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1 Abstract—A GPS-denied UAV (Agent B) is localised through
2 INS alignment with the aid of a nearby GPS-equipped UAV
s (Agent A), which broadcasts its position at several time instants.
4 Agent B measures the signals’ direction of arrival with respect to
5 Agent B’s inertial navigation frame. Semidefinite programming
s and the Orthogonal Procrustes algorithm are employed, and
7 accuracy is improved through maximum likelihood estimation.
s The method is validated using flight data and simulations. A
9 three-agent extension is explored.

10 Index Terms—Localisation, INS alignment, Direction-of-
11 Arrival Measurement, GPS-Denied, Semidefinite Programming
12

13 I. INTRODUCTION

12 Unmanned aerial vehicles (UAVs) play a central role in
15 many defence reconnaissance and surveillance operations. For-
16 mations of UAVs can provide greater reliability and coverage
17 when compared to a single UAV. To provide meaningful data
18 in such operations, all UAVs in a formation must have a
19 common reference frame (typically the global frame). Tra-
20 ditionally, UAVs have access to the global frame via GPS.
21 However, GPS signals may be lost in urban environments
22 and enemy controlled airspace (jamming). Overcoming loss
23 of GPS signal is a hot topic in research [1], and offers a range
24 of different problems in literature [2], [3].

25 Without access to global coordinates, a UAV must rely on its
26 inertial navigation system (INS). Stochastic error in on-board
27 sensor measurements causes the INS frame to accumulate drift.
23 At any given time, drift can be characterised by a rotation and
29 translation with respect to the global frame, and is assumed to
30 be independent between UAVs in a formation. INS frame drift
a1 therefore cannot be modelled deterministically. Information
32 from global and INS frames must be collected in order to
a3 determine the drift between frames and align the INS frame
a4 with the global frame. We describe this process as cooperative
35 localisation when multiple vehicles interact for this purpose.

s Signals of opportunity (SOP) such as AM/FM radio, digital
a7 television or cellular communication can serve as references to
3 assist in characterizing the misalignment between navigation
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frames of multiple agents. Recent contributions in this field
include [4]-[6]. In contexts where SOP are either unavailable
or unreliable, various measurement types such as distance
between agents and direction of arrival of a signal (we
henceforth call DOA') can be used for this process. In the
context of UAVs, additional sensors add weight and consume
power. As a result, one generally aims to minimise the number
of measurement types required for localisation. This paper
studies a cooperative approach to localisation using DOA
measurements.

When two or more GPS-enabled UAVs can simultaneously
measure directions with respect to the global frame towards
the GPS-denied UAY, the location of the GPS-denied UAV is
given by the point minimising distances to the half-line loci de-
rived from the directional measurements [7]-[9]. Operational
requirements may limit the number of nearby GPS-enabled
UAVs to one single agent. We therefore seek a solution which
does not require simultaneous measurements to a single point.

When the GPS-denied agent is able to simultaneously mea-
sure directions with respect to its local INS frame towards mul-
tiple landmarks with known global coordinates, triangulation-
based measurements can be used to achieve localisation. This
problem is studied in three-dimensional space in [10], and
in two-dimensional space in [11], [12]. If only one landmark
bearing can be measured at any given time, a bearing-only
SLAM algorithm may be used to progressively construct a
map of the environment on the condition each landmark is
seen at least twice. Alignment of a GPS-denied agent’s INS
frame could then be achieved by determining the rotation
and translation between the map’s coordinate frame and the
global coordinate frame. In practice, landmark locations may
be unknown, or there may be no guarantee they are stationary
or permanent, and hence we require a localisation algorithm
which is independent of landmarks in the environment. Iter-
ative filtering methods such as the Extended Kalman Filter
(EKF) are often required when drift is significant between
updates. In [13], an EKF is used to estimate drift in the
context of marine localisation. In our problem context the drift
is sufficiently slow to be modelled as stationary over short
periods. We are motivated to formulate a localisation algorithm
which does not involve an iterative filtering technique.

Without reliance on landmarks, the only directional mea-
surements available are between the GPS-denied and the
GPS-enabled UAVs. Given the small size of their airframes
with respect to their separation distance, these UAVs are

A bearing generally describes a scalar measurement between two points
in a plane, whereas a direction-of-arrival is a vector measurement between
two points in three-dimensional ambient space (as considered in this paper).

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83



s modelled as point agents, and therefore one single directional
85 measurement is available at any given time. A stationary target
g6 is localised by an agent using bearing-only measurements in
&7 two-dimensional space [14], [15], and in three-dimensional
88 space [16]. A similar problem is considered in [17], in which
s a mobile source is localised using measurements received at a
90 stationary receiver using an iterative filtering technique. How-
91 ever, for operational reasons, the agent requiring localisation
92 may be unable to broadcast signals, or agents involved may
93 not be allowed to remain stationary. In such instances, the
94 approaches in [14]-[17] are not suitable. Commonly used
95 computer vision techniques such as structure from motion
9 [18] require directional measurements towards multiple sta-
o7 tionary points or towards a stationary point from multiple
98 known positions. This is not possible in our problem context.
99 The measurement and motion requirements we are imposing
100 therefore represent a significant technical challenge. One al-
101 gorithm satisfying all the requirements above was proposed
12 in [19], in which two agents perform sinusoidal motion in
103 two-dimensional ambient space. Directional measurements are
104 used to obtain the distance between Agents A and B, but
10s localisation of B in the global frame is not achieved.

e Motivated by interest from Australia’s Defence Science and
107 Technology Group, this paper seeks to address the problem of
10e localising a GPS-denied UAV with the assistance of a GPS-
100 enabled UAV, which we will call Agent B and A respec-
110 tively. Both agents move arbitrarily in three-dimensional space.
111 Agent B navigates using an INS frame. Agent A broadcasts
112 its position in the global coordinate frame at discrete instants
113 in time. For each broadcast, Agent B is able to take a DOA
112 measurement towards Agent A.

1s  The problem setup and the solution we propose are both
1s novel. In particular, while the literature discussed above con-
117 siders certain aspects from the following list, none consider
s all of the following aspects simultaneously:

119 o The network consists of only two mobile agents (and

120 is therefore different to the sensor network localisation
121 problems in the literature).

122 o There is no a priori knowledge or sensing of a stationary
123 reference point in the global frame.

122 o Both UAVs are free to execute arbitrary motion in three-
125 dimensional space, with the exception of a small number
126 of geometrically unsolvable trajectory pairs>.

127 o Cooperation occurs through unidirectional signal trans-
128 mission. Agent A broadcasts its global position (acquired

129 using GPS) to Agent B (which is GPS-denied).

130 When performing non-routine operations in unfamiliar en-
131 vironments, any combination of these four aspects may be
132 required with short notice. As a result, we are motivated
133 to determine a reliable general solution to the cooperative
134 localisation problem.

135 In [20], this problem is studied in two-dimensional space
136 using bearing measurements, but the added (third) dimension
137 in our paper means 2 scalar quantities, not 1, are obtained per

2No constraints exist on the trajectories other than the physical limitations
of the aircraft. See Section VI-C for further details on unsuitable trajectories.

measurement. This significantly complicates the problem, thus
requiring new techniques to be introduced.

In our proposed solution, we localise Agent B by identifying
the relationship between the global frame (navigated by Agent
A) and the inertial navigation frame of Agent B. The rela-
tionship is identified by solving a system of linear equations
for a set of unknown variables. The nature of the problem
means quadratic constraints exist on some of the variables. To
improve robustness against noisy measurements, we exploit
the quadratic constraints and use semidefinite programming
(SDP) and the Orthogonal Procrustes algorithm to obtain an
initial solution for maximum likelihood (ML) estimation; this
combined approach is a key novel contribution of this paper.

We evaluate the performance of the algorithm by (i) using a
real set of trajectories and (ii) using Monte Carlo simulations.
Sets of unsuitable trajectories are identified, in which our
proposed method cannot feasibly obtain a unique solution.
Finally, we explore an extension of the algorithm to a three-
agent network in which two agents are GPS-denied.

The rest of the paper is structured as follows. In Section II
the problem is formalised. In Section III a localisation method
using a linear equation formulation is proposed. Section IV
extends this method to semidefinite programming to produce
a more robust localisation algorithm. In Section V, a maximum
likelihood estimation method is presented to refine results
further. Section VI presents simulation results to evaluate the
performance of the combined localisation algorithm. Section
VII extends the localisation algorithm to a three-agent net-
work. The paper is concluded in Section VIII. 3

II. PROBLEM DEFINITION

Two agents, which we call Agent A and Agent B, travel
along arbitrary trajectories in three-dimensional space. Agent
A has GPS and therefore navigates with respect to the global
frame. Because Agent B cannot access GPS, it has no ability
to self-localise in the global frame, but can self-localise and
navigate in a local inertial frame by integrating gyroscope and
accelerometer measurements.

This two-agent localisation problem involves 4 frames as
in Figure 1. The importance of each frame, and its use in
obtaining the localisation, will be made clear in the sequel.
Frames are labelled as follows:

o The global frame is A; (available only to Agent A),

o the local INS frame of Agent B is denoted by Bs,

« the body-centred INS frame of Agent B (axes of frames
By and Bg are parallel by definition)is denoted Bs,

« the body-fixed frame of Agent B is denoted Bj.

The expression of directional measurements with respect
to the INS frame in vector form motivates the definition of
the body-centred frame Bs. Later, we find that differences in

3Early sections in this paper (covering up to and including employment
of Orthogonal Procrustes algorithm) appeared in less detail in the conference
paper [21]. Additions have been made to these sections - the literature review
is now more extensive, and the role of different coordinate frames is much
more explicitly set out; the algorithm’s performance is now validated on real
flight trajectories. Analysis of unsuitable trajectories, ML refinement and the
three-agent extension are further extensions beyond [21].
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17 body-fixed frame azimuth and elevation measurement noise
188 motivate the use of B, for maximum likelihood estimation.
180 Note that agents A and B are denoted by a single letter,
190 whereas frames A; and B; for i = 2,3,4 are denoted by a
191 letter-number pair. Let pg" (k) denote the position of Agent J
192 in coordinates of frame I at the k" time instant. Let u s, v,
193 wy denote Agent J’s coordinates in the global frame (A1), and
14 Ty, Y, 27 denote Agent I’s coordinates in Agent B’s local
195 INS frame (Bs). It follows that:

196 Pt (k) = [ua(k), va(k), wa(k)]" (1)
1% pp?(k) = [z5(k), ys(k), z5(k)]" 2)

190 The rotation and translation of Agent B’s local INS frame
200 (B3) with respect to the global frame (A;) evolves via drift.
201 Although this drift is significant over long periods, frame Bg
202 can be modelled as stationary with respect to frame A; over
208 short intervals*. During these short intervals, the following
204 Measurement process occurs multiple times. At each time
205 instant &, the following four activities occur simultaneously

206 .

Agent B records its own position in the INS frame
pg’ (k).

Agent A records and broadcasts its position in the global
frame p%* (k).

Agent B receives the broadcast of pﬁl (k) from Agent A,
and measures this signal’s DOA using instruments fixed

207 °

208

209 °

210

211 o

212

213 to the UAV’s fuselage. This directional measurement is
214 therefore naturally referenced to the body-fixed frame By.
215 o Agent B’s attitude, i.e. orientation with respect to the INS

216 frames By and Bs is known. An expression for the DOA
measurement referenced to the axes INS frames Bs can

therefore be easily calculated.

217

218

219 A DOA measurement, referenced to a frame with axes

220 denoted x, y, z, is expressed as follows:

221 o Azimuth (6): angle formed between the positive x axis
and the projection of the free vector from Agent B
towards Agent A onto the xy plane.

o Elevation (¢): angle formed between the free vector from
Agent B towards Agent A and xy plane. The angle is

222
223
224

225

4If loss of GPS is sustained for extensive periods we recommend using the
algorithm in this paper as an initialisation for a recursive filtering algorithm.

Agent B

EX(’A Frame Frame By
4

Body-centred INS Frame - Frame B3

Agent A

‘

Local INS Frame - Frame B,

GPS Frame - Frame A,

Fig. 1. Illustration of coordinate frames in a two-dimensional space

positive if the z component of the unit vector towards
Agent A is positive.

The problem addressed in this paper, namely the localisation
of Agent B, is achieved if we can determine the relationship
between the global frame A; and the local INS frame Bs.
This information can be used to determine global coordinates
of Agent B at each time instant k:

p5* (k) = [us(k), vp(k), ws(k)]" 3)

Passing between the global frame (A;) and the local INS
frame of Agent B (B5) is achieved by a rotation of frame axes
(defined by a rotation matrix, call it RE?) and translation tﬁj
of frame. For instance, the coordinate vector of the position
of Agent A referenced to the INS frame of Agent B is:

paz(k) = R32 pi* (k) + t° &)
We therefore have
pg' (k) = RZ2T (pp? (k) — t52) )

where RS*T = Rg! and —R5? T t5? = ¢442. The locali-
sation problem can be reduced to solving for Rﬁf € SO(3)
with entries 7;; and tﬁj € R3 with entries ;.

The matrix Rf{f is a rotation matrix if and only if
Rﬁf Rﬁf—r = I3 and det(Rﬁf) = 1. As will be seen in the
sequel, these constraints are equivalent to a set of quadratic
constraints on the entries of Rﬁf. In total there are 12 entries
of Rﬁf and tﬁf to be found as we work directly with 7;;.

ITII. LINEAR SYSTEM METHOD

This section presents a linear system (LS) method to solving
the localisation problem. Given enough measurements, the
linear system approach can achieve exact localisation when
using noiseless DOA measurements, so long as Agents A and
B avoid a set of unsuitable trajectories (which are detailed
in Section VI-C) in which rank-deficiency is encountered.
Building on this, Section IV introduces non-linear constraints
to the linear problem defined in this section to improve
accuracy in the presence of noise.

A. Forming a system of linear equations

The following analysis holds for all k£ instants in time,
hence we drop the argument k. The DOA measurement can be
represented by a unit vector pointing from Agent B to Agent
A. This vector is defined by azimuth and elevation angles 6
and ¢ referenced to the local INS frame B>, and its coordinates
in the frame By are given by:

d(0,¢) = [d1, G2, G3] = [cos 0 cos ¢, sinf cos ¢, sin¢] T (6)

Define ¢ = ||p§> — pp?|| as the Euclidean distance between
Agent A and Agent B (which is not available to either agent).
Scaling to obtain the unit vector § gives

1
,\9 = —
4, ¢) 7

)

[ta—2B, Yya—yB, 2a—2B
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272 Applying equation (4) yields:

q1 1 |rua +rigva+riswa+ b —p
273 Go| = = |Tr21ua + Tr22vA + T23wa +1t2 — YB 3
q3 q r31ua + 3204 + 133w +t3 — 2B

274 The left hand vector is calculated directly from DOA mea-
275 surements. Cross-multiplying entries 1 and 3 of both vectors
276 eliminates the unknown ¢, and rearranging yields:
(uagz)rin + (vags)riz + (wags)riz — (wagy)ra:

277 — (vaqi)rs2 — (waqi)ras + (g3)t1 — (¢1)t3 ©
78 = (¢3)xB — (q1)2B
270 Similarly, from the second and third entries in (8)

(uags)rar + (vaga)rae + (Wagz)ras — (wag2)T31
280 — (vag2)rs2 — (waga)ras + (¢3)t2 — (q2)t3
281 = (43)yB — (¢2)zB
282 Notice that both equations (9) and (10) are linear in the
283 unknown r;; and t; terms. Given a series of K DOA mea-

284 surements (each giving ¢(k), 0(k)), (9) and (10) can then be
25 used to construct the following system of linear equations:

266 AP =b, AecR*MExI2 (11)

27 where A, b are completely known, containing 6(k), ¢(k), pgl
288 and pg2. The 12-vector of unknowns W is defined as:

(10)

289 ‘I’ = [Tu 12 713 ... '31 T's2 T33 tl tQ tg]T (12)

200 Entry-wise definitions of A and b are provided in an extended
201 version of this paper [22]. These entries of ¥ can be used to
202 reconstruct the trajectory of Agent B in the global frame using
203 (5), and therefore solving (11) for ¥ constitutes as a solution
204 to the localisation problem. In the noiseless case, if K > 6
205 and A is of full column rank, equation (11) will be solvable.

206 B. Example of LS method in noiseless case

207 We demonstrate the linear system method using trajectories
208 performed by aircraft operated by the Australian Defence
200 Science and Technology Group. Positions of both Agent A
a0 and B within the global frame and Agent B within the INS
so1 frame were measured by on-board instruments, whereas we
a2 generated a set of calculated DOA values using the above
aos recorded real measurements.

s« These trajectories are plotted in Figure 2. We will make
aos additional use of this trajectory pair in the noisy measurement
a6 case presented in Section IV, and in the maximum likelihood
a7 estimation refinement of the noisy case localisation result in
as Section V. Extensive Monte Carlo simulations demonstrating
s00 localisation for a large number of realistic® flight trajectories
a0 are left to the noisy measurement case.

sin The quantities Rﬁf and t5 2, and the DOA measurements
a2 are tabulated in the extended version of this paper [22]. Using
a3 (11), Rﬁf and tﬁf were obtained exactly for the given flight
a14 trajectories; the solution is the green line in Fig. 2.

5By realistic, we mean that the distance separation between successive
measurements is consistent with UAV flight speeds and ensures the UAV does
not exceed an upper bound on the turn/climb rate. Further detail is provided
in the extended version of this paper [22].

IV. SEMIDEFINITE PROGRAMMING METHOD 315

This section presents a semidefinite programming (SDP) a6
method for localisation, extending from the linear system (LS) 317
approach presented in Section III. This method reduces the sis
minimum required number of DOA measurements to obtain a s
unique solution, and is more robust than LS in terms of DOA 320
measurement noise and unsuitable trajectories are reduced. s
Results from this section will serve as an initialisation of our sz
localisation method, which will be optimised using maximum 32
likelihood estimation in Section V. 324

Rank-relaxed SDP is used to incorporate the quadratic con- 32
straints on certain entries of W arising from the properties of sz
rotation matrices. The inclusion of rotation matrix constraints sz
in SDP problems has been used previously to jointly estimate sz
the attitude and spin-rate of a satellite [23], and in camera pose 320
estimation using SFM techniques when directional measure- 330
ments are made to multiple points simultaneously [24]. We a1
now apply this technique in a novel context to achieve INS s
alignment of Agent B, sufficient for its localisation. Finally, sss
the Orthogonal Procrustes algorithm (O) is used to compensate 33
for the rank relaxation of the SDP. 335

A. Quadratic constraints on entries of ¥ 336

Rank-relaxed semidefinite programming (in the presence ss
of inexact or noise contaminated data) benefits from the sss
inclusion of quadratic constraint equations. We now identify ss
21 quadratic and linearly independent constraint equations on s
entries of Rff, which all appear in ¥ in (12). Recall the a1
orthogonality property of rotation matrices; by computing each s
entry of Rﬁf Rff and setting these equal to entries of Ig, s
and denoting the i*" entry of ¥ as v;, we define constraints: s

Ci=3, o+b3, | +35, —1=0, i=1,2,3 (13a) as
Cy = P1hy + aths + P3Pe = 0 (13b) s
Cs = Y1)7 + Parhg + P3thg = 0 (13c) aa7
Co = Yatpr + Ps5¢Ps + Petg = 0 (13d) g

To simplify notation we call Cj.;, the set of constraints C; for sso
i =7, .., k. Similarly, by computing each entry of RﬁfTRﬁf 351
and setting these equal to I3, we define constraints C7.19, a2
which are omitted due to space limitations, and notice that sss
the sets C.¢ and C7.1o are clearly equivalent. 354

Further constraints are required to ensure det(Rﬁf) = 1. =5
Cramer’s formula states that Rﬁf71 = adj(Rﬁf) / det(Rﬁf), as6
where adj(Rﬁf) denotes the adjugate matrix of Rﬁj. Orthog- 357
onality of R5? implies R5? = adj(R5?)T. By computing sss
entries of the first column of Z = RZ? — adj(R%?)" and o
setting these equal to 0, we define constraints C'3.15: 360

Cr3 = 1 — (V59 — Yetbs) =0 (14a) 61
Cra = Y4 — (Y398 — Pathg) = 0 (14b) 362
C15 = ¥7 — (Yaths — Y31p5) = 0 (14¢) 55

Similarly, by computing the entries of the second and third ses
columns of Z and setting these equal to 0, we define con- ses
straints C1g.18 and Chg.01 respectively. Due to space limita- se7
tions, we omit presenting them. The complete set C.07 = C'y 38



se9 constrains Rﬁf to be a rotation matrix. The set of constraints
a70 is not an independent set, e.g. C . is equivalent to C7.12. The
a7t benefits of the inclusion of dependent constraints is discussed
az2 further in Section IV-C.

az3 Due to these additional relations, localisation requires az-
a74 imuth and elevation measurements at a minimum of 4 instants
ars only (K = 4), as opposed to 6 instants required in Section III.

a6 B. Formulation of the Semidefinite Program

a7 The goal of the semidefinite program is to obtain:

a78 argmin ||A® — b|| (15)
v

ars subject to Cy. Equivalently, we seek argming ||A¥ — b]|?

aso subject to C'y. We define the inner product of two matrices U

s and V as (U, V) = trace(UV ). One obtains

£ |A® —b||* = (P, X) (16)

s where P = [A b}T [A b]and X =[®T —1]7T[¥T —1]
ses and X is a rank 1 positive-semidefinite matrix®. The con-
ass straints C'y can also be expressed in inner product form. For
wi = 1,..,21, C; = 0 is equivalent to (Q;, X) = 0 for
ass some easily determined Q;. Solving for W in (15) is therefore
ass equivalent to solving for:

390 argmin (P, X) (17)
v

391 X > 0 (18)

302 rank(X) =1 (19)

893 X313 =1 (20)

£ (Qi,X)=0 i=1,.,21 Q1)

s C. Rank Relaxation of Semidefinite Program

This semidefinite program is a reformulation of a quadrati-
ass cally constrained quadratic program (QCQP). Computationally
ase speaking, QCQP problems are generally NP-hard. A close
400 approximation to the true solution can be obtained in polyno-
401 mial time if the rank 1 constraint on X, i.e. (22), is relaxed.
402 A full explanation of semidefinite relaxation, and discussion
403 on its applicability can be found in [25]. This relaxation
404 significantly increases the dimension of the SDP solver’s co-
405 domain. A notable consequence is that dependent constraints
406 Which are linearly independent over R within C'g, such as sets
407 C1.¢ and Cr.12, cease to be redundant when expressed as in
408 (21). Hypothesis testing using extensive simulations confirmed
400 with confidence above 95% that inclusion of quadratically
410 dependent constraints improves the localisation accuracy.

41 The solution X obtained through rank-relaxed SDP is
412 typically not a rank 1 matrix when DOA measurements are
413 noisy. However the largest singular value of X is generally
«4 multiple orders of magnitude greater than the second largest
415 singular value. A rank 1 approximation to X, which we call
ss X, is obtained by evaluating the singular value decomposition
47 of X, then setting all singular values except the largest equal

397

T

6 All matrices M which can be expressed in the form of M = v T v where

v is a row vector are positive-semidefinite matrices.

to zero. From X , one can then use the definition of X
to obtain the approximation of W, which we will call v,
Entries zﬁl for ©+ = 10,11,12 can be used immediately to
construct an estimate for tﬁf, which we will call t. Entries
1/}1- for i = 1,...,9 will be used to construct an intermediate
approximation of R5 2, which we call R, and which we will

refine further.

D. Orthogonal Procrustes Algorithm

Due to the relaxation of the rank constraint (19) on X, it is
no longer guaranteed that entries of W strictly satisfy the set of
constraints C'y. Specifically, R may not be a rotation matrix.
The Orthogonal Procrustes algorithm is a commonly used tool
to determine the closest orthogonal matrix (denoted T{)/\to a
given matrix, R. This is given by R = argming, || — R||F,
subject to 29" = I, where ||.||r is the Frobenius norm.

When noise is high, the above method occasionally returns
R such that det(R) = —1. In this case, we employ a special
case of the Orthogonal Procrustes algorithm [26] to ensure we
obtain rotation matrices and avoid reflections by flipping the
last column in one of the unitary matrix factors of the singular
value decomposition.

The matrix R and vector £ are the final estimates of Rﬁf
and tﬁj using semidefinite programming and the Orthogonal
Procrustes algorithm. The estimate of Agent B’s position in
the global frame is pig* = R' (pB? —1).

For convenience, we use SDP+O to refer to the process
of solving a rank-relaxed semidefinite program, and then
applying the Orthogonal Procrustes algorithm to the result.

E. Example of SDP+0O method with noisy DOA measurements

In this subsection, we apply the SDP+O method to perform
localisation in a noisy DOA measurement case using the real
trajectory example from Section III. A popular practice for
performing DOA measurements from Agent B towards Agent
A is to use fixed RF-antennas and/or optical sensors on board
Agent B’s airframe. The horizontal RF antenna typically has
a larger aperture (generally around 4 times, owing to the
physical layout of a fixed-wing UAV) than the vertical RF
antenna. As a result, errors in azimuth and elevation measure-
ments, referenced to the body-fixed frame B,, are modelled
by independent zero-mean Gaussian distributed variables with
different standard deviations, denoted oo and .

Strictly speaking, physical sensors return azimuth and ele-
vation measurements in the interval [OO, 360°), which means
that each noise is expected to follow a von Mises distribution,
which generalises a Gaussian distribution to a circle [27].
In our case, we approximate the von Mises distribution by
a Gaussian distribution because noise is sufficiently small.
In this example we assume body-fixed frame azimuth and
elevation measurement errors have standard deviations of
0O = 0.5° and Op — 2°.

Samples of Gaussian error with these standard deviations
were added to body-fixed frame (B,4) elevation and azimuth
measurements calculated as described in Section III. These
were converted to DOA measurements referenced to the INS



—o— P: (global coordinates of A)
—— Pé (global coordinates of B)
LS+O (noiseless)

—-%-—SDP+0 (0,705, 7,=2")

—%— SDP+O+ML (0,205, 0,=2")

z altitude [metres]

x coordinate [metres]

y coordinate [metres]

Fig. 2. Recovery of global coordinates of Agent B for recorded trajectories.
Errors are o9 = 0.5° and oy = 2° with respect to body fixed frame for the
DOA measurements

472 frame Bs. The SDP+O algorithm was used to obtain R and £
473 using the agents’ position coordinates in their respective nav-
474 igation frames and the noisy DOA values. The reconstructed

475 trajectory pgl is plotted in Figure 2 with the dotted black line.

476 Position data of the reconstructed trajectory pgl are tabulated
477 in [22].

s Remark 1. The accuracy of the SDP+O solution in the
479 noiseless case was observed to deteriorate when entries in the
g0 true translation vector (t; for i = 1,2, 3) are large. This is due
481 to a form of inherent regularisation in the SDP solver Yalmip
a2 [28]. When the approximate magnitude of the norm ||t§f||
43 IS known, one approach is to introduce a scaling coefficient
484 before entries t; for i = 1,2, 3 in equations (9) and (10) equal
a5 10 the approximate norm of ||t AZH

In [22], we discuss a controlled shifting algorithm which
47 may be applied if an approximation of tﬁf is known a priori.

486

488 V. MAXIMUM LIKELIHOOD ESTIMATION

This section presents a maximum likelihood estimation
40 (ML) method to optimise estimates R and t which were
491 obtained using the SDP+O algorithm. The MLE refinement
492 uses the DOA measurements expressed with respect to the
493 body-fixed frame By, and the known values for g and og
494 describing the distribution of DOA errors. A non-linear log-
495 likelihood function for DOA measurement error is derived,
496 and because the minimum of the function cannot be found

497 analytically, we employ an iterative gradient descent approach.

489

w8 A. Likelihood Function Derivation

In this section, DOA values are always expressed with
so0 respect to the body-fixed frame of Agent B (B,) to exploit the
so1 independence of azimuth and elevation measurement errors.
s02 This is a change from Sections III and IV, in which DOA
s03 measurements were generally expressed with respect to the
s04 local INS frame Bs. The transformation between coordinate
sos frames By and By is known to Agent B.

499

Suppose body-fixed frame measurements of azimuth and
elevation ©(k) and ®(k) are contaminated by zero mean
Gaussian noise as follows:

« (k) =O(k) +éo, o~ N(0,007)

. (I)(k) :CD(]{)+§¢, o NN(O,O'@2)

To calculate noiseless azimuth and elevation measurements,
an expression must be derived for the position of Agent A in
Agent B’s body-fixed frame By. Observe that

pa'(k) = RE3 (k) (RGIPA" (k) +£47) + t5i(k)  (22)
To help distinguish coordinate reconstructions based on es-
timates of R and t from true coordinates, recorEtructed
positions will be explicitly expressed as functions of R and :
PRt (k, R.®) = Rg:(k)(Rpa* (k) + ) + t5i(k)  (23)

By definition of azimuth and elevation in Section II:

— k,R.t
0p,(k, R,t) = arcsin (—( — ): ) 24
P2 (k, R, )]

o1, (h B E) —atan2 (P52 (h, RO , p5 (R E).) (25)

where p§* = [p§* | pﬁ‘ly, p5* |7, The likelihood function
for the set of DOA measurements is defined as follows:

E(PA 7pB2|R t)

1 o [ O, (k) — 05, (k, R, D))
U@\/ﬂkl;[l p[ 202, }

1 B (65, (k) — b, (k, R, 7))
quﬂ/ﬂkl:llexp[_ 2‘7<21> } 20

It can be shown that maximising L(pﬁl, pgz |R,t) is equiv-
alent to minimising

= [<5B4<k> — 05, (k, R, 1))

2
205

¢B4 (ka

2
20%

+ (¢B4(k) B E7i))2}

k=1
27)

B. Optimisation using gradient descent

Possible parametrisations for the rotation matrix R include
Euler angles, quaternion representation and Rodrigues rotation
formula. In this paper we parametrise R by a 3-vector of Euler
angles, and ¢ is a 3-vector. This defines a mapping from R® —
R, t, and the gradient of (27) can be expressed as a vector in
RS. The log-likelihood function is non-linear with respect to
this RS parametrisation of R and . As a result, this function
may be non-convex, meaning the equation Dlog £ = 0 may
have multiple solutions, with only one of these being the global
minimum. A gradient descent algorithm is therefore initialised
using the result of the SDP+O method, and is used to converge
towards a local minimum, which it is hoped will be the global
minimum or close to it. In our investigations, we employed a
back-tracking line search algorithm discussed in [29]. External
solvers such as Yalmip using second-order methods may yield
faster convergence than a hard-coded approach.
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ss1 C. Example of ML refinement of SDP+0O solution

ss2 In this subsection, we demonstrate the benefits of max-
sss imum  likelihood estimation. ML was performed using the
ss« real flight trajectory data presented in Section III. The re-

sss sulting reconstructed trajectory p% is presented in Figure
ss6 2 as the solid black line, and its coordinates are tabulated
ss7 in [22]. Additionally, in this section we present the decrease
sss and convergence in the value of frame rotation error and
ss0 reconstructed position error’ over successive iterations of the
seo gradient descent algorithm in Figures 3a and 3b.

sst  The error in INS frame rotation is reduced by over 60%,
se2 and the reconstructed position error of Agent B is reduced
s63 by over 70% by iterating the gradient descent algorithm.
se+ This represents a significant gain with respect to the SDP+O
ses estimate, which served as the initialisation point of the gradient
ses descent. Monte Carlo simulations covering a large set of
se7 trajectories are presented in Section VI
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Fig. 3. Improvement in rotation and reconstructed position error using ML
for real trajectory pair

568 VI. SIMULATION RESULTS

s In this section, we use extensive simulations of realistic®
s70 flight trajectories to evaluate the effects of errors in body-fixed
s71 frame azimuth and elevation measurements, and then discuss
s72 trajectories which make localisation difficult.

s7z3 In the preliminary conference paper [21] found that the
s+ LS+0O method collapsed when small amounts of noise were
s75 introduced to DOA measurements, whereas rotation error
s76 increased linearly with respect to DOA measurement noise
s77 when using the SDP+O method. The SDP+O method is the
s78 superior method, and there is no reason to employ LS+O.

"Metrics are defined in the sequel, see Section VI-A below.
8These trajectories satisfy a set of assumptions detailed in [22].

Median position error

14 16 18 20
Number of DOA measurements (K)

Fig. 4. Median error(pgl) vs. number of DOA measurements used to solve
SDP+0 (S) and SDP+O+ML (M) from K = 2 to K = 20.

Median angle error in degrees

12 14 16 18 20
Number of DOA measurements (K)

Fig. 5. Median d(R, Rﬁ) vs. number of DOA measurements used to solve
SDP+0 (S) and SDP+O+ML (M) from K =2 to K = 20

A. Metrics for error in R and t

This paper uses the geodesic metric for rotation [30]. All
sequences of rotations in three dimensions can be expressed
as one rotation about a single axis [31]. The geodesic metric
on SO(3) defined by

(28)

! -1
d(Ry, Ry) = arccos (tr(R1R2)>

2

is the magnitude of angle of rotation about this axis [32].
Where RE is known, the error of rotation R is defined as
d(R, RE). Position error is defined as the average Euclidian
distance between true global coordinates of Agent B, and
estimated global coordinates over the K measurements taken,
divided (to secure normalisation) by the average distance
between aircraft.

_ S llpB () — pgt (k)]
Kd

error (pg:l ) (29)
Aq _ -7 By n

where pg' (k) = R (pg® —t), and d represents the average

distance between aircraft.

B. Monte Carlo Simulations using SDP+0O and ML

In this subsection, we summarise the results of Monte
Carlo simulations to evaluate the expected performance of the
SDP+0O method and the SDP+O+ML method.

Pairs of realistic trajectories for Agents A and B are
generated in accordance with a series of assumptions related
to real flight dynamics listed in the extended version of this
paper [22]. To represent the drift in the INS of Agent B,
rotations ﬁj were generated by independently sampling
three Euler angles «, 3,y where «, 3,7 ~ U(—m,7), and
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s0s translations tﬁf = [t1,t9,t3] " were generated by sampling
s06 entries t1, to, t3 ~ U(—600, 600).

sz As discussed in Section IV-E, we assume the standard devi-
e0s ations of measurement error in the body-fixed frame B, satisfy
w9 0p = 40g. We vary the DOA error by og € {0.1°, 1°, 2°}.
s10 Errors in the order of oo = 0.1° are representative of an
e11 optical sensor, whereas the larger errors are representative of
s12 antenna-based (RF) measurements.

613 For each value of o¢g studied, and for each number of DOA
614 measurements K from 2 to 20, we simulated 100 different
e15 realistic UAV trajectory pairs (Agent A and Agent B). For
s16 each trajectory pair, localisation was performed using the
o7 SDP+O method, and metrics d(R, RE) and error(Pj*),
18 were calculated. The ML method was then used to enhance the
19 result of the SDP+O method, and the error metrics were re-
s20 calculated. After all simulations were completed, the median®
ezt values of d(R, RE) and error(P4") for both the SDP+O
22 and SDP+O+ML methods were calculated across each set 100
e2s simulations. The results of the Monte Carlo simulations are
e24 plotted in Figures 4 and 5.
s Median d(R, RB) and error(P4") errors decrease signif-
e2s icantly when 4 or more DOA measurements (K) are used.
27 Both metrics show an asymptotic limit to performance across
e2s all three noise levels as the number of DOA measurements (/)
&0 increases. Median rotation error d(R, RE) and error(pa')
s30 appear to exhibit similar asymptotic performance gain over the
st number of DOA measurements K up to 20.

es2 C. Unsuitable trajectories for localisation

e33  In this subsection we are motivated to identify trajectories
e3¢ of Agents A and B which may lead to multiple solutions for
e3s R and t in the noiseless case, and consequently unreliable
e3s solutions in the noisy case. We discuss three scenarios:

e7 1) Agent A’s motion is planar

es 2) The agents’ trajectories produce equal DOA measure-
639 ments with respect to Agent B’s INS frame.

s0 3) Agent A’s trajectory is a point or straight line

e+t The first scenario is an example of conditional unsuitability.
sz When Agent A’s motion is planar, matrix A in Eqn. (11)
es3 is rank deficient, and a unique solution cannot be obtained
44 by solving Eqn. (11). In contrast, by introducing quadratic
s4s constraints through SDP, the correct solution is obtained.

s The second and third scenarios are examples where the
e+7 inability to discern a unique solutions is not because of an
es algorithmic deficiency, but rather because there is geometric
es0 ambiguity arising from unsuitable trajectories.

eso  In the second scenario, DOA measurements expressed with
est respect to the local INS frame Bs are equal at each time
es2 instant. This is illustrated by an example in Fig. 6. A sim-
es3 ilar problem is expected in the far field case, where the
es+ distance between Agents A and B is sufficiently large that
ss5s DOA measurements become approximately equal despite each
es6 agent’s trajectory remaining arbitrary. In these cases, multiple
es7 solutions exist for tﬁf.

°For asymmetric distributions such as nonnegative errors (which may
contain extreme outliers), the median is a superior measure of central tendency
than the mean [33], [34].

300

-100 50 100 150 200
x coordinate [m]

Fig. 6. Illustration of trajectory pairs leading to equal DOA measurements
(disconnected blue lines) over K measurement instants. SDP+O+ML algo-
rithm unable to discern distance from which Agent B (solid blue) observes
Agent A (red).
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Fig. 7. Tllustration of straight line motion of Agent A (red, trajectory given by
(z(t),y(t), 2(t)) = (100¢t,0,0)). Agent B (blue) observes Agent A through
an unaligned INS frame. In this figure, the solid blue trajectory is the actual
path of Agent B. However, each dotted blue line is also an admissible solution.

In the third scenario, Agent A’s trajectory appears similar
from multiple perspectives. As a consequence, the localisation
process may be incapable of determining the direction from
which DOA measurements were taken with respect to the
global frame. For example, if Agent A follows a straight
line, the same set of recorded DOA measurements may be
achieved by viewing Agent A from any direction in a circle
perpendicular to Agent A’s motion and centred at Agent A’s
trajectory. This is illustrated in Figure 7.

VII. THREE-AGENT EXTENSION AND BEYOND

This section explores a novel extension to the SDP+O+ML
algorithm to localise two GPS-denied agents efficiently. Triv-
ially, each GPS-denied aircraft could measure DOA of the
GPS-equipped agent’s broadcast of its position, and use the
SDP+O+ML algorithm independently of each other to estimate
drift in their local frames. We are motivated to determine
whether a trilateral'® algorithm may be more resilient to DOA
measurement error and/or unsuitable trajectories, and may
perhaps require fewer DOA measurements from each aircraft
than simply repeating the two-agent localisation algorithm
with each GPS-denied agent. We introduce a GPS-denied
Agent C, whose local INS frame has rotation and translation
parameters Rgi and ti’j with respect to the global frame. We
conclude this section by discussing the challenges involved in
generalising our findings to arbitrary n-agent networks.

101n this section we relax the condition preventing GPS-denied agents from
broadcasting signals
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es3 A. Measurement process in three-agent network

e« 1o describe measurements within a network of more than

e85 twWO agents, one minor notation change is required: DOA mea-

ess surements made by Agent I towards Agent J will henceforth

es7 be expressed in the INS coordinate frame of Agent I as (0‘1]2 ,

688 qbfz). At each time instant &k in the discrete-time process:

o Agents A and B interact as per the two-agent case.

o Agent C receives the broadcast of Agent A’s global

691 coordinates, and measures this signal’s DOA with respect
to frame C, which we denote (08, ¢2,).

o Agent C broadcasts its position with respect to its INS
frame pgz, as well as the measurement (Géz, qbé2) to
Agent B, who also takes a DOA measurement towards
Agent C. This measurement is denoted (0%2, d)%).

689

690

692
693
694
695

696

o7 All DOA and position measurements are relayed to Agent B,
esos Who performs the localisation algorithm discussed below.

e99 B. Forming system of linear equations in three-agent network

700 In Section III, the linear system AW = b was formed using
701 relations stemming from the collinearity of the vector (pﬁ2 —
702 pgz), and the vector in the direction of DOA measurement
708 (9§2, ¢§2). We refer to this system of equations as Sap,
70+ Where the subscript references the agents involved. A similar
705 system S ac can be constructed independently using Agent
706 C’'s DOA measurements towards Agent A and pgz.

In the three-agent network, Agent B also measures the
708 DOA towards Agent C’s broadcast, with respect to Agent
700 B’s local INS frame B,. To exploit the collinearity of the
710 vectorial representation of the DOA measurement (9%2, (b%z)
711 and (pg2 — pgz), an expression for the position coordinate
712 vector pg2 is required. As achieved in equations (7) and (8)
713 in Section III, this position may be expressed in terms of
714 entries of Rg; and tg;, and the linear system Spc may
715 be defined similarly to Sap in Section III. Systems Sap,
76 Sac and Spc can be assembled, forming a large system of
717 linear equations S 4pc with 36 scalar unknowns (9 rotation
718 matrix entries and 3 translation vector entries per agent pair).
At each time instant k for k = 1, ..., K, two linear equations
70 are obtained from each DOA measurement of (6%, ¢3.),
2 (08, ¢¢,) and (9%, qbgz). As a result, 6 linear equations
722 are obtained at each time instant. Performing the measurement
723 process 6 times (K = 6) produces 36 linear equations. Gener-
724 ically, in the noiseless case, a unique solution therefore exists
72s for K = 6 time instants. When using only the LS method, the
726 three-agent localisation problem requires the same minimum
727 number of time instants as solving two independent two-agent
728 localisation problems concurrently, yet requires more DOA
720 measurements than the sum of the number of measurements
730 required in two separate two-agent localisation problems.
731 However, quadratic relationships between Rﬁf, tgf, Rgi,
732 ti";, Rgi and tgi significantly reduce the required number
733 of time instants (/) at which measurements occur.

707

719

734 C. Quadratic constraints in three-agent network and example

735 It is possible, using the rotational and translational relation-

73 ships between the three frames, to obtain a total of 99 linearly
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Fig. 8. Illustration of example of successful localisation within three-agent
network in noiseless case for K = 3

independent quadratic constraints for a system of 36 unknown
variables. Exact details are given in [22] for the interested
reader, but omitted here for spatial considerations.

Rank-relaxed semidefinite programming can be used to
obtain solutions for each INS frame’s rotation and translation
with respect to the global frame, and the Orthogonal Procrustes
algorithm can be applied to each individual resulting rotation
matrix. This defines the three-agent SDP+O method.

To illustrate successful localisation in the three-agent case,
realistic trajectories were defined for Agents A, B and C
for K = 3 time instants. These are presented in Figure
8. Only Agents B and C were assigned random INS frame
rotations and translations as prescribed in Section VI, and
the three-agent SDP+O method was used to obtain estimates
of RB f tﬁf, Rii and ti?. Each directional measurement
consists of two scalar measurements, and hence a total of
3 x 2 x K = 18 scalar measurements were obtained. Locali-
sation was successful, which demonstrates that only 3 time
instants (K = 3) are required for the three-agent SDP+O
algorithm to obtain the exact solution in the noiseless case.
Earlier, it was established that a minimum of 6 time instants
were required to achieve a unique solution in the three-agent
case using LS+0, and a minimum of 4 time instants were
required to achieve a unique solution in the two-agent case
using SDP+0. We have therefore demonstrated that a trilateral
algorithm can achieve localisation of two GPS-denied agents
in fewer measurement time instants than applying the bilateral
algorithm twice independently. We note that this extension to
three-agents is not applicable if the measurement graph is a
tree because measurements are required between each pair of
agents within the three-agent network.

D. Challenges in extension to n-agent networks

Advancing to arbitrary m-agent networks requires results
on bearing rigidity of a graph. Though results exist when
all agents share the same reference frame [35]-[37], there
is no such result when, as in our problem, agents have
different reference frames. We note that algebraic conditions
for 3D bearing localisability based on the rank of generalised
versions of the rigidity matrix have recently been identified
in [25] and [23]. There is also the risk of an explosion in
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777 computational complexity due to a potentially exponential
778 increase in the number of variables (entries of rotation matrices
779 and translation vectors) that need to be determined. Further
780 discussion can be found in [22].

781 VIII. CONCLUSION

752 This paper studied a cooperative localisation problem be-
783 tween a GPS-denied and a GPS-enabled UAV. A localisa-
784 tion algorithm was developed in two stages. We showed
75 that a linear system of equations built from six or more
78 measurements yielded the localisation solution for generic
787 trajectories. The second stage considered the inclusion of
788 quadratic constraints due to rotation matrix constraints. Rank
780 relaxed semidefinite programming was used, and the solution
790 adjusted using the Orthogonal Procrustes algorithm. This gave
791 the algorithm greater resilience to noisy measurements and
792 unsuitable trajectories. Maximum likelihood estimation was
703 then used to improve the algorithm’s results. Simulations were
704 presented to illustrate the algorithm’s performance. Finally,
705 an approach was outlined to extend the two-agent solution
796 to a three agent network in which only one agent has global
797 localisation capacity. Future work may include implementation
798 on aircraft to perform localisation in real time and validate
799 our Monte Carlo analysis on measurement noise. We also
so0 hope to extend our trilateral algorithm to larger networks by
sot establishing further theory on bearing rigidity when agents do
so2 not share a common reference frame.
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