 

samples of the Tennessee-Eastman process. 
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Appendix C. Plots of Q-residuals of the NOC (blue) and faulty (red) data samples of 

the Tennessee-Eastman process. 
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Appendix D. Distance matrix plots of NOC in Tennessee Eastman Problem 

 

Appendix E. Pseudo-code used in this thesis (performed in MATLAB® 

R2015a) 

DISTANCE MATRIX CALCULATION 

 

 

 

 

 

 

 

Fault 18 Fault 19 Fault 20 

Fault 21 

%default: Euclidean distance “Euclidean”, use other distance 

metrics, e.g. “chebychev”, “mahalanobis” 

%Example: 

%for i=1:N 

%q=squareform(pdist(Y(:,i, “chebychev”))); DD{i}=q; end 

 

for i=1:N 

q=squareform(pdist(Y(:,i))); 

DD{i}=q; 

end 
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SEGMENTATION OF TIME SERIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FOR NON-OVERLAPPING SEGMENTS 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

function [Y,N] = Segment(X,n,k) 

%Parameters: 

%INPUTS: 

%X--> time series data (normalised, axb matrix, a samples, 

b %dimensions (b=1 for univariate) ) 

%n--> window width (estimated using ACF) 

%k--> sliding step 

%OUTPUTS: 

%Y--> segmented time series (nxN matrix) 

%N-->no. of segments 

n>=2; 

k>=1; 

ind = bsxfun(@plus, 1:n, (0:k:numel(X)-n).'); 

out = X(ind); 

Y=out'; 

sz=size(Y); 

N=sz(2); 

 

[Y,DD,RP,CRQA] = RP_DD_RQA(X,n,m,t,r,index)  

 

% Inputs are : 

% X - time-series data 

% n - window width/sliding step (non-overlapping segments) 

% m - embedding dimension (1 for this study) 

% t - delay time (1 for this study) 

% r - neighbourhood size 

% index - (0 or 1) - 0 for Euclidean, 1 for maximum distance 

 

% Outputs are: 

% Y - segmented data matrix 

% DD - distance matrix 

% RP - Recurrence Plot matrix 

%CRQA – RQA matrix (13 features) 

 

n>=2; 

sz=size(X); 

N=fix(sz(1)/n); %N - no. of segments 

%% DATA SEGMENTATION 

 

for i=1:N 

Y(1:n,i)=X(n*i-(n-1):n*i) 

end 

%% DD and RP CALCULATION (based from RPplot.m of (Li, Ouyang, 

Yao, & Guan, 2004)) 

 

for i=1:N 

[rp,dd]=RPplot(Y(:,i)',m,t,r,index); 

RP(n*i-(n-1):n*i,:)=rp; 

DD(n*i-(n-1):n*i,:)=dd; 

nd 

 
%% CRQA Feature Extraction ((N. Marwan, 2013)) 

for i=1:N 
r=crqa(Y(:,i),m,t,r,n,1); 
CRQA(i,:)=r; 
end 
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DISTANCE MATRIX PLOTTING 

 

 

 

 

 

function savedd(DD) 
for i=1:N 
figure(i) 
imagesc(DD(n*i-(n-1):n*i,:)); 
saveas(figure(i),sprintf('DD%05d.jpg',i)); 
set(gcf, 'Visible', 'off') 
end 

 


