
School of Information Systems
Curtin Business School

A Framework for QoS Driven User-Side Cloud Service
Management

Zia ur Rehman

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

August, 2014

DECLARATION

To the best of my knowledge and belief this thesis contains no material previ-
ously published by any other person except where due acknowledgment has been
made.

This thesis contains no material which has been accepted for the award of any
other degree or diploma in any university.

Zia-ur-Rehman

Signature:

20/11/2014
Date:

Table of Contents

Declaration i

List of Figures viii

List of Tables x

Acknowledgment xi

Abstract xii

List of Publications xiv

1 Introduction 1
1.1 Introduction . 1
1.2 Overview of Cloud Computing . 3

1.2.1 Evolution of Computing . 3
1.2.2 Types of Cloud Services . 4
1.2.3 Deployment Models of Clouds 6
1.2.4 Key Enabling Technologies . 6

1.2.4.1 Virtualization . 6
1.2.4.2 Parallel Distributed Processing Model 7
1.2.4.3 Web Services . 8

1.3 Research Areas in Cloud Computing 8
1.3.1 Interoperability and Federated Clouds 8
1.3.2 Green Computing . 9
1.3.3 Cloud Service Management . 10

1.4 Challenges in Cloud Service Management 11
1.4.1 Service Selection in the Pre-Interaction Period 12
1.4.2 Cloud Service Monitoring . 12
1.4.3 QoS Prediction for Cloud services 13
1.4.4 Service Management in the Post-Interaction Period 13

1.5 Objectives of the Thesis . 13
1.6 Scope of the Thesis . 14
1.7 Significance of the Thesis . 15
1.8 Plan of the Thesis . 16
1.9 Conclusion . 17

ii

2 Literature Review 18
2.1 Introduction . 18
2.2 Cloud Computing . 18

2.2.1 Definition of Cloud Computing 19
2.2.2 Evolution of Cloud Computing and its Relationship with

Legacy Technologies . 19
2.2.3 Business Perspective of Cloud Computing 20
2.2.4 Research Perspective on Cloud Computing 21
2.2.5 Taxonomy of Cloud Computing 22
2.2.6 Cloud Platforms . 22

2.3 Cloud Service Management . 23
2.4 Cloud Service Selection . 24
2.5 Cloud Service Monitoring . 29
2.6 Cloud Service QoS Prediction . 31
2.7 Cloud Service Migration . 32
2.8 Critical Evaluation of the Existing Work 33
2.9 Conclusion . 37

3 Problem Definition 38
3.1 Introduction . 38
3.2 Key Concepts . 39
3.3 Problem Definition . 41
3.4 Research Issues . 48
3.5 Research Approach . 50

3.5.1 Research Methods . 50
3.5.1.1 Science and Engineering Research Approach 50
3.5.1.2 Social Science Research Approach 51

3.5.2 Choice of Science and Engineering-based Research Method . 52
3.6 Conclusion . 53

4 Solution Overview 54
4.1 Introduction . 54
4.2 Definition of Cloud Service Management 55
4.3 Overview of the Proposed Solution . 56
4.4 Overview of Module 1: QoS Monitoring and Repository 59
4.5 Overview of Module 2: QoS Forecasting and Early Warning Mech-

anisms for Service Management . 61
4.6 Overview of Module 3: Decision Making 62
4.7 User-Feedback Based Cloud Service Monitoring 65
4.8 Conclusion . 68

5 Service Selection in the Pre-Interaction Phase 69
5.1 Introduction . 69
5.2 Cloud service selection based on QoS history 70
5.3 Fundamental Concepts of MCDM . 72

5.3.1 Decision Matrix . 72
5.3.2 Ideal Solution . 74
5.3.3 Non-dominated Solution . 74

5.3.4 Normalization . 75
5.3.4.1 Linear Normalization 75
5.3.4.2 Vector Normalization 75

5.3.5 Criteria Weights . 76
5.3.5.1 Criteria Ranking . 77
5.3.5.2 Rating Method . 77
5.3.5.3 Ratio Weighting Method 78
5.3.5.4 Entropy Method . 78

5.4 Overview of MCDM Techniques . 79
5.4.1 Min-Max Method . 79
5.4.2 Max-Min Method . 80
5.4.3 Compromise Programming . 80
5.4.4 TOPSIS Method . 81
5.4.5 ELECTRE Method . 83
5.4.6 PROMETHEE Method . 86
5.4.7 AHP . 86

5.5 Approaches for MCDM in Cloud Service Selection 87
5.5.1 MCDM for Cloud Service Selection Based on Cloud Service

Specifications . 89
5.5.2 MCDM for Cloud Service Selection Based on Cloud QoS His-

tory . 91
5.6 QoS Time Slot-Based MCDM for Cloud Service Selection 92

5.6.1 Calculation of Time Slot Weights for Aggregation 94
5.6.2 Aggregation of Individual Time Slot Results to Find the Best

Overall Service . 95
5.7 Experimental Validation . 96

5.7.1 Data . 96
5.7.2 Simulation Models . 99
5.7.3 Results and Discussion . 102

5.8 Conclusion . 107

6 Forecasting Cloud Service QoS in the Post-Interaction Phase 108
6.1 Introduction . 108
6.2 Steps in QoS Forecasting Component 109
6.3 Overview of time series analysis and forecasting 110

6.3.1 What is a time series? . 112
6.4 Exponential Smoothing . 113

6.4.1 Simple Exponential Smoothing 113
6.4.2 Holt’s Exponential Smoothing 115
6.4.3 Holt-Winters Seasonal Method 116
6.4.4 State Space Models for Exponential Smoothing 117

6.5 ARIMA models . 118
6.5.1 Key concepts . 119

6.5.1.1 Stationarity . 119
6.5.1.2 Differencing . 119
6.5.1.3 Moving Average Models 119
6.5.1.4 Autoregressive Models 120

6.5.1.5 ARMA . 120
6.5.2 Working of the ARIMA Technique 120

6.6 Error Measures for Evaluating the precision of Time Series Models 121
6.6.1 Measures for Model Selection 123

6.7 Parameter Estimation and Model Selection for Forecasting Cloud
QoS . 124

6.8 Forecasting QoS of a Cloud Service: An Example 125
6.8.1 Preliminary Investigation . 125
6.8.2 Model Selection and Parameter Estimation 127

6.8.2.1 Exponential Smoothing for Cloud QoS 128
6.8.2.2 ARIMA modelling of Cloud Services 130

6.8.3 Forecasting The Future QoS Values 133
6.9 Self-Similarity of Cloud QoS . 134

6.9.1 Estimation of the Hurst Exponent 135
6.9.1.1 Range-Scale Method 135
6.9.1.2 Variance-time estimate 136
6.9.1.3 Index of dispersion for counts (IDC) 136
6.9.1.4 Residuals of regression (Peng’s) method 137

6.9.2 Estimating the Self-similarity of cloud QoS 137
6.10 Conclusion . 140

7 QoS Early Warning for Cloud Service Management 142
7.1 Introduction . 142
7.2 QoS Deviation and Failure . 143
7.3 Overview of the Early Warning Component of UCSM Framework . 145
7.4 Quantifying QoS Deviation and Detecting Service Failure 147

7.4.1 Quantifying QoS Degradation and Improvement 149
7.4.2 Detecting Service Failure . 150
7.4.3 Calculating Maximum Possible Degradation 151
7.4.4 Scaling The Quantified Degradation 151

7.5 Fuzzy Inference System for Triggering QoS Degradation Alarm . . 151
7.5.1 Risk Attitude of the Service User 152
7.5.2 Fuzzy sets for Risk Attitude . 154
7.5.3 Fuzzy Sets for QoS Degradation 154
7.5.4 Fuzzy Sets for Triggering a QoS Degradation Alarm 155
7.5.5 Fuzzy Inference Rules of triggering a QoS degradation Alarm156
7.5.6 Aggregation and Defuzzification 157

7.6 QoS Early Warning Mechanism: A Case Study 158
7.6.1 Part 1: Quantifying Service Degradation 158
7.6.2 Part 2: Fuzzy Inference . 162

7.7 Conclusion . 166

8 Service Continuation Decision Making in the Post-Interaction
Phase 167
8.1 Introduction . 167
8.2 Overview of Post-Interaction Service Management Decision Making 168

8.2.1 Working Process of the Post-Interaction Decision-Making
Component . 170

8.3 Migration of cloud services . 172
8.3.1 Non-Live or Cold Migration . 172
8.3.2 Live Migration . 172
8.3.3 Inter-Cloud VM migration . 173

8.4 Metrics for Estimating the Financial and Operational Cost of Mi-
gration . 174

8.5 Multi-Criteria Decision Making . 176
8.6 Case Study Example . 178
8.7 Conclusion . 180

9 Solution Implementation 181
9.1 Introduction . 181
9.2 Overview of Solution Implementation 182
9.3 QoS Monitoring and Repository . 184
9.4 QoS History and Forecast Viewers . 184
9.5 Pre-Interaction Decision Making . 187
9.6 Post-Interaction Phase . 187
9.7 Conclusion . 191

10 Recapitulation and Future Work 192
10.1 Introduction . 192
10.2 Recapitulation . 193
10.3 Contribution of the Thesis . 194
10.4 Future Work . 197

10.4.1 Expanding the QoS Dataset . 198
10.4.2 Identification of a Complete Set of QoS Criteria 198
10.4.3 Implementation of the User Feedback-based Cloud Monitor-

ing Service . 199
10.4.4 Identification of Criteria Weights for Typical Cloud Service

Users . 199
10.4.5 Investigating the Fractional ARIMA Models for the Model-

ing and Forecasting of QoS . 199
10.4.6 Investigating the implications of user-side cloud service man-

agement on provider side resource utilization 200
10.4.7 Developing the business model for user-side cloud service

management . 200
10.5 Conclusion . 200

References 201

Appendix: Selected Publications 221
A User-Based Early Warning Service Management Framework in Cloud

Computing . 222
Parallel Cloud Service Selection and Ranking Based on QoS History . . . 247
A Framework for User Feedback Based Cloud Service Monitoring 280

List of Figures

1.1 Growth of Cloud computing . 2
1.2 Evolution of Cloud computing . 4
1.3 Relationship between SaaS, PaaS and IaaS clouds 5
1.4 Pre-interaction and post-interaction phases in loud service man-

agement from the user’s perspective 11

3.1 Variation of CPU response time of an Amazon EC2 instance 45
3.2 Overview of science and engineering-based research methodology . 52

4.1 The phases and processes involved in User-Side Cloud Service Man-
agement . 57

4.2 The proposed cloud service management framework and the flow
of information between its various modules. 58

4.3 Cloud Service Monitoring and the QoS Repository 60
4.4 Role of the QoS Forecasting and Early Warning Modules 62
4.5 Role of the Pre-Interaction Decision-Making Component 63
4.6 Role of the Post-Interaction Decision-Making Component 64
4.7 Current cloud QoS monitoring scenario 66
4.8 Proposed cloud monitoring through user feedback 67

5.1 Flowchart showing the sequence of steps in the proposed approach . 71
5.2 A simple hierarchical model of AHP 87
5.3 Approaches for applying MCDM to cloud service selection. 88
5.4 Overview of the proposed approach for service selection, based on

time decay and QoS performance of services in different time slots 92
5.5 Logistic decay functions for time slot weights 94
5.6 Variation in QoS over time (days) . 98
5.7 Histograms of response times in the dataset 104
5.8 Services selected in each time slot with fixed subjective criteria

weights . 105

6.1 Flowchart depicting the steps involved in the QoS forecasting com-
ponent . 111

6.2 Decomposition of a time series into the trend, seasonal and random
components . 112

6.3 Time series techniques discussed in this Chapter 114
6.4 Time Plot of Service S1 . 126
6.5 CPU response time of S1 −C1 from 2012-03-01 to 2012-03-30 128
6.6 Residual diagnostics of ETS(MNN) model. 129

vii

6.7 ACF and PACF of the series. 131
6.8 Residual diagnostics for the ARIMA(2,0,2) model. 132
6.9 Log-log plots showing the estimation of Hurst exponent using dif-

ferent methods . 139

7.1 Service Failure, Degradation and Improvement visualized as re-
gions in a graph . 145

7.2 Flowchart showing the sequence of steps in the proposed approach
for the early warning component . 146

7.3 Flow chart showing the sequence of steps in the fuzzy inference
system for QoS early warning . 153

7.4 Membership functions for risk propensity of the user 154
7.5 Membership functions for severity of QoS degradation 155
7.6 Membership functions for QoS Warning 155
7.7 The fuzzy inference system for QoS early warning alarm 156
7.8 Time plots of the dataset in Table 7.2 160
7.9 Membership function after the implication operation (Rule 14) . . . 164
7.10 Membership function after the implication operation (Rule 15) . . . 164
7.11 Membership function after the implication aggregation of all out-

put membership functions . 165

8.1 Flowchart showing the sequence of steps in the post-interaction
decision-making component . 171

9.1 Overview of the Prototype . 183
9.2 Options for viewing QoS history graph. 185
9.3 Options for viewing QoS history graph. 185
9.4 QoS history graph. 185
9.5 QoS forecast viewer options. 186
9.6 QoS forecast viewer window. 186
9.7 User input for the pre-interaction decision making phase. 188
9.8 Output of the pre-interaction decision making process. 188
9.9 Early Warning System input screen 189
9.10 User input for the additional post-interaction decision making cri-

teria weight settings. 190
9.11 User input for the additional post-interaction decision-making re-

sult showing a migration decision recommendation to the user . . . 190

List of Tables

2.1 Summary of cloud service management related literature. 34

5.1 IaaS cloud services and their performance attributes 73
5.2 Service rank calculated with min-max, max-min, TOPSIS and AHP 90
5.3 Summary of outranking relationships between the services deter-

mined by ELECTRE and PROMETHEE 90
5.4 Amazon Services in the dataset . 97
5.5 Specifications of the services . 99
5.6 The QoS data of services S1−S5 in first 85 time slots from the time

spot . 100
5.7 Average QoS of the 300 time slots. 101
5.8 Criteria weights calculated using the Entropy Method for decision

matrices’ specifications and average QoS 102
5.9 Criteria weights for time slots 1-240 calculated using the Entropy

Method . 103
5.10 Final service ranks calculated by the five simulation models 105
5.11 Final service ranks calculated in each simulation model with vari-

able criteria weights computed by using the entropy method 106

6.1 Taxonomy of Exponential Smoothing Methods 117
6.2 Inter-Criteria correlation of QoS . 127
6.3 Parameters of the Exponential Smoothing Model fitted to cloud

QoS time series by automatic model fitting. 128
6.4 Error measure of the fitted (MAA) exponential smoothing model. . . 129
6.5 Parameters of the fitted ARIMA(2,0,2) model for cloud QoS time

series. 131
6.6 Error measure of the fitted ARIMA(2,0,2) model. 131
6.7 Forecasted CPU response time for 8 time slots with confidence in-

tervals using the fitted ETS(M,N,N) model 133
6.8 Forecasted CPU response time for 8 time slots with confidence in-

tervals using the fitted ARIMA(2,0,2) model 133
6.9 Forecast error of the fitted exponential smoothing and ARIMA mod-

els. 134
6.10 Hurst Exponent estimated using different methods 140

7.1 Fuzzy rules for triggering alarm . 157
7.2 QoS values recorded hourly from 12 PM, 26-3-2012 till 10 AM, 27-

3-2012. 159

ix

7.3 QoS Deviation, degradation and improvement observed between
the time-spot and the current time slot 160

7.4 Forecasted QoS for 8 time slots with confidence intervals using
ARIMA(4,2,4) . 161

7.5 QoS Deviation, degradation and improvement observed between
the current time slot and a future time slot 161

7.6 Input provided to the early warning component 162

8.1 QoS of the currently selected and short-listed services in the cur-
rent and future time-slots. The criteria (c1 − c3) are CPU, memory
and I/O response times respectively (in milliseconds) while c4 is
cost in in $/Hour. S0 is the current service 178

8.2 Service ranking in the current and future time slots using TOPSIS
in the first and second level MCDM for shortlisting the available
services for migration. 179

8.3 Network usage cost and network throughput between each service
and S0 . 179

8.4 Migration cost calculated using the method given in Section 8.4 . . 179
8.5 The decision matrix after including the estimated time and cost of

migration . 179
8.6 Service rankings for migration decision-making 180

Acknowledgment

Foremost, I would like to thank Allah Almighty, the most gracious and the most
merciful, for making me capable, for giving me strength and for this opportunity
to accomplish this work.

I am indebted to my supervisor, Dr Omar Khadeer Hussain for his guidance and
support throughout the tenure of my PhD which was crucial for the completion
of this thesis. What I owe him for his dedication, attention to detail and tireless
efforts towards my research progress are beyond evaluation. I am also thankful
to my associate supervisors, Dr Farookh Khadeer Hussain, who was my princi-
pal supervisor during the early stages of my PhD, for his invaluable help and
guidance at critical stages of my work. I want to thank the other members of
my thesis committee, Dr Hai Dong and Dr Ponnie Clark, for their guidance and
encouragement. I am also thankful to Professor Elizabeth Chang for her tremen-
dous cooperation and support, particularly during the final stages of my work.

I gratefully acknowledge the support and encouragement from my wife Sarwat,
my daughter Dureen and my sisters Rizwana, Farhana and Namrah. I am also
thankful to my uncle Mr Muhammad Umar Khan and cousin Waqas Ahmad who
always encouraged me and assisted my family while I was overseas.

I would like to thank my fellow PhD students, Muhammad Raza, Naeem Jan-
jua, Jamshaid Ashraf and Adil Hammadi and their families with whom I had a
memorable time in Perth. I would also like to thank other PhD students and col-
leagues, Azam Esfijani, Sazia Parvin, Harjito Bambang, Muhammad Hamadan,
Ali Reza Faed, Le Sun, Omid Ameri and Lainey Weiser, for the friendly and sup-
portive atmosphere which they maintained at our institute in Technology Park.

Finally, I dedicate this thesis to my late parents, Mr Shah Rehman and Khalil
un Nisa, whose efforts and sacrifices enabled me to make it this far.

Zia-ur-Rehman

xi

Abstract

Cloud computing is increasing in usage because of its technical and financial

advantages over traditional computing paradigms and also because of the avail-

ability of an expanding number of cloud services offered by new service providers.

Consistent with its growth, there has been wide research interest in literature

that focuses on increasing cloud adoption. However, the current commercial and

research-oriented cloud computing research in the literature mainly deals with

functionalities closer to cloud infrastructure, such as improved performance and

the management of virtualized resources, as well as fundamental issues related

to efficient resource utilization, such as virtual machine (VM) migrations and

server consolidation. While on the one hand, such features are very important,

on the other hand, other important features, such as cloud quality of service

management which is important for the cloud environment to move from a basic

cloud service infrastructure to a broader cloud service ecosystem, have not re-

ceived the required due attention.

In cloud service management, a cloud service user has several choices for

service selection and the quest to achieve interoperability and compatibility in

cloud computing will consequently enable the user to easily migrate between ser-

vice providers. In this scenario, the user needs to make important cloud service

management decisions based on QoS, in addition to other criteria such as usage

cost. These issues, when considered from a user’s perspective, are quite different

from cloud infrastructure management issues envisioned from a cloud provider’s

perspective. There are several challenges in cloud service management from a

user’s perspective, which the current cloud service management platforms in the

literature do not address. For example, from a user’s perspective, cloud service

management has two possible scenarios: first is the case when a user wants to

select a cloud service for the first time; and the other is when a user is already

using a cloud service but wants to monitor the performance of his selected ser-

vice as well as other available services to assess whether or not it continues to

maintain the level of quality of service at the time of service selection and to con-

xii

sider service migration if another service, that offers the same or better QoS at a

lower cost, becomes available. Thus, cloud service management has two temporal

phases (the pre-interaction phase and post-interaction phase) and it comprises

three basic components: service selection in the pre-interaction period, service

migration in the post-interaction period and service monitoring in both periods.

Additionally, QoS prediction is also important in both periods. The existing ap-

proaches only provide basic service management functionality to the user but do

not assist the user in performing the above mentioned tasks that are vital for

effective service management.

To address this drawback, this thesis presents a comprehensive framework

that assists the cloud service user in making cloud service management deci-

sions, such as service selection and migration, by integrating all the inherent

processes necessary for this purpose, such as QoS monitoring and forecasting,

service comparison and ranking, to recommend the best and optimal decision to

the user. The proposed framework for cloud service management utilizes the QoS

history of the available services by proposing an efficient and reliable cloud ser-

vice monitoring framework that enables the cloud service user to monitor all the

available services from which a service has to be selected by the user. The QoS

data is stored in a repository and a methodology is developed to assist the user to

compare multiple cloud services in order to find out which service bests suits the

user’s requirements with minimal usage cost and recommends the best service to

the user by ranking the available cloud services in order of their suitability to the

user by analysing their QoS history on the basis of the user’s criteria and associ-

ated cost. The framework also includes a methodology for forecasting the future

QoS of the available services by observing the patterns in their QoS history and

recommends service migration decisions to the user when a user is already using

a cloud service but migrating to another service provider may be advantageous

on the basis of QoS history, future QoS forecasts and the user’s preferences. The

proposed approaches are integrated and their applicability demonstrated by a

prototype system.

List of Publications

(a) Journal Publications:

1. Omar Khadeer Hussain, Zia-ur-Rahman, Farookh Khadeer Hussain, Jaipal
Singh, Naeem Khalid Janjua and Elizabeth Chang “A User-Based Early
Warning Service Management Framework in Cloud Computing", The Com-
puter Journal 2014, Oxford University Press, doi:10.1093/comjnl/bxu064
(ERA-A*)

2. Zia ur Rehman, Omar Khadeer Hussain and Farookh Khadeer Hussain.
“Parallel Cloud Service Selection and Ranking Based on QoS History”, In-
ternational Journal of Parallel Programming, Volume 42, Issue 5, pp 820-
852. Springer-Verlag, 2014. (ERA-A)

3. Zia ur Rehman, Farookh Khadeer Hussain and Omar Khadeer Hussain,
“Frequency-based similarity measure for multimedia recommender systems”,
Multimedia Systems, Volume 19, Issue 2, pp 95-102. Springer-Verlag,
2012. (ERA-B)

(b) Conference Publications:

1. Zia ur Rehman, Omar Khadeer Hussain and Farookh Khadeer Hussain,
"Time Series QoS Forecasting for Management of Cloud Services", 9th In-
ternational Conference on Broadband and Wireless Computing, Commu-
nication and Applications,Guangzhou,China, November 8-10, 2014, (Ac-
cepted).

2. Zia ur Rehman, Farookh Khadeer Hussain, Omar Khadeer Hussain and
Jaipal Singh, “Is There Self-Similarity in Cloud QoS Data?” Ninth Inter-
national Conference on e-Business Engineering (ICEBE), Coventry, UK ,
IEEE Computer Society, September 2013.

3. Zia ur Rehman, Omar Khadeer Hussain and Farookh Khadeer Hussain.
“Multi-criteria IaaS Service Selection Based on QoS History”. 27th Interna-
tional Conference on Advanced Information Networking and Applications
(AINA), Barcelona, Spain, pp: 1129–1135. IEEE Computer Society, March
2013.

4. Zia ur Rehman, Omar Khadeer Hussain and Farookh Khadeer Hussain.
"Iaas Cloud Selection using MCDM Methods", Ninth International Confer-
ence on e-Business Engineering (ICEBE), Hangzhou, China, pp: 246–251,
IEEE Computer Society, September 2012.

xiv

5. Zia ur Rehman, Omar Khadeer Hussain, Sazia Parvin and Farookh Khadeer
Hussain. "A Framework for User Feedback Based Cloud Service Monitor-
ing", Sixth International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), Palermo, Italy, pp: 257–262, IEEE Computer
Society, July 2012.

6. Zia ur Rehman, Farookh Khadeer Hussain, and Omar Khadeer Hussain,
“Towards Multi-Criteria Cloud Service Selection”. Fifth International Con-
ference on Innovative Mobile and Internet Services in Ubiquitous Comput-
ing (IMIS), Seoul, Korea, pp. 44–48. IEEE Computer Society, July 2011.

(c) Papers Submitted and Currently Under Review

1. Zia-ur-Rehman,Omar Khadeer Hussain, Farookh Khadeer Hussain and
Elizabeth Chang "QoS Forecasting and Management of Cloud Services",
International Journal of World Wide Web: Internet and Web Information
Systems, Springer-Verlag (ERA-A).

Chapter 1

Introduction

1.1 Introduction

Cloud computing is a new computing paradigm in which virtualized hardware

and software resources are provided to the users over the Internet as services

with pay-as-you-go like pricing mechanisms. This enables the cloud users to ful-

fil their IT requirements by using virtualized computing resources, located at

a cloud service provider’s infrastructure, as cloud services over the Internet in-

stead of establishing an in-house computing infrastructure of their own. This is

beneficial for the users as they only have to pay for the resources which they are

actually using rather than paying for the entire cost of hardware and software,

as is the case in other computing paradigms. Furthermore, cloud computing re-

moves several administrative overheads and technical complexities associated

with maintaining an in-house IT infrastructure. These advantages have made

cloud computing an attractive option for businesses which has led to its rapid

adoption [1] and there is a huge growth potential as well. According to mar-

ket research, cloud spending was estimated to be $ 16 billion in 2008 and was

expected to reach up to $42 billion by 2012 [2]. By 2014, cloud business is ex-

pected to be around $200 billion while small and medium businesses alone are

expected to be spending around $100 billion [3]. In a 2008 survey, Gardner Re-

search included cloud computing among the most rapidly growing technologies

which shows that it is in mainstream adoption phase within less than two years

of its inception (Figure 1.1).

Over the years, apart from its increasing popularity as a computing model,

cloud computing has also become an active area of research. Cloud computing

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Growth of cloud computing analysis by Gardner Research (Source
Qian et al. [4]).

brings together several technologies to work in a different operational model;

as a result, different perceptions about cloud computing exist [5]. Many formal

definitions of cloud computing have been proposed, in both academia and indus-

try, that represent different perceptions, but the definition given by U.S. NIST

(National Institute of Standards and Technology) covers most of the key charac-

teristics of cloud computing [6, 7]. According to this definition:

"Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction."

Although cloud computing itself is new, the idea that it materializes origi-

nates from the concept of utility computing envisioned by John McCarthy in the

1960s [8]. In that era of timesharing mainframe computing, when computing

was only used by governments and large corporations, he perceived that in the

future, computing would become a basic necessity for everyone and would be pro-

vided to consumers in a manner similar to other utilities such as water, power

2

CHAPTER 1. INTRODUCTION

and gas etc. This has indeed become true as computing has literally became

a basic necessity with the extensive proliferation of computing devices that are

connected to the widely available Internet which has created an environment in

which computing has not only became indispensable but its delivery as a utility

is also made possible by the rapid advancements in the enabling technologies

which drive today’s cloud computing paradigm.

In the next section, an overview covering the different categories and un-

derlying enabling technologies of cloud computing is presented. In Section 1.3,

the key research areas in cloud computing are discussed. In Section 1.4 a brief

introduction to some key challenges in service management in cloud computing

is given. In Section 1.5, the objectives of the thesis are described. In Sections 1.6

and 1.7, the scope and significance of the thesis are discussed respectively. Be-

fore concluding the chapter in Section 1.9, the forthcoming chapters of the thesis

and their aims are outlined in Section 1.8.

1.2 Overview of Cloud Computing

In this section, I give an overview of cloud computing, its evolution, types of cloud

services, their deployment models and the key enabling technologies such as the

virtualization upon which cloud computing is built.

1.2.1 Evolution of Computing

There are six phases in the evolution of cloud computing from early main frames

[9], as shown in Figure 1.2. The first phase is the mainframe era when many

users shared powerful mainframes using dummy terminals. In the second phase,

PCs became powerful enough to fulfil most of the users’ requirements. The third

phase was when laptops and PCs were connected together through local area

networks (LANs) to share data and resources. In phase four, LANs in different

locations were connected together through wide area networks (WANs) to form

a global network (the Internet) to enable the sharing of data and resources over

vast distances. In the fifth phase which immediately preceded cloud comput-

ing, grid computing allowed the usage of remote computing resources to perform

computation intensive tasks though distributed computing. As discussed in the

previous section, cloud computing is a computing model wherein hardware, sys-

tem software and applications are delivered as services to the users over the

Internet. The service delivered by cloud computing is categorized to different

types of services on the basis of various factors, as discussed further in the next

3

CHAPTER 1. INTRODUCTION

Laptop

Laptop

Laptop

User

User

User

User

User

User

PC

PC

PC

PC

PC

PC

PC

PC

Terminal
Mainframe

Internet

Grid

Cloud Computing

Mainframe

PC

Network

Grid Computing

Cloud Computing

Grid

Figure 1.2: Evolution of cloud computing from early mainframe computers
(Source [10]).

section.

1.2.2 Types of Cloud Services

Cloud services fall into three categories in terms of the type of services they

deliver. These are Infrastructure as a service (IaaS), Platform as a Service (PaaS)

and Software as a Service (SaaS) clouds.

In IaaS, the cloud computing infrastructure is delivered as a service wherein

users are offered web-based access to various hardware resources such as com-

puting power and storage space. The user has control over the operating system,

storage and installed applications but has no management access over the basic

cloud infrastructure. The usage-based payment model and rapid scalability are

the key advantages of IaaS clouds. Well-known examples of such clouds are Ama-

zon’s EC2 and S3 (for computing and storage respectively), GoGrid, Rackspace

and Flexiscale etc.

PaaS clouds provide a complete development platform as a service which

includes all the tools needed for the development, testing, deployment and host-

ing of sophisticated business web applications. Prominent examples are Google

4

CHAPTER 1. INTRODUCTION

AppEngine and Microsoft Azure. In addition to providing advantageous features

for cloud computing, such as rapid scalability and pay-as-you-go, PaaS cloud also

saves the users from creating and maintaining the development and hosting en-

vironment for their web applications which results into faster development time

and reduced development and hosting costs.

SaaS clouds provide a complete software solution, built on top of underlying

cloud infrastructure, to multiple users simultaneously. This is a completely new

application software distribution model. Prominent examples of SaaS clouds are

SalesFores.com, NetSuite and Microsoft Office365 etc.

Figure 1.3: Relationship between SaaS, PaaS and IaaS clouds

In short, as shown in Figure 1.3, the three types of cloud services essen-

tially provide different levels of abstraction layers over the computing hardware.

The IaaS cloud is at the lowest level of abstraction as it only hides the internal

hardware details but still allows the user to configure and customize the virtual

machines. On the other hand, the PaaS cloud only allows the user to develop and

deploy his applications on the platform without any control over the underlying

platform configuration, whereas IaaS provides a complete software solution and

the development environment is also managed by the cloud provider.

5

CHAPTER 1. INTRODUCTION

1.2.3 Deployment Models of Clouds

In terms of deployment models and public accessibility, the clouds are divided

into three categories, i.e. public clouds, private clouds and hybrid clouds.

A cloud is called a public cloud when its services are made available to

the general public over the Internet on a pay-as-you-go manner. On the other

hand, private clouds are operated and maintained exclusively for the use of an

organization (and its subsidiaries) only without any access to the general public.

The third category of hybrid clouds is a composition of public and private clouds.

In this case, the resources exceeding the requirements of the organization are

provided as a public cloud or the private cloud provisions external resources from

a public cloud in order to keep functioning in case of workload fluctuations or

hardware failure.

In this section, an overview of the various types and deployment models

of cloud services was given and the important enabling technologies that drive

the cloud computing paradigm at various levels were discussed. In the next

section, the key enabling technologies upon which cloud computing depends are

discussed.

1.2.4 Key Enabling Technologies

Cloud computing relies on several underlying enabling technologies to support

the creation and scalable deployment of services. In addition to new technolo-

gies, these also include some technologies that have evolved from legacy tech-

nologies related to older computing paradigms (Figure 1.2) from which today’s

cloud computing paradigm has evolved. Some of these are discussed in the next

sub-sections.

1.2.4.1 Virtualization

The hardware infrastructure upon which cloud services are built consists of thou-

sands of computing nodes and their networking and storage subsystems. These

enormous computing resources are made available as flexible services to the user

through virtualization technology. Virtualization partitions the resources of a

single processor into multiple virtual machines (VMs), each of which can be used

by a different user. VMs are the software implementation of a processor that exe-

cutes programs like a physical machine. The users of VMs, although sharing the

6

CHAPTER 1. INTRODUCTION

same physical resources, are hidden from each other and see the VM as no differ-

ent from a physical machine. Each VM can run a different operating system and

thus can be configured and customized by each user according to his require-

ments. Virtual machines are used as a means to deliver computing resources

to the user while keeping the actual infrastructure, along with its management

and administration, hidden from the user. The user only manages the software

and tools deployed on the virtual machine and is able to setup, configure and

customize it to build and deploy his applications on this virtual environment.

Furthermore, virtualization enables the user to migrate VMs from one server to

another at runtime.

A virtual machine monitor or hypervisor is used to manage the VMs on

a single server. The hypervisors are responsible for the creation, suspension,

resumption, saving, migration and deletion of VMs. Prominent hypervisors in-

clude VMware, Xen, KVM and Hyper-V etc. [9, 11]. On top of the virtual ma-

chine monitor, there is a Virtual Infrastructure Manager that manages, deploys

and monitors VMs on a pool of resources. The virtual machine monitor performs

these functions by communicating with the hypervisors of individual servers.

The well-known and most used virtual infrastructure managers include Eucalyp-
tus, Nimbus and Open Nebula etc. These tools transform a distributed collection

of computing nodes into a functional IaaS cloud.

A web-based solution, called Cloud Infrastructure Manager, is used to man-

age the IaaS services by performing the functions of managing virtual resources

across several cloud providers for the user. The tasks performed by these man-

agers are the deployment, monitoring and maintenance of VMs on multiple IaaS

services for the user. Examples of such services include Rightscale, Elasatra and

Kaavo etc. [9, 11, 12].

1.2.4.2 Parallel Distributed Processing Model

The large number of computing nodes provided by clouds can be used by orga-

nizations when huge amounts of data are needed to be processed using parallel

distributed programming. This functionality is provided through the MapRe-

duce programming model [13] which carries out computations on subsets of data

on the distributed nodes in a highly parallelized manner. This greatly simpli-

fies the processing of large data rapidly and inexpensively. A well-known open

7

CHAPTER 1. INTRODUCTION

source implementation of the processing model is called Hadoop 1 which has

been extensively used by Amazon, Facebook and the New York Times for process-

ing very large amounts of data [14]. Amazon’s Elastic MapReduce, introduced

in 2009, uses Amazon’s EC2 and S3 cloud services for computing and storage

respectively, to provide MapReduce functionality as a service [15].

1.2.4.3 Web Services

Cloud services are presented to the users as web services built on top of the virtu-

alized resources wherein the key web services technologies that play a significant

role are Remote Procedure call (RPC), Service Oriented Architecture (SOA), Rep-

resentative State Transfer (REST), and Mashups. These technologies are used

to provide an easy interface for the users to interact with cloud services. Cloud

services follow industry standards from SOA, such as WSDL, SOAP and UDDI,

in their design.

Due to its popularity, research in cloud computing has evolved into many

diverse areas. In the next section, some of the key research areas in cloud com-

puting are discussed briefly.

1.3 Research Areas in Cloud Computing

There are several research areas in cloud computing that are related to over-

coming the identified issues with the present cloud environment such as vendor

lock-in, security, and portability etc. Additionally, there are extensive research

efforts such as those aimed at energy efficiency and the ways to use cloud com-

puting for e-government and e-learning etc. Some of these areas are discussed

as follows:

1.3.1 Interoperability and Federated Clouds

A key problem in the first generation of cloud services was that the cloud users

were forced into a lock-in due to the lack of interoperability and compatibility

between different cloud providers’ technology. It is hard to achieve compati-

bility among SaaS and PaaS clouds from different providers and the problem

still persists in these types of clouds but significant progress has been made to

achieve this between IaaS clouds with the development of open cloud middle-

ware (Apache Hadoop, Eucalyptus and Openstack etc.). The expanding adoption

1http://hadoop.apache.org

8

http://hadoop.apache.org

CHAPTER 1. INTRODUCTION

of these technologies by cloud providers has made it possible to easily migrate

virtual machines between different service providers.

The efforts towards achieving compatibility and interoperability between

cloud services across service providers through the standardization of cloud mid-

dleware and enabling technologies in future generation cloud computing further

widens the range of choices available to potential cloud service users while mak-

ing a decision to opt for a particular service. Additionally, for the inter-provider

compatibility of similar services arises the possibility of a cloud service user dis-

continuing the use of one service provider and migrating to another service which

offers better quality or is deemed advantageous in terms of cost.

The concept of federated clouds is also an important area which aims to

take advantage of interoperability between several clouds to pool their resources

to build a massive cloud which has the potential to further enhance the elasticity

and scalability of the cloud services. These developments have the potential

to enable smaller and regional cloud service providers to do business in cloud

computing, which at the moment, is mostly dominated by a few global players,

thereby adding to the number of choices available to potential cloud service users.

1.3.2 Green Computing

Research into green computing aims to analyse the environmental sustainabil-

ity of cloud computing and increase its energy efficiency. The huge amounts of

hardware resources powering the clouds are provided through large datacenters

which consume large amounts of electricity for their operations. A typical 1000

racks datacenter needs up to 10 megawatts of electricity [16] which is not only

a significant part of the operational cost of a cloud datacenter but is also an en-

vironmental concern as the IT industry is estimated to be generating about 2%

of global CO2 emissions. The growing dependence on computing itself and the

resulting growth in cloud computing mean that, in future, the environmental

impact of cloud computing will also increase.

Green cloud computing is an extensive and multi-disciplinary area because

energy efficiency can be achieved in several ways, which include energy efficient

hardware, increasing the use of green energy at datacenters, better resource uti-

lization (which cloud computing already does though virtualization), energy ef-

ficient software design, energy efficient communication and network hardware

etc.

9

CHAPTER 1. INTRODUCTION

1.3.3 Cloud Service Management

The dynamic nature of cloud computing raises important management issues

from cloud provider’s as well as the user’s perspectives. The effective manage-

ment of cloud resources at various levels of the cloud stack is important for cloud

providers to ensure Service Level Agreement (SLA) compliance, security guar-

antees, high availability, energy efficiency, maximum resource utilization, capac-

ity to meet high demand, reliability and security. Traditional IT resource man-

agement solutions designed for enterprise environments are unable meet man-

agement’s requirements due to multi-tenancy, large scale and dynamism and

various dependent factors of cloud environments. These management tasks are

performed as a part of virtual infrastructure management by software, such as

OpenNebula, OpenStack, Eucalyptus, ECP, and Overt [17, 18] etc. which man-

age virtual machines across computing nodes.

Cloud users can communicate with these virtual infrastructure managers

via cloud APIs (e.g. OpenStack API, Open Cloud Computing Interface and EC2

API etc.) to create, run, monitor and terminate virtual machine instances. In ad-

dition to these CLI interfaces, there are also browser-based graphical interfaces,

(such as Dashboard for OpenStack and Sunstone for OpenNebula) [17]. These

interfaces allow the users to manage their virtual resources on a cloud by utiliz-

ing the functionality in these cloud tools that are built for virtual infrastructure

management at data center level for cloud providers. However, the management

issues, when looked at from a user’s perspective, are quite different from the

cloud infrastructure management by cloud providers.

There are several cloud management platforms (available as services) which

are specifically designed to benefit the users and support multiple cloud providers

and underlying cloud management software. Examples of these services include

Rightscale, Red Hat Cloudforms, Servicemesh Agility Platform and ElasticBox

etc. These services allow the users to manage their virtual resources acquired

from several cloud providers through a single management environment. How-

ever, none of them do it from the perspective of a cloud service user and cloud

service management is still an active area in industry and academia. The users’

perspective in cloud service management has only recently received attention.

The next section focuses on the challenges of user-side cloud service manage-

ment.

10

CHAPTER 1. INTRODUCTION

1.4 Challenges in Cloud Service Management

There are several challenges in cloud service management from the users’ per-

spective which the current management platforms do not address. The existing

approaches only provide basic service management functionality to the user but

do not assist in actual decision making which is vital for effective service man-

agement.

From a user’s perspective, cloud service management has two possible sce-

narios; the first is the case where a user wants to select a cloud service provider

to initiate a service for the first time, and in the second scenario, a user, who

is already using a cloud service, wants to monitor the performance of his se-

lected service as well as the other available services to assess whether or not it

continues to provide the same level of quality of service as at the time of ser-

vice selection and to consider service migration if another service, that offers the

same or better QoS at a lower cost, becomes available.

Time spot

Pre-interaction

Phase

Post-interaction

Phase

Time

Figure 1.4: Pre-interaction and post-interaction phases in loud service manage-
ment from the user’s perspective

Thus, cloud service management has two temporal phases (pre-interaction

phase and post-interaction phase) as shown in Figure 1.4 and it comprises three

basic components: service selection in the pre-interaction period, service moni-

toring in both periods and service management, which includes several tasks, in

the post-interaction period. In the next sub-section, the challenges in the pre-

interaction phase are highlighted.

11

CHAPTER 1. INTRODUCTION

1.4.1 Service Selection in the Pre-Interaction Period

In the cloud computing environment, there are several cloud service providers,

each of which offer more than one service with similar functionality but different

levels of QoS and cost. The user has to make a decision in favor of one such

service after considering his requirements, the nature and quality of the services

on offer and their cost.

Making a decision in such a scenario is not easy as users have different

requirements, thus a service deemed appropriate for one particular user may

not be able to fulfil the requirements of another user. Furthermore, the cost of

a service also needs to be considered as different users have different financial

priorities. Additionally, the user’s priorities are subject to changes with time.

On the other hand, a cloud service is characterized by several specification pa-

rameters which reflect the possible performance in terms of different hardware

components e.g. CPU type, CPU speed, memory size and throughput etc.

Furthermore, as cloud computing envisions a paradigm wherein the phys-

ical computing resources are shared by many users as virtualized resources,

therefore, due to this sharing of resources among multiple users, the actual

performance of a service cannot be determined by its specifications as there is

considerable variability in QoS which needs to be monitored over a long time

interval.

1.4.2 Cloud Service Monitoring

As mentioned in the previous sub-section, the long term monitoring of cloud ser-

vices is needed to assess the variability in QoS. A vital component for user-side

cloud service management is access to past QoS data of the available services

based on which service management decisions may be made.

Currently, there are several monitoring services from cloud service providers

which allow the users to monitor their cloud resources and there are also several

dashboards that show basic information about the status and quality of a cloud

provider’s services. However, these facilities do not allow the users to monitor

the cloud services other than those which they are currently using. Thus, the

users have no way of knowing whether or not the other available services in the

cloud environment can provide better services, as compared with the selected

service in terms of QoS and cost.

In addition to these mechanisms available from cloud providers, there are

12

CHAPTER 1. INTRODUCTION

other similar third party monitoring services which monitor popular cloud ser-

vices from major providers and the data collected by them can be purchased by

cloud service users. Since monitoring also consumes computing resources, this

third party monitoring incurs cost and as a result, the collected information can-

not be made available to the users for free. Thus, users have to pay an additional

cost for utilizing the third party motoring data.

In this thesis, I aim to develop another alternative to these two approaches

which allows the users to share the QoS information with other users without

incurring additional costs for this data.

1.4.3 QoS Prediction for Cloud services

Apart from taking into account the past QoS history of the available service, it is

also necessary for the users to consider the future possible QoS of these services

while making service management decisions. Therefore, it is very important for

cloud service users to be able to predict the performance of a cloud service but

there is very little published work on cloud service QoS prediction and forecast-

ing.

1.4.4 Service Management in the Post-Interaction Period

In the post-interaction period, the users need to monitor the performance of the

service that is currently selected and they also need to know the QoS and price

of other available services. Based on this information, the user has to make

a decision on whether or not to migrate from the current service provider to

another service provider or to opt for a different service from the same provider

if the current service degrades in terms of QoS, or other services are available

which provide similar or better QoS at a lower cost. Timely migration decisions

are important for users to gain the benefit of potential cost saving opportunities

by migrating and to avoid using a degraded service for a longer than necessary

time.

1.5 Objectives of the Thesis

In the previous sections, I outlined the need for a user-side cloud service manage-

ment framework to enable the cloud service users to take maximum advantage of

cloud computing by making timely and informed service management decisions.

The primary objective of this thesis is to propose a cloud service management

framework that assists the user by recommending service management decision

13

CHAPTER 1. INTRODUCTION

for the selection and migration of services on the basis of cloud service monitor-

ing and forecasting. The objectives of the thesis can be summarized as:

1. To propose a framework for cloud service management for the cloud ser-

vice users to enable them to make timely service selection and migration

decisions.

2. To develop a framework for the cloud service users to monitor the QoS of

the available services in an efficient and reliable manner.

3. To develop a methodology to rank the available cloud services based on

the user’s preferences on multiple QoS criteria and past QoS history of the

services to recommend the selection of the top ranking service.

4. To analyze the QoS history of the available service and to develop a method-

ology for forecasting the future QoS of the available service on the basis of

observed patterns in past QoS history.

5. To develop a framework to recommend service management decisions to

the users when the selected service is under-performing or there are other

services available to which migration is advantageous.

6. Evaluation of the proposed frameworks.

1.6 Scope of the Thesis

The concept of cloud service management with which I aim to deal in this thesis

is only related to cloud services that are similar in nature, are interoperable and

compatible so that the users can easily migrate between these services without

facing any compatibility issues.

This work is not aimed at provider-side cloud service management. There

is considerable work in the literature on cloud service management from a cloud

service provider perspective wherein the techniques and methodologies which

are vital for managing important aspects of computing resources, such as load

balancing, elasticity and provisioning etc., have been discussed. However, there

is very little work on cloud service management from the user’s perspective and

the existing management platforms do not provide decision support.

There are several research issues in cloud computing such as interoper-

ability and compatibility, security and reliability, and energy efficiency (green

14

CHAPTER 1. INTRODUCTION

computing) etc. This thesis does not directly deal with these issues and I do not

attempt to investigate these aspects from the provider side in this work. I only

deal with these issues from the user’s perspective from a service management

point of view.

1.7 Significance of the Thesis

In a cloud environment, where extensive interoperability exists between clouds

offered by different providers, a cloud service user is free to take advantage of

the wide choices available by selecting any service from several available services

from different service providers. To take advantages of these possibilities of cloud

computing, there is a need to make timely informed decisions on cloud service

selection. The existing literature, to the best or our knowledge, does not present a

comprehensive and integrated approach toward cloud service management from

a user’s perspective. The significance of this thesis lies in the primary aim of this

thesis, which is to develop a framework that assists the user in making these

service management decisions by integrating all the underlying tasks required

to make such a decision and recommend the best possible decision to make. The

various aspects highlighting the significance of this thesis can be summarized

as:

1. This thesis develops a comprehensive framework that assists the cloud ser-

vice user in making cloud service management decisions.

2. This thesis proposes an efficient and reliable cloud service monitoring frame-

work that enables the cloud service user to monitor all the available ser-

vices from which a service can be selected by the user.

3. It is not easy for the cloud service user to compare multiple cloud services in

order to determine which service bests suits the user’s requirements with

minimal usage cost. In this thesis, I develop a framework for cloud service

selection which recommends the best service to the user by ranking the

available cloud services in order of their suitability to the user by analyzing

their QoS history on the basis of the user’s criteria and associated cost.

4. I present a methodology for forecasting the future QoS of the available

service by observing the patterns in their QoS history.

5. I develop a methodology to recommend service migration decisions to the

user who is already using a cloud service but migrating to another service

15

CHAPTER 1. INTRODUCTION

provider may be advantageous on the basis of QoS history, future QoS fore-

casts and the user’s preferences.

These tasks are not trivial and a comprehensive cloud management frame-

work is needed that performs all of these tasks and assists the cloud service user

by integrating the important tasks of QoS monitoring, service selection, QoS pre-

diction and service migration.

1.8 Plan of the Thesis

This chapter discussed our plan to develop an integrated user-side cloud service

management framework that assists cloud service users in making management

decisions to take maximum advantage of cloud computing by selecting the best

available service and to avoid service degradation and failure by timely migrat-

ing to another service. The remaining parts of the thesis are organized as follows:

Chapter 2: In Chapter 2, I give an extensive review of the existing methodolo-

gies and those currently under development for various aspects of cloud service

management from the users’ perspectives. I outline the shortcomings of these

methodologies, leading to the research issues which I aim to address in this the-

sis.

Chapter 3: In this chapter, I discuss the background of the problem, present a

formal definition of the problem and break the problem down into its constituent

research issues. I define the basic concepts and terminology related to these

research issues which will be used in this thesis. In this chapter, I present an

overview of the various research methodologies and select the one which best

suits for solving this problem.

Chapter 4: In Chapter 4, I present an outline of the methodology that I pro-

pose for cloud service management. I discuss the proposed methodology as a

whole and also explain the constituent parts of this proposed methodology, each

of which is meant to solve one of the research issues highlighted in Chapter 3.

Chapter 5: In this chapter, a multi-criteria decision-making-based algorithm is

presented that finds the most appropriate service for a cloud service user from

the available services on the basis of user’s preferences against the criteria and

the QoS history of the available services.

Chapter 6: Chapter 6 deals with time series modeling and forecasting of QoS.

16

CHAPTER 1. INTRODUCTION

Chapter 7: Chapter 7 presents a mechanism that uses service monitoring data

to detect the need for a service management decision.

Chapter 8: In this chapter, the post-interaction phase of service management

decision-making is discussed wherein the user needs decide whether to migrate

from currently subscribed cloud service to another service.

Chapter 9: In this chapter, the software implementation of the proposed frame-

work is presented.

Chapter 10: In this chapter, I conclude the thesis and also discuss the future

research directions based on the achievements of the thesis.

1.9 Conclusion

Cloud computing is growing in terms of its increasing usage because of its tech-

nical and financial advantages over traditional computing paradigms and also

in terms of the availability of more and more cloud services by new service

providers. Thus, a cloud user has several choices for service selection and the

quest to achieve interoperability and compatibility in cloud computing will con-

sequently enable the user to easily migrate between service providers. In this

scenario, the users need to make important cloud service management decisions

based on QoS in addition to other criteria. These issues, when looked at from a

user’s perspective, are quite different from the cloud infrastructure management

issues seen from cloud provider’s perspective. In this thesis, I aim to develop a

cloud service management framework to assist users in making such manage-

ment decisions.

17

Chapter 2

Literature Review

2.1 Introduction

In the previous chapter, cloud computing was discussed in general and the key

research areas in this field were highlighted. Also, the importance of cloud ser-

vice management from a user’s perspective was examined and it was concluded

that a framework is needed to assist the cloud service users in making service

management decisions. In this chapter, the related literature that underpins the

need for and significance of this research is discussed and the knowledge gap

that exists in the current body of knowledge is highlighted.

This chapter is organized thematically and is divided into sections cover-

ing the literature related to each theme. In the next section, the literature which

gives a general understanding of cloud computing and defines the fundamental

concepts and identifies the underlying research issues in cloud computing is dis-

cussed. In Section 2.3, the literature related to the management of cloud services

is discussed, in Section 2.4, the literature that addresses the issue of service se-

lection is discussed. In Section2.5, the papers related to QoS monitoring are

discussed which is followed by Section 2.6 on QoS prediction and Section 2.7 on

cloud service migration related literature. A critical review of the literature is

given in Section 2.8 after which a conclusion to the chapter is given in Section

2.9.

2.2 Cloud Computing

In this section, the literature on cloud computing as a new computing paradigm

is discussed, along with its definition and associated terminology.

18

CHAPTER 2. LITERATURE REVIEW

2.2.1 Definition of Cloud Computing

As discussed in the previous chapter, there are different definitions for cloud

computing in the literature, many of which do not cover all of the features of

the cloud. Vaquero and Rodero-Merino [6] tried to give a comprehensive defini-

tion that covers different aspects of cloud computing. Efforts have been made to

standardize the definition of the cloud and the cloud definition provided by the

National Institute of Standards and Technology (NIST) [19] is widely accepted.

2.2.2 Evolution of Cloud Computing and its Relationship
with Legacy Technologies

Cloud computing has evolved from previous computing paradigms and has in-

herited several of its key features from these paradigms. This has contributed to

a lack of clear understanding about cloud computing. Several researchers have

tried to provide a broad understanding of cloud computing. In one such attempt,

Voorsluys et al. [12] give a thorough introduction to cloud computing with its

evolution from the previous computing paradigms and the related legacy tech-

nologies which provide key enabling functions in cloud computing. They identify

several challenges and risks in cloud computing from various aspects, such as

security, privacy and trust; data lock-in and standardization; availability, fault-

tolerance and disaster recovery; resource management and energy efficiency.

They conclude that there is still a need for improvements in these directions.

Furht [9] gives a comprehensive introduction to cloud computing fundamentals.

They discuss its evolution form earlier computing paradigms and highlight the

difference between cloud computing and cloud services, types and layers of cloud

computing, enabling technologies, key cloud computing platforms, cloud com-

puting challenges and its future. Jin et al. [11] present an introduction to the

tools and technologies, such as virtual machines, hypervisors and virtual infras-

tructure managers, MapReduce and the key web service technologies etc. which

are required for building clouds. They also briefly list the Cloud Infrastructure

Managers and their silent features. But they do not go into the details of these

solutions.

The above mentioned work highlights the technological evolution of cloud

computing but does not discuss the issues from a business perspective.

19

CHAPTER 2. LITERATURE REVIEW

2.2.3 Business Perspective of Cloud Computing

Heilig and Voss [20] analyzed the cloud computing literature published between

2008 and 2013 and found that the majority of work is focused on cloud computing

technology while its social and economic impact has only recently appeared as a

research trend.

Marston et al. [3] presented the business perspective of cloud computing

and give recommendations for business professionals and cloud providers. They

concluded that, among other aspects that limit the success of cloud computing,

the manageability required for the large scale deployment of cloud computing

is a key issue and the development of standardized interfaces and automation

tools for management is necessary. Another related study by Chang et al. [21]

discusses the four use cases of cloud services, namely Public, Community, Pri-

vate, and Hybrid Clouds, and their applications in various industries and give

a market analysis focused on the business drivers and implementations of the

technology transformation. Weinhardt et al. [22] describe a technical classifica-

tion of cloud and grid computing and discuss the business of the cloud computing

paradigm.

Leimeister et al. [23] also argued that existing research in cloud computing

primarily focuses on the technical aspects and the business models have received

limited research attention. They summarized the various definitions of cloud

computing and elaborated the building blocks and key elements of cloud comput-

ing. Additionally, a systematic description of the major actors (e.g. providers and

consumers) involved in the cloud market is presented. They apply the concept of

the value chain1 to cloud computing and argue that cloud computing is a result of

the development of IT outsourcing towards a more flexible delivery model. They

conclude that from an academic and business point of view, both the client and

provider perspective of cloud computing has to be taken into consideration.

Chang et al. [24] discussed the technical and business challenges for organi-

zational cloud adoption. They propose a Cloud Computing Business Framework

to help organizations in the design, deployment and migration of their applica-

tions to cloud services to benefit from the added value offered by cloud computing

to businesses. Similarly, [25, 26] discuss the cloud adoption challenges and issues

from an enterprise’s point of view.

1"A value chain is described as those primary and support activities within and around an
organization that together design, produce, deliver and support a product or service [23]"

20

CHAPTER 2. LITERATURE REVIEW

Tehrani and Shirazi [27] investigated the factors influencing the adoption

of cloud computing by small and medium size enterprises through an online sur-

vey. They concluded that the only factor which has a significant influence is the

decision-maker’s knowledge about the underlying structure of cloud computing,

the benefits of cloud computing, the different types of cloud computing (SaaS,

PaaS, and IaaS), various deployment models (public, private, or hybrid), and the

pricing model of cloud computing. In related work, Charif and Awad [28] dis-

cuss cloud adoption by business and government organizations. They found that

cloud adoption by government and business organizations is unequal and differ-

ent cloud deployment models have different adoption levels.

2.2.4 Research Perspective on Cloud Computing

Interest in cloud computing within the academic and technical literature has

mushroomed since its emergence [29]. The research perspective on cloud com-

puting has also received some research attention. In this regard, Dillon et al. [7]

give an overview of cloud computing and compare it with the related technologies

of SOA, grid computing and high performance computing (HPC). The challenges

and issues of cloud adoption and interoperability are also highlighted. Other

work, such as Hamdaqa and Tahvildari [30], Vouk [31], and Gong et al. [32] also

present a research landscape of cloud computing and identify the key research

challenges in this area.

On the basis of a review of the literature and interviews with vendors and

users, Venters and Whitley [29] analyzed cloud computing in terms of the fea-

tures of the cloud that users desire and presented a framework of desires that

seeks to structure the available evidence regarding the likely trends in cloud

computing.

Business and research opportunity in mobile cloud computing has emerged

with the rapid advance of mobile computing technology and wireless networking.

Gao et al. [33] discussed this area and its research challenges.

Habib et al. [34] explain the role of trust and trust management in cloud

computing and its influence on the adoption of cloud computing. They classified

the prevailing trends of trust establishment and identified their limitations to

meet the challenge of selecting the most trustworthy cloud provider. In closely

related work, Noor et al. [35] discuss the open research issues for trust manage-

ment in cloud environments.

21

CHAPTER 2. LITERATURE REVIEW

2.2.5 Taxonomy of Cloud Computing

Similar to the lack of a standardized definition of cloud computing, there is also a

lack of standardization of the terminology used in industry and academia. Some

effort has been made towards developing taxonomies of cloud computing in order

to provide a clear understanding of the prevailing technologies and the terminol-

ogy. Rimal et al. [36, 37] present a taxonomy for describing cloud computing for

architectures and use the developed taxonomy to identify the similarities and dif-

ferences of the architectural approaches of cloud computing. They conclude that

there are several open issues in cloud computing which the proposed taxonomy

attempts to highlight. Hoefer and Karagiannis [38] also proposed a taxonomy of

cloud computing aimed at classifying the various cloud services on the basis of

their characteristics. They provide a simple tree structure to help the users com-

pare different services. They point out that interoperability and standardization

are important areas in the research of cloud computing. Abbadi [39] proposed

a taxonomy for cloud infrastructure from a provider’s perspective, with the fo-

cus on the relationships and interactions amongst cloud components and use the

developed taxonomy to derive cloud infrastructure properties, which they argue

to be the key factors in providing automated management services. A compara-

tive study of cloud technologies and offers is presented in [40] with a taxonomy

of the different software which perform key functions in cloud computing and

categorize them in terms of their characteristics and features.

This work has standardized cloud computing terminology which has helped

to improve the understanding of cloud computing in industry as well as enhance

the research in this area.

2.2.6 Cloud Platforms

A large number of proprietary and open cloud platforms drive the current cloud

environment and an understanding of these is important for the research and

business community. In this regard, Rad et al. [41] presented a general survey

and comparison of prominent cloud platforms by leading cloud providers with an

emphasis on the key differentiating features of each platform. A general sur-

vey of popular cloud middle-ware is provided by Peng et al. [42]. They discuss

Eucalyptus, NIMBUS and Open Nebula, and describe their architecture, char-

acteristics and application. Baun and Kunze [43] give a brief overview of cloud

solutions and discuss their compatibility with AWS. Manohar [44] present a sur-

vey of visualization techniques for cloud computing.

22

CHAPTER 2. LITERATURE REVIEW

Interoperability between different cloud platforms is a crucial issue in the

current literature. Zhang et al. [45] review the existing studies on taxonomies

and the standardization of cloud interoperability and also discuss the cloud tech-

nologies for enabling inter-operation between clouds from both the cloud provider’s

and user’s perspectives. In similar related work, Toosi et al. [46] also survey the

cloud interoperability literature. They identify and present a taxonomy of the

challenges and obstacles in this area.

The work discussed so far attempts to clarify cloud computing terminology

and architectures for a better understanding and also identify the key research

issues in this area. In the next sections, the work which is focused on specific

research issues related to cloud service management as a whole and its sub-

topics is discussed.

2.3 Cloud Service Management

Existing literature on cloud service management is focused on the cloud man-

agement issues handled by the cloud service providers. In one such work, Cook

et al. [47] discuss the current requirements and approaches to cloud manage-

ment. They give examples of cloud management for private, public and HPC

clouds and discuss the manageability of current platforms and then make pre-

dictions about the research challenges of future cloud management. Abbadi [39]

presents a cloud taxonomy focusing on infrastructure components and their man-

agement, with the objective being to dispel the misconception about cloud com-

puting. He also outlines the factors affecting management decisions for deriving

self-managed services. Other work, such as [48, 49], also gives an overview of

cloud infrastructure management. However, they only discuss management is-

sues from an infrastructure provider’s point of view. Rodero-Merino et al. [50]

argue that a service provider’s main concern is the service lifecycle . They in-

troduce an additional layer called ‘claudia’ for cloud systems to enable the ser-

vice providers to control this lifecycle. This work is also focused on the cloud

providers’ side service management. In related work, Najjar et al. [51] present a

survey of elasticity management solutions for cloud providers.

Baun et al. [43, 52] discuss KOALA (Karlsruhe Open Application for cLoud

Administration) which is a cloud management service that allows users to control

almost all cloud resources which are compatible with the Amazon AWS API.

KOALA is a web-based generic open source management tool which is designed

to help the cloud users manage AWS compatible cloud infrastructure and storage

23

CHAPTER 2. LITERATURE REVIEW

services. However this tool does not provide any decision support to the users.

Lonea et al. [53] present a survey of the various management interfaces

for the Eucalyptus cloud platform. Moltkau et al. [54] discuss the management

of the cloud service lifecycle from the user’s view and present guidelines for the

development of a Cloud Management System that supports the essential phases

within the Cloud Service Lifecycle from the cloud provider’s and the consumer’s

view.

Lucas-Simarro et al. [55] highlight the importance of a management mech-

anism for cloud computing and argue that due to numerous cloud services avail-

able from many different public cloud providers which differ in terms of inter-

faces, pricing schemes, instance types and other features, an intermediary (such

as cloud brokers) between end users and cloud providers is needed. However,

advanced service management capabilities to make automatic decisions on the

basis of optimization algorithms are needed for decision making, such as service

selection, optimal distribution of components among different clouds, or to move

a given component from a cloud to another. These capabilities are not provided

by current cloud brokers.

Kourtesis et al. [56] emphasize the necessity of an interoperable and intel-

ligent system to manage QoS and outline a semantic-based framework for QoS

management which attempts to employ semantic web techniques to model user

intentions and provider capabilities for integrating data and computing to find

the best service.

2.4 Cloud Service Selection

Selecting the best and most optimal services from amongst the increasing num-

ber of various cloud services available in the cloud market is a great challenge

[57]. In the near future, many more cloud services will be available in the cloud

market which will further complicate the task of selecting the best or most op-

timal services for the user from among many different types of services. There-

fore, cloud service selection will be a great challenge. To solve this challenging

research problem, a decision-making method is required to assist the users in

service selection. Several efforts have been made to achieve this goal.

In one such effort [58, 59], the authors investigate the decision support

techniques for automated cloud service selection and argue that the existing ser-

vice selection methods, developed for web service selection and grid job schedul-

24

CHAPTER 2. LITERATURE REVIEW

ing, are unable to handle complexities due to the dynamic and multi-layer na-

ture of cloud computing. They stress the importance of having a system to aid

the cloud service user in cloud service discovery and selection. They proposed an

ontology for classifying and representing the configuration information related

to Cloud-based IaaS services including compute, storage, and network. The pro-

posed ontology is designed to capture static and dynamic QoS configuration on

the IaaS layer. They presented the implementation of the ontology in a Cloud

Recommender System.

However, the proposed approach does not employ any mechanism that can

simultaneously take into account multiple conflicting objectives and does not use

any MCDM methodology which can achieve this.

Lecznar and Patig [60] discuss the characteristics of cloud providers and

concluded that the reputation and risk management strategies of a provider

should also be considered as criteria in addition to cost criterion for service se-

lection.

Qian et al. [61] present a system cloud service selection in IaaS platforms.

They consider the geographical location of cloud infrastructure in addition to us-

age cost and performance parameters. They argue that the proximity of cloud

infrastructure is important as there is a strong inverse correlation between net-

work distance and bandwidth during interactions between clients and servers.

In addition to the usage cost, the proposed approach only considers the

geographical proximity of the service providers’ infrastructure as a measurement

of the QoS without considering any other QoS criteria which is not adequate to

fully represent the actual QoS of the available cloud services.

Martens and Teuteberg [62] argue that early adopters of cloud comput-

ing face difficulties in subscribing new cloud services and advocate for the ur-

gency of a formal decision-making tool that takes into account both cost and risk.

They present a cost and risk based decision-making approach for organizations

to make decisions in outsourcing computing requirement to clouds. The proposed

approach defines several categories of cost and risk associated with cloud adop-

tion and formulates a hierarchy of these categories. They estimate the relative

importance of the different categories of cost and risk through the Analytic Hier-

archy Process (AHP). Service selection is done by minimizing costs and risks.

The chief shortcoming of this approach is that it does not take into account

the difference in the QoS of the services and does not include any QoS-related

25

CHAPTER 2. LITERATURE REVIEW

criteria in its hierarchy of factors for decision making.

A virtual machine image selection service for cloud computing environ-

ments was proposed by Filepp and Shwartz [63]. This proposed image selection

service maintains a repository of image configuration details and employs an al-

gorithm which orders the images on the basis of conformance with specified user

requirements and policies by best-fit and least-cost optimization.

This approach only assists the user in selecting a virtual machine image

from amongst multiple such images but does not deal with the selection of the

service on which this machine is to be deployed.

Nie et al. [64] presented a complete evaluation index system of cloud ser-

vices. Based on the characteristics of cloud services and interviews with experts,

they proposed several factors for cloud service selection, such as security, cost,

reputation and QoS. They used Analytical Hierarchy Process (AHP) to calculate

the weights of these factors for service evaluation. They also established a num-

ber of qualitative models for purchase decision making.

This approach does not consider the variability of QoS and the authors do

not propose any QoS monitoring approach to provide the information needed for

accurate and effective service selection.

A set of measurement indexes for comparing different cloud services, called

the Service Measurement Index (SMI), has been devised and is based on common

characteristics of cloud services identified by the Cloud Service Measurement

Index Consortium (CSMIC) [65]. SMI identifies primary QoS parameters needed

by the users for selecting a cloud service as: accountability, agility, assurance of

service, cost, performance, security and privacy, and usability. Each of these

parameters depends on multiple sub-parameters, thereby forming a hierarchy of

parameters. Garg et al. [66, 67] highlighted the need for a framework that can

allow the users to evaluate cloud offerings on the basis of their ability to meet the

user’s QoS requirements. They proposed a framework – called SMICloud – for

comparing and ranking cloud service on the basis of selection criteria specified

in SMI. Their proposed framework contains a service broker that systematically

measures all the QoS attributes identified in SMI and then uses an AHP-based

mechanism to rank the cloud services.

In addition to the service broker, this framework also contains a service

monitoring component that discovers the services that can satisfy the users’ es-

sential requirements and a service catalogue that stores the cloud services and

26

CHAPTER 2. LITERATURE REVIEW

their features as published by the provider. This approach does not consider the

variability of cloud QoS and has no mechanism for QoS forecasting.

Han et al. [57, 68] proposed a cloud service recommender system for the

cloud market that helps a user to select the best combination of services from

different cloud providers by matching the specific requirements of the user with a

suitable cloud service. This system maintains a resource register to keep a record

of all the available resources in the cloud market and uses this information to

rank and calculate the QoS values of services. They also outline the ranking

methods for each type of cloud service (SaaS, IaaS etc.). Their cloud service

selection framework uses a recommendation system to help a user to select the

optimal services from different cloud providers that matches the requirements of

the user. The recommender system generates a ranking of different services and

presents this to the user so that they can select the most appropriate or optimal

services.

This approach lacks a mechanism to take into account the difference in

the relative importance of multiple QoS criteria and the services are ranked on

the basis of a simple sum of multiple criteria. This method is not adequate as

cloud service selection is a multiple criteria problem where each criterion carries

a different level of importance.

In recent work, [69] give a review of cloud service selection using multi-

criteria decision analysis techniques. They present an overview of the various

MCDM techniques, but this paper lacks a critical review and does not discuss

the shortcomings of the reviewed work. [70] consider IaaS service selection as a

complex software engineering process. They focus on the trust in public clouds

and argue that the trustworthiness of cloud services is an important factor in

cloud service selection. They introduced a modified fuzzy VIKOR method [71] to

evaluate and select the most suitable IaaS and provide guidance to cloud service

providers on how to improve overall IaaS in terms of trust. Furthermore, this

study showed that users can select an appropriate weight based on their needs

and preferences in order to make a suitable decision. But the proposed method

lacks a common trust criterion to evaluate the trustworthiness of the service

providers.

Kang and Sim [72, 73] and Kang and Sim [74] developed a cloud service

search engine called Cloudle, which is based on a cloud ontology consisting of

cloud concepts, individuals of those concepts and their mutual relationships. All

services are registered in a database and a query processor executes the user’s

27

CHAPTER 2. LITERATURE REVIEW

query, which is sent to a similarity reason engine that performs similarity rea-

soning between the query and the concepts in the database using cloud ontology.

The output of the Cloudle search engine is an ordered list of cloud services. The

services are ordered on the basis of three criteria (1) concept similarity, (2) price

utility, and (3) cost utility. Chen et al. [75] presented a framework that enables

automatic conflict detection between the user’s criteria and enterprise policies in

cloud service selection for enterprises. This system aims to tackle the difficul-

ties of cloud service selection with an emphasis on the involvement of enterprise

policies. It checks various conflicts that result from the violation of enterprise

policies and inconsistencies in a cloud service user’s requirements. This check

is followed by the selection of an appropriate service that satisfies the user’s

requirements and also complies with enterprise policies, using constraint pro-

gramming. Zeng et al. [76] developed a cloud service selection algorithm that

uses a service discoverer to find all the available services and then processes the

cloud service user’s request by employing a maximized-gain and minimized-cost

service selection algorithm. This algorithm aggregates the gain and cost values

by a weighted sum of both types of values (where weights represent the relative

importance of each value).

Although the proposed algorithm is based on the same logic as the known

MCDM methods in the literature, this algorithm is not based on any of these

techniques which are well established and have been mathematically proved.

Menychtas et al. [77] propose a business resolution engine for enhancing

the process of cloud service selection from a business point of view. The system

is designed to effectively interpret the consumer’s business requirements to cost

efficient pricing models and to SLAs which support the provisioning of ICT assets

in a personalized manner. They give an architecture of the proposed approach

but do not specify the underlying algorithms and techniques which drive the

proposed engine. Furthermore, the performance of the proposed engine has not

been evaluated.

Godse and Mulik [78] proposed an approach for selecting SaaS products.

They argued that to make an informed decision, it is necessary to have quan-

tifiable values instead of subjective opinions. They proposed several key factors

– such as functionality, architecture, usability, vendor reputation and cost – for

SaaS selection and used the Analytical Hierarchy Process (AHP) for service se-

lection decision making. Liu et al. [79] emphasize the importance of having a

proper approach to select the optimal candidate services and propose an optimal

28

CHAPTER 2. LITERATURE REVIEW

method for service selection on the basis of business performance and implemen-

tation performance in cloud computing.

Mao et al. [80] introduce the concept of a cloud workflow system and present

the architecture of a cloud workflow system on the basis of cloud architecture.

They also propose a cloud service selection strategy based on workflow related

constraints.

In recent work, Ouedraogo and Mouratidis [81] discuss the importance of a

cloud provider’s security assurance abilities. They propose an approach to assess

the security assurance provided by cloud service providers for use as a means to

guide cloud service selection.

Qu et al. [82] propose a novel model of cloud service selection by aggregating

the information from both the feed-back from cloud users and objective perfor-

mance analysis from a trusted third party. To take into account the cloud users’

requirements, they use a fuzzy simple additive weighting system to normalize

and aggregate all different types of subjective attributes and objective attributes

of a cloud service. This model also has a mechanism to identify and filter the

unreasonable subjective assessments. The proposed approach is demonstrated

with a case study example.

In one of our previous papers [83], we presented the cloud service selection

problem as a multi-criteria decision-making problem by proposing a mathemati-

cal framework for multi-criteria cloud service selection.

2.5 Cloud Service Monitoring

Cloud monitoring plays a crucial role in the efficient management of cloud ser-

vices as a means of gathering the required information for making informed de-

cisions [84]. The assessment of the QoS of cloud services is only possible though

an efficient and effective monitoring mechanism. Chaves et al. [85] articulate

that cloud computing monitoring can benefit the already established tools and

concepts from distributed computing management. Clayman et al. [86] highlight

the need for a monitoring system which can collect and report on the behavior of

virtualized resources in the cloud environment. They present a framework called

Lattice for monitoring service cloud components which can be used to build many

different monitoring systems.

Baun and Kunze [87] measured the performance of CPU, I/O and network

29

CHAPTER 2. LITERATURE REVIEW

transfer rate of the Open Cirrus cloud platform and compared the results with

the performance of commercial service providers (AWS) and concluded that the

Open Cirrus platform is capable of delivering the same level of performance as

do the proprietary platforms. This work is a good example of cloud service moni-

toring.

Wang et al. [88] presented an approach for evaluating the QoS of cloud ser-

vices. This approach evaluates the service providers by combining two different

evaluations of QoS. The direct provider evaluation is achieved through fuzzy syn-

thetic decisions which are then combined with monitored QoS data using fuzzy

logic control. The service selection framework by Garg et al. [66, 67] also includes

a cloud monitoring component for assessing the QoS of available cloud services.

Aceto et al. [89] presented a comprehensive survey of cloud QoS monitoring.

They argue that cloud monitoring is of paramount importance in effective and

efficient cloud management for both providers and users. Fatema et al. [84] pre-

sented a definition of monitoring and classified the monitoring techniques into

general purpose and cloud-specific categories. They derived a list of capabilities

that are relevant to facilitate efficient cloud operational management and identi-

fied the areas that have unique functions which can be managed separately and

investigated the role of monitoring in supporting them from both providers’ and

consumers’ perspectives. Furthermore, they defined a taxonomy by grouping the

capabilities of the different cloud operational areas for analyzing the monitoring

tools. They found that general purpose monitoring tools have a client–server ar-

chitecture where the client resides on the monitored object and communicates in-

formation to the server. These tools were designed for monitoring fixed-resource

environments with dynamic scaling of resources and as a result, lack many capa-

bilities like scalability. They point out that in designing future monitoring tools,

especially for louds, these challenges must be addressed since issues such as scal-

ability are important for cloud monitoring. Additionally, they highlight the role

of monitoring in trust assurance and service selection in cloud computing. They

also identified the need for an ontology of cloud metrics to classify the various

cloud metrics to help support cloud service monitoring.

Li et al. [90–92] discussed the problem of comparing different cloud ser-

vices and identified the basic attributes for each type of cloud service that must

be taken into consideration when comparing one cloud service with another.In

addition to cloud monitoring, these attributes are need for comparison of cloud

services for service selection. They also differentiated between the performance

30

CHAPTER 2. LITERATURE REVIEW

of a cloud service itself and the performance of an application deployed on that

cloud [93].

Montes et al. [94] argued that cloud management systems need to utilize

monitoring information. They analyzed the different types of cloud monitoring

and proposed a generic cloud monitoring architecture called GMonE. However,

this architecture does not consider feedback from existing cloud users to enhance

its monitoring mechanism.

Kamel et al. [95] proposed a client-based service monitoring and evaluation

approach for cloud services which relies on collecting and aggregating extreme

measurements from mobile clients that request services from a cloud platform

to identify cloud services and infrastructure with degraded performance by uti-

lizing the Generalized Pareto Distribution 2 to model and detect extreme QoS

values.

Palhares et al. [97] emphasize the importance and complexity of monitor-

ing cloud services across multiple clouds. They identify and suggest parameters,

metrics and best practices for efficient monitoring of cloud services and environ-

ments. Akolkar et al. [98] discuss the next generation of service marketplaces

and point out that, in addition to other capabilities, such marketplaces will need

social networking of consumers and providers. In one of our earlier papers [99],

we presented a framework for a user feedback-based cloud service monitoring

system which collects feedback related to the QoS performance of cloud services

from existing cloud service users and maintains a repository of this information

which can be used by service selection mechanisms to recommend appropriate

cloud services to users. Qu et al. [82], use feedback from cloud users for per-

formance assessment of cloud services in their proposed cloud service selection

approach.

2.6 Cloud Service QoS Prediction

QoS prediction is a new direction in cloud computing and there is very little

existing work on this aspect of cloud services.

Zhang et al. [100, 101] discuss the QoS prediction of cloud services from a

user similarity context. They use latent feature learning though matrix factor-

ization to predict the future QoS, based on the past usage experience of users.

2Generalized Pareto Distribution (GPD) is a probability distribution which is used to model
extreme values in statistics [96]

31

CHAPTER 2. LITERATURE REVIEW

The prediction is calculated for an individual service user on the basis of past us-

age experience of users which have some degree of similarity to the user. The pro-

posed approach also calculates the degree of similarity between the services. The

similarity is calculated using the Pearson’s Correlation coefficient (PCC) which

is a well-known method for similarity calculation in collaborative filtering rec-

ommender systems. This approach uses the average QoS and does not take into

account the dynamically changing QoS of cloud services. This approach is ex-

tended by [102]. They use K-means clustering to divide the users into groups

of similar users. The missing QoS values are then predicted on the basis of the

data of similar users. In other work, Zheng et al. [103] propose a QoS ranking

prediction framework for cloud services by using past service usage experiences

of other cloud service users. These approaches for cloud QoS prediction are based

on techniques borrowed from recommender systems. These approaches cannot

take into account the variation in cloud QoS in their prediction mechanisms and

also do not rely on past cloud service monitoring data to predict the future QoS.

Pacheco-Sanchez et al. [104] investigate the Markovian Arrival Processes

(MAP) as a means for performance prediction of cloud deployed servers through

modeling of time-varying workload conditions. Modeling web workload fluctua-

tions in an accurate way, is fundamental to understand the variation in QoS.

2.7 Cloud Service Migration

The term "cloud migration" is also used in the literature when an existing in-

house or datacenter deployed application is moved cloud [105–109]. However,

there is very little focus on how a user currently using a cloud service can mi-

grate from his current service to another service. This is partly due to the fact

that early cloud computing lacked standardization in interoperability whereas

migration from one cloud service to another was very difficult or impossible but

the future generation of clouds aim to achieve a high degree of standardization

and interoperability among one another. Furthermore, the recent advances in

live wide area migration have further enhanced the possibilities of such migra-

tion for IaaS clouds.

Kapil et al. [110] discuss the various live virtual machine migration and

how the key performance metrics are affected when a live virtual machine is

migrated over WAN in a low bandwidth environment. Travostino et al. [111]

present an empirical analysis of WAN-live VM migration.

Nagin et al. [112] review the existing work on long distance VM migration.

32

CHAPTER 2. LITERATURE REVIEW

They also present the design and implementation of a technology that enables

the live mobility of virtual machines between clouds.

2.8 Critical Evaluation of the Existing Work

The issues and gaps identified in the existing literature related to cloud services

management discussed in the preceding sections are summarized in this section.

Table 2.1 gives an overview of this work.

Cloud adoption, as articulated by [3, 20, 24–27] is a serious challenge for

organizations, as one of the key factors in this regard is the difficulty in the

manageability of cloud services by cloud users. Therefore, there is a need to

have a framework to mitigate this problem by assisting the users in managing

their cloud services. The existing literature discussed in this chapter contains

several shortcomings that need to be addressed in such a framework. These

shortcomings in the literature are summarized as:

• Lack of service management approaches from the cloud service
users’ perspective. The existing cloud management literature mostly

focuses on techniques and algorithms designed to assist the cloud providers

in performing resource management in their data centers [39, 47–51, 94]

and there is very little work on methods to assist the users in their decision

making regarding cloud service management.

• Lack of approaches for assisting users in decision making for cloud
service management. The current efforts to help the users in managing

the cloud services being subscribed, such as KOALA [43, 52] only provide

a standard management user interface to manage services from different

cloud providers which otherwise have to be managed via multiple providers

and platform-specific interfaces. These approaches assist the user in im-

plementing a management decision but do not provide any assistance in

actual management decision making. Having such a decision support ap-

proach is necessary to assist the cloud service users and thereby enhance

cloud adoption.

• Lack of an integrated approach that assists a user in all the tasks
in cloud service management for cloud users. There have been sev-

eral publications on cloud service selection in the literature since 2010

which aim to assist users in the selection of services from the multitude of

services available in the cloud environment [57–83]. But there is a lack of

33

CHAPTER 2. LITERATURE REVIEW

Reference Year G
en

er
al

di
sc

us
si

on
or

su
rv

ey

P
ro

po
se

s
ap

pr
oa

ch
or

m
et

ho
d

C
lo

ud
Se

rv
ic

e
M

an
ag

em
en

t
(u

se
rs

)

C
lo

ud
Se

rv
ic

e
M

an
ag

em
en

t
(p

ro
vi

de
rs

)

C
lo

ud
Se

rv
ic

e
Se

le
ct

io
n

C
lo

ud
Se

rv
ic

e
M

on
it

or
in

g

C
lo

ud
Se

rv
ic

e
P

re
di

ct
io

n

Se
rv

ic
e

M
ig

ra
ti

on

M
C

D
M

Q
oS

P
ro

po
se

s
ta

xo
no

m
y

O
nt

ol
og

y
or

sy
m

m
et

ri
c

w
eb

Cook et al. [47] 2011 X - - X - - - - - - - -
Abbadi [39] 2011 X - - X - - - - - - X -
Innocent [48] 2012 X - - X - - - - - - - -
Manvi and Krishna Shyam [49] 2014 X - - X - - - - - - - -
Rodero-Merino et al. [50] 2010 X X - X - - - - - - - -
Najjar et al. [51] 2014 X - - X - - - - - - - -
Baun et al. [43, 52] 2011 - X X - - - - - - - - -
Lonea et al. [53] 2012 X - X - - - - - - - - -
Moltkau et al. [54] 2013 - - X - - - - - - - - -
Lucas-Simarro et al. [55] 2013 X - X - - - - - - - - -
Kourtesis et al. [56] 2014 - - X - - - - - - X - X
Zhang et al. [58, 59] 2012, 2013 - - X - X - - - - - - X
Lecznar and Patig [60] 2011 X - - - X - - - - - - -
Qian et al. [61] 2013 - - - - X - - - - - - -
Martens and Teuteberg [62] 2011 - - - - X - - X - - -
Filepp and Shwartz [63] 2010 - X - - X - - - - - -
Nie et al. [64] 2012 - - - - X - - X - - -
Siegel and Perdue [65] 2012 - - - - X - - - - - - -
Garg et al. [66, 67] 2011, 2013 - X - - X X - - X X - -
Han et al. [57] [68] 2009 - - - - X - - - - X - -
Whaiduzzaman et al. [69] 2014 X - - - X - - - X - - -
Alabool and Mahmood [70] 2013 - X - - X - - - X - - -
Kang et al. [72–74] 2010, 2011 - X - - X - - - - - - X
Chen et al. [75] 2012 - X - - X - - - - - - -
Zeng et al. [76] 2009 X - - X - - - - - - -
Menychtas et al. [77] 2011 - X - - X - - - - - - -
Godse and Mulik [78] 2009 - X - - X - - - X - - -
Liu et al. [79] 2013 - X - - X - - - - - - -
Mao et al. [80] 2013 - X - - X - - - - - - -
Ouedraogo and Mouratidis [81] 2013 - X - - X - - - - - - -
Qu et al. [82] 2013 - X - - X - - - - X - -
Rehman et al. [83] 2011 X - - - X - - X - - -
Fatema et al. [84] 2014 X - - - X - - - - X -
Chaves et al. [85] 2011 X - - - X - - - - - -
Clayman et al. [86] 2010 - X - - X - - - - - -
Baun and Kunze [87] 2010 - - - - X - - - X - -
Wang et al. [88] 2012 - X - - X - - - X - -
Aceto et al. [89] 2013 X - - - X - - - - - -
Li et al. [90–92] 2011,2010 - - - - X X - - - X - -
Montes et al. [94] 2013 X X - - - X - - - X - -
Kamel et al. [95] 2013 X X - - - X - - - X - -
Palhares et al. [97] 2013 X - - - - X - - - - - -
Akolkar et al. [98] 2012 X - - - - X - - - - - -
Rehman et al. [99] 2012 - X - - - X - - - X - -
Zhang et al. [100, 101] 2012,2011 X X - - - - X - - X - -
Chen et al. [102] 2011 - X - - - - X - - X - -
Zheng et al. [103] 2012 - X - - X - X - - X - -
Pacheco-Sanchez et al. [104] 2011 - X - - - - X - - - - -
Kapil et al. [110] 2013 X - - - - - - X - - - -
Travostino et al. [111] 2006 - - - - - - - X - - - -
Nagin et al. [112] 2011 X - - - - - - X - - - -

Table 2.1: Summary of cloud service management related literature.

34

CHAPTER 2. LITERATURE REVIEW

realization that service selection is only a part of the problem, as the users

need assistance in decision making at all stages of the cloud service life cy-

cle which, in addition to service selection, also includes service monitoring

to ascertain the QoS of the provided services and service migration in case

the provided service fails to meet the user’s requirements at any stage af-

ter service selection. Some of the cloud service selection approaches include

QoS monitoring as a part of the service selection approach, only because it

is needed for QoS-based service selection.

• Lack of an integrated approach that assists a user in all the tasks
in cloud service management. Some work has been conducted on dif-

ferent phases of cloud service management, such as cloud service selection

[57–70, 72–83], cloud service migration [110–112] and cloud service mon-

itoring [84–92, 94, 95, 97–99] which have been discussed in the previous

sections. But a comprehensive framework that performs all these function-

alities required for cloud service management from the user’s perspective

throughout the various phases of service life-cycle does not appear in the

literature.

• Service selection on the basis of service specification is unable to
take into account the variability in QoS levels. The problem of cloud

service selection is a multi-criteria problem as there are several criteria on

the basis of which a user would like to select a cloud service. The existing

MCDM-based service selection approaches either use service specifications

or the QoS of the available services as the basis of their MCDM analysis.

There is variability in the QoS of cloud services, as articulated by [113,

114], which the approaches relying on service specification-based MCDM

cannot take into account. The existing work that treats cloud service se-

lection as a multi-criteria problem does not make effective use of the QoS

history of the available services in their decision-making scheme. These

approaches only rely on the current or average QoS measurements and

thus fail to take full advantage of the available QoS information in service

selection.

• Lack of an approach that considers user feedback as a means of
QoS monitoring. The existing approaches do not consider the use of feed-

back of the existing cloud users on the QoS of the service provided to them

as a means of cloud service monitoring. This additional source of valuable

information on the trustworthiness of providers and the QoS of the services

they offer remains untapped in the existing monitoring approaches.

35

CHAPTER 2. LITERATURE REVIEW

• Lack of an approach for forecasting future QoS values on the basis
of past QoS history. The existing approaches for QoS prediction pro-

posed in [100–102] are inspired from recommender system literature and

use various similarity measures as a basis to find missing QoS values. The

current monitoring approaches are able to generate detailed QoS history

which contains several QoS attributes recorded at regular intervals. There

is a need to analyze this data to find repeating patterns and trends and to

use this information to forecast future QoS values.

• Lack of an early-warning mechanism to automatically keep track
of the changing cloud environment and variability in QoS. The ex-

isting literature does not provide an approach to automatically warn the

cloud service users of significant changes and trends in the QoS of their

subscribed services so they can take pre-emptive measures in time to avoid

service disruption and degradation. There is a need for such a mechanism

to assist the user to effectively use the available QoS monitoring informa-

tion to detect such changes in advance or with as little delay as possible by

automatically processing this information to generate an early warning.

• Lack of an approach to assist the users in deciding to migrate from
the currently selected service to another service. Early cloud ser-

vices were largely based on proprietary technology which made it impossi-

ble for users to discontinue the use of one service and move to another ser-

vice provider due to a lack of compatibility and interoperability. The recent

advances towards open cloud platforms, interoperable cloud computing and

federated clouds has solved these issues, to an extent, for IaaS clouds, at

least. Furthermore, advances in virtual machine migration, particularly

WAN migration of virtual machines opens new possibilities where users

are able to migrate from one cloud service to another cloud service with

minimal disruption time. Therefore, there is a need to develop approaches

to assist an existing user in making a service migration decision to move

to another service when the currently subscribed service fails to meet the

required QoS level.

In summary, the above identified research issues are highly inter-related

and to the best of my knowledge, no notable research work has been published

which proposes an integrated framework to resolve these in a comprehensive

manner to provide a means to assist the user in service management decision-

making.

36

CHAPTER 2. LITERATURE REVIEW

2.9 Conclusion

In this chapter, a survey of the existing literature relevant to the various aspects

of user-side cloud service management was presented. Firstly, the prominent

work on cloud computing which provides a link between cloud computing and the

previous computing paradigms and attempted to define and propose a taxonomy

of cloud computing terminology was reviewed. A critical review of the literature

reveals that cloud service management from a user’s perspective is an important

and open issue in the current and next generation cloud computing. This issue

comprises multiple research streams which include cloud service selection, cloud

service monitoring, QoS prediction and service migration. Gaps in each of these

areas are identified in the existing literature.

In the next chapter, the problem which is being addressed in this thesis

is formally described and research issues emerging from the main and sub-

problems are discussed.

37

Chapter 3

Problem Definition

3.1 Introduction

As articulated in the previous chapters, in the cloud environment, the user has

to make important and timely decisions based on the QoS of the available clouds.

These decisions vary over a wide span of time, starting from service selection at

the first time deployment of an application to choosing an appropriate cloud ser-

vice, monitoring the selected service to determine the delivered QoS and making

migration decisions when the selected service is under-performing or is no longer

the most appropriate service for the user due to higher usage cost or any other

criterion. These management decisions are necessary for the user in order to

take the maximum advantage of the multiple available services at any given

time by using those services that are most appropriate in terms of the QoS at-

tributes that are important for the users’ application and at the same time, incur

minimum financial cost.

To accomplish the above mentioned tasks, it is vital for the user to have re-

liable information about the QoS of the available services along with their specifi-

cations, the cost of usage etc. and a comprehensive decision-making methodology

to make an advantageous and optimal decision on the basis of this information

and the user’s preferences. However as discussed in Chapter 2, the existing

tools available for cloud management only assist the users to implement such

decisions but do not provide any decision support either in the form of a decision-

making methodology or algorithms for data manipulation that assist the cloud

users in making these decisions.

Having presented the shortcomings of the existing approaches in the lit-

38

CHAPTER 3. PROBLEM DEFINITION

erature in the previous chapter, in this chapter, I present the problems that I

aim to address in this thesis. The objective of this thesis is to develop a method-

ology that assists the user in making cloud service management decisions by

recommending a decision in favour of the service that is the most advantageous

amongst all the available services in terms of QoS and cost on the basis of the

user’s preferences regarding these criteria.

In the next section, I define the key terms and concepts that I will use while

defining the problem and proposing its solution throughout the thesis, followed

by presenting a formal problem definition in Section 3.3. In Section 3.4, I break

down the defined problem into several specific research issues that need to be

resolved in the proposed solution for this problem. Before concluding the chapter,

in Section 3.5, the research approach that will be followed while developing a

solution to this problem is presented and Section 3.6 concludes the chapter.

3.2 Key Concepts

In this section the definition of the terms used for defining the problem in this

chapter and in rest the thesis are presented.

Cloud Computing: Cloud computing is a new computing paradigm

in which virtualized computing resources are provided to the user as

a service over the Internet.

Cloud Service Provider: An entity that provides cloud services to

the users.

Cloud Service: A virtualized computing resource provided to the

user by a cloud provider.

Cloud Service User: A person or organization which uses the clod

services provided by the cloud service provider.

Active Service The user’s currently selected (and used) cloud ser-

vice. The term subscribed service is also used to refer to an active

service.

Virtual Infrastructure Management: The process by which cloud

service providers manage the virtual computing resources across their

multiple physical computing nodes.

39

CHAPTER 3. PROBLEM DEFINITION

Cloud Management: The process by which cloud service providers

manage their physical computing infrastructure.

User Side Cloud Service Management: The process a cloud ser-

vice user follows to select and maintain cloud services .

QoS Criterion: A measurable value that represents an aspect of the

performance of a cloud service.

Cloud Environment: The universe of discourse containing cloud

service provider, cloud services, cloud service users and 3rd cloud ser-

vice monitors.

Cloud service Selection: The process of choosing one service from

multiple available services.

Cloud Service Migration: The process by which a cloud service

user discontinues to use a selected service and moves his cloud appli-

cation form one cloud service to another cloud service.

Time Spot: The instance of time when a service is selected by a user.

Time Slot: An interval of time used as a unit time into which the the

service management period is divided.

Pre-interaction Time Period: The period of cloud service manage-

ment prior to the time spot

Post-interaction Time Period: The period of cloud service manage-

ment after the time spot.

Forecast Horizon: The number of future time slots for which the

QoS is forecasted.

Decision Horizon: The number of future time slots to be considered

while making a service management decision.

Risk Attitude: The risk propensity or risk attitude of a service user

defines a user’s risk-taking nature and represents the user’s tendency

to accept the levels of change in the QoS [115].

Foretasted QoS: The future values of the QoS criteria determined

on the basis of past QoS values.

40

CHAPTER 3. PROBLEM DEFINITION

QoS Deviation Level: The difference between the user’s minimum

QoS criteria and the observed or forecasted QoS values.

QoS Degradation: Is the event in when one or more QoS criteria

values of a service decline from a measured level.

QoS Failure: Is the event in when one or more QoS criteria values

of a service go below the user’s minimum required values. The QoS

deviation level is negative in this scenario.

Service Ranking: A list of available cloud service ordered by their

suitability for the cloud service user.

Criterion Weight:A numerical value representing the relative im-

portance or preference given to a QoS criterion among other criteria.

Time Slot Weight: A numerical value representing the relative im-

portance of a time slot in the decision making process.

QoS Value: A number representing the measured or assessed perfor-

mance of a cloud service in a time slot it terms of a QoS criterion.

3.3 Problem Definition

In the previous chapters, it was discussed in detail that the users need to make

timely and informed cloud service management decisions to ensure that their

cloud-deployed applications offer the desired QoS. Due to the inherent variabil-

ity in cloud QoS, such decisions should not only be made at the time of deploying

the application on a cloud for the first time when the user has to choose one ser-

vice from amongst several possible options, but should also be made throughout

the service life cycle. For example, it is possible that after the user decides in fa-

vor of the service that appears to be the most appropriate in terms of QoS criteria

and cost at that instance and deploys his application on that cloud service, after

a while the selected service may not be able to maintain the same level of QoS or

the service provider may increase the cost or some other providers may come up

with a similar services at lower cost but better quality etc. Each of these possi-

ble scenarios requires a reassessment of the service selection decision which may

lead to either the continuation of the selected service or migration to another ser-

vice. Thus, having only a service selection decision-making methodology cannot

guarantee that the user will be able to gain maximum advantage of the multi-

ple available cloud services and the continuous monitoring of cloud services and

41

CHAPTER 3. PROBLEM DEFINITION

evaluation of possible cloud service management decisions is necessary as long

as the user is using a cloud service which requires a decision-making framework

to assist the user in making timely decision in such situations.

Thus, the cloud service management process spans two phases, namely the

pre-interaction phase and the post-interaction phase (as shown in Figure 1.4). In

the pre-interaction phase, an appropriate service has to be selected from amongst

several available services while in the post-interaction phase, a decision has to be

made as to whether to continue to use a selected service or to migrate to another

cloud service depending on the QoS of the selected and other alternative services.

In both phases, the decision has to be made on the basis of the observed QoS of

the available services and their usage cost. Each phase requires information at a

certain level of complexity and needs algorithms by which it can be manipulated

further to achieve the required analysis. So, the key challenges to be addressed

are:

1. Presence of adequate and reliable QoS information over a period of time.

2. Appropriate algorithms for making a QoS-based decision in the pre-interaction

and post-interaction phases.

I discuss each of these challenges in the remaining part of this section.

Adequate and reliable information about the QoS of the available services

plays a very important role in these decisions, as cloud computing is highly dy-

namic in nature since it has to cater for rapid changes in workloads for a multi-

tude of users sharing virtualized resources in a multi-tenancy environment. This

information can only be gathered through constantly monitoring the available

services in the cloud environment by using existing approaches. The user is able

to monitor the performance of his applications and the QoS of the delivered ser-

vice through the dashboard interfaces of the cloud providers or the dashboards

provided by cloud management services. But in order to assess the performance

of other available services to which the user is not subscribing, such direct mon-

itoring is not practically feasible for the user [103] because the large number of

available clouds leads to extreme technical complexity in monitoring and also in-

curs financial cost since monitoring a cloud also consumes computing resources.

Alternatively, this information can be acquired from third party cloud monitor-

ing services which regularly monitor the most popular cloud services available

from major service providers and a user needs to have access to such information

42

CHAPTER 3. PROBLEM DEFINITION

to make correct service management decisions, such as selecting a service or to

migrate from one service to another. To cater for different users, it is necessary

to have a QoS repository which stores the QoS information collected from the

sources mentioned previously and provides this data to the users when needed

to help them compare the available cloud services during service management

decision making. Such a QoS repository which provides information on the go is

not available in the literature.

The next challenge after the QoS information repository is the ability to

select the most appropriate service. This is a complicated task as cloud ser-

vices consist of several computing resources (e.g. CPU, memory, I/O and network

etc.) whose performance needs to be accessed separately when making a deci-

sion. Also, cloud applications differ in their resource usage; some may be more

CPU intensive, network intensive or memory intensive etc. and the actual per-

formance of a cloud application depends upon the resource usage pattern of the

application, therefore the performance of individual constituent parts of a ser-

vice is also important in decision making and cloud monitoring must assess each

of these constituent resources individually. These individual QoS metrics, which

reflect the performance of a cloud service in terms of the constituent resources,

are also important for decision making.

Once there is a repository of QoS information, the next step is selecting the

most appropriate service according to the user’s requirements. Selecting a ser-

vice from amongst the many available ones requires the services to be compared

and ranked in accordance with some criteria. This process is very simple if there

is only one criterion for comparison. This, however, is not the case in real-world

cloud service selection as more than one criterion exists on the basis of which

the services may be compared and the outcome can be different if two services

are compared on the basis of two different criteria. For example: if there are

two services S1 and S2 and two criteria C1 and C2 and the QoS of any service

Si in terms of C j is measured as qi j. Then, the available information can be

represented by the following matrix:

C1 C2

S1 q11 q12

S2 q21 q22

Suppose that S1 is better than S2 if compared on the basis of C1 while S2

43

CHAPTER 3. PROBLEM DEFINITION

is better than S1 if compared on the basis of C2. Thus q11 > q21 and q12 < q22.

Selecting S1 since it ranks higher than S2 in terms of C1 would contradict the

fact that S2 outranks S1 in terms of the other criteria C2. Similarly, selecting

S2 on the basis of its superiority in terms of C2 disregards the first criteria C1.

Therefore, a compromise has to be made by considering the relative importance

of the two criteria according to the user’s preferences and requirements of his

cloud application. In the real world, where numerous services are available to a

user to choose from, the decision making for service selection is complex as the

number of criteria on the basis of which the decision has to be made can also

be large which necessitates an automated decision support system to assist the

users.

Furthermore, the relative importance of the criteria depends on the nature

of the user’s cloud application which is different for each cloud user and must be

considered while making service selection decisions. Additionally, this relative

importance may also vary with time, for example, the data storage requirements

of an online retailer’s website may remain the same but the network and CPU

need may increase during peak shopping seasons when too many customers are

viewing the online products, resulting in increased query processing. Thus, the

relative importance of the criteria is different for each user and depends on the

user’s requirements which also vary with time.

In addition to the multiple criteria, which as mentioned above, are different

for each user, another factor which further complicates this problem is that the

QoS in clouds does not stay the same but varies with time, as shown in 3.1. It

is important to consider this variability in the decision-making process because

a decision made at a particular instance of time only reflects the results of the

comparison of the QoS of the available services at that time and the outcome

may be different if the same process is repeated at another instance of time, due

to the changed QoS values.

Under these conditions, it is necessary to have a cloud service selection

methodology for the pre-interaction period, which can assist the user in cloud

service selection decision-making by taking into account: (1) the multi-criteria

nature of cloud service selection; (2) the divergent relative importance of the

selection criteria for different users; (3) the changes in these criteria with time;

and (4) the varying QoS of the service with time. Existing approaches in the

literature address a part of this problem at a single time instant but, as argued

earlier, this does not address the above mentioned challenges encountered in

44

CHAPTER 3. PROBLEM DEFINITION

Time

s1
.c

1

15400 15500 15600 15700 15800

30
00

45
00

60
00

Time

s1
.c

2

15400 15500 15600 15700 15800

80
00

14
00

0
20

00
0

Time

s1
.c

3

15400 15500 15600 15700 15800

40
00

80
00

14
00

0

Figure 3.1: Variation of CPU response time of an Amazon EC2 instance

service selection during the pre-interaction phase.

Having made an optimal service selection decision in the pre-interaction

period does not guarantee that the selected service will continue to remain the

most appropriate service throughout the post-interaction period. It is possible

that: (a) the QoS of the selected service may degrade from the level observed

or desired during the pre-interaction period; or (b) the user’s requirements may

change; or (c) one or more services with equivalent QoS levels at a lower cost may

become available from existing or new providers. Each of these three possible

scenarios necessitates a reassessment of the service selection decision, based on

the new information. However, in addition to the multiple criteria involved in

the service selection decision in the pre-interaction phase, the complexities due

to the financial and operational cost of migration has to be taken into account

while making a service migration decision. In the existing literature, there is no

such approach which is able to meet these requirements. So, the key challenges

to be addressed here are:

1. Prediction of the QoS of the selected service.

2. Monitoring to check if the performance the selected service degrades below

a certain level.

3. Considering the financial and operational cost of service migration.

It is necessary for effective service management that, given the past QoS of

any service, the user should be able to predict the future QoS of that service. This

is important to avoid a decision based on a short-term gain by ensuring that the

decision made at one instant would remain optimal over a period of time and that

a migration decision will not be necessary in the near future. For this purpose,

45

CHAPTER 3. PROBLEM DEFINITION

the monitoring of cloud services and the previously mentioned QoS repository

play a vital role because the data stored in this repository can be used for the

statistical modeling of the QoS of the cloud services. The QoS data consists of

measurements of QoS at different intervals of time and therefore forms a time

series and the various available time series analysis and forecasting techniques

can be used to achieve this goal. But, there are several time series techniques

and there is no previous work which attempts to analyze or forecast the QoS of

cloud services. Therefore, there is a need to investigate which of the available

time series techniques or models is the most appropriate for this kind of fore-

casting. Furthermore, each time series model involves several parameters which

must be determined to find a time series model that accurately represents the

observed behavior of the service in question. The existing literature does not re-

port any work on the QoS prediction of cloud services which provides such time

series models.

Furthermore, having a prediction mechanism or generating an early warn-

ing in the case of an impending failure or degradation in the QoS of a cloud

service is also important so that the service migration decision-making process

can be triggered in time to recommend optimal service migration decisions in

the post-interaction period. Detecting such scenarios in the dynamic cloud en-

vironment requires the accurate and reliable monitoring of the selected service

at regular intervals which, as discussed earlier, can only be achieved through

multiple monitoring mechanisms coupled with a QoS repository.

In addition to the above explained challenges, it is also necessary to take

into account the financial and operational cost of migrating from one cloud provider

to another while making a decision, as migrating between different services re-

quires large amounts of data transfer which consumes network resources, incur-

ring additional cost. This cost must be estimated and this estimated value must

be incorporated as an important parameter while evaluating multiple possibil-

ities to identify the best possible course of action. Proposing a mechanism to

perform this task is also an objective of this thesis.

Hence, based on the above discussion, the problems that I aim to address

in this thesis can be broadly described as:

How to develop a service management methodology for assisting
a service user in the management of cloud services over the interaction
time period so that the desired outcomes defined in the SLAs are achieved
by maximizing the QoS being received and minimizing the expenses that

46

CHAPTER 3. PROBLEM DEFINITION

can be incurred from QoS degradation or failure.

The identification of underlying sub-problems for which the development of

individual solutions is necessary in order to develop a comprehensive and inte-

grated methodology that provides a solution to the above defined problem. These

sub-problems are as follows:

1. How to design a framework for cloud service monitoring from which the
users can obtain the past QoS data of all the available services in the cloud
environment. The framework should be able to assess the performance of

cloud services in terms of multiple QoS criteria and store them so that the

users can use this data for service management decision making.

2. How to develop a methodology to assist the user to select an appropriate
service from amongst the multiple available services, based on their QoS
history. The proposed methodology takes into account the multiple criteria

nature of cloud computing and the relative importance of each criterion in

accordance with the user’s requirements, as well as the variability in the

QoS of cloud services and selects the most appropriate service.

3. How to forecast the future QoS of a service on the basis of its past QoS
history. There is no existing methodology for forecasting future QoS values

of cloud services for a period of time in terms of all the QoS criteria with

acceptable accuracy to assist the decision-making process.

4. How to develop a framework for cloud service management. There is no

framework that is able to provide early warning of impending service degra-

dation to trigger a service migration decision.

5. How to design a decision-making methodology to assist the user in service
management. A methodology is needed to assist the user in the post-

interaction period and should use the past QoS and the predicted QoS of

the selected and available services and also take into consideration the

relative importance of the different QoS criteria in terms of users’ require-

ments. The cost of migration should also be considered in decision making.

6. Validation of the developed techniques for cloud service management. The

developed techniques and methodologies need to be evaluated to ascertain

their validity.

47

CHAPTER 3. PROBLEM DEFINITION

3.4 Research Issues

The solution to the problem and the underlying sub-problems therein raises a

number of research issues. In this section, I explain in detail each of these re-

search issues which needs to be addressed to achieve the main objective of this

thesis, mentioned in the preceding section.

Issue 1: How to monitor the available cloud services?

In order to carry out the decision making for service selection and management,

the cloud user needs to have access to past QoS data of the available services.

Such data can be gathered only by capturing changes in performance and qual-

ity of the provided service over an appropriate interval of time by continuously

monitoring all the available cloud service offerings. The existing basic tools from

cloud providers only enable their users to see the status of the cloud at any time

but do not enable the users to monitor the performance of other available ser-

vices. This can be achieved through third party cloud monitoring services, such

as cloudharmony, which regularly check the performance of services delivered by

the most popular cloud providers and the data collected through this monitoring

is provided to cloud users who can utilize this information to decide on cloud de-

ployment of new business applications and to migrate an existing cloud deployed

application from one IaaS cloud provider (or service) to another. However, QoS

modeling and prediction require such data spanning over a long period of time,

therefore it is necessary that this QoS data should be stored in a repository and

provided to the users whenever needed.

As mentioned in the preceding section, one of the objectives of the thesis is to

propose a framework for cloud service monitoring to collect and store the QoS

information related to all the available services in the cloud environment and

provide this information to the users.

Issue 2: How can the user select a service from amongst several avail-
able services?

As discussed in the previous section, the user needs to assess the available ser-

vices against multiple criteria to determine the service that best suits the re-

quirements of his cloud application and a comparison of services in terms of

different QoS criteria may yield conflicting results. Therefore, a methodology

is needed that assists the user in selecting the best service in this scenario.

As discussed in Chapter 2, the existing approaches in the literature for the com-

parison and selection of cloud services only consider the cloud service specifica-

48

CHAPTER 3. PROBLEM DEFINITION

tion, without taking into account the actual QoS of the services. Furthermore,

the existing approaches do not attempt to take into account the fact that the QoS

of cloud services varies with time.

This thesis aims to propose a decision-making methodology that assists the user

in cloud service selection on the basis of multiple QoS criteria and variability of

QoS with time.

Issue 3: How to forecast the future QoS of cloud services?

In addition to monitoring the cloud services to understand their past QoS vari-

ability, it is important that cloud service users are able to forecast the future QoS

of the cloud services for accurate and effective cloud service management. De-

spite its prime importance, this aspect has not received any research attention.

There are several forecasting methods which have been used in almost every

field but there is no published work on cloud QoS forecasting to show which of

these techniques is applicable in this area. As mentioned in the previous section,

this is a key objective of this thesis.

Issue 4: How to develop a service management framework?

For effective cloud service management, it is necessary to have an early warn-

ing mechanism which can detect any impending severe service degradation in

advance or after a minimal time lapse by using the QoS monitoring data. This

makes it possible to initiate the service migration decision-making process in

time so that a decision can be made without delay. In addition to having ac-

cess to reliable and accurate QoS information, this task also requires accurate

forecasts of future QoS values. Thus, this issue is linked to the above discussed

research issues of cloud service monitoring (Issue 1) and QoS forecasting (Issue

3). Proposing a solution to this issue is an objective of this thesis.

Issue 5: Lack of a decision-making methodology for service migration
in the post-interaction period

The increasing standardization and open cloud middleware have the potential

to achieve interoperability among clouds which makes it possible for users to

migrate their cloud applications from one cloud to another. There are several

solutions to cloud management but they only assist the users by providing a

consistent and easy to use interface for migrating their virtual machines between

clouds. They do not provide any assistance in actual decision making.

This thesis aspires to propose a decision-making methodology for cloud service

migration that takes into account the multiple QoS criteria, variability in QoS

49

CHAPTER 3. PROBLEM DEFINITION

with time and the migration cost in the decision-making process.

Issue 6: How the proposed framework can be evaluated?

To assess the effectiveness and applicability of the proposed solution, it is nec-

essary to implement the constituent components and to integrate them into a

prototype service management system. For this purpose, a prototype software

implementation of the system has to be developed and data needs to be collected

on which the developed software may be tested.

3.5 Research Approach

This thesis aims at the development and subsequent testing and validation of a

framework for user-side cloud service management which addresses the research

issues outlined in the previous section. It is necessary that a systematic scientific

research method should be followed while developing this framework to ensure

that it has a sound scientific basis. In this section, I give an overview of the

scientifically-based research methods which appear in the literature and specify

the reasons leading to the selection of a particular research method.

3.5.1 Research Methods

In information systems research, there are two main categories of research ap-

proaches which are frequently followed, namely:

1. The science and engineering approach

2. The social science approach

3.5.1.1 Science and Engineering Research Approach

Science and engineering research follows the scientific method which aims to

develop scientific theories to explain the observed phenomena. Verification of

the theoretical predictions made by the theory with observed data scientifically

proves the developed theory. In the engineering disciplines, as articulated by

Galliers [116], the primary aim of research is to make something work. Thus the

objective of engineering based research is to develop solutions to problems for

which research is carried out at three levels, namely: the conceptual level, the

perceptual level and the practical level.

50

CHAPTER 3. PROBLEM DEFINITION

• Conceptual level (level one): The conceptual level is concerned with creat-

ing new ideas and new concepts through analysis of the problem.

• Perceptual level (level two): The perceptual level is focused on formulating

a new method or approach by designing the systems to solve the problem.

• Practical level (level three): The practical level consists of the activities

concerned with the development, testing and validation of the implemented

tools, and systems through experimentation with real world examples and

field or laboratory testing.

In attempting to solve the identified problem, the science and engineering

research may lead to new techniques, architectures, methodologies, systems or

concepts which make up a new theoretical framework thereby extending the ex-

isting body of knowledge.

3.5.1.2 Social Science Research Approach

The goal of social science research is to obtain evidence to prove or disprove a

hypothesis formulated on the basis of collected data [117–119]. This kind of re-

search can be either quantitative or qualitative and mostly involves extensive

data collection through survey or interview processes. In quantitative research

extensive data collection is need and the collected data is statistically analysed

to prove or disprove various hypotheses that have been formulated. Qualitative

research is based on information which is not in a form that readily allows sta-

tistical analysis as data is often collected through interviews.

The research assists the researcher to understand the social and cultural

issues within the area of research. Unlike science and engineering research, this

research does not produce any new method but only tests or evaluates a method

that has already been produced from science and engineering research [120].

This thesis is concerned with the development of a new methodology for

cloud service management which clearly falls into the domain of science and

engineering research.

51

CHAPTER 3. PROBLEM DEFINITION

Problem

Identification

Literature Review
Problem

Formulation

Definition of Key

Concepts

Conceptual

Solution

Methodology

Development

Development of

Prototype Systems

Testing and Case

Studies

Conceptual Level

Practical Level

Preceptual Level

Figure 3.2: Overview of science and engineering-based research methodology

3.5.2 Choice of Science and Engineering-based Research
Method

In this thesis, a science and engineering-based research approach was followed

as the research method for the proposed solution development. An overview of

this research method is depicted in Figure 3.2.

I began by identifying the research problems in the area of cloud service

management from the user’s perspective (as discussed earlier in this chapter). I

collected and analysed the literature related to this study. Based on an extensive

review of the existing literature, I identified the open issues and formulated the

problems which need to be addressed in this area to move forward the body of

knowledge. I defined some key concepts for addressing the problem which are

used for developing the conceptual solution presented in the next chapter. All

the processes from undertaking the literature review to the development of the

conceptual solution are included in the conceptual level. At the next level, i.e. the

perceptual level, I developed methodologies for addressing the different aspects

of cloud service management decision making which include cloud service moni-

toring, cloud service selection, QoS forecasting, early warning, and cloud service

migration. Subsequently, I designed and implemented prototype systems which

were used later to test the proposed framework. The process of methodology de-

52

CHAPTER 3. PROBLEM DEFINITION

velopment, development of prototype systems and case studies constituted the

perceptual level of this work. Once the prototype systems had been engineered,

I used them together with the developed case studies to validate the proposed

framework at the practical level.

The proposed research involves the development of a new framework in the

area of Information Systems and requires proof of the developed concepts though

validation, therefore, I followed the research method proposed by Nunamaker

et al. [119] for the validation and verification of the research output, through

proof of concept. This methodology consists of the problem definition, conceptual

solution and system prototype processes. The results of the evaluation of the

developed prototypes form the basis for the evaluation of research outcomes.

3.6 Conclusion

In this chapter, I summarized the research issues in the literature, pertaining to

the user’s perspective of cloud service management and formulated the definition

of the problem that I aim to address in this thesis. The defined problem was

then decomposed into its constituent research sub-problems which need to be

addressed to solve the defined problem of user-side cloud service management.

Furthermore, the various available research approaches were discussed and the

science and engineering research methodology, which is the most appropriate

research methodology for solving this particular problem, was chosen for this

research. In the next chapter, I give an overview of the solution by which I

propose to resolve the research issues mentioned in this chapter.

53

Chapter 4

Solution Overview

4.1 Introduction

In the previous chapter, various issues in cloud service management from the

user’s perspective were explained in the context of the current related literature.

On the basis of these research issues, the overall problem was divided into its

constituent six sub-problems. In this chapter, I present the conceptual frame-

work of the solution that I propose to address these issues. As highlighted in the

preceding chapters, there is a considerable amount of research in the literature

focusing on the issues of cloud service management from the service provider’s

perspective but, in spite of the need for it, the user’s perspective still remains

largely untouched. Therefore, in this chapter, I begin to address this problem by

proposing a definition of cloud service management from the user’s perspective

and then by proposing a framework for user-side cloud service management.

In the next section, I propose the definition of cloud service management

from the user’s perspective, which is followed by a general overview of the pro-

posed cloud service management framework in Section 4.3, after which I give

an overview of the three modules of the framework. In Section 4.4, I give an

overview of the QoS monitoring and the QoS repository module, in Section 4.5,

I discuss the QoS forecasting and early-warning mechanisms which is followed

by a discussion on decision-making module in Section 4.6. Before concluding the

chapter in Section 4.8, I explain my proposed user feedback-based cloud service

monitoring mechanism in Section 4.7.

54

CHAPTER 4. SOLUTION OVERVIEW

4.2 Definition of Cloud Service Management

As stated earlier, cloud service management from the user’s perspective is en-

tirely different from the cloud service provider’s perspective and this important

aspect of cloud computing has not received the due attention in the existing lit-

erature. Therefore, before presenting an overview of the proposed solution to

the research issues in this area, I propose a formal definition of user-side cloud

service management as:

User-side cloud service management is the process that assists the service
users to manage the performance of cloud services in two different phases. The
first phase is the pre-interaction phase in which the most capable service is chosen
from the available ones according to the user’s requirements and the second is the
post-interaction phase in which the performance of the selected service is managed
to achieve the user’s desired outcomes.

Thus, there are two possible scenarios in user-side cloud service manage-

ment. These two scenarios are manifestations of the two phases (i.e. the pre-

interaction phase and the post-interaction phase) of user-side cloud service man-

agement which were introduced in Chapter 1 (Figure 1.4). The first scenario is

the pre-interaction phase which is mainly concerned with cloud service selection

while the second post-interaction phase is primarily concerned with cloud ser-

vice management. In the first scenario, a prospective cloud service user wants

to select a cloud service for the first time and in the second scenario the user

has already selected a cloud service and is using it but wants to monitor the per-

formance of the selected service to judge whether or not the currently selected

service is maintaining the same level of QoS as observed at the time of service

selection. In addition to monitoring the currently selected service, the user also

wants to monitor the performance of the other services available in the cloud

environment to consider service migration if another service becomes available

that offers the same or better QoS at a lower price. Thus, cloud service manage-

ment involves three main tasks, namely (1) cloud service selection from amongst

several possible services; (2) cloud service monitoring to assess the QoS of the se-

lected service; and (3) cloud service migration if the selected service does conform

to the expected QoS level.

The term “cloud management” appears in some recently published litera-

ture [17, 47, 121, 122], where it refers to the process by which cloud providers

manage the computing resources at the datacenters. However, the more appro-

55

CHAPTER 4. SOLUTION OVERVIEW

priate term for this process is “virtual infrastructure management”. As men-

tioned earlier, cloud computing is highly dynamic and multiple users share the

physical computing resources which leads to variability in QoS of the delivered

services as the number of users of a cloud service as well as their resource con-

sumption continuously varies. In order to ensure that the users receive the de-

sired QoS level, the cloud providers have to efficiently manage their computing

resources. This management is also necessary to ensure energy efficiency and

efficient resource utilization at the datacentre level.

This perspective of cloud management is entirely different from the user-

side cloud service management defined here, because, unlike the cloud service

providers who have complete control over the physical computing resources at

their datacenters, the cloud service users are only able to access the virtual re-

sources and do not have control over the underlying hardware and system soft-

ware of the cloud. Thus the cloud service users cannot directly manage the actual

hardware and software resources. However, as mentioned in previous chapters,

the emergence of open cloud middleware and open management interfaces has

made it possible and easy for the user to migrate virtual machines to a service

offered by another provider that is compatible and functionally equivalent to the

current service. This gives an opportunity to the cloud service users to manage

their cloud service usage themselves by migrating to another available service,

when the virtual infrastructure management by the current service provider

fails to maintain the QoS level desired by the user or when the provided service

becomes too expensive as compared with other available services. However, as

explained in the previous chapters, making such decisions is not a trivial process

as it involves several intricate processes which must be completed by following a

decision-making framework. In the next section, I propose a framework that as-

sists cloud service users in management decision-making from their perspective.

4.3 Overview of the Proposed Solution

In Chapter 3, it was mentioned that the problem of cloud service management

from the user’s perspective has numerous dimensions and there are several chal-

lenges that need to be met for developing a framework that effectively assists

the users in service management decision making. In this section, I give a broad

overview of the proposed framework, called the User-Side Cloud Service Man-
agement (UCSM) Framework that is designed to achieve this goal.

User-side cloud service management (as shown in Figure 4.1) has several

56

CHAPTER 4. SOLUTION OVERVIEW

processes in both pre-interaction and post-interaction phases. In the pre-interaction

phase, the main objective is service selection based on the external monitoring

of the QoS of all the available services. External monitoring as defined in the

previous chapter, refers to all kinds of monitoring by entities other than the

user himself. In the post-interaction phase, the decision making is dependent

on some additional supporting processes of early-warning and QoS forecasting.

In this phase, the process of monitoring includes internal monitoring by the user

in addition to continued external monitoring.

User-Side Cloud Service

Management

Pre-interaction Service

Management

Post-Interaction Service

Management

Service Selection
QoS Monitoring

(External)

QoS Monitoring
(External and Internal)

QoS Forecasting Early-Warning Service Migration

Figure 4.1: The phases and processes involved in User-Side Cloud Service Man-
agement

The proposed UCSM Framework has separate components designed to per-

form each of these processes. These components are organized as three modules,

namely:

Module 1: QoS monitoring and repository.

Module 2: QoS forecasting and early warning.

Module 3: Service management decision making.

Each of these modules has multiple components (Figure 4.2) which collectively

perform closely related functions to achieve the specific objective of the over-

all framework. The modules and the components in the framework extensively

communicate and exchange information amongst one another and other external

entities and roles.

The cloud service management framework proposed in this thesis relies on

the QoS of the available cloud services and this information must be collected

57

CHAPTER 4. SOLUTION OVERVIEW

Module 1: Service Monitoring

Module 3: Decision Making

Module 2: QoS Forecasting and Early

Warning

CLOUD SERVICE

USERS
THIRD PARTY CLOUD

MONITORING

SERVICES

PRE-INTERACTION
DECISION MAKING

CLOUD COMPUTING

ENVIRONMENT

QoS

INFORMATION

REPOSITORY

C
lo
u
d
S
erv
ice

Feedback

on QoS

S
er
v
ic
e
M
a
n
a
g
em
en
t

D
ec
is
io
n
R
ec
o
m
m
en
d
a
ti
o
n

QoS Data

QoS Data

Q
o
S
C
riteria

P
erfo

rm
a
n
ce

T
estin

g

CLOUD SERVICE

DISCOVERY

Service

Specifications

QoS FORECASTING
MECHANISM

EARLYWARNING

MECHANISM

QoS Data

ALARM
POST-INTERACTION
DECISION MAKING

QoS Forecasts

QoS Forecast

USER FEED-BACK

MECHANISM

QoS Data

Figure 4.2: The proposed cloud service management framework and the flow of
information between its various modules.

continuously throughout the service management period. The first module of

the framework is intended for monitoring the cloud environment by measuring

the QoS performance of all the available services and is designed to maintain

a repository of this data which is required by the other parts to perform their

functions.

The second module is concerned with forecasting the future QoS of a set

of services based on the available past QoS data of those services, supplied by

the QoS repository. In addition to the QoS forecasting component, this module

also includes another component which is designed to generate early warnings

of impending QoS degradation and failures of the services being monitored by

58

CHAPTER 4. SOLUTION OVERVIEW

the user on the basis of updated data supplied by the QoS repository at regular

intervals. The output from both these components is communicated to the third

module which utilizes this information for service management decision-making.

The third module consists of the two components responsible for decision

making in the pre-interaction and post-interaction time periods of service man-

agement on the basis of information received from the first and second modules

described above and the cloud service user’s specific requirements as provided by

the cloud service user thorough the user input interface.

Each of the modules introduced above are explained in detail in the next

sections of this chapter.

4.4 Overview of Module 1: QoS Monitoring and
Repository

This module, as mentioned before, is intended to provide the current and his-

torical archived QoS data of all the available services to the other modules of

the framework. This module is designed to collect this information from mul-

tiple monitoring sources and store it to maintain a historical record of the QoS

information. This information is vital for the functioning of the whole service

management process as all the decisions to be recommended to the cloud service

users are to be derived on the basis of this data.

The processes carried out by this module are as follows:

1. Cloud service discovery

2. Cloud service monitoring

3. Storing the QoS information

As shown in Figure 4.2 and Figure 4.3, in addition to collecting and storing

the QoS information from a third party and user-feedback service monitoring,

this module is also responsible for cloud service discovery and for providing the

QoS information to other modules in the framework. Each component in this

module is explained below.

The purpose of the cloud service discovery component of the module is to

serve as an interface between the proposed framework and the cloud service

59

CHAPTER 4. SOLUTION OVERVIEW

Information from Cloud Service

Providers

1. Service Specifications

2. Price

Information from Third Party

Monitoring Services

1. QoS assessment of the available

services

QoS Repository

Information to QoS forecasting and

Early Warning Module

1. QoS history of available serviecs

Cloud Service Discovery

Information from existing cloud service

users

1. QoS assessment of the currently used

services

Information to Decision-Making

Module

1. QoS history of available serviecs

Specifications

QoS Data QoS Data

User-Feedback Monitoring

QoS Data

Figure 4.3: Cloud Service Monitoring and the QoS Repository

providers who publish their services in the cloud environment using this mod-

ule. This enables the UCSM framework to register their services as potential

candidates for selection by the cloud service users. The information collected by

this module forms a register of all the available services in the cloud environ-

ment which also contains their specifications. This information is stored in the

QoS Information Repository component of this module, as described below.

The QoS Information Repository is an important component in this mod-

ule as, in addition to its above described functionality of serving as a register or

directory of the available cloud services, it also stores the information received

from QoS monitoring by the third party cloud monitoring services and the feed-

back received on the cloud service via the user-feedback-based monitoring which

monitors the cloud environment by collecting QoS information from the existing

users of cloud services.

As discussed above, the information about the QoS of the available ser-

vices in the cloud environment is collected through two methods. The first is

by incorporating the QoS information collected by third party cloud monitoring

services into the QoS repository and the second is by collecting feedback from

the current users of cloud services. Thus, this monitoring scheme ensures that

all the registered services in the cloud environment are continuously monitored

for variations in their QoS levels in an effective and efficient way through two

60

CHAPTER 4. SOLUTION OVERVIEW

independent sources.

The information collected and stored by this module is used by Module 2 for

QoS forecasting and early warning components. Module 3 uses this QoS informa-

tion for both of its decision-making components. The user-feedback-based cloud

service monitoring component of this module is discussed in detail in Section 4.7

which aims at enhancing the existing cloud service monitoring scenario.

Throughout this thesis, I assume that this QoS information is available to

the rest of the modules, the design and validation of which are the primary focus

of this work.

4.5 Overview of Module 2: QoS Forecasting and
Early Warning Mechanisms for Service Man-
agement

The need for accurate QoS forecasts and the ability to generate an early warning

of impending service degradation or failures is indispensable for effective cloud

service management. This module is designed to accomplish these tasks and it

has two separate components for this purpose, namely:

1. QoS Forecasting

2. Early Warning Mechanism for QoS Management

The role of this module and the information exchange with the other mod-

ules in the proposed framework is depicted in Figure 4.4. This module consists

of two components to undertake the above stated roles.

As explained in Chapter 2, due to the fact that there is a noticeable vari-

ability in the observed QoS of cloud services, the ability to predict such variations

in the future on the basis of the past QoS history stored in the QoS repository is

very important for service management. The theory of time series analysis and

forecasting is a mature field in statistics and econometrics. It provides effective

and proven methods to study the behavior of any phenomenon measured at reg-

ular intervals for long durations in many fields. But these techniques have not

been applied in the study and forecasting of QoS in cloud computing. The QoS

forecasting component in this module is intended to look for self-similarity and

patterns in the past QoS history and, based on this analysis, forecast the future

61

CHAPTER 4. SOLUTION OVERVIEW

Information from the cloud service user

1. Currently selected service

2. Desired cloud service specifications

3. QoS preferences

4. Early Warning parameters

Information from the QoS Repository

1. QoS history of the currently selected

service

EARLY-WARNING

MECHANISM

Information to the cloud service user

1. Notification of impending QoS

degradation or service failure

QoS FORECASTING

MECHANISM

Forecasts of expected QoS

of the currently selected service

Figure 4.4: Role of the QoS Forecasting and Early Warning Modules

QoS values for the services under consideration. These forecasts are used by the

decision making module to determine the possible decisions that can be taken at

any moment and by comparing them to identify and recommend the best service

management decision to the users. Chapter 6 of the thesis is concerned with a

detailed discussion on this component.

The second component in this module is the early warning mechanism,

which relies on the current quality of the service being used by the user and its

future predicted QoS values determined by the above mentioned QoS forecast-

ing component. It is designed to warn the user of impending QoS degradation

and possible service failure and triggers the service management module of the

proposed framework to initiate the process to recommend the appropriate man-

agement decision to the user. In Chapter 6, I discuss this component in detail.

4.6 Overview of Module 3: Decision Making

As stated earlier, the third module of the proposed UCSM framework is intended

to act as a decision support system by recommending the best possible service

management decision to the users. These recommendations are generated on

the basis of the information provided by the two other modules of the proposed

framework, which have been explained above, and the information received on

62

CHAPTER 4. SOLUTION OVERVIEW

the users’ requirements and preferences from the cloud service users.

The decision making process has to be carried out in two phases, namely,

the pre-interaction and the post-interaction phases (as explained in Section 4.2)

therefore two different decision-making components are proposed in the frame-

work for each of these phases. The first component is intended for decision-

making during the pre-interaction phase and the second component is designed

for the post-interaction phase decision-making.

Information from the cloud service user

1. Desired cloud service specifications

2. QoS preferences

3. Decision-making parameters

Information from the QoS Repository

1. List of available services

2. Specifications of the available services

3. QoS history of the available services

PRE-INTERTACTION

DECISION-MAKING

Information to the cloud service user

1. List of available services which are

capable to fulfil the user’s requirements

ranked in the order of their suitability in

terms of user's preferences.

Figure 4.5: Role of the Pre-Interaction Decision-Making Component

In the pre-interaction phase, as depicted in Figure 4.1, the main tasks are

external monitoring, which is done by Module 1, and service selection decision-

making which is performed by the pre-interaction decision-making component of

this module. The pre-interaction decision-making component, as shown in Fig-

ure 4.5, receives from the cloud service user: (1) the desired cloud service speci-

fications, the user’s QoS preferences and the decision-making parameters. From

the QoS repository module, it receives (1) a list of available cloud services; (2) the

specifications of the available service; and (3) the QoS history of the available

services. The pre-interaction decision-making component, by taking this input,

63

CHAPTER 4. SOLUTION OVERVIEW

provides a recommendation for the user. This recommendation is essentially an

ordered list of the services that comply with the user provided specifications and

are ranked in accordance with the user’s QoS preferences. This component of the

proposed framework is explained in Chapter 5.

Information from the cloud service user

1. Currently selected service

2. Desired cloud service specifications

3. QoS preferences

4. Decision-making parameters

Information from the QoS Repository

1. List of available services

2. Specifications of the available services

3. QoS history of the available services

and the currently selected service

POST-INTERTACTION

DECISION-MAKING

Information to the cloud service user

1. List of available services which are

capable to fulfil the user’s requirements

ranked in the order of their suitability in

terms of user’s preferences

Information from the Early-Warning

Mechanism

1. Notification of impending QoS

degradation or service failure

Information from the QoS forecasting

Component

1. Forecasts of expected QoS of the

currently selected and other available

services

Figure 4.6: Role of the Post-Interaction Decision-Making Component

In the post-interaction phase, the decision-making process is similar to the

above described pre-interaction decision-making process but, as shown in Figure

4.6, there are additional inputs which also need to be processed for recommend-

ing decisions to the user. This additional information includes: (1) the QoS of

the currently selected service from the QoS repository; (2) forecasts of the se-

lected and other available services provided by the QoS forecasting component of

Module 2; and (3) an early warning notification from Module 2. This additional

information is required in this phase as the user is already using a cloud service

and the decision recommended by this component involves migration from the

selected service to another service which necessitates that the service migration

overheads are considered in the decision-making process. This component of the

proposed framework is discussed in Chapter 8.

In both phases, the user has to make a decision to select (or to migrate

to) one of the several available services. This decision is based on the user’s

requirements and preferences as well as on the QoS of the available services.

As cloud services vary in terms of their performance and cost, the selection of

64

CHAPTER 4. SOLUTION OVERVIEW

a suitable cloud service becomes a complex decision-making issue for a cloud

service user.

As mentioned in Chapter 3, cloud services have several attributes, all of

which are the criteria that have to be taken into account when making a service

selection decision. In the presence of these multiple criteria, a compromise has

to be made because in most real-world situations, no single service exceeds all

other services in all criteria but one service may be better in terms of some of

the criteria while other services may outperform it if judged on the basis of the

remaining criteria. Since both phases of decision making are multi-criteria in

nature, any solution to the problem must be capable of processing multi-criteria

information to recommend a service selection or migration decision to the user.

In the UCSM framework, the solution proposed to address this problem is based

on Multi-Criteria Decision-Making (MCDM), which is a sub-field in operations

research that deals with the techniques to solve such multi-criteria problems.

There are several methods of multi-criteria decision-making which are discussed

in detail in Chapter 5 and the various ways of applying these techniques for cloud

service management are also explained in detail.

4.7 User-Feedback Based Cloud Service Monitor-
ing

In this section, I propose a novel method for cloud service monitoring. As articu-

lated in Section 4.4, the current status of each available cloud and its past QoS

history are vital for accurate cloud service management. Without access to this

data, the users have no alternative but to test their applications on several differ-

ent cloud services to determine the QoS performance of each service [93], which

is a very cumbersome, costly and an inefficient process and is not practically and

financially feasible[103].

As mentioned previously, currently cloud service users can obtain QoS in-

formation by using either the monitoring tools offered by cloud service providers

or the third party cloud monitoring services. This scenario of cloud service mon-

itoring is depicted in Figure 4.7 which shows n cloud services available in the

cloud environment, m cloud service users and k third party cloud monitoring

services. Each user is able to directly assess the QoS of the service that he is us-

ing and can obtain information about the QoS of other services indirectly through

the third party monitoring services. In this situation, a new user (shown as user

m+1 in the Figure), who is not using any service at the moment but wants to use

65

CHAPTER 4. SOLUTION OVERVIEW

one, has only one source of information i.e. the third party monitoring services.

For direct monitoring, the user needs to subscribe to the services that he intends

to monitor and run some benchmarking tools on each of these services to find

their performance level. Directly monitoring any service by a user is imprac-

tical as monitoring a large number of services incurs cost because the process

consumes extensive computing resources.

Cloud User 1

Cloud User 2

Cloud User m

Cloud Service 1

Cloud Service 2

Cloud Service n

Cloud Monitoring Service 1

Cloud Monitoring Service 2

Cloud Monitoring Service k

(potential new

user)

Cloud User m+1

QoS

Information

QoS

Information

QoS

Information

IaaS performance

info

Benchmark

Testing

Figure 4.7: Current cloud QoS monitoring scenario

Since each existing user is able to directly monitor the performance of the

service which he is using (as shown in Figure 4.7, an alternative cloud service

monitoring system can be achieved by having a mechanism that allows the ex-

isting cloud service user to share this information among other users. In the

proposed UCSM framework, such functionality is provided via the QoS reposi-

tory and the user-feedback component. The user-feedback component augments

the data contained in the QoS repository that is collected through third party

cloud monitoring services and provides an alternative source of information to

record the QoS levels of the cloud services present in the cloud environment.

This is achieved by interacting, at regular intervals, with the existing cloud ser-

vice users to collect their feedback on the QoS of the services delivered to them.

This method of collecting QoS information is depicted in Figure 4.8.

In addition to the cloud provider’s monitoring tools, the existing cloud ser-

vice users can check the current status of an application running on a cloud by

using status checking commands provided in the environment e.g. Xentop (on

66

CHAPTER 4. SOLUTION OVERVIEW

QoS Repository

Cloud User 1

Cloud User 2

Cloud User m

Cloud Provider 1

Cloud Provider 2

Cloud Provider n

QoS information

(potential new

user)

Cloud User m+1

QoS Information

Computing

Resources

Computing

Resources

Computing

Resources

Figure 4.8: Proposed cloud monitoring through user feedback

Xen hypervisor). If there is no dedicated status checking mechanism available in

the environment, this can be achieved by using basic utilities like netstat, iostat
and memstat etc. In addition to this, the performance of the delivered computing

resources can be assessed by using basic benchmarking techniques in a manner

similar to the working of the third party monitoring services. The information

gathered by this process is sent to the user-feedback component which sends it

to the QoS repository. This method of cloud service monitoring has the following

advantages over the existing cloud monitoring mechanisms.

1. The existing cloud monitoring services only use benchmarks for testing

performance but in this approach, we only use data gathered from real

cloud users who have real applications deployed on clouds.

2. The user-provided information is more reliable compared with the 3rd party

benchmarks data or the vendor-provided dashboards as this information

is collected from real users with real business applications which, unlike

benchmarks, better reflect the real conditions.

3. Since the participating users provide the information for free, the moni-

toring service does not have to pay for the resources utilized by the users

(in contrast to current monitoring). As the users obtain monitoring data at

no cost through this mechanism, they have an incentive to participate in

67

CHAPTER 4. SOLUTION OVERVIEW

this system despite paying for the resources consumed in running the cloud

status checker and sending the status reports. The cost involved in host-

ing the central repository can be shared by the participating cloud vendors

who have a greater chance of increasing their number of customers and

also enhancing the customers’ trust in them by participating.

4.8 Conclusion

In this chapter, a general overview of the proposed framework was given and the

functions of the several modules, which perform vital functions for solving the

issues identified in Chapter 3, were introduced and explained. The overall pro-

posed framework for cloud service management was organized into three mod-

ules according to the three major functions of the proposed framework, namely:

QoS information collection and storage; QoS forecasting and early warning; and

decision making. Each of these modules consists of more than one component,

all of which were briefly explained in this chapter whereas a detailed discussion

on these modules is presented in the subsequent chapters. In this chapter, I also

proposed a user-feedback based cloud QoS monitoring system which enhances

the current cloud service monitoring scenario in cloud computing.

In the next chapter, the pre-interaction decision-making component of the

framework is discussed in detail and the relevant MCDM techniques and their

application in this context is thoroughly elaborated.

68

Chapter 5

Service Selection in the
Pre-Interaction Phase

5.1 Introduction

In the previous chapters, I explained that user-side cloud service management

consists of pre-interaction and post-interaction phases (Figure 1.4), and that the

primary issue in the pre-interaction phase is how to select an appropriate service

based on the QoS of the available services and the user’s preferences which, as

explained in Section 3.3, is an MCDM problem. In order to address this issue

in the UCSM Framework (Section 4.3), I included a pre-interaction decision-

making component in Module 3, which is briefly discussed in Section 4.6. In this

chapter, I explain this component in detail and present the methodology for cloud

service selection in the pre-interaction period which is based on multi-criteria

decision-making techniques.

As mentioned before, cloud service management depends on the QoS infor-

mation of the available services which is collected through cloud service moni-

toring. But, in the pre-interaction phase, the user can only have access to QoS

monitoring data obtained by other sources (indirect monitoring), whereas in the

post-interaction period, the user is also able to record the QoS history of the

selected service (direct monitoring). To address this drawback, in the previous

chapter, (Section 4.7), I proposed user-feedback-based cloud service monitoring

which collects QoS information from both direct and indirect sources and stores

it in the QoS repository. Thus, the QoS repository is able to provide information

with which all available services can be assessed against multiple performance

69

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

criteria (e.g. CPU, I/O and network etc.). This information forms a QoS history of

a service and contains valuable information about the QoS at any instance and

its variability with time (as shown in Figure 3.1), which must be taken into ac-

count in the decision-making process. The objective of this chapter is to explore

ways to incorporate this valuable information into the multi-criteria decision-

making process and select the best available service.

In the next section, I present an overview of the proposed approach for

cloud service selection. Some fundamental concepts necessary for formulating

cloud service selection as a MCDM problem are given in Section 5.3, which is

followed by an introduction to the existing MCDM techniques in Section 5.4. In

Section 5.5.1, the use of MCDM techniques for cloud service selection based on

service specifications is discussed. In Section 5.5.2, the use of QoS history for

service selection is discussed which is followed by a detailed explanation of the

proposed QoS time-slot-based MCDM for cloud service selection. In Section 5.7,

I give details of the simulations carried out for experimental validation of the

discussed approaches. Section 5.8 concludes this chapter.

5.2 Cloud service selection based on QoS history

MCDM techniques are normally used to rank multiple options in order of their

suitability on the basis of multiple evaluation criteria and the degree of im-

portance given to each of the evaluation criterion by the decision maker. This

scheme is suitable for cloud service selection if the decision has to be made on

the basis of fixed criteria, such as service specifications (CPU speed, memory size,

network bandwidth). However, since in cloud services the physical resources are

shared by multiple users as virtual resources, the actual performance (or QoS)

delivered to the user varies with time, depending on the load conditions on the

service providers’ infrastructure. Thus, in this scenario, using QoS, which better

reflects the actual performance rather than specifications, is a better method for

service selection. Furthermore, QoS history is also able to capture the perfor-

mance of a cloud service over a long period of time, which is important owing to

the variability in performance.

Using QoS history for MCDM-based service selection poses another chal-

lenge, as the QoS values span a long period, whereas the available MCDM tech-

niques are designed to utilize information available at one instance. One solution

to address this problem in the literature is to use historical averages of the QoS

values. However, this discards valuable information, such as the variation in

70

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Start

Get the

required

criteria and

their

importance

weights

from the

user

QoS repository

Get QoS values for

the identified

criteria

Divide the QoS

data into time slots

Using MCDM to

identify the top

ranked service in

each time slot

Repeat for all

time slots

Find the value of

time slot weight

Aggregate using

time slot weights

End

Select the service

with the highest

aggregate rank

Figure 5.1: Flowchart showing the sequence of steps in the proposed approach

the QoS values, contained in the QoS history. To address these issues, in this

chapter I propose an approach which is designed to utilize all the available QoS

history by dividing the entire period in consideration into several equal but non-

overlapping time slots. My proposed approach has the following processes to find

the best service, as shown in Figure 5.1.

71

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

1. The time period over which the decision has to be made is divided into

several equal time slots.

2. The MCDM process is applied to the QoS data of a time slot to identify the

best service within that time slot.

3. This process is repeated for all time slots and the best service in each time

slot is determined and a score given to a service for being the highest rank-

ing service in a time slot which depends on the weight assigned to that time

slot.

4. The weight assigned to a time slot (time slot weight) is maximum for the

most recent time slots and decays to a minimum value for time slots that

are distant in time from the current time slot.

5. Once these computations are done for each time slot, the scores are added

to find the overall score of each service and the service with the highest

overall score is recommended to the user for selection.

The sequence of flow in the working of the proposed approach is shown in

Figure 5.1. This approach is discussed in detail in Section 5.5.2 after explaining

the underlying MCDM process in the next two sections.

5.3 Fundamental Concepts of MCDM

In this section, the fundamental concepts which have special meanings in the

MCDM literature are discussed. These concepts are very important in formulat-

ing cloud service selection as an MCDM problem.

5.3.1 Decision Matrix

All the MCDM methods depend on a matrix or table called the evaluation matrix,

decision matrix, pay-off matrix or evaluation table, which has the following form:

D =



C1 C2 . . . Cn

S1 q11 q12 . . . q1n

S2 q21 q22 . . . q2n
...

...
...

Sm qm1 qm2 . . . qmn

 (5.1)

72

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

where S1,S2 . . .Sn (called alternatives in the MCDM literature) are the

available services and C1,C2, . . .Cn are the criteria on the basis of which the ser-

vices (alternatives) are to be ranked and selected. Each row contains the numer-

ical values (qi j) which are the measured performance of an alternative against

all the criteria while each column represents the performance evaluation of all

alternatives against one criterion. Each criterion can either be a benefit criterion

(which is to be maximized) or cost criterion which needs to be minimized.

Service Memory Cost CPU IO Memory
(GB) ($/hr) (CCU) (IOP) (CCU)

1 23.00 1.30 137.20 194.29 33.50
2 7.50 0.34 61.80 56.82 4.00
3 1.70 0.09 22.24 27.08 1.00
4 34.20 1.00 109.41 87.58 13.00
5 68.40 2.00 109.14 82.79 26.00
6 17.10 0.50 103.35 83.62 6.50
7 8.00 0.36 90.37 130.84 6.19
8 2.00 0.17 84.20 109.2 5.45
9 4.00 0.24 76.04 110.78 5.53
10 1.00 0.09 78.51 56.08 4.66
11 16.00 0.64 100.87 144.71 10.94
12 32.00 1.12 90.79 142.19 6.82
13 48.00 1.68 92.50 187.38 28.44

Table 5.1: IaaS cloud services and their performance attributes (Source:
www.cloudharmony.com)

To demonstrate with an example, in Table 5.1 above, the specification and

cost for 13 services is given. This information is represented in the decision

matrix (Equation 5.2) where the plus sign in the superscript shows the benefit

criteria and the minus sign signifies the cost criterion.

73

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

D =



C+
1 C−

2 C+
3 C+

4 C+
5

s1 23.00 1.30 137.20 194.29 33.50

s2 7.50 0.34 61.80 56.82 4.00

s3 1.70 0.09 22.24 27.08 1.00

s4 34.20 1.00 109.41 87.58 13.00

s5 68.40 2.00 109.14 82.79 26.00

s6 17.10 0.50 103.35 83.62 6.50

s7 8.00 0.36 90.37 130.84 6.19

s8 2.00 0.17 84.20 109.2 5.45

s9 4.00 0.24 76.04 110.78 5.53

s10 1.00 0.09 78.51 56.08 4.66

s11 16.00 0.64 100.87 144.71 10.94

s12 32.00 1.12 90.79 142.19 6.82

s13 48.00 1.68 92.50 187.38 28.44



(5.2)

Further in this section, I will use this decision matrix as an example to ex-

plain the basic MCDM concepts and the techniques and to show service selection

by performing MCDM on the specifications of the available services.

5.3.2 Ideal Solution

The ideal solution or positive ideal solution is a theoretical solution (i.e. it does

not exist in the evaluation matrix). This solution is a row vector which contains

the highest values of each column in the evaluation matrix.

The ideal solution of the above decision matrix is:

[68.40,0.09,137.20,194.29,33.50]

Anti-Ideal Solution: The anti-ideal solution or negative ideal solution is a row

vector that contains the lowest values of each column of the evaluation matrix.

The anti-ideal solution of the normalized decision matrix is:

[1.00,2.00,22.24,27.08,1.00]

5.3.3 Non-dominated Solution

A non-dominated solution is a solution that is not dominated by any other solu-

tion. An alternative A is said to dominate alternative B if A is at least as good as

74

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

B against all criteria and is better than B in at least one criterion.

5.3.4 Normalization

In most cases, each criterion has a different unit of measurement and range;

therefore, the first step in all MCDM techniques is to normalize the evaluation

matrix. There are several methods for normalization but the most common and

widely used methods are linear normalization and vector normalization [123].

5.3.4.1 Linear Normalization

Linear normalization is given by,

r i j =
qi j −L j

L j −H j

where L j = min(qi j) if j is a cost criterion and max(qi j) if j is a benefit criterion.

After linear normalization, all the criteria are transformed into cost criteria and

are to be minimized.

5.3.4.2 Vector Normalization

Vector normalization is defined by,

r i j =
qi j(

n∑
i=1

∣∣qi j
∣∣p

) 1
p

After normalization, the decision matrix becomes the normalized decision

matrix wherein the values are dimensionless and a comparison between the val-

ues belonging to different criteria can be made. Normalization of the decision

matrix of Equation-5.2 using linear normalization yields the following matrix

75

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

N =



C1 C2 C3 C4 C5

s1 0.33 0.37 1.00 1.00 1.00

s2 0.10 0.87 0.34 0.18 0.09

s3 0.01 1.00 0.00 0.00 0.00

s4 0.49 0.52 0.76 0.36 0.37

s5 1.00 0.00 0.76 0.33 0.77

s6 0.24 0.79 0.71 0.34 0.17

s7 0.10 0.86 0.59 0.62 0.16

s8 0.01 0.96 0.54 0.49 0.14

s9 0.04 0.92 0.47 0.50 0.14

s10 0.00 1.00 0.49 0.17 0.11

s11 0.22 0.71 0.68 0.70 0.31

s12 0.46 0.46 0.60 0.69 0.18

s13 0.70 0.17 0.61 0.96 0.84



(5.3)

and the same decision matrix normalized by vector normalization (with Eu-

clidean distances) yields the following normalized decision matrix.

N =



C+
1 C−

2 C+
3 C+

4 C+
5

s1 0.2256 0.3789 0.4102 0.4530 0.5996

s2 0.0736 0.0991 0.1848 0.1325 0.0716

s3 0.0167 0.0262 0.0665 0.0631 0.0179

s4 0.3354 0.2914 0.3271 0.2042 0.2327

s5 0.6708 0.5829 0.3263 0.1930 0.4653

s6 0.1677 0.1457 0.3090 0.1950 0.1163

s7 0.0785 0.1049 0.2702 0.3051 0.1108

s8 0.0196 0.0495 0.2517 0.2546 0.0975

s9 0.0392 0.0699 0.2273 0.2583 0.0990

s10 0.0098 0.0262 0.2347 0.1308 0.0834

s11 0.1569 0.1865 0.3016 0.3374 0.1958

s12 0.3138 0.3264 0.2714 0.3315 0.1221

s13 0.4707 0.4896 0.2765 0.4369 0.5090



(5.4)

5.3.5 Criteria Weights

As mentioned earlier, the different criteria do not have the same importance for

decision making. Therefore, MCDM techniques take into account the relative

importance of the criteria by using criteria weights calculated from the user’s

76

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

preference input. Several methods are available in the literature, some of which

are discussed here.

5.3.5.1 Criteria Ranking

The simplest method of calculating the criteria weights is by ranking the criteria

in order of increasing relative importance. The most important criterion has a

rank of 1, followed by the next most important criteria with a rank of 2 and so

on. This ranking for criteria is then converted into criteria weights by using the

following formula:

wi = k− r i +1∑k
j=1(k− r j +1)

where k is the number of criteria, wi is the weight and i, r i is the rank of

criterion i.

This produces a set of weights for the criteria on an ordinal scale. However,

this only represents the information that a criterion is more important than an-

other criterion and the degree by which this importance differs is not represented

in this scale.

5.3.5.2 Rating Method

Another method, called the rating method, uses a rating scale (e.g. 0 to 10) by

which a user provides ratings for each criterion using his own judgment. This

rating is normalized to determine the criteria weights as:

wi = r i∑k
j=1 r j

where k is the number of criteria, wi is the weight and i,r i is the rank of

criterion i. This method line also does not assure a ratio scale [124].

77

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

5.3.5.3 Ratio Weighting Method

The ratio weighting method proposed by Saaty [125] uses a pairwise comparison

between two criteria and assigns a number which denotes the number of times

a criteria is more important than another. If matrix A represents the pairwise

comparison wherein each element ai j denotes the times criterion, ci is more

important than criterion c j i.e.

A =


1 a12 . . . a1k

a21 1 . . . a2k
...

...

ak1 ak2 . . . 1


where ai j > 0, aii = 1, ai j = 1

a ji
and ai j = ail ×al i weights are given by the

normalized principal eigenvector values of A as,

wi = πi∑k
j=1π j

(5.5)

where π is the principal eigenvector.

5.3.5.4 Entropy Method

The entropy method estimates the relative importance (weights) of the criteria

using the concept of entropy in information theory. The entropy value gives an

estimate of the amount of information contained in the decision matrix and is

given by the following equation [126]:

e j = 1
lnm

m∑
i=1

r i j ln(r i j), j ∈ [1,n] (5.6)

where r i j are the values in a decision matrix and r i j. ln r i j = 0 if r i j = 0. Using

these entropy values, the weight for each criterion is calculated as:

w j =
1− e j∑n

j=1(1− e j)
(5.7)

In the next section, I present an overview of the available MCDM tech-

niques and briefly explain the underlying calculations needed for each technique.

78

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

5.4 Overview of MCDM Techniques

Several MCDM methodologies have been developed in the literature but all are

based on three basic working principles, namely:

1. Multi-attribute Utility Theory (MAUT)

The MAUT is based on finding a utility function which reflects the utility

or usefulness of a particular alternative for a decision maker. The notable

methods based on MAUT are: min-max, max-min, compromise program-

ming and TOPSIS.

2. Outranking methods

The outranking methods determine whether or not an alternative is ranked

higher than another in a pairwise comparison. The outranking methods

include the ELECTRE and PROMETHEE, each of which has several vari-

ants.

3. Hierarchical and network-based methods

In many real-world problems, the attributes are not entirely independent

of each other and some relationship exists between them. The hierarchical

and network-based methods take into account this relationship between

criteria in their decision-making approach. The Analytical Hierarchal Pro-

cess (AHP) and the Analytical Network Process (ANP) are two well-known

methods in this category. AHP is a hierarchical method, while ANP is a

network-based method.

Each of these techniques is briefly described in the remaining part of this

section.

5.4.1 Min-Max Method

This method aims to select an alternative (cloud service in this case) by maxi-

mizing the distance from the worst possible case (the anti-ideal solution) along

each criterion. For each alternative, the criteria score which is closest to the anti-

ideal solution (representing the worst performance) is used and all other values

are discarded. The rank of each service is calculated as:

Ri = min
(qi j −L j

H j −L j

)
; j = 1,2, . . . ,m

79

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

where H and L are the ideal and anti-ideal solutions, respectively. Ri is

the rank of service i.

If the decision matrix is normalized, then the above formula reduces to:

Ri = min
(
qi j −L j

)
; j = 1,2, . . . ,m

This yields a column vector Ri (i.e. one value for each alternative). The

alternative corresponding to the maximum value in this column (i.e. max(Ri)) is

selected as the best service. Thus, this method selects the alternative that shows

the best performance along the weakest criteria.

5.4.2 Max-Min Method

This technique minimizes the normalized distance between the selected alterna-

tive and the ideal solution along each criterion. The method mirrors the min-max

technique i.e.

Ri = max
(H j qi j

H j −L j

)
; j = 1,2, . . . ,m

and if the operation is performed on a normalized decision matrix then,

Ri = max
(
H j qi j

)
; j = 1,2, . . . ,m

Here, for each alternative, the criteria score is chosen which is farthest

from the ideal solution (representing the worst performance) to yield a column

vector. Then, the alternative corresponding to the lowest value in this column

vector is selected.

5.4.3 Compromise Programming

This technique is also called the global criterion method. It finds the solution that

is closest to the ideal solution by minimizing the normalized distance between

the selected alternative and the ideal solution. The distance can be calculated as

Euclidean Distance or by using the City-block method.

Ri =
(

k∑
i=1

(H j qi j

H j −L j

)) 1
p

80

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

where p = 1 calculates the distance using the City-block method while p = 2

measures the Euclidean distance. Like the min-max method, the service with the

lowest value of R is selected.

5.4.4 TOPSIS Method

The technique for order preference by similarity to ideal solution (TOPSIS)[127]

tries to select an alternative that is simultaneously closest to the ideal solution

and farthest from the anti-ideal solution [123] . In this technique, the decision

matrix is first normalized using vector normalization and ideal and anti-ideal so-

lutions are identified within the normalized decision matrix. Each alternative’s

distance from the ideal solution (Dh) and the anti-ideal solution (Dl)is calculated

separately. The alternatives are then ranked by their similarity index. The al-

ternative which has the highest similarity index is selected as the best solution.

The calculation steps for determining the service ranks in an individual

time slot by TOPSIS are as follows:

Step 1: QoS values of all the services in each time slot form an evaluation

matrix D, which has the following form.

D =



C1 C2 . . . Cn

S1 r11 r12 . . . r1n

S2 r21 r22 . . . r2n
...

...
...

Sm rm1 rm2 . . . rmn

 (5.8)

where S1,S2 . . .Sm are the m available services; C1,C2 . . .Cn are the n cri-

teria and each r i j is a measurement of the performance of service Si under cri-

terion C j.

Step 2: Since each criterion has its own units and range, the evaluation

matrix in Equation 5.1 is normalized to make the QoS values of different criteria

comparable. The normalized evaluation matrix N is given by:

N =


n11 n12 . . . n1n

n21 n22 . . . n2n
...

...

nm1 nm2 . . . nmn

 (5.9)

81

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

where ni j =
r i j√

m∑
i=1

(r i j)2

Step 3: The user’s preference information is incorporated by finding the

weighted evaluation matrix. If the criteria preference weights provided by the

cloud service user (‘decision maker’ in MCDM terminology) are wc1 ,wc2 , . . .wcn

(such that: wci ≥ 0 and
∑n

i=1 wci = 1), then the corresponding weight matrix is

given by an n×n diagonal matrix Wc whose diagonal elements are wc1 ,wc2 , . . .wcn .

The weighted evaluation matrix V is determined by the product of the normal-

ized evaluation matrix N from Equation 5.9 and the diagonal weight matrix Wc,

as shown in Equation 5.10 below.

V =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
...

vn1 vn2 . . . vnn



=


n11 n12 . . . n1n

n21 n22 . . . n2n

...
...

nm1 nm2 . . . nmn




wc1 0 . . . 0

0 wc2 . . . 0
...

...

0 0 . . . wcn



(5.10)

where wci ≥ 0 and
∑

wci = 1.

Step 4: The weighted normalized decision matrix V is used to determine

the ideal solution (A∗) and the anti-ideal solution (A
′
) as follows:

A∗ = {v∗j , j = 1,2 . . . ,k}= {Max qi j,∀ i; j = 1,2, . . . ,3} (5.11)

A
′ = {v∗ j, j = 1,2 . . . ,k}= {Min qi j,∀ i; j = 1,2, . . . ,3} (5.12)

Step 5: The separation measure for each service from the ideal solution

(denoted by D∗
i) and the anti-ideal solution (denoted by D

′
i) are determined by:

D∗
i =

[∑
j

(
vi j −v∗i

)2
] 1

2

(5.13)

82

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

and

D
′
i =

[∑
j

(
vi j −v

′
i

)2
] 1

2

(5.14)

Step 6: The final step in TOPSIS is to find the similarity index which com-

bines the two separation measures obtained in the previous step. The similarity

index G i corresponding to each service Si is given by:

G i =
D

′
i

D ′
i +D∗

i

(5.15)

The service corresponding to the highest G i is selected as the best service within

the time slot under consideration.

5.4.5 ELECTRE Method

This method falls in the class of outranking MCDM methods. In comparison

with the previously discussed methods, this method is quite lengthy; the sim-

plest variant of ELECTRE involves up to 10 steps. It basically performs a pair-

wise comparison between the alternatives and builds an outranking relationship

between them. This relationship is then used to identify and eliminate the al-

ternatives that are dominated by other alternatives to yield a smaller set of al-

ternatives (called the kernel). A variant of this technique called ELECTRE II

yields a complete rank order of the original set. There are six successive models

of ELECTRE.

Compared with the MAUT-based methods such as TOPSIS, this method

is more complicated; the simplest variant of ELECTRE involves up to 10 steps.

It performs a pairwise comparison between the alternatives and builds an out-

ranking relationship between them. This relationship is then used to identify

and eliminate the alternatives that are dominated by other alternatives to yield

a smaller set of alternatives (called the kernel). A variant of this technique,

called ELECTRE II, yields a complete rank order of the original set.

The first three steps of this method are similar to the TOPSIS method out-

lined above in Sub-Section 5.4.4. The remaining steps after calculating the nor-

malized decision matrix V (Equation-5.10) are as follows:

Step 4: Let J = { j| j = 1,2, . . .n} be the set of criteria and concordance sets

Sk,l and discordance sets Dk,l for all pairs Ak and Al of alternatives, where

83

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

k, l = 1,2, . . .m and l 6= k. Also,

Skl = { j|rk j ≥ r l j} (5.16)

and

Dkl = { j|rk j ≤ r l j}= J−Skl or Dkl = Sc
kl (5.17)

Step 5: Find the concordance matrix:

I =


− i12 i13 . . . i1m

i21 − i23 . . . i2m

...
...

...
...

...

im1 im2 . . . im,(m−1) −

 (5.18)

where i lk is the concordance index for the alternative pair Ak and Al and is given

by:

ikl = ∑
j∈Sk,l

w j ;
n∑

j=1
Wj = 1

Step 6: Find the discordance matrix:

NI =


− ni12 ni13 . . . ni1m

ni21 − ni23 . . . ni2m

...
...

...
...

...

nim1 nim2 . . . nim,(m−1) −

 (5.19)

where nik,l =
max
j∈Dk,l

|vkl −vl j|

max
j∈J

|vkl −vl j|
‘ Step 7: Calculate the arithmetic mean of the

concordance matrix, given by:

I =
m∑

k=1

m∑
l=1

ik,l

m(m−1)
(5.20)

Using the above calculated I find the Boolean matrix F, i.e.

84

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

F =


− g12 f13 . . . f1m

f21 − f23 . . . f2m

...
...

...
...

...

fm1 fm2 . . . fm,(m−1) −

 (5.21)

where
fkl = 1; i ≥ I

= 0; i ≤ I

Step 8: Similarly, calculate the arithmetic mean of the discordance matrix:

NI =
m∑

k=1

m∑
l=1

nik,l

m(m−1)
(5.22)

The corresponding Boolean matrix G for the discordance matrix is given

by:

G =


− g12 g13 . . . g1m

g21 − g23 . . . g2m

...
...

...
...

...

gm1 gm2 . . . gm,(m−1) −

 (5.23)

where
gkl = 1; ni ≤ NI

= 0; ni ≥ NI

Step 9: Using matrices F and G, form the composite matrix H such that:

H =


− h12 h13 . . . h1m

h21 − h23 . . . h2m

...
...

...
...

...

hm1 hm2 . . . hm,(m−1) −

 (5.24)

where hk,l = fk,l .gk,l

Step 10: The matrix H indicates the preference such that hk,l = 1 =⇒

85

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Ak ≺ Al , but it is still possible that Ak is dominated by other alternatives. In

the proposed methodology, I calculate the row sum of this matrix which gives

the rank of each service, and the service corresponding to the highest rank is

selected.

5.4.6 PROMETHEE Method

The preference ranking organization method of enrichment evaluation (PROMETHEE)

is an out-ranking method and is an improved form of ELECTRE. It differs from

ELECTRE in the pairwise comparison stage. The ELECTRE method checks only

whether one alternative is better (or worse) than the other, whereas PEOMETHEE

also considers the degree to which an alternative is better (or worse) than the

other. Apart from this enhancement, the other computational steps are similar

and the output of this method is an out-ranking relationship between the alter-

natives which is used to eliminate the dominated alternatives and to identify the

non-dominated or least dominated alternatives in the decision matrix.

5.4.7 AHP

The Analytic Hierarchy Process (AHP) is very useful where criteria have a hi-

erarchal relationship. This technique was developed by Saaty [128, 129] and is

based on a pairwise comparison of the attributes which are structured into a hi-

erarchal relationship (Figure 5.2). At the top level is the goal, the lower levels

correspond to criteria, sub-criteria and so on and the alternatives are at the leaf

nodes. The process starts from leaf nodes of the hierarchy tree and goes up to

the top level.

The criteria at each level of the hierarchy are pairwise compared using an

appropriate ratio scale [130]. Once the relative evaluations of the criteria and

sub-criteria are obtained, then the principal eigenvectors are calculated for com-

puting the relative values of the alternatives (as explained in Equation 5.5). The

output at each level of hierarchy corresponds to the weight or influence of differ-

ent branches originating for that level. Once the weights for different nodes of

the hierarchy have been calculated, then the overall relative values of the alter-

natives are calculated by maximizing the overall goal at the top of the hierarchy.

In this section, I gave an overview of the well-known MCDM techniques in

the literature. In the next section, I discuss the various ways these techniques

can be used for cloud service selection.

86

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Select a Cloud

Service

Service 1 Service 2 Service 3

Criteria 1 Criteria 2 Criteria 3

Objective Layer

Criteria Layer

Alternative Layer

Figure 5.2: A simple hierarchical model of AHP

5.5 Approaches for MCDM in Cloud Service Se-
lection

There are various ways to apply MCDM techniques described in the previous

section for cloud service selection (as depicted in Figure 5.3). The two main ap-

proaches are:

1. MCDM based on cloud service specifications and metrics

In this approach, the specifications of the available services, as published

by the cloud providers, are used to formulate the decision matrix and an

MCDM technique is applied to find the best service. This approach is

demonstrated in Section 5.5.1.

2. MCDM based on QoS of the available cloud services.

Another approach for MCDM for cloud service selection is to use the QoS

of the available service as a basis for decision-making (discussed in Sec-

tion 5.5.2). In this approach, apart from the cost criterion, the rest of the

decision matrix is formulated from the QoS information which is collected

87

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

MCDM for Cloud

Service Selection

MCDM based on

Service

Specificatoins

MCDM Based on

QoS History

Using Average

QoS Values
Using Time Slots

of QoS history

Aggregation with

time decay time

slot weight

Aggregation with

constant time slot

weight

Figure 5.3: Approaches for applying MCDM to cloud service selection.

through cloud service monitoring and the provider specified specifications

(as in the above approach) are replaced by the QoS delivered to the users,

assessed through multiple criteria. However, as explained earlier, the QoS

values are not constant but change with time. Therefore, the QoS values

are measured at regular intervals to capture their variability thus there

are multiple values of each QoS criterion measured at different instances.

This presents a challenge when formulating the decision matrix as one sin-

gle value can represent a criterion. The existing approaches use historical

averages to summarize the data and use the resultant average values to

formulate the decision matrix, thereby practically discarding the valuable

information contained in the QoS history.

Thus, the approaches based on service specification and average QoS history fail

to effectively consider the variability in QoS in the decision-making process. The

first approach does not consider QoS variability information while the second

approach, although based on QoS history, discards the variability information.

To address this issue, I proposed the time slot-based approach which divides the

QoS history into time slots and then performs MCDM in each time slot and com-

bines the results. In its simplest form, this approach gives the same importance

88

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

to all time slots but it is possible to take into account the relative importance

of the fresh and old QoS information by giving lower importance to the old time

slots and higher importance to the time slots closest to the current instance.

In the next section, I present the service specification-based MCDM ap-

proach. The new proposed approach and its two variants are discussed in Section

5.5.2.

5.5.1 MCDM for Cloud Service Selection Based on Cloud
Service Specifications

As mentioned above, MCDM for cloud service selection is possible either by con-

sidering the service specifications as selection criteria or by using the QoS history

as selection criteria.

One strategy for MCDM-based cloud service selection is to use the specifi-

cations of each cloud service as published by the service provider. The criteria in

this case can also include some performance metrics as well, but the measure-

ments are done only once at the time of decision making (time-spot). To explain

with an example, I consider the decision matrix of Equation 5.2 in Section 5.3,

which consists of 13 cloud services with five criteria for service selection. The

measured criteria values are based on CCU (Cloud Harmony Compute Unit),

which is an aggregate of several different performance benchmarks [131]. The

data is based on a study done by CloudHarmony.com [132].

I normalized the decision matrix by using linear normalization for the

min-max, max-min and compromise programming techniques while vector nor-

malization was used for the remaining methods. Furthermore, neutral inter-

attribute weights were used throughout the experiment, which represents the

scenario where all criteria are equally important to the cloud user (decision

maker).

The service ranks determined by using AHP and the MAUT methods are

given in Table-5.2. In the case of min-max, max-min and CP, the service corre-

sponding to the minimum value is the best service, while in the case of AHP and

TOPSIS, the service with the maximum value is selected as the best service.

The outranking methods do not give a numerical ranking like the MAUT

methods and AHP. They indicate which one of a given pair of alternative out-

ranks the other. The results of these methods applied on the decision matrix

are given in Table 5.3. This summary of outranking relationships shows that

89

CloudHarmony.com

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Service Min-max Max-min CP TOPSIS AHP
1 0.33 1.00 0.926 0.648 0.009
2 0.09 0.87 1.663 0.682 0.032
3 0.00 1.00 1.995 0.655 0.103
4 0.36 0.76 1.162 0.721 0.014
5 0.00 1.00 1.357 0.691 0.020
6 0.17 0.79 1.357 0.691 0.020
7 0.10 0.86 1.356 0.638 0.021
8 0.01 0.96 1.480 0.636 0.038
9 0.04 0.92 1.481 0.630 0.029
10 0.00 1.00 1.653 0.644 0.067
11 0.22 0.71 1.166 0.653 0.015
12 0.18 0.69 1.233 0.671 0.015
13 0.17 0.96 0.983 0.623 0.010

Table 5.2: Service rank calculated with min-max, max-min, TOPSIS and AHP

according to the ELECTRE service, 1 outranks 10 other services while it is not

outranked by any other services. On the other hand, according to PROMETHEE,

service 5 outranks 12 other services and is not outranked by any service.

Services
ELECTRE PROMETHEE
R+ R- R+ R-

1 10 0 10 2
2 1 8 2 8
3 0 9 0 12
4 7 2 8 3
5 7 1 12 0
6 5 1 6 6
7 4 3 5 7
8 3 4 2 9
9 3 5 3 8
10 1 8 1 11
11 3 3 7 5
12 0 3 8 3
13 3 0 1 1

Table 5.3: Summary of outranking relationships between the services deter-
mined by ELECTRE and PROMETHEE

The results in Tables 5.2 and 5.3 show that MCDM techniques are indeed

effective and can be used for cloud service selection, but they also show that

the different MCDM techniques do not lead to the selection of the same service.

However, these results do reveal that TOPSIS and both the outranking methods

(ELECTRE and PROMETHEE) are more suitable for this purpose. If the num-

ber of available services is too large, then TOPSIS can be easily used because of

90

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

its simple computational steps. The outranking methods are better in those sce-

narios where the number of alternatives is small but the criteria are numerous.

The approach demonstrated here only relies on the specifications of a cloud

services published by the service providers which fails to take into account the

actual QoS delivered to the user. Due to the fact that cloud services share phys-

ical computing resources among multiple users via virtualization (as mentioned

in Section 1.2.4), the QoS of the delivered services exhibits variability as the

number of users and load conditions vary with time. To take into account this

variability, as mentioned earlier in Section 5.2, the use of QoS history in MCDM-

based cloud service selection can play a significant role as it effectively captures

these fluctuations.

In the next section, I apply the techniques discussed here to solve the cloud

service selection problem, according to the approach shown in Figure 5.1. I use

two of the techniques demonstrated here (namely, TOPSIS and ELECTRE) for

cloud service selection using QoS history.

5.5.2 MCDM for Cloud Service Selection Based on Cloud
QoS History

As mentioned before in Section 5.5, the other approach for cloud service selec-

tion is to use the QoS history instead of service specifications. The simplest way

to perform MCDM for cloud service selection based on QoS history is to use the

average of each QoS metric over the observed period to formulate a decision ma-

trix. The calculation process in this case is similar to the previously explained

process for MCDM, based on service specifications and the QoS criteria replace

the specifications.

However, in this simple form, this approach fails to capture the dynamic

nature of cloud services where QoS exhibits variation with time. Using only the

current QoS values without considering the QoS history can lead to the selection

of a service which is the most appropriate at the time of decision making by

chance only and is superseded by other services immediately afterwards.

Therefore, a compromise has to be made in which, in addition to the current

QoS values, the past history is also taken into account in the MCDM process

to ensure a reliable cloud service selection. In the next section, I present the

proposed method that achieves this goal.

91

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

5.6 QoS Time Slot-Based MCDM for Cloud Ser-
vice Selection

As mentioned in Section 5.2, in this approach, the long term QoS history of avail-

able services is utilized for decision analysis, unlike some previous cloud service

decision-making approaches which are driven by QoS performance at one in-

stance of time, or by the average QoS. Currently, there are various cloud QoS

monitoring services that monitor and store the long-term QoS history of avail-

able services. My aim is to use the QoS performance and price history of available

cloud services to select the most appropriate service, avoiding the selection of a

service at local maxima (which happens if the real-time QoS data of only the cur-

rent time is used) but without entirely losing the information about variations

in QoS performance (which happens when only the average QoS is used). My

proposed approach is depicted in Figure-5.4 and involves the following key steps:

Interaction

Time
Time slots

C1
C2
.

.

.

Cm

t1 t2 t3 tp

S1
S2
.

.

.

Sn

S1
S2
.

.

.

Sn

S1
S2
.

.

.

Sn

S1
S2
.

.

.

Sn

S
*
1

w1 w2 w3 wp

QoS

Criteria

Available

Services

Top ranking

Service in time slot

Aggregation

Final selected

service

Time slot weights

Time

S
*
2 S

*
3 S

*
p

Wc1
Wc2
.

.

.

Wcm

User’s criteria

weights

Figure 5.4: Overview of the proposed approach for service selection, based on
time decay and QoS performance of services in different time slots

Step A: To capture the variations in QoS over time, I divide the pre-interaction

time period for cloud service management into a number of equal non-overlapping

time slots (Figure 1.4). The criteria C1,C2 . . .Cn for service selection are identi-

fied by the user and in each time slot, the QoS performance of all the services,

measured on the basis of the identified criteria, is retrieved by the MCDM

92

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

module from the QoS information repository (Figure 4.2). The QoS informa-

tion of each time slot forms a decision matrix for the time slot in Step C below.

Step B: The identified QoS criteria are not equally important for users in de-

cision making. Each user has specific preferences regarding the relative im-

portance of individual criteria. This information is provided by the user and

is expressed in the form of criteria weights i.e. {wc1 ,wc2 . . .wcn}, where each

criterion Ci has a weight wci . Alternatively, the entropy method described

in Section 5.3.5.4 can be used to determine these weights on the basis of the

information content present in the decision matrix.

Step C: The QoS performance data of all the available services in each time slot

(retrieved for the QoS repository in Step A) forms a decision matrix that is

used with the criteria weights (calculated in Step B) to find the best service by

employing an MCDM technique. Any of the MCDM techniques discussed in

the previous section can be used in this step. This step produces a ranking of

the available service in a time slot which reflects the relative appropriateness

of each of the available service within the time slot in consideration. This

process is repeated for all time slots and the ranking of the available service

is determined for all time slots in the entire QoS history.

Step D: The previous step identifies the best service in each time slot but the

service which has the best overall rank in all the time slots must be iden-

tified by aggregating these results. To consider the dynamic nature of time

when selecting a service while aggregating these ranking values, I consider

the freshness of the QoS values of a service, depending upon its distance from

the time spot at which the decision has to be made. Each time slot is therefore

assigned a time slot weight which progressively decreases from a maximum

value of 1.0 (for the most recent time slot with respect to the time spot) to suc-

cessively lower values for older time slots until it reaches a minimum value

of 0.4. Thus, the QoS performance values of services in recent time slots have

a much higher impact on the final service selection decision than the values

of services in older time slots. This step is explained in Section 5.6.1. These

values are used in the next step to aggregate the results in Step C above.

Step E: The service selection results obtained in Step C above are combined

by an aggregation process using the time slot weights determined in Step D.

The aggregation process (described in Section 5.6.2 below) yields the overall

service rank of a service in the entire pre-interaction period on the basis of

which the final service selection decision is made.

93

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

The sequence of flow in the working of my proposed approach is shown in

Figure 5.1. Steps B and C are similar to the previously explained steps in Section

5.3 for specifications base MCDM the specification-based MCDM approach for

cloud service selection . I elaborate Steps D and E which are concerned with

time slot weights and aggregation in sub-sections 5.6.1 and 5.6.2 respectively.

5.6.1 Calculation of Time Slot Weights for Aggregation

The objective of this step is to reflect the relative importance of time slots by as-

signing an appropriate weight to each time slot. As mentioned previously, in my

approach I consider that the time slots nearest to the time spot have more im-

portance than distant time slots (Figure-5.4). If there are n time slots t1, t2 . . . tn,

then the corresponding time slot weight for each time slot ti is given by the fol-

lowing logistic decay function i.e.:

wi = A+ K − A
(1+ e−B(∆ti−M))1/2 (5.25)

where ∆ti is the time interval between the interaction time spot tp and the

time slot in consideration ti.

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
 s

lo
t

W
e

ig
h

t

Time

Logistic decay function for time slot weight

1
2
3

Figure 5.5: Logistic decay functions for time slot weights

The properties of this logistic decay function are controlled by the constants

A,K ,B, and M where A is the lower asymptote, K the upper asymptote, B the

94

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

growth rate and M the time of maximum growth. This gives a weight to each

time slot in such a way that the most recent time slots (which are immediately

preceding the time spot) have a higher weight as compared to the distant time

slots which will have a lower weight. In my approach, I consider that the first

few time slots closest to the time spot have the maximum weight (wt ≈ 1); there-

after, the weight decreases for subsequent time slots and remains constant after

reaching a minimum value of 0.4 (represented by the constant K in Equation-

5.25). In Figure-5.5, I plot three decay curves, each varying in the importance

of weights that it gives to the time slots nearest to the time spot. Curves 1, 2

and 3 give a weight of 1 to the 50, 100, and 150 time slots (value of M) from the

time spot, respectively. The values of other constants for plotting these curves

are A = 1;K = 0.4 and B = 0.5.

5.6.2 Aggregation of Individual Time Slot Results to Find
the Best Overall Service

After determining the top ranking service in each time slot using an MCDM tech-

nique (Step C) and calculating the weight (time decay) of each time slot (Step D),

the overall rank of a service in the entire pre-interaction period is calculated in

this step. Using the individual service selection outcome for all time slots, I con-

struct a Boolean matrix (Equation-5.26), such that the element ui j corresponding

to service Si and time slot t j equals 1 only if service Si is the top ranked service

in time slot t j.

U =



t1 t2 . . . tn

S1 u11 u12 . . . u1n

S2 u21 u22 . . . u2n
...

...
...

Sn um1 um2 . . . umn

 (5.26)

where ui j =
1 if Si ranks at the top in time slot t j

0 otherwise

Thus, each column of the above matrix U represents the MCDM outcome

for all available services in one time slot, while each row represents the TOPSIS

outcome for one service in all time slots. Using this matrix, the overall aggre-

gated rank Ri of service Si is calculated by

Ri =
n∑

j=1
w j.ui j (5.27)

95

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

where w j is the time slot weight

This process is repeated for all the available services (each row of the ma-

trix U) to find the overall rank of each service in the entire pre-interaction period.

Alternatively, the product of the Boolean matrix U and a column vector contain-

ing the time slot weights w1,w2, . . .wn, yields a column vector representing the

overall service ranking, i.e.


R1

R2

...

Rm

=


u12 u12 . . . u1n

u22 u12 . . . u2n

...
...

um2 um2 . . . umn




w1

w2

...

wn

 (5.28)

where w j, (j = 1,2 . . .n), is the time slot weight and the service Sk corresponding

to the maximum overall ranking Rk is then selected as the best service for the

user.

In the next section, I discuss the experimental validation of my proposed

approach for cloud service selection.

5.7 Experimental Validation

In this section, I test the MCDM approaches discussed in this chapter by imple-

menting the algorithms and testing them by using real data.

5.7.1 Data

To validate the proposed approach, I used the QoS monitoring data of five Ama-

zon EC2 IaaS cloud services. The data was collected by cloudclimate (www.

cloudclimate.com) using the PRTG monitoring service (https://prtg.paessler.

com). The dataset consists of hourly measurements of response time for 300 days

(from 1-26-2012, 2 PM to 21-11-2012, 2 PM) of the five EC2 instances to short

load tests which reflect the CPU, memory and I/O performance of the monitored

services. In addition to these three criteria, I included the price per hour for each

service, quoted by Amazon (www.amazon.com), as the fourth criterion. The EC2

services included in this dataset and their respective prices for hourly usage are

given in Table 5.4.

The services in this dataset were of the EC2 small and micro instance type.

I observed that, in terms of performance, the micro instance services overwhelm-

96

www.cloudclimate.com
www.cloudclimate.com
https://prtg.paessler.com
https://prtg.paessler.com
www.amazon.com

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Service Detail Instance Type Cost($/hr.)
S1 EC2 EU small 0.0885
S2 EC2 EU micro 0.0200
S3 EC2 SA micro 0.0270
S4 EC2 US East small 0.0650
S5 EC2 US West micro 0.0250

Table 5.4: Amazon Services in the dataset

ingly surpassed the small instance services. The performance of the CPU, mem-

ory and disk of the micro instances – although more volatile – appears to be 3 to

5 times better than the performance of small instances. The proposed approach

relies on MCDM, therefore a dataset consisting of more than three services was

necessary to test this approach. As no other real data were available for this

experiment, I scaled the data using range scaling to make them comparable for

this simulation, while keeping intact the temporal QoS variations, rather than

generating artificial data. QoS data for each service was scaled along all criteria

over the entire dataset (i.e. all time slots) using the following formula:

scale(r i j)=
r i j

max(r j)−min(r j)
×1000 (5.29)

where r i j is the QoS value of service Si in terms of QoS criteria C j and

max(r j) and min(r j) are the maximum and minimum values, respectively, for

each criterion(in column j of the decision matrix in Equation 5.1). I used a time

slot length of 24 hours, dividing the available dataset into 300 time slots and

using the QoS values of 2.00 PM each day as the decision matrix for each time

slot. A portion of the data (for time slots 1 to 100) is given in Table 5.6, where C1,

C2, and C3 represent the QoS of CPU, memory and I/O respectively, while C4 (not

shown in Table 5.6) is the cost per hour for usage (shown in Table 5.4:Column-4),

which was constant throughout the duration of the data collection and S1 −S5

represent the five services. The complete dataset is plotted in a graphical format

in Figure-5.6, which shows continuous variation in the QoS criteria values. The

arithmetic mean of the dataset being considered is given in Table 5.7. These

values are used as input for the simulation models (described in the next section).

In addition to the QoS history-based approaches, I also use the specification

of the services (Table 5.5) to perform MCDM-based service selection and com-

pare the results obtained by this approach with those of the QoS history-based

approaches.

97

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

0
50

10
0

15
0

20
0

25
0

30
0

0

10
00

20
00

30
00

Response Time (miliseconds)

C
P

U
 R

es
po

ns
e

T
im

e

0
50

10
0

15
0

20
0

25
0

30
0

0

10
00

20
00

30
00

40
00

50
00

Response Time (miliseconds)

M
em

or
y

R
es

po
ns

e
T

im
e

0
50

10
0

15
0

20
0

25
0

30
0

0

50
00

10
00

0
I/O

 R
es

po
ns

e
T

im
e

T
im

e
(H

ou
rs

)

Response Time (miliseconds)

E
C

2−
E

U
E

C
2−

E
U

M
E

C
2−

S
A

E
C

2−
U

S
E

E
C

2−
U

S
W

F
ig

ur
e

5.
6:

Va
ri

at
io

n
in

Q
oS

ov
er

ti
m

e
(d

ay
s)

98

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Service Virtual CPUs Memory Size (GB) Storage (GB) Cost($/hr.)
S1 1 1.700 160 0.0885
S2 1 0.615 0 0.0200
S3 1 0.615 0 0.0270
S4 1 1.700 160 0.0560
S5 1 0.615 0 0.0250

Table 5.5: Specifications of the services (Source: www.amazon.com)

5.7.2 Simulation Models

The dataset described in the previous sub-section was used to select the best

service in five different simulation models using TOPSIS and ELECTRE as the

means for MCDM. The objective was to discover whether there was any differ-

ence between service selection outcomes using as input: (1) service specifications;

(2) average QoS data over the entire pre-interaction period; and (3) QoS value of

each time slot. In order to determine the effect of time slot weights on the over-

all service ranking, the aggregation process was performed with: (1) constant

time slot weight; and (2) time-delayed time slot weight (as described in Section

5.6.1). Furthermore, the simulation models were repeated with: (1) fixed criteria

weights; and (2) different criteria weights for each time slot calculated using the

entropy method. The simulation models are:

Model I Service selection by applying MCDM to service specifications.

Model II Service selection by applying MCDM to average QoS values (existing

approaches).

Model III Service selection by aggregation, without time decay, of the MCDM

outcomes by using constant criteria weights in each time slot.

Model IV Service selection by time decay aggregation of MCDM outcomes in

each time slot and using constant criteria weights in each time slot. Three

variations of the logistic time decay function are used in this simulation (re-

ferred to as Model IV(a), IV(b) and IV(c) in the forthcoming discussion).

Model IIIe and IVe Service selection with different criteria weights for each

time slot, determined using the entropy method. In this simulation model, I

repeat the experiments of simulation models III and IV above by using the

entropy weight for each criterion instead of a fixed weight. In the forthcom-

ing discussion, the models with entropy weights are referred to as simulation

models IIIe and IVe.

99

www.amazon.com

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

ti
S1 S2 S3 S4 S5

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3
1 2015.13 1400.28 844.16 68.79 1000.00 240.46 884.65 1000.00 820.49 2263.39 4202.50 4755.74 88.78 145.78 306.92
2 2004.82 1432.84 860.29 72.33 440.20 247.70 872.62 467.31 764.49 2232.59 1963.88 4431.15 83.23 150.76 306.94
3 2012.63 1398.19 795.32 68.79 367.14 274.82 873.62 402.37 735.39 2235.16 1690.97 4262.48 88.03 147.34 305.92
4 2036.07 1394.73 820.09 70.96 249.59 243.42 876.23 359.43 753.75 2241.83 1510.49 4368.93 84.77 145.20 302.45
5 1981.38 1380.09 838.37 69.45 203.89 264.62 872.62 515.71 777.42 2232.59 2167.27 4506.11 86.07 149.58 311.16
6 2516.46 1653.84 1154.58 69.54 325.67 245.63 874.62 362.64 771.73 2237.73 1523.99 4473.13 84.20 146.59 304.05
7 2064.49 1417.59 849.30 70.96 50.00 259.45 869.11 400.75 708.61 2223.61 1684.16 4107.30 79.41 144.82 304.95
8 1893.12 1340.46 805.37 73.74 51.35 280.79 878.64 442.67 721.68 2247.99 1860.34 4183.02 84.90 147.26 318.55
9 1927.36 1377.25 801.86 75.73 51.33 245.63 868.10 153.03 721.29 2221.04 643.10 4180.77 79.66 146.91 297.38

10 1994.51 1406.47 833.83 79.14 47.99 240.51 874.12 506.04 759.31 2236.44 2126.63 4401.16 78.91 143.20 304.86
11 2004.99 1435.60 820.88 74.36 60.70 239.75 889.17 260.90 726.72 2274.94 1096.42 4212.25 79.35 143.18 302.51
12 1970.91 1386.99 795.36 77.77 50.30 268.89 879.14 83.01 789.45 2249.27 348.86 4575.83 83.08 168.19 304.15
13 2048.70 1405.71 825.23 72.28 55.67 281.49 881.14 83.76 774.06 2254.41 351.99 4486.62 85.49 157.46 340.78
14 2007.31 1420.34 816.40 70.25 45.31 241.87 884.15 82.66 866.79 2262.10 347.39 5024.12 33.15 28.81 84.08
15 2111.37 1447.47 870.48 68.79 57.32 243.28 887.66 85.86 777.42 2271.09 360.81 4506.11 32.39 28.53 81.01
16 2046.04 1394.64 813.55 72.28 57.04 295.26 877.13 81.92 744.83 2244.14 344.26 4317.20 32.14 27.94 79.03
17 2012.63 1390.37 799.66 76.53 76.08 271.95 885.16 80.65 713.53 2264.67 338.93 4135.79 32.41 28.88 78.10
18 2131.98 1537.05 829.53 147.44 44.99 244.22 885.16 88.22 833.29 2264.67 370.74 4829.96 32.27 28.81 77.62
19 2028.09 1428.04 812.10 570.98 44.67 249.91 884.15 81.39 784.79 2262.10 342.06 4548.84 32.55 29.06 81.58
20 1999.67 1386.27 828.13 135.68 70.75 286.57 869.11 80.47 772.12 2223.61 338.19 4475.38 32.87 30.32 81.02
21 2009.47 1440.49 837.62 81.35 45.06 273.45 899.20 80.08 724.39 2300.60 336.54 4198.76 32.39 29.97 81.24
22 2022.94 1475.98 906.28 85.41 58.04 365.72 897.69 79.60 714.43 2296.75 334.52 4141.04 33.13 71.52 84.30
23 2074.47 1398.11 830.19 74.36 53.00 241.26 876.13 81.83 774.70 2241.57 343.89 4490.37 32.23 62.50 80.83
24 1952.79 1338.33 817.19 70.16 47.35 447.97 890.67 79.64 782.85 2278.78 334.70 4537.60 32.29 50.20 80.51
25 1933.18 1367.46 832.76 72.95 45.01 246.90 882.15 86.82 873.77 2256.97 364.86 5064.60 32.55 53.67 79.09
26 1937.00 1379.38 815.70 450.15 58.34 306.31 885.16 78.33 864.98 2264.67 329.18 5013.62 32.26 29.67 84.52
27 2012.47 1372.40 812.80 69.59 61.72 277.73 874.62 80.21 749.87 2237.73 337.09 4346.44 32.53 35.84 87.91
28 1986.70 1416.79 841.97 68.79 44.67 254.98 879.14 79.60 816.99 2249.27 334.52 4735.50 33.40 30.83 84.14
29 1960.61 1414.69 793.68 69.54 60.06 242.67 875.63 79.34 772.50 2240.29 333.41 4477.63 32.55 53.48 81.52
30 1898.11 1407.13 794.62 70.91 45.68 240.46 885.16 78.81 972.45 2264.67 331.21 5636.58 32.55 63.55 83.44
31 1897.16 1344.24 813.06 69.68 64.93 247.29 881.31 142.54 1000.00 2254.83 599.03 5796.25 36.57 67.84 88.07
32 2281.75 1478.65 937.13 69.45 59.35 257.29 883.65 77.89 786.34 2260.82 327.34 4557.84 32.69 72.40 81.46
33 2017.62 1404.47 826.63 69.59 47.03 249.95 887.16 76.67 942.19 2269.80 322.19 5461.16 33.71 32.88 85.93
34 2072.14 1514.77 820.74 87.40 50.39 285.86 881.64 77.50 798.37 2255.69 325.69 4627.55 32.69 37.51 82.65
35 2064.33 1598.25 934.75 77.15 50.00 301.98 886.66 76.71 785.31 2268.52 322.38 4551.84 32.85 29.85 82.51
36 2012.63 1426.61 802.61 94.43 81.41 546.95 896.19 77.24 836.26 2292.90 324.58 4847.20 38.54 63.77 93.52
37 2020.45 1400.11 885.11 69.54 138.45 275.62 885.16 76.49 784.66 2264.67 321.46 4548.09 32.54 67.55 85.92
38 2049.87 1376.62 812.10 84.66 59.37 284.36 884.65 76.27 710.42 2263.39 320.54 4117.80 33.97 70.29 89.76
39 2053.03 1476.52 892.59 73.65 46.06 934.06 881.64 76.40 807.68 2255.69 321.09 4681.53 33.41 60.16 93.48
40 1989.20 1369.64 822.24 1000.00 82.39 266.03 878.13 76.62 929.77 2246.71 322.01 5389.19 32.98 41.25 83.78
41 2119.18 1390.54 822.29 71.62 46.68 349.78 874.62 75.00 790.35 2237.73 315.21 4581.08 35.10 38.81 80.96
42 1958.28 1385.65 800.32 72.33 128.13 254.28 906.22 78.42 870.93 2318.56 329.55 5048.10 32.44 31.05 81.03
43 1955.29 1402.24 815.65 68.79 43.32 244.88 902.21 78.33 788.93 2308.30 329.18 4572.83 32.56 44.71 81.65
44 2791.89 1733.77 1119.52 71.71 43.67 271.95 900.20 75.49 867.30 2303.16 317.23 5027.11 31.98 60.08 81.36
45 1970.74 1416.79 839.16 70.21 45.98 250.71 912.74 75.49 755.04 2335.24 317.23 4376.42 34.65 57.42 87.29
46 1944.32 1380.76 846.64 70.16 45.36 250.61 947.34 80.43 899.64 2423.77 338.01 5214.53 32.57 49.91 87.99
47 1978.72 1402.29 809.15 92.97 51.03 242.62 930.29 75.14 767.20 2380.15 315.76 4446.89 33.40 32.06 84.15
48 1986.54 1387.70 836.87 69.50 45.29 248.45 902.21 73.47 822.17 2308.30 308.77 4765.49 32.96 30.18 81.22
49 2108.71 1511.34 894.55 73.74 53.70 241.82 942.83 80.21 871.70 2412.23 337.09 5052.60 32.28 52.69 81.94
50 2043.88 1376.71 825.18 71.58 44.39 261.00 922.27 80.65 796.43 2359.62 338.93 4616.31 33.42 53.84 91.50
51 2485.37 2337.71 1256.71 83.38 73.71 321.82 917.25 74.92 893.04 2346.79 314.84 5176.29 276.55 894.86 390.84
52 2061.84 1394.73 979.29 70.21 49.68 246.19 875.13 98.90 695.68 2239.01 415.62 4032.34 32.83 30.72 81.02
53 1984.04 1424.48 983.73 70.83 61.02 266.03 844.53 104.37 693.74 2160.74 438.60 4021.09 33.55 29.67 81.80
54 2020.45 1411.27 985.93 71.67 52.01 243.37 844.53 104.19 687.92 2160.74 437.87 3987.36 32.98 49.08 81.60
55 1949.80 1384.85 968.96 73.65 50.36 239.05 844.53 104.37 685.46 2160.74 438.60 3973.11 34.99 38.29 82.65
56 1992.19 1380.72 996.17 68.79 61.72 277.87 852.56 128.26 691.93 2181.27 539.01 4010.60 32.68 54.10 82.61
57 1970.91 1431.46 976.40 74.36 60.01 288.78 843.53 104.37 693.48 2158.17 438.60 4019.59 32.96 41.87 85.76
58 1979.06 1412.60 1017.95 79.80 49.34 236.09 852.06 103.67 699.95 2179.99 435.66 4057.08 33.95 64.93 83.65
59 2005.82 1520.73 1088.86 83.38 50.34 236.79 852.06 100.95 685.59 2179.99 424.26 3973.86 32.81 107.85 83.16
60 1999.67 1423.77 944.89 70.25 83.10 293.99 852.06 103.71 691.93 2179.99 435.84 4010.60 32.54 75.28 83.86
61 1939.99 1412.69 983.69 69.59 51.35 244.78 859.58 537.85 695.81 2199.23 2260.32 4033.09 32.86 37.62 84.44
62 2176.03 1505.74 1055.20 68.88 52.35 237.36 852.06 105.11 700.34 2179.99 441.73 4059.32 33.52 31.02 88.41
63 2103.72 1436.22 994.02 69.45 54.69 247.88 844.53 100.95 695.55 2160.74 424.26 4031.59 259.17 361.62 552.91
64 2098.57 1400.82 993.97 79.93 384.47 257.29 852.06 101.61 687.79 2179.99 427.02 3986.61 191.99 361.32 399.43
65 2466.92 1641.34 1222.49 104.73 61.34 233.88 852.06 102.22 701.89 2179.99 429.59 4068.32 32.54 47.21 84.08
66 2058.18 1424.52 944.47 69.59 50.68 235.34 859.58 529.67 691.80 2199.23 2225.93 4009.85 783.87 932.40 561.12
67 2056.52 1405.04 962.47 68.88 49.66 263.21 844.03 101.65 693.74 2159.46 427.20 4021.09 32.53 86.49 90.57
68 2363.20 1667.81 1218.05 68.75 51.39 246.33 852.06 103.58 687.53 2179.99 435.29 3985.11 32.68 36.06 85.79
69 2326.63 1654.55 1294.76 77.06 50.00 243.42 875.63 98.94 687.40 2240.29 415.80 3984.36 33.39 31.04 85.23
70 1952.79 1394.68 1016.55 93.02 64.01 241.96 843.53 100.21 701.89 2158.17 421.13 4068.32 32.41 31.62 82.16
71 2009.81 1408.65 1012.90 82.76 64.04 245.58 845.04 99.51 711.98 2162.02 418.19 4126.79 33.12 35.02 85.64
72 1918.88 1409.27 980.74 70.25 51.67 262.36 874.62 225.19 692.06 2237.73 946.35 4011.35 33.08 31.47 86.98
73 2426.70 1729.32 1228.38 75.87 51.99 259.45 844.53 98.90 695.94 2160.74 415.62 4033.84 34.70 44.86 98.95
74 2467.09 1653.89 1263.49 80.55 52.01 268.99 853.06 100.25 693.74 2182.55 421.32 4021.09 32.41 32.74 84.66
75 1976.06 1391.88 991.77 79.93 169.51 249.95 844.03 99.55 693.87 2159.46 418.37 4021.84 33.68 31.19 83.44
76 1976.06 1379.29 972.66 70.21 52.67 259.49 844.53 100.21 691.80 2160.74 421.13 4009.85 33.38 31.65 84.38
77 2043.72 1409.89 1011.41 71.58 53.36 255.12 874.62 100.17 713.66 2237.73 420.95 4136.54 33.66 31.34 83.73
78 1973.74 1399.53 983.03 73.65 51.01 250.00 875.63 98.90 679.51 2240.29 415.62 3938.63 33.38 30.60 82.44
79 2519.95 1740.58 1260.76 88.11 173.17 261.61 867.10 186.29 687.66 2218.48 782.87 3985.86 34.24 66.76 85.70
80 1983.88 1379.34 970.51 71.58 54.99 268.89 867.60 98.94 683.39 2219.76 415.80 3961.12 33.23 31.18 85.36
81 1955.29 1382.14 961.62 70.21 50.64 247.04 867.10 98.20 695.68 2218.48 412.67 4032.34 32.83 31.77 84.09
82 1986.37 1422.43 975.69 75.69 75.10 269.08 867.60 98.24 689.73 2219.76 412.86 3997.85 34.25 32.35 83.70
83 2043.55 1357.81 966.81 71.62 51.99 245.53 875.63 98.90 740.30 2240.29 415.62 4290.96 33.40 30.74 84.85
84 1962.93 1382.18 976.35 86.08 50.32 246.99 875.13 98.94 683.78 2239.01 415.80 3963.37 1031.10 1027.94 614.61
85 1956.28 1403.98 991.07 70.29 84.77 257.29 866.60 98.90 689.73 2217.20 415.62 3997.85 33.25 30.29 87.20

Table 5.6: The QoS data of services S1 −S5 in first 85 time slots from the time
spot

100

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Services Average Response Time (milliseconds)
CPU Memory I/O

S1 2056.19 1455.72 1035.82
S2 80.77 81.94 260.42
S3 860.15 126.66 722.40
S4 2200.70 532.28 4187.19
S5 56.41 73.93 122.34

Table 5.7: Average QoS of the 300 time slots.

In simulation models IV and IVe, three logistic decay functions are used to

calculate the weight of each time slot. These functions give a maximum value of

1 to the time slots near the time spot and logistically decrease the weight to the

minimum value of 0.4 for older time slots. The first logistic decay function gives

a maximum weight of 1 to the first 10 time slots from the time spot and then

logistically decreases to 0.4 up to the 150th time slot. In the second decay func-

tion, the lowering of the time slot weight from the maximum value of 1 begins

after a longer period of time from the time spot (from 50th time slot), thereby

giving older time slots slightly more importance than the first decay function

and approaches to the minimum value of 0.4 by 160th time slot. In the third

decay function, the weight decay starts after the 100th time slot from the time

spot and decreases to the minimum value of 0.4 up to the 250th time slot. Using

the logistic decay function with three different parameters enables us to see the

relative effect of the manner in which the time slot weight decay affects the final

aggregated service selection.

In simulation models I to IV, I used neutral criteria weights (the same

weights for all criteria). When average QoS is used for MCDM-based service

selection, the criteria weights cannot reflect the users’ changing requirements

over time. By contrast, my approach performs separate MCDM analysis for each

time slot, therefore it is possible to use different criteria weights in different

time slots. In simulation models IIIe and IVe, I repeat simulation model III and

IV by dynamically calculating the criteria weights using the entropy method (ex-

plained in Section 5.3) for each time slot to demonstrate this additional capability

of my approach.

By using the entropy method, I first calculate the entropy for each column

in the decision matrix and then use it to find the corresponding criterion weight.

The criteria weights for the decision matrix formed by the specifications (Table

5.5) and the decision matrix formed by average QoS (Table 5.7) are given in

Table 5.8. The criteria weights for each time slot of my experiment calculated

101

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Input Data Criteria Weight
wc1 wc2 wc3 wc4

Specifications 0.00 0.10 0.76 0.14
Average QoS 0.35 0.33 0.16 0.16

Table 5.8: Criteria weights calculated using the Entropy Method for decision
matrices’ specifications and average QoS

using this method are given in Table 5.9

5.7.3 Results and Discussion

Histograms of the CPU, memory and I/O for response time for services in the

dataset (Figure-5.7) show that some of these measurements have a bi-modal fre-

quency distribution or have a scattered distribution, which means that the mean

(shown in Table 5.7) cannot effectively represent the entire data; thus, in this

scenario, MCDM based on average QoS is not a reliable method for service selec-

tion as is the case with specification-based MCDM.

The final service selection results obtained using the four simulation mod-

els described in the previous sub-section are presented in Table 5.10 which shows

that in simulation model I, S4 is selected by both TOPSIS and ELECTRE on the

basis of service specifications. In simulation model II, which uses the average

of QoS values with TOPSIS, Service S2 is selected and the same results are ob-

tained by using ELECTRE in Model II.

The service ranking in each time slot (using TOPSIS and ELECTRE) com-

puted in simulation models III and IV is depicted in Figure 5.8. It can be seen

that in both models S5 is given the highest rank in most of the time slots. The

final rankings computed by the simulation models are given in Table 5.10 where

the proposed time slot-based approach (used in Models III and IV) leads to the

selection of Service S5 for both TOPSIS- and ELECTRE-based MCDM, but there

is a variation in the ranking values.

Although aggregation without time slot weights in Model III and aggrega-

tion with variation in time slot weights in Model IV leads to the selection of the

same service, there is a considerable variation in the ranking values assigned by

each model. This variation in rank values shows that having a weight for time

slots is effective in controlling the relative importance of the recent and the old

QoS values. This is further evident from the difference in the aggregated output

values computed by using the three logistic decay curves to calculate the time

102

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4
1 0.48 0.06 0.20 0.26 81 0.33 0.38 0.15 0.13 161 0.33 0.39 0.15 0.14
2 0.46 0.09 0.20 0.25 82 0.34 0.37 0.15 0.14 162 0.35 0.35 0.15 0.14
3 0.46 0.11 0.19 0.24 83 0.33 0.39 0.14 0.14 163 0.34 0.38 0.15 0.14
4 0.44 0.15 0.19 0.23 84 0.29 0.43 0.17 0.11 164 0.37 0.31 0.17 0.15
5 0.44 0.14 0.19 0.24 85 0.34 0.37 0.15 0.14 165 0.34 0.37 0.15 0.14
6 0.45 0.14 0.20 0.21 86 0.38 0.30 0.18 0.14 166 0.34 0.38 0.15 0.14
7 0.38 0.26 0.16 0.20 87 0.26 0.38 0.17 0.18 167 0.33 0.38 0.15 0.14
8 0.37 0.26 0.17 0.21 88 0.35 0.34 0.16 0.15 168 0.33 0.39 0.14 0.14
9 0.34 0.29 0.22 0.15 89 0.33 0.39 0.15 0.14 169 0.35 0.36 0.15 0.14

10 0.39 0.25 0.17 0.20 90 0.32 0.39 0.15 0.14 170 0.33 0.38 0.15 0.14
11 0.36 0.29 0.16 0.19 91 0.35 0.34 0.15 0.15 171 0.33 0.38 0.15 0.13
12 0.33 0.36 0.13 0.18 92 0.34 0.37 0.15 0.14 172 0.35 0.34 0.17 0.14
14 0.34 0.42 0.11 0.14 93 0.35 0.35 0.15 0.15 173 0.33 0.39 0.16 0.13
13 0.34 0.35 0.14 0.17 94 0.34 0.38 0.14 0.14 174 0.34 0.38 0.14 0.14
15 0.34 0.40 0.13 0.14 95 0.34 0.36 0.17 0.13 175 0.35 0.35 0.15 0.15
16 0.34 0.41 0.11 0.14 96 0.33 0.39 0.14 0.14 176 0.34 0.36 0.15 0.14
17 0.35 0.39 0.13 0.14 97 0.28 0.37 0.16 0.19 177 0.33 0.37 0.16 0.14
18 0.29 0.44 0.13 0.14 98 0.37 0.30 0.17 0.15 178 0.35 0.36 0.17 0.12
19 0.25 0.47 0.13 0.15 99 0.32 0.38 0.16 0.14 179 0.35 0.31 0.17 0.16
20 0.30 0.42 0.13 0.15 100 0.27 0.27 0.27 0.18 180 0.35 0.36 0.15 0.14
21 0.32 0.42 0.12 0.14 101 0.33 0.38 0.16 0.14 181 0.33 0.38 0.15 0.15
22 0.35 0.37 0.13 0.15 102 0.34 0.37 0.16 0.13 182 0.34 0.38 0.15 0.14
23 0.36 0.36 0.13 0.15 103 0.33 0.38 0.15 0.14 183 0.33 0.39 0.15 0.13
24 0.36 0.39 0.10 0.15 104 0.33 0.39 0.14 0.14 184 0.44 0.20 0.18 0.17
25 0.35 0.38 0.13 0.15 105 0.34 0.37 0.15 0.14 185 0.33 0.38 0.17 0.12
26 0.26 0.47 0.11 0.16 106 0.27 0.33 0.29 0.12 186 0.34 0.37 0.15 0.14
27 0.35 0.39 0.11 0.14 107 0.33 0.35 0.19 0.13 187 0.39 0.31 0.15 0.16
28 0.33 0.42 0.11 0.14 108 0.32 0.39 0.18 0.12 188 0.38 0.29 0.17 0.16
29 0.36 0.37 0.12 0.15 109 0.32 0.40 0.15 0.13 189 0.34 0.33 0.18 0.15
30 0.36 0.38 0.11 0.15 110 0.30 0.40 0.16 0.14 190 0.37 0.30 0.17 0.16
31 0.38 0.34 0.12 0.16 111 0.33 0.39 0.15 0.14 191 0.33 0.37 0.16 0.14
32 0.37 0.35 0.14 0.14 112 0.32 0.39 0.15 0.13 192 0.33 0.37 0.17 0.13
33 0.34 0.41 0.12 0.14 113 0.35 0.33 0.19 0.13 193 0.34 0.37 0.15 0.14
34 0.33 0.41 0.11 0.14 114 0.34 0.37 0.16 0.12 194 0.38 0.27 0.18 0.16
35 0.33 0.40 0.15 0.12 115 0.33 0.39 0.14 0.14 195 0.35 0.34 0.17 0.14
36 0.37 0.38 0.09 0.17 116 0.33 0.38 0.15 0.14 196 0.34 0.36 0.16 0.14
37 0.39 0.31 0.14 0.16 117 0.37 0.31 0.19 0.13 197 0.36 0.32 0.19 0.13
38 0.37 0.36 0.12 0.15 118 0.35 0.38 0.15 0.12 198 0.31 0.39 0.17 0.13
39 0.36 0.39 0.09 0.15 119 0.27 0.43 0.14 0.16 199 0.35 0.34 0.17 0.14
40 0.33 0.40 0.12 0.16 120 0.34 0.38 0.16 0.12 200 0.37 0.31 0.18 0.13
41 0.34 0.41 0.11 0.14 121 0.33 0.38 0.13 0.16 201 0.32 0.27 0.21 0.21
42 0.35 0.37 0.12 0.15 122 0.33 0.40 0.14 0.14 202 0.44 0.17 0.22 0.18
43 0.34 0.39 0.12 0.14 123 0.34 0.36 0.16 0.14 203 0.34 0.35 0.17 0.13
44 0.36 0.36 0.14 0.13 124 0.32 0.39 0.15 0.14 204 0.29 0.40 0.16 0.14
45 0.35 0.38 0.13 0.15 125 0.33 0.37 0.17 0.13 205 0.33 0.37 0.16 0.14
46 0.34 0.39 0.12 0.15 126 0.33 0.38 0.16 0.13 206 0.35 0.34 0.17 0.14
47 0.31 0.42 0.13 0.14 127 0.33 0.35 0.17 0.15 207 0.35 0.35 0.18 0.11
48 0.33 0.42 0.11 0.14 128 0.39 0.28 0.17 0.16 208 0.32 0.40 0.14 0.14
49 0.34 0.38 0.14 0.14 129 0.23 0.43 0.15 0.19 209 0.33 0.37 0.16 0.14
50 0.35 0.38 0.12 0.15 130 0.30 0.36 0.17 0.16 210 0.32 0.37 0.18 0.13
51 0.23 0.48 0.14 0.15 131 0.38 0.28 0.18 0.16 211 0.32 0.36 0.20 0.12
52 0.33 0.38 0.16 0.13 132 0.31 0.36 0.18 0.15 212 0.38 0.29 0.17 0.16
53 0.33 0.38 0.15 0.14 133 0.32 0.39 0.16 0.14 213 0.35 0.34 0.16 0.14
54 0.35 0.36 0.16 0.14 134 0.36 0.34 0.15 0.15 214 0.35 0.37 0.14 0.14
55 0.33 0.38 0.15 0.14 135 0.39 0.27 0.17 0.16 215 0.34 0.38 0.15 0.14
56 0.36 0.34 0.16 0.14 136 0.34 0.37 0.15 0.14 216 0.37 0.31 0.17 0.15
57 0.34 0.37 0.14 0.14 137 0.36 0.32 0.17 0.15 217 0.35 0.33 0.17 0.15
58 0.34 0.35 0.17 0.15 138 0.35 0.34 0.16 0.15 218 0.35 0.34 0.16 0.15
59 0.35 0.32 0.18 0.15 139 0.33 0.38 0.16 0.12 219 0.33 0.37 0.16 0.13
60 0.38 0.32 0.15 0.15 140 0.39 0.26 0.21 0.14 220 0.34 0.38 0.14 0.14
61 0.39 0.28 0.17 0.16 141 0.37 0.30 0.17 0.16 221 0.33 0.38 0.17 0.13
62 0.33 0.38 0.15 0.13 142 0.30 0.40 0.16 0.14 222 0.32 0.37 0.18 0.12
63 0.24 0.36 0.23 0.16 143 0.32 0.39 0.15 0.14 223 0.33 0.37 0.17 0.13
64 0.30 0.27 0.22 0.21 144 0.30 0.40 0.15 0.14 224 0.32 0.42 0.12 0.14
65 0.33 0.35 0.19 0.13 145 0.32 0.37 0.16 0.15 225 0.30 0.35 0.19 0.16
66 0.29 0.39 0.19 0.12 146 0.33 0.39 0.15 0.14 226 0.32 0.39 0.16 0.13
67 0.38 0.33 0.15 0.15 147 0.36 0.32 0.16 0.15 227 0.33 0.39 0.15 0.13
68 0.33 0.37 0.17 0.13 148 0.34 0.34 0.17 0.15 228 0.31 0.38 0.18 0.13
69 0.32 0.38 0.18 0.13 149 0.38 0.27 0.19 0.16 229 0.32 0.39 0.16 0.13
70 0.32 0.38 0.17 0.13 150 0.34 0.36 0.16 0.14 230 0.31 0.41 0.15 0.12
71 0.33 0.38 0.16 0.14 151 0.34 0.36 0.17 0.13 231 0.32 0.41 0.15 0.12
72 0.35 0.35 0.15 0.15 152 0.33 0.38 0.17 0.13 232 0.31 0.41 0.14 0.13
73 0.34 0.37 0.16 0.13 153 0.33 0.38 0.15 0.14 233 0.32 0.41 0.15 0.12
74 0.33 0.38 0.17 0.13 154 0.38 0.31 0.16 0.16 234 0.31 0.41 0.15 0.12
75 0.36 0.33 0.17 0.15 155 0.33 0.38 0.15 0.13 235 0.30 0.42 0.15 0.13
76 0.34 0.38 0.14 0.14 156 0.34 0.37 0.16 0.13 236 0.24 0.50 0.11 0.15
77 0.33 0.39 0.15 0.14 157 0.22 0.42 0.21 0.15 237 0.32 0.43 0.12 0.13
78 0.32 0.39 0.16 0.13 158 0.33 0.38 0.15 0.14 238 0.30 0.42 0.16 0.12
79 0.38 0.26 0.21 0.15 159 0.34 0.35 0.16 0.15 239 0.30 0.43 0.15 0.13
80 0.33 0.38 0.15 0.14 160 0.34 0.39 0.13 0.14 240 0.30 0.41 0.15 0.13

Table 5.9: Criteria weights for time slots 1-240 calculated using the Entropy
Method

103

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Figure 5.7: Histograms of response times in the dataset

slot weights (Models IV(a), IV(b) and IV(c) in Table 5.10).

In simulation models IIIe and IVe, the ability of my proposed approach

to use different criteria weights in different time slots is assessed by using the

entropy method (Section 5.3.5.4) to dynamically assign the criteria weights for

each time slot. The final service selection results obtained by this approach are

given in Table 5.11.

These results show that selecting a cloud service by using average QoS can

lead to the selection of a service that has a better service average but is not the

104

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Services
TOPSIS-Based Simulation Models

Model-I Model-II Model III Model-IV(a) Model-IV(b) Model-IV(c)
S1 0.5741 0.3646 0 0 0 0
S2 0.4259 0.9791 70 41.4552 46.0243 50.3210
S3 0.3991 0.8183 33 20.2903 24.1210 25.1462
S4 0.7311 0.3335 0 0 0 0
S5 0.4071 0.9733 197 99.9924 121.5538 146.2197

Selected Service S4 S2 S5 S5 S5 S5

Services
ELECTRE-Based Simulation Models

Model-I Model-II Model III Model-IV(a) Model-IV(b) Model-IV(c)
S1 0 0 0 0 0 0
S2 2 3 108 63.9768 73.1688 79.3545
S3 0 2 51 30.7287 36.7190 38.7838
S4 4 0 1 0.4000 0.4001 0.4007
S5 1 3 209 109.3630 132.4192 157.1707

Selected Service S4 S2 S5 S5 S5 S5

Table 5.10: Final service ranks calculated by the five simulation models

Figure 5.8: Services selected in each time slot with fixed subjective criteria
weights

best service, due to the variations in the QoS performance of the cloud services.

My proposed approach is capable of taking these variations into account by con-

sidering the entire QoS history instead of using average QoS. This approach cap-

tures the variations in the performance of services and gives more importance to

recent QoS data without discarding the older QoS data (which is accorded less

importance), which in turn, leads to more reliable cloud service selection.

105

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

Services
TOPSIS-Based Simulation Models

Model-IIIe Model-IV(a)e Model-IV(b)e Model-IV(c)e

S1 0 0 0 0
S2 34 19.5390 21.3134 22.9434
S3 2 1.5612 1.9851 1.9999
S4 0 0 0 0
S5 264 140.6378 68.4007 196.7438

Selected Service S5 S5 S5 S5

Services
ELECTRE-Based Simulation Models

Model-IIIe Model-IV(a)e Model-IV(b)e Model-IV(c)e

S1 0 0 0 0
S2 56 35.1636 39.0634 40.9630
S3 3 2.3287 2.9765 2.9998
S4 0 0 0 0
S5 272 146.2277 174.6360 203.3238

Selected Service S5 S5 S5 S5

Table 5.11: Final service ranks calculated in each simulation model with variable
criteria weights computed by using the entropy method

Although the overall service ranks in simulation models IIIe and IVe are

the same as those obtained using fixed criteria weights (Table 5.10), there is nev-

ertheless a difference in the actual rank values assigned to each service, which

suggests that in scenarios where users’ criteria vary with time depending on

changes in workload or predictable seasonal variations in business needs, this

approach is able to use dynamic criteria weights to take these changes into ac-

count in both cases.

To summarize the above observations, the MCDM based on QoS history

time slots approach has the following advantages over the historical average as

well as specification-based approaches:

1. It considers the actual QoS delivered to the user.

2. It can take into account the variability in QoS.

3. It considers the new and old QoS data with a different degree of importance

in the MCDM process.

4. It allows variation in criteria weights between time slots to take into ac-

count the changes in user’s preferences at different times.

106

CHAPTER 5. SERVICE SELECTION IN THE PRE-INTERACTION PHASE

5.8 Conclusion

In this chapter, I discussed cloud service selection as a multi-criteria decision

making problem and explained how MCDM techniques can be used to select an

appropriate cloud service during the pre-interaction phase of cloud service man-

agement. I demonstrated the possible ways by which MCDM can be used for

cloud service selection and showed that using service specifications does not lead

to the selection of the best service, thereby showing that QoS history as a basis

for cloud service selection gives better results. Furthermore, I proposed a novel

cloud service selection approach in which the QoS history is divided into several

time slots. A service selection decision is made at each time slot and all deci-

sions are aggregated to find the overall optimal service which remained optimal

in the highest number of time slots in the pre-interaction period. The decisions

at the time slot level are made by applying TOPSIS or ELECTRE to the QoS

data at each time slot along with the user criteria weights. I compared the re-

sults obtained using this approach with those obtained by applying the same

MCDM technique to average QoS data and I found that, due to the variations

in service performance resulting from the dynamic nature of the cloud environ-

ment, the compared approaches do not lead to the selection of the same service.

Furthermore, the results of the simulations reveal that that the overall service

rank also depends on the weights assigned to the time slots, which can be used

as a means to control the relative importance of older and newer QoS data in the

decision-making process.

In addition to time slot weights, my proposed approach also permits the use

of different criteria weights for each time slot. This feature is useful when there

is seasonal variation in service users’ requirements, and as a result, the criteria

weights also vary between time slots. The approach framework proposed in this

paper deals with service selection in the pre-interaction period which is only a

part of overall user-side cloud service management. In post-interaction decision

making, service migration decisions need to be analyzed which requires several

additional factors such as QoS forecasting, cost of migration (in terms of service

disruption and resource usage for data transfer etc.) which need to be included in

the decision-making process. These issues are discussed in subsequent chapters.

107

Chapter 6

Forecasting Cloud Service QoS in
the Post-Interaction Phase

6.1 Introduction

In the previous chapter, I discussed the pre-interaction decision-making and pre-

sented an MCDM approach for selecting a cloud service, based on QoS history. As

mentioned in Section 4.5, the next step in user-side cloud service management

is the monitoring and management of the selected service in the post-interaction

phase which requires predicting the future QoS of the selected service if the

formed SLA extends to a point in the future. Accurate QoS forecasting of a cloud

service is important as it enables the decision maker to take into account the

future expected levels of QoS in cloud service management decision making. The

UCSM Framework, includes a QoS forecasting component in Module 2 to per-

form the forecasting as discussed in Section 4.5. In this chapter, I describe the

functioning of this component.

The QoS history of each service is a time series of the QoS values available

for each time slot. Therefore, forecasting the future QoS on the basis of past

observed QoS values is essentially a time series problem. Time series analysis

and forecasting is a highly developed field in the literature and the techniques

therein are extensively used in economic and business forecasting but, as dis-

cussed in the previous chapters, the use of these techniques for modeling and

forecasting the QoS of cloud services has not been investigated in the literature.

In this chapter, I investigate the use of various time series techniques for cloud

service QoS forecasting and compare the results obtained by using the different

108

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

techniques to determine how suitable each technique is for cloud QoS forecasting.

In addition to discussing QoS forecasting, I also investigate whether or not

there is any self similarity in the observed cloud QoS, which indicates how reli-

ably QoS can be forecasted on the basis of past observations.

This chapter is organized as follows. In the next section, I present the steps

involved in the QoS forecasting component of the UCSM framework. I give a brief

overview of various time series analysis and forecasting techniques in Section 6.3

and discuss the two prominent categories of these approaches in Section 6.4 and

Section 6.5. In Section 6.6, I describe the various error measures used to assess

a time series model. In Section 6.7, I describe time series model selection and

parameter estimation for cloud QoS. I illustrate the time series techniques for

cloud QoS forecasting through an example in Section 6.8. Before concluding the

chapter in Section 6.10, I discuss the presence of self similarity in cloud QoS data

in Section 6.9.

6.2 Steps in QoS Forecasting Component

As mentioned in Chapter 4, the role of the QoS forecasting component is to pro-

vide QoS forecasts to the early warning and the post-interaction decision-making

components of the UCSM framework. For each QoS criterion of a service, the

forecasting component receives a sequence of past values from the QoS reposi-

tory. This information, being a sequence of values measured at regular intervals,

is a time series. The forecasting component performs the following tasks on this

input:

1. Time series modeling of QoS data:
In this phase, the input data (past QoS time series) is used to find the

parameters of a time series model that most accurately represents this

data.

2. Forecast the future QoS values:
In this step, the time series model selected in the first step is used to gen-

erate forecasts of the QoS values for several time slots in the future.

The first task has many sub-tasks in it that need to be performed to ascer-

tain the parameters of the time series model. These steps are broadly divided

into three parts, namely:

109

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

1. Preliminary investigation

2. Model estimation

3. Model evaluation

In the preliminary investigation, various features of the time series are

studied to find out its characteristics, which helps in identifying a suitable time

series model. The primary aim is to find out if the following features exist in the

time series.

1. Is there any mutual correlation between different QoS criteria values of a

service?

2. Is there any correlation between the consecutive QoS values of a criterion

3. Which time series technique is more appropriate for modeling and forecast-

ing the quality of cloud services?

4. How many past observations are needed to generate an accurate future

forecast?

Once one or more models are selected as candidate models, based on the

preliminary study, the parameters of these models are estimated. The selected

models are evaluated using some error estimates and residual analysis to as-

certain how well a model approximates the observed data. On the basis of this

comparison, the best model is chosen for the next stage. The details of this pro-

cess are given in Section 6.7.

In the final stage of forecasting, the fitted time series model is used to

generate forecasts for the future values of the time series. This four-step ap-

proach, (three for modeling and one for the forecasting phase) is based on the

Box-Jenkins Approach [133].

In the next section, I give an overview of time series analysis and forecast-

ing approaches.

6.3 Overview of time series analysis and forecast-
ing

The methods to investigate the patterns in the time series data and its forecast-

ing have been thoroughly studied in the literature and robust techniques have

110

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

Modelling of QoS data

Forecasting the
future QoS

Start

Get QoS

data from

the

Reposotory

QoS repository

Parameter

estimation for time

series models

End

Generate QoS

forecasts using the

fitted model

The fitted model is

satisfactory?

Preliminary

investigation for

Time series model

selection

Time series model

evaluation

Figure 6.1: Flowchart depicting the steps involved in the QoS forecasting com-
ponent

been developed for this purpose which fall in the branch of statistics called time

series analysis. Time series analysis is an extensive subject in itself and a de-

tailed discussion on it is beyond the scope of this thesis. However, in this section,

I give a brief overview of the prominent time series techniques being used in

111

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

various fields and introduce the necessary terminology to make the rest of this

chapter more readable and understandable.

6.3.1 What is a time series?

Any phenomenon which undergoes variation in its behavior with time, captured

by measuring at regular intervals of time can provide useful insight into its vary-

ing behavior. When a variable is measured sequentially over a fixed interval, the

resulting data is called time series [133, 134]. The time series data of a process

can be used to model its behavior and sensible forecasts about its future behavior

can be made by using that model [134].

In conformity with the time series literature, I represent a time series of

length n by Xn = {xt|t = 1,2, . . .n} = {x1, x2 . . . xn}, where xt are the previously ob-

served values at time t. The forecast made at time t about a future predicted

value at time t+k is represented by x̂t+k.

20
22

24
26

28
30

ob
se

rv
ed

22
24

26

tr
en

d
−

2.
0

−
1.

0
0.

0
1.

0

se
as

on
al

−
1.

5
−

0.
5

0.
5

1.
5

1946 1948 1950 1952 1954 1956 1958 1960

ra
nd

om

Time

Decomposition of additive time series

Figure 6.2: Decomposition of a time series into the trend, seasonal and random
components

In some time series, at any instance t, the observed time series value xt

is a combination of a trend mt, seasonal effect st and a random error zt. The

trend refers to a long term increasing or decreasing of the values while a sea-

sonal variation is a change in level which repeatedly occurs due to seasons (e.g.

summer, winter, holidays etc.). Similar repeating patterns with a cycle that does

112

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

not synchronize with the seasons are called cyclic trends. The third type is the

randomly occurring changes which do not follow any recognizable pattern. The

time series can then be decomposed into its constituent components, using either

an additive or a multiplicative decomposition model. In Figure 6.2, a time series

has been decomposed into the trend, seasonal and random components using the

additive model. The additive models assume that the observed values are the

sums of these constituent components while in multiplicative models, the obser-

vation is considered to be a product of the individual components. Once a series

is decomposed into its constituent components, then an additive or multiplicative

model can be used to analyze the series.

Smoothing or filtering techniques are used to remove small changes in a

time series which reveals a smoother curve on a time series plot for detecting

trend and cyclic behavior in the data. The most popular methods to estimate

the trend and seasonal components are the moving average smoothing and the

exponential smoothing methods.

Exponential smoothing and ARIMA (Auto-Regressive Integrated Moving

Average) models are the two most widely-used approaches to time series fore-

casting. ARIMA models try to describe the autocorrelations in the data while

exponential smoothing models are based on a description of trend and seasonal-

ity in the data [135]. As shown in Figure 6.3, both these approaches have several

variants. In the next section, I explain the exponential smoothing approaches

while the ARIMA and its related approaches are discussed in Section 6.5.

6.4 Exponential Smoothing

In this section, I begin by introducing the exponential smoothing method for the

time series model and present its various improvements. The most basic ex-

ponential smoothing technique is called exponential smoothing and, as shown in

Figure 6.3, it has several variants which have additional components to deal with

seasonality and trend in input series. I begin by explaining simple exponential

smoothing and then proceed to discuss its other variants in this section.

6.4.1 Simple Exponential Smoothing

The fundamental concept behind exponential smoothing is that future values

can be calculated by using the weighted averages of all previous observations,

where the weight exponentially decreases as observations come from the distant

past and smaller weight values are associated with the oldest observations [136]

113

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

Time Series

Models

Exponential

Smoothing
ARIMA

Moving Average

Auto-Regressive

Simple

Exponential

Smoothing

Holt’s

Exponential

Smooting

Holt-Winters

Exponential

Smoothing

ARMA

Figure 6.3: Time series techniques discussed in this Chapter

i.e.

x̂t+1 =αxt +α(1−α)xt−1 +α(1−α)2xt−2 +·· · (6.1)

where 0 < α < 1 is called the smoothing parameter and its value controls

the rate at which the weights decrease. Thus, the weights associated with obser-

vations decrease exponentially as we go back in time.

If the time series can be described by an additive model, then one step

ahead forecast may be obtained by using the equation:

x̂t+1 =αxt + (1−α)x̂t (6.2)

This method requires an initial value x̂t which is often chosen as x̂t = xt i.e.

(the first value in the series) or another value is determined through optimization

techniques.

If the level (or smoothed component of the series) at time instance t is de-

noted by l t, then the above equation for one step ahead forecast can be written

as:

114

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

x̂t+1 = l t (6.3)

where l t =αxt + (1−α)l t−1

The quantity e t, called one step ahead forecast error or the residual is

given by:

e t = xt − x̂t (6.4)

This is essentially the difference between the observed value at time t and

its one ahead forecasted value. This quantity plays a very important role in

assessing how well the selected model approximates the data. The overall ac-

curacy of the model can be assessed by calculating the Sum of Squared Errors

(SSE) given by:

SSE =
n∑

t=1
e t (6.5)

The optimal value of the smoothing parameter α is estimated by minimiz-

ing SSE. The estimation process and error measures are discussed in detail in

Section 6.7.

The technique discussed so far is called simple exponential smoothing and

it assumes that the series has a constant level and no seasonality. These features

are modeled in Holt’s and Holt-Winter’s methods of exponential smoothing.

6.4.2 Holt’s Exponential Smoothing

As the simple exponential smoothing method only incorporates the level of the

series and does not consider the other components, an extended form of this

technique, called Holt’s Exponential Smoothing [137], can be used to model the

time series which exhibits trend along with irregular components. Similar to

the smoothing parameter α, in the case of simple exponential smoothing, Holt’s

exponential smoothing adds another smoothing parameter β which represents

the trend component in the series. In this case, the values of the time series are

given by the following forecast equation:

x̂t+1 = l t +hbt (6.6)

115

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

where l t = αxt + (1−α)(l t−1 + bt−1) and bt = β(l t − l t−1)+ (1−β)βt−1 Thus, the

forecasted value is a linear combination of level and trend components which are

represented by l t and bt, respectively.

A variation of this method is the exponential trend method wherein, in-

stead of addition, the forecast equation consists of a product of the constituent

components and is given by:

x̂t+1 = l tbh
t (6.7)

where l t =αxt + (1−α)(l t−1 +bt−1) and bt =β
l t

l t−1
+ (1−β)βt−1

Now bt represents the estimated growth rate which is multiplied to the

estimated level. The trend is not linear but has a constant growth rate. This

does improve upon the additive method in some cases but the trend grows or

declines indefinitely into the future which may lead to poor performance in some

cases.

Gardner and Mckenzie [138] introduced the concept of additive damped

trend to solve this issue. The damping parameter is denoted by φ and has the

range 0leφ≤ 1. The corresponding forecast equation is then given by:

x̂t+h = l t + (φ+φ2 + . . .+φh)bt (6.8)

where l t =αxt + (1−α)(l t−1 +φbt−1) and bt =β(l t − l t−1)+ (1−β)φbt−1

Similar to the additive damped trend, [Taylor 2003] proposed the multi-

plicative damped trend given by,

x̂t+h = l t +b(
tφ+φ2 + . . .+φh) (6.9)

where l t =αxt + (1−α)l t−1bφt−1 and bt =β
l t

l t−1
+ (1−β)bφt−1

6.4.3 Holt-Winters Seasonal Method

To incorporate seasonality in time series, Holt [135] and Winters [139] developed

a seasonal model wherein, in addition to α and β, another smoothing constant γ

is used to represent seasonal component st in time series.

Similar to simple exponential smoothing and exponential smoothing with

trend (Holt’s) methods, the seasonal exponential smoothing method can either

116

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

have an additive or multiplicative seasonal component. The additive seasonal

method is given by the following equation:

x̂t+h = l t +bt + st−m+h+
m

(6.10)

where l t =α(xt − st−m)+ (1−α)(l t−1+bt−1) , bt =β
l t

l t−1
+ (1−β)βt−1 and st = γ(xt −

l t−1 −bt−1)+ (1−γ)st−m

A taxonomy of exponential smoothing methods was first proposed by [140]

and was extended and improved by [141] and [142]. These methods are sum-

marized in Table 6.1, where each of the sixteen possible exponential models are

represented by a pair of letters. The first letter represents the trend compo-

nent while the second letter represents the seasonal component. Thus (N,N) is

the simple exponential smoothing, (A,N) and (M,N) represent Holt’s exponential

smoothing and the remaining ten represent the various Holt-Winters seasonal

methods.

Trend Component
Seasonal Component

N A M
(None) (Additive) (Multiplicative)

N (None) (N,N) (N,A) (N,M)
A (Additive) (A,N) (A,A) (A,M)
Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M)
M (Multiplicative) (M,N) (M,A) (M,M)
Md (Multiplicative damped) (Md,N) (Md,A) (Md,M)

Table 6.1: Taxonomy of Exponential Smoothing Methods [136]

6.4.4 State Space Models for Exponential Smoothing

Exponential smoothing discussed in the previous sub-section has been formal-

ized into a state space model in recent years which provides a complete frame-

work for time-series analysis [143, 144]. The previously discussed models only

forecast future values of a time series whereas the state space models also calcu-

late a prediction interval.

The pioneering work in this direction was done by Gardner [141] and Ord

et al. [145] proposed a maximum likelihood-based method for smoothing param-

eter estimation. This work was extended by Hyndman et al. [146] who derived

a state space formulation for each of the 15 models in two ways; one with an

additive error component and the other with multiplicative error components;

thereby, producing 30 different models. This formulation provides the basis of

117

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

an efficient method of likelihood evaluation, a sound mechanism for generat-

ing forecast intervals, and the possibility of model selection with information

criteria [143]. These models produce the same point forecasts but also provide a

mechanism for calculating the confidence interval of the forecasted values, which

make it possible to develop automatic parameter estimation and model selection

approaches. The automatic forecasting procedure based on this formulation by

Hyndman et al. [146] is implemented in [136].

Each of the 15 exponential smoothing methods has two corresponding state

space models; one has an additive error component while the other has a multi-

plicative error component. To distinguish between these, an extra letter is per-

pended to the model notation of Table 6.1, wherein a tuple was used to represent

a model. Thus, in this notation, the triplet (E,T,S) refers to the three components:

error, trend and seasonal and the first letter denotes the type of error component.

For example, a model with an additive error, additive trend and no seasonality

is denoted as (A,A,N). Given the large number of possible models, the automated

model selection approach mentioned above is very important for the real world

application of these models.

6.5 ARIMA models

The ARIMA approach to time series forecasting is based on capturing the au-

tocorrelation in observations. ARIMA combines the Auto Regressive (AR) and

Moving Average (MA) models into an integrated time series model. The AR and

MA models are for stationary time series. A stationary time series is such that its

properties do not depend on the time at which the series is observed. Thus, such

a series does not exhibit a trend or seasonality (however, irregular cyclic behavior

may be present). Using the AR or MA models require that if a time series is not

stationary, then it must be converted into a stationary series by using differenc-

ing prior to applying these models. ARIMA integrates the differencing process

into the model itself in addition to combining the AR and MA approaches. An

ARIMA model is denoted as ARIMA(p,d,q) where p,d and q represent the order

of AR, differencing and MA components.

Before proceeding to describe the ARIMA technique, I introduce the con-

cepts of stationarity, differencing, AR and MA.

118

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

6.5.1 Key concepts

6.5.1.1 Stationarity

A stationary time series is such that its properties do not depend on the time

at with the series is observed. Thus, such a series does not exhibit a trend or

seasonality (however, irregular cyclic behavior may be present). A unit root test

is used to check whether a time series is non-stationary using an autoregressive

model. A well-known unit root test is the augmented Dickey–Fuller test [147,

148].

6.5.1.2 Differencing

A non-stationary series may be converted into a stationary series by differencing

which refers to the process in which the preceding value is subtracted from each

value to yield a new series i.e.

x′t = xt − xt−1

In many cases, the differencing procedure removes trend from the series

but sometimes, the differenced series need to be differenced again to make it

stationary. This is called second-order differencing.

x′′t = x′t − x′t−1

The number of time differences required to convert a non-stationary series into

a stationary one is called the order of differencing.

6.5.1.3 Moving Average Models

In moving average models, the forecast errors of q previous forecasts are aver-

aged in a regression-like manner to predict the future values. Such models are

referred to as MA(q) models, given by:

xt = c+ e t +θ1 + e t−1 +θ2e t−2 . . .θqe t−q

119

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

where θ is the moving average component and e t is white noise. This is

referred to this as an MA(q) model (a moving average model with order q).

6.5.1.4 Autoregressive Models

Autoregressive models forecast the future by using a linear combination of p
past observations. The term auto-regression indicates that it is a regression of

the variable against itself. An autoregressive model of order p is defined as,

xt = c+φ1xt−1 +φ2xt−2 . . .φpxt−p + e t

where φ is the autoregressive parameter, c is a constant and e t is white

noise. This model is called an AR(p) model, where p is the order of the model

denoting the number of preceding observations being used by the model. These

models utilize the dependence or correlation between an observation and its p
preceding observations to predict the future values.

6.5.1.5 ARMA

Combining the AR and MA models forms the Auto-Regressive Moving Average

(ARMA) model. However, a non-stationary series must be converted into a sta-

tionary series by differencing before applying the ARMA process. This shortcom-

ing is addressed in the ARIMA technique by integrating the differences process

into the model.

6.5.2 Working of the ARIMA Technique

ARIMA is an improved form of ARMA as it also includes the differencing pro-

cess required for non-stationary series and provides an integrated approach and

combines the AR and MA models with differencing as,

x′t = c+φ1x′t−1 +·· ·+φpx′t−p +θ1e t−1 +·· ·+θqe t−q + e t, (6.11)

where x′t is the differenced series of order d.

An ARIMA is denoted as ARIMA(p,d,q), where p is the order of the auto

regressive component, d is the order of differencing and q is the moving av-

120

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

erage component. Thus, ARIMA(p,0,0) is the same as the AR(p) model and

ARIMA(0,0,q) is equivalent to the MA(q) model. Similarly, ARMA is essentially

an ARIMA(p,0,q) model. Thus, ARIMA is capable of utilizing all the concepts

discussed in this section.

Thus, the one step ahead forecast x̂′t+1 is given by,

x̂t+1 = c+φ1x′t +φ2x′t−1 · · ·+φpx′t−p +θ1e t +θ2e t−1 +·· ·+θqe t−q + e t, (6.12)

The above equation can be simplified once the p,d and q are known and

more future values can be easily forecasted.

The one step ahead forecast can be used to find the residuals by using Equa-

tion 6.4 for calculating an error statistic to assess the goodness of the model.

In the next section, I present the error measures commonly used to deter-

mine how well a model represents the observed values.

6.6 Error Measures for Evaluating the precision
of Time Series Models

As stated earlier, the error of a forecast is the difference between the forecasted

value of a variable and its observed value. If xt and x̂t denote the observed and

the forecasted values, respectively, at time t, then the error is given by:

e t = xt − x̂t (6.13)

The error measures presented below use this error in various ways to as-

sess how well a model represents the observed data. While selecting a model

from amongst the several applicable models, the model that exhibits the mini-

mum error is considered the best model for the time series in question.

Sum of Squared Errors (SSE): the SSE is the simplest error measure

given by,

SSE =
n∑

t=1
e t (6.14)

The SSE grows as the number of observations in the time series increase.

Therefore, it can only be used to compare models of time series that have the

121

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

same number observations. Therefore, it is not useful for comparing different

time series and average forecast errors provide better way for comparison. The

average forecast errors are divided into three categories: (1) scale-dependent

error measures; (2) percentage error measures; and (3) scale-free error measures.

The scale-dependent error measures have the same scale as the data itself.

These are based on either absolute errors or squared errors. The most common

scale-dependent error measures are:

Mean Square Error (MSE:) The Mean Square Error is defined as:

MSSE =
∑n

t=1 e t

n
= SSE

n

where n is the number of observations in the time series.

Root Mean Square Error (RMSE): The RMSE is defined as:

RMSE =
√∑n

t=1 e t

n
=
p

MSE

Mean Absolute Error (MAE): The MAE is given by:

MAE =

n∑
t=1

|e t|

n

Since all of these error measures are on the same scale as the data, these

are not useful for assessing accuracy across multiple time series. The percentage

error measures and scale-free error measures are used when comparing multiple

time series.

Mean Absolute Percentage Error (MAPE): The most common percent-

age error measure is the Mean Absolute Percentage Error (MAPE), given by,

MAPE =

n∑
t=1

∣∣∣∣100e t

xt

∣∣∣∣
n

The percentage error measures are undefined or infinite if there are zero values

in the series, are skewed for values close to zero and are bised towards positive

errors [149, 150].

122

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

Mean Absolute Scaled Error (MASE): Scale-free error measures do not

have the problems seen in other error measures and are generally applicable

measures of forecast accuracy. The errors are scaled using the mean absolute

error for the in-sample naive forecast method. Thus, the scaled error is defined

as:

qt = e t

1
n−1

i=n∑
i=2

|xt − xt−1|

Using the scaled error qt from the above equation, the Mean Absolute

Scaled Error (MASE) is calculated as,

qt = |qt|
n

6.6.1 Measures for Model Selection

In addition to the above error measures, the following metrics are developed

based on maximum likelihood estimates which are used in automatic model fit-

ting techniques.

Akaike’s Information Criterion (AIC)
Akaike’s Information Criterion is defined as:

AIC = N log
(

SSE
N

)
+2(k+2)

where N is the number of observations used for estimation and k is the number

of predictors in the model. The model with the minimum value of the AIC is

often the best model for forecasting.

Bayesian Information Criterion (BIC)
Schwarz’s Bayesian Information Criterion is computed as:

BIC = Nlog
(

SSE
N

)
+ (k+2)log(N)

As with the AIC, minimizing the BIC is intended to give the best model.

The model chosen by BIC is either the same as that chosen by AIC, or one with

fewer terms.

The above mentioned error measures are used in assessing how a model

123

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

fits to the observed time series and provide a means to find the parameters of a

model through optimization.

6.7 Parameter Estimation and Model Selection for
Forecasting Cloud QoS

As mentioned previously in Section 6.2, time series model selection begins by

selecting a tentative model on the basis of the preliminary investigation of the

data. The preliminary investigation involves the study of time plots to discover

trend and seasonality in the data for selecting exponential smoothing models.

In the case of ARIMA models, studying time plots is necessary to ascertain if

the series is stationary and additionally, ACF plots are also studied to find the

degree of autocorrelation in the data.

After tentatively selecting one or more models, the parameters of that model

are estimated by minimizing some error statistic. Once the parameters have

been determined, the residuals are studied to find how appropriately each model

represents the data. The model which has the least errors and captures most of

the information contained in the data is selected.

A good model should have a residual that is uncorrelated as correlation in

the residuals shows that there is still some information in the data that has not

been captured by the model. Secondly, the residuals should have zero mean oth-

erwise the forecasts are biased. In addition to this, the residuals should have a

constant variance and should be normally distributed for the prediction intervals

to be reliably calculated.

Recently, various methods have been developed which automate the model

selection process for both exponential smoothing and ARIMA approaches which

are discussed in detail by Hyndman and Khandakar [136] and have been im-

plemented in the forecast package 1 of R. This process applies all models that

are appropriate for a time series by optimizing the parameters of the model in

each case and then selects the best model according to the previously mentioned

information criterion AIC or BIC.

In the remaining chapter, I describe the use of the concepts discussed above

for time series forecasting of cloud QoS by using an example.

1http://cran.r-project.org/web/packages/forecast/forecast.pdf

124

http://cran.r-project.org/web/packages/forecast/forecast.pdf

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

6.8 Forecasting QoS of a Cloud Service: An Ex-
ample

In this section, I use the time series techniques to model and forecast cloud QoS

by using some of the QoS data from Chapter 5 as an example (the details of this

dataset are given in Section 5.7.1) and go through the preliminary investigation

for model selection, model estimation and forecasting.

6.8.1 Preliminary Investigation

In this section, I present the time plot of the data (used in Chapter 5) of service

S1 to visually explore whether or not the series is stationary and also to ascertain

their other characteristics to help identify the possible time series models.

The time series plots of service S1 for the three criteria are shown in Figure-

6.4. The visual inspection of this plot reveals that the three series have strong

correlation as variation in QoS appears to occur simultaneously in all the three

metrics. This means that the changes in one QoS metric at any time are also

manifested in the other metrics. However, there are some changes which are

only specific to one metric and are not manifested in the other criteria e.g. a

change of level after the middle of March 2012 in c3 is not visible in either c1 or

c2.

Furthermore, although there is no visible trend, the mean value does not

appear to be stationary if data is gathered over a long period of time is viewed,

although it does seem to remain stationary for shorter periods and in some ran-

dom instances, the changes in mean value persist and the series does not return

to its earlier mean value but, in most cases, it hovers around its new mean value

for several intervals before reverting to the previous mean value. Thus, these

shocks occurring at an instance persist and their effects are manifested in forth-

coming QoS values. In contrast with these variations, there are some random

shocks appearing as short spikes which do not persist and the series reverts to

its previous mean value immediately. Additionally, these series also exhibit some

changes, albeit not very substantial, in variance as well. In all, these variations

appear to occur without exhibiting any cyclic or seasonal behaviour.

Before proceeding with further analysis, I investigate whether or not there

is any correlation between the different series of the same cloud service.

The degree of mutual correlation between different observed variables cor-

125

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

Dec 20 11:00 Apr 01 00:00 Jul 01 00:00 Oct 01 00:00 Jan 01 00:00 Apr 01 00:00

30
00

40
00

50
00

60
00

CPU Response Time (ms)

Dec 20 11:00 Apr 01 00:00 Jul 01 00:00 Oct 01 00:00 Jan 01 00:00 Apr 01 00:00

80
00

12
00

0
16

00
0

20
00

0

Memory Response Time (ms)

Dec 20 11:00 Apr 01 00:00 Jul 01 00:00 Oct 01 00:00 Jan 01 00:00 Apr 01 00:00

40
00

80
00

12
00

0
16

00
0

I/O Response Time (ms)

Figure 6.4: Time Plot of Service S1

126

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

responding to individual metrics can be estimated using the correlation function,

given by,

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(6.15)

where rxy is the coefficient of correlation between series x and y and n is

the number of observations in the series.

A value of rxy closer to 1 signifies high correlation while values closer to 0

signify the absence of mutual correlation. Using the data from Chapter 5, the

correlation between the observed values of c1 − c2, c2 − c3 and c1 − c3 for each

of the five cloud services is given in Table 6.2. This shows that there is strong

mutual correlation between all the criteria for all the services except s2 and s3,

which do not exhibit any correlation between c3 and the other two criteria.

Service Inter-Criteria Mutual Correlation
c1 − c2 c1 − c3 c2 − c3

S1 0.8645316 0.737398414 0.79658449
S2 0.8833062 0.051046617 0.11316178
S3 0.7813409 0.001473722 0.08648199
S4 0.8304729 0.774737246 0.82286064
S5 0.9309392 0.754982425 0.76987456

Table 6.2: Inter-Criteria correlation of QoS

This presence of correlation between some criteria and its absence in some

cases shows that the QoS criteria may or may not have mutual dependence with-

out any set pattern. Thus, in order to fully assess a cloud service, the individual

criteria metrics must be observed as it is not always possible to use the measured

value of one criterion as a basis to determine another criterion.

6.8.2 Model Selection and Parameter Estimation

In this sub-section, I find the appropriate time series models for forecasting cloud

QoS. The data used for this purpose consists of the CPU response time of S1−C1

between 2012-03-01 and 2012-03-30, as shown in the time plot in Figure 6.5. I

use the R statistical environment for this experiment.

127

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

Mar 01 11:00 Mar 12 11:00 Mar 19 11:00 Mar 26 11:00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

Figure 6.5: CPU response time of S1 −C1 from 2012-03-01 to 2012-03-30

6.8.2.1 Exponential Smoothing for Cloud QoS

The ETS approach for exponential smoothing model selection, explained previ-

ously in Section 6.4.4, provides a robust framework for model selection. This

framework has been implemented in R in the forecast package [136]. I used this

approach to fit appropriate ETS models to cloud QoS time series.

The automatic model fitting using the AIC as the fitting criteria suggests

that a ETS(MNN) model which has multiplicative error but no trend or seasonal

component is the best possible model for the series. The parameters of this model

are given in Table 6.3.

Series AIC BIC σ Initial Value α

s1 c1 12021.69 12030.85 0.0507 3014.05 0.6285

Table 6.3: Parameters of the Exponential Smoothing Model fitted to cloud QoS
time series by automatic model fitting.

The in-forecast error measures for the fitted ETS(MNN) model are given in

Table 6.4. The MASE value of 0.67 shows that the fitted model produces better

forecasts compared with the naive method. The observed values in this series

have a range between 2700 ms to 6300 ms, therefore a RMSE of 164.0329 ms is

128

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

an reasonable amount of error.

Series RMSE MAE MASE
s1 c1 164.0329 101.7743 0.6595

Table 6.4: Error measure of the fitted (MAA) exponential smoothing model.

Figure 6.6 shows the plots for residual diagnostics performed on the se-

lected model. This includes residual time plot, autocorrelation, partial autocor-

relation and histogram of the residuals. The time plot of the residuals is useful

to see whether the residuals have a roughly constant variance. The ACF and

PACF graphs of the residuals show how well the selected models represent the

observed series. I also compare a histogram of the residuals with the normal dis-

tribution to assess whether or not the residuals are normally distributed which

is necessary to ascertain the accuracy of the prediction intervals.

(a)

Time

R
es

id
ua

ls

−
0.

10
0.

00
0.

10

Lag

A
C

F

(b)

0 10 20 30 40 50

−
0.

10
0.

00
0.

10

Lag

P
ar

tia
l A

C
F

(c)

0 10 20 30 40 50

(d)

Forecast Errors

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
5

10
15

Figure 6.6: Residual diagnostics of ETS(MNN) model.
(a) Residual Time Plot (b) Autocorrelation (c) Partial Autocorrelation and (d)

Histogram of residuals.

The residual time plot shows that the residuals have some fluctuations oc-

curring at irregular intervals but there is no overall trend. The residuals have a

zero mean and the time plot of residuals (Figure-6.6a) shows that the variation of

residuals remains more or less constant, therefore the variance of residuals can

129

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

be treated as constant. The ACF and PACF in Figure 6.6(b) and (c) show some

significant autocorrelation and partial autocorrelation which means that some

of the information contained in the data has not been captured by the model. In

Figure 6.6(d), the histogram of the residuals shows that the errors are more or

less normally distributed but the histogram has less spread as compared with

the normal distribution, which means that the calculated prediction intervals

are reliable.

6.8.2.2 ARIMA modelling of Cloud Services

As mentioned earlier, the ARIMA technique converts a non-stationary series into

a stationary series by differencing and combines the concept of auto-regression

and moving average to model the series on the basis of correlation between suc-

cessive observations. Therefore, in addition to the visual inspection of the data

presented in Section 6.8.1, the ACF and PACF plots are needed to identify if

there is any autocorrelation between observations. The ACF and PACF plots of

the series described in the previous section is given in Figure 6.7, which show sig-

nificant autocorrelation between observations up to a lag of 11 hours and there

is also some partial autocorrelation between six successive observations. This

means that this correlation information can be captured by using an ARIMA

model.

The time plot of the series (given in Figure 6.5 does not show a long-term

trend but there are some term spikes. The Augmented Dicky Fuller test for

stationarity gives a p-vale of less than 0.1 which suggests that the series is sta-

tionary (differencing is not required) and an ARIMA(p,0,q) model is appropriate

for this series.

The auto.ARIMA function in the forecast package [136] available in the R

statistical environment fits all the possible ARIMA models and finds the best

possible ARIMA model for a given series. I used this function to find the best

ARIMA model for the time series of CPU response time. This method also gives

an ARIMA(2,0,2) model with parameters given in Table 6.5 as the best model for

this data, as it has the lowest AIC measure among the possible ARIMA models.

The results show that ARIMA has a slightly better goodness of fit as com-

pared with exponential smoothing as the error measures for the fitted ARIMA

model are smaller. However, the residual diagnostics given in Figure 6.8 appear

to be similar to those of the exponential smoothing models and do not show any

130

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lag

A
C

F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

lag

PA
C

F

Figure 6.7: ACF and PACF of the series.

Series φ1 φ2 θ1 θ2 c
s1 c1 0.2089 0.5420 0.4097 -0.2510 3099.2779

σ2= 24673
log likelihood=-4662.9

AIC=9337.8 BIC=9365.27

Table 6.5: Parameters of the fitted ARIMA(2,0,2) model for cloud QoS time series.

evidence that the AIRIMA model is better than the exponential smoothing model

in capturing the underlying patterns in the time series as some autocorrelation

exists in the residuals.

I repeated the above described experiment by truncating the time series

to include the data between 01-03-2012 to 10-03-2012 which produced better

diagnostic results than these.

Series RMSE MAE MASE
s1 c1 157.0777 100.0666 0.6484

Table 6.6: Error measure of the fitted ARIMA(2,0,2) model.

131

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

(a)

Time

R
es

id
ua

ls

−
0.

10
0.

00
0.

10

Lag

A
C

F

(b)

0 10 20 30 40 50

−
0.

10
0.

00
0.

10

Lag

P
ar

tia
l A

C
F

(c)

0 10 20 30 40 50

(d)

Forecast Errors

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
5

10
15

Figure 6.8: Residual diagnostics for the ARIMA(2,0,2) model.
(a) Residual Time Plot (b) Autocorrelation (c) Partial Autocorrelation and (d)

Histogram of residuals.

132

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

6.8.3 Forecasting The Future QoS Values

In this section, I present the forecasted QoS values using the time series models

discussed above. The forecasted values of the CPU response time for eight future

time slots predicted by using the ETS(MAA) model with parameters shown in

Table 6.3 are given Table 6.7 and the same forecasts predicted by the ARIMA

model are given in Table 6.8. The actual observed QoS values are also given

alongside the predicted values.

Time Observed Foretasted 80 % Confidence Interval 95 % Confidence Interval
Slot QoS QoS Low High Low High
1 3017.50 2962.252 2769.636 3154.869 2667.671 3256.833
2 2935.50 2962.252 2734.672 3189.832 2614.199 3310.306
3 2986.00 2962.252 2704.378 3220.127 2567.867 3356.637
4 3021.00 2962.252 2677.260 3247.245 2526.394 3398.111
5 2865.50 2962.252 2652.482 3272.022 2488.500 3436.004
6 2958.50 2962.252 2629.523 3294.982 2453.387 3471.118
7 2951.75 2962.252 2608.027 3316.477 2420.512 3503.992
8 2860.75 2962.252 2587.744 3336.761 2389.491 3535.014

Table 6.7: Forecasted CPU response time for 8 time slots with confidence inter-
vals using the fitted ETS(M,N,N) model

Time Observed Foretasted 80 % Confidence Interval 95 % Confidence Interval
Slot QoS QoS Low High Low High
1 3017.50 2989.019 2787.716 3190.322 2681.152 3296.886
2 2935.50 3010.747 2774.043 3247.452 2648.739 3372.756
3 2986.00 3021.029 2769.669 3272.390 2636.606 3405.452
4 3021.00 3034.953 2769.560 3300.346 2629.070 3440.836
5 2865.50 3043.434 2770.521 3316.346 2626.050 3460.817
6 2958.50 3052.751 2773.441 3332.062 2625.583 3479.920
7 2951.75 3059.294 2776.073 3342.514 2626.145 3492.442
8 2860.75 3065.710 2779.391 3352.029 2627.823 3503.598

Table 6.8: Forecasted CPU response time for 8 time slots with confidence inter-
vals using the fitted ARIMA(2,0,2) model

The forecast errors obtained by comparing the forecasted values with the

actual observed values are given in Table 6.9. These values indicate that the ex-

ponential smoothing model gives more accurate forecasts than the ARIMA model

but as mentioned earlier, the ARIMA model has smaller in-sample errors. This

is due to the fact that the observed CPU response time is increasing at the end of

the series (6.5), but as can be seen in Table 6.7 and Table 6.8, it starts to decrease

immediately afterwards. As exponential smoothing forecasts on the basis of both

old and new observations, it tends to ignore small local changes. ARIMA only

considers a couple of past values in its AR and MA components, therefore it cap-

133

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

tures these local changes. Therefore, according to the dataset considered and its

properties studied, I found that both the forecasting approaches give the same

result. Even though exponential smoothing gives more accurate results than

ARIMA but due to the changes in the QoS in the next time slots and the work-

ing principles of these approaches – both give the result with the same accuracy.

On the other hand, if there was no change in the trend as observed, exponential

smoothing would have been a better technique than the ARIMA approach.

Model RMSE MAE MASE
Exponential Smoothing 58.70612 47.1256 0.4308
ARIMA 112.9231 92.1749 0.8426

Table 6.9: Forecast error of the fitted exponential smoothing and ARIMA models.

In the next Section, I discuss the concept of self-similarity and investigate

the presence of self-similarity in cloud QoS data.

6.9 Self-Similarity of Cloud QoS

In real-world time series, observations are independent of one another or depend

on, or are related to, previous observations. There are highly developed statisti-

cal models for the analysis of both types of time series. In most time series where

there is correlation between observations that are far apart in time or space, this

correlation decays exponentially as the distance between observations increases.

In some time series, known as self-similar or long range dependent processes,

this correlation between observations does not decay exponentially but decays

to zero at a slower rate [151]. In other words, the correlation is present over

a much longer period compared to non-self-similar time series. The presence of

self-similarity has implications for the predictability of a time-series, because the

models developed for independent and non-self-similar time series do not provide

accurate prediction results when applied to self-similar time series.

The degree of self-similarity is determined by estimating the Hurst expo-

nent (or Hurst parameter) which was proposed by [152] for hydrological studies

of the Nile River and has been applied in many research fields to estimate the

degree of self-similarity in observed data. A Hurst exponent value (H) of 0.50

shows the presence of randomness in data. If H lies between 0≤ H ≤ 0.5, it sug-

gests trend-reversing characteristics in the series (i.e. an increase is followed

by a decrease and vice-versa) . Conversely, a value of H within the range of

0.5 ≤ H ≤ 1 suggests the presence of self-similarity and long-range dependence

in the data. The power of the trend increases until the value of H reaches its

134

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

upper ceiling value of 1. In the following sub-section, I present a brief discussion

on the techniques for estimating the Hurst exponent.

6.9.1 Estimation of the Hurst Exponent

As discussed in the previous sub-section, the Hurst exponent is the predominant

way to quantify self-similarity and long-range dependence in time-series data.

However, the Hurst exponent cannot be directly calculated but can only be esti-

mated using graphical methods [153]. Several such methods for estimating the

Hurst exponent are proposed in the literature [153–155].

I used four estimation methods to test whether there is self-similarity in

cloud QoS data. These methods are (1) Range-scale method, (2) Variance-time

method [156], (3) Index of dispersion of counts (IDC) method, and (4) Residuals

of regression (Peng’s) method [157]. I present a brief description of their working.

6.9.1.1 Range-Scale Method

This method was proposed by Hurst [152] in 1952. Given a time series x1, x2, . . . xn,

estimation of the Hurst exponent follows the following steps:

Step-1. Divide the sequence x1, x2, . . . xn into k = n,bn/2c,bn/3c, . . .1 non-

overlapping batches of size m = bn/kc. For each m and t = (i − 1)m, 1 ≤ i ≤ k,

calculate its mean.

x(t,m)= 1
m

t+m∑
i=t+1

xi

and its standard deviation

S(t,m)=
√√√√ 1

m

t+m∑
i=t+1

(xi − x̄(t,m))2

and range

R(t,m)= max
[
Yt+i −Yt − i

m
(Yt+m −Yt)

]
−min

[
Yt+i −Yt − i

m
(Yt+m −Yt)

]

135

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

where 0≤ i ≤ m, Yt =∑t+m
i=t+1 xi and m is the current batch size.

Step-2. Plot all log R(t,m)
S(t,m) against log(m)

Step-3. Fit a regression line to the plot and find its slope which gives the

Hurst exponent.

6.9.1.2 Variance-time estimate

The variance-time plot method [156] has the following steps.

Step-1. Divide the sequence x1, x2, . . . xn into l non-overlapping batches of

equal size m = bn
l c, where lm in ≤ bn

l c. For each batch of size m, calculate the

variance V ar(X (m)) given by,

V ar(X (m))= 1
l−1

∑
j=1

l
(
x̄(m)

j − x̄(m)
)2

where X (m), j = 1,2, . . . l are means over batches of size m, and x̄(m)
j isgivenby

x̄(m)
j = l

m

l∑
j=1

x̄(m)
j

Step-2. Plot log(V ar(X (m)) against log(m)

Step-3. Fit a regression line through the resulting points and find the slope

of this line. The Hurst parameter H is given by H = 1− slope/2

6.9.1.3 Index of dispersion for counts (IDC)

This method was proposed by Rao and Chakravati [158]. The IDC of a sequence

x1, x2, . . . xn is defined by,

IDC(t)= S2(t)
x̄(t)

where 2≤ t ≤ n, x̄(t) and S2(t) are calculated as,

136

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

x̄(t)= 1
t

t∑
i=1

xi

S2(t)= 1
t−1

t∑
i=1

(xi − x̄(t))2

Thus for a time series x1, x2, . . . xn, the Hurst exponent is estimated by the

following steps

Step-1. Calculate the IDC(t) for t = 1,2, . . .n

Step-2. Plot log(IDC(t)) against log(t)

Step-3. Find a regression line and its slope. The Hurst exponent H is given

by, H = 1
2 (1+ slope)

6.9.1.4 Residuals of regression (Peng’s) method

The series of steps involved in this method [157] are:

Step-1. Divide the series into blocks of size m.

Step-2. Calculate the partial sums of the series X (i), i = 1,2, . . . ,m within

each block.

Step-3. Compute the sample variance of the residuals and plot the result-

ing number versus m in a log-log plot.

Step-4. Fit a least-squares line to the X (i), which yields a straight line with

slope 2H.

In the next sub-section, I use the above described methods to estimate the

Hurst exponent to check whether there is a pattern of self-similarity in cloud

QoS data.

6.9.2 Estimating the Self-similarity of cloud QoS

I used the dataset of five Amazon EC2 services, previously used in Chapter 5, and

estimated the Hurst exponent for the three QoS measurements for each service

using the four different methods described in the previous section. The meth-

ods for estimating the Hurst exponent depend on graphical techniques utilizing

polynomial fitting, therefore discrepancies are possible in the estimated output

137

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

[158]. I have given the log-log plots and the fitted lines used for the estimation

in this experiment in (Figure 6.9a, 6.9b,6.9c,6.9d) to provide an insight into the

accuracy of the estimated H value in each experiment.

Figure 6.9a shows the plot for the range-scale method. The fitted line

closely matches the log-log plot except service s3 where the plots for CPU and

memory are not linear but the fitted line represents the plotted values reasonably

accurately.The value of the Hurst parameter falls in the range 0.61 ≤ H ≤ 0.83

in most cases, which shows a high degree of self-similarity, but the I/O response

time for S1 has a higher H, which show a higher degree of self similarity.

The estimation using the variance-time plots also shows that the data is

self-similar in all cases (Figure 6.9b). However, the plots are not linear for some

data but there is a clear trend and the fitted line reasonably represents the plot-

ted values.

The H value estimated using the IDC method is also in the range which

signifies self-similarity in most cases (except S4), but the graphs (Figure 6.9c)

show that the fitted line does not represent the visible trend in data, therefore

the Hurst exponent estimated using this method is not reliable. This may be

improved by discarding extreme points in the graph while fitting the line, but as

I have also used other methods I have included these results without cutting off

the extreme points for the purpose of comparison.

The H values estimates using Peng’s method also fall in the range 0.5≤ H ≤
1 for most services and show self-similarity (excepting the memory response time

data for S2 and S3). The graphs for the memory response time data of S2 and S3

have a higher slope to the extreme left than the fitted line. On the other hand,

the fitted lines have a higher slope than the extreme right side of the plotted

graph for the S1 (memory), and S4 (CPU) data. In these cases, the estimated H

value is not highly reliable.

The Hurst exponent results are given in Table 6.10. These results reveal

that the Hurst exponent (H) falls in the range 0.5 ≤ H ≤ 1 for all services except

s4 which has a H value lower than 0.5 when estimated using the IDC method.

However, the line fitting of the IDC method is not accurate in some cases (Figure

6.9c) which may result in an unreliable estimate of the Hurst exponent.

Except for this abnormality, these results show that the Hurst exponent for

cloud QoS is in the range 0.5≤ H ≤ 1. Furthermore, in most cases the H estimate

is very close to the maximum value of 1.

138

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

0 10 20
0

5

10
lo

g 2 (
R

/S
)

log
2
 (Region size)

S
1
 CPU

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
1
 Memory

0 10 20
0

10

20

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
1
 I/O

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
2
 CPU

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
2
 Memory

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
2
 I/O

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
3
 CPU

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
3
 Memory

0 10 20
0

5

10

lo
g 2 (

R
/S

)
log

2
 (Region size)

S
3
 I/O

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
4
 CPU

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
4
 Memory

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
4
 I/O

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
5
 CPU

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
5
 Memory

0 10 20
0

5

10

lo
g 2 (

R
/S

)

log
2
 (Region size)

S
5
 I/O

Plot

Fitted line

(a) Range Scale method

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
1
 CPU

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
1
 Memory

0 5 10
10

15

20

lo
g

(m
)

log (Var(X))

S
1
 I/O

0 5 10
5

10

15

lo
g

(m
)

log (Var(X))

S
2
 CPU

0 5 10
10

20

30

lo
g

(m
)

log (Var(X))

S
2
 Memory

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
2
 I/O

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
3
 CPU

0 5 10
10

15

20

lo
g

(m
)

log (Var(X))

S
3
 Memory

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
3
 I/O

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
4
 CPU

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
4
 Memory

0 5 10
0

10

20

lo
g

(m
)

log (Var(X))

S
4
 I/O

0 5 10
10

20

30

lo
g

(m
)

log (Var(X))

S
5
 CPU

0 5 10
10

20

30

lo
g

(m
)

log (Var(X))

S
5
 Memory

0 5 10
10

20

30

lo
g

(m
)

log (Var(X))

S
5
 I/O

Plot

Fitted line

(b) variance-time method

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
1
 CPU

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
1
 Memory

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
1
 I/O

0 5 10
−10

0

10

lo
g

(I
D

C
(t

))

log (t)

S
2
 CPU

0 5 10
6

8

10

lo
g

(I
D

C
(t

))

log (t)

S
2
 Memory

0 5 10
0

5

10

lo
g

(I
D

C
(t

))

log (t)

S
2
 I/O

0 5 10
−20

0

20

lo
g

(I
D

C
(t

))

log (t)

S
3
 CPU

0 5 10
4

6

8

lo
g

(I
D

C
(t

))

log (t)

S
3
 Memory

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
3
 I/O

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
4
 CPU

0 5 10
−5

0

5

lo
g

(I
D

C
(t

))

log (t)

S
4
 Memory

0 5 10
−10

0

10

lo
g

(I
D

C
(t

))

log (t)

S
4
 I/O

0 5 10
−10

0

10

lo
g

(I
D

C
(t

))

log (t)

S
5
 CPU

0 5 10
−20

0

20

lo
g

(I
D

C
(t

))

log (t)

S
5
 Memory

0 5 10
−10

0

10

lo
g

(I
D

C
(t

))

log (t)

S
5
 I/O

Plot

Fitted line

(c) IDC method

1 2 3
4

6

8

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
1
 CPU

1 2 3

6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
1
 Memory

1 2 3

6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
1
 I/O

1 2 3
4

6

8

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
2
 CPU

1 2 3
6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
2
 Memory

1 2 3
0

5

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
2
 I/O

1 2 3
0

5

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
3
 CPU

1 2 3
6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
3
 Memory

1 2 3
4

6

8

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
3
 I/O

1 2 3
4

6

8

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
4
 CPU

1 2 3
4

6

8

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
4
 Memory

1 2 3

6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
4
 I/O

1 2 3
6

8

10

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
5
 CPU

1 2 3
5

10

15

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
5
 Memory

1 2 3
5

10

15

log(Aggregate Level)

lo
g(

R
es

id
ua

l V
ar

) S
5
 I/O

Plot
Fitted line

(d) residuals of regression (Peng’s)
method

Figure 6.9: Log-log plots showing the estimation of Hurst exponent using differ-
ent methods

139

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

R/S Scale method
Service CPU Memory I/O

S1 0.77868141 0.80960730 0.95675801
S2 0.71921090 0.71305637 0.80788719
S3 0.61527067 0.77109222 0.82899892
S4 0.74264377 0.68394544 0.72198728
S5 0.77360514 0.79749253 0.82572768

Variance-Time Plot method
Service CPU Memory I/O

S1 0.67659368 0.71388752 0.94245751
S2 0.74820257 0.71845534 0.82246336
S3 0.57937166 0.80150445 0.76991428
S4 0.66106330 0.55746486 0.62645293
S5 0.69389147 0.71225281 0.79018674

IDC Method
Service CPU Memory I/O

S1 0.61853122 0.67949693 0.75183043
S2 0.80878292 0.50117462 0.79539563
S3 1.50951491 0.65061933 1.04594257
S4 0.49420723 0.49957338 0.45855310
S5 1.59180989 1.62034020 1.27559422

Residuals of Regression (Peng’s) Method
Service CPU Memory I/O

S1 0.96989609 0.98694917 0.99354743
S2 0.69482615 0.45439557 0.82302725
S3 0.55868134 0.37525849 0.60829008
S4 0.74490191 0.70072722 0.74011033
S5 0.92586221 0.95276078 0.81872400

Table 6.10: Hurst Exponent estimated using different methods

To summarize, the estimated the Hurst parameter value by using four dif-

ferent methods shows that there is a high degree of self similarity in most cases,

which signifies that there is an observed pattern in the data. Because future val-

ues have a strong correlation with previously observed values, future QoS values

can be predicted from observing past QoS information.

6.10 Conclusion

In this chapter, I presented the QoS forecasting for cloud services in the post-

interaction phase of cloud service management. I used the exponential smooth-

ing and the ARIMA time series techniques for modelling the behavior of the

cloud QoS and for predicting the future QoS values. The obtained results show

140

CHAPTER 6. FORECASTING CLOUD SERVICE QOS IN THE
POST-INTERACTION PHASE

that both exponential smoothing and ARIMA models can be used to model QoS

behavior.

Exponential smoothing and ARIMA models fail to capture all the informa-

tion contained in the data as some autocorrelation exists in the residuals. The

presence of correlation is small if the model is fitted to a one-to-two-week long

dataset but it increases if the model is fitted on a dataset containing observations

for more than one month. The residuals (or errors) are only normally distributed

if the series under consideration contains up to two weeks of observations. Be-

yond this, the errors show less spread than the normal curve. Thus, the calcu-

lated prediction intervals are not reliable. The time series models can only be

used for short term forecasts but are unable to reliably forecast the cloud QoS

beyond 4–5 hours since the forecasted values have a greater probability of in-

accuracy for a longer forecast horizon. However, this forecasting along with the

continuous QoS monitoring of a service can be used to drive an early warning

system for cloud service management.

In this chapter, I also investigated whether or not the QoS data of cloud

serves exhibits self similarity by estimating the Hurst exponent of the data. I

used five different approaches for estimating the Hurst exponent. The estimated

value of Hurst exponent signifies that there is a high degree of self similarity

in cloud QoS which means that there is a pattern in the data and future values

have a strong correlation with previously observed values. This strengthens the

notion that future QoS values of a cloud service can be reliably predicted from

observing the past QoS.

In the next chapter, I use the concepts discussed here to design and develop

the early-warning component of the proposed framework.

141

Chapter 7

QoS Early Warning for Cloud
Service Management

7.1 Introduction

In the last chapter, an approach was proposed for predicting the QoS of cloud

services at a time instant in the future. The forecasted QoS values obtained

from this approach can be utilized to detect possible QoS failure in advance.

As explained in Chapter 4, the post-interaction phase of cloud service manage-

ment requires a mechanism to detect impending QoS degradation for timely and

effective decision making. As shown in Figure 4.2, the proposed UCSM frame-

work has an early warning component in Module 2, which is designed to achieve

this objective. The early warning component processes both the forecasted QoS

values obtained from the QoS forecasting component (explained in the previous

chapter) and the incoming QoS monitoring data to detect cloud service failure at

the current time or to forewarn of an impending degradation in the QoS in the

future which may lead to service failure and initiate the process of reassessment

of the service selection decision in the post-interaction phase of cloud service

management.

As explained in Chapter 3, there are several occasions on which a reassess-

ment of the service selection decision is needed. A very important question while

monitoring and managing the cloud services is when to reassess the cloud service

selection decision?

The changes in the cloud environment which necessitate a reassessment

are either related to changes in pricing or variation in various QoS parameters.

142

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

The user is able to plan ahead for changes in pricing and the availability of new

services as the cloud service providers announce them in advance. Thus, in these

scenarios, the post-interaction decision-making process can be initiated in ad-

vance and the best possible management decision can be identified in time.

However, the variation in QoS is due to changing workload conditions on

the providers’ computing infrastructure which the cloud service users can only

detect through QoS monitoring after these conditions have occurred and they are

unable to detect them in advance. As discussed in the previous chapter, time se-

ries forecasting techniques can be utilized to predict future QoS values and the

presence of self-similarity in the QoS data shows that future QoS values can be

reliably predicted on the basis of past QoS values. Given that reasonably accu-

rate forecasts of future QoS are available, an approach for effectively using these

forecasts to trigger the post-interaction decision-making process to reassess the

service selection decision is needed.

In this chapter, I describe the early warning component of the proposed

framework which ascertains if either a service failure or degradation is going to

occur. In the next chapter, the post-interaction decision-making component of the

proposed framework for reassessing the service selection decision is described.

This chapter is organized as follows: In the next section, I define the impor-

tant terms needed to explain this part of the framework. An overview of the early

warning component of the UCSM framework is given in Section 7.3 and the tech-

nique for detecting service failure and quantifying QoS deviation is discussed in

Section 7.4. In Section 7.5, the fuzzy inference system which takes current and

forecasted QoS deviation as inputs and employs fuzzy inference technique to trig-

ger a warning alarm is discussed. In Section 7.6, the entire mechanism by means

of a case study is explained. Section 7.7 concludes this chapter.

7.2 QoS Deviation and Failure

To implement the early warning system for cloud QoS, the following concepts

which are needed to detect service failure and quantify QoS deviation are for-

mally defined:

1. QoS Deviation: The difference between QoS values observed in two dif-

ferent time slots.

2. QoS Degradation: The service deviation between two time slots when the

143

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

QoS is lower in the second time slot in comparison with the preceding time

slot.

3. QoS Improvement: The service deviation between two time slots when

the QoS is higher in the second time slot in comparison with the preceding

time slot.

4. Service Failure: The event when the observed or forecasted QoS values

of the chosen service are lower than the user’s minimum QoS requirement.

5. User’s Minimum Criteria: The user specified minimum QoS values of

each criterion.

QoS deviation is a fundamental concept and the other concepts listed above

are its special cases, as explained below.

QoS deviation measures the difference between QoS values observed in any

two time slots. If the QoS deviation is such that the QoS in the first compared

time slot is better than the second one, then this deviation is called QoS degra-

dation. Conversely, if the QoS deviation in the second time slot is better than the

first time slot, then it is called QoS improvement.

The deviation between the QoS values observed at a time slot in considera-

tion and the user’s minimum criteria values can be used to detect service failure.

Thus, QoS deviation can be categorized into three types - Service failure, Service

Improvement and Service Degradation, as shown in Figure 7.1. In this figure, a

QoS criterion (CPU response time), which is a cost criterion, is shown as observed

in several time slots. The upper horizontal line shows the user’s minimum value

for this criterion while the lower horizontal line is the value of this criterion as

recorded at the time spot. The region above the top horizontal line is the service

failure region. If the graph goes into this region, it indicates that the service has

failed in terms of this criterion.

Similarly, the instances where this graph goes below this lower line are

occasions where the service shows improvement in terms of this criterion. The

middle region is the degradation region where if the graph stays close to the QoS

level observed at the time spot, this indicates less degradation while its closeness

to the upper (failure line) indicates severe degradation which is close to service

failure.

Similarly, the deviation between the QoS values at the time spot and the

user’s minimum QoS values is used to calculate the range (or maximum possible

144

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

! "#$%#&&'&& ! "#$%#&('&& ! "#t %#&%'&& ! "#$%#&) '&& ! "#$%#* $'&& ! "#$%#* +'&& ! "#$%#* '&& ! "#$%#$* '&& ! "#$ #&&'&&

Re
sp

on
se

 ti
m

e

User's Minimum Criterion Vvalue

QoS at the Time Spot

Time slots

Service Failure Region

Service Improvement Region

QoS Degradation Region

Figure 7.1: Service Failure, Degradation and Improvement visualized as regions
in a graph

service degradation) which is used to scale the calculated degradation values to

provide input for the fuzzy inference system.

In the next section, an overview of the early warning component of the

UCSM framework is given, which uses the concepts defined above.

7.3 Overview of the Early Warning Component of
UCSM Framework

As discussed previously in Section 7.1, the objective of this component is to eval-

uate the QoS information and its projected future values in accordance with the

user’s preferences regarding the multiple QoS criteria. The sequences of steps in

the proposed approach to achieve this objective are depicted in Figure 7.2.

As shown in Figure 7.2, the proposed early warning mechanism retrieves

the current QoS values from the QoS repository and the forecasted QoS values

from the QoS forecasting component. In the next step, the current QoS value is

compared with the user’s minimum QoS requirements to detect ’service failure’.

If the current QoS values indicate a service failure, then a ’service failure alarm’

is triggered. If the current QoS values do not indicate an instance of service

failure, then the service deviation at a future time slot is calculated. Once the

level of deviation between the QoS values at the time spot and the current time

slot and the predicted QoS values at a future time slot have been determined, a

fuzzy inference system uses the observed and forecasted service deviation and

the user’s risk attitude to determine the severity of QoS deviation to trigger

an early warning alarm. The early warning mechanism sends a request to the

post-interaction decision-making module via a failure alarm or an early warning

145

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Start

QoS repository

Get the current

QoS values of the

selected service

Get forecasted QoS

for the future time

slots from the

forecasting

component

Detect Service

failure and

Calculate

Degradation

Service Failure?

Generate failure

alarm

End

Perform Fuzzy

Inference on

current and future

QoS Deviation

Generate Early

Warning alarm

Yes

No

Significant

Degradation?

Yes

No

Figure 7.2: Flowchart showing the sequence of steps in the proposed approach
for the early warning component

146

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

alarm to reassess the service selection decision. The post-interaction decision-

making module reassesses the service selection and recommends a decision to

the user as to whether to continue or migrate to another service.

Using the definitions of service failure and QoS degradation, the early

warning mechanism has to detect the occurrence of the following scenarios at

each time slot.

1. If a service failure is occurring at the current instant. If not then:

2. Service degradation at the current instant

3. service degradation at a future instant

The mechanisms developed to detect service failure and to quantify service

deviation are explained in detail in the next section while the fuzzy inference

system is discussed in Section 7.5.

7.4 Quantifying QoS Deviation and Detecting Ser-
vice Failure

As explained previously, calculating QoS deviation (i.e. change of QoS between

two instances) represents both improvement and degradation of the QoS mea-

sured at two instances and is, therefore, very important for determining service

degradation.

If qi,t denotes the QoS of a service in terms of criterion i at time t, then the

deviation of QoS observed after an interval h can be determined by,

∆qi = qi,t − qi,t+h (7.1)

This gives the change in QoS in terms of one criterion only. As explained in

Chapter 5, there are two types of QoS criteria, namely the cost criteria and the

benefit criteria. Thus, a larger value of qi is desired if i is a benefit criterion and

a lower value of qi is good for the user if i is a cost criterion. Thus, for a benefit

criterion positive value of ∆qi means that the QoS has decreased and a negative

value means that the service has improved. In the case of a cost criterion, the

negative value of ∆qi means that the service has degraded while a positive value

indicates an improvement in QoS.

147

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

However, as explained in the previous chapters, there are multiple criteria

of QoS and the importance of each criteria is not the same. Therefore, while

determining QoS deviation, the multiple QoS assessments against each criteria

must be taken into account.

The concept of Weighted Distance Metric [159, 160], which is an extension

of well-known distance measures, can be used to combine the individual devia-

tion values to find the overall deviation.

The Lp distance metric is given by,

D(x, y)= (∑ |xi − yi|p
)1/p

where x and y are k-tuples xi and yi are the i th coordinates of x and y. If

p=1, then this metric is called Manhattan Distance and if p=2, then this is the

Euclidean Distance metric.

The weighted distance metrics are given by,

D(x, y)= (∑
wi|xi − yi|p

)1/p

where wi is the weight of the ith coordinates of x and y.

Using the Manhattan distance method, the overall QoS deviation is calcu-

lated as,

∆Q =∑ |∆qiwi| (7.2)

where ∆Q is the QoS deviation, qi is deviation in terms of criterion i and wi is

the weight representing the importance of criterion i for the user. Also, wi is

positive for benefit criteria and negative for cost criterion, i.e.

−1< wi < 0 if i is a cost criterion

1> wi > 0 if i is a benefit criterion (7.3)

Furthermore, the weights are normalized to unity i.e.
∑ |wi| = 1

Thus, the quantity ∆Q essentially reflects the user’s perception of the dif-

ference in the QoS of a service observed at two instances but it only measures the

deviation or change in QoS and does not show whether the service in question

has degraded or improved.

148

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

7.4.1 Quantifying QoS Degradation and Improvement

QoS degradation in terms of a single criterion q is defined by using the quantity

∆q given by Equation 7.1 as,

∆q− = |∆q|−∆q
2

if i is a benefit criterion

= |∆q|+∆q
2

if i is a cost criterion (7.4)

Similarly, service improvement is given by,

∆q+ = |∆q|+∆q
2

if i is a benefit criterion

= |∆q|−∆q
2

if i is a cost criterion (7.5)

As mentioned in Chapter 6, despite the high correlation between different

criteria, in many cases, variation in two different criteria follows different trends.

In such a scenario, a service may show improvement in one criterion and degra-

dation in terms of another criterion, which makes it very difficult to say whether

a service has improved or degraded between the two instances.

Using the above equations for QoS degradation and improvement in terms

of a single criterion, the overall degradation and improvement are defined as

follows:

∆Q− =∑ |∆q−
i wi| (7.6)

∆Q+ =∑ |∆q+
i wi| (7.7)

Thus, three quantities have been defined namely, Service Deviation (∆Q),

Service Improvement (∆Q+) and Service Degradation (∆Q−). Finding these quan-

tities for the interval between the following time slots is necessary for service

management decision making.

1. The time spot and the current time slot.

This is the deviation between the observed QoS at the instant when a ser-

vice selection decision is made and the QoS observed at the current time.

2. The time sspot and the future time slot.

This is the deviation between the time spot and at a time slot in the future

(h time slots after the current time slot, at the end of the forecast horizon).

149

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Thus, the QoS values recorded at the time spot serve as a benchmark to

determine service deviation in the future.

The extensive analysis of real QoS data in the previous chapter has shown

that the QoS values at two instances are always different which means that there

will always be some deviation in QoS between any two time slots. It is important

to define a significant level of deviation or threshold so that smaller variations

which fall below the threshold are ignored and only the larger deviations which

fall beyond the threshold and are thus significant for the user are considered in

service management.

Therefore, it is necessary to base the service management process on the

severity of service degradation rather than service degradation alone.

7.4.2 Detecting Service Failure

As defined in Section 7.2, the severest level of service degradation is service fail-

ure. In the context of cloud service management, this is when the service devi-

ates below a certain level, reflecting the user’s minimum desired level. In other

words, the service may still be operational but the delivered QoS is lower than

the user’s minimum requirement. Thus, the user provides a minimum QoS value

for each criterion which is used to detect and predict service failure.

If q1, q2 . . . qn are the observed QoS values at two instants of time and

q f
1 , q f

2 . . . q f
n are the user’s provided minimum QoS, then service failure occurs

when any of the observed QoS values is worse than the corresponding limit i.e.

qi ≤ q f
i for benefit criteria or qi ≥ q f

i for cost criteria or qi ≤ q f
i for benefit crite-

rion.

q f
i =

|qi − q f
i |− (qi − q f

i)

2
if i is a benefit criterion

= |qi − q f
i |+ (qi − q f

i)

2
if i is a cost criterion (7.8)

Thus, q f
i > 0 when the service fails in terms of criterion i and q f

i = 0 when

the QoS value is above the failure threshold. This definition of service failure can

be extended to multiple criteria by calculating the weighted average in a manner

similar to Equation 7.2. i.e.

150

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Q f =∑ |q f
i wi| (7.9)

At any instant, a value of Q f > 0 indicates that the service has failed in

terms of one or more criteria. Service failure in any time slot can be detected by

using Equation 7.9 and the larger the value of Q f , the greater the severity of the

failure. This value is used to trigger the service failure alarm.

7.4.3 Calculating Maximum Possible Degradation

As mentioned previously, the deviation between the QoS values at the time spot

and the user’s minimum QoS values is used to calculate the range (or maximum

possible service degradation) which is required to scale the calculated degrada-

tion values to provide input for the fuzzy inference system.

The maximum possible degradation is given by,

∆qmax
i = |qp

i − q f
i | (7.10)

where qp
i is the value of criterion i at the time spot and q f

i is the user’s minimum

value for criterion i.

7.4.4 Scaling The Quantified Degradation

The scaled degradation at any time slot which is in the required range of the

fuzzy inference system is calculated as,

∆Q− =∑ |∆q−
i wi|

∆qmax
i

×10 (7.11)

This scales the calculated deviation according to the input range (0 to 10) of the

fuzzy inference system.

In the next section, the fuzzy inference system for generating early warning

alarms of QoS degradation is discussed.

7.5 Fuzzy Inference System for Triggering QoS
Degradation Alarm

In order to generate this alarm, the user’s risk attitude has to be considered in

addition to the detection of service failure and determining the degree of QoS

151

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

degradation. The fuzzy inference system takes these three inputs and deter-

mines the risk of service failure on the basis of this information.

Fuzzy sets were introduced by Zadeh [161] in 1965. In classical sets (also

called crisp sets), an element can be either a member of a set or not a member of

a set. The fuzzy sets allow each element to have a degree of membership between

0 and 1. Lotfi Zadeh also proposed a logic based on his fuzzy set theory, which

is similar to Boolean logic but uses fuzzy sets and fuzzy operators instead of

crisp sets and Boolean operators. In 1975, Mamdani and Assilian [162] proposed

an inference approach based on fuzzy logic concepts. This approach is the most

extensively used fuzzy technique and the fuzzy inference system in the early

warning component also uses the Mamdani approach.

The flow of steps in a fuzzy inference system in the early warning compo-

nent is shown in Figure 7.3 on the following page. As mentioned previously, the

FIS takes two inputs. In previous steps, two degradation values are calculated:

(1) the QoS degradation at the current time slot with respect to the time spot;

and (2) the QoS degradation at the future time slot with respect to the time spot.

The third input is the user’s risk attitude which is provided by the user. These

inputs are fuzzified through three fuzzy sets. In the next step, the fuzzy rules are

applied on the fuzzified input values and the outputs are calculated which are

aggregated and then defuzzified by using the centroid method, which returns

a crisp value representing the risk of failure of the monitored service and the

alarm is generated on the basis of this output value.

7.5.1 Risk Attitude of the Service User

The risk propensity or risk attitude of a service user defines a user’s risk-taking

nature and represents the user’s tendency to accept the levels of change in the

QoS [115]. The risk attitude of the service user determines what level of devia-

tion in the QoS is seen as significant by the user, and based on this, how much

degradation in the QoS is acceptable to the user. It is important to note that

no two service users are likely to have the same risk attitude and consequently,

their approach to decision-making in the interaction also varies. Additionally,

the risk attitude of a service user might not be the same throughout an interac-

tion and may change with time. It is very important to accurately ascertain the

risk propensity of a service user at a given period of time to determine its impact

on the levels of change observed in QoS values.

As defined by Hussain et al. [115], there are three broad categories to cap-

152

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Start

Get Risk attitude,

current

degradation and

forecasted

degradation values

Fuzzification of the

input values by

using the

respective fuzzy

sets

Use fuzzy rules to

calculate output

values

End

Defuzzification of

the output using

the output fuzzy

sets

Aggregation of the

output values

Decision to trigger

Alarm

Figure 7.3: Flow chart showing the sequence of steps in the fuzzy inference sys-
tem for QoS early warning

ture the risk-taking nature of the service user which are as follows:

Risk Averse (RA): Risk Averse is defined as the attitude of the service

user who wants to consider minimal change in the QoS during service manage-

ment.

153

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Risk Neutral (RN): Risk Neutral is defined as the attitude of the service

user who, unlike users of a risk averse nature, does not want to totally avoid

changes in the QoS and accepts QoS degradation to a certain extent.

Risk Taking (RT): Risk Taking is defined as the attitude of the service

user who is indifferent to any level of change observed in the QoS and is ready to

continue with the selected service, no matter what level of change is observed.

The concept of risk attitude or propensity in the context of web-based trans-

actions [163] is developed into a fuzzy inference system . This concept is utilized

to trigger warning alarms on the basis of service degradation as defined above.

7.5.2 Fuzzy sets for Risk Attitude

The risk propensity of the cloud service user is defined over the universe of dis-

course (or universal set) U = {r|0 ≤ r ≤ 5; r ∈ ℜ}. Thus, the risk attitude ranges

from 0 to 5. The three types of risk attitudes mentioned above are defined by

three triangular fuzzy sets (Figure 7.4). The risk propensity of the user can be

determined by a set of psychological questions [115]. These methods are not

discussed here as they are beyond the scope of this thesis.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

Risk Propensity Input

Risk Averse
Risk Neutral
Risk Taking

Figure 7.4: Membership functions for risk propensity of the user

7.5.3 Fuzzy Sets for QoS Degradation

The severity of QoS degradation is defined using three tripodal fuzzy sets; low,

medium and high (as shown in Figure 7.5). QoS degradation as defined in the

previous section is scaled on a range of 0 to 10. The same fuzzy sets are used for

current and forecasted QoS degradation.

154

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

It is necessary to scale the deviation in the range 0 to 10 before fuzzifying.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

em
be

rs
hi

p

Scalled Degradation Level

Low
Medium
High

Figure 7.5: Membership functions for severity of QoS degradation

7.5.4 Fuzzy Sets for Triggering a QoS Degradation Alarm

The output of the early warning systems is defined by using two triangular fuzzy

sets: Normal and Alarm, as shown in Figure 7.6.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
em

be
rs

hi
p

Alarm
Normal

Figure 7.6: Membership functions for QoS Warning

After the user’s risk propensity and the QoS degradation have been con-

verted into the corresponding fuzzy values, the next task is to perform a fuzzy

155

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

inference on the basis of these values to decide whether or not to generate an

alarm.

7.5.5 Fuzzy Inference Rules of triggering a QoS degrada-
tion Alarm

The fuzzy inference system is a Mamdani type fuzzy system as shown in Figure

7.7. The system has three inputs, riskattitude, deviationA and deviationB. The

first input is the user’s risk attitude which, as explained previously, is fuzzified

by using the corresponding fuzzy sets shown in Figure 7.4. The second input

is the current deviation (QoS deviation betweeen the time spot and the current

time slot) and the third input is future deviation (QoS deviation between the

time spot and the forecasted QoS values at a future time slot). Both these inputs

are fuzzified by using the fuzzy sets shown in Figure 7.5.

Riskattitue

deviationA

deviationB

output1

earlywarn

(mamdani)

Figure 7.7: The fuzzy inference system for QoS early warning alarm

Based on the inputs discussed above, the system uses the fuzzy rules given

in Table 7.1 to calculate an output which is defuzzified by using the output fuzzy

sets, shown in Figure 7.6.

The AND operator used in these rules is the fuzzy AND operator given by:

xAND y= min(x, y)

where x and y are two fuzzy numbers.

A fuzzy implication operator is used to find the output of a rule. In this FIS,

the minimum fuzzy operator is used as the implication operator.

156

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Rule if Riskattitude is and deviationA is and deviationB is then output is
1. riskaverse low low Normal
2. riskaverse low medium Normal
3. riskaverse low high Alarm
4. riskaverse medium low Normal
5. riskaverse medium medium Alarm
6. riskaverse medium high Alarm
7. riskaverse high low Normal
8. riskaverse high medium Alarm
9. riskaverse high high Alarm
10. riskneutral low low Normal
11. riskneutral low medium Normal
12. riskneutral low high Alarm
13. riskneutral medium low Normal
14. riskneutral medium medium Normal
15. riskneutral medium high Alarm
16. riskneutral high low Normal
17. riskneutral high medium Normal
18. riskneutral high high Alarm
19. risktaking low low Normal
20. risktaking low medium Normal
21. risktaking low high Normal
22. risktaking medium low Normal
23. risktaking medium medium Normal
24. risktaking medium high Normal
25. risktaking high low Normal
26. risktaking high medium Alarm
27. risktaking high high Alarm

Table 7.1: Fuzzy rules for triggering alarm

7.5.6 Aggregation and Defuzzification

After calculating the output of each fuzzy rule as explained above, these values

must be aggregated to produce a single fuzzy set. A fuzzy aggregation operator

is used for this purpose. There are several fuzzy aggregation operators, such as

the maximum, the sum and the probabilistic sum operators. I have used the

maximum operator for this purpose.

I use the centroid method for fuzzificaton. The following formula gives the

centroid,

157

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

COA =

n∑
0

xiµ(xi)

n∑
0
µ(xi)

(7.12)

where 0 to n is the range of the output fuzzy set, xi and µi are the points on

the x-axis and their corresponding membership function values. The calculated

crisp value is used to trigger the QoS degradation alarm on a scale of 0 to 10. A

smaller value suggests normal performance while a larger value shows that an

alarm has to be triggered.

In the next section, a case study is given as an example to show how these

concepts are used to trigger early warnings of QoS degradation and service fail-

ure.

7.6 QoS Early Warning Mechanism: A Case Study

A subset of the cloud QoS data is used from Chapter 5. This dataset contains the

QoS values recorded hourly from 12 PM, 26-3-2012 till 10 AM, 27-3-2012 (Table

7.2). The time plots of the three series are shown in Figure 7.8. All the criteria

in this dataset are cost criteria (a lower value indicates a better QoS).

Let’s assume that the current time is 2 AM, 27-03-2012. It can be seen in

Table 7.2 and Figure 7.8 that after this, the service degrades in terms of all three

criteria. The aim of this case study is to show how the proposed equations in

the previous section’s work detect this change in the QoS and generate an early

warning.

7.6.1 Part 1: Quantifying Service Degradation

In Table 7.3, the QoS values of the three criteria recorded at midnight and at 2

AM on 27-03-2012 (first and second row respectively) are shown. The deviation in

the QoS between these two intervals (∆q) is calculated using Equation 7.1 (row

three in the table) which shows deviation of QoS in terms of all the criteria. The

QoS degradation (q−) and service improvement (q+) between these two instances

is calculated by using Equation 7.4 and 7.5, respectively, and is given in the

remaining two rows of the table. These calculations show that there is no QoS

degradation in any criterion and the deviation is due to the QoS improvement.

Assuming that the user gives equal weights (−1/3) to all three criteria,the

158

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Time slot q1 q2 q3
2012-03-26 00:00:00 3031.25 8014.50 5351.00
2012-03-26 01:00:00 2940.25 7878.25 5296.75
2012-03-26 02:00:00 2956.50 7882.50 5269.00
2012-03-26 03:00:00 2996.00 7882.00 5296.25
2012-03-26 04:00:00 3132.00 8151.50 5413.75
2012-03-26 05:00:00 2995.75 8061.25 5210.75
2012-03-26 06:00:00 2968.50 7952.00 5253.25
2012-03-26 07:00:00 2991.25 7823.00 5245.75
2012-03-26 08:00:00 3003.00 8042.25 5315.75
2012-03-26 09:00:00 3022.75 8046.00 5295.75
2012-03-26 10:00:00 2953.00 8010.75 5214.25
2012-03-26 11:00:00 2956.25 7920.75 5260.75
2012-03-26 12:00:00 2941.00 7975.50 5151.25
2012-03-26 13:00:00 2917.75 7940.75 5261.25
2012-03-26 14:00:00 2925.50 7940.50 5242.25
2012-03-26 15:00:00 2969.00 7932.50 5210.25
2012-03-26 16:00:00 2906.25 7909.50 5237.75
2012-03-26 17:00:00 2929.25 7921.25 5225.75
2012-03-26 18:00:00 2983.50 7761.00 5253.50
2012-03-26 19:00:00 2917.75 7913.00 5273.25
2012-03-26 20:00:00 2921.25 7940.50 5366.50
2012-03-26 21:00:00 2979.50 7909.50 5304.25
2012-03-26 22:00:00 2961.00 7847.00 5312.50
2012-03-26 23:00:00 2948.50 7964.00 5382.00
2012-03-27 00:00:00 2886.25 7851.00 5261.25
2012-03-27 01:00:00 2972.25 7925.25 5402.50
2012-03-27 02:00:00 3355.00 8655.50 5796.00
2012-03-27 03:00:00 3605.25 9971.75 6519.00
2012-03-27 04:00:00 3573.50 9690.75 6440.75
2012-03-27 05:00:00 3624.25 9753.50 6342.75
2012-03-27 06:00:00 3323.25 9643.50 6936.25
2012-03-27 07:00:00 3694.75 9640.00 6742.25
2012-03-27 08:00:00 3843.50 9440.75 6276.50
2012-03-27 09:00:00 3550.25 10043.00 6866.75
2012-03-27 10:00:00 3894.25 9991.75 6933.50

Table 7.2: QoS values recorded hourly from 12 PM, 26-3-2012 till 10 AM, 27-3-
2012.

159

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Mar 26 00:00 Mar 26 03:00 Mar 26 06:00 Mar 26 09:00 Mar 26 12:00 Mar 26 15:00 Mar 26 18:00 Mar 26 21:00 Mar 27 00:00

29
00

31
00

33
00

CPU

Mar 26 00:00 Mar 26 03:00 Mar 26 06:00 Mar 26 09:00 Mar 26 12:00 Mar 26 15:00 Mar 26 18:00 Mar 26 21:00 Mar 27 00:00

78
00

82
00

86
00

I/O

Mar 26 00:00 Mar 26 03:00 Mar 26 06:00 Mar 26 09:00 Mar 26 12:00 Mar 26 15:00 Mar 26 18:00 Mar 26 21:00 Mar 27 00:00

52
00

55
00

58
00

Memory

Figure 7.8: Time plots of the dataset in Table 7.2

Quantity C1 C2 C3
qt 3031.25 8014.50 5351.00
qt+h 3355.00 8655.50 5796.00
∆q -323.75 -641.00 -445.00
q− -323.75 -641.00 -445.00
q+ 0.00 0.00 00.00

∆Q = 469.92
Q− = 469.92
Q+ = 0.00

Table 7.3: QoS Deviation, degradation and improvement observed between the
time-spot and the current time slot

overall QoS degradation (∆Q−) is calculated by using Equation 7.6 as:

∣∣∣∣−323.75×−1
3

∣∣∣∣+ ∣∣∣∣−641.00×−1
3

∣∣∣∣+ ∣∣∣∣−445.00×−1
3

∣∣∣∣= 469.92

Similarly, the overall QoS improvement (∆Q+) is calculated by using Equa-

tion 7.7. In this case ∆Q+ = 0, as there is no improvement in any criterion.

The QoS values forecasted up to 8 hours in the future from 2 AM, 27-03-

2012 (considered as the current time) predicted by ARIMA along with the corre-

sponding 80% and 95 % confidence intervals, are shown in Table 7.4.

In Table 7.5, the QoS values at the current time slot and at 10 AM on 27-

160

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

Time Foretasted 80 % Confidence Interval 95 % Confidence Interval
Slot QoS Low High Low High

Criterion C1
2012-03-27 03:00 3365.920 3262.788 3469.053 3208.193 3523.648
2012-03-27 04:00 3232.210 3065.519 3398.901 2977.278 3487.142
2012-03-27 05:00 3248.121 3060.577 3435.665 2961.297 3534.945
2012-03-27 06:00 3369.160 3157.360 3580.959 3045.240 3693.079
2012-03-27 07:00 3583.346 3341.930 3824.763 3214.131 3952.561
2012-03-27 08:00 3555.465 3254.005 3856.925 3094.422 4016.508
2012-03-27 09:00 3496.346 3142.716 3849.977 2955.515 4037.178
2012-03-27 10:00 3557.958 3167.445 3948.472 2960.720 4155.197

Criterion C2
2012-03-27 03:00 8811.142 8627.254 8995.029 8529.910 9092.373
2012-03-27 04:00 8532.177 8232.794 8831.561 8074.310 8990.044
2012-03-27 05:00 8581.343 8227.763 8934.923 8040.588 9122.097
2012-03-27 06:00 9262.722 8875.908 9649.537 8671.140 9854.304
2012-03-27 07:00 9463.028 8942.237 9983.819 8666.546 10259.510
2012-03-27 08:00 9508.578 8842.277 10174.879 8489.558 10527.598
2012-03-27 09:00 9780.741 8988.049 10573.432 8568.424 10993.058
2012-03-27 10:00 10174.128 9242.605 11105.652 8749.486 11598.770

Criterion C2
2012-03-27 03:00 5574.634 5466.750 5682.518 5409.639 5739.629
2012-03-27 04:00 5413.449 5296.928 5529.971 5235.245 5591.654
2012-03-27 05:00 5589.417 5472.002 5706.832 5409.846 5768.988
2012-03-27 06:00 5697.569 5570.526 5824.612 5503.273 5891.865
2012-03-27 07:00 5822.674 5678.794 5966.553 5602.629 6042.718
2012-03-27 08:00 5796.345 5619.306 5973.384 5525.587 6067.103
2012-03-27 09:00 5818.815 5620.971 6016.660 5516.238 6121.392
2012-03-27 10:00 5883.732 5665.448 6102.016 5549.895 6217.569

Table 7.4: Forecasted QoS for 8 time slots with confidence intervals using
ARIMA(4,2,4)

03-2012, are compared.

Quantity C1 C2 C3
qt 3355.00 8655.50 5796.00
qt+h 3557.96 10174.13 5883.73
∆q -202.96 -1518.63 -87.73
q− 202.96 1518.63 87.73
q+ 0.00 0.00 0.00

∆Q =−603.11
Q− = 603.11
Q+ = 0.00

Table 7.5: QoS Deviation, degradation and improvement observed between the
current time slot and a future time slot

161

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

7.6.2 Part 2: Fuzzy Inference

After explaining the proposed method for calculating QoS deviation by the above

examples in the previous sub-section, an explanation of how this method is uti-

lized by the early warning mechanism is given by a case study.

Let’s assume the time spot to be at 00:00 hours on 3-26-2012 (Table 7.2) and

the current time slot is at 2:00 hours on 27-03-2002. The future time slot is after

a delay of 8 hours from the current time slot at 10 hours 27-3-2012. Furthermore,

let the user’s minimum QoS criteria be 4000, 10000 and 7000, respectively in

terms of the three criteria. Let the user’s risk propensity be 2.5. These input

values are summarized in Table 7.6

Quantity C1 C2 C3
QoS at the Time Spot 3031.25 8014.50 5351.00
Current QoS 3355.00 8655.50 5796.00
Future QoS 3557.96 10174.13 5883.73
User’s Minimum QoS values 4000.00 10000.00 7000.00

User’s Risk Propensity = 2.5.

Table 7.6: Input provided to the early warning component

Calculating maximum possible deviation: The maximum possible de-

viation is the deviation between the QoS values observed at the time spot and

the user’s minimum QoS criteria i.e.

Maximum possible deviation = (3031.00−4000.00), (8014.50−10000.00), (5351.00−
7000.00)

= (−969.00,−1985.50,−1649.00)

These values are used for scaling the raw QoS deviation.

Calculating the deviation between the time spot and the current
time slot: The deviation between these two instances calculated in terms of

each criteria is:

(−323.75,−641.00,−445.00)

Dividing each of these values by the corresponding maximum possible de-

viation gives the scaled deviation values.

(0.3341,0.3229,0.2699)

162

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

and the net deviation is given by:

(0.3341+0.3229+0.2699)/3= 0.30897

which is scaled to the input range of the fuzzy inference system,

DeviationA = 0.30897×10= 3.0897

Similarly, the second input values are calculated from the deviation be-

tween the time spot and the future time spot. After scaling between 0 and 10,

this input values is:

DeviationB = 6.5149

Fuzzification of risk propensity input: The membership values of the

fuzzy sets RA, RN and RT for a risk attitude level of 2.5 are:

RA = 0

RN = 1

RT = 0
Thus, these inputs for risk propensity correspond to a risk neutral user.

Fuzzification of deviation A and deviation B: The membership values

of the fuzzy sets Low, Medium and High for deviation A and B are:

Fuzzy set deviationA deviationB

Low (L) 0 0

Medium (M) 1 1

High (H) 0 0

Evaluating rules: The membership values of the fuzzy sets are used to evaluate

the left side of the rules (incident part). For example:

Rule 14: if RN and M and M then N

min(1,1,1)= 1

for the incident part (right side of the rule) the maximum value of the fuzzy

set N is truncated to the incident value as shown in Figure 7.9.

Similarly,

Rule 15: if RN and M and M then A

the incident part is evaluated as,

163

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

M
em

be
rs

hi
p

Figure 7.9: Membership function after the implication operation (Rule 14)

min(1,1,0)= 0

and the implication operation gives the fuzzy set shown in Figure 7.10.

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

M
em

be
rs

hi
p

Figure 7.10: Membership function after the implication operation (Rule 15)

Aggregation of evaluated fuzzy rules: After evaluating all the fuzzy

rules, the resulting fuzzy sets are aggregated by using the fuzzy aggregation

operator (maximum) which gives the fuzzy set shown in Figure 7.11.

Defuzzification of output: The centroid method (as defined in Equation

7.12) is applied to find the center of area under the curve shown in Figure 7.11

164

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

0 1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

M
em

be
rs

hi
p

Figure 7.11: Membership function after the implication aggregation of all output
membership functions

which is given by,

n∑
0

xiµ(xi)= 1.0×0+0.9×1+0.8×2+0.7×3+0.6×4+0.5×5

+0.4×6+0.3×7+0.2×8+0.1×9+0.0×10

= 16.5

and

n∑
0
µ(xi)= 1.0+0.9+0.8+0.7+0.6+0.5+0.4+0.3+0.2+0.1+0.0

= 5.5

and,

COA−
∑n

0 xiµ(xi)∑n
0 µ(xi)

= 16.5000
5.5

= 3.0

Decision on whether or not to trigger an alarm: Defuzzification re-

turns a crisp value of 3.0. This value means that the inference is only 30% in

favour of alarm, therefore an alarm is not trigged.

165

CHAPTER 7. QOS EARLY WARNING FOR CLOUD SERVICE
MANAGEMENT

7.7 Conclusion

In the post-interaction phase of cloud service management, the service selection

decision made during the pre-interaction phase is reassessed to make sure that

the selected service continues to remain the best service for the user. In this

chapter, an early warning component is developed which detects service failure

at the current time slot and forewarns of an impending severe QoS degradation

in the future. It generates a service failure alarm when a service failure is de-

tected at the current time slot and an early warning QoS degradation alarm indi-

cates that a severe service degradation is possible in a future time-slot. Methods

were developed to quantify the degree of service degradation between two time

slots and to detect service failure. Based in these quantified inputs, a fuzzy in-

ference system was designed and developed to generate alarms to trigger the

post-interaction decision making module on the basis of the severity of the ob-

served and forecasted QoS degradation with respect to the user’s risk attitude.

The developed techniques were demonstrated by presenting a case study of

the real QoS data which showed that these techniques are able to successfully

detect impending QoS degradation.

In the next chapter, the post-interaction decision making component that

reassesses the service selection decision after receiving an alarm from the early

warning component is presented.

166

Chapter 8

Service Continuation Decision
Making in the Post-Interaction
Phase

8.1 Introduction

In previous chapters, it was shown that the QoS values of the key performance

parameters measured over an interval of time can be analyzed and modeled us-

ing time series techniques by studying the patterns in the variation for forecast-

ing expected QoS values in future time slots. Based on these findings, an early

warning mechanism was developed in Chapter 7 to detect service failure and

impending severe service degradation (as shown in Figure 7.2). In addition to

informing the cloud service user that a service migration decision needs to be

made to avoid the consequences of a failure or severe degradation in the QoS of

the currently selected service, a post-interaction decision-making component is

also included in the UCSM framework to assist the user in making a decision as

to whether to continue using the currently selected service or to migrate to an-

other available service. In this chapter, the working of this component is demon-

strated. In addition to responding to the alarms generated by the early-warning

component, another role of this component is to determine whether or not the

currently selected service is still the best service when the service monitoring

module detects one or more newly available services.

This chapter is organized as follows: in the next section, an overview of the

service continuation decision-making component in the post-interaction phase is

167

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

presented. In Section 8.3, VM migration is discussed from a cloud service migra-

tion perspective. Estimation of the operational and financial cost of migration

is discussed in Section 8.4 which is followed by a discussion on decision making

in Section 8.5. A case study example of the proposed approach is presented in

Section 8.6 before concluding this chapter in Section 8.7.

8.2 Overview of Post-Interaction Service Manage-
ment Decision Making

In many aspects, decision making in the post-interaction phase is similar to deci-

sion making in the pre-interaction phase. However, as explained in Chapter 5, in

the pre-interaction phase, the user is not using a cloud service and the primary

issue is to identify the most appropriate service, whereas in the post-interaction

phase, the user has already subscribed to a cloud service and needs to make a

decision whether to continue using the selected service or to migrate to another

available service. In this scenario, in addition to the QoS criteria of the currently

subscribed and other available services, the criteria related to operational and fi-

nancial cost incurred due to migration also needs to be considered while making

a decision.

In the UCSM framework, the post-interaction decision-making mechanism

is activated upon occurrence of one of the following three scenarios:

Scenario 1: The Service Monitoring Module registers a new service which

was not available at the time of service selection (time spot) but is functionally

equivalent to the currently selected service. Or

Scenario 2: The early warning mechanism detects a service failure in the

currently subscribed service and conveys a service failure alarm. Or

Scenario 3: The early warning mechanism perceives an impending severe

QoS degradation leading to a possible service failure in the currently sub-

scribed service and conveys an early warning alarm.

In the first scenario, there is a possibility that the newly available service

may be more advantageous than the currently selected or subscribed service.

Therefore, there is a need to reassess the service selection decision by using the

latest available information to see if the currently selected service is still the top

most suitable service for the user or if it has been superseded by other services.

168

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

However, in this case, the currently selected service still maintains a QoS level

which is acceptable to the user which will outweigh the cost and operational

factors the user will incur in the case of migration to a new service. Therefore, a

migration decision in this scenario is not as urgent as in the latter two scenarios.

Thus, in this case, the issue is similar to the service selection scenario that was

described while selecting a service (detailed in Chapter 5) and the same MCDM

process used for service selection in the pre-interaction phase can be used again

(with current QoS data).

In scenarios 2 and 3, the early-warning component has already detected

that there is an urgent need to migrate to another service owing to the QoS

degradation or failure of the currently selected service. What needs to be de-

termined in this scenario is which services rank higher than the currently se-

lected service at the future time-slot whose forecasted QoS values have caused

an alarm. This is again a MCDM problem and can be solved by any of the tech-

niques discussed in Chapter 5. However, instead of using the past QoS values

for MCDM, as was done in the service selection, in this case, the forecasted QoS

values of all the forecasted QoS values for the future time slot have to be used to

reflect the relative standing of each of the available services at the future time

slot.

In all of the above scenarios, the primary issue from a service management

perspective is to determine whether it is advantageous for the user to retain the

currently selected service or to migrate to another available service. This is a

multi-criteria problem similar to the problem of cloud service selection during

the pre-interaction phase. However, in addition to the multiple QoS criteria and

user preference regarding each criterion, it is also necessary to take into account

the operational and financial cost of migrating from the current service to an-

other service. Therefore, before performing a MCDM process, the values of these

criteria have to be determined and included in the decision matrix. Furthermore,

it is also necessary to ensure that the services which are being considered for mi-

gration maintain a QoS level higher than the currently selected service during

and after the migration process.

To meet the requirements, the proposed decision-making component has to

perform the following basic functions.

1. Find the ranking of all the currently available services (including the cur-

rently selected service) in order of their suitability for the user at the cur-

169

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

rent time.

2. Find the ranking of all the currently available services (including the cur-

rently selected service) order of their suitability for the user at the future

time slot.

3. Find the cost of migration from the current service to any of the other avail-

able services.

4. Rank the services by considering their QoS and migration cost.

To perform these tasks, the post-interaction decision-making component

employs MCDM at multiple levels. The sequence of steps involved in the post-

interaction decision-making component is depicted in Figure 8.1.

8.2.1 Working Process of the Post-Interaction Decision-Making
Component

As mentioned earlier, the process begins after receiving notification of the ad-

dition of a new service from the QoS monitoring module or an alarm from the

early warning system. After receiving any of these notifications, the current QoS

information is requested from the service monitoring module and the MCDM

procedure is performed on this data to find the ranking of the available services

on the basis of the user’s given criteria weights. The services which rank higher

are shortlisted as the current candidate services.

In the next step, the QoS forecasts of the shortlisted candidate services

for the future time slots are requested from the forecasting component and a

decision matrix is formed with this data along with the forecasted QoS of the

current service. Performing MCDM (with the user’s QoS criteria weights) on

this decision matrix gives a ranking of these services at the future time slot. The

services which rank higher than the current service are shortlisted as the future
candidate services. The future candidate services are the services which rank

higher than the current service at the current and future time slots. If none of

the available services are shortlisted as a future candidate service (i.e. there are

no future candidate services), then the user is recommended to continue with the

currently available service.

If one or more services are shortlisted as future candidate services, then

in the next step, the financial cost of migration from the current service to each

of the other shortlisted services is estimated. In the next step, the operational

170

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

Start

QoS repository
1. Receive new available service

notification from QoS

repository

2. Receive service failure and

early-warning alarms from the

early-warning component

3. Get future time slot QoS

forecasts for the forecasting

component.

End

Early-warning

component

Estimate the data transfer cost

involved in moving out from

the current service

 to each of the other service

ranking higher than the

currently selected service at the

current and future time slots

Estimate the service disruption

time for migrating to each of

the other available services

ranking higher than the current

service at the current and

future time slots

Perform MCDM process to

rank the higher ranking

services by using the QoS and

migration cost criteria

Recommend migration to the

top ranking service

Recommend continuation of

currently selected service

Perform MCDM process to

rank the available services with

the current QoS data

QoS forecasting

component

Perform MCDM process to

rank the available services with

forecasted QoS data

Are there any services ranking higher

than the currently selected service at

the current and future time slots?

Yes

No

Figure 8.1: Flowchart showing the sequence of steps in the post-interaction
decision-making component

171

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

cost of migration from the current service to each of the shortlisted services is

estimated.

In the next step, a decision matrix is formed which includes the current

rank, future rank and the values related to the financial and operational cost

of migration to each of the shortlisted services. This decision matrix is used to

perform the MCDM process and the service that ranks highest is recommended

to the user.

From the above discussion, it is clear that the financial and operational

cost of migration plays an important role in this decision-making process. In

the next section, virtual machine migration is explained from the perspective of

inter-cloud migration of services.

8.3 Migration of cloud services

Migrating from one cloud service to another is a challenging task. As mentioned

earlier, cloud computing relies highly on visualization technologies. The cur-

rent method of migration between hosts is virtual machine migration (VM mi-

gration). As VM migration moves the entire operating system along with the

running processes, the migration problem is simplified and can be handled effi-

ciently. Cloud service providers extensively use VM migration for load balancing

and the consolidation of workload across nodes in their data centers. This mi-

gration is mostly done over LANs. In recent times, work has been done on WAN

VM migration as well [110, 111].

8.3.1 Non-Live or Cold Migration

Non-live or cold migration is the simplest migration technique. In this process,

the VM is suspended and the CPU state, memory and disk contents are copied

from the source to the destination host and the execution of VM is resumed after

the completion of the migration process. As VM execution is paused during the

migration process, the migration problem simplifies to transferring the state of

each type of resource to the destination machine. However, this type of migration

involves long and undesirable VM downtime during the migration process.

8.3.2 Live Migration

In contrast to non-live VM migration, the goal of live VM migration is to maintain

high availability of the running VM during the migration process, while reducing

172

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

as much as possible the total transfer time.

There are two main approaches for the live migration of the VM process

and memory states.

Pre-Copy Migration: In pre-copy migration, the memory contents are

copied to the target machine in the background while the VM is still running.

As memory content can be changed during the transfer processes, the changed

contents (called dirty pages) are iteratively copied to the target machine. The

process continues until either the number of remaining pages is small or a fixed

threshold is reached, whichever happens first. The VM is then suspended, al-

lowing the remaining pages to be copied over. The VM will then resume its

execution in the destination machine, and the source VM is then destroyed. The

main benefit of pre-copy migration is low VM downtime (required for copying the

remaining dirty pages). On the other hand, the total migration time can be long

due to repeated copying of dirty pages.

Post-copy migration refers to transferring memory content after the pro-

cess state has been transferred. The process states are first copied to the desti-

nation machine, allowing the VM to resume quickly. The VM’s memory contents

are then actively fetched from the source to the target. All access to memory con-

tents that have yet to be migrated are trapped by memory faults, which causes

the missing content to be fetched from the source. The main benefit of post-copy

migration is reduced migration time, as memory contents are copied, at most,

once during the entire process. However, it can cause more service disruptions

due to the occurrence of memory faults.

In the next sub-section, VM migration between clouds is discussed.

8.3.3 Inter-Cloud VM migration

One pre-condition for cloud service migration is that the source and destination

service are compatible and migration is possible between them. This is possible

in the case of IaaS clouds where the source and destination clouds have identical

or inter-operable cloud middle-ware. As mentioned in Chapter 1, the develop-

ment of open cloud middle-ware has made the migration of virtual machines

(VMs) between clouds possible but the idea of inter-cloud VM migration is rel-

atively new [112]. The migration of cloud services requires VM migration over

WAN, which differs from live migration over LAN in the following aspects:

173

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

1. In LAN migration, the source and destination hosts are part of the same

hardware infrastructure and therefore have the same hypervisor and are

under the same management which facilitates VM migration. But, the

services of different cloud providers do not have this flexibility and VM

migration is more challenging.

2. The nodes in a data center are connected through a high speed LAN while

two clouds have a slower WAN link between them which results in a slower

transfer of memory and storage between the source and the target and

increases the migration time.

3. Storage migration is not needed in VM migration, as both the source and

destination share the same storage. But in WAN VM migration (as in inter-

cloud migration), the storage also needs to be transferred from the source

to the destination cloud along with the memory contents.

The time required for live migration within a cloud is less than a minute

which involves a downtime of not more than a couple of seconds [108] during

which the VM is not available. VM migration between clouds takes longer due to

the need to migrate storage in addition to memory and CPU state. Furthermore,

migration between clouds has to be carried out over WANs which are slower than

LANs. Thus, migration involves longer downtime as the VM remains unavailable

while it is being copied between the source and destination services.

Several techniques have been recently proposed to optimize the migration

process which will considerably reduce the total migration time and downtime

[110, 111]. However, for decision making, as only comparative values are re-

quired for different alternative services, the estimates for the simplest migration

technique are used. In the next section, the method to estimate the operational

and financial cost of migration is discussed.

8.4 Metrics for Estimating the Financial and Op-
erational Cost of Migration

As mentioned previously, the cost of cloud service migration which needs to be

considered in post-interaction decision making includes:

1. the financial cost incurred due to the computing and network resources

consumed during the migration process and

174

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

2. the operational cost due to downtime while the user’s VM is moved between

clouds.

These quantities depend on several factors which need to be ascertained

for their estimation. In order to determine these two cost criteria, the following

basic information is required:

1. Virtual Machine size is the fundamental factor in VM migration. This de-

pends on the memory and disk storage size of the VM.

(a) Memory size: This is the size of the main memory being used by the

VM at the source.

(b) Storage size: This is the disk storage being used by the VM. This is

usually larger than the memory size and therefore takes longer and

involves more cost compared with memory transfer.

2. Network throughput between two clouds: The data transfer rate be-

tween the source and destination clouds is related to the amount of net-

work bandwidth available between the two clouds. As VM migration is a

bandwidth intensive task, this quantity is very important in estimating the

migration time.

3. Cost of network usage: The cost of network usage at both the source

and destination clouds is needed for estimating the total migration cost

(financial cost).

Using the above described basic information, the following values are calculated:

1. Memory transfer time: if b is the throughput between two hosts and

vmem is the memory size, then the time required to transfer this memory

(tmem) is given by [164]:

tmem = vmem

b

2. Storage transfer time: Similar to the memory migration time, the stor-

age migration time is given by:

tstr = vstr

b

175

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

3. Cost of memory transfer: Let Cnet be the cost of transferring a unit

amount of data between the source and destination hosts, then the cost of

memory transfer is calculated as:

cmem = Vmem

Cnet

where Cnet = Cnet(source)+Cnet(destination)

4. Cost of storage transfer: Similarly, the cost of transferring the disk data

is calculated as follows:

cstr = Vstr

Cnet

Once the primary values have been estimated, then the overall financial and

operational cost is calculated as,

1. Total migration time: This is the operational cost and is given by the

sum of the memory transfer time and storage transfer time.

t = tmem + tstr

2. Total migration cost: This is the financial cost of migration and is the

sum of the costs of transferring and storage.

c = cmem + cstr

The above method is used to estimate the cost of migration. This method

uses the simplest approach without considering the optimized VM migration ap-

proaches which reduce these costs. As these estimates are used for comparison

between different services, the use of a more efficient migration technique affects

all the candidate services which does not change the relative estimates. The es-

timation of the cost reduction by using these efficient techniques is beyond the

scope of this thesis.

8.5 Multi-Criteria Decision Making

As mentioned previously in Section 8.2, the post-interaction decision-making

component employs MCDM at three levels.

176

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

At the first level, a decision matrix is formed which contains the QoS values

of all the available services that satisfy the user’s minimum criteria at the cur-

rent time slot and the QoS values for the currently selected service. The MCDM

process gives a ranking of these services. The services that have a higher rank

than the current service are shortlisted for further processing at the next level.

The forecasted QoS of the shortlisted services for the future time slot is

requested from the QoS forecasting component and a decision matrix is formed

with these values. The forecasted QoS of the current service is also included in

this matrix. The MCDM process applied to this matrix gives a ranking of services

at the future time slot. The services that rank higher than the current service

(future candidate services) are considered for migration.

For example, suppose that services {s0, s1, s2, s3, s4, s5} are the currently

available services and s0 is the currently selected or subscribed service. If at

this stage the MCDM process shows that the services are ranked from highest

to lowest as, {s1, s2, s3, s0, s4, s5} then {s1, s2, s3} having a higher ranking than the

currently selected service S0, are shortlisted for further processing. This process

is performed twice, first for the current time slot and is then repeated for the

future time slot. The services which are shortlisted in both time slots consti-

tute the future candidate services from which one service has to be selected for

migration in the next stage.

Once the future candidate services are known, the cost of migration to

each of these services is estimated, as discussed in the previous section. A de-

cision matrix is formed which includes the QoS values of all the shortlisted ser-

vices, along with the corresponding migration time and cost. The user’s assigned

weights for the QoS criteria and the two additional criteria weights for migra-

tion cost and migration time are used in the MCDM process performed on this

matrix. The result of this process gives the ranking of the shortlisted services

and the service with the highest value is recommended to the user.

Thus, the decision-making process takes into account not only the QoS of

the service but also the related migration cost while recommending a service.

In the next section, an illustrative case study example of the proposed ap-

proach is given.

177

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

8.6 Case Study Example

A cloud service S0 is the current cloud service which is hosting a VM of 4GB

memory with 25GB of storage. An alarm has been generated by the early-

warning component.There are four other available services (s1, s2, s3ands4) which

meet the user’s minimum requirement. The QoS values of the services at the cur-

rent time and future time slots are given in Table 8.1

Services c1 c2 c3 c4
Current Time Slot

S0 2925.00 7686.50 4507.25 0.07
S1 389.00 11685.00 1279.00 0.02
S2 441.00 5713.00 1586.00 0.03
S3 3030.75 7871.00 4515.00 0.09
S4 810.75 5253.67 5607.67 0.03

Future Time Slot
S0 2996.00 7835.00 4593.25 0.07
S1 389.00 795.25 1286.75 0.02
S2 432.40 742.60 1421.60 0.03
S3 3042.00 7761.25 4410.00 0.09
S4 802.58 5308.33 5401.00 0.03

Table 8.1: QoS of the currently selected and short-listed services in the current
and future time-slots. The criteria (c1 − c3) are CPU, memory and I/O response
times respectively (in milliseconds) while c4 is cost in in $/Hour. S0 is the current
service

The cost of network usage of each service and the network throughput be-

tween the current service and each of the services is given in Table 8.3.

As explained in the previous section, in the first level MCDM in this com-

ponent, the QoS values of the current time slot are used to find which services

rank higher than the currently selected service. The second level MCDM uses

the forecasted QoS values of the future time slot to rank the available services

in the future time slot. The ranking of the services described in Table 8.1 in the

current and future time slots calculated by using the TOPSIS method (with all

criteria having an equal weight of 1) is given in Table 8.2. The services s3 have a

lower rank compared with the currently selected service S0, while the remaining

services have a higher rank than the currently selected services. Thus, services

s1,S2 and s4 are shortlisted for the next level of decision making.

The migration time and cost are estimated by using the method described

in Section 8.4 and the network usage cost and throughput given in Table 8.3.

178

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

Services Current Time Slot Future Time Slot
S0 0.2892 0.1825
S1 0.7306 0.9962
S2 0.9290 0.9456
S3 0.2098 0.0969
S4 0.6202 0.5561

Table 8.2: Service ranking in the current and future time slots using TOPSIS
in the first and second level MCDM for shortlisting the available services for
migration.

The estimated migration cost (financial cost) and migration time (operational

cost) for migrating from the currently selected service to each of the shortlisted

services are given in Table 8.4.

Services Network Usage Cost ($ /GB) Network Throughput (Mbps)
S1 0.35 350
S2 0.20 200
S3 0.50 500
S4 0.35 350

Table 8.3: Network usage cost and network throughput between each service
and S0

Services
Transfer Time (sec) Transfer Cost ($)

Memory Storage Total Memory Storage Total
S1 99 624 723 1.40 8.75 10.15
S2 178 1113 1291 0.80 5.00 5.80
S4 68 429 497 2.00 12.5 14.5

Table 8.4: Migration cost calculated using the method given in Section 8.4

Services c1 c2 c3 c4 c5 c6
S1 389.00 11685.00 1279.00 0.02 723 10.15
S2 441.00 5713.00 1586.00 0.03 1291 5.80
S4 810.75 5253.67 5607.67 0.03 497 14.5

Table 8.5: The decision matrix after including the estimated time and cost of
migration

After calculating the overall migration cost and migration time, the deci-

sion matrix is formulated which, as shown in Table 8.5, has two additional crite-

ria columns for the estimated cost and time required for migration to each of the

shortlisted services. Using this decision matrix, the TOPSIS method gives the

following service ranking (assuming user assigned criteria weight of 1 for each

criterion).

179

CHAPTER 8. SERVICE CONTINUATION DECISION MAKING IN THE
POST-INTERACTION PHASE

Services Ranking
S1 0.6441
S2 0.6410
S4 0.4105

Table 8.6: Service rankings for migration decision-making

This shows that service S1 is the best service to migrate to as per the QoS

criteria and migration cost and is therefore recommended to the user.

8.7 Conclusion

In this chapter, the post-interaction decision-making component of the UCSM

framework was discussed. This module receives notifications of the availability

of new services from the service monitoring module and alarms for the early-

warning component in addition to the forecasts of the future QoS of services.

A multi-stage decision-making approach which first shortlists the available ser-

vices which meet the user’s minimum criteria is proposed, on the basis of their

ranking at the current and future time slots. The additional decision-making

criteria for migration decision making were identified and used to formulate a

MCDM problem for finding the most appropriate migration suggestion for the

user.

The proposed approach was demonstrated through a case study example.

In the next chapter, the prototype implementation of the UCSM Framework as a

proof of concept is presented.

180

Chapter 9

Solution Implementation

9.1 Introduction

In the previous chapters, the underlying theory developed for each component of

the UCSM framework was explained. In this chapter, a prototype implementa-

tion of the proposed framework which provides a proof of concept as outlined in

the research methodology section in Chapter 3 is presented, which constitutes

the test stage of this methodology. The different phases, modules and compo-

nents of the UCSM framework were explained in Chapter 4 and the exchange

of information between the components has been depicted in Figure 4.2. The

working of each component has been explained in the previous chapters and

their functionality has been evaluated by implementing and testing each com-

ponent individually. As explained in previous chapters, the MCDM components

have been developed in MATLAB while the QoS forecasting component has been

tested in the statistical software R. In this chapter, a prototype which integrates

the functionality of the individually developed component and provides a user

interface to the developed system is presented.

In the next section, an overview of the solution implementation is given.

In Section 9.3, the prototype implementation to simulate the QoS repository is

explained which is followed by the implementation of the pre-interaction phase

in Section 9.5. In Section 9.6, the post-interaction phase of the implemented

prototype is discussed. Section 9.7 concludes this chapter.

181

CHAPTER 9. SOLUTION IMPLEMENTATION

9.2 Overview of Solution Implementation

The UCSM framework consists of three modules, each of which contains multi-

ple components (as explained in Chapter 4). The working of each of these compo-

nents has been explained in the previous chapters. In this section, the prototype

implementation and the user interface through which a cloud service user com-

municates with the developed system is discussed.

The objective of this prototype implementation is to combine the individu-

ally developed components of the UCSM framework in a fully functional proto-

type system to evaluate the complete framework as a whole. The pre-interaction

decision making, QoS forecasting, early-warning and the post-interaction deci-

sion making components have been thoroughly discussed in the previous chap-

ters. These components were implemented as MATLAB or R functions for eval-

uation purposes in the related chapters. However, these components were de-

veloped for the evaluation of the underlying theoretical concept without a user

interface for the user to interact with them. In this chapter, a prototype im-

plementation provides a graphical user interface and combines the separately

developed components into a complete software tool.

In line with the two phases of the UCSM framework, the user interface

also consists of the pre-interaction and post-interaction phases (Figure 9.1). In

the pre-interaction phase, the user inputs the desired QoS criteria weights along

with the decision making method and parameters discussed in Chapter 5. Once

these values are provided to the system, the QoS information on the services is

retrieved from the QoS repository and the user’s provided criteria and decision

making parameters are used to perform a MCDM process which generates a

ranking of the available services in the order of their suitability to the user. At

this stage, the top ranking service is recommended to the user.

In the next phase, the user enters the desired monitoring and forecasting

parameters (as discussed in Chapter 6) for the early warning system and the

post-interaction decision making component. The output of this phase is a rec-

ommendation to the user on whether or not to migrate to another service from

the currently selected service.

The UCSM framework is based on the MCDM techniques which rely heav-

ily on linear algebra and matrices. Therefore, this prototype is developed in

MATLAB, which is a well-known and widely used environment for scientific com-

puting.

182

CHAPTER 9. SOLUTION IMPLEMENTATION

Start

QoS Repository
Get QoS data from the QoS

Repository using SQL query

Get criteria

weights, time

slot decay

parameters and

MCDM method

preferences

from the suer

Perform MCDM process to

rank the available services with

by using the QoS data from the

Repository

Display the

outcome of the

MCDM process

to the user

Pre-interaction

Decision Making

Component

End

Early Warning

Component

Get the

currently

selected service,

forecasting

method, forecast

horizon and risk

propensity from

the user

Get the post-

interaction

Decision

Making criteria

weights from the

user

Perform the post inteaction

decision making process to find

the best available service (if

any) for migration

Display the

outcome to the

user

Post-Interaction

Decision Making

Component

Monitor the currently selected

service by using the Early

Warning component

Pre-Interaction Phase

Post-Interaction Phase

Figure 9.1: Overview of the Prototype

183

CHAPTER 9. SOLUTION IMPLEMENTATION

In the next section, the implementation of the QoS repository which stores

the data on which both phases of cloud service management rely for their func-

tionality is discussed.

9.3 QoS Monitoring and Repository

As explained in Chapter 4, it is proposed that the QoS monitoring data is stored

in a QoS repository which receives and stores QoS data from different sources,

such as third party monitoring services and existing cloud users. This data is

used for decision making and QoS forecasting by other components of the UCSM

framework.

For this prototype implementation, a mySQL database is used to store the

QoS values, serving as the QoS repository. The role of the QoS monitoring mod-

ule is simulated by populating the mySQL database with the QoS data discussed

in Chapter 5. The other components in the framework access this data as needed

via SQL queries. The other components of the framework use an ODBC connec-

tion to communicate with the database.

9.4 QoS History and Forecast Viewers

The main GUI window (Figure 9.2) of the prototype UCSM framework has allows

the user to see time plots of QoS history and future forecasts of any service and

also has click-able buttons for initiating the pre-interaction and post-interaction

decision making phases. The QoS History and QoS Forecast viewers do not pro-

vide any service selection or migration recommendation but provide useful infor-

mation to the user during both phase of service management.

The QoS history viewer access the QoS repository and displays a graph of

the desired QoS criterion. This viewer has several options (Figure 9.3) which

allow the user to select a service, criterion and time duration covered by the

graph. The QoS history graph is displayed in another window as shown in Figure

9.4.

The QoS forecast viewer has several options as shown in Figure 9.5. The

user can select a service and criterion for which a forecast has to be generated.

There are radio buttons for selecting a time series model while the forecast hori-

zon is specified in a text box. A screen shot of the output window of the QoS

forecast viewer is given in Figure 9.6, which shows a graph of the forecasted QoS

predicted from the current time slot till the forecast horizon.

184

CHAPTER 9. SOLUTION IMPLEMENTATION

Figure 9.2: Options for viewing QoS history graph.

Figure 9.3: Options for viewing QoS history graph.

Mayd01d00:00 Mayd01d04:00 Mayd01d08:00 Mayd01d12:00 Mayd01d16:00 Mayd01d20:00

29
00

30
00

31
00

32
00

33
00

34
00

35
00

QoSdHistory

Time

R
es

po
ns

ed
tim

ed
hm

ili
se

co
nd

su

Service:dS1
Criteria:dCPUdresponsedtime
Date:dMayd1,d2012
Time:d23:00
History:d24dhours

Figure 9.4: QoS history graph.

185

CHAPTER 9. SOLUTION IMPLEMENTATION

Figure 9.5: QoS forecast viewer options.

ForecastedMQoS

Time

R
es

po
ns

eM
Ti

m
eM

hm
ili

se
co

nd
sz

36
00

36
50

37
00

37
50

38
00

38
50

06
:0

0

07
:0

0

08
:0

0

09
:0

0

10
:0

0

11
:0

0

12
:0

0

13
:0

0

Model:ARIMAh2J0J1z
service:S1
criteria:CPUMresponseMtime
ForecastMhorizon:M8Mhours
Date:MJunM30JM2012MM06:00

Figure 9.6: QoS forecast viewer window.

186

CHAPTER 9. SOLUTION IMPLEMENTATION

9.5 Pre-Interaction Decision Making

The pre-interaction service selection is based on MCDM to compare the avail-

able services in terms of multiple QoS criteria and the user’s assigned weights

representing the relative importance of each criterion. The user inputs the de-

sired criteria weight and other related information which includes: the number

of past time slots to be used and the importance assigned to them in the decision-

making process via the time decay parameters. All of these inputs are requested

from the user through a single input form (shown in Figure 9.7).

A SQL query is formed at runtime (which includes the user’s minimum de-

sired QoS values) to obtain the required QoS data from the repository using an

ODBC connection to the mySQL database. This data is used for MCDM deci-

sion making with the user’s provided criteria, preference weights and time de-

cay, as explained in Chapter 5 for aggregating the decision outcome of multiple

time slots. The MCDM method of TOPSIS and ELECTRE are implemented as

vectorized MATLAB functions which ensure efficient processing to allow for ex-

tendibility to incorporate more decision-making criteria.

The result of this process is conveyed to the user (as shown in Figure 9.8)

which lists the available services ranked in the order of their suitability for the

user.

This completes the pre-interaction phase of the prototype. In the next sec-

tion, the post-interaction phase of the prototype is discussed.

9.6 Post-Interaction Phase

Once a service is selected by the user on the recommendation of the pre-interaction

decision-making outcome, the user is asked about the monitoring and forecasting

parameters for the selected service, as shown in Figure 9.9. The user specifies

the forecast horizon, forecasting method and risk propensity.

The user’s selected forecasting method is used to find the QoS of the se-

lected service and the other available services (which fulfill the user’s minimum

requirements) at a future time slot at the end of the forecast horizon. As ex-

plained in Chapter 6, the R statistical environment provides state-of-the-art

techniques for time series forecasting. Therefore, a technique for linking R with

MATLAB 1 was used to take advantage of R time series functionality in MAT-

1urlhttp://www.mathworks.com/matlabcentral/fileexchange/5051-matlab-r-link

187

CHAPTER 9. SOLUTION IMPLEMENTATION

Figure 9.7: User input for the pre-interaction decision making phase. The time
slot decay can be enabled or disable form the check box.

Figure 9.8: Output of the pre-interaction decision making process.

188

CHAPTER 9. SOLUTION IMPLEMENTATION

Figure 9.9: Early Warning System input screen

LAB functions.

After estimating the forecasted QoS values of the available services by us-

ing the exponential smoothing or ARIMA method, the early warning mechanism

uses these values to detect service failure or severe service degradation, based

on the user’s risk propensity level. Upon detecting a service failure or significant

amount of service degradation, the post-interaction decision-making process is

executed. This process recommends to the user whether to continue using the

currently selected service or to migrate to another of the available services. This

requires additional migration decision-making criteria of migration cost and mi-

gration time. These criteria weights are requested from the user via another

input form (Figure 9.10).

After obtaining these inputs from the user, the early-warning component is

developed using MATLAB’s fuzzy logic tool box. This component, as explained in

Chapter 7, continuously retrieves the current QoS values from the QoS reposi-

tory and the forecasted QoS values from the QoS forecasting component. These

values are used to detect a service failure or a severe service degradation in ac-

cordance with the user’s risk attitude.

Upon detecting the occurrence of such an event, the post-interaction decision-

making component is invoked. This component uses the user’s provided QoS and

migration criteria weights to find a suitable service among the other services

to which the user can migrate to avoid the consequences of impending service

failure detected by the early warning component. The output of this process

189

CHAPTER 9. SOLUTION IMPLEMENTATION

Figure 9.10: User input for the additional post-interaction decision making cri-
teria weight settings.

Figure 9.11: User input for the additional post-interaction decision-making re-
sult showing a migration decision recommendation to the user

is shown in Figure 9.11, where the user is recommended to migrate to another

service.

Once the user migrates to another service, the post-interaction phase is re-

initialized with the new service as the currently selected service and the system

continues to look for service degradation and failure of the newly selected service.

190

CHAPTER 9. SOLUTION IMPLEMENTATION

9.7 Conclusion

In this chapter, the prototype implementation is presented which integrates the

individual components of the UCSM framework developed in the previous chap-

ters. The system is implemented in MATLAB except the forecasting component

which uses R functions for time series forecasting. The prototype system has

been discussed in detail with screen-shots of the key GUI windows of the devel-

oped user interface to demonstrate the overall functionality and gives a walk-

through of the user interface of the prototype system.

191

Chapter 10

Recapitulation and Future Work

10.1 Introduction

Cloud computing has received a huge amount of research attention and its vari-

ous aspects have been thoroughly discussed in the literature. The work on stan-

dardization, interoperability and VM migration among cloud services operated

by different cloud providers has created a scenario in which the user has numer-

ous options while deciding to subscribe or use these services. Having a mech-

anism to assist the user in making a cloud service selection and management

decision is important for the user to take maximum advantage of cloud comput-

ing.

In this thesis, the user’s perspective of cloud service management is de-

fined and a comprehensive framework to assist the user in making decisions to

manage cloud services is presented. The user’s perspective on cloud service man-

agement is quite different to the provider’s perspective as follows:

1. From a provider’s perspective, cloud service management consists of the

activities and processes needed for load balancing and resource utilization.

The user is mainly concerned about selecting and using the service that

has the maximum ability to provide the required QoS at a minimum cost,

making sure that once selected, the service continues to maintain its status

as the most appropriate and cost effective service in the future.

2. User-side cloud service management has two phases (pre-interaction and

post-interaction phases) which require different decision-making strate-

gies.

192

CHAPTER 10. RECAPITULATION AND FUTURE WORK

3. Cloud service providers have access to the underlying hardware resources

while users can only access the hardware resources as virtualized services.

Therefore, for decision-making, the cloud service users have to use indirect

means to assess the QoS of the available services as they are unable to

directly measure these performance criteria.

Thus, user-side cloud service management is entirely different from provider-

side management and therefore, the existing approaches for cloud service man-

agement which are designed for cloud service providers’ use cannot assist the

cloud service users in cloud service management decision-making, from their

perspective.

The UCSM framework is presented in this thesis to address this gap in the

existing literature. This framework consists of multiple components and phases.

Each of these components was explained and developed in the previous chapters.

In the next section, the issues that have been addressed in this thesis are

recapitulated. In Section 10.3, the contributions made by this thesis by success-

fully addressing the identified research issues in the UCSM framework are dis-

cussed. In Section 10.4, the future research directions in this area are identified.

Section 10.5 concludes the chapter.

10.2 Recapitulation

When deciding to move to cloud computing, a user has several options to choose

from, as at any given time, there are numerous services which are capable of

fulfilling the user’s needs. Once a service has been selected by the user, there is

a need to make sure that in the future, the selected service continues to retain

its level of QoS to provide the desired service performance to the user. If the

service fails to maintain the level of QoS that is necessary to fulfil the user’s

requirements, then the user needs to migrate to another service which has a

higher level of QoS.

The existing cloud management platforms are designed to help the user

manage virtual computing resources and support multiple cloud providers and

underlying cloud middleware. However, none of these platforms perform these

functions from the cloud service user’s perspective. There are several challenges

in cloud service management from the users’ perspective which the current man-

agement platforms do not address. The existing approaches only provide basic

service management functionality to the user but do not assist in actual decision

193

CHAPTER 10. RECAPITULATION AND FUTURE WORK

making which is vital for effective service management.

Therefore, the objective of this thesis was to develop a cloud service man-

agement methodology that assists a service user in the management of cloud

services over the period of interaction and minimizes the interaction expenses

while maximizing the QoS. The sub-problems that were identified to solve this

issue are:

1. Propose a framework for cloud service monitoring from which the users can

obtain the past QoS data of all the available services in the cloud environ-

ment.

2. Propose a methodology to assist the user to select an appropriate service

from amongst the multiple available services, based on their QoS history.

3. Propose a method to forecast the future QoS of a service on the basis of its

past QoS history.

4. Propose a framework to provide early warning of impending service degra-

dation to trigger a service migration decision.

5. Propose a decision-making methodology to assist the user in service man-

agement.

6. Validation of the developed techniques for cloud service management.

In the next section, the contributions made by this thesis are summarized.

10.3 Contribution of the Thesis

The primary contribution of this thesis to the existing literature is that it defines

and highlights the importance of the user’s perspective in cloud service manage-

ment and proposes a comprehensive framework for user-side cloud service man-

agement. This framework enables the cloud service users to achieve maximum

advantage of the flexibility offered by the cloud computing paradigm by assisting

the user in making timely and optimized service management decisions.

This contribution of the thesis to the existing body of knowledge is as fol-

lows:

194

CHAPTER 10. RECAPITULATION AND FUTURE WORK

Contribution 1: Propose a definition of cloud service management from
the user’s perspective.

From the user’s prescriptive, cloud service management is entirely different from

the cloud service provider’s perspective and this important aspect of cloud com-

puting has not received due attention in the existing literature. Therefore, prior

to developing a framework of user-side cloud service management, a formal defi-

nition of user-side cloud service management was proposed in this thesis in Sec-

tion 4.2, which stated that cloud service management involves three main tasks,

namely (1) cloud service selection from amongst several possible services; (2)

cloud service monitoring to assess the QoS of the selected service; and (3) cloud

service migration if the selected service does not conform to the expected QoS

level. In the proposed definition, cloud service management was divided into the

pre-interaction and post-interaction phases. The first phase is concerned with

cloud service selection while the second phase is primarily concerned with ser-

vice migration decision making. Cloud service monitoring is involved in both

phases of service management.

To the best of my knowledge, user-side cloud service management has not been

defined in the existing literature. The previous related work in this area only

discusses cloud service selection and does not attempt to treat this important

issue as a complete service management process.

Contribution 2: Methodology for cloud service monitoring The second

contribution of this thesis is the proposal of a novel user-feedback-based cloud

service monitoring methodology in Section 4.7. Decision making for cloud service

management is based on the past QoS data of the available services which can be

gathered only by capturing changes in performance and quality of the provided

service over an appropriate interval of time by continuously monitoring all the

available cloud service offerings. The proposed methodology for cloud service

monitoring is designed to collect and store the QoS information related to all the

available services in the cloud environment, including feedback from the existing

cloud service users.

To the best of my knowledge, a methodology for cloud service monitoring that

includes user-feedback as a source of QoS data does not appear in the existing

literature.

Contribution 3: A methodology for cloud service selection in the pre-
interaction phase

One aim of this thesis is to propose a decision-making methodology that assists

195

CHAPTER 10. RECAPITULATION AND FUTURE WORK

the user in cloud service selection on the basis of multiple QoS criteria and vari-

ability of QoS with time. To achieve this objective, in Chapter 5, a methodology

for cloud service selection in the pre-interaction phase was proposed and devel-

oped. Cloud service selection is a multi-criteria problem and therefore the so-

lution is based on MCDM techniques and QoS history of the available services.

The MCDM techniques allow user-specified criteria weights which reflect the im-

portance of each QoS criterion for the user. Several available MCDM techniques

for cloud service selection were tested and it was found that TOPSIS and ELEC-

TRE are the most suitable for QoS-based cloud services. On the basis of these

two techniques, an algorithm which uses QoS history in decision making was

developed. In this algorithm, QoS history is divided into several equal but non-

overlapping time slots and the MCDM process is performed in each time slot. A

method to combine the MCDM results obtained for each time slot was devised by

aggregating these results after assigning time-decay weights to each time slot.

The algorithm in MATLAB was implemented and its performance was evaluated

by using a real world QoS dataset.

To the best of my knowledge, there is no cloud service selection approach in the

literature providing multi-criteria cloud service selection on the basis of QoS his-

tory.

Contribution 4: Methodology for Cloud Service QoS forecasting

In Chapter 6, a method for forecasting the future QoS values of cloud services

on the basis of past conservations was presented. Exponential smoothing and

the ARIMA time series techniques for modeling the behavior of the cloud QoS

and for predicting the future QoS values were used. The obtained results show

that both exponential smoothing and ARIMA models can be used to model QoS

behavior. The forecasted values were evaluated by comparing them with the ob-

served data. Also investigated was whether or not the QoS data of cloud services

exhibited self-similarity by estimating the Hurst exponent of the data and it

was established that there is a high degree of self-similarity in cloud QoS which

strengthens the notion that future QoS values of a cloud service can be reliably

predicted from observing the past QoS.

To the best of my knowledge, this kind of empirical investigation on cloud QoS

forecasting has not been done before in the literature.

Contribution 5: An Early-Warning mechanism for QoS of cloud services

In Chapter 7, an early-warning mechanism which uses the observed and fore-

casted QoS of the currently selected service was developed. This mechanism

196

CHAPTER 10. RECAPITULATION AND FUTURE WORK

detects service failure at the current time slot and forewarns of an impending

severe QoS degradation in the future. It generates a service failure alarm when

a service failure is detected at the current time slot and an early warning QoS

degradation alarm indicates that a severe service degradation is possible in a

future time-slot. Algorithms were developed to quantify the degree of service

degradation between two time slots and to detect service failure. Based on these

quantified inputs, a fuzzy inference system was designed and developed to gen-

erate alarms on the basis of the severity of the observed and forecasted QoS

degradation with respect to the user’s risk attitude. The validity of the devel-

oped techniques were demonstrated by using a case study of the real QoS data

which showed that these techniques are able to successfully detect impending

QoS degradation.

To the best of my knowledge, there is no approach in the literature which pro-

vides this functionality.

Contribution 6: A decision-making methodology for service migration
in the post-interaction period

In Chapter 8, a post-interaction decision making approach which is an impor-

tant component of the UCSM framework was developed. A multi-stage decision-

making approach that first short-lists the available services which meet the

user’s minimum criteria on the basis of their ranking at the current and future

time slots was proposed. The additional decision-making criteria for migration

decision making were identified and used to formulate a MCDM problem for find-

ing the most appropriate migration suggestion for the user. The applicability of

the proposed approach was demonstrated through a case study example.

To the best of my knowledge, the current literature lacks such an approach.

Contribution 7: Evaluation of the proposed framework

To assess the effectiveness and applicability of the proposed solution, the indi-

vidual components of the UCSM framework were tested in Chapters, 5, 6,7 and

8. These components were implemented and evaluated by case studies using

real QoS data. In Chapter 9, a prototype implementation with a graphical user

interface was presented to show the overall working of the developed framework.

10.4 Future Work

In this thesis, the user-side cloud service management was introduced as an im-

portant area of research for providing assistance to cloud users to gain maximum

197

CHAPTER 10. RECAPITULATION AND FUTURE WORK

advantage of cloud computing by effectively managing their cloud service deploy-

ment. The UCSM framework for cloud service management was discussed in this

thesis as a means to achieve this functionality. However, during the course of the

work presented in this thesis, several future directions were identified which will

further strengthen the proposed framework for cloud service management. The

chief areas of future research that have been identified are:

1. Expanding the QoS dataset to include more services and criteria.

2. Identification of a complete set of QoS criteria that covers all aspects of the

QoS of cloud services and methods to measure them.

3. Identification of criteria weights for typical cloud service users with stan-

dard requirements.

4. A complete implementation of the user feedback-based QoS monitoring ser-

vice.

5. Investigating the Fractional ARIMA (FARIMA) models for modeling and

forecasting cloud QoS data to make use of its self-similarity.

6. Investigating the implications of user-side cloud service management on

provider side resource utilization.

7. Developing the business model for user-side cloud service management.

10.4.1 Expanding the QoS Dataset

The proposed approaches are capable of handling a large number of available

cloud services. However, the QoS data set used for the evaluation of the ap-

proaches developed in this thesis consists of observations spanning over a year

and contains the data of five cloud services. To further test and improve the ef-

ficiency and effectiveness of the proposed approaches, the QoS data set needs to

be expanded by including more cloud services in it.

10.4.2 Identification of a Complete Set of QoS Criteria

Another area where the work presented in this thesis can be expanded is the

identification of a complete set of QoS criteria that covers all aspects of qual-

ity of services in cloud computing. Although the approaches presented in this

thesis are able to handle a large number of QoS criteria, the existing literature

198

CHAPTER 10. RECAPITULATION AND FUTURE WORK

lacks a standard set of QoS criteria to account for various non-functional param-

eters, such as reliability, security etc. in addition to the functional parameters

discussed in this thesis.

10.4.3 Implementation of the User Feedback-based Cloud
Monitoring Service

In this thesis, an alternative mechanism for cloud service monitoring that col-

lects QoS related feedback from existing cloud services users was proposed. Im-

plementing this mechanism as a cloud service in practice is an important area of

future research.

10.4.4 Identification of Criteria Weights for Typical Cloud
Service Users

The decision making in the approaches discussed in this thesis incorporates the

user’s preferences for the different criteria through criteria weights. The pro-

posed approaches request these weights from the user but to further assist the

user in decision making, a list of recommended criteria weights reflecting the

QoS requirement of typical cloud applications can be very useful for the user

in assigning weighs to QoS criteria. This requires extensive study of existing

cloud-deployed applications and their workload conditions.

10.4.5 Investigating the Fractional ARIMA Models for the
Modeling and Forecasting of QoS

The proposed user-side service management framework is aimed at maximizing

the advantage for the cloud service users. This can impact strategies employed

by cloud service providers for maximizing resource utilization at their data cen-

ters as user’s migrating to services with better cost and QoS can put overwhelm-

ing load on these services. In our future work, we aim to investigate the extent

and nature of this impact to develop a service management framework that not

only is focused on the service users but also on the service providers as well.

199

CHAPTER 10. RECAPITULATION AND FUTURE WORK

10.4.6 Investigating the implications of user-side cloud ser-
vice management on provider side resource utiliza-
tion

The proposed user-side service management framework is aimed at maximizing

the advantage for the cloud service users. This strategy can impact strategies

employed by cloud service providers for maximizing resource utilization at their

datacenters as user’s migrating to services with better cost and QoS can put

overwhelming load on these services. To investigate the extent and nature of

this impact is a new area for further research.

10.4.7 Developing the business model for user-side cloud
service management

The proposed framework requires a business model for its commercial utiliza-

tion. One major area in this regard is the incentive for cloud providers to share

their data with the QoS repository. A key point in this area is to devise strategies

and incentives for cloud providers to encourage them to share their data with the

QoS repository.

10.5 Conclusion

In this chapter, the work that has been undertaken in this thesis to address the

identified research issues was recapitulated and the contributions made to the

literature through this work were outlined. This was followed by a brief descrip-

tion of several research directions for future work for extending the approaches

developed in this thesis.

The work that was undertaken in this thesis has been published exten-

sively as a part of the proceedings in peer-reviewed international journals and

conferences. A complete list of the publications originating from this thesis is

given at the beginning of the thesis and some selected publications are included

in Appendix at the end of the thesis.

200

References

[1] S. Qamar, N. Lal, and M. Singh, “Internet Ware Cloud Computing : Chal-

lenges”, International Journal of Computer Science and Information Se-
curity (IJCSIS), vol. 7, no. 3, pp. 206–210, 2010.

[2] N. Leavitt, “Is cloud computing really ready for prime time?”, in IT Pro-
fessional, 1, vol. 42, IEEE Computer Society, Jan. 2009, pp. 15–20.

[3] S. Marston, Z. Li, et al., “Cloud Computing – The Business Perspective”,

Decision Support Systems, vol. 51, no. 1, pp. 176–189, Dec. 2011. DOI:

10.1016/j.dss.2010.12.006.

[4] L. Qian, Z. Luo, et al., “Cloud Computing: An Overview”, in Cloud Com-
puting, ser. Lecture Notes in Computer Science (LNCS), M. G. Jaatun,

G. Zhao, and C. Rong, Eds., vol. 5931, Springer, 2009, pp. 626–631. DOI:

10.1007/978-3-642-10665-1_63.

[5] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art

and research challenges”, Journal of Internet Services and Applications,

vol. 1, no. 1, pp. 7–18, Apr. 2010. DOI: 10.1007/s13174-010-0007-6.

[6] L. Vaquero and L. Rodero-Merino, “A break in the clouds: towards a cloud

definition”, ACM SIGCOMM Computer Communication Review, vol. 39,

no. 1, pp. 50–55, 2009.

[7] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Chal-

lenges”, in 24th IEEE International Conference on Advanced Information
Networking and Applications, Perth, WA, Australia: IEEE, Apr. 2010,

pp. 27–33. DOI: 10.1109/AINA.2010.187.

201

http://dx.doi.org/10.1016/j.dss.2010.12.006
http://dx.doi.org/10.1007/978-3-642-10665-1_63
http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1109/AINA.2010.187

REFERENCES

[8] D. F. Parkhill, Challenge of the Computer Utility. London: Addison-Wesley

Educational Publishers Inc, 1966, p. 208.

[9] B. Furht, “Cloud Computing Fundamentals”, in A Handbook of Cloud
Computing, B. Furht and A. Escalante, Eds. Boston, USA: Springer US,

2010, ch. 1, pp. 3–19. DOI: 10.1007/978-1-4419-6524-0_1.

[10] J. Voas and J. Zhang, “Cloud Computing: New Wine or Just a New Bot-

tle?”, IT Professional, vol. 11, no. 2, pp. 15–17, Mar. 2009. DOI: 10.1109/

MITP.2009.23.

[11] H. Jin, S. Ibrahim, et al., “Tools and Technologies for Building Clouds”, in

Cloud Computing: Principles, Systems and Applications, ser. Computer

Communications and Networks, N. Antonopoulos and L. Gillam, Eds.,

London: Springer London, 2010, ch. 1, pp. 1–18. DOI: 10.1007/978-1-

84996-241-4.

[12] W. Voorsluys, J. Broberg, and R. Buyya, “Introduction to cloud comput-

ing”, in Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg,

and A. Goscinski, Eds., John Wiley & Sons, Inc., 2011, ch. 2, pp. 3–39.

[13] J. Dean and S. Ghemawat, “MapReduce : Simplified Data Processing on

Large Clusters”, Communications of the ACM, vol. 51, no. 1, pp. 107–113,

2008.

[14] R. Buyya, C. S. Yeo, et al., “Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility”, Fu-
ture Generation Computer Systems, vol. 25, no. 6, pp. 599–616, Jun. 2009.

DOI: 10.1016/j.future.2008.12.001.

[15] T. Gunarathne, T. Wu, et al., “MapReduce in the Clouds for Science”, in

IEEE Second International Conference on Cloud Computing Technology
and Science (CloudCom), vol. 2, Indianapolis, IN, USA: IEEE, Nov. 2010,

pp. 565–572. DOI: 10.1109/CloudCom.2010.107.

[16] S. Garg and R. Buyya, “Green cloud computing and environmental sus-

tainability”, in Harnessing Green IT: Principles and practices, S. Muruge-

san and G. Gangadharan, Eds., John Wiley & Sons, Inc., 2012, pp. 315–

339.

202

http://dx.doi.org/10.1007/978-1-4419-6524-0_1
http://dx.doi.org/10.1109/MITP.2009.23
http://dx.doi.org/10.1109/MITP.2009.23
http://dx.doi.org/10.1007/978-1-84996-241-4
http://dx.doi.org/10.1007/978-1-84996-241-4
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1109/CloudCom.2010.107

REFERENCES

[17] X. Wen, G. Gu, et al., “Comparison of open-source cloud management plat-

forms: OpenStack and OpenNebula”, in 9th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD), Sichuan, China: IEEE,

May 2012, pp. 2457–2461. DOI: 10.1109/FSKD.2012.6234218.

[18] D. Cerbelaud, S. Garg, and J. Huylebroeck, “Opening the clouds: qualita-

tive overview of the state-of-the-art open source VM-based cloud manage-

ment platforms”, in Proceedings of the 10th ACM/IFIP/USENIX Inter-
national Conference on Middleware, Urbana Champaign, Illinois, USA:

Springer-Verlag New York, Inc., Nov. 2009, 22:1–22:8.

[19] P. Mell and T. Grance, “The NIST Definition of Cloud Computing Recom-

mendations of the National Institute of Standards and Technology”, Nist
Special Publication, no. 800–145, pp. 1–3, 2011. DOI: 10.1136/emj.2010.

096966.

[20] L. Heilig and S. Voss, “A Scientometric Analysis of Cloud Computing Lit-

erature”, IEEE Transactions on Cloud Computing, pp. 1–1, 2014. DOI:

10.1109/TCC.2014.2321168.

[21] W. Y. Chang, H. Abu-Amara, and J. F. Sanford, “Cloud Service Business

Scenarios and Market Analysis”, in Transforming Enterprise Cloud Ser-
vices, Dordrecht: Springer Netherlands, 2010, ch. 2, pp. 43–86. DOI: 10.

1007/978-90-481-9846-7.

[22] C. Weinhardt, A. Anandasivam, et al., “Cloud Computing – A Classifica-

tion, Business Models, and Research Directions”, Business & Information
Systems Engineering, vol. 1, no. 5, pp. 391–399, Sep. 2009. DOI: 10.1007/

s12599-009-0071-2.

[23] S. Leimeister, C. Riedl, et al., “The Business Perspective of Cloud Comput-

ing: Actors, Roles, and Value Networks”, in Proceedings of 18th European
Conference on Information Systems (ECIS), Pretoria, South Africa, Jun.

2010, pp. 1–12.

[24] V. Chang, R. J. Walters, and G. Wills, “The development that leads to

the Cloud Computing Business Framework”, International Journal of In-
formation Management, vol. 33, no. 3, pp. 524–538, Jun. 2013. DOI: 10.

1016/j.ijinfomgt.2013.01.005.

203

http://dx.doi.org/10.1109/FSKD.2012.6234218
http://dx.doi.org/10.1136/emj.2010.096966
http://dx.doi.org/10.1136/emj.2010.096966
http://dx.doi.org/10.1109/TCC.2014.2321168
http://dx.doi.org/10.1007/978-90-481-9846-7
http://dx.doi.org/10.1007/978-90-481-9846-7
http://dx.doi.org/10.1007/s12599-009-0071-2
http://dx.doi.org/10.1007/s12599-009-0071-2
http://dx.doi.org/10.1016/j.ijinfomgt.2013.01.005
http://dx.doi.org/10.1016/j.ijinfomgt.2013.01.005

REFERENCES

[25] M. Avram, “Advantages and Challenges of Adopting Cloud Computing

from an Enterprise Perspective”, Procedia Technology, vol. 12, pp. 529–

534, 2014. DOI: 10.1016/j.protcy.2013.12.525.

[26] R. El-Gazzar, “A Literature Review on Cloud Computing Adoption Issues

in Enterprises”, Creating Value for All Through IT (IFIP Advances in In-
formation and Communication Technology), vol. 429, pp. 214–242, 2014.

[27] S. Tehrani and F. Shirazi, “Factors Influencing the Adoption of Cloud

Computing by Small and Medium Size Enterprises (SMEs)”, in Human
Interface and the Management of Information. Information and Knowl-
edge in Applications and Services, ser. Lecture Notes in Computer Science

(LNCS), vol. 8522, Springer-Verlag, 2014, pp. 631–642.

[28] B. Charif and A. I. Awad, “Business and Government Organizations’ Adop-

tion of Cloud Computing”, in Intelligent Data Engineering and Automated
Learning, ser. Lecture Notes in Computer Science (LNCS), vol. 8669,

2014, pp. 492–501.

[29] W. Venters and E. a. Whitley, “A critical review of cloud computing: re-

searching desires and realities”, Journal of Information Technology, vol.

27, no. 3, pp. 179–197, Aug. 2012. DOI: 10.1057/jit.2012.17.

[30] M. Hamdaqa and L. Tahvildari, “Cloud Computing Uncovered: A Re-

search Landscape”, Advances in Computers, vol. 86, pp. 41–85, 2012. DOI:

http://dx.doi.org/10.1016/B978-0-12-396535-6.00002-8.

[31] M. Vouk, “Cloud computing–issues, research and implementations”, Jour-
nal of Computing and Information Technology, vol. 16, no. 4, pp. 235–246,

2008.

[32] Y. Gong, Z. Ying, and M. Lin, “A Survey of Cloud Computing”, in Proceed-
ings of the 2nd International Conference on Green Communications and
Networks, Y. Yang and M. Ma, Eds., ser. Lecture Notes in Electrical En-

gineering, vol. 225, Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 79–84. DOI: 10.1007/978-3-642-35470-0.

[33] J. Gao, V. Gruhn, et al., “Mobile Cloud Computing Research - Issues, Chal-

lenges and Needs”, in IEEE Seventh International Symposium on Service-

204

http://dx.doi.org/10.1016/j.protcy.2013.12.525
http://dx.doi.org/10.1057/jit.2012.17
http://dx.doi.org/http://dx.doi.org/10.1016/B978-0-12-396535-6.00002-8
http://dx.doi.org/10.1007/978-3-642-35470-0

REFERENCES

Oriented System Engineering, IEEE, Mar. 2013, pp. 442–453. DOI: 10.

1109/SOSE.2013.96.

[34] S. Habib, S. Hauke, et al., “Trust as a facilitator in cloud computing: a sur-

vey”, Journal of Cloud Computing: Advances, Systems and Applications,

vol. 1, no. 1, p. 19, 2012. DOI: 10.1186/2192-113X-1-19.

[35] T. Noor, Q. Sheng, et al., “Trust management of services in cloud environ-

ments: Obstacles and solutions”, ACM Computing Surveys (CSUR), vol.

46, no. 1, pp. 1–30, 2013.

[36] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud Com-

puting Systems”, in Fifth International Joint Conference on INC, IMS and
IDC, Seoul, Korea: IEEE Computer Society, Aug. 2009, pp. 44–51. DOI:

10.1109/NCM.2009.218.

[37] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy, Survey, and Issues

of Cloud Computing Ecosystems”, in Cloud Computing: Principles, Sys-
tems and Applications, ser. Computer Communications and Networks, N.

Antonopoulos and L. Gillam, Eds., London: Springer London, 2010, ch. 2,

pp. 21–46. DOI: 10.1007/978-1-84996-241-4.

[38] C. N. Hoefer and G. Karagiannis, “Taxonomy of cloud computing ser-

vices”, in IEEE Globecom Workshops, Miami, FL, USA: IEEE, Dec. 2010,

pp. 1345–1350. DOI: 10.1109/GLOCOMW.2010.5700157.

[39] I. Abbadi, “Clouds’ infrastructure taxonomy, properties, and management

services”, in Advances in Computing and Communications, A. Abraham,

J. Mauri, et al., Eds., Springer Berlin Heidelberg, 2011, pp. 406–420.

[40] M. Mahjoub, A. Mdhaffar, et al., “A Comparative Study of the Current

Cloud Computing Technologies and Offers”, in First International Sympo-
sium on Network Cloud Computing and Applications, Toulouse, France:

IEEE Computer Society, Nov. 2011, pp. 131–134. DOI: 10.1109/NCCA.

2011.28.

[41] M. P. Rad, A. S. Badashian, et al., “A Survey of Cloud Platforms and

Their Future”, in Computational Science and Its Applications – ICCSA
2009, ser. Lecture Notes in Computer Science(LNCS), vol. 5592, Springer

205

http://dx.doi.org/10.1109/SOSE.2013.96
http://dx.doi.org/10.1109/SOSE.2013.96
http://dx.doi.org/10.1186/2192-113X-1-19
http://dx.doi.org/10.1109/NCM.2009.218
http://dx.doi.org/10.1007/978-1-84996-241-4
http://dx.doi.org/10.1109/GLOCOMW.2010.5700157
http://dx.doi.org/10.1109/NCCA.2011.28
http://dx.doi.org/10.1109/NCCA.2011.28

REFERENCES

Berlin Heidelberg, 2009, pp. 788–796. DOI: 10.1007/978-3-642-02454-

2_61.

[42] J. Peng, X. Zhang, et al., “Comparison of Several Cloud Computing Plat-

forms”, in Second International Symposium on Information Science and
Engineering, IEEE, Dec. 2009, pp. 23–27. DOI: 10.1109/ISISE.2009.94.

[43] C. Baun and M. Kunze, “The KOALA Cloud Management Service A Mod-

ern Approach for Cloud Infrastructure Management”, in Proceedings of
the First International Workshop on Cloud Computing Platforms, Salzburg.

Austria: ACM, 2011. DOI: 10.1145/1967422.1967423.

[44] N. Manohar, “A Survey of Virtualization Techniques in Cloud Comput-

ing”, in Proceedings of International Conference on VLSI, Communica-
tion, Advanced Devices, Signals & Systems and Networking (VCASAN-
2013),, V. S. Chakravarthi, Y. J. M. Shirur, and R. Prasad, Eds., ser.

Lecture Notes in Electrical Engineering, vol. 258, India: Springer India,

2013, pp. 461–470. DOI: 10.1007/978-81-322-1524-0.

[45] Z. Zhang, C. Wu, and D. Cheung, “A survey on cloud interoperability:

taxonomies, standards, and practice”, ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 4, pp. 13–22, 2013.

[46] A. Toosi, R. Calheiros, and R. Buyya, “Interconnected Cloud Comput-

ing Environments: Challenges, Taxonomy, and Survey”, ACM Computing
Surveys (CSUR), vol. 47, no. 1, pp. 1–47, 2014.

[47] N. Cook, D. Milojicic, and V. Talwar, “Cloud management”, Journal of
Internet Services and Applications, vol. 3, no. 1, pp. 67–75, Dec. 2011.

DOI: 10.1007/s13174-011-0053-8.

[48] A. Innocent, “Cloud Infrastructure Service Management-A Review”, In-
ternational Journal of Computer Science Issues (IJCSI), vol. 9, no. 2,

pp. 287–292, 2012.

[49] S. S. Manvi and G. Krishna Shyam, “Resource management for Infras-

tructure as a Service (IaaS) in cloud computing: A survey”, Journal of
Network and Computer Applications, vol. 41, pp. 424–440, May 2014. DOI:

10.1016/j.jnca.2013.10.004.

206

http://dx.doi.org/10.1007/978-3-642-02454-2_61
http://dx.doi.org/10.1007/978-3-642-02454-2_61
http://dx.doi.org/10.1109/ISISE.2009.94
http://dx.doi.org/10.1145/1967422.1967423
http://dx.doi.org/10.1007/978-81-322-1524-0
http://dx.doi.org/10.1007/s13174-011-0053-8
http://dx.doi.org/10.1016/j.jnca.2013.10.004

REFERENCES

[50] L. Rodero-Merino, L. M. Vaquero, et al., “From infrastructure delivery

to service management in clouds”, Future Generation Computer Systems,

vol. 26, no. 8, pp. 1226–1240, Mar. 2010. DOI: 10.1016/j.future.2010.

02.013.

[51] A. Najjar, X. Serpaggi, et al., “Survey of Elasticity Management Solutions

in Cloud Computing”, in Continued Rise of the Cloud, Computer Commu-
nications and Networks, ser. Computer Communications and Networks,

Z. Mahmood, Ed., London: Springer London, 2014, ch. 10, pp. 235–263.

DOI: 10.1007/978-1-4471-6452-4.

[52] C. Baun, M. Kunze, and V. Mauch, “The KOALA Cloud Manager: Cloud

Service Management the Easy Way”, in IEEE 4th International Con-
ference on Cloud Computing, Washington, DC, USA: IEEE, Jul. 2011,

pp. 744–745. DOI: 10.1109/CLOUD.2011.64.

[53] A. Lonea, D. Popescu, and O. Prostean, “A survey of management in-

terfaces for eucalyptus cloud”, in 7th IEEE International Symposium on
Applied Computational Intelligence and Informatics (SACI), IEEE, May

2012, pp. 261–266. DOI: 10.1109/SACI.2012.6250013.

[54] B. Moltkau, Y. Thoss, et al., “Managing the Cloud Service Lifecycle from

the User ’ s View”, in The 3rd International Conference on Cloud Comput-
ing and Services Science, CLOSER 2013,, Aachen, Germany: Scitepress,

2013, pp. 215–219. DOI: 10.5220/0004357602150219.

[55] J. L. Lucas-Simarro, R. Moreno-Vozmediano, et al., “Scheduling strate-

gies for optimal service deployment across multiple clouds”, Future Gen-
eration Computer Systems, vol. 29, no. 6, pp. 1431–1441, Aug. 2013. DOI:

10.1016/j.future.2012.01.007.

[56] D. Kourtesis, J. M. Alvarez-Rodríguez, and I. Paraskakis, “Semantic-based

QoS management in cloud systems: Current status and future challenges”,

Future Generation Computer Systems, vol. 32, pp. 307–323, Mar. 2014.

DOI: 10.1016/j.future.2013.10.015.

[57] S. Han, M. M. Hassan, et al., “Efficient service recommendation system

for cloud computing market”, in Proceedings of the 2nd International Con-
ference on Interaction Sciences Information Technology, Culture and Hu-

207

http://dx.doi.org/10.1016/j.future.2010.02.013
http://dx.doi.org/10.1016/j.future.2010.02.013
http://dx.doi.org/10.1007/978-1-4471-6452-4
http://dx.doi.org/10.1109/CLOUD.2011.64
http://dx.doi.org/10.1109/SACI.2012.6250013
http://dx.doi.org/10.5220/0004357602150219
http://dx.doi.org/10.1016/j.future.2012.01.007
http://dx.doi.org/10.1016/j.future.2013.10.015

REFERENCES

man - ICIS ’09, New York, USA: ACM Press, 2009, pp. 839–845. DOI:

10.1145/1655925.1656078.

[58] M. Zhang and R. Ranjan, “Investigating decision support techniques for

automating Cloud service selection”, in IEEE 4th International Confer-
ence on Cloud Computing Technology and Science, Taipei, Taiwan: IEEE

Computer Society, Dec. 2012, pp. 759–764.

[59] M. Zhang, R. Ranjan, and D. Georgakopoulos, “Investigating Techniques

for Automating the Selection of Cloud Infrastructure Services”, Interna-
tional Journal of Next-Generation Computing, vol. 4, no. 3, 2013.

[60] M. Lecznar and S. Patig, “Cloud computing providers: Characteristics and

recommendations”, in E-Technologies: Transformation in a Connected World,

ser. Lecture Notes in Business Information Processing, vol. 78, Springer-

Verlag, 2011, pp. 32–45.

[61] H. Qian, H. Zu, et al., “CSS: Facilitate the cloud service selection in IaaS

platforms”, in International Conference on Collaboration Technologies and
Systems (CTS), San Diego, CA, USA: IEEE, May 2013, pp. 347–354. DOI:

10.1109/CTS.2013.6567253.

[62] B. Martens and F. Teuteberg, “Decision-making in cloud computing en-

vironments: A cost and risk based approach”, Information Systems Fron-
tiers, vol. 14, no. 4, pp. 871–893, Jul. 2011. DOI: 10.1007/s10796-011-

9317-x.

[63] R. Filepp and L. Shwartz, “Image selection as a service for cloud comput-

ing environments”, in IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), 2010, Perth, WA: IEEE, 2010, pp. 1–

8. DOI: 10.1109/SOCA.2010.5707149Publisher:.

[64] G. Nie, Q. She, and D. Chen, “Evaluation Index System of Cloud Service

and the Purchase Decision-Making Process Based on AHP”, in Proceed-
ings of the 2011 International Conference on Informatics, Cybernetics, and
Computer Engineering (ICCE2011), L. Jiang, Ed., Melbourne, Australia:

Springer-Verlag, 2012, pp. 345–352. DOI: 10.1007/978-3-642-25194-

8_42.

208

http://dx.doi.org/10.1145/1655925.1656078
http://dx.doi.org/10.1109/CTS.2013.6567253
http://dx.doi.org/10.1007/s10796-011-9317-x
http://dx.doi.org/10.1007/s10796-011-9317-x
http://dx.doi.org/10.1109/SOCA.2010.5707149 Publisher:
http://dx.doi.org/10.1007/978-3-642-25194-8_42
http://dx.doi.org/10.1007/978-3-642-25194-8_42

REFERENCES

[65] J. Siegel and J. Perdue, “Cloud Services Measures for Global Use: The

Service Measurement Index (SMI)”, in Annual SRII Global Conference,

San Jose, CA, USA: IEEE, Jul. 2012, pp. 411–415. DOI: 10.1109/SRII.

2012.51.

[66] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A Framework for Com-

paring and Ranking Cloud Services”, in Fourth IEEE International Con-
ference on Utility and Cloud Computing, Victoria, NSW, Australia: IEEE,

Dec. 2011, pp. 210–218. DOI: 10.1109/UCC.2011.36.

[67] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud

computing services”, Future Generation Computer Systems, vol. 29, no. 4,

pp. 1012–1023, Jun. 2013. DOI: 10.1016/j.future.2012.06.006.

[68] S. Han, M. M. Hassan, and C. Yoon, “Efficient Service Recommendation

System for Cloud”, Grid and Distributed Computing (Communications in
Computer and Information Science), vol. 63, pp. 117–124, 2009.

[69] M. Whaiduzzaman, A. Gani, et al., “Cloud service selection using multi-

criteria decision analysis.”, The Scientific World Journal, vol. 2014, pp. 1–

6, Jan. 2014. DOI: 10.1155/2014/459375.

[70] H. M. Alabool and A. K. Mahmood, “Trust -Based Service Selection in

Public Cloud Computing Using Fuzzy Modified VIKOR Method”, Aus-
tralian Journal of Basic and Applied Sciences, vol. 7, no. 9, pp. 211–220,

2013.

[71] M. Khezrian, W. Kadir, et al., “Service Selection based on VIKOR method.”,

International Journal of Research and Reviews in Computer Science, vol.

2, no. 5, pp. 1182–1186, 2011.

[72] J. Kang and K. M. Sim, “Cloudle: A Multi-criteria Cloud Service Search

Engine”, in IEEE Asia-Pacific Services Computing Conference, Hangzhou,

China: IEEE Computer Society, Dec. 2010, pp. 339–346. DOI: 10.1109/

APSCC.2010.44.

[73] J. Kang and K. M. Sim, “Towards Agents and Ontology for Cloud Service

Discovery”, in International Conference on Cyber-Enabled Distributed Com-

209

http://dx.doi.org/10.1109/SRII.2012.51
http://dx.doi.org/10.1109/SRII.2012.51
http://dx.doi.org/10.1109/UCC.2011.36
http://dx.doi.org/10.1016/j.future.2012.06.006
http://dx.doi.org/10.1155/2014/459375
http://dx.doi.org/10.1109/APSCC.2010.44
http://dx.doi.org/10.1109/APSCC.2010.44

REFERENCES

puting and Knowledge Discovery, Beijing, China: IEEE Computer Society,

Oct. 2011, pp. 483–490. DOI: 10.1109/CyberC.2011.84.

[74] J. Kang and K. Sim, “Ontology and search engine for cloud computing sys-

tem”, in System Science and Engineering (ICSSE), Macau, China, 2011,

pp. 276–281.

[75] C. Chen, S. Yan, et al., “A Systematic Framework Enabling Automatic

Conflict Detection and Explanation in Cloud Service Selection for En-

terprises”, in IEEE Fifth International Conference on Cloud Computing,

Honolulu, Hawaii, USA: IEEE Computer Society, Jun. 2012, pp. 883–890.

DOI: 10.1109/CLOUD.2012.95.

[76] W. Zeng, Y. Zhao, and J. Zeng, “Cloud service and service selection al-

gorithm research”, in Proceedings of the first ACM/SIGEVO Summit on
Genetic and Evolutionary Computation - GEC ’09, New York, USA: ACM

Press, 2009, p. 1045. DOI: 10.1145/1543834.1544004.

[77] A. Menychtas, A. Gatzioura, and T. Varvarigou, “A Business Resolution

Engine for Cloud Marketplaces”, in IEEE Third International Conference
on Cloud Computing Technology and Science, Athens, Greece: IEEE, Nov.

2011, pp. 462–469. DOI: 10.1109/CloudCom.2011.68.

[78] M. Godse and S. Mulik, “An approach for selecting software-as-a-service

(SaaS) product”, in IEEE International Conference on Cloud Computing,

Bangalore, India: IEEE Computer Society, 2009, pp. 155–158. DOI: 10.

1109/CLOUD.2009.74.

[79] X. Liu, C. Xia, et al., “Optimal Service Selection Based on Business for

Cloud Computing”, in International Conference on Cloud and Service Com-
puting, Beijing, China: IEEE, Nov. 2013, pp. 92–97. DOI: 10.1109/CSC.

2013.22.

[80] L. Mao, Y. Yang, et al., “Service Selection Algorithm Based on Constraint

for Cloud Workflow System”, Journal of Software, vol. 8, no. 5, pp. 1124–

1132, May 2013. DOI: 10.4304/jsw.8.5.1124-1131.

210

http://dx.doi.org/10.1109/CyberC.2011.84
http://dx.doi.org/10.1109/CLOUD.2012.95
http://dx.doi.org/10.1145/1543834.1544004
http://dx.doi.org/10.1109/CloudCom.2011.68
http://dx.doi.org/10.1109/CLOUD.2009.74
http://dx.doi.org/10.1109/CLOUD.2009.74
http://dx.doi.org/10.1109/CSC.2013.22
http://dx.doi.org/10.1109/CSC.2013.22
http://dx.doi.org/10.4304/jsw.8.5.1124-1131

REFERENCES

[81] M. Ouedraogo and H. Mouratidis, “Selecting a Cloud Service Provider in

the age of cybercrime”, Computers & Security, vol. 38, pp. 3–13, Oct. 2013.

DOI: 10.1016/j.cose.2013.01.007.

[82] L. Qu, Y. Wang, and M. a. Orgun, “Cloud Service Selection Based on

the Aggregation of User Feedback and Quantitative Performance Assess-

ment”, in IEEE International Conference on Services Computing, Santa

Clara, USA: IEEE, Jun. 2013, pp. 152–159. DOI: 10.1109/SCC.2013.92.

[83] Z. Rehman, F. Hussain, and O. Hussain, “Towards Multi-Criteria Cloud

Service Selection”, in Fifth International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing, Seoul, Korea: IEEE,

2011, pp. 44–48. DOI: 10.1109/IMIS.2011.99.

[84] K. Fatema, V. C. Emeakaroha, et al., “A survey of Cloud monitoring tools:

Taxonomy, capabilities and objectives”, Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2918–2933, Oct. 2014. DOI: 10.1016/j.

jpdc.2014.06.007.

[85] S. A. de Chaves, R. B. Uriarte, and C. B. Westphall, “Toward an archi-

tecture for monitoring private clouds”, IEEE Communications Magazine,

pp. 130–137, Dec. 2011.

[86] S. Clayman, G. Alex, et al., “Monitoring Service Clouds in the Future In-

ternet.”, in Toward the Future Internet (Emerging Trends from European
Research), G. Tselentis, A. Galis, et al., Eds., IOS Press, 2010, pp. 115–

126. DOI: 10.3233/978-1-60750-539-6-115.

[87] C. Baun and M. Kunze, “Performance Measurement of a Private Cloud in

the OpenCirrusTM Testbed”, in Euro-Par 2009 Parallel Processing Work-
shops (LNCS vol 6043), ser. Lecture Notes in Computer Science LNCS),

vol. 6043, Delft, the Netherlands: Springer-Verlag Berlin Heidelberg, 2010,

pp. 434–443.

[88] S. Wang, Z. Liu, et al., “Towards an accurate evaluation of quality of cloud

service in service-oriented cloud computing”, Journal of Intelligent Man-
ufacturing, vol. 25, no. 2, pp. 1–9, May 2012. DOI: 10.1007/s10845-012-

0661-6.

211

http://dx.doi.org/10.1016/j.cose.2013.01.007
http://dx.doi.org/10.1109/SCC.2013.92
http://dx.doi.org/10.1109/IMIS.2011.99
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.3233/978-1-60750-539-6-115
http://dx.doi.org/10.1007/s10845-012-0661-6
http://dx.doi.org/10.1007/s10845-012-0661-6

REFERENCES

[89] G. Aceto, A. Botta, et al., “Cloud monitoring: A survey”, Computer Net-
works, vol. 57, no. 9, pp. 2093–2115, Jun. 2013. DOI: 10.1016/j.comnet.

2013.04.001.

[90] A. Li, X. Yang, et al., “Comparing Public-Cloud Providers”, IEEE Internet
Computing, vol. 15, no. 2, pp. 50–53, 2011.

[91] A. Li, X. Yang, et al., “CloudCmp: Shopping for a cloud made easy”, in Pro-
ceedings of the 2nd USENIX conference on Hot topics in cloud computing,

Berkeley, CA, USA: USENIX Association, 2010, pp. 5–5.

[92] A. Li, X. Yang, et al., “CloudCmp: comparing public cloud providers”, in

Proceedings of the 10th annual conference on Internet measurement, Mel-

bourne, Australia: ACM, Nov. 2010, pp. 1–14.

[93] A. Li, X. Zong, et al., “CloudProphet: towards application performance

prediction in cloud”, in Proceedings of the ACM SIGCOMM 2011 confer-
ence, Toronto, Canada: ACM, Aug. 2011, pp. 426–427.

[94] J. Montes, A. Sánchez, et al., “GMonE: A complete approach to cloud mon-

itoring”, Future Generation Computer Systems, vol. 29, no. 8, pp. 2026–

2040, Oct. 2013. DOI: 10.1016/j.future.2013.02.011.

[95] A. Kamel, A. Al-Fuqaha, et al., “Towards a client-side QoS monitoring and

assessment using Generalized Pareto Distribution in a cloud-based envi-

ronment”, in IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), Shanghai, China: IEEE, Apr. 2013, pp. 123–128.

DOI: 10.1109/WCNCW.2013.6533326.

[96] J. Holmes and W. Moriarty, “Application of the generalized Pareto distri-

bution to extreme value analysis in wind engineering”, Journal of Wind
Engineering and Industrial Aerodynamics, vol. 83, no. 1-3, pp. 1–10, 1999.

DOI: 10.1016/S0167-6105(99)00056-2.

[97] N. Palhares, S. R. Lima, and P. Carvalho, “A Multidimensional Model

for Monitoring Cloud Services”, in Advances in Information Systems and
Technologies, ser. Advances in Intelligent Systems and Computing, Á.

Rocha, A. M. Correia, et al., Eds., vol. 206, Berlin, Heidelberg: Springer

212

http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1016/j.comnet.2013.04.001
http://dx.doi.org/10.1016/j.future.2013.02.011
http://dx.doi.org/10.1109/WCNCW.2013.6533326
http://dx.doi.org/10.1016/S0167-6105(99)00056-2

REFERENCES

Berlin Heidelberg, 2013, pp. 931–938. DOI: 10.1007/978-3-642-36981-

0.

[98] R. Akolkar, T. Chefalas, et al., “The Future of Service Marketplaces in

the Cloud”, in IEEE Eighth World Congress on Services, Honolulu, USA:

IEEE, Jun. 2012, pp. 262–269. DOI: 10.1109/SERVICES.2012.59.

[99] Z. Rehman, O. K. Hussain, and S. Parvin, “A Framework for User Feed-

back Based Cloud Service Monitoring”, in The Sixth International Con-
ference on Complex, Intelligent, and Software Intensive Systems (CISIS-
2012), Palermo, Italy: IEEE Computer Society, Jul. 2012, pp. 257–262.

DOI: 10.1109/CISIS.2012.157.

[100] Y. Zhang, Z. Zheng, and M. R. Lyu, “Real-Time Performance Prediction

for Cloud Components”, in IEEE 15th International Symposium on Ob-
ject / Component / Service-Oriented Real-Time Distributed Computing
Workshops, Shenzhen, China: IEEE, Apr. 2012, pp. 106–111. DOI: 10.

1109/ISORCW.2012.29.

[101] Y. Zhang, Z. Zheng, and M. R. Lyu, “Exploring Latent Features for Memory-

Based QoS Prediction in Cloud Computing”, in 30th International Sym-
posium on Reliable Distributed Systems, Madrid, Spain: IEEE, Oct. 2011,

pp. 1–10. DOI: 10.1109/SRDS.2011.10.

[102] L. Chen, Y. Feng, et al., “An Enhanced QoS Prediction Approach for Ser-

vice Selection”, in IEEE International Conference on Services Computing,

Washington, DC, USA: IEEE, Jul. 2011, pp. 727–728. DOI: 10.1109/SCC.

2011.46.

[103] Z. Zheng, X. Wu, et al., “QoS Ranking Prediction for Cloud Services”,

IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6,

pp. 1213–1222, 2012.

[104] S. Pacheco-Sanchez, G. Casale, et al., “Markovian Workload Characteri-

zation for QoS Prediction in the Cloud”, in IEEE 4th International Con-
ference on Cloud Computing, Washington, DC, USA: IEEE, Jul. 2011,

pp. 147–154. DOI: 10.1109/CLOUD.2011.100.

213

http://dx.doi.org/10.1007/978-3-642-36981-0
http://dx.doi.org/10.1007/978-3-642-36981-0
http://dx.doi.org/10.1109/SERVICES.2012.59
http://dx.doi.org/10.1109/CISIS.2012.157
http://dx.doi.org/10.1109/ISORCW.2012.29
http://dx.doi.org/10.1109/ISORCW.2012.29
http://dx.doi.org/10.1109/SRDS.2011.10
http://dx.doi.org/10.1109/SCC.2011.46
http://dx.doi.org/10.1109/SCC.2011.46
http://dx.doi.org/10.1109/CLOUD.2011.100

REFERENCES

[105] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud Migra-

tion: A Case Study of Migrating an Enterprise IT System to IaaS”, in

IEEE 3rd International Conference on Cloud Computing, Miami, Florida,

USA: IEEE, Jul. 2010, pp. 450–457. DOI: 10.1109/CLOUD.2010.37.

[106] S. Kaisler and W. Money, “Service migration in a cloud architecture”, in

Proceedings of the 44th Hawaii International Conference on System Sci-
ences, Hawaii, USA: IEEE, Jan. 2011, pp. 1–10. DOI: 10.1109/HICSS.

2011.371.

[107] C. Fehling, F. Leymann, et al., “Service Migration Patterns – Decision

Support and Best Practices for the Migration of Existing Service-Based

Applications to Cloud Environments”, in IEEE 6th International Confer-
ence on Service-Oriented Computing and Applications, Koloa, HI, USA:

IEEE, Dec. 2013, pp. 9–16. DOI: 10.1109/SOCA.2013.41.

[108] W. Voorsluys, J. Broberg, et al., “Costs of Virtual Machine Live Migration:

A Survey”, in Cloud Computing, ser. Lecture Notes in Computer Science

(LNCS), M. G. Jaatun, G. Zhao, and C. Rong, Eds., vol. 5931, IEEE, Jun.

2009, pp. 323–329. DOI: 10.1109/SERVICES.2012.23.

[109] R. Boutaba, Q. Zhang, and M. F. Zhani, “Virtual Machine Migration in

Cloud Computing Environments”, in Communication Infrastructures for
Cloud Computing, H. T. Mouftah and B. Kantarci., Eds., IGI Global, 2014,

ch. 17, pp. 383–408. DOI: 10.4018/978-1-4666-4522-6.ch017.

[110] D. Kapil, E. Pilli, and R. Joshi, “Live virtual machine migration tech-

niques: Survey and research challenges”, in IEEE Third International
Advance Computing Conference (IACC), Ghaziabad, India: IEEE, 2013,

pp. 963–969.

[111] F. Travostino, P. Daspit, and L. Gommans, “Seamless live migration of

virtual machines over the MAN/WAN”, Future Generation Computer Sys-
tems, vol. 22, pp. 901–907, 2006. DOI: 10.1016/j.future.2006.03.007.

[112] K. Nagin, D. Hadas, et al., “Inter-cloud mobility of virtual machines”, in

Proceedings of the 4th Annual International Conference on Systems and
Storage, New York, NY, USA: ACM Press, 2011. DOI: 10.1145/1987816.

1987820.

214

http://dx.doi.org/10.1109/CLOUD.2010.37
http://dx.doi.org/10.1109/HICSS.2011.371
http://dx.doi.org/10.1109/HICSS.2011.371
http://dx.doi.org/10.1109/SOCA.2013.41
http://dx.doi.org/10.1109/SERVICES.2012.23
http://dx.doi.org/10.4018/978-1-4666-4522-6.ch017
http://dx.doi.org/10.1016/j.future.2006.03.007
http://dx.doi.org/10.1145/1987816.1987820
http://dx.doi.org/10.1145/1987816.1987820

REFERENCES

[113] A. Iosup, N. Yigitbasi, and D. Epema, “On the Performance Variability

of Production Cloud Services”, in 11th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, Newport Beach, CA, USA:

IEEE, May 2011, pp. 104–113. DOI: 10.1109/CCGrid.2011.22.

[114] E. Wittern, J. Kuhlenkamp, and M. Menzel, “Cloud service selection based

on variability modeling”, in Service-Oriented Computing, ser. Lecture Notes

in Computer Science (LNCS), vol. 7636, Springer-Verlag Berlin-Heiderberg,

2012, pp. 127–141.

[115] O. K. Hussain, T. S. Dillon, et al., Risk Assessment and Management in the
Networked Economy. Springer Berlin Heidelberg, 2013. DOI: 10.1007/

978-3-642-28690-2.

[116] R. D. Galliers, “Choosing Information Systems Research Approaches”, in

Information Systems Research, R. D. Galliers, Ed., Blackwell Scientific

Publications, 1992, ch. 8, pp. 144–162.

[117] D. McTavish and H. Loether, Social Research: An Evolving Process. Allyn

and Bacon, 2002.

[118] F. Burstein, S. Gregor, et al., “The systems development or engineering

approach to research in information systems: an action research perspec-

tive”, in Proceedings of the 10th Australasian Conference on Information
Systems, Wellington, New Zealand, Dec. 1999, pp. 122–134.

[119] J. Nunamaker, M. Chen, and T. Purdin, “Systems Development in Infor-

mation Systems Research”, Journal of Management Information Systems,

vol. 7, no. 30, pp. 89–106, 1990. DOI: 10.1109/HICSS.1990.205401.

[120] B. Kaplan and J. Maxwell, “Qualitative research methods for evaluat-

ing computer information systems”, English, in Evaluating the Organiza-
tional Impact of Healthcare Information Systems, ser. Health Informatics,

J. Anderson and C. Aydin, Eds., Springer New York, 2005, pp. 30–55. DOI:

10.1007/0-387-30329-4_2.

[121] M. Mazzucco and D. Dyachuk, “Optimizing Cloud providers revenues via

energy efficient server allocation”, Sustainable Computing: Informatics

215

http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1007/978-3-642-28690-2
http://dx.doi.org/10.1007/978-3-642-28690-2
http://dx.doi.org/10.1109/HICSS.1990.205401
http://dx.doi.org/10.1007/0-387-30329-4_2

REFERENCES

and Systems, vol. 2, no. 1, pp. 1–12, Mar. 2012. DOI: 10.1016/j.suscom.

2011.11.001.

[122] S. Gogouvitis and G. Katsaros, “Retrieving, storing, correlating and dis-

tributing information for cloud management”, GECON 2012, vol. LNCS

7714, pp. 114–124, 2012.

[123] A. S. M. Masud and A. R. Ravindran, “Multiple criteria decision making”,

in Operations Research and Management Science Handbook, R. Ravin-

dran, Ed., Taylor and Fransis Group LLC, 2009, ch. 5.

[124] Milan Zeleny, “Multiple Criteria Decision Making”, in Operations Research
Methodologies. McGraw Hill Higher Education, 1982, ch. 3, p. 85.

[125] T. Saaty, “The analytic network process”, in Decision making with the
analytic network process, ser. International Series in Operations Research

& Management Science, vol. 95, Springer-Verlag, 2006, pp. 1–26. DOI:

10.1007/0-387-33987-6_1.

[126] T. Wang, L. Hsien-Da, and M. C. Chang, “A Fuzzy TOPSIS Approach

with Entropy Measure for Decision-Making Problem”, in IEEE Interna-
tional Conference on Industrial Engineering and Engineering Manage-
ment, Singapore: IEEE, Dec. 2007, pp. 124–128. DOI: 10.1109/IEEM.

2007.4419164.

[127] S. Zanakis, A. Solomon, et al., “Multi-attribute decision making: A sim-

ulation comparison of select methods”, European Journal of Operational
Research, vol. 107, no. 3, pp. 507–529, Jun. 1998. DOI: 10.1016/S0377-

2217(97)00147-1.

[128] Thomas L. Saaty, “How to make a decision: The analytic hierarchy pro-

cess”, European Journal of Operational Research, vol. 48, no. 1, pp. 9–26,

1990.

[129] R.W. Saaty, “The analytic hierarchy process—what it is and how it is

used”, Mathematical Modelling, vol. 9, no. 3-6, pp. 161–176, 1987.

[130] E. H. Forman and S. Gass, “The Analytic Process – an Exposition”, Oper-
ations Research, vol. 49, no. 4, pp. 469–486, 2001.

216

http://dx.doi.org/10.1016/j.suscom.2011.11.001
http://dx.doi.org/10.1016/j.suscom.2011.11.001
http://dx.doi.org/10.1007/0-387-33987-6_1
http://dx.doi.org/10.1109/IEEM.2007.4419164
http://dx.doi.org/10.1109/IEEM.2007.4419164
http://dx.doi.org/10.1016/S0377-2217(97)00147-1
http://dx.doi.org/10.1016/S0377-2217(97)00147-1

REFERENCES

[131] J. Read. (Mar. 6, 2011). What is an ECU? CPU Benchmarking in the

Cloud, [Online]. Available: http://blog.cloudharmony.com/2010/05/

what-is-ecu-cpu-benchmarking-in-cloud.html.

[132] J. Read. (Mar. 6, 2011). Is joyent really 14x faster than ec2 and azure the

fastest cloud?, [Online]. Available: http://blog.cloudharmony.com/

2011/11/many-are-skeptical-of-claims-that.html.

[133] G. Box, G. Jenkins, and G. Reinsel, Time series analysis: forecasting and
control, 4th. Willey, 2008.

[134] S. Bisgaard and M. Kulahci, “Time series model selection and parsimony”,

Quality Engineering, vol. 21, no. 3, pp. 341–353, 2009.

[135] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted

moving averages”, International Journal of Forecasting, vol. 20, no. 1,

pp. 5–10, 2004.

[136] R. Hyndman and Y. Khandakar, “Automatic Time Series Forecasting: The

forecast Package for R”, Journal of Statistical Software, vol. 27, no. 3,

2008.

[137] R. Hyndman, A. B. Koehler, et al., Forecasting with Exponential Smooth-
ing: The State Space Approach. Springer, 2008.

[138] E. S. Gardner and E. Mckenzie, “Forecasting Trends in Time Series”,

Management Science, vol. 31, no. 10, pp. 1237–1246, Oct. 1985. DOI: 10.

1287/mnsc.31.10.1237.

[139] P. R. Winters, “Forecasting sales by exponentially weighted moving aver-

ages”, Management Science, vol. 6, no. 3, pp. 324–342, 1960.

[140] C. C. Pegels, “Exponential Forecasting : Some New Variations”, Manage-
ment Science, vol. 15, pp. 311–315, 1969.

[141] E. S. Gardner, “Exponential smoothing: The state of the art”, Journal of
Forecasting, vol. 4, no. 1, pp. 1–28, 1985. DOI: 10.1002/for.3980040103.

217

http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2011/11/many-are-skeptical-of-claims-that.html
http://blog.cloudharmony.com/2011/11/many-are-skeptical-of-claims-that.html
http://dx.doi.org/10.1287/mnsc.31.10.1237
http://dx.doi.org/10.1287/mnsc.31.10.1237
http://dx.doi.org/10.1002/for.3980040103

REFERENCES

[142] J. W. Taylor, “Exponential smoothing with a damped multiplicative trend”,

International Journal of Forecasting, vol. 19, pp. 715–725, 2003. DOI: 10.

1016/S0169-2070(03)00003-7.

[143] B. Billah, M. L. King, et al., “Exponential smoothing model selection for

forecasting”, International Journal of Forecasting, vol. 22, no. 2, pp. 239–

247, Apr. 2006. DOI: 10.1016/j.ijforecast.2005.08.002.

[144] E. S. Gardner, “Exponential smoothing: The state of the art—Part II”, In-
ternational Journal of Forecasting, vol. 22, no. 4, pp. 637–666, Oct. 2006.

DOI: 10.1016/j.ijforecast.2006.03.005.

[145] J. K. Ord, A. B. Koehler, and R. D. Snyder, “Estimation and Prediction for

a Class of Dynamic Nonlinear Statistical Models”, Journal of the Ameri-
can Statistical Association, vol. 92, pp. 1621–1629, 1997. DOI: 10.2307/

2965433.

[146] R. J. Hyndman, A. B. Koehler, et al., “A state space framework for au-

tomatic forecasting using exponential smoothing methods”, International
Journal of Forecasting, vol. 18, no. 3, pp. 439–454, Jul. 2002. DOI: 10.

1016/S0169-2070(01)00110-8.

[147] D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autore-

gressive Time Series With a Unit Root”, Journal of the American Statis-
tical Association, vol. 74, pp. 427–431, 1979. DOI: 10.2307/2286348.

[148] Y.-W. Cheung and K. S. Lai, “Lag Order and Critical Values of the Aug-

mented Dickey-Fuller Test”, Journal of Business & Economic Statistics,

vol. 13, pp. 277–280, 1995. DOI: 10.2307/1392187.

[149] S. Makridakis and M. Hibon, “The M3-Competition: results, conclusions

and implications”, International Journal of Forecasting, vol. 16, no. 4,

pp. 451–476, Oct. 2000. DOI: 10.1016/S0169-2070(00)00057-1.

[150] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast

accuracy”, International Journal of Forecasting, vol. 22, no. 4, pp. 679–

688, Oct. 2006. DOI: 10.1016/j.ijforecast.2006.03.001.

[151] J. Beran, Statistics for Long-Memory Processes. Chapman and Hall, 1994.

218

http://dx.doi.org/10.1016/S0169-2070(03)00003-7
http://dx.doi.org/10.1016/S0169-2070(03)00003-7
http://dx.doi.org/10.1016/j.ijforecast.2005.08.002
http://dx.doi.org/10.1016/j.ijforecast.2006.03.005
http://dx.doi.org/10.2307/2965433
http://dx.doi.org/10.2307/2965433
http://dx.doi.org/10.1016/S0169-2070(01)00110-8
http://dx.doi.org/10.1016/S0169-2070(01)00110-8
http://dx.doi.org/10.2307/2286348
http://dx.doi.org/10.2307/1392187
http://dx.doi.org/10.1016/S0169-2070(00)00057-1
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001

REFERENCES

[152] H. E. Hurst, “Long term storage capacity of reservoirs”, Transactions of
the American Society of Civil Engineers, vol. 116, pp. 770–779, 1951.

[153] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-Range Dependence: 10

Years of Internet Traffic Modeling”, IEEE Internet Computing, vol. 8, no.

5, pp. 57–64, 2004. DOI: 10.1109/MIC.2004.46.

[154] R. Clegg, “A practical guide to measuring the Hurst parameter”, in 21st
UK Performance Engineering Workshop, ser. School of Computing Science

Technical Report Series, Newcastle, UK, Jul. 2005, pp. 43–55.

[155] L. Kaklauskas and L. Sakalauskas, “Study of on-line measurement of

traffic self-similarity”, Central European Journal of Operations Research,

vol. 21, no. 1, pp. 63–84, Jul. 2011. DOI: 10.1007/s10100-011-0216-5.

[156] H. F. Zhang, Y. T. Shu, and O. Yangt, “Estimation of Hurst Parameter

by Variance-Tiem Plots”, in IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing, Victoria, B.C., Canada: IEEE,

Aug. 1997, pp. 883–886.

[157] C. K. Peng, S. V. Buldyrev, et al., “Mosaic organization of DNA nucleotides”,

Physical Review E, vol. 49, no. 2, pp. 1685–1689, 1994. DOI: 10.1103/

PhysRevE.49.1685.

[158] H.-D. J. Jeong, J.-S. R. Lee, et al., “Comparison of various estimators in

simulated FGN”, Simulation Modelling Practice and Theory, vol. 15, no.

9, pp. 1173–1191, Oct. 2007. DOI: 10.1016/j.simpat.2007.08.004.

[159] C. Maurer and V. Raghavan, “A linear time algorithm for computing exact

Euclidean distance transforms of binary images in arbitrary dimensions”,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,

no. 2, pp. 265–270, Feb. 2003. DOI: 10.1109/TPAMI.2003.1177156.

[160] L. Wang, Y. Zhang, and J. Feng, “On the Euclidean distance of images.”,

IEEE transactions on pattern analysis and machine intelligence, vol. 27,

no. 8, pp. 1334–9, Aug. 2005. DOI: 10.1109/TPAMI.2005.165.

[161] L. Zadeh, “Fuzzy logic”, Computer, vol. 21, no. 4, pp. 83–93, Apr. 1988.

DOI: 10.1109/2.53.

219

http://dx.doi.org/10.1109/MIC.2004.46
http://dx.doi.org/10.1007/s10100-011-0216-5
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://dx.doi.org/10.1103/PhysRevE.49.1685
http://dx.doi.org/10.1016/j.simpat.2007.08.004
http://dx.doi.org/10.1109/TPAMI.2003.1177156
http://dx.doi.org/10.1109/TPAMI.2005.165
http://dx.doi.org/10.1109/2.53

REFERENCES

[162] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with

a fuzzy logic controller”, International Journal of Man-Machine Studies,

vol. 7, no. 1, pp. 1–13, Jan. 1975. DOI: 10.1016/S0020-7373(75)80002-2.

[163] S. B. Sitkin and L. R. Weingart, “Determinants of Risky Decision-Making

Behavior: A Test of the Mediating Role of Risk Perceptions and Propen-

sity”, Academy of Management Journal, vol. 38, pp. 1573–1592, Dec. 1995.

[164] A. Strunk, “Costs of Virtual Machine Live Migration: A Survey”, in IEEE
Eighth World Congress on Services, Honolulu, Hawaii, USA: IEEE, Jun.

2012, pp. 323–329. DOI: 10.1109/SERVICES.2012.23.

Every reasonable effort has been made to acknowledge
the owners of copyright material. I would be pleased to
hear from any copyright owner who has been omitted
or incorrectly acknowledged.

220

http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.1109/SERVICES.2012.23

Appendix: Selected Publications

• A User-Based Early Warning Service Management

Framework in Cloud Computing. 222

• Parallel Cloud Service Selection and Ranking Based on QoS

History. .247

• A Framework for User Feedback Based Cloud Service

Monitoring. .280

221

© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxu064

A User-Based Early Warning Service
Management Framework

in Cloud Computing

Omar Khadeer Hussain
1,∗

, Zia-ur-Rahman
1
, Farookh Khadeer Hussain

2
,

Jaipal Singh
3
, Naeem Khalid Janjua

1
and Elizabeth Chang

1

1School of Business, University of New South Wales, ADFA, Canberra, Australia
2Decision Support and e-Service Intelligence Lab, Quantum Computation and Intelligent Systems Lab,

School of Software, University of Technology, Sydney, NSW, Australia
3Department of Fisheries, Perth, WA, Australia
∗Corresponding author: o.hussain@adfa.edu.au

Cloud computing is a very attractive option for service users and service providers for their businesses
because of the benefits it provides. A major concern among service users regarding cloud adoption,
however, is the unpredictability of performance in relation to the services provided. Even though
guarantees in the form of service-level agreements are provided to users by service providers, real-
time service-level degradability remains a critical concern; hence, there is a need for an approach that
assists users to manage a service before it fails. The approaches proposed in the literature assess and
evaluate the performance of the cloud infrastructure of providers, but this does not guarantee that
a given service instance will meet the desired quality level because there may be factors other than
the provider’s infrastructure that will affect the level of quality of the service instance. In this paper,
we present an approach that measures the quality of a service instance in real time and provides
important analysis for service users as to whether they will achieve their desired objectives. This
analysis also constitutes an important input for service users in the assessment and management of

a service to avoid the failure to achieve objectives.

Keywords: service degradability; SLA violation; cloud computing; risk assessment as a service

Received 21 November 2013; revised 10 June 2014
Handling editor: Amr El Abbadi

1. INTRODUCTION

In recent years, cloud computing has emerged as an important
platform for carrying out business services over the Internet. It
provides features and characteristics that make it an attractive
option for both businesses and service end-users to meet
their computing needs. For businesses, it eliminates the need
to pre-plan and provides a service-oriented model, coupled
with features such as multi-tenancy, shared resource pooling,
ubiquitous access and dynamic resource provisioning, that
enables business managers to scale their resources according
to user demand. Apart from eliminating the need to pre-plan
the required resources and make a huge financial investment
upfront for infrastructure or platform, it allows service users to
use resources as services from different vendors on a demand
or pay-as-you-go basis at much lower premiums. Some of the

means by which these services are delivered over the cloud
computing paradigm are software as a service, infrastructure as
a service and platform as a service, through which service users
expect to achieve their requirements at the desired point in time,
regardless of where the services are hosted.

While on the one hand, the distributed nature of infrastructure,
applications and users will lead service users to experience
the benefits of cloud computing, it may, on the other hand,
lead to scenarios where degraded quality is experienced
while accessing the service. When this arises from a partial
or total interruption in the required or expected quality
of the service, it is termed Service Degradability. Service
degradability may be the result of a variety of factors
at different levels, such as network (routing problems,
loss of intermittent packets to and from the cloud central

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

222

2 O.K. Hussain et al.

TABLE 1. An example of the constituent parts of an SLA.

SLO parameter Required value

Reliability > 98%
Hard disk space 3TB
CPU processing power > 2 GHz

network, problems with ISPs) or infrastructure (scheduled
or unscheduled downtime). Irrespective of the reason, the
experience of service degradability implies that the service user
is not guaranteed the required level of service. In the literature,
such performance unpredictability on the cloud has been noted
as a major obstacle to cloud adoption [1]. One of the ways
in which this problem is addressed in the literature is by the
formation of service level agreements (SLAs), which are created
between service users and service providers to ensure a clear
understanding of the agreed services between a group of users
and eliminate unrealistic expectations, reduce areas of conflict
and provide some form of service performance guarantee. Non-
adherence to SLAs is costly to both the service provider and
service user in many ways. From the viewpoint of the service
provider, it can include the application of penalties and the
discontinuation of their business due to loss of reputation,
and from the viewpoint of service users, it includes the non-
achievement of expected outcomes at the required time, which
may be critical for user needs. It is therefore important for both
types of user that there is a commitment to the defined SLAs
and that violations of SLAs are avoided or mitigated.

In most cases, the SLAs formed between users consist of
more than one service level objective (SLO), as given in Table 1.
Furthermore, it is possible that each SLO, which shows the
specific measurable characteristics of the metric, will be a
high-level or aggregated representation of various low-level
resource metrics. For example, one SLO of the SLA given in
Table 1, namely system reliability, may be calculated from the
decomposable low-level metrics of availability and downtime.
As a result, monitoring an SLA for violations needs to be
conducted on low-level metrics, because it is the compounded
effect of these metrics that determine the final performance or
commitment level of the SLO metric and eventually the SLA.

In the literature, cloud monitoring systems (such as Monitis,
Zenoss or CloudWatch) assist in monitoring the low-level
metrics of a cloud service. Work has also been conducted
to map low-level metrics to the high-level parameters of an
SLO or SLA [2], along with approaches that predict the
future performance metric value of an SLO and implement
adaptations [3]. Although such approaches to predicting future
quality of service (QoS) and the possibility of SLA violations
are beneficial, it is nevertheless important to note that the
analysis provided by these approaches focuses more on the
monitoring and management of a service on the platform side,
i.e. on the server side. In addition, it is important for the efficient
management of a service to have a framework that assists in

the management of service performance (including monitoring
and prediction) on the service user side and, based on these
observations, to manage the service according to the service
user’s risk attitude. In the literature, the importance of having
such an approach for SLA management from the service user’s
perspective has been mentioned [4] but no work has been done
to realize this. In this paper, we propose a risk assessment as
a service (RaaS)-based early warning indicator framework for
service management in cloud computing. The contributions of
our paper are 2-fold:

(1) From the service user’s perspective, we introduce an
early warning indicator system to determine possible
future violations in either the performance metric of an
SLO parameter or in the performance of a service.

(2) We utilize the notion of risk propensity to assist the
service user in managing a service, based on the
variations between the observed and predicted QoS.

The rest of the paper is organized as follows. In Section 2, we
discuss the concept of service management, followed by the
related work, and define the problem addressed in this paper.
In Sections 3 and 4, we present our RaaS-based framework
for User-based Service Management. In Section 5, we present
the experiments conducted to demonstrate the working of our
approach. Section 6 concludes the paper with a discussion of
future work.

2. RELATED WORK AND PROBLEM STATEMENT

To achieve their desired outcomes, service users in cloud
computing need to be proactive in ensuring that the service
instance commits to the QoS parameters defined in the SLA.
They need approaches that assist them to (a) make an informed
decision in selecting an appropriate, capable service provider
and (b) monitor and manage the outcomes of that decision for
the duration of the SLA to ensure that the desired outcomes are
being achieved. The total time period over which the decision
has to be made and its outcomes monitored is termed the time
phase, which can broadly be divided into two parts, namely
(a) the pre-interaction time phase and (b) the post-interaction
time phase, as shown in Fig. 1.

We define the pre-interaction time phase of the time space
as that period of time that precedes the initiation of the service
instance between the service provider and service user, and the
post-interaction time phase as that period of time following
the initiation of the same service instance [5]. Across these
two time phases, making an informed decision to select an
appropriate service provider is carried out by the service user
in the pre-interaction start time phase, and monitoring and
managing to achieve the desired outcomes is conducted in the
post-interaction start time phase. Depending upon the user’s
service requirements, the post-interaction start time phase may
be extended, hence the process of monitoring and managing

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

223

A User-Based Early Warning Service Management Framework 3

Pre-Interaction time phase (from time slot t-m) Post-Interaction time phase (from time slot t1 till tn)

Time spot of the
interaction ‘t’

Time slot
t-4

Time slot
t-3

Time slot
t-2

Time slot
t-1

Time slot
t1

Time slot
t2

Time slot
t3

Time slot
t4

Time slot
t5

FIGURE 1. Division of time space into two time phases.

has to be achieved using predicted values. Each time phase is
divided into a number of time slots, as shown in Fig. 1, to capture
the variable capability of the service provider to provide the
service instance according to the SLOs over a period of time.

Approaches have been proposed in the literature to assist
service providers and users in the pre-interaction phase to make
informed service decisions. Smith and Moorsel [6] introduced
a utility model for contract-based service provisioning to
help service providers form an optimal service provision
contract under uncertainty, which mainly focuses on SLA
criteria formation and evaluation, but not on the quantitative
measurement of the possibility of failure to achieve the terms
of the SLA. Michalk [7] presented an approach that enables
service providers to select a particular combination of SLAs to
minimize the likelihood of SLA. Approaches have also been
proposed from the viewpoint of service users that assist in the
choice of a service provider capable of committing to an agreed
SLA. These approaches utilize such factors as trustworthiness
and reputation to rank service providers according to their
ability, or to assist service providers in committing to SLAs.
Zheng et al. [8] proposed an approach by which a service user
can predict the QoS performance of a provider by considering
the opinion of other users, and this analysis can then be used by
the service user to make a decision. In our previous work, we
proposed an approach that facilitates cloud service selection for
a user by ranking available cloud services according to their past
QoS using a range of multi-criteria decision-making (MCDM)
approaches [9–11].

It is important to understand that even though selecting the
most appropriate service provider at the time of forming
the service instance is significant, this in no way guarantees
the achievement of the objectives required by the service
user according to the SLO metrics because of factors that
may impact the post-interaction phase. These factors can be
broadly categorized into two groups, namely platform-level
and instance-level factors. Platform-level factors are related
to infrastructure units on the provider side such as servers,
databases, CPU usage or memory, whereas instance-level
factors are related to runtime factors (usually measured at the
user side) that will have an effect on the user experiencing
the service contrary to what was expected. Variation in the
occurrence of such factors in the above-mentioned groups will
lead to the non-achievement of the desired level of performance
of the service instance and it is therefore important to monitor

these factors continuously. In the literature, SLA monitoring
strategies, as well as the detection and prediction of possible
SLA violations, have been actively studied in service-oriented
architectures, grid computing and cloud computing. Foster and
Spanoudakis [12], for example, proposed an approach to support
the dynamic configuration of components for SLA monitoring
in service-oriented architectures in which they discussed the
types of monitor required to realize intrusive [13, 14] or
event-based [15, 16] monitoring in service-based systems. In
other work, researchers have developed an SLA monitoring
module called S-Mon to enhance the security capability of a
billing system in the THEMIS project [17], which presents the
monitoring report to users when required. In the area of grid
computing, Fu et al. [18] proposed GridEye, a service-oriented
monitoring system with flexible architecture that is equipped
with an algorithm to predict overall resource performance
characteristics. Boniface et al. [19] proposed an approach
that manages multiple services based on SLAs and avoids
SLA violations on the GRIA SLAs. In the area of SLA
monitoring and forecasting in cloud computing, an approach
called Sandpiper [20] has been proposed which allows the
automatic monitoring and detection of hotspots as well as
the remapping/reconfiguring of virtual machines to avoid SLA
violations. Emeakaroha et al. [21] proposed an SLA monitoring
framework (LoM2HiS) that defines mapping rules between
resource metrics and user-defined SLAs, leading to effective
SLA management by monitoring low-level infrastructure
parameters. Based on this framework, an architecture for the
early detection of SLA violations through strict thresholds,
DeSVi [22], has been proposed. Cardellini et al. [23] defined
heuristic policies for application service provider resource
management. The proposed policy uses a prediction algorithm
based on recursive least squares to forecast the workload in
the next time slot. Hu et al. [24] proposed cloud BOSS as a
service assurance-oriented platform to manage and guarantee
service quality level in the cloud. The proposed approach
focuses on the measurements of quality of experience of service
users by mapping key performance indicators to key quality
indicators and meeting the requirements of SLAs. Ciciani
et al. [25] proposed Workload Analyser, a self-optimizing
transactional data platform that is capable of monitoring and
categorizing resource consumption data. Based on these data,
time series-based analysis to forecast future trends in workload
fluctuations is implemented [26] to predict SLA violation.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

224

4 O.K. Hussain et al.

Cicotti et al. [27] proposed the QoSMONaaS approach, which
aims to provide greater visibility for service users in monitoring
the performance of cloud services.

Although the above-mentioned techniques assist in providing
assurance of service performance to service users, their focus
is on measuring QoS at the platform level. To the best of our
knowledge, none of these techniques proposes an approach from
the service user side and assists the user in deciding whether
or not to continue with a service in the event of a deviation
in the QoS from a defined or expected level. As mentioned
earlier, having such a framework is important because there
is the possibility of the service user being unable to obtain the
promised service with the required characteristics due to factors
beyond the platform side which may then affect the quality
of the service received at runtime. One way to develop such
a framework is to use the notion of RaaS and to monitor the
performance of a service at the user side. In the event of service
deviation, the user’s risk propensity or risk attitude can be used
to recommend whether or not the service should be continued. In
this paper, we propose a number of techniques that can be used to
develop such an ‘as a service’ model to assist users with service
management. The problem statement that we address in this
paper is: ‘For the service user to achieve the desired outcomes,
the service instance has to commit to the required performance
metrics both at the platform level and the instance level’. In
this paper, we develop approaches that enable a service user to
determine whether there are possible deviations that might lead
to an SLA violation, according to the observed level of QoS
at the instance level and to facilitate prior intervention so that
potential violations can be managed by the user to achieve the
desired outcomes of the SLA.

3. RaaS FRAMEWORK FOR USER-FOCUSED
SERVICE MANAGEMENT

In this section, we propose the architecture for the RaaS
framework for user-focused service management (RaaS-USM).
Our proposed framework assists service users in the various
phases of deciding and managing a service, using SLAs as the
benchmark. Our proposed architecture for RaaS-USM relies on
a number of integrated modules, as shown in Fig. 2. These are
as follows:

Cloud service discovery module: The cloud services in the
cloud environment are searched by a service discovery module
and their specifications are created and stored in the QoS
repository, which serves as a register of available cloud services.
This module also acts as an interface between the RaaS-USM
module and the cloud environment. In addition to looking
for new services, this module keeps track of changes to the
specifications of existing services.

Cloud service monitoring module: This module monitors and
collects data on QoS that are registered in the cloud service
repository at the platform and/or user side by executing a

benchmark test, as well as using data collected by third-party
cloud-monitoring services.

Cloud service users: Users who form SLAs with service
providers for available services. These users provide metrics
to be stored in the information repository according to the
specifications of the service, based on the QoS experienced on
the user side.

QoS information repository: The QoS information repository
records the quality of available services observed at the platform
and user side, and this information is used by the RaaS-
USM module to recommend suitable services to users and
manage them appropriately. To address the drawback of the
observed variability in QoS received at both platform and user
ends [28], we consider the approach being used by Cloud
Harmony in which the user-side geographic area is divided into
regions and the QoS values achieved in each area are stored.
This will assist in the performance of accurate computations
according to the QoS being received in that geographic area.
Using techniques such as Crowd Sourcing, it is anticipated that
over a period of time, the QoS repository will have sufficient
QoS information in different geographic locations to perform
further analysis.

RaaS-USM module: This module assists service users to cre-
ate custom-made SLAs with service providers according to their
observed service performance and user requirements. The mod-
ule then predicts and monitors the QoS before recommending
a decision to the service user in the event of service deviation.
The various phases in this module are the SLA formation phase,
the SLA monitoring/prediction phase and the decision-making
phase for SLA management. The interaction between the
different phases of the RaaS-USM module is shown in Fig. 3.

In the first phase, the SLA negotiator assists users to
form tailor-made SLAs with providers, depending on the
user requirements. A user enters his or her requirements in
terms of the required service capacity and the SLA negotiator
recommends the metric values on which the SLA needs to
be formed with a service provider to achieve the required
objectives, based on recently observed QoS values at the
user side as opposed to those stated by the service provider.
As noted earlier, this is an important consideration because
deviations from the QoS being promised at the platform side
and subsequently delivered at the user side have been observed.
Apart from considering the SLO metric value provided or stated
by the provider, the user should also take into consideration
the QoS being received at the user side and should use this
to form an SLA with appropriate metric values. Once the
available services and their performance in the QoS metrics
have been identified, the MCDM cloud service recommender
obtains the QoS information from the QoS repository and
the criteria preference values from the user before performing
multi-criteria decision analysis on this information to rank the
available services. In this paper, we do not discuss the process
of MCDM service selection, but readers can refer to [11] for
further details.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

225

A User-Based Early Warning Service Management Framework 5

FIGURE 2. Components of RaaS-USM.

Following the creation of the SLA, the next phase in the RaaS-
USM module is the QoS prediction/SLA monitoring phase.
There are two objectives in this phase. The first is to predict
the QoS values over a short future period of time from past
information and to perform real-time monitoring of the QoS
being received or observed at the user side against the predicted
future QoS values. This is done by the QoS prediction and
SLA monitor module. The second objective is to ascertain the
possibility of the occurrence of an SLA violation based on the
observed and predicted QoS statistics in the first step. This will
be carried out by the QoS-SLA violation detector module, which
will also detect the level of deviation of the observed service
from the predicted service level. This is followed in RaaS-USM
by the decision-making phase, which makes recommendations
to the service user on the future course of continuing with the
service provider according to the observations of the previous
phase. This is conducted by the SLA decision-making module
that takes as input the level of deviation between the observed

and predicted QoS and the risk propensity of the service user to
determine whether or not to continue with the service.

To summarize, by using the RaaS-USM framework we are
interested in determining:

(1) the performance of the service instance at runtime (post-
interaction time phase) not according to the metrics
of the SLAs formed by the service user at the time spot
of the interaction and

(2) the appropriate decision for the service user in the event
of deviation in the service.

To derive answers to the above questions, the following factors
must be ascertained:

(a) Predict the performance of a service (predicted or
expected QoS) over a period of time (post-interaction
start time phase).

(b) Monitor the observed QoS against the predicted
performance to determine whether there will be

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

226

6 O.K. Hussain et al.

FIGURE 3. Phases of the RaaS-USM module.

deviation. If there will, to determine the characteristics
of the deviation and project the outcome over a period
of time.

(c) Ascertain the risk propensity of the service user to
ascertain whether the level of deviation observed
warrants a service migration decision.

The solutions to the above-mentioned problems will be of
interest to service users because they will guide users in making
appropriate decisions on the achievement of their desired
outcomes and service migration. In the sections that follow,
we explain the working of the QoS prediction/SLA monitoring
and decision-making phases.

4. RAAS-USM MODULE FOR USER-BASED
SERVICE MANAGEMENT

In (a) above, we noted that to achieve good service management,
the quality of performance of a service over a future period of
time must be predicted. In most cases, the prediction over a
future period has to be calculated according to past QoS values.
It is possible that, due to the characteristics of the cloud (for
example, the number of services using the resource), many vari-
ations may be present in the QoS values. It is important for this
variability to be captured in predicting future QoS over a period.
By this, we mean that it is important to determine whether
there are patterns in past QoS, such as elements of stochastic

variation, or trends in variation or seasonality, because having
such an understanding would lead to the prediction of future
QoS values with a level of certainty. Many service prediction
approaches have been proposed in the literature [29, 30]. In
this paper, we use an existing approach to predict the future
performance of a service and utilize the analysis to monitor
and manage its performance over that period of time.

4.1. QoS predictor

Volatility in QoS is an important concept to consider when
predicting over a future period of time, hence it is important for
predictions to be made over short intervals to properly capture
variability and dynamicity. To achieve this, we propose to carry
out the prediction in each time slot of the post-interaction phase.
As shown in Fig. 1, a time slot is a non-overlapping period of
time in which we assume that the predicted QoS value remains
the same.

In our approach, we use two prominent classes of time series
modelling methods, exponential smoothing and autoregressive
integrated moving average (ARIMA), to forecast the QoS of
cloud services for a short term forecast horizon according to the
characteristics of past QoS values. The exponential smoothing
methods consider the time series as a combination of random
shocks, trends and seasonal fluctuations. Different variants of
exponential smoothing can be used for prediction based on the
characteristics of past QoS values; for example, if the time series

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

227

A User-Based Early Warning Service Management Framework 7

has constant values and no seasonality, a simple exponential
smoothing technique can be used to determine the sum of
squared errors, which is then used to predict future QoS values.
For a QoS series that exhibits a trend with irregular components,
the Holt Exponential Smoothing variant of the technique can
be used to determine the parameters on which the prediction
is dependent. In Section 4.1.1, we explain the process of QoS
prediction by exponential smoothing.

4.1.1. Exponential smoothing for QoS prediction
The concept behind exponential smoothing is that the forecasts
are calculated using the weighted averages of all previous
observations where the weight exponentially decreases with
observations from the distant past and smaller weight values
are associated with the oldest observations [31], as shown in
the following equation:

x̂t+1 = αxt + α(1 − α)xt−1 + α(1 − α)2xt−2 + · · · , (1)

where 0 < α < 1 is called the smoothing parameter and
its value controls the rate at which the weights decrease. The
weights associated with observations decrease exponentially
going back in time. This form is also called simple exponential
smoothing.

An extended form of this technique, called Holt’s Exponential
Smoothing [31], can be used to model a time series that exhibits
a trend with irregular components. Similar to the smoothing
parameter in the case of simple exponential smoothing, Holt’s
exponential smoothing adds another smoothing parameter β

which represents the trend component in the series. In this case,
the values of the time series are given by the following forecast
equation:

x̂t+1 = lt + hbt , (2)

where
lt = αxt + (1 − α)(lt−1 + bt−1)

and
bt = β(lt − lt−1) + (1 − β)βt−1.

Thus, the forecasted value is a linear combination of level and
trend components that are represented by lt and bt , respectively.

To incorporate seasonality in time series, [32, 33] developed
a seasonal model in which another smoothing constant γ is
used in addition to and to represent seasonal component st in
the time series. Similar to the simple exponential smoothing
and exponential smoothing with trend (Holt’s) methods, the
seasonal exponential smoothing method has either an additive
or multiplicative seasonal component. The additive seasonal
method is given by the following equation:

x̂t+h = lt + bt + st−m+h+
m
, (3)

where

lt = α(xt − st−m + (1 − α)(lt−1 + bt−1)),

bt = β
lt

lt−1
+ (1 − β)βt−1

and
st = γ (xt − lt−1 − bt−1) + (1 − γ)st−m.

Once an exponential smoothing model that properly fits the
components in the observed QoS time series is determined,
that model is utilized to forecast future QoS values within a
short forecast horizon. Exponential smoothing models attempt
to capture the information contained as trend and seasonality
in a time series. For time series that do not have trend
and seasonality, the ARIMA model may be more appropriate
because its approach to time series forecasting is to capture
the autocorrelation in observations. This approach is explained
further in Section 4.1.2.

4.1.2. ARIMA models for QoS prediction
ARIMA models are a combination of autoregressive (AR) and
moving average (MA) models, and this class of time series
models captures the presence of autocorrelation in the observed
time series to give a prediction interval along with each predicted
future QoS value. The prediction interval consists of maximum
and minimum values, and the forecasted QoS metric is expected
to remain within this range with a certain degree of confidence
(usually 85 or 95%).

ARIMA combines the AR and MA models in an integrated
time series model. The AR and MA models are for ‘stationary’
time series. The properties of a stationary time series do not
depend on the time at which the series is observed; thus,
such a series does not exhibit a trend or seasonality, although
irregular cyclic behaviour may be present. Using the AR or
MA models requires that if a time series is not stationary, it
must be converted into a stationary series by using differencing
prior to the application of these models. ARIMA integrates
the differencing process into the model itself in addition to
combining the AR and MA approaches. Differencing refers to
the process in which the preceding value is subtracted from each
value to yield a new series, as shown in the following equation:

y ′
t = yt − yt−1. (4)

If the differenced series is still not stationary, it may be
differenced again to yield a second-order differenced series, as
shown in Equation (5). The number of time differences required
to convert a non-stationary series into a stationary series is called
the order of differencing.

y ′′
t = y ′

t − yt−1. (5)

In an autoregression model, the future values are forecast
using a linear combination of past values. The term
autoregression indicates that it is a regression of the variable
against itself. An AR model of order p is defined as

yt = c + φ1yt−1 + φ2yt−2 · · · φpyt−p + et , (6)

where φ is the AR parameter, c is a constant and et is white
noise. This model is called an AR(p) model, as shown in the

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

228

8 O.K. Hussain et al.

following equation:

yt = c + et + θ1 + et−1 + θ2et−2 · · · θqet−q, (7)

where θ is the MA component and et is white noise. This is
referred to as an MA(q) model.

The ARIMA method combines these two as follows:

y ′
t = c+φ1y

′
t−1+· · ·+φpy ′

t−p+θ1et−1+· · ·+θqet−q +et , (8)

where y ′
t is the differenced series (with order of differencing, d).

This is also denoted as an ARIMA (p, d, q) model, where p

is the order of the AR component, d is the order of differencing
and q is the MA component.

By using the different variations in these approaches,
reasonably acceptable QoS forecasts over a short period of
time can be determined. We term such predicted QoS values the
‘QoS expected curve’ (QEC). In other words, QEC represents
the expected QoS values of a service over the time slots of
the future time period being considered. Once the QEC over a
period of time has been ascertained, the next step is to monitor
the current QoS being received to determine whether or not an
SLA violation is likely to occur. This will be achieved by the
QoS-SLA monitor module.

4.2. QoS monitor

The main aim of the QoS monitor is to determine whether
the observed QoS is consistent with the predicted or expected
QoS. If the actual QoS at runtime (termed the ‘QoS observed
curve’ (QOC)) matches that of the levels on QEC, it means
that the expected/observed performance of the service is as
planned. However, as discussed in previous sections, cloud
QoS service values are volatile and depend on the various
factors that affect the performance and quality of the service
delivered at runtime. This means that there may be variability
between the observed (QOC) and expected (QEC) performance
of a service in a given period. This level of variability might
result in better or worse QoS than expected, and so, apart from
predicting possible future QoS values (QEC), it is also important
to constantly monitor for deviations in the actual performance
of the service being delivered or observed (QOC). In the case
of a deviation between the QOC and the QEC being observed,
the subsequent step would be to determine the possibility of an
SLA violation occurring and accordingly to determine the best
course of action to take. This will be achieved by the QoS-SLA
violation detector, as explained in detail in the next subsection.

4.3. QoS-SLA violation detector

In point (b) at the end of Section 3, we noted that the next
step in the process of SLA management when a deviation is
observed is to determine the level of variability between the
QEC and QOC over a period of time (time slot). This will be
carried out by the QoS-SLA violation detector module in the

RaaS-USM framework. Approaches have been proposed in the
literature that measure the deviation between the actual and
predicted QoS values of a service, based on past history [3]. In
our approach, we aim to determine and project such deviation by
using the concept of trajectories. We consider two trajectories,
one that spans past QoS values to the predicted point, and one
that spans past QoS values to the observed point. According to
the deviation observed between these two time series, we aim
to determine the state of the trajectories at a future point in time.
To explain using an example, let us consider that the time series
shown in Fig. 4 represents the CPU response time data of a
service being received on the user side. The x-axis represents
the time at which the QoS data of the service is determined and
the y-axis represents the quality metric value (in milliseconds).
Let us consider that the data values from 10:00 AM to 10:55
AM show past QoS values and that future values from that
time are determined by using the prediction algorithm given
in Section 4.1. The QEC values from the time period of 11
AM onwards (in blue) show the predicted QoS value of the
service until 11:20 AM, but the QOC value observed at 11 AM
shows that there is a deviation from the expected value. We are
interested in determining the following two factors:

(a) In the case of an observed deviation between the
predicted (QEC) and observed (QOC) QoS value, to
establish its characteristics and project it over a future
period of time.

(b) Depending upon the final value, to determine the level
of SLA violation that might occur.

We discuss these steps further in the following subsections.

4.3.1. Determining the deviation between QEC and QOC
Before the nature and characteristics of deviation between
the QEC and QOC can be determined by using the concept
of trajectories, it is first necessary to ascertain whether they
satisfy the important condition of self-similarity. Self-similarity
is a term used to represent an object if its part is exactly or
approximately the same as another of its parts on a scale. In other
words, self-similarity shows the positive correlation between
two parts of a time series. If the QoS values depict self-similarity
using such characteristics, then by using the expected features
of the time series as the benchmark we aim to determine the
properties of the observed QoS values and any deviation from
the QEC to ascertain the future trend of the deviation.

When determining self-similarity in a time series, a fractal is
an interesting property that shows that two objects are somewhat
similar in a technical sense, and in which the pattern of the
whole occurs in each part. It is important to note that the
two self-similar objects need not exhibit exactly the same
structure on all scales, but the same ‘types’ of structure must
appear on all scales. From the time series shown in Fig. 5, for
example, it can be seen that, for each set of data values, the
overall structure types look similar, in spite of the sharp spike
between them. Using the concept of self-similarity, approaches

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

229

A User-Based Early Warning Service Management Framework 9

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20
240

245

250

255

260

265

270

275

280

285

290

Time

QEC

QOC

FIGURE 4. QEC and QOC of an SLA quality metric over a period of time.

have been proposed in the literature to determine whether
the current observed value differs from previous values due
to an anomaly; for example, approaches to detect distributed
denial of service (DDoS) attacks in network traffic [34], or
to study the heart rate control of a healthy population [35]
to determine the occurrence of unexpected values. In our
approach, we want to utilize this concept of self-similarity to
monitor and manage the performance of a service over a period
of time.

A real-world time series (such as cloud QoS data) may be
very complex, as shown in Fig. 5, and the process to determine
whether it has self-similarity may not be possible by mere
observation but may require confirmation with mathematical
proof. Hence, techniques are needed to carry out a thorough
analysis of the time series to conclude whether or not it is self-
similar. In the next subsection, we briefly discuss some of the
techniques used to measure self-similarity in a time series.

4.4. Methods to determine whether a time series depicts
features of self-similarity

One way to determine the degree of self-similarity in a
time series is by estimating the Hurst exponent (or Hurst
parameter). The Hurst exponent was proposed by H. E. Hurst
for hydrological studies of the Nile River [36] and has been
applied in many research fields to estimate the degree of self-
similarity in observed data. A Hurst exponent value (H) of 0.50
shows the presence of randomness in data. If H lies between
0 ≤ H ≤ 0.5, it suggests trend-reversing characteristics
in the series (i.e. an increase is followed by a decrease and

vice versa). Conversely, a value of H within the range of
0.5 ≤ H ≤ 1 suggests the presence of self-similarity and long-
range dependence in the data. The power of the trend increases
until the value of H reaches its upper ceiling value of 1. Many
methods of determining the Hurst value from a time series have
been proposed, and we discuss some of them in the following
subsections.

4.4.1. Rescaled range method
The rescaled range method (R/S) is an approach to determine
the self-similar properties of a time series using the Hurst
exponent. This method estimates the long-range dependence
parameter H of a part of time series by fitting a least-squares
line to the values of statistics computed at many different points.
For each point, the input time series is divided into different parts
(for example, 1

2 , 1
4 , 1

8 , etc.) until the input series in each part has
fewer than eight data points, and the statistical properties of each
part are then studied to calculate the Hurst exponent [37, 38].
The mean and standard deviation of each part of an input range
are determined. The running sum relating to the mean for each
range is ascertained before the difference between the highest
and lowest value of the input range (Rn) is determined. The ratio
R/S for each input range is determined by Rn/Sn. The logs of
each of the number of inputs in a range and the corresponding
R/S value are plotted on a log–log axis. The Hurst exponent
is then estimated by a linear regression through these points in
the form of y = mx +c. The variable ‘m’, which represents the
slope of the line, is the estimate of the Hurst exponent. If the
Hurst exponent is within the range of 0.5 and 1, the input series
is self-similar and its discrepancy is called the Hurst effect [39].

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

230

10 O.K. Hussain et al.

FIGURE 5. Time series values that depict features of self-similarity.

4.4.2. Variance–time estimate
The variance–time estimator is another technique used to
determine whether or not the input time series has self-
similarity. The working of this approach is based on the fact
that the variance of the aggregated processes decreases at the
rate of m2H2 as the batch of m increases [40]. If a time series X is
self-similar when the log–log values are plotted, the logarithm of
the variance of the aggregated processes X(m) decreases linearly
with log 10(m). The variance–time plot is obtained by plotting
log 10(Var(X(m))) against log 10(m) and by fitting a sample
least-squares line through the resulting points in the plane,
ignoring the small values for m. Values of the estimate β of
the asymptotic slope between −1 and 0 suggest self-similarity,
and an estimate for the degree of self-similarity is given by
H = 1 − β/2 [38]. If the value of H is 0.5, it signifies that
the time series does not have long-range dependence and has
finite variance with a slope of −1. A Hurst parameter value in
the range of 0.5–1 suggests the presence of self-similarity in a
time series.

4.4.3. Index of dispersion for counts
The index of dispersion for counts (IDCs) is another method
used to measure the Hurst parameter and determine the presence
of self-similarity in a time series. The IDC method plots the
standard deviation against the mean and, in the case of a time
series being self-similar, it produces a monotonically increasing
value of the form ct2H−1, where c is a finite positive constant
independent of t . IDC(t) as a function of t is either constant
or converges to a fixed value quite rapidly and should result in
an asymptotic straight line with a slope of 2H-1 [40]. A Hurst
parameter value in the range of 0.5–1 suggests the presence of
self-similarity in a time series.

4.4.4. Residual of regression method
The working of the residual of regression method is similar to
the working of the R/S method. The series is broken into blocks
of size m and the partial sums of each block are calculated [41].

A least-squares line is fitted on each block and the sample vari-
ance of the residuals is computed. This process is repeated for
each block and the resulting sample variance is averaged. When
the sample variance is plotted against m on a log–log plot, and
if the fitted line is straight with a slope of 2H, it implies that the
time series is self-similar. A Hurst parameter value in the range
of 0.5–1 suggests the presence of self-similarity in a time series.

By using the above-mentioned techniques, it can be
determined whether the time series exhibits features of self-
similarity. If it does, the observed and expected QoS values can
be compared, using the past properties of the time (QoS) series,
to monitor the deviation in the service at a point of time and in
the future. Based on the monitored levels, it can be determined
whether an SLA violation will occur. In the next subsection, we
discuss the approach used in our model to achieve this.

4.5. Studying the deviation between QEC and QOC
over a period of time

To study the observed deviation between the QEC and QOC and
project it over a future period, our approach requires past QEC
values (from the beginning of the time space) to be sampled
up to the current period of time (i.e. the point at which the
QoS-SLA violation detector aims to detect whether a service
violation will occur) and a phase space of the self-similar model
to be generated. The phase space, as shown in Fig. 6, is a
representation of the different states of a system on a phase
plane. The value obtained by constructing a phase space is that
it provides a pictorial representation of the systemic patterns
occurring in a real-world dynamic system that can be used as a
guide model specification of future values [42].

If a pattern of a system is known, then having such a
representation in phase space allows the capture of expected
or normal system behaviour over a period of time and
its classification as a variation or abnormality. It assists in
determining any unusual changes in the observed QoS values.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

231

A User-Based Early Warning Service Management Framework 11

Once the phase space has been constructed, the next step is
to pick the period of time on the space from which we want to
determine whether an SLA violation is likely to occur depending
upon the observed variation between the QEC and QOC. We
pick the states of QoS values that have both the expected
(Xe) and observed (Xe + �Xeo) QoS values, as shown in
Fig. 7. The point (Xe + �Xeo) is represented by point Xo

in Fig. 7.
The future values of both trajectories are determined from

those points using the function in the following equation:

Xe + 1 = f (Xe), (9)

where the function f (x) maps the dimension of the input
variable to determine the output value at a future period of time.
From Equation (9), a sequence of the form for the expected

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

FIGURE 6. Phase space of a time series.

(QEC) and observed (QOC) QoS trajectories can be generated,
as shown in Equations (10) and (11), respectively.

Xe0, Xe1, Xe2, . . . , Xen, (10)

Xe0 + �Xe1, Xe1 + �Xe1 · · · Xen + �Xen, (11)

where Xen shows the expected QoS value at point n, and
Xe0 + �Xe0 shows the observed QoS value at point n.

The sequence of values generated by Equations (10) and (11)
are the continuation trajectories of Equation (9), representing
the expected and observed QoS values, respectively, at a point
of time. According to the self-similarity model properties
of the time series, we consider that at any time the QoS
performance values in the QOC diverge from the QEC (due
to new users forming or leaving the service) and eventually
settle down to the expected value of the QEC (due to the
service provider taking appropriate steps on the platform side
to maintain the specified QoS). According to this characteristic,
we assume that the QoS values are attracted to fixed points
that diminish asymptotically with time. This behaviour in the
QoS is modelled by Equation (11). However, as mentioned
earlier, the performance of a service at runtime is volatile
and there are many factors that may have an effect on the
desired performance level, thereby impacting on the QoS
delivered and leading to an SLA violation. To determine the
likely occurrence of this and avoid its effects, we utilize a
technique that studies the trajectories of the path (QOC and
QEC curves) and the deviation between them to determine their
possible future values and states compared with the expected
values. We achieve this by using the concept of the Lyapunov
exponent, which is a number that describes the dynamics of
trajectory evolution. The Lyapunov exponent, also called the
Lyapunov characteristic exponent, capsulizes the average rate

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20
240

245

250

255

260

265

270

275

280

285

290

Time

QEC

QOC

xe

x0

FIGURE 7. QoS values of an SLA metric over a period of time.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

232

12 O.K. Hussain et al.

of convergence or divergence of two neighbouring trajectories
along m orthogonal directions [43]. In our case, we consider
only a 1D space and aim to determine the effect of an observed
change in the orbit (QoS values) and plot it on a phase space and
QoS time series to determine the likelihood of an SLA violation.
In the next subsection, we briefly discuss the characteristics of
the Lyapunov exponent.

4.5.1. Lyapunov exponent
The Lyapunov exponent is a number that determines the rate of
convergence and divergence of two time series on a phase space.
The computed values of a time series can be positive, negative or
zero and each value represents an important characteristic of the
time series being studied. The largest Lyapunov exponent value
of a time series is called the Maximum Lyapunov exponent, as
determined by [44]:

λ max =lim
n→∞

1

n

n−1∑
i=1

loge

∣∣∣∣ δi

δ0

∣∣∣∣ , (12)

where δ0 represents the initial separation between the two points
of the input series, δi represents the separation between the two
points of the time series after i iterations, n is the number of
iterations performed on the time series and i ∈ n.

Lyapunov exponents are of fundamental importance in
studying an important concept of a non-linear system, chaos.
Defined by the Royal Society in 1986, chaos determines the
presence of stochastic behaviour in a system that has some
form of pattern and lawfulness [45]. The stochastic behaviour
is further estimated as being either random or chaotic. This is
particularly useful in studying the state of non-linear systems at
a future time period in which changes in the initial conditions
can increase the complexity of accurate future values prediction
but can assist in determining future states in areas such as
Transportation [46],Vessel motions [47] and DDoS attacks [34].
One way in which this is investigated is by studying the path of
the trajectories and the notion of attractors [48]. An attractor is a
set of states (points in the phase space) which the neighbouring
states in a given basin of attraction asymptotically approach in
the course of dynamic evolution. An attractor is defined as the
smallest unit that cannot be itself decomposed into two or more
attractors with distinct basins of attraction. Depending upon
its properties, it can be classified as a ‘fixed point’, ‘periodic’,
‘repeating’ or ‘strange’ attractor [45], and depending upon the
type of attractor to which the deviation in the time series
corresponds, the presence of either chaotic or random variation
in the system from the expected QoS values is estimated and
the evaluation is utilized for further analysis depending upon
the problem being studied.

4.5.2. Studying the properties of propagated deviation
between QEC and QOC over a period of time

By propagating the initial dispersion between the QEC and
QOC, the level of deviation after a period of time is determined.

By calculating the Lyapunov exponent between them, three
cases arise [49]:

Case 1: A maximum Lyapunov exponent with a value of 0
(λ max = 0). This value indicates that the distance between
the trajectories being considered will remain constant. In other
words, this value shows that the system is in a steady-state point
and the change in the QoS values (as represented by the QOC)
has moved the self-similar QoS pattern either up or down, thus
becoming the new benchmark for detecting SLA violations. The
two orbits in this situation maintain a constant separation, like
two flecks of dust fixed in place on a rotating record, as shown
in Fig. 8a.

Case 2: In a system with fixed or periodic attractor points,
the difference between the two trajectories being considered
diminishes asymptotically with time. This is represented by a
negative Lyapunov exponent value and is characterized by a
value of λ max < 0. This value indicates that in spite of there
being a separation between the orbits at the current time slot,
this will diminish over time and will be attracted to a stable
fixed or periodic point or attractor. This means that the change
in QoS values due to new users forming or leaving the service
will converge at a later point of time to a known stable fixed or
periodic point or attractor. In our case, it is considered that the
deviation in the QOC will diminish after a period of time and
will merge with the QEC, as shown in Fig. 8b.

Case 3: In instances where the system is chaotic with the
current state, the difference between the orbit points over a
period of time will behave erratically, and this is indicated
by a positive value of the Lyapunov exponent (λ max > 0).
This value means that the trajectories will diverge or converge
with respect to each other to an arbitrary point. This property
occurs only in a chaotic domain, and this value suggests that the
separation between the orbits is unstable and chaotic. This is the
representation of the unpredictability of future cloud QoS values
as a result of degradation or of many services being formed that
have an impact on the quality of the metric currently being
considered. This also means that the current deviation between
the time series will lead to arbitrary separation, and the final
resting place of the orbit (QoS value) after a period of time
will be the strange attractor. In a case in which the Lyapunov
exponent is greater than 0, the QOC can be unpredictable and
can diverge anywhere (as shown by QOC-1 and QOC-2), as
shown in Fig. 8c.

According to these three cases, the level of deviation between
the QEC and QOC from a period of time can be quantified in
each time slot to a period of time in the future. To obtain a
consistent representation of the deviation, we transform it on a
scale of 0–100 where each element has a unit of %. The level of
deviation at a time slot i is quantified by the following equation:

Observed Level of Deviationi = |QOCi − QECi |
QECi

× 100.

(13)

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

233

A User-Based Early Warning Service Management Framework 13

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20
230

240

250

260

270

280

290(a)

(b)

(c)

Time

QAC
QEC
Threshold

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20
230

240

250

260

270

280

290

Time

QEC
QOC
SLA Threshold value of the metric

10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20
210

220

230

240

250

260

270

280

290

Time

QEC
QOC−1
SLA Threshold value of the metric
QOC−2

FIGURE 8. Different scenarios of deviation between QEC and QOC over a period of time. (a) Projected deviation between QEC and QOC over
a period of time when λ max = 0. (b) Projected deviation between QEC and QOC over a period of time when λ max < 0. (c) Projected deviation
between QEC and QOC over a period of time when λ max > 0.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

234

14 O.K. Hussain et al.

Once the level and properties of deviation over a period of
time are determined, the analysis can be used to decide the
service user’s future continuation of the service with the service
provider. This will be done in the decision-making phase of the
RaaS-USM module, as explained in the next subsection.

4.6. Decision-making module

Once the trend and the level of deviation between the
observed and predicted QoS values over a period of time
have been determined, the service user makes a decision on
the continuation of the service in the next phase. For this
task, the service user will be assisted by the decision-making
module. The decision-making module, based on the inputs
from the QoS-SLA violation detector and the captured risk
attitude of the service user, determines the future course to be
taken by the service user regarding the continuation of service.
A fuzzy inference system is utilized to combine the inputs
and semantically ascertain the recommended decision of the
decision-making module.

4.6.1. Risk attitude of the service user and its effect on
decision-making

‘Risk Propensity’ or ‘Risk Attitude’, defines a service user’s
risk-taking (RT) nature and defines the user’s tendency to accept
the levels of change in the QoS. In other words, the risk attitude
of the service user determines how the level of change in QoS is
‘seen’, and based on that, which levels of change are acceptable
and which are not [50]. The level of change not only refers to
the quantified difference in the quality metrics of the service
over a period of time but also its direction from the threshold
of the formed SLAs. It is important to note that no two service
users are likely to have the same risk attitude, and their approach

to decision-making in the interaction consequently also varies.
Additionally, the risk attitude of a service user might not be the
same throughout an interaction. When making decisions, it is
very important for service users to first accurately ascertain their
risk propensity at a given period of time and then to determine
its impact on the levels of change observed in QoS values.

The risk propensity of the service user can span a range of
possible risk attitudes. We consider three broad categories to
capture the RT nature of the service user. They are as follows:

Risk averse (RA) : ‘RA’ is defined as the attitude of a service
user who wants to accept only minimal change in the QoS when
deciding on future service continuation.

Risk neutral (RN) : ‘RN’ is defined as the attitude of a service
user who does not totally avoid change in the QoS, unlike users
of an RA nature, and who accepts change to a certain extent.

RT : ‘RT’ is defined as the attitude of a service user who
is indifferent to any level of change observed in the QoS and
is ready to continue with the service, no matter what level of
change is observed.

4.6.2. Defining the fuzzy sets and the membership function of
the inputs and output of the decision-making module

4.6.2.1. Defining the fuzzy sets and the membership function
of the input: risk propensity of the service user. We define the
universe of discourse (UoD) over which the different categories
of the ‘Risk Propensity’ of a service user extend in the range of
1–5; 1, 2, 3, 4, 5 where each element represents a numeric value
and is unit-less. To classify different fuzzy sets for the service
user input variable ‘Risk Propensity’, we divide the UoD into
the three above-mentioned predicates: ‘RA’, ‘RN’and ‘RT’. The
membership function defined over this input range is such that
it is a combination of a triangle and straight lines, as shown in
Fig. 9.

1 2 3 4 5

1

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

X-Axis showing the level of risk propensity of the service user
Y-Axis showing the degree of membership

Risk
Averse

Risk
Neutral

Risk
Taking

FIGURE 9. Membership function for the input: risk propensity of the service user.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

235

A User-Based Early Warning Service Management Framework 15

0 5 10 15 20 25 30 35 40 45 100

Medium

1

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

X-Axis showing the magnitude of deviation between the QEC and QOC
Y-Axis showing the degree of membership

High

Low

21 9

FIGURE 10. Membership function of the input: observed deviations in the QoS values.

The accurate risk propensity of the service user can be
determined against a set of psychological questions, whose
results are then quantified on a scale of 1–5. The resultant
number when plugged on the membership function gives the
quantified predicates of the risk attitude of the service user.
These issues are not discussed in this paper.

4.6.2.2. Defining the fuzzy sets and the membership function
for the input: observed deviations in the QoS. As mentioned
in Equation (13), the UoD on which the observed deviation
in the QoS values over a period of time is represented ranges
0, 1, 2, 3, 4, 5, . . . , 100 where each element has a unit of %. To
classify different fuzzy sets for the input variable over that range,
we divide the UoD such that there are three predicates, namely
‘Low’, ‘Medium’ and ‘High’. The membership function of the
linguistic variable ‘Observed Deviations in QoS’ is represented
by trapezoidal curves, as shown in Fig. 10. It should be noted
that the membership function defined in Fig. 10 is not fixed and
can be changed according to the service user’s needs.

By using the defined membership function, the deviation of
QOC with respect to QEC at each timeslot is quantified and
the corresponding degree of membership (DOM) of each fuzzy
predicate relevant to the deviation is determined by

(A) = {DOM A(x)}, (14)

where x represents the quantified deviation level of the QOC
with respect to the QEC, and A represents each fuzzy set in the
membership function.

Once all the input variables have been transformed to
their corresponding fuzzy sets, they must be processed in the
inference engine of the fuzzy system to draw a conclusion on the
UoD of the output linguistic variable. In the next subsection, we
define the output linguistic variable and propose its membership
functions.

4.6.2.3. Defining the fuzzy sets and the membership function
for the output: recommended service-based decision. The
fuzzy inference system computes the effect of the risk
propensity of the service user on the observed changes in the
QoS based on the inputs, and gives an output specifying the
recommended service-based decision (RSD). We consider a
range of 0–10; 0, 1, 2, . . . , 10 as the UoD while determining
the RSD output by the decision-making module. As our aim is
to develop a fuzzy inference system which will assist the service
user to make an informed decision relating to the continuation
of the service, the fuzzy sets for the output variable are
defined such that there are two predicates in the variable. They
are ‘Continue’ (C) and ‘Don’t Continue’ (DC), representing
the two possibilities for the service user to consider during
decision-making. The membership function for the output
‘RSD’ in the interaction is defined as an intersection of straight
lines spread over the UoD for the fuzzy variable, as shown
in Fig. 11.

The risk attitudes of the service user in terms of accepting
the magnitude of change in the QoS value can be arranged in
the order of RA < RN < RT. According to the defined fuzzy
levels, we consider that users with a risk propensity level of
‘RA’ accept a magnitude of change in the QOC QoS values
w.r.t. QEC QoS values up to maximum of L = 1. Users with
a risk propensity level of ‘RN’ accept a change in the QoS
value up to a maximum level of M = 1, whereas users with
an RT risk propensity will accept the magnitude of change
in the QoS values up to a maximum level of H = 1. It is
possible that the risk propensity level of the service user might
not always be a crisp value that corresponds totally to a given
level, but that it might overlap across the different levels. In this
scenario, the acceptable levels of change by the service user
also change and hence need to be appropriately captured. We
propose using fuzzy rules to achieve this, as explained in the
next subsection.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

236

16 O.K. Hussain et al.

0 2 4 6 8

1

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

X-Axis showing the Recommended Service-based decision
Y-Axis showing the Degree of Membership

Don’t Continue Continue

101 3 5 7 9

FIGURE 11. Membership function for the output: RSD.

TABLE 2. MASDL based on a level of risk attitude.

MRA MASDL

If RA = 1 then L = 1
If RN = 0.1 then M = 0.1
If RN = 0.2 then M = 0.2
If RN = 0.3 then M = 0.3
If RN = 0.4 then M = 0.4
If RN = 0.5 then M = 0.5
If RN = 0.6 then M = 0.6
If RN = 0.7 then M = 0.7
If RN = 0.8 then M = 0.8
If RN = 0.9 then M = 0.9
If RN = 1 then M = 1
If RT = 0.1 then H = 0.1
If RT = 0.2 then H = 0.2
If RT = 0.3 then H = 0.3
If RT = 0.4 then H = 0.4
If RT = 0.5 then H = 0.5
If RT = 0.6 then H = 0.6
If RT = 0.7 then H = 0.7
If RT = 0.8 then H = 0.8
If RT = 0.9 then H = 0.9
If RT = 1 then H = 1

4.6.3. Determining the RSD from the decision-making module
To find the maximum acceptable levels of variation by the
service user when risk propensity overlaps different levels, it is
important to first determine the ‘maximum risk attitude (MRA)’
of the service user and, based on that, to determine its impact
on the variations observed in the QoS. As mentioned earlier,
the risk attitudes of the service user in terms of accepting the
magnitude of change in the QoS value can be arranged in the

TABLE 3. Fuzzy inference rules that ascertain the output of the
decision-making module.

CDL CRA RSD PCS RSD

When L and RA then C if 1 else DC
When M and RA then C if 1 else DC
When H and RA then C if 1 else DC
When L and RN then C if 1 else DC
When M and RN then C if 1 else DC
When H and RN then C if 1 else DC
When L and RT then C if 1 else DC
When M and RT then C if 1 else DC
When H and RT then C if 1 else DC

order of RA < RN < RT. Hence, if the risk propensity nature
of a service user is a combination of levels RA and RN with
DOM 0.4 and 0.6, respectively, then the MRA of the service
user is considered to be RN = 0.6. According to the MRA, the
different levels of acceptable variation in QoS by the service
user need to be defined. We define the ‘maximum acceptable
service deviation level (MASDL)’ as the variable that defines
the maximum level of acceptable service deviation according
to the MRA, and determine it according to the fuzzy rules of
the IF-THEN structure, as shown in Table 2.

Once the MRA of the service user has been defined, it can
be used to determine whether or not it accepts the observed
deviations in QoS over a period of time. This again is performed
by fuzzy rules, taking the inputs of (a) the risk attitude of the
service user and (b) the observed deviations, to determine the
output of whether or not to continue the service. The risk attitude
of the service user is quantified using the membership function
with three predicates (as shown in Fig. 9) and the deviations
observed in QoS are quantified by a membership function that
has three predicates (as shown in Fig. 10). In total, therefore,

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

237

A User-Based Early Warning Service Management Framework 17

TABLE 4. Fuzzy rules to determine the value of the PCS variable.

MRA PCS CTT CDL≤ CTT PCS

When RA = 1 then 1 if 1 and L = 1 or 0 else 0
When RN = 0.1 then 1 if 1 and M = 0.1 or 0 else 0
When RN = 0.2 then 1 if 1 and M = 0.2 or 0 else 0
When RN = 0.3 then 1 if 1 and M = 0.3 or 0 else 0
When RN = 0.4 then 1 if 1 and M = 0.4 or 0 else 0
When RN = 0.5 then 1 if 1 and M = 0.5 or 0 else 0
When RN = 0.6 then 1 if 1 and M = 0.6 or 0 else 0
When RN = 0.7 then 1 if 1 and M = 0.7 or 0 else 0
When RN = 0.8 then 1 if 1 and M = 0.8 or 0 else 0
When RN = 0.9 then 1 if 1 and M = 0.9 or 0 else 0
When RN = 1 then 1 if 1 and M = 1 or 0 else 0
When RT = 0.1 then 1 if 1 and H = 0.1 or 0 else 0
When RT = 0.2 then 1 if 1 and H = 0.2 or 0 else 0
When RT = 0.3 then 1 if 1 and H = 0.3 or 0 else 0
When RT = 0.4 then 1 if 1 and H = 0.4 or 0 else 0
When RT = 0.5 then 1 if 1 and H = 0.5 or 0 else 0
When RT = 0.6 then 1 if 1 and H = 0.6 or 0 else 0
When RT = 0.7 then 1 if 1 and H = 0.7 or 0 else 0
When RT = 0.8 then 1 if 1 and H = 0.8 or 0 else 0
When RT = 0.9 then 1 if 1 and H = 0.9 or 0 else 0
When RT = 1 then 1 if 1 and H = 1 or 0 else 0

there will be 3 × 3 = 9 fuzzy rules that will recommend a
decision to the service user. These rules are shown in Table 3.

In Table 3, CDL and CRA, respectively, represent each quan-
tified predicate level of observed deviations in the QoS and the
risk attitude of the service user. Depending on the risk attitude,
the service user may consider some levels of change in the
QoS acceptable and some not, and so each QoS deviation level
(CDL) to be determined is analysed against each quantified level
of service user risk attitude (CRA) to determine whether to con-
tinue (C) with the service or not to continue (DC) at that stage.
This is determined by the variable ‘PCS’, which represents ‘pos-
sible to continue at this stage’ and whose value is determined
by fuzzy rules according to the rules defined in Table 4.

Three variables are used to determine the value of PCS
on each level of deviation observed in the QoS. They are as
follows:

(a) the current level of deviation (CDL) at a given point of
time (time slot);

(b) the MRA of the service user and
(c) the closeness of the service deviation at that given point

of time to the defined SLA threshold from the QoS
expected value (CTT).

The value for the variable PCS is either 0 or 1 and the process
by which it is determined is as follows:

(i) The first point checked by the decision-making module
is the direction of deviation (if any) in the observed QoS

with respect to the expected QoS value. In the event of
deviation, the module checks whether the observed QoS
value with respect to the QEC is getting close to the
defined SLA threshold or moving away from it. A value
of 0 indicates that the deviation in the observed QoS
trend is moving away from the defined SLA threshold,
and a value of 1 indicates otherwise. In our approach,
we consider that irrespective of the service user’s risk
attitude, he or she will continue with the service when
the deviation of the QOC w.r.t. QEC is moving away
from the defined threshold.

(ii) According to the MRA of the service user, each observed
level of deviation (CDL) is compared and checked to
establish whether it is less than or equal to the MASDL
(defined in Table 2).

(iii) Based on the above-mentioned inputs, the value of PCS
is determined as either 1 or 0. A PCS value of 1 suggests
that current deviation in the QoS (CDL) along with its
closeness to threshold (CTT) is acceptable to the service
user according to the MRA, and a value of 0 suggests
otherwise.

Once the value of the variable ‘PCS’ has been determined
from Table 4, the strength by which each rule of Table 3 fires
is determined. The strength values must be aggregated and
defuzzified to obtain a crisp value on the output membership
function. To aggregate the output of the rules, we utilize the
root sum square (RSS) method. The RSS method determines

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

238

18 O.K. Hussain et al.

FIGURE 12. Flowchart demonstrating the working of the FIS of the
decision-making module.

the square of each rule output corresponding to a predicate
in the output membership function. In our case, there are
two predicates in the output membership function and the
aggregation output of all the rules for each predicate is
determined by

μ ‘Continue’ =
√∑

(C)2,

μ ‘Don’t continue’ =
√∑

(DC)2.

The values determined for each predicate from the
aggregation process are plotted on the output membership
function to ascertain the range of the output. The scalar output
of the fuzzy inference system is obtained by defuzzifying the
range in which the output exists to obtain a crisp value, utilizing
the centre of gravity or centroid method. The obtained crisp
value, when plotted on the output fuzzy set, represents the RSD
by the decision-making module. The working of the FIS for
recommending a decision to the service user is shown in Fig. 12.

In the next section, we explain the working of the RaaS-USM
module for user-based service management using an example.

5. EVALUATION OF THE RAAS-USM MODULE FOR
USER-BASED SERVICE MANAGEMENT

In this section, we implement and evaluate the RaaS-
USM module for user-based service management using case
scenarios. The case scenarios represent the similar scenarios
a user might experience while accessing a cloud service.
Depending on the various risk attitudes, the objective is to
apply the RaaS-USM module to determine the best possible
course of action. In other words, the goal of the evaluation is
to determine whether the RaaS-USM module alerts a service
user to a possible course of action in the case of a deviation
in the observed QoS from the expected QoS. We conducted
experiments using a dataset with real-time QoS statistics of
four Amazon EC2 services, namely EC2 EU, instance type:
small; EC2 EU, instance type: micro; EC2 US East and EC2
US West. The dataset consists of hourly QoS measurements
over a period of a year for metrics such as response times of
CPU load, memory (response time), load test, disk test, etc. We
acquired the data from CloudClimate [51], which collects QoS
information using the PRTG monitoring service [52]. These
data have considerable variations but there is no increasing or
decreasing trend, as can be seen from Fig. 13. Figure 13 graphs
have been created by using Software PRTG Network Monitor
(www.paessler.com/prtg).

To test the implementation of the RaaS-USM module, we
considered the EC2 EU’s Load Test CPU QoS values.As plotted
in Fig. 14, the QoS values that we considered were measured on
an hourly basis from time slots 1–600 and the possible future
QoS values for the next 10 time slots were predicted using the
ARIMA prediction technique detailed in Section 4 and the R
package.

The auto.arima function in the forecast package of R [53] was
used to fit an ARIMA model to the observed data. This function
uses the maximum likelihood method to find the optimal values
of the moving average and AR components, and the model that
has the minimum number of error statistics is used. Using this
method on the observed data, the ARIMA (2, 1, 3) model is
determined to be the best model as it has the minimum Akaike’s
Information Criterion (AIC). The ARIMA (2, 1, 3) model has
two AR coefficients (ϕ1 and ϕ2) and three moving average
coefficients (θ1, θ2 and θ3), and a differencing of order 1
is required to transform the observed series into a stationary
time series. The future QoS values (shown in Fig. 15) are
predicted using these characteristics, and the optimal values of
the coefficients with corresponding error components used for
this prediction are given in Table 5.

The next step for the RaaS-USM module is to check the self-
similarity of the past and predicted QoS values. Figure 16 and
Table 6 show the analysis from the four approaches detailed
in Section 4.4. to check for self-similarity. As can be seen from
Table 6, the Hurst parameter determined for the time series from
each method is in the range of 0.5 and 1, which represents the
presence of self-similarity in the time series.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

239

A User-Based Early Warning Service Management Framework 19

FIGURE 13. QoS metrics values of EC2 service. (a) QoS of EC2 US East in the metrics of CPU load and memory (figures taken from https://
www.cloudclimate.com/), (b) QoS of EC2 EU Micro in the metrics of CPU load test and disk test (figures taken from http://www.cloudclimate.com/)
and (c) QoS of EC2 EU in the metrics of CPU load test and disk test (figures taken from http://www.cloudclimate.com/).

The log–log plots of the four methods and the fitted straight
lines used to estimate the Hurst exponent of the observed time
series are given in Fig. 16. The log–log plots of the range-scale,
variance–time and residuals of regression methods are almost
straight lines whose slope gives a reasonably good estimate
of the Hurst exponent. The log–log plot for the IDC method
is a curve rather than a straight line and the estimated Hurst
exponent using this method is therefore not reliable. However,

as shown in Table 6, the value of the Hurst exponent is >0.5
in all cases, which signifies the presence of self-similarity in
the time series. The presence of self-similarity indicates that
the behaviour of the QoS values is to follow an expected
pattern even in the case of deviation from the predicted value.
However, in some cases, this may not hold true, leading to the
service user not receiving the service according to the expected
quality.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

240

20 O.K. Hussain et al.

FIGURE 14. QoS of EC2 EU’s Load Test CPU over 600 time slots.

FIGURE 15. Predicted QoS of EC2 EU’s Load Test CPU from time slots 601–610.

TABLE 5. Statistics related to the measurement of future QoS values by ARIMA methods.

ϕ1 ϕ2 ϕ1 ϕ2 ϕ3

Coefficients 0.1331 0.567 −0.5299 −0.7269 0.2677
Error components 0.1489 0.1048 0.1515 0.1385 0.0589

σ 2 estimated as 24376; log likelihood = −3876.32; AIC = 7764.63
Training set error measures

ME RMSE MAE MPE MAPE MASE

−2.2661 55.9982 99.0147 −0.2917 3.1109 0.9091

To explain with an example, let us consider that the threshold
formed by the user in his SLA for this particular metric is
for the CPU response time of the service not to exceed more
than 4000 ms. This is represented by the green line in Fig. 14,
but as can be seen from that figure, the CPU response time

exceeded the 4000 ms level on two previous occasions, firstly
between time slots 175–200 and secondly between time slots
455–460. Exceeding this threshold might have led the user to
experience a degradation in the QoS being delivered, which
the user wants to avoid happening in the future by using the

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

241

A User-Based Early Warning Service Management Framework 21

FIGURE 16. Log-log plots of the Hurst exponent value for the time series by (a) Range Scale method (b) Variance Time plot method (c) IDC
method and (d) Residuals of Regression method.

TABLE 6. Determined Hurst exponent for the time series
from different methods.

Method Hurst exponent

R/S method 0.8151
Variance–time 0.696
IDC 0.774
Residual of regression 0.8866

RaaS-USM module. Apart from expecting the service to follow
an expected pattern, the user only wants to accept the level of
deviation in the observed QoS values from the predicted values
that are within the boundaries of acceptable risk propensity

levels. To demonstrate how the RaaS-USM module assists the
user in making this decision, let us consider the next 10 time
slot values of QEC and QOC, as shown in Fig. 15. Also let us
consider that the risk propensity of the service user is a value
of 1.4 on the membership function defined in Fig. 12 which
quantifies to the fuzzy predicates of RA = 0.8 and RN = 0.2.
Based on this analysis, the deviation between the observed and
predicted QoS values on the phase space (for the first four time
slots) is shown in Fig. 17. However, the deviation is so small
that it is difficult to comprehend, but the output given by the
RaaS-USM module at each time slot shown in Table 7 assists
in recommending the best course of action for the service user.

The Lyapunov exponent for the time series was estimated
using the Kantz method [54] available in the fNon-linear
package in R. The parameters used to estimate the Lyapunov

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

242

22 O.K. Hussain et al.

FIGURE 17. Variation of QoS of EC2 EU’s Load Test CPU over 610 time slots.

TABLE 7. Output given by the RaaS-USM module at the end of each time slot.

Time Predicted QoS Observed QoS CTT level of Nature of Recommended service-based
slot value (ms) value (ms) deviation (%) deviation (LYAP) decision (RSD)

601 3009.62 2991.25 0–0.61 +ve C(100%)–DC(0%)
602 2994.35 3003 1–0.288 +ve C(100%)–DC(0%)
603 3008.47 3022.75 1–0.47 +ve C(100%)–DC(0%)
604 3001.7 2953 0–1.62 +ve C(100%)–DC(0%)
605 3008.8 2956.25 0–1.746 +ve C(100%)–DC(0%)
606 3005.91 2941 0–2.189 +ve C(100%)–DC(0%)
607 3009.55 2917.75 0–3.15 +ve C(100%)–DC(0%)
608 3008.4 2925.5 0–2.75 +ve C(100%)–DC(0%)
609 3010.31 2969 0–1.37 +ve C(100%)–DC(0%)
610 3009.91 2906.25 0–3.44 +ve C(100%)–DC(0%)

TABLE 8. Parameters used to estimate the Lyapunov exponent.

Parameter Value

Embedding dimension 2
Time delay 2
Iterations 5
Theiler window 40
Number of neighbours considered 5
Number of points taken into account 5
Neighbourhood diameter 10

exponent are given in Table 8 and the estimated maximum
Lyapunov exponent after each iteration at time slot 1 is given
in Table 9.

As seen from Table 7, the RaaS-USM module, using the RSD
and the nature of deviation analysis, can recommend future
trends in the performance of a service to the service user, and
can take appropriate advance action to manage the planned
outcomes. Table 7 also shows that some levels of deviation in

the QoS value are beyond the acceptable limit according to the
service user’s attitude (for example, the level of deviation in
timeslot 606 which quantifies to the fuzzy predicate of M = 1
whereas the MASDL is M = 0.2), but as the deviation moves
away from the SLA threshold with respect to the predicted
value (indicating an improvement in the QoS being delivered as
opposed to what was promised), the decision-making module
recommends that the user should continue with the service. At
the same time, it can be seen that the nature of the deviations
between the observed and predicted QoS values are quantified
by a positive value of Lyapunov exponent, which indicates the
presence of chaotic patterns in the series. This indicates the
presence of uncertainty in the time series, and signifies that
even though the current deviation between the observed and
predicted values may be small and acceptable to the service user,
there is no certainty that the service will observe the expected or
predicted trend over a period of time or move towards the fixed
or periodic attractor. This is signified by the second example
shown in Table 10, in which the previous example is extended
to determine the output from the RaaS-USM module when

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

243

A User-Based Early Warning Service Management Framework 23

TABLE 9. Maximum Lyapunov exponent of the observed time series.

Iteration 1 2 3 4 5

Maximum Lyapunov exponent 1.984591 5.960898 5.882796 5.981785 5.945197

TABLE 10. Output given by the RaaS-USM module at the end of each time slot.

Time Predicted QoS Observed QoS Level of Nature of Recommended service-based
slot value (ms) value (ms) deviation (%) deviation (LYAP) decision (RSD)

601 3009.62 3600 1–19.6165 +ve C(0%)–DC(100%)
602 2994.35 3800 1–26.9058 +ve C(0%)–DC(100%)
603 3008.47 4100 1–36.2817 +ve C(0%)–DC(100%)
604 3001.7 4300 1–43.2523 +ve C(0%)–DC(100%)
605 3008.8 3890 1–29.2875 +ve C(0%)–DC(100%)
606 3005.91 3700 1–23.0909 +ve C(0%)–DC(100%)
607 3009.55 3400 1–12.9736 +ve C(0%)–DC(100%)
608 3008.4 2944 0–2.1405 +ve C(1.876%)–DC(98.124%)
609 3010.31 2964 0–1.5385 +ve C(2.101%)–DC(97.899%)
610 3009.91 2952 0–1.9239 +ve C(2.9505%)–DC(97.049%)

the deviation between the observed and predicted QoS values
is unexpected, erratic and moves away, exceeding the defined
threshold level before coming back towards the observed values
when the chaotic pattern in the series ends, as shown in Fig. 17.

It can be seen from Table 10 that the magnitude and direction
of deviation leads to a recommendation that the service user
should not proceed with the service. Continuing from Table 7,
where the nature of deviation was unpredictable, it can be seen
at time slot 603 that the observed QoS metric exceeds the SLA
threshold before eventually returning to more expected values
in time slots 608 onwards. However, the RSD even at time slot
610 gives a decision that is weighted towards DC because of the
magnitude of deviation in the previous time slots and the nature
of the deviation, indicated by the positive Lyapunov exponent
at that stage. By using the above analysis, the service user can
determine the trend of QoS values, deviation and future status,
and utilize the RaaS-USM module to make a service-based
decision to ensure that the desired objectives are achieved.

Similarly, the service user can make an informed decision as
to whether or not to continue with the service. If the service
is slightly degraded for a small period of time (for example, a
single time slot as shown in Tables 7 and 10) but improves in the
following time slots, the user is likely to consider that the cost of
migrating the service to another provider will be greater than the
benefits that will be achieved; thus, there is no point in migrating
the service. For example, if the duration of each time slot is long
(such as a month) and the RaaS-USM module gives an output
of (C-0% and DC-100%) for each time slot, this means that
service performance for the next 6 months will be poor, hence
appropriate action needs to be taken to manage the situation.
On the other hand, if the time slots are each 1 month and the

RaaS-USM module gives an output of (C-98% and DC-2%) and
(C-90% and DC-10%) for the first two time slots and then gives
(C-100% and DC-0%) for the remaining four time slots, the user
might consider that the severity of degradation is insufficient to
outweigh the likely benefits compared with the cost of migrating
the service (captured by the risk attitude), and hence the service
need not be migrated.

6. CONCLUSION AND FUTURE WORK

The unpredictability in the performance of cloud services
has been represented as one of the major obstacles to the
adoption of cloud computing. This unpredictability arises from
the complex dependent or interdependent factors that combine
to facilitate processing in the cloud computing paradigm. To
address the uncertainty that may arise from this performance
unpredictability, various Cloud Monitoring services measure
and document the real-time performance of QoS. However,
most such services perform measurements from the server side,
and hence the QoS statistics they show may be different from
the QoS that a user receives on the user side. Apart from the
monitoring and management of a service on the platform side,
it is therefore important for this to be conducted on the user
side too. In this paper, we have proposed such an approach.
We considered past QoS values as a trajectory and utilized
the concepts of self-similarity and Lyapunov exponent to study
the deviation observed between QOC and QEC, to determine
its nature over a future time period. We then considered the
risk attitude of the service user and studied its impact on
the deviations in QoS to make an appropriate service-based

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

244

24 O.K. Hussain et al.

decision. This approach will assist service users to appropriately
manage the performance of a service and ensure that their
desired outcomes are achieved. It is important to note that as
the QoS information repository contains data that are specific to
a geographic location, the determined analysis from the RaaS-
USM module for a service is applicable to that location only and
should not be taken as a generalized decision for that service.

In our future work, we aim to look at two specific areas. In
the first, we will explore how to integrate the various concepts
proposed in this paper into a working user-side cloud service
management framework that can be employed by users. We
aim to do this from a software engineering perspective and to
develop a reproducible system that can be used as a service by
different users. Our proposed framework, when developed, will
not need to physically reside at the user end but can be located
anywhere and accessed by the user as a service. In the second
area, we will explore the theory of attractors, which we aim to
determine beforehand in the phase space, based on previous QoS
patterns [55]. This will enable service users to gain a longer-term
insight into the future performance of a service and to utilize
the analysis appropriately to manage and further improve the
impact on service management for service users who have the
RaaS module.We also want to incorporate the notion of financial
risk or financial loss in the case of an observed service deviation
and utilize the analysis when making a service-based decision.

ACKNOWLEDGEMENTS

The first author acknowledges that this work was started
when he was at Curtin University for which they provided
programming assistance.

REFERENCES

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.,
Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I. and
Zaharia, M. (2010)A view of cloud computing. Commmun. ACM,
53, 50–58.

[2] Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic,
I., Buyya, R. and Rose, C.A.F.D. (2012) Towards autonomic
detection of SLA violations in cloud infrastructures. Future
Gener. Comput. Syst., 28, 1017–1029.

[3] Leitner, P., Michlmayr, A., Rosenberg, F. and Dustdar, S. (2010)
Monitoring, Prediction and Prevention of SLA Violations in
Composite Services. Proc. 2010 IEEE Int. Conf. Web Services
(ICWS), Miami, FL, July 5–10, pp. 369–376.

[4] Morin, J., Aubert, J. and Gateau, B. (2012) Towards Cloud
Computing SLA Risk Management: Issues and Challenges. Proc.
45th Hawaii Int. Conf. System Science (HICSS), Grand Wailea,
Maui, Hawaii, January 4–7. 2012, pp. 5509–5514.

[5] Hussain, O.K., Dillon, T.S., Hussain, F.K. and Chang, E.J. (2012)
Risk Assessment and Management in the Networked Economy.
Springer, Heidelberg.

[6] Smith, C. and Moorsel, A. (2010) Mitigating Provider
Uncertainty in Service Provision Contracts. Economic Models
and Algorithms for Distributed Systems. Birkhäuser Basel.

[7] Michalk, W.A. (2011) SLA establishment decisions: minimizing
the risk of SLA violations. Thesis Department of Economics and
Business Engineering, Karlsruhe Institute of Technology.

[8] Zheng, Z., Wu, X., Zhang, Y., Lyu, M. and Wang, J. (2012)
QoS ranking prediction for cloud services. IEEE Trans. Parallel
Distrib. Syst., 24, 1213–1222.

[9] ur Rehman, Z., Hussain, O.K. and Hussain, F.K. (2012) Iaas
Cloud Selection Using MCDM Methods. Proc. 2012 IEEE
9th Int. Conf. e-Business Engineering (ICEBE), Hangzhou,
September 9–11, pp. 246–251.

[10] ur Rehman, Z., Hussain, F.K. and Hussain, O.K. (2011) Towards
Multi-Criteria Cloud Service Selection. Proc. 2011 5h Int.
Conf. Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), Seoul, June 30–July 2, pp. 44–48.

[11] ur Rehman, Z., Hussain, O.K. and Hussain, F.K. (2013) Parallel
cloud service selection and ranking based on QoS history. Int. J.
Parallel Program., 42, 820–852.

[12] Foster, H. and Spanoudakis, G. (2011) Advanced Service
Monitoring Configurations with SLA Decomposition and
Selection. Proc. 2011 ACM Symp. Applied Computing, TaiChung,
Taiwan, pp. 1582–1589. ACM.

[13] Bianculli, D. and Ghezzi, C. (2007) Monitoring Conversational
Web Services. Proc. 2nd Int. Workshop on Service Oriented
Software Engineering, Dubrovnik, Croatia, pp. 15–21. ACM.

[14] Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S. and Spoletini, P.
(2007) Validation of web service compositions. Software, IET, 1,
219–232.

[15] Spanoudakis, G. (2006) Non intrusive monitoring of service
based systems. Int. J. Coop. Inf. Syst., 15, 325–358.

[16] van der Aalst, W. M.P., Dumas, M., Ouyang, C., Rozinat, A. and
Verbeek, E. (2008) Conformance checking of service behavior.
ACM Trans. Internet Technol., 8, 1–30.

[17] Park, Ki-W., Han, J., Chung, J., and Park, K-Ho. (2013) THEMIS:
a mutually verifiable billing system for the cloud computing
environment. IEEE Trans. Serv. Comput., 6, 300–313.

[18] Fu, W. and Hunag, Q. (2006) GridEye: A Service-Oriented
Grid Monitoring System with Improved Forecasting Algorithm.
Proc. 5th Int. Conf. Grid and Cooperative Computing Workshops
(GCCW ’06), Hunan, October 2006, pp. 5–12.

[19] Boniface, M., Phillips, S.C., Sanchez-Macian, A. and Surridge,
M. (2009) Dynamic Service Provisioning Using GRIA SLAs.
Service-Oriented Computing Workshops. Springer.

[20] Wood, T., Shenoy, P., Venkataramani, A. and Yousif, M. (2009)
Sandpiper: black-box and gray-box resource management for
virtual machines. Comput. Netw., 53, 2923–2938.

[21] Emeakaroha, V.C., Brandic, I., Maurer, M. and Dustdar, S.
(2010) Low Level Metrics to High Level SLAs-LoM2HiS
Framework: Bridging the Gap Between Monitored Metrics and
SLA Parameters in Cloud Environments. Proc. 2010 Int. Conf.
High Performance Computing and Simulation (HPCS), Caen,
France, June 28–July 2, pp. 48–54.

[22] Emeakaroha, V.C., Calheiros, R.N., Netto, M. A.S., Brandic, I.
and Rose, C.A.F.D. (2010) DeSVi: An Architecture for Detecting
SLA Violations in Cloud Computing Infrastructures. Proc. 2nd

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

245

A User-Based Early Warning Service Management Framework 25

Int. ICST Conf. Cloud Computing Barcelona, Spain, October 26–
28, pp. 1–20.

[23] Cardellini, V., Casalicchio, E., Presti, F.L. and Silvestri, L. (2011)
SLA-Aware Resource Management for Application Service
Providers in the Cloud. Proc. 1st Int. Symp. Network Cloud
Computing and Applications (NCCA), Toulouse, November 21–
23, pp. 20–27.

[24] Jun-Yan, H., Chun-Hung, W., Chia-Chen, C., Kuan-Hsiung, L.,
Hey-Chyi, Y., Yung-Yi, H., Chung-Hua, H. and Huan-Guo, L.
(2011) Constructing a Cloud-Centric ServiceAssurance Platform
for Computing as a Service. Proc. 2011 Int. Conf. Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC),
Beijing, October 10–12, pp. 139–145.

[25] Ciciani, B., Didona, D., Sanzo, P.D., Palmieri, R., Peluso,
S., Quaglia, F. and Romano, P. (2012) Automated Workload
Characterization in Cloud-Based Transactional Data Grids. Proc.
IEEE 26th Int. Parallel and Distributed Processing Symp.
Workshops & PhD Forum (IPDPSW), Shanghai, May 21–25, pp.
1525–1533.

[26] Ripley, B.D. (2001) The R project in statistical computing. MSOR
Connect. Newsl. LTSN Maths, Stats OR Netw., 1, 23–25.

[27] Cicotti, G., DAntonio, S., Cristaldi, R. and Sergio, A. (2013)
How to Monitor QoS in Cloud Infrastructures: The QoSMONaaS
Approach. Intelligent Distributed Computing VI. Springer,
Berlin.

[28] Schad, J., Dittrich, J.and Quian-Ruiz, J.-A. (2010) Runtime
measurements in the cloud: observing, analyzing, and reducing
variance. Proc. VLDB Endow., 3, 460–471.

[29] Miloucheva, I., Mller, E. and Anzaloni, A. (2003) A Practical
Approach to Forecast Quality of Service Parameters Considering
Outliers. Proc. 1st Int. Workshop on Inter-Domain Performance
and Simulation, Salzburg, Austria, pp. 163–172.

[30] Jinhui, H., Chunlin, L. and Jie, Y. (2012) Resource Prediction
Based on Double Exponential Smoothing in Cloud Computing.
Proc. 2nd Int. Conf. Consumer Electronics, Communications and
Networks (CECNet), Yichang, China, April 21–23, pp. 2056–
2060.

[31] Hyndman, R.J. and Athanasopoulos, G. (2012) Forecasting:
principles and practice OTexts. https://www.otexts.org/fpp.

[32] Holt, C.C. (1957) Forecasting seasonals and trends by
exponential weighted moving averages. ONR Memorandum, 52,
5–10.

[33] Winters, P. (1960) Forecasting sales by exponentially weighted
moving averages. Manage. Sci., 6, 324–342.

[34] Chonka, A., Singh, J. and Zhou, W. (2009) Chaos theory
based detection against network mimicking DDoS attacks. IEEE
Commun. Lett., 13, 717–719.

[35] Beckers, F., Verheyden, B. and Aubert, A.E. (2006) Aging and
nonlinear heart rate control in a healthy population. Am. J.
Physiol. Heart Circ. Physiol., 290, H2560–H2570.

[36] Hurst, H.E. (1951) Long term storage capacity of reservoirs.
Trans. Amer. Soc. Civil Eng., 116, 770–779.

[37] McSharry, P.E. and Malamud, B.D. (2005) Quantifying Self-
Similarity in Cardiac Inter-Beat Interval Time Series. Proc.
Computers in Cardiology, Lyon, September 25–28, pp. 459–462.

[38] Gospodinov, M. and Gospodinova, E. (2005) The Graphical
Methods for Estimating Hurst Parameter of Self-Similar Network
Traffic. Proc. Int. Conf. Computer Systems and Technologies,
Bulgaria, June 16–17, pp. IIIB.19–1–IIIB.19–6.

[39] Kinoshita, T. and Lopez, J. (2007). Hurst parameter estimation
for network traffic modeling. http://www.k.riec.tohoku.ac.jp/
s/international_students/2009-Jairo_abstract.pdf.

[40] Jeong, H.-D.J., McNickle, D. and Pawlikowski, K. (2006) Com-
parison of Various Estimators of Hurst Parameter in Simulated
FGN. Report. http://ir.canterbury.ac.nz/handle/10092/3090.

[41] Taqqu, M.S., Teverovsky, V. and Willinger, W. (1995) Estimators
for long-range dependence: an empirical study. Fractals, 3, 785–
798.

[42] Huffaker, R.G. (2010) Phase space reconstruction from economic
time series data: improving models of complex real-world
dynamic systems. Int. J. Food Syst. Dyn., 1, 184–193.

[43] Alligood, K.T., Sauer, T.D. andYorke, J.A. (1997) Chaos in Two-
Dimensional Maps. Chaos. Springer, Berlin.

[44] Williams, G.P. (1997) Chaos Theory Tamed. Taylor & Francis,
London.

[45] Ayers, S. (1997) The application of chaos theory to psychology.
Theory Psychol,, 7, 373–398.

[46] Frazier, C. and Kockelman, K. (2004) Chaos theory and
transportation systems: instructive example. Stat. Methods Saf.
Data Anal. Eval., 1, 9–17.

[47] McCue, L.S. and Troesch, A. (2011) Use of Lyapunov Exponents
to Predict Chaotic Vessel Motions. In Almeida Santos Neves,
M., Belenky, V.L., Kat, J.O., Spyrou, K. and Umeda, N. (eds),
Contemporary Ideas on Ship Stability and Capsizing in Waves.
Springer, Netherlands.

[48] Weisstein, E. (2014). Attractor. http://mathworld.wolfram.com/
attractor.html.

[49] Elert, G. (2007). Measuring Chaos. http://hypertextbook.com/
chaos/43.shtml.

[50] Sitkin, S.B. and Weingart, L.R. (1995) Determinants of risky
decision-making behavior: a test of the mediating role of risk
perceptions and propensity. Acad. Manage. J., 38, 1573–1592.

[51] CloudClimate, Watching the Cloud. http://www.cloudclimate.
com.

[52] PRTG Network Moniter. https://prtg.paessler.com.
[53] Hyndman, R.J. and Khandakar, Y. (2008) Automatic time series

forecasting: the forecast Package for R. J. Stat. Softw., 27, 1–22.
[54] Hegger, R., Kantz, H. and Schreiber, T. (1999) Practical

implementation of nonlinear time series methods: the TISEAN
package. Chaos, 9, 413–435.

[55] Bakker, R., Schouten, J.C., Giles, C.L., Takens, F.C. and Bleek,
C. M.V.D. (2000) Learning chaotic attractors by neural networks.
Neural Comput., 12, 2355–2383.

Section C: Computational Intelligence, Machine Learning and Data Analytics

The Computer Journal, 2014

246

Int J Parallel Prog
DOI 10.1007/s10766-013-0276-3

Parallel Cloud Service Selection and Ranking Based
on QoS History

Zia ur Rehman · Omar Khadeer Hussain ·
Farookh Khadeer Hussain

Received: 19 June 2013 / Accepted: 4 October 2013
© Springer Science+Business Media New York 2013

Abstract The growing number of cloud services has made service selection a chal-
lenging decision-making problem by offering wide ranging choices for cloud service
consumers. This necessitates the use of formal decision making methodologies to
assist a decision maker in selecting the service that best fulfills the user’s require-
ments. In this paper, we present a cloud service selection methodology that utilizes
quality of service history of cloud services over different time periods and performs
parallel multi-criteria decision analysis to rank all cloud services in each time period
in accordance with user preferences before aggregating the results to determine the
overall rank of all the available options for cloud service selection. This methodology
assists the cloud service user to select the best possible available service according
to the requirements. The multi-criteria decision making processes used for each time
period are independent of the other time periods and are executed in parallel.

Keywords Parallel service selection · QoS history · Interaction time period ·
Parallel multi-criteria decision analysis

Z. Rehman · O. K. Hussain
School of Information Systems, Curtin University, Perth, WA, Australia
e-mail: zia-ur-rehman@postgrad.curtin.edu.au

O. K. Hussain
e-mail: o.hussain@cbs.curtin.edu.au

F. K. Hussain (B)
Decision Support and e-Service Intelligence Lab (DeSI Lab),
Quantum Computation and Intelligent Systems, School of Software,
University of Technology, Sydney, NSW, Australia
e-mail: Farookh.Hussain@uts.edu.au

123247

Int J Parallel Prog

1 Introduction

Cloud computing has several business advantages over conventional computing para-
digms [1] due to its agility and flexibility, which has not only motivated organizations
to develop their new applications on the cloud but also to migrate their existing business
applications onto the cloud. To take maximum advantage of the full potential of cloud
computing, a key issue for cloud services users is to ensure that the specific require-
ments and characteristics of their applications can be met by cloud service providers
[2]. With the rapid growth of cloud computing, a number of service providers have
appeared who offer similar services at various prices and performance levels. As a
result of the dynamic nature of cloud services, which is a product of the elasticity
and on-demand provision of computing resources, there are considerable fluctuations
in the quality of service (QoS) levels of each service [3]. Therefore, capturing all
the variety and inconsistency of service performance and selecting the right service
according to each user’s criteria are important tasks.

Existing approaches in the literature that assist service users in the decision making
process of selecting a cloud service provider only consider the real-time QoS per-
formance or average historical QoS performance of services. Such mechanisms may
recommend a particular service, but that service may not be the most appropriate. The
former approach (considering the real-time QoS performance) may lead to the selec-
tion of a service at local maxima because it ignores past QoS performance, while the
latter method (considering the average historical QoS performance) does not capture
the frequent variation in the QoS performance of cloud services. There is therefore
a need for a cloud service selection approach that takes into account the multitude
of available cloud services, variations in QoS performance (as well as price), and the
user’s criteria to rank available cloud services, and then assists in selecting the best
and most advantageous service.

In this paper, we present such an approach for IaaS cloud service selection in which
the top ranking services according to users’ criteria are determined in different time
slots (defined as non-overlapping periods of time), using a multi-criteria decision
making (MCDM) method. The MCDM process in a time slot is independent of other
time slots and is executed in parallel. These individual service selection results are then
combined using an aggregation method to yield the overall service rank in the total time
period, which is subsequently used to select the best service. Any MCDM method can
be used to rank the services in this approach; however, we have used the technique for
order preference by similarity to ideal solution (TOPSIS) and ELimination Et Choix
Traduisant la REalité (Elimination and Choice Expressing Reality or ELECTRE).
TOPSIS was proposed by Hwang and Yoon [4], whereby the services (‘alternatives’ in
MCDM terminology) are ranked on the basis of the Euclidean distance of an alternative
(service) from the ideal and anti-ideal solutions. The service that is closest to the ideal
solution and farthest from the anti-ideal solution achieves the highest rank and is
therefore selected. ELECTRE was developed by Bernard Roy during 1960’s as an
outranking MCDM method which determines the pairwise dominance relationship
between the alternatives.

The remainder of the paper is organized as follows. In the next section, we discuss
the related work in the area of cloud service selection and briefly discuss the role of

123 248

Int J Parallel Prog

MCDM methodologies. In Sect. 3, we present our overall framework for cloud service
selection that assists a service user to decide on the most appropriate service from the
services available by ranking the latter using a parallely executed MCDM process. In
Sect. 4, we present our approach for cloud service selection, followed by the experi-
mental validation of the proposed approach in Sect.5. Section 6 concludes the paper.

2 Related Work

2.1 Cloud Service Selection

A number of research works dealing with the issue of cloud service selection have
been published in recent years. In this section we present an overview of some of these
research efforts.

Pastaki Rad et al. [5] presented a general survey and comparison of prominent
cloud platforms by leading cloud providers with an emphasis on the key differenti-
ating features of each platform. Peng et al. [6] provided a general survey of popular
cloud middle-ware, such as Eucalyptus, NIMBUS and Open Nebula, and discussed
their architecture, characteristics and application. A virtual machine image selection
service for cloud computing environments has been proposed by Filepp et al. [7]. This
proposed image selection service maintains a repository of image configuration details
and employs an algorithm to order the images based on conformance with specified
user requirements and policies by best-fit and least-cost optimization. Li et al. [8–10]
discussed the problem of comparing different cloud services and identified the basic
attributes for each type of cloud service that must be taken into consideration when
comparing one cloud service with another. They also differentiated between the per-
formance of a cloud service itself and the performance of an application deployed on
that cloud [11]. Nie et al. [12] presented a complete evaluation index system of cloud
services and utilized analytical hierarchy process (AHP) to calculate the weights of
attributes for service evaluation. They also established a number of qualitative models
for purchase decision making.

A set of measurement indexes for comparing different cloud services, called the Ser-
vice Measurement Index (SMI), has been devised and is based on common characteris-
tics of cloud services identified by the Cloud Service Measurement Index Consortium
(CSMIC) [13]. Garg et al. [2,14] proposed a framework—called SMICloud—for com-
paring and ranking cloud services on the basis of SMI criteria. The proposed framework
systematically measures all the QoS attributes in SMI and then uses an AHP-based
mechanism to rank the cloud services. Han et al. [15] proposed a cloud service recom-
mender system for the cloud market that helps a user to select the best combination of
services from different cloud providers by matching the specific requirements of the
user with a suitable cloud service.This system maintains a resource register to keep a
record of all the available resources in the cloud market and uses this information to
rank and calculate the QoS values of services. They also outline the ranking methods
for each type of cloud service (SaaS, IaaS etc.).

Kang and Sim [16–18] developed a cloud service search engine called Cloudle,
which is based on a cloud ontology consisting of cloud concepts, individuals of those

123249

Int J Parallel Prog

concepts and their mutual relationships. All services are registered in a database and a
query processor executes the user’s query, which is sent to a similarity reason engine
that performs similarity reasoning between the query and the concepts in the database
using cloud ontology. The output of the Cloudle search engine is an ordered list of
cloud services. The services are ordered on the basis of three criteria (1) concept
similarity, (2) price utility, and (3) cost utility. Chen et al. [19] presented a framework
that enables automatic conflict detection between the user’s criteria and enterprise
policies in cloud service selection for enterprises. This system aims to tackle the
difficulties of cloud service selection with an emphasis on the involvement of enterprise
policies. It checks various conflicts that result from the violation of enterprise policies
and inconsistency in a cloud service user’s requirements. This check is followed by
the selection of an appropriate service that satisfies the user’s requirements and also
complies with enterprise policies, using constraint programming. Wang et al. [20]
proposed a QoS evaluation methodology for service oriented cloud computing using
fuzzy synthetic decision making according to cloud users’ preferences and calculating
the uncertainty of cloud services by applying a cloud model on the monitored cloud
QoS data. Zeng et al. [21] developed a cloud service selection algorithm that uses
a service discoverer to find all the available services and then processes the cloud
service user’s request by employing a maximized-gain and minimized-cost service
selection algorithm. This algorithm aggregates the gain and cost values by a weighted
sum of both types of values (where weights represent the relative importance of each
value). Godse and Mulik [22] proposed an approach for selecting SaaS products.
They argued that to make an informed decision, it is necessary to have quantifiable
values instead of subjective opinions. They proposed several key factors—such as
functionality, architecture, usability, vendor reputation and cost—for SaaS selection
and used AHP for service selection decision making. In one of our earlier papers
[23], we presented a framework for a user feedback-based cloud service monitoring
system which collects feedback related to the QoS performance of cloud services from
existing cloud service users and maintains a repository of this information which can
be used by service selection mechanisms to recommend appropriate cloud services
to users. In another paper [24], we presented the cloud service selection problem as
a MCDM problem by proposing a mathematical framework for multi-criteria cloud
service selection.

To summarize, as shown in Table 1, there are a variety of approaches proposed in the
literature, several of which are based on MCDM techniques, that assist a user in making
a service selection decision in the Cloud environment. None of the existing approaches,
however, simultaneously consider the QoS history and the frequent variations therein
during the service selection process, and they are therefore unable to capture these
important factors which, as discussed in the previous section, are necessary to ensure
accurate service selection.

2.2 MCDM in Cloud Service Selection and Problem Definition

Multi-criteria decision making [also referred to as multi-criteria decision analysis
(MCDA)] is a collection of methodologies for comparing, ranking and selecting mul-

123 250

Int J Parallel Prog

Table 1 Summary of related literature on cloud service selection

Publication Area discussed Summary QoS
based

Variation
in QoS
with time

Pastaki Rad et al. [5] Cloud service platforms General survey of cloud
service platforms and
their key features

Peng et al. [6] Cloud middleware General survey of popular
cloud middleware

Filepp et al. [7] Virtual machine image
selection

Selectsvirtual machine
images using a image
configuration repository
and minimum cost
maximum gain
algorithm

Li et al. [10] Cloud service compar-
ison

Highlights the problems
in comparing different
clouds and identifies
basic attributes of each
type of cloud for
comparison

Li et al. [11] Cloud performance Difference between cloud
performance and cloud
application performance

Nie et al. [12] Cloud service selection Evaluation index system
for cloud service
purchase decision
making using AHP

No No

Siegel and Perdue [13] Cloud service
comparison

A set of measurement
indexes is proposed for
comparing different
cloud services

Garg et al. [14,2] Cloud comparison
and ranking

A framework for measuring
the QoS attributes and AHP
based ranking of cloud
services

Yes No

Han et al. [15] Cloud service
composition
recommender

A system aimed at helping
the user in selecting the best
combination of service
from different cloud
providers by matching the
user’s requirements with
QoS values of services

Yes No

Kang and Sim
[16–18]

Ontology based
cloud service
search engine

An ontology based cloud
service search engine that
maintains a database to
register the available cloud
services and user query is
processed responded by
presenting an ordered list of
the available services. The
list is ordered on the basis
of concept similarity, price
utility and cost utility

No No

123251

Int J Parallel Prog

Table 1 continued

Publication Area discussed Summary QoS
based

Variation
in QoS
with time

Chen et al. [19] Cloud service
selection

Detects conflicts in user’s
requirement and
enterprise polices and
then selects service
using constraint
programming

No No

Wang et al. [20] Cloud service selection QoS evaluation using
fuzzy synthetic decision
making based users’
preferences and a
measurement of
uncertainty of cloud
services by applying a
cloud model on
monitored cloud data

Yes No

Zeng et al. [21] Cloud service selection Uses the maximum-gain
and minimum-cost
algorithm for cloud
service selection

No No

Godse and Mulik [22] Cloud service selection SaaS selection using AHP No No

Rehman et al. [23] Cloud service Monitoring User feedback to measure
cloud service QoS

Rehman et al. [24] Cloud service selection A framework for MCDM
based cloud service
selection

No No

Zheng et al. [3] QoS ranking prediction A cloud QoS ranking
prediction framework
based on collaborative
filtering recommender
system theory

Yes No

tiple alternatives with multiple attributes [25]. MCDM techniques are extensively used
in decision support systems [26–30]. MCDM is used in situations where several alter-
natives are present and a decision has to be made in favor of one alternative on the
basis of involving more than one criterion. Such situations often arise in real world
problems where decisions have to be made in the presence of multiple conflicting
criteria for judging available alternatives and where making compromises or trade-
offs related to outcomes is necessary. It happens quite often that one alternative is
better than others on the basis of one or more criteria, while the same alternative is the
worst when judged on the basis of other criteria. Several MCDM methodologies have
been developed in the literature but all are based on three basic working principles,
namely: (1) Multi-attribute Utility Theory (MAUT) (2) Outranking methods and (3)
hierarchical and network-based methods. There are several methodologies in each of
these categories. The notable methods based on MAUT are: Min–Max, Max–Min and
TOPSIS. The outranking methods include the ELECTRE and PROMETHEE, each
of which has several variants. The AHP is a hierarchical method, while ANP is a

123 252

Int J Parallel Prog

Fig. 1 The pre-interaction and
post-interaction time periods

network-based method, and thus both fall into the third category of MCDM methods.
The typical properties of MCDM problems as outlined by [31] and [32] are analo-
gous to the cloud service selection problem and underpin the notion of a MCDM-
based cloud service selection mechanism, and the problem of cloud service selection
falls into the category of multi-criteria selection problems. Comparison between the
available cloud services according to the variability in their performance over time
is necessary to generate a ranking of the cloud services for cloud service selection.
Since cloud services have numerous characteristics, all of these characteristics need
be considered in the comparison of any two clouds. However, comparison between
two services is not trivial because one cloud service may be better in terms of some
characteristics, while another service may excel in other attributes. Furthermore, the
characteristics of cloud services may not be equally important for fulfilling specific
user requirements in all the time periods over which the decision has to be made. In
such situations MCDM techniques are useful for the comparison and ranking of cloud
services.

To summarize, a variety of approaches to cloud service selection have been pro-
posed in the literature, according to different factors and using a range of tech-
niques. An unsupported factor that needs to be considered in such systems is the
ability to capture the variability in QoS and the dynamic nature of cloud environ-
ments in the process of cloud service selection. Most existing approaches fail to
consider this aspect, hence the services they select may not capture such varia-
tions in their decisions. To achieve this goal, we propose an approach for cloud
service management in which we divide the total period of QoS performance his-
tory over which service management decisions have to be made into two parts,
namely, pre-interaction start phase (pre-interaction) and post-interaction start phase
(post-interaction) (Fig. 1). Time spot is defined as that instance of time at which the
service selection decision is to be made. Pre-interaction time period is that period
of time before the time spot in which the past QoS performance of each service is
analyzed to select the most appropriate service. Post-interaction time period is that
period of time after the time spot in which the real-time QoS performance of the
selected service and other available services is monitored and analyzed to ensure
that the needs of the user are being fully achieved, and, if they are not, to recom-
mend service migration if another service can fulfill the user’s needs at lower cost.
In this paper, our aim is to assist a user to make an informed decision in selecting
the most capable service; therefore, we focus only on the pre-interaction phase time
period.

In the next section we describe our integrated framework for cloud service selection
and its constituent parts.

123253

Int J Parallel Prog

Fig. 2 Flow of information between different modules in cloud service selection

3 Framework for Cloud Service Selection

We propose a cloud service selection framework (Fig. 2) which relies on integrated
QoS information—collected from multiple sources—for service selection decision
making. The sources of information include: (1) service specification published by the
service providers, (2) cloud service monitoring, and (3) feedback from existing cloud
service users. This framework consists of several modules: (1) cloud service discovery,
(2) cloud service monitoring, (3) QoS information repository, and (4) MCDM cloud
service selection module. The cloud services available in the cloud environment are
searched by a service discovery module and their specifications are stored in the QoS
repository which serves as a register of available cloud services in addition to having the
function of storing QoS information. The registered cloud services are monitored by
a cloud service monitoring module which executes benchmarks tests on the available
cloud services and the collected data is stored in the QoS repository. In addition to this
source of QoS information, existing cloud service users also provide QoS information
about the service they use. The QoS repository is a record of the QoS of available
services and this information is used by the decision making module to recommend
appropriate services to new users.

Cloud service discovery: This module searches the cloud environment for avail-
able cloud services and their specifications and also acts as an interface between

123 254

Int J Parallel Prog

the framework and the cloud environment by collecting the service specification
information published by cloud providers. In addition to looking for available new
services, this module also keeps track of changes to the specifications of existing
services.

Cloud service monitoring: This module monitors the services registered in the cloud
service repository and collects data on the QoS of the available services by executing
a benchmark test on the available services as well as using the data collected by third
party cloud monitoring services.

QoS information repository: This module stores the data collected by the service
discovery and the service monitoring modules. It also stores QoS information received
from existing cloud service users.

MCDM cloud service selection module: This module obtains the QoS information
contained in the QoS repository and the criteria preference values from the user and
performs multi-criteria decision analysis on this information to rank the available
services.

In the next section, we present the detailed service selection approach employed in
the MCDM cloud service selection module.

4 Proposed Approach for MCDM in the Pre-Interaction Phase

In our approach, a long term QoS history of available services is utilized for decision
analysis, unlike some previous cloud service decision making approaches which are
driven by QoS performance at one instance of time, or by the average QoS. Currently
there are various cloud QoS monitoring services that monitor and store the long-term
QoS history of available services. Our aim is to use the QoS performance and price
history of available cloud services to select the most appropriate service, avoiding the
selection of a service at local maxima (which happens if the real-time QoS data of only
the current time is used) but without entirely losing the information about variations in
QoS performance (which happens when only the average QoS is used). Our proposed
approach is depicted in Fig. 3, and involves the following key steps:

Step A: To capture the variations in QoS over time, we divide the pre-interaction time
period for cloud service management into a number of equal non-overlapping
time slots (Fig. 1). The criteria C1, C2 . . . Cn for service selection are identi-
fied by the user and in each time slot the QoS performance of all the services
measured on the basis of the identified criteria is retrieved by the MCDM
module from the QoS information repository (Fig. 2).

Step B: The identified QoS criteria are not equally important for users in decision
making. Each user has specific preferences regarding the relative importance
of individual criteria. This important information is expressed in the form of
criteria weights i.e. {wc1, wc2 . . . wcn }, where each criterion Ci has a weight
wci .

Step C: The QoS performance data of all the available services in each time slot form
a decision matrix that is used with the criteria weights to find the best service
by employing a MCDM technique. The MCDM method is parallely applied

123255

Int J Parallel Prog

Fig. 3 Overview of the proposed approach for service selection based on time decay and QoS performance
of services in different time slots

to all time slots to compute the service rank of each service, and the top
ranking service in each time slot is selected.

Step D: To consider the dynamic nature of time when selecting a service, we consider
the freshness of the QoS values of a service depending upon its distance from
the time spot at which the decision has to be made. Each time slot is therefore
assigned a time slot weight which progressively decreases from a maximum
value of 1.0 (for the most recent time slot with respect to the time spot) to
successively lower values for older time slots until it reaches a minimum
value of 0.4. Thus the QoS performance values of services in recent time
slots have a much higher impact on the final service selection decision than
the values of services in older time slots.

Step E: The service selection results obtained in Step C above are combined by an
aggregation process using the time slot weights determined in Step D. The
aggregation yields the overall service rank in the pre-interaction time period,
from which the final service selection decision is made.

The sequence of flow in the working of our proposed approach is as shown in Fig. 4.
We elaborate Step C of our proposed approach in the following section, while Steps
D and E are discussed in Sects. 4.2 and 4.3 respectively.

4.1 Finding the Top Ranked Service in Each Time Slot

The objective of this step is to find the highest ranked service in each time slot based
on the QoS performance values ofthe available services, using MCDM. We use two

123 256

Int J Parallel Prog

Fig. 4 Flowchart showing the sequence of steps in the proposed approach

MCDM techniques; TOPSIS and ELECTRE as given below. This step is performed
in parallel for each time slot under consideration.

4.1.1 TOPSIS Method

The calculation steps for determining the service ranks in an individual time slot
byTOPSIS are as follows:

Step 1: QoS values of all the services in each time slot form an evaluation matrix
D, which has the following form.

123257

Int J Parallel Prog

D =

⎛
⎜⎜⎜⎝

C1 C2 . . . Cn

S1 r11 r12 . . . r1n

S2 r21 r22 . . . r2n
...

...
...

. . .
...

Sm rm1 rm2 . . . rmn

⎞
⎟⎟⎟⎠ (1)

where, S1, S2 . . . Sm are the m available services; C1, C2 . . . Cn are the n criteria
and each ri j is a measurement of the performance of service Si under criterion C j .

Step 2: Since each criterion has its own units and range, the evaluation matrix
in Eq. 1 is normalized to make the QoS values of different criteria comparable. The
normalized evaluation matrix N is given by:

N =

⎛
⎜⎜⎜⎝

n11 n12 . . . n1n

n21 n22 . . . n2n
...

...
...

...

nm1 nm2 . . . nmn

⎞
⎟⎟⎟⎠ (2)

where

ni j = ri j√
m∑

i=1
(ri j)2

Step 3: The user’s preference information is incorporated by finding the weighted
evaluation matrix. If the criteria preference weights provided by the cloud service user
(‘decision maker’ in MCDM terminology) are wc1, wc2 , . . . wcn (such that: wci ≥
0 and

∑n
i=1 wci = 1), then the corresponding weight matrix is given by an n × n

diagonal matrix Wc whose diagonal elements are wc1, wc2 , . . . wcn . The weighted
evaluation matrix V is determined by the product of the normalized evaluation matrix
N from Eq. 2 and the diagonal weight matrix Wc, as shown in Eq. 3 below.

V =

⎛
⎜⎜⎜⎝

v11 v12 . . . v1n

v21 v22 . . . v2n
...

...
. . .

...

vn1 vn2 . . . vnn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

n11 n12 . . . n1n

n21 n22 . . . n2n
...

...
. . .

...

nm1 nm2 . . . nmn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

wc1 0 . . . 0
0 wc2 . . . 0
...

...
. . .

...

0 0 . . . wcn

⎞
⎟⎟⎟⎠ (3)

where, wci ≥ 0 and
∑

wci = 1.
Step 4: The weighted normalized decision matrix V is used to determine the ideal

solution (A∗) and the anti-ideal solution (A
′
) as follows:

123 258

Int J Parallel Prog

A∗ = {v∗
j , j = 1, 2 . . . , k} = {Max qi j ,∀ i; j = 1, 2, . . . , 3} (4)

A
′ = {v∗ j , j = 1, 2 . . . , k} = {Min qi j ,∀ i; j = 1, 2, . . . , 3} (5)

Step 5: The separation measure for each service from the ideal solution (denoted
by D∗

i) and the anti-ideal solution (denoted by D
′
i) are determined by:

D∗
i =

⎡
⎣∑

j

(
vi j − v∗

i

)2

⎤
⎦

1
2

(6)

and

D
′
i =

⎡
⎣∑

j

(
vi j − v

′
i

)2

⎤
⎦

1
2

(7)

Step 6: The final step in TOPSIS is to find the similarity index which combines
the two separation measures obtained in the previous step. The similarity index Gi

corresponding to each service Si is given by:

Gi = D
′
i

D
′
i + D∗

i

(8)

The service corresponding to the highest Gi is selected as the best service within the
time slot under consideration.

4.1.2 ELECTRE Method

Compared with MAUT-based methods such as TOPSIS, this method is more compli-
cated; the simplest variant of ELECTRE involves up to 10 steps. Itperforms a pairwise
comparison between the alternatives and builds an outranking relationship between
them. This relationship is then used to identify and eliminate the alternatives that are
dominated by other alternatives to yield a smaller set of alternatives (called the kernel).
A variant of this technique called ELECTRE II yields a complete rank order of the
original set.

The first three steps of this method are similar to the TOPSIS method outlined in
Sect. 4.1.1. The remaining steps after calculating the normalized decision matrix V
(Eq. 3) are as follows:

Step 4: Let J = { j | j = 1, 2, . . . n} be the set of criteria and concordance sets
Sk,l and discordance sets Dk,l for all pairs Ak and Al of alternatives. Where k, l =
1, 2, . . . m and l �= k. Also,

Skl = { j |rk j ≥ rl j } (9)

123259

Int J Parallel Prog

and

Dkl = { j |rk j ≤ rl j } = J − Sklor Dkl = Sc
kl (10)

Step 5: Find the concordance matrix:

I =

⎛
⎜⎜⎜⎝

− i12 i13 . . . i1m

i21 − i23 . . . i2m
...

...
...

...
...

im1 im2 . . . im,(m−1) −

⎞
⎟⎟⎟⎠ (11)

where ilk is the concordance index for the alternative pair Ak and Al and is given by:

ikl = ∑
j∈Sk,l

w j ;
n∑

j=1
W j = 1

Step 6: Find the discordance matrix:

N I =

⎛
⎜⎜⎜⎝

− ni12 ni13 . . . ni1m

ni21 − ni23 . . . ni2m
...

...
...

...
...

nim1 nim2 . . . nim,(m−1) −

⎞
⎟⎟⎟⎠ (12)

where nik,l =
max
j∈Dk,l

|vkl − vl j |
max
j∈J

|vkl − vl j |
Step 7: Calculate the arithmetic mean of the concordance matrix, given by:

I =
m∑

k=1

m∑

l=1

ik,l

m(m − 1)
(13)

Using the above calculated I find the Boolean matrix F, i.e.

F =

⎛
⎜⎜⎜⎝

− g12 f13 . . . f1m

f21 − f23 . . . f2m
...

...
...

...
...

fm1 fm2 . . . fm,(m−1) −

⎞
⎟⎟⎟⎠ (14)

where,

fkl = 1; i ≥ I
= 0; i ≤ I

123 260

Int J Parallel Prog

Step 8: Similarly calculate the arithmetic mean of the discordance matrix:

N I =
m∑

k=1

m∑

l=1

nik,l

m(m − 1)
(15)

The corresponding Boolean matrix G for the discordance matrix is given by:

G =

⎛
⎜⎜⎜⎝

− g12 g13 . . . g1m

g21 − g23 . . . g2m
...

...
...

...
...

gm1 gm2 . . . gm,(m−1) −

⎞
⎟⎟⎟⎠ (16)

where,

gkl = 1; ni ≤ N I
= 0; ni ≥ N I

Step 9: Using matrices F and G, form the composite matrix H such that:

H =

⎛
⎜⎜⎜⎝

− h12 h13 . . . h1m

h21 − h23 . . . h2m
...

...
...

...
...

hm1 hm2 . . . hm,(m−1) −

⎞
⎟⎟⎟⎠ (17)

Where, hk,l = fk,l .gk,l

Step 10: The matrix H indicates the preference such that hk,l = 1 	⇒ Ak ≺ Al ,
but it is still possible that Ak is dominated by other alternatives. In our framework,
we calculate the row sum of this matrix which gives the rank of each service, and the
service corresponding to the highest rank is selected.

4.2 Calculation of Time Slot Weights in the Pre-Interaction Phase

The objective of this step is to reflect the relative importance of time slots by assigning
an appropriate weight to each time slot. As mentioned previously, in our approach we
consider that time slots nearest to the time spot have more importance than the distant
time slots (Fig. 3). If there are n time slots t1, t2 . . . tn , then the corresponding time
slot weight for each time slot ti is given by the following logistic decay function i.e.:

wi = A + K − A

(1 + e−B(�ti −M))1/2
(18)

where, �ti is the time interval between the interaction time spot tp and the time slot
in consideration ti .

123261

Int J Parallel Prog

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e
sl

ot
 W

ei
gh

t

Time

1
2
3

Fig. 5 Logistic decay functions for time slot weights

The properties of this logistic decay function are controlled by the constants
A, K , B, and M . Where, A is the lower asymptote, K the upper asymptote, B the
growth rate and M the time of maximum growth.This gives a weight to each time slot
in such a way that the most recent time slots (which are immediately preceding the
time spot) have a higher weight as compared tothe distant time slots which will have
a lower weight. In our approach, we consider that the first few time slots closest to
the time spot have the maximum weight (wt ≈ 1); thereafter, the weight decreases
for subsequent time slots and remains constant after reaching a minimum value of
0.4 (represented by the constant K in Eq. 18). In Fig. 5, we plot 3 decay curves, each
varying on the importance of weights that it gives to the time slots nearest to the time
spot. Curves 1, 2 and 3 give a weight of 1 to the 50, 100, and 150 time slots (value of
M) from the time spot, respectively. The values of other constants for plotting these
curves are A = 1; K = 0.4 and B = 0.5.

4.3 Aggregation of Individual Time Slot Results

After determining the top ranking service in each time slot using a MCDM technique
(Step C) and calculating the weight (time decay) of each time slot (Step D), the overall
rank of a service in the entire pre-interaction period is calculated in this step. Using the
individual service selection outcome for all time slots, we construct a Boolean matrix
(Eq. 19), such that the element ui j corresponding to service Si and time slot t j equals
1 only if service Si is the top ranked service in time slot t j .

U =

⎛
⎜⎜⎜⎝

t1 t2 . . . tn
S1 u11 u12 . . . u1n

S2 u21 u22 . . . u2n
...

...
...

. . .
...

Sn um1 um2 . . . umn

⎞
⎟⎟⎟⎠ (19)

123 262

Int J Parallel Prog

Where ui j =
{

1 if Si ranks at the top in time slot t j

0 otherwise

Thus each column of the above matrix U represents the MCDM outcome for all
available services in one time slot, while each row represents the TOPSIS outcome
for one service in all time slots. Using this matrix, the overall aggregated rank Ri of
service Si is calculated by

Ri =
n∑

j=1

w j .ui j (20)

Where w j is the time slot weight
This process is repeated for all the available services (each row of the matrix U)

to find the overall rank of each service in the entire pre-interaction period. Alterna-
tively, the product of the Boolean matrix U and a column vector containing the time
slot weights w1, w2, . . . wn , yields a column vector representing the overall service
ranking. i.e.

⎛
⎜⎜⎜⎝

R1
R2
...

Rm

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

u12 u12 . . . u1n

u22 u12 . . . u2n
...

...
. . .

...

um2 um2 . . . umn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1
w2
...

wn

⎞
⎟⎟⎟⎠ (21)

where w j , (j = 1, 2 . . . n), is the time slot weight and the service Sk corresponding
to the maximum overall ranking Rk is then selected as the best service for the user.

In the next section, we discuss the experimental validation of our proposed approach
for cloud service selection.

5 Experimental Validation

5.1 Data

To validate our approach we used the QoS monitoring data of five Amazon EC2
IaaS cloud services. The data was collected by cloudclimate (www.cloudclimate.com)
using the PRTG monitoring service (https://prtg.paessler.com). The dataset consists
of hourly measurements of response time for 300 days (from 1-26-2012, 2 PM to 21-
11-2012, 2 PM) of the five EC2 instancesto short load tests which reflect the CPU,
Memory and I/O performance of the monitored services. In addition to these three
criteria, we included the price per hour for each service, quoted by Amazon (www.
amazon.com), as the fourth criterion. TheEC2 services included in this data set and
their respective prices for hourly usage are given in Table 2.

The services in this data set were of EC2 small and micro instance type. We observed
that, in terms of performance, the micro instance services overwhelmingly surpassed
the small instance services. The performance of the CPU, memory and disk of the

123263

Int J Parallel Prog

Table 2 Amazon Services in
the dataset

Service Detail Instance type Cost ($/h)

S1 EC2 EU Small 0.0885

S2 EC2 EU Micro 0.0200

S3 EC2 SA Micro 0.0270

S4 EC2 US East Small 0.0650

S5 EC2 US West Micro 0.0250

micro instances—although more volatile—appears to be 3–5 times better than the
performance of small instances. Our proposed approach relies on MCDM, therefore a
data set consisting of more than three services was necessary to test our approach. As
no other real data were available for this experiment, we scaled the data using range
scaling to make them comparable for this simulation while keeping intact the temporal
QoS variations, rather than generating artificial data. QoS data for each service was
scaled along all criteria over the entire dataset (i.e. all time slots) using the following
formula,

scale(ri j) = ri j

max(r j) − min(r j)
× 1000 (22)

Where, ri j is QoS value of service Si in terms of QoS criteria C j and max(r j) and
min(r j) are the maximum and minimum values, respectively, for each criterion(in
column j of the decision matrix in Eq. 1). We used a time slot length of 24 h, dividing
the available dataset into 300 time slots and using the QoS values of 2.00 PM each
day as the decision matrix for each time slot. A portion of the data (for time slots 1 to
100) is given in Table 3, where C1, C2, and C3 represent the QoS of CPU, memory
and I/O respectively, while C4 (not shown in Table 3) is the cost per hour for usage
(shown in Table 2: Column-4), which was constant throughout the duration of the
data collection and S1–S5 represent the 5 services. The complete dataset is plotted
in a graphical format in Fig. 6, which shows continuous variation in the QoS criteria
values. The arithmetic mean of the dataset being considered is given in Table 4. These
values are used as input for our simulation models (described in the next subsection).

5.2 Simulation Models

The dataset described in the previous sub-section was used to select the best service in
four different simulation models. The four simulations were performed using TOPSIS
and ELECTRE as the means for MCDM at each time slot. The objective was to
discover whether there was any difference between service selection outcome using
average QoS data over the pre-interaction period and service selection outcome using
their individual rank in each time slot and also to determine the effect of time slot
weights on the overall service ranking. The four simulation models used were:

Model I Service selection by applying MCDM to average QoS values (existing
approaches).

123 264

Int J Parallel Prog

Ta
bl

e
3

T
he

Q
oS

da
ta

of
se

rv
ic

es
S 1

–S
5

in
fir

st
10

0
tim

e
sl

ot
s

fr
om

th
e

tim
e

sp
ot

t i
S 1

S 2
S 3

S 4
S 5

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

1
20

15
.1

3
14

00
.2

8
84

4.
16

68
.7

9
10

00
.0

0
24

0.
46

88
4.

65
10

00
.0

0
82

0.
49

22
63

.3
9

42
02

.5
0

47
55

.7
4

88
.7

8
14

5.
78

30
6.

92

2
20

04
.8

2
14

32
.8

4
86

0.
29

72
.3

3
44

0.
20

24
7.

70
87

2.
62

46
7.

31
76

4.
49

22
32

.5
9

19
63

.8
8

44
31

.1
5

83
.2

3
15

0.
76

30
6.

94

3
20

12
.6

3
13

98
.1

9
79

5.
32

68
.7

9
36

7.
14

27
4.

82
87

3.
62

40
2.

37
73

5.
39

22
35

.1
6

16
90

.9
7

42
62

.4
8

88
.0

3
14

7.
34

30
5.

92

4
20

36
.0

7
13

94
.7

3
82

0.
09

70
.9

6
24

9.
59

24
3.

42
87

6.
23

35
9.

43
75

3.
75

22
41

.8
3

15
10

.4
9

43
68

.9
3

84
.7

7
14

5.
20

30
2.

45

5
19

81
.3

8
13

80
.0

9
83

8.
37

69
.4

5
20

3.
89

26
4.

62
87

2.
62

51
5.

71
77

7.
42

22
32

.5
9

21
67

.2
7

45
06

.1
1

86
.0

7
14

9.
58

31
1.

16

6
25

16
.4

6
16

53
.8

4
11

54
.5

8
69

.5
4

32
5.

67
24

5.
63

87
4.

62
36

2.
64

77
1.

73
22

37
.7

3
15

23
.9

9
44

73
.1

3
84

.2
0

14
6.

59
30

4.
05

7
20

64
.4

9
14

17
.5

9
84

9.
30

70
.9

6
50

.0
0

25
9.

45
86

9.
11

40
0.

75
70

8.
61

22
23

.6
1

16
84

.1
6

41
07

.3
0

79
.4

1
14

4.
82

30
4.

95

8
18

93
.1

2
13

40
.4

6
80

5.
37

73
.7

4
51

.3
5

28
0.

79
87

8.
64

44
2.

67
72

1.
68

22
47

.9
9

18
60

.3
4

41
83

.0
2

84
.9

0
14

7.
26

31
8.

55

9
19

27
.3

6
13

77
.2

5
80

1.
86

75
.7

3
51

.3
3

24
5.

63
86

8.
10

15
3.

03
72

1.
29

22
21

.0
4

64
3.

10
41

80
.7

7
79

.6
6

14
6.

91
29

7.
38

10
19

94
.5

1
14

06
.4

7
83

3.
83

79
.1

4
47

.9
9

24
0.

51
87

4.
12

50
6.

04
75

9.
31

22
36

.4
4

21
26

.6
3

44
01

.1
6

78
.9

1
14

3.
20

30
4.

86

11
20

04
.9

9
14

35
.6

0
82

0.
88

74
.3

6
60

.7
0

23
9.

75
88

9.
17

26
0.

90
72

6.
72

22
74

.9
4

10
96

.4
2

42
12

.2
5

79
.3

5
14

3.
18

30
2.

51

12
19

70
.9

1
13

86
.9

9
79

5.
36

77
.7

7
50

.3
0

26
8.

89
87

9.
14

83
.0

1
78

9.
45

22
49

.2
7

34
8.

86
45

75
.8

3
83

.0
8

16
8.

19
30

4.
15

13
20

48
.7

0
14

05
.7

1
82

5.
23

72
.2

8
55

.6
7

28
1.

49
88

1.
14

83
.7

6
77

4.
06

22
54

.4
1

35
1.

99
44

86
.6

2
85

.4
9

15
7.

46
34

0.
78

14
20

07
.3

1
14

20
.3

4
81

6.
40

70
.2

5
45

.3
1

24
1.

87
88

4.
15

82
.6

6
86

6.
79

22
62

.1
0

34
7.

39
50

24
.1

2
33

.1
5

28
.8

1
84

.0
8

15
21

11
.3

7
14

47
.4

7
87

0.
48

68
.7

9
57

.3
2

24
3.

28
88

7.
66

85
.8

6
77

7.
42

22
71

.0
9

36
0.

81
45

06
.1

1
32

.3
9

28
.5

3
81

.0
1

16
20

46
.0

4
13

94
.6

4
81

3.
55

72
.2

8
57

.0
4

29
5.

26
87

7.
13

81
.9

2
74

4.
83

22
44

.1
4

34
4.

26
43

17
.2

0
32

.1
4

27
.9

4
79

.0
3

17
20

12
.6

3
13

90
.3

7
79

9.
66

76
.5

3
76

.0
8

27
1.

95
88

5.
16

80
.6

5
71

3.
53

22
64

.6
7

33
8.

93
41

35
.7

9
32

.4
1

28
.8

8
78

.1
0

18
21

31
.9

8
15

37
.0

5
82

9.
53

14
7.

44
44

.9
9

24
4.

22
88

5.
16

88
.2

2
83

3.
29

22
64

.6
7

37
0.

74
48

29
.9

6
32

.2
7

28
.8

1
77

.6
2

19
20

28
.0

9
14

28
.0

4
81

2.
10

57
0.

98
44

.6
7

24
9.

91
88

4.
15

81
.3

9
78

4.
79

22
62

.1
0

34
2.

06
45

48
.8

4
32

.5
5

29
.0

6
81

.5
8

20
19

99
.6

7
13

86
.2

7
82

8.
13

13
5.

68
70

.7
5

28
6.

57
86

9.
11

80
.4

7
77

2.
12

22
23

.6
1

33
8.

19
44

75
.3

8
32

.8
7

30
.3

2
81

.0
2

21
20

09
.4

7
14

40
.4

9
83

7.
62

81
.3

5
45

.0
6

27
3.

45
89

9.
20

80
.0

8
72

4.
39

23
00

.6
0

33
6.

54
41

98
.7

6
32

.3
9

29
.9

7
81

.2
4

22
20

22
.9

4
14

75
.9

8
90

6.
28

85
.4

1
58

.0
4

36
5.

72
89

7.
69

79
.6

0
71

4.
43

22
96

.7
5

33
4.

52
41

41
.0

4
33

.1
3

71
.5

2
84

.3
0

123265

Int J Parallel Prog

Ta
bl

e
3

co
nt

in
ue

d

t i
S 1

S 2
S 3

S 4
S 5

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

23
20

74
.4

7
13

98
.1

1
83

0.
19

74
.3

6
53

.0
0

24
1.

26
87

6.
13

81
.8

3
77

4.
70

22
41

.5
7

34
3.

89
44

90
.3

7
32

.2
3

62
.5

0
80

.8
3

24
19

52
.7

9
13

38
.3

3
81

7.
19

70
.1

6
47

.3
5

44
7.

97
89

0.
67

79
.6

4
78

2.
85

22
78

.7
8

33
4.

70
45

37
.6

0
32

.2
9

50
.2

0
80

.5
1

25
19

33
.1

8
13

67
.4

6
83

2.
76

72
.9

5
45

.0
1

24
6.

90
88

2.
15

86
.8

2
87

3.
77

22
56

.9
7

36
4.

86
50

64
.6

0
32

.5
5

53
.6

7
79

.0
9

26
19

37
.0

0
13

79
.3

8
81

5.
70

45
0.

15
58

.3
4

30
6.

31
88

5.
16

78
.3

3
86

4.
98

22
64

.6
7

32
9.

18
50

13
.6

2
32

.2
6

29
.6

7
84

.5
2

27
20

12
.4

7
13

72
.4

0
81

2.
80

69
.5

9
61

.7
2

27
7.

73
87

4.
62

80
.2

1
74

9.
87

22
37

.7
3

33
7.

09
43

46
.4

4
32

.5
3

35
.8

4
87

.9
1

28
19

86
.7

0
14

16
.7

9
84

1.
97

68
.7

9
44

.6
7

25
4.

98
87

9.
14

79
.6

0
81

6.
99

22
49

.2
7

33
4.

52
47

35
.5

0
33

.4
0

30
.8

3
84

.1
4

29
19

60
.6

1
14

14
.6

9
79

3.
68

69
.5

4
60

.0
6

24
2.

67
87

5.
63

79
.3

4
77

2.
50

22
40

.2
9

33
3.

41
44

77
.6

3
32

.5
5

53
.4

8
81

.5
2

30
18

98
.1

1
14

07
.1

3
79

4.
62

70
.9

1
45

.6
8

24
0.

46
88

5.
16

78
.8

1
97

2.
45

22
64

.6
7

33
1.

21
56

36
.5

8
32

.5
5

63
.5

5
83

.4
4

31
18

97
.1

6
13

44
.2

4
81

3.
06

69
.6

8
64

.9
3

24
7.

29
88

1.
31

14
2.

54
10

00
.0

0
22

54
.8

3
59

9.
03

57
96

.2
5

36
.5

7
67

.8
4

88
.0

7

32
22

81
.7

5
14

78
.6

5
93

7.
13

69
.4

5
59

.3
5

25
7.

29
88

3.
65

77
.8

9
78

6.
34

22
60

.8
2

32
7.

34
45

57
.8

4
32

.6
9

72
.4

0
81

.4
6

33
20

17
.6

2
14

04
.4

7
82

6.
63

69
.5

9
47

.0
3

24
9.

95
88

7.
16

76
.6

7
94

2.
19

22
69

.8
0

32
2.

19
54

61
.1

6
33

.7
1

32
.8

8
85

.9
3

34
20

72
.1

4
15

14
.7

7
82

0.
74

87
.4

0
50

.3
9

28
5.

86
88

1.
64

77
.5

0
79

8.
37

22
55

.6
9

32
5.

69
46

27
.5

5
32

.6
9

37
.5

1
82

.6
5

35
20

64
.3

3
15

98
.2

5
93

4.
75

77
.1

5
50

.0
0

30
1.

98
88

6.
66

76
.7

1
78

5.
31

22
68

.5
2

32
2.

38
45

51
.8

4
32

.8
5

29
.8

5
82

.5
1

36
20

12
.6

3
14

26
.6

1
80

2.
61

94
.4

3
81

.4
1

54
6.

95
89

6.
19

77
.2

4
83

6.
26

22
92

.9
0

32
4.

58
48

47
.2

0
38

.5
4

63
.7

7
93

.5
2

37
20

20
.4

5
14

00
.1

1
88

5.
11

69
.5

4
13

8.
45

27
5.

62
88

5.
16

76
.4

9
78

4.
66

22
64

.6
7

32
1.

46
45

48
.0

9
32

.5
4

67
.5

5
85

.9
2

38
20

49
.8

7
13

76
.6

2
81

2.
10

84
.6

6
59

.3
7

28
4.

36
88

4.
65

76
.2

7
71

0.
42

22
63

.3
9

32
0.

54
41

17
.8

0
33

.9
7

70
.2

9
89

.7
6

39
20

53
.0

3
14

76
.5

2
89

2.
59

73
.6

5
46

.0
6

93
4.

06
88

1.
64

76
.4

0
80

7.
68

22
55

.6
9

32
1.

09
46

81
.5

3
33

.4
1

60
.1

6
93

.4
8

40
19

89
.2

0
13

69
.6

4
82

2.
24

10
00

.0
0

82
.3

9
26

6.
03

87
8.

13
76

.6
2

92
9.

77
22

46
.7

1
32

2.
01

53
89

.1
9

32
.9

8
41

.2
5

83
.7

8

41
21

19
.1

8
13

90
.5

4
82

2.
29

71
.6

2
46

.6
8

34
9.

78
87

4.
62

75
.0

0
79

0.
35

22
37

.7
3

31
5.

21
45

81
.0

8
35

.1
0

38
.8

1
80

.9
6

42
19

58
.2

8
13

85
.6

5
80

0.
32

72
.3

3
12

8.
13

25
4.

28
90

6.
22

78
.4

2
87

0.
93

23
18

.5
6

32
9.

55
50

48
.1

0
32

.4
4

31
.0

5
81

.0
3

43
19

55
.2

9
14

02
.2

4
81

5.
65

68
.7

9
43

.3
2

24
4.

88
90

2.
21

78
.3

3
78

8.
93

23
08

.3
0

32
9.

18
45

72
.8

3
32

.5
6

44
.7

1
81

.6
5

123 266

Int J Parallel Prog

Ta
bl

e
3

co
nt

in
ue

d

t i
S 1

S 2
S 3

S 4
S 5

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

44
27

91
.8

9
17

33
.7

7
11

19
.5

2
71

.7
1

43
.6

7
27

1.
95

90
0.

20
75

.4
9

86
7.

30
23

03
.1

6
31

7.
23

50
27

.1
1

31
.9

8
60

.0
8

81
.3

6

45
19

70
.7

4
14

16
.7

9
83

9.
16

70
.2

1
45

.9
8

25
0.

71
91

2.
74

75
.4

9
75

5.
04

23
35

.2
4

31
7.

23
43

76
.4

2
34

.6
5

57
.4

2
87

.2
9

46
19

44
.3

2
13

80
.7

6
84

6.
64

70
.1

6
45

.3
6

25
0.

61
94

7.
34

80
.4

3
89

9.
64

24
23

.7
7

33
8.

01
52

14
.5

3
32

.5
7

49
.9

1
87

.9
9

47
19

78
.7

2
14

02
.2

9
80

9.
15

92
.9

7
51

.0
3

24
2.

62
93

0.
29

75
.1

4
76

7.
20

23
80

.1
5

31
5.

76
44

46
.8

9
33

.4
0

32
.0

6
84

.1
5

48
19

86
.5

4
13

87
.7

0
83

6.
87

69
.5

0
45

.2
9

24
8.

45
90

2.
21

73
.4

7
82

2.
17

23
08

.3
0

30
8.

77
47

65
.4

9
32

.9
6

30
.1

8
81

.2
2

49
21

08
.7

1
15

11
.3

4
89

4.
55

73
.7

4
53

.7
0

24
1.

82
94

2.
83

80
.2

1
87

1.
70

24
12

.2
3

33
7.

09
50

52
.6

0
32

.2
8

52
.6

9
81

.9
4

50
20

43
.8

8
13

76
.7

1
82

5.
18

71
.5

8
44

.3
9

26
1.

00
92

2.
27

80
.6

5
79

6.
43

23
59

.6
2

33
8.

93
46

16
.3

1
33

.4
2

53
.8

4
91

.5
0

51
24

85
.3

7
23

37
.7

1
12

56
.7

1
83

.3
8

73
.7

1
32

1.
82

91
7.

25
74

.9
2

89
3.

04
23

46
.7

9
31

4.
84

51
76

.2
9

27
6.

55
89

4.
86

39
0.

84

52
20

61
.8

4
13

94
.7

3
97

9.
29

70
.2

1
49

.6
8

24
6.

19
87

5.
13

98
.9

0
69

5.
68

22
39

.0
1

41
5.

62
40

32
.3

4
32

.8
3

30
.7

2
81

.0
2

53
19

84
.0

4
14

24
.4

8
98

3.
73

70
.8

3
61

.0
2

26
6.

03
84

4.
53

10
4.

37
69

3.
74

21
60

.7
4

43
8.

60
40

21
.0

9
33

.5
5

29
.6

7
81

.8
0

54
20

20
.4

5
14

11
.2

7
98

5.
93

71
.6

7
52

.0
1

24
3.

37
84

4.
53

10
4.

19
68

7.
92

21
60

.7
4

43
7.

87
39

87
.3

6
32

.9
8

49
.0

8
81

.6
0

55
19

49
.8

0
13

84
.8

5
96

8.
96

73
.6

5
50

.3
6

23
9.

05
84

4.
53

10
4.

37
68

5.
46

21
60

.7
4

43
8.

60
39

73
.1

1
34

.9
9

38
.2

9
82

.6
5

56
19

92
.1

9
13

80
.7

2
99

6.
17

68
.7

9
61

.7
2

27
7.

87
85

2.
56

12
8.

26
69

1.
93

21
81

.2
7

53
9.

01
40

10
.6

0
32

.6
8

54
.1

0
82

.6
1

57
19

70
.9

1
14

31
.4

6
97

6.
40

74
.3

6
60

.0
1

28
8.

78
84

3.
53

10
4.

37
69

3.
48

21
58

.1
7

43
8.

60
40

19
.5

9
32

.9
6

41
.8

7
85

.7
6

58
19

79
.0

6
14

12
.6

0
10

17
.9

5
79

.8
0

49
.3

4
23

6.
09

85
2.

06
10

3.
67

69
9.

95
21

79
.9

9
43

5.
66

40
57

.0
8

33
.9

5
64

.9
3

83
.6

5

59
20

05
.8

2
15

20
.7

3
10

88
.8

6
83

.3
8

50
.3

4
23

6.
79

85
2.

06
10

0.
95

68
5.

59
21

79
.9

9
42

4.
26

39
73

.8
6

32
.8

1
10

7.
85

83
.1

6

60
19

99
.6

7
14

23
.7

7
94

4.
89

70
.2

5
83

.1
0

29
3.

99
85

2.
06

10
3.

71
69

1.
93

21
79

.9
9

43
5.

84
40

10
.6

0
32

.5
4

75
.2

8
83

.8
6

61
19

39
.9

9
14

12
.6

9
98

3.
69

69
.5

9
51

.3
5

24
4.

78
85

9.
58

53
7.

85
69

5.
81

21
99

.2
3

22
60

.3
2

40
33

.0
9

32
.8

6
37

.6
2

84
.4

4

62
21

76
.0

3
15

05
.7

4
10

55
.2

0
68

.8
8

52
.3

5
23

7.
36

85
2.

06
10

5.
11

70
0.

34
21

79
.9

9
44

1.
73

40
59

.3
2

33
.5

2
31

.0
2

88
.4

1

63
21

03
.7

2
14

36
.2

2
99

4.
02

69
.4

5
54

.6
9

24
7.

88
84

4.
53

10
0.

95
69

5.
55

21
60

.7
4

42
4.

26
40

31
.5

9
25

9.
17

36
1.

62
55

2.
91

64
20

98
.5

7
14

00
.8

2
99

3.
97

79
.9

3
38

4.
47

25
7.

29
85

2.
06

10
1.

61
68

7.
79

21
79

.9
9

42
7.

02
39

86
.6

1
19

1.
99

36
1.

32
39

9.
43

123267

Int J Parallel Prog

Ta
bl

e
3

co
nt

in
ue

d

t i
S 1

S 2
S 3

S 4
S 5

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

65
24

66
.9

2
16

41
.3

4
12

22
.4

9
10

4.
73

61
.3

4
23

3.
88

85
2.

06
10

2.
22

70
1.

89
21

79
.9

9
42

9.
59

40
68

.3
2

32
.5

4
47

.2
1

84
.0

8

66
20

58
.1

8
14

24
.5

2
94

4.
47

69
.5

9
50

.6
8

23
5.

34
85

9.
58

52
9.

67
69

1.
80

21
99

.2
3

22
25

.9
3

40
09

.8
5

78
3.

87
93

2.
40

56
1.

12

67
20

56
.5

2
14

05
.0

4
96

2.
47

68
.8

8
49

.6
6

26
3.

21
84

4.
03

10
1.

65
69

3.
74

21
59

.4
6

42
7.

20
40

21
.0

9
32

.5
3

86
.4

9
90

.5
7

68
23

63
.2

0
16

67
.8

1
12

18
.0

5
68

.7
5

51
.3

9
24

6.
33

85
2.

06
10

3.
58

68
7.

53
21

79
.9

9
43

5.
29

39
85

.1
1

32
.6

8
36

.0
6

85
.7

9

69
23

26
.6

3
16

54
.5

5
12

94
.7

6
77

.0
6

50
.0

0
24

3.
42

87
5.

63
98

.9
4

68
7.

40
22

40
.2

9
41

5.
80

39
84

.3
6

33
.3

9
31

.0
4

85
.2

3

70
19

52
.7

9
13

94
.6

8
10

16
.5

5
93

.0
2

64
.0

1
24

1.
96

84
3.

53
10

0.
21

70
1.

89
21

58
.1

7
42

1.
13

40
68

.3
2

32
.4

1
31

.6
2

82
.1

6

71
20

09
.8

1
14

08
.6

5
10

12
.9

0
82

.7
6

64
.0

4
24

5.
58

84
5.

04
99

.5
1

71
1.

98
21

62
.0

2
41

8.
19

41
26

.7
9

33
.1

2
35

.0
2

85
.6

4

72
19

18
.8

8
14

09
.2

7
98

0.
74

70
.2

5
51

.6
7

26
2.

36
87

4.
62

22
5.

19
69

2.
06

22
37

.7
3

94
6.

35
40

11
.3

5
33

.0
8

31
.4

7
86

.9
8

73
24

26
.7

0
17

29
.3

2
12

28
.3

8
75

.8
7

51
.9

9
25

9.
45

84
4.

53
98

.9
0

69
5.

94
21

60
.7

4
41

5.
62

40
33

.8
4

34
.7

0
44

.8
6

98
.9

5

74
24

67
.0

9
16

53
.8

9
12

63
.4

9
80

.5
5

52
.0

1
26

8.
99

85
3.

06
10

0.
25

69
3.

74
21

82
.5

5
42

1.
32

40
21

.0
9

32
.4

1
32

.7
4

84
.6

6

75
19

76
.0

6
13

91
.8

8
99

1.
77

79
.9

3
16

9.
51

24
9.

95
84

4.
03

99
.5

5
69

3.
87

21
59

.4
6

41
8.

37
40

21
.8

4
33

.6
8

31
.1

9
83

.4
4

76
19

76
.0

6
13

79
.2

9
97

2.
66

70
.2

1
52

.6
7

25
9.

49
84

4.
53

10
0.

21
69

1.
80

21
60

.7
4

42
1.

13
40

09
.8

5
33

.3
8

31
.6

5
84

.3
8

77
20

43
.7

2
14

09
.8

9
10

11
.4

1
71

.5
8

53
.3

6
25

5.
12

87
4.

62
10

0.
17

71
3.

66
22

37
.7

3
42

0.
95

41
36

.5
4

33
.6

6
31

.3
4

83
.7

3

78
19

73
.7

4
13

99
.5

3
98

3.
03

73
.6

5
51

.0
1

25
0.

00
87

5.
63

98
.9

0
67

9.
51

22
40

.2
9

41
5.

62
39

38
.6

3
33

.3
8

30
.6

0
82

.4
4

79
25

19
.9

5
17

40
.5

8
12

60
.7

6
88

.1
1

17
3.

17
26

1.
61

86
7.

10
18

6.
29

68
7.

66
22

18
.4

8
78

2.
87

39
85

.8
6

34
.2

4
66

.7
6

85
.7

0

80
19

83
.8

8
13

79
.3

4
97

0.
51

71
.5

8
54

.9
9

26
8.

89
86

7.
60

98
.9

4
68

3.
39

22
19

.7
6

41
5.

80
39

61
.1

2
33

.2
3

31
.1

8
85

.3
6

81
19

55
.2

9
13

82
.1

4
96

1.
62

70
.2

1
50

.6
4

24
7.

04
86

7.
10

98
.2

0
69

5.
68

22
18

.4
8

41
2.

67
40

32
.3

4
32

.8
3

31
.7

7
84

.0
9

82
19

86
.3

7
14

22
.4

3
97

5.
69

75
.6

9
75

.1
0

26
9.

08
86

7.
60

98
.2

4
68

9.
73

22
19

.7
6

41
2.

86
39

97
.8

5
34

.2
5

32
.3

5
83

.7
0

83
20

43
.5

5
13

57
.8

1
96

6.
81

71
.6

2
51

.9
9

24
5.

53
87

5.
63

98
.9

0
74

0.
30

22
40

.2
9

41
5.

62
42

90
.9

6
33

.4
0

30
.7

4
84

.8
5

84
19

62
.9

3
13

82
.1

8
97

6.
35

86
.0

8
50

.3
2

24
6.

99
87

5.
13

98
.9

4
68

3.
78

22
39

.0
1

41
5.

80
39

63
.3

7
10

31
.1

0
10

27
.9

4
61

4.
61

85
19

56
.2

8
14

03
.9

8
99

1.
07

70
.2

9
84

.7
7

25
7.

29
86

6.
60

98
.9

0
68

9.
73

22
17

.2
0

41
5.

62
39

97
.8

5
33

.2
5

30
.2

9
87

.2
0

123 268

Int J Parallel Prog

Ta
bl

e
3

co
nt

in
ue

d

t i
S 1

S 2
S 3

S 4
S 5

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

C
1

C
2

C
3

86
19

54
.9

5
13

70
.9

7
97

8.
59

69
.4

5
51

.0
3

27
3.

41
87

5.
13

42
9.

98
68

5.
46

22
39

.0
1

18
07

.0
1

39
73

.1
1

33
.1

1
31

.4
9

81
.3

7

87
19

89
.0

3
13

71
.6

4
95

5.
83

74
.4

1
51

.3
7

24
1.

12
84

4.
03

99
.6

0
71

3.
92

21
59

.4
6

41
8.

56
41

38
.0

4
23

4.
13

26
9.

17
33

2.
91

88
19

52
.6

3
13

66
.1

3
10

00
.5

1
73

.7
9

55
.3

9
25

4.
28

84
3.

53
98

.9
0

69
7.

75
21

58
.1

7
41

5.
62

40
44

.3
3

33
.2

8
63

.3
7

88
.4

2

89
19

86
.5

4
13

92
.5

5
10

28
.9

3
73

.0
4

50
.0

4
25

0.
75

84
4.

53
98

.2
8

70
0.

08
21

60
.7

4
41

3.
04

40
57

.8
2

33
.1

2
30

.3
6

92
.2

6

90
19

83
.2

1
14

45
.3

4
10

39
.9

2
76

.4
4

51
.3

9
24

2.
62

84
5.

04
10

1.
00

70
4.

09
21

62
.0

2
42

4.
44

40
81

.0
6

33
.3

9
32

.2
4

88
.5

5

91
19

49
.9

7
13

70
.2

2
98

5.
09

70
.9

6
56

.7
0

23
9.

71
84

5.
04

22
5.

89
70

1.
89

21
62

.0
2

94
9.

30
40

68
.3

2
36

.2
5

34
.1

4
93

.2
6

92
19

39
.0

0
13

86
.3

6
10

19
.7

7
75

.0
7

82
.7

1
29

5.
31

85
2.

06
10

0.
91

68
1.

58
21

79
.9

9
42

4.
08

39
50

.6
3

34
.6

7
31

.5
6

85
.5

0

93
19

78
.7

2
13

48
.1

1
98

1.
58

71
.6

2
10

6.
44

27
5.

52
84

5.
54

10
0.

34
70

1.
89

21
63

.3
1

42
1.

68
40

68
.3

2
32

.6
7

32
.6

4
83

.0
9

94
19

86
.5

4
13

73
.8

7
97

4.
90

69
.4

5
62

.0
0

27
4.

16
85

2.
06

98
.9

0
68

3.
65

21
79

.9
9

41
5.

62
39

62
.6

2
32

.6
5

31
.1

2
81

.1
7

95
21

08
.3

8
15

91
.3

1
11

77
.2

5
72

.3
3

51
.3

5
30

3.
49

87
5.

63
19

0.
92

68
3.

52
22

40
.2

9
80

2.
36

39
61

.8
7

32
.2

6
32

.7
2

82
.1

6

96
19

96
.6

8
14

39
.8

2
10

07
.0

6
77

.9
0

52
.3

1
28

9.
48

84
3.

53
10

0.
25

68
7.

40
21

58
.1

7
42

1.
32

39
84

.3
6

32
.5

4
31

.1
9

88
.1

4

97
19

57
.7

8
13

94
.6

4
99

9.
77

72
.3

7
50

.3
4

27
4.

77
84

5.
04

10
0.

30
69

1.
67

21
62

.0
2

42
1.

50
40

09
.1

0
20

4.
60

16
1.

42
13

2.
86

98
20

09
.8

1
14

00
.2

4
98

3.
73

69
.5

0
24

7.
60

24
2.

48
84

5.
04

98
.9

4
68

5.
46

21
62

.0
2

41
5.

80
39

73
.1

1
34

.2
6

30
.7

5
82

.3
7

99
20

21
.4

4
14

15
.2

7
10

02
.8

5
90

.9
0

52
.3

5
24

0.
46

84
4.

03
10

1.
61

71
8.

05
21

59
.4

6
42

7.
02

41
62

.0
3

32
.3

9
39

.1
7

81
.4

0

10
0

19
70

.0
8

13
50

.7
7

97
7.

47
76

.2
8

10
1.

41
24

8.
17

86
8.

61
32

3.
01

73
6.

51
22

22
.3

3
13

57
.4

3
42

68
.9

7
23

0.
17

33
7.

10
57

2.
92

123269

Int J Parallel Prog

0 50 100 150 200 250 300
0

1000

2000

3000
R

es
po

ns
e

T
im

e
(m

ili
se

co
nd

s) CPU Response Time

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

R
es

po
ns

e
T

im
e

(m
ili

se
co

nd
s) Memory Response Time

0 50 100 150 200 250 300
0

5000

10000
I/O Response Time

Time (Hours)R
es

po
ns

e
T

im
e

(m
ili

se
co

nd
s)

EC2−EU EC2−EUM EC2−SA EC2−USE EC2−USW

Fig. 6 Variation in QoS over time (days)

Table 4 Average QoS of the
300 time slots

Services Average response time (ms)

CPU Memory I/O

S1 2056.19 1455.72 1035.82

S2 80.77 81.94 260.42

S3 860.15 126.66 722.40

S4 2200.70 532.28 4187.19

S5 56.41 73.93 122.34

Model II Service selection by aggregation of MCDM outcomes in each time slot and
using constant criteria weights without time decay.

Model III Service selection by time decay aggregation of MCDM outcomes in each
time slot and using constant criteria weights. Three variations of the logistic
time decay function were used in this simulation.

Model IV Service selection with different criteria weights for each time slot, deter-
mined using the entropy method. In this simulation model, we repeat the
experiments in simulation models I, II and III with entropy weights of each
criterion as simulation modelsIe IIe and IIIe respectively.

In simulation models III and IIIe , three logistic decay functions are used to calculate
the weight of each time slot. These functions give a maximum value of 1 to the time
slots near the time spot and logistically decrease the weight to the minimum value of
0.4 for older time slots. The first logistic decay function gives the maximum weight
of 1 to the first 10 time slots from the time spot and then logistically decreases to 0.4

123 270

Int J Parallel Prog

up to the 150th time slot. In the second decay function, the lowering of the time slot
weight from the maximum value of 1 begins after a longer period of time from the time
spot (from 50th time slot), thereby giving older time slots slightly more importance
than the first decay function. In the third decay function, the weight decay starts after
100th time slot from the time spot and decreases to the minimum value of 0.4 up to
the 160th time slot. Using the logistic decay function with three different parameters
enables us to see the relative effect of the manner in which the time slot weight decay
affects the final aggregated service selection.

In the simulation models I, II and III, we used neutral criteria weights (the same
weights for all criteria). When average QoS is used for MCDM-based service selection,
the criteria weights cannot reflect users’ changing requirements over time. By contrast,
our approach performs separate MCDM analysis for each time slot, therefore it is
possible to use different criteria weights in different time slots. In simulation model
IV we repeat the simulation model II and III by dynamically calculating the criteria
weights using the entropy method for each time slot to demonstrate this additional
capability of our approach.

The entropy method estimates the relative importance (weights) of the criteria using
the concept of Entropy in information theory. The entropy value gives an estimate of
the amount of information contained in the decision matrix (Eq. 1) and is given by the
following equation [33].

e j = 1

ln m

m∑

i=1

ri j ln(ri j), j ∈ [1, n] (23)

where ri j are the values in decision matrix (Eq. 1) and ri j . ln ri j = 0 if ri j = 0. Using
these entropy values the weight for each criterion is calculated as;

wc j = 1 − e j∑n
j=1(1 − e j)

(24)

Using this method,we first calculate the entropy for each column in the decision matrix
and then use it to find the corresponding criterion weight. The criteria weights for the
decision matrix formed by average QoS are given in Table 5. The criteria weights for
each time slot of our experiment calculated using this methodare given in Table 6.

5.3 Results and Discussion

Histograms of the CPU, memory and I/O for response time for services in the dataset
are given in Fig. 7. This shows that some of these measurements have a bi-modal

Table 5 Criteria weights calculated using the entropy method for decision matrix formed by average QoS
(Table 4)

Criteria wc1 wc2 wc3 wc4

Weight 0.35 0.33 0.16 0.16

123271

Int J Parallel Prog

Table 6 Criteria weights for time slots 1–300 calculated using the entropy method

ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4

1 0.48 0.06 0.20 0.26 101 0.33 0.38 0.16 0.14 201 0.32 0.27 0.21 0.21

2 0.46 0.09 0.20 0.25 102 0.34 0.37 0.16 0.13 202 0.44 0.17 0.22 0.18

3 0.46 0.11 0.19 0.24 103 0.33 0.38 0.15 0.14 203 0.34 0.35 0.17 0.13

4 0.44 0.15 0.19 0.23 104 0.33 0.39 0.14 0.14 204 0.29 0.40 0.16 0.14

5 0.44 0.14 0.19 0.24 105 0.34 0.37 0.15 0.14 205 0.33 0.37 0.16 0.14

6 0.45 0.14 0.20 0.21 106 0.27 0.33 0.29 0.12 206 0.35 0.34 0.17 0.14

7 0.38 0.26 0.16 0.20 107 0.33 0.35 0.19 0.13 207 0.35 0.35 0.18 0.11

8 0.37 0.26 0.17 0.21 108 0.32 0.39 0.18 0.12 208 0.32 0.40 0.14 0.14

9 0.34 0.29 0.22 0.15 109 0.32 0.40 0.15 0.13 209 0.33 0.37 0.16 0.14

10 0.39 0.25 0.17 0.20 110 0.30 0.40 0.16 0.14 210 0.32 0.37 0.18 0.13

11 0.36 0.29 0.16 0.19 111 0.33 0.39 0.15 0.14 211 0.32 0.36 0.20 0.12

12 0.33 0.36 0.13 0.18 112 0.32 0.39 0.15 0.13 212 0.38 0.29 0.17 0.16

14 0.34 0.42 0.11 0.14 113 0.35 0.33 0.19 0.13 213 0.35 0.34 0.16 0.14

13 0.34 0.35 0.14 0.17 114 0.34 0.37 0.16 0.12 214 0.35 0.37 0.14 0.14

15 0.34 0.40 0.13 0.14 115 0.33 0.39 0.14 0.14 215 0.34 0.38 0.15 0.14

16 0.34 0.41 0.11 0.14 116 0.33 0.38 0.15 0.14 216 0.37 0.31 0.17 0.15

17 0.35 0.39 0.13 0.14 117 0.37 0.31 0.19 0.13 217 0.35 0.33 0.17 0.15

18 0.29 0.44 0.13 0.14 118 0.35 0.38 0.15 0.12 218 0.35 0.34 0.16 0.15

19 0.25 0.47 0.13 0.15 119 0.27 0.43 0.14 0.16 219 0.33 0.37 0.16 0.13

20 0.30 0.42 0.13 0.15 120 0.34 0.38 0.16 0.12 220 0.34 0.38 0.14 0.14

21 0.32 0.42 0.12 0.14 121 0.33 0.38 0.13 0.16 221 0.33 0.38 0.17 0.13

22 0.35 0.37 0.13 0.15 122 0.33 0.40 0.14 0.14 222 0.32 0.37 0.18 0.12

23 0.36 0.36 0.13 0.15 123 0.34 0.36 0.16 0.14 223 0.33 0.37 0.17 0.13

24 0.36 0.39 0.10 0.15 124 0.32 0.39 0.15 0.14 224 0.32 0.42 0.12 0.14

25 0.35 0.38 0.13 0.15 125 0.33 0.37 0.17 0.13 225 0.30 0.35 0.19 0.16

26 0.26 0.47 0.11 0.16 126 0.33 0.38 0.16 0.13 226 0.32 0.39 0.16 0.13

27 0.35 0.39 0.11 0.14 127 0.33 0.35 0.17 0.15 227 0.33 0.39 0.15 0.13

28 0.33 0.42 0.11 0.14 128 0.39 0.28 0.17 0.16 228 0.31 0.38 0.18 0.13

29 0.36 0.37 0.12 0.15 129 0.23 0.43 0.15 0.19 229 0.32 0.39 0.16 0.13

30 0.36 0.38 0.11 0.15 130 0.30 0.36 0.17 0.16 230 0.31 0.41 0.15 0.12

31 0.38 0.34 0.12 0.16 131 0.38 0.28 0.18 0.16 231 0.32 0.41 0.15 0.12

32 0.37 0.35 0.14 0.14 132 0.31 0.36 0.18 0.15 232 0.31 0.41 0.14 0.13

33 0.34 0.41 0.12 0.14 133 0.32 0.39 0.16 0.14 233 0.32 0.41 0.15 0.12

34 0.33 0.41 0.11 0.14 134 0.36 0.34 0.15 0.15 234 0.31 0.41 0.15 0.12

35 0.33 0.40 0.15 0.12 135 0.39 0.27 0.17 0.16 235 0.30 0.42 0.15 0.13

36 0.37 0.38 0.09 0.17 136 0.34 0.37 0.15 0.14 236 0.24 0.50 0.11 0.15

37 0.39 0.31 0.14 0.16 137 0.36 0.32 0.17 0.15 237 0.32 0.43 0.12 0.13

38 0.37 0.36 0.12 0.15 138 0.35 0.34 0.16 0.15 238 0.30 0.42 0.16 0.12

39 0.36 0.39 0.09 0.15 139 0.33 0.38 0.16 0.12 239 0.30 0.43 0.15 0.13

123 272

Int J Parallel Prog

Table 6 continued

ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4

40 0.33 0.40 0.12 0.16 140 0.39 0.26 0.21 0.14 240 0.30 0.41 0.15 0.13

41 0.34 0.41 0.11 0.14 141 0.37 0.30 0.17 0.16 241 0.30 0.43 0.15 0.12

42 0.35 0.37 0.12 0.15 142 0.30 0.40 0.16 0.14 242 0.33 0.36 0.21 0.10

43 0.34 0.39 0.12 0.14 143 0.32 0.39 0.15 0.14 243 0.35 0.32 0.24 0.10

44 0.36 0.36 0.14 0.13 144 0.30 0.40 0.15 0.14 244 0.33 0.40 0.13 0.14

45 0.35 0.38 0.13 0.15 145 0.32 0.37 0.16 0.15 245 0.32 0.40 0.15 0.13

46 0.34 0.39 0.12 0.15 146 0.33 0.39 0.15 0.14 246 0.31 0.39 0.18 0.12

47 0.31 0.42 0.13 0.14 147 0.36 0.32 0.16 0.15 247 0.32 0.40 0.16 0.13

48 0.33 0.42 0.11 0.14 148 0.34 0.34 0.17 0.15 248 0.36 0.33 0.16 0.14

49 0.34 0.38 0.14 0.14 149 0.38 0.27 0.19 0.16 249 0.34 0.37 0.16 0.14

50 0.35 0.38 0.12 0.15 150 0.34 0.36 0.16 0.14 250 0.31 0.41 0.15 0.13

51 0.23 0.48 0.14 0.15 151 0.34 0.36 0.17 0.13 251 0.33 0.38 0.15 0.14

52 0.33 0.38 0.16 0.13 152 0.33 0.38 0.17 0.13 252 0.32 0.39 0.15 0.13

53 0.33 0.38 0.15 0.14 153 0.33 0.38 0.15 0.14 253 0.24 0.39 0.24 0.12

54 0.35 0.36 0.16 0.14 154 0.38 0.31 0.16 0.16 254 0.32 0.36 0.16 0.15

55 0.33 0.38 0.15 0.14 155 0.33 0.38 0.15 0.13 255 0.30 0.41 0.15 0.13

56 0.36 0.34 0.16 0.14 156 0.34 0.37 0.16 0.13 256 0.35 0.34 0.17 0.14

57 0.34 0.37 0.14 0.14 157 0.22 0.42 0.21 0.15 257 0.31 0.42 0.16 0.12

58 0.34 0.35 0.17 0.15 158 0.33 0.38 0.15 0.14 258 0.30 0.43 0.14 0.13

59 0.35 0.32 0.18 0.15 159 0.34 0.35 0.16 0.15 259 0.31 0.43 0.14 0.12

60 0.38 0.32 0.15 0.15 160 0.34 0.39 0.13 0.14 260 0.31 0.41 0.17 0.11

61 0.39 0.28 0.17 0.16 161 0.33 0.39 0.15 0.14 261 0.31 0.40 0.18 0.11

62 0.33 0.38 0.15 0.13 162 0.35 0.35 0.15 0.14 262 0.30 0.41 0.18 0.11

63 0.24 0.36 0.23 0.16 163 0.34 0.38 0.15 0.14 263 0.32 0.34 0.26 0.09

64 0.30 0.27 0.22 0.21 164 0.37 0.31 0.17 0.15 264 0.35 0.28 0.26 0.10

65 0.33 0.35 0.19 0.13 165 0.34 0.37 0.15 0.14 265 0.32 0.37 0.19 0.12

66 0.29 0.39 0.19 0.12 166 0.34 0.38 0.15 0.14 266 0.35 0.34 0.17 0.15

67 0.38 0.33 0.15 0.15 167 0.33 0.38 0.15 0.14 267 0.36 0.31 0.17 0.15

68 0.33 0.37 0.17 0.13 168 0.33 0.39 0.14 0.14 268 0.32 0.36 0.19 0.12

69 0.32 0.38 0.18 0.13 169 0.35 0.36 0.15 0.14 269 0.33 0.33 0.21 0.13

70 0.32 0.38 0.17 0.13 170 0.33 0.38 0.15 0.14 270 0.33 0.37 0.15 0.15

71 0.33 0.38 0.16 0.14 171 0.33 0.38 0.15 0.13 271 0.33 0.37 0.16 0.14

72 0.35 0.35 0.15 0.15 172 0.35 0.34 0.17 0.14 272 0.32 0.39 0.15 0.14

73 0.34 0.37 0.16 0.13 173 0.33 0.39 0.16 0.13 273 0.33 0.38 0.15 0.14

74 0.33 0.38 0.17 0.13 174 0.34 0.38 0.14 0.14 274 0.35 0.35 0.16 0.14

75 0.36 0.33 0.17 0.15 175 0.35 0.35 0.15 0.15 275 0.36 0.34 0.17 0.13

76 0.34 0.38 0.14 0.14 176 0.34 0.36 0.15 0.14 276 0.27 0.35 0.21 0.17

77 0.33 0.39 0.15 0.14 177 0.33 0.37 0.16 0.14 277 0.32 0.37 0.18 0.12

78 0.32 0.39 0.16 0.13 178 0.35 0.36 0.17 0.12 278 0.31 0.34 0.18 0.17

79 0.38 0.26 0.21 0.15 179 0.35 0.31 0.17 0.16 279 0.33 0.38 0.16 0.14

123273

Int J Parallel Prog

Table 6 continued

ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4 ti wc1 wc2 wc3 wc4

80 0.33 0.38 0.15 0.14 180 0.35 0.36 0.15 0.14 280 0.44 0.18 0.20 0.19

81 0.33 0.38 0.15 0.13 181 0.33 0.38 0.15 0.15 281 0.22 0.48 0.17 0.14

82 0.34 0.37 0.15 0.14 182 0.34 0.38 0.15 0.14 282 0.39 0.28 0.19 0.14

83 0.33 0.39 0.14 0.14 183 0.33 0.39 0.15 0.13 283 0.36 0.33 0.16 0.15

84 0.29 0.43 0.17 0.11 184 0.44 0.20 0.18 0.17 284 0.38 0.27 0.19 0.16

85 0.34 0.37 0.15 0.14 185 0.33 0.38 0.17 0.12 285 0.33 0.37 0.15 0.14

86 0.38 0.30 0.18 0.14 186 0.34 0.37 0.15 0.14 286 0.37 0.29 0.18 0.16

87 0.26 0.38 0.17 0.18 187 0.39 0.31 0.15 0.16 287 0.20 0.35 0.33 0.12

88 0.35 0.34 0.16 0.15 188 0.38 0.29 0.17 0.16 288 0.34 0.35 0.16 0.15

89 0.33 0.39 0.15 0.14 189 0.34 0.33 0.18 0.15 289 0.36 0.33 0.17 0.14

90 0.32 0.39 0.15 0.14 190 0.37 0.30 0.17 0.16 290 0.43 0.20 0.19 0.18

91 0.35 0.34 0.15 0.15 191 0.33 0.37 0.16 0.14 291 0.34 0.33 0.19 0.15

92 0.34 0.37 0.15 0.14 192 0.33 0.37 0.17 0.13 292 0.35 0.36 0.16 0.13

93 0.35 0.35 0.15 0.15 193 0.34 0.37 0.15 0.14 293 0.37 0.33 0.17 0.13

94 0.34 0.38 0.14 0.14 194 0.38 0.27 0.18 0.16 294 0.37 0.32 0.16 0.15

95 0.34 0.36 0.17 0.13 195 0.35 0.34 0.17 0.14 295 0.44 0.21 0.18 0.18

96 0.33 0.39 0.14 0.14 196 0.34 0.36 0.16 0.14 296 0.34 0.39 0.13 0.14

97 0.28 0.37 0.16 0.19 197 0.36 0.32 0.19 0.13 297 0.34 0.38 0.15 0.14

98 0.37 0.30 0.17 0.15 198 0.31 0.39 0.17 0.13 298 0.36 0.32 0.17 0.15

99 0.32 0.38 0.16 0.14 199 0.35 0.34 0.17 0.14 299 0.34 0.35 0.16 0.14

100 0.27 0.27 0.27 0.18 200 0.37 0.31 0.18 0.13 300 0.30 0.33 0.18 0.18

Fig. 7 Histograms of response times in the dataset

123 274

Int J Parallel Prog

Table 7 Final service ranks with the simulation models

Services Model-I Model-II Model-III(a) Model-III(b) Model-III(c)

TOPSIS-based simulation models
S1 0.3646 0 0 0 0

S2 0.9791 70 41.45526718 46.02430031 50.32104085

S3 0.8183 33 20.2903275 24.12103461 25.14624907

S4 0.3335 0 0 0 0

S5 0.9733 197 99.99244968 121.5538862 146.2197723

Selected service S2 S5 S5 S5 S5

ELECTRE-based simulation models

S1 0 0 0 0 0

S2 3 108 63.97683691 73.16884246 79.3544612

S3 2 51 30.72870504 36.71901199 38.78382454

S4 0 1 0.400004472 0.400054476 0.400663151

S5 3 209 109.3630488 132.4192142 157.1707141

Selected service S2 S5 S5 S5 S5

frequency distribution or have a scattered distribution, which means that the mean
(shown in Table 4) cannot effectively represent the entire data; thus in this scenario,
MCDM based on average QoS (used in existing approaches) is not a reliable method
for service selection.

The final service selection results obtained using the three simulation models
described in the previous sub-section are presented in Table 7. Service S3 is selected
by using simulation Model I, which uses the average of QoS values with TOPSIS. The
same results are obtained by using ELECTRE in Model I.

The results of the service selection (using TOPSIS and ELECTRE) using simula-
tion Models II and III in each time slotare given in Fig. 8, where S5 has the highest
rank in both models.Our proposed framework (Models II and III) leads to the selec-
tion of Service S5. Although,aggregation without time slot weights in Model II and
aggregation with variation in time slot weights in Model III leads to the selection of
the same service, there is a considerable variation in the ranking values assigned by
each model. This variation in rank values shows that having a weight for time slots
is effective in controlling the relative importance of new and old QoS values. This is
further evident from the difference in the aggregated output values calculated by using
the three logistic decay curves to calculate the time slot weights (Models III(a), III(b)
and III(c) in Table 7).

These results show that selecting acloud service by using average QoS can lead to
the selection of a service that has a better service average but is not the best service, due
to thevariations inQoS performance of IaaS cloud services. Our proposed approach is
capable of taking these variations into account by considering the entire QoS history
instead of using average QoS.This approach captures the variations in performance of
services and gives more importance to recent QoS data without discarding the older

123275

Int J Parallel Prog

Fig. 8 Services selected in each time slot with fixed subjective criteria weights

Table 8 Final service ranks calculated in each simulation model with variable criteria weights

Services Model-Ie Model-IIe Model-III(a)e Model-III(b)e Model-III(c)e

TOPSIS-based simulation models
S1 0.4028 0 0 0 0

S2 0.9771 34 19.53900812 21.31343187 22.94338047

S3 0.831 2 1.561215687 1.985053963 1.999874971

S4 0.3491 0 0 0 0

S5 0.9913 264 140.6378205 168.4007352 196.7438068

Selected service S2 S5 S5 S5 S5

ELECTRE-based simulation models

S1 0 0 0 0 0

S2 3 56 35.16355974 39.06340062 40.96300738

S3 2 3 2.328742316 2.976528361 2.999802544

S4 0 0 0 0 0

S5 4 272 146.2277299 174.6360333 203.3238442

Selected service S2 S5 S5 S5 S5

QoS data (which is accorded less importance), which in turn leads to more reliable
cloud service selection.

In simulation Model IV, the ability of our proposed approach to use different cri-
teria weights in different time slots was assessed by using the entropy method [33] to
dynamically calculate the criteria weights for each time slot. The final service selection

123 276

Int J Parallel Prog

results are given in Table 8 (wherein the superscript e denotes that the entropy weights
have been used in the simulation models).Although the overall service ranks in simu-
lation Model IV are the same as those obtained using fixed criteria weights (Table 7),
there is nevertheless a variation in actual rank values assigned to each service, which
suggests that in scenarios where users’ criteria vary with time depending on changes
in workload or predictable seasonal variations in business needs, our approach is able
to use dynamic criteria weights to take these changes into account.

6 Conclusion and Future Work

In this paper, we discussed the cloud service selection problem and proposed a novel
cloud service selection framework in which the QoS history is divided into several
time slots. A service selection decision is taken at each time slot and all decisions are
aggregated to find the overall optimal service. The decisions at time slot level are taken
by applying TOPSIS or ELECTRE to the QoS data at each time slot along with the
user criteria weights. We compared the results obtained using this approach with those
obtained by existing approaches in which a MCDM technique is applied to average
QoS data. We found that, due to the variations in service performance resulting from
the dynamic nature of the cloud environment, the compared approaches do not lead
to the selection of the same service. Furthermore, we found that the overall service
rank also depends on the weights assigned to the time slots, which can be used to
control the relative importance of older and newer QoS data in the decision making
process. In addition to time slot weights, our proposed framework also permits the use
of different criteria weights for each time slot. This feature is useful when there is a
seasonal variation in service users’ requirements, and as a result, the criteria weights
also vary between time slots.The framework proposed in this paper deals with service
selection in the pre-interaction period only. Work on post-interaction service migration
decisions is needed, and several other important factors such as the cost of migration
in terms of service disruption and data transfer, etc. also need to be included in the
decision making process. Furthermore, there are several adjustable parameters in the
logistic decay function (Eq. 18) and more work is needed to determine their optimal
values for various decision making scenarios. This is our future work.

References

1. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing: the business per-
spective. Decis. Support Syst. 51(1), 176–189 (2011)

2. Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future
Gener. Comput. Syst. 29(4), 1012–1023 (2013). ISSN: 0167-739X

3. Zheng, Z., Wu, X., Zhang, Y., Lyu, M., Wang, J.: QoS ranking prediction for Cloud services. IEEE
Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)

4. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of-the-art survey of TOPSIS appli-
cations. Expert Syst. Appl. 39(17), 13051–13069 (2012). ISSN: 0957-4174

5. Pastaki Rad, M., Sajedi Badashian, A., Meydanipour, G., Ashurzad Delcheh, M., Alipour, M., Afzali,
H.: A survey of cloud platforms and their future. In: Proceedings of the International Conference on
Computational Science and its Applications: Part I, ICCSA ’09, Springer, Berlin, pp. 788–796 (2009).
ISBN: 978-3-642-02453-5

123277

Int J Parallel Prog

6. Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., Li, Q.: Comparison of several cloud computing
platforms. In: Second International Symposium on Information Science and Engineering (ISISE), pp.
23–27 (2009)

7. Filepp, R., Shwartz, L., Ward, C., Kearney, R., Cheng, K., Young, C., Ghosheh, Y.: Image selection as
a service for cloud computing environments. In: IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), IEEE, pp. 1–8 (2010)

8. Li, A., Yang, X., Kandula, S., Zhang, M.: Comparing public-cloud providers. Internet Comput. 15(2),
50–53 (2011a). ISSN: 1089–7801

9. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: shopping for a cloud made easy. In: Proceedings
of the 2nd USENIX Conference on Hot Topics in Cloud Computing, USENIX Association (2010a).
http://research.microsoft.com/apps/pubs/default.aspx?id=136451

10. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud providers. In: Proceed-
ings of the 10th ACM SIGCOMM conference on Internet measurement, IMC ’10, ACM, New York,
pp. 1–14 (2010b). ISBN: 978-1-4503-0483-2

11. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: CloudProphet: towards application performance
prediction in cloud. SIGCOMM Comput. Commun. Rev. 41(4), 426–427 (2011b). ISSN: 0146–4833

12. Nie, G., She, Q., Chen, D.: Evaluation Index System of cloud service and the purchase decision—
making process based on AHP. In: Jiang, L. (ed.) Proceedings of the 2011 International Conference on
Informatics, Cybernetics, and Computer Engineering (ICCE2011) November 1920, 2011, Melbourne„
vol. 112 of Advances in Intelligent and Soft Computing, Springer, Berlin, pp. 345–352 (2012)

13. Siegel, J., Perdue, J.: Cloud services measures for global use: the Service Measurement Index (SMI).
In: Annual SRII Global Conference (SRII), IEEE, pp. 411–415 (2012)

14. Garg, S., Versteeg, S., Buyya, R.: SMICloud: a framework for comparing and ranking cloud services.
In: Fourth IEEE International Conference on Utility and Cloud Computing (UCC), IEEE, pp. 210–218
(2011)

15. Han, S.-M., Hassan, M. M. Yoon, C.-W., Huh, E.-N.: Efficient service recommendation system for
cloud computing market. In: Proceedings of the 2nd International Conference on Interaction Sciences:
Information Technology, Culture and Human, ICIS ’09, ACM, New York, pp. 839–845 (2009)

16. Kang, J., Sim, K. M.: Cloudle: A multi-criteria cloud service search engine. In: IEEE Asia-Pacific
Services Computing Conference (APSCC), pp. 339–346 (2010)

17. Kang, J., Sim, K. M.: Towards agents and ontology for cloud service discovery. In: International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 483–
490 (2011a)

18. Kang, J., Sim, K. M.: Ontology and search engine for cloud computing system. In: International
Conference on System Science and Engineering (ICSSE), pp. 276–281 (2011b)

19. Chen, C., Yan, S., Zhao, G., Lee, B. S., Singhal, S.: A systematic framework enabling automatic
conflict detection and explanation in cloud service selection for enterprises. In: IEEE 5th International
Conference on Cloud Computing (CLOUD), IEEE, pp. 883–890 (2012)

20. Wang, S., Liu, Z., Sun, Q., Zou, H., Yang, F.: Towards an accurate evaluation of quality of cloud service
in service-oriented cloud computing. J. Intell. Manuf. 1–9 (2012).doi:10.1007/s10845-012-0661-6

21. Zeng, W., Zhao, Y., Zeng, J.: Cloud service and service selection algorithm research. In: Proceedings
of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC ’09, ACM, New
York, pp. 1045–1048 (2009)

22. Godse, M., Mulik, S.: An approach for selecting software-as-a-service (SaaS) product. In: IEEE Inter-
national Conference on Cloud Computing, IEEE Computer Society, pp. 155–158 (2009)

23. Rehman, Z., Hussain, O. K., Hussain, F. K., Parvin, S.: A framework for user feedback based cloud
service monitoring. In: The Sixth International Conference on Complex, Intelligent, and Software
Intensive Systems (CISIS), IEEE Computer Society, Palermo, pp. 257–262 (2012)

24. Rehman, Z., Hussain, F. K., Hussain, O. K.:Towards multi-criteria cloud service selection. In: Fifth
International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS),
pp. 44–48 (2011)

25. Umm-e-Habiba, Asghar, S.: A survey on multi-criteria decision making approaches. In: International
Conference on Emerging Technologies (ICET), IEEE, pp. 321–325 (2009)

26. Hung, Y.-H., Chou, S.-C.T., Tzeng, G.-H.: Knowledge management adoption and assessment for SMEs
by a novel MCDM approach. Decis. Support Syst. 51(2), 270–291 (2011)

27. Grbz, T., Alptekin, S.E., Alptekin, G.I.: A hybrid MCDM methodology for ERP selection problem
with interacting criteria. Decis. Support Syst. 54(1), 206–214 (2012)

123 278

Int J Parallel Prog

28. Petkov, D., Petkova, O., Andrew, T., Nepal, T.: Mixing multiple Criteria decision making with soft
systems thinking techniques for decision support in complex situations. Decis. Support Syst. 43(4),
1615–1629 (2007)

29. Kou, G., Shi, Y., Wang, S.: Multiple criteria decision making and decision support systems. Decis.
Support Syst. 51(2), 247–249 (2011)

30. Tan, P., Lee, S., Goh, A.: Multi-criteria decision techniques for context-aware B2B collaboration in
supply chains. Decis. Support Syst. 52(4), 779–789 (2012)

31. Triantaphyllou, E., Shu, B., Sanchez, S., Ray, T.: Multi-criteria decision making: an operations research
approach. Encycl. Electr. Electron. Eng. 15, 175–186 (1998)

32. Lu, J.: Multi-objective group decision making: methods software and applications with fuzzy set
techniques. Series in Electrical and Computer Engineering, Imperial College Press (2007). ISBN:
9781860947933

33. Wang, T.-C., Lee, H.-D., Chang, M.-S.: A fuzzy TOPSIS approach with entropy measure for decision-
making problem. In: IEEE International Conference on Industrial Engineering and Engineering Man-
agement, IEEE, pp. 124–128 (2007)

123279

A Framework for User Feedback Based Cloud
Service Monitoring

Zia ur Rehman∗, Omar K. Hussain† and Sazia Parvin‡

School of Information Systems
Curtin University, Perth, WA, Australia

{∗zia-ur-rehman,‡sazia.parvin}@postgrad.curtin.edu.au
†o.hussain@curtin.edu.au

Farookh K. Hussain
School of Software

Faculty of Engineering and Information Technology
University of Technology, Sydney, NSW, Australia

farookh.hussain@uts.edu.au

Abstract—The increasing popularity of the cloud computing
paradigm and the emerging concept of federated cloud computing
have motivated research efforts towards intelligent cloudservice
selection aimed at developing techniques for enabling the cloud
users to gain maximum benefit from cloud computing by selecting
services which provide optimal performance at lowest possible
cost. Given the intricate and heterogeneous nature of current
clouds, the cloud service selection process is, in effect, amulti-
criteria optimization or decision-making problem. The possible
criteria for this process are related to both functional and non-
functional attributes of cloud services. In this context, the two
major issues are: (1) choice of a criteria-set and (2) mechanisms
for the assessment of cloud services against each criterionfor
thorough continuous cloud service monitoring. In this paper, we
focus on the issue of cloud service monitoring wherein the existing
monitoring and assessment mechanisms are entirely dependent
on various benchmark tests which, however, are unable to
accurately determine or reliably predict the performance of
actual cloud applications under a real workload. We discussthe
recent research aimed at achieving this objective and propose
a novel user-feedback-based approach which can monitor cloud
performance more reliably and accurately as compared with the
existing mechanisms.

Index Terms—Cloud Computing; Service Selection; Cloud
Services; User Feedback; Cloud Monitoring

I. I NTRODUCTION

The surging popularity of cloud computing in recent years
has led to the emergence of numerous cloud vendors (cloud
providers) who provide several different public cloud services
to cloud users who use these remote computing resources
to run their applications. These cloud services have different
service characteristics, levels of abstraction, quality of service
and pricing policies. An extensive amount of recent literature
covers and discusses in great detail the diverse classifications
and taxonomies of cloud computing. However, suffice it to
say that the three broad categories of Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software as
a Service (SaaS), have been established on the basis of the
level abstraction of the provided services. However, in spite
of this classification, cloud services vary widely even within a
category. Additionally, there is a plethora of Quality of Service
(QoS) criteria and Key Performance Indices (KPIs) which are
specific to each cloud category. All these complexities makeit
much more difficult for cloud service users to efficiently select
the best service from amongst the available cloud services,

thereby restricting the users’ ability to take advantage ofthe
cloud computing paradigm. In order to assist users with their
selection and to enable them to select the most appropriate
service in terms of pricing, performance and other KPIs, a
robust and reliable service selection mechanism is necessary.
Such a mechanism, in addition to a register of all the available
services, essentially depends on QoS history data. Such data
can be gathered only by capturing changes in performance
and quality of provided service over an appropriate interval
of time by continuous monitoring of all the available cloud
service offerings.

Currently, most cloud providers offer some basic tools
which enable their users to see the status of the cloud at
any time. Apart from these vendor- provided facilities, there
are numerous third party cloud monitoring services, such as
cloudharmony1, which regularly check the performance of
services delivered by the most popular cloud providers and
the data collected through this monitoring is provided to
cloud users who can utilize this information to decide on
cloud deployment of new business applications and to migrate
an existing cloud deployed application from one IaaS cloud
provider (or service) to another. The current status of available
clouds and their past performance data is vital for accurate
and efficient cloud service selection. Otherwise, cloud users
have no alternative but to test their applications on several
different clouds to determine the relative performance of each
[1], which is a cumbersome, costly and inefficient process.

In this paper we discuss the motivation for and importance
of having cloud monitoring mechanisms for the current and
future inter-operable and federated clouds, and propose a novel
cloud monitoring approach that collects feedback from users
to monitor cloud services in the context of IaaS clouds.

The remaining paper is organized as follows: in Section-
2 we discuss the need, motivation and importance of having
a cloud monitoring service; we also provide an overview
of existing cloud monitoring approaches and discuss their
shortcomings. In Section-3 we present an abstract formalism
to represent the cloud service selection problem in a gener-
alized manner. In Section-4 we present our alternative cloud
monitoring approach which is followed by the conclusion and

1www.cloudharnomey.com

280

direction of future work.

II. M OTIVATION

In this section we continue and expand the discussion from
previous section to explain the necessity of cloud monitoring
and discuss the drawbacks of existing cloud monitoring tech-
niques and which necessitates an alternative cloud monitoring.

It is of vital importance to cloud users to have quality of
service and performance-related information of not only those
cloud services which they are already using, but also of other
available cloud service offerings. This enables them to verify
the Service Level Agreement (SLA) compliance of their cur-
rent cloud providers and to assess other cloud providers which
may be offering similar or better cloud resources at lower
costs, thereby providing the opportunity to take advantageby
migrating to an alternative service.

At present, in most cases, it is not easy to migrate from one
cloud service provider to another, due to the incompatibility
and lack of standardization in the current cloud environment.
There are several sources of this incompatibility among IaaS
clouds, the chief source being the incompatible hypervisors
(e.g. Xen, KVM or VMware) [2]which are cloud middleware
for the virtualization of computing resources. However, even
in current clouds if the source and target clouds use the same
virtualization hypervisor, then virtual machine migration is
possible which allows users to move from one cloud service
provider to another cloud service provider without much diffi-
culty. Furthermore, the emerging concepts of interoperable and
federated clouds [3], [4] are intended to achieve compatibility
between clouds, making it possible to migrate from cloud to
cloud in an easy and seamless manner by using open cloud
middleware and inter-cloud protocols. The interoperable and
federated clouds are still in their infancy, although a number
of open cloud software have been developed which provide
the functionality of the current proprietary cloud environments
while maintaining open standards. Chief examples of such
efforts includeOpen Nebula2, Nimbus Project3 and Open
Stack4. These systems have the potential to enable several
smaller cloud providers to cooperate with each other and
maintain mutual compatibility by using these open systems,
thereby establishing a truly universal cloud environment.

However, even if the aims of inter-operability and compati-
bility are achieved in clouds, the problem of service selection
still needs to be addressed because, in order to make any
decision regarding first-time cloud deployment or migration
from one service to another of the same provider or inter-
cloud virtual machine (VM) migration, the users need to
have access to information about the performance of the
target cloud service which can be provided only by a cloud
monitoring service. Furthermore, the users can only benefit
from inter-operability of the future clouds if efficient and
effective cloud service selection mechanisms are available
to them to automate or assist in the entire service selection

2www.opennebula.org
3www.nimbusproject.org
4www.openstack.org

process. The vital information needed to design, implement
and drive such systems inherently depends on extensive QoS
data which can be best collected through cloud monitoring.
Currently, the information that can be used for cloud service
selection comes from the cloud providers themselves in the
form of SLAs and dashboard services indicating cloud service
status. In addition to this information, made available by the
cloud service providers themselves, it is essential to havesome
independent third party cloud service monitoring to gather
unbiased QoS information.

As mentioned previously, there are a few commercial third
party initiatives that monitor cloud performance against several
benchmarks. Their results can be useful for cloud service
selection and that this information is vital for cloud service
users. However, to assess the service quality, these monitoring
services entirely depend upon performance benchmark tests
which cannot accurately reflect the performance of an actual
application on the cloud [4].

Unlike current third party cloud monitoring services, which
depend only on benchmarks for cloud performance monitor-
ing, the alternative approach proposed in this paper uses feed-
back from existing cloud services users for its performance
monitoring. This approach provides a mechanism by which
the cloud users share their usage experience with other current
and future cloud service users. Since these are all real users
who are running actual business applications on the clouds,the
information provided by them is more reliable compared with
that of existing cloud monitoring services which, as mentioned
previously, rely only on benchmark tests.

III. R ELATED WORK

In this section, we present the research literature and the
practical implementations related to cloud service selection
and cloud monitoring. This section is divided into two sub-
sections. In the first sub-section, we present some recent works
in cloud service selection to highlight the importance of cloud
service monitoring as a prerequisite for cloud service selection,
while in the second sub-section, we present the current cloud
monitoring approaches and discuss their shortcomings.

1) Cloud service selection:The issues of cloud service
selection have been discussed in several recent works such
as Goscinski et al. [5] who point out and stress the need for
research on developing methodologies for service selection
in cloud computing. In our previous work [6] we presented
a framework for a multi-criteria cloud selection approach
which, like other related works, relies on cloud performance
monitoring. Likewise, Li et al. [7], [8] have discussed the
importance of having a comprehensive service provider com-
parison framework in cloud service selection. Furthermore,
they have presented an interesting tool for cloud service
comparison calledCloudCmpwhich, like other techniques,
relies on several benchmark tools to compare the common
services (such as elastic computing cluster, persistent storage,
intra-cloud and wide area network etc.) and uses these results
to predict the performance and cost of a cloud service user’s
application before its deployment on cloud. A conceptual

281

framework for a cloud service recommender system has been
devised by Han et al. [9]. This framework relies on a compar-
ison between available services on the basis of network QoS
and virtual machine performance. However, the comparison of
cloud services itself depends on the criteria against whichtwo
or more cloud services are compared. At present, no standard
set of such attributes exists except for a recent work in which
Garg et al. [10] have tried to provide a standard set of attributes
for cloud comparison.

From the above discussion, we can conclude that all the
current techniques for cloud service selection rely on one
or another form of cloud monitoring and this highlights the
importance of cloud service monitoring in this context. reflect
the performance of an actual cloud application with real
workload conditions.

2) Cloud Monitoring: Having highlighted the importance
of cloud monitoring in the previous sub-section, we now
discuss the current cloud monitoring approaches. There are
a few commercial cloud monitoring services, such as cloud
harmony, which provide vital information on the performance
of public clouds. An overview of the working of a current
cloud monitoring mechanism is shown in in Figure 1. Existing
cloud monitoring methods, as discussed previously, rely on
cloud performance benchmarks and collect performance data
by executing some predefined benchmark tests on popular
cloud offerings. Although these benchmarks try to truly rep-
resent the performance of a cloud in general, it is known that
they cannot represent actual application performance [1] be-
cause applications differ widely in their resource usage which
leads to different performance upon actual cloud deployment.
Additionally, due to the use-based pricing mechanism in cloud
computing, this difference in actual and predicted resource
usage leads to differences between predicted and actual cost. A
number of cloud profiling techniques [1], [11]–[13] have been
developed that determine the resource usage profile of user
applications. The data collected through this profiling provides
vital information for predicting the performance and cost of
these applications in a cloud environment. These mechanisms
have tried to develop very complex benchmarks to take into
account these varying resource requirements but, like any other
benchmark, these benchmarks do not accurately reflect the
actual cloud application performance.

Furthermore, a similar approach calledcloudle [14], which
is aimed at determining the recourse usage of an application,
runs the user’s application in a simulated environment to find
its resource usage pattern. The resource usage pattern provides
some useful clues for determining the expected cloud resource
requirements of the application which can then be used to
estimate the cost and can also help in the selection of an
appropriate cloud service. But this approach does not include
any cloud monitoring mechanism and depends on existing
monitoring services whose shortcomings have already been
discussed.

In this section, we discussed the importance of cloud
monitoring and emphasized that the current cloud monitoring
mechanisms are not only unreliable, but are unable to accu-

Fig. 1. Current cloud monitoring scenario

Fig. 2. Our proposed cloud monitoring framework with user feedback

rately predict a real application’s performance on a real target
cloud.

IV. PROBLEM FORMALIZATION

In this section we present the cloud service selection prob-
lem in a formal manner. We define the problem domain by
using the following three sets.
C = {C1, C2 . . . Cn} is the set of available cloud offerings.
U = {u1, u2 . . . um} is the set of current users who are

using the cloud services in C. Furthermore, we assume that
all the services in C are IaaS which use the same virtualization
tool and therefore VM migration across different services or
providers is possible and is economically feasible.

The relationship between the cloud service users and the

282

Fig. 3. A cloud services and users scenario

Fig. 4. The exchange of information between cloud status checker, QoS
Repository and user and cloud user in our proposed framework

available cloud services can be represented by the following
adjacency matrix A,

A =




a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

...
...

...
...

am,1 am,2 . . . am,n




where, each row represents a cloud user and each column
represents a cloud service on offer. If a useri use the cloud
servicek then the the corresponding elementai,j = 1 . On the
other hand if an elementak,l = 0 means that the corresponding
user (k) does not use the corresponding cloud servicek. We
illustrate this notation with the following example.

Suppose that there are five cloud IaaS services offerings and
eight cloud users who are using these services i.e.

C = {c1, c2 . . . c5}

U = {u1, u2 . . . u7}

The relationship between clouds services and cloud users
(also shown in Figure-3) is represented by the following
adjacency matrix,

A =




1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0




The abstract notation presented above is capable of rep-
resenting the state of a cloud environment at any instant in
time. It can provide important and useful information about
the cloud environment. However, when a new cloud service
user enters the environment or when an existing user wishes
to discontinue the use of a service to migrate to another, more
advantageous service, then a decision has to be made to select
a new service. This is the fundamental cloud service selection
problem which, as we have already discussed in previous
sections, leads to the motivation for having a comprehensive
cloud monitoring mechanism.

In the next section, we discuss our approach which replaces
the existing benchmark test-based cloud monitoring by a more
reliable, user-feedback-based cloud monitoring.

V. PROPOSEDFRAMEWORK

In this section, we present our new framework for collecting
information about service performance of available cloud
services from existing users, and also discuss the use of this
information in the selection of cloud services. This process
consists of the following components.

1) Checking the current status of an application running
on a cloud: This can be done by using status checking
commands provided in the environment e.g.Xentop
(on Xen hypervisor) or if no dedicated status checking
mechanism is available in the environment, then by
making use of the basic utilities likenetstat, iostat and
memstatetc. We call this component of our framework
the ‘cloud status checker’. In our proposed approach,
the cloud status checker functionality is built into a
utility that is installed on VM by each participating cloud
service user. This tool checks current resource utilization
patterns (and may also run a set of short benchmarks)
and generates a cloud status report and sends it to the
next step i.e. the repository.

2) We propose a centralized repository for storing cloud
status reports at a storage resource which is accessible by
all users thorough a dashboard interface. All the status
reports generated during the previous step are sent to
this repository, which maintains a record of these and
all the previous status reports submitted earlier by the
participating users.

283

3) Determining the resource usage pattern of cloud ap-
plications: status reports reflect the resource usage by
users over a sufficient period of time and represent real-
world workload conditions. Data on all the participating
users is available in the repository which reflects the
performance of most common types of applications on
most popular cloud services at any time. Therefore, this
information can be useful in determining the suitability
of a cloud provider for deploying a particular applica-
tion.

4) A mechanism for users to access this information. We
propose a dashboard interface for users to access this
information.

5) New cloud applications which have never been deployed
before on a real cloud can be tested by using profiling
mechanisms similar to a cloud status checker or tem-
porary cloud environment to determine the application’s
resource usage pattern. Once a resource usage pattern
has been determined, then it can be compared with ex-
isting profiles stored in the repository to find applications
which have similar resource usage patterns.

6) On the basis of intuition, we assume that a cloud
service that is offering satisfactory service to existing
applications having resource usage profiles similar to the
new application can be the best possible cloud services
for the new application. We propose to use this as a
means of cloud service selection.

Our proposed framework has the following advantages over
the existing cloud monitoring mechanisms.

1) The existing cloud monitoring services only use bench-
marks for testing performance but in this approach we
only use data gathered form real cloud users who have
real applications deployed on clouds.

2) The user provided information is more reliable as com-
pared with the 3rd party benchmarks data or the vendor
provided dashboards as this information is collected
from real users having real business applications which,
unlike benchmarks, better reflect the real conditions.

3) Since the participating users provide the information for
free, the monitoring service does not have to pay for
the resource utilized by the users (in contrast to current
monitoring). Because the users obtain monitoring data at
no cost through this mechanism, they have an incentive
to participate in this system despite paying for resources
consumed in running cloud status checker and sending
the status reports. The cost involved in hosting the
central repository can be shared by the participating
cloud vendors who have more chances of increasing
their number of customers and also enhance customers’
trust in them by participating.

VI. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel cloud performance
monitoring system to drive cloud service selection that, unlike
the prevailing mechanisms, relies on existing cloud users to
populate its information repository which is used by any

existing and new cloud users for decision-making on initial
cloud deployment or subsequent inter-cloud migration. Fur-
thermore, this information can be used to drive algorithms
for service recommendation systems or automated service
selection. Our system helps to prevent redundancy and creates
an information-sharing mechanism for cloud users, thereby
providing an effective cloud monitoring service. In future, we
will work on the design of vital components of the proposed
system and the development of a simulation and a working
prototype. Furthermore, it is also important to investigate
the privacy, security and trust-related issues arising from the
collaborative nature of the proposed system.

ACKNOWLEDGEMENT

This research has been funded by Curtin University under
the Curtin International Postgraduate Research Scholarship
program.

284

REFERENCES

[1] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang, “CloudProphet:
towards application performance prediction in cloud,” inProceedings
of the ACM SIGCOMM 2011 conference on SIGCOMM. ACM, 2011,
pp. 426–427. [Online]. Available: http://catbert.cs.duke.edu/∼xrz/paper/
sigcomm\ cloudprophet.pdf

[2] N. Loutas, E. Kamateri, F. Bosi, and K. Tarabanis, “Cloud
Computing Interoperability: The State of Play,” in2011 Third
IEEE International Conference on Coud Computing Technology
and Science. IEEE, 2011, pp. 752–757. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CloudCom.2011.116

[3] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and
M. Morrow, “Blueprint for the Intercloud - Protocols and
Formats for Cloud Computing Interoperability,”2009 Fourth
International Conference on Internet and Web Applications
and Services, pp. 328–336, 2009. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5072540

[4] J. Ejarque and J. Alvarez, “A Rule-based Approach for Infrastructure
Providers Interoperability,”Performance Evaluation, 2011.

[5] A. Goscinski and M. Brock, “Toward dynamic and attribute
based publication, discovery and selection for cloud computing,”
Future Generation Computer Systems, vol. 26, no. 7, pp. 947–970,
2010. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0167739X10000543

[6] F. Hussain, O. Hussain, and Others, “Towards Multi-Criteria Cloud
Service Selection,” inInnovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2011 Fifth International Conference on.
IEEE, 2011, pp. 44–48. [Online]. Available: http://ieeexplore.ieee.org/
xpls/abs\ all.jsp?arnumber=5976164

[7] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp:
comparing public cloud providers,” inProceedings of the 10th
annual conference on Internet measurement. ACM, 2010, pp. 1–14.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1879143http:
//dl.acm.org/citation.cfm?id=1879143

[8] ——, “Cloudcmp: Shopping for a cloud made easy,” in
Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing. USENIX Association, 2010, pp. 5–5.
[Online]. Available: http://portal.acm.org/citation.cfm?id=1863108http:
//dl.acm.org/citation.cfm?id=1863108

[9] S.-M. Han, M. M. Hassan, C.-W. Yoon, and E.-N. Huh, “Efficient service
recommendation system for cloud computing market,”Proceedings of
the 2nd International Conference on Interaction Sciences Information
Technology, Culture and Human - ICIS ’09, pp. 839–845, 2009. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1655925.1656078

[10] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A Framework
for Comparing and Ranking Cloud Services,”2011 Fourth IEEE
International Conference on Utility and Cloud Computing, no. Vm,
pp. 210–218, Dec. 2011. [Online]. Available: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6123500

[11] P. Patil, P. Kulkarni, and U. Bellur, “VirtPerf: A Performance
Profiling Tool for Virtualized Environments,” 2011 IEEE 4th
International Conference on Cloud Computing, pp. 57–64, Jul.
2011. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6008693

[12] A. V. Do, J. Chen, C. Wang, Y. C. Lee, A. Y. Zomaya, and
B. B. Zhou, “Profiling Applications for Virtual Machine Placement
in Clouds,” 2011 IEEE 4th International Conference on Cloud
Computing, pp. 660–667, Jul. 2011. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6008768

[13] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based
Monitoring Approach for Cloud,” 2010 IEEE 3rd International
Conference on Cloud Computing, pp. 313–320, Jul. 2010.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5557977

[14] J. Kang and K. M. Sim, “Cloudle: A Multi-criteria Cloud
Service Search Engine,”2010 IEEE Asia-Pacific Services Computing
Conference, pp. 339–346, Dec. 2010. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708589

285

	Declaration
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgment
	Abstract
	List of Publications
	Introduction
	Introduction
	Overview of Cloud Computing
	Evolution of Computing
	Types of Cloud Services
	Deployment Models of Clouds
	Key Enabling Technologies
	Virtualization
	Parallel Distributed Processing Model
	Web Services

	Research Areas in Cloud Computing
	Interoperability and Federated Clouds
	Green Computing
	Cloud Service Management

	Challenges in Cloud Service Management
	Service Selection in the Pre-Interaction Period
	Cloud Service Monitoring
	QoS Prediction for Cloud services
	Service Management in the Post-Interaction Period

	Objectives of the Thesis
	Scope of the Thesis
	Significance of the Thesis
	Plan of the Thesis
	Conclusion

	Literature Review
	Introduction
	Cloud Computing
	Definition of Cloud Computing
	Evolution of Cloud Computing and its Relationship with Legacy Technologies
	Business Perspective of Cloud Computing
	Research Perspective on Cloud Computing
	Taxonomy of Cloud Computing
	Cloud Platforms

	Cloud Service Management
	Cloud Service Selection
	Cloud Service Monitoring
	Cloud Service QoS Prediction
	Cloud Service Migration
	Critical Evaluation of the Existing Work
	Conclusion

	Problem Definition
	Introduction
	Key Concepts
	Problem Definition
	Research Issues
	Research Approach
	Research Methods
	Science and Engineering Research Approach
	Social Science Research Approach

	Choice of Science and Engineering-based Research Method

	Conclusion

	Solution Overview
	Introduction
	Definition of Cloud Service Management
	Overview of the Proposed Solution
	Overview of Module 1: QoS Monitoring and Repository
	Overview of Module 2: QoS Forecasting and Early Warning Mechanisms for Service Management
	Overview of Module 3: Decision Making
	User-Feedback Based Cloud Service Monitoring
	Conclusion

	Service Selection in the Pre-Interaction Phase
	Introduction
	Cloud service selection based on QoS history
	Fundamental Concepts of MCDM
	Decision Matrix
	Ideal Solution
	Non-dominated Solution
	Normalization
	Linear Normalization
	Vector Normalization

	Criteria Weights
	Criteria Ranking
	Rating Method
	Ratio Weighting Method
	Entropy Method

	Overview of MCDM Techniques
	Min-Max Method
	Max-Min Method
	Compromise Programming
	TOPSIS Method
	ELECTRE Method
	PROMETHEE Method
	AHP

	Approaches for MCDM in Cloud Service Selection
	MCDM for Cloud Service Selection Based on Cloud Service Specifications
	MCDM for Cloud Service Selection Based on Cloud QoS History

	QoS Time Slot-Based MCDM for Cloud Service Selection
	Calculation of Time Slot Weights for Aggregation
	Aggregation of Individual Time Slot Results to Find the Best Overall Service

	Experimental Validation
	Data
	Simulation Models
	Results and Discussion

	Conclusion

	Forecasting Cloud Service QoS in the Post-Interaction Phase
	Introduction
	Steps in QoS Forecasting Component
	Overview of time series analysis and forecasting
	What is a time series?

	Exponential Smoothing
	Simple Exponential Smoothing
	Holt's Exponential Smoothing
	Holt-Winters Seasonal Method
	State Space Models for Exponential Smoothing

	ARIMA models
	Key concepts
	Stationarity
	Differencing
	Moving Average Models
	Autoregressive Models
	ARMA

	Working of the ARIMA Technique

	Error Measures for Evaluating the precision of Time Series Models
	Measures for Model Selection

	Parameter Estimation and Model Selection for Forecasting Cloud QoS
	Forecasting QoS of a Cloud Service: An Example
	Preliminary Investigation
	Model Selection and Parameter Estimation
	Exponential Smoothing for Cloud QoS
	ARIMA modelling of Cloud Services

	Forecasting The Future QoS Values

	Self-Similarity of Cloud QoS
	Estimation of the Hurst Exponent
	Range-Scale Method
	Variance-time estimate
	Index of dispersion for counts (IDC)
	Residuals of regression (Peng's) method

	Estimating the Self-similarity of cloud QoS

	Conclusion

	QoS Early Warning for Cloud Service Management
	Introduction
	QoS Deviation and Failure
	Overview of the Early Warning Component of UCSM Framework
	Quantifying QoS Deviation and Detecting Service Failure
	Quantifying QoS Degradation and Improvement
	Detecting Service Failure
	Calculating Maximum Possible Degradation
	Scaling The Quantified Degradation

	Fuzzy Inference System for Triggering QoS Degradation Alarm
	Risk Attitude of the Service User
	Fuzzy sets for Risk Attitude
	Fuzzy Sets for QoS Degradation
	Fuzzy Sets for Triggering a QoS Degradation Alarm
	Fuzzy Inference Rules of triggering a QoS degradation Alarm
	Aggregation and Defuzzification

	QoS Early Warning Mechanism: A Case Study
	Part 1: Quantifying Service Degradation
	Part 2: Fuzzy Inference

	Conclusion

	Service Continuation Decision Making in the Post-Interaction Phase
	Introduction
	Overview of Post-Interaction Service Management Decision Making
	Working Process of the Post-Interaction Decision-Making Component

	Migration of cloud services
	Non-Live or Cold Migration
	Live Migration
	Inter-Cloud VM migration

	Metrics for Estimating the Financial and Operational Cost of Migration
	Multi-Criteria Decision Making
	Case Study Example
	Conclusion

	Solution Implementation
	Introduction
	Overview of Solution Implementation
	QoS Monitoring and Repository
	QoS History and Forecast Viewers
	Pre-Interaction Decision Making
	Post-Interaction Phase
	Conclusion

	Recapitulation and Future Work
	Introduction
	Recapitulation
	Contribution of the Thesis
	Future Work
	Expanding the QoS Dataset
	Identification of a Complete Set of QoS Criteria
	Implementation of the User Feedback-based Cloud Monitoring Service
	Identification of Criteria Weights for Typical Cloud Service Users
	Investigating the Fractional ARIMA Models for the Modeling and Forecasting of QoS
	Investigating the implications of user-side cloud service management on provider side resource utilization
	Developing the business model for user-side cloud service management

	Conclusion

	References
	Appendix: Selected Publications
	A User-Based Early Warning Service Management Framework in Cloud Computing
	Parallel Cloud Service Selection and Ranking Based on QoS History
	A Framework for User Feedback Based Cloud Service Monitoring

