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 2 

An optimal parameters-based geographical detector model enhances 11 

geographic characteristics of explanatory variables for spatial heterogeneity 12 

analysis: Cases with different types of spatial data 13 

  14 

Spatial heterogeneity represents a general characteristic of the inequitable distributions of 15 

spatial issues. The spatial stratified heterogeneity analysis investigates the heterogeneity among 16 

various strata of explanatory variables by comparing the spatial variance within strata and that 17 

between strata. The geographical detector model is a widely used technique for spatial stratified 18 

heterogeneity analysis. In the model, the spatial data discretization and spatial scale effects are 19 

fundamental issues, but they are generally determined by experience and lack accurate 20 

quantitative assessment in previous studies. To address this issue, an optimal parameters-based 21 

geographical detector (OPGD) model is developed for more accurate spatial analysis. The 22 

optimal parameters are explored as the best combination of spatial data discretization method, 23 

break number of spatial strata, and spatial scale parameter. In the study, the OPGD model is 24 

applied in three example cases with different types of spatial data, including spatial raster data, 25 

spatial point or areal statistical data and spatial line segment data, and an R “GD” package is 26 

developed for computation. Results show that the parameter optimization process can further 27 

extract geographical characteristics and information contained in spatial explanatory variables 28 

in the geographical detector model. The improved model can be flexibly applied in both global 29 

and regional spatial analysis for various types of spatial data. Thus, the OPGD model can 30 

improve the overall capacity of spatial stratified heterogeneity analysis. The OPGD model and 31 

its diverse solutions can contribute to more accurate, flexible and efficient spatial heterogeneity 32 

analysis, such as spatial patterns investigation and spatial factor explorations. 33 

Keywords: GIS; spatial analysis; geographical detector; spatial stratified heterogeneity; spatial 34 

factors exploration; R package GD 35 

 36 
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1 Introduction 39 

Spatial heterogeneity is a common property of geographical phenomena. It refers to the 40 

uneven distributions of various geospatial attributes within a certain geographical area (Fischer 41 

2010, Wang, Zhang, and Fu 2016). Spatial heterogeneity analysis is widely used in the spatial 42 

and spatiotemporal issues in fields of ecology, geology, public health, economy, built 43 

environment, etc. The objectives of spatial heterogeneity analysis usually consist of three 44 

aspects. The first objective is to explore spatial clusters that are generally defined as spatially 45 

high or low value regions (Anselin 1995). Second, spatial heterogeneity analysis can be used 46 

to investigate potential factors associated with the uneven spatial distributions (Brunsdon, 47 

Fotheringham, and Charlton 1996, Fotheringham, Brunsdon, and Charlton 2003). The third 48 

objective includes spatial and spatiotemporal prediction and decision-making based on the 49 

spatial heterogeneity (Wang et al. 2014).  50 

In general, spatial heterogeneity can be measured from three perspectives. First, spatial 51 

heterogeneity with local clusters is a popular approach that explores the spatially local 52 

clustering regions with similarity in geographical attributes. For instance, spatial 53 

autocorrelation indicators, such as local indicators of spatial association (LISA) (Anselin 1995) 54 

and Getis-Ord Gi (Getis and Ord 1992, Ord and Getis 1995), are used to evaluate if a 55 

geographical attribute is spatially clustered. Spatial scan statistics detect spatial clusters by 56 

comparing the likelihood ratio within and out of dynamically changed moving windows 57 

(Kulldorff 1997). Geographically weighted regression (GWR) and its extended models 58 

measure geographically local effects by location-wise coefficients of explanatory variables 59 

with distance-decay weights across space (Fotheringham, Brunsdon, and Charlton 2003, 60 

Brunsdon, Fotheringham, and Charlton 1996, Huang, Wu, and Barry 2010, Lu et al. 2014, Lu 61 

et al. 2017, Ge et al. 2017). The second approach is the spatial stratified heterogeneity analysis, 62 

which compares the spatial variance within strata and that between strata (Wang et al. 2010, 63 

Wang, Zhang, and Fu 2016). The spatial stratified heterogeneity can be quantified by the 64 

geographical detector model (Wang et al. 2010, Luo et al. 2016). The primary advantage of 65 

spatial stratified heterogeneity analysis is that no assumptions are required for geographical 66 

variables and it reflects the real spatial associations of geographical attributes. Third, spatial 67 

scaling structure heterogeneity is a method of characterizing complexity of fractal or scaling 68 

structure of geographical attributes (Jiang 2013, 2015). Based on the scaling law that far more 69 

small geographical objects exist than large ones, an ht-index is proposed to measure the spatial 70 

scaling structure heterogeneity (Jiang and Yin 2014).  71 
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The geographical detector model is a promising approach and a primary tool for the 72 

spatial stratified heterogeneity analysis. The main idea of geographical detectors is that the 73 

study space is divided into sub-regions by variables, and the spatial variance within each sub-74 

region and among different sub-regions are compared to evaluate the determinant power of 75 

potential explanatory variables (Wang et al. 2010, Wang, Zhang, and Fu 2016). The general 76 

geographical detectors include four parts, where the core part is the factor detector that 77 

quantifies the relative importance of different geographical variables. Other three parts are 78 

interaction detector, risk detector and ecological detector.  79 

To comprehensively understand applications and model improvements of the 80 

geographical detector model, the application trend of the model is reviewed using the Clarivate 81 

Analytics’ Web of Science database in September 2019. The search is limited to the “English” 82 

language and the “topic” search equation is: “geographical detector” OR “geographical 83 

detectors” OR “geodetector”. As a result, 130 research papers are yield ranging from 2010 to 84 

2019. The overview of global research using the geographical detector model is presented in 85 

Figure 1. The annual variation of research using the geographical detector model is compared 86 

with the variation of papers citing the publication first proposing the model (Wang et al. 2010), 87 

which accumulate to 213 based on the database of the Web of Science. The conceptual structure 88 

map generated by the “bibliometrix” R package (Aria and Cuccurullo 2017) presents primary 89 

application fields of the geographical detector model. In general, applications of the model are 90 

predominant in geographically local determinants or factors exploration, and spatial patterns 91 

and heterogeneity investigation. Research topics can be clustered into three categories. The 92 

first topic is about disease determinants analysis, air pollution sources studies, and the 93 

association between air pollution and disease. The second one includes climate change research 94 

and land use driving forces exploration. The last category is water resources and dynamics 95 

modelling, such as runoff and precipitation variations. In the current stage, applications of the 96 

geographical detector model are primarily clustered in the fields of public health and 97 

environment. Therefore, it is necessary to broad the application fields of the model to enhance 98 

its capabilities in explaining geographical objects in other fields and integrating with other 99 

models. Simultaneously, more studies about improving the model are required for optimal 100 

parameters selection and more flexible, applicable and effective studies.  101 

[Figure 1 near here] 102 

In geographical studies, explanatory variables can be continuous and categorical 103 

variables, where the continuous variables should be discretized and converted to categorical 104 

variables in the geographical detector model. Spatial data discretization is to divide continuous 105 



 5 

geographical and geospatial data into several intervals according to physical or statistical 106 

characteristics of the data, so that the continuous variable is converted to a categorical variable 107 

(Cao, Ge, and Wang 2013). Two common methods for the spatial data discretization are 108 

supervised and unsupervised discretization methods. The supervised discretization methods 109 

break continuous variables according to certain statistical regulars, such as equal breaks, 110 

natural breaks, quantile breaks, geometric breaks and standard deviation breaks. For the 111 

unsupervised methods, breaking intervals can be manually defined. The result of spatial 112 

discretization for a continuous variable is associated with discretization methods and break 113 

numbers (Cao, Ge, and Wang 2013, Ju et al. 2016). Currently, spatial data discretization 114 

process is generally performed in terms of professional experience instead of data-driven 115 

approaches (Ding et al. 2019, Luo et al. 2019, Duan and Tan 2020). In addition, the spatial 116 

scale effect is common in geographical issues and may have critical impacts on the spatial 117 

stratified heterogeneity analysis, but it has not been fully investigated and integrated in the 118 

model.  119 

To address above issues, this study develops an optimal parameters-based geographical 120 

detector (OPGD) model for improving accuracy and effectiveness of spatial analysis. In the 121 

OPGD model, the process of spatial data discretization and spatial scales for spatial analysis 122 

are optimized and the best parameter combination is determined for the geographical detector 123 

model. The OPGD model can provide flexible and comprehensive solutions with a series of 124 

visualizations for more effective spatial factor explorations, and spatial patterns and 125 

heterogeneity investigation than the geographical detectors model. In the study, the OPGD 126 

model is applied in three example cases with different types of spatial data, including spatial 127 

raster data, spatial point or areal statistical data and spatial line segment data.  128 

This paper is organized as follows. Section 2 presents a review of the geographical 129 

detector model development and applications. Section 3 elaborates the developed OPGD model 130 

and its mathematical basis. Section 4 describes different types of spatial data used in three cases 131 

for explaining the OPGD model. Section 5, 6 and 7 present the results, discussion and 132 

conclusions of the study. 133 

2 Optimal parameters-based geographical detector (OPGD) model  134 

The OPGD model includes five parts: factor detector, parameters optimization, 135 

interaction detector, risk detector and ecological detector. The parameters optimization consists 136 

of the optimization of spatial discretization and optimization of spatial scale. The schematic 137 
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overview of the OPGD is shown in Figure 2, and five parts of the model are explained in 138 

following subsections.  139 

[Figure 2 near here] 140 

2.1 Factor detector 141 

As the core part of geographical detector, the factor detector reveals the relative 142 

importance of explanatory variables with a Q-statistic. The Q-statistic compares the dispersion 143 

variances between observations in the whole study area and strata of variables (Wang et al. 144 

2010, Wang, Zhang, and Fu 2016). The 𝑄 value of a potential variable 𝑣 is computed by: 145 

𝑄𝑣 = 1 −
1

(𝑁𝑣−1)𝜎𝑣
2∑ (𝑁𝑣,𝑗 − 1)𝜎𝑣,𝑗

2𝑀
𝑗=1                                     (1) 146 

where 𝑁𝑣 and 𝜎𝑣
2 are the number and variance of observations within the whole study area, and 147 

𝑁𝑣,𝑗 and 𝜎𝑣,𝑗
2  are the number and variance of observations within the 𝑗th (𝑗 = 1,… ,𝑀) sub-148 

region of variable 𝑣. A large 𝑄 value means the relatively high importance of the explanatory 149 

variable, due to a small variance within sub-regions and a large variance between sub-regions. 150 

In the geographical detector, at least two samples are required in each of strata to compute 151 

mean and variance values. 152 

The F-test is utilized to determine whether the variances of observations and stratified 153 

observations are significantly different, since the transformed 𝑄 value can be tested with the 154 

non-central F-distribution: 155 

𝐹 =
𝑁−𝑀

𝑀−1

𝑄

1−𝑄
~𝐹(𝑀 − 1, 𝑁 −𝑀; 𝛿)                                     (2) 156 

where 𝑀 is the number of sub-regions, 𝑁 is the number of observations, and 𝛿 is the non-157 

central parameter: 158 

δ = [∑ 𝑌̅𝑗
2𝑀

𝑗=1 −
1

𝑁
(∑ 𝑌̅𝑗√𝑁𝑗

𝑀
𝑗=1 )

2
] /𝜎2                                  (3) 159 

where 𝑌̅𝑗 is the mean value of observations within the 𝑗th sub-region of variable. Thus, with the 160 

given significant level, the null hypothesis 𝐻0: 𝜎𝑣
2 = 𝜎𝑣,𝑗

2  can be tested by checking 𝐹(𝑀 −161 

1, 𝑁 −𝑀; 𝛿) in the distribution table.  162 

2.2 Parameters optimization 163 

The parameters optimization consists of the optimization of spatial discretization and 164 

optimization of spatial scale. In this study, the OPGD model selects a best combination of 165 

discretization method and the break number for each geographical continuous variable as the 166 

optimal discretization parameters. The 𝑄 value computed with the factor detector is used to 167 

determine the best parameter combinations. A set of combinations of discretization methods 168 

and break numbers are provided for each continuous variable to compute respective 𝑄 values. 169 
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The optional discretization methods can be a list of supervised and unsupervised discretization 170 

methods, and optional break numbers can be an integer sequence in terms of observations and 171 

practical requirements. As such, the optional combinations can cover almost all available 172 

choices. For a continuous variable, the parameter combination with the highest 𝑄 value among 173 

all combinations is selected for spatial discretization, since it presents the highest importance 174 

of the variable from the perspective of spatial stratified heterogeneity.  175 

The optimization of spatial scale aims at identifying the optimal spatial scale for the 176 

spatial stratified heterogeneity analysis. A geographical variable at different spatial scales 177 

probably reveal significantly varied geographical characteristics (Roth, Allan, and Erickson 178 

1996, Store and Jokimäki 2003, Chen et al. 2016). The 𝑄 values of all explanatory variables 179 

with respective optimal spatial discretization parameters at various spatial scales are compared 180 

with corresponding spatial scales to investigate their relationships. The assumption of optimal 181 

spatial scale selection is that 𝑄 values are the highest for most explanatory variables. In the 182 

study, the 90% quantile of 𝑄 values of all explanatory variables at a spatial scale is computed 183 

and used for the comparison of overall 𝑄 value trends at different spatial scales. For a set of 184 

optional spatial scales, the optimal one is selected when the 90% quantile of 𝑄 values of all 185 

explanatory variables reach the highest value.  186 

2.3 Interaction detector 187 

The interaction detector determines the interactive impacts of two overlapped spatial 188 

variables based on the relative importance of interactions computed with 𝑄 values of the factor 189 

detector. A spatial interaction is an overlay of two spatial explanatory variables. The interaction 190 

detector explores an interaction by the comparison between 𝑄 values of the interaction and two 191 

single variables. The interactions explain whether the impacts of two spatial variables are 192 

weakened, enhanced or independent. The interaction detector explores five interactions, 193 

including nonlinear-weaken, uni-variable weaken, bi-variable enhance, independent and 194 

nonlinear-enhance (Wang et al. 2010, Wang, Zhang, and Fu 2016) (Table 1). Therefore, the 195 

interaction detector result includes both 𝑄 values of interactions and types of interaction 196 

effects.  197 

[Table 1 near here] 198 

2.4 Risk detector 199 

The risk detector is used to test if spatial patterns represented by mean values are 200 

significantly different among sub-regions classified by a categorical or stratified variable. The 201 
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difference between mean values of sub-regions 𝜂 and 𝜅 is tested with the t-test (Wang et al. 202 

2010, Wang, Zhang, and Fu 2016):  203 

𝑡𝑌̅𝜂−𝑌̅𝜅 = (𝑌̅𝜂 − 𝑌̅𝜅) √
𝜎
𝑌̅𝜂
2

𝑁𝜂
+

𝜎
𝑌̅𝜅
2

𝑁𝜅
⁄                                        (4) 204 

where 𝑌̅𝜂 and 𝑌̅𝜅 are mean values of observations within sub-regions 𝜂 and 𝜅, 𝜎𝑌̅𝜂
2  and 𝜎𝑌̅𝜅

2  are 205 

the variance, and 𝑁𝜂 and 𝑁𝜅 are numbers of observations, respectively. The statistic is 206 

approximately distributed as Student’s t with the degree of freedom of: 207 

𝑑𝑓 = (
𝜎𝑌̅𝜂
2

𝑁𝜂
+

𝜎𝑌̅𝜅
2

𝑁𝜅
)/[

1

(𝑁𝜂−1)
(
𝜎𝑌̅𝜂
2

𝑁𝜂
)

2

+
1

(𝑁𝜅−1)
(
𝜎𝑌̅𝜅
2

𝑁𝜅
)
2

]                         (5) 208 

Thus, with a given significant level, the null hypothesis 𝐻0: 𝑌̅𝜂 = 𝑌̅𝜅 can be tested with the 209 

student-t distribution table.  210 

2.5 Ecological detector 211 

The ecological detector is used to test if an explanatory variable has a higher impact 212 

than another one. The significance of the different influence of explanatory variables is tested 213 

with the F-statistic (Wang et al. 2010, Wang, Zhang, and Fu 2016): 214 

𝐹 =
𝑁𝑢(𝑁𝑣−1)∑ 𝑁𝑢,𝑗𝜎𝑢,𝑗

2𝑀𝑢
𝑗=1

𝑁𝑣(𝑁𝑢−1)∑ 𝑁𝑣,𝑗𝜎𝑣,𝑗
2𝑀𝑣

𝑗=1

                                           (6) 215 

where 𝑁𝑢 and 𝑁𝑣 are numbers of observations, 𝑀𝑢 and 𝑀𝑣 are numbers of sub-regions, and 216 

∑ 𝑁𝑢,𝑗𝜎𝑢,𝑗
2𝑀𝑢

𝑗=1  and ∑ 𝑁𝑣,𝑗𝜎𝑣,𝑗
2𝑀𝑣

𝑗=1  are sums of variance within sub-regions of variables 𝑢 and 𝑣 217 

respectively. Thus, with a given significant level, the null hypothesis 𝐻0: ∑ 𝑁𝑢,𝑗𝜎𝑢,𝑗
2𝑀𝑢

𝑗=1 =218 

∑ 𝑁𝑣,𝑗𝜎𝑣,𝑗
2𝑀𝑣

𝑗=1  is tested with the F-distribution table.  219 

In this study, an open-source software package “GD” in R is developed for systematic 220 

computation and visualization of the OPGD model. The general calculation process, functions 221 

and their relationships in the GD package are introduced in the Supplementary Information 1: 222 

Overview of the GD package.  223 

3 Data 224 

The OPGD model can be flexibly applied in the spatial factors exploration and 225 

heterogeneity analysis for various types of spatial data. In this study, three example cases with 226 

different types of spatial data, including spatial raster data, spatial areal statistical data and 227 

spatial line segment data, are investigated using the OPGD model (Table 2). The first case 228 

dataset is to investigate impacts of potential variables of human actives and climate on the 229 



9 

vegetation changes, where vegetation coverage conditions are quantified by the normalized 230 

difference vegetation index (NDVI), which is a spatial raster variable. The second case is 231 

assessing associations between incidence variations of influenza A virus subtype H1N1, a 232 

spatial point or areal data, and potential explanatory variables of meteorological conditions and 233 

human activities. The third case examines relationships between road damage and variables of 234 

vehicles and environment with the spatial line segment data. Descriptions and data sources of 235 

the example cases are presented in the following subsections. 236 

[Table 2 near here] 237 

3.1 Spatial raster data of vegetation changes 238 

A major application topic of the spatial stratified heterogeneity analysis is the 239 

environment, ecology and forest studies (Ren et al. 2014, Ren et al. 2016). In recent years, an 240 

increasing number of researches investigate the comprehensive impacts of human activities 241 

and climate conditions on vegetation changes (Du et al. 2017). In this study, vegetation changes 242 

are explored using the spatial gridded annual mean NDVI changes from 2010 to 2014 in Inner 243 

Mongolia, China, where is one of the major mining regions in China. Respective contributions 244 

of human activities and climate conditions on the NDVI changes are explored using the OPGD 245 

model. The spatial raster map of NDVI changes and distributions of explanatory variables are 246 

shown in Figure 3.  247 

[Figure 3 near here] 248 

The NDVI raster data is derived from the SPOT Vegetation 1-km NDVI Dataset for China 249 

since 1998. The climate variables include temperature changes and annual average 250 

precipitation from 2010 to 2014, and the climate zone data. The temperature and precipitation 251 

data are sourced from the Annual Average Temperature Spatial Interpolation Dataset for China 252 

since 1980, and the Annual Precipitation Spatial Interpolation Dataset for China since 1980. 253 

The datasets of NDVI, temperature and precipitation are all provided by Data Center for 254 

Resources and Environment Science, Chinese Academy of Sciences (RESDC) 255 

(http://www.resdc.cn). The climate zone data is from the CliMond Dataset: World Map of The 256 

Koppen-Geiger Climate Classification (Kriticos et al. 2012). In the study area, there are five 257 

climate zones, including cold desert climate (Bwk), cold semi-arid climate (Bsk), monsoon-258 

influenced humid subtropical climate (Dwa), subtropical highland climate (Dwb) and cold 259 

subtropical highland climate (Dwc). Human activity variables consist of coal mining 260 

production, gross domestic product (GDP) and population density. County-level annual coal 261 

mining production is the average of coal production data from 2011 to 2014, sourced from the 262 
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from the Annual Reports of China National Coal Association (www.coalchina.org.cn). Since 263 

the data of coal production smaller than 107 ton are not available, the variable of coal 264 

production classifies the production into five categories, very low, low, medium, high and very 265 

high, for reasonable spatial comparison with other explanatory variables. The 1-km gridded 266 

GDP data comes from the Gridded Global Datasets for Gross Domestic Product and Human 267 

Development Index over 1990-2015 (Kummu, Taka, and Guillaume 2018b, Kummu, Taka, 268 

and Guillaume 2018a), and the 1-km gridded population density data is from the Gridded 269 

Population of the World, Version 4 (GPWv4) (Center for International Earth Science 270 

Information Network - CIESIN - Columbia University 2016). Among the explanatory 271 

variables, climate zone data and coal mining production are categorical variables, and others 272 

are continuous variables. In addition, six sizes of grids are generated for the NDVI changes 273 

data, including 5 km, 10 km, 20 km, 30 km, 40 km and 50 km, to examine which size of grid 274 

can better reveal the impacts of potential variables on the changes of NDVI. 275 

3.2 Spatial point or areal data of H1N1 flu incidences 276 

Spatial point or areal data are widely used in spatial analysis. This study explores potential 277 

variables of H1N1 flu incidences derived from spatial areal statistical data based on 278 

administrative units. The H1N1 flu incidences are collected with provincial statistics in 2013 279 

in China. The explanatory variables include meteorological and environmental variables, and 280 

the socio-economic variables. To investigate spatial scale effects, the analysis is performed at 281 

50-km, 100-km and 150-km spatial grids, respectively. Spatial areal data of H1N1 flu 282 

incidences and distributions of explanatory variables are mapped in Figure 4.  283 

[Figure 4 near here] 284 

The H1N1 flu incidences data are provincial statistical data sourced from the China Health 285 

Statistical Yearbook (National Health Commission of the People's Republic of China 2014). 286 

Explanatory variables contain two categories: meteorological and environmental variables, and 287 

socio-economic variables. First, the meteorological and environmental data include 288 

geographical region and annual average temperature, precipitation and moisture index. The 289 

Chinese provinces are categorized into three geographical regions: north-east and north, central 290 

and south, and western China. The annual average temperature, precipitation and moisture 291 

index data are sourced from the Annual Average Temperature Spatial Interpolation Dataset for 292 

China since 1980, the Annual Precipitation Spatial Interpolation Dataset for China since 1980, 293 

and the Chinese Meteorological Background - Humidity Index Data. The datasets of 294 

temperature, precipitation and humidity index are all provided by Data Center for Resources 295 
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and Environment Science, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). In 296 

addition, the socio-economic data consist of the population density, GDP, road density, 297 

percentages of sensitive people (children and elders) and urban population among total 298 

population, medical cost per capita and the urban-rural consumption ratio. The 1-km gridded 299 

GDP data comes from the Gridded Global Datasets for Gross Domestic Product and Human 300 

Development Index over 1990-2015 (Kummu, Taka, and Guillaume 2018b, Kummu, Taka, 301 

and Guillaume 2018a), and the 1-km gridded population density data is from the Gridded 302 

Population of the World, Version 4 (GPWv4) (Center for International Earth Science 303 

Information Network - CIESIN - Columbia University 2016). The road density map with the 304 

spatial resolution of 1 km is computed with the kernel density function based on the road 305 

network distribution. The populations of child and the old are the people younger than 14 years 306 

old and older than 65 years old in 2013, respectively (National Bureau of Statistics of China 307 

2015). The sensitive people include both child and the old. The percentage of urban population, 308 

medical cost per capita and the urban-rural consumption ratio are all sourced from the China 309 

Statistical Yearbook in 2014 (National Bureau of Statistics of China 2015). 310 

3.3 Spatial line segment data of road damage 311 

In addition to the spatial raster data and point or areal data, spatial analysis for line segment 312 

data is performed using the OPGD model. In the study, spatial line segment based road damage 313 

conditions and potential variables are selected from the road deterioration datasets in the 314 

Wheatbelt region in Western Australia, Australia (Song et al. 2018, Song et al. 2019). The road 315 

damage conditions are described with the deflection of pavement, which is measured with a 316 

Dynatest 8000 series Falling Weight Delectometer (FWD) and calibrated with Calibration 317 

Method WA 2060.5 by Main Roads, WA (Main Roads Western Australia 2017a, b). Deflection 318 

is a pavement strength indicator that describes the maximum depression on the surface of 319 

pavement under a standard load. Explanatory variables include road speed limits, soil types, 320 

population within 1 km around the road segments, and annual mean daily volumes of vehicles. 321 

Soil type data is sourced from the State of the Environment (SoE) Land Australian Soil 322 

Classification Orders dataset in 2016 (Ashton and McKenzie 2001, State of the Environment 323 

in Australia 2017). Population within 1 km around the road segments is computed with the 324 

population data with 1-km spatial resolution is from Gridded Population of the World fourth 325 

version (GPWv4) (Center for International Earth Science Information Network - CIESIN - 326 

Columbia University 2016). Traffic volumes are estimated with a segment-based regression 327 

kriging (SRK) method. The SRK method is an improved regression kriging method by 328 
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integrate the spatial morphological characteristics of road segments and regression kriging 329 

model for more accurate spatial prediction of line segment-based observations, such as traffic 330 

and road attributes (Song et al. 2019). 331 

4 Results 332 

4.1 Spatial raster data of vegetation changes 333 

In this study, spatial explanatory variables of vegetation changes are investigated using 334 

the OPGD model. The OPGD model can simultaneously deal with both categorical and 335 

continuous explanatory variables in practical spatial analysis, where categorical variables can 336 

be directly used in the geographical detector model, but continuous variables should be 337 

discretized with optimal parameters before modelling. Thus, the first step of the OPGD model 338 

is the spatial discretization parameters optimization for continuous variables (Figure 5). Results 339 

show that the optimal parameter combinations of discretization methods and break numbers 340 

are varied for different explanatory variables. The optimal parameter combination for 341 

temperature change, precipitation and GDP is the natural break with seven intervals, and that 342 

for population density is the quantile break with seven intervals. With the spatial discretization 343 

parameters, continuous variables are converted to strata variables, which are equivalent to 344 

categorical variables in the geographical detector model. Codes and completed analysis results 345 

are provided in the Supplementary Information 2: Computation process of example cases. 346 

[Figure 5 near here] 347 

The next step is to identify contributions of single variables on vegetation changes using 348 

the factor detector. Factor detector results include 𝑄 values, corresponding significances, and 349 

ranks of variables, where the variable (precipitation) with the highest 𝑄 value compred with 350 

other explanatory variables is highlighted (Figure 6). 351 

[Figure 6 near here] 352 

In the third step, the risk detector provides risk means of spatial zones determined by 353 

variables and tests if the risk means of various spatial zones are significantly different (Figure 354 

7). Risk detector results show that data within different intervals of an explanatory variable 355 

have significantly varied effects on vegetation changes. For instance, vegetation change in the 356 

cold subtropical highland climate (Dwc) region is 0.445, but that in the cold desert climate 357 

(Bwk) region is 0.005. To further investigate risk regions of vegetation changes, spatial 358 

distributions of risks determined by explanatory variables are mapped on Figure 7b. The 359 

variables determined mean vegetation changes are classified into three levels: high values 360 

(red), medium values (gray) and low values (blue). Spatial patterns of risk regions explored by 361 
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variables tend to be similar that the vegetation change in the eastern region is relatively high 362 

and that in the western region is low. However, local patterns explored by various variables are 363 

different. For instance, in the northeast region, climate variables, including climate zone, 364 

temperature change and precipitation, have more effects on vegetation changes compared with 365 

other variables. In the eastern and southern regions, high vegetation changes are closely 366 

associated with human activities, such as GDP and population density. 367 

[Figure 7 near here] 368 

The last two parts are interactions between variables explored by the interaction detector 369 

(Figure 8a), and the ecological matrix derived by the ecological detector (Figure 8b). In the 370 

interaction effect analysis, the interaction with the highest 𝑄 value (0.915) is that between 371 

precipitation and mining activities. The intermediate computation processes the t-test for risk 372 

detector, interactions explored by the interaction detector and the F-test for ecological detector 373 

are presented in the Supplementary Information 2.  374 

[Figure 8 near here] 375 

Finally, when spatial units are grids, a common method for selecting a reasonable grid size 376 

is to compare size effects of spatial units using the factor detector. In the study, six sizes of 377 

gridded data are contained in the vegetation changes dataset. Figure 9 shows the comparison 378 

of the size effects of spatial units. Results show that the 𝑄 values of most of the variables are 379 

increased from the 5-km to 40-km spatial unit. The 90% quantile of 𝑄 values reaches to the 380 

highest value when the spatial unit is 40 km and becomes lower after 40-km spatial unit. Thus, 381 

we recommend using 40 km as an optional spatial unit for the spatial stratified heterogeneity 382 

analysis.  383 

[Figure 9 near here] 384 

In summary, this case study has following findings according to the OPGD-based 385 

analysis. First, 40-km spatial grid is an optimal spatial unit for assessing impacts of human 386 

activities and climate change on vegetation changes in the study area. In addition, precipitation 387 

is the variable with the highest association with the vegetation change. Precipitation and mining 388 

activities are enhanced by each other in affecting vegetation change, and their interaction is the 389 

major interactive variables in the study area. The variation of vegetation in the north-eastern 390 

regions is closely associated with climate variables, and that in the eastern and southern regions 391 

is linked with human activity variables, such as GDP and population density.    392 
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4.2 Spatial point or areal data of H1N1 flu incidences 393 

The H1N1 flu incidences case is used to demonstrate the OPGD-based analysis for point 394 

or areal data, and the comparison of spatial analysis for the whole study area (section 4.2.1) 395 

and for geographical sub-regions (section 4.2.2). Full results of the OPGD-based analysis are 396 

provided in the Supplementary Information 2. 397 

4.2.1 In the whole study area  398 

In the study, thirteen potential explanatory variables are collected for the analysis of H1N1 399 

flu incidences. The geographical region is a categorical variable, and other environmental and 400 

socio-economic conditions presented in Figure 4 are all continuous variables. Results of spatial 401 

analysis in the whole study area are presented in Figure 10. The OPGD-based analysis for the 402 

whole study area consists of six parts: spatial scale effects analysis, spatial discretization 403 

optimization, factor detector, risk detector, interaction detector and ecological detector. The 404 

comparison of size effects indicates that relative impacts of meteorological and socio-economic 405 

factors are varied with the change of spatial units. In general, 𝑄 values of variables temperature, 406 

medical cost, and percentage of sensitive population are major contributors to the flu incidence, 407 

and they reach the maximum values when the spatial unit is 100 km. The 90% quantiles of 𝑄 408 

values show a similar trend. Thus, we recommend choosing 100 km as the optimal spatial unit 409 

for spatial analysis. In detail, temperature is the primary contributor to the H1N1 flu incidences. 410 

The socio-economic variables medical cost and percentage of sensitive population have higher 411 

impacts than meteorological variable precipitation when the spatial unit is smaller than 100 412 

km. The impact of road density is continuously increased with the increase of spatial unit, since 413 

the spreading of flu becomes easier with the growth of spatial accessibility of road network 414 

that presented by the increase of road density. In the spatial analysis under the 100-km spatial 415 

unit, the optimal parameter combination for spatial discretization is selected for each 416 

continuous variable. In Figure 10, the temperature variable is used as an example to present the 417 

process and result of discretization optimization. The selected optimal combinations of 418 

discretization method and break number of all explanatory variables are listed in the 419 

Supplementary Information. Results of geographical detectors show that temperature is the 420 

major contributor to the flu incidence with the contribution of 49.09%, where southern region 421 

is of high temperature driven risks. Effects of the medical cost and percentage of sensible 422 

population are enhanced by each other, and their interaction can contribute 79.4% of flu 423 

incidence variations.  424 

[Figure 10 near here] 425 
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4.2.2 In sub-regions 426 

The OPGD model can be flexibly utilized in terms of objectives of research and 427 

characteristics of spatial data. This section presents an example that the study area is divided 428 

into three sub-regions based on geographical regions, and the OPGD-based analysis are 429 

performed in the sub-regions respectively.  430 

Figure 11 shows the spatial analysis for H1N1 flu incidences in sub-regions. Results 431 

include four parts of geographical detectors and size effects of spatial unit. Steps of the spatial 432 

scale optimization and spatial discretization optimization are similar with processes of the 433 

whole study area analysis, and they are presented in the Supplementary Information 2. Spatial 434 

units are respectively determined for the spatial analysis of three sub-regions according to the 435 

comparison of spatial scale effects. The geographical detector results show that primary 436 

explanatory variables and interactive variables are varied among sub-regions. In the northeast, 437 

northern and western regions (Figure 11 a and c), socio-economic variables and interactions 438 

are major contributors to the flu incidence. In the northeast and northern regions (Figure 11 a), 439 

the percentage of urban population contributes most to the flu incidence, and the interaction 440 

between percentage of urban population and medical cost per capita has the highest association 441 

with flu incidence. In the western region (Figure 11 c), medical cost per capita is the primary 442 

single explanatory variable, and the interaction between percentage of urban population and 443 

precipitation is the major interactive variable of the flu incidence. However, in central and 444 

south regions (Figure 11 b), meteorological variables have higher associations with flu 445 

incidence than socio-economic variables. Precipitation, temperature and humidity are top three 446 

variables with relatively high associations with flu incidence in central and south regions. The 447 

interaction between precipitation and percentage of sensitive population is the primary 448 

interactive variable of flu incidence.  449 

[Figure 11 near here] 450 

4.3 Spatial line segment data of road damage 451 

To explore potential variables of road damage, the OPGD model is applied in the analysis 452 

for spatial line segment-based road damage data. Figure 12 shows the OPGD-based spatial 453 

analysis results, including the spatial discretization optimization and geographical detectors. 454 

Computation process and intermediate results are summarized in the Supplementary 455 

Information 2. Optimal discretization parameter combinations for the local population and 456 

traffic vehicles are quantile breaks with 5 intervals and equal breaks with 7 intervals. Result of 457 

factor detector shows that soil type contributes most to the road damage compared with other 458 
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variables. Soil type can explain 19.5% of road damage conditions. Results of risk detector 459 

indicate that the road segments at the soil type of Podosol have the highest risk of road damage, 460 

and those at the soil type of Kandosol have the relatively lowest risk. The interaction detector 461 

reveals the impacts of interactions of variables, where the interaction between volumes of 462 

vehicles and soil type has the highest contribution (47.12%) that is nonlinearly enhanced by 463 

the single variables. Results of ecological detector demonstrate that the impacts of road speed 464 

limit are significantly different with other variables.   465 

[Figure 12 near here] 466 

5 Discussion 467 

This study develops an OPGD model for spatial stratified heterogeneity analysis, which 468 

is an improvement of the geographical detector model by integrating the parameters 469 

optimization. The primary contribution is that the OPGD model can reveal more geographical 470 

characteristics and information through the parameter optimization process for spatial 471 

discretization and spatial scale. The identification of characteristics of geographical attributes 472 

can support more accurate and effective spatial patterns and heterogeneity exploration. In 473 

addition, applications of the OPGD model in different types of spatial data, including spatial 474 

raster data, spatial point or areal data, and spatial line segment data, demonstrate that more 475 

findings can be provided from the perspectives of spatial associations and regional 476 

investigations by the analysis based on the in-depth geographical characteristics and 477 

information.  The innovative findings are critical for practical spatial data analysis and support 478 

regional decision making.  479 

In the first case, the OPGD-based spatial analysis provides accurate evidence for 480 

regional and interactive impacts of potential variables of vegetation changes. First, for 481 

continuous variables, the OPGD model provides an optimization method for determining the 482 

best parameter combinations of spatial discretization parameters and spatial scale parameter. 483 

In most of previous research, both types of spatial parameters are manually determined in the 484 

geographical detector model (Ding et al. 2019, Luo et al. 2019, Duan and Tan 2020). The 485 

optimal combinations of discretization method and break number for explanatory variables can 486 

reveal more approximately real associations between dependent and independent spatial 487 

variables. In the case, 40-km grid is selected as the optimal spatial scale for the vegetation 488 

change variables exploration, which is approximate to the spatial units that have been used in 489 

vegetation studies at large spatial ranges (Saidaliyeva et al. 2017, Rodríguez-Fernández et al. 490 

2018, Velasquez et al. 2019). The process of spatial scale parameter optimization can indicate 491 
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spatial scale effects during the analysis, and the optimal parameter demonstrates a more 492 

reasonable spatial unit for spatial analysis. In addition, geographically regional and interactive 493 

impacts of potential variables on vegetation changes in the study area are investigated. From 494 

the perspective of regional effects of variables, the association between vegetation changes and 495 

potential variables is significantly varied in different regions. In north-eastern regions, the 496 

vegetation change is closely associated with climate variables, because forest and grassland are 497 

major land use types and they are sensitive to temperature and precipitation (Li et al. 2018). In 498 

the eastern and southern regions, the vegetation change is linked with human activities, such 499 

as GDP and population density. This result is mainly caused by the high dense human activities, 500 

low forest coverage and large areas of steppe desert, which is not sensitive to the climate change 501 

(Li et al. 2018, Yin et al. 2018). From the perspective of interactive effects of variables, the 502 

interaction of precipitation and mining activities is the major interaction variable in the study 503 

area, and they are enhanced by each other in affecting vegetation change. It has been widely 504 

confirmed that that climate conditions and human activities have combined effects on 505 

vegetation changes (Brandt et al. 2017, Wang et al. 2018, Zheng et al. 2019), but the OPGD-506 

based spatial analysis in this study provides a quantitative comparison between effects of single 507 

variables and variable interactions from a spatial perspective.  508 

The second case demonstrates that the OPGD model can be flexibly applied in spatial 509 

variables exploration in both the whole study area and geographical sub-regions. In the whole 510 

study area, temperature is the major contributor to the flu incidence, where southern high-511 

temperature region is of high risks driven by temperature. High temperature and extreme 512 

weather usually link with outbreaks of H1N1 flu (Xiao et al. 2013, Chowell et al. 2012, Li, 513 

Song, and Wang 2009). Effects of the medical cost and percentage of sensible population are 514 

enhanced by each other. The close association between the H1N1 flu with socioeconomic 515 

conditions indicates the essential role of public health resources in the variation of flu incidence 516 

(Ponnambalam et al. 2012, Kumar et al. 2015, Mulinari et al. 2018). Compared with previous 517 

studies, this study provides more details about geographically regional effects of explanatory 518 

variables of the flu incidence. In the northeast, northern and western regions, socio-economic 519 

variables and interactions are major contributors to the flu incidence, but in central and south 520 

regions, meteorological variables have higher associations with flu incidence than socio-521 

economic variables.  522 

The OPGD-based spatial line segment data analysis in the third case indicates the 523 

comprehensive impacts of traffic volumes and environment on road damage. The spatial 524 

analysis consists of two major findings. First, soil type contributes most to the road damage 525 
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compared with traffic conditions and population distributions. In general, different soil types 526 

have significantly varied capacity to bear road damage and potential vulnerability to rut 527 

formation (Mohtashami et al. 2017). Another finding is that the interaction between traffic 528 

volumes and soil type has the highest contribution (47.12%) to road damage, and they are 529 

nonlinearly enhanced by each other.  530 

Finally, this study provides an open-source software “GD” package in R for more 531 

flexible, efficient and user-friendly computation of the OPGD model. The package can provide 532 

sufficient details during computation and generate diverse statistics and visualizations of 533 

spatial analysis results. Meanwhile, computation speed can be significantly improved by the 534 

package. A simulation data is sampled from the disease mapping case of the Excel-based 535 

software (http://www.geodetector.org/), and it contains three explanatory variables for disease 536 

incidence. Results show that the time consuming is linearly increased with the number of 537 

samples. When the sample size reaches to 1000, 10 000, 100 000, only 0.05 s, 0.14 s and 1.55 538 

s are used for simultaneous computation of four parts of geographical detectors by the GD 539 

package, respectively. The package has strong capability in dealing with big quantity spatial 540 

data. More sample units will improve the accuracy, but the marginal benefit might be tiny if 541 

sample units are large than 50-100 in each stratum. 542 

6 Conclusions 543 

This study demonstrates that the parameter optimization can further extract information 544 

contained in geographical explanatory variables for the geographical detector model. The 545 

developed OPGD model improves the capacity of the geographical detector model with a 546 

parameter optimization method to optimize both spatial discretization parameters 547 

(discretization method and break number) and the spatial scale parameter. The OPGD model 548 

can provide a comprehensive solution for spatial stratified heterogeneity analysis through more 549 

accurate and effective extraction of geographical characteristics of explanatory variables. The 550 

developed open-source software package can show a full picture of the spatial stratified 551 

heterogeneity analysis at all stages. The OPGD-based analysis for three example cases with 552 

different types of spatial data provide comprehensive benchmarks for broadening application 553 

scenarios, ways, and fields.  554 
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Figure 1. Overview of the global research using the geographical detector model regarding the 746 

conceptual structure map and annual distributions of publications.  747 

Figure 2. Schematic overview of the optimal parameters based geographical detector (OPGD) 748 

model 749 

Figure 3. Spatial distributions of vegetation changes and explanatory variables. (a) Study area, 750 

(b) NDVI change, (c) Climate zone, (d) Temperature change, (e) Precipitation, (f) Mining 751 

production, (g) GDP, and (h) Population density.  752 

Figure 4. Spatial distributions of H1N1 flu incidences and explanatory variables  753 

Figure 5. OPGD-based explanatory variables exploration of vegetation changes: Processes (a) 754 

and results (b) of parameter optimization for spatial data discretization.  755 

Figure 6. OPGD-based explanatory variables exploration of vegetation changes: Contributions 756 

of single variables on vegetation changes investigated by the factor detector.  757 

Figure 7. OPGD-based explanatory variables exploration of vegetation changes: Vegetation 758 

changes in variable determined spatial zones computed by the risk detector, including risk 759 

mean values (a), spatial distributions of high, medium and low levels of mean vegetation 760 

changes (b), and the risk detector result (c).  761 

Figure 8. OPGD-based explanatory variables exploration of vegetation changes: Interaction 762 

detector (a) and ecological detector (b) results.  763 

Figure 9. Comparison of size effects of spatial units for Q values and the 90% quantile of 764 

explanatory variables. 765 

Figure 10. Results of OPGD-based analysis for H1N1 flu incidences. (a) Spatial scale effects 766 

and spatial unit selection; (b) spatial discretization optimization for the variable temperature; 767 

(c) factor detector; (d) risk mean values of variables geographical region and temperature; (e) 768 

risk matrixes of variables geographical region and temperature; (f) interaction detector; and (g) 769 

ecological detector.  770 

Figure 11. Spatial analysis for H1N1 flu incidences in the sub-regions: (a) northeast and north; 771 

(b) central and south and (c) western China.  772 
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Figure 12. Spatial analysis for road damage conditions. (a) Processes and results of spatial 773 

discretization optimization for continuous variables; (b) factor detector; (c) risk detector; (d) 774 

interaction detector; and (e) ecological detector.  775 

Table 1. Interactions between two explanatory variables and their interactive impacts 776 

Table 2. A summary of cases with different types of spatial data 777 

778 
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Table 1. Interactions between two explanatory variables and their interactive impacts 779 

Geographical interaction relationship Interaction 

𝑄𝑢∩𝑣 < min⁡(𝑄𝑢 , 𝑄𝑣) 
1 Nonlinear-weaken: Impacts of single variables are 

nonlinearly weakened by the interaction of two variables. 

min⁡(𝑄𝑢 , 𝑄𝑣) ≤ 𝑄𝑢∩𝑣 ≤ max⁡(𝑄𝑢 , 𝑄𝑣)
Uni-variable weaken: Impacts of single variables are uni-

variable weakened by the interaction. 

max⁡(𝑄𝑢 , 𝑄𝑣) < 𝑄𝑢∩𝑣 < (𝑄𝑢 + 𝑄𝑣)
Bi-variable enhance: Impact of single variables are bi-

variable enhanced by the interaction. 

𝑄𝑢∩𝑣 = (𝑄𝑢 + 𝑄𝑣) Independent: Impacts of variables are independent. 

𝑄𝑢∩𝑣 > (𝑄𝑢 + 𝑄𝑣)
Nonlinear-enhance: Impacts of variables are nonlinearly 

enhanced. 
1 𝑄𝑢 is the 𝑄 value of variable 𝑢, 𝑄𝑣 is the 𝑄 value of variable 𝑣, and 𝑄𝑢∩𝑣 is the 𝑄 value of the interaction between780 

variables 𝑢 and 𝑣. 781 
782 

Table 2. A summary of cases with different types of spatial data 783 

Case Description 
Study 

area 

Type of 

sample 

Explanatory variables and variable 

types 

Vegetation 

change 

variables 

exploration 

Impacts of human 

activities and 

climate on the 

vegetation changes 

Whole area 

Vari ables 

derived 

from raster 

data 

Categorical variables: Climate zone 

and mining production 

Continuous variables: Temperature 

change, precipitation, GDP and 

population density 

H1N1 flu 

incidence 

variables 

exploration 

Associations of 

meteorological 

conditions and 

human activities 

with H1N1 flu 

incidences 

Whole area 

and sub-

regions 

Spatial 

point or 

areal data 

Categorical variable: Geographical 

region  

Continuous variables: Temperature, 

precipitation, humidity index, 

population density, GDP, road 

density, percentage of sensitive 

people, percentage of urban 

population and medical cost per 

capita 

Road damage 

variables 

exploration 

Impacts of vehicles 

and environment on 

road damage 

Whole area 
Spatial line 

segment 

Categorical variables: Traffic speed 

and soil type 

Continuous variables: Population 

within 1 km of road segments and 

daily traffic volumes 

784 
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An optimal parameters-based geographical detector model enhances 

geographic characteristics of explanatory variables for spatial 

heterogeneity analysis: Cases with different types of spatial data 

Supplementary Information 1: Overview of the GD package 

The GD package contains a set of functions of the optimal parameters-based 

geographical detector (OPGD) model. Results of the GD package based analysis include all 

intermediate computation processes, spatial stratified analysis results, and the result 

visualization. The general computation process and relationships of functions for spatial 

stratified heterogeneity analysis are shown in Figure S1. The functions within GD are briefly 

described in Table S1, and the usage of functions together with arguments, output function 

and visualization function are listed in Table S2. The functions include four parts: 

discretization and optimal discretization, geographical detectors, one-step model and 

assessment of size effects of spatial units.  
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Figure S1. General calculation process and the relationships of functions in GD package 

 

Table S1. Summary of functions in the GD package 

Function Description 

disc Function for discretizing continuous data and obtaining the different outputs, including 

discretization intervals, numbers of values within intervals, and visualization of 

discretization.  

optidisc Optimal discretization for continuous variables and visualization. 

gd Function for calculating power determinant using factor detector of geographical detectors 

and visualization. 

riskmean Function for calculating risk means within intervals and visualization. 

gdrisk Function for risk detector calculation, risk matrix and visualization. 

gdinteract Function for interaction detector calculation and visualization. 

gdeco Function for ecological detector calculation, ecological matrix and visualization. 

gdm A one-step function for optimal discretization and geographical detectors for multiple 

variables and visualization. 

sesu Function for comparison of size effects of spatial units in spatial heterogeneity analysis. 
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Table S2. Usage of functions in the GD package 

Function Usage Arguments 

Output and 

visualization 

functions 

disc 

disc(var, n, 

method = 

"quantile", 

ManualItv) 

var: A numeric vector of continuous variable 

n: The number of intervals 

method: A character of discretization method. Both 

supervised and unsupervised discretization methods are 

available in the function. The supervised discretization 

methods include equal breaks, natural breaks, quantile 

breaks, geometric breaks and standard deviation breaks, 

and the unsupervised method supports manually defined 

breaking intervals. 

ManualItv: A numeric vector of manual intervals 

print() and 

plot() 

optidisc 

optidisc(formula, 

data, discmethod 

= discmethod, 

discitv = discitv) 

formula: A formula of response and explanatory variables 

data: A data.frame includes response and explanatory 

variables discmethod: A character vector of discretization 

methods 

discitv: A numeric vector of numbers of intervals 

print() and 

plot() 

gd 
gd(formula, data 

= NULL) 

formula: A formula of response and explanatory variables 

data: A data.frame includes response and explanatory 

variables 

print() and 

plot() 

riskmean 
riskmean(formula, 

data = NULL) 

gdrisk 
gdrisk(formula, 

data = NULL) 

gdinteract 
gdinteract(formul

a, data = NULL) 

gdeco 
gdeco(formula, 

data = NULL) 

gdm 

gdm(formula, 

continuous_varia

ble = NULL, data 

= NULL, 

discmethod, 

discitv) 

formula: A formula of response and explanatory variables 

continuous_variable: A vector of continuous variable 

names 

data: A data.frame includes response and explanatory 

variables 

discmethod: A character vector of discretization methods 

discitv: A numeric vector of numbers of intervals 

print() and 

plot() 

sesu sesu(gdlist, su) 
gdlist: A list of gdm result or gd result 

su: A vector of sizes of spatial units 

 

 

If the explanatory variables contain continuous variables, the continuous variables 

should be discretized. The GD package provides two options of discretization: discretization 
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with the user defined parameters, i.e. the combination of a discretization method and a break 

number, and optimal discretization that the best parameter combination is selected from a 

series of combinations.  

(1). For the discretization with the user defined parameters, the disc function provides five 

supervised discretization methods, including equal breaks, natural breaks, quantile 

breaks, geometric breaks and standard deviation breaks, and the unsupervised 

methods that the breaking intervals can be manually defined. The disc function also 

visualizes the discretization results.  

(2). For the optimal discretization process, users can provide a series of combinations of 

the discretization methods and the numbers of intervals, then utilize the optidisc 

function to select the best parameter combinations for discretizing variables. In 

addition, the process of selecting the best parameter combinations and the 

discretization results can be visualized with the optidisc function. 

Once the continuous variables are discretized, the next step is to perform the four parts 

of geographical detectors: factor detector, interactive detector, risk detector and ecological 

detector. Functions in the four parts of geographical detectors are explained as follows. 

(1). The gd function is used to calculate 𝑄  values of variables, together with the 

significance level.  

(2). For the risk detector, the riskmean function generates the mean risk values of sub-

regions, and the gdrisk function assesses the significant difference of risks among 

sub-regions with the results of t-test value, degree of freedom, significance and the 

risk factor of two sub-regions. If the difference between two sub-regions is significant 

within a threshold of significance level (e.g. 0.05), the risk factor of two sub-regions 

is marked with “Y”, otherwise, it is marked with “N”. The function also forms a 

matrix of the risk factors and visualizes the matrix.  

(3). The gdinteract function is applied on computing the interactive impact of two 

variables. The results include the respective 𝑄 values of two variables, the 𝑄 value 

of the interaction, and the type of interaction, such as nonlinear enhance.  
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(4). For the ecological detector, the gdeco function evaluates if the impacts of two 

explanatory variables are significantly different with the results of F-test value, 

significance and the ecological factor of two variables. The function also generates a 

matrix of ecological factors and visualizes the matrix.  

In addition, for ease of use the package, a one-step function gdm is provided for straight 

forward performing both optimal discretization and geographical detectors to derive all 

analysis results and visualizations. Results of the one-step function contains all intermediate 

computation processes and the OPGD-based analysis. 

 



An optimal parameters-based geographical detector
model enhances geographic characteristics of

explanatory variables for spatial heterogeneity analysis:
Cases with different types of spatial data

Supplementary Information 2: Computation process and results of example cases

Note:

R package “GD: Geographical Detectors” version 1.7.

The codes can be run by R (>= 3.4.0).

Orders of codes are consistent with the orders in the article.

4.1 Spatial raster data of vegetation changes

library("GD")
data(ndvi_40)
head(ndvi_40)

## NDVIchange Climatezone Mining Tempchange Precipitation GDP Popdensity
## 1 0.11599 Bwk low 0.25598 236.54 12.55 1.44957
## 2 0.01783 Bwk low 0.27341 213.55 2.69 0.80124
## 3 0.13817 Bsk low 0.30247 448.88 20.06 11.49432
## 4 0.00439 Bwk low 0.38302 212.76 0.00 0.04620
## 5 0.00316 Bwk low 0.35729 205.01 0.00 0.07482
## 6 0.00838 Bwk low 0.33750 200.55 0.00 0.54941

Optimal discretization for multiple spatial variables (Figure 5)
## set optional discretization methods and numbers of intervals
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- 3:7
## optimal discretization
ndvi.test <- ndvi_40
odc1 <- optidisc(NDVIchange ~ ., data = ndvi.test[, -(2:3)], discmethod, discitv)
odc1
## plot optimal discretization processes and results
plot(odc1)
## convert continuous variables to strata variables based on discretization breaks
ndvi.test[, 4:7] <- do.call(cbind, lapply(1:4, function(x)

data.frame(cut(ndvi.test[, x+3], unique(odc1[[x]]$itv), include.lowest = TRUE))))

Factor detector (Figure 6):
## factor detector
mvgd <- gd(NDVIchange ~ ., data = ndvi.test)
mvgd
plot(mvgd)

1
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Risk detector (Figure 7):
## risk detector: risk means
mvrm <- riskmean(NDVIchange ~ ., data = ndvi.test)
mvrm
plot(mvrm)
## risk detector: risk matrix
mvgr <- gdrisk(NDVIchange ~ ., data = ndvi.test)
mvgr
plot(mvgr)

Interaction detector (Figure 8a):
## interaction detector
mvgi <- gdinteract(NDVIchange ~ ., data = ndvi.test)
mvgi
plot(mvgi)

Ecological detector (Figure 8b):
## ecological detector
mvge <- gdeco(NDVIchange ~ ., data = ndvi.test)
mvge
plot(mvge)

Results of the optimal discretization and geographical detectors by the one-step function “gdm” for exploring
factors of vegetation changes.
data("ndvi_40")
## set optional parameters of optimal discretization
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- 3:7
## "gdm" function (~ 10.7 s)
ndvigdm <- gdm(NDVIchange ~ .,

continuous_variable = c("Tempchange", "Precipitation", "GDP", "Popdensity"),
data = ndvi_40,
discmethod = discmethod, discitv = discitv)

ndvigdm

## Explanatory variables include 4 continuous variables.
##
## optimal discretization result of Tempchange
## method : sd
## number of intervals: 7
## intervals:
## -0.39277 0.3106004 0.6614902 1.01238 1.36327 1.71416 2.065049 3.22051
## numbers of data within intervals:
## 93 102 82 151 99 100 86
##
## optimal discretization result of Precipitation
## method : equal
## number of intervals: 7
## intervals:
## 42.51 132.5014 222.4929 312.4843 402.4757 492.4671 582.4586 672.45
## numbers of data within intervals:
## 108 107 81 137 136 56 88
##
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## optimal discretization result of GDP
## method : natural
## number of intervals: 7
## intervals:
## 0 9.9235 33.406 100.6513 289.6999 887.9468 4598.732 16589.09
## numbers of data within intervals:
## 325 84 79 90 84 46 5
##
## optimal discretization result of Popdensity
## method : quantile
## number of intervals: 7
## intervals:
## 0 0.2301671 0.9002686 2.021381 5.253373 14.80794 40.57514 970.8682
## numbers of data within intervals:
## 102 102 102 101 102 102 102
##
## Geographical detectors results:
##
## Factor detector:
## variable qv sig
## 1 Climatezone 0.82183348 7.176240e-10
## 2 Mining 0.14111542 6.608981e-10
## 3 Tempchange 0.32655370 3.094152e-10
## 4 Precipitation 0.86935048 2.518923e-10
## 5 GDP 0.09514837 2.347511e-09
## 6 Popdensity 0.19618770 2.146283e-10
##
## Risk detector:
## Climatezone
## itv meanrisk
## 1 Bsk 0.143572961
## 2 Bwk 0.004536505
## 3 Dwa 0.321735000
## 4 Dwb 0.343155655
## 5 Dwc 0.444868361
##
## Mining
## itv meanrisk
## 1 very low 0.21008297
## 2 low 0.03294513
## 3 medium 0.30733460
## 4 high 0.26695286
## 5 very high 0.19176875
##
## Tempchange
## itv meanrisk
## 1 [-0.393,0.311] 0.03237419
## 2 (0.311,0.661] 0.07312216
## 3 (0.661,1.01] 0.22091646
## 4 (1.01,1.36] 0.32457258
## 5 (1.36,1.71] 0.29258313
## 6 (1.71,2.07] 0.23839880
## 7 (2.07,3.22] 0.17535547
##
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## Precipitation
## itv meanrisk
## 1 [42.5,133] -0.01608009
## 2 (133,222] 0.02460271
## 3 (222,312] 0.07515988
## 4 (312,402] 0.22508642
## 5 (402,492] 0.31663221
## 6 (492,582] 0.45128393
## 7 (582,672] 0.44689250
##
## GDP
## itv meanrisk
## 1 [0,9.92] 0.1460310
## 2 (9.92,33.4] 0.2295733
## 3 (33.4,101] 0.2217597
## 4 (101,290] 0.2818238
## 5 (290,888] 0.2605960
## 6 (888,4.6e+03] 0.2748348
## 7 (4.6e+03,1.66e+04] 0.2642400
##
## Popdensity
## itv meanrisk
## 1 [0,0.23] 0.04825588
## 2 (0.23,0.9] 0.13872392
## 3 (0.9,2.02] 0.17562520
## 4 (2.02,5.25] 0.25928089
## 5 (5.25,14.8] 0.27412971
## 6 (14.8,40.6] 0.25845363
## 7 (40.6,971] 0.27435755
##
## Climatezone
## interval Bsk Bwk Dwa Dwb Dwc
## 1 Bsk <NA> <NA> <NA> <NA> <NA>
## 2 Bwk Y <NA> <NA> <NA> <NA>
## 3 Dwa Y Y <NA> <NA> <NA>
## 4 Dwb Y Y N <NA> <NA>
## 5 Dwc Y Y Y Y <NA>
##
## Mining
## interval very low low medium high very high
## 1 very low <NA> <NA> <NA> <NA> <NA>
## 2 low Y <NA> <NA> <NA> <NA>
## 3 medium Y Y <NA> <NA> <NA>
## 4 high Y Y N <NA> <NA>
## 5 very high N Y Y Y <NA>
##
## Tempchange
## interval [-0.393,0.311] (0.311,0.661] (0.661,1.01] (1.01,1.36]
## 1 [-0.393,0.311] <NA> <NA> <NA> <NA>
## 2 (0.311,0.661] Y <NA> <NA> <NA>
## 3 (0.661,1.01] Y Y <NA> <NA>
## 4 (1.01,1.36] Y Y Y <NA>
## 5 (1.36,1.71] Y Y Y N
## 6 (1.71,2.07] Y Y N Y
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## 7 (2.07,3.22] Y Y N Y
## (1.36,1.71] (1.71,2.07] (2.07,3.22]
## 1 <NA> <NA> <NA>
## 2 <NA> <NA> <NA>
## 3 <NA> <NA> <NA>
## 4 <NA> <NA> <NA>
## 5 <NA> <NA> <NA>
## 6 Y <NA> <NA>
## 7 Y Y <NA>
##
## Precipitation
## interval [42.5,133] (133,222] (222,312] (312,402] (402,492] (492,582]
## 1 [42.5,133] <NA> <NA> <NA> <NA> <NA> <NA>
## 2 (133,222] Y <NA> <NA> <NA> <NA> <NA>
## 3 (222,312] Y Y <NA> <NA> <NA> <NA>
## 4 (312,402] Y Y Y <NA> <NA> <NA>
## 5 (402,492] Y Y Y Y <NA> <NA>
## 6 (492,582] Y Y Y Y Y <NA>
## 7 (582,672] Y Y Y Y Y N
## (582,672]
## 1 <NA>
## 2 <NA>
## 3 <NA>
## 4 <NA>
## 5 <NA>
## 6 <NA>
## 7 <NA>
##
## GDP
## interval [0,9.92] (9.92,33.4] (33.4,101] (101,290] (290,888]
## 1 [0,9.92] <NA> <NA> <NA> <NA> <NA>
## 2 (9.92,33.4] Y <NA> <NA> <NA> <NA>
## 3 (33.4,101] Y N <NA> <NA> <NA>
## 4 (101,290] Y Y Y <NA> <NA>
## 5 (290,888] Y N N N <NA>
## 6 (888,4.6e+03] Y N Y N N
## 7 (4.6e+03,1.66e+04] Y N N N N
## (888,4.6e+03] (4.6e+03,1.66e+04]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 N <NA>
##
## Popdensity
## interval [0,0.23] (0.23,0.9] (0.9,2.02] (2.02,5.25] (5.25,14.8]
## 1 [0,0.23] <NA> <NA> <NA> <NA> <NA>
## 2 (0.23,0.9] Y <NA> <NA> <NA> <NA>
## 3 (0.9,2.02] Y N <NA> <NA> <NA>
## 4 (2.02,5.25] Y Y Y <NA> <NA>
## 5 (5.25,14.8] Y Y Y N <NA>
## 6 (14.8,40.6] Y Y Y N N
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## 7 (40.6,971] Y Y Y N N
## (14.8,40.6] (40.6,971]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 N <NA>
##
## Interaction detector:
## variable Climatezone Mining Tempchange Precipitation GDP Popdensity
## 1 Climatezone NA NA NA NA NA NA
## 2 Mining 0.8345 NA NA NA NA NA
## 3 Tempchange 0.8538 0.4223 NA NA NA NA
## 4 Precipitation 0.9016 0.8861 0.9158 NA NA NA
## 5 GDP 0.8571 0.2438 0.3886 0.8959 NA NA
## 6 Popdensity 0.8599 0.3588 0.4352 0.9035 0.2166 NA
##
## Ecological detector:
## variable Climatezone Mining Tempchange Precipitation GDP Popdensity
## 1 Climatezone <NA> <NA> <NA> <NA> <NA> <NA>
## 2 Mining N <NA> <NA> <NA> <NA> <NA>
## 3 Tempchange N Y <NA> <NA> <NA> <NA>
## 4 Precipitation Y Y Y <NA> <NA> <NA>
## 5 GDP N N N N <NA> <NA>
## 6 Popdensity N N N N N <NA>

plot(ndvigdm)

Codes and data of the computation processes of the t-test for risk detector, interactions explored by the
interaction detector and the F-test for ecological detector.
## t-test of risk detector for the variable Climatezone
ndvigdm$Risk.detector$Climatezone

## itv1 itv2 t df sig risk
## 1 Bsk Bwk 17.730358 315.88563 2.637662e-49 Y
## 2 Bsk Dwa -11.809163 52.13343 2.360201e-16 Y
## 3 Bsk Dwb -19.658136 327.45054 2.276521e-57 Y
## 4 Bsk Dwc -37.998231 304.88974 1.143504e-117 Y
## 5 Bwk Dwa -22.770854 38.27911 7.381701e-24 Y
## 6 Bwk Dwb -40.614567 215.91365 4.556501e-103 Y
## 7 Bwk Dwc -81.337846 296.50585 8.422103e-205 Y
## 8 Dwa Dwb -1.395461 55.29265 1.684563e-01 N
## 9 Dwa Dwc -8.808167 38.78614 8.589747e-11 Y
## 10 Dwb Dwc -12.080308 215.01449 5.524023e-26 Y

## t-test of risk detector for the variable Tempchange
ndvigdm$Risk.detector$Tempchange

## itv1 itv2 t df sig risk
## 1 [-0.393,0.311] (0.311,0.661] -2.1784882 192.2786 3.058620e-02 Y
## 2 [-0.393,0.311] (0.661,1.01] -8.1978707 141.2153 1.345932e-13 Y
## 3 [-0.393,0.311] (1.01,1.36] -16.0313363 234.0217 1.570643e-39 Y
## 4 [-0.393,0.311] (1.36,1.71] -12.8583388 182.2434 2.393170e-27 Y
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## 5 [-0.393,0.311] (1.71,2.07] -10.9120573 189.5401 7.974504e-22 Y
## 6 [-0.393,0.311] (2.07,3.22] -7.4129666 170.1484 5.545589e-12 Y
## 7 (0.311,0.661] (0.661,1.01] -6.2085679 153.7650 4.757633e-09 Y
## 8 (0.311,0.661] (1.01,1.36] -13.0734367 236.4896 9.325721e-30 Y
## 9 (0.311,0.661] (1.36,1.71] -10.3773420 194.7078 2.309357e-20 Y
## 10 (0.311,0.661] (1.71,2.07] -8.3244706 199.8569 1.320714e-14 Y
## 11 (0.311,0.661] (2.07,3.22] -5.0504897 182.3930 1.063394e-06 Y
## 12 (0.661,1.01] (1.01,1.36] -4.4238549 156.7164 1.806223e-05 Y
## 13 (0.661,1.01] (1.36,1.71] -2.8636285 165.3820 4.731052e-03 Y
## 14 (0.661,1.01] (1.71,2.07] -0.7301574 154.8633 4.663970e-01 N
## 15 (0.661,1.01] (2.07,3.22] 1.8775727 153.0666 6.234221e-02 N
## 16 (1.01,1.36] (1.36,1.71] 1.5434067 214.0154 1.242095e-01 N
## 17 (1.01,1.36] (1.71,2.07] 4.4408817 231.4842 1.387933e-05 Y
## 18 (1.01,1.36] (2.07,3.22] 7.5356809 203.4925 1.565776e-12 Y
## 19 (1.36,1.71] (1.71,2.07] 2.5434236 194.1126 1.175653e-02 Y
## 20 (1.36,1.71] (2.07,3.22] 5.4107475 182.9856 1.947797e-07 Y
## 21 (1.71,2.07] (2.07,3.22] 3.0896365 181.6485 2.319198e-03 Y

## interactions explored by the interaction detector
ndvigdm$Interaction.detector$Interaction

## var1 var2 qv1 qv2 qv12
## 1 Climatezone Mining 0.82183348 0.14111542 0.8344738
## 2 Climatezone Tempchange 0.82183348 0.32655370 0.8537915
## 3 Climatezone Precipitation 0.82183348 0.86935048 0.9015820
## 4 Climatezone GDP 0.82183348 0.09514837 0.8571228
## 5 Climatezone Popdensity 0.82183348 0.19618770 0.8599232
## 6 Mining Tempchange 0.14111542 0.32655370 0.4223200
## 7 Mining Precipitation 0.14111542 0.86935048 0.8861185
## 8 Mining GDP 0.14111542 0.09514837 0.2438202
## 9 Mining Popdensity 0.14111542 0.19618770 0.3587628
## 10 Tempchange Precipitation 0.32655370 0.86935048 0.9158048
## 11 Tempchange GDP 0.32655370 0.09514837 0.3885994
## 12 Tempchange Popdensity 0.32655370 0.19618770 0.4351518
## 13 Precipitation GDP 0.86935048 0.09514837 0.8958678
## 14 Precipitation Popdensity 0.86935048 0.19618770 0.9035324
## 15 GDP Popdensity 0.09514837 0.19618770 0.2165923
## interaction
## 1 Enhance, bi-
## 2 Enhance, bi-
## 3 Enhance, bi-
## 4 Enhance, bi-
## 5 Enhance, bi-
## 6 Enhance, bi-
## 7 Enhance, bi-
## 8 Enhance, nonlinear
## 9 Enhance, nonlinear
## 10 Enhance, bi-
## 11 Enhance, bi-
## 12 Enhance, bi-
## 13 Enhance, bi-
## 14 Enhance, bi-
## 15 Enhance, bi-
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## F-test of ecological detector
ndvigdm$Ecological.detector$Ecological

## var1 var2 f sig eco
## 1 Climatezone Mining 0.2080971 1.000000e+00 N
## 2 Climatezone Tempchange 0.2637874 1.000000e+00 N
## 3 Climatezone Precipitation 1.3616512 1.987113e-05 Y
## 4 Climatezone GDP 0.1968338 1.000000e+00 N
## 5 Climatezone Popdensity 0.2209808 1.000000e+00 N
## 6 Mining Tempchange 1.2676168 7.915003e-04 Y
## 7 Mining Precipitation 6.5433453 0.000000e+00 Y
## 8 Mining GDP 0.9458750 7.709827e-01 N
## 9 Mining Popdensity 1.0619118 2.115358e-01 N
## 10 Tempchange Precipitation 5.1619268 0.000000e+00 Y
## 11 Tempchange GDP 0.7461836 9.999515e-01 N
## 12 Tempchange Popdensity 0.8377230 9.908628e-01 N
## 13 Precipitation GDP 0.1445553 1.000000e+00 N
## 14 Precipitation Popdensity 0.1622888 1.000000e+00 N
## 15 GDP Popdensity 1.1226767 6.143133e-02 N

Comparison of size effects of spatial units (Figure 9).
ndvilist <- list(ndvi_5, ndvi_10, ndvi_20, ndvi_30, ndvi_40, ndvi_50)
su <- c(5,10,20,30,40,50) ## sizes of spatial units
## set optional parameters of optimal discretization
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- 3:7
## "gdm" function (~ 108 s)
gdlist <- list()
for (i in 1:6){

gdlist[[i]] <- gdm(NDVIchange ~ .,
continuous_variable = c("Tempchange", "Precipitation", "GDP", "Popdensity"),
data = ndvilist[[i]], discmethod = discmethod, discitv = discitv)

}
## size effects of spatial units
sesu(gdlist, su)

4.2 Spatial point or areal data of H1N1 flu incidences

4.2.1 In the whole study area
data(h1n1_100)
head(h1n1_100)

## H1N1 temp prec humi popd gdpd rdds sensepop urbanpop medicost
## 1 2.02 22.257 2169.194 28.0085 171.24 0.4074 23.33 26.8913 52.74 94.1805
## 2 2.02 22.730 2131.414 44.7943 213.10 0.7876 26.55 26.8913 52.74 94.1805
## 3 2.02 23.288 2438.123 45.8407 288.81 1.5207 38.17 26.8913 52.74 94.1805
## 4 1.45 22.914 2251.993 24.3231 719.93 1.9710 53.61 23.9246 67.76 64.8081
## 5 1.45 22.566 2355.137 33.6370 791.68 3.4102 57.40 23.9246 67.76 64.8081
## 6 1.09 21.169 1658.817 34.9150 90.36 0.2519 17.24 28.0352 40.48 77.7068
## Georegion
## 1 S
## 2 S
## 3 S
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## 4 S
## 5 S
## 6 W

Results of OPGD-based analysis for H1N1 flu incidences (Figure 10).
h1n1list <- list(h1n1_50, h1n1_100, h1n1_150)
su <- c(50, 100, 150)
## set optional parameters of optimal discretization
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- 4:7
continuous_variable <- colnames(h1n1_50)[-c(1,11)]
## "gdm" function (~ 67 s)
gdlist <- list()
for (i in 1:3){

gdlist[[i]] <- gdm(H1N1 ~ .,
continuous_variable = continuous_variable,
data = h1n1list[[i]],
discmethod = discmethod, discitv = discitv)

}
## size effects of spatial units
sesu(gdlist, su)

## recalculation with 100-km spatial unit
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- 4:7
continuous_variable <- colnames(h1n1_100)[-c(1,11)]
h1n1.gdm.100 <- gdm(H1N1 ~ .,

continuous_variable = continuous_variable,
data = h1n1_100,
discmethod = discmethod, discitv = discitv)

h1n1.gdm.100

## Explanatory variables include 9 continuous variables.
##
## optimal discretization result of temp
## method : equal
## number of intervals: 7
## intervals:
## -7.092 -2.740286 1.611429 5.963143 10.31486 14.66657 19.01829 23.37
## numbers of data within intervals:
## 78 175 178 167 148 172 69
##
## optimal discretization result of prec
## method : natural
## number of intervals: 7
## intervals:
## 13.13 218.9193 407.3756 611.4574 828.5553 1176.74 1750.94 2569.669
## numbers of data within intervals:
## 171 153 196 204 108 120 35
##
## optimal discretization result of humi
## method : quantile
## number of intervals: 6
## intervals:
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## -109.0914 -54.95307 -29.4622 -8.1786 12.91037 41.38707 177.9288
## numbers of data within intervals:
## 165 164 165 164 164 165
##
## optimal discretization result of popd
## method : natural
## number of intervals: 6
## intervals:
## 0 15.4227 81.1539 225.1411 469.9451 989.8658 2786.56
## numbers of data within intervals:
## 471 140 184 100 71 21
##
## optimal discretization result of gdpd
## method : natural
## number of intervals: 7
## intervals:
## 0 0.059117 0.288647 0.666049 1.548748 3.410617 7.495601 22.1713
## numbers of data within intervals:
## 460 134 138 123 76 42 14
##
## optimal discretization result of rdds
## method : natural
## number of intervals: 7
## intervals:
## 0 3.9791 11.2851 21.8487 37.4985 62.3373 131.1288 316.5
## numbers of data within intervals:
## 396 150 145 153 73 55 15
##
## optimal discretization result of sensepop
## method : sd
## number of intervals: 6
## intervals:
## 18.5058 22.74193 24.14647 25.551 26.95554 28.36007 29.76461 31.3683
## numbers of data within intervals:
## 212 33 56 75 318 250 43
##
## optimal discretization result of urbanpop
## method : sd
## number of intervals: 4
## intervals:
## 23.71 35.0363 46.59943 58.16257 86.3
## numbers of data within intervals:
## 133 369 292 193
##
## optimal discretization result of medicost
## method : quantile
## number of intervals: 7
## intervals:
## 60.1877 64.8081 72.8208 79.1247 86.1034 95.1002 143.9295 158.2044
## numbers of data within intervals:
## 149 137 141 229 115 82 134
##
## Geographical detectors results:
##
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## Factor detector:
## variable qv sig
## 1 temp 0.49088033 1.838595e-10
## 2 prec 0.40566048 3.619388e-10
## 3 humi 0.17352575 2.380844e-10
## 4 popd 0.22000829 4.038251e-10
## 5 gdpd 0.21462378 7.726012e-10
## 6 rdds 0.23398371 7.034787e-10
## 7 sensepop 0.43308776 3.418482e-10
## 8 urbanpop 0.34291104 6.720092e-10
## 9 medicost 0.45571331 3.509079e-10
## 10 Georegion 0.07399135 6.481682e-11
##
## Risk detector:
## temp
## itv meanrisk
## 1 [-7.09,-2.74] 0.2285897
## 2 (-2.74,1.61] 0.2637714
## 3 (1.61,5.96] 0.3753933
## 4 (5.96,10.3] 0.6703593
## 5 (10.3,14.7] 0.6264189
## 6 (14.7,19] 0.8155233
## 7 (19,23.4] 1.5410145
##
## prec
## itv meanrisk
## 1 [13.1,219] 0.6188889
## 2 (219,407] 0.4271242
## 3 (407,611] 0.4032143
## 4 (611,829] 0.3638725
## 5 (829,1.18e+03] 0.6881481
## 6 (1.18e+03,1.75e+03] 1.0233333
## 7 (1.75e+03,2.57e+03] 1.7288571
##
## humi
## itv meanrisk
## 1 [-109,-55] 0.4675152
## 2 (-55,-29.5] 0.5257927
## 3 (-29.5,-8.18] 0.5613333
## 4 (-8.18,12.9] 0.3378659
## 5 (12.9,41.4] 0.6747561
## 6 (41.4,178] 0.9697576
##
## popd
## itv meanrisk
## 1 [0,15.4] 0.3786624
## 2 (15.4,81.2] 0.6187857
## 3 (81.2,225] 0.8997826
## 4 (225,470] 0.8733000
## 5 (470,990] 0.6371831
## 6 (990,2.79e+03] 0.9028571
##
## gdpd
## itv meanrisk
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## 1 [0,0.0591] 0.3791739
## 2 (0.0591,0.289] 0.6033582
## 3 (0.289,0.666] 0.8801449
## 4 (0.666,1.55] 0.9006504
## 5 (1.55,3.41] 0.7182895
## 6 (3.41,7.5] 0.6107143
## 7 (7.5,22.2] 1.0228571
##
## rdds
## itv meanrisk
## 1 [0,3.98] 0.3558586
## 2 (3.98,11.3] 0.5077333
## 3 (11.3,21.8] 0.8104828
## 4 (21.8,37.5] 0.9307843
## 5 (37.5,62.3] 0.7598630
## 6 (62.3,131] 0.6310909
## 7 (131,316] 0.9920000
##
## sensepop
## itv meanrisk
## 1 [18.5,22.7] 0.5559434
## 2 (22.7,24.1] 1.3181818
## 3 (24.1,25.6] 0.8432143
## 4 (25.6,27] 0.7149333
## 5 (27,28.4] 0.5564465
## 6 (28.4,29.8] 0.2841600
## 7 (29.8,31.4] 1.6716279
##
## urbanpop
## itv meanrisk
## 1 [23.7,35] 0.0300000
## 2 (35,46.6] 0.7440108
## 3 (46.6,58.2] 0.4399315
## 4 (58.2,86.3] 0.9071503
##
## medicost
## itv meanrisk
## 1 [60.2,64.8] 0.48510067
## 2 (64.8,72.8] 0.64489051
## 3 (72.8,79.1] 1.14609929
## 4 (79.1,86.1] 0.60742358
## 5 (86.1,95.1] 0.82208696
## 6 (95.1,144] 0.25109756
## 7 (144,158] 0.04186567
##
## Georegion
## itv meanrisk
## 1 N 0.3687603
## 2 S 0.8471154
## 3 W 0.5708451
##
## temp
## interval [-7.09,-2.74] (-2.74,1.61] (1.61,5.96] (5.96,10.3] (10.3,14.7]
## 1 [-7.09,-2.74] <NA> <NA> <NA> <NA> <NA>
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## 2 (-2.74,1.61] N <NA> <NA> <NA> <NA>
## 3 (1.61,5.96] Y Y <NA> <NA> <NA>
## 4 (5.96,10.3] Y Y Y <NA> <NA>
## 5 (10.3,14.7] Y Y Y N <NA>
## 6 (14.7,19] Y Y Y Y Y
## 7 (19,23.4] Y Y Y Y Y
## (14.7,19] (19,23.4]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 Y <NA>
##
## prec
## interval [13.1,219] (219,407] (407,611] (611,829] (829,1.18e+03]
## 1 [13.1,219] <NA> <NA> <NA> <NA> <NA>
## 2 (219,407] Y <NA> <NA> <NA> <NA>
## 3 (407,611] Y N <NA> <NA> <NA>
## 4 (611,829] Y N N <NA> <NA>
## 5 (829,1.18e+03] N Y Y Y <NA>
## 6 (1.18e+03,1.75e+03] Y Y Y Y Y
## 7 (1.75e+03,2.57e+03] Y Y Y Y Y
## (1.18e+03,1.75e+03] (1.75e+03,2.57e+03]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 Y <NA>
##
## humi
## interval [-109,-55] (-55,-29.5] (-29.5,-8.18] (-8.18,12.9] (12.9,41.4]
## 1 [-109,-55] <NA> <NA> <NA> <NA> <NA>
## 2 (-55,-29.5] N <NA> <NA> <NA> <NA>
## 3 (-29.5,-8.18] Y N <NA> <NA> <NA>
## 4 (-8.18,12.9] Y Y Y <NA> <NA>
## 5 (12.9,41.4] Y Y Y Y <NA>
## 6 (41.4,178] Y Y Y Y Y
## (41.4,178]
## 1 <NA>
## 2 <NA>
## 3 <NA>
## 4 <NA>
## 5 <NA>
## 6 <NA>
##
## popd
## interval [0,15.4] (15.4,81.2] (81.2,225] (225,470] (470,990]
## 1 [0,15.4] <NA> <NA> <NA> <NA> <NA>
## 2 (15.4,81.2] Y <NA> <NA> <NA> <NA>
## 3 (81.2,225] Y Y <NA> <NA> <NA>
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## 4 (225,470] Y Y N <NA> <NA>
## 5 (470,990] Y N Y Y <NA>
## 6 (990,2.79e+03] Y Y N N Y
## (990,2.79e+03]
## 1 <NA>
## 2 <NA>
## 3 <NA>
## 4 <NA>
## 5 <NA>
## 6 <NA>
##
## gdpd
## interval [0,0.0591] (0.0591,0.289] (0.289,0.666] (0.666,1.55]
## 1 [0,0.0591] <NA> <NA> <NA> <NA>
## 2 (0.0591,0.289] Y <NA> <NA> <NA>
## 3 (0.289,0.666] Y Y <NA> <NA>
## 4 (0.666,1.55] Y Y N <NA>
## 5 (1.55,3.41] Y N Y Y
## 6 (3.41,7.5] Y N Y Y
## 7 (7.5,22.2] Y Y N N
## (1.55,3.41] (3.41,7.5] (7.5,22.2]
## 1 <NA> <NA> <NA>
## 2 <NA> <NA> <NA>
## 3 <NA> <NA> <NA>
## 4 <NA> <NA> <NA>
## 5 <NA> <NA> <NA>
## 6 N <NA> <NA>
## 7 Y Y <NA>
##
## rdds
## interval [0,3.98] (3.98,11.3] (11.3,21.8] (21.8,37.5] (37.5,62.3]
## 1 [0,3.98] <NA> <NA> <NA> <NA> <NA>
## 2 (3.98,11.3] Y <NA> <NA> <NA> <NA>
## 3 (11.3,21.8] Y Y <NA> <NA> <NA>
## 4 (21.8,37.5] Y Y N <NA> <NA>
## 5 (37.5,62.3] Y Y N Y <NA>
## 6 (62.3,131] Y Y Y Y N
## 7 (131,316] Y Y N N N
## (62.3,131] (131,316]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 Y <NA>
##
## sensepop
## interval [18.5,22.7] (22.7,24.1] (24.1,25.6] (25.6,27] (27,28.4]
## 1 [18.5,22.7] <NA> <NA> <NA> <NA> <NA>
## 2 (22.7,24.1] Y <NA> <NA> <NA> <NA>
## 3 (24.1,25.6] Y Y <NA> <NA> <NA>
## 4 (25.6,27] Y Y N <NA> <NA>
## 5 (27,28.4] N Y Y Y <NA>
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## 6 (28.4,29.8] Y Y Y Y Y
## 7 (29.8,31.4] Y Y Y Y Y
## (28.4,29.8] (29.8,31.4]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 Y <NA>
##
## urbanpop
## interval [23.7,35] (35,46.6] (46.6,58.2] (58.2,86.3]
## 1 [23.7,35] <NA> <NA> <NA> <NA>
## 2 (35,46.6] Y <NA> <NA> <NA>
## 3 (46.6,58.2] Y Y <NA> <NA>
## 4 (58.2,86.3] Y Y Y <NA>
##
## medicost
## interval [60.2,64.8] (64.8,72.8] (72.8,79.1] (79.1,86.1] (86.1,95.1]
## 1 [60.2,64.8] <NA> <NA> <NA> <NA> <NA>
## 2 (64.8,72.8] Y <NA> <NA> <NA> <NA>
## 3 (72.8,79.1] Y Y <NA> <NA> <NA>
## 4 (79.1,86.1] Y N Y <NA> <NA>
## 5 (86.1,95.1] Y Y Y Y <NA>
## 6 (95.1,144] Y Y Y Y Y
## 7 (144,158] Y Y Y Y Y
## (95.1,144] (144,158]
## 1 <NA> <NA>
## 2 <NA> <NA>
## 3 <NA> <NA>
## 4 <NA> <NA>
## 5 <NA> <NA>
## 6 <NA> <NA>
## 7 Y <NA>
##
## Georegion
## interval N S W
## 1 N <NA> <NA> <NA>
## 2 S Y <NA> <NA>
## 3 W Y Y <NA>
##
## Interaction detector:
## variable temp prec humi popd gdpd rdds sensepop urbanpop
## 1 temp NA NA NA NA NA NA NA NA
## 2 prec 0.5837 NA NA NA NA NA NA NA
## 3 humi 0.5754 0.4510 NA NA NA NA NA NA
## 4 popd 0.5483 0.4984 0.3903 NA NA NA NA NA
## 5 gdpd 0.5483 0.5043 0.3906 0.2309 NA NA NA NA
## 6 rdds 0.5482 0.5343 0.4138 0.2427 0.2444 NA NA NA
## 7 sensepop 0.7005 0.7133 0.6048 0.5992 0.6137 0.6125 NA NA
## 8 urbanpop 0.6902 0.6333 0.4970 0.5177 0.5204 0.5369 0.7739 NA
## 9 medicost 0.7732 0.7568 0.6910 0.5951 0.6038 0.6254 0.7940 0.6127
## 10 Georegion 0.5266 0.4431 0.2183 0.3298 0.3261 0.3459 0.5874 0.4472
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## medicost Georegion
## 1 NA NA
## 2 NA NA
## 3 NA NA
## 4 NA NA
## 5 NA NA
## 6 NA NA
## 7 NA NA
## 8 NA NA
## 9 NA NA
## 10 0.6297 NA
##
## Ecological detector:
## variable temp prec humi popd gdpd rdds sensepop urbanpop medicost Georegion
## 1 temp <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 2 prec N <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 3 humi N N <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 4 popd N N N <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 5 gdpd N N N N <NA> <NA> <NA> <NA> <NA> <NA>
## 6 rdds N N N N N <NA> <NA> <NA> <NA> <NA>
## 7 sensepop N N Y Y Y Y <NA> <NA> <NA> <NA>
## 8 urbanpop N N Y Y Y Y N <NA> <NA> <NA>
## 9 medicost N N Y Y Y Y N Y <NA> <NA>
## 10 Georegion N N N N N N N N N <NA>

plot(h1n1.gdm.100)

Spatial analysis for data in three sub-regions (Figure 11).
## data in different regions
h1n1list <- list(h1n1_50, h1n1_100, h1n1_150)
h1n1.N <- lapply(h1n1list, function(x) x[which(x$Georegion == "N"), 1:10])
h1n1.S <- lapply(h1n1list, function(x) x[which(x$Georegion == "S"), 1:10])
h1n1.W <- lapply(h1n1list, function(x) x[which(x$Georegion == "W"), 1:10])
## select spatial unit
su <- c(50, 100, 150)
## set optional parameters of optimal discretization
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- c(3:4)
continuous_variable <- colnames(h1n1_50)[-c(1,11)]
## "gdm" for region "N"
gdlist <- list()
for (i in 1:3){

gdlist[[i]] <- gdm(H1N1 ~ .,
continuous_variable = continuous_variable,
data = h1n1.N[[i]],
discmethod = discmethod, discitv = discitv)

}
sesu(gdlist, su) # => 150 km
## "gdm" for region "S"
gdlist <- list()
for (i in 1:3){

gdlist[[i]] <- gdm(H1N1 ~ .,
continuous_variable = continuous_variable,
data = h1n1.S[[i]],
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discmethod = discmethod, discitv = discitv)
}
sesu(gdlist, su) # => 150 km
## "gdm" for region "W"
gdlist <- list()
for (i in 1:3){

gdlist[[i]] <- gdm(H1N1 ~ .,
continuous_variable = continuous_variable,
data = h1n1.W[[i]],
discmethod = discmethod, discitv = discitv)

}
sesu(gdlist, su) # => 150 km
## recalculation for datasets in different regions
## region "N"
h1n1.N.150 <- gdm(H1N1 ~ .,

continuous_variable = continuous_variable,
data = h1n1.N[[3]],
discmethod = discmethod, discitv = discitv)

h1n1.N.150
plot(h1n1.N.150)
## region "S"
h1n1.S.150 <- gdm(H1N1 ~ .,

continuous_variable = continuous_variable,
data = h1n1.S[[3]],
discmethod = discmethod, discitv = discitv)

h1n1.S.150
plot(h1n1.S.150)
## region "W"
h1n1.W.150 <- gdm(H1N1 ~ .,

continuous_variable = continuous_variable,
data = h1n1.W[[3]],
discmethod = discmethod, discitv = discitv)

h1n1.W.150
plot(h1n1.W.150)

4.3 Spatial line segment data of road damage

data(road_GD)
head(road_GD)

## damage speed soiltype population vehicles
## 1 325.772 110 Tenosol 227.42 420
## 2 325.772 110 Hydrosol 227.42 420
## 3 325.772 110 Hydrosol 227.42 420
## 4 325.772 110 Hydrosol 227.42 420
## 5 325.772 110 Hydrosol 227.42 420
## 6 325.772 110 Hydrosol 227.42 420

Results of OPGD-based analysis for the road damage conditions (Figure 12).
## set optional discretization methods and numbers of intervals
discmethod <- c("equal","natural","quantile","geometric","sd")
discitv <- c(3:7)
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continuous_variable <- colnames(road_GD)[c(4,5)]
## geographical detectors with optimal parameters
gdm_road <- gdm(damage ~ .,

continuous_variable = continuous_variable,
data = road_GD,
discmethod = discmethod, discitv = discitv)

gdm_road

## Explanatory variables include 2 continuous variables.
##
## optimal discretization result of population
## method : quantile
## number of intervals: 5
## intervals:
## 1.04 10.4 53.13 215.19 357.15 2489.72
## numbers of data within intervals:
## 1001 1008 1038 982 971
##
## optimal discretization result of vehicles
## method : equal
## number of intervals: 7
## intervals:
## 100 815 1530 2245 2960 3675 4390 5105
## numbers of data within intervals:
## 2986 1020 468 115 224 117 70
##
## Geographical detectors results:
##
## Factor detector:
## variable qv sig
## 1 speed 0.0108854 2.334147e-05
## 2 soiltype 0.1977133 3.204566e-10
## 3 population 0.0846682 6.368206e-11
## 4 vehicles 0.1202810 3.536698e-10
##
## Risk detector:
## speed
## itv meanrisk
## 1 40-50 356.1679
## 2 60-70 374.0222
## 3 80 342.7952
## 4 90 336.2123
## 5 100 300.0822
## 6 110 387.7802
##
## soiltype
## itv meanrisk
## 1 Calcarosol 473.1282
## 2 Chromosol 370.2571
## 3 Hydrosol 366.9375
## 4 Kandosol 340.3882
## 5 Podosol 869.3997
## 6 Sodosol 347.1542
## 7 Tenosol 530.9144
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##
## population
## itv meanrisk
## 1 [1.04,10.4] 354.3701
## 2 (10.4,53.1] 484.5460
## 3 (53.1,215] 353.8543
## 4 (215,357] 358.7460
## 5 (357,2.49e+03] 342.4888
##
## vehicles
## itv meanrisk
## 1 [100,815] 354.0679
## 2 (815,1.53e+03] 412.7972
## 3 (1.53e+03,2.24e+03] 438.7350
## 4 (2.24e+03,2.96e+03] 300.5194
## 5 (2.96e+03,3.68e+03] 296.8623
## 6 (3.68e+03,4.39e+03] 715.4692
## 7 (4.39e+03,5.10e+03] 384.2573
##
## speed
## interval 40-50 60-70 80 90 100 110
## 1 40-50 <NA> <NA> <NA> <NA> <NA> <NA>
## 2 60-70 N <NA> <NA> <NA> <NA> <NA>
## 3 80 N Y <NA> <NA> <NA> <NA>
## 4 90 N Y N <NA> <NA> <NA>
## 5 100 Y Y Y Y <NA> <NA>
## 6 110 Y N Y Y Y <NA>
##
## soiltype
## interval Calcarosol Chromosol Hydrosol Kandosol Podosol Sodosol Tenosol
## 1 Calcarosol <NA> <NA> <NA> <NA> <NA> <NA> <NA>
## 2 Chromosol Y <NA> <NA> <NA> <NA> <NA> <NA>
## 3 Hydrosol Y N <NA> <NA> <NA> <NA> <NA>
## 4 Kandosol Y Y Y <NA> <NA> <NA> <NA>
## 5 Podosol Y Y Y Y <NA> <NA> <NA>
## 6 Sodosol Y Y Y Y Y <NA> <NA>
## 7 Tenosol Y Y Y Y Y Y <NA>
##
## population
## interval [1.04,10.4] (10.4,53.1] (53.1,215] (215,357] (357,2.49e+03]
## 1 [1.04,10.4] <NA> <NA> <NA> <NA> <NA>
## 2 (10.4,53.1] Y <NA> <NA> <NA> <NA>
## 3 (53.1,215] N Y <NA> <NA> <NA>
## 4 (215,357] N Y N <NA> <NA>
## 5 (357,2.49e+03] Y Y Y Y <NA>
##
## vehicles
## interval [100,815] (815,1.53e+03] (1.53e+03,2.24e+03]
## 1 [100,815] <NA> <NA> <NA>
## 2 (815,1.53e+03] Y <NA> <NA>
## 3 (1.53e+03,2.24e+03] Y Y <NA>
## 4 (2.24e+03,2.96e+03] Y Y Y
## 5 (2.96e+03,3.68e+03] Y Y Y
## 6 (3.68e+03,4.39e+03] Y Y Y
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## 7 (4.39e+03,5.10e+03] Y N Y
## (2.24e+03,2.96e+03] (2.96e+03,3.68e+03] (3.68e+03,4.39e+03]
## 1 <NA> <NA> <NA>
## 2 <NA> <NA> <NA>
## 3 <NA> <NA> <NA>
## 4 <NA> <NA> <NA>
## 5 N <NA> <NA>
## 6 Y Y <NA>
## 7 Y Y Y
## (4.39e+03,5.10e+03]
## 1 <NA>
## 2 <NA>
## 3 <NA>
## 4 <NA>
## 5 <NA>
## 6 <NA>
## 7 <NA>
##
## Interaction detector:
## variable speed soiltype population vehicles
## 1 speed NA NA NA NA
## 2 soiltype 0.2428 NA NA NA
## 3 population 0.1173 0.3158 NA NA
## 4 vehicles 0.1438 0.4712 0.4237 NA
##
## Ecological detector:
## variable speed soiltype population vehicles
## 1 speed <NA> <NA> <NA> <NA>
## 2 soiltype Y <NA> <NA> <NA>
## 3 population Y N <NA> <NA>
## 4 vehicles Y N N <NA>

plot(gdm_road)
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