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Cooperative Localisation of a GPS-Denied UAV
using Direction-of-Arrival Measurements

James S. Russell, Mengbin Ye, Brian D.O. Anderson, Hatem Hmam, Peter Sarunic

Abstract—A GPS-denied UAV (Agent B) is localised through1

INS alignment with the aid of a nearby GPS-equipped UAV2

(Agent A), which broadcasts its position at several time instants.3

Agent B measures the signals’ direction of arrival with respect to4

Agent B’s inertial navigation frame. Semidefinite programming5

and the Orthogonal Procrustes algorithm are employed, and6

accuracy is improved through maximum likelihood estimation.7

The method is validated using flight data and simulations. A8

three-agent extension is explored.9

Index Terms—Localisation, INS alignment, Direction-of-10

Arrival Measurement, GPS-Denied, Semidefinite Programming11

12

I. INTRODUCTION13

Unmanned aerial vehicles (UAVs) play a central role in14

many defence reconnaissance and surveillance operations. For-15

mations of UAVs can provide greater reliability and coverage16

when compared to a single UAV. To provide meaningful data17

in such operations, all UAVs in a formation must have a18

common reference frame (typically the global frame). Tra-19

ditionally, UAVs have access to the global frame via GPS.20

However, GPS signals may be lost in urban environments21

and enemy controlled airspace (jamming). Overcoming loss22

of GPS signal is a hot topic in research [1], and offers a range23

of different problems in literature [2], [3].24

Without access to global coordinates, a UAV must rely on its25

inertial navigation system (INS). Stochastic error in on-board26

sensor measurements causes the INS frame to accumulate drift.27

At any given time, drift can be characterised by a rotation and28

translation with respect to the global frame, and is assumed to29

be independent between UAVs in a formation. INS frame drift30

therefore cannot be modelled deterministically. Information31

from global and INS frames must be collected in order to32

determine the drift between frames and align the INS frame33

with the global frame. We describe this process as cooperative34

localisation when multiple vehicles interact for this purpose.35

Signals of opportunity (SOP) such as AM/FM radio, digital36

television or cellular communication can serve as references to37

assist in characterizing the misalignment between navigation38
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frames of multiple agents. Recent contributions in this field 39

include [4]–[6]. In contexts where SOP are either unavailable 40

or unreliable, various measurement types such as distance 41

between agents and direction of arrival of a signal (we 42

henceforth call DOA1) can be used for this process. In the 43

context of UAVs, additional sensors add weight and consume 44

power. As a result, one generally aims to minimise the number 45

of measurement types required for localisation. This paper 46

studies a cooperative approach to localisation using DOA 47

measurements. 48

When two or more GPS-enabled UAVs can simultaneously 49

measure directions with respect to the global frame towards 50

the GPS-denied UAV, the location of the GPS-denied UAV is 51

given by the point minimising distances to the half-line loci de- 52

rived from the directional measurements [7]–[9]. Operational 53

requirements may limit the number of nearby GPS-enabled 54

UAVs to one single agent. We therefore seek a solution which 55

does not require simultaneous measurements to a single point. 56

When the GPS-denied agent is able to simultaneously mea- 57

sure directions with respect to its local INS frame towards mul- 58

tiple landmarks with known global coordinates, triangulation- 59

based measurements can be used to achieve localisation. This 60

problem is studied in three-dimensional space in [10], and 61

in two-dimensional space in [11], [12]. If only one landmark 62

bearing can be measured at any given time, a bearing-only 63

SLAM algorithm may be used to progressively construct a 64

map of the environment on the condition each landmark is 65

seen at least twice. Alignment of a GPS-denied agent’s INS 66

frame could then be achieved by determining the rotation 67

and translation between the map’s coordinate frame and the 68

global coordinate frame. In practice, landmark locations may 69

be unknown, or there may be no guarantee they are stationary 70

or permanent, and hence we require a localisation algorithm 71

which is independent of landmarks in the environment. Iter- 72

ative filtering methods such as the Extended Kalman Filter 73

(EKF) are often required when drift is significant between 74

updates. In [13], an EKF is used to estimate drift in the 75

context of marine localisation. In our problem context the drift 76

is sufficiently slow to be modelled as stationary over short 77

periods. We are motivated to formulate a localisation algorithm 78

which does not involve an iterative filtering technique. 79

Without reliance on landmarks, the only directional mea- 80

surements available are between the GPS-denied and the 81

GPS-enabled UAVs. Given the small size of their airframes 82

with respect to their separation distance, these UAVs are 83

1A bearing generally describes a scalar measurement between two points
in a plane, whereas a direction-of-arrival is a vector measurement between
two points in three-dimensional ambient space (as considered in this paper).
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modelled as point agents, and therefore one single directional84

measurement is available at any given time. A stationary target85

is localised by an agent using bearing-only measurements in86

two-dimensional space [14], [15], and in three-dimensional87

space [16]. A similar problem is considered in [17], in which88

a mobile source is localised using measurements received at a89

stationary receiver using an iterative filtering technique. How-90

ever, for operational reasons, the agent requiring localisation91

may be unable to broadcast signals, or agents involved may92

not be allowed to remain stationary. In such instances, the93

approaches in [14]–[17] are not suitable. Commonly used94

computer vision techniques such as structure from motion95

[18] require directional measurements towards multiple sta-96

tionary points or towards a stationary point from multiple97

known positions. This is not possible in our problem context.98

The measurement and motion requirements we are imposing99

therefore represent a significant technical challenge. One al-100

gorithm satisfying all the requirements above was proposed101

in [19], in which two agents perform sinusoidal motion in102

two-dimensional ambient space. Directional measurements are103

used to obtain the distance between Agents A and B, but104

localisation of B in the global frame is not achieved.105

Motivated by interest from Australia’s Defence Science and106

Technology Group, this paper seeks to address the problem of107

localising a GPS-denied UAV with the assistance of a GPS-108

enabled UAV, which we will call Agent B and A respec-109

tively. Both agents move arbitrarily in three-dimensional space.110

Agent B navigates using an INS frame. Agent A broadcasts111

its position in the global coordinate frame at discrete instants112

in time. For each broadcast, Agent B is able to take a DOA113

measurement towards Agent A.114

The problem setup and the solution we propose are both115

novel. In particular, while the literature discussed above con-116

siders certain aspects from the following list, none consider117

all of the following aspects simultaneously:118

• The network consists of only two mobile agents (and119

is therefore different to the sensor network localisation120

problems in the literature).121

• There is no a priori knowledge or sensing of a stationary122

reference point in the global frame.123

• Both UAVs are free to execute arbitrary motion in three-124

dimensional space, with the exception of a small number125

of geometrically unsolvable trajectory pairs2.126

• Cooperation occurs through unidirectional signal trans-127

mission. Agent A broadcasts its global position (acquired128

using GPS) to Agent B (which is GPS-denied).129

When performing non-routine operations in unfamiliar en-130

vironments, any combination of these four aspects may be131

required with short notice. As a result, we are motivated132

to determine a reliable general solution to the cooperative133

localisation problem.134

In [20], this problem is studied in two-dimensional space135

using bearing measurements, but the added (third) dimension136

in our paper means 2 scalar quantities, not 1, are obtained per137

2No constraints exist on the trajectories other than the physical limitations
of the aircraft. See Section VI-C for further details on unsuitable trajectories.

measurement. This significantly complicates the problem, thus 138

requiring new techniques to be introduced. 139

In our proposed solution, we localise Agent B by identifying 140

the relationship between the global frame (navigated by Agent 141

A) and the inertial navigation frame of Agent B. The rela- 142

tionship is identified by solving a system of linear equations 143

for a set of unknown variables. The nature of the problem 144

means quadratic constraints exist on some of the variables. To 145

improve robustness against noisy measurements, we exploit 146

the quadratic constraints and use semidefinite programming 147

(SDP) and the Orthogonal Procrustes algorithm to obtain an 148

initial solution for maximum likelihood (ML) estimation; this 149

combined approach is a key novel contribution of this paper. 150

We evaluate the performance of the algorithm by (i) using a 151

real set of trajectories and (ii) using Monte Carlo simulations. 152

Sets of unsuitable trajectories are identified, in which our 153

proposed method cannot feasibly obtain a unique solution. 154

Finally, we explore an extension of the algorithm to a three- 155

agent network in which two agents are GPS-denied. 156

The rest of the paper is structured as follows. In Section II 157

the problem is formalised. In Section III a localisation method 158

using a linear equation formulation is proposed. Section IV 159

extends this method to semidefinite programming to produce 160

a more robust localisation algorithm. In Section V, a maximum 161

likelihood estimation method is presented to refine results 162

further. Section VI presents simulation results to evaluate the 163

performance of the combined localisation algorithm. Section 164

VII extends the localisation algorithm to a three-agent net- 165

work. The paper is concluded in Section VIII. 3
166

II. PROBLEM DEFINITION 167

Two agents, which we call Agent A and Agent B, travel 168

along arbitrary trajectories in three-dimensional space. Agent 169

A has GPS and therefore navigates with respect to the global 170

frame. Because Agent B cannot access GPS, it has no ability 171

to self-localise in the global frame, but can self-localise and 172

navigate in a local inertial frame by integrating gyroscope and 173

accelerometer measurements. 174

This two-agent localisation problem involves 4 frames as 175

in Figure 1. The importance of each frame, and its use in 176

obtaining the localisation, will be made clear in the sequel. 177

Frames are labelled as follows: 178

• The global frame is A1 (available only to Agent A), 179

• the local INS frame of Agent B is denoted by B2, 180

• the body-centred INS frame of Agent B (axes of frames 181

B2 and B3 are parallel by definition)is denoted B3, 182

• the body-fixed frame of Agent B is denoted B4. 183

The expression of directional measurements with respect 184

to the INS frame in vector form motivates the definition of 185

the body-centred frame B3. Later, we find that differences in 186

3Early sections in this paper (covering up to and including employment
of Orthogonal Procrustes algorithm) appeared in less detail in the conference
paper [21]. Additions have been made to these sections - the literature review
is now more extensive, and the role of different coordinate frames is much
more explicitly set out; the algorithm’s performance is now validated on real
flight trajectories. Analysis of unsuitable trajectories, ML refinement and the
three-agent extension are further extensions beyond [21].
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body-fixed frame azimuth and elevation measurement noise187

motivate the use of B4 for maximum likelihood estimation.188

Note that agents A and B are denoted by a single letter,189

whereas frames A1 and Bi for i = 2,3,4 are denoted by a190

letter-number pair. Let pI0
J (k) denote the position of Agent J191

in coordinates of frame I0 at the kth time instant. Let uJ , vJ ,192

wJ denote Agent J’s coordinates in the global frame (A1), and193

xJ , yJ , zJ denote Agent J’s coordinates in Agent B’s local194

INS frame (B2). It follows that:195

pA1

A (k) = [uA(k), vA(k), wA(k)]> (1)196

pB2

B (k) = [xB(k), yB(k), zB(k)]> (2)197
198

The rotation and translation of Agent B’s local INS frame199

(B2) with respect to the global frame (A1) evolves via drift.200

Although this drift is significant over long periods, frame B2201

can be modelled as stationary with respect to frame A1 over202

short intervals4. During these short intervals, the following203

measurement process occurs multiple times. At each time204

instant k, the following four activities occur simultaneously205

:206

• Agent B records its own position in the INS frame207

pB2

B (k).208

• Agent A records and broadcasts its position in the global209

frame pA1

A (k).210

• Agent B receives the broadcast of pA1

A (k) from Agent A,211

and measures this signal’s DOA using instruments fixed212

to the UAV’s fuselage. This directional measurement is213

therefore naturally referenced to the body-fixed frame B4.214

• Agent B’s attitude, i.e. orientation with respect to the INS215

frames B2 and B3 is known. An expression for the DOA216

measurement referenced to the axes INS frames B3 can217

therefore be easily calculated.218

A DOA measurement, referenced to a frame with axes219

denoted x, y, z, is expressed as follows:220

• Azimuth (θ): angle formed between the positive x axis221

and the projection of the free vector from Agent B222

towards Agent A onto the xy plane.223

• Elevation (φ): angle formed between the free vector from224

Agent B towards Agent A and xy plane. The angle is225

4If loss of GPS is sustained for extensive periods we recommend using the
algorithm in this paper as an initialisation for a recursive filtering algorithm.

Fig. 1. Illustration of coordinate frames in a two-dimensional space

positive if the z component of the unit vector towards 226

Agent A is positive. 227

The problem addressed in this paper, namely the localisation 228

of Agent B, is achieved if we can determine the relationship 229

between the global frame A1 and the local INS frame B2. 230

This information can be used to determine global coordinates 231

of Agent B at each time instant k: 232

pA1

B (k) = [uB(k), vB(k), wB(k)]> (3) 233

Passing between the global frame (A1) and the local INS 234

frame of Agent B (B2) is achieved by a rotation of frame axes 235

(defined by a rotation matrix, call it RB2

A1
) and translation tB2

A1
236

of frame. For instance, the coordinate vector of the position 237

of Agent A referenced to the INS frame of Agent B is: 238

pB2

A (k) = RB2

A1
pA1

A (k) + tB2

A1
(4) 239

We therefore have 240

pA1

B (k) = RB2>
A1

(pB2

B (k)− tB2

A1
) (5) 241

where RB2>
A1

= RA1

B2
and −RB2>

A1
tB2

A1
= tA2

B2
. The locali- 242

sation problem can be reduced to solving for RB2

A1
∈ SO(3) 243

with entries rij and tB2

A1
∈ R3 with entries ti. 244

The matrix RB2

A1
is a rotation matrix if and only if 245

RB2

A1
RB2>

A1
= I3 and det(RB2

A1
) = 1. As will be seen in the 246

sequel, these constraints are equivalent to a set of quadratic 247

constraints on the entries of RB2

A1
. In total there are 12 entries 248

of RB2

A1
and tB2

A1
to be found as we work directly with rij . 249

III. LINEAR SYSTEM METHOD 250

This section presents a linear system (LS) method to solving 251

the localisation problem. Given enough measurements, the 252

linear system approach can achieve exact localisation when 253

using noiseless DOA measurements, so long as Agents A and 254

B avoid a set of unsuitable trajectories (which are detailed 255

in Section VI-C) in which rank-deficiency is encountered. 256

Building on this, Section IV introduces non-linear constraints 257

to the linear problem defined in this section to improve 258

accuracy in the presence of noise. 259

A. Forming a system of linear equations 260

The following analysis holds for all k instants in time, 261

hence we drop the argument k. The DOA measurement can be 262

represented by a unit vector pointing from Agent B to Agent 263

A. This vector is defined by azimuth and elevation angles θ 264

and φ referenced to the local INS frame B2, and its coordinates 265

in the frame B2 are given by: 266

q̂(θ, φ) = [q̂1, q̂2, q̂3] = [cos θ cosφ, sin θ cosφ, sinφ]> (6) 267

Define q̄ .
= ‖pB2

A − pB2

B ‖ as the Euclidean distance between 268

Agent A and Agent B (which is not available to either agent). 269

Scaling to obtain the unit vector q̂ gives 270

q̂(θ, φ) =
1

q̄

[
xA − xB , yA − yB , zA − zB

]>
(7) 271
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Applying equation (4) yields:272 q̂1

q̂2

q̂3

 =
1

q̄

r11uA + r12vA + r13wA + t1 − xB
r21uA + r22vA + r23wA + t2 − yB
r31uA + r32vA + r33wA + t3 − zB

 (8)273

The left hand vector is calculated directly from DOA mea-274

surements. Cross-multiplying entries 1 and 3 of both vectors275

eliminates the unknown q̄, and rearranging yields:276

(uAq̂3)r11 + (vAq̂3)r12 + (wAq̂3)r13 − (uAq̂1)r31

− (vAq̂1)r32 − (wAq̂1)r33 + (q̂3)t1 − (q̂1)t3

= (q̂3)xB − (q̂1)zB

(9)277

278

Similarly, from the second and third entries in (8)279

(uAq̂3)r21 + (vAq̂3)r22 + (wAq̂3)r23 − (uAq̂2)r31

− (vAq̂2)r32 − (wAq̂2)r33 + (q̂3)t2 − (q̂2)t3

= (q̂3)yB − (q̂2)zB

(10)280

281

Notice that both equations (9) and (10) are linear in the282

unknown rij and ti terms. Given a series of K DOA mea-283

surements (each giving φ(k), θ(k)), (9) and (10) can then be284

used to construct the following system of linear equations:285

AΨ = b , A ∈ R2K×12 (11)286

where A, b are completely known, containing θ(k), φ(k), pA1

A287

and pB2

B . The 12-vector of unknowns Ψ is defined as:288

Ψ = [r11 r12 r13 ... r31 r32 r33 t1 t2 t3]> (12)289

Entry-wise definitions of A and b are provided in an extended290

version of this paper [22]. These entries of Ψ can be used to291

reconstruct the trajectory of Agent B in the global frame using292

(5), and therefore solving (11) for Ψ constitutes as a solution293

to the localisation problem. In the noiseless case, if K ≥ 6294

and A is of full column rank, equation (11) will be solvable.295

B. Example of LS method in noiseless case296

We demonstrate the linear system method using trajectories297

performed by aircraft operated by the Australian Defence298

Science and Technology Group. Positions of both Agent A299

and B within the global frame and Agent B within the INS300

frame were measured by on-board instruments, whereas we301

generated a set of calculated DOA values using the above302

recorded real measurements.303

These trajectories are plotted in Figure 2. We will make304

additional use of this trajectory pair in the noisy measurement305

case presented in Section IV, and in the maximum likelihood306

estimation refinement of the noisy case localisation result in307

Section V. Extensive Monte Carlo simulations demonstrating308

localisation for a large number of realistic5 flight trajectories309

are left to the noisy measurement case.310

The quantities RB2

A1
and tB2

A1
, and the DOA measurements311

are tabulated in the extended version of this paper [22]. Using312

(11), RB2

A1
and tB2

A1
were obtained exactly for the given flight313

trajectories; the solution is the green line in Fig. 2.314

5By realistic, we mean that the distance separation between successive
measurements is consistent with UAV flight speeds and ensures the UAV does
not exceed an upper bound on the turn/climb rate. Further detail is provided
in the extended version of this paper [22].

IV. SEMIDEFINITE PROGRAMMING METHOD 315

This section presents a semidefinite programming (SDP) 316

method for localisation, extending from the linear system (LS) 317

approach presented in Section III. This method reduces the 318

minimum required number of DOA measurements to obtain a 319

unique solution, and is more robust than LS in terms of DOA 320

measurement noise and unsuitable trajectories are reduced. 321

Results from this section will serve as an initialisation of our 322

localisation method, which will be optimised using maximum 323

likelihood estimation in Section V. 324

Rank-relaxed SDP is used to incorporate the quadratic con- 325

straints on certain entries of Ψ arising from the properties of 326

rotation matrices. The inclusion of rotation matrix constraints 327

in SDP problems has been used previously to jointly estimate 328

the attitude and spin-rate of a satellite [23], and in camera pose 329

estimation using SFM techniques when directional measure- 330

ments are made to multiple points simultaneously [24]. We 331

now apply this technique in a novel context to achieve INS 332

alignment of Agent B, sufficient for its localisation. Finally, 333

the Orthogonal Procrustes algorithm (O) is used to compensate 334

for the rank relaxation of the SDP. 335

A. Quadratic constraints on entries of Ψ 336

Rank-relaxed semidefinite programming (in the presence 337

of inexact or noise contaminated data) benefits from the 338

inclusion of quadratic constraint equations. We now identify 339

21 quadratic and linearly independent constraint equations on 340

entries of RB2

A1
, which all appear in Ψ in (12). Recall the 341

orthogonality property of rotation matrices; by computing each 342

entry of RB2

A1
RB2

A1

>
and setting these equal to entries of I3, 343

and denoting the ith entry of Ψ as ψi, we define constraints: 344

Ci = ψ2
3i−2 + ψ2

3i−1 + ψ2
3i − 1 = 0, i = 1, 2, 3 (13a) 345

C4 = ψ1ψ4 + ψ2ψ5 + ψ3ψ6 = 0 (13b) 346

C5 = ψ1ψ7 + ψ2ψ8 + ψ3ψ9 = 0 (13c) 347

C6 = ψ4ψ7 + ψ5ψ8 + ψ6ψ9 = 0 (13d) 348
349

To simplify notation we call Cj:k the set of constraints Ci for 350

i = j, .., k. Similarly, by computing each entry of RB2

A1

>
RB2

A1
351

and setting these equal to I3, we define constraints C7:12, 352

which are omitted due to space limitations, and notice that 353

the sets C1:6 and C7:12 are clearly equivalent. 354

Further constraints are required to ensure det(RB2

A1
) = 1. 355

Cramer’s formula states that RB2

A1

−1
= adj(RB2

A1
)/ det(RB2

A1
), 356

where adj(RB2

A1
) denotes the adjugate matrix of RB2

A1
. Orthog- 357

onality of RB2

A1
implies RB2

A1
= adj(RB2

A1
)>. By computing 358

entries of the first column of Z = RB2

A1
− adj(RB2

A1
)> and 359

setting these equal to 0, we define constraints C13:15: 360

C13 = ψ1 − (ψ5ψ9 − ψ6ψ8) = 0 (14a) 361

C14 = ψ4 − (ψ3ψ8 − ψ2ψ9) = 0 (14b) 362

C15 = ψ7 − (ψ2ψ6 − ψ3ψ5) = 0 (14c) 363
364

Similarly, by computing the entries of the second and third 365

columns of Z and setting these equal to 0, we define con- 366

straints C16:18 and C19:21 respectively. Due to space limita- 367

tions, we omit presenting them. The complete set C1:21
.
= CΨ 368
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constrains RB2

A1
to be a rotation matrix. The set of constraints369

is not an independent set, e.g. C1:6 is equivalent to C7:12. The370

benefits of the inclusion of dependent constraints is discussed371

further in Section IV-C.372

Due to these additional relations, localisation requires az-373

imuth and elevation measurements at a minimum of 4 instants374

only (K = 4), as opposed to 6 instants required in Section III.375

B. Formulation of the Semidefinite Program376

The goal of the semidefinite program is to obtain:377

argmin
Ψ

||AΨ− b|| (15)378

subject to CΨ. Equivalently, we seek argminΨ ||AΨ − b||2379

subject to CΨ. We define the inner product of two matrices U380

and V as 〈U ,V 〉 = trace(UV >). One obtains381

||AΨ− b||2 = 〈P ,X〉 (16)382
383

where P =
[
A b

]> [
A b

]
and X = [Ψ> −1]>[Ψ> −1]384

and X is a rank 1 positive-semidefinite matrix6. The con-385

straints CΨ can also be expressed in inner product form. For386

i = 1, ..., 21, Ci = 0 is equivalent to 〈Qi,X〉 = 0 for387

some easily determined Qi. Solving for Ψ in (15) is therefore388

equivalent to solving for:389

argmin
Ψ
〈P ,X〉 (17)390

X ≥ 0 (18)391

rank(X) = 1 (19)392

X13,13 = 1 (20)393

〈Qi,X〉 = 0 i = 1, ..., 21 (21)394
395

C. Rank Relaxation of Semidefinite Program396

This semidefinite program is a reformulation of a quadrati-397

cally constrained quadratic program (QCQP). Computationally398

speaking, QCQP problems are generally NP-hard. A close399

approximation to the true solution can be obtained in polyno-400

mial time if the rank 1 constraint on X , i.e. (22), is relaxed.401

A full explanation of semidefinite relaxation, and discussion402

on its applicability can be found in [25]. This relaxation403

significantly increases the dimension of the SDP solver’s co-404

domain. A notable consequence is that dependent constraints405

which are linearly independent over R within CΨ, such as sets406

C1:6 and C7:12, cease to be redundant when expressed as in407

(21). Hypothesis testing using extensive simulations confirmed408

with confidence above 95% that inclusion of quadratically409

dependent constraints improves the localisation accuracy.410

The solution X obtained through rank-relaxed SDP is411

typically not a rank 1 matrix when DOA measurements are412

noisy. However the largest singular value of X is generally413

multiple orders of magnitude greater than the second largest414

singular value. A rank 1 approximation to X , which we call415

X̂ , is obtained by evaluating the singular value decomposition416

of X , then setting all singular values except the largest equal417

6All matrices M which can be expressed in the form of M = v>v where
v is a row vector are positive-semidefinite matrices.

to zero. From X̂ , one can then use the definition of X 418

to obtain the approximation of Ψ, which we will call Ψ̂. 419

Entries ψ̂i for i = 10, 11, 12 can be used immediately to 420

construct an estimate for tB2

A1
, which we will call t. Entries 421

ψ̂i for i = 1, ..., 9 will be used to construct an intermediate 422

approximation of RB2

A1
, which we call R̂, and which we will 423

refine further. 424

D. Orthogonal Procrustes Algorithm 425

Due to the relaxation of the rank constraint (19) on X , it is 426

no longer guaranteed that entries of Ψ̂ strictly satisfy the set of 427

constraints CΨ. Specifically, R̂ may not be a rotation matrix. 428

The Orthogonal Procrustes algorithm is a commonly used tool 429

to determine the closest orthogonal matrix (denoted R) to a 430

given matrix, R̂. This is given by R = argminΩ ||Ω− R̂||F , 431

subject to ΩΩ> = I , where ||.||F is the Frobenius norm. 432

When noise is high, the above method occasionally returns 433

R such that det(R) = −1. In this case, we employ a special 434

case of the Orthogonal Procrustes algorithm [26] to ensure we 435

obtain rotation matrices and avoid reflections by flipping the 436

last column in one of the unitary matrix factors of the singular 437

value decomposition. 438

The matrix R and vector t are the final estimates of RB2

A1
439

and tB2

A1
using semidefinite programming and the Orthogonal 440

Procrustes algorithm. The estimate of Agent B’s position in 441

the global frame is pA1

B = R
>

(pB2

B − t). 442

For convenience, we use SDP+O to refer to the process 443

of solving a rank-relaxed semidefinite program, and then 444

applying the Orthogonal Procrustes algorithm to the result. 445

E. Example of SDP+O method with noisy DOA measurements 446

In this subsection, we apply the SDP+O method to perform 447

localisation in a noisy DOA measurement case using the real 448

trajectory example from Section III. A popular practice for 449

performing DOA measurements from Agent B towards Agent 450

A is to use fixed RF-antennas and/or optical sensors on board 451

Agent B’s airframe. The horizontal RF antenna typically has 452

a larger aperture (generally around 4 times, owing to the 453

physical layout of a fixed-wing UAV) than the vertical RF 454

antenna. As a result, errors in azimuth and elevation measure- 455

ments, referenced to the body-fixed frame B4, are modelled 456

by independent zero-mean Gaussian distributed variables with 457

different standard deviations, denoted σΘ and σΦ. 458

Strictly speaking, physical sensors return azimuth and ele- 459

vation measurements in the interval [0◦, 360◦), which means 460

that each noise is expected to follow a von Mises distribution, 461

which generalises a Gaussian distribution to a circle [27]. 462

In our case, we approximate the von Mises distribution by 463

a Gaussian distribution because noise is sufficiently small. 464

In this example we assume body-fixed frame azimuth and 465

elevation measurement errors have standard deviations of 466

σΘ = 0.5◦ and σΦ = 2◦. 467

Samples of Gaussian error with these standard deviations 468

were added to body-fixed frame (B4) elevation and azimuth 469

measurements calculated as described in Section III. These 470

were converted to DOA measurements referenced to the INS 471
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frame B3. The SDP+O algorithm was used to obtain R and t472

using the agents’ position coordinates in their respective nav-473

igation frames and the noisy DOA values. The reconstructed474

trajectory pA1

B is plotted in Figure 2 with the dotted black line.475

Position data of the reconstructed trajectory pA1

B are tabulated476

in [22].477

Remark 1. The accuracy of the SDP+O solution in the478

noiseless case was observed to deteriorate when entries in the479

true translation vector (ti for i = 1, 2, 3) are large. This is due480

to a form of inherent regularisation in the SDP solver Yalmip481

[28]. When the approximate magnitude of the norm ||tB2

A1
||482

is known, one approach is to introduce a scaling coefficient483

before entries ti for i = 1, 2, 3 in equations (9) and (10) equal484

to the approximate norm of ||tB2

A1
||.485

In [22], we discuss a controlled shifting algorithm which486

may be applied if an approximation of tB2

A1
is known a priori.487

V. MAXIMUM LIKELIHOOD ESTIMATION488

This section presents a maximum likelihood estimation489

(ML) method to optimise estimates R and t which were490

obtained using the SDP+O algorithm. The MLE refinement491

uses the DOA measurements expressed with respect to the492

body-fixed frame B4, and the known values for σΘ and σΦ493

describing the distribution of DOA errors. A non-linear log-494

likelihood function for DOA measurement error is derived,495

and because the minimum of the function cannot be found496

analytically, we employ an iterative gradient descent approach.497

A. Likelihood Function Derivation498

In this section, DOA values are always expressed with499

respect to the body-fixed frame of Agent B (B4) to exploit the500

independence of azimuth and elevation measurement errors.501

This is a change from Sections III and IV, in which DOA502

measurements were generally expressed with respect to the503

local INS frame B2. The transformation between coordinate504

frames B2 and B4 is known to Agent B.505

Suppose body-fixed frame measurements of azimuth and 506

elevation Θ(k) and Φ(k) are contaminated by zero mean 507

Gaussian noise as follows: 508

• Θ̃(k) = Θ(k) + ξΘ, ξΘ ∼ N(0, σΘ
2) 509

• Φ̃(k) = Φ(k) + ξΦ, ξΦ ∼ N(0, σΦ
2) 510

To calculate noiseless azimuth and elevation measurements, 511

an expression must be derived for the position of Agent A in 512

Agent B’s body-fixed frame B4. Observe that 513

pB4
A (k) = RB4

B2
(k)(RB2

A1
pA1

A (k) + tB2

A1
) + tB4

B2
(k) (22) 514

515

To help distinguish coordinate reconstructions based on es- 516

timates of R and t from true coordinates, reconstructed 517

positions will be explicitly expressed as functions of R and t: 518

pB4
A (k,R, t) = RB4

B2
(k)(RpA1

A (k) + t) + tB4

B2
(k) (23) 519

520

By definition of azimuth and elevation in Section II: 521

θB4
(k,R, t) = arcsin

( pB4
A (k,R, t)z

||pB4
A (k,R, t)||

)
(24) 522

φB4
(k,R, t) = atan2

(
pB4
A (k,R, t)y , p

B4
A (k,R, t)x

)
(25) 523

524

where pB4
A = [pB4

A x
,pB4

A y
,pB4

A z
]>. The likelihood function 525

for the set of DOA measurements is defined as follows: 526

L(pA1

A ,pB2

B |R, t) 527

=
1

σΘ

√
2π

K∏
k=1

exp
[
− (θ̃B4

(k)− θB4
(k,R, t))2

2σ2
Θ

]
528

× 1

σΦ

√
2π

K∏
k=1

exp
[
− (φ̃B4

(k)− φB4
(k,R, t))2

2σ2
Φ

]
(26) 529

530

It can be shown that maximising L(pA1

A ,pB2

B |R, t) is equiv- 531

alent to minimising 532

K∑
k=1

[ (θ̃B4
(k)− θB4

(k,R, t))2

2σ2
Θ

+
(φ̃B4

(k)− φB4
(k,R, t))2

2σ2
Φ

]
(27) 533

B. Optimisation using gradient descent 534

Possible parametrisations for the rotation matrix R include 535

Euler angles, quaternion representation and Rodrigues rotation 536

formula. In this paper we parametrise R by a 3-vector of Euler 537

angles, and t is a 3-vector. This defines a mapping from R6 → 538

R, t, and the gradient of (27) can be expressed as a vector in 539

R6. The log-likelihood function is non-linear with respect to 540

this R6 parametrisation of R and t. As a result, this function 541

may be non-convex, meaning the equation D logL = 0 may 542

have multiple solutions, with only one of these being the global 543

minimum. A gradient descent algorithm is therefore initialised 544

using the result of the SDP+O method, and is used to converge 545

towards a local minimum, which it is hoped will be the global 546

minimum or close to it. In our investigations, we employed a 547

back-tracking line search algorithm discussed in [29]. External 548

solvers such as Yalmip using second-order methods may yield 549

faster convergence than a hard-coded approach. 550
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C. Example of ML refinement of SDP+O solution551

In this subsection, we demonstrate the benefits of max-552

imum likelihood estimation. ML was performed using the553

real flight trajectory data presented in Section III. The re-554

sulting reconstructed trajectory pB2

A is presented in Figure555

2 as the solid black line, and its coordinates are tabulated556

in [22]. Additionally, in this section we present the decrease557

and convergence in the value of frame rotation error and558

reconstructed position error7 over successive iterations of the559

gradient descent algorithm in Figures 3a and 3b.560

The error in INS frame rotation is reduced by over 60%,561

and the reconstructed position error of Agent B is reduced562

by over 70% by iterating the gradient descent algorithm.563

This represents a significant gain with respect to the SDP+O564

estimate, which served as the initialisation point of the gradient565

descent. Monte Carlo simulations covering a large set of566

trajectories are presented in Section VI.567
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Fig. 3. Improvement in rotation and reconstructed position error using ML
for real trajectory pair

VI. SIMULATION RESULTS568

In this section, we use extensive simulations of realistic8
569

flight trajectories to evaluate the effects of errors in body-fixed570

frame azimuth and elevation measurements, and then discuss571

trajectories which make localisation difficult.572

In the preliminary conference paper [21] found that the573

LS+O method collapsed when small amounts of noise were574

introduced to DOA measurements, whereas rotation error575

increased linearly with respect to DOA measurement noise576

when using the SDP+O method. The SDP+O method is the577

superior method, and there is no reason to employ LS+O.578

7Metrics are defined in the sequel, see Section VI-A below.
8These trajectories satisfy a set of assumptions detailed in [22].
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A. Metrics for error in R and t 579

This paper uses the geodesic metric for rotation [30]. All 580

sequences of rotations in three dimensions can be expressed 581

as one rotation about a single axis [31]. The geodesic metric 582

on SO(3) defined by 583

d(R1,R2) = arccos

(
tr(R>1 R2)− 1

2

)
(28) 584

is the magnitude of angle of rotation about this axis [32]. 585

Where RB
A is known, the error of rotation R is defined as 586

d(R,RB
A). Position error is defined as the average Euclidian 587

distance between true global coordinates of Agent B, and 588

estimated global coordinates over the K measurements taken, 589

divided (to secure normalisation) by the average distance 590

between aircraft. 591

error(pA1

B ) =

∑
k ||p

A1

B (k)− pA1

B (k)||
Kd

(29) 592

where pA1

B (k) = R
>

(pB2

B − t), and d represents the average 593

distance between aircraft. 594

B. Monte Carlo Simulations using SDP+O and ML 595

In this subsection, we summarise the results of Monte 596

Carlo simulations to evaluate the expected performance of the 597

SDP+O method and the SDP+O+ML method. 598

Pairs of realistic trajectories for Agents A and B are 599

generated in accordance with a series of assumptions related 600

to real flight dynamics listed in the extended version of this 601

paper [22]. To represent the drift in the INS of Agent B, 602

rotations RB2

A1
were generated by independently sampling 603

three Euler angles α, β, γ where α, β, γ ∼ U(−π, π), and 604
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translations tB2

A1
= [t1, t2, t3]> were generated by sampling605

entries t1, t2, t3 ∼ U(−600, 600).606

As discussed in Section IV-E, we assume the standard devi-607

ations of measurement error in the body-fixed frame B4 satisfy608

σΦ = 4σΘ. We vary the DOA error by σΘ ∈ {0.1◦ , 1◦ , 2◦}.609

Errors in the order of σΘ = 0.1◦ are representative of an610

optical sensor, whereas the larger errors are representative of611

antenna-based (RF) measurements.612

For each value of σΘ studied, and for each number of DOA613

measurements K from 2 to 20, we simulated 100 different614

realistic UAV trajectory pairs (Agent A and Agent B). For615

each trajectory pair, localisation was performed using the616

SDP+O method, and metrics d(R,RB
A) and error(PA1

B ),617

were calculated. The ML method was then used to enhance the618

result of the SDP+O method, and the error metrics were re-619

calculated. After all simulations were completed, the median9
620

values of d(R,RB
A) and error(PA1

B ) for both the SDP+O621

and SDP+O+ML methods were calculated across each set 100622

simulations. The results of the Monte Carlo simulations are623

plotted in Figures 4 and 5.624

Median d(R,RB
A) and error(PA1

B ) errors decrease signif-625

icantly when 4 or more DOA measurements (K) are used.626

Both metrics show an asymptotic limit to performance across627

all three noise levels as the number of DOA measurements (K)628

increases. Median rotation error d(R,RB
A) and error(pA1

B )629

appear to exhibit similar asymptotic performance gain over the630

number of DOA measurements K up to 20.631

C. Unsuitable trajectories for localisation632

In this subsection we are motivated to identify trajectories633

of Agents A and B which may lead to multiple solutions for634

R and t in the noiseless case, and consequently unreliable635

solutions in the noisy case. We discuss three scenarios:636

1) Agent A’s motion is planar637

2) The agents’ trajectories produce equal DOA measure-638

ments with respect to Agent B’s INS frame.639

3) Agent A’s trajectory is a point or straight line640

The first scenario is an example of conditional unsuitability.641

When Agent A’s motion is planar, matrix A in Eqn. (11)642

is rank deficient, and a unique solution cannot be obtained643

by solving Eqn. (11). In contrast, by introducing quadratic644

constraints through SDP, the correct solution is obtained.645

The second and third scenarios are examples where the646

inability to discern a unique solutions is not because of an647

algorithmic deficiency, but rather because there is geometric648

ambiguity arising from unsuitable trajectories.649

In the second scenario, DOA measurements expressed with650

respect to the local INS frame B2 are equal at each time651

instant. This is illustrated by an example in Fig. 6. A sim-652

ilar problem is expected in the far field case, where the653

distance between Agents A and B is sufficiently large that654

DOA measurements become approximately equal despite each655

agent’s trajectory remaining arbitrary. In these cases, multiple656

solutions exist for tB2

A1
.657

9For asymmetric distributions such as nonnegative errors (which may
contain extreme outliers), the median is a superior measure of central tendency
than the mean [33], [34].
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In the third scenario, Agent A’s trajectory appears similar 658

from multiple perspectives. As a consequence, the localisation 659

process may be incapable of determining the direction from 660

which DOA measurements were taken with respect to the 661

global frame. For example, if Agent A follows a straight 662

line, the same set of recorded DOA measurements may be 663

achieved by viewing Agent A from any direction in a circle 664

perpendicular to Agent A’s motion and centred at Agent A’s 665

trajectory. This is illustrated in Figure 7. 666

VII. THREE-AGENT EXTENSION AND BEYOND 667

This section explores a novel extension to the SDP+O+ML 668

algorithm to localise two GPS-denied agents efficiently. Triv- 669

ially, each GPS-denied aircraft could measure DOA of the 670

GPS-equipped agent’s broadcast of its position, and use the 671

SDP+O+ML algorithm independently of each other to estimate 672

drift in their local frames. We are motivated to determine 673

whether a trilateral10 algorithm may be more resilient to DOA 674

measurement error and/or unsuitable trajectories, and may 675

perhaps require fewer DOA measurements from each aircraft 676

than simply repeating the two-agent localisation algorithm 677

with each GPS-denied agent. We introduce a GPS-denied 678

Agent C, whose local INS frame has rotation and translation 679

parameters RC2

A1
and tC2

A1
with respect to the global frame. We 680

conclude this section by discussing the challenges involved in 681

generalising our findings to arbitrary n-agent networks. 682

10In this section we relax the condition preventing GPS-denied agents from
broadcasting signals
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A. Measurement process in three-agent network683

To describe measurements within a network of more than684

two agents, one minor notation change is required: DOA mea-685

surements made by Agent I towards Agent J will henceforth686

be expressed in the INS coordinate frame of Agent I as (θJI2 ,687

φJI2 ). At each time instant k in the discrete-time process:688

• Agents A and B interact as per the two-agent case.689

• Agent C receives the broadcast of Agent A’s global690

coordinates, and measures this signal’s DOA with respect691

to frame C2, which we denote (θAC2
, φAC2

).692

• Agent C broadcasts its position with respect to its INS693

frame pC2

C , as well as the measurement (θAC2
, φAC2

) to694

Agent B, who also takes a DOA measurement towards695

Agent C. This measurement is denoted (θCB2
, φCB2

).696

All DOA and position measurements are relayed to Agent B,697

who performs the localisation algorithm discussed below.698

B. Forming system of linear equations in three-agent network699

In Section III, the linear system AΨ = b was formed using700

relations stemming from the collinearity of the vector (pB2

A −701

pB2

B ), and the vector in the direction of DOA measurement702

(θAB2
, φAB2

). We refer to this system of equations as SAB ,703

where the subscript references the agents involved. A similar704

system SAC can be constructed independently using Agent705

C’s DOA measurements towards Agent A and pC2

C .706

In the three-agent network, Agent B also measures the707

DOA towards Agent C’s broadcast, with respect to Agent708

B’s local INS frame B2. To exploit the collinearity of the709

vectorial representation of the DOA measurement (θCB2
, φCB2

)710

and (pB2

C − pB2

B ), an expression for the position coordinate711

vector pB2

C is required. As achieved in equations (7) and (8)712

in Section III, this position may be expressed in terms of713

entries of RB2

C2
and tB2

C2
, and the linear system SBC may714

be defined similarly to SAB in Section III. Systems SAB ,715

SAC and SBC can be assembled, forming a large system of716

linear equations SABC with 36 scalar unknowns (9 rotation717

matrix entries and 3 translation vector entries per agent pair).718

At each time instant k for k = 1, ...,K, two linear equations719

are obtained from each DOA measurement of (θAB2
, φAB2

),720

(θAC2
, φAC2

) and (θC2

B2
, φC2

B2
). As a result, 6 linear equations721

are obtained at each time instant. Performing the measurement722

process 6 times (K = 6) produces 36 linear equations. Gener-723

ically, in the noiseless case, a unique solution therefore exists724

for K = 6 time instants. When using only the LS method, the725

three-agent localisation problem requires the same minimum726

number of time instants as solving two independent two-agent727

localisation problems concurrently, yet requires more DOA728

measurements than the sum of the number of measurements729

required in two separate two-agent localisation problems.730

However, quadratic relationships between RB2

A1
, tB2

A1
, RC2

A1
,731

tC2

A1
, RC2

B2
and tC2

B2
significantly reduce the required number732

of time instants (K) at which measurements occur.733

C. Quadratic constraints in three-agent network and example734

It is possible, using the rotational and translational relation-735

ships between the three frames, to obtain a total of 99 linearly736
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independent quadratic constraints for a system of 36 unknown 737

variables. Exact details are given in [22] for the interested 738

reader, but omitted here for spatial considerations. 739

Rank-relaxed semidefinite programming can be used to 740

obtain solutions for each INS frame’s rotation and translation 741

with respect to the global frame, and the Orthogonal Procrustes 742

algorithm can be applied to each individual resulting rotation 743

matrix. This defines the three-agent SDP+O method. 744

To illustrate successful localisation in the three-agent case, 745

realistic trajectories were defined for Agents A, B and C 746

for K = 3 time instants. These are presented in Figure 747

8. Only Agents B and C were assigned random INS frame 748

rotations and translations as prescribed in Section VI, and 749

the three-agent SDP+O method was used to obtain estimates 750

of RB2

A1
, tB2

A1
, RC2

A1
and tC2

A1
. Each directional measurement 751

consists of two scalar measurements, and hence a total of 752

3× 2×K = 18 scalar measurements were obtained. Locali- 753

sation was successful, which demonstrates that only 3 time 754

instants (K = 3) are required for the three-agent SDP+O 755

algorithm to obtain the exact solution in the noiseless case. 756

Earlier, it was established that a minimum of 6 time instants 757

were required to achieve a unique solution in the three-agent 758

case using LS+O, and a minimum of 4 time instants were 759

required to achieve a unique solution in the two-agent case 760

using SDP+O. We have therefore demonstrated that a trilateral 761

algorithm can achieve localisation of two GPS-denied agents 762

in fewer measurement time instants than applying the bilateral 763

algorithm twice independently. We note that this extension to 764

three-agents is not applicable if the measurement graph is a 765

tree because measurements are required between each pair of 766

agents within the three-agent network. 767

D. Challenges in extension to n-agent networks 768

Advancing to arbitrary n-agent networks requires results 769

on bearing rigidity of a graph. Though results exist when 770

all agents share the same reference frame [35]–[37], there 771

is no such result when, as in our problem, agents have 772

different reference frames. We note that algebraic conditions 773

for 3D bearing localisability based on the rank of generalised 774

versions of the rigidity matrix have recently been identified 775

in [25] and [23]. There is also the risk of an explosion in 776
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computational complexity due to a potentially exponential777

increase in the number of variables (entries of rotation matrices778

and translation vectors) that need to be determined. Further779

discussion can be found in [22].780

VIII. CONCLUSION781

This paper studied a cooperative localisation problem be-782

tween a GPS-denied and a GPS-enabled UAV. A localisa-783

tion algorithm was developed in two stages. We showed784

that a linear system of equations built from six or more785

measurements yielded the localisation solution for generic786

trajectories. The second stage considered the inclusion of787

quadratic constraints due to rotation matrix constraints. Rank788

relaxed semidefinite programming was used, and the solution789

adjusted using the Orthogonal Procrustes algorithm. This gave790

the algorithm greater resilience to noisy measurements and791

unsuitable trajectories. Maximum likelihood estimation was792

then used to improve the algorithm’s results. Simulations were793

presented to illustrate the algorithm’s performance. Finally,794

an approach was outlined to extend the two-agent solution795

to a three agent network in which only one agent has global796

localisation capacity. Future work may include implementation797

on aircraft to perform localisation in real time and validate798

our Monte Carlo analysis on measurement noise. We also799

hope to extend our trilateral algorithm to larger networks by800

establishing further theory on bearing rigidity when agents do801

not share a common reference frame.802
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