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Melamine Formaldehyde - Metal Organic Gel Interpenetrating 
Polymer Network Derived Intrinsic Fe-N- Doped Porous Graphitic 
Carbon Electrocatalysts for Oxygen Reduction Reaction 

Kottarathil Shijina,a,b Rajith Illathvalappil,b,c Sumitha N. S.,d G. S. Sailaja,*d Sreekumar Kurungot,b,c 

Balagopal N. Nair,e,f A. Peer Mohamed,a Gopinathan M. Anilkumar,e Takeo Yamaguchig and U. S. 
Hareesh*a,b 

Fe, N doped porous graphitic carbon electrocatalyst (Fe-MOG-MF-C), obtained by the pyrolysis of an Interpenetrating 

Polymer Network (IPN) comprised of melamine formaldehyde (MF as hard segment) and Metal-Organic Gel, (MOG as soft 

segment) exhibited significant Oxygen Reduction Reaction (ORR) activity in alkaline medium.  BET surface area analysis of 

the Fe-MOG-MF-C evidenced high surface area (821 m2g-1) while TEM, Raman and XPS results confirmed Fe and N co- doping. 

Furthermore, a modulated porous morphology with a higher degree of surface area (950 m2g-1) has been accomplished for 

the system (Fe-MOG-MFN-C) with the aid of a sublimable porogen like naphthalene. The XPS results further demonstrated 

that these systems are characterized by a better degree of distribution of graphitic N and exhibited onset potential value of 

0.91 V vs RHE in 0.1 M KOH solution following the efficient four-electron ORR pathway. The electrocatalytic activity of Fe-

MOG-MFN-C is superior to Fe-MOG-MF-C by virtue of its higher graphitic N content and surface area. The study thus presents 

a new class of IPN derived  MF-MOG nanocomposites with the potential to generate extended versions of in situ Fe-N doped 

porous graphitic carbon structures with superior ORR activity. 

Introduction 

Fuel cells (FCs) are well accepted as highly efficient, sustainable 

and green energy resources.1-3 Anion exchange membrane fuel 

cells (AEMFCs) are acquiring better acceptance over acidic 

proton exchange membrane fuel cells (PEMFCs) owing to its 

several advantages.4,5 The sluggish kinetics of oxygen reduction 

reactions (ORR) and the extensive use of expensive platinum 

(Pt)-based catalyst are the major barriers for the 

commercialisation of fuel cells.6-8 The enhanced ORR activity, 

feasibility of employing Pt free electrocatalysts, choice of liquid 

fuels such as alcohol and formic acid as an alternative to pure 

hydrogen together with superior efficiency are the major 

advantages of AEMFCs. 

The quest for high functional, cost-effective catalyst systems 

alternative to Pt-based systems is primarily focused on the 

domain of heteroatom doped porous carbon structures.9-11 

Combination of Iron and Nitrogen (Fe, N) doping is widely 

pursued, as Fe, N coordination on doped nitrogen induce 

implicit effects on enhancing the electrocatalytic properties due 

to the added positive charge densities on neighbouring  carbon 

atoms.12-14 Fe/N/C catalysts with good stability are generally 

synthesized by high temperature treatment of a variety of 

precursors.15-18 Diverse methods such as pyrolysis,19 chemical 

vapour deposition,20 and template method21 are employed for 

the synthesis of porous carbons. Among these, pyrolysis of 

suitable carbon precursors such as MOF and ZIF accomplished 

significant interest specifically due to the flexibility in design, 

and improved morphology control.22,23  However, toxic solvents 

and tedious procedures are involved in the synthesis of these 

materials.10 Hence it is necessary to develop new class of 

precursor materials with easy synthetic procedures and higher 

degree of porosity. MOGs are considered to be excellent 

precursors because of the high surface area with heteroporous 

nature, design flexibility and less expensive synthetic procedure 

using less toxic solvents.24,25 N-doped carbon, for example, 

obtained by the pyrolytic treatment of Al-MOG doped with N-
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precursor offered electrode materials with high surface area 

and electron transfer capability.26 

Inter penetrating polymer networks (IPN) with a minimum of 

two non-covalently bonded macromolecular networks have 

been recently envisioned as very good resources for a multitude 

of applications.27,28 It is difficult to separate the individual 

components as the IPN structures are very strong.29 The 

reactivity of individual polymers can be modulated to 

accomplish desired physical and chemical stability.30 Due to 

such attributes, IPN systems are employed as gas separation 

agents,31 drug delivery systems32, artificial implants, dialysis 

membranes, burn dressings etc.33-37 

Herein, we present the synthesis of Fe-N- doped IPN based 

porous carbon structures, derived from two individual networks 

without any covalent bond in between.38,39 By judicious 

selection of precursor materials, the resultant network 

topology could be modulated40,41 offering feasibility of 

designing new materials with controllable properties like 

porosity that primarily originates from its large interspace free 

volume.42,43 

The Fe-N in situ integrated porous graphene structures 

presented here are derived from nitrogen abundant 

thermosetting polymer melamine formaldehyde (MF) and an 

iron containing MOG. The pre-polymer of MF when intercalated 

to the primary phase of iron-MOG, propagates simultaneously 

to generate the hard segment (MF) and soft segment (MOG) of 

the IPN. The introduction of MF pre-polymer into MOG 

precursor maximize the addition effect of the resulting polymer 

network and thereby improves its mechanical properties 

leading to a stable end product upon pyrolysis.44 The strong 

covalently bonded organic polymer MF thus serves as a less 

expensive nitrogen enriched precursor of carbon. Even though 

melamine has been explored previously as a nitrogen 

resource,45-47 neither of these studies explored the feasibility of 

MF based IPN systems. 

Experimental 

Materials 

Anhydrous iron (III) chloride (FeCl3), benzene-1,3,5-tricarboxylic 

acid (H3BTC or trimesic acid), melamine (C3H6N6) and 

formaldehyde were purchased from Sigma Aldrich Chemical 

Reagent Co. Ltd. Ethanol (99.9%) was procured from Jiangsu 

Huaxi International Trade Co-Ltd. China. Potassium hydroxide 

and tetrahydrofuran (THF) from Merck India and Naphthalene 

(C10H8) from TCI Chemicals, India Pvt. Ltd. All the reagents were 

used as received for the synthesis without any further 

purification. 

Synthesis of Fe-MOG-MF and Fe-MOG-MFN IPNs  

The Fe-MOG-MF IPN was prepared from Fe-MOG and MF pre-

polymer. Fe-MOG (reactant A) was initially prepared by mixing 

ethanolic solutions of benzene-1,3,5-tricarboxylic acid and 

anhydrous FeCl3 in the molar ratio of 1:3 at room temperature. 

Melamine formaldehyde (MF) pre-polymer (reactant B) was 

synthesized by reacting melamine and formaldehyde in the 

molar ratio of 1:3 at 70 °C. Upon mixing the reactants A and B, 

the individual networks are allowed to propagate 

simultaneously to generate the IPN at room temperature for 

overnight. In the alternative synthesis of Fe-MOG-MFN, 

naphthalene, a sublimable porogen (10%, w/w) was introduced 

to MF pre-polymer matrix as a solution in THF, which was 

subsequently added to the Fe-MOG. The individual networks of 

Fe-MOG and MF are allowed to propagate as in the previous 

case by keeping at room temperature for overnight. The IPNs 

formed were dried at 50 °C for overnight followed by cross-

linking of MF at 120 °C in an air oven for 48 h. 

Synthesis of Fe-N doped porous carbon 

Fe-N-doped graphitic carbons from Fe-MOG-MF and Fe-MOG-

MFN IPNs were derived by pyrolysis of the corresponding 

precursors at 900 °C for 3h under N2 atmosphere. Any unbound 

Fe present in the pyrolyzed samples were washed out with 3 M 

H2SO4 solution followed by rinsing with DI water for several 

times and dried at 50 °C. The samples derived were denoted as 

Fe-MOG-MF-C and Fe-MOG-MFN-C. 

Structural Characterization 

X-ray diffraction patterns were collected with PW1710 Philips, 

The Netherlands (Cu Kα 1.54 Å). The BET surface area and 

porosity analysis of the samples were performed with 

Micromeritics (Tristar 11, USA) surface area analyser using 

nitrogen adsorption at 77 K. The samples were degassed at 200 

°C for 2 h in flowing N2 before adsorption measurements. 

Raman spectra were obtained from a Confocal Raman 

microscope (alpha 300 R WITEC Germany) using 633 nm laser. 

The microstructure and morphology of the samples were 

observed with scanning electron microscope (SEM Carl Zeiss, 

Germany) and elemental mapping was carried out using energy 

dispersive spectroscopy (EDS). Transmission electron 

micrographs of samples were recorded on a FEI (Tecnai 30 G2 

S-TWIN, The Netherlands) microscope. The Rheological 

properties of the samples were measured using a Modular 

Compact Rheometer (MCR102, Anton Paar, India). XPS was 

investigated using a scanning X-ray microprobe (ULAC-PHI, Inc. 

PHI-4700 V, USA) with monochromated Al-Kα X-ray source 

operating at 14 kV and 220 W. 

Electrochemical Characterization 

ORR measurements were carried out in a Bio-Logic 

Electrochemical Workstation (SP-300) using a three-electrode 

setup. The catalyst ink for ORR study was prepared by mixing 5 

mg of the catalyst with 1 mL of DI water-isopropyl alcohol 

mixture (3:1) and 40 µL of 5 wt. % nafion for 60 min in an 

ultrasonic bath. 10 µL of this catalyst slurry was drop casted on 

the surface of a glassy carbon working electrode (0.196 cm2) 

using a micro syringe. The electrode was dried under an IR lamp 

for electrochemical analysis. Commercial Pt/C (40 wt. % from 

Johnson Mattey) was also studied for the comparison purpose. 

0.1 M KOH was used as the electrolyte for the electrochemical 
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measurements. Catalyst coated glassy carbon disc (0.196 cm2 

area, Pine Instruments. Inc.) was used as the working electrode. 

Hg/HgO was used as the reference electrode and graphite rod 

was used as the counter electrode. Cyclic voltammetry (CV) was 

performed at a scan rate of 50 mV s-1 in both nitrogen and 

oxygen saturated 0.1 M KOH solution. Linear sweep 

voltammetry (LSV) was carried out by recording the 

voltammograms at a scan rate of 5 mV s-1. The accelerated 

durability analysis of both Fe-MOG-MFN-C and Pt/C was carried 

out by running CV for 5000 cycles in a potential window of 0.97 

to 0.57 V. All these measurements were carried out using a 

Rotating Disk Electrode (RDE, 0.196 cm2, Pine Instruments). 

Hydrogen peroxide percentage and number of electrons 

transferred during the oxygen reduction reaction were 

measured using a rotating ring disc electrode (RRDE, 0.2826 

cm2, Pine Instruments) in O2 saturated 0.1 M KOH solution with 

a glassy carbon disc (0.2826 cm2) having a platinum ring as the 

working electrode, Hg/HgO as the reference electrode and 

graphite rod as the counter electrode. All potentials were 

converted into RHE by calibrating Hg/HgO in H2 saturated 0.1 M 

KOH solution48 (Figure S1). 

Results and Discussion 

We report a simple and highly feasible method for the Fe-N-

intrinsic doping via formation of IPN from an organic 

thermosetting polymer enriched with N and a metal (Fe)-

organic gel network. The competing growth of the propagating 

organic and inorganic chains lead to a stable network with soft 

and hard segments (Fe-MOG-MF), which upon pyrolysis 

undergo restructuring to generate highly porous graphitic 

sheets with firmly anchored Fe and N. The introduction of 

naphthalene in the MF polymer (Fe-MOG-MFN) has been 

examined as a strategy to enhance surface area of Fe-MOG-

MFN. Upon pyrolysis, this material resulted in the formation of 

porous carbon with enhanced surface area due to the 

sublimation of the dissolved naphthalene. Figure 1 illustrates 

the schematic illustration of formation of Fe-MOG-MFN-C. 

The formation of Fe-MOG is characterized by rheological 

analysis. It was done using amplitude sweep test, where the 

strain percentage was kept between 0.01 to 10%. The storage 

modulus (G’) and loss modulus (G”) were measured at a 

constant temperature of 25 °C and 10 rad/s frequency. Figure 2 

shows the range of viscoelastic properties of the gel as a 

function of strain. Fe-MOG exhibited values of G’ higher than G” 

upto a particular strain value. This means the elasticity of the 

gel is higher than the viscous behaviour, producing a well 

viscoelastic and stable gel. When G’ and G” approaches the 

crossover point, breaking down of gel network results. The cross 

over strain value for Fe-MOG is 5.95% indicating better stability 

of the formed gel network. 

 

Figure 1. Schematic illustration for the formation of Fe-MOG-MFN-C. 

 

Figure 2. Amplitude sweep measurement of Fe-MOG. Solid and open symbol represent 

the storage and loss modulus respectively. 

The SEM images of Fe-MOG-MF-C and Fe-MOG-MFN-C (Figure 

3) indicate morphological diversity as a function of naphthalene 

content in the system. The sheet-like graphitized carbon 

structures are connected by elongated and better distributed 

pores in Fe-MOG-MFN-C (Figure 3c, d). For Fe-MOG-MF-C, only 

fewer pores are visible even though the macro-pores are evenly 

distributed, (Figure 3a, b) demonstrating that naphthalene 

indigenously plays vital role in modulating the macro-porous 

structure and morphology of the system. 

The presence of C, N, O and Fe can be clearly visualized in the 

elemental mapping shown in figures 3e and f. The 

homogeneous distribution of N and Fe in the carbon framework 

is clearly seen from the corresponding elemental maps.
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Figure 3. SEM images of (a, b) Fe-MOG-MF-C and (c, d) Fe-MOG-MFN-C, Elemental mapping of (e) Fe-MOG-MF-C and (f) Fe-MOG-MFN-C. 

The HRTEM images of Fe-MOG-MF-C and Fe-MOG-MFN-C 

(Figure 4) confirm sheet-like graphitized carbon structures. Fe-

MOG-MF-C and Fe-MOG-MFN-C exhibit morphological 

diversity. Low magnification images of Fe-MOG-MF-C appear as 

thin layered structures which are composed of interconnected 

entangled chains (Figure 4a). The lattice spacing of 0.34 nm is 

consistent with (002) plane of graphitic carbon (Figure 4b).49-51 

Nanoparticles with darker contrast are clearly identified. The 

higher magnification image of the nanoparticle in figure 4c 

displays crystallized structure with the lattice spacing of 0.205 

nm corresponding to the (220) plane of Fe3C.52,53 Fe-MOG-MFN-

C exhibits two phase morphology coherent to each other and 

consisted of star-like structures distributed well-over graphitic 

sheets of approximately 20 nm thick with regular lattice 

arrangement at several regions (Figure 4d, e). This remarkable 

difference in the nano geometry is noticed upon the 
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Figure 4. TEM images of (a, b, c) Fe-MOG-MF-C and (d, e, f) Fe-MOG-MFN-C. 

incorporation of naphthalene, and is apparent from the mixed 

structure of Fe-MOG-MFN-C given in figure 4d-f. The well-

defined interconnected network type organization shown by 

both Fe-MOG-MF-C and Fe-MOG-MFN-C at higher 

magnification demonstrates the structural features of the initial 

template that confirms the generation of the proposed inter-

penetrating network system, from which the carbon matrices 

are derived. It should also be noted here that; more diverse 

structure and a higher surface area is possessed by the graphitic 

sheets synthesized here as compared to the nano graphene 

sheets prepared by Peng et al from the pyrolytic treatment of 

melamine and an iron precursor.12 

The surface characteristics of carbon products are quantified 

from N2 adsorption-desorption analysis (performed at 77 K). 

The carbon materials exhibited high surface area values of 821 

m2g-1 and 950 m2g-1 respectively for Fe-MOG-MF-C and Fe-

MOG-MFN-C. The pore structure was predominantly 

microporous (Figure 5a). The type II b isotherms having 

adsorption hysteresis indicated the presence of mesopores 

along with these micropores. The increased mesoporosity in Fe-

MOG-MF-C sample can be clearly visible from the inset graph in 

figure 4a. For Fe-MOG-MFN-C sample, increased microporosity 

is observed due to the sublimation of naphthalene. The 

cumulative pore volume measured from BJH was found to be 

0.10 cm3 g-1and 0.07 cm3 g-1 respectively for Fe-MOG-MF-C and 

Fe-MOG-MFN-C respectively (Figure 5b). The mesopore size 

distribution curve obtained from BJH method, shown in figure 

5c, has a pore size distribution within 2-12 nm for both the 

samples. Fe-MOG-MF-C sample seems to have slightly better 

pore size distribution. The micropore size distribution curves 

obtained from NLDFT analysis show the variation of micropore 

volume for the two samples (Figure 5d). Both the samples 

showed a narrow pore size distribution within 0.5-2.0 nm with 

a slightly higher micropore volume for Fe-MOG-MFN-C sample. 
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Figure 5. (a)N2 adsorption-desorption isotherms of Fe-MOG-MF-C and Fe-MOG-MFN-C, (b) BJH cumulative pore volume and (c) pore size distribution of Fe-MOG-MF-C and Fe-MOG-

MFN-C (d) NLDFT pore size distribution of Fe-MOG-MF-C and Fe-MOG-MFN-C. 

Both Fe-MOG-MF-C and Fe-MOG-MFN-C consist of amorphous 

graphitized carbon, as confirmed from the XRD patterns (Figure 

6). Reflection peaks corresponding to 2θ values of 26° and 44° 

are indexed to (200) and (101) lattice of graphitic carbon 

respectively (JCPDS: 75-1621).54,55 It could be envisaged that for 

Fe-MOG-MFN-C, the broader peak (002) indicates increased 

degree of amorphous nature/ disorder in the structure56 

derived due to the presence of naphthalene in the system which 

is further corroborated by Raman spectrum. No peak 

corresponding to Fe3C was visible. This is presumed to be due 

to the disordered incorporation of iron atom in the carbon 

matrix and also due to its lower percentage in the carbon 

structure. The purity of Fe-MOG-MF-C and Fe-MOG-MFN-C are 

substantiated by the absence of any impurity peaks. 

 

Figure 6. Powder X-ray diffraction patterns of Fe-MOG-MF-C and Fe-MOG-MFN-C. 
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Raman spectral interpretation is a standard tool endowed with 

important structural information of the graphitic, distorted, 

crystalline or amorphous carbon materials.57 For Fe-MOG-MF-C 

(Figure 7), the G band arising from the bond stretching of sp2 

hybridized carbon atoms of the hexagonal graphitic rings is 

observed at 1594 cm-1 while D band resulting from the distorted 

carbon frames on the defect sites was at 1344 cm-1.58-60 For Fe-

MOG-MFN-C Raman spectra indicated peak at 1604 cm-1 

corresponding to G band and 1352 cm-1 representing D band. 

The proportionality term ID/IG imparts insights on the degree of 

distortion of the carbon structure, as the distortion increases 

with increasing ID/IG ratio. Fe-MOG-MF-C has ID/IG ratio of 0.78, 

indicating higher degree of graphitization, whereas Fe-MOG-

MFN-C displayed ID/IG ratio of 1.23 suggesting a greater disorder 

indicating increased nitrogen content. The increased disorder 

should be attributed to the structural changes occurring during 

the sublimation of naphthalene. In order to elucidate the 

influence of pyrolysis temperature on the nitrogen content and 

degree of graphitization, the precursor Fe-MOG-MFN was 

carbonized at 800 and 1000 °C for 3 h at a heating rate of 3 

°C/min in N2 atmosphere. The obtained Raman spectra for 800 

and 1000 °C pyrolyzed samples are shown in Figure S2. The ID/IG 

ratio is found to be 1.12 and 0.93 respectively for Fe-MOG-MFN-

C-800 and Fe-MOG-MFN-C-1000. The ratio initially increases 

with temperature and after 900 °C, decreases. This is due to the 

removal of nitrogen at temperatures greater than 900 °C. Fe-

MOG-MFN-C (pyrolyzed at 900 °C) is assumed to perform 

greater catalytic activity because of the increased graphitic N 

content. The influence of pyrolysis temperature on the ORR 

activity with will be discussed later in the paper. 

 

Figure 7. Raman spectra of Fe-MOG-MF-C and Fe-MOG-MFN-C. 

The X-ray Photoelectron spectra (XPS) confirmed elemental 

composition of Fe-MOG-MF-C and Fe-MOG-MFN-C as C, Fe, N, 

O and their chemical states (Figure 8). From the regional scan of 

N 1s spectrum (Figure 9a), three major N species as pyridinic N 

(N1, 398.51 eV), graphitic N (N2, 400.90 eV) and oxidized N (N3, 

403.70 eV) are noticed. No peak corresponding to pyrrolic N is 

observed which is probably owing to its very low concentration. 

The oxidised N is presumably formed as a result of the 

adsorption of oxygen in air at the N-doped sites.61,62 In Fe-MOG-

MF-C, graphitic N is the higher fraction (1.91 at.%) and pyridinic 

N comes next (0.82 at.%). Since there is only a small difference 

between the binding energies of N-Fe bond and pyridinic N, the 

peak at 398.5 eV represent the form of nitrogen bonded to 

metal also.63-65 The higher fractions of graphitic and pyridinic N 

content influence the improved electrocatalytic activity of the 

carbon as the presence of appreciable amount of pyridinic and 

graphitic N is responsible for the catalytic performance.66,67 

 

 

Figure 8. XPS survey scan spectrum of Fe-MOG-MF-C and Fe-MOG-MFN-C. 

The deconvoluted N 1s spectrum of Fe-MOG-MFN-C (Figure 9b) 

also shows the presence of pyridinic (N1, 398.50 eV), graphitic 

(N2, 401.11 eV) and oxidized N (N3, 404.71 eV). The percentage 

of different nitrogen species is different for the two samples. 

Fe-MOG-MFN-C having higher graphitic nitrogen percentage 

(1.97 at.%) is expected to show good ORR activity.66 However, 

the doped Fe content is almost similar in both the samples (0.15 

at.%). The concentrations of different nitrogen species for the 

two samples are evaluated based on the integrated peak areas 

and the corresponding graph as shown in figure 10.  

The nature of doped Fe was confirmed from Fe 2p XPS spectra 

(Figure 9c, d). The binding energies of Fe 2p3/2 and Fe 2p1/2 of 

Fe3+ ion are located at 711.5 and 724.7 eV respectively. The peak 

at 717.3 eV corresponds to Fe 2p3/2 satellite peak which is also 

an indication of the existence of iron oxide phase in the carbon 

structure.68-70 

The variation of N and Fe content with pyrolysis temperature 

was also studied with XPS analysis. The survey spectrum shown 

in figure S3 confirms the presence of elements C, N, O and Fe. 

The deconvoluted spectrum of Fe-MOG-MFN-C-800 shows a 

nitrogen content of 2 at.% and that of Fe-MOG-MFN-C-1000 is 

0.5 at.% (Figure S4). This data is in accordance with Raman 

results. The amount of graphitic N is 1.14 at.% for Fe-MOG-

MFN-C-800 and no graphitic nitrogen is detected for Fe-MOG-

MFN-C-1000. The variation of concentration of different 

nitrogen species with pyrolysis temperature is shown in table 

S1. 
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Figure 9. High resolution N 1s XPS spectra of (a) Fe-MOG-MF-C (b) Fe-MOG-MFN-C, High resolution Fe 2p XPS spectra of (c) Fe-MOG-MF-C (d) Fe-MOG-MFN-C. 

 

Figure 10. Concentration of various types of Nitrogen (in atomic percentage) present in 

the Fe- doped carbon catalyst samples. 

Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) 

experiments were performed to measure the electrocatalytic 

activity of the samples. These RDE experiments were carried out 

in oxygen saturated 0.1 M KOH with Hg/HgO as the reference 

electrode, glassy carbon electrode coated with sample as the 

working electrode and graphite rod as the counter electrode. In 

order to better understand the role of nitrogen, a control 

sample was prepared by the same synthetic route without 

adding nitrogen source (Fe-MOG-C). The SEM image of the 

control sample displays a porous morphology (Figure S5). 

Further, TEM image shows sheet like carbon structure in which 

iron nanoparticles are distributed (Figure S6). The morphology 

and XRD pattern of control sample (Figure S7) are similar to Fe-

MOG-MF-C, whereas the surface area of 352 cm2/g, (Figure S8) 

is very less compared to Fe-MOG-MF-C and Fe-MOG-MFN-C 

samples.  
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The comparison of LSVs of Fe-MOG-C, Fe-MOG-MF-C and Fe-

MOG-MFN-C in oxygen saturated 0.1 M KOH solution with a 

rotation rate of 1600 rpm is shown in figure 11a. Both Fe-MOG-

MF-C and Fe-MOG-MFN-C samples exhibit an onset potential of 

0.91 V and that of Pt/C is 1 V. Even though the onset potentials 

of Fe-MOG-MF-C and Fe-MOG-MFN-C samples are the same, 

the limiting current value is higher for Fe-MOG-MFN-C, which is 

attributed to the increased surface area and graphitic nitrogen 

content. The onset potential for the control sample is 0.81 V, 

which is much lower than the above N-doped samples, which 

corroborates the role of nitrogen species in enhancing the ORR 

catalytic activity. The effect of pyrolysis temperature on the 

ORR activity was analyzed by plotting LSVs of samples pyrolyzed 

at temperatures of 800, 900 and 1000 °C (Figure S9). The onset 

potential of Fe-MOG-MFN-C 800 and Fe-MOG-MFN-C-900 are 

0.91 V, but the limiting current density is higher for 900 °C 

pyrolyzed sample (-4.5 mA cm-2), which is due to the increased 

graphitic N content. For 1000 °C pyrolyzed sample, the lower 

nitrogen content resulted in low the onset potential (0.85 V) 

and limiting current density (-3.8 mA cm-2).  

Figure 11b shows the cyclic voltammograms of Fe-MOG-MFN-C 

in oxygen and nitrogen saturated 0.1 M KOH solution and the 

current–voltage profiles are measured at a typical scan rate of 

50 mV s−1 with a rotation rate of 900 rpm in a potential window 

of 0.07 to 1.07 V vs. RHE. There is no well-defined peak in N2 

saturated electrolyte. On oxygen purging, the cathodic current 

increases dramatically indicating the presence of more oxygen 

reduction sites on Fe-MOG-MFN-C. The CVs of Fe-MOG-MFN-C-

800 and Fe-MOG-MFN-C-1000 are also provided (Figure S10). 

The LSVs of Fe-MOG-MFN-C at different working electrode 

rotations are also studied and the result showed increased 

limiting current value with increased electrode rotation because 

of the enhanced diffusion of electrolyte and mass transfer 

(Figure 11c). The LSVs for Fe-MOG-MFN-C-800, Fe-MOG-MFN-

C-1000, Fe-MOG-MF-C and Pt/C at different working electrode 

rotations are also presented (Figure S11). 

The kinetic parameters of the ORR can be analysed on the basis 

of the Koutecky–Levich (K–L) equation. K–L slops obtained by 

plotting inverse of current density (1/j) against inverse of square 

root of angular density (1/ω1/2). K-L plot of different samples are 

shown in figure 11d. Good linearity obtained for all the samples. 

A linear relationship between current density and square root 

of the rotation speed is obtained for all the samples. The 

obtained slope is constant at different potentials suggesting 

similar electron transfer number over this potential range. 

Figure 11. (a) Linear Sweep voltammogram (LSV) comparison in O2 saturated 0.1 M KOH solution measured at a scan rate of 5 mV sec-1 at 1600 rpm, (b) Cyclic voltammograms of Fe-

MOG-MFN-C in 0.1 M KOH solution measured at a scan rate of 50 mV sec-1 at 900 rpm, (c) LSVs of Fe-MOG-MFN-C in O2 saturated 0.1 M KOH solution measured at different rotation 

rates at a scan rate of 5 mV sec-1 (d) Comparison of Koutecky-Levich (K-L) plots.
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RRDE measurements were carried out to investigate the 

amount of peroxide generated during ORR. Following equations 

have been used to calculate the percentage of H2O2 produced 

and the number of electron transferred during ORR. 

N

I
I

N

I

OH
r

d

r

+

= 200(%)22

     …………………… (i)
 

N

I
I

I
n

r
d

d

+

= 4

……………………. (ii) 

where ‘Ir’ and ‘Id’ are the Faradaic ring and disc current, 

respectively. ‘N’ is the collection efficiency of the ring electrode 

(0.37) and the ‘n’ is the number of the transferred electron. 

The amount of H2O2 has been quantified by analysing the ring 

current of the RRDE result. If the amount of peroxide produced 

is less, the ring current becomes lower since less amount of 

peroxide reaches the Pt ring electrode. A comparison of 

percentage of peroxide produced over different catalysts is 

presented in figure 12a. The peroxide yield on Fe-MOG-MFN-C 

is estimated to be 20 % which is significantly lower than that of 

Fe-MOG-MF-C. The Pt/C sample is calculated to produce 5 % 

H2O2. The electron transfer number calculated from H2O2 

percentage for all the samples are presented in figure 12b. It 

could be confirmed that Fe-MOG-MFN-C shows an electron 

transfer number of 3.6 which proves that the preferred ORR 

kinetics involve a major contribution from the direct reduction 

of oxygen into water in the system. The increased electron 

transfer number for Fe-MOG-MFN-C compared to Fe-MOG-MF-

C is attributed to the increased surface area and graphitic N 

content. Tafel slope for Fe-MOG-MFN-C is 83.4 mV/dec and is 

comparatively lower than Fe-MOG-MF-C indicating faster ORR 

kinetics (Figure 12c). 

In addition to the improved ORR activity, it is important to check 

the stability of the catalyst under the electrochemical 

environment. Hence accelerated durability test (ADT) was 

carried out to compare the stability of the catalyst with respect 

to Pt/C. The ADT is performed at room temperature in oxygen-

saturated 0.1 M KOH at a scan rate of 100 mV s-1 for 5000 cycles. 

Initially, the LSV of Fe-MOG-MFN-C is taken at 1600 rpm to 

envisage its original ORR performance. After 5000 cycles, LSV is 

repeated again and degradation in activity was quantified by 

comparing the half wave potential of the catalyst before and 

after the ADT test (Figure 12d). The potential drop after 5000 

cycles is 31 mV which is lower compared to that of Pt/C, which 

has a shift of 34 mV (Figure S12). 
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Figure 12. (a) Hydrogen peroxide yield and (b) number of electron transfer comparison at different potentials obtained from the RRDE experiment, (c) Tafel slope comparison of Fe-

MOG-MF-C, Fe-MOG-MFN-C with Pt/C, (d) LSV recorded before and after 5000 cycles ADT analysis for Fe-MOG-MFN-C in O2 saturated 0.1 M KOH solution with electrode rotation of 

1600 rpm. 

 

It is implicit that, the design of carbon catalysts with optimum 

combination of higher surface area, pore structure, amount of 

doped heteroatoms, pore and dopants distribution and degree 

of graphitization contribute positively in accomplishing better 

electrocatalytic activity. It is therefore difficult to specify a single 

parameter as the governing factor for improved ORR 

performance of carbon electrocatalysts. The catalysts proposed 

here were synthesized as high purity hetero-atom (Fe and N) 

decorated carbon with high surface area, in an economically 

beneficial route based on a gel-polymer IPN system by using 

less-expensive melamine formaldehyde as the nitrogen source. 

Here, we have adopted the technique of intrinsic doping and in 

situ synthesis for realising carbon with both Fe and N as intrinsic 

part of their composition. The addition of porogen 

(naphthalene) has influenced the structure characteristics such 

as morphology and surface area, as seen from the XRD, TEM, 

BET analysis and ORR performance. The increased 

microporosity accounts for the pore generation associated with 

naphthalene sublimation. Fe-MOG-MFN-C contains higher 

amount of doped graphitic N (1.97) with higher ID/IG ratio in the 

Raman spectrum. It has helped in improving the ORR catalytic 

activity in Fe-MOG-MFN-C. ORR onset potential was same in 

both the samples (0.91 V) while the limiting current is higher in 

Fe-MOG-MFN-C due to the higher surface area. Besides all 

these properties, a good durability of 5000 cycles also make Fe-

MOG-MFN-C a good ORR catalyst.  
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Conclusions 

We have presented a simple synthetic procedure for the 

preparation of Fe-N intrinsically doped porous graphitic carbon 

electrocatalysts from Inter penetrating network (IPN) of in situ 

polymerized melamine formaldehyde (hard segment) and 

metal-organic gel (soft segment). Raman spectroscopic analysis 

and XPS analysis revealed the successful doping of nitrogen and 

iron in the graphitic carbon network. The deconvoluted N 1s 

spectra clearly showed the presence of more amount of 

nitrogen in the form of graphitic nitrogen as the active site for 

enhanced ORR activity. No detectable amount of pyrrolic 

nitrogen was observed. Moreover, high surface area of 950 m2 

g-1 also contributed towards the improved ORR activity. The 

results further demonstrated the feasibility to derive extended 

versions of in situ Fe-N doped porous carbon structures with 

better ORR activity from IPN based structures via systemic 

modulations of synthetic protocols and inclusion of porogens. 

Conflicts of interest 

There are no conflicts to declare. 

Acknowledgements 

The authors acknowledge Noritake Co. Limited, Aichi, Japan, & 

the Council of Scientific and Industrial Research (CSIR), New 

Delhi, India, for providing research facilities and financial 

support. 

Notes and references 

. 
1 A. Kirubakaran, S. Jain and R. K. Nema, Renew. Sust. Energ. 

Rev., 2009, 13, 2430-2440. 
2 A. Stambouli, Fuel cells: The expectations for an 

environmental-friendly and sustainable source of energy, 
2011. 

3 M. Thomas, R. Illathvalappil, S. Kurungot, B. N. Nair, A. Peer 
Mohamed, G. M. Anilkumar, T. Yamaguchi and U. S. Hareesh, 
Chemistry Select, 2018, 3, 8688-8697. 

4 D. R. Dekel, J. Power Sources, 2018, 375, 158-169. 
5 T. J. Omasta, A. M. Park, J. M. LaManna, Y. Zang, X. Peng, L. 

Wang, D. L. Jacobson, J. R. Varcoe, D. S. Hussey, B. S. Pivovar 
and W. E. Mustain, Energy Environ. Sci., 2018, 11, 551. 

6 J. Y. Choi, R. S. Hsu and Z. Chen, J. Phys. Chem. C, 2010, 114, 
8048-8053. 

7 M. Oezaslan, F. Hasché and P. Strasser, J. Phys. Chem. Lett., 
2013, 4, 3273-3291. 

8 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. 
Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 108, 
17886-17892. 

9 H. W. Liang, W. Wei, Z.-S. Wu, X. Feng and K. Müllen, J. Am. 
Chem. Soc., 2013, 135, 16002-16005. 

10 W. Xia, B. Qiu, D. Xia and R. Zou, Sci. Rep., 2013, 3, 1935. 
11 A. S. Jalilov, G. Ruan, C. C. Hwang, D. E. Schipper, J. J. Tour, Y. 

Li, H. Fei, E. L. G. Samuel and J. M. Tour, ACS Appl. Mater. 
Interfaces, 2015, 7, 1376-1382. 

12 H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. 
Zhong and B. Zhang, Sci. Rep., 2013, 3, 1765. 

13 J. Liang, R. F. Zhou, X. M. Chen, Y. H. Tang and S. Z. Qiao, Adv. 
Mater., 2014, 26, 6074-6079. 

14 C. He, T. Zhang, F. Sun, C. Li and Y. Lin, Electrochim. Acta, 2017, 
231, 549-556. 

15 J. C. Li, S. Y. Zhao, P. X. Hou, R.P. Fang, C. Liu, J. Liang, J. Luan, 
X. Y. Shan and H.-M. Cheng, Nanoscale, 2015, 7, 19201-19206. 

16 S. M. Unni, G. M. Anilkumar, M. Matsumoto, T. Tamaki, H. 
Imai and T. Yamaguchi, Sustainable Energy Fuels, 2017, 
1,1524-1532. 

17 F. L. Meng, Z. L. Wang, H. X. Zhong, J. Wang, J. M. Yan and X. 
B. Zhang, Adv. Mater., 2016, 28, 7948-7955. 

18 J. C. Li, P. X. Hou, C. Shi, S. Y. Zhao, D. M. Tang, M. Cheng, C. 
Liu and H.-M. Cheng, Carbon, 2016, 109, 632-639. 

19 C. H. Choi, S. H. Park and S. I. Woo, Appl. Catal. B, 2012, 119–
120, 123-131. 

20 R. Zhang, S. He, Y. Lu and W. Chen, J. Mater. Chem. A, 2015, 3, 
3559-3567. 

21 M. Chen, P. Wu, L. Chen, S. Yang, L. Yu, Y. Ding, N. Zhu, Z. Shi 
and Z. Liu, Sci. Rep., 2017, 7, 4158. 

22 A. Li, X. Mu, T. R. Li, H. Wen, W. Li, Y. Li and B. Wang, 
Nanoscale, 2018, DOI: 10.1039/C8NR02832J. 

23 Y. Li, J. Kim, J. Wang, N.-l. Liu, Y. Bando, A. A. Alshehri, Y. 
Yamauchi, C.-H. Hou and K. C. W. Wu, Nanoscale, 2018, DOI: 
10.1039/C8NR02288G. 

24 Z. Wang, T. Yan, G. Chen, L. Shi and D. Zhang, ACS Sustain. 
Chem. Eng., 2017, 5, 11637-11644. 

25 L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C.-Y. Su, 
Nat. Commun., 2013, 4, 1774. 

26 L. Cui, J. Wu and H. Ju, ACS Appl. Mater. Interfaces, 2014, 6, 
16210-16216. 

27 E. S. Dragan, Chem. Eng. J., 2014, 243, 572-590. 
28 L. H. Sperling, in Interpenetrating Polymer Networks, 

American Chemical Society, 1994, vol. 239, ch. 1, pp. 3-38 
29 M. A. Haque, T. Kurokawa and J. P. Gong, Polymer, 2012, 53, 

1805-1822. 
30 Y. Zhang, J. Liu, L. Huang, Z. Wang and L. Wang, Sci. Rep. 2015, 

5, 12374. 
31 S. Saimani and A. Kumar, J. Appl. Polym. Sci., 2008, 110, 3606-

3615. 
32 S. Banerjee, G. Chaurasia, D. Pal, A. K. Ghosh, A. Ghosh and S. 

Kaity, J. Sci. Ind. Res., 2010, 69, 777-784. 
33 Q. Zhang, Z. Fang, Y. Cao, H. Du, H. Wu, R. Beuerman, M. B. 

Chan-Park, H. Duan and R. Xu, ACS Macro Lett., 2012, 1, 876-
881. 

34 P. E. Hande, S. Kamble, A. B. Samui and P. S. Kulkarni, Ind. Eng. 
Chem. Res., 2016, 55, 3668-3678. 

35 A. Fathi, S. Lee, X. Zhong, N. Hon, P. Valtchev and F. Dehghani, 
Polymer, 2013, 54, 5534-5542. 

36 J. Zhao, X. Zhao, B. Guo and P. X. Ma, Biomacromolecules, 
2014, 15, 3246-3252. 

37 C. Shen, Y. Li, H. Wang and Q. Meng, RSC Adv., 2017, 7, 18046-
18053. 

38 V. A. Blatov, L. Carlucci, G. Ciani and D. M. Proserpio, 
CrystEngComm, 2004, 6, 377-395. 

39 R. Vendamme, S. Y. Onoue, A. Nakao and T. Kunitake, Nat. 
Mater., 2006, 5, 494-501. 

40 S. R. Batten, A. R. Harris, P. Jensen, K. S. Murray and A. Ziebell, 
J. Chem. Soc., Dalton Trans., 2000, 0, 3829-3836. 

41 C. Zhang, S. Ding, J. Li, H. Xu, L. Sun, W. Wei, C. Li, J. Liu, X. Qu 
and Y. Lu, Polymer, 2008, 49, 3098-3102. 

42 T. M. Reineke, M. Eddaoudi, D. Moler, M. O'keeffe and O. 
Yaghi, J. Am. Chem. Soc., 2000, 122, 4843-4844. 

43 M. Kondo, M. Shimamura, S. i. Noro, S. Minakoshi, A. Asami, 
K. Seki and S. Kitagawa, Chem.Mater., 2000, 12, 1288-1299. 

44 E. H. Kim, Y. G. Jung and C. Y. Jo, J. Nanomater., 2012, 2012, 
23. 

45 L. Wang, Z. Gao, J. Chang, X. Liu, D. Wu, F. Xu, Y. Guo and K. 
Jiang, ACS Appl. Mater. Interfaces, 2015, 7, 20234-20244. 

46 D. Tiwari, C. Goel, H. Bhunia and P. K. Bajpai, J. Environ. 
Manage., 2017, 197, 415-427. 

Page 12 of 14New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
7 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
on

 1
0/

20
/2

01
8 

7:
22

:5
0 

A
M

. 

View Article Online
DOI: 10.1039/C8NJ03170C

https://www.sciencedirect.com/science/article/pii/S0378775317310236#!
http://dx.doi.org/10.1039/C8NJ03170C


Journal Name ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 13  

Please do not adjust margins 

Please do not adjust margins 

47 K. Li, X. Xie and W.-D. Zhang, ChemCatChem, 2016, 8, 2128-
2135. 

48 Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. 
J. Pennycook and H. Dai, Nat.Nanotechnol., 2012, 7, 394-400. 

49 M. Chen, P. Wu, L. Chen, S. Yang, L. Yu, Y. Ding, N. Zhu, Z. Shi 
and Z. Liu, Sci. Rep., 2017, 7, 4158. 

50 E. Hu, X. Y. Yu, F. Chen, Y. Wu, Y. Hu and X. W. Lou, Adv. Energy 
Mater., 2018, 8, 1702476. 

51 X. Li, Y. Fang, S. Zhao, J. Wu, F. Li, M. Tian, X. Long, J. Jin and J. 
Ma, J. Mater. Chem. A, 2016, 4, 13133-13141. 

52 G. Ren, X. Lu, Y. Li, Y. Zhu, L. Dai and L. Jiang, ACS Appl. Mater. 
Interfaces, 2016, 8, 4118-4125. 

53 T. Zhou, Y. Zhou, R. Ma, Q. Liu, Y. Zhu and J. Wang, J. Mater. 
Chem. A, 2017, 5, 12243-12251 

54 X. Qiao, J. Jin, H. Fan, Y. Li and S. Liao, J. Mater. Chem. A, 2017, 
5, 12354-12360. 

55 N. K. Chaudhari, M. Y. Song and J. S. Yu, Sci. Rep., 2014, 4, 
5221. 

56 V. Kashyap, S. K. Singh and S. Kurungot, ACS Appl. Mater. 
Interfaces, 2016, 8, 20730-20740. 

57 B. Wang, L. Xu, G. Liu, P. Zhang, W. Zhu, J. Xia and H. Li, J. 
Mater. Chem. A, 2017, 5, 20170. 

58 Y. Ni, L. Yao, Y. Wang, B. Liu, M. Cao and C. Hu, Nanoscale, 
2017, 9, 11596-11604. 

59 J. Zhu, H. Zhou, C. Zhang, J. Zhang and S. Mu, Nanoscale, 2017, 
9, 13257-13263. 

60 M. Thomas, R. Illathvalappil, S. Kurungot, B. N. Nair, A. P. 
Mohamed, G. M. Anilkumar, T. Yamaguchi and U. S. Hareesh, 
ACS Appl. Mater. Interfaces, 2016, 8 (43), 29373-29382. 

61 T. D. Thanh, N. D. Chuong, J. Balamurugan, H. Van Hien, N. H. 
Kim and J. H. Lee, Small, 2017, 13, 1701884. 

62 R. Illathvalappil, V. M. Dhavale, S. N. Bhange and S. Kurungot, 
Nanoscale, 2017, 9, 9009-9017. 

63 W. J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L. J. Zhang, J. Q. 
Wang, J. S. Hu, Z. Wei and L. J. Wan, J. Am. Chem. Soc., 2016, 
138, 3570-3578. 

64 C. Zhang, J. Liu, Y. Ye, Z. Aslam, R. Brydson and C. Liang, ACS 
appl. Mater. Interfaces, 2018, 10, 2423. 

65 C. Zhu, S. Fu, J. Song, Q. Shi, D. Su, M. H. Engelhard, X. Li, D. 
Xiao, D. Li and L. Estevez, small, 2017, 13, 1603407. 

66 O. L. Li, S. Chiba, Y. Wada, G. Panomsuwan and T. Ishizaki,J. 
Mater.Chem. A, 2017, 5, 2073-2082. 

67 X. F. Li, K. Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng and Y. 
Luo, Sci. Rep., 2016, 6, 23495. 

68 X. Huang, Z. Yang, B. Dong, Y. Wang, T. Tang and Y. Hou, 
Nanoscale, 2017, 9, 8102-8106. 

69 L. Zhou, C. Yang, J. Wen, P. Fu, Y. Zhang, J. Sun, H. Wang and 
Y. Yuan, J. Mater. Chem. A, 2017, 5, 19343-19350. 

70 K. Shijina, R. Illathvalappil, S. Kurungot, B. N. Nair, A. P. 
Mohamed, T. Yamaguchi, G. M. Anilkumar, U. S. Hareesh and 
G. S. Sailaja, ChemistrySelect, 2017, 2 (28), 8762- 
8770. 

 

 

 

 

 

 

 

 

 

 

 

Page 13 of 14 New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
7 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
on

 1
0/

20
/2

01
8 

7:
22

:5
0 

A
M

. 

View Article Online
DOI: 10.1039/C8NJ03170C

http://dx.doi.org/10.1039/C8NJ03170C


 

 

High surface area heteroporous Fe-N doped carbon derived from metal organic gel- melamine 

formaldehyde interpenetrating networks as a durable oxygen reduction reaction catalyst. 

Page 14 of 14New Journal of Chemistry

N
ew

Jo
ur

na
lo

fC
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
7 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
on

 1
0/

20
/2

01
8 

7:
22

:5
0 

A
M

. 

View Article Online
DOI: 10.1039/C8NJ03170C

http://dx.doi.org/10.1039/C8NJ03170C

