
International Journal of Performability Engineering, Vol. 8, No. 2, March, 2012, pp. 131-140.
©RAMS Consultants
Printed in India

* Corresponding author’s email: jherrmann@gmail.com 131

Computing Performability for Wireless Sensor Networks

JOHANNES U. HERRMANN1,*, SIETENG SOH1, SURESH RAI2, and
MATJAŽ ŠKORJANC3

1Curtin University of Technology, Perth, Australia
2Louisiana State University, Baton Rouge, L.A., USA
3University of Maribor, Maribor, Slovenia

(Received on December 6, 2010, revised on March 25 and May 5, 2011)

Abstract: The performability of a wireless sensor network (WSN) can be measured using
a range of metrics, including reliability (REL) and expected hop count (EHC). EHC
assumes each link has a delay value of 1 and devices have no delay or vice versa, which is
not necessarily appropriate for WSNs. This paper generalizes the EHC metric into an
expected message delay (EMD) that permits arbitrary delay values for both links and
devices. Further, it proposes a method based on Augmented Ordered Multivariate
Decision Diagram (OMDD-A) that can be used to compute REL, EHC and EMD for
WSN with both device and link failures. Simulation results on various networks show the
benefits of the OMDD-A approach.

Keywords: Expected hop count, expected message delay, multivariate decision diagram,

network reliability, sensor network

1. Introduction

 Wireless sensor networks (WSNs) have recently been proposed for a range of
applications including military, environmental, and security [13]. The advantages of using
a WSN include rapid deployment, co-operation between network nodes and individual
nodes being relatively inexpensive [2]. However, wireless sensor devices have limited
power and are prone to failure, which means that devices must be deployed densely to
allow the network to recover from the loss of one or more nodes. The directed diffusion
paradigm [3] includes an event acquisition mechanism that is robust to node and
communication failures. Ideally communications should pass through as few nodes as
possible in order to conserve power and maximize system responsiveness. Thus the
performability of WSNs must be addressed.
 AboElFotoh, et al. [4] employed the factoring theorem to compute EHC for
networks with fallible vertices but perfect edges, and showed that the problem is #P-Hard.
An improved method utilizing a Boolean technique was presented by Soh, et al. [5].
Recently, Herrmann et al. [6] introduced an Augmented Ordered Binary Decision
Diagram (OBDD-A) to compute REL and EHC for networks with this failure model. In
contrast, Brooks, et al. [7] assume networks with fallible edges but perfect vertices, and
used random graph models to approximate EHC for mobile WSN. Li, et al. [8] extended
this failure model for multiple edge states, and proposed a recursive method to compute
EHC (called message delay in [8]) for WSN.
 One may use the method in [9] to extend the solutions in [4, 5, 7, 8] for networks
with both fallible edges and nodes. However, the complexity of these algorithms increases
significantly in this case. For example, for a network represented by graph G=(V,E) the
method in [5] must compute the metric from 2(|V|+|E|) potential paths instead of 2|V| and the
complexity of the algorithm by Li, et al. [8] increases from 2|E| to 2|V|+|E|. Therefore, the

132 Johannes U. Herrmann, Sieteng Soh, Suresh Rai and Matjaž Škorjanc

extension further limits the feasibility of algorithms [5, 8] to compute EHC for larger
networks.

This paper generalizes the performability metric EHC to Expected Message Delay
(EMD) to permit arbitrary delay for both vertices and edges. EMD is thus a better measure
of network goodness than the EHC, which assumes a delay of one for every edge (vertex)
and zero for every vertex (edge). Note that the EMD defined in Section 2.3 is different
from the message delay addressed in [4, 8]; this message delay is identical to EHC, which
is defined in [6].

Table 1: Definition of Key Terms

Term Definition

Ω A network state. The special case Ωg represents a success state in which
communication requirements between the source and target vertices of a network
have been met.

D(Ωg) The delay of X. If X is a component, D(X) is the delay incurred when a message
traverses this component. When X is a success state Ωg, D(Ωg) is the least amount
of delay experienced between a message leaving a source and arriving at the target
given the available minpaths in Ωg.

ej An edge of graph G = (V,E) – ej=(vf,vt)∈E.

minpath A loop-free path of active network devices and communication links (or the
vertices and edges representing them) between the source and the target.

Pr (X) The probability of X occurring. If X is a network state, then Pr(X) is the probability
that the network is in that state. If X is a network component (or the graph
representation of such a component) then Pr(X) is the probability that the
component is available.

reaching
path

A loop-free path of active network devices and communication links (or the
vertices and edges representing them) between the source and some other device
(and vertex).

vk A vertex of graph G = (V,E) – vk∈V.

width The width of a network is defined as .

Herrmann et al [10] proposed an Augmented Ordered Multivariate Decision Diagram
(OMDD-A) to compute EHC for networks with fallible vertices and edges. The use of a
multivariate decision diagram allows the computation of both vertex and edge failure with
a complexity relating to |V|, the number of devices of the network instead of the number
of communication links |E|, or |V|+|E|. This paper extends the OMDD-A to compute the
EMD.

The layout of this work is as follows: Section 0 introduces the concepts and
background for this work. We detail our proposed solution – the OMDD-A for solving
EMD in Section 3. We apply the implementation of the OMDD-A algorithm to a number
of networks in Section 4 and discuss the results. Finally, Section 5 concludes the paper.
For clarity, we list typical notations and their definitions in Table 1.

2. Background

2.1 Network Model and Terminology

We model a WSN using a graph G(V,E), where each vertex in V represents a computer,
router or sensor, and every edge in E denotes a wireless communication medium between

 Computing Performability for Wireless Sensor Networks 133

the vertices. Communication occurs by a source device (e.g., a sensor) sending a message
towards a target device (e.g., a monitoring station). A vertex vk (or edge ej) is said to be
active with probability Pr(vk) (or Pr(ej)) if it is known to be functioning and inactive (or
failed) with probability 1-Pr(vk) (or 1-Pr(ej)) if it is not functioning. We assume that
component failures are statistically independent. Due to space restrictions, this paper
considers only networks with a single source and a single target.

The network model considers delay values for both edges and vertices. The delay of
an edge ej or vertex vk (written as D(ej) and D(vk), respectively) are small positive integers
(1≤ D(ej),D(vk) ≤ 10). Further, the network vertices are ordered in increasing distance
from the source, and edges are ordered in increasing order of their least-valued endpoint
[6].

Estimation of component delay is not within the scope of this work. In general,
queuing models can be utilized and one may use average delay estimates, obtained over
short or long periods. Further details can be found in [11].

2.2 Reliability and Expected Hop Count

Let Ω represent a state of a network G(V,E) when all vertices in VΩ⊆V and edges in
EΩ⊆E are active and all other vertices and edges are inactive. REL is computed from the
set of all success states Ωg⊆Ω. A state is successful if a path of active vertices from VΩ
and edges from EΩ connects the source and target. Such a path is called a minpath.

In addition to the success state information, computing EHC requires the length of
each Ωg denoted as 1≤L(Ωg)≤n-1. L(Ωg) is the number of edges of the shortest minpath;
that is the one with the least edges traversed. EHC is computed as:

()
∑ Ω

∑ Ω×Ω
=

)Pr(

)Pr()(L
EHC

g

gg (1)

Note that Pr(Ωg)= () ()∏∏∏∏
∉∈∉∈ gigigigi E

i

E

i

V

i

V

i ervrvr
eevv

)Pr(e-1)(P)(P-1)(P , and that the

denominator in Eq. (1) is REL. The REL and EHC definitions for fallible edges and
vertices are slightly different to those in [6], which are for WSN with fallible vertices
only.

2.3 Expected Message Delay (EMD)

EMD and EHC consider both vertices and edges to have delay values; but these values are
arbitrary for EMD, while for EHC they are fixed to one for edges and zero for vertices. It
is unrealistic to assume that an arbitrary network has equal delays for all edges, and that
processing (or buffering) delays in communication devices are negligible.

The EMD of a network is calculated in exactly the same manner as the EHC except
for using D(Ωg), in place of L(Ωg). Define D(Ωg), the delay of the network success state
Ωg, as the delay of the shortest minpath; that is the sum of the delays of all edges and
vertices in this minpath. Formula (1) is modified for EMD as follows:

()

∑ Ω

∑ Ω×Ω
=

)Pr(

)Pr()(D
EMD

g

gg (2)

As with EHC, it can be seen that the denominator of (2) is the sum of all success states,
and, hence, gives REL. EMD is a generalization of EHC, and the time complexity is at
least #P-Hard.

134 Johannes U. Herrmann, Sieteng Soh, Suresh Rai and Matjaž Škorjanc

Although (1) and (2) are similar, the use of EHC instead of EMD requires the
following assumptions.

(a) The processing time for receiving and passing on the message is equal in all devices
of the WSN [4]. This assumption fails when devices have different degree (number
of possible other devices broadcasting to them) since this influences the load on the
device processor. In a well structured network such as a grid this may be largely true,
but in randomly deployed WSN it is generally not the case. In such a case even the
average delay may be significantly different.

(b) It is assumed that communication has no delay, or at best that communication
between network devices has a constant delay for all devices. This assumption does
not allow for different communication media; for example two devices that can
communicate either with radio or infra-red signals. When such devices are within
line-of-sight they communicate using infra-red but, if this is interrupted, they can fall
back to the radio communication mode. In the graph model, this would be
represented by two edges between the same vertices, with both edges having
different delays and failure probabilities.

(c) Finally, EHC also assumes that communications from different nodes never interfere
with each other, which is unrealistic in most routing schemes.

Note that the EMD model assumes each individual delay of a vertex or edge as
constant. This is reasonable since computing the expected message delay should make use
of the average delay of each component – and it is this average that we consider to be
constant.

2.4 Ordered Multivariate Decision Diagrams

The Ordered Binary Decision Diagram (OBDD) assumes that the variables being decided
are binary and are considered one at a time. An Ordered Multivariate Decision Diagram
(OMDD) considers multiple variables at a time and thus has fewer nodes as compared to
the OBDD [12]. Further, if the variables are binary (such as network devices that are
either fully functional or entirely failed) several can be grouped together to form a non-
binary variable. See [10] for a detailed comparison between the OBDD and OMDD.

Preliminary work [10] introduced an augmented OMDD (called OMDD-A) to
compute REL and EHC for WSN with fallible edges and vertices. However, it does not
solve EMD and related issues discussed in Section 3.

3. OMDD-A for Computing REL and EMD

3.1 Introduction

The Augmented OMDD contains network state information stored in each diagram node.
The details of the information vary with the application; for REL only the network state
and state probability are stored, while for EHC and EMD one requires information on path
length stored as well. There are several advantages of storing this information. First,
because network state probabilities are stored in each node, the diagram only needs to be
traversed once. This means each node can be discarded after it has been processed to
create its child nodes. Second, like the OBDD-A [6], this additional network state
information allows the computation of other metrics, such as EHC [10].

 Computing Performability for Wireless Sensor Networks 135

3.2 The Mathematical Model of the OMDD-A

Let Ψ(N,G) denote an OMDD-A for the graph G(V,E), where N is the set of OMDD-A
nodes {N0, N1, …,

12 ||N
−E

} with N0 being the root node. Ψ(N,G) is divided into n=|V|

levels. Each level j of Ψ(N,G) represents a decision on the state of vj and all edges
grouped with it; we say that a node on this level decides variable vj and call it the decision

variable (DV) for Ni.
The OMDD-A is an OMDD in which each of the nodes Ni∈N contains a pair [VIi,

CIi] representing information used to calculate REL and EMD. The vertex information,
VIi, is a set of components {M0, M1, …, M|VI|-1} storing path delay information. Each
component Mx=({(v1, D

x
1), (v2, D

x
2), …, (vk, D

x
k)}, Px) in VIi contains a probability Px and

a set of ordered pairs of the form (va, Dx
a), where Dx

a is the delay of the lowest delay
reaching path from va to the target vertex v0. If the set of pairs in Mx contains (vj, D

x
j) then

we write (vj, D
x
j)∈Mx. VIi has the property that if one component of VIi contains a pair

with vertex vj then all components of VIi contain a pair with this vertex.
Given a node Ni, let VSi = {va: (va, L

x
a)∈Mx and Mx∈VIi} be the set of undecided

vertices that have known reaching paths from v0. As an example, for N2=[VI2={({(v1,1),
(v2,1)}, 0.9)}, CI1={ }], we have VS2={v1, v2}. Note that decided vertices need not be
stored since the position of the node in Ψ(N,G) implicitly encodes all decisions made at
higher levels.

Definition: Components Mx and My are equal (Mx = My) if for every pair
(va,D

x
a)∈Mx there exists (va,D

y
a)∈My such that Dx

a=Dy
a.

The condition information, CIi, is a set of conditions {C0, C1, … C|CI|-1} of the form
Cx=(va,vb,Dx) where Dx is the delay of the lowest delay path of active vertices and edges
from vertex va to vertex vb. Each condition represents a path through the network that can
be taken if its endpoint is reached.

Let Pr(D) denote the probability that a message takes a path with delay D. OMDD-A
finds successful components; thus Pr(D) can be calculated. When the generation of
OMDD-A nodes is complete all Pr(D) are used to calculate REL and EMD.

3.3 Variable Order and Grouping

The depth of an OMDD can be reduced by using variable partitioning [16]. For the
OMDD-A, we group each vertex vk with its adjacent edges. Both directions of undirected
edges are considered at one time; hence, any edge will only be in one variable grouping.
An undirected edge is grouped with the first endpoint in the ordering; the use of
conditions ensures that it only has to be considered once. Because each edge fails
independently of the other edges and of vk, each node that decides a group consisting of vk
with d adjacent ungrouped edges has 2d positive (vk functioning) and 2d negative (vk
failed).

Each of the 2d negative child nodes represent identical network states and hence all
child nodes will be merged after being created. The OMDD-A generates a single negative
child node that represents the result of the merging process and hence generates 2d
positive child nodes and one negative child node, for a total of 2d+1 child nodes for every
parent node.

3.4 OMDD-A Node Type

An OMDD-A node is terminal (non-terminal) if it does not (does) have children. We
process each non-terminal node in a breadth-first fashion to better take advantage of node
isomorphism. When a terminal node represents only states that meet the requirements for

136 Johannes U. Herrmann, Sieteng Soh, Suresh Rai and Matjaž Škorjanc

the problem, it is a success node. The REL and EMD are computed from the reaching path
probabilities contained in all success nodes. When the requirements cannot be met from
the current state it is a failure node, which has no sub-trees containing a success node.
Detecting failure nodes earlier avoids generating redundant information. When VSi=∅,
node Ni must be a failure node; however, a failure node Ni may have a non-empty VSi,
and detecting such nodes is computationally expensive. Hence the OMDD-A algorithm
detects Ni failed only if VSi=∅.

A node Ni for which VSi∩S≠∅ (i.e. at least one minpath has been found) is not
necessarily successful since the EMD calculation requires the shortest path to the target.
Because one component of a node might be successful while another is not, individual
components are tested for success. A success component representing a state of delay D is
removed from the node and its probability is added to Pr(D).

A component is detected as successful only if it has at least one minpath and if the
shortest of these minpaths has delay D, no other reaching paths to a non-target vertex can
have delay less than D-1. If a reaching path exists with lower delay it could conceivably
reach a target vertex with less delay than the current quickest minpath. The TestNode
function in [10] can be used to determine if a node is failed, successful, or non-terminal.

3.5 Node Isomorphism

Definition: Nodes Ni and Nj at the same level in Ψ(N,G) are isomorphic if VSi=VSj and
CIi=CIj. We write Ni = Nj.

Isomorphic nodes have equivalent sub-trees. Nodes Ni and Nj can be merged into one
node that keeps the VS and CI of merged nodes; without loss of generality, let the
resulting node be Ni, if i<j. When two isomorphic nodes Ni and Nj are merged, the sets of
components, VIi and VIj, are combined as follows. Every component Mx that is in only
one node is present in the merged node with probability unchanged. If Mx∈VIi and
My∈VIj are identical, then the merged node has a component that is identical to Mx but
has probability Px+Py. Note that since VSi=VSj we are guaranteed that for every pair (va,
Dx

a)∈Mx there exists a pair (va, Dy
a)∈My; for component equality it remains only to

compare Dx
a and Dy

a for every va∈VSi.
Note that node isomorphism is not affected by the components; hence two nodes that

are isomorphic when computing REL may be expected to be isomorphic when computing
EHC or EMD. However since the conditions for EHC and EMD have length and delay
respectively, some nodes found to be isomorphic for REL will not be found to be
isomorphic for EHC and EMD. Hence it is expected that the number of nodes generated
for REL is less than the number of nodes generated for EHC and EMD.

3.6 The OMDD-A Algorithm

The OMDD-A algorithm for EMD, shown in Figure 1, is an extension of that given in
[10] for computing EHC. A root node is created, representing information on the source
vertex with a path of delay 0. This node is added to QC, the queue of nodes on level k of
the diagram and decision variable k is initialized to 0. Level k of the diagram decides
vertex vk and a subset Ek⊆E of edges. Each edge in Ek has the form (vk, vx) or {vk, vx} (i.e.
it is a directed or undirected edge adjacent to vk) with x>k. Any such edge with x<k will
have been already grouped with vx and an edge with x=k is a self-loop and is ignored since
it does not affect either the reliability of delay of the network.

 Computing Performability for Wireless Sensor Networks 137

Figure 1: The OMDD-A function for EMD

Each iteration of the algorithm first checks whether QC is empty. If so, k is
incremented and the contents of QN, the queue for level k+1, are moved onto QC. If QN is
also empty the algorithm terminates. Otherwise the first node is removed from QC and
processed to give a number of child nodes, which are added to QN.

When processing a node Ni, deciding vertex vk and edges Ek⊆E the positive children,
those with at least one active variable, are created first. The first of these represents the

case when vk is active and all edges in Ek are inactive. The next child nodes
represent the case when vk is active and some combination of the edges in Ek are active.
The last child node – the negative child – represents the case when vk is inactive as
discussed in Section 3.3.

For each positive node, Nj, the state information in the child is updated based on
those components that are active. If an active edge el=(vf,vt) leads to a vertex not yet in
VSi then it is added to VSj and a condition (vf,vt,D(el)) is added to CIj. All components of
Ni are copied to Nj and the path information in them updated to take advantage of the
active edge(s). This step is identical to that in [10] except that paths are updated by adding
the delays of the vertex and edge instead of simply increasing their hop count by one.

Once all updates are completed for Nj, all information regarding vk is removed and
no longer needs to be stored. The only exception is if vk is a target vertex; information on
targets must be kept. For the negative child, the only change is the deletion of information
on vk since there are no new paths available. Since the parent node is no longer needed,
the negative child is created directly from the parent to save processing time.

When each child node is complete, it is tested to see whether it is a terminal node. A
negative child is discarded while a positive child has its component information stored
and is then discarded. Non-terminal nodes are compared against all nodes on QN; if an
isomorphic node exists both are merged and otherwise the child is added to the end of QN.

When QC and QN are empty (indicating that the main loop has completed), the
probabilities of each delay, Pr(D), are used to compute REL and EMD as discussed in
Section 2.3. Note that if D(e) = 1 ∀e∈E and D(vy)=0 ∀v∈V then the EMD computed is

1. Create root node N0
2. QC←{N0}, QN←{ }, k←0, and Pr(D) ← 0 (for all D).
3. if QC = { } then
4. if QN = { }then
5. calculate REL and EMD from Pr(D)
6. else
7. QC ← QN, QN ← { } and k ← k + 1.
8. remove the first node Ni from QC.
9. for each combination of unmarked edges (vk,vx), (vx,vk), or {vk,vx}:
10. create child N based on active and inactive edges
11. if N is non-terminal then
12. for each Nq∈QN do
13. if N is isomorphic to Nq then
14. merge Nq and N.
15. break.
16. if no Nq was isomorphic to N then
17. add N to QN.
18. else if N is a success node then
19. store results in Pr(D).
20. Modify N for the case where vk is inactive.
21. Repeat steps 11-19 above for this N.
22. goto 3.

138 Johannes U. Herrmann, Sieteng Soh, Suresh Rai and Matjaž Škorjanc

identical to the EHC for the network, since the EHC is a special case of the more general
EMD metric.

4. Simulation Results and Discussions

 We have implemented the OMDD-A algorithm in C (compiled using Microsoft
Visual Studio 2008) and executed it on a PC (i7 920 2.67GHz processors, 8MB L3 cache,
4GB RAM) on Windows 7. Although our approach can compute REL and EMD of WSN
with any vertex and edge success probabilities, we set Pr(vk)=Pr(ek)=0.9 in these
simulations, following accepted practice in the literature. All delays are allocated
randomly as numbers between 1 and 8 inclusive using a Perl script. For each simulation,
the run time in CPU seconds is averaged over five runs; the performance was similar
enough on each run for this to give a suitable indication.

The network files were generated by a Perl script and sorted according to the
breadth-first method described in [10] using another Perl script. The majority of the
networks chosen are grid networks, which are commonly used to test OBDD algorithms
[13-16]. The other networks are networks 18 and 19 from [17], and fully connected
networks (K) which are the worst-case for decision diagram methods. The networks are
shown in families of similar networks so that the change in performance is clear.

The results of the tests are shown in Table 2. The ‘V’ and ‘E’ columns show the
number of vertices and edges respectively in the graph of the network tested and the ‘W’
column shows the width of the network. The number of diagram nodes generated and the
time required for the OMDD-A is shown for each metric – REL, EHC and EMD. The
processing time (in seconds) and number of nodes are shown for each metric and rounded
to two decimal places.

Table 2: OMDD-A Comparison of REL, EHC and EMD

REL EHC EMD
Net V E W

Time Nodes Time Nodes Time Nodes
Path 18 13 22 4 0 278 0.03 1,485 0.16 2,953

Path 19 20 30 6 0.09 4,769 24.30 46,906 40.67 64,471

Grid 2×20 40 58 2 0 134 0.33 476 0.61 476

Grid 2×40 80 118 2 0 274 0.05 1,756 39.31 1,756

Grid 2×60 120 178 2 0 414 0.14 3,836 371.10 3,836

Grid 2×80 160 238 2 0 554 0.38 6,716 1,574.14 6,716

Grid 3×8 24 37 3 0 281 0.06 1,793 1.65 5,456

Grid 3×10 30 47 3 0 369 0.14 3,526 45.08 18,084

Grid 3×12 36 57 3 0 457 0.42 6,111 660.46 43,199

K6 6 15 6 0 222 0 360 0.02 774

K7 7 21 7 0.62 1,206 0.26 2,742 7.66 11,293

K8 8 28 8 1.84 8,207 24.91 27,636 12,289.37 233,255

For comparable sized networks (in terms of the number of nodes and edges), like in
other OBDD approaches [13-16], the OMDD-A approach is more efficient when dealing
with networks with lower width, W, such as the 2×20 grid network, and is less efficient
for network with larger W such as the fully connected networks [18]. For REL, the
performance of OMDD-A is not closely related to the number of possible minpaths in the
network since only information on connectedness is tracked. However both EHC and

 Computing Performability for Wireless Sensor Networks 139

EMD have information on path length/delay, and hence the number of minpaths has a
greater impact.

While it may be expected that the number of nodes generated would be the same for
REL and the other two metrics, it can be seen that REL has far fewer nodes. As discussed
in Section 3.5 this is expected since REL conditions have no lengths and some nodes for
EHC and EMD will be found to be non-isomorphic since the condition length differs.
Despite this, the performance of REL is much better than that of EHC, which in turn is
better than EMD. Both EHC and EMD have components, but EHC has more paths of a
similar length, resulting in more merging amongst components. This results in more
processing required for EMD which is clearly shown in the processing time.

The EMD may, however, give a far more accurate measurement of network delay
than the EHC. For example the EHC of the 2×20 grid network is 21.81 while the EMD for
the same network (with random delays) is 119.66. The EHC of a network is only affected
by the number of hops, while one or several paths with low delay components can greatly
affect the EMD of the network.

Figure 2: EMD for 2x20 Grid with Varying Delays

Figure 2 shows the EMD of the 2×20 grid network with the delay of each edge and
vertex varied from 1 to 5 inclusive. As shown, even a small change in component delay
has a cumulative impact on EMD. Note that the relationship between network delay and
component delay is a linear one.

5. Conclusions

 This paper proposes a technique based on OMDD-A to solve the EMD metric for
WSN. EMD provides a more realistic assessment of delay-based network goodness than
the EHC metric that had been previously used. It is shown that computing EHC and EMD
generate the same number of diagram nodes but that EMD requires more run-time due to
a reduced amount of component merging. The OMDD-A algorithm is able to compute
EMD for low-width networks of moderate size. Like other decision diagram methods, the
OMDD-A approach suffers from decreased performance when network width increases.

Like the OBDD-A, the OMDD-A is applicable for a wide range of networks, e.g.,
computer communication, road transport and power transmission. Although it has not
been addressed in this paper due to space restrictions, the augmented algorithm allows
multiple sources and target vertices, and allows the grouping of these vertices. The
algorithm allows directed edges as well as parallel edges between two vertices.

References

[1] Soh, S., S. Rai, and R. R. Brooks. Performability Issues in Wireless Communication Network.
In: K.B. Misra, (Editor). The Handbook on Performability Engineering. London, UK:
Springer Verlag; 2008, 1047-67.

140 Johannes U. Herrmann, Sieteng Soh, Suresh Rai and Matjaž Škorjanc

[2] Akyildiz, W.S., W. Su, Y. Sankarasubramaniam, and R. Cayirci. Wireless Sensor Networks: A

Survey. Computer Networks. 2002 March;38:393-422.
[3] Intanagonwiwat, C., R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Directed Diffusion

for Wireless Sensor Networking. IEEE/ACM Transactions on Networking. 2003
February;11(1):2-16.

[4] AboElFotoh, H.M.F., S. S. Iyengar, and K. Chakrabarty. Computing Reliability and Message

Delay for Cooperative Wireless Distributed Sensor Networks Subject to Random Failures.
IEEE Trans Reliability. 2005;54(1):145-55.

[5] Soh, S., W. Lau, S. Rai, and R. R. Brooks. On Computing Reliability and Expected Hop Count

of Wireless Communication Networks. Int'l J Performability Engineering. 2007
April;3(2):267-79.

[6] Herrmann, J. U., S. Soh, S. Rai, and G. West. On Augmented OBDD and Performability for

Sensor Networks. International Journal of Performability Engineering. 2010 July; 6(4),331-42.
[7] Brooks, R. R., B. Pillai, S. Racunas, and S. Rai. Mobile Network Analysis Using Probabilistic

Connectivity Matrices. IEEE Trans Systems, Man, and Cybernetics —PART C: Applications
and Reviews. 2007; 37(4):1-9.

[8] Li, Y-K., Y. Bai, J. Zhang, Y. Cui, (Editors). Reliability Computation for Multipath

Transmission in Wireless Sensor Networks. Int'l Joint Conf Computational Sciences and
Optimization; 2009; Sanya, Hainan, 694-7.

[9] Aggarwal, K. K., J. Gupta, and K. B. Misra. A Simple Method for Reliability Evaluation of a

Communication System, IEEE Transactions on Communications, May 1975; 23(5): 563-566.
[10] Herrmann, J. U., S. Soh, G. West, and S. Rai. Using Multi-valued Decision Diagrams to Solve

the Expected Hop Count Problem. IEEE 23rd Int Conf Advanced Information Networking and
Applications Workshops; 2009; Bradford, UK.

[11] Walrand, J., and S. Parekh. Communication Networks: A Concise Introduction, Morgan &
Claypool, 2010

[12] Nagayama, S., and T. Sasao. On the optimization of heterogeneous MDDs. IEEE Trans
Computer-Aided Design of Integrated Circuits and Systems. 2005 Nov.;24(11):1645-59.

[13] Hardy, G., C. Lucet, and N. Limnios, (Editors). Computing all-terminal reliability of

stochastic networks with Binary Decision Diagrams. 11th International Symposium on
Applied Stochastic Models; 2005,1469-74.

[14] Hardy, G., C. Lucet, and N. Limnios. K-Terminal Network Reliability Measures With Binary

Decision Diagrams. IEEE Trans. on Reliability. 2007 Sept.;56(3):506-15.
[15] Kuo, S-Y., S-K. Lu, and F-M. Yeh. Determining Terminal-Pair Reliability Based on Edge

Expansion Diagrams using OBDD. IEEE Trans. on Reliability. 1999;48(3):234-46.
[16] Yeh, F-M., H-Y. Lin, and S-Y. Kuo, (Editors). Analyzing network reliability with imperfect

nodes using OBDD. Pacific Rim Int'l Symp Dependable Computing; 2002,89-96.
[17] Soh, S., and S. Rai. CAREL: Computer Aided Reliability Evaluation for Distributed

Computing Networks. IEEE Trans. on Reliability. 1991;2(2):199-213.
[18] Herrmann, J. U., and S. Soh. Comparison of Binary and Multi-Variate Hybrid Decision

Diagram Algorithms for K-Terminal Reliability. In M. Reynolds, (Ed.). 34th Australasian
Computer Science Conf. (ACSC2011), 2011 Perth, Australia. Australian Computer Society,
Inc.; 2011.

For biographies of Johannes U. Herrmann, and Sieteng Soh, please refer to Vol. 6,
No.4, July 2010, page 342 of International Journal of Performability Engineering.

For biography of Suresh Rai, please see page 115 of this issue.

Matjaž Škorjanc is a final year student of Faculty of Electrical Engineering and
Computer Science in Maribor. He is about to embark on his diploma, which will be on the
parallelization of the OBDD-A or OMDD-A algorithms. His interests are programming
and parallel computing.

