
School of Electrical Engineering, Computing and

Mathematical Sciences

Automatically Selecting Parameters for Graph-Based Clustering

Ross Callister

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University of Technology

February 2020

To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university.

Ross Callister

iii

Acknowledgements

Huge thanks to my programme supervisors - Mihai Lazarescu, Duc-Son Pham, and

Patrick Peursum, who provided invaluable advice and information, and who amazingly

managed to somehow guide me, dazed and confused, to completing this thesis.

I would also like to acknowledge and thank the Australian Federal Government,

who generously provided me with the Australian Postgraduate Award (later replaced

by the Research Training Program) during my research, which ultimately allowed this

work to be produced.

My deepest gratitude goes to my parents, who supported and encouraged me through-

out this journey. I love you and appreciate all you’ve done for me. Thank you for being

so amazing.

Also to my pets and friends, past and present, thank you for keeping me sane

helping me smile at times where smiling was difficult.

v

Abstract

Clustering data streams is an area of current and active study in the data mining com-

munity. Data streams present challenges which are unique and distinct from traditional

batch datasets, namely in that each data point may only be read once, there is a poten-

tially unlimited number of data points to cluster, and that the distribution of the data

points may vary over time. This final challenge requires that the algorithm be able to

adjust itself to match the changing distributions as they arise.

Because clustering is an unsupervised process, setting the input parameters cor-

rectly is of vital importance, and can greatly affect the quality of clusters produced

by a clustering algorithm. However, in a data stream the distribution of the data can

change over time. This means that not only is it a challenge to set initial input param-

eters appropriately, but the parameters used for clustering may not be appropriate at

different times during the stream. In this thesis we address this issue for the state-of-

the-art clustering algorithm - RepStream by removing the need to set and update the

critical K parameter. This leads us to introduce the RobustRepStream algorithm, an

extension to its predecessor which is designed to adapt to some of the most difficult

challenges facing stream clustering algorithms.

Our first major contribution is a demonstration that features computed from the

structure of the K-nearest neighbour sparse graph used by RepStream can be used to

detect change in the distribution of the dataset. We do this by computing several fea-

tures based on the internal K-nearest neighbour graph structure and using a change

detection algorithm on these features to show that they vary over time as the stream

distribution changes. This in turn provides evidence that changes in the data distribu-

vii

tions are measurable and can be used to help algorithms adapt to the changes.

Secondly, we introduce the anomalous edge score, which is a feature computed

from the K-nearest neighbour structure of RepStream. The anomalous edge score rep-

resents the number and relative length of edges which are significantly longer than

average for any given vertex. We study the average anomalous edge score for a range

of K values on various dataset and suggest that changes in the value of the score corre-

spond to changes in the value of the optimum K value. By introducing a threshold to

the anomalous edge score we can continuously select K values in RepStream over the

length of the stream which perform comparably well compared to the optimal K value

at each time step.

Next, we modify and extend RepStream to automatically vary the K parameter for

newly added data points in response to the changing anomalous edge score. We adjust

the K parameter based on a threshold in a single live instance of RepStream. Setting

the K parameter in RepStream was difficult as different datasets had different optimal

values, and in data streams the optimal K value could vary over time as the distribution

changed. We demonstrate that by adjusting the K value for new incoming data points

we can continuously select and update its internal K value which produces high quality

clustering results over time in data streams.

Finally, we propose RobustRepStream, an extension of the RepStream algorithm,

to automatically select the number of outgoing edges for newly added data points in

response to the changing skewness excess score. RobustRepStream causes the number

of outgoing edges for each vertex to be no longer dependent on a static K value. We

demonstrate that this method constructs nearest neighbour graphs without the need for

specifying a specific number of outgoing edges, which removes the need to set the

most critical and sensitive parameter of RepStream.

viii

Published Work

This thesis includes material from the following works that have been published

over the course of the Ph.D research. They are listed along with the corresponding

chapters within this thesis.

• Article 1 (Chapter 2,3) - Callister, R., Lazarescu, M., & Pham, D. S. (2015).

Detection of Structural Changes in Data Streams. In Proceedings of the Thir-

teenth Australasian Data Mining Conference (AusDM 2015), Sydney, Australia,

August 2015 (pp. 79-88).

• Article 2 (Chapter 4) - Callister, R., Lazarescu, M., & Pham, D. S. (2017,

April). Graph-based clustering with DRepStream. In Proceedings of the Sympo-

sium on Applied Computing (pp. 850-857).

• Article 3 (Chapter 2,4) - Callister, R., Pham, D. S., & Lazarescu, M. (2019).

Using distribution analysis for parameter selection in RepStream. Mathematical

Foundations of Computing, 2(3), 215-250.

• Article 4 (Chapter 2,5) - Callister, R., Pham, D. S., & Lazarescu, M. (2020).

RobustRepStream: Robust Stream Clustering Using Self-Controlled Connectiv-

ity Graph. Intelligent Data Analysis, 24(4).

ix

Statement of Contribution by Others

Articles in the following attribution tables are numbered according to the list of

published works on the previous page. This represents contributions to the following

papers by the listed co-authors.

Attribution of Dr. Duc-Son Pham

Article
Literature

Review

Concept

Design

Software

Modelling

Experimental

Results

Data

Analysis
Discussion

Paper

Writing

1 X

2 X

3 X X

4 X X

Attribution of Dr. Mihai Lazarescu

Article
Literature

Review

Concept

Design

Software

Modelling

Experimental

Results

Data

Analysis
Discussion

Paper

Writing

1 X

2 X

3 X

4 X

Ross Callister.

Dr. Duc-Son Pham................................

Dr. Mihai Lazarescu..............................

x

Contents

Acknowledgements v

Abstract vii

1 Introduction and Motivation 1

1.1 Data Stream Clustering . 2

1.2 Problems With Stream Clustering 6

1.3 Problem Statement . 9

1.4 Contributions . 11

1.5 Thesis Structure . 12

2 Background and Literature Review 15

2.1 Change Detection Background . 15

2.1.1 Approaches Including Change Detection 16

2.1.2 Anomaly detection . 16

2.1.3 Stream Change Detection Methods 17

2.2 Stream Clustering Algorithms . 18

2.2.1 Micro-Cluster/Density-Based Clustering 18

2.2.2 Grid-Based Clustering . 21

2.2.3 Graph-Based Clustering . 24

xi

2.2.4 Other Novel Clustering Methods 27

2.2.5 Parameters In Clustering . 29

2.3 The RepStream Algorithm . 32

2.3.1 Point Level Sparse Graph 33

2.3.2 Representative Level Sparse Graph 34

2.3.3 Clustering With RepStream 36

2.3.4 Algorithm . 37

2.3.5 Parameters In RepStream . 41

3 Change Detection 43

3.1 Overview of Stream Change Detection 43

3.1.1 Contributions . 46

3.2 Definitions . 46

3.2.1 Basic Definitions . 46

3.2.2 Feature Definitions . 48

Cluster Count . 48

Edge Change Count 49

Cluster Merges and Splits 51

Edge-Length Variation 52

History Count . 52

3.3 Methodology . 54

3.3.1 Feature Extraction . 54

3.3.2 Detection Scheme . 54

3.3.3 Defining Ground Truth Changes 56

3.4 Experiments . 59

3.4.1 Evaluation Measures . 59

xii

3.4.2 Dataset . 60

KDD Cup 99’ . 60

KDD Dataset Composition 61

Smurf Attack . 62

Nepune Attack . 63

Normal Traffic and Other Attacks 63

3.4.3 Feature Evaluation . 65

3.4.4 Setup and Parameter Selection 71

3.4.5 Results . 73

3.5 Discussion . 75

3.5.1 Qualitative Analysis . 76

3.5.2 Comparison Method Analysis 78

3.5.3 Parameters . 79

3.5.4 Summary . 79

3.6 Conclusion . 81

4 Selecting K in RepStream 83

4.1 Dynamic K Selection Overview . 83

4.2 Proposed Method . 86

4.2.1 Inter versus Intra Class Edges 86

4.2.2 Edge Distribution Score . 88

4.2.3 Selection of the K Parameter 92

4.3 Evaluation . 94

4.3.1 Synthetic Datasets . 94

DS1 and DS2 . 94

SynTest . 94

xiii

Closer . 97

4.3.2 Benchmark Datasets . 98

The KDD Cup 1999 dataset 98

The Tree Cover Type dataset 99

4.3.3 Experimental Set-Up . 99

4.3.4 Results vs Other Algorithms 100

4.3.5 Results vs RepStream . 110

4.4 Discussion . 115

4.5 Conclusion . 116

5 RobustRepStream 117

5.1 Overview of RobustRepStream . 117

5.2 Proposed Method . 120

5.2.1 Skewness Excess . 121

5.2.2 RobustRepStream . 125

5.3 Experiments . 131

5.3.1 Real World Data Sets: KDD and Tree Cover 131

The KDD Cup 1999 data set 131

The Tree Cover Type Data Set 132

5.3.2 Synthetic Data Sets . 132

Closer Data Set . 132

SynTest Data Set . 133

Shapes Data Set . 134

DS1 and DS2 . 134

5.3.3 Evaluation Metrics . 136

5.3.4 Comparison to Other Algorithms 137

xiv

5.3.5 Baseline for Comparison . 141

5.3.6 Evaluation of RobustRepStream 146

5.3.7 Sensitivity . 148

5.4 Results Discussion . 150

5.5 Conclusion . 151

6 Conclusions 153

6.1 Change Detection . 154

6.2 Dynamic K Parameter Selection . 154

6.3 RobustRepStream . 155

6.4 Future Work . 156

Bibliography 159

xv

List of Figures

1.1 Real and virtual concept drift. Colours represent members of different

classes. 6

1.2 The underlying classes in a stream versus data points sampled from the

same set of classes. 8

2.1 An illustration of the representative and point-level sparse graphs in

the RepStream algorithm. 34

2.2 Representative compared to point-level sparse graphs. 35

2.3 The density relation radius of a representative point is equal to α ×

AvgDist where AvgDist is the average distance to its K-nearest neigh-

bours. 38

2.4 An example of two representative points which are both reciprocally

connected, and density related. 38

2.5 An example of two representative points which are reciprocally con-

nected, but not density related. 38

2.6 Density relation radii for the representative points in the hypothetical

example in RepStream. The distance to the neighbours at the point

level determines the density relation radius for the representative level

clustering. 39

xvii

3.1 Example of distribution change in a stream. Distribution A shows two

classes of the same density at different spacial locations. At a later

time in the data stream, distribution B, the red cluster has shifted its

position, whilst the blue cluster has increased its size, and decreased

its density. 47

3.2 Cluster Count. In this example at T = 1 there are 3 clusters. The

addition of an extra point at T = 2 results in two clusters merging,

reducing the cluster count to 2. 49

3.3 history count. Point P1 begins in cluster C1 initially, then at time T = 2

the addition of a new data point causes a change in the membership to

cluster C2. Later at T = 3 it returns to the cluster it was previously in. 53

3.4 Flowchart showing feature extraction, detection on each feature, then

majority voting to reach the final change detection decision. 56

3.5 Illustrative example of the F-Measure heatmap. 57

3.6 The heatmap of the KDD 99’ Dataset, with change points marked. . . 61

3.7 Locations of the three most common classes in the KDD Dataset, with

heatmap. 64

3.8 Raw feature data taken from the KDD dataset with the heatmap for

comparison. 66

3.9 Raw feature data taken from the KDD dataset with the heatmap for

comparison. 67

3.10 Detected change points using individual features. 71

3.11 Our moving average detection algorithm on the KDD dataset. 73

3.12 PCA Change Detection algorithm run on the KDD dataset. 73

3.13 ROC Curve of the two methods, using curve-fitting. AUC is 0.9888

for the proposed method and 0.7298 for the PCA based method. . . . 74

xviii

4.1 Intra and Inter-class edges. The Edge E1 is considered an inter-class

edge as it connects two vertices R1 and R2 that belong to different

ground-truth classes. Edge E2 connects two vertices belonging to the

same class and thus is considered an intra-class edge. 88

4.2 An illustration of relative edge lengths of nearest neighbours in the

middle of a cluster versus near the edge of a cluster. 89

4.3 Different cases for the distribution of edge lengths. 91

4.4 Visualisation of the DS1 dataset. 95

4.5 Visualisation of the DS2 dataset. 95

4.6 Two dimensional representations of the 5 classes in the SynTest dataset. The

main class is always present and steadily changes shape, the smaller classes

appear at various points through the dataset, as shown in Figure 4.7. 96

4.7 The class presence of the classes in the SynTest dataset. A marker

indicates that the class is present in the dataset during the given time

window. 96

4.8 The evolution of the Closer dataset, showing slices of its 3 sections. 97

4.9 Comparative purity for Tree Cover dataset 101

4.10 Comparative purity for Tree Cover dataset 101

4.11 Comparative purity for KDD 99’ Cup dataset 102

4.12 Comparative purity for KDD 99’ Cup dataset 103

4.13 Comparative purity for DS1 dataset 104

4.14 The K value selected by our dynamic K method on the DS1 dataset . . 104

4.15 Comparative purity for DS2 dataset 105

4.16 Comparative purity for SynTest dataset 106

4.17 Comparative purity for Closer dataset 107

4.18 Comparative purity for Tree Cover dataset 107

4.19 Comparative purity for KDD 99’ Cup dataset 108

4.20 The K value selected by our dynamic K method on the KDD Dataset . 109

xix

4.21 F-Measure comparison vs RepStream using optimal parameters on DS1

dataset . 111

4.22 F-Measure comparison vs RepStream using optimal parameters on DS2

dataset . 111

4.23 F-Measure comparison vs RepStream using optimal parameters on Syn-

Test dataset . 112

4.24 F-Measure comparison vs RepStream using optimal parameters on Closer

dataset . 113

4.25 F-Measure comparison vs RepStream using optimal parameters on Tree

Cover dataset . 113

4.26 F-Measure comparison vs RepStream using optimal parameters on KDD

99’ Cup dataset . 114

5.1 Intra and Inter-class edges. The Edge E1 is considered an inter-class

edge as it connects two vertices R1 and R2 that belong to different

ground-truth classes. Edge E2 connects two vertices belonging to the

same class and thus is considered an intra-class edge. 122

5.2 An illustration of relative edge lengths of nearest neighbours in the

middle of a cluster versus near the edge of a cluster. 122

5.3 Histograms of normalised edge lengths for various K values 125

5.4 Average SE vs K, normalised with respect to MAD 126

5.5 Histogram showing the distance to the nearest 200 vertices in a 400

point 2 dimensional normal distribution, with the origin at the centre

of the distribution. Standard deviation is 100 in both the x and y direction.126

5.6 Nearest neighbour plot of a 400 point 2 dimensional normal distri-

bution with a standard deviation of 100. Plot shows the 200 nearest

neighbours from the centre of the distribution. 127

5.7 The evolution of the Closer data set, showing slices of its 3 sections. 133

xx

5.8 Two dimensional representations of the 5 different classes. The main class

is always present and steadily changes shape, the smaller classes appear at

various points through the data set, as shown in Figure 5.9. 134

5.9 The class presence of the classes in the SynTest data set. A marker

indicates the class is present in the data set during the given time window.135

5.10 The first and second stage of the Shapes data set. 135

5.11 DS1 and DS2 datasets. 136

5.12 Comparative purity for TreeCov dataset. 138

5.13 Comparative purity for KDD dataset. 139

5.14 Comparative purity for our Synthetic datasets against D-Stream and

DBStream. 142

5.15 Comparative purity for KDD Cup 99’ data set 143

5.16 Comparative purity for Tree Cover data set 143

5.17 F-Measure scores for RobustRepStream versus optimally-parametrised

RepStream . 145

5.18 Results for the KDD data set. 146

5.19 Results for the Tree Cover data set. 147

5.20 Sensitivity of RobustRepStream to the α parameter 149

xxi

Chapter 1

Introduction and Motivation

It has been predicted that in the current age of information, the total amount of data

generated and stored in all human history will double approximately every two years

for the foreseeable future (Zwolenski et al., 2014). This massive explosion in data is

thanks to the rising popularity and use of things such as:

• Sensor networks (Kumar et al., 2017) used for monitoring the state of equipment

or the environment.

• Location data (Zhao et al., 2016) from GPS systems built into cars, smartphones,

animals for behavioural research, and other devices.

• Social networking data (Imran et al., 2018) from online networks such as Twitter

and Facebook, in which huge amounts of interactions occur every second.

• Web metadata, such as clickstream analysis (Wang et al., 2017) which provides

analytics services for website administrators.

• Cloud computing (Botta et al., 2016) with the need for analysis and optimisation

of usage being an ever more important thing.

• Smart-connected devices such as the Amazon Alexa or Google Nest which gen-

erate information about user behaviours and requests.

1

With the huge rise in captured data comes a proportional increase in demand for

data-mining techniques, and in order to make use of this torrent of new data the field

of data stream mining has arisen. Such streams present a number of constraints (Ag-

garwal, 2015), specifically their unbounded length, the infeasibility of storage, the

one-pass constraint, concept drift, the rate of data generation, and the vast amounts of

metadata which must be handled.

Data mining techniques used on data streams can include supervised classification,

outlier detection, and pattern mining, however stream cluster analysis is the topic on

which we focus in this work.

Cluster analysis is regarded as the primary objective of unsupervised data mining

(Gorunescu, 2011), and is a vital tool in exploratory data mining. While on the surface

it may seem like a trivial and intuitive task to determine which members of a group

are similar and which are dissimilar, this task is actually incredibly complex in an

unsupervised context, and is abound in edge cases and subjective judgements. This

has led to a wide and varied field of research into determining better ways of clustering

data, particularly, in recent times, on data streams.

1.1 Data Stream Clustering

Data streams continue to become a more common feature of study thanks to their

prevalence in the computing sphere. Streams generated by sensor networks, online

interaction, business or market data, and video streams contain huge amounts of data

which can be mined to gain useful, practical insights (Barddal, 2019). Particularly,

stream clustering is an informative process, which involves the unsupervised separation

of data points into groups, called clusters.

Data streams are typified by a series of data arriving sequentially over time. This

data may be numerical, categorical, binary, images, video, audio, or any one of a

multitude of different types. This thesis concentrates on multi-dimensional numerical

data, which can be expressed as vectors in hyperspace.

2

Definition 1.1.1 A data stream S is a set of vectors X1,X2, . . . which is unbounded in

length and ordered by time:

S = {X1,X2, . . . ,Xm . . .} (1.1)

with each vector Xi in the stream being composed of a number of attributes - Xi =

{xi,1 . . .xi,d} - where d is the dimensionality of the stream, the number of attributes

associated with each data point. Each attribute of a data point has a real value, such

that the data point can be represented as a point in d-dimensional space.

The values of these attributes define the location of the vector in the hyperspace.

The attributes making up each data point are also alternatively referred to as data di-

mensions, observations, features, or components.

Using clustering algorithms we seek to group the vectors from the data set into

groups of similar data points, as distinct from data points which are dissimilar (Berkhin,

2006; Charu & Chandan, 2013). The fundamental steps of clustering (Gorunescu,

2011) are:

• Defining a similarity measure between data points.

• Defining a method to construct clusters based on the similarity measure.

• An algorithm which incrementally changes clusters as new data points arrive

from the stream.

Similarity between data points is defined according to a given distance metric.

Most commonly, the Euclidean distance, Manhattan distance, or Manhattan Squared

distance measures are used due to their simplicity and intuitiveness (Jain et al., 1999).

However, other more sophisticated distance measures are occasionally used including

the Mahalanobis distance measure (Mao & Jain, 1996). While alternative distance

metrics can address problems related to Euclidean and Manhattan distances, namely

3

that attributes with greater scales tend to dominate over the smaller scaled ones, an-

other common solution is to normalise each dimension of the incoming data points,

such that the scales of each is equal.

In both stream and batch clustering methods, data points are grouped based on

their distance from each other using a chosen distance metric. Thus, the process is

to separate the data points {X1,X2...Xk...} into subsets known as clusters, by mapping

each point to one of a series of clusters C1,C2, . . .C j These clusters are meant to

approximate distinct concepts within the dataset, and describe different regions of the

data. As such, clusters represent a model of the hidden underlying concepts of the

stream, and this is what makes clustering an unsupervised process - that training data

and validation data is unavailable to the algorithm. Clusters typically do not intersect

within the data space, although exceptions exist.

Stream clustering is typically a process used on batches too large to fit entirely

into memory, or unbounded streams of data, in which clusters must be produced ei-

ther incrementally over time, or at user-specified times. Clusters can be used to locate

sub-groups within a complex dataset, and to identify relationships between members

of the stream. Cluster analysis has been used in a rage of applications such as mar-

ket research, image analysis (Li et al., 2018), medical analysis (Camara et al., 2019),

genome clustering (Wang et al., 2019), recommender systems (Logesh et al., 2019),

and anomaly detection (Aytekin et al., 2018), and so reliable performance when deal-

ing with datasets where little is known is important.

Due to the streaming nature of the data the membership of the clusters can change

over time, with data points swapping from cluster to cluster, or being added to new

clusters as the clustering algorithm dictates. Data streams have a series of requirements

(Cao et al., 2006), specifically:

• The number of clusters can’t be assumed.

• Clusters may be of arbitrary shape and size.

• There may be outliers and noise within the data set.

4

As such, clusters are typically thought of as contiguous regions of the data space

which contain data points at a relatively high level of density, separated by regions of

space with a significantly lower density or containing no points at all.

There are various approaches that are used to perform clustering, with one of the

earliest being the well-known K-means algorithm (MacQueen et al., 1967), which is

a partition-based approach. While the K-means algorithm was designed for batch

datasets rather than streams, later approaches have applied the K-means algorithm to

the streaming context (Ackermann et al., 2012). The limitation of the K-means algo-

rithm is that the number of desired clusters must be specified, and the algorithm is only

capable of finding convex clusters. To address these limitations, there are a wealth of

other more sophisticated approaches (Aggarwal, 2015, 2007; Charu & Chandan, 2013)

including micro-cluster and density based methods, graph-based methods, grid-based

methods, agglomerative and divisive hierarchical approaches, and even unique evo-

lutionary or biologically-based clustering approaches. These other approaches have

their own limitations and requirements. Micro-cluster and density based approaches,

for example DenStream (Cao et al., 2006), typically do not require a number of clusters

to be specified, however density threshold and micro-cluster size parameters typically

need to be given by the user. Graph-based approaches, such as ExCC (Bhatnagar

et al., 2014) and PatchWork (Gouineau et al., 2016), similarly typically require den-

sity thresholds and grid size parameters to be set by the user. Graph-based approaches

often use nearest-neighbour graphs like SNCStream (Barddal et al., 2015), or mini-

mal spanning trees like HASTREAM (Hassani et al., 2014), which require parameters

to determine connectivity, or thresholds for cluster construction after hierarchical tree

splitting has occurred. As we see, whilst more sophisticated approaches can operate

without specifying the number of clusters, they each have their own requirements for

parametrisation.

Despite the large variety in algorithms designed to perform clustering on data

streams, it is far from being a solved field. Cluster analysis remains a foundational

part of gaining useful knowledge from data, and so achieving high quality clustering

5

Figure 1.1: Real and virtual concept drift. Colours represent members of different
classes.

is an important goal.

1.2 Problems With Stream Clustering

Originally, cluster analysis was a task to be performed on batches of data - algorithms

mapping each data point in a static data set to a cluster, with the data being accessible

multiple times and at will, and having a finite number of data points to process. As

technology advanced and requirements changed the need arose for clustering to be

performed on data streams.

Streams introduce multiple significant challenges compared to batch data, specifi-

cally:

• The data stream is potentially endless, so storing every data point is infeasible.

• Data points may be read from the stream only once, in the order that they arrive.

• The distribution of data points from the stream can change over time, requiring

entirely different cluster mapping at different periods in the stream.

According to Schlimmer & Granger (1986), concept attainment is a field of ma-

chine learning in which one seeks to create a model learning to separate data points

into specific concepts. These concepts represent a priori divisions of the data space

6

into distinct categories. The idea behind learning these concepts and building a model

to represent them is to successfully predict the concept to which a new unseen instance

of data belongs to. Concept attainment includes supervised tasks like classification us-

ing training data, as well as unsupervised learning like clustering, in which no training

data is used.

According to Gama et al. (2014), in machine learning, concept drift occurs when

the underlying concepts change over time.

Definition 1.2.1 Concept drift occurs when the probability of a set of input variables

X being mapped to a target variable y changes over time. In the context of data clus-

tering, it is the probability that the observed data points, X will be correctly mapped

to the ideal ground-truth classes y over time, which can be defined as:

∃X : pt0(X ,y) 6= pt1(X ,y), (1.2)

where pt0(X ,y) represents the joint probability distribution of the data at time t0

between the set of input data points X and the distribution classes y, and likewise

pt1(X ,y) represents the joint probability of points X and classes y at the later time t1.

In reality we can only observe the unlabelled data points as they arrive from the

stream - i.e. we only observe p(X) over time (Gao et al., 2007). This makes it hard to

determine whether the change is merely a change in sample population or real concept

drift.

Real concept drift occurs when the probability of a given observation belonging to

a given class changes over time - when p(y|X) changes. Virtual concept drift, however,

occurs when the population shifts, but the probability of an observation belonging to a

given class doesn’t change - when p(X) changes, but p(y|X) remains the same (Gama

et al., 2014).

In the context of clustering, and this thesis, we are interested in real concept drift

that affects the predictive power of clustering algorithms - changes in the underlying

concepts in the stream over time. Since clustering is an unsupervised process we have

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Figure 1.2: The underlying classes in a stream versus data points sampled from the
same set of classes.

only the data points sampled from these underlying concepts available for observation.

Adjusting to handle such changes in concept involve predicting changes in concept by

examining the changes in population distribution of time.

Changes in data distribution, known as stream evolution or concept drift, is a partic-

ularly challenging property of data streams (Hulten et al., 2001). The data points from

the data stream are sampled from an underlying set of classes, which ideally would

map to clusters in the stream clustering context, as illustrated in Figure 1.2. The goal

of cluster analysis is to discover and approximate these classes, and to map the given

data points to clusters representative of them. Over time, these classes can change in

density, move within the data space, merge, split, disappear, emerge, change size, ro-

tate, or change shape. This would result in changes to the distributions of sampled data

points. Such changes in underlying distribution can happen abruptly, or gradually over

time, and both kinds of evolution can impact the integrity of clustering results if the

algorithm is not designed to deal with it. In addition, noise in the stream can impact

clustering in the same way that evolution does.

Stream evolution poses several challenges which have significant implications for

stream clustering algorithms. Firstly, stream evolution means that older data may be

less and less representative of the current data distribution as time goes on (Aggarwal,

2018). This can lead to algorithms defining clusters based on older data which is no

longer relevant for the current state of the stream. This problem is often addressed

8

using fading functions and decay of older data, in which newer data is prioritised in

clustering and older data is weighted less, or gradually removed over time (Khalilian

& Mustapha, 2010). A trade-off is inevitable between the consideration of historical

data points in clustering decisions, and focusing on newer data points to reduce the

possibility of basing clustering decisions off of data which is no longer relevant. This

trade-off is often left to the user in the form of a parameter which affects the rate at

which older data is made redundant.

Secondly, as the stream evolves over time the distribution of data can change in un-

predictable ways such that the underlying classes are completely different at different

times in the stream. Clustering algorithms typically rely on user-specific parameters

which represent thresholds, or similar values, which affect how the algorithm groups

data points into clusters. Setting these parameter values inappropriately can lead to

clustering output which is meaningless, yielding little or no useful knowledge about

the data. It is imperative that the parameters are set well in order to achieve useful

clustering results. However, a major issue with stream clustering is that even if the ini-

tial parametrisation of the stream clustering algorithm results in high-quality clustering

output at one point in the stream, concept drift may mean that those same parameters

are no longer appropriate later in the stream.

1.3 Problem Statement

In light of the above issues, our purpose in this thesis is to achieve higher and more

consistent quality clustering output in a streaming context. Particularly we wish to

develop methods which respond to changes in the underlying data stream, and which

are more robust to concept drift, requiring as little parametrisation by users as possi-

ble. Clustering is an unsupervised process, where often little, if anything, is known

about the dataset prior to analysis. As such, algorithms which require users to specify

parameters which are very sensitive to the data distribution are not robust with respect

to unpredictable stream evolution. One of the greatest challenges in stream cluster-

9

ing is building algorithms without requiring ad-hoc critical parameters such as cluster

number, density, grid granularity, graph connectivity, or window length (Silva et al.,

2013). We propose, therefore, that it is vital for algorithms to consider concept drift

with respect to algorithm parametrisation. It is vital to make these input parameters

less sensitive, or, preferably, to reduce the number of input parameters a user must set,

so as to achieve more robust and reliable clustering.

Because of the issues with stream clustering our motivation is to adapt to concept

drift within the data streams in a stream clustering context. The first method for adap-

tation is by identifying when these changes occur. Such a process is known as change

point detection. Firstly we wish to demonstrate that concept drift is detectable algorith-

mically by analysis of geometric and distributional properties of the stream clustering

model. By employing change point detection methods we wish to identify when stream

evolution occurs. Change point detection is itself an area of study in statistical anal-

ysis (Truong et al., 2018), and we wish to use it to identify when changes occur in

arbitrarily dimensional data streams, as defined earlier. By analysing the geometric

and structural properties of the multi-dimensional stream data we propose that these

change points can be identified. Our goal is to create a method for reporting when

change points happen in the underlying data as the stream progresses.

Secondly, we wish to improve the robustness of clustering algorithms. Specifically

in this thesis we concentrate on the nearest-neighbour graph-based clustering approach.

Typically this kind of clustering involves setting a K connectivity parameter, which is

sensitive and must be set correctly for useful clustering to occur. K-nearest neighbour

(KNN) graph-based stream clustering algorithms are able to detect arbitrarily shaped

clusters with arbitrary levels of density, this results in high quality clustering output at

the expense of a higher level of computational complexity provided that the K param-

eter is set appropriately. Our goal is to reduce the sensitivity of the critical clustering

parameters used in this method of clustering, making it less sensitive to stream evo-

lution. We do this by computing features based on the relative distances of edges

connecting to nearby neighbours in the KNN graph structure, and using these features

10

to inform clustering.

1.4 Contributions

The contributions of this thesis are:

• A thorough review of related background literature in Chapter 2, particularly in

regards to current stream clustering approaches. We show their methods, cat-

egorise them by their approaches, and describe their various input parameters.

We show that clustering relies on sensitive input parameters which must be set

by users.

• A change point analysis algorithm for use in a multi-dimensional data stream in

Chapter 3, which uses features computed from the nearest-neighbour structure

of RepStream.

• A method for the analysis of the geometrical and statistical features in Rep-

Stream’s graph structure to evaluate the effectiveness of the current K connectiv-

ity parameter, and to indicate when and in which direction it should be changed

over time in Chapter 4. This is achieved through the use of the edge distribution

score, which is a statistical measure computed from the edges in the K-nearest

neighbour structure in RepStream. The edge distribution score approximates

how much the edge length distributions differ from the expected distribution,

and allows us to infer properties of the local neighbourhood.

• An extension of RepStream in Chapter 4 which automatically varies its K con-

nectivity parameter in response to changes in the edge distribution score. We

show how the thresholding parameter is relatively insensitive and robust com-

pared to the sensitive K parameter which must be set and remains static during

the whole stream in the original RepStream version.

• A method for controlling the local connectivity of vertices in a nearest-neighbour

sparse graph, in Chapter 5, through the analysis of the skewness excess score,

11

which quantitatively measures the relative skewness excess of the local neigh-

bourhood in a nearest neighbour graph. We show how this measure can be used

to approximate an appropriate level of connectivity of a vertex in its local neigh-

bourhood.

• The RobustRepStream algorithm in Chapter 5, an extension of the RepStream

algorithm which removes the need for the user to set the K parameter entirely by

using the skewness excess score. We show that this algorithm is robust across

varied types of datasets, both on real-world and synthetic datasets.

1.5 Thesis Structure

Our thesis structure is as follows:

Firstly in Chapter 2 we present a thorough background and review of literature

regarding stream clustering methods with respect to evolution of data streams. Specif-

ically, we show the prevalence and importance of initial input parameters to the al-

gorithms. Whilst the algorithms are often very different in which parameters must

be specified by users, all the algorithms require some level of parametrisation and as-

sumptions that must be made about the data. The papers reviewed in this chapter cover

algorithms which deal with stream evolution via various techniques, and also covers a

variety of different classes of clustering algorithms.

Having showed the wide variety of clustering approaches and their reliance on

input parameters, in Chapter 3 we propose a method for detecting concept drift within

data streams that evolve over time. Given that the evolution of concepts in the stream

directly relates to the effectiveness of the input parameters, being able to measure

and detect when this change occurs is paramount. We show that high-level computed

features can be effectively used to identify when stream evolution takes place, and we

experimentally show that our method performs better than other related stream change

detection methods.

In Chapter 4 we build on the previous chapter by seeking to use similar computed

12

features to produce more robust clustering. Given that stream evolution can be detected

using these features, we hypothesise that they could also allow critical input parameters

to be adjusted over time to produce better clustering. Thus, we present our extended

version of RepStream, which uses a novel concept called the edge distribution score to

determine an appropriate level of K connectivity in RepStream’s K-nearest neighbour

sparse graph structure. Using the edge distribution score to automatically control the K

connectivity over time, we show that we can achieve clustering performance which is

comparable to that of RepStream when the theoretical best K parameter is set. We also

show that our method achieves performance which is superior to other contemporary,

sophisticated stream clustering approaches.

While allowing parameters to be automatically adjusted to more appropriate val-

ues over time in response to stream evolution is a good step, perhaps a better solution

is reducing the number and sensitivity of parameters that clustering algorithms rely

on. In Chapter 5 we introduce the RobustRepStream algorithm which performs stream

clustering without the need for the user to set the sensitive K parameter, which is the

primary parameter of the RepStream algorithm. We introduce the concept of skewness

excess, which is used by the proposed RobustRepStream algorithm to automatically

determine appropriate levels of connectivity in its sparse graph structure without the

need for a K parameter. With the user no longer responsible for determining the crit-

ical K parameter, we show that RobustRepStream produces consistently high quality

clustering across all of the datasets we evaluate on, with no changes in input parameter

values.

Chapter 6 concludes this thesis. We discuss the proposed methods in regards to

handling data stream evolution and parameter sensitivity in clustering algorithms, as

well as possible directions for future work.

13

Chapter 2

Background and Literature Review

Our research focuses on the adaptation of clustering algorithms to changes in a data
stream over time, otherwise known as concept drift, or stream evolution. This chap-
ter reviews the literature related to change detection in data streams, as well as ap-
proaches that have been used to adapt to concept drift in order to mitigate the problems
it presents.

The literature reviewed in Section 2.1 examines clustering methods which analyse
incoming data for distributional changes, as well as stream change detection meth-
ods. In Section 2.2 we examine various stream clustering algorithms, particularly
in analysing the hyper-parameters used by each approach. This covers the different
stream clustering approaches, including micro-cluster based, grid-based, and graph-
based methods, as well as other approaches.

2.1 Change Detection Background

Data streams, as we discussed in the previous chapter, are characterised by evolving
data. Data evolution poses major challenges to data mining algorithms, and so re-
searchers have applied many techniques to address it (Khamassi et al., 2018). Concept
drift is closely related to the idea of change detection in statistics, and so many tech-
niques have been proposed which are inspired by change detection methods. Here we
present an overview of such techniques, which seek to identify when change occurs, so
that the knowledge can be used to better understand emerging concepts in the stream.

15

2.1.1 Approaches Including Change Detection

There are some clustering approaches which do use change detection mechanisms in
their operation, either for the purposes of remaining consistent with newer data, or
for discovering new concepts as they emerge. The grid-based algorithm clustering
algorithm ExCC (Bhatnagar et al., 2014) uses a novel approach to handling drift in
stream distribution. When new points are outside expected boundaries in ExCC they
are added to a ‘hold queue’, which is periodically examined to determine whether
change has occurred. If a sufficient number of new points are outside expected ranges
then a ‘change’ is reported, otherwise it is counted as an outlier or short-term temporary
drift. This method can be thought of as a form of detecting stream change, in the case
of ExCC it is change within the position of new points on a grid. This is an example
which does not use standard statistical methods of change detection. ExCC is described
in more detail in Section 2.2.

An approach by (Masud et al., 2011) proposes a method for detecting the appear-
ance of new classes in a data stream clustering context by deferring classification of
outliers and placing them in a buffer, then analysing the points in the buffer for cohe-
sion representing a novel class. This method detects the appearance of new classes in
a stream, which is relevant to the field of cluster analysis and especially given that one
of our primary goals is to adapt to emerging classes. Other topics related to change
detection in data streams include recording and tracking change over time for the iden-
tification of temporal change (Dunham & Hahsler, 2011), or tracking change in a noisy
stream through cluster density analysis (Nasraoui & Rojas, 2006).

2.1.2 Anomaly detection

Anomaly detection is a related field which seeks unexpected or anomalous inputs
which may be used for data streams. (Chandola et al., 2009) categorise anomaly
detection approaches into the following categories. Classification-based approaches
construct a classifier using training data, then classifies new data points into one of the
learned classes, examples of which are provided by (Janssens et al., 2009). Nearest-
neighbour based approaches use a distance measure between data points and either
take the distance to its kth nearest neighbour, or which calculate a density based on
distance to neighbouring points.

An example is iNNE (Bandaragoda et al., 2014) which attempts to isolate new
points from its nearest neighbours to calculate an anomaly score. Clustering-based

16

approaches use clustering algorithms to group normal data into a series of clusters,
and new data points are considered to be anomalous or not depending on whether
they match an existing cluster for instance (Rajasegarar et al., 2014) uses clustering
algorithms on distributed sensor networks and examines the inter-cluster distance for
anomalous data.

Statistical anomaly-based techniques compare new points to a model and gener-
ate either an anomaly score or perform a hypothesis test to probabilistically determine
when change occurs (Soule et al., 2005). Some more novel techniques use other con-
cepts such as spectral methods, for example a paper by Pham et al. (2014) which uses
residual subspace analysis to detect anomalies in a compressed form of the data stream.
These algorithms are somewhat similar in concept to change detection, concentrating
on unexpected transient changes which differ from what is considered to be ‘normal’
behaviour. Anomaly detection can, in a sense, be considered as a more specific and
constrained version of the change detection methods we are exploring in this work.

2.1.3 Stream Change Detection Methods

There are relatively few examples in existing literature of algorithms which deal with
change specifically in a streaming context. However, there are some which operate on
streams, either of transaction data or a series of time-ordered multidimensional vectors.

STREAMKRIMP (Van Leeuwen & Siebes, 2008) is an algorithm which is used to
detect changes in data streams involving transaction and item data. STREAMKRIMP
constructs a Minimum Description Length code table as it reads the stream. This is
used to compress the data as it arrives in the stream. When the distribution of transac-
tions in the stream changes the compression rate of the code table also changes. This
prompts STREAMKRIMP to make a new MDL code table, which indicates a change
in the stream. This approach is similar to our goal of detecting distributional stream
change, however it is designed to work on transaction data rather than multidimen-
sional vector streams.

Another method by (Qahtan et al., 2015) uses a principle component analysis
(PCA) based approach to detect changes in data streams. Specifically, it seeks to detect
changes in high dimensional data by projecting down into multiple one-dimensional
data streams, using the principle components. These projected streams are then anal-
ysed for change from a given reference window to a test window comprised of new
points. This algorithm performs well when on detecting change on high dimensional
data sets.

17

2.2 Stream Clustering Algorithms

There has been a wealth of research regarding stream clustering approaches, particu-
larly in the area of increasing efficiency and accuracy of clustering output. A common
theme, however, is the reliance on input parameters - set values which affect the cluster-
ing output. Since clustering is an unsupervised exploratory data mining process, these
parameters can’t be tuned in response to training data in the same way that supervised
classification algorithms can. Instead, the users must rely on their own intuition about
the data structure, or guidance from the algorithm’s author.

Stream clustering algorithms are divided into a range of different general approaches
which we present here.

2.2.1 Micro-Cluster/Density-Based Clustering

CluStream (Aggarwal et al., 2003) is an early example of a distance-based micro-
clustering framework for use in stream clustering. CluStream uses Cluster Feature Vec-
tors (CFVs) to maintain information about groups of data points, which summarises
the data of multiple data points into a single structure. The CFVs are made up of a
tuple, which includes the sum of the data values for each associated data point in each
dimension, the sum squared of the data values for each associated data point in each
dimension, as well as the sum and sum squared of the time-stamps of each data point
associated with the CFV. This type of micro-cluster has desirable properties, being
both additive, so that CFVs can be easily merged, and also being subtractive such that
a snapshot of a CFV at a previous time can be subtracted from the current time to yield
data about how the CFV has evolved. CluStream maintains snapshots of its CFVs in
a pyramidal way to make use of this property - with more recent snapshots being kept
than older ones. A parameter α affects the frequency of snapshots, and another param-
eter l determines how many snapshots are stored. New points incoming from a stream
are added to existing CFVs if they are within a boundary defined by a parameter t, or
become new CFV micro-clusters otherwise. A relevance threshold δ determines when
an existing CFV can be removed and replaced by a new one. The CFV micro-clusters
are used in an offline stage to build clusters with a variant of the k-means cluster-
ing algorithm that treats the CFV micro-clusters as pseudo-points. The micro-cluster
structure is a very common concept which is used in many other algorithms.

The DenStream algorithm (Cao et al., 2006) uses a variant of the micro-cluster
concept to do density-based clustering on stream data. DenStream handles stream-

18

ing data using a damped-window model, meaning that the weight of each individ-
ual points decays exponentially over time according to a decay parameter λ , which
makes the algorithm biased towards more recent data. DenStream defines three types
of micro-cluster - the Core Micro-Cluster (CMC), the Potential Core Micro-Cluster
(potential-CMC), and the Outlier Micro-Cluster. A newly added data point from a
stream becomes part of an existing micro-cluster if it is within a distance defined by a
parameter ε , or becomes a new outlier micro-cluster if it can’t be added to an existing
one. A micro-cluster becomes a CMC if its weight is greater than or equal to an input
parameter µ , or otherwise is a potential-CMC if its weight is greater than β µ where
β is an input parameter 0 ≤ β ≤ 1. Micro-clusters which have weight less than β µ

are considered to be outlier micro-clusters. Micro-clusters are clustered together using
a variant of DBScan, in which micro-clusters are regarded as virtual points. CMCs
which are less distance from each other than the sum of their micro-cluster radii are
grouped together into the same cluster, while Potential-CMCs follow this same rule
but can only be grouped with CMCs. Outlier micro-clusters are not included in any
cluster, and are maintained in a separate memory space. This density-based clustering
approach allows the algorithm to locate arbitrarily shaped clusters, unlike CluStream
and SWClustering which can find only hyper-spherical clusters.

High dimensionality can make traditional clustering algorithms produce less useful
results, since a common distance metric used is Euclidean distance, and the HPStream
algorithm (Aggarwal et al., 2004) seeks to address this. Data sets with high levels of di-
mensionality suffer the so-called curse of dimensionality, in which distance functions
become less and less useful in higher dimensions. HPStream projects clusters into
fewer, more relevant dimensions in order to perform clustering. HPStream initialises k

clusters using the k-means algorithm, and cluster dimensionality is calculated based on
these cluster. Dimensionality for these clusters is defined with a bit-vector, in which
the input data is normalised and the l dimensions with the lowest radii for that cluster
are chosen to be projected into. The parameter l corresponds to an expected dimen-
sionality for clusters in the data-space. Distance calculations for each cluster are done
using that cluster’s dimensionality bit vector - i.e. the clusters only consider the di-
mensions which are marked with a 1 in the dimensionality bit vector. This reduces the
effects of high dimensionality on the distance calculations. The initial cluster centres
are moved and dimensionality bit vectors are recalculated until they converge. Sub-
sequent points which are added to HPStream are added to the nearest cluster, where
the distance is projected using the bit vector of each cluster, if it is within a distance

19

defined by a spread factor r, otherwise a new cluster is created. HPStream differs from
the previously mentioned algorithms in that it works in an incremental online manner,
having no separate offline clustering phase. Clusters monotonically decay, like cluster
structures in other methods, using a decay function defined by a decay factor λ .

The BEStream algorithm (Wattanakitrungroj et al., 2018) takes the micro-cluster
concept and extends it by introducing the idea of elliptic micro-clusters. In BEStream
clusters are in the form of hyper-dimensional ellipses arranged along the eigenvectors
of the data distribution, which differs from the standard hyper-spherical micro-clusters
used in other algorithms. Additionally, BEStream can handle individual data points
from a data stream, or batches of data at a time. Data points are added into existing
micro-clusters, with their elliptical shapes being adjusted if necessary to fit the data.
Data is captured into micro-clusters, which have a radius according to a parameter ξ

affecting the elliptical micro-cluster’s size. To merge micro-clusters together a direc-
tion threshold θ and a distance threshold ∆ are used to determine when micro-clusters
can safely be combined into a single elliptical micro-cluster. In the macro-clustering
phase a density threshold τ is used, and overlapping clusters with a density at least
1− τ similar may be considered part of the same cluster

Whilst micro-cluster and grid-based approaches are common in stream clustering
there are problems that are associated with them. The DBStream algorithm (Hahsler
& Bolaos, 2016) is designed to counter the common assumption in grid and micro-
cluster-based algorithms that points have an even distribution within grid cells and
micro-clusters. The assumption by other algorithms can not capture separation that
occurs within micro-clusters or grid cells. Grid and micro-cluster-based algorithms
are usually unable to capture separation that occurs within micro-clusters or grid cells
because of an assumption of an even distribution within grid cells and micro-clusters.
DBStream (Hahsler & Bolaos, 2016) addresses this problem by allowing data points to
be shared between micro-clusters, having the micro-clusters overlap in order to retain
more data about the distribution of the points represented by the micro-clusters. Newly
added points become part of a micro-cluster if they fall inside the micro-cluster’s ra-
dius, defined by a radius parameter r, otherwise they become the centre of a new
micro-cluster. New data points cause micro-clusters to shift position towards the newer
points. Data about the number of data points that are shared in the intersection between
micro-clusters is recorded for clustering purposes. Reclustering in the offline phase
is done using the shared density information. If the shared density exceeds a given
threshold α then the micro-clusters merge into the same cluster. Micro-clusters fade

20

using a fading function and parameter λ and micro-clusters are removed periodically
every t gap time steps, if the micro-cluster is below w min weight. This shared density
model helps to avoid the problem of uneven distributions inside micro-clusters, as even
nearby micro-clusters will not merge if they don’t have a large shared density. Over-
lapping micro-clusters with few, or no shared data points imply a level of separation
between the micro-clusters which is not captured by traditional micro-cluster models.

Another algorithm which builds on CluStream and uses a similar micro-cluster
stricture is SWClustering (Zhou et al., 2008). The SWClustering algorithm uses Tem-
poral Cluster Features (TCFs), that contain similar information to the tuple used by
CluStream - sum and sum squared of data values for each associated data point in each
dimension, number of records, and most recent time-stamp. TCFs are stored in an
exponential histogram, such that more recent records are stored with more detail and
granularity than older TCFs. The older TCFs become merged together if the current
exponential bucket exceeds 1

ε
+1 records, where ε is a limiting parameter. Merges are

cascaded through the exponential levels, and the last TCF is deleted if its time-stamp
is no longer one of the most recent. These Exponential Histogram of Cluster Features
(EHCF) act like micro-clusters, and new data points are added to their nearest EHCF
based on a radius threshold β , and at most N EHCFs can be in memory. EHCFs are
deleted or merged when the number exceeds the threshold. The EHCF structure allows
more granularity on more active clusters over time than the pyramidal snapshots used
in CluStream. SWClustering, like CluStream, uses the k-means algorithm to cluster
the EHCFs as pseudo-points, where each EHCF is weighted based on the number of
records it contains.

2.2.2 Grid-Based Clustering

While micro-clusters are a popular approach in clustering, an alternative method is the
grid-based approach, like that used in D-Stream (Chen & Tu, 2007). The D-Stream
algorithm partitions the data space of the input stream into a fixed granularity grid, in
which the input data is normalised to [0,1] and each dimension is partitioned into even
segments with a length determined by a parameter len. A value of len = 0.02 corre-
sponds to each dimensions being partitioned into 50 even segments, with in total 50d

cells, where d is the number of dimensions in the data. Like many other stream cluster-
ing algorithms D-Stream uses a parameter λ to control the decay of data, and bias the
algorithm towards newer data. Each cell maintains a characteristic vector which con-
tains data on its last time of update, last grid density, the class label, and whether the

21

cell is a sporadic or normal cell. Each time a data point is added to the grid it increases
the weight of a cell. When a cell reaches a weight above a user defined parameter Cm

it becomes a dense cell, if the weight is lower than Cm but higher than another param-
eter Cl it is a transitional cell, otherwise the cell is called a sparse cell. Periodically
sparse cells may become marked as sporadic if their weight is below a threshold set by
the parameter β , if a sparse cell has already been marked as sporadic and remains be-
low the required weight threshold on the next periodic check then it is removed from
memory to save space. In the offline clustering phase, adjacent dense cells become
merged together and are assigned the same cluster label, working similar to how core
micro-clusters work in DenStream. Similarly, transitional cells are grouped into the
same cluster as adjacent dense cells.

Density and grid-based techniques are used in the (Dense Units Clustering) DUC-
Stream algorithm (Gao et al., 2005) to form an online incremental clustering method,
which is in contrast to many methods which separate maintenance and clustering
phases into online and offline components respectively. DUCStream partitions data
into non-overlapping hyper-rectangles - a multi-dimensional grid, in which individual
cells are referred to as local units. The density of a unit is equal to the number of data
points contained within that unit, and the unit is considered to be a dense unit if its
relative density exceeds a given density threshold γ . A unit is considered to be a local
dense unit if den(u)/m(t− i+1)> γ where den(u) is the density of the given unit, m

is the size of a chunk of data points, t is the current time, and i is the time when the unit
u started being maintained. In this manner, even if many data points belong to a given
unit it still may not qualify as a local dense unit if relatively more data points belong
to other units in the same chunk. Local dense units are used for clustering, with dense
units being combined with other adjacent dense units to form clusters.

The PatchWork algorithm (Gouineau et al., 2016) is another grid-based clustering
algorithm designed to be easy to deploy in a distributed way. This allows for linear
horizontal scalability. PatchWork works by inserting data points into a grid, in which
the grid’s granularity is controlled by a parameter ε . Grid cells that contain data points
are sorted by density, and the cell with the highest density is selected for processing.
Cells nearby that cell are clustered together if their density is greater than a fraction
ratio of the original cell’s density. This process is repeated, with the next highest cell
being selected for clustering, until all cells containing data points have been processed.
Optional minPoints and minCells parameters are available to filter out clusters which
are too small.

22

Similar to grid-based approaches the MR-Stream algorithm (Wan et al., 2009)
keeps multiple granularities of data grids in memory to allow for multiple resolution
analysis and clustering of a data stream. The data space is initially partitioned into 2n

cells, where n is the dimensionality of the data stream. At each successive level of
resolution the cells are further split into an additional 2n cells. The total number of
cells at each level is 2nh, where h is the current level of the multi-resolution partition.
A parameter H defines the upper limit to the resolutions stored by the algorithm. Data
points are added into the grid at all resolutions, adding to the weight of one cell at each
resolution that contains the data point. MR-Stream uses a fading function for records
added to a cell, with the fading factor λ controlling the speed of the decay of the
weight. Cell density at each resolution is the weight of a cell divided by the volume,
where the volume of each highest-level cell is 1, and the total volume of every cell in
the data space is 2nH . Like D-Stream, MR-Stream uses the parameter CH as a threshold
for the minimum density a cell must be to be considered a dense cell. Similarly the
CL algorithm is the upper-bound threshold for when a cell is considered a sparse cell.
Cells between these thresholds are called transitional cells. At each resolution, clusters
are formed by linking nearby cells together. A cell must be within a distance d from
a dense cell to be part of the same cluster. The value of d is defined by a parameter ε

where d = ε2−H . The algorithm can filter out smaller clusters at finer granularities by
labelling them as noise clusters. A cluster is considered to be a noise cluster if its total
weight is less than a parameter β or if its volume is less than a parameter µ .

Another example of grid-based clustering is the Exclusive and Complete Cluster-
ing (ExCC) algorithm (Bhatnagar et al., 2014). ExCC is another fixed granularity
approach, but unlike D-Stream its only input parameters are grid granularity for each
dimension. Cells in the grid are stored in a tree structure, with each leaf storing the
number of data points in the cell, time of the first point to arrive, and the time of
the most recent point. The average inter-arrival time of points for each cell can be
calculated based on the number of points, and the two previously mentioned stored
timestamps. ExCC prunes old cells on calls for clustering. Prior to clustering cells are
pruned from the tree structure if they have not been updated in more than the average
inter-arrival time. This helps reduce the memory usage of the algorithm, and makes
sure older less relevant data is not considered in clustering. Cells which are not pruned
at a clustering call are merged together into clusters if they are adjacent. Cells are con-
sidered to be dense cells when their weight surpasses an internal threshold ψ , which is
defined as ψ = d µ

ln(g+d)e where µ is the average number of points in each cell, g is the

23

average granularity of the dimensions, and d is the number of dimensions in the data.
Cells which are above this computed threshold form the core of clusters in ExCC, with
adjacent dense cells being grouped together. To satisfy the goal of complete clustering,
cells which are not dense are added onto adjacent clusters, such that all data points be-
long to a cluster. ExCC also has a mechanism for handling data drift outside of defined
maximums and minimums in each dimensions. When a data point from the stream
is outside the bounds of a dimension it is considered to be an anomalous point and is
added to a hold queue. This hold queue is periodically processed, and if the number of
anomalous points exceeds the number of points in the boundary cells, then the grid’s
boundaries are expanded to deal with the data drift.

2.2.3 Graph-Based Clustering

Another approach is the graph-based clustering approach, in which data points, or
micro-clusters, and connected into a tree or graph structure. There are many clustering
algorithms that use graph-based approaches, however methods which require nearest
neighbour searches can be computationally expensive. Minimum spanning trees, are a
popular structure for clustering algorithms because they start from a minimal connec-
tivity between data points, and therefore are efficient with respect to producing clusters.
Using a minimum spanning tree (MST) turns clustering from a problem of grouping
points together into a problem of splitting the tree into segments representing clusters.
A successful graph-based approach requires consideration about how to be more ef-
ficient than a strict nearest neighbour search including all data points. The PASCAL
algorithm (Cagnini & Barros, 2016) is a graph-based batch clustering algorithm which
uses a minimum spanning tree in its clustering. PASCAL is introduced as a param-
eterless clustering method, working on a static distribution of data points, and seeks
to find clusters by breaking the MST into pieces which correspond to clusters. The
MST contains exactly N−1 edges between nodes, which is a significant reduction on
the number of edges in a k-nearest neighbour graph, and reduces the clustering prob-
lem to one of finding which edges to remove from the MST to identify clusters. The
MST is mapped onto a direct probabilistic graphical model, in which the probability of
objects belonging to the same initial cluster is given by a function dividing euclidean
distance by the weight of edges in the MST. The probabilities in the graphical model
are mapped into a univariate distribution which PASCAL samples from to identify
which pairs in the MST are must-link and which pairs are cannot-link. PASCAL then
uses an evolutionary algorithm, iterating over a number of generations, removing the

24

worst must-link pairs from the population according to the density-based clustering
validation criterion as a fitness function. The pairs are removed from the population,
and new pairs are added from the GM until the solution converges to a peak in the
fitness value. This approach makes use of evolutionary convergence and also a MST
graph-based data structure to find arbitrarily shaped clusters in a static non-streaming
dataset. The approach is parameterless in the clustering, except in the evolutionary
estimation of density algorithm used to converge towards the solution, which requires
several hyper-parameters.

The HASTREAM algorithm (Hassani et al., 2014) uses a hierarchical model for the
MST to provide multi-resolution clustering. In the online phase HASTREAM main-

tains a series of micro-clusters, in which the radius is defined as
√
|CF2|

w − (|CF1|
w)2 and

the centre is CF1, where w is the weight of the points CF1 is the linear weighted sum
of the data points and CF2 is the weighted sum of the squared data points. This is
similar to the definition of micro-clusters in CluStream, but with the radius defined
by the distribution of the data points rather than a parameter. Data points are added
to existing micro-clusters if possible and the weight is updated based on the number
of added points. The clusters decay if no new data points are added however, with
a fading function controlled with a parameter λ . The offline phase of HASTREAM
requires an input parameter minPts, which acts as a density threshold. During the of-
fline phase, micro-clusters are considered as vertices in a graph, with a core distance
defined as the Euclidean distance to that vertex’s minPts’th nearest neighbour. The
mutual reachability distance between two micro-clusters is defined as the maximum
of the Euclidean distance, and each micro-cluster’s respective core distance. A mu-
tual reachability graph is constructed, which is a complete graph, with the weight of
each edge being the mutual reachability distance of each pair of vertices. A minimum
spanning tree is constructed using this mutual reachability graph. A hierarchical den-
drogram is then constructed from the MST, the top level containing the entire MST
and all micro-clusters in one cluster, then lower levels splitting the MST by remov-
ing the longest edge, which splits the dataset into its component sub-clusters. At any
level of the dendrogram, if the total weight of the subcomponent does not exceed t
minPts parameter then it is considered to be noise. Using this dendrogram, clusters at
various hierarchical levels can be extracted manually, or HASTREAM can produce a
flat clustering by itself by using a concept called cluster stability. Cluster stability is a
function derived from the difference of a maximum and minimum density thresholds
for which the sub cluster will continue to exist, multiplied by the weight of the cluster.

25

The clustering used as the final flat clustering is the set of non-overlapping clusters
from the dendrogram which has the highest sum of cluster stability. Intuitively, the sub
clusters which are most stable through a range of threshold values are likely to be well
separated from the rest of the data, so these are logical choices for the flat clustering.

Nearest neighbour graph-based clustering algorithms are computationally intensive
due to having to update and maintain edges connecting to nearest neighbours for each
vertex in a graph. SNCStream (Barddal et al., 2015) is an algorithm which uses social
network principles to make this connectivity maintenance more efficient. SNCStream
uses a K-nearest neighbour clustering approach, in which each vertex has edges con-
necting to the K neighbours which are closest using a given distance measure. Instead
of using the strict nearest neighbours, the maintenance phase uses two-hop neighbours
- that is, it searches only data points that connect to its current neighbours when search-
ing to update its list of nearest neighbours. This process is not guaranteed to result in
an exact K-nearest neighbour graph, but it is likely to be similar to the true KNN graph,
and requires that at most K2 neighbours be searched instead of all vertices in the graph.
The vertices in SNCStream are treated like micro-clusters similar to DenStream after
an initial window size N points have been processed. New data points are added to ex-
isting micro-clusters, or become new outlier micro-clusters if no existing micro-cluster
is nearby. Similar to DenStream, a micro-cluster must have sufficient weight to become
a potential micro-cluster, and be added to the graph. The parameter β is the same as in
DenStream and ψ replaces the µ parameter for determining when a micro-cluster is an
outlier. The ε parameter determines the radius of micro-clusters, and the λ parameter
controls a fading function. The benefit of SNCStream is the increased efficiency over
other graph-based clustering methods, resulting in faster neighbour searches at a small
risk of incorrect graph structure.

The FastAP algorithm (Sun et al., 2017) is another algorithm which uses graph-
based approaches in its clustering method. FastAP was designed with the idea of mak-
ing affinity propagation faster and more scalable by reducing the size of the similarity
matrix used during the message-passing phase. To do this, FastAP uses a two-stage al-
gorithm which consists of a compression and sparseness phase. The compression stage
reduces the similarity matrix that affinity propagations use from a N2 matrix to being a
Ng matrix, where N is the number of data points in total, and g is the number of exem-
plars selected during the compression phase. The compression is done by treating each
point as a potential exemplar, and then iteratively merging each point with its nearest
neighbour, creating a micro-cluster, until the given compression ratio is reached. The

26

second phase is the sparseness phase which uses a K-nearest neighbour grap-based
approach at further reducing the similarity matrix. This occurs by reducing the matrix
based on the K-nearest neighbour connectivity of the potential exemplars chosen in
the previous stage. This reduces the size of the similarity matrix to Nk, where k is
the level of connectivity in the K-nearest neighbour sparse graph. Affinity propagation
message passing is done on this greatly compressed similarity matrix, reducing the
computational complexity whilst producing clustering output of comparable quality to
standard affinity propagation approaches.

2.2.4 Other Novel Clustering Methods

Affinity propagation is used in multiple clustering algorithms, and the ADStream al-
gorithm (Ding et al., 2016) combines this with a micro-cluster approach which ex-
tends DenStream. ADStream is split into an online and offline component, perform-
ing micro-cluster creation and maintenance in the online component, and data clus-
tering in the offline component. The online component uses affinity propagation to
turn data points into micro-clusters for later reclustering. When the algorithm starts an
initial number of data points are used to build a similarity matrix. An affinity propa-
gation algorithm is then used to determine an initial clustering for online maintenance.
These clusters become micro-clusters, where the weight is determined by the num-
ber of points the micro-cluster contains, with point weights decreasing according to
a fading function using a parameter λ . When the similarity of points - the sum of
the responsibility and availability in the affinity propagation component - exceeds a
threshold parameter ξ then it becomes a candidate density micro-cluster, or a full den-
sity micro-cluster when the weight exceeds a threshold ε . These density micro-clusters
are used in an offline phase, as in DenStream, to build clusters.

While many algorithms require parameters to complete their clustering, as shown
in Table 2.1, there are some approaches that are genuinely parameterless. One such
algorithm is the DeBaRa (Schneider & Vlachos, 2013) algorithm, which combines a
density-based approach in combination with projecting data onto random lines. This
approach is not used for data streams, however it allows data to be clustered without
needing parameters to be set by the user. The DeBaRa algorithm works initially by
partitioning the data point into smaller subgroups. It does this by creating a random
one-dimensional line through the dataset and projecting the data onto that line, by
taking the shortest distance from the point to the line. Once the points have been
projected onto the line, a random point is selected and all points on one side of the

27

line become one subgroup, and the rest of the points become another subgroup. The
partitions are partitioned like this repeatedly, being projected onto new random lines,
until the subgroups are all a minimum set size. A point’s neighbours are considered to
be the points closest to them on the projected lines, and a number dPts of them are used
for clustering calculations. A fraction f of those neighbours are used to calculate an
average distance for clustering purposes. Points within these partitioned are labelled as
merge candidates when two points are mutually within the minimum of the two points’
merging distances on the given random projection. This restricts which points may be
merged together in the clustering phase. Schneider and Vlachos propose this approach
to improve the efficiency of the OPTICS algorithm, but also propose a parameterless
clustering algorithm to complement their random-projection preprocessing steps. This
method involves gradually increasing the dPts parameter. For a static value of dPts

it identifies low-density points - points which are lower density than all surrounding
neighbours. All other points points which are labelled as non-separating merge with
all nearby points, while the low-density points greedily merge with the neighbour of
maximum density. This method requires no input value for dPts and splits all points
into clusters.

Inspiration for novel solutions to problems can come from many places, and Flock-
Stream (Forestiero et al., 2013) is one such algorithm which uses a biologically in-
spired model to perform clustering. The FlockStream algorithm extends the Multiple
Species Flocking Model into the data clustering realm, using emergent behaviours of
flocking agents to locate arbitrarily shaped clusters. The algorithm represents data
points as boids, or agents, which follow a set of rules based on the Multiples Species
Flocking Model. Specifically these rules are:

• Boids will aim to unify their alignment - direction of movement - with members
of the same species.

• Boids will aim to more towards members of the same species.

• Boids will aim for a minimum level of separation from other members so that
flocks don’t become too dense.

These boids are placed randomly onto a hypothetical 2D grid. Each boid has a visibility
radius around it, and it will follow the flocking rules for any member of the same
species within this radius. Two boids in FlockStream are considered to be the same
species/similar if the data points they represent are within some distance threshold
ε of each other in the data-space. Using these rules in the hypothetical 2D grid the

28

boids align themselves and form flocks with similar boids. Flocks can become micro-
clusters of different types. If the weight of a flock is higher than µ it corresponds
to a core-micro-cluster. Weights decay over time according to a decay function and
a decay parameter λ . Micro-clusters with weights lower than µ but higher than β µ

where 0 < β < 1 are potential-micro-cluster, and micro-clusters with lower weight are
called outlier-micro-clusters. This groups boids as single entities to reduce storage
and processing requirements. Micro-clusters act in the same way boids do, referred
to as swarms, and flocks of swarm agents correspond to clusters. One issue with this
algorithm is the random nature of its clustering. The algorithm runs through many
iterations to converge into a stable solution, however it is not guaranteed to converge.

Other clustering methods which have unique approaches to handling one or more
aspects of stream clustering, for example SyncTree Shao et al. (2019) which builds
on the concept of micro-clusters by treating them as phase oscillators. Nearby objects
have their phases synchronised with each other, which gives a method of clustering
based on the synchronicity of objects in a local area.

2.2.5 Parameters In Clustering

We note importantly that the data stream clustering algorithms surveyed above take as
input a set of parameters which are set at initial runtime and which are fixed through the
length of the algorithm’s execution . For example, ExCC (Bhatnagar et al., 2014) uses
a fixed grid granularity parameter as its primary input, much like the PatchWork algo-
rithm (Gouineau et al., 2016) which uses ε as its grid granularity parameter as well as
a density threshold tuning parameter. DUCStream (Gao et al., 2005) is a density-based
method which requires a density threshold γ as its primary parameter. FlockStream
(Forestiero et al., 2013), which clusters based on biologically inspired methods, re-
quires a distance threshold ε , as well as µ micro-cluster and β distance thresholds.
There are also some algorithms such as (Ackermann et al., 2012) which use an imple-
mentation of k-means that require the number of clusters, K, as an input parameter.
Additionally, the STRAP (Streaming AP) algorithm (Zhang et al., 2008) applies the
affinity propagation technique in a streaming context. STRAP uses message passing
to find a number of K-centres, using an energy minimisation approach. While this
method does use a number of parameters, it is not necessary to specify the number of
K-centres or clusters that are to be found by the algorithm.

RepStream (Lühr & Lazarescu, 2009), the base algorithm we have chosen for our
work, is also an example of this, as its primary input parameter is the K value, repre-

29

senting the number of outgoing edges from each vertex in its sparse-graph data rep-
resentation. Some of the earliest stream clustering algorithms, including STREAM
(O’callaghan et al., 2002) and CluStream (Aggarwal et al., 2003) also rely on critical
input parameters which must be set by the user.

Table 2.1 shows the list of primary parameters used by the various clustering meth-
ods we have examined. Many of these parameters are similar between approaches,
for example the use of a grid granularity parameter in grid-based approaches like D-
Stream (Chen & Tu, 2007) and ExCC (Bhatnagar et al., 2014), or density thresholds
used in density-based methods such as in HAStream (Hassani et al., 2014) and DB-
Stream (Hahsler & Bolaos, 2016).

The main challenge is that some of the input parameters are very sensitive with
respect to the quality of the clustering output produced by the algorithms. The reliance
on parameters is considered to be an extremely important problem in stream clustering
(Silva et al., 2013). It is entirely up to the user to specify input values that are suitable
for a given problem. However, given that data streams are potentially very dynamic,
setting optimal parameters is a non-trivial task. Due to concept drift, even if a set of
values are suitable at the beginning of a data stream, it is not certain that they may be
appropriate for algorithm later when the stream evolves significantly. It is therefore
desirable to have a scheme that automatically sets suitable values for important param-
eters, or which otherwise minimises the sensitivity of critical user-set parameters. This
is exactly what we aim to do in this work. While plenty of literature focuses on meth-
ods which improve the quality of algorithms overall, there is a lack of literature which
concentrates on the sensitivity of algorithms to parameter values, and in increasing
algorithm robustness with respect to those parameters. Our methods here differ from
the prior work in that we attempt to address the problem of algorithm robustness and
sensitivity to parameters.

Whilst there are no stream clustering algorithm that automatically updates its initial
parameters, we are aware that there are few notable non-stream clustering algorithms
that do not require parameters. For example, TURN* (Foss & Zaiane, 2002), a two-part
clustering algorithm in which TURN-RES produces clustering output and statistics,
while TurnCut attempts to adjust the resolution of TURN-RES using these statistics.
Tseng and Kao also propose a method for domain-specific parameter selection of a
clustering method used in gene expression analysis (Tseng & Kao, 2005). This method
uses on-the-fly validation techniques, namely Hubert’s γ statistic to optimise the clus-
tering. The DeBaRa algorithm (Schneider & Vlachos, 2013) is another parameter-free

30

Ta
bl

e
2.

1:
Ta

bl
e

sh
ow

in
g

th
e

in
pu

tp
ar

am
et

er
s

us
ed

fo
re

ac
h

al
go

ri
th

m
.

A
lg

or
ith

m
Pa

ra
m

s
A

lg
or

ith
m

Pa
ra

m
s

C
lu

St
re

am
(A

gg
ar

w
al

et
al

.,
20

03
)

tD
is

ta
nc

e
Pa

ra
m

δ
D

ec
ay

Pa
ra

m
α
,l

Sn
ap

sh
ot

Pa
ra

m
s

K
-M

ea
ns

re
cl

us
te

ri
ng

SW
C

lu
st

er
in

g
(Z

ho
u

et
al

.,
20

08
)

β
D

en
si

ty
Pa

ra
m

ε
,N

-W
in

do
w

Pa
ra

m
s

K
-M

ea
ns

re
cl

us
te

ri
ng

D
en

St
re

am
(C

ao
et

al
.,

20
06

)
µ

,β
D

en
si

ty
Pa

ra
m

s
ε

D
is

ta
nc

e
Pa

ra
m

H
PS

tr
ea

m
(A

gg
ar

w
al

et
al

.,
20

04
)

λ
D

ec
ay

Pa
ra

m
r

D
is

ta
nc

e
Pa

ra
m

lP
ro

je
ct

ed
D

im
en

si
on

s

D
B

St
re

am
(H

ah
sl

er
&

B
ol

ao
s,

20
16

)

α
,w

m
in

D
en

si
ty

Pa
ra

m
s

λ
,t

ga
p

D
ec

ay
Pa

ra
m

s
r

D
is

ta
nc

e
Pa

ra
m

B
E

St
re

am
(W

at
ta

na
ki

tr
un

gr
oj

et
al

.,
20

18
)

∆
,τ

D
en

si
ty

Pa
ra

m
s

λ
D

ec
ay

Pa
ra

m
ξ

D
is

ta
nc

e
Pa

ra
m

θ
D

ir
ec

tio
n

Pa
ra

m

H
A

ST
R

E
A

M
(H

as
sa

ni
et

al
.,

20
14

)

m
in

Pt
s

D
en

si
ty

Pa
ra

m
λ

D
ec

ay
Pa

ra
m

H
ie

ra
rc

hi
ca

lC
lu

st
er

in
g

PA
SC

A
L

(C
ag

ni
ni

&
B

ar
ro

s,
20

16
)

E
vo

lu
tio

na
ry

E
D

A
hy

pe
r-

Pa
ra

m
s

SN
C

St
re

am
(B

ar
dd

al
et

al
.,

20
15

)

ψ
,β

D
en

si
ty

Pa
ra

m
s

λ
D

ec
ay

Pa
ra

m
ε

D
is

ta
nc

e
Pa

ra
m

K
-G

ra
ph

C
on

ne
ct

iv
ity

Fa
st

A
P

(S
un

et
al

.,
20

17
)

k
-G

ra
ph

C
on

ne
ct

iv
ity

C
r,

Sr
G

ra
ph

C
om

pr
es

si
on

Pa
ra

m
s

Pa
tc

hW
or

k
(G

ou
in

ea
u

et
al

.,
20

16
)

ra
ti

o,
m

in
Po

in
ts
,m

in
C

el
ls

D
en

si
ty

Pa
ra

m
s

ε
-G

ri
d

G
ra

nu
la

ri
ty

M
R

-S
tr

ea
m

(W
an

et
al

.,
20

09
)

C
H
,C

L
,β

,µ
D

en
si

ty
Pa

ra
m

s
λ

D
ec

ay
Pa

ra
m

ε
D

is
ta

nc
e

Pa
ra

m
H

H
ie

ra
rc

hi
ca

lL
im

it

D
U

C
St

re
am

(G
ao

et
al

.,
20

05
)

G
ri

d
G

ra
nu

la
ri

ty
D

at
a

C
hu

nk
Si

ze
γ

D
en

si
ty

T
hr

es
ho

ld

E
xC

C
(B

ha
tn

ag
ar

et
al

.,
20

14
)

G
ri

d
G

ra
nu

la
ri

ty
in

al
ld

im
en

si
on

s

D
-S

tr
ea

m
(C

he
n

&
Tu

,2
00

7)

C
m
,C

l,
β

D
en

si
ty

Pa
ra

m
s

le
n

G
ri

d
G

ra
nu

la
ri

ty
λ

D
ec

ay
Pa

ra
m

A
D

St
re

am
(D

in
g

et
al

.,
20

16
)

ξ
,ε

D
en

si
ty

Pa
ra

m
s

λ
D

ec
ay

Pa
ra

m

D
eB

aR
a

(S
ch

ne
id

er
&

V
la

ch
os

,2
01

3)
dP

ts
D

en
si

ty
Pa

ra
m

f
D

is
ta

nc
e

Pa
ra

m
R

ep
St

re
am

(L
üh

r&
L

az
ar

es
cu

,2
00

9)

α
D

is
ta

nc
e

Pa
ra

m
k

-G
ra

ph
C

on
ne

ct
iv

ity
λ

D
ec

ay
Pa

ra
m

31

algorithm. It was proposed alongside a variation of the OPTICS density-based algo-
rithm and clusters based on the relative density of points, allowing more dense points
to merge clusters together, while low density points (points that have lower densi-
ties than their surrounding data points) may only join existing clusters. While this
approach uses no data-dependent input parameters, the algorithm operates by incre-
mentally adjusting an internal distance parameter to produce different granularity of
clustering results. There are also previous works which have attempted to automati-
cally select parameters, for example Maier et al. (2007) who attempt to prove bounds
for symmetric and mutual K-NN graphs using probabilities based on probability of
between-cluster connectivity. Mohd et al. (2012) propose a method for automatically
determining the number and initial position of k-means centroids by measuring the
maximum distance between data points. These methods provide insight into ways that
automatically selecting parameters can be addressed, but apply to specific methods
which are not applicable to an evolving stream clustering context.

To the best of our knowledge there is no prior work on stream clustering algorithm
dynamic parameter selection and keeping the value updated over time as we present in
Chapter 4, nor in using self-arranging sparse graphs to perform graph-based clustering
as in Chapter 5.

2.3 The RepStream Algorithm

In this thesis we extend the RepStream algorithm (Lühr & Lazarescu, 2009), which is
a combination density and graph-based stream clustering algorithm. The RepStream
algorithm has been shown to perform very well against other similar algorithms, out-
performing them in terms of purity of clustering results. At the algorithm’s core are
two directed K-nearest neighbour (K-NN) sparse graphs which direct the clustering of
the algorithm. As with every K-NN graph-based algorithm, it requires the user to spec-
ify a number of fixed input parameters, most importantly the K connectivity parameter.
In this section we will describe how the base RepStream algorithm works and its input
parameters, which are vital to the extensions that we present in Chapters 4 and 5.

RepStream takes as its input a stream of d-dimensional real-valued data points,
where each dimension of the data point represents a numerical attribute. These data
points are time-ordered and arrive one by one, incrementally. The two K-NN directed
sparse graphs are constructed using the data points as the vertices, and are referred to
as the point-level and the representative-level graphs, as shown in Figure 2.1.

32

2.3.1 Point Level Sparse Graph

The point-level graph is a K-NN directed sparse graph in which each vertex of the
graph corresponds to one of the data points from the input data stream that is currently
kept in memory. This graph describes the basic relationship between data points them-
selves. The number of vertices is limited by the memory capacity. An edge between
two vertices represents a one-directional connection between the two corresponding
data points.

Provided there are at least K + 1 vertices in the sparse graph, each vertex in the
graph has K outgoing edges to nearby vertices, creating a one-way connection between
the vertex and its K closest neighbours with respect to the distance metric used. When
a new vertex is processed by RepStream the data point is added to the point-level K-NN
sparse graph - outgoing edges are created, linking to the K nearest other vertices, and
other nearby vertices also have their nearest neighbours readjusted if the new vertex is
closer than its existing nearest neighbours.

The edges between vertices are directed, in that each edge has an explicit start
and end point, and are not bi-directional, however it is possible for vertices to have
edges which point to each other. If two vertices v1 and v2 have outgoing edges such
that v1 has an outgoing edge connecting to v2 and v2 has an outgoing edge connecting
to v1 then they are said to be reciprocally connected. An example of a reciprocal
connection is shown in Figure 2.4 in which vertices R1 and R2 each have an outgoing
edge connecting to the other.

While a vertex has a number of outgoing edges equal to the K parameter, the num-
ber of incoming edges pointing to a vertex can be as few as zero, and also can be
greater than K. Because of the nature of K-nearest neighbour graphs it is also possi-
ble for a vertex to have zero edges pointing to it, even though the number of outgoing
edges is K; this tends to happen when a vertex is relatively very far away from other
vertices. Edges also have a length which is dependent on the distance metric used, and
RepStream has several options for distance metrics, including the Manhattan distance,
Euclidean distance, Euclidean-squared distance, and Mahalanobis distance. For our
purposes in this paper we use the Euclidean distance, which is the standard and most
intuitive distance measure.

33

Representative
Sparse Graph

Point-level
Sparse Graph

Figure 2.1: An illustration of the representative and point-level sparse graphs in the
RepStream algorithm.

2.3.2 Representative Level Sparse Graph

The representative-level graph is the second sparse graph maintained in the Rep-
Stream algorithm. The representative-level graph is also a K-NN graph but its vertices
consist of only representative points, which are a subset of data points currently kept
in memory. A vertex becomes part of the representative-level sparse graph when it
becomes a representative point. RepStream must maintain both of these graphs and
update them as new data points are added to the stream which are added to the point-
level graph and representative-level graphs as applicable.

Figure 2.1 shows the relation between the two different levels of sparse graphs in
RepStream, and how a subset of the points in the point-level graph are used to construct
a separate graph, which is later used in the clustering process of RepStream.

Representative points are points which, as their name suggests, represent points
around them. They determine the cluster membership of the points they represent,
and their position and connectivity to other representatives determines how clustering
decisions are made. Figure 2.1 shows the relation between the point-level sparse graph
and the representative-level sparse graph, in which a subset of data points are used to
construct a second sparse graph on which clustering is performed.

Vertices become representative points when they are inserted into the graph and

34

(a) The position of representative points and
the connectivity on the point-level graph in a
hypothetical example in RepStream.

(b) The position of representative points and
the connectivity on the representative-level
graph in a hypothetical example in RepStream.

Figure 2.2: Representative compared to point-level sparse graphs.

have no reciprocal connection to an existing representative point. This method of se-
lection allows the representative vertices to be more or less evenly spread through the
data space. In this manner representative points are added incrementally as vertices are
added to the point-level nearest neighbour graph when no neighbour representative is
available.

To limit the amount of space used by RepStream the user may specify a limit to the
number of data points kept in memory. This is done by indicating a maximum number
of data points to be maintained in the point-level sparse graph. When a new vertex is
added to the point-level graph, the oldest vertex which is not a representative will be
removed from the sparse graph, and nearby neighbours will have their outgoing edges
rearranged to maintain the K-nearest neighbour structure. Representatives vertices are
not deleted in the same first in, first out way, instead, they are kept in a repository.
Representatives are added to the repository as they are created, until the repository is
full, once full the least useful representative is removed each time a new one must be
added. This usefulness is determined by computing a representative usefulness value,
which is dependent on the age of the representative, and the number of vertices that
have linked to that representative.

Figure 2.2(b) shows an example of the representative points and the representative-
level K-NN graph in a hypothetical with the corresponding point level graph in lighter
grey. Representative points are added incrementally as the stream progresses, this
means that as vertices are added to the point-level graph new representative points
may be created, and so the representative level graph must be updated incrementally

35

as well.

2.3.3 Clustering With RepStream

Forming individual clusters in RepStream is done at the representative level sparse
graph, but using additional density information from the point level. This forms a
combination graph and density based clustering method. Clusters are defined as groups
of representative points which are both reciprocally connected, as we describe above,
at the representative level sparse graph, and which are also mutually density related.
Two representative points, and the points that they represent, will belong to the same
cluster if both these criteria are met.

Because of its combination graph and density based approach, users do not need
to specify a number of clusters to be found, or assume that clusters must be hyper-
spherical. RepStream is able to determine the number of clusters based on its internal
graph model, and can find arbitrarily shaped clusters.

As we mention previously, there are two criteria for merging two representative
vertices into the same cluster, those are:

• Reciprocal connectivity at the representative-level

• Density relation

As we note in Section 2.3.1 reciprocal connections occur when a vertex vi has an
outgoing edge to another vertex v j, and the vertex v j has its own outgoing edge to vi.
In this case the vertices vi and v j are said to be reciprocally connected. In RepStream
reciprocal connections at the representative-level are used for clustering decisions.

Density relation is a concept in RepStream which is determined by the relative
distance of nearby points. Two representative points are said to be density related if
they are within each other’s density radius. The density radius for a vertex is calculated
by taking the mean distance of the vertex’s outgoing edges at the point level, multiplied
by the α scaling factor. Two vertices must be within each other’s density radius for
them to be density related.

Definition 2.3.1 A representative vertex vi is said to be density related to a vertex v j if

the following condition is met:

Dist(vi,v j)< RelDens(vi)×α (2.1)

36

where Dist(vi,v j) is the distance between the two vertices, RelDens(vi) is the relative
density of the vertex vi, which is defined as the average distance from vi to its K nearest
neighbours on the point-level sparse-graph, and α is user-set parameter for tuning the
density relation. Figure 2.3 shows an example the density relation radius α×AvgDist

for the vertex.

Figure 2.4 shows an example of two representative vertices R1 and R2 which are
reciprocally connected by edges E1 and E2. The two vertices are also within each
other’s density relation radius, denoted by the radii around the vertices. The vertex R1

is within the density radius of R2, and R2 is inside the density radius of R1. In this case
since they are both reciprocally connected and density related they would belong to
the same cluster, and all nearby point-level vertices they represent would belong to the
cluster as well. On the other hand, Figure 2.5 shows an example of two representative
vertices which are reciprocally connected, but not density related, and therefore would
not be merged into the same cluster.

Cluster formation works in a transitive way, such that if vertex v1 is in a cluster
with v2, and v2 is also in a cluster with v3, then both v1 and v3 are in the same cluster.
If a representative point is not reciprocally connected and density related to any other
representative points then it will belong to its own cluster. All vertices which are not
representative points will belong to the same cluster as their nearest representative
vertex, thus all points in the data set will belong to an existing cluster at all times.
Figure 2.6 shows how representative points can group together to form clusters when
they are reciprocally connected and density related.

As vertices and edges are added and removed from both the point and represen-
tative level sparse graphs over time, these clusters can change. Two vertices can lose
their reciprocal connections as the K neighbourhood shifts, or can lose their density re-
lation if the relative density of a vertex changes. When this happens clusters can split
if there is no other existing transitive relation. Similarly, clusters can merge together
when vertices gain reciprocal connections or gain mutual density relation.

2.3.4 Algorithm

To demonstrate how RepStream processes new data points, Algorithm 1 shows the
high level steps that a new vertex goes through. A new vertex vnew is added to the
point-level sparse graph, having edges created between neighbouring vertices using the
createLink(vi,v j) function. The function NN(vi) denotes the set of existing neighbours
for the vertex vi, whilst FarEdge(vi) will return the edge connecting to its farthest

37

Figure 2.3: The density relation radius of a representative point is equal to α×AvgDist
where AvgDist is the average distance to its K-nearest neighbours.

Figure 2.4: An example of two representative points which are both reciprocally con-
nected, and density related.

Figure 2.5: An example of two representative points which are reciprocally connected,
but not density related.

38

Figure 2.6: Density relation radii for the representative points in the hypothetical ex-
ample in RepStream. The distance to the neighbours at the point level determines the
density relation radius for the representative level clustering.

neighbour in its K neighbourhood, which is determined by the distance between two
vertices, denoted by dist(vi,v j). Adding a vertex to the sparse graph can cause the
K neighbourhoods of existing vertices to shift, which may cause edges of existing
vertices to be replaced. If a vertex being linked into the sparse graph has no existing
reciprocal connection to a representative vertex, then it itself becomes a representative,
which is shown as makeRepresentative(vnew).

Linking a new representative vertex into the representative level sparse graph fol-
lows a similar process, shown in Algorithm 2. The vertex has edges created to nearby
representatives in its local K neighbourhood, using the representative level function
createLinkR(ri,r j). The functions NNr(ri) and FarEdgeR(ri) return, respectively, the
set of K nearest representative vertices, and the farthest existing representative in the K

neighbourhood. Once the new representative is connected to its K nearest representa-
tive neighbours, it may merge with existing clusters if it shares a reciprocal connection
to a neighbour, whilst also being density related. As we mention before, this is a tran-
sitive property, so it’s possible for groups of representatives to be merged into a large
cluster.

39

Algorithm 1 Algorithm for RepStream Algorithm
FUNCT ION : LinkIntoGraphSG
INPUT : vnew,neighbours {new vertex and neighbours}
for all v j in NN(vnew) do

createLink(v j,vnew)
if |NN(v j)|< k or dist(vnew,FarEdge(v j))< dist(v j,FarEdge(v j)) then

createLink(v j,vnew)
if |NN(v j)|> k then

Remove edge to farthest neighbour of v j
update local density of v j

end if
end if

end for
for all vertex v j which has a new reciprocal link do

if v j is a representative vertex then
Update representative reinforcement of v j
Delete and unlink least useful representative if repository is full

end if
end for
if vnew not reciprocally connected to a representative then

makeRepresentative(vnew)
end if
if v j not reciprocally connected to a representative then

makeRepresentative(vnew)
else

assign vnew to nearest representative
end if
for all vertex v j with removed edges do

if v j not reciprocally connected to a representative then
makeRepresentative(v j)

end if
end for

40

Algorithm 2 RepStream representative level link-in algorithm
FUNCT ION : LinkIntoGraphRSG
INPUT : rnew,neighbours {new representative vertex and neighbours}
for all r j in NNr(rnew) do

createLinkR(r j,rnew)
if |NNr(r j)|< k or dist(rnew,FarEdgeR(r j))< dist(r j,FarEdgeR(r j)) then

createLinkR(r j,rnew)
if |NNr(r j)|> k then

Remove edge to farthest neighbour of r j
end if
if densityRelated(rnew,r j) then

Merge clusters of rnew and r j if not already in same cluster
end if

end if
end for
for each vertex r j with removed edges do

Check if cluster of r j must be split
end for

2.3.5 Parameters In RepStream

RepStream’s primary parameter is the graph connectivity parameter K. The K value in
this case is incredibly vital to the RepStream algorithm, because it determines the level
of connectivity in both the point-level and representative-level sparse graphs. This
affects the connectivity of data points in memory, and is the primary parameter in de-
termining the final clustering output. A higher K value causes the data points to be
more connected, resulting in fewer but larger clusters, while a lower K value causes
clusters to be more fragmented due to lower graph connectivity. Because of this, using
a value of K appropriate for the data set is important for achieving high quality cluster-
ing results, and selecting K appropriately is vital for achieving satisfactory clustering
results.

There are other parameter values used by RepStream as well, specifically the λ

decay factor, the α scaling factor . The λ decay factor determines how quickly rep-
resentative points in RepStream are removed over time. The α scaling factor is used
in determining when nearby representative points will be placed into the same clus-
ter. The higher the α value, the farther away two mutually connected vertices may
be from each other before they are merged, as we explained previously. The λ and α

values are important to RepStream’s operation, however the algorithm is less sensitive
to their values, and thus they are easier to set. Specifically, the density component

41

of RepStream is controlled by the α value. Since representative-level neighbours are
expected to be farther away than point-level neighbours, values of α < 1 will prevent
representative points from being clustered together. As such α must be greater than 1,
but not so great as to group representatives together too aggressively. Experimentally,
values between 1 and 3 tend to produce the best overall results.

42

Chapter 3

Change Detection in Data Streams1

Our first task is to demonstrate that concept drift is detectable and can be identified
algorithmically soon after the changes occur. This is an application of the change de-
tection field on arbitrary streams of multi-dimensional data. In this chapter we present
a method for identifying change points in data streams for the purpose of aiding stream
clustering algorithms.

3.1 Overview of Stream Change Detection

As we have previously mentioned in Chapter 1, concept drift is a major challenge in
stream data mining. The unpredictable evolution of concepts within the stream results
in problems for both supervised and unsupervised methods. Supervised methods, such
as stream classification, can suffer from training data becoming outdated, while un-
supervised methods, like stream clustering, may have unreliable performance due to
static initial parameters (Gama et al., 2014).

Many older clustering algorithms rely on the assumption that the dataset they are
to analyse is static, as is the case with batch datasets, for example the classic DBScan
(Ester et al., 1996) and K-Means (MacQueen et al., 1967) algorithms. Applied to a
data stream, algorithms such as these suffer from the problem of conflating old and
new data, possibly never reaching a useful clustering solution.

This problem has led to the development of stream clustering algorithms, which

1Portions of this chapter are copyright ©2015, Australian Computer Society, Inc. Such portions
appeared at the Thirteenth Australasian Data Mining Conference, Sydney, Australia. Conferences in
Research and Practice in Information Technology, Vol. 168. Md Zahidul Islam, Ling Chen, Kok-Leong
Ong, Yanchang Zhao, Richi Nayak,Paul Kennedy, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

43

are specifically designed to handle streaming data. One common method of handling
change in data streams is to use a sliding window (Silva et al., 2013), where only
the newest set of points are used to make decisions. Regardless of how exactly this is
achieved a successful stream clustering algorithm must be able to keep up with changes
in the data, as not doing so risks sub-optimal performance.

While there are many current algorithms which are specifically designed to handle
stream data, including methods that allow them to cope with changes (Bhatnagar et al.,
2014; Chen & Tu, 2007; Amini et al., 2014; Aggarwal et al., 2004), they are limited by
their reliance on initial static operating parameters and therefore vulnerable to prob-
lems associated with concept drift. Identifying when these changes occur in a stream
is a critical component to dealing with the evolution of data streams. Our first task
is to show that concept drift can be detected by analysing the data structures created
and stored by a data mining algorithm running on the stream. Being able to detect the
points at which stream evolution occurs allows us to design algorithms which are able
to make more informed decisions that allow them to adapt to the changes in the stream.

In addition to the necessity of keeping up to date with new instances of the data,
the static parameters of many algorithms means that the algorithms may degrade in
performance at certain times during the stream. Almost all algorithms are given ini-
tial input parameters which determine how they operate on the data. Examples include
D-Stream (Chen & Tu, 2007) which uses Cm and Cl as density thresholds, ExCC (Bhat-
nagar et al., 2014) which requires a grid-granularity parameter, or SWClustering (Zhou
et al., 2008) which uses β a radius threshold and N to define the number of sub-cluster
summaries it stores.

The parameters are typically set at the start of a clustering operation, and remain
unchanged as the stream progresses. This can pose problems since, even assuming
the parameters are set optimally for the start of the stream, there is no guarantee that
the parameters will produce good results at a later point in the stream. Thus, not only
should the algorithm be able to keep up to date with newer data, but it should also be
able to adapt how it operates to match potential unknown changes in the data stream.
These in combination should lead to algorithms which perform better in the face of
dynamic streaming data. The fact that many existing algorithms rely on this sort of
static critical parameter is one of the major challenges in stream clustering (Silva et al.,
2013).

In this chapter we propose a method of data stream change detection by using struc-
tural features of a K-nearest neighbour graph structure in the clustering algorithm Rep-

44

Stream. We have selected RepStream as the base algorithm due to its directed sparse-
graph data structure, and because it has been shown to effectively cluster streams with
arbitrarily shaped distributions. These methods could, however, be generalised for
use in other nearest-neighbour directed sparse graph stream mining algorithms. We
use RepStream’s internal graph structures because of its efficient use of representative
points to reduce computational complexity when dealing with graphs containing many
data points.

RepStream (Lühr & Lazarescu, 2009) is a stream clustering algorithm using a com-
bination of density and K-nearest neighbour graph-based approaches. Of specific in-
terest to us is the so called ‘K value’, which is the parameter concerned with the degree
of connectivity in the graph-based data point representation. Varying the K value has
a dramatic effect on the clustering performance of RepStream and, as with most al-
gorithms, selecting this parameter poorly can lead to undesirable clustering results.
Whilst a single K value works for batch datasets or streams where the distribution
changes little over time, a data stream which evolves significantly might require dif-
ferent K values at different times to achieve optimal results. Since it is not safe to
assume that a stream will remain stable over time we should be looking at methods to
deal with evolving distributions. Thus, it is of interest to us to determine the best K

value to use at different points in time. In essence we propose that K-nearest neighbour
algorithms suffer because of their static K values. This is the fundamental parameter
of such algorithms, and by varying them in response to stream changes they become
more suited to streaming contexts.

The focus of our task is determining when we are likely to need to change K.
This occurs when the distribution of the data changes significantly, so knowing when
significant change occurs within the dataset is extremely important. Therefore we
want to determine when the distribution changes in a way which affects RepStream’s
clustering performance.

In this chapter we propose a method to detect structural changes in a data stream.
We achieve this by examining features extracted from the K-nearest neighbour graph
structure within RepStream. A typical change detection approach is done by calcu-
lating a probability distribution for a certain window in a stream, then comparing its
distance to a later reference window (Kifer et al., 2004). Our approach differs in that we
first extract higher-level features from a K-nearest neighbour graph before performing
change detection. We will demonstrate that these features mirror the structure of the
underlying data stream, and can be used to detect when changes occur in the stream.

45

3.1.1 Contributions

The contributions of this chapter are:

• A definition of structural data stream changes that takes into account higher-level
computed features and statistics which are also used in stream clustering.

• Extraction of structural features in RepStream and an evaluation of their effec-
tiveness for locating changes in data streams.

• A method by which we can locate changes in the data stream by examining
structural features of the K-nearest neighbour clustering algorithm, RepStream.

• An examination of, and evaluation on the KDD 99’ Intrusion Detection dataset,
which is commonly used as a benchmark in stream mining contexts.

The chapter is organised as follows. In Section 3.2, we define basic terms used in
the paper, as well as definitions of the features which we extract for analysis. In Section
3.3, we present our method for defining change points, as well as our change detection
algorithm. Section 3.4 contains a detailed analysis of the KDD Cup 99’ dataset, as well
as a thorough evaluation of our method and a comparison method on the dataset. In
Section 3.5, we discuss the results, and the strengths and weaknesses of the algorithm.
Finally in Section 3.6 we summarise the chapter.

3.2 Definitions

First we will define the terms and methodologies we use. We describe data distribution,
cluster assignments, and how we define the changes that we are detecting. We also
define and describe the features we extract from the KNN graphs, which we use for
our change detection method.

3.2.1 Basic Definitions

In this chapter we restrict our attention to change detection in data streams. A data
stream S is an unbounded series of time-ordered data points S = {X1,X2 . . .Xt . . .}.
Each data point Xi is a vector with a number of attributes Xi = {xi,1 . . .xi,d}, where d

is the dimensionality of the vector. Our work concentrates on real-valued data cluster-
ing, so the attributes in the vector are real valued, and can be represented by a point in

46

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(A)
−8 −6 −4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

(B)

Figure 3.1: Example of distribution change in a stream. Distribution A shows two
classes of the same density at different spacial locations. At a later time in the data
stream, distribution B, the red cluster has shifted its position, whilst the blue cluster
has increased its size, and decreased its density.

d-dimensional space.

These data points are sampled at each time step from a distribution. In a data stream
we have a set of distributions over time D = {D1,D2 . . .Dt . . .} such that each data
point Xi ∈X is selected from a distribution Di. The distribution may either change or
stay the same from one time step to the next. We define a change in the data stream as
being when the distribution at one time step is no longer the same as the distribution at
the previous time step, while there is no change when Di is equal to Di−1. It is possible
for the distribution to remain unchanged for any amount of data points, or even the
whole stream. Figure 3.1 shows a simple example of such a change in the distribution
of a stream – at some time T1, (A), the data points are sampled from a distribution with
two classes, red and blue, which are the same size and density. At a later time T2, (B),
the red class has changed its position in one of the data dimensions, effectively moving
its location in the multidimensional space, while the blue class has increased in size
and decreased in density.

To define clustering, at each time step data points will be split into a grouping of clus-
ters C = {C1,C2...Ct} such that each cluster grouping Ci represents the configuration of
clusters at time i. A cluster configuration Ci contains between one and n clusters Ci =

{c1,c2 . . .cn}where n is at most the number of data points maintained in memory. If Xt

47

is the set of all data points currently in memory, then each data point is labelled as part
of a cluster ∀Xi ∈Xt ,∃c j ∈Ct such that Xi is labelled as a member of the cluster c j.

The set Gt = {gt,1 . . .gt,n} represents the cluster assignments which are theoretically
ideal, this is defined as ∀Xi ∈Xt ∃gt, j ∈Gt such that Xi ∈ gt, j, where gt, j is the grouping
that corresponds to a class within the distribution Dt . Thus the groupings represented
in gt, j match the distribution at that time.

The algorithm we concentrate on in this paper is RepStream (Lühr & Lazarescu, 2009),
which uses a K-nearest neighbour graph representation of the data points. RepStream
uses a directed sparse graph, which we can denote as SG(Vt ,Et), where Vt is the set of
vertices at time t and Vt = {vt,1,vt,2...vt,n}. Each vertex vt,i matches to a corresponding
data point X . The symbol Et represents a series of directed edges between vertexes
Et = {et,1,et,2...et,m} at time t. Each edge et,i is an ordered pair that represents the
start and end points of an edge in the sparse graph, et,i = {u,v} where u,v ∈ V . The
number of edges m is determined by the K value, as each vertex has K outgoing edges
(whenever the number of vertexes is greater than K), so |Et | will never be greater than
k×|Vt |.

3.2.2 Feature Definitions

We extract five features from the K-nearest neighbour structure of RepStream while it
is performing its clustering. These features, defined below, reflect the structure of the
K-nearest neighbour sparse graph maintained by RepStream. They signify elements of
the incoming data which may be affected by changes in the underling concepts. Our
intuition is that significant changes in these high-level computed features would reflect
significant evolution in the data.

Cluster Count Cluster count is simply the number of clusters currently being re-
ported by RepStream at the current point in time. Cluster count is defined as follows:

ClusterCount = |Ct |. (3.1)

Extracting the cluster count is computationally efficient. Since RepStream pro-
duces a clustering result for every data point inserted into the algorithm, this feature is

48

Figure 3.2: Cluster Count. In this example at T = 1 there are 3 clusters. The addition
of an extra point at T = 2 results in two clusters merging, reducing the cluster count to
2.

simply the number of clusters that RepStream locates at each time step. However, it is
important to note that this feature is dependent on the K value used. A higher K value
will typically result in a lower number of clusters found by the algorithm, due to the
higher connectivity of the K-nearest neighbour graph. We found that lower values of
K – approximately K = 10 – are more sensitive to changes in the data stream. This is
possibly because higher K values are likely to have many strong connections, and be
more stable than the lower K values. Cluster Count, as well as being relevant to the
clustering result, also correlates to the stability of the stream, as the number of clusters
changes less when the stream is relatively stable.

Edge Change Count The edge change count represents the number of edges which
are created and destroyed over time on the representative layer. The representative
layer is a second sparse graph which is made of a subset of all points in memory. Rep-
Stream uses a first-in-first-out queue for vertexes in the graph. Vt = {vt,1...vt,m} where
m is some memory limit defined by the user. If the data points existing in RepStream’s
sparse graph at time t are Vt = {vt ,vt+1...vt+m} then at time t +1 the data points in the
sparse graph will be Vt+1 = {vt+1,vt+2...vt+m+1}.

The edge change count necessarily changes the membership of the edges E of the
sparse graph as well, because whenever a new representative is added a previous ver-
tex is removed, which causes all outgoing edges and incoming edges pointing to that
representative vertex to be removed. The minimum number of edges that are removed
from the set of edges E when a single point is added is equal to K (assuming |V |> K).

49

Similarly, at least K new edges must be added to E due to the new vertex requiring K

new edges. More edges may be added or removed if the removed representative ver-
tex was a nearest neighbour of other vertices, or if the new vertex becomes a nearest
neighbour of existing vertices. The definition of edge change count is:

EdgeChangeCount = AE(Ei,E j)+RE(Ei,E j). (3.2)

In the above equation AE(Ei,E j) is a function that returns the number of edges that
have been added to the sparse graph. They are present in E j but not in Ei. The symbol
Ei is the set of edges in the sparse graph at time i as defined above. Thus,

AE(Ei,E j) = |E j|− |Ei∩E j|. (3.3)

Similarly, RE(Ei,E j) is a function that returns the number of edges which have
been removed from the sparse graph in E j:

RE(Ei,E j) = |Ei|− |Ei∩E j|. (3.4)

The edge change count shows the number of edges created and removed at the
representative layer of RepStream over time - the K-nearest neighbour change count
- was chosen as a feature due to its ability to reflect the degree of change that the
graph requires when data points are inserted. The idea is that when the data stream
is stable then the representative points will also remain stable. Thus, the amount of
changes at the representative level will be stable. On the other hand, when the data
stream is shifting then it is expected that the number of edges that need to be updated
at the representative level will vary, due to representatives needing to be created or
destroyed. For example, a graph vertex that is inserted outside existing clusters will
be more likely to become a representative point, and need to cause updates in other
representative points. On the contrary, a vertex inserted among a group of existing ver-
tices can often be represented by an existing representative point, thus it does not cause
any representative edge changes. This feature is extracted by counting the number of
edge updates which are on representative points since the last measurement. In our
experiments, it is every 500 points, or half the sliding window size.

50

Cluster Merges and Splits Cluster merges-and-splits counts the number of times
clusters have joined together or split into two or more separate clusters since the last
time it was measured. If Ci is the arrangement of clusters at time i, and C j is the
arrangement of clusters at a later time j. Then the set of new clusters is defined as:

Cnew =C j \ [Ci∩C j]. (3.5)

The new clusters which were split from existing clusters are given by:

Csplits = the set of cx ⊂Cnew, where cx 6= {v j}. (3.6)

Similarly, the set of clusters that have been removed is:

Cremoved =Ci \ [Ci∩C j]. (3.7)

Thus, the set of clusters which have merged into existing clusters is:

Cmerged = cx ⊂Cremoved , where ∃cx ⊂Cremoved,cy ⊂C j|cx ⊂ cy. (3.8)

Counting the cluster merges and splits over time is used as a feature because it is
likely to correlate with the stability of the data. RepStream creates clusters by con-
sidering the connectivity of representative points, as well as the local density of each
representative point. Due to nodes being inserted, the density or connectivity of repre-
sentative points may change and this results in the clusters splitting apart or merging
together. When the dataset is stable, inserting new points is less likely to result in such
changes. However, it may become more likely when the dataset shifts then points oc-
curring in new locations, and being removed due to the first-in-first-out window. Based
on this observation, we have selected the combined number of cluster merges and splits
as a feature to examine when searching for change in the dataset. Similar to the KNN
change count, this feature can also be efficiently extracted by counting the number of
times clusters merge and split since the last measurement.

Cluster merges and splits occur more rapidly when the structure of the stream changes

51

due to data point distributions shifting outside established cluster boundaries. This
causes the clusters to become unstable and causes splits and merges to occur until the
algorithm can arrange the data points into a stable configuration.

Edge-Length Variation The edge-length variation of a vertex is the total amount of
variance there is amongst the lengths of all edges in the dataset.

It is defined as:

EV (vt,i) =

√√√√√ k
∑
j=1

(|ei, j|− ¯|ei|)2

k
, (3.9)

where ei, j is the jth outgoing edge of vertex vt,i.

Thus, the average edge-length variation for the whole window would be given by
summing and taking the average of the edge-length variation for every vertex vi ∈V in
SG(V,E):

AEV (Vt) =

n
∑

i=1
EV (vt,i)

n
. (3.10)

Edge-length variation is computed as follows. Each vertex in RepStream’s graph
maintains outgoing connections to its K-nearest neighbours. The standard deviation of
the length of these outgoing edges is calculated for each vertex currently in memory.
The standard deviations are then added together and divided by the total number of
points in the K-nearest neighbour graph to find the average standard deviation over
every point in memory. The idea behind this feature is that one would expect a rela-
tively consistent edge-length variation when the dataset is stable. If new clusters were
to form outside existing clusters the edge-length might increase since longer edges
would need to be formed to maintain the K-nearest neighbour graph. If the density of
an existing cluster were to increase then the total edge-lengths might decrease, which
would similarly lead to an increase in the standard deviation in the edge-lengths. This
feature, therefore, is selected as a candidate for tracking changes in the dataset.

History Count The History count represents the cumulative number of times that
points returned to clusters they were previously members of, across the whole dataset.

52

Figure 3.3: history count. Point P1 begins in cluster C1 initially, then at time T = 2 the
addition of a new data point causes a change in the membership to cluster C2. Later at
T = 3 it returns to the cluster it was previously in.

As the stream progresses individual data points change cluster membership. Even
adding a single point can result in many points changing from one cluster to another.
We keep track of the number of times each point in the first-in-first-out queue has re-
turned to a cluster that it was previously in. Our hypothesis is that when structural
changes are taking place within the dataset the clustering results will be unstable. This
instability leads to a higher rate of individual points jumping between clusters over
time. When the dataset is stable, on the other hand, the rate of change in cluster
membership will be lower, due to new points not changing the dataset’s structure sig-
nificantly.

Let the history of a vertex vi be Hi = {hi,1...hi,p} where each history instance hi, j

represents the cluster that vi was assigned to at time j, and p can be between 1 and the
age of the vertex in time-steps. The history count would be the total number of times
that the vertex returned to a cluster that it was previously assigned to:

HC(vi) = |Hi|− |unique(Hi)|, (3.11)

where unique(Hi) is a function that returns the set of history instances that are unique
within the history of the vertex. As an example, let some vertex vi have a history
Hi = {c1,c2,c3,c1,c4,c2,c1}, where each element of Hi is the identifier of some cluster.
The history count of the vertex would be HC(vi) = |{c1,c2,c1}|= 3. This reflects the
number of times that the vertex has re-joined a cluster it has previously been a part of.

53

3.3 Methodology

We begin by extracting a number of geometric and structural features from the nearest
neighbour graph-based data representation of RepStream. Using these we turn the
difficult process of detecting arbitrarily dimensional distribution change into a time
series change point problem.

We then use our time series change point detection method on these features to
determine when changes occur.

Finally, we use a voting system to determine when change has occurred according
to analyses of these features.

3.3.1 Feature Extraction

We begin by extracting each of the features described in the previous section. For our
purposes RepStream was run at a fixed limit of 1000 points stored in memory at a
time, in a first-in-first-out queue. This was selected due to such a memory limitation
producing desirable results in the original paper (Lühr & Lazarescu, 2009).

Our features are extracted every 100 data points, which is 10% of the memory horizon.
Though it is possible for cluster arrangements to change rapidly with the addition of a
single point, it is not realistic for any algorithm to be able to reliably detect change with
only a single data point (or even a handful). This is particularly the case in a dataset
with noise. A sampling frequency equal to 10% of the memory limit was selected as it
is a significant portion of the amount of data points in memory without being evaluated
too often and driving up complexity. Thus, our algorithm evaluates whether change oc-
curs every 100 data points, and each evaluation represents the activity over that period.

Both the memory limit of RepStream and the frequency of the feature extraction can,
of course, be adjusted at will for different purposes. However this is what they have
been set at for our experiments.

3.3.2 Detection Scheme

We propose a simple scheme using the extracted features to determine whether a
change has occurred or not. Each individual feature is examined separately using a
time-series change point detection algorithm. The algorithm is shown as Algorithm

54

3. The inputs are listed and given as (f eature,M,H,λ). The input f eature represents
the given feature as a time series. The M parameter is a multiplier which affects how
sensitive the algorithm is to change; a higher value will cause the algorithm to require a
larger shift in the time series before a change is detected. The parameter H is the num-
ber of previous points over which to track a moving average. Finally, λ is a parameter
that determines how quickly the algorithm updates to match newer observations, if it
is set to zero then the algorithm will not adapt to slow changes, meaning that even the
most gradual changes will be detected over time. The algorithm returns changes which
contains a list of time indexes where changes have occurred in the time series f eature.

In the following algorithm the input f eature is the feature series, M is the sensitiv-
ity parameter, H is the number of previous points to calculate moving mean/deviation
using, and λ determines how fast the mean and deviation adjust to new data.

Algorithm 3 Detection Method
1: FUNCT ION : ChangeDetect
2: INPUT : X ,M,H,λ
3: OUT PUT : Changes {a list of indexes where changes have been detected}
4: changes = /0
5: Y = mean(f eature(1 : H))
6: Z = standardDeviation(f eature(1 : H))
7: for i = M : size(feature) do
8: X̄ = mean(f eature(i−H : i))
9: σ = standardDeviation(f eature(i−H : i))

10: if abs(X̄−Y)> M×Z then
11: changes = changes+{i}
12: Y = X̄
13: Z = σ

14: else
15: Y = (1−λ)×Y +λ × X̄
16: Z = (1−λ)×Y +λ × s
17: end if
18: end for

The algorithm calculates Y , the mean over the first H data points, and Z, the stan-
dard deviation over the first H data points. These adjust over time with respect to λ

until a change occurs, at which point they are recalculated for the most recent H data
points. When the algorithm begins they are set to the average and standard deviation
over the first H points of the time series, and they are recalculated over the previous H

points whenever a change is detected. The variable X̄ tracks the moving average of the
input time series, and when X̄ goes outside the range defined by Y ±H×Z, that is -

55

Figure 3.4: Flowchart showing feature extraction, detection on each feature, then
majority voting to reach the final change detection decision.

X̄ > (Y +H×Z) or X̄ < (Y −H×Z) - then we consider a change to have occurred. If
no change was detected during that time-step then Y and Z are shifted slightly towards
the current moving average and standard deviation σ by a fraction defined by λ .

The advantage of this algorithm is that it gives the flexibility of detecting rapid or
arbitrarily slow changes depending on how λ is set. A higher value of λ means that
changes need to be more sudden and dramatic to be detected, while a low λ value will
let the algorithm detect changes that occur slowly over large time periods.

Since there are five testing features, we use a system where the detection process run
on these features must agree before a structural change is detected. Detections for at
least N features must agree that there has been a change within the last T samples for
the algorithm to detect a change. If N is greater than half the number of features then
it is simply majority voting. Figure 3.4 shows the process. Each feature is extracted,
and our change detection is run on each individually, finally majority voting is used to
decide whether a change is reported or not.

3.3.3 Defining Ground Truth Changes

For evaluation purposes we need to define where the stream distribution change points
occur in the data stream, and then evaluate the outcomes of our algorithm based on
these change points. The KDD Cup 99’ dataset (Stolfo et al., 2000) provides a set of

56

Figure 3.5: Illustrative example of the F-Measure heatmap.

class labels for each data point, this allows us to define ground truth change locations
for our evaluation. To define change points we split the dataset into blocks of 1000
points, and if the same set of classes are present from one window to the next then
there is no change in the data set. If the set of classes from one window to the next is
different then we define a change point within that window.

We weight change points according to a relevance score. This is because there are
some changes, as previously described, where a class may only be present for a hand-
ful of data points before disappearing. Changes such as this may ultimately have little
to no effect on the actual structure of a dataset. As such, we have developed a system
to weight the change points in relation to how much it affects the clustering perfor-
mance of RepStream. We do this by generating what we call a heatmap. This is a
2-dimensional table where each row represents the clustering performance of Rep-
Stream (in terms of F-Measure) on the data set at each time step at a given K value.
For this purpose we use the assumption that the clustering performance varies more
when there is a more significant change in the data stream and less when there is a
less significant change. As such, we weight change points proportionally to the total
amount the F-Measure varies from one time step to the next across all K values.

To illustrate this, Figure 3.5 shows two grids as an example. The grid on the left
shows the F-measure value for each time-step for a range of K values, on the right
is a visualisation which shows the same values, presented as shaded cells, where an
F-measure value of 0 is displayed as black, and a value of 1 is displayed as white. The

57

relevance between a given time step to the next time step is defined as follows:

R(T1,T2) = |T1−T2|. (3.12)

However, because some changes may have a faster effect on the dataset, and some
may act very slowly, we have defined the weight as being the variation over a certain
amount of time. The total weight of a change point at time Ti is defined like so:

Weight(Ti) = max
r=(1,2...range)

(R(Ti−r,Ti+r)). (3.13)

This gives us a range before and after the ground-truth change point, and allows
us to judge how much of an effect the change has on the performance. We have set
range = 5, which corresponds to 500 points before and after the change point – the
size of the change point window – to allow for even the slowest possible changes to be
detected. The algorithm selects the maximum change within this region, and weights
the change point according to that.

Despite the fact that the ground truth changes are calculated only every 1000 points
there are still a very large number of changes in the dataset. To handle this we have
added a threshold θ , such that any change point CPi where |CPi|< θ is discarded. This
produces a dataset with a smaller number of more significant change points, which
more closely reflect the changes that we are looking for. We have set this threshold to
be θ = 4, where the maximum possible value for the weight is 26. This has reduced
the number of change points from 89 to 43, cutting out the lowest weighted ones, many
of which were clustered around higher weighted change points.

By weighting the ground truth change points as we do we filter out less dramatic
changes, which have little to no effect on the dataset. Section 3.4.2 contains an analy-
sis of the various classes in the dataset, as well as their comparative sizes. The change
points which we weight more highly are the ones which cause a larger effect on the per-
formance of the clustering algorithm, and which have a larger change in distribution.
These changes are more important to detect and are likely to cause larger structural
changes in the K-nearest neighbour structure of RepStream.

58

3.4 Experiments

3.4.1 Evaluation Measures

To evaluate the performance of our proposed method, we use the following common
measures in the change detection literature (Gustafsson & Gustafsson, 2000; Basseville
et al., 1993):

• The False Alarm Rate, which is the probability that the algorithm indicates a
change point, but which no actual ground truth change point is present.

• The Detection Rate, which is determined by the probability of the algorithm
successfully detecting a change point in the stream.

• The Mean Time to Detection, which is the speed at which an algorithm can
indicate that a change has occurred after the underlying data stream changes.

• Detected Weight the sum of the weight of the changes that were successfully
detected by the algorithm.

We apply weighting to the change points using a method described below. This is
to grade the change points by how important they are considered to be, with respect
to their impact on clustering results. It makes sense that not all distribution changes
are equal, in that some may be trivial to handle using standard clustering algorithms.
Thus, we are particularly interested in change points which have a greater effect on the
performance of our chosen clustering algorithm over time. A change which prompts a
large change in the precision and recall of the algorithm is considered far more inter-
esting than one which has little to no effect.

Additionally in this paper we use a combined evaluation measure known as MTR
- Mean Time Ratio (Bifet et al., 2013). MTR is a combination of the several important
metrics listed above, and is meant to evaluate a change detection algorithm in a single
number. It is a combination of several important metrics. The formula for MTR is:

MT R = MT FA
MT D × (1−MDR), (3.14)

where MTFA is the mean time between false alarms, MTD is the mean time to de-
tection, and MDR is the missed detection rate. A higher MTR is desirable, and this
measure can be used to directly compare two change detection results.

59

MTR is chosen as an evaluation metric because of its ability to clearly show a
comparison between algorithms optimised for different things. Looking simply at the
number of successful detections or the number of false alarms doesn’t give a clear
picture of how well an algorithm performs, because it is trivial to maximise either of
those scores individually. Typically compromising between a high rate of detection,
and a low rate of false alarms is desirable in practice. Mean Time Ratio takes both the
false alarms and detection rate into account, and is ideal for evaluating the differences
between detection results.

3.4.2 Dataset

KDD Cup 99’ We select the well known KDD Cup 1999 intrusion detection dataset
(Stolfo et al., 2000) to demonstrate the proposed method. It is made up of data ex-
tracted from a computer network being monitored during various simulated and con-
trolled network attacks. The KDD dataset contains data points which represent normal
traffic as well as others representing 22 different types of attacks with varying dura-
tions from a handful of data points to hundreds of thousands of data points. We use
the available subsampled version of the dataset which contains approximately 500,000
data points, as well as ground truth class labels for evaluation purposes. This sub-
sampled dataset contains approximately 10% of the data of the full dataset, excluding
much of the normal traffic.

KDD has been used previously as an example of a real-world application in eval-
uating stream clustering algorithms (Lühr & Lazarescu, 2009; Cao et al., 2006; Ruiz
et al., 2009). The varied attacks over time simulate the dynamic and unpredictable
nature of a data stream, making it ideal to test our change detection methods on.

There are a variety of changes that can occur in a data stream over time, with
varying degrees of difficulty to detect. Classes in the stream can disappear or emerge
over time. They can move by shifting alone one or more dimensions. They can split
into multiple sub-classes, or two existing classes can merge together to form one. The
density of classes may also vary, becoming more represented in future samples, or
more sparse. The shape and size of existing clusters might also vary.

All these types of changes can easily be replicated in synthetic data streams. Unfor-
tunately it is much harder to determine when changes occur in real-world datasets for
the purpose of evaluation of our algorithm. Data streams that have ground truth data
available to them are uncommon. For evaluation of our proposed method we have split
the dataset into blocks of 1000 points. A stream distribution change point is defined

60

Time

K
 V

al
ue

(W
ei

gh
te

d
C

ha
ng

e
P

oi
nt

s
in

 B
lu

e)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

5

10

15

20

25

30

Figure 3.6: The heatmap of the KDD 99’ Dataset, with change points marked.

whenever the set of classes present in one 1000 point block are not the same as the
classes present in the next 1000 point block. This takes into account only certain types
of change within the dataset, namely when classes appear, disappear, merge, or split.
The dataset does not include information for when an existing class changes other than
whether the class is present or not, but this is an expected limitation on evaluating
real-world data, even with class labels to use in the evaluation process.

The heatmap for the KDD dataset is displayed in Figure 3.6. This Figure shows
the heatmap in the background for the KDD dataset between K values 5 and 30. In
blue are marked where the change points occur, weighted according to the relevance
measure defined above. The highest weighted change point has a weight of 14.14, and
an average weight of 6.59.

KDD Dataset Composition The KDD data contains 23 different classes, including
one class that represents normal data, and 22 which represent various types of network
attacks or other suspicious network behaviour. The data was extracted by a smart
firewall in a controlled environment and each data point was labelled depending on
what the state of the network was at that particular time. The other classes include
IP sweeps and port sweeps, scans using the Satan tool, unauthorised FTP transfers
or unauthorised access from remote machines, or denial-of-service attacks. Despite
there being a wide variety of attacks a huge majority of the dataset is comprised of
just 3 classes - normal traffic, Neptune (SYN flood) DoS attacks, and Smurf (spoofed
ICMP packets) DDoS attacks. Smurf attacks alone account for around 56.84% of the
dataset, while the top 3 classes combined make up 98.23% of the data. This leaves the
remaining 1.77% of the dataset being comprised of 20 classes.

61

Attack Name Count Attack Name Count
Normal 97,277 Perl 3
Back 2,203 PHF 4
Buffer Overflow 30 Pod 264
FTP Write 8 PortSweep 1,040
Guess Password 54 Rootkit 10
IMAP 12 Satan 1,589
IPSweep 1,247 Smurf 280,790
Land 21 Spy 2
Load Module 9 Teardrop 979
Multihop 7 Warezclient 1,020
Neptune 107,201 Waresmaser 20
Nmap 231 <TOTAL> 494021

Table 3.1: Number of instances of each class in the KDD Cup 99’ dataset.

Table 3.1 shows the number of data points labelled with each respective class in the
entire data set. The Smurf DoS attack comprises more than half of the dataset alone,
taking up a large section near the middle of the datase. Figure 3.7 shows the locations
of the three most common classes - Smurf, Neptune, and normal traffic, other classes
have been excluded from this diagram; included is also the heatmap for the dataset,
showing where the clustering performance of RepStream varies. The Smurf attack
(denoted by the grey sections at the top of Figure 3.7) is a kind of DDoS, which uses
spoof ICMP packets to flood a target system with packets. In the KDD dataset this is
characterised by a huge number of datapoints which have very little, if any, variation.
During these attacks only two of the numerical features vary at all. This creates many
instances of data points occurring in only a handful of locations in the feature space.

Smurf Attack Attacks like Smurf result in clustering algorithms reporting extremely
high - even perfect - purity values, since in the regions where these attacks occur there
is only a single class. No matter what the cluster configuration is for any window dur-
ing these attacks the purity will always be 100%, as there are no other classes to cause
impure clusters. However, judging by the heatmap in Figure 3.6 RepStream performs
in general rather poorly during these regions. This is because of how RepStream han-
dles multiple data points occurring at the same point. RepStream creates singularities
which are clusters of these points which do not connect to any outside data points. This
causes a low F-measure score because the singularities are not linked together into a

62

single cluster, which lowers the resulting score. A notable occurrence, however, is at
around time = 1.8× 105 where there is a region which suddenly has a much higher
F-measure score. This is due to the network, at this time, stabilising and nearly ev-
ery single data point in that region has exactly the same values for each feature. This
results in a sudden increase in F-measure as all data points are correctly being placed
into the same singularity cluster. Afterwards the variation resumes, which results in a
boundary on the resulting F-measure value.

Nepune Attack The Neptune attack type (denoted by the white sections at the top of
Figure 3.7) is a SYN flood DoS attack. This type of attack is much more varied in terms
of feature values than the Smurf attack. Unlike that type of attack the Neptune class
can become completely connected given a high enough K value. This is the reason why
RepStream has a much higher F-measure score on higher K values during these regions
(K > 15, near the top of the plot, results in extremely high scores). Traffic during these
regions entirely consists of the single Neptune class, meaning the highest F-measure
score can be achieved by linking all data points into one single large cluster. Due to
the nature of the attack this requires a higher K value, and thus during these regions the
best performance is gained with K values above 15. This is an ideal example of when a
distributional change in the dataset requires that the K value be at a specific level, or in
a specific range. A static K value is not optimal in terms of performance or outcome.

Normal Traffic and Other Attacks Normal traffic (denoted by the black sections
at the top of Figure 3.7) is the only one of the three major classes where other classes
are interspersed into the data points. As such the classes do need to be separated to
reach optimal purity and F-measure scores. Normal traffic varies in many of its fea-
tures, similar to how Neptune does, although in general the regions of normal traffic
achieve better scores using lower K values than what occurs during the Neptune at-
tacks. This implies that normal traffic is easier to cluster, being able to be linked up
even at very low K values. A visualisation of this might look like an evenly-spaced
cloud of data points, though such visualisation is not possible when 35 dimensions are
present. Contained within the regions of normal traffic are all the other classes listed
in Table 3.1. In total there are 97,277 data points of normal traffic, whilst all the other
classes (excluding Neptune and Smurf) have a total of 8,753 data points between them,
interspersed into the dataset.

Out of these remaining 20 classes 15 of them contain fewer than 1000 data points,
and 12 of those contain fewer than 100 points. These types of very short lived classes

63

Figure 3.7: Locations of the three most common classes in the KDD Dataset, with
heatmap.

are extremely difficult to detect if they are not significantly different from other existing
clusters. Fluctuations caused by the sampling of data from the underlying distribution,
or other sources of noise in the data may drown out these classes entirely, particularly
in the cases where the data makes up less than 10% of the window size. Out of the
remaining classes that have 1000 or more data points some occur immediately before
or immediately after either Neptune or DoS attacks. The only exceptions are marked
as (A) and (B) in Figure 3.7. At the location (A) 4 classes appear in close proximity
- Back, IPSweep, Portsweep, and Satan. This causes a noticeable, albeit short, dip in
RepStream’s clustering accuracy, as various new classes appear in rapid succession,
and it takes time to adapt. Another similar location occurs near (B) where a relatively
high concentration of the Warezclient class is present, alongside the other classes that
appear at (A). This also causes a noticeable dark streak on the heatmap.

All the transitions between the classes are what we use as the ground truth change
points in our evaluations. The locations where major attacks occur represent distribu-
tional changes in the stream. The major change points, particularly between the three
most prominent classes, are the most dramatic and important to detect since they affect
the clustering and any analysis of the dataset. The goal, therefore is to find as many of
these change points as possible using features extracted from RepStream.

64

3.4.3 Feature Evaluation

Figures 3.8 and 3.9 show the raw feature data as time series for the KDD dataset. This
is the raw data which is fed into our change detection algorithm. When compared to
the heatmap and change points shown in Figure 3.6 the regions of change and variation
in the time series seems to match well with the ground truth changes. Both the heatmap
and change points have been added to these figures for reference. There is a rather high
level of variation in the time series in regions where change is expected, which leads
us to believe these features are ideal for change detection.

The heatmap is shown in Figure 3.8 for illustrative purposes. Significant change
points cause variation in the heatmap, as demonstrated earlier. History count shows
significant and very obvious spikes during the first 1.5×105 points. There is especially
a large amount of instability among the first 0.5×105 points, despite the fact that the
ground truth changes occur at the very beginning and end of this region. However
between 0.5×105 and 1.0×105 the ground truth change points are concentrated near
the beginning and end, which is also reflected by the History Count time series. There
are more changes towards the end of this region, and also more volatility to match.

The same thing again is shown between 1.0× 105 and 1.5× 105, however after-
wards until 3.5×105 the time series is steady at a very low value, with little significant
change compared to the rest of the time series. This corresponds to a region where no
ground truth changes occur. Between 3.5×105 and 4.0×105 there is a lot of variation
in the time series, with noticeable peaks and troughs at the three major points where
change points occur. Towards the end of the time series there are two more clustered
regions of ground truth changes, which prompt spikes in the time series. These make
History Count seem to be a very sensitive feature, as it produces more prominent spikes
at specific locations. This would lead to a higher detection rate, concentrated around
regions of change.

History Count is defined as the number of combined times all points in memory
have returned to a cluster that it was previously a part of. This number does not con-
stantly increase, because of how RepStream discards older points over time. Still, the
large window size leads to this feature being the highest in magnitude compared to the
other features. This feature tends to decrease when the data distribution is static, as
older points with larger history count values are removed from the window, and the
feature increases when there are changes, since after a distribution change points tend
to change cluster membership before stabilising. This is what we see in the History
Count feature. The feature plot rises, sometimes very sharply, when a change occurs,

65

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

5000

10000

15000

Time

History Count

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

5

10

15

20

25

30

35

40

Time

Merges and Splits

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time

Edge Length Variance

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x10
5

0

5

10

15
Weighted Change Points

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

5

10

15

20

25

30

KDD Heatmap

Time

Figure 3.8: Raw feature data taken from the KDD dataset with the heatmap for com-
parison.

66

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

50

100

150

200

250

300

350

400
Cluster Count

Time

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

200

400

600

800

1000
Change Count

Time

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x10
5

0

5

10

15
Weighted Change Points

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

5

10

15

20

25

30

KDD Heatmap

Time

Figure 3.9: Raw feature data taken from the KDD dataset with the heatmap for com-
parison.

67

before returning to near zero over time.

The Merges and Splits plot in 3.8 is much more varied, producing a very noisy time
series. Due to the high standard deviation in the time series it seems best at detecting
slower changes. There are regions where the time series stabilises - noticeably around
0.5× 105, 1.0× 105, in the large region between 1.5× 105 and 3.5× 105, and also
between 4.0× 105 and 4.5× 105. This implies regions where the dataset goes from
being unstable to stable, and these would be detected as change points for this time
series. In the more noisy regions there are some locations where the average seems
to vary more, particularly between 3.5× 105 and 4.0× 105. The Merges and Splits
time series, due to its high amount of noise, seems more suited to detecting major, or
slow changes when the data is smoothed with a moving average. Merges and splits are
extracted by counting the number of times a cluster joins another existing cluster, or
when an existing cluster splits into multiple clusters. If the data is being pulled from
a static distribution the expectation is that the number of clusters would remain rela-
tively static. Conversely, after a change the algorithm will take time to settle to a stable
clustering solution as points from the new distribution eventually replace all the older
data. Because of this clusters will rapidly merge and split after significant changes,
and remain fluctuating for some time until they eventually stabilise. This is the reason
for the large amount of noise in the merges and splits feature.

The edge-length variance plot exhibits spiky behaviour similarly to History Count,
with major spikes concentrated in similar regions. It produces more obvious peaks
in the first 0.5× 105 points, around the three major regions of ground truth changes.
There are also some major spikes near other major change points, specifically around
0.8× 105, 3.5× 105, 4.0× 105, and 4.5× 105. Also as expected, in the middle, be-
tween 1.5× 105 and 3.5× 105 the time series is virtually flat compared to the rest.
This time series exhibits the least noise out of all the features, and will result in a
lower rate of detections. Because of the lower rate of detections it is more suited to
reinforcing the other more sensitive features which produce a higher number of detec-
tions. Edge-length variance reflects the overall spread in the lengths of the edges in
the whole dataset. When a new class emerges new points will be added, likely a sig-
nificant distance from other data points, which should result in a spike in the variance
plot. Of course, other things can also cause spikes, for example when points decay and
are removed, or when a class changes. The various cases under which this particular
feature can vary means there should be a lot of spikes, which is what we see in the plot

68

itself. For this reason it would perform poorly for individual detection, but is useful
for verifying other detections.

The cluster count plot time series, in Figure 3.9, appears almost cyclical, alternating
steadily between peaks and valleys. This is, as expected, because of the decay of rep-
resentative points over time in RepStream. However, the time series does show large
shifts at locations where change occurs, at similar points to the other features. Notable
are large shifts at 1.0×105, 1.4×105, 1.8×105, 2.7×105, and 4.0×105. All of these
locations produce large rising amounts of clusters. This is likely to be caused by an
unstable shifting dataset, as new smaller clusters are created where clusters previously
didn’t exist. These regions where there is a rapid increase in clusters presumably cor-
responds to the data distribution shifting in a dramatic way. Even when the distribution
of the data points is stable the number of clusters in RepStream’s memory varies. This
is due to the noise created by the selection of data points from the distribution, which
can cause even a stable distribution to fluctuate in the number of clusters in memory at
any given time. The constant addition and removal of data points from memory causes
the number of clusters to vary, however it will generally oscillate around a specific
number if the distribution is stable. When changes occur one expects the number of
clusters to change, generally increasing rapidly as data points are added in previously
empty areas. After significant changes the number of clusters will begin to fluctuate
around a stable point. This is reflected on the feature plot, where large changes cause
spikes and sudden changes in the cluster count, even when it fluctuates steadily over
time.

The edge change count feature is also a very noisy feature, much like the merges-
and-splits time series. Edge change count does vary a lot from sample to sample, but
over time tends to remain within a limited range so long as no changes are occur-
ring. The distribution of the time series does shift rather rapidly at times, exhibiting
changes in the distribution of the time series at similar points to the Merges and Splits
plot. However, this plot seems to have more well-defined change points, specifically
around 3.5× 105 to 4.5× 105 where several distinct ranges for the time series can be
seen. Edge change count is defined as the number of times a representative point in
RepStream’s K-nearest neighbour graph structure has an outgoing edge on the repre-
sentative layer added or removed. Representative points stay around longer than other
points which are subject to the first-in-first-out queue used by RepStream. They rep-
resent nearby points in clustering decisions to make the algorithm more efficient. Be-
cause of this there is a lower amount of changes in their outgoing edges than standard

69

points. New representatives are usually formed more frequently when the distribution
changes, as new representatives will need to be added to represent areas that previously
didn’t have many data points. Because representative points eventually do decay there
is always a certain level of change in the edges, even if it is only a small amount. In
Figure 3.9 it is particularly obvious where the DoS attacks occur due to those regions
having little to no change in the representative edges because of the data points being
concentrated and virtually uniform.

All of the features in Figures 3.8 and 3.9 show change at similar locations, however
some perform better at detecting change in different regions than others. Figure 3.10
shows detection done on each of the features individually. H = 20, M = 1, and λ =

0.001 were selected for demonstration purposes, as these were the values used during
testing and debugging of the methods. We did not expect any single feature to perform
best on its own as they are all designed for different purposes, however comparing the
features individually to the locations of the ground truth changes - shown at the top in
red - some features match up well enough to warrant further investigation.

Some of the features, particularly cluster count and history count are very volatile,
and produce a large number of detections. This is unsuitable individually since that
would lead to a large number of false alarms. On the other hand the other features
(change count, edge-length variance, and cluster merges-and-splits) produce a lower
number of detections, but not always in places that overlap with each other. This gives
a chance that any of those individual features may miss out on change points that the
other methods should detect.

Table 3.2 shows the evaluation of our detection being run only on single individual
features. As such we have chosen a majority voting method between all of the feature
detections for our final decision. Listed are the values for the number of false alarms
(FA), number of correct detections (D) number of non-detected change points (ND),
Mean Time to Detection (MTD), Mean Time Ratio as defined earlier (MTR), and the
sum of the weight of the change points successfully detected by the algorithm (DW)
with the total possible weight listed as (TW). The table shows, as we expect, History
Count and Cluster Count are very sensitive, and produce a higher number of detections
compared to the other features, whilst also having a much larger false alarm rate. The
other features have lower false alarm rates, but also have lower detection rates. The
detection done using just the Change Count feature seems to perform reasonably well
all around, but of course isn’t perfect.

As such we have chosen to use a majority voting method to combine the features

70

FA D ND MTD MTR DW TW
History Count 100 28 14 7.36 4.36 202.09 283.29
Merges & Splits 3 14 28 166.71 2.00 115.84 283.29
Edge-length Variance 5 10 32 18.20 6.85 87.61 283.29
Cluster Count 93 19 23 13.16 1.81 148.90 283.29
Change Count 18 21 21 11.10 11.33 162.83 283.29

Table 3.2: Results of change detection using only individual features.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

Merges+Splits

Cluster Count

Change Count

Edge Length

Variance

History Count

Ground Truth

Changes

Detected Change Points

x10
2

Figure 3.10: Detected change points using individual features.

together, and to attempt to capitalise on the benefits of each feature.

3.4.4 Setup and Parameter Selection

The features for all datasets were extracted from an instance of RepStream running at
K = 10, α = 1.5, a memory horizon of 1000 points, and using standard normalisation
through the entire dataset. Though these parameters are not optimal through most of
the dataset they seem to produce good change-detection results, which implies an opti-
mal K value is not required to do change detection, which is useful when the optimal K

value is not known. Features were extracted every 100 points and dumped into debug
files.

We ran both our proposed method and our comparison algorithm multiple times,
using specified ranges for the input parameters. Each algorithm was run using every
possible permutation of values within the specified ranges, and the values which re-
sulted in the highest combined Detection Rate vs False Alarm Rate was selected as the

71

evaluation parameter values.

The parameter value ranges we used for our algorithm was as follows:
M = {0.8,0.9, ...1.5}
H = {8,9,10, ...40}
λ = {0,0.001,0.002,0.005,0.1}.

We also ran the same experiments on the PCA Change Detection algorithm de-
scribed by (Qahtan et al., 2015). They present a PCA-based change detection method
for use in multidimensional vector data streams. This method computes the principle
components of a window of data points and then defines the distribution of points in
that projected dimension. A divergence metric is then used to compute a change score
between a reference window and a test window. The raw dataset was input to the algo-
rithm, which output a series of change points in a log file. These change points were
evaluated using Matlab Parameters for the PCA-Change Detection method were tested
between the ranges:
w = {100,500,1000,2500,5000,7500,10000,15000,20000}
T hresholdFactor = {50,100,250,500,750,1000,1500,2000}
δ = {0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5}
We also use both available area metrics.

The parameters used for evaluation in the following section were selected by sort-
ing all the results by MTR score in descending order. This ensures a good balance
between detection rate, false alarm rate, and detection speed. From this list the set of
results with the highest detection rates were selected, and from among those results the
single entry with the most favourable outcomes were chosen as the final result.

For the KDD dataset the parameters selected for our proposed method are M =

1.0, H = 14, and λ = 0.002. This allows the algorithm to adapt steadily to slow
changes, and maintains a window size which is 40% larger than the number of points
that RepStream stores in memory. Our proposed algorithm depends on the parameters
given to it. If the parameters are outside of certain ranges the algorithms will fail to
produce any useful results. The parameters we have selected for testing performed
reasonably well, however we have evaluated a range of parameters to optimise the
performance.

For the PCA Change Detection method the parameters WindowSize = 1000,
T hresholdFactor = 100, δ = 0.02 were selected, with the ‘Area Metric’ divergence
metric selected, which in the original paper outperforms the other metrics that were
tested.

72

Proposed Method, H=14, M=1,λ =0.002

Time
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

5

10

15

20

25

30

False Alarms

True Detections

Ground Truth
Changes (weighted)

Figure 3.11: Our moving average detection algorithm on the KDD dataset.
PCA Change Detection method

T

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

5

10

15

20

25

30

False Alarms

True Detections

Ground Truth
Changes (weighted)

Time

Figure 3.12: PCA Change Detection algorithm run on the KDD dataset.

3.4.5 Results

Figure 3.11, show the outcome of our algorithm on the KDD Network Intrusion dataset,
using the Heatmap in the background for illustration. The blue lines represent the
ground truth change points, weighted with our proposed method. Marked in green are
where the algorithm has detected a true positive with the given parameters, marked in
red are where our algorithm has detected a false positive. Figure 3.12 shows the results
for the PCA-based Change Detection algorithm.

Figure 3.3 shows a table of the results for our detection algorithm. It contains
values for the number of false alarms, number of correct detections number of non-
detected change points, Mean Time to Detection, Mean Time Ratio, the detected
weight for each method, and the total possible weight. On the KDD Dataset our pro-
posed method performs better in all listed categories. It has a higher detection rate, a

73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
e
te

c
ti
o
n
 R

a
te

Proposed Method

PCA Based Method

Figure 3.13: ROC Curve of the two methods, using curve-fitting. AUC is 0.9888 for
the proposed method and 0.7298 for the PCA based method.

74

FA D ND MTD MTR DW TW
Our Method 22 22 20 6.55 16.45 165.47 283.29
PCA-CD 40 21 21 9.38 6.33 141.37 283.29

Table 3.3: Results of our experiments on KDD with the Mean Time between False
Alarms, Mean Time to Detection, Missed Detection Rate, and Mean Time Ratio.

lower false-alarm rate, the mean time to detection is lower, and the total weight of the
detected change points is higher.

Figure 3.13 shows the ROC curve for the two methods, displaying the true positive
versus false positive rate. The area under the curve (AUC) for the methods is 0.9888
for the proposed method and 0.7298 for the PCA-based method. Generally speaking,
a curve which has the largest AUC is preferable.

3.5 Discussion

The locations in the KDD dataset where our algorithm detects change match up well
to the most important ground truth change points - that is, locations where there are
higher weighted ground truth changes. Detections are missing only in areas where
multiple change points occur rapidly. Our proposed algorithm has no way of dealing
with changes that occur rapidly, which we consider to be a limitation, however other
similar methods also have problems with detecting changes over short amounts of time.

Rapid changes are when multiple change points exist within a short time period of
each other. On Figures 3.11 and 3.12 they would be represented by the places where
ground truth changes occur in clusters, because of multiple classes appearing and dis-
appearing rapidly. For our purposes we will consider any ground truth changes that
occur less than one RepStream window length (1000 data points) from each other to
be occurring in a rapid succession, or cluster. These groupings of change points are
very difficult to detect as there is less time to adjust to the new distribution before the
new distribution emerges. This creates a significant challenge to change detection al-
gorithms, which may detect these changes as being a single change instead.

Our method of evaluation is limited in the sense that ground truth changes only take
into account when classes appear and disappear. This is a limitation of the dataset used,
yet is a realistic representation which demonstrates the challenge of handling evolving

75

stream data, even when labels are present.

3.5.1 Qualitative Analysis

In terms of accuracy our method produces relatively fewer false alarms in total than
our comparison method.

During the first 0.5×105 data points we produce 9 false alarms. This section is a
higher false alarm rate than the PCA change detection method, however it is also the
highest concentration of false alarms that there is through the whole dataset. There are
5 correct detections within this region, detecting both the start and the end of the short
Smurf attack at time = 0.1× 105. Between Time = 0.5× 105 to 1.5× 105 the false
alarm rate drops much lower, producing only 3 false alarms during this time, while
producing 6 correct detections. These correct detections occur at the beginning and
ends of the Smurf and Neptune classes, shown in Figure 3.7. These are the two major
classes which are most prominent in the dataset and are most distinct, and thus easy to
detect.

Two of the false alarms within this region occur near other true detections, just
before Time = 1.1×105 and 1.5×105, whilst the remaining false alarm occurs in the
middle of a Neptune attack. Neptune is a class which is more varied than Smurf attacks,
and is harder to analyse because of its higher variance. In this situation our algorithm
detected fluctuations in the class as a change point. This occurs later again at Time =

3.6× 105, which shows how the Neptune class causes some problems. Regardless,
our algorithm detects the start and end points of the Neptune class instances fairly
well, missing only the region that start just after 0.5× 105 and the region ending at
1.3×105.

At Time= 1.5×105 we correctly detect the the beginning of the large Smurf attack
in the middle of the dataset, however the method produces another detection soon after,
which is a false alarm, as it adjusts to the new distribution. Change points produced in
rapid succession are likely to be a result of over-sensitivity, and are a drawback.

There is also a false alarm produced at Time = 1.8×105 where the distribution of
the points in the Smurf attack does shift slightly, as noted earlier. While we count this
as a false alarm, as the actual class does not change, it is worthwhile to note that this is
a type of distribution change, as classes can vary in their exact composition over time.

The rest of the region ending at Time = 3.4×105 correctly produces no detections,
as the class in this region has little variance. Following this, between Time = 3.5×105

and 4.0×105 there are two periods of the Neptune attack, with a short but noticeable

76

break in between. The transitions into and out of these regions are all detected cor-
rectly, and the sensitivity of our algorithm even detects multiple of the smaller change
points at 3.7× 105. From 4.0× 105 to 4.5× 105 there is another significant Smurf
attack, which we correctly detect the beginning and end of, though with a false alarm
near the end, as it detects the change in the wrong place.

Other than the main 3 classes which make up more than 90% of the dataset there
are 20 other in the KDD dataset which appear occasionally. As mentioned before only
8 of these classes contain more than 100 data points, and only 5 classes contain more
than 1000. We refer to all of these classes as minor classes. These classes tend to occur
in clusters, where multiple of them appear within a short amount of time of each other.
There are concentrations of classes like this at 0.395×105 to 0.430×105, where 9 of
these classes appear within around 3500 data points. There is another at 0.509× 105

where 5 classes occur within 2000 points.

At 0.741×105 there is a large collection of 14 clusters, however this region spreads
over more than 30,000 data points, so the data points for these classes are too spread
out to be easily detected. However at 1.400×105 there is another large concentration
of classes, including one of the most populous minor classes. In this region there are
12 classes active over a 10,000 point region, however one of those classes contains
just over 1000 data points in this region. This region creates a noticeable dark region
on the heatmap, which indicates RepStream has trouble adapting and classifying in
this region. Our change detection method, however, does successfully detect a change
point at this location.

There is also a cluster of minor classes at 3.440×105 and 3.703×105, both which
coincide roughly with the ending points of major DoS classes. Scattered through the
rest of the dataset are some more data points belonging to these minor classes, however
they are spread out with a larger amount of normal traffic in between them. These ones
are not detected by our method, except when they coincide with the changes in the
major classes.

As expected, the minor classes are less likely to be detected. There are far fewer
samples, some classes not even comprising enough to fill 10% of our selected window
length even when not spread through the dataset. Some of these data points also may
be mistaken for normal traffic as they have a smaller amount of difference compared
to the large and relatively distinct major DoS classes.

77

3.5.2 Comparison Method Analysis

The PCA-based change detection method we compare against has many more false
alarms distributed over time than our method. Looking at Figure 3.12 we notice an
almost even spread of false alarms from Time= 1.85×105. Between Time= 0.0×105

to 0.5× 105 there are 6 false alarms which are spread fairly evenly across the time
period. The 3 detections which are present seem to match up poorly to the change
points, meaning that they are late detections.

During Time = 0.5×105 to 1.0×105 the false alarms are concentrated in the first
half of this section. This corresponds to the Neptune attack region, which seems to
be a common theme. During all the Neptune attack regions, shown in Figure 3.7, the
PCA change detection generated detections (mostly as false alarms) at a high rate, with
the exception of the region between Time = 3.5× 105 to 3.7× 105 where it correctly
detects nothing. During all other Neptune attack regions a high number of false alarms
are generated. This is just what happens between Time = 1.0× 105 to 1.5× 105, as
the 4 false alarms generated during this time period are also when the Neptune class is
present.

This implies that Neptune is a more difficult class to detect, because it has a larger
amount of internal change by itself. This is something we expect based on our analysis
of the class previously in Section 3.4.2.

During the period Time = 0.5× 105 to 1.5× 105, however, the PCA change de-
tection method does correctly locate 11 of the change points within this region, with
a change point being in every region where change occurs (when rapid changes are
grouped together), except for one change point at Time = 1.7×105.

During the large Smurf attack in the middle of the dataset the PCA change detection
method makes 6 detections over a short period from Time = 1.5×105. These are false
alarms caused by the shift in distribution as the new class takes over the dataset. This
detection method has trouble adjusting to the change in this situation and thus report
changes until the distribution changes again at 1.7×105, but remains in the same class.
The algorithm then does not detect any changes for the remainder of the Smurf attack
until Time = 3.4×105.

Following this there are 2 sequential instances of Neptune attacks, followed by
another instance of the Smurf class at Time = 4.0×105. During the Neptune attacks,
as noted before, a high number of false alarms are detected in the latter half, and again
at the Neptune attack near the end of the dataset. However, despite the high amount of
false alarms within this region, the PCA change detection method does detect all major

78

change points, except the transition into the Smurf attacks at 4.0×105.

3.5.3 Parameters

There are three main parameters used in our proposed method – these are M, H, and
λ .

The parameter H is the size of the sliding window, which we refer to as the ‘hori-
zon’ of samples in the feature. It is the number of points which we calculate our moving
average over. Increasing this parameter results in the algorithm needing changes to be
over a greater number of samples to detect them. A lower H value means the algorithm
is more sensitive to fluctuations and noise, but detects more short-lived changes. By
varying this parameter it is possible to control the granularity of detection – knowing
more about the kind of changes in the dataset helps setting this parameter.

The M parameter is the multiplier used when determining whether a change has
occurred. If the moving average is more than M times the standard deviation away
from the current region we detect a change point. This M value affects the sensitivity
of the algorithm. With a high M value a change needs to be of a greater magnitude to
be detected, while if M is smaller the algorithm will detect less extreme changes. The
user must be careful not to set this value too small, or noise in the datasets will result
in changes being detected. On the other hand, if the M value is too small the changes
in the features may never be great enough to be detected. A value somewhere around
1.0 seems to produce good results for the KDD dataset, though it can be varied for
different purposes.

Finally, λ determines how fast the algorithm will adapt to slow changes. If λ is set
to 0 the algorithm will not adapt to slow changes at all, in this case even the slowest
change in the feature time series will eventually be detected, given enough time. If λ

has a positive value the algorithm will adapt to slow changes, so slow changes are less
likely to be detected. In this case the algorithm is more likely to detect only large and
sudden changes, which ignores slower trends in the dataset.

3.5.4 Summary

Whilst our proposed algorithm performs well by comparison, it still has limitations,
notably in the form of false alarms and changes which are not detected. For example
the false alarms at around Time = 1.85× 105 and Time = 1.92× 105. At these times
there are no ground truth changes, as it is during a time where there is only a single

79

class present (shown in Figure 3.6). However, at that time the performance of Rep-
Stream does change, so it could be explained by a change in the distribution of that
single class at that time.

Our approach produces good detection of detecting the start and end points of the
major class changes, as described above. These are the most extreme changes which
have the largest impact on the dataset. Due to the nature of these changes they are also
the easiest to detect because the distribution change is so great compared to the other
classes. This is because the changes exist in large groups, the longest being more than
a hundred thousand data points in length, and because the structure of the data changes
so dramatically - in the case of the Smurf class to being many data points in only a
handful of points in the feature space. It is also successful at keeping a relatively low
false alarm rate, despite the noise evident in the dataset.

Despite the false alarms our algorithm detects a high amount of the ground truth
changes (Table 3.3). Many of the changes that are not detected, too, are missed due to
the close proximity of the changes. Our algorithm is limited in the case where changes
happen very rapidly. If a change is detected, and the change continues then the al-
gorithm will report multiple changes occurring in a short time period. This can be
considered a false alarm, as only one prolonged change is happening, rather than mul-
tiple changes. Additionally, if multiple change points occur within a short time period,
for example less than the algorithm’s parameter H number of samples then the algo-
rithm may not be able to detect the changes quickly enough, because it uses a moving
average, which may be skewed by older data.

Interestingly, in the KDD data some of the false positives occur at locations where
there is no ground truth change points yet where the heatmap reflects a change in the
clustering performance of RepStream at that time - most notably the false alarms at
approximately T = 1.1×105, T = 1.4×105 and at T = 1.8×105. It is due to changes
in the distribution of the dataset, whilst the ground truth class labels remain the same.
This is something that is positive, since we are not merely seeking to detect the ap-
pearance and disappearance of classes, but changes in distribution that might affect
clustering performance.

Another limitation of our algorithm is that the change points which are a result of

80

only a small number of data points are almost impossible to detect. The major change
points occur when one of the largest three classes in the dataset appears or disappears,
however the other, less common change points making up less than 2% of the total
data occasionally still have a noticeable effect on clustering performance for the time
they are present, yet our algorithm fails to reliably detect them. This is not unexpected
as larger more dramatic changes are, in general, much more easy to detect.

Our method is able to detect most of the major changes, with relatively few false
alarms, given the highly complex data set. The actual data itself can fluctuate rapidly
at times, yet with tuning our method can find the most important changes. Its higher
number of true detections and the higher total detected weight reveals that it performs
well in its task.

3.6 Conclusion

There are significant challenges in detecting changes in a dataset, particularly when the
dimensionality is high. By extracting features of the data from a K-nearest neighbour
graph we reduce the problem to detecting changes in a smaller number of time series,
representing structural properties of the data. The features that we extract represent the
geometric structure of the data in a K-nearest neighbour context, and we have found
experimentally that change in these features corresponds to change in the distribution
of a dataset.

We have presented a novel method of detecting concept changes in data streams by
examining structural properties of graph-based arrangements of the data. This ap-
proach has been shown to work even in high dimensional data, as with KDD which
was treated as a 34 dimensional dataset. We take features in RepStream’s K-nearest
neighbour structure and use a time-series change detection algorithm with the goal of
identifying when major changes in the underlying dataset have occurred. Our method
uses a non-traditional approach by looking at an abstracted version of the dataset which
has been processed by a clustering algorithm. This differs from other methods which
define a distribution in a reference window and look for changes in a later window.

Our detection algorithm outperforms a similar approach using PCA with respect to
both its detection rate, false alarm rate, and time to detection on the well known KDD

81

intrusion detection dataset. The KDD dataset was selected due to its use as a bench-
mark in prior literature, as well as the fact that it mirrors a real-world application
of change detection.Whilst the approach does have limitations, particularly when the
changes occur rapidly, and when the changes are very subtle, it produces good results
when tested on real world data. The approach is able to detect changes which have a
greater effect on the clustering algorithm.

Our proposed method’s ability to effectively locate significant change points within
the data stream is an important step to our research. Knowing when the structure of
a data stream changes allows us to locate potential locations when changing the oper-
ating parameters of a clustering algorithm may be beneficial. In our next chapter we
will concentrate on using this knowledge to determine what the parameters should be
changed to when the data stream changes. This will lead to higher quality clustering
results from the existing algorithm - RepStream, and could potentially be generalised
to include other stream clustering algorithms.

82

Chapter 4

Parameter Selection Using Edge
Distribution Score In RepStream

4.1 Dynamic K Selection Overview

A common feature amongst even newer clustering algorithms is that they require user-
set parameters to perform their clustering (Bhatnagar et al., 2014; Forestiero et al.,
2013; Zhou et al., 2008). These user-set parameters affect how the clustering algo-
rithm in question handles the data as it arrives from the stream, for example how the
formation of core-micro-clusters are affected by the ε radius parameter and µ density
threshold in DenStream (Cao et al., 2006). Another example is D-Stream (Chen & Tu,
2007) which is a grid based clustering algorithm, using a grid granularity parameter
len and threshold parameters Cm and Cl to determine when cells in the grid are sparse,
transitional, or dense. Parameters like these can greatly affect the output of the algo-
rithms, and if set poorly can result in low quality output. Table 4.1 shows a selection of
some well known and contemporary algorithms, as well as the input parameters which
must be specified at runtime.

In the previous chapter we demonstrated how changes in distribution, which have a
great effect on clustering output, can be detected by analysing features computed from
internal representations of the data. In this chapter we seek to build on this idea and
present a way to adjust the internal state of our clustering algorithm in order to produce
higher quality clustering output with less reliance on user-selected parameters.

We discussed in Chapter 1 that the problem of parametrising algorithms is even
more of a challenge in a stream clustering context. Whereas batch data is expected
to have a single distribution which a clustering algorithm is attempting to find, a data

83

Table 4.1: Table showing a selection of parameters used by some contemporary clus-
tering algorithms.

Algorithm Params
DenStream
(Cao et al., 2006)

µ ,β Density Params
ε Distance Param

D-Stream
(Chen & Tu, 2007)

Cm,Cl,β Density Params
len Grid Granularity
λ Decay Param

BEStream
(Wattanakitrungroj et al., 2018)

∆,τ Density Params
λ Decay Param
ξ Distance Param
θ Direction Param

ADStream
(Ding et al., 2016)

ξ ,ε Density Params
λ Decay Param

stream can have the data distribution change over time. Naturally, this means that
selecting initial parameters is challenging, but additionally an algorithm that has data-
dependent input parameters can face the problem of the selected values being inappro-
priate later during a stream. Even if a user could guarantee optimally selected input
parameter values initially, issues such as concept drift (Widmer & Kubat, 1996) in
a stream mean that they could result in poor quality clustering at later points in the
stream as various changes and evolution occurs.

In this chapter we propose an extension to the RepStream algorithm (Lühr &
Lazarescu, 2009) which will allow the primary input parameter, the K value, to be
automatically varied over time in response to the structure and distribution of the in-
coming data. The RepStream algorithm works by representing data in a K-nearest
neighbour directed sparse graph form, and creating outgoing edges from each data
point to its K closest neighbouring data points, according to a selected distance metric.
The K parameter, therefore, has a big impact on how the data is clustered together, as a
higher K value means a more connected graph, while a lower K value results in a graph
with fewer edges in it. Setting the K parameter is vital to having high quality cluster-
ing output in the RepStream algorithm. Our proposed method allows RepStream to
self-adjust to changes in the distribution of the data stream, allowing for recovery if
the parameter is set poorly initially, as well as being able to adjust the value to a more
appropriate value over time in response to changes in the stream’s distribution.

A data stream is defined as a set of d-dimensional data points X1,X2, ...,Xm... arriv-
ing at time stamps t1, t2, ..., tm... where a data point Xi = [x1

i , ...x
d
i] is a d-dimensional

84

vector (Kaur et al., 2015). The data stream is potentially unlimited in length and data
points are sampled in an unpredictable way from a data distribution that can change
and shift over time. Because of the nature of data streams as being evolving and un-
predictable the input parameters for clustering algorithms, and in our case RepStream,
may be of varying usefulness at different times during the stream. Parameter values
which initially may provide high quality clustering output may at a later point in the
stream be less optimal than different values because of how the data evolves. Rep-
Stream in specific requires its K parameter to be set such that the level of connectivity
between data points is not too high - resulting in regions of data being grouped to-
gether when they should not be, and also not too low - which results in the algorithm
fracturing the data points into too many small clusters. Even within the same dataset
the optimal K value can change over time. If an inappropriate K value is selected then
RepStream cannot recover.

Selecting an appropriate K value is difficult if one has no prior knowledge of the
dataset, and even such knowledge, if available, might be of no help when setting an in-
put parameter for a clustering algorithms due to evolution over time in the data stream.
Data clustering is an exploratory and unsupervised process (Jain et al., 1999), relying
on internal validation metrics, and so no knowledge can be assumed before applying
the algorithm to a given data stream. We consider high quality clustering output to
be when the clustering algorithm is able to accurately cluster contiguous groups of
roughly uniform density data points which are separated from each other by a region
of different density data points, or regions of space containing no data points.

Our proposed method involves using a computed measure that we call the edge dis-

tribution score, which reveals some information about the properties and distribution of
the data points. The edge distribution score is a measure which is intended to estimate
the theoretical distribution of the edges connecting to nearest neighbours, and whether
increasing or decreasing the K value might be appropriate. By computing and measur-
ing the average edge distribution score computed across all data points in memory we
present a method for tuning and adjusting the K value in RepStream dynamically over
time. Starting from a given initial K value we show that our method successfully al-
lows the algorithm to adapt to changes in the stream, yielding higher quality clustering
results, and without the need for the user to tune the K parameter to the data stream
itself. We show that our proposed method allows the algorithm to recover and produce
high quality results even if an initially poor value for K is specified.

This chapter’s contributions are as follows:

85

• A measure known as ‘edge distribution score’ which we extract from the K-
nearest neighbour sparse graph structure of RepStream.

• A method of K selection in RepStream based on analysis of the edge distribution
score across multiple K values.

• Evaluation of the K selection method on synthetic and real-world datasets to
evaluate its performance in comparison to base RepStream as well as other
stream clustering methods.

The chapter is organised as follows. Section 4.2 explains the concept of the edge
distribution score, and details our K selection method. In Section 4.3 we test the selec-
tion method on synthetic datasets and the well known benchmark KDD and Tree Cover
Type datasets. Section 4.4 is a discussion and analysis of the results, and Section 4.5
is a summary and conclusion of the chapter.

4.2 Proposed Method

To select suitable K values over time we extract and analyse a feature in the K-nearest
neighbour structure of RepStream which we call ‘edge distribution score’. This com-
puted feature is then fed into an incremental algorithm to determine which K value
to use at each time step. The edge distribution score of a graph is a measure which
will reflect the rough distribution of nearest neighbour data, and gives us an idea of
whether there exist outgoing edges from a vertex which connect to data points belong-
ing to separate ground-truth classes. We wish to minimise the number of such edges,
which we refer to as inter-class edges, while maximising the connectivity of data points
belonging to the same theoretical ground-truth class - so called intra-class edges.

4.2.1 Inter versus Intra Class Edges

For our purposes in this thesis we use the term classes to refer to the theoretically
perfect groupings of data points as determined by the distributions in the stream. In-
formation on these ground-truth classes is typically not available because cluster anal-
ysis deals with unlabelled data, however evaluation and test datasets can be produced
which have information on the ground-truth classes. In this chapter we refer to classes
as the theoretically perfect cluster groupings, which are unknown to the algorithm and
to the user. We also refer to clusters, which are the groupings of data points produced

86

by the algorithm on demand during its runtime. These clusters are not necessarily the
same as the ground truth classes, but if the information is available then an external
validation measure can be used to determine the accuracy of the clustering, which we
do in Section 4.3.

In cluster analysis we wish to find regions of data points in a more or less uniform
density separated by space at a significantly different density of data points. Most often
this takes the form of clusters of data points in specific arbitrarily shaped regions of the
data space, separated by regions of empty space. This empty space between classes ,
which may sometimes contain noise data points,

We will define inter-class edges and intra-class edges as follows:

• Inter-Class Edges are edges which connect between two vertexes belonging to
different classes.

• Intra-Class Edges are edges which connect between two vertexes belonging to
the same class.

Figure 4.1 shows examples of these in a K-nearest neighbour graph where there
are two ground-truth classes, and each vertex is a member of one of the classes. E1

is an edge which connects two points belonging to different classes, and thus it is an
inter-class edge. E2 is an edge which connects two points belonging to the same class,
and is an example of an intra-class edge.

As the K value of a K-nearest neighbour graph increases, the vertices become more
and more connected together. Density and graph-based clustering methods assume that
there is a level of separation between classes which is greater than the distance between
nearest neighbouring vertexes in the same class. Without this level of separation the
boundaries between clusters would be virtually impossible to determine. This level of
separation means that at lower K values intra-class edges are more likely to form than
inter-class edges. As the K value increases the edges will connect to more and more
distant vertexes, and inter-cluster edges become more common. The ideal K value
is one which connects the vertices of each class as much as possible, while avoiding
connections between classes, so that they are not merged into the same cluster. In
other words, we want a K value which has many intra-class edges, and few inter-class
edges. Some degree of inter-class connection is acceptable and will not result in merg-
ing clusters belonging to different classes, however the more inter-class connections

87

C1
C2

R1 R2 R3

R4

E2
E1

Figure 4.1: Intra and Inter-class edges. The Edge E1 is considered an inter-class edge
as it connects two vertices R1 and R2 that belong to different ground-truth classes.
Edge E2 connects two vertices belonging to the same class and thus is considered an
intra-class edge.

can be avoided, the less likely such an event becomes.

Obviously these definitions of intra-class and inter-class edges require knowledge
of the ground truth classes. This is something that is not known when performing
clustering, so measuring intra-class and inter-class edges must be done indirectly. We
propose a method of approximating the presence of inter-class edges by measuring a
feature known as edge distribution score.

4.2.2 Edge Distribution Score

The edge distribution score is a feature we extract from the K-nearest neighbour graph
structure. It is designed to give us an idea of the distribution of the edge lengths
of a given vertex compared to how we would expect it to be in a normal clustering
context. Edge distribution score gives us a measure calculated on each vertex which is
determined by the relative edge lengths represented as a one-dimensional distribution.
When this distribution is not consistent with our expectations of a stable cluster, the
measure gives an indication of whether the number of outgoing edges is too high or
too low.

Each vertex in RepStream has a number of outgoing edges which link to other
vertices in a K-nearest neighbour fashion. To compute our distribution score we use the
edge lengths of these outgoing edges, and treat them as a one-dimensional distribution.

88

C1
C2

R1 R2

Figure 4.2: An illustration of relative edge lengths of nearest neighbours in the middle
of a cluster versus near the edge of a cluster.

In these computations the direction and relative position of the edges is not taken into
account, only the length of each edge.

In what follows, we denote vi as the vertex of node i in the K-NN graph, and
e1

i ,e
2
i , . . . ,e

K
i as the outgoing edges from node i. The length of an edge e j

i is l j
i We

introduce the following concepts

Definition 4.2.1 The span si of vertex vi is the edge length to its farthest node within

its K neighbourhood NK(vi) is

si = max
j∈NK(vi)

l j
i . (4.1)

The span si of a vertex is a non-negative quantity and it represents the support of
the local neighbourhood. Denote ri as the interquartile range, mi as the median, and
µi =

1
2(lmax− lmin) as the average of the shortest and longest of the edge length values

associated with a vertex vi. We formally define the edge distribution score (EDS) as
follows

Definition 4.2.2 The edge distribution score of a vertex vi is given by

EDS(vi) =

2θ if si = 0,ri = 0
−1 if si > 0,ri = 0
2(mi−µi)

ri
if ri > 0

(4.2)

where θ is a fixed threshold independent of the data stream statistics.

89

In the above definition, the first branch accounts for the rare case when all ver-
tices within the K-neighbourhood of a vertex are the same as the vertex itself. In this
case, the distribution of the edge length reduces to a singularity. The second branch
accounts for a similar and rare case where a large proportion of the vertices within the
K-neighbourhood are the same and cause the inter-quartile range ri, which is a measure
of the spread of the distribution, to become zero. The third branch is what we expect
most common: the distribution is either left skew, right skew, or symmetric.

From the definition, it can be seen that EDS is a measure similar to the skewness
of a distribution. The difference is that our definition caters for the special case, and
the mean value in the usual skewness has been replaced by the average of the extreme
values of the edge length.

Let GK(V ,E) be the K-NN graph consisting of the vertices V and edges E . We
introduce the following definition

Definition 4.2.3 The average distribution score (ADS) for an K-NN graph GK(V ,E)

is defined as

ADS(G) =
1
|V | ∑

vi∈V
EDS(vi) (4.3)

where |V | denotes the total number of vertices in the graph.

We refer to distributions where the median edge length is greater than the midpoint
value as being right-heavy, while when the median edge length is less than the mid-
point value we refer to it as left-heavy. For a vertex surrounded by roughly evenly
distributed vertices we expect that the distribution of edge lengths for the outgoing
edges will be right-heavy. This is due to the fact that the volume increases exponen-
tially when radius increases, when the data is 2 dimensional or higher. This leads to a
situation where given an arbitrary radius r from a vertex vi, which forms a hyper-sphere
containing other vertices, the majority of other vertices should be at a distance greater
than r

2 from vi. As such we expect a normal distribution of data points to be somewhat
right-heavy.

Figure 4.3 shows several cases which demonstrate the intuition of our method.
Case A is an example where the distribution of edge lengths for a given vertex is
extremely right-heavy. This means the majority of nearest neighbours are similar in
distance to the farthest neighbour. In this case it is reasonable to assume that further
nearest neighbours would be of a similar distance, and thus increasing the K connec-
tivity would not be a problem. This kind of distribution would imply that the farthest

90

C

B

A

Edge Length Distribution Cases

C
as

es

Edge Length

Mid Point

Figure 4.3: Different cases for the distribution of edge lengths.

neighbours are more likely to be intra-class edges, which are good for our purposes.
Case A would result in a very high distribution score, as per our definition of it, since
the distance of the median from the midpoint is significantly higher than the IQR. This
is particularly the case in extremely low K values. To calculate this we need a con-
nectivity of at least 4, or more, outgoing edges, due to its reliance on median and inter
quartile range, and thus this is the lower-limit. With such a small number of data points
the edge length variance is likely to be extremely high, which will result in a very high
edge distribution score.

Case B in Figure 4.3 shows an example of a somewhat right-heavy distribution of
edge lengths. In this case the score would be greater than 0, but less than 1 because
the median is not significantly higher than the midpoint of the data, with respect to
the IQR. In this case, increasing the K connectivity and adding additional neighbours
would further push the median towards the midpoint, which, as we established, is not
to be expected in an even distribution of data points. Adding additional neighbours
when the distribution of edge lengths is like this will result in additional edges which
are a significant distance from the centre of the edge length distribution, and therefore
are more likely to be inter-class edges due to their significantly longer resulting edges
compared to a majority of the other existing edges. In this case we prefer to lower the
K connectivity rather than increase it, which will discard points in the farthest quartile,
such that the data is likely to become more right-heavy.

In the final Case C in Figure 4.3 we see a left-heavy distribution. According to
our definition, a left-heavy distribution like this will always result in a score less than

91

zero. If the centre median of the distribution of edge lengths is less than our midpoint
then that means the farthest neighbours are significantly more distant from the vertex
than the majority of nearest neighbours. In this case, the large variation in edge lengths
connected to the farthest neighbours means that these are more likely to be inter-class
edges, which we wish to avoid. This case would result in a score below zero, and
would mean we wish to decrease our K value, to discard the farthest edges which are
more likely to be inter-class edges.

As we can tell from these three cases, in general a higher distribution score means
we wish to increase our K connectivity parameter, and a lower distribution score means
we with to decrease our K value. In the next section we will show exactly when we
intend to change the K value according to the distribution score.

4.2.3 Selection of the K Parameter

Our parameter selection method uses the edge distribution score in varying the K value
over time. The intuition behind edge distribution score is that the distribution of the
edge lengths is relatively predictable as K increases, or else the K connectivity param-
eter should be decreased. Since this score represents how far the distribution of edge
lengths deviates from what we expect in an even distribution of data points, there will
be some K value at which there are a large number of inter-cluster edges, which re-
sult in an edge distribution score different than what we expect. Similarly when the
distribution of edge lengths is indicative of having too low a K value, the score should
reflect that. As such, to select the appropriate K value, we must just select based on the
value of K that produces a score close to what we expect the distribution to be. This
comes in the form of a constant threshold, which we describe below.

The edge distribution score is calculated for all data points, represented by vertices
in a sparse graph, in memory. The individual score for each vertex is calculated on is
K-nearest neighbours on the point-level sparse graph, and then the mean value of those
distribution scores is used. This is referred to as the average distribution score (ADS).
The ADS is used when we determine when to adjust the K value in our method.

We define a constant threshold θ = 2.0, which means that on average the distri-
bution of edge-lengths should be right-heavy, as we describe previously, and ideally
be around one inter-quartile range from the midpoint. Our edge distribution score is
calculated as the distance of the midpoint from the median in relation to half of the
IQR, and so a θ of 2.0 represents a distance exactly equal to the IQR - that is, when
the edge distribution score of a vertex is exactly 2.0, then the distance from the median

92

mi to the midpoint µi will be exactly equal to the interquartile range ri. When a vertex
produces a score greater than this constant it will indicate that a higher K value is re-
quired, whereas if the median length is less than the midpoint distance then the score
will be below the threshold, which is a sign the K value might need to be decreased.
The threshold constant of θ = 2.0 allows us to maintain an expected right-heavy dis-
tribution, whilst also reducing the amount of potential inter-class edges.

Algorithm 4 Dynamic K selection algorithm for RepStream. K selection occurs peri-
odically before new vertices are linked into the RepStream sparse graph

1: FUNCT ION : RepStreamKSelection
2: INPUT : X ,K,M {X is the set of data points in the stream, K is the initial con-

nectivity value, and M is the maximum number of points to store in memory}

3: θ ← 2.0
4: margin← 0.2
5: for all xi in X do
6: if i is evenly divisible by M

10 then
7: Score← Compute ADS for all vertices in memory
8: if Score > θ +margin then
9: K← K +1

10: else if Score < θ −margin then
11: K← K−1
12: end if
13: end if
14: end for
15: Neighbours← K nearest neighbours of data point xi
16: Data point xi becomes a vertex vi
17: LinkIntoGraphSG(vi)

The algorithm for the dynamic selection method for K is shown in Algorithm 4. In
this algorithm the inputs are X , the set of all data points in the stream < x1,x2, . . . ,x|s|>,
K is the initial K connectivity value which our algorithm will adjust over time, and M

is the maximum number of points that RepStream is to store in memory. The symbol
θ denotes our threshold constant, which we define as θ = 2.0, and margin which
allows for a margin of error in the distribution score. Our algorithm allows RepStream
to work as normal, but periodically computes the average distribution score, ADS,
for each vertex currently in RepStream’s point level sparse graph. The K value is
adjusted up or down by a value of 1, or kept the same, depending on what the average
distribution score is computed as. By incrementing or decrementing the K value by
one each time, the algorithm can converge on the correct solution steadily over time.

93

The K adjustment process takes place every M
10 data points, which allows time for the

change in K to stabilise before the score is re-computed.
Our reasoning for including a margin is that the value of the distribution score is

exceedingly unlikely to exactly equal the threshold parameter, and so it is likely that
even at the correct level of connectivity K will alternate between two values repeatedly
by fluctuating above and below the threshold. Thus a margin is included to allow for
more stability in the K values selected, meaning the algorithm is less sensitive to noise,
and more likely to respond only to changes in the data distribution over time. We allow
a margin of 10% of the threshold constant, meaning for our threshold of θ = 2.0 there
will be no changes if the calculated ADS is between 1.8 and 2.2. For our method
we must set an initial K value which is then adjusted over time by our distribution
score selection method, as we describe in Section 4.3 we attempt our best to select the
least optimal initial K value possible in order to show how our method works under
worst-case conditions.

4.3 Evaluation

4.3.1 Synthetic Datasets

We begin with a selection of synthetic datasets , which are designed to present dif-
ficult clustering problems. The datasets, aside from DS1 and DS2, are datasets that
evolve over time - with distributions that move, change size, or change density during
different points of the data stream. While synthetic datasets are not necessarily rep-
resentative of typical real-world datasets, they can be crafted such that they provide
specific challenges which are difficult for clustering algorithms to deal with.

DS1 and DS2 are synthetic datasets used in the original RepStream paper (Lühr
& Lazarescu, 2009) which contains static distributions of data which pose difficult
challenges for clustering algorithms to deal with. They can be seen in Figures 4.4 and
4.5, which shows how the distribution contains classes with concave shapes, as well
as classes which are contained within other classes. Synthetic datasets like this are
a commonly used way to test the general effectiveness of a clustering algorithm on a
static dataset.

SynTest dataset is an evolving dataset that consists of one persistent class that slowly
shifts its shape and position over the course of the stream, as well as several other

94

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

..
.

.
.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.. .

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.
.

.

. .

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.
..

.

.

.

.

.

.

.

.
.

. .
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.
. .

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

..

.

. .

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.
..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.
.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

..

.
.

.

.

.

.

.

.

.

..
.

.

.

.
.

. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

. .

.

..

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.
.

. ..

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

. .

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

. ..

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

. .

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

. .

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

. .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

. .

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

..

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.
.

.

.

.

..

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.. .

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

..

.

.

.

.

.
. .

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.
.

.

.

.

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.
.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

..

. .

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

Figure 4.4: Visualisation of the DS1 dataset.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.
.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

. . .

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

..
.

.

.

.

. .

.

.

.

.

.

.
.

.
.

. .

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.
. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.. .

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.

. .
.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

..

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.
.

.

..

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

..

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

..

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.
.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. ..

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
. .

.
.

. .

.

.
.

.
.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

...

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

. .

.

.
..

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

..

.
.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.
.

.

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.

.

.
.

..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
..

..

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

..

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

..

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.
..

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

...

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

..

.

.

. .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.
.

.
.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.

.
. .

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

. ..

. .

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

..

.

.
.

.

.
.

.

.

.

..

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
. .

.
.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

Figure 4.5: Visualisation of the DS2 dataset.

95

Figure 4.6: Two dimensional representations of the 5 classes in the SynTest dataset. The main
class is always present and steadily changes shape, the smaller classes appear at various points
through the dataset, as shown in Figure 4.7.

smaller, more dense classes which are transient - appearing and disappearing at various
periods of the stream. The larger class is present throughout the whole dataset, and
makes up the majority of the data points, while the smaller classes exist for a relatively
shorter amount of time. Each of these smaller classes are more dense than the main
class, but are present for only a few hundred, to a few thousand time-steps at a time.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

1

2

3

4

5

Class presence of SynTest dataset

Time

C
la

ss

Figure 4.7: The class presence of the classes in the SynTest dataset. A marker indicates
that the class is present in the dataset during the given time window.

96

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=0 to T=1000

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=10000 to T=11000

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=20000 to T=21000

Figure 4.8: The evolution of the Closer dataset, showing slices of its 3 sections.

Figure 4.7 shows the presence of the classes in the SynTest dataset. Adjacent marks
indicate when the given class is present in the given time window. The shape, size, and
position of the classes is shown in figure 4.6. Class 1 is always present through the
dataset, while the other classes are present for shorter time periods.

Closer is a dataset which simulates the separation between classes in a dataset be-
coming smaller over time. There are three distinct stages to the dataset: The first
10,000 data points alternate between two classes, all data points are on a two dimen-
sional plane and each class is normally distributed with a significant level of separation
between the two classes. In the next 10,000 data points, the two classes suddenly be-
come much closer together, such that the two classes borders are slightly overlapping.
The final 10,000 points return the classes to having a greater degree of separation once
again, however one of the classes becomes more dense, while the other becomes less
dense. Figure 4.8 shows these three stages. The changes in this dataset are sudden,
conforming to the three distinct stages of the dataset.

The three stages of the dataset were sampled like so:

• Between T = 0 to T = 10,000 class A was centred at 1,1 and normally dis-
tributed with a σ of 1 in both the x and y axes. Class B was centred at 8,8 with
a standard deviation σ of 1.5 on both axes. Points were sampled from these
distributions alternately between classes.

• Between T = 10,000 to T = 20,000 class A remained the same, while class
B was moved to 4,4. Points were sampled from these distributions alternately
between classes.

• Between T = 20,000 to T = 30,000 class A remained the same, while class B
was moved to 6,6 with a standard deviation σ of 1.5 on both axes. Points were

97

sampled from these distributions randomly by alternately selecting 3 points from
class A, followed by 1 point from class B.

4.3.2 Benchmark Datasets

The real-world benchmark datasets described here are examples of a typical usage of
stream clustering algorithms. They contain data taken from real-world sources which
has been manually labelled such that external validation metrics can be used to deter-
mine the effectiveness of algorithms working on them. Because class labels are avail-
able we are able to calculate measures such as Purity, Entropy, F-Measure, as well as
other scores to show the performance of algorithms in an objective sense. Typically,
clustering is itself an exploratory process, and class labels and labelled training data is
unavailable, thus an algorithm should ideally perform well on benchmark datasets to
be trusted to perform well in real-world situations.

The KDD Cup 1999 dataset The KDD’99 dataset (Hettich & Bay, 1999) is a well-
known benchmark dataset. It is extracted from logs taken from a smart firewall in
a network being subjected to simulated and controlled network attacks. It contains
high dimensional data, of which we use the 34 numerical features with each data point
presented as a 34-dimensional vector. We use a sub-sampled version of the dataset
containing 494,020 data points, which is about 10% of the original KDD Cup 1999
dataset. Most of the data in the sub-sampled version of the dataset falls into either the
normal traffic class, or one of two major denial-of-service attack classes. A relatively
small percentage of the data - less than 2% - are from 20 other network attack types.
Each data point is labelled with the type of traffic (normal, or the type of attack) for
evaluation purposes.

This KDD Cup 1999 dataset has been used previously in evaluating stream cluster-
ing algorithms (Ackermann et al., 2012; Aggarwal et al., 2004; Bhatnagar et al., 2014;
Lühr & Lazarescu, 2009) due to the high variability between classes in the dataset.
The various network attacks interrupting the normal traffic represent changes in the
distribution of subsequent data points, known as concept drift. This is a significant
challenge for clustering algorithms to deal with, making it an excellent dataset for test-
ing how an algorithm deals with dynamic, unpredictable data point distributions over
time.

98

The Tree Cover Type dataset The Tree Cover dataset (Blackard & Dean, 1999)
is a real-world data stream of a set of features extracted from satellite photos and
geological surveys from forested areas of northern Colorado. It contains over 580,000
entries with ground truth labels corresponding to which type of trees grow in each
area, and has been previously used as a benchmark dataset for stream clustering (Lühr
& Lazarescu, 2009; Bhatnagar et al., 2014; Forestiero et al., 2013). This data represents
a naturally evolving stream of data which changes with the environment and climate
of each region.

A particularly challenging feature of the Tree Cover dataset is that the classes over-
lap to some degree in some of the dimensions. This makes clustering particularly
challenging as overlapping classes means there’s no spatial separation which can be
used to determine where the edges of the classes are. Instead, changes in the density of
the data must be used to find where the different classes lie. Since this is a particularly
challenging case it is common that even modern, sophisticated clustering methods have
a high error rate in separating data.

4.3.3 Experimental Set-Up

To evaluate our method’s efficacy we will examine external validation metrics, specif-
ically the purity and the F-measure scores. External validation metrics are commonly
used (Kaur et al., 2015; Kremer et al., 2011) to evaluate the performance of clustering
methods in an objective sense against the stated ideal clustering, which is represented
by labels for each data point, showing which belong together and which should belong
in different clusters.

Our experimental set-up and parametrisation is as follows for our proposed method:

• Memory parameter set to M = 1000, as a maximum number of data points in
memory at any time.

• The α scaling factor is set to α = 1.5 as suggested in the original paper.

• Vanilla normalisation is enabled.

• Decay parameter λ at the default value of λ = 0.99.

• The initial K value is set to the worst possible K value for the dataset, as de-
scribed below.

99

Table 4.2: Best and Worst K values for RepStream, according to F score.

Dataset Best K Best F score Worst K Worst F score
DS1 7 0.7208 18 0.2767
DS2 7 0.6371 21 0.2594
SynTest 9 0.8614 5 0.5435
Closer 9 0.7989 5 0.4345
TreeCov 29 0.6108 5 0.2978
KDD99 30 0.7898 5 0.2636

We use these same values for all datasets, aside from varying the K value.
As mentioned, we set the initial K values for our proposed method to be the worst

possible K value we can select. We do this in order to show that even under the worst
case scenario our method can still adapt and produce useful results. To determine
which K value is the worst we have run the original RepStream multiple times on each
dataset for a range of K values between K = 5 and K = 30. We then use the class
labels to determine which K value produces the lowest mean F-measure score for each
dataset, and which produces the highest mean F-measure score. We set a lower floor
for the K value of our algorithm to K values between K = 5 and K = 30 because our
method requires a minimum number of outgoing edges to calculate a median and IQR,
and because K values higher than 30 are too high to produce distinct clusters in most
cases.

Table 4.2 shows the F-measure scores produced by running the original RepStream
algorithm at different K values, using the same parameters listed above. For our ex-
periments on our own algorithm we use the worst initial K values for each dataset
as our initial K. As can be seen in the table, the overall F-measure score can vary a
great deal when a sub-optimal K is selected, especially in the worst case scenario. It is
worth noting that selecting a K value is not a trivial task, and that since usually one has
no access to class labels it is impossible to know whether an appropriate K has been
selected.

4.3.4 Results vs Other Algorithms

We examine the results for HPStream (Aggarwal et al., 2004), CluStream (Aggarwal
et al., 2003), ExCC (Bhatnagar et al., 2014), and STRAP (Zhang et al., 2008), using
their published results to compare against our own. Rather than listing purity values
at every time in the stream, these papers instead publish purity values for specific time
slices. We evaluate our algorithm throughout the entirety of the datasets and record the

100

32,000 64,000 128,000 256,000 512,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Time

P
ur

ity
Tree Cover Purity Comparison vs HPStream, Clustream

Dynamic K
HPStream
CluStream

Figure 4.9: Comparative purity for Tree Cover dataset

20,000 40,000 80,000 160,000 320,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Time

P
ur

ity

Tree Cover Purity Comparison vs ExCC, STRAP, HPStream

Dynamic K
ExCC
STRAP
HPStream

Figure 4.10: Comparative purity for Tree Cover dataset

101

150,000 250,000 350,000 450,000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Time

P
ur

ity
KDD Cup 99’ Purity Comparison vs HPStream, Clustream

Dynamic K
HPStream
CluStream

Figure 4.11: Comparative purity for KDD 99’ Cup dataset

purity values at these same time slices for comparison. These time slices correspond
to attacks in the KDD dataset, times where it is most difficult for clustering to occur.
We use purity as the chosen measure because, as a common external validation metric,
it is the measure used in the published results for these algorithms. We also use the
Manhattan distance metric for these evaluations, as it is efficient to compute.

Tree Cover Type dataset, Figure 4.11 shows the comparisons against our method
(Dynamic K) HPStream and CluStream, while Figure 4.12 shows the comparisons
between our method, ExCC, STRAP, and HPStream. As we can see, all algorithms are
able to achieve a greater than 0.7 purity for each time slice, except for STRAP which
drops produces a less than 0.6 purity value at the 20,000 time-slice. Our Dynamic
K RepStream method performs favourably against the other algorithms, achieving a
higher purity than the other algorithms in 5 of the time-slices, and performing similarly
well to the other algorithms in the other time-slices. Earlier time-slices struggle with
the purity values, however as the algorithm stabilises over time the results become
more consistently high, and equal or out-perform the other algorithms. The K value
selected by our algorithm is initially set at the worst value of 5, but over time our
method increases this value to a more appropriate value, reaching up to the maximum
K value of 30 at times.

For the KDD dataset, Figure 4.9 and Figure 4.10 show the comparisons of our
method against the same dataset listed previously. HPStream performs well on the

102

42,200 51,000 86,600 371,400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Time

P
ur

ity

KDD Cup 99’ Purity Comparison vs ExCC, STRAP, HPStream

Dynamic K
ExCC
STRAP
HPStream

Figure 4.12: Comparative purity for KDD 99’ Cup dataset

KDD dataset compared to the other algorithms, which is expected because the algo-
rithm is designed specifically to handle high dimensionality datasets like the KDD
dataset. Our extended version of RepStream with the dynamically selected K value,
outperforms HPStream and CluStream in all time slices in Figure 4.10, and also out-
performs ExCC, HPStream, and STRAP in half of the time slices in Figure 4.9. Our
method tends to struggle nearer to the start of the dataset when configured with a poor
initial K value, but is able to adjust over time.

Additionally, we also compare against the DBStream (Hahsler & Bolaos, 2016)
and D-Stream (Chen & Tu, 2007) algorithms, which had implementations available
for the Stream package (Forrest, 2011) of the R programming language. We used the
recommended parameters for each of these algorithms according to the original papers
for each algorithm. D-Stream grid-size parameter was set to len = 0.05, its dense and
sparse cell thresholds set to Cm = 3.0 and Cm = 0.8, the decay value λ = 0.998, and
its sporadic cell deletion parameter β = 0.3. The DBStream algorithm was set with
its micro-cluster radius r = 0.05, its decay parameter λ = 0.01, its clean-up interval
t gap = 1000, the minimum weight w min = 3.0, and its intersection factor α = 0.1.
We then ran DBStream and D-Stream on each of our synthetic and benchmark datasets,
calculating the purity values at 100-point intervals.

Figure 4.13 and Figure 4.15 show the purity scores calculated for the DS1 and DS2
datasets respectively on the DBStream, D-Stream, and our dynamic K method. In both

103

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS1 Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.13: Comparative purity for DS1 dataset

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
6

8

10

12

14

16

18

DS1 Dataset Selected K Value

Time in Stream

K
 V

a
lu

e

Optimal K Value

Worst K K Value

Selected K Value

Figure 4.14: The K value selected by our dynamic K method on the DS1 dataset

104

0 1000 2000 3000 4000 5000 6000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS2 Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.15: Comparative purity for DS2 dataset

of these datasets a similar phenomenon happens - at first D-Stream and DBStream
outperform our method significantly for the first approximately 2000 data points, with
our method having a purity score hovering as low as 0.3 purity. After this time, how-
ever, our algorithm shows a steep increase in clustering purity until, in both cases, our
method outperforms the other algorithms. The low initial purity of our method is due
to our attempts at selecting the worst possible initial K value as the input parameters (in
this case K = 18 for DS1 and K = 21 for DS2). After some time to adjust the internal
K value in response to the calculated edge distribution score the algorithm performs
better, and for both datasets our methods adjusts the K value downwards, hovering
around K = 9, which according to Table 4.2 is close to the optimal average K value.

We show an example of the K value adjusting over time in Figure 4.14. Initially
our K parameter begins at the worst possible K value of K = 18, but our algorithm
very rapidly determines that this K value is too high, and the K value is decreased each
time step until it reaches a reasonably stable value after t = 2000. The K value doesn’t
sit exactly on the optimal value, but hovers at a comparable value, which is why the
purity, shown in Figure 4.13, increases dramatically after t = 2000.

For the SynTest dataset, we see in Figure 4.16 that our method performs compara-
bly well versus the DBStream and D-Stream algorithms. The results are close enough
that it is not easy to determine which produces a higher overall purity by looking at the
plot alone, so instead we take the mean purity values. D-Stream’s mean purity value

105

0 5000 10000 15000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
SynTest Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.16: Comparative purity for SynTest dataset

is 0.951, our method produces a mean purity value of 0.943, while DBStream’s mean
purity is 0.969. Overall, none of the methods stand out as being clearly superior for
this dataset, in fact all achieve high purity clustering throughout the stream, though our
method does dip in performance briefly around the 10,000 mark.

The three algorithms perform very differently from each other on the Closer dataset,
shown in Figure 4.17. The DBStream algorithm produces good purity results for the
first and last 10,000 data points in the 30,000 point dataset, but performs very poorly
from 10,000-20,000, dipping as low as 0.5 purity. D-Stream, on the other hand, has
purity results which are remarkably consistent throughout the dataset, including in
the middle section where the distribution has two overlapping classes. Our dynamic
K method performs exceptionally well for the first and last 10,000 data points, but
has variable success during the middle section of the dataset. The purity in this sec-
tion varies between 0.5 and 0.9, having an average purity of 0.836 during this section.
Overall, however our dynamic K method achieves an overall purity of 0.941, compared
to 0.913 and 0.799 for D-Stream and DBStream respectively.

As for the benchmark datasets, Figure 4.18 shows the purity plots for the compari-
son algorithms on the Tree Cover Type dataset. The plot is very noisy due to the high
level of variability in clustering results over time for all algorithms, however it does
show that the DBStream algorithm has the highest amount of variability in its cluster-
ing quality, occasionally producing zero clusters, and therefore achieving a nominal

106

0 0.5 1 1.5 2 2.5 3

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1
Closer Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.17: Comparative purity for Closer dataset

0 1 2 3 4 5 6

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree Cover Type Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.18: Comparative purity for Tree Cover dataset

107

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KDD Cup 99’ Dataset Purity Comparison

Time in Stream

P
ur

ity

DBStream Purity
D−Stream Purity
Selected K Purity

Figure 4.19: Comparative purity for KDD 99’ Cup dataset

purity score of 0. At other times this algorithm produces purity values comparable
to D-Stream and our dynamic K method. Overall, the DBStream method produces
a mean purity of 0.508 (or 0.698 if the zero-cluster instances are discarded), the D-
Stream algorithm has a mean purity of 0.690 and our dynamic K method results in
a mean purity of 0.843 through the dataset, significantly higher than the other algo-
rithms. While there is still a lot of variability in the results of all algorithms, our
method manages to maintain the most consistent and highest purity value on the Tree
Cover benchmark dataset. The high degree of overlapping classes in the Tree Cover
dataset makes this particularly challenging for algorithms to achieve.

Finally, our method is tested on the KDD Cup 99’ network intrusion benchmark
dataset, shown in Figure 4.19. Note that very clearly all algorithms sit at 1.0 purity
throughout the vast majority of the data stream. This is to be expected due to the
composition of the KDD dataset, being made up mostly of normal traffic, and two
major attack classes. During most of the time, only one class is present and so any
clustering output would result in perfect purity. The sections where there is a decrease
in purity corresponds to instances of other classes appearing suddenly in the stream,
mixing in with the other traffic. These instances of other classes appearing in the
dataset last for a short time before returning to either normal traffic or one of the attack
classes. Whilst all algorithms maintain a very high purity overall, the decrease in
purity during the short attack instances is smaller in our dynamic K method than in

108

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

5

10

15

20

25

30

KDD Cup 99’ Dataset Selected K Value

Time in Stream

K
 V

a
lu

e

Optimal K Value

Worst K K Value

Selected K Value

Figure 4.20: The K value selected by our dynamic K method on the KDD Dataset

the DBStream and D-Stream methods. Our method maintains a purity above 0.80 for
the whole stream, keeping the majority of the traffic separated from the attack classes
more effectively than the comparison algorithms.

Figure 4.20 shows the K value selected by our method over time while being run
on the KDD Cup 99’ dataset. Initially we set the algorithm to the worst possible initial
K value of K = 5, but it very rapidly determines that this value is too low, and increases
the K value to our cap of K = 30. This suggests that it would also tend to go higher
if we removed our maximum limit for our evaluations. In general during this dataset
the algorithm tends to stay at higher values, between 25 to 30, however it drops down
on several occasions, particularly after t = 3.7× 105. Note that while K = 30 is the
value which provided the highest average purity over the entire length of the dataset,
there may be different K values which result in higher purity values at specific times
during the stream, as such it is difficult to figure out which is the best exact K value at
each time step, especially given that the KDD dataset has a large number of dramatic
changes in data distribution over time. The dynamic nature of our algorithm is likely
why it performs well compared to standard RepStream, as we show below.

Overall our method performs very well compared to all the algorithms listed above
- HPStream, ExCC, CluStream, STRAP, DBStream, and D-Stream. We note that our
method was consistently configured such that the initial K value parameter was the
worst case possible, while our comparison algorithms were using published results,

109

and parameter values suggested in their original papers. Despite our method having
worst-case parametrisation, it was still able to produce comparable results, and even
exceed the performance of other stream clustering algorithms after being given time to
adjusts its internal K parameter.

4.3.5 Results vs RepStream

We wish to also evaluate our method against the ideal results which can be produced
by RepStream in an ideal case. As such, we run RepStream using the ideal optimal K

value, and compare it against our method. Again, we run our dynamic K selection by
selecting the most sub-optimal initial K value and let the value automatically change
over time according to the computed distribution score.

For these evaluations we use F-measure as our external validation metric. One ma-
jor problem with purity , as noted in (Kaur et al., 2015), is that purity is an unreliable
indicator of performance, despite its popularity as a comparison tool between cluster-
ing algorithms. Purity has the problem has no penalty for producing too many clusters,
and splitting classes up into multiple clusters. Notably, it is possible to reach a perfect
purity value when each data point is treated as a separate cluster. Instead we choose to
use the F-measure score to compare our results, as this avoids this problem, rewarding
both the precision and the recall of the clustering output, rather than just the precision
as with the purity value.

Figure 4.21 and Figure 4.22 show the F-measure achieved by RepStream con-
figured with the optimal K value against our dynamic K method set with the worst
possible initial K value. As one would expect, optimally configured RepStream per-
forms better than our dataset, after about 2000 data points our method catches up in
F-measure score dramatically. Our method adjusts its internal K value by±1 for every
100 data point, and so it takes a period of time for it to achieve a stable K value if it
is initially very far off from where it should be. As such in this case it takes approx-
imately 2000-3000 data points before its performance is able to adjust. Our method
shows a dramatic upturn in the F-measure score after this time period, despite having
the worst possible initial setting. Once the internal K parameter stabilises the cluster-
ing quality is comparable to that of the optimally configured RepStream. Also marked
on Figures 4.21 and 4.22 is the F-measure produced by RepStream configured at the
worst possible single K value for comparison purposes.

Figure 4.23 has our dynamic K method compare against RepStream set to the op-
timal value of K = 9, and also compared to the worst possible K value of K = 5. As

110

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS1 Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.21: F-Measure comparison vs RepStream using optimal parameters on DS1
dataset

0 1000 2000 3000 4000 5000 6000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS2 Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.22: F-Measure comparison vs RepStream using optimal parameters on DS2
dataset

111

0 5000 10000 15000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SynTest Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.23: F-Measure comparison vs RepStream using optimal parameters on Syn-
Test dataset

expected, our method begins sub-optimally, and over the first 2000 data points com-
pares very poorly to the optimally configured RepStream instance. however, after this
time period the F-measure score produced by our method dramatically improves, often
matching the score of our benchmark. There is a slight decrease in F-measure com-
pared to the optimal in the 7000 range, but this difference is only about 0.1 in score
versus the optimal.

The Closer dataset is shown in Figure 4.24. RepStream in this experiment has the K

value set to K = 9 while our dynamic K method has an initial K value of K = 5, which
the worst initial K value according to Table 4.2. Again, for the first 2000 data points
the difference in F-measure values is very noticeable, but after this time our method
adjusts and almost entirely matches the optimally configured RepStream instances.
Notably, there are brief times when our method even outperforms the base RepStream
algorithm. On average though, our method has almost identical performance to the
RepStream algorithm over most of the dataset having an overall F-measure score of
0.841 against the optimal RepStream overall score of 0.861, differing by only 0.02,
even when taking into account the initial 2000 data points of poor performance as our
method adjusts.

The results for the Tree Cover Type benchmark dataset is shown in Figure 4.25.
This dataset is particularly difficult to cluster as it contains overlapping classes. Overall

112

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Closer Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.24: F-Measure comparison vs RepStream using optimal parameters on Closer
dataset

0 1 2 3 4 5 6

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree Cover Type Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.25: F-Measure comparison vs RepStream using optimal parameters on Tree
Cover dataset

113

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KDD Cup 99’ Dataset F−Measure Plot Optimal vs Selected

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
Selected K F−Measure

Figure 4.26: F-Measure comparison vs RepStream using optimal parameters on KDD
99’ Cup dataset

clustering purity is likely to be imperfect because of this. As such, even the optimally
configured RepStream instance set to K = 29 has an overall F-measure value of 0.611.
This is, however, not far off from our dynamic K method which has an overall average
score of 0.592, a difference of only around 0.019 overall. As shown in Table 4.2 the
average F-measure score produced by RepStream if it is kept at the worst possible K

value is 0.298, so our method is able to perform exceptionally well even in the face of
having the worst initial parameters.

Similar is true with the KDD Cup 99’ benchmark dataset. The main challenge
in clustering this dataset is combining all normal traffic, and all denial-of-service at-
tack classes into single clusters whilst also successfully differentiating the other attack
classes from each other. Thus, for this non-typical dataset the way to produce the best
overall F-measure score is to combine as many points together into the same cluster
as possible. This is why the highest K value we tested for RepStream was optimal.
Our method overall performs within 0.1 F-measure value of the optimal K, producing
0.788 F-measure compared to the 0.790 purity of the optimally configured RepStream.
This score is vastly improved from the 0.264 F-measure score which would’ve been
produced with standard RepStream set to the same initial K value as our method was
set to, which demonstrates how much our dynamic K method can help in cases of
poor initial parametrisation. As is evident in the plot there are time periods where our

114

Table 4.3: Comparison of our dynamic K method versus RepStream with optimal and
worst K values.

Dataset Best F-Measure Worst F-Measure Dynamic K
DS1 0.7208 0.2767 0.5153
DS2 0.6371 0.2594 0.4137
SynTest 0.7989 0.5435 0.7091
Closer 0.8614 0.4345 0.8410
TreeCov 0.6108 0.2978 0.5920
KDD99 0.7898 0.2636 0.7882

method outperforms standard, optimally-configured RepStream, which as we men-
tioned before is likely due to the dynamic nature of our method, and the ability to use
different K values over time.

4.4 Discussion

As we noted in Section 4.1 a major problem with stream clustering algorithms is the
sensitivity to user-set initial parameters. Our dynamic K adjustment method allows for
the internal K value of RepStream to change over time in response to changes in the
data distribution.

Table 4.3 shows the F-measure value RepStream configured at the optimal K value,
in terms of F-measure score, the worst possible K value, as well as our dynamic K

method. Our method is configured using the same initial K parameter used in the
worst F-measure column of the table. The exact K values used can be found in Table
4.2. As can be seen, however, our dynamic K method allows significant improvements
over RepStream configured at the same values.

Our method works in improving the results and making the RepStream algorithm
less sensitive to initial parameters. Through all of our experiments we’ve used the same
parameters - α scaling factor is set to α = 1.5, vanilla normalisation, decay factor at
the default λ = 0.99, and an initial K set to the worst possible initial K value for each
dataset. For almost all instances this initial K value was set to 5, as per Table 4.2, and
so we would suggest that using an initial K of 5 and letting the value automatically
stabilise over time would be a satisfactory way to configure our method. As such our
algorithm can perform without need for further tuning as it will automatically adjust its
own internal K parameter according to the computed average edge distribution score.

115

4.5 Conclusion

In this chapter we have introduced a method for automatic parameter selection in Rep-
Stream using edge distribution as a computed measure. RepStream (Lühr & Lazarescu,
2009) is a sophisticated clustering algorithm, employing a combination density and
graph-based clustering approach, but one notable problem with it, and other stream
clustering algorithms, is the reliance on user-set parameters. Here, we have extended
the RepStream algorithm, proposing changes which remove the need for users to tune
parameters to the dataset. Since data clustering is an exploratory processes this is par-
ticularly important, because one can’t assume prior knowledge about the data to be
analysed.

Our method consisted of making use of the K-nearest neighbour directed sparse
graph employed by the RepStream algorithm and computing the edge distribution
score to determine how well the distribution of edge lengths matches the expected dis-
tribution. With this measure we gradually raise or lower the K value over time to keep
the distribution score close to the appropriate level, represented by a threshold, which
is set to minimise the number of edges that span between classes whilst maximising
connectivity.

Our edge distribution score, described in detail in Section 4.2, is a computed mea-
sure which reflects how closely the edge lengths resemble what we would expect from
a stable cluster, and makes use of the fact that areas of relatively continuous density
have much less variation in the length of edges in a K-nearest neighbour context. Us-
ing this measure we propose a method for increasing and decreasing the K value over
time to adjust to changes in the distribution of data points in a stream.

Our experiments in Section 4.3 showed that when our method was configured us-
ing the K value which would perform poorest, in terms of F-measure, in standard
RepStream, our dynamic K method was able to recover and produce significantly im-
proved clustering results, shown in Table 4.3. We propose that using our method, and
an arbitrary low initial K value of K = 5 we can produce clustering output which is of
consistent quality and which matches or even outperforms other sophisticated stream
clustering algorithms, with respect to purity, when those algorithms are run with rec-
ommended parameters.

This method replaces the need for the user to configure the sensitive K parameter
and replaces it with a threshold parameter which is more robust to changes in distribu-
tion, and less sensitive to different datasets. In the next chapter we build on the ideas
presented here, and integrate them more tightly into the algorithm.

116

Chapter 5

RobustRepStream - Graph-based
Stream Clustering with Local
Adaptivity

5.1 Overview of RobustRepStream

In the previous chapter we introduced a method for the K parameter of RepStream to
be automatically varied over time in order to adapt to changes in the distribution of the
data stream to be clustered. This increased the robustness of the algorithm, reducing
the need for user input while retaining high quality clustering output. In this chapter
we seek to build on this idea, further increasing the robustness of the algorithm by
removing the need to set the critical K parameter altogether.

Data stream clustering, for example the STREAM (Guha et al., 2000) and CluS-
tream (Aggarwal et al., 2003) algorithms, are some of the earliest examples, have
unique and hard-to-address challenges as compared to clustering static batch data sets.
In chapter 1 we describe how the aim of clustering is to take a data stream represented
by a series of d-dimensional data points X1,X2, ...,Xi... and to map each data point to
a cluster C1,C2, . . .C j . . . , with the aim of data points which are similar according to
some distance metric being grouped into the same cluster.

A specific and major challenge in data clustering is setting appropriate input param-
eters. Many algorithms require the user to set initial hyper-parameters which affect the
performance of the algorithm. Poorly selected values for these parameters can lead

117

to poor clustering performance, with the clustering algorithms not discriminating be-
tween groups in the data well enough (over-clustering) or fracturing groups of data into
smaller clusters than is desirable (under-clustering).

Having a robust algorithm, i.e. being able to perform well with unpredictable
changes in data distribution, is critical in stream clustering since data distributions
may change significantly over time. For example, data samples may shift their typical
values, data density becomes denser or sparser, clusters may split into smaller clusters
or join with other clusters, etc. As such, an algorithm that relies on data-dependent
input parameters usually faces the problem of the selected values being inappropriate
later during a stream. Even if a user hypothetically could optimally parametrise an
algorithm at the beginning, it could still produce poor quality clustering at later points
in the stream, due to concept drift (Widmer & Kubat, 1996).

It is therefore desirable to have a robust clustering method which is less sensitive
to input parameters and perform well on an evolving data stream, or even to reduce
the number of parameters which must be set by users, where possible. Unfortunately,
most algorithms typically require careful selection of the input parameters based on
knowledge of the data set and do not have such a built-in mechanism to vary these
parameters at run time when significant changes in the data stream occur. For ex-
ample, the k-means based clustering approach (Zhou et al., 2008) requires the exact
number of clusters k, grid-based approaches (Wan et al., 2009; Chen & Tu, 2007;
Lee, 2016) require a density threshold for cells and grid granularity values, and micro-
cluster density-based approaches (Cao et al., 2006; Hahsler & Bolaos, 2016) require
either density thresholds or micro-cluster radii to be user specified. When optimal se-
lection of these parameters cannot be made due to lack of knowledge about the data
distributions, which is typically the case with stream clustering, these methods often
perform poorly.

The original version of RepStream (Lühr & Lazarescu, 2009) is sensitive to the K

parameter which determines the level of connectivity. Once specified at the beginning,
the K parameter in the original RepStream algorithm remains fixed through the entire
runtime of the algorithm and therefore it does not adapt to changes which may occur
later. The extension to RepStream which we proposed in the previous chapter adapted
the K parameter automatically, which allowed the algorithm to adapt to changes in the
data distribution.

In this chapter we present the RobustRepStream algorithm, which allows for dy-
namic levels of connectivity for each vertex in the point and representative level sparse

118

graphs rather than relying on a single, set K parameter. The usage of a universal K

value carried the assumption that a single level of connectivity was appropriate at all
regions in the data space, which may not be a safe thing to assume when there is any
variation in distribution properties between ground truth classes. Instead, in Robus-
tRepStream each vertex has its own connectivity level to neighbours determined by
the distribution of neighbours in its local area. This provides the benefit of no longer
needing to set the K parameter at all, and also means that each vertex can have different
levels of connectivity where appropriate.

We first introduce novel skewness excess scores, describing the abnormality level
in the distribution of edge lengths at each vertex. Our intuition is that optimal clustering
is the right balance between the graph complexity for this class of algorithms, which is
described by its connectivity, and the skewness excess: one should aim at a high graph
connectivity value whilst maintaining the edge distribution skewness excess under an
acceptable level, which is universal across data streams. We achieve this dynamic con-
nectivity by finding a maximum connectivity value at which the the graph skewness
excess is still within a pre-defined universal abnormality threshold. This method im-
proves on our previous algorithm by being more robust at lower connectivity levels
by computing edge variance using median absolute deviation, and also by simplifying
the input parameters, removing the separate θ parameter in DRepStream. By doing
so, our new algorithm can determine the suitable level of connectivity for each vertex
at any point in time. Experimentally, we demonstrate over benchmark data sets for
data stream clustering that RobustRepStream is robust as it produces more consistent
clustering results using the same input parameters between different data sets. This
chapter contains the following contributions:

• A novel concept, termed skewness excess, which is useful for adapting K-NN
graphs to changes in data stream statistics, together with theoretical insights and
a method based on the median absolute deviation (MAD) to compute them which
is robust at smaller connectivity values.

• Our RobustRepStream algorithm which automatically adapts the internal graph
to the changes in data streams statistics by balancing its graph connectivity and
graph skewness excess. This results in a nearest-neighbour graph whose con-
nectivity is optimised locally to adapt to the changes in the data streams. Con-
sequently, our proposed method removes the need for the user to specify the
connectivity parameter K.

119

• Comprehensive evaluations against recent stream clustering algorithms using
benchmark data sets specifically for data streams.

This chapter is organised as follows. Section 5.2 introduces a new concept, the
skewness excess, which is a feature that can be extracted from directed sparse graphs
for each vertex in the graph, and we also describe our proposed RobustRepStream
algorithm, which extends RepStream by using the skewness excess to dynamically
select outgoing neighbours in its directed sparse graph structures. Our experiments
evaluating RobustRepStream are detailed in Section 5.3 against well-known stream
clustering algorithms. Our results are discussed in more detail in Section 5.4, and
finally we present our concluding remarks in Section 5.5.

5.2 Proposed Method

As can be seen in chapter 2, the performance of RepStream depends largely on how
well the connectivity parameter K is specified by the input. The value of this input
parameter is significantly influenced by the statistics of the underlying data: it will
over-cluster data points if K is too small, and under-cluster data points if K is too
large. Unfortunately, RepStream does not have the ability to tell which K value is
appropriate and hence relies totally on the user’s input, much like many other K-NN-
based clustering algorithms. In chapter 4 we demonstrated a way to automatically
vary K, in this chapter we aim to remove the need to set a universal K connectivity
parameter at all.

To address the limitation of RepStream, we study the distribution of edge lengths
over the K-NN graphs and how it depends on the connectivity parameter K. We follow
the fundamental principle in machine learning, which is to select the simplest model
that explains the data well. Here, the model complexity is inversely proportional to
K as described above, and the explain-ability of the model is, according to our defi-
nition, how well the distribution of the normalised edge lengths still looks ‘normal’.
By searching for the simplest model that still controls the deviation of the normalised
edge length distribution under a pre-defined level, we can automatically adjust clus-
tering outputs when the underlying data statistics changes. Based on the RepStream
algorithm, our proposed RobustRepStream consists of two main parts:

• The computation of the skewness excess score of the distribution of normalised
edge lengths at each vertex.

120

• Automatic model selection based on the computed skewness excess score.

5.2.1 Skewness Excess

To motivate our approach, we start with an intuition shown in Figure 5.2. Typically,
in a volume of even distribution of data points the edges will be more likely to be
spread evenly in all directions. A data point in the middle of a class has other vertices
belonging to that class all around it, and so the variation in edge length of its neighbours
will be relatively small. In the middle of a cluster there are data points in all directions,
so there are likely to be more available neighbours at relatively even distances. In
this example, the vertex R2 is near the centre of the class C2 and so many intra-class
edges can be made, even if the connectivity of R2 is increased. On the other hand the
vertex R1 is near the edge of the class, and so the potential intra-class neighbours is
fewer. There are limited directions in which nearby intra-class edges can be made,
and the other directions border the areas of low density which, as we discussed before,
separates clusters. Any inter-class edge must traverse this distance, which means the
edge length will likely be longer than inter-class edges. Vertices on the edge of a cluster
are therefore more likely to have longer, less consistent edge lengths for neighbours.

Suppose that desirable clusters are regions of contiguous (but not necessarily con-
vex) space which are populated by data points in a more or less similar distribution.
These regions we assume are separated either by significant regions of empty space,
or by data points at a significantly lower density than inside the clusters. From this
assumption, it follows that data points near the edges (but still inside) a cluster are very
likely to have the first few of their nearest neighbours belonging to the same cluster,
and that the chance of the next nearest neighbour belonging to a different class (an
inter-class neighbour) increases as the number of nearest neighbours being considered
increases. This means the connectivity needs to be adjusted to reflect the desirable
clustering outcome.

As can be seen, once all the nearby vertices within a multi-dimensional sphere have
been connected to, additional neighbours will have a greater and greater likelihood
of being significantly further away than existing neighbours. It is these longer than
average edges which the score is intended to reflect, and high numbers of large edges
suggest that the number of edges has grown too large. They are more likely to be on
the long tail of the distribution of edge lengths. Note that as the edge lengths are non-
negative, the more extreme values of edge lengths associated with a vertex, the more
skew to the right the distribution of the edge lengths. Therefore, the excess at the right

121

C1
C2

R1 R2 R3

R4

E2
E1

Figure 5.1: Intra and Inter-class edges. The Edge E1 is considered an inter-class edge
as it connects two vertices R1 and R2 that belong to different ground-truth classes.
Edge E2 connects two vertices belonging to the same class and thus is considered an
intra-class edge.

C1
C2

R1 R2

Figure 5.2: An illustration of relative edge lengths of nearest neighbours in the middle
of a cluster versus near the edge of a cluster.

122

tail of the distribution of the edge lengths captures the presence of these large values.
Based on this intuition, we introduce a novel concept of skewness excess.

In what follows, we denote as vi the vertex i of interest, ei, j as an outgoing edge
from vertex vi to another vertex in its neighbourhood NKi(vi). We also denote as Xei, j

the normalised length of the edge ei, j. Here, normalisation is performed with respect
to the distribution of original outgoing edges from vertex v j

Xei, j =
lei, j

1.4826νi
, (5.1)

where lei, j is the original length of the edge ei, j and ν j is the median of the absolute
deviation (MAD) of the K values of lei, j . The reason we use 1.4826νi is because it
is a robust measure of the deviation of the edge lengths (Rousseeuw & Croux, 1993).
Given that a vertex may have a relatively small number of outgoing edges - fewer than
10 - the standard deviation is not a reliable measure.

To capture the tail behaviour of the edge length distribution, we define the thresh-
olding function

Definition 5.2.1 The thresholding function ρτ(x) with a threshold τ is defined as

ρτ =

{
x if x > τ,

0 if x≤ τ.
(5.2)

Denote as X̄vi the median of all normalised edge lengths associated with vi. We
formally introduce the following concept

Definition 5.2.2 The skewness excess score (SE) of Ki normalised edge lengths asso-

ciated with a vertex vi is

SE(vi) = ∑
ei j∈NKi(vi)

ρ1(Xei, j − X̄vi). (5.3)

Note that the subscript i in Ki indicates that Ki is locally specific to each vertex, as
opposed to a single global K in RepStream and most K-NN data stream clustering al-
gorithms. Here, the skewness comes from the older notion of non-parametric skew,
and the excess is due to our choice of considering only edges with normalised length
greater than the median by 1. Edges that exceed this length will be considered in the
overall skewness score. Consequently, additional neighbours must be within a rela-
tively limited distance of existing neighbours, otherwise the edge will be considered

123

anomalous. As the number of outgoing edges, and neighbours therefore get farther and
farther away, the total skewness excess tends to increase as shown in Fig 5.4.

Given that the area of a hyper-sphere increases exponentially as the radius is in-
creased, the variance in edge length of additional neighbours should decrease. Figure
5.6 shows an example of the 200 nearest neighbours of a vertex in a 2 dimensional
normal random distribution consisting of 400 vertices in total in which the standard
deviation is 100. Figure 5.5 shows a histogram of the length of the edges to these
nearest neighbours.

This example follows our expected trend, in which the distribution of edge length
is weighted towards the far end. With this knowledge we expect a vertex in the middle
of a cluster will have a more concentrated distribution, whereas a vertex near the edge
of a cluster will have a more right-tailed distribution. This is the key principle of our
proposed RobustRepStream.

Next, we briefly study the asymptotic behaviour of the skewness excess score
through a real example when both K and the number of vertices are sufficiently large.
We sample 2-dimensional data from a uniformly random distribution, and define a
point directly in the centre of this distribution as our evaluation point, and run our pro-
posed method. At a point in the middle of the stream, we examine the average of the
distributions of the normalised edge lengths for two different values of K(Figs. 5.3(a)
to 5.3(c)) as well as the average skewness excess score calculated over all vertices
(Fig. 5.4). Here, we make two interesting observations. The first observation is that
the average distribution exhibits a linear behaviour for edge length below the median,
and exponential decay beyond the median for both K = 20 and K = 50. The tail be-
haviour is also consistent with our intuition: when K = 10 (small), there are relatively
more large values at the tail as the model is more ‘complex’ and tends to produce
smaller clusters with less data points. Consequently, a large edge length will be more
likely to be anomalous compared to the rest. When K = 50, it is less likely for an
edge to be relatively large compared to the rest, and therefore the distribution is more
concentrated around the median.

The second observation is that the average skewness excess score exhibits an ap-
proximately linear relationship with respect to K over the practically meaningful range
of values for K. This is also consistent with our intuition, because on average the term
in the sum converges to the first-order moment of the distribution of the normalised
edge lengths partially over the support beyond 1+νi, and the fact that there are K terms
in the sum. This linear asymptotic behaviour is important because it allows us to pro-

124

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000
Normalised edge lengths. Normalised wrt MAD. K=10

Normalised Edge Lengths

C
ou

nt
s

Edge Lengths
Anomalous Threshold (average)
Median

(a) Average histogram of normalised edge lengths
for K = 10

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Normalised edge lengths. Normalised wrt MAD. K=20

Normalised Edge Lengths

C
ou

nt
s

Edge Lengths
Anomalous Threshold (average)
Median

(b) Average histogram of normalised edge lengths
for K = 20

0 1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500
Normalised edge lengths. Normalised wrt MAD. K=50

Normalised Edge Lengths

C
ou

nt
s

Edge Lengths
Anomalous Threshold (average)
Median

(c) Average histogram of normalised edge lengths
for K = 50

Figure 5.3: Histograms of normalised edge lengths for various K values

vide a trade-off between model complexity and data explain-ability more easily: the
larger the K, the less complex the model (less clusters), but the more discrepancy with
data statistics (more inter-class pairs in a cluster). Due to the linear relationship, a
one-dimensional search for the optimal value of K will be feasible without a risk of
facing multiple local optimum values, at least in the asymptotic sense. This is what we
propose do exploit next.

5.2.2 RobustRepStream

The RobustRepStream algorithm is an extension of the RepStream algorithm detailed
in the previous section. RobustRepStream, uses a completely distinct method for se-
lecting outgoing edges for each vertex, at both the point and representative levels. The
skewness excess score as described previously is used to determine how many edges

125

5 10 15 20 25 30 35 40 45 50 55 60
1

1.5

2

2.5

3

3.5

4

4.5

5
Skewness Excess Score vs K value

K Connectivity Value

S
co

re

Figure 5.4: Average SE vs K, normalised with respect to MAD

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25
Histogram of edge lengths for a NN graph in a normal distribution

N
u

m
b

e
r

o
f

E
d

g
e

s

Edge Lengths

Figure 5.5: Histogram showing the distance to the nearest 200 vertices in a 400 point
2 dimensional normal distribution, with the origin at the centre of the distribution.
Standard deviation is 100 in both the x and y direction.

126

0 100 200 300 400 500 600
0

100

200

300

400

500

600
Nearest neighbour plot originating at (300,300)

Figure 5.6: Nearest neighbour plot of a 400 point 2 dimensional normal distribution
with a standard deviation of 100. Plot shows the 200 nearest neighbours from the
centre of the distribution.

127

each vertex should have when it is inserted into the graph. In the original RepStream
algorithm, every vertex will always have the same number of edges connecting to other
vertices, regardless of the relative distance to the farther neighbours compared to closer
neighbours. Not only must a user correctly select a single K value for use during an
entire stream’s length, but the inflexibility in neighbour counts means one must make
the trade-off between over-clustering and under-clustering. To address this limitation,
we aim to achieve two goals with the proposed algorithm:

Goal 1: Remove the need for the user to set a the sensitive K parameter at runtime.

As we have mentioned in previous sections, initial parameter selection is a challenge,
and our method aims to converge towards a desirable clustering solution.

Goal 2: Allow vertices in the two NN graphs to have dynamic and different levels

of connectivity as is appropriate for their local region. Setting outgoing edges in a
dynamic manner allows the construction of a nearest neighbour graph which takes the
context and distances of the nearest neighbours into account. Allowing vertices in the
nearest neighbour graph to have different numbers of outgoing edges will give us the
potential to allow different levels of connectivity in denser regions of data, compared
to uneven or sparse regions.

The RobustRepStream works on the principle of balancing between model com-
plexity and data explain-ability and it proceeds as follows. For any newly inserted
vertex vi we aim to find an optimal value of the Ki connectivity parameter locally spe-
cific to the vertex. To so do, we do a one-dimensional search, which starts from a
pre-defined value Ki = Kmin

i and gradually increases it. At every possible value of Ki,
we examine the skewness excess score of the distribution of the Ki normalised edge
lengths associated with vi. The selected Ki is then the maximum value at which the
skewness excess score is still below a universal threshold α describing the maximum
discrepancy between what the model assumes and the actual data

Ki = arg max
K>Kmin

i

SE(vi)≤ α. (5.4)

The result of this is that each vertex will have the maximum number of neighbours
possible, whilst still remaining under the skewness excess score threshold. When a
vertex is added or removed, nearby vertices must also be adjusted by either adding
or removing outgoing edges until the number of edges is the highest possible while
remaining below the maximum allowable threshold.

Compared to the original RepStream algorithm and many other K-NN-based clus-

128

tering methods, RobustRepStream has removed the global connectivity parameter K.
Whilst our proposed algorithm has introduced the new threshold α , it is much less
sensitive to the data unlike the connectivity parameter, which is clearly demonstrated
in the sensitivity analysis we show later. Because it is based on the distribution of the
normalised edge lengths, it is invariant to the scale of the data. It is purely a subjective
definition of what an acceptable level of excess skewness by the user. In fact, a uni-
versal value α = 2 is recommended for all data sets. The proposed RobustRepStream
method consists of two algorithms:

• The first algorithm determines the number of outgoing edges for a newly added
vertex as shown in Algorithm 5. In this algorithm, the inputs are vertex, the new
vertex, minEdges the minimum number of edges a vertex must have, and α is
the density existing scaling factor parameter used by RepStream. The function
GetNextNeighbour(vertex) gets the closest neighbour that the vertex does not
already have an edge to, and the function CreateEdge(vertex,newNeighbour)

creates an outgoing edge from vertex to newNeighbour.

• The second algorithm calculates the skewness excess score as if the vertex
newNeighbour were to hypothetically become a neighbour, and is shown in Al-
gorithm 6. In this algorithm, the average and median absolute deviation val-
ues are calculate as avg and dev respectively with the potential new edge, then
the edge anomaly score for the potential edge is computed and returned. The
function SumDistances(vertex.neighbours) finds the sum of the distances to all
existing neighbours, while the function Distance(vertex,neighbour) finds the
distance between two vertices.

Once a suitable number of outgoing edges is found so that the skewness excess is
below the threshold α , RobustRepStream assigns clusters using the same mechanism
as the original RepStream algorithm.

The existing α parameter is used due to its existing usage in RepStream for de-
termining density relation, as described in the previous section. The density relation
radius is equal to the average length of the vertex’s nearest neighbours multiplied by
the α parameter, and defines an upper limit to the distance between representative
points for them to be merged into the same cluster. Our skewness excess threshold fol-
lows a similar concept, being an upper-limit to the relative length of edges to nearest
neighbours.

129

Algorithm 5 Algorithm for determining the outgoing edges for a newly added vertex.
f

FUNCT ION : AddEdges
INPUT : vertex,minEdges,α
while vertex.neighbours.count < minEdges do

newNeighbour← GetNextNeighbour(vertex)
CreateEdge(vertex,newNeighbour)

end while
newNeighbour← getNextNeighbour
while SkewnessExcessScore(vertex,newNeighbour)< α do

CreateEdge(vertex,newNeighbour)
newNeighbour← getNextNeighbour

end while

Algorithm 6 Algorithm for calculating the skewness excess score of a vertex if a po-
tential new neighbour were to be added.

FUNCT ION : SkewnessExcessScore
INPUT : vertex,newNeighbour
score← 0
dev← 0
PotentialNeighbours←{}
PotentialNeighbours← vertex.neighbours+newNeighbour
avg←Median(PotentialNeighbours.distances)
AbsDevs←{}
for all neighbour in PotentialNeighbours do

AbsDevs.add(|Distance(vertex,neighbour)−avg|)
end for
dev← 1.4826×Median(AbsDevs)
for all neighbour in vertex.neighbours do

s← 0
if Distance(vertex,neighbour)−avg > dev then

s← (Distance(vertex,neighbour)−avg)÷dev
end if
score← score+ s

end for
if Distance(vertex,newNeighbour)−avg > dev then

s← (Distance(vertex,newNeighbour)−avg)÷dev
score← score+ s

end if
return score

130

As is similar to its original usage in RepStream, α is a relatively insensitive pa-
rameter which is much easier to set than the K value. Intuitively, an alpha value of
α ≤ 1 makes little sense since representative vertices are only created when a vertex
has no reciprocal link to an existing representative, and so representative vertices are
most likely to be spread out. Skewness excess threshold values less than 1 also make
little sense because the edge score cannot have a value between 0 and 1.

We found empirically that the universal choice α = 2 works well across many
types of data streams. We also define a lower bound to the number of edges as being
minEdges = 6, as fewer edges than this makes the computation of median absolute
deviation less meaningful. This is what we use in our experiments in Section 5.3, re-
gardless of data set. An α value of 2 allows vertices to have no more than 1 anomalous
edge, as the minimum excess score of an anomalous edge is 1.

5.3 Experiments

To evaluate RobustRepStream we perform experiments on a number of real-world and
synthetic data sets. These datasets are specifically selected to be examples of streaming
data which evolves over time, exhibiting concept drift with which we can evaluate our
RobustRepStream method.

5.3.1 Real World Data Sets: KDD and Tree Cover

The KDD Cup 1999 data set The KDD’99 data set (Hettich & Bay, 1999) is a well-
known benchmark data set. It is extracted from logs taken from a smart firewall in
a network being subjected to simulated and controlled network attacks. It contains
high dimensional data, of which we use the 34 numerical features with each data point
presented as a 34-dimensional vector. We use a subsampled version of the data set
containing 494 020 data points, which is about 10 % of the original KDD Cup 1999
data set. Most of the data in the subsampled data set we used for evaluation falls into
either the normal traffic class, or one of two major denial-of-service attack classes. A
relatively small percentage of the data - less than 2 % - are from 20 other network
attack types. Each data point is labelled with the type of traffic (normal, or the type of
attack) for evaluation purposes.

This KDD Cup 1999 data set has been used previously in evaluating stream clus-
tering algorithms (Ackermann et al., 2012; Aggarwal et al., 2004; Bhatnagar et al.,
2014; Lühr & Lazarescu, 2009) due to the high variability between classes in the data

131

set. The various network attacks interrupting the normal traffic represent changes in
the distribution of subsequent data points, known as concept drift. This is a significant
challenge for clustering algorithms to deal with, making it an excellent data set for
testing how an algorithm deals with dynamic, unpredictable data point distributions
over time.

The Tree Cover Type Data Set The CoverType data set (Blackard & Dean, 1999)
is a real-world data stream of a set of features extracted from satellite photos and
geological surveys from forested areas of northern Colorado. It contains over 580,000
entries with ground truth labels corresponding to which type of trees grow in each area,
and has been previously used as a benchmark data set for stream clustering (Lühr &
Lazarescu, 2009; Bhatnagar et al., 2014; Forestiero et al., 2013). This data represents
a naturally evolving stream of data which changes with the environment and climate
of each region. As such, this data set, as well as the previous KDD data set, both
contain real-world examples of concept drift in a streaming context. The dataset has
10 dimensions which include quantitative measures of elevation, aspect, slope, distance
from water source, distance from roadway, and level of incident sunlight. Whilst this
stream evolves over physical location rather than over time, it is still effective for use
as a benchmark dataset exhibiting concept drift. Both this data set and the KDD dataset
contain a level of natural noise due to their respective collection methods.

5.3.2 Synthetic Data Sets

The synthetic data sets we present here are designed to evaluate our algorithm on con-
trolled levels of concept drift, which present specific challenges to the algorithm and
demonstrate its ability to handle change over time. As such, these data sets include
data sets which require variable levels of connectivity in order to achieve the highest
quality clustering results. Our intuition is that graph-based clustering approaches per-
form better using a lower level of connectivity (fewer outgoing edges) when there is
less separation between ground truth data classes, and more connectivity (more out-
going edges) when there is a greater distance between data classes. This is to prevent
over-clustering at levels of low separation, and to prevent under-clustering when there
is high separation between classes.

Closer Data Set The Closer data set is an evolving data set which has three distinct
stages. The first 10,000 data points alternate between two classes, all data points are

132

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=0 to T=1000

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=10000 to T=11000

−5 0 5 10 15
−4

−2

0

2

4

6

8

10

12

14
Closer Dataset T=20000 to T=21000

Figure 5.7: The evolution of the Closer data set, showing slices of its 3 sections.

on a two-dimensional plane and each class is normally distributed with a large level of
separation between the two classes. In the second 10,000 data points, the two classes
suddenly become much closer together, such that the two classes borders are overlap-
ping. The final 10,000 points have a greater degree of separation once again, however
one class becomes more dense, while the other becomes less dense. Figure 5.7 shows
these three stages. The changes in this data set are sudden, being taken from only three
different distributions.

The three stages of the data set were sampled like so:

• Between T = 0 to T = 10,000 class A was centred at 1,1 and normally dis-
tributed with a σ of 1 in both the x and y axes. Class B was centred at 8,8 with a
σ of 1.5 on both axes. Points were sampled from these distributions alternately
between classes.

• Between T = 10,000 to T = 20,000 class A remained the same, while class
B was moved to 4,4. Points were sampled from these distributions alternately
between classes.

• Between T = 20,000 to T = 30,000 class A remained the same, while class B
was moved to 6,6 with a σ of 1.5 on both axes. Points were sampled from these
distributions randomly by alternately selecting 3 points from class A, followed
by 1 point from class B.

SynTest Data Set The SynTest data set is also an evolving data set that consists of
one large class which slowly shifts its shape and position over time, as well as several
other smaller, more dense classes which appear and disappear at various points. The
larger class is present throughout the whole data set, and makes up a majority of the

133

Figure 5.8: Two dimensional representations of the 5 different classes. The main class is
always present and steadily changes shape, the smaller classes appear at various points through
the data set, as shown in Figure 5.9.

data points, the smaller classes exist for a relatively shorter amount of time. Each of
these smaller classes are more dense than the main class, but are present for only a few
hundred, to a few thousand time-steps at a time.

Figure 5.9 shows the presence of the classes in the SynTest data set. Marks indicate
when the given class is present in the given time window. The shape, size, and position
of the classes is shown in figure 5.8. Class 1 is always present through the data set,
while the other classes are present for shorter time periods.

Shapes Data Set The Shapes data set is an evolving data set split into two distinct
stages made from two distributions. In the first stage, shown in Figure 5.10, the data
set shared amongst 6 classes which are largely separated. In the second stage, the
classes are moved closer together, and the two classes on the right of the data set
merge to become one larger data set. The transition between these two stages presents a
significant challenge to clustering algorithms, as a lower degree of separation between
classes makes those classes harder to distinguish. Additionally, the two classes that are
merged together means that the algorithm will have to adapt and merge clusters that
were previously separated.

DS1 and DS2 The DS1 and DS2 data sets are data sets made from a static distribu-
tion which were used to evaluate the original RepStream algorithm. They are shown

134

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

1

2

3

4

5

Class presence of SynTest dataset

Time

C
la

ss

Figure 5.9: The class presence of the classes in the SynTest data set. A marker indicates
the class is present in the data set during the given time window.

Figure 5.10: The first and second stage of the Shapes data set.

135

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

..
.

.
.

.

.

.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.. .

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.
.

.

. .

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.
.

.

.

.

.
.

.

.
..

.

.

.

.

.

.

.

.
.

. .
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.
. .

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

..

.

. .

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.
..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.
.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

..

.
.

.

.

.

.

.

.

.

..
.

.

.

.
.

. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

..

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

. .

.

..

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.
.

. ..

.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

. .

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
. .

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

. ..

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.
.

.

.

.

.

.

.
.

.

.

.

.

. .

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

. .

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

. .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

. .

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.
.

.

.

. .

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

..

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.
.

.

.

.

..

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
. .

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

.

.

.

.

.. .

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

..

.

.

.

.

.
. .

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.
.

.

.

.

..

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

.
.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

..

. .

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

(a) Visualisation of the DS1 data set.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.

. .

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.
.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

. . .

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.
..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

..
.

.

.

.

. .

.

.

.

.

.

.
.

.
.

. .

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.
. .

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.. .

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

.

.

.

. .
.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

..

.

.
.

.

.

.

. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.
.

.

..

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.

.

.

.

..

.
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

..

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

..

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.
.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. ..

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.
. .

.
.

. .

.

.
.

.
.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

...

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

. .

.

.
..

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

..

.
.

.

..

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

. .

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

. .

.

.

.

.

.

.
.

.

..

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.

.

.
.

..

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
..

..

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

..

.

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

..

.

.

. .
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.
..

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

. .

.

.

.

.

.

.

..

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

...

.

.

.

.

. .

.

.

.

.

.

.

.

.

.
.

..

.

.

. .

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

. .

.

.

.
.

.
.

.

.

..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

..

.

.

.

.
. .

.
.

.

.

.

.

.

.

.

.

.

.

..

.

.
.

.

..

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

... .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

..

.

.

.
.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

. ..

. .

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.
.

.

.

..

.

.
.

.

.
.

.

.

.

..

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .

.

.

..

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

. .

.

.

.
. .

.
.

.

.

.

.

.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.
.

(b) Visualisation of the DS2 data set.

Figure 5.11: DS1 and DS2 datasets.

in Figures 5.11(a) and 5.11(b) and have no intentional stream evolution over time.

The DS1 and DS2 data sets are included as static data sets to demonstrate our
method’s ability to adapt to a static distribution, and to converge towards a stable clus-
tering solution. The Closer, SynTest, and Shapes synthetic data sets all have specific
and very controlled instances of concept drift over the length of the stream. These syn-
thetic evolving data sets are used to demonstrate how our method can adapt to changing
data distributions over time.

5.3.3 Evaluation Metrics

Since we have access to the ground truth class labels for the data set we are able to use
external validation metrics as a way to determine the accuracy of our clustering meth-
ods. External validation metrics are more accurate in measuring the absolute quality
of clustering results because they use a comparison to a ground truth. While internal
validation metrics can be useful, they make assumptions about the data set which may
be inaccurate, for example the sum of squared errors (SSQ) evaluates the compactness
of clusters, with a lower score being more desirable. This measure assumes ideal clus-
ters are hyper-spherical in shape, which is not a safe assumption, since clusters can be
arbitrarily shaped.

We use the average F measure score of clusters compared to the ground truth over
the length of the data set as a method of measuring the performance of our Robus-
tRepStream method against the base RepStream algorithm. We choose the external
validation metric, F measure since it can be used to compare clustering results, while
penalising both different ground-truth classes being mixed into the same cluster, and
also single classes being fractured into multiple clusters. The commonly used purity
measure is more popular for evaluation, but has a problem in that it does not penalise

136

classes being fractured into sub-clusters (Kaur et al., 2015). For this reason we find F

measure to be a more accurate representation of cluster accuracy than the more popular
purity measure for evaluating RobustRepStream against the performance of RepStream
in terms of both precision and recall. For comparisons against other algorithms we use
the purity measure because of its ubiquitousness in the literature.

5.3.4 Comparison to Other Algorithms

To evaluate the comparative performance of our method we compare against the pub-
lished results of other stream clustering algorithms. Namely, we compare against the
base RepStream algorithm, as well as published results for ExCC (Bhatnagar et al.,
2014), STRAP (Zhang et al., 2008), HPStream (Aggarwal et al., 2004), stream specific
algorithms that have shown high quality performance in stream clustering context. The
published results favour the purity evaluation metric , which is commonly used for ex-
ternal validation when ground truth class labels are available, as is the case with the
KDD Cup and Tree Cover data sets. For our experiments we use a purity horizon of
200 data points, which is a common horizon for the evaluation of clustering algorithms
when using purity (Aggarwal et al., 2003) (Aggarwal et al., 2004).

Figure 5.13(a) shows the comparative purity of the different methods on the KDD
data set. RobustRepStream can be seen to perform favourably to the other clustering
algorithms in all cases. HPStream results in equal purity at the 51 000 and 371 400 time
slices, while STRAP outperforms RobustRepStream slightly during the 86 600 time
slice. However, overall our method consistently produces high purity output during
the KDD dataset, as we show in further evaluations.

Figure 5.12(a) shows the comparative purity for the Tree Cover data set. It is
notable that RobustRepStream outperforms the other algorithms using the published
results for these methods for all time steps save for the 20 000 time step. ExCC per-
forms consistently highly on this dataset similar to RobustRepStream and has a lower
variance in purity over time. However our method does overall outperform it on these
published time steps. We show in subsequent evaluations that our method is able to
maintain similar high levels of clustering output.

We also compare against the results of the D-Stream (Chen & Tu, 2007) and DB-
Stream (Hahsler & Bolaos, 2016) algorithms, grid-based and micro-cluster density-
based stream clustering algorithms respectively, which perform well against the well
known CluStream and DenStream algorithms, as shown in Figure 5.13(b) and 5.12(b).
D-Stream divides the data space into fixed-width cells, and tracks which cells become

137

20,000 40,000 80,000 160,000 320,000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Stream Time

P
ur

ity

Tree Cover Purity Comparison vs ExCC, STRAP, HPStream

RobustRepstream
ExCC
STRAP
HPStream

(a) Comparative purity for TreeCov data set against ExCC, STRAP, and HPStream.

32,000 64,000 128,000 256,000 512,000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Stream Time

P
u

ri
ty

Tree Cover Purity Comparison vs HPStream, Clustream

RobustRepstream

HPStream

CluStream

(b) Comparative purity for TreeCov data set against HPStream and CluStream.

Figure 5.12: Comparative purity for TreeCov dataset.

138

42,200 51,000 86,600 371,400
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Stream Time

P
ur

ity

KDD Cup 99’ Purity Comparison vs ExCC, STRAP, HPStream

RobustRepstream
ExCC
STRAP
HPStream

(a) Comparative purity for KDD data against ExCC, STRAP, and HPStream. set

150,000 250,000 350,000 450,000
0.7

0.75

0.8

0.85

0.9

0.95

1

Stream Time

P
u

ri
ty

KDD Cup 99’ Purity Comparison vs HPStream, Clustream

RobustRepstream

HPStream

CluStream

(b) Comparative purity for KDD data against HPStream and CluStream. set

Figure 5.13: Comparative purity for KDD dataset.

139

dense according to input parameters, which allows D-Stream to effectively find ar-
bitrarily shaped parameters. DBStream, on the other hand, is a sophisticated micro-
cluster based approach which seeks to solve weaknesses of previous micro-cluster ap-
proaches. DBStream allows micro-clusters to overlap, and records the shared density
in these overlapping regions. This additional information allows better clustering de-
cisions to be made, as the shared regions give insight into the arrangement of the un-
derlying data points. Both D-Stream and DBStream are high quality stream clustering
approaches that perform well against contemporary algorithms. The stream package
for R was used to run these algorithms on the data sets. The data sets were normalised
between values of 0 and 1 in each data dimension. For each data set the algorithms
were parametrised according to the suggested parameter values in the respective papers
and the documentation for their implementations. D-Stream grid-size parameter was
set to len = 0.05, its dense and sparse cell thresholds set to Cm = 3.0 and Cm = 0.8,
the decay value λ = 0.998, and its sporadic cell deletion parameter β = 0.3. The DB-
Stream algorithm was set with its micro-cluster radius r = 0.05, its decay parameter
λ = 0.01, its clean-up interval t gap = 1000, the minimum weight w min = 3.0, and
its intersection factor α = 0.1. The purity horizon, as we noted earlier, is 200, and the
datasets have been normalised between 0 and 1 in all dimensions.

Figure 5.14(a) shows the comparative purity results for the Closer data set using
D-Stream, DBStream, and RobustRepStream. On this data set RobustRepStream out-
performs the other algorithms in general over the first and last 10,000 data points,
reaching almost 100% purity during these times. during the middle third of the stream,
however, DBStream on average has a more consistent higher purity value, possibly
due to its shared density feature preventing the overlapping distributions from merging
together. RobustRepStream, on the other hand during this period, has periods when its
purity value is higher, but also has periods where it achieves a lower purity value than
DBStream. As shown in Table 5.1 however, the overall average purity of RepStream
is higher than that of DBStream.

Figure 5.14(b) shows the clustering purity for the SynTest data set for the three
noted algorithms. On average the three algorithms achieve very similar clustering
quality. Table 5.1 shows how the average (mean) purity differs by only 1.8% between
the algorithms, achieving 0.969, 0.951, and 0.966 purity for DBStream, D-Stream, and
RobustRepStream respectively.

Figure 5.14(c) and Figure 5.14(d) show the clustering results for the DS1 and
DS2 data sets respectively. These data sets do not evolve over time or simulate a

140

stream, rather they are static distributions with concave classes, and classes within
other classes, making them difficult to cluster. On these data sets the algorithms
achieve similar clustering purity. Overall their purity, shown in Table 5.1, differs very
little, though with the graph-based D-Stream performing noticeably worse than the
other algorithms. RobustRepStream and DBStream differ in purity by less than 0.03
on average.

Figure 5.14(e) shows the purity results achieved for the Shapes data set, which
simulated the evolution of a stream, by morphing the size of distributions over time as
well as combining two distributions together. For this data set DBStream outperforms
both D-Stream and RobustRepStream, achieving average purity 2% higher than D-
Stream and 0.8% higher than RobustRepStream.

As for the real world benchmark test data sets Figure 5.15 shows the purity of the
KDD Cup 99’ Network Intrusion data set. For most of the stream all three algorithms
achieve perfect purity, due to the presence of only one class for most of the stream. This
only differs during the network attack simulations, in which abnormal traffic is inserted
into the stream, represented by data points with different class labels mixing in with the
typical traffic. During the attacks all algorithms achieve less than perfect purity, with
D-Stream performing the worst, having the greatest drops in purity, the average purity
for D-Stream over the data set is 0.989. DBStream fares better during the attacks,
with an average purity over the whole stream of 0.993. RobustRepStream performs
the best on this data set, achieving 0.999 purity on average, and never dropping below
0.9 purity during the length of the stream.

The most stark difference between the clustering algorithms is shown in the Tree
Cover Type data set, presented in Figure 5.16. This data set is difficult to cluster,
having overlapping classes and 10 different attributes for the data. On average Robus-
tRepStream achieves a purity of 0.884, significantly outperforming both D-Stream and
DBStream, which achieve 0.690 and 0.508 purity respectively, as shown in Table 5.1.

5.3.5 Baseline for Comparison

Because RobustRepStream is an extension of the RepStream algorithm it makes sense
to compare its performance to the algorithm on which it is based. RepStream, as shown
in its original paper (Lühr & Lazarescu, 2009) performs well against other stream
clustering algorithms. To compare the relative performance of RobustRepStream com-
pared to RepStream we start by determining what our baseline for comparison is. Since
we are extending the RepStream method we want to compare against the best possible

141

0 0.5 1 1.5 2 2.5 3

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1
Closer Dataset Purity Plot

Time in Stream

F
M

e
a
s
u
re

DBStream

DStream

RobustRepstream

(a) Comparative purity for Closer data set

0 5000 10000 15000
0.8

0.85

0.9

0.95

1
SynTest Dataset Purity Plot

Time in Stream

F
−

M
e
a
s
u
re

DBStream

DStream

RobustRepstream

(b) Comparative purity for SynTest data set

0 2000 4000 6000 8000
0.5

0.6

0.7

0.8

0.9

1
DS1 Dataset Purity Plot

Time in Stream

F
−

M
e
a
s
u
re

DBStream

DStream

RobustRepstream

(c) Comparative purity for DS1 data set

0 1000 2000 3000 4000 5000
0.7

0.75

0.8

0.85

0.9

0.95

1
DS2 Dataset Purity Plot

Time in Stream

F
−

M
e
a
s
u
re

DBStream

DStream

RobustRepstream

(d) Comparative purity for DS2 data set

0 1 2 3 4 5 6

x 10
4

0.6

0.7

0.8

0.9

1
Shapes Dataset Purity Plot

Time in Stream

F
−

M
e
a
s
u
re

DBStream

DStream

RobustRepstream

(e) Comparative purity for Shapes data set

Figure 5.14: Comparative purity for our Synthetic datasets against D-Stream and DB-
Stream.

142

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KDD Cup 99’ Dataset Purity Plot

Time in Stream

P
ur

ity
 V

al
ue

DStream
DBStream
RobustRepStream

Figure 5.15: Comparative purity for KDD Cup 99’ data set

0 1 2 3 4 5 6

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree Cover Type Dataset Purity Plot

Time in Stream

P
ur

ity
 V

al
ue

DStream
DBStream
RobustRepStream

Figure 5.16: Comparative purity for Tree Cover data set

143

Table 5.1: Average Purity score of DBStream, D-Stream, and RobustRepStream.

Data set DBStream D-Stream RobustRepStream
DS1 0.902 0.851 0.893
DS2 0.893 0.812 0.926

SynTest 0.969 0.951 0.966
Closer 0.799 0.913 0.968
Shapes 0.926 0.894 0.918

TreeCov 0.508 0.690 0.884
KDD99 0.993 0.989 0.999

Table 5.2: Best K values

Data set Optimal K Avg F measure
DS1 7 0.7208
DS2 7 0.6371

Closer 9 0.8614
SynTest 9 0.7989
Shapes 6 0.6234
KDD 30 0.7898

TreeCov 29 0.6108

theoretical performance of RepStream. To do this we run RepStream between a range
of K values, and determine which K value produces the best overall performance.

To do this we ran multiple instances of RepStream over a range of K values from
K = 5 to K = 30, using α = 2.0, and using a memory limit of 1000 points. The reason
for this range is that K values lower than 5 tend to fragment clusters into dozens of tiny
clusters, while values higher than 30 tend to put all data points into the same cluster.
Additionally the vanilla normalisation method was used, with Manhattan distance as
the distance metric.

F measure was calculated every 100 data points, from which we compute the mean
F measure over the length of the stream. Table 5.2 shows the K value which produced
the highest overall F measure for each of our test data sets, and the corresponding
F measure values. These K values are the ones for which the original RepStream
produced the highest overall F measure scores through the length of the stream. We
will evaluate our dynamic variation in comparison to these, and will refer to them as
the optimal K values.

144

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Closer Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
e
a
s
u
re

Optimal K F−Measure

Worst K F−Measure

RobustRepstream

(a) Results for the Closer data set.

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1
SynTest Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
e
a
s
u
re

Optimal K F−Measure

Worst K F−Measure

RobustRepstream

(b) Results for the SynTest data set.

0 1 2 3 4 5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1
Shapes Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
e
a
s
u
re

Optimal K F−Measure

Worst K F−Measure

RobustRepstream

(c) Results for the Shapes data set.

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS1 Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
e
a
s
u
re

Optimal K F−Measure

Worst K F−Measure

RobustRepstream

(d) Results for the DS1 data set.

0 1000 2000 3000 4000 5000 6000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DS2 Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
e
a
s
u
re

Optimal K F−Measure

Worst K F−Measure

RobustRepstream

(e) Results for the DS2 data set.

Figure 5.17: F-Measure scores for RobustRepStream versus optimally-parametrised
RepStream

145

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
KDD Cup 99’ Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
RobustRepstream

Figure 5.18: Results for the KDD data set.

Table 5.3: Average F measure values of base RepStream with the Best, Worst, and
in-between K values, compared to our RobustRepStream method.

Data set RobustRepStream Best K Worst K Avg K
Closer 0.8450 0.8614 0.5435 0.8589

SynTest 0.7945 0.7989 0.4345 0.7435
KDD 0.7644 0.7898 0.2636 0.7160

TreeCov 0.5959 0.6108 0.2978 0.6088
Shapes 0.5810 0.6234 0.4140 0.4427

DS1 0.5532 0.7208 0.2767 0.3134
DS2 0.5679 0.6371 0.2594 0.2656

5.3.6 Evaluation of RobustRepStream

Our dynamic version of RepStream was set to run on our evaluation data sets using an
α scaling factor value of 2.0, the same as our evaluation baseline. This parameter is
also used as the skewness excess threshold, for the reasons mentioned in Section 5.2.2.
The memory limit was set to 1000 points, and used vanilla normalisation, the default
value of 0.99 was used for the λ decay factor, and Manhattan distance as the distance
metric.

Figure 5.17(a) shows the F measure of our method on the Closer data set. The
dynamic method, plotted in solid blue, follows even closer to the optimal than on
the previous data set. The average F measure of 0.7859 of our method compared
to 0.8614 (shown in Table 5.3) for the optimal k leaves an average difference of only

146

0 1 2 3 4 5 6

x 10
5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tree Cover Type Dataset F−Measure Plot Repstream vs RobustRepstream

Time in Stream

F
−

M
ea

su
re

Optimal K F−Measure
Worst K F−Measure
RobustRepstream

Figure 5.19: Results for the Tree Cover data set.

0.0755. Both the worst and mid K values perform better on this data set in comparison,
with the worst K value having an average F measure of 0.5435, and the mid K value
producing a F measure of 0.8589. This implies that on this data set there is a larger
range of K values which produce good clustering results.

Figure 5.17(b) shows the F measure scores of our method and our comparison
baselines on the SynTest data set. Our
method results in a lower F measure than the best K value over the first and last 10,000
points of the data set, however on average performs better during the middle 10,000
point section. The performance of our method is comparable to that of the mid K

value, being only 0.015 different on average, as shown in Table 5.3. Even so, our
method performs, on average, only 0.0569 lower in terms of F measure compared to
the best possible single static K value.

Figure 5.18 shows the F measure of the RobustRepStream method versus the F

measure of the best, worst, and mid single static K values on the KDD Cup 99’ data
set. This is a real-world high dimensional benchmark data set often used in clustering
algorithm evaluation, which is significantly different from the previous synthetic data
sets. Our dynamic method on average produces an F measure value of 0.7035. The
optimal k value produced a F measure score of 0.7898 meaning that our method re-
mains on average within 0.1 of the optimal. There are times when our method performs
worse, however on average its performance is comparable to the optimal value, when
poorly selected input parameters could result in F measure values as low as 0.2636 on

147

Table 5.4: Average purity value of RobustRepStream run at different α threshold val-
ues.

Data set α = 0.5 α = 1 α = 1.5 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7
DS1 0.994 0.990 0.973 0.885 0.605 0.410 0.386 0.365 0.363
DS2 0.987 0.985 0.976 0.928 0.656 0.305 0.291 0.301 0.287

SynTest 0.994 0.992 0.987 0.973 0.884 0.848 0.846 0.845 0.845
Closer 0.998 0.997 0.994 0.974 0.847 0.830 0.813 0.806 0.762
Shapes 0.998 0.997 0.976 0.930 0.642 0.515 0.485 0.480 0.473

TreeCov 0.973 0.963 0.946 0.886 0.722 0.674 0.659 0.655 0.653
KDD99 1.000 1.000 0.999 0.999 0.999 0.998 0.998 0.997 0.997

Table 5.5: Average F Measure value of RobustRepStream run at different α threshold
values.

Data set α = 0.5 α = 1 α = 1.5 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7
DS1 0.247 0.321 0.553 0.534 0.316 0.279 0.276 0.276 0.277
DS2 0.241 0.298 0.417 0.579 0.319 0.261 0.260 0.260 0.259

SynTest 0.062 0.136 0.547 0.760 0.822 0.822 0.821 0.821 0.821
Closer 0.055 0.131 0.589 0.844 0.862 0.875 0.867 0.858 0.822
Shapes 0.124 0.219 0.551 0.599 0.480 0.432 0.422 0.421 0.422

TreeCov 0.080 0.186 0.438 0.574 0.612 0.615 0.616 0.616 0.616
KDD99 0.232 0.292 0.591 0.675 0.797 0.739 0.700 0.841 0.817

average, as shown in Table 5.3.

Figure 5.19 shows the performance of our method on the Tree Cover Type data set.
This data set is significantly more difficult to separate classes, with even the optimal K

value having an average F measure score of only 0.6108. Whilst the RobustRepStream
method performs comparatively worse on this data set compared to the others, it is still
on average only 0.1120 below the optimal, as shown in Table 5.3.

We note that RobustRepStream can still perform almost equivalent to RepStream
even when RepStream is supplied with an optimal K value at the beginning of its
runtime. However, if optimal parameters cannot be guaranteed, as is to be assumed
when dealing with unlabelled data in an unsupervised context, that RobustRepStream
outperforms RepStream set with non-optimal parameters.

5.3.7 Sensitivity

We investigate the sensitivity of the α parameter with regards to clustering quality.
Since we remove the K value used by the original RepStream, and replace it with our

148

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
Closer Sensitivity

α Value

S
c
o
re

F Measure

Purity

(a) Sensitivity of α for Closer dataset.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
SynTest Sensitivity

α Value

S
c
o
re

F Measure

Purity

(b) Sensitivity of α for SynTest data set.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
Tree Cover Type Sensitivity

α Value

S
c
o
re

F Measure

Purity

(c) Sensitivity of α for Tree Cover Type data set.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1
Shapes Sensitivity

α Value

S
c
o
re

F Measure

Purity

(d) Sensitivity of α for Shapes data set.

Figure 5.20: Sensitivity of RobustRepStream to the α parameter

edge selection process described in section 5.2.2, we wish to show how sensitive our
changes are. Figure 5.20 (a,b,c,d) show both the purity and F measure scores of some
of our datasets.

In all cases α values below 2 produce very low F measure values whilst produc-
ing very high purity values. This is due to under-clustering, where the algorithm is
resulting in too many clusters containing too few points. We expect this result as we
described earlier. This can be seen in Table 5.5 and Table 5.4.

At higher values, around 2 ≤ α ≤ 3, the F measure increases and plateaus there-
after, whilst the purity value decreases to a roughly stable level. From these sensitivity
tests we show that an α value of between 2 and 3 consistently results in the best bal-
ance between purity and F measure scores. We note that increases in F measure, which
measures both precision and recall, can be achieved with higher α values, however the
improvements in the cases of our sensitivity experiments, are marginal.

149

5.4 Results Discussion

In Section 5.3 we compare RobustRepStream against the published results of several
other stream clustering algorithms, specifically STRAP, ExCC, HPStream, and the
more recent D-Stream and DBStream.

As shown in the comparative purity results in Figure 5.13(a) and 5.12(a), Robus-
tRepStream performs well against the results published for RepStream, ExCC, STRAP,
and HPStream. RobustRepStream results in similar clustering quality to RepStream in
almost all cases, and outperforms RepStream slightly in purity on the Tree Cover Type
data set.

Compared to the algorithms D-Stream and DBStream, RobustRepStream performs
very favourably. DBStream marginally outperforms RobustRepStream on the SynTest,
DS1, DS2, and Shapes data set very marginally, as shown in Table 5.1, however Ro-
bustRepStream performs very favourably compared to these algorithms on the Closer,
Tree Cover, and KDD99’ data sets. It is worth noting that these results are achieved
with all algorithms using the same input parameters for all data sets. Without tuning
the parameters RobustRepStream performs comparably to the other algorithms, and
outperforms them on the real-world benchmark data sets.

Compared to RepStream, the RobustRepStream algorithm performs well. Even
when comparing to the best case, setting RepStream optimally, the RobustRepStream
algorithm with no parameter adjustment between data sets has similar performance
in terms of F measure to RepStream using the best possible value for the K parame-
ter. This is notable in the 2-dimensional synthetic datasets, as well as the benchmark
datasets - Tree Cover and KDD Cup, which have 10 and 43 dimensions respectively,
which demonstrates that our method is able to perform on datasets with varying levels
of dimensionality.

RobustRepStream is an extension of the RepStream algorithm with the goal of
reducing the need for users to set the input parameters, these experiments show that
by using the same parameter values for all data sets the RobustRepStream algorithm is
able to perform similarly to RepStream even though the RepStream algorithm has the
advantage of being tuned for the data set. This situation is unrealistic in the favour of
RepStream because one can’t expect to know what the best parameter values are before
beginning, so this comparison is made to a hypothetical best case, yet still performs
well.

In terms of sensitivity the value chosen for the α threshold seems to be insensitive
to the data set used. In Section 5.3.7 we show the purity values of RobustRepStream

150

run at different α values on various data sets. In our experiments we used α = 2 to
represent that each vertex may have one or fewer anomalous outgoing edges, and this
value achieves very high quality results in terms of purity. The highest combination of
purity and F measure score is achieved with a value between 2 ≤ α ≤ 3 in the tested
data sets. Whereas the K value of RepStream needed to be adjusted for each data set
in order to achieve the highest quality performance, our method provides consistently
high quality clustering output without the need to tune our hyper parameters for all the
data sets that we tried. This is in line with our goal of removing the need for users to
set the sensitive K parameter in RepStream and of making the algorithm more robust.

5.5 Conclusion

In this chapter we introduced a clustering algorithm, RobustRepStream, an extension
of the RepStream algorithm, that removes the need to set its primary input parameter,
the K value, which directly affects the interconnectivity of its graph-based structure.
We employ a computed feature called the skewness excess to automatically set the
number of outgoing edges for each vertex in the graph automatically and dynamically
over time. Our method selects the local connectivity parameter as the maximum value
at which the skewness excess is still below a pre-defined universal threshold. This
process is performed continuously on new vertices into the graph, and for any nearby
vertices for which the new vertex becomes a potential neighbour. Using this method
we maintain a non-static and non-uniform number of outgoing edges for vertices in the
graph.

We propose that this same approach can be applied in any situation in which a K-
NN graph would be used. The ability to dynamically set the number of outgoing edges
on a per-vertex basis reduces the dependence on knowing an appropriate K value. We
further propose that the usage of the skewness excess in determining outgoing edges
in a directed nearest neighbour graph can be generalised and used in building graphs
in situations where a static K value is not appropriate. This method of selecting edges
is not unique to the RobustRepStream algorithm, and could be applied in any nearest
neighbour graph-based context. We expect future findings will confirm our conjecture.

Our method successfully removes the need for the user to set the K parameter
which is crucial for the success of the original RepStream algorithm. By making use
of the α value which is already set by the user as a threshold our RobustRepStream
algorithm can achieve performance comparable to that of RepStream when it has an

151

optimally set K value. Given that it is virtually impossible to know what the optimal K

value would be for an unlabelled data set, this results in one fewer sensitive parameter
which needs to be set for the algorithm. RepStream is shown to be much less sensitive
in terms of performance variance for the remaining parameter, the α scaling factor than
to the K value. As we show in Section 5.3.7, this parameter is far less sensitive, and
results in consistent clustering quality across different datasets in RobustRepStream.
This is in contrast to the sensitive nature of the K parameter, which as we show in table
5.2 requires very different values from data set to data set.

We have shown experimentally on average for the data sets that evolve over time
that our RobustRepStream performs within an F measure margin of 0.03 of the best
possible performance that could be achieved by RepStream when the ground-truth is
known. For all of our evaluation data sets, setting the K value non-optimally can lead to
F measure differences of more than 0.3 compared to the optimal values. This demon-
strates the importance that the K parameter had on RepStream and why removing the
need to set the K parameter is so valuable.

152

Chapter 6

Conclusions

Stream cluster analysis is as yet an open field of research, with wide-ranging uses
across many domains, including analysis of sensor networks, meteorological data,
stock market trends, computer network traffic, customer click streams, phone or other
communication records, multimedia data, financial transactions, and observational sci-
ence data (Silva et al., 2013). Many of these domains are particularly difficult to anal-
yse and model because of the evolving nature of the data. That is, rather than having
a static model which needs to be identified, the underlying model instead can change
over time.

It is with this problem in mind that stream clustering algorithms are designed to
operate. Concept drift is one of the most challenging aspects of stream clustering, and
there have been a myriad of different techniques which have been proposed to handle
this problem, as we discuss in detail in chapter 2.

Sliding windows and applying fading functions to data structures are popular, com-
mon techniques for handling evolution over time (Kaur et al., 2015). These techniques
work by discarding older data gradually over time, whilst retaining enough information
to add new data points into clusters. This can help with adapting to stream evolution
by weighting newer data with more importance.

Whilst these techniques can help the algorithm adjust to changes, the initial parametri-
sation of algorithms remains one of the greatest challenges to face with stream cluster-
ing (Silva et al., 2013). One of the aspects of the challenge is that clustering parameters
in algorithms are often data-dependent, and requires prior knowledge about the data set
in order to select an appropriate value. This requirement is obviously a huge downside,
since clustering by its nature is an exploratory form of data analysis, applied to data
sets for which little is known. Another aspect of the challenge is that stream evolution

153

can result in situations where input parameters are appropriate at some times during the
stream, and allow the algorithm to yield high quality results, but at other times during
the stream the same parameters might lead to low quality clustering output. This is the
problem of parameter sensitivity in a concept drifting context.

In this thesis we have sought to address these problems, by improving the robust-
ness of the RepStream algorithm, and proposing our own RobustRepStream algorithm.

6.1 Change Detection

In Chapter 3 we presented a method for time series change analysis which we applied
to features computed from the geometric features of the data representation structures
in the RepStream clustering algorithm.

We proposed a number of computable features which can reflect changes in the un-
derlying data composition and concepts. By examining the cluster count over time, the
changes of the K nearest-neighbour edges, the cluster merges and splits, the variation
in edge lengths, and the cluster membership of data points over time we establish a
varied set of data which we can examine to determine information about the input data
stream.

We further proposed a time-series change detection algorithm which we apply to
our computed features. This method allows us to identify change points in an arbi-
trarily dimensional data stream. Using our change detection method on these features
we created an algorithm which was capable of detecting change points in the stream
concepts over time.

We experimentally showed how our method was competitive with the contempo-
rary PCA-based detection technique described by Qahtan et al. (2015).

6.2 Dynamic K Parameter Selection

In Chapter 4 we introduced the concept of the edge distribution score, a feature com-
puted from the distribution of edge lengths in the K nearest neighbour graph structure
of RepStream. We showed how the edge lengths have a predictable distribution when a
vertex is towards the middle of a region of uniform density. When the computed edge
distribution score is higher or lower than expected we can infer that the connectivity
level is too high or too low, and thus could affect the quality of clustering.

Using this information we presented an extension to the RepStream algorithm,

154

which computes the edge distribution score over time, and varies the K connectivity
parameter over time in response to changes in the data stream.

We evaluated our method on both synthetic and real-world benchmark datasets.
In our evaluations we found that even when our method was initially parametrised
with the worst possible initial K value, the algorithm was able to quickly locate a
more appropriate K value, and produce clustering output which was comparable, in
terms of purity and F measure, to the output of RepStream when given optimal initial
parameters.

6.3 RobustRepStream

Building on the work from prior chapters, we presented our RobustRepStream algo-
rithm in Chapter 5. In this chapter we addressed the problem of parameter sensitivity
by designing a more robust algorithm, which requires less knowledge of the data set
to set initial parameters, and whose parameters were more robust to changes in data
distribution as a result of concept drift.

By analysing the edge lengths of each vertex independently we found that the edge
length distributions provided useful information about the local neighbourhood. We
proposed the skewness excess measure, which uses information about the tail-end of
the distribution to determine when inter-class edges might be created.

Using the skewness excess score we designed a scheme for creating self-arranging
nearest neighbour sparse graphs which do not require a universal connectivity param-
eter - the K parameter used in the original RepStream algorithm. This self-arranging
graph scheme used data from the local neighbourhood to select appropriate levels of
connectivity for each vertex independently.

In experimental evaluation of our RobustRepStream algorithm we found that it
produced high quality clustering across multiple different datasets with no parameter
tuning, in situations where the original RepStream algorithm required the K parameter
to be tuned significantly between the same datasets to achieve similar quality clustering
output.

We showed how our RobustRepStream algorithm successfully produces high qual-
ity clustering results with fewer initial input parameters than RepStream, and with less
need to vary the input parameter values from dataset to dataset. RobustRepStream
represents a more robust algorithm, less sensitive to changes in data distribution, and
which is easier for users to parametrise and use in their chosen application. We are con-

155

fident that employing these methods - examining the local impacts of concept drift on
data distribution - will result in more robust clustering approaches, and higher quality
clustering in the unpredictable domain of stream data clustering.

6.4 Future Work

The application of our method could be used to improve the robustness of other clus-
tering algorithms besides RepStream. As we discussed in Chapter 1, the reliance on
user-specified input parameters is problematic in an evolving data stream context, and
is considered to be one of the most major challenges facing further research into cluster
analysis (Silva et al., 2013).

By applying the techniques we have presented in Chapters 4 and 5, other graph-
based clustering algorithms could be extended to no longer require setting a K connec-
tivity parameter. Whilst we applied the technique to extend the RepStream algorithm,
the technique doesn’t necessarily require any particular aspect of the algorithm outside
of its nearest-neighbour sparse graph data representation. As such it can easily be ap-
plied to other similar graph-based clustering approaches. For example, our approach
could be used to set the connectivity on SNCStream (Barddal et al., 2015), which relies
on a nearest-neighbour graph and a K connectivity parameter.

Furthermore, the connectivity selection scheme using skewness excess score from
Chapter 5 presents an opportunity to create a framework for the construction of self-
organising nearest-neighbour sparse graphs which don’t rely on a fixed graph-wide
connectivity parameter. This could not only be used to design a new, more robust,
clustering approach, but could also be applied to any other application which uses
graph-based representations of data in which data similarity, in regards to connectivity,
is desirable. As an example, the outlier detection algorithm ODIN (Hautamaki et al.,
2004) relies on a K nearest neighbour graph structure, which requires user parametri-
sation. Algorithms like this, which rely on a fixed K connectivity parameter, could be
extended and improved with our self-organising nearest neighbour graph construction
method, even outside of the clustering domain.

Lastly, the usage of statistical and geometric analysis of data structures to auto-
matically select parameters, or to remove the need for users to set parameters presents
exciting opportunities for algorithm designers. It is desirable when algorithms are less
sensitive to changes in the data over time and easier to parametrise. We have shown
that our methods can be used to improve the robustness of algorithms, and think that

156

similar techniques on non-graph-based algorithms could also yield positive results.

157

Bibliography

M. R. Ackermann, et al. (2012). ‘StreamKM++: A clustering algorithm for data
streams’. Journal of Experimental Algorithmics 17:2–4.

C. C. Aggarwal (2007). Data streams: models and algorithms, vol. 31. Springer
Science & Business Media.

C. C. Aggarwal (2015). Data mining: the textbook. Springer.

C. C. Aggarwal (2018). ‘A survey of stream clustering algorithms’. In Data Clustering,
pp. 231–258. Chapman and Hall/CRC.

C. C. Aggarwal, et al. (2003). ‘A framework for clustering evolving data streams’. In
Proceedings of the 29th International Conference on Very Large Data Bases, pp.
81–92. VLDB Endowment.

C. C. Aggarwal, et al. (2004). ‘A framework for projected clustering of high dimen-
sional data streams’. In Proceedings of the 30th International Conference on Very

Large Data Bases, pp. 852–863. VLDB Endowment.

A. Amini, et al. (2014). ‘On density-based data streams clustering algorithms: A
survey’. Journal of Computer Science and Technology 29(1):116–141.

C. Aytekin, et al. (2018). ‘Clustering and unsupervised anomaly detection with l 2 nor-
malized deep auto-encoder representations’. In 2018 International Joint Conference

on Neural Networks (IJCNN), pp. 1–6. IEEE.

T. R. Bandaragoda, et al. (2014). ‘Efficient Anomaly Detection by Isolation Using
Nearest Neighbour Ensemble’. In Proceedings of the 2014 IEEE International Con-

ference on Data Mining Workshop (ICDMW), pp. 698–705. IEEE.

159

J. P. Barddal (2019). ‘Vertical and Horizontal Partitioning in Data Stream Regression
Ensembles’. In 2019 International Joint Conference on Neural Networks (IJCNN),
pp. 1–8. IEEE.

J. P. Barddal, et al. (2015). ‘SNCStream: A Social Network-based Data Stream Clus-
tering Algorithm’. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing - SAC ’15, SAC ’15, pp. 935–940, New York, New York, USA. ACM
Press.

M. Basseville, et al. (1993). Detection of abrupt changes: theory and application, vol.
104. prentice Hall Englewood Cliffs.

P. Berkhin (2006). ‘A survey of clustering data mining techniques’. In Grouping

multidimensional data, pp. 25–71. Springer.

V. Bhatnagar, et al. (2014). ‘Clustering data streams using grid-based synopsis’.
Knowledge and Information Systems 41(1):127–152.

A. Bifet, et al. (2013). ‘CD-MOA: Change Detection Framework for Massive Online
Analysis’. In Proceedings of the 12th International Symposium, IDA 2013, pp. 92–
103.

J. A. Blackard & D. J. Dean (1999). ‘Comparative accuracies of artificial neural net-
works and discriminant analysis in predicting forest cover types from cartographic
variables’. Computers and Electronics in Agriculture 24(3):131 – 151.

A. Botta, et al. (2016). ‘Integration of cloud computing and internet of things: a
survey’. Future Generation Computer Systems 56:684–700.

H. E. L. Cagnini & R. C. Barros (2016). ‘PASCAL: An EDA for parameterless shape-
independent clustering’. In 2016 IEEE Congress on Evolutionary Computation

(CEC), pp. 3433–3440. IEEE.

C. Camara, et al. (2019). ‘Closed-loop deep brain stimulation based on a stream-
clustering system’. Expert Systems with Applications 126:187–199.

F. Cao, et al. (2006). ‘Density-Based Clustering over an Evolving Data Stream with
Noise.’. In Proceedings of the 2006 SIAM International Conference on Data Mining,
pp. 326–337. SIAM.

160

V. Chandola, et al. (2009). ‘Anomaly detection: A survey’. ACM Computing Surveys

(CSUR) 41(3):15.

C. A. Charu & K. Chandan (2013). ‘Data clustering: algorithms and applications’.

Y. Chen & L. Tu (2007). ‘Density-based clustering for real-time stream data’. In
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining - KDD ’07, p. 133, New York, New York, USA. ACM,
ACM Press.

S. Ding, et al. (2016). ‘An Adaptive Density Data Stream Clustering Algorithm’.
Cognitive Computation 8(1):30–38.

M. H. Dunham & M. Hahsler (2011). ‘Temporal Structure Learning for Clustering
Massive Data Streams in Real-Time’. In Proceedings of the 2011 SIAM Interna-

tional Conference on Data Mining, pp. 664–675.

M. Ester, et al. (1996). ‘A density-based algorithm for discovering clusters in large
spatial databases with noise.’. In Proceedings of the 2nd International Conference

on Knowledge Discovery and Data Mining, vol. 96, pp. 226–231.

A. Forestiero, et al. (2013). ‘A single pass algorithm for clustering evolving data
streams based on swarm intelligence’. Data Mining and Knowledge Discovery

26(1):1–26.

J. Forrest (2011). ‘Stream: A framework for data stream modeling in R’. Bachelor

Thesis, Department of Computer Science and Engineering, SMU .

A. Foss & O. R. Zaiane (2002). ‘A parameterless method for efficiently discovering
clusters of arbitrary shape in large datasets’. In Proceedings of the 2002 IEEE Inter-

national Conference on Data Mining, ICDM 2003, pp. 179–186.

J. Gama, et al. (2014). ‘A survey on concept drift adaptation’. ACM Computing Surveys

(CSUR) 46(4):44.

J. Gao, et al. (2007). ‘A general framework for mining concept-drifting data streams
with skewed distributions’. In Proceedings of the 2007 Siam International Confer-

ence on Data Mining, pp. 3–14. SIAM.

J. Gao, et al. (2005). ‘An Incremental Data Stream Clustering Algorithm Based on
Dense Units Detection’. In T. B. Ho, D. Cheung, & H. Liu (eds.), Proceedings

161

of the 9th Pacific-Asia Conference on Advances in Knowledge Discovery and Data

Mining, pp. 420–425, Hanoi, Vietnam. Springer.

F. Gorunescu (2011). Data Mining: Concepts, models and techniques, vol. 12.
Springer Science & Business Media.

F. Gouineau, et al. (2016). ‘PatchWork, a scalable density-grid clustering algorithm’.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing - SAC

’16, SAC ’16, pp. 824–831, New York, New York, USA. ACM Press.

S. Guha, et al. (2000). ‘Clustering Data Streams’. In Proceedings of the Annual

Symposium on Foundations of Computer Science, pp. 359–366.

F. Gustafsson & F. Gustafsson (2000). Adaptive filtering and change detection, vol. 1.
Citeseer.

M. Hahsler & M. Bolaos (2016). ‘Clustering Data Streams Based on Shared Density
between Micro-Clusters’. IEEE Transactions on Knowledge and Data Engineering

28(6):1449–1461.

M. Hassani, et al. (2014). ‘Adaptive Multiple-Resolution Stream Clustering’. In 2016

16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid), pp. 134–148. IEEE.

V. Hautamaki, et al. (2004). ‘Outlier detection using k-nearest neighbour graph’. In
Proceedings of the 17th International Conference on Pattern Recognition, 2004.

ICPR 2004., vol. 3, pp. 430–433. IEEE.

S. Hettich & S. D. Bay (1999). ‘The UCI KDD Archive [http://kdd.ics.uci.edu]’.

G. Hulten, et al. (2001). ‘Mining time-changing data streams’. In Proceedings of

the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 97–106. ACM.

M. Imran, et al. (2018). ‘Processing social media messages in mass emergency: Survey
summary’. In Companion Proceedings of the The Web Conference 2018, pp. 507–
511. International World Wide Web Conferences Steering Committee.

A. K. Jain, et al. (1999). ‘Data clustering: a review’. ACM Computing Surveys (CSUR)

31(3):264–323.

162

J. H. Janssens, et al. (2009). ‘Outlier detection with one-class classifiers from ML and
KDD’. In Proceedings of the International Conference on Machine Learning and

Applications, pp. 147–153. IEEE.

S. Kaur, et al. (2015). ‘Stream Clustering Algorithms: A Primer’. In Big Data in

Complex Systems, vol. 9, pp. 105–145. Springer.

M. Khalilian & N. Mustapha (2010). ‘Data stream clustering: Challenges and issues’.
arXiv preprint arXiv:1006.5261 .

I. Khamassi, et al. (2018). ‘Discussion and review on evolving data streams and con-
cept drift adapting’. Evolving Systems 9(1):1–23.

D. Kifer, et al. (2004). ‘Detecting change in data streams’. In Proceedings of the 13th

International Conference on Very large Data Bases, pp. 180–191. VLDB Endow-
ment.

H. Kremer, et al. (2011). ‘An effective evaluation measure for clustering on evolving
data streams’. In Proceedings of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pp. 868–876. ACM.

A. Kumar et al. (2017). Energy Efficient Clustering Algorithm for Wireless Sensor

Network. Ph.D. thesis, Lovely Professional University.

G. H. Lee (2016). ‘Grid-based dynamic clustering with grid proximity measure’. In-

telligent Data Analysis 20(4):853–875.

F. Li, et al. (2018). ‘Discriminatively boosted image clustering with fully convolutional
auto-encoders’. Pattern Recognition 83:161–173.

R. Logesh, et al. (2019). ‘Enhancing recommendation stability of collaborative filter-
ing recommender system through bio-inspired clustering ensemble method’. Neural

Computing and Applications pp. 1–24.

S. Lühr & M. Lazarescu (2009). ‘Incremental clustering of dynamic data streams using
connectivity based representative points’. Data & Knowledge Engineering 68(1):1–
27.

J. MacQueen et al. (1967). ‘Some methods for classification and analysis of multivari-
ate observations’. In Proceedings of the 5th Berkeley Symposium on Mathematical

Statistics and Probability, vol. 1, pp. 281–297. Oakland, CA, USA.

163

M. Maier, et al. (2007). ‘Cluster identification in nearest-neighbor graphs’. In Pro-

ceedings of the 18th International Conference on Algorithmic Learning Theory, pp.
196–210. Springer.

J. Mao & A. K. Jain (1996). ‘A self-organizing network for hyperellipsoidal clustering
(HEC)’. IEEE Transactions on Neural Networks 7(1):16–29.

M. Masud, et al. (2011). ‘Classification and Novel Class Detection in Concept-Drifting
Data Streams under Time Constraints’. IEEE Transactions on Knowledge and Data

Engineering 23:859–874.

W. M. B. W. Mohd, et al. (2012). ‘An improved parameter less data clustering tech-
nique based on maximum distance of data and Lioyd k-means algorithm’. Procedia

Technology 1:367–371.

O. Nasraoui & C. Rojas (2006). ‘Robust Clustering for Tracking Noisy Evolving
Data Streams’. In Proceedings of the 2006 SIAM International Conference on Data

Mining, pp. 619–623. SIAM.

L. O’callaghan, et al. (2002). ‘Streaming-data algorithms for high-quality clustering’.
In Proceedings of the 18th International Conference on Data Engineering, p. 0685.
IEEE.

D.-S. Pham, et al. (2014). ‘Anomaly detection in large-scale data stream networks’.
Data Mining and Knowledge Discovery 28(1):145–189.

A. A. Qahtan, et al. (2015). ‘A PCA-Based Change Detection Framework for Multi-
dimensional Data Streams: Change Detection in Multidimensional Data Streams’.
In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 935–944. ACM.

S. Rajasegarar, et al. (2014). ‘Hyperspherical cluster based distributed anomaly detec-
tion in wireless sensor networks’. Journal of Parallel and Distributed Computing

74(1):1833–1847.

P. J. Rousseeuw & C. Croux (1993). ‘Alternatives to the Median Absolute Deviation’.
Journal of the American Statistical Association 88(424):1273–1283.

C. Ruiz, et al. (2009). ‘C-DenStream: Using domain knowledge on a data stream’. In
Proceedings of the 12th International Conference on Discovery Science, pp. 287–
301. Springer.

164

J. C. Schlimmer & R. H. Granger (1986). ‘Incremental learning from noisy data’.
Machine learning 1(3):317–354.

J. Schneider & M. Vlachos (2013). ‘Fast parameterless density-based clustering via
random projections’. In Proceedings of the 22nd ACM International Conference on

Information & Knowledge Management - CIKM ’13, pp. 861–866, New York, New
York, USA. ACM, ACM Press.

J. Shao, et al. (2019). ‘Synchronization-based clustering on evolving data stream’.
Information Sciences 501:573–587.

J. A. Silva, et al. (2013). ‘Data stream clustering: A survey’. ACM Computing Surveys

(CSUR) 46(1):13.

A. Soule, et al. (2005). ‘Combining filtering and statistical methods for anomaly de-
tection’. In Proceedings of the 5th ACM SIGCOMM Conference on Internet Mea-

surement, pp. 31–31. USENIX Association.

S. J. Stolfo, et al. (2000). ‘Cost-based modeling for fraud and intrusion detection: Re-
sults from the JAM project’. In Proceedings of the DARPA Information Survivability

Conference and Exposition, vol. 2, pp. 130–144. IEEE.

L. Sun, et al. (2017). ‘Fast affinity propagation clustering based on incomplete simi-
larity matrix’. Knowledge and Information Systems 51(3):941–963.

C. Truong, et al. (2018). ‘A review of change point detection methods’. arXiv preprint

arXiv:1801.00718 .

V. S. Tseng & C.-P. Kao (2005). ‘Efficiently mining gene expression data via a novel
parameterless clustering method’. IEEE/ACM Transactions on Computational Biol-

ogy and Bioinformatics 2(4):355–365.

M. Van Leeuwen & A. Siebes (2008). ‘Streamkrimp: Detecting change in data
streams’. In Machine Learning and Knowledge Discovery in Databases, pp. 672–
687. Springer.

L. Wan, et al. (2009). ‘Density-based clustering of data streams at multiple resolu-
tions’. ACM Transactions on Knowledge Discovery from Data 3(3):1–28.

G. Wang, et al. (2017). ‘Clickstream user behavior models’. ACM Transactions on the

Web (TWEB) 11(4):1–37.

165

Z. Wang, et al. (2019). ‘A new method for rapid genome classification, clustering,
visualization, and novel taxa discovery from metagenome’. BioRxiv p. 812917.

N. Wattanakitrungroj, et al. (2018). ‘BEstream: Batch capturing with elliptic function
for one-pass data stream clustering’. Data & Knowledge Engineering .

G. Widmer & M. Kubat (1996). ‘Learning in the presence of concept drift and hidden
contexts’. Machine learning 23(1):69–101.

X. Zhang, et al. (2008). ‘Data streaming with affinity propagation’. In Proceedings of

the Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pp. 628–643. Springer.

K. Zhao, et al. (2016). ‘Urban human mobility data mining: An overview’. In 2016

IEEE International Conference on Big Data (Big Data), pp. 1911–1920. IEEE.

A. Zhou, et al. (2008). ‘Tracking clusters in evolving data streams over sliding win-
dows’. Knowledge and Information Systems 15(2):181–214.

M. Zwolenski, et al. (2014). ‘The digital universe: Rich data and the increasing value
of the internet of things’. Australian Journal of Telecommunications and the Digital

Economy 2(3):47.

Every reasonable effort has been made to acknowledge the owners of copyright ma-
terial. I would be pleased to hear from any copyright owner who has been omitted or
incorrectly acknowledged.

166

Statement of Contribution by Others

To Whom It May Concern, I, Ross Callister, contributed to the design and concep-
tion of the research ideas, the literature review, the implementation of algorithms, the
design and execution of experiments, the collation of experimental results, the paper
writing and typesetting, and the discussion of results to the following papers:

• Callister, R., Lazarescu, M., & Pham, D. S. (2015). Detection of Structural
Changes in Data Streams. In Proceedings of the Thirteenth Australasian Data

Mining Conference (AusDM 2015), Sydney, Australia, August 2015 (pp. 79-88).

• Callister, R., Lazarescu, M., & Pham, D. S. (2017, April). Graph-based cluster-
ing with DRepStream. In Proceedings of the Symposium on Applied Computing

(pp. 850-857).

• Callister, R., Pham, D. S., & Lazarescu, M. (2019). Using distribution analysis
for parameter selection in RepStream. Mathematical Foundations of Computing,
2(3), 215-250.

• Callister, R., Pham, D. S., & Lazarescu, M. (2020). RobustRepStream: Robust
Stream Clustering Using Self-Controlled Connectivity Graph. Intelligent Data

Analysis, 24(4).

Ross Callister

I, as a Co-Author, endorse that this level of contribution by the candidate indicated
above is appropriate.

Dr. Duc-Son Pham................................

Dr. Mihai Lazarescu..............................

167

Index

K connectivity parameter, 41
α scaling factor, 41, 129
λ decay factor, 41

anomaly detection, 16
average distribution score, 92

change detection, 16, 46
classes, 86
cluster count, 48
cluster merges and splits, 51
concept attainment, 6
concept drift, 7

data streams, 2
detected weight, 59
detection rate, 59
dimensionality, 2

edge change count, 49
edge distribution score, 88
edge-length variation, 52

f-measure, 110, 136

false alarm rate, 59

history count, 52

inter-class edges, 87
intra-class edges, 87

KDD Cup 99’ dataset, 60

mean time ratio, 59
mean time to detection, 59

parameters, 5, 9, 29
point-level sparse-graph, 33
purity, 110, 137

representative-level sparse-graph, 34
RepStream, 32
RobustRepStream, 125

skewness excess, 123
synthetic datasets, 94

tree cover type dataset, 99

unsupervised, 4

169

Copyright Statement
Content from the following papers were used in the production of the thesis titled “Automatically
Selecting Parameters for Graph-Based Clustering”, by Ross Callister

Article 1
Callister, R., Lazarescu, M., & Pham, D. S. (2015). Detection of Structural Changes in Data
Streams. In Proceedings of the Thirteenth Australasian Data Mining Conference (AusDM 2015),
Sydney, Australia, August 2015 (pp. 79-88).

Published by the Australian Computer Society Inc, copyright owned by Conferences in Research
and Practice in Information Technology Series (CRPIT)
The agreement allows material to be used in a thesis provided the given copyright notice is included
(which has been done at the start of Chapter 3)

Article 2
Callister, R., Pham, D. S., & Lazarescu, M. (2019). Using distribution analysis for parameter
selection in RepStream. Mathematical Foundations of Computing, 2(3), 215-250.

Published by The American Institute of Mathematical Sciences, copyright owned by same.
The agreement allows the use of copyrighted materials in derivative and scholarly works.

Article 3
Callister, R., Pham, D. S., & Lazarescu, M. (2020). RobustRepStream: Robust Stream Clustering
Using Self-Controlled Connectivity Graph. Intelligent Data Analysis, 24(4).

Published by IOS Press under licence. Copyright is retained by Ross Callister.
The agreement includes permission to use the article, in whole or in part, as a basis for scholarly
works.

Article 4
Callister, R., Lazarescu, M., & Pham, D. S. (2017, April). Graph-based clustering
with DRepStream. In Proceedings of the Symposium on Applied Computing
(pp. 850-857).

Published by the Association for Computing Machinery, copyright owned by same.
The agreement allows for the reuse of any portion of the work in future works.

The following pages list the copyright agreements which permit usage of the listed works to be used
in the publication of a thesis.

Article 1, CRPITA copyright agreement

FAX TO +61 2 9685 9557 ATTENTION: S. SIMOFF

CONFERENCES IN RESEARCH AND PRACTICE IN INFORMATION TECHNOLOGY

- Acceptance and Copyright Transfer Form

Acceptance
I/We hereby consent to the publication of my/our paper entitled:
__
which appeared/will appear at:
__
and in the Australian Computer Society series Conferences in Research and the Practice in
Information Technology, Volume_____________________
Assignment in Copyright – Standard Assignment
We hereby assign all copyright in and to the above work to the Australian Computer Society Inc.
(the "ACS"). I/We hereby warrant that the work is original and that I/We am/are the author(s) of the
work, except possibly for material such as text passages, figures, and data that clearly identify the
original source. I/We have the power and authority to make and execute this assignment. I/We also
assert that this material is not libelous and that the publication of this material is not illegal.
In consideration of this assignment the ACS grants to the above authors and employers for whom
the work described in the paper may have been performed a royalty-free license to use the paper on
the following conditions.
1. Employers (or authors) retail all proprietary rights in any process, procedure, or article of

manufacture described in the work.
2. Authors/employers may reproduce or authorize others to reproduce the material extracted

verbatim from the paper, or derivative works for the author's personal use or for company use
provided that the source and the ACS copyright notice is indicated, that the copies are not used
in any way that implies ACS endorsement of a produce or service of an employer, and that the
copies themselves are not offered for sale.

3. Authors/employers may make limited distribution of all or portions of the paper prior to
publication if they inform the ACS of the nature and extent of such limited distribution prior
thereto.

4. In the case of work performed under an Australian or U.S. Government contract or grant, ACS
recognizes that the Australian or U.S. Government has royalty-free permission to reproduce all
or portions of the above work, and to authorize others to do so, for official Australian or U.S.
Government purposes only, if the contract/grant so demands.

5. For all circumstances not covered above, authors/employers must request permission from the
ACS.

Please note that, although authors are permitted to use all or portions of their ACS-copyright
material in other works, this does not include granting third party requests for reprinting,
republishing or other types of reuse. The ACS must handle all third party requests.
Signed and dated:
_____________________________________ _________/_________/20__

Article 2, consent to publish

Article 3, copyright agreement

Article 4, copyright transfer

	Acknowledgements
	Abstract
	Introduction and Motivation
	Data Stream Clustering
	Problems With Stream Clustering
	Problem Statement
	Contributions
	Thesis Structure

	Background and Literature Review
	Change Detection Background
	Approaches Including Change Detection
	Anomaly detection
	Stream Change Detection Methods

	Stream Clustering Algorithms
	Micro-Cluster/Density-Based Clustering
	Grid-Based Clustering
	Graph-Based Clustering
	Other Novel Clustering Methods
	Parameters In Clustering

	The RepStream Algorithm
	Point Level Sparse Graph
	Representative Level Sparse Graph
	Clustering With RepStream
	Algorithm
	Parameters In RepStream

	Change Detection
	Overview of Stream Change Detection
	Contributions

	Definitions
	Basic Definitions
	Feature Definitions
	Cluster Count
	Edge Change Count
	Cluster Merges and Splits
	Edge-Length Variation
	History Count

	Methodology
	Feature Extraction
	Detection Scheme
	Defining Ground Truth Changes

	Experiments
	Evaluation Measures
	Dataset
	KDD Cup 99'
	KDD Dataset Composition
	Smurf Attack
	Nepune Attack
	Normal Traffic and Other Attacks

	Feature Evaluation
	Setup and Parameter Selection
	Results

	Discussion
	Qualitative Analysis
	Comparison Method Analysis
	Parameters
	Summary

	Conclusion

	Selecting K in RepStream
	Dynamic K Selection Overview
	Proposed Method
	Inter versus Intra Class Edges
	Edge Distribution Score
	Selection of the K Parameter

	Evaluation
	Synthetic Datasets
	DS1 and DS2
	SynTest
	Closer

	Benchmark Datasets
	The KDD Cup 1999 dataset
	The Tree Cover Type dataset

	Experimental Set-Up
	Results vs Other Algorithms
	Results vs RepStream

	Discussion
	Conclusion

	RobustRepStream
	Overview of RobustRepStream
	Proposed Method
	Skewness Excess
	RobustRepStream

	Experiments
	Real World Data Sets: KDD and Tree Cover
	The KDD Cup 1999 data set
	The Tree Cover Type Data Set

	Synthetic Data Sets
	Closer Data Set
	SynTest Data Set
	Shapes Data Set
	DS1 and DS2

	Evaluation Metrics
	Comparison to Other Algorithms
	Baseline for Comparison
	Evaluation of RobustRepStream
	Sensitivity

	Results Discussion
	Conclusion

	Conclusions
	Change Detection
	Dynamic K Parameter Selection
	RobustRepStream
	Future Work

	Bibliography

