
Department of Electrical and Computer Engineering 

Online Coordinated Charging of Plug-In Electric Vehicles 

in Smart Grid to Minimize Cost of Generating Energy  

and Improve Voltage Profile 

Amir Sherkat Masoum 

This thesis is presented for the Degree of 
Doctor of Philosophy 

of 
Curtin University 

May 2020 



  

 
 
  



1 

STATEMENT OF CONTRIBUTION BY OTHERS 

The following people have contributed to the publications of references [55], [56], [57] 

and [58] related to chapters 4, 5, 6 and 7 (see Appendix B): 

• A/Professor Ahmed Abu-Siada: Supervision of research, review of the results and

the review and approval of references [55], [56], [57] and [58].

• Professor Syed Islam: Review of the results and the review and approval of

references [55], [57] and [58].

• Dr Sara Deilami: Review and approval of references [55], [56] and [57].

• Professor Mohammad Ali Sherkat Masoum: Review and approval of references

[55], [56] and [57].

Signature Date: 1/05/2020 

Amir Sherkat Masoum 

Ph.D. Candidate  

Signature Date: 11/05/2020 

Professor Ahmed Abu-Siada 

Ph.D. Candidate Supervisor  



2 

Table of Contents 
Abstract ........................................................................................................................ 7 

Abbreviations ............................................................................................................. 10 

Symbols ...................................................................................................................... 12 

Chapter One: Introduction.......................................................................................... 15 

1.1. Motivations of the Ph.D. Thesis .................................................................................. 15 

1.2. Objectives of the Ph.D. Thesis ..................................................................................... 17 

1.3. Contributions of the Ph.D. Thesis ................................................................................ 18 

1.4. Outline of the Ph.D. Thesis .......................................................................................... 19 

Chapter Two: Literature Review on Smart Power Grids ............................................. 21 

2.1. Concept and Motivations of Smart Power Grid ........................................................... 21 

2.2. Smart Power Grid Infrastructure ................................................................................. 24 

2.2.1. Smart Energy System ......................................................................................................... 24 

2.2.2. Smart Power Grid Information System ............................................................................... 26 

2.2.3. Smart Power Grid Communication System ......................................................................... 27 

2.3. Demand Response in Smart Power Grid ..................................................................... 28 

2.3.1. Demand Response Communication Architectures .............................................................. 28 

2.3.2. Demand Response Programs ............................................................................................. 30 

2.3.3. Demand Response Modelling and Formulation Approaches ............................................... 33 

2.4. New Research in Smart Power Grid Technology ......................................................... 35 

Chapter Three: Literature Review on Coordinated Battery Charging Strategies for 

Electric Vehicles .......................................................................................................... 38 

3.1. Electric Vehicles .......................................................................................................... 38 

3.1.1. Present Global EV Market .................................................................................................. 40 

3.1.2. Projected Future Global EV Market .................................................................................... 42 

3.1.3. Benefits and Drawbacks of EVs .......................................................................................... 44 

3.2. EV Charging Levels, Types and Characteristics ............................................................ 46 

3.3. Impacts of Random Electric Vehicle Charging on Power Network ............................... 48 



3 

 

3.3.1. Effects of Random EV Battery Charging on Smart Power Grids ........................................... 49 

3.3.2. Mitigation Potential Negative Impacts of EV Charging ........................................................ 49 

3.4. Classification of PEV Battery Charging Coordination Schemes .................................... 51 

3.4.1. Centralized PEV Battery Charging Coordination.................................................................. 52 

3.4.2. Decentralized PEV Battery Charging Coordination .............................................................. 53 

3.4.3. Hierarchical PEV Battery Charging Coordination ................................................................. 55 

3.5. Properties of PEV Coordinated Battery Charging Schemes.......................................... 57 

3.5.1. Unidirectional (G2V) Versus Bidirectional (G2V and V2G) Power Flow ................................ 59 

3.5.2. Offline Open-Loop versus Online Closed-Loop PEV Coordination ........................................ 59 

3.5.3. Variable Rate versus Discrete Rate PEV Battery Charging ................................................... 60 

3.5.4. Static versus Mobility-Aware PEV Battery Charging Coordination ....................................... 60 

3.5.5. Pricing Strategies ............................................................................................................... 62 

3.6. Objective Functions of PEV Battery Charging Schedule Optimization ......................... 62 

3.6.1. Objective Functions Considering Operation Aspects ........................................................... 63 

3.6.2. Objective Functions Considering Cost Aspects.................................................................... 65 

3.7. Future Research in Battery Charging Coordination of PEVs......................................... 66 

Chapter Four: Online MSS-Based Coordinated Battery Charging Of PEVs in Smart 

Power Grids Considering Wind Distributed Generations ............................................ 67 

4.1. Centralized Online and Offline Battery Charging Coordination of PEVs ...................... 68 

4.2. Review of Newton-Raphson Power Flow Formulation and Calculations ..................... 69 

4.2.1. Bus Types and Bus Mismatch Power .................................................................................. 69 

4.2.2. Formulation of Load Flow Problem based on Zero Mismatch Power................................... 71 

4.2.3. Newton-Raphson Power Flow Solution .............................................................................. 73 

4.3. Concepts and Formulation of OL-MSSCC ..................................................................... 74 

4.3.1. Concepts of OL-MSSCC ...................................................................................................... 74 

4.3.2. Problem Formulation of OL-MSSCC .................................................................................... 80 

4.4. Implementation of OL-MSSCC ..................................................................................... 81 

4.4.1. PEV Coordination Based on Maximum Sensitivity Selections .............................................. 82 

4.4.2. Updating of MSS Vector and PEV-Queue Table .................................................................. 83 

4.4.3. Inclusion of Wind Distributed Generations in OL-MSSCC .................................................... 84 

4.4.4. The Flow Chart Representation of Proposed OL-MSSCC Considering WDGs ........................ 84 

4.5. The 449 Smart Power Grid Distribution System .......................................................... 88 



4 

 

4.5.1. Topology of Smart Power Grid System ............................................................................... 88 

4.5.2. PEV Energy Requirements ................................................................................................. 90 

4.5.3. Residential Load Profiles and EV Battery Chargers.............................................................. 91 

4.5.4. Injection and Designated Priorities of PEVs ........................................................................ 91 

4.6. Simulation and Analyses of PEV Coordination with Proposed OL-MSSCC ................... 92 

4.6.1. Random Charging of PEVs without WDGs (Case A) ............................................................. 94 

4.6.2. The OL-MSSCC of PEVs without WDGs (Case B) .................................................................. 95 

4.6.3. The OL-MSSCC of PEVs with WDGs (Case C) ....................................................................... 96 

4.6.4. Impact of Wind Peak Generation Time on OL-MSSCC of PEVs (Case D) ............................... 97 

4.6.5. Impact of Wind Power Injection on OL-MSSCC of PEVs (Case E) ......................................... 97 

4.6.6. Impact of WDG Location on OL-MSSCC of PEVs (Case F) ..................................................... 98 

4.7. Discussions and Conclusions ..................................................................................... 103 

Chapter Five: Centralized Online Fuzzy Coordinated Battery Charging of PEVs in 

Smart Power Grids Considering Wind Generation.................................................... 105 

5.1. Fuzzy Sets, Fuzzification and Defuzzification Techniques .......................................... 106 

5.1.1. Fuzzy Set ......................................................................................................................... 107 

5.1.2. Fuzzification .................................................................................................................... 108 

5.1.3. Membership Functions .................................................................................................... 108 

5.1.4. Defuzzification Using Alpha-Cut Method .......................................................................... 110 

5.2. Formulation of Proposed Online Fuzzy Coordinated Battery Charging (OL-FCC) 

Algorithm for PEVs to Reduce Total Cost ......................................................................... 111 

5.2.1. Objective Cost Function and Constraints of Proposed OL-FCC .......................................... 111 

5.2.2. Fuzzification of System Losses and Constraints Using Membership Functions ................... 112 

5.2.3. Fuzzied Combination of All Membership Functions .......................................................... 115 

5.2.4. Defuzzifiation Based on α-Cut Method............................................................................. 116 

5.2.5. Analyses of Proposed OL-FCC Algorithm .......................................................................... 116 

5.2.6. Flow Chart of Proposed OL-FCC Algorithm ....................................................................... 118 

5.3. Simulation Results of OL-FCC of PEVs without WDGs................................................ 120 

5.3.1. PEV Battery Charging without Coordination (Case A) ....................................................... 122 

5.3.2. PEV Battery Charging with OL-MSSCC Coordination (Case B) ............................................ 122 

5.3.3. PEV Battery Charging with OL-FCC Coordination (Case C) ................................................. 123 

5.4. Simulations of PEV Battery Charging with OL-FCC Coordination and WDGs ............. 125 

5.4.1. Fuzzy and MSS-Based PEV Charging Coordination with WDGs (Cases D-E) ........................ 125 



5 

 

5.4.2. Effects of Peak Wind Generation Time on OL-FCC (Case F) ............................................... 127 

5.4.3. Effects of Wind Injection Level on OL-FCC (Case G) .......................................................... 128 

5.4.4. Effects of Wind Location on OL-FCC (Case H).................................................................... 130 

5.4.5. Power Consumption of OL-FCC without and with WDGs Considering ............................... 132 

5.5. Conclusion................................................................................................................. 136 

Chapter Six: Delayed (Overnight) MSS-Based Coordinated battery charging of PEVs in 

Smart Power Grid ..................................................................................................... 138 

6.1. Concepts of Proposed Delayed PEV Coordinated Battery Charging .......................... 139 

6.2. Formulation of DL-MSSCC ......................................................................................... 141 

6.3. Flow Chart of Proposed DL-MSSCC ............................................................................ 142 

6.4. Simulation Results for Delayed DL-MSSCC Coordinated battery charging of PEVs .... 146 

6.4.1. Uncoordinated PEV Battery Charging (Case A) ................................................................. 149 

6.4.2. Online MSS-Based OL-MSSCC Coordinated PEV Battery Charging (Case B) ........................ 149 

6.4.3. Delayed Coordinated PEV Battery Charging without Wind DGs (Case C) ........................... 150 

6.5. Analyses of Proposed Delayed PEV Coordinated battery charging Strategy ............. 155 

6.6. Conclusion................................................................................................................. 158 

Chapter Seven: Combined Online Fuzzy and Delayed MSS Coordinated battery 

charging of PEVs in Smart Power Grids with Wind and Solar Distributed Generations

 ................................................................................................................................. 159 

7.1. Concepts of Online Combined/Hybrid Fuzzy and Delayed MSS Coordinated battery 

charging OL-F/DL-MSSCC Strategy for PEVs ..................................................................... 160 

7.1.1. Consumer Priority Groups for Proposed OL-F/DL-MSSCC Strategy .................................... 160 

7.1.2. Battery Charging Time Zones for OL-F/DL-MSSCC Strategy ............................................... 161 

7.1.3. PEV-Queue Table for Proposed OL-F/DL-MSSCC Strategy ................................................. 162 

7.2. Formulation of Proposed OL-F/DL-MSSCC Strategy .................................................. 165 

7.2.3.  Inclusion of Wind and Solar (Rooftop) Distribution Generations ...................................... 165 

7.3. Flow Chart of Proposed OL-F/DL-MSSCC Algorithm .................................................. 166 

7.4. Simulation Results Supporting Performance of OL-F/DL-MSSCC Algorithm .............. 170 

7.4.1. PEV Battery Charging without Coordination and Renewable DGs (Case A) ........................ 173 

7.4.2. Random PEV Battery Charging with Renewable DGs (Case B) ........................................... 173 



6 

 

7.4.3. PEV Battery Charging with OL-FC/DL-MSSCC Coordination without Renewable Wind and 

Solar DGs (Case C) ..................................................................................................................... 174 

7.4.4. PEV Battery Charging with OL-FC/DL-MSSCC Coordination with Renewable Wind and Solar 

DGs (Case D) ............................................................................................................................. 174 

7.5. CONCLUSION ................................................................................................................ 185 

Chapter Eight: Thesis Summary and Contributions .................................................. 187 

8.1.  Summary of the Ph.D. Thesis ................................................................................... 187 

8.2. Contributions of the Ph.D. Thesis .............................................................................. 190 

8.3. Conclusions of the Ph.D. Thesis ................................................................................. 190 

8.4. Future Recommendations ......................................................................................... 194 

References ................................................................................................................ 196 

Appendix A – Publications Extracted from This Thesis ............................................. 210 

Appendix B – Statements of Contribution for Paper Publications ............................ 211 

 



7 

 

ABSTRACT  

Smart Power Grid (SG) is an efficient and intelligent network that improves the operation, 

efficiency and reliability of electrical power systems through energy sharing, monitoring 

and management. It promotes rapid developments of renewable distributed generations 

(DGs), smart metering, grid monitoring, smart loads, and plug-in electric vehicles 

(PEVs). However, SG technology has made network control and energy trading more 

complex and is posing significant challenges on design, management, and trading 

schemes. Moreover, electric utilities are apprehensive of the adverse impacts of 

overloading and poor power quality on their systems due to high injections of renewable 

resources and extensive PEV battery charging. This Ph.D. research highlights the 

negative impacts of random vehicle battery charging on power grid and proposes four 

practical PEV coordinated battery charging strategies that reduce network and generation 

costs by integrating renewable energy resources and real-time pricing while considering 

utility constraints and consumer concerns.  

The main contributions of this Ph.D. thesis are: 

1) A centralized online maximum sensitivities selection (MSS)-based coordinated 

battery charging (OL-MSSCC) algorithm for PEVs in smart power grids with the 

consideration of wind distributed generations (WDGs) [55]. This approach is an 

expansion to the real-time smart load management (RT-SLM) algorithm of [63]. 

2) A centralized online fuzzified coordinated battery charging (OL-FCC) 

strategy/algorithm for PEVs in SG networks with the consideration of WDGs [56].  

3) A centralized delayed (overnight) MSS-based coordinated battery charging (DL-

MSSCC) strategy/algorithm for PEVs in SG networks with WDGs [57]. 
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4) A centralized combined online fuzzy and delayed MSS-based coordinated battery 

charging (OL-F/DL-MSSCC) algorithm for PEVs in SG networks with the 

considerations of wind and solar (rooftop) DGs [58]. 

The uncoordinated (random) vehicle battery charging and the above four proposed PEV 

coordinated battery charging algorithms are programed in MATLAB software and tested 

on an assembled 449-bus SG network with PEVs, WDGs, rooftop PVs, and their 

performances are compared without and with renewable energy resources.   

The main conclusions of this Ph.D. thesis are: 

ü The four proposed PEV coordinated battery charging algorithms can effectively 

schedule vehicle battery charging without and with renewable DGs and reduce the 

costs associate with generation and losses whilst maintaining bus voltage 

regulations/deviations and network maximum demand limits/levels within designated 

acceptable bounds. 

ü The advantage and main difference of the recommended OL-MSSCC compared to the 

RT-SLM algorithm of [63] is the addition of WDGs to further reduce the cost and the 

possibility of overloading the lines and distribution transforms due to the high 

injections of PEVs predominantly in the hours of peak residential loads.   

ü The contribution of proposed the OL-FCC compared with the OL-MSSCC is the 

application of the fuzzy reasoning for additional reduction of grid costs for high 

injection PEV scenarios.  

ü The advantage of proposed DL-MSSCC over OL-MSSCC and OL-FCC is cheap 

overnight charging with lower grid costs, but it may cause dissatisfactions for the 

high-priority consumers.  
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ü Finally, the proposed OL-F/DL-MSSCC algorithm offers the advantages of OL-

MSSCC, OL-FCC and DL-MSSCC while resolving most of their limitations. It 

reduces the total network cost by considering short term market energy prices and 

directly leveraging the accessible renewable (wind and solar) generations for vehicle 

battery charging. It will also maintain the bus voltages and the upper demand levels 

within the acceptable limits based on maximum sensitivity selections and/or fuzzy 

reasoning.  In addition, OL-F/DL-MSSC improves customer satisfaction by offering: 

i) three consumer (high, medium and low) priority options, ii) three battery charging 

(fast online evening, online daytime and cheap overnight) options, iii) three battery 

charging time (red, blue and green) zones and, iv) the ability to charge at high, medium 

or low tariff rates.  

 

 



10 

 

 ABBREVIATIONS 

BEV Battery electric vehicle (also called plug-in electric vehicle; PEV) 

CS Charging station 

DCFC Direct current fast charging 

DSM  Demand side management 

DG Distributed generation  

ES Energy storage  

EV Electric vehicles  

EVSE Electric vehicle supply equipment 

G2V Grid-to-vehicle charging 

HANs Home area networks 

ICE Internal combustion engine 

ICT Information and communications technology 

IEA International Energy Agency 

ISO Independent System Operator 

LDV Light-duty vehicle  

LSEV Low-speed electric vehicle 

MSS Maximum sensitivities selection 

OL-FCC online fuzzy coordinated battery charging 

OL-MSSCC Online MSS coordinated battery charging 

OL-SLMCA online smart load management coordination algorithm 

PEV Plug-in EV 

PHEV Plug-in hybrid EV  

PV photovoltaic  
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RDG  Renewable DG 

SG  Smart power grid 

SGT Smart grid technology  

V2G Vehicle-to-grid charging 

WDG Wind Distributed generation 
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SYMBOLS   

𝐷",$%& Maximum demand at time t with no PEVs 

𝐷","'"%( total demand at time t 

𝐷",$%&,')*+,-./" Estimated 𝐷",$%& for delayed (overnight) PEV battery charging 

𝐸123  Energy to charge one EV 

𝐹5'6"7('66  Cost associated with system losses  

𝐹5'6"7.*,  Cost associated with generation 

𝐹5'6" Total costs   

𝐹(𝑉) = ∆𝑆>  Mismatch apparent power at bus k (in VA) 

𝐹?5/*@A(*@(𝑉),

𝐹B%(5A(%"*@(𝑉) 

Scheduled and calculated apparent power at bus k (in VA) 

𝐼DA6=   [𝐼] Bus current vector 

𝐽		 Jacobian matrix 

𝐾2 Cost for one megawatt hour of losses  

𝐾∆",J  Cost for one megawatt hour of generation at delta t 

𝑀𝑆𝑆- bus i sensitivity to EV charging 

𝑁123 Gross number of EVs in PEV-Queue Table 

𝑃>(?5/*@A(*@)		,

𝑃>(B%(5A(%"*@) 

Scheduled and calculated active power at bus k (in W) 

𝑃",>('%@  Total load power at bus k at time t 

𝑃",N123  PEV battery charging power at bus j at time t 

𝑃",$OPJ  Wind DG power generation at bus m at specific time t 

𝑃",('66  Power losses (total) at time t 
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𝑄>(?5/*@A(*@)		,

𝑄𝑃>(B%(5A(%"*@) 

Scheduled and calculated reactive power at bus k (in Var) 

𝑅>,>ST	, 𝑦>,>ST Line resistance and reactance between buses k and k+1 

𝑆>(?5/*@A(*@)	,

𝑆>(B%(5A(%"*@)   

Scheduled and calculated apperent power at bus k (in VA) 

𝑉DA6= [𝑉] Bus voltage vector 

𝑉>  Voltage at bus k 

𝑉+%"*@  Rated voltage at all buses 

∆t Time interval ∆t = 5 minutes 

𝑡@*(%W  Starting time for delayed/overnight PEV battery charging 

𝑡*,@ Ending time for delayed/overnight PEV battery charging 

𝑇@*(%W  Period of delayed/overnight PEV battery charging 

𝑊P  Weighting factor for maximum demand membership function 

𝑊Z  Weighting factor system loss membership functions 

𝑊3  Weighting factor for voltage deviation membership function 

𝑌DA6 Admittance matrix  

∆𝑃> Mismatch active power at bus k (in W) 

∆𝑆>  Mismatch apparent power at bus k (in VA) 

∆𝑄>  Mismatch reactive power at bus k (in Vars) 

∆t Time interval ∆t = 5 minutes 

∆𝑉>  Voltage deviation at bus k 

∆𝑉$%&  Maximum voltage deviation at bus k 

𝜇P  Fuzzy membership function for maximum demand 

𝜇('66  Fuzzy membership function for loss 
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𝜇∆3] Fuzzy membership function for voltage deviation  

𝜇123,N	, 

𝑆123,N 

Combine fuzzy membership function for PEVat bus j  

and its crisp (defuzzify) value 

α The α-cut value used for defuzzifiation 
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CHAPTER ONE: INTRODUCTION  

1.1. Motivations of the Ph.D. Thesis 

The innovating smart power grid (SG) technology is broadly considered as an efficient 

and intelligent power network [1-42]. It improves the operation, efficiency and reliability 

of power grid through intellectual energy management by promoting rapid developments 

of renewable distributed generations (DGs), smart metering, grid monitoring, smart loads 

and plug-in electric vehicles (PEVs) [43-124]. However, SG technology has made 

network control and energy trading more complex and is posing significant challenges on 

design, management, and trading schemes. These new challenges are mainly due to the 

development of new features such as the introduction of intermittent renewable energy 

resources, diverse energy storage systems and smart appliances as well as the integration 

of plug-in electric vehicles (PEVs) with grid-to-vehicle (G2V), vehicle-to-grid (V2G) and 

vehicle-to-vehicle (V2V) modes of operation [5-6].  

The main reasons to support the development of SG technology are its new features, green 

resources and modular structure that can be easily expended by adding new renewable 

microgrids (MGs). Some benefits and features associated with the smart power grid 

technology can be as follows [1-9]: 

1) More Efficient Network with Lower Cost and Improved Security- SG can offer more 

transmission of electricity with faster network restoration after disturbances and 

faults as well as lower operation, management and maintenance costs for utilities, 

and eventually cheaper costs for the consumers. The reduced network peak demand 

will also help to achieve lower electricity rates. 

2) Distributed Architecture with Sophisticated Communication Backbone- SGs can be 

modeled as grouped architecture consisting of interactive networked (clustered) 
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renewable MGs [7-9]. The open communication backbone of SG provides fast 

linkages among the elements of MGs and enables them to participate in the decision 

making that delivers value to both the utility and consumers. However, controlling 

the load and generation variations of each MG together with its interconnections with 

the remaining MGs requires complicated energy management programs [1].  

3) Increased Integration of Diverse Renewable Energy Resources- Large-scale 

integrations of heterogeneous renewable distributed generations (RDGs) such as 

solar, wind and hydroelectric power resources will have great positive impacts on 

power grid operation, our health and lifestyles [1]. 

4) Integration of Distributed Energy Storage: With the present technology, the 

utilization of most energy storages is relatively costly but required to mitigate the 

variability and intermittency of RDGs [1]. On the positive side, energy storage 

systems can be smartly used to shift consumers’ energy consumption to off-peak load 

periods and/or overlap them with the peak output times of RDGs.  

5) Widespread Assimilation of Plug-In/Hybrid Electric Vehicles: The bidirectional 

energy flow between PEVs and SG can help to balance demand and generation in 

local areas and/or MGs. This can be done using different operation modes of the 

PEVs including grid-to-vehicle (G2V), vehicle-to-grid (V2G) and vehicle-to-vehicle 

(V2V). Moreover, since PEVs travel amongst different areas of SG, their energy 

transportation from one place to another can be smartly used to improve the energy 

reliability among different MGs [1]. 

Therefore, considering the above-mentioned benefits and features of SG technology, this 

Ph.D. thesis intends to explore the negative impacts of uncoordinated PEV battery 

charging and propose new vehicle coordinated battery charging strategies that consider 
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both the utility and consumer concerns. The research is performed in two stages:  

Ø Stage 1 (Literature Reviews)- Chapters 2 and 3 present the summarized results of 

literature reviews on SG technology and coordinated battery charging of PEVs. 

Ø Stage 2 (Thesis Contributions)- Chapters 4 to 7 present four new PEV coordinated 

battery charging algorithms that are programed in MATLAB and tested on a 449-bus 

SG network and their performances are compared without and with RDGs.   

The research on coordinated PEV battery charging are classified into centralized, 

decentralized and hierarchical strategies [45]-[48]. Charging can be done separately for 

each PEV, cooperatively for groups of PEVs or centrally for all PEVs. The main 

limitations of the existing research are (see chapter three for more details): 

a) With centralized coordination schemes, the PEV owners miss the privilege of directly 

controlling their own vehicle charging. In addition, there are scalability and single 

point of failure challenges at the ISO level [46]-[47], [62]-[68]. 

b) The decentralized coordination algorithms cannot guarantee global optimal or near-

optimal scheduling solutions. In addition, they usually require large communication 

overheads [47]. 

c) Most coordinated PEV charging strategies rely on predicted or forecasted information 

on the status of EVs, power grid, and renewable energy resources [62], [74], [90], [93].    

Most research are targeting either online ([63], [80], [87], [94]) or offline ([62], [90], 

[93]) battery charging without looking into options for hybrid online-offline 

coordination strategies 

1.2. Objectives of the Ph.D. Thesis 

The main objectives of this research are: 

§ Exploring the impacts of random EV charging on the SG operation including network 
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cost, network losses, transformer loadings, generation demand and bus voltages within 

charging horizon of 24 hours. 

§ Improving the performance of SG networks with EV charging activities by including 

vehicle battery charging time zones, consumers’ preferences, and variable energy costs 

in the formulating of the PEV centralized coordinated battery charging problem. 

§ Proposing and implementing new PEV battery charging coordination strategies with 

lower losses, less costs and improved customer satisfaction. 

§ Programing of the proposed PEV battery charging schemes (in MATLAB), evaluating 

and comparing their performances on a sample SG network.  

§ Investigating the impacts of distributed wind and solar generations on the performance 

and end costs of the proposed PEV battery charging schemes. 

1.3. Contributions of the Ph.D. Thesis  

After presetting literature reviews on smart power grid and plug-in electric charging 

technologies, this Ph.D. research proposes, implements, and compares the following four 

new strategies for centralized coordinated charging of PEV batteries: 

1) The first contribution is a new centralized online MSS-based coordinated battery 

charging (OL-MSSCC) algorithm for PEVs in smart power grids with WDGs [55]. 

This approach is an expansion to the real-time smart load management algorithm of 

references [63] with the addition of WDGs to further reduce the possibility of 

overloading the lines and distribution transforms due to the high injections of PEVs 

particularly in peak  hours.   

2) The second contribution is a new centralized online fuzzy coordinated battery 

charging (OL-FCC) algorithm for PEVs in SG networks with the consideration of 

WDGs [56].  
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3) The third contribution is a new centralized delayed maximum sensitivity selection-

based coordinated battery charging (DL-MSSCC) algorithm/strategy for PEVs in SG 

networks with WDGs [57]. 

4) The fourth contribution is a new centralized combined online fuzzy-based (fuzzified) 

and delayed maximum sensitivity selection-based coordinated battery charging (OL-

F/DL-MSSCC) algorithm/strategy for PEVs in SG networks with the consideration of 

wind and solar (rooftop) DGs [58]. 

The uncoordinated (random) vehicle charging and the above four proposed PEV 

coordinated battery charging algorithms are programed in MATLAB and tested on an 

assembled 449-bus smart power grid network that contains PEVs, WDGs and rooftop 

PVs. In addition, their performances are compared without and with renewable energy 

resources.   

1.4. Outline of the Ph.D. Thesis 

This thesis is arranged in two parts including literatures (Chapters 2-3) and contributions 

(Chapters 4-7) followed by the conclusions. 

• Chapter 2 (Literature Review on Smart Power Grids) provides an overview of smart 

power grid technology with a focus on demand side management and smart power grid 

infrastructure, as well as future research directions in these areas. 

• Chapter 3 (Literature Review on Coordinated Battery Charging Tactics for Electric 

Vehicle) presents a survey on the integration of uncoordinated and coordinated battery 

charging of PEVs and their effects on smart power grids/networks. Chapter 3 also 

presents classification, properties, and objective functions of PEV charge coordination 

approaches followed by some anticipated upcoming research avenues. 

• Chapter 4 (Online MSS-Based Coordinated Battery Charging of PEVs in Smart 
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Power Grids Considering Wind Distributed Generations) proposes a new centralized 

online MSS-based coordinated battery charging (OL-MSSCC) algorithm for PEVs in 

SGs with WDGs which was published by the author during his Ph.D. studies in [55].   

• Chapter 5 (Online Fuzzy Coordinated Battery Charging of PEVs in Smart Power 

Grids with the consideration of Wind Distributed Generations) proposes a new 

centralized online fuzzy (fuzzified) coordinated battery charging (OL-FCC) 

strategy/algorithm for PEVs in SG networks with WDGs which was published by the 

author during his Ph.D. studies in [56].  

• Chapter 6 (Delayed MSS-Based Coordinated Battery charging of PEVs in Smart 

Power Grid) proposes a new centralized delayed maximum sensitivity-based 

coordinated battery charging (DL-MSSCC) strategy/algorithm for electric vehicles in 

SG networks which was published by the author during his Ph.D. studies in [57].  

• Chapter 7 (Combined Online Fuzzy and Delayed MSS Coordinated Battery 

Charging of PEVs in Smart Power Grids with Wind and Solar Distributed 

Generations) proposes a new centralized joint online fuzzy-based (fuzzified) and 

delayed maximum sensitivity-based coordinated battery charging (OL-F/DL-MSSCC) 

strategy/algorithm for PEVs in SGs considering wind and solar (rooftop) distributed 

generations which was published by the author during his Ph.D. studies in [58].  

• Chapter 8 (Thesis Summary and Contributions) gives the outline, contributions, and 

conclusions of the thesis in addition to some recommended forthcoming research 

areas.   



  

CHAPTER TWO: LITERATURE REVIEW ON SMART POWER GRIDS 

Chapter 3 gives a literature survey on recent publications on smart power grid technology 

(SGT). It includes concept and motivations of smart power grid (SG), structure of SG, 

and the concept of demand response in SG as well as possible future research directions 

[1-42]. 

The rising rate of world electricity demand, rapid climate changes and alarming global 

warming are encouraging more government authorities, industry and power utilities as 

well as consumers to get actively involved in the transformation from the conventional 

central-based power grids that mainly rely on fossil energy sources to the emerging 

distributed-based smart power grids with renewable energy resources. The main fossil 

sources are oil, coal and natural gas. The main renewable energy resources include solar, 

wind, water/hydroelectric, geothermal, bioenergy, ocean, nuclear, hydrogen and fuel 

cells.  

This chapter is organized as follows: 

• Section 2.1 presents the concept and motivations of smart power grid. 

• Section 2.2 reviews the smart power grid infrastructure. 

• Section 2.3 reviews the concept of demand response in smart power grid. 

• Section 2.4 discusses future research directions in smart power grid technology. 

2.1. Concept and Motivations of Smart Power Grid  

The majority of the existing conventional power grids are large and old interconnected 

infrastructures used to deliver electricity from a few large generators to detached end 

users located away from the generation centres. Although, there have been notable 

innovations in the information, communication and real-time control frontiers over the 
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last few decades; unfortunately, the heritage of power grid has not kept pace with such 

technology invention [2].  

The idea of smart power grids is simple but requires a conceptual shift in power delivery 

from a centralized system with a few large generation systems and distanced loads to a 

decentralized network with widely distributed renewable generations (DGs) that are 

located near load centres [4]. An established SG is fully automated with advanced 

communication and monitoring systems that support two-way real-time flow of electricity 

and information to enable near-instantaneous balance of supply and demand at the device 

level as depicted in Fig. 2.1. 

 

Fig. 2.1. The architecture and new features of SG [1]. 

Consequently, smart power grids are [4]:  

ü Green– They can accommodate large injections of renewable energy resources. 

ü Intelligent- They perform real-time power flow calculations, operate autonomously, 

quickly detect and respond to overloads, faults and emergency condition. 

ü Efficient- They meet the increased consumer demand without adding infrastructure, 

use DG technology to reduce line losses and do require long transmission lines. 
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ü Accommodating- They recognize all types of green energy and integrate new 

technologies such as smart loads, PEVs, charging stations, small/medium DGs 

without and with energy storage systems [10-11]. 

ü Motivating- They provide end users with opportunities to tailor energy consumption/ 

generation based on their own priorities, preferences, budget and equipment. 

ü Resilient– They are more resistant to natural catastrophes and attacks due to their 

decentralized nature nested within the SG security protocols.                                                                

Smart power grids are expected to be the future generation of electric power networks 

that will eventually upgrade its generation, transmission, distribution, and consumption 

sectors. The main idea of SG is to use information and communications technology (ICT) 

to improve the awareness, efficiency, sustainability, reliability and security of the network 

by automatically gathering and quickly acting on the recorded online smart meter data 

[2]. The main components and smart features of SG are renewable distributed energy 

resources (DERs), advanced metering infrastructure, distributed energy storage systems 

and the formation of microgrids (MGs) that can operate in grid-connected and/or islanded 

modes [1-11]. In addition, SG facilitates the integration of incoming PEVs with vehicle-

to-grid (V2G), grid-to-vehicle (G2V) and vehicle-to-vehicle modes of operation (Chapter 

3, Sec. 3.5). Fig. 2.2 presents an illustration of SG architecture. The physical part of SG 

consists of the generation, transmission, distribution, and consumption sectors while the 

cyber part consists of WANs, neighbourhood area networks/field area networks 

(NANs/FANs), and home area networks/business area networks/industrial area networks 

(HANs/BANs/IANs) [2]. 
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Fig. 2.2. The infrastructure of SG with physical and cyber parts [2]. 

2.2. Smart Power Grid Infrastructure  

SG infrastructure can be classified into three systems including smart energy, information 

and communication systems [1-6].  

2.2.1. Smart Energy System 

The energy system of smart power grid relies on two-directional energy flow to perform 

generation and delivery as well as the consumption of electricity. The smart energy 

system of SG can be divided into the following four parts [2]. 

1) Smart Power Generation- Unlike the traditional power grids that are built with large   

fossil-based centralized power generation (e.g., oil, coal and natural gas), the smart 

power generation takes advantage of the two-way energy/information flows capability 

of SG to produce electricity from the pollution-free renewable resources (e.g., solar, 

wind, water/hydroelectric, geothermal, bioenergy, ocean, nuclear, hydrogen and fuel 

cells) [1-6]. The future smart power generations are expected to be small-scale (3 kW 

to 10,000 kW) DGs mostly consisting of many rooftop PVs and single wind turbines 

within the residential sectors as well as a few mini solar small wind farms within the 

residential parts of SG [4]. The ability of consumers to import (purchase), export (sell) 

and control their small-scale generators will soon change the traditional terminology 

of designing large central-based power grids. 

2) Smart Transmission Grid- The SG transmission is an integrated system with three 
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interactive components [1-6].  a) Smart high-voltage substations with autonomization, 

control and coordination technologies that can respond rapidly to improve operator 

safety [4]. b) Smart control centers with innovative analytical features to monitor, 

visualize, analysis and evaluate data/information [4]. c) Smart transmission networks 

with the capability to enhance the security, reliability, and quality of transferred 

electric power by employing new technologies in computing, signal processing, 

materials, electronics, sensing and communication [4].  

3) Smart Distribution Grid- Unlike the conventional distribution networks, the 

distribution sector of SG ingrates both AC and DC power dispatching and distribution  

as well accommodation of DGs to  control reactive power flow and improve the quality 

of service to consumers at lowers costs [1-6]. This will require bidirectional power 

flow control and energy storage facilities that make the distribution system more 

complicated [4].    

4) Microgrid- A unique feature of the SG that distinguishes its operation from the 

conventional power grid is the option for the formation microgrids (MGs) that can 

operate either in grid-connected or islanding modes (Fig. 2.3) [1-6]. Another 

interesting point about the SG is that a number of MGs can be joined and operate 

together to form the so-called networked (also called clustered) MGs [7-9]. In the grid-

connected mode, the power generations of the MG can either be exported (sold) to the 

SG (also called macrogrid), or they can be used to feed the local MG loads. In the 

islanding, all MG power generations are used locally. Furthermore, a MG can satisfy 

the requirements of consumers and/or the critical loads. Fig. 2.3 shows the typical 

architectures of MG which is connected to the main smart power grid (also called 

macrogrid). Three layers support the MG [4].  The top layer performs smart 
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information flow as discussed in Section 2.2.2. The layer in the middle performs the 

required electricity flow in the smart communication flow as discussed in Section 

2.2.3. The physical structure of the MG (shown in the lower layer) consists of one 

wireless access point, four renewable DGs (two wind and two solar generators) and 

four buildings [4].    

 
Fig. 2.3. The architectures of Microgrid (MG) [4]. 

2.2.2.  Smart Power Grid Information System 

This information system relies on smart metering and smart monitoring to perform 

management of information within the framework of the SG [1-6]. This is done by 

observing, analyzing, optimizing, and controlling the flow of information through the 

network. In fact, the smart information system addresses many the issues related to the 

distributed automation such as the interoperability and the scalability of exchanged data 

and its integration with the smart power grid’s systems, devices, and applications [4].  

An important issue associated with the smart information system is “Information 

Metering and Measurement”. It includes the collection of information from smart sensors, 

smarter meters, and phasor measurement units (PMUs) as well as utilizing the recorded 

information for grid status monitoring, appliance control and user billing. The subject 

studies in the smart information system can be classified in the following two areas [4]:  

1) Smart Metering- In SGs use an automatic metering infrastructure (AMI) which is a 

technology built within the automatic meter reading (AMR) systems [4].  
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2) Smart Monitoring and Measurement- The monitoring and measurements are mainly 

performed using sensors and PMUs. The sensor technology is already embedded in 

power grid for different purposes such as real-time conditions assessment, real-time 

monitoring, short-circuit and fault detections [4]. 

Another important issue associated with the smart information system is “Information 

Management” which is done to make good use of the information collected from smart 

metering, sensors and PMUs. The subject studies in the information management are in 

the areas of modeling, analyzing, optimizing and integration of the data and information.  

2.2.3. Smart Power Grid Communication System 

The main responsibility of smart communication system is transmitting the information 

between devices and systems. It comprises of wireless, wired and end-to-end 

communication management [4]. 

The Wireless Communication Technology has low installation cost and fast deployment, 

which makes it suitable for remote applications. There are a number of wireless 

technologies suitable for SGs such as cellular, satellite and microwave optical 

communications as well as wireless mesh network [4].  

The Wired Communication Technology may be used in SG networks in addition to the 

wireless communication. There are two types of wired communication including fiber-

optic and powerline communications (PLC). Fiber-optic communication is suitable for 

high-voltage high-speed communication networks due its inherent electromagnetic and 

radio interference immunity, but has high installment cost of optical fibers. The 

deployment cost of PLC is comparable to the wireless technology since it is being 

currently used by many power networks for load control and remote metering and [4]. 
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2.3. Demand Response in Smart Power Grid 

Demand response (DR) is a distinct characteristic of SG, which is the rescheduling of 

consumers’ energy consumptions to decrease the operating cost of expensive generators, 

and defer future capacity addition [1-11]. In general, DR can be classified into three 

categories as demonstrated in Fig. 2.4 [2]: 

§ Peak shaving (clipping) is decreasing the peak energy consumption to prevent 

network, substation, transformer and line overloading. Peak shaving may result in 

customer dissatisfaction since the utility is cutting of their demands.  

§ Valley filling is to promoting off-peak energy consumption with the aid of energy 

storage. This can be done using rechargeable battery energy storage systems, hybrid 

electric vehicles (HEVs) and/or plug-in electric vehicles (PEVs).  

§ Load shifting is the process of shifting the energy demand from peak-load hours to 

off-peak periods without reducing the daily total energy consumption of the 

consumers. This approach is a combination of the valley filling and peak shaving that 

considers customer satisfaction.  

 
                      (a)                                                 (b)                                                    (c) 
Fig. 2.4. Demand response (DR) functions; (a) peak shaving/clipping, (b) valley filling, (c) load 

shifting which is a combinations of valley filling and peak shaving [2].  

2.3.1. Demand Response Communication Architectures 

The DR mechanism involves the interaction between the supply side and the demand side 

of SG using bidirectional power and information flows as demonstrated in Fig. 2.5(a). 

The two main drivers of implementing DR into SG are intelligent metering and 
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bidirectional communications [2]. DR programs are mainly implemented using three 

types of communication architecture as shown in Fig. 2.5(b). These networks have 

different sizes, different locations and use a variety of communication standards and 

technologies.  

The first type of DR communication architecture (Fig. 2.5(b)) is the wide area network 

(WANs) [2].  This architecture uses fiber optics, microwave transmission, and/or cellular 

networks to facilitate communications between generation, transmission, and meter data 

management system (MDMS). The second type of DR communication architecture (Fig. 

2.5(b)) is the neighbourhood area networks/field area networks (NANs/FANs). This 

architecture is used for distribution system and MGs to support communications among 

their substations and field electrical devices. NANs/FANs connect several smart meters 

to data aggregate unit (DAU) using WiFi, WiMax, and/or cellular networks (such as 

general packet radio service (GPRS), 3G, and long-term evolution (LTE)) [2]. The third 

type of DR communication architecture (Fig. 2.5(b)) is the home area networks/business 

area networks/industrial area networks (HANs/BANs/IANs). This architecture is used to 

connect smart appliances in industrial plants, commercial buildings and residential units 

to the SG through ZigBee, WiFi, and/or PLC technologies [2].  

 
(a) 
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(b) 

Fig. 2.5. (a) Smart demand response mechanism with two-way flows of power and information 

between the supply and demand, (b) DR communication architectures with three types of 

networks based on various communication standards and technologies [2].  

2.3.2. Demand Response Programs  

Demand response (DR) programs are the means or tariffs that utilities use to encourage 

customers to modify (reschedule) their conventional patterns of energy usage and try to 

postpone some loads to off-peak hours. DR can be divided into two main categories of 

incentive-based programs and price-based programs [2]. 

a) Incentive-based DR Program 

Incentive-based DR programs are based on the idea of paying the users that participate in 

DR by reducing their demands during peak load times or system contingencies (e.g., the 

unexpected loss or failure of a part and/or an equipment such as transmission line, feeder, 

transformer, and generator). They offer incentive payments to the participating users. The 

main types of incentive-based DR programs are [2]: 

1) Direct Load Control (DLC)- is based on the idea of reducing user loads at peak 

hours. Therefore, the utility needs to have remote access to shut down or control the 

cycle of certain user loads such as water heater, air conditioner and electric vehicle 
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charging. DLC is a well-stablished approach. In fact, some utilities have been 

offering DLC options to their residential and commercial customers [2]. 

2) Interruptible/Curtailable Load- is based on the idea of cutting down some portion 

of the user interruptible and/or curtailable loads. This is done if system reliability is 

at risk. The participating users receive some incentive discounts on their electricity 

bills [2]. 

3) Demand Bidding and Buyback- is designed for participations of larger users (e.g., 

over 1MW) to restrict some of their usage at a specific times during peak demand or 

system contingencies [2]. Small users can also participate through third agents. 

4) Emergency Demand Reduction- is also intended for participations of larger users 

who are willing to quickly reduce their loads within very short notice during 

emergency conditions and accidents when grid is out of reserve [2]. 

b) Price-based DR programs 

Price-based DR programs are alternatives to the incentive-based programs and use smart 

pricing strategies. They provide different electricity prices within the 24 hours with higher 

rates during the peak load periods [2]. Consequently, most consumers will reduce their 

electricity demands/consumptions at peak hours. As shown in Fig. 2.6, there are various 

time-based pricing tariffs.  The main pricing strategies used in price-based DR programs 

are [2]: 

1) Time-of-use (ToU)- pricing strategy charges users with different electricity prices 

depending on the time of the day or season of the year.  Time periods are usually 

longer than an hour. Fig. 2.6(a) shows a typical three-level ToU pricing with three 

different tariffs for the on-peak, mid-peak and off-peak time periods. Obviously, the 

electricity price is much higher for the on-peak time block compare to the mid-peak 
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and off-peak time periods [2]. The ToU time blocks and the corresponding tariffs 

must be carefully designed to persuade consumers to shift their loads over the 

designated (daily, weekly, annual) time horizon. 

2) Critical peak pricing (CPP)- strategy is the same as ToU pricing with the exception 

that periods that the grid reliability is at risk, a higher pre-specified higher rate is used 

instead of the peak price to reduce consumers’ demand [2]. Note that CPP is only 

implemented for limited numbers of hours or limited number of days per year. 

3) Dynamic or Real-Time Pricing (RTP)- strategy is implemented to have various 

electricity prices at different time intervals (e.g., 15 minutes or one hour) of a day. 

RTP is typically released on an hour-ahead or day-ahead (DAP) basis is considered 

to be one of the most economic pricing regimes [2]. 

4) Inclining Block Rate (IBR)- is the same as ToU with the exceptions that: i) the tariff 

has two-level rate structures with lower and higher blocks, ii) the pay rate per kWh 

increases as a consumer uses more electricity beyond a certain threshold [2]. 

Therefore, users can pay less dollars per kWh by consuming less electricity. IBR is 

designed to incentivize users in order to limit their hourly/daily/monthly energy 

consumptions and indirectly spread their loads to off-peak periods of a day. This will 

reduce the peak-to-average ratio (PAR) demand of the grid. Utilities have been 

adapting IBR since 1980s. 

 
                      (a)                                                 (b)                                                    (c) 
Fig. 2.6. Illustration of time-based pricing tariffs: (a) Time-of-use (ToU) pricing, (b) Real-time 

pricing (RTP), (c) Inclining block rate (IBR) [2].  
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2.3.3. Demand Response Modelling and Formulation Approaches 

DR programs are typically implemented in the residential sectors of SG with limited 

recent applications to the commercial and industrial sections [2]. The reason is that 

residential consumers are more sensitive to the electricity price since they have more 

appliances that can be easily controlled, deferred and interrupted such as washers, 

variable-speed air conditioners, dryers, dishwashers, swimming pool pumps and plug-in 

electric vehicles [12]. This section discusses the modelling and formulation of DR 

problem followed by possible solution approaches. 

A. Demand Response Models 

DR is based on the collaboration between the utility and the consumer. Therefore, the 

behaviors of both sides need to be mathematically modeled which is done using the 

following function models [2]: 

§ Utility Function Model is used to model the behaviors of different users. To do this, 

the levels of users satisfaction are expressed in terms of their consumptions. Any type 

of utility function can be utilized as long as it has the following two properties [13]:  

ü Users can accomplish more tasks and gain more as they consume more power 

until reaching their chosen amounts of energy consumption. 

ü  Marginal benefits to the users are decreasing such that their obtained comforts 

are gradually saturated when users’ consumptions reach the chosen levels. 

§ Cost Function Model is used to model the utility expense for generating and delivering 

the electricity. This can be any increasing and strictly convex cost function as long as 

it satisfies two following two properties [14]:  

ü Energy cost increases when the total load increases. 

ü  The utility marginal expense is increasing.  

B. Demand Response Problem Formulation 
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Considering the above-mentioned utility and cost functions, DR is mathematically 

formulated as the following problems [2]:  

1) Utility Maximization that is from the social viewpoint, the grid wants to increase the 

individual user comfort while decreasing the utility expenditures [2]. 

2) Cost Minimization that is from the utility’s perspective, it is desirable to reduce the 

cost of generating and delivering electricity [14-15].  

3) Price Prediction which is required to perform RTP if the utility broadcasts electricity 

rates only hour ahead bases. 

4) Renewable Energy which is required to include the uncertain and irregular behavior 

of renewable resources such as solar irradiation and wind speed into the bulk 

generation [16]. 

5) Energy Storage is taking advantage of the of energy storage systems such as 

rechargeable batteries, HEVs and PEVs [10-12]. 

C. Demand Response Solution Approaches 

DR can be formulated as an optimization problem, and solved using various approaches 

such as [2]:  

1) Convex Optimization- with convex objective and constraint functions [12].  

2) Game Theory- which is the study of selfish and rational individuals and/or a model 

of interactive decision-making processes [14].  

3) Dynamic Programming- that decomposes the complex DR problem into a sequence 

of simple subproblems that cab be quickly solved [17]. 

4) Stochastic Programming- which deals with uncertain optimization problems by 

taking advantage of the associated known/estimated probability distributions [18-

19].  
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5) Artificial Intelligence (AI) Optimization- which is based on simulating human 

behavior through computation by designing computer systems that are able to 

execute tasks which require human intelligence. DR programing can be formulated 

and solved using compuational intelligence AI methods that include; i) artificial 

neual network, ii)  fuzzy logic, iii) evolutionary computation such as particle swarm 

optimization (PSO) and ant colony optimization (ACO) algorithms [20-22]. 

2.4. New Research in Smart Power Grid Technology 

Some possible future research directions related to smart power grid technology are: 

• New Genrations of Smart Mircogrid (MG) and Community Grids- which is a group 

of interconnected loads and DGs (mainly renewable resources) that can operate either 

in isolated or gird-connected modes. The future research directions may be in optimal 

design, control, managenet and real-time  and operation of AC, DC and hybrid 

AC/DC micor gides [5], [23-24]. 

• Networked MGs- which is an interconnected system of MGs that takes advantage of 

various complementary power sources and effectively coordinates the energy sharing 

and/or trading among the MGs and the SG to improve the stability, reliability, and 

energy efficiency of the system. Future reaserch directions in networked MGs can be 

on coordination and energy exchange among the interconnected MGs, distributed 

energy management schemes, correlation of renewable power generation, and 

reactive power exchange among MGs [7-9], [25-26]. 

• Optimal Operation of SG and Management of Energy Storage- With the increasing 

applications of intermittent renewable DGs, controllable loads such as smart 

appliances, and time-depending portable loads such as PEV loads, the structure of 

SGs are becoming more time-dependent, stochastic and geographically distributed. 



36 

 

Therefore, power management and control of the smart power grid is becoming very 

challenging since its operation conditions can change very rapidly. Future research 

direction can be on real-time distributed control of SG, robust SG network models 

and advanced energy storage systems for improving the economy, flexibility and 

security of SGs and MGs [2], [10-11], [27-32]. 

• Advanced Metering, Information and Communication Infrastructures- SG 

integrates advanced metering infrastructure (AMI), sensing and control, as well as 

information and communication technology (ICT). AMIs are responsible for the 

collection and anlyses of the data recorded by smart meters, as well as controlling, 

monitoring, and managing multiple domains of the power grid. ICTs bring significant 

innovations to generation, transmission, delivery, consumption and storage of 

electricity. Future research areas my be on scalable AMI architecture,  advanced 

defensive mechanisms against threats and attacks, privacy and security of users, 

application of AMI in smart cities [33-36].  

Power Quality, Resilience, Security and Internet of Things (IoT)- The increasing injection of renewable 

generation and extensive applications of switching devices in SGs and MGs is deteriorating the quality of 

power. On the other hand, the extensive adoption of the Internet of Things (IoT) technologies is increasing 

the possibilities attacks and intrusion on network. Future research directions can be in new smart power 

electronics-based distributed generations, energy storages, and modern loads to control power quality. In 

addition, the safety, stability, resilience and security of SG and MGs can be improved using effective 

methods such as energy storage, big data, cloud computing, internet of things (IoT), artificial intelligence, 

and cyber physical systems [37-42].  

The smart grid technology can be used to meet environmental targets by accommodating 

demand response, renewable DGs, storage capabilities and high penetration of PEVs 

including all-electric and plug-in hybrid electric vehicles. However, connection of PEVs 

can have serious impacts on the existing and future smart grids such as overloading of 
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lines and transformers, increasing network losses, and causing poor power quality. 

Chapter three highlights negative impacts of random PEVs charging activities followed 

by a through literature review on the recent PEV charging coordination strategies and 

research gaps. 
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CHAPTER THREE: LITERATURE REVIEW ON COORDINATED BATTERY 

CHARGING STRATEGIES FOR ELECTRIC VEHICLES  

Chapter 3 provides a literature review on recent coordination approaches for centralized 

charging of plug-in electric vehicles (PEVs). It starts with an introduction to EV 

technology with emphasis on their markets, charging types, advantages, limitations and 

effects of uncoordinated PEV battery charging on smart power grids [43-60] followed by 

literature reviews on the classification, properties and objectives of PEV battery charging 

coordination [61-109]. It will also present anticipated future research directions for the 

coordinated battery charging of PEVs. Some materials of this chapter were published by 

the author during his Ph.D. studies in references [53]-[54].   

This chapter is organized as follows: 

• Section 3.1 discusses the present and future markets of electric vehicles as well as 

their benefits and drawbacks. 

• Section 3.2 presents EV charging levels, types and characteristics. 

• Section 3.3 discusses the effects of uncoordinated PEV battery charging on power 

grid. 

• Section 3.4 gives a classification of PEV battery charging coordination schemes. 

• Section 3.5 presents the properties of PEV coordinated battery charging schemes. 

• Section 3.6 presents the objective functions of PEV battery charging schedule 

optimization. 

• Section 3.7 discusses future research in battery charging coordination of PEVs. 

3.1. Electric Vehicles  

There are two main types of EVs. The plug-in hybrid electric vehicle (PHEV) with both 

internal combustion engine (ICE) and electric engine, and the plug-in electric vehicle 
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(PEV) that only relies on electric engines [43]-[44]: 

1) PHEVs are suitable for people who mostly travel short distances. They can travel on 

electric power alone for 10-15 miles and then switch the vehicle operation mode to the 

usual gasoline engine to extend their travel range. These drivers will still need to visit 

gas stations but not as often as when they were using the conventional ICT vehicles. 

2) PEVs (also called battery electric vehicles; BEVs) are more efficient with lower 

maintenance costs since they use fewer components than both PHEVs and the 

conventional ICE vehicles. The new models of PEVs have extended driving range and 

only need daily charging from 110-volt outlets without requiring the 

purchasing/installation of 240-volt chargers.  

Currently, most EV owners (over 80%) prefer home charging. This can cause power grid 

overloading predominantly in the evening customer peak load hours when many drivers 

come home and plug-in their EV [43]-[44]. One way to resolve this issue, as proposed in 

this Ph.D. thesis, is to coordinate the EV charging activities and try to move them to off-

peak load hours. Another approach that is the vision of most utilities is to promote public 

charging at EV charging stations. This can be done by providing fast AC and ultra-fast 

DC charging (UFC) facilities/stations that can recharge a vehicle at a speed comparable 

to traditional fuel stations (e.g., in few minutes).  However, EV charging stations with 

UFC technology will pose extraordinary challenges to the existing power networks 

particularly during peak traffic hours due to their large power density and impulsive load 

characteristics [43]-[44].  

Planning the locations and ratings (electric capacities) of charging stations (with fast and 

UFC technology) is critical to prevent their negative impacts on power network such as 

grid asset depreciation, poor power quality and network instabilities [45]. 
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3.1.1. Present Global EV Market     

The upgrading of conventional transportation network (with ICE technology) to the 

emerging electric vehicle network (that relies on the EV technology) has been rapidly 

growing since the launch of “Nissan Leaf” and “GE Chevrolet Volts” in December 2011 

[43]-[44]. Figures 3.1 and 3.2 show the global passenger EV stock from 2013 to 2018. 

Surprisingly, the global grow rate of EV technology, sales and stocks have been 

significantly increasing [43]-[44]: 

ü In 2018, the global EV fleet was 5.1 million which is over 2 million higher than year 

2017. As with the previous years, the global EV market in 2018 was led by China with 

2.3 million (e.g., 45% of the total global 5.1 million) followed by Europe (1.2 million) 

and U.S. (1.1 million). In 2018, there were over 460,000 vehicles on the world’s roads, 

almost 100,000 more than year 2017. Figures 3.1-3.2 shows the global EV sales and 

the corresponding market shares of different countries from year 2013 to year 2018.  

ü In 2018, there were over 5.2 million light-duty vehicles (LDVs) chargers worldwide. 

These chargers comprise mostly of level 1 level and 2 slow chargers (Tables 3.1) at 

residential homes and workplaces as well as 540,000 publicly accessible chargers and 

157,000 fast chargers for buses [44]. 

ü In 2018, there were over 5 million low-speed electric vehicles (LSEVs) worldwide. 

These vehicles are all located in China. LSEVs are not subject to restricted registration 

regulations since they are significantly smaller than regular EVs [44]. 

ü In 2018, there were also over 300 million electric two/three-wheelers worldwide which 

are mostly located in China.   
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Fig. 3.1. The global passenger EV stock from 2013 to 2018 in the top-three electric vehicle 

initiative countries including the plug-in hybrid electric vehicles PHEVs  and the battery electric 

vehicles BEVs (also called plug-in electric vehicles PEVs) indicating there were 5.1 million 

passenger EVs worldwide in 2018 (45% in China) [44].  

 

 
Fig. 3.2. The global EV numbers and EV sales from year 2013 to year 2018 showing market 

shares of different countries [44].  
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3.1.2. Projected Future Global EV Market 

The International Energy Agency (IEA) along with the Clean Energy Ministerial and the 

Eclectic Vehicles Initiative have used the following two scenarios to explore and estimate 

the future development of EVs by the year 2030 [44]: 

A. The New Policies Scenario 

This scenario aims to illustrate future impacts of the announced policy ambitions on the 

future development of PEVs. The summarized outcomes of this study are shown in Figure 

3.3 [44]: 

ü In general, policies will have significant impacts on the development of EVs. 

ü In 2030, the global EV sales will extent the 23 million mark and the global EV stock 

will exceed 130 million vehicles (not including two-wheelers and three-wheelers). 

ü In 2030, the demand for oil products will be cut by about 2.5 million barrels per day. 

B. The EV30@30 Scenario 

This scenario considers the EV initiative’s campaign to reach a 30% EV market share by 

the year 2030. This percentage includes all car types with the exception of the two-

wheelers. The summarized results of this study are also shown in Figure 3.2 [44]: 

ü In 2030, the global EV sales will be almost doubled. It will reach the tempting mark 

of 43 million while the global stock will also be almost doubled reaching 250 million. 

ü In 2030, the three countries with leading EV market shares are China (57%), Europe 

(26%) and Japan (21%).  

ü In 2030, the demand for oil products will be cut by about 4.3 million barrels per day, 

which is much higher than the 2.5 million barrels per day reported by the first IEA 

scenario. This is expected since the anticipated future (year 2030) number of EVs 
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reported by this scenario (e.g., 43 million) is 87% larger than the 23 million mark 

resulting from the new policies scenario.  

C. The Country-Specified EV Injection Target 

A number of countries have set roadmaps and target injection levels for the employment 

of EVs. The country-specified EV (not including PHEVs) injection targets for a few 

countries are listed as follows [43], [44], [50], [59]: 

1) United States: 10% EV injection by year 2025. 

2) China: 20% EV injection by year 2025. 

3) Norway: 100% EV injection by year 2025. 

4) Netherlands: 100% EV injection by year 2035. 

5) United Kingdom: 100% EV injection by year 2040. 

6) Japan: 20-30% EV injection by year 2030. 

7) Australia: The opposition government in 2019 proposed an EV injection target of 

50% by 2030. The government analysis in 2019 also forecasted 50% by 2035.   
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Fig. 3.3. The future global EV stock and EV sales by scenario for years 2018-2030 [44]. 

 
3.1.3. Benefits and Drawbacks of EVs 

The sell market of EVs and their integrations into power grids have been noticeably 

growing in recent years [45], [50]. This is due to the many benefits that EVs can offer to 

both the consumers and the environment. Unfortunately, there are also issues and 

problems associated with uncoordinated (random) EV charging.  

A. Main Benefits of EVs  

The main reason for the increasing uptake of EVs is the awareness of our societies to the 

detrimental environmental impacts of combustion engine vehicles such as Co2 and 

greenhouse gas emissions as well as other harmful toxins that threaten our health. Many 

automobile manufacturers are now building new generations of EVs that come in 

different classes, sizes, models and prices.  
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Battery operated EVs (also called PEVs) have many advantages over their combustion 

counterparts including [45]: 

ü EVs have less maintenance cost (e.g., no oil changes), less wear outs (e.g., fewer 

moving parts), smoother, more quiet (inside and outside), faster (e.g., higher torque 

power). 

ü EVs provide options for convenient home charging with discount rates during off-

peak load hours. The consumers have the choice of cheap overnight charging. 

B. Main Drawbacks of EVs  

In the present market and present battery technology, there are two main issues preventing 

the widespread use of EVs [45]:  

1) The EV Range Anxiety- Fortunately, this issue is being quickly resolves. Many car 

manufacturers have been tackling and resolving this issue by taking advantage of the 

advancements in battery technology and electric regenerative systems. Many 

governments are helping to resolve the second issue by offering significant rebates and 

tax credits for purchasing EVs.  

2) The EV Price- In today’s market, the EV prices are not competitive with the 

conventional ICE automobiles. However, this issue is expected to be eventually 

resolved as the prices of most rechargeable batteries are sharply dropping. In the 

meantime and until we reach a state that EV purchase prices are as low as the ICE 

vehicles, the law makers and governments are trying to resolve this issue by offering 

significant rebates and tax credits for purchasing and driving EVs. At present, there 

EV incentives and tax credits in China, United States, Australia, Japan and many 

European countries. 

B. Possible Solutions to EV Drawbacks  
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There are a few solution approaches to overcome the obstacles associated with EV 

deployment including [44]:  

Ø Cost saving in rechargeable battery manufacturing. 

Ø Cost reduction in EV manufacturing. 

Ø Cost reduction by adapting battery sizes to travel needs. For example, we can 

reduce/avoid costs due to oversizing of batteries by matching the range of vehicles 

to the driver travel habit.  This is already considered in the most designs of electric 

buses. 

3.2. EV Charging Levels, Types and Characteristics 

In accordance with the EV and battery changer standards, there are there AC levels and 

three DC levels for charging the batteries of electric vehicles as listed in Table 3.1 [43], 

[44,[49], [50], [60]. Some references also mention an ultra-fast DC level, which is not yet 

standardised [50]. Note that the high voltage, power and kWh of level 3 for both AC and 

DC charger are not yet finalized [49]. 

• The AC Level 1 EV charger can be plugged-in to a standard household outlet of 120 

VAC with current rating of 15 A or 20 A. The charging time of 15A is twice as long as 

the 20 A. This charger can draw from 1.44 kW to 1.92 kW of power [60]. The AC 

Level 1 can typically add around 2-5 miles (3.25-8.1 km) of EV driving range per hour 

of charging time [46]. 

• The AC Level 2 EV charger is typically designed both private and public facilities. It 

can be used for private installation with single-phase 240 VAC and current-handling 

capacity of 40 A as well as public installation with three-phase 400 VAC and current-

handling capacity of 80 A [60]. The AC Level 2 can typically add around 10-20 miles 

(16.1-32.2 km) of EV driving range per hour of charging time [46]. 
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• DC fast charging is typically used in public charging stations. It can add around 60-80 

miles (97-128 km) of EV driving range to per 20-30 minutes of charging time [46]. 

• Wireless charging based on wireless power transfer techniques have also been 

considered for EV applications. The present limitations are low efficiency and high 

cost due to the inherent large air gap between the EV and the wireless charger [46]. 

A. Impacts of EV Charged Type on Power Transformer Loading 

In selecting the EV charger type, we need to consider its loading impacts on the power 

transformers.  According to reference [49]: 

§ Low injections of EV loads will not have major impacts on transformers.  

§ However, EV loading over 30% may overload the transformer beyond its rated limits, 

may result in hot spot winding temperature and loss of life. 

§ Level-1 EV charger has minor impacts on the loading of transformers. 

§ Level-2 EV charger may cause transformers failure due to extreme temperature rise. 

§ To avoid transformer overloading and failures, coordinated EV charging instead of 

random charging is recommended. 

B. EV Charging Systems 

There are different types of EV charging systems [60]: 

§ Conductive EV Charging- This is the usual EV charging method. It transfers power 

through direct contact. It uses a conductor to connect the EV charger to the outlet at 

home, office, parking lot or charging station. Conductive charging is simple and very 

efficient and can be designed to AC, DC, on-board and off-board. 

§ Inductive EV Charging- This is also called wireless charging. It uses the concept of 

induction and electromagnetic field to transfer electricity to the EV battery without 

using any conductor. It is very convenient but has low efficiency that has prevented its 
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widespread applications. High quality commercial inductive charger can have 

efficiencies of up to 85% [60]. 

§ Battery Swapping- In this charging method, the drivers swap their empty battery with 

charged batteries at battery swapping stations. It is not convenient but has advantages 

such as low cost of battery management, long battery lives and low time consuming. 

Battery swapping can also avoid EV loading during peak hours and money. 

Table 3.1 Standard EV charging levels [43], [44], [49], [50], [60]. 

Charger  
Level 

EV Charger Type 
(Voltage/Current Rates) 

Maximum 
Power (kW) 

Battery 
Size (kWh) 

Charging 
Time (h) 

Charger 
Location 

Typical  
Use 

AC Level 1 120 VAC-15 A (12 A**) 
120 VAC-20 A (16 A**) 

1.44 
1.92 

24 (19.2**) 10-13 On-board 
1-phase 

Home, 
office 

AC Level 2 240 VAC-40 A (32 A**) 
400 VAC-80 A (64 A**) 

7.7 
25.6 

24 (19.2**) 1-3 On-board 
1or 3-
phase 

Private, 
public  

AC Level 3 
Fast  

480 VAC-up to 80 A >22 (to be 
determined) 

To be 
determined 

To be 
determined 

To be 
determined 

To be 
determined 

DC Level 1 208 VDC-80 A (64 A**) 
600 VDC-80 A (64 A**) 

13.3 
38.4 

24 (19.2**) 0.5-1.44 Off-board 
DC 

Public, 
commercial 

DC Level 2 208 VDC-200A (160 A**) 
600 VDC-200A (160 A**) 

33.3 
96 

24 (19.2**) 0.2-0.6 Off-board 
DC 

Public, 
commercial 

DC Level 3 
Fast* 

208 VDC-400A (320 A**) 
600 VDC-400A (320 A**) 

To be 
determined 

To be 
determined 

< 0.2 Off-board 
DC 

Public, 
commercial 

Wireless 
charging 

To be  
determined 

To be 
determined 

To be 
determined 

To be 
determined 

Off-board 
AC 

Private, 
commercial  

*) Also called direct current fast charging (DCFC) or ultra-fast DC charging. The high voltage, power 
and kWh of level 3 for both AC and DC charger are not yet finalized [49]. 
**) The useable/available current/energy. 
 
3.3. Impacts of Random Electric Vehicle Charging on Power Network 

The extend of EV impacts on power network and the severity of their charging demand 

depend highly on their injection, battery sizes, locations, random plug-in and plug-out 

times as well as the charging technology (Table 3.1) such as charging level, voltage, 

current and power [43]. The majority of EV charging is in the residential sectors (e.g., at 

homes and building complexes connected to residential feeders) and commercial areas 

(e.g., at office, parking lots and charging stations connected to low-voltage distribution 

networks). EVs are sizable, portable and random loads [43]. Hence, we need to have clear 
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understandings of EVs technology, charging patterns and traffic paths (e.g., usage 

patterns) for their integration, control, and coordination within the power grids.   

3.3.1. Effects of Random EV Battery Charging on Smart Power Grids 

Main effects of random/uncoordinated battery charging of EVs on the electricity network 

may be summarized as follows [43]-[50], [53]-[54]: 

§ The extra EV demand should not cause an issue in the future power networks. The 

IEA studies indicate that the additional EV energy demands are sizable but 

manageable loads. It is estimated that the global EV loads will only be about 1.5% of 

the total electricity demand by year 2030.  

§ At the generation level, the high demand and scarce capacity of EVs could increase 

the electricity prices. 

§ At the transmission level, the stress on the system particularly during peak load periods 

could require more reserve capacity and extra system services such as frequency 

control. 

§ At the distribution level, the high EV demand could overload lines and power 

transformers as well as voltage drops particularly towards the end of the feeders. 

3.3.2. Mitigation Potential Negative Impacts of EV Charging 

There are many options to control and mitigate the negative impacts of EV charging. A 

few potential solution approaches are summarized below [43]-[49], [52]-[54], [53]-[58], 

[60]: 

Ø Option 1- Installing of custom-designed EVSEs at locations and with technologies 

that reduce negative impacts of EV charging on power grid. This can be done by the 

installation of charging infrastructures (e.g., charging points) in areas where the 

projected EV impact is low and the daily utilisation is high. Good candidate locations 

for charging points are near high population residential, business and commercial areas 
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with higher power capacity tariffs during off peak hours. This is being effectively 

practiced in the Netherlands with the charging points tied to residential areas where 

EV owners have high demands for parking permits [43].   

Ø Option 2- Incentivising EV owners to maximise self-consumption through the 

utilization of renewable generation resources such as rooftop PVs without/with energy 

storage systems [43], [55], [58].   

Ø Option 3- Controlling EV charging through centralized and distributed (also called 

decentralized) coordination strategies. This thesis proposes and implements four 

centralized PEV coordination algorithms in Chapters 4-7 [46], [47], [57]-[60].   

Ø Option 4- Scaling up charging infrastructures to follow EV uptake through careful 

planning to bring economic advantages and grid stability. This can be done through 

gradual upgrading and deployment of EVSE as shown in Fig. 3.4. The three set-up 

phases of EVSE deployment are: i) dedicating one charging point for each EV, ii) 

performing load balancing over charging points and, iii) performing load balancing 

over buildings [43], [60].   

Ø Option 5- Defining interoperability standards among EVs, CSs and SG network. 

Interoperability is the exchange of power and information among the stakeholders at 

the electricity network and ICT interface levels, respectively.  Common standards and 

interoperability regulations are required to guarantee compatibility, efficient 

communication, and accurate flow of information at the network level (e.g., grid 

generations, operating conditions, loading and capacities) and user level (e.g., EV 

information such as its location, battery condition, G2V charging and V2G discharging 

requests) [43]. 
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As the EV injection progressively increases in smart power grids, the above-mentioned 

options should be individually or concurrently implemented to offer cost saving to the 

EV and infrastructure owners as well as utilities, operators and distribution grids.   

 
Fig. 3.4. Scaling up charging infrastructures to follow growth of EV uptake [43]. 

3.4. Classification of PEV Battery Charging Coordination Schemes     

Despite many environmental benefits of PEVs, their anticipated large injections and 

massive demands can threaten the performance, economy and security of power networks 

[43]-[44], [61]. Therefore, it is crucial to design and implement proper PEV charge 

strategies that will not jeopardize network operation and offer cost savings to aggregators 

and PEV users. The PEV charge coordination control is an optimization problem with a 

set of constraints. The inputs are parameters, requirements and constraints of the EV 

chargers, users, aggregators and the network. The objective is typically a cost function 

and the output is a charging schedule with the starting and ending times being selected by 

each drivers. 

The charging decisions/coordination can be made separately for each vehicle, collectively 

for groups of vehicles or centrally for all plugged vehicles. There are three main strategies 

for charging coordination of PEVs [45]-[48]: 

1) Centralized PEV Coordination- A central aggregator (e.g., the independent system 

operator; ISO) makes the charging decisions as illustrated in Fig. 3.5(a). 
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2) Decentralized PEV Coordination- Individual PEVs make their own charging 

decisions as shown in Figs. 3.5(b)-(c). 

3) Hierarchical PEV Coordination- The aggregators and PEVs are arranged in tree 

formations to make the charging decisions as demonstrated in Figs. 3.5(d)-(h).  

The second (decentralized) and third (hierarchical) charging approaches are also called 

distributed PEV coordination [47].   

3.4.1. Centralized PEV Battery Charging Coordination  

A centralized coordination architecture is used to allow the direct aggregator (or ISO) to 

control the charging activities of all PEVs as shown in Fig. 3.5(a). In the literature, there 

is a significant number of proposed centralized PEV battery charging coordination 

algorithms such as [55]-[58], [62]-[68].  

The centralized PEV scheduling can be implemented based on the following steps [63]: 

1) The direct ISO continuously collects updated information of the SG (e.g., network 

parameters, constraints and operating conditions) and the vehicles (e.g., plug-in times, 

locations, and battery state of charge) as well as drivers’ requirements and requests. 

This is done through the SG communication system in real-time or using an online 

approach. 

2) The EV owners send charging request signals to ISO upon random plug-in of their 

vehicles. The EV chargers automatically transmit the request signals. 

3) At each time interval ∆t, ISO solves the PEV battery charging coordination 

optimization problem, generates a charge schedule and sends it to all vehicles. 

4) All PEV battery chargers will follow the central schedule to complete their charging 

process.  

5) A vehicle can stop charging at any time and send back a charging termination signal 

to ISO. 

The centralized PEV battery charging coordination algorithms have two essential benefits 

for the are ISO and the power utilities [46]-[47], [53]-[58], [62]-[68]: 

ü Their ability to generate near-optimal solutions since the central aggregator (ISO) has 

access to the information of all vehicles and the entire network. 
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ü They can easily consider various global network states and constraints (such as 

maximum generations, loadings, demands and voltage violations) within the 

optimization process.  

Nevertheless, there are some disadvantages associated the centralized PEV battery 

charging coordination schemes [46]-[47], [53]-[58], [62]-[68]: 

ý The PEV owners do not have direct control of their own vehicle charging, but can 

submit their requests to the direct aggregator. From the users’ point of view, this is the 

main disadvantage of the centralize PEV coordination strategy. Furthermore, the 

consumers may have concern about the privacy of their PEV information transmitted 

through the SG communication network. 

ý Scalability is a key challenge in the application of centralized PEV coordination 

algorithms to real life networks. This can become as issue particularly when the size 

of the optimization problem increases due to the large number/injection of PEVs 

and/or long scheduling time horizon. Furthermore, the widespread communicates of 

PEVs with ISO may lead to practical complications such as communication bandwidth 

limitations and costly expansions of communication infrastructure.. 

ý A single point of failure at the ISO level (e.g., failure to solve optimal PEV scheduling 

problem) could potentially collapse the entire system. 

3.4.2. Decentralized PEV Battery Charging Coordination  

In decentralized PEV battery charging coordination strategies, each user acts as an 

independent aggregator who solves its own PEV battery charging problem as shown in 

Figs. 3.5(b-c). In the literature, there are many proposed decentralized PEV battery 

charging coordination algorithms such as [14], [69]-[79]. 

The main benefit of decentralized PEV battery charging coordination algorithms is [47]: 

ü They are highly scalable which makes them very practical for many field 

implementations associated with large networks due to low computational complexity. 

ü They are more resilient to network failures since their controllers are usually designed 

to withstand centralized communication failures. 

However, there are some disadvantages related the decentralized PEV battery charging 

coordination schemes [47]:    

ý They cannot always capture the global optimal or near-optimal scheduling solution 

since the PEVs do not have to access to the complete network information.  
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ý They have large communication overheads since PEVs need to continuously 

communicate their locally generated scheduling information with the other vehicles 

within the network. 

The implementation of decentralized PEV coordination depend on the structure of GS 

communication network. There are two decentralized PEV coordination designs; DT1 

and DT2, as shown in Figs. 3.5(b-c) [47]:  

Ø Decentralized DT1 Design- In this design, each PEV keeps trying to locally compute 

and adjust its own charging schedule by communicating with the other vehicles until 

a global equilibrium is achieved. This will require EVs to continuously communicate 

their scheduling information with each other that can result in large communication 

overheads. Decentralized DT1 is proposed/used in references [14], [69]-[70].  

Ø Decentralized DT2 Design- An indirect aggregator is introduced to reduce the 

communication overhead. The indirect aggregator gathers certain network information 

and broadcasts certain scheduling signals to all PEVs. Therefore, there is no need for 

large-scale communication infrastructures. Decentralized DT2 is proposed/used in 

references [71]-[79].  

 
                       (a) Centralized               b) Decentralized (DT1)        c) Decentralized (DT2) 

 
                   d) Hierarchical (HT1)          e) Hierarchical (HT2)          f) Hierarchical (HT3)  

 
      g) Hierarchical (HT4)           h) Hierarchical (HT5)   
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Fig. 3.5. PEV battery charging coordination types; (a) Centralized (C), (b-c) Decentralized types 

DT1 and DT2, (d-h) Hierarchical types HT1 to HT5 [47]. 

3.4.3. Hierarchical PEV Battery Charging Coordination  

In this approach is based on hybrid combinations of the centralized and decentralized 

PEV battery charging coordination algorithms. An aggregator is allowed to directly or 

indirectly supervise the charging activities of a group of vehicles by broadcasting charge 

profiles’ information to the PEVs as shown in Figs. 3.5 (d-h). This will ultimately reduce 

the requirement for computationally powerful tools and software.  

The main benefits of hierarchical PEV battery charging coordination algorithms comes 

from their tree formation structures [47]: 

ü They balance the benefits of centralized and decentralized PEV coordination tactics by 

engaging different hierarchical tree architecture 

ü Unlike the centralized and decentralized PEV coordination strategizes, they do not 

require global and network-wide communications.  

However, there are some disadvantages related the hierarchical PEV battery charging 

coordination schemes [47]:    

ý As with the centralized and decentralized PEV coordination algorithms, the 

hierarchical structures of Figs. 3.5(d-g) are vulnerable to single points of failure.  

ý The structure of Fig. 3.5(h) resolves the single points of failure issue; however, if one 

of the aggregators falls, then all PEVs supervised by that particular aggregator will be 

uncontrolled. 

In the literature, five hierarchical architectures have been proposed. The first four structures 

(depicted in Figs. 3(d-g)) feature three tiers: a central aggregator on the top tier, sub-

aggregators in the middle tier, and EVs at the lower tier. The five proposed hierarchical 

tree architecture are summarized as follows: 

Ø Hierarchical Type HT1- This architecture (Fig. 3.5(d)) consists of an ISO (central 

aggregator) that is directly supervising a collection (in this case three) of sub-

aggregators. Each sub-aggregator solves its charging coordination problem and 

decides on its own PEVs. Hierarchical HT1 is proposed/used in references [80]-[82].   

Ø Hierarchical Type HT2- In this architecture (Fig. 3.5(e)), the ISO (central aggregator) 

indirectly supervising each sub-aggregator by transmitting computational overheads. 

Each sub-aggregator uses the information to solve its own optimization problem and 
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genrate the charge schedules of the PEVs in its group. Hierarchical HT2 is 

proposed/used in references [83]-[86].  

Ø Hierarchical Type HT3- In this architecture (Fig. 3.5(f)), the ISO (central aggregator) 

calculates a collective charging plan for all sub-aggregators. Then, each sub-

aggregator indirectly controls a group of PEVs by broadcasting signals, transferring 

the computational overhead of calculating charge schedules to the EVs. Note that this 

architecture preserves the decentralized behavior of PEVs. Hierarchical HT3 is 

proposed/used in references [87]-[88]. 

Ø Hierarchical Type HT4- In this architecture (Fig. 3.5(g)), all the aggregators (e.g., 

ISO and all sub-aggregators) and PEVs coordinate via indirect control signals. Note 

that this architecture also preserves the decentralized behavior of PEVs. As with the 

centralized and decentralized strategies, architecture HT1-HT4 are also vulnerable to 

single points of failure (e.g., if ISO collapses then all the sub-aggregators and PEVs 

will be unsupervised/uncontrolled). Hierarchical HT4 is used in reference [89]. 

Ø Hierarchical Type HT5- The last architecture (Fig. 3.5h) consists of a number of 

indirect aggregators and is intended to resolve the vulnerability of designs HT1-HT4 

to single points of failure. This is done by inclusion of a communication network 

across all indirect aggregators. Note that if one of the links between two indirect 

aggregators fails, there is still an alternative communication path to prevent overall 

failure. The unresolved limitation of HT5 is that if one of the aggregators collapses, 

EVs connected to that particular aggregator will remain uncontrolled. Hierarchical 

HT5 is proposed/used in references [90]-[92]. 
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Table 3.2 summarizes the main advantages and limitations of different EV charging 

coordination strategies discussed in this chapter. 

Table 3.2 Summary of respective advantages and limitations of different EV charging 

coordination techniques.  

Design  Main Advantages Main Limitations 
Centralized EV Charging Coordination (Fig. 3.5(a) [47]) 

Online MSS-based coordination for 
peak shaving considering charging 
stations [62] 

§ Near-optimal 
solutions. 
§ Easy consideration of 
global network states 
and constraints. 
§ [55] and [56] also 
include wind DGs. 
§ [57] provides more 
grid savings by 
delaying the EV 
charging process. 
§ [62] performs peak 
shaving considering 
charging at both home 
and charging stations. 
§ [64] considers some 
mobility aspects of 
EVs. 

§ PEV owners do not 
have direct control 
of their EV charging. 

§ Scalability 
challenges. 

§ Single point of 
failure. 

§ [57] has the 
disadvantage of 
delaying EV 
charging. 

Online MSS sensitivity-based 
coordination [63] 
Mobility-aware and static PEV battery 
charging to minimize system losses [64] 
Load scheduling and dispatch for PEV 
aggregators [67] 
Optimal PEV coordination by 
controlling rate of charging to maximize 
total power to EVs [68] 
Delayed (offline) MSS-based 
coordination [57] 
Online MSS sensitivity-based 
coordination considering wind DGs [55] 
Online Fuzzy and MSS-based 
coordination considering wind DGs [56] 
Combined online and delayed MSS-
based coordination [58] 

Decentralized/Distributed EV Charging Coordination (Figs. 3.5(b-c) [47]) 
Design DT1: Optimal distributed 
charging rate control of PEVs for 
demand management [69] 

§ Highly scalable with 
low computational 
complexity. 
§ More resilient since 
they can withstand 
centralized 
communication 
failures. 

§ Cannot always 
capture global 
optimal or near-
optimal scheduling 
solution. 

§  Have large 
communication 
overheads (for DT1 
design). 

Design DT1: Distributed cost-optimal 
charging control of PEVs for demand 
management [70] 
Design DT2: Decentralized charging of 
PEVS with distribution feeder overload 
control [71] 
Design DT2: Distributed control of PEV 
charging based on energy demand 
forecast [74] 
Design DT2: Optimal demand-side 
management for PEVs [75], [76] 
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Design DT2: Enabling reliability-
differentiated service in residential 
networks with EVs based on a 
hierarchical game approach [72] 
Design DT2: Optimal day-ahead 
charging scheduling of EVs based on an 
aggregative game model [78] 
Design DT2: Coordinated PEV charging 
in unbalanced residential networks [79] 
Hierarchical EV Charging Coordination (Figs. 3.5(d-h) [47]) 
Design HT1: Coordination of PEVs 
across multiple aggregators [80] 

§ Balance benefits of 
centralized and 
decentralized tactics 
by engaging different 
hierarchical tree 
architecture. 
§ Do not require global 
and network-wide 
communications 
§ HT3 preserves the 
decentralized behavior 
of PEVs. 

§ HT1-HT4 are 
vulnerable to single 
point of failure.  

§ HT5 resolves the 
failure issue, but if 
one aggregator falls, 
then all PEVs 
supervised by this 
aggregator will fall. 

Design HT1: Coordination of EV 
charging stations for active power 
compensation [81] 
Design HT1: Hierarchical coordinated 
dispatch of PEVs [82] 
Design HT2: Economics of EV charging 
based on game theory [83] 
Design HT2: Coordinated control of 
PEVs in multifamily houses [84] 
Design HT2: Coordinated charging of 
EVs for congestion prevention in 
distribution grids [85] 
Design HT2: A stochastic game 
approach for PEV charging station 
operation [86] 
Design HT3: A scalable approach for 
demand side management of PEVs [87] 
Design HT3: Charge control of large 
populations of EVs [88] 
Design HT4: Decentralized PEV 
charging selection in power systems 
[89] 
Design HT5: Game-theoretic EV 
charging management resilient to non-
ideal user behavior [90] 
Design HT5: Distributed power profile 
tracking for heterogeneous charging of 
EVs [91] 
Design HT5: Charge scheduling of 
PEVs using inter-aggregator 
collaboration [92] 
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3.5. Properties of PEV Coordinated Battery Charging Schemes 

This section introduces some common properties of PEV charge coordination schemes.      

3.5.1. Unidirectional (G2V) Versus Bidirectional (G2V and V2G) Power Flow 

In general, electric vehicles can be designed to operate in grid-to-vehicle or vehicle-to-

grid modes which are also known as G2V and V2G modes, respectively. The G2V design 

assumes unidirectional power flow in the network from the grid to the vehicle when the 

PEV is charging [46], [47], [62], [63], [89], [117]. On the order hand, the concept of V2G 

is based on bidirectional power flow where the PEV battery can operate in both charging 

and discharging conditions [104], [113], [114], [115], [116]. Clearly, the vehicle’s battery 

cannot be simultaneously charging and discharging [46], [47]. Currently, most 

manufactured EVs are designed for V2G operation. However, with minor modifications 

to their battery chargers they can also operate in V2G mode using the existing network 

infrastructure and charging station facilities. The advantage of V2G design is that the 

PEV owners can earn incentives from the utility by discharging their vehicles during peak 

load hours. Reference [49] provide an extensive literature review on V2G challenges and 

applications. This thesis only considers and discusses V2G mode of operation. 

3.5.2. Offline Open-Loop versus Online Closed-Loop PEV Coordination 

In the offline PEV coordination algorithms, the charging schedule is calculated one-time 

using open-loop control based on the predicted (forecasted) network operation conditions. 

The offline algorithms assume ISO, aggregators and sub-aggregators have perfect 

network and PEV parameter (e.g., their plug-in times) knowledge in advance, which is 

not true in most real-life applications. References [57], [62], [90] and [93] propose/use 

offline coordination. On the other hand, the online strategies use recursive closed-loop 

feedback measurements to calculate/optimize the PEV battery charging schedule multiple 
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times. Hence, they can handle uncertainties such as the mobility of PEVs. References 

[55], [56], [58], [63], [80], [87] and [94] propose/use online coordination. 

3.5.3. Variable Rate versus Discrete Rate PEV Battery Charging 

The charging and discharging of PEV batteries can be performed with [47]: 

§ Variable charge rates that can take an infinite number of values between zero and the 

maximum battery charge rate [83], 91], [95] (Fig. 3.6(a)).  

§ Fix charge rate that is set to the maximum battery charge rate [96] (Fig. 3.6(b)). 

§ Discrete charge rates that is performed in an interrupted manner [89] (Figs. 3.6(c)).   

Most of the published PEV literature assumes variable battery charge rates for G2V and 

V2G operations. However, fix and discrete charge rates are more common for practical 

applications since charger is simple, cheaper and more efficient [118]. In the cases of 

discrete rate charging, the charger rate is restricted by the maximum charging power of 

the battery. The main applications of variable rate chargers are in engagements of PEVs 

in demand side management of SG as discussed in Chapter 2 (Section 2.3).  

 
(a)                             (b)                           (c) 

Fig. 3.6. PEV battery charging rate options; (a) Variable rate, (b) Fix rate, (c) Discrete rate [47]. 

 

3.5.4. Static versus Mobility-Aware PEV Battery Charging Coordination 

Since PEV users are moving within the traffic network, they may need to charge their 

vehicles at different locations during the day. Considering PEV movements, there are two 

types of charge scheduling: 

§ Mobility-aware PEV battery charging coordination that takes into consideration the 

mobility aspects of the vehicles such as their locations (home, office, private or public 
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charging station), arrival (plug-in) times, their departure (plug-out) times, trip history 

(route information, average speed), and unplanned departures.  

§ Static PEV battery charging coordination that ignores the mobility and temporal 

properties of vehicles by treating them as stationary loads. 

Mobility-aware model are more realistic but also more complicated since spatial temporal 

behaviour of vehicles requires a more complex problem formulation. 

Mobility-aware and static PEV charge scheduling have been studied in the literature. 

Static PEV battery charging has been assumed in most publications such as [66], [64], 

[67] and  [68]. Some mobility behaviour of the PEVs have been assumed in references 

[62], [63], [65], [74], [92], [94], [114], [116], [119], [120], [121] and [122]. For example: 

ü Reference [92] presents a mobility-aware PEV charge schedule model based on the 

hierarchical HT5 architecture (Fig. 3.5(h)). There is a set of aggregators that are 

collaborating to control a set of charging stations and schedule PEVs that are 

subscribed to the stations. This model allows the PEVs to move between aggregators 

and select their preferred charting station. 

ü Reference [74] is a decentralized online charging scheme based on DT2 architecture 

(Fig. 3.5(c)) that aims to minimize the mean square error between the reference point 

and the real-time aggregate load. In this model, data related to non-PEV load and PEV 

mobility are used offline to estimate the reference operating point.  
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3.5.5. Pricing Strategies 

A promising approach to indirectly mange residential loads including PEVs is the so-

called smart pricing. Flat rate pricing refers to the simple approach of considering a fixed 

fee for energy regardless of the time and duration of the consumption. Smart pricing refers 

to an approach where the users are encouraged to manage their own loads by reducing 

their energy consumption (such their PEV battery charging) during peak load periods. 

There are different ways to implement smart pricing such as: 

Ø Time-of-use (TOU)- The electricity price is different during peak, shoulder and off-

peak periods. This will offer incentives to encourage customers to try to move their 

EV charging loads (e.g., PEV battery charging) to off peak hours. A possible issue 

may be the formation of new charging (rebound) peaks [47]. 

Ø Real-time pricing (RTP)- The price of electricity varies and is higher during peak loads 

periods in the evenings, hot summer days and cold winter days. There are two possible 

issues with RTP: i) it may become confusing for the users to manually respond to the 

changing prices, and ii) it may cause load synchronization (e.g., a large portion of load 

is shifted from peak load hours to off peak hours without significant reduction in the 

average peak load) [14]. 

Ø Critical-peak pricing (CPP)- The customers are offered lower rates during non-critical 

hours and non-critical days but higher rates during critical hours [123].  

3.6. Objective Functions of PEV Battery Charging Schedule Optimization     

 In the literature, PEV battery charging coordination problem is mostly expressed as a 

constrained optimization problem [46]-[47]. The decision variables are typically charge 

rates and charge durations. The selected constraints intend to combine the requirements 

of grid operator (ISO), PEV users, direct and indirect aggregators (Fig. 3.5). Various 

forms of objective functions have been proposed and implemented. For the centralized 
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PEV coordination of Fig. 3.5(a), the large-scale optimization problem is solved directly 

[46]. For the hierarchical PEV coordination of Figs. 3.5(d-h), the centralized optimization 

problem is divided into a set of small-scale sub-problems to reduce the computational 

burden [47]. In general, the objective functions of the optimization problem can be 

classified in two broad categories [46]-[47]: 

ü Objective functions considering grid operation aspects. 

ü Objective functions considering grid cost aspects.   

 3.6.1. Objective Functions Considering Operation Aspects     

The objective function of the PEV battery charging coordination can be formulated to 

consider operation aspects of the power grid. The formulation can be done from the 

perspectives of the grid operator (ISO), the aggregators or the PEV users.  

A. Operation Aspects from Grid Operator’s Perspective 

From the viewpoint of grid operator (ISO), the PEV charge coordination objectives 

should incorporate the operation aspects of grid.  

1) Load Regulation- Much of the literature focuses on flattening the PEV and non-PEV 

load curves and filling the overnight load valley to prevent line and transformer 

overloading. For example, PEV coordinated battery charging considering load 

regulation is performed in references [74], [76], [93], [95], [96].  

2) Load Regulation with Voltage regulation and/or Overload Control- The literature 

also emphases on performing load regulation while properly maintaining node voltage 

levels and/or feeder transformer limits with designated values. For example, PEV 

coordinated battery charging considering load regulation are performed: i) with 

overload constraints in references [71], [75], [80], [84], [85], [97] and [98], ii) with 

voltage regulation constraints in reference [99], and iii) with both voltage and overload 

constraints in references [62], [73] and [100]. 
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3) Maximizing Operational Efficiency- Another important ISO concern is the balancing 

generation and demand to improve operational efficiency. This is done in references 

[63] and [101]. 

B. Operation Aspects from Aggregators’ Perspective 

If good incentives are offered, the aggregators and PEV users will most likely want to 

participate in proving ancillary services. There are many publications investigating PEV 

participations in ancillary services such as voltage control ([62]), frequency regulation 

([66], [102]) and spinning reserve [103] as well as active and reactive power 

compensation [81].  

C. Operation Aspects from PEV Users’ Perspective 

From the viewpoint of the PEV users, the coordination objectives should also consider 

their participations in improving operation aspects of the grid.  

1) PEV User Provision of Ancillary Services- There is significant publications on the 

PEV user involvement (without any aggregators) in ancillary services such as [104] 

and [105]. 

2) Maximizing PEV User Convenience- Most PEV users would like to attain a high level 

of convenience in their vehicle charging process. For example, they may require fast 

charging during early evening hours or would like to have their vehicles fully 

(partially) charge by certain time. For example, inclusions of some of these factors in 

the PEV charge coordination schedule are examined in references [89] and [91]. 

3) Minimizing Battery Losses and Degradation- From the perspective of PEV users, 

other factors to include in the objective function are battery losses, health and 

degradation. These concerns are investigated in references [69], [70], [72], [76], [82] 

and [94].  
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4) Charing Fairness- Most heuristic PEV battery charging coordination algorithms 

consider/ensure some type of fairness norms such as “first come first serve”, “earliest 

deadline first” and “shortest job first”. Impacts of some of these factors on the PEV 

battery charging schedule are investigated in references [73] and [106]. 

3.6.2. Objective Functions Considering Cost Aspects     

Another option for the formulation of the objective function is to consider the cost aspects 

from the perspectives of grid operator, aggregators or the PEV users.  

A. Cost Aspects from Grid Operator’s Perspective 

From the perspective of ISO, the cost aspects of grid should be included in the objective 

function. This can be done by considering: a) reducing the power generation required for 

PEV battery charging as investigated in references [82], [88], [100] and [107] and/or b) 

maximize the grid operator revenue  as performed in references [83] and [108]. 

B. Cost Aspects from Aggregators’ Perspective 

From the viewpoints of the aggregators who are profit-seeking individuals purchasing 

energy at wholesale prices, their cost aspects should be considered in the PEV charge 

schedules. This can be done by; a) maximizing the aggregators profit as performed in 

references [80], [84], [98], [109], [110] and [111] and/or minimizing the cost of power 

supply as done in references [86] and [87]. 

C. Cost Aspects from PEV Users’ Perspective 

Some PEV users may be willing to adjust their charge/discharging periods according to 

their impact on the real-time electricity price. The formulation of objective function can 

be defined to minimize the PEV battery charging cost as demonstrated in references                          

[14], [83], [85], [86], [90], [94], [97], [101], [107] and [109]. 
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3.7. Future Research in Battery Charging Coordination of PEVs 

Some possible future research directions and innovative areas related to PEV battery 

charging coordination are: 

• Development of more public and private PEV battery charging stations and facilities 

[61].    

• More research on PEV battery charging coordination strategies that integrate both 

mobility-awareness and network-awareness [47]. 

• More research on distributed charging schemes with multiple objectives considering 

both the operational and cost aspects [47]. 

• Development more practical PEV charge control schemes involving realistic and 

accurate battery models [47]. 

• More research on improving the security and privacy of the PEV charge/discharge 

coordination algorithms [46]. 

• More research on the impacts of PEV mobility and the influence of dynamic user 

choices on the charge scheduling [46]. 

• More investments on enhancing abttery technology and reducing battery charging 

time to make PEVs more attractive and more flexibale [61]. 

• Optimal placemnet and sizing of charging stations considering both the traficc and 

power networks [60]. 
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CHAPTER FOUR: ONLINE MSS-BASED COORDINATED BATTERY 

CHARGING OF PEVS IN SMART POWER GRIDS CONSIDERING WIND 

DISTRIBUTED GENERATIONS  

 

The integration of renewable energy resources such as photovoltaic (PV) and wind 

distributed generations (WDGs) within the EV networks is one of the key technologies 

in the future smart power grid systems. The first contribution of the Ph.D. thesis is a 

centralized online MSS-based coordinated battery charging (OL-MSSCC) algorithm for 

PEVs in smart power grids with WDGs which was published by the author during his 

Ph.D. studies in reference [55].  The proposed OL-MSSCC algorithm operates on real-

time (online) bases (e.g., performing the PEV coordination every 5 minutes) using the 

grid, PEVs and WDGs information transmitted by the smart meters. The approach is an 

extension to the real-time smart load management (RT-SLM) algorithm of ([63], [51], 

[52], [124]) with the addition of WDGs to reduce the possibility of overloading the lines 

and distribution transforms due to the high injections of PEVs particularly for the duration 

of the peak load. 

This chapter is organized as follows: 

• Section 4.1 reviews the ideas of centralized online and offline PEV battery charging 

coordination. 

• Section 4.2 presents the power flow formulation based on the concept of zero 

mismatch power and summaries the iterative Newton-Raphson load flow solution. 

• Section 4.3 introduces the concepts and formulation of the proposed OL-MSSCC 

algorithm for coordinated battery charging of PEVs in smart power grids. 

• Section 4.4 implements the OL-MSSCC algorithm by modify the RT-SLM 
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algorithm of [63] to include WDGs. 

• Section 4.5 introduces the IEEE-based 449-bus smart power grid test system that is 

used to perform the simulations of Chapters 4-7.  

• Section 4.6 investigates the performance of the proposed OL-MSSCC algorithm by 

performing detailed simulations for coordination of PEVs in the 449-bus smart 

power grid network without and with WDGs. 

• This chapter ends with the conclusions in Section 4.7.  

4.1. Centralized Online and Offline Battery Charging Coordination of PEVs  

As mentioned in the previous chapters, PEV battery charging coordination are classified 

into centralized ([55]-[58], [62]-[68]), decentralized ([14], [69]-[79]) and hierarchical 

([80]-[92]) schemes. The centralized PEV battery charging coordination approaches can 

be executed through online, offline, or hybrid online-offline algorithms (Fig. 4.1) [45]:   

• Online PEV battery charging coordination algorithms rely on real-time (online) 

information on SG operation, PEVs status and renewable generation output powers. 

The main challenges are related to the complexity, computer storage requirements, 

computing time and speed of these online algorithms particularly at high injections of 

PEVs in large power networks. The chief advantage of online PEV coordination 

compared to the off-line strategies is the real-time consideration of PEVs, DGs and 

network status as well as the associated constraints within the charging coordination 

algorithm. Chapters 4 and 5 propose two online PEV battery charging coordination 

algorithms.  

• Offline algorithms for PEV coordination use forecasted (or estimated) data and for 

PEV battery charging demands, daily load curves, DG output variations, etc. The main 

concerns about these algorithms are the availability and accuracy of the estimated data. 
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However, these algorithms are executed offline and don’t need to be very fast. 

Conventionally, offline PEV coordination strategies are easier to implement as they 

do not directly consider DG, PEV and network status.  Chapter 6 proposes an offline 

(overnight) PEV battery charging coordination algorithm.  

• Hybrid online-offline strategies combine the online and offline coordination tactics. 

Chapter 7 proposes a combined online-offline PEV battery charging coordination 

algorithm.  

 

Fig. 4.1. Classification of PEV battery charging schemes (based on Figure 3 of [45]). The 

proposed OL-MSSCC is an “Online Charging” algorithm within the “Centralized Coordination” 

strategies. 

4.2. Review of Newton-Raphson Power Flow Formulation and Calculations  

This section provide a review of power flow formulation and its solution based on the 

well-known Newton-Raphson iterative method. The materials of this section are based 

on Chapter 7 of [125].  

4.2.1. Bus Types and Bus Mismatch Power    

Bus Variables: In power grid modeling and load flow formulation, there are four 

variables associated with each bus: i) voltage magnitude |V|, ii) voltage phase angle θ, iii)  
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generated/consumed active power P and, iv) generated/consumed reactive power Q.  

Bus Types: There are three important bus types where at each bus, two of the above-

mentioned variables are known while the other two must be determined by the load flow 

solution [125]: 
1) PQ Bus (Load Bus)- P and Q are given, while |V| and θ must be computed by the load 

flow algorithm (Fig. 4.2(a)). These buses are mostly used to model the loads of power 

networks.  

2) PV Bus (Voltage-Controlled Bus)- P and |V| are given, while Q and θ must be 

computed by the load flow algorithm (Fig. 4.2(b)). These buses are mostly used to 

model the loads of power networks.  

3) Swing Bus (Slack Bus)- |V| and θ are assumed (usually 1 per unit (pu) and zero 

degree), while the net injected P and the net injected/observed Q and θ are not known 

and must be computed by the load flow algorithm (Fig. 4.2(c)). This bus is used to 

provide network losses by: i) producing active power to the system, and ii) 

producing/absorbing reactive power to/from the system. 

              

                  (a)                                                     (b)                                                     (c) 

Fig. 4.2. The three important bus types used for load flow modeling and calculations; a) PQ (load) 

bus, b) PV (voltage-controlled) bus, c) swing (slack) bus [125].  

Mismatch Power (Fk=∆Sk=Sk-Scheduled - Sk-Calculate): At each bus k, the mismatch (residual) 

power Fk = ∆Sk is defined as the difference between scheduled apparent power Sk-Scheduled 

(e.g., the sum of all given load and generator power at bus k) and calculated apparent 
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power Sk-Calculate (e.g., the sum of all power through the lines connected to bus k):  

   𝐹> = ∆𝑆> = ∆𝑃> + 𝑗∆𝑄> = 𝑆>(?5/*@A(*@) − 𝑆>(B%(5A(%"*@)                                      (4.1) 

where ∆𝑃> = 𝑃>(?5/*@A(*@) − 𝑃>(B%(5A(%"*@) and  ∆𝑄> = 𝑄>(?5/*@A(*@) − 𝑄>(B%(5A(%"*@) 

are the mismatch active power and mismatch reactive power at bus k, respectively.   

4.2.2. Formulation of Load Flow Problem based on Zero Mismatch Power    

In general, any n bus system including the power grid network can be modeled using 

Kirchhoff's Current Law (KCL): 

   𝐼DA6 = 𝑌DA6	∙ 𝑉DA6                                                                                                         (4.2) 

where 𝑌DA6 is the “2n×2n” admittance matrix while the “1×2n” and the “2n×1” current 

and voltage vectors are defined as: 

   [𝑉] = [𝑉T, 𝑉b,∙∙∙∙∙∙∙ 𝑉,]".                                                                                                (4.3) 

   [𝐼] = [𝐼T, 𝐼b,∙∙∙∙∙∙∙ 𝐼,]".                                                                                                   (4.4) 

Admittance matrix: The admittance matrix can be easily calculated as follows [125]. 

		c

𝑌TT 𝑌Tb ⋯ 𝑌T,
𝑌bT 𝑌bb … 𝑌b,
⋮
𝑌,T

⋮
𝑌,b

⋱ ⋮
⋯ 𝑌,,

h                                                                                                (4.5) 

 where: i
𝑌-- = ∑	𝑦,					If	𝑖 = 𝑗	(	i. e. , summation	of	all	admitances	connected	to	bus	𝑖)	
𝑌-N = 0,									If	𝑖 ≠ 𝑗	and	bus	𝑖	is	not	connected	to		bus	𝑗.																																														
𝑌-N = −𝑦--,			If	𝑖 ≠ 𝑗	and	bus	𝑖	is	connected	to		bus	𝑗	through	admittance	𝑦-N 	

 

Unfortunately, Eq. 4.2 cannot be used directly to model a power system since we usually 

have neither 𝑉DA6  nor  𝐼DA6, but rather know the power of the loads (PL and QL) and the 

power injected by generators plus their voltage magnitudes (PG and |VG|). Therefore, in 

power grid modelling [125]: 

ü The apparent power (Eq. 4.6) is used to formulate the power flow problem. 

ü  The concept of zero mismatch power (Fk = ∆Sk  = Sk-Scheduled - Sk-Calculate) at 

all buses (Eqs. 4.7-10) is used to solve the power flow problem. 
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At each bus (e.g., bus k), the complex apparent power (Sk = Pk + jQk) is calculated as the 

product of voltage vector and the complex conjugate of current vector:  

   𝑆> = 𝑉> ∙ 	𝐼>∗.                                                                                                                 (4.6) 

Mismatch Power Vector: Substituting Eq. 4.2 into Eq. 4.6, we get the equation of 

mismatch power at bus k: 

   𝐹> = 𝑆> − 𝑉> ∑ 𝑌>N∗ ∙,
N�T 𝑉N∗ = 0,					𝑘 = 1, 2,…… . . 𝑛.                                                 (4.7) 

where 𝑌>N = 𝐺>N + 𝑗𝐵>N, 𝜃>N = 𝜃> − 𝜃N  is the kj element of the admittance matrix. 

Eq. 4.7 can be used to calculate the mismatch power at each bus [125]: 

    𝐹T = 𝑆T(?5/*@A(*@) − 𝑆T(B%(5A(%"*) = 𝑆T − 𝑉T ∑ 𝑌TN∗,
N�T ∙ 𝑉N∗ 	→ 𝑓T(𝑉) = 0                (4.8a) 

    𝐹b = 𝑆b(?5/*@A(*@) − 𝑆b(B%(5A(%"*) = 𝑆b − 𝑉b ∑ 𝑌bN∗,
N�T ∙ 𝑉N∗ 	→ 𝑓b(𝑉) = 0               (4.8b)  

    𝐹, = 𝑆,(?5/*@A(*@) − 𝑆,(B%(5A(%"*) = 𝑆, − 𝑉, ∑ 𝑌,N∗,
N�T ∙ 𝑉N∗ 	→ 𝑓,(𝑉) = 0               (4.8c)  

Therefore, the mismatch power vector in matrix form is:    

     𝐹(𝑉) = 𝐹?5/*@A(*@(𝑉) − 𝐹B%(5A(%"*@(𝑉) = c

𝑓T(𝑉)
𝑓b(𝑉)
⋮

𝑓,(𝑉)

h = 0                                         (4.9) 

Taylor Series of Mismatch Power: Expanding row 1 of Eq. 4.9 in a Taylor Series about 

a guess solution V⁽⁰⁾ we get: 

    𝑓T(𝑉) = 𝑓T(𝑉T, 𝑉b, … . 𝑉,) = 𝑓T�𝑉T
(�), 𝑉b

(�), … . 𝑉,
(�)� + ���

�3�
�
3(�)

∆𝑉T 

																+ ���
�3�
�
3(�)

∆𝑉b +⋯		
���
�3�
�
3(�)

∆𝑉, + higher	ordet	terms.                              (4.10) 

If we expand all rows of Eq. 4.9 (similar to Eq. 410) and ignore the higher order terms: 

    

⎩
⎪⎪
⎨

⎪⎪
⎧𝑓T(𝑉) = 𝑓T�𝑉(�)� = ∑ ���

�3�
 
3(�)

∆𝑉N = 0,
N�T

𝑓b(𝑉) = 𝑓b�𝑉(�)� = ∑ ���
�3�
 
3(�)

∆𝑉N = 0,
N�T

𝑓,(𝑉) = 𝑓,�𝑉(�)� = ∑ ���
�3�
 
3(�)

∆𝑉N = 0,
N�T

                                                           (4.11) 

Finally, the zero-mismatch power vector equation in matrix format is [125]: 

    𝐹�𝑉(�)� = [	𝐽	]3(�)[∆𝑉] = 0                                                                                   (4.12) 

In the above equation, the Jacobian matrix is: 
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   𝐽(𝑉) =

⎣
⎢
⎢
⎢
⎢
⎡
���
�3�

���
�3�

⋯ ���
�3�

���
�3�

���
�3�

… ���
�3�

⋮
���
�3�

⋮
���
�3�

⋱ ⋮
⋯ ���

�3�⎦
⎥
⎥
⎥
⎥
⎤

                                                                                                (4.13) 

Iterative Power Flow Solution Based on Zero Mismatch Power: In summary, a guess 

voltage vector V⁽⁰⁾ must be iteratively updated/corrected by the voltage correction vector 

∆V in order to force the mismatch power F(V) to zero and capture (converge to) the power 

flow solution: 

ü The voltage correction vector ∆V is: 

         [∆𝑉] = −[	𝐽	]3(�)
7T ∙ 	𝐹(𝑉(�))                                                                             (4.14) 

ü  The updated (corrected) voltage vector is:  

         [𝑉] = §𝑉(�)¨ + [∆𝑉] .                                                                                       (4.15) 

4.2.3. Newton-Raphson Power Flow Solution    

The power flow formulation of Eqs. 4.1-4.10 is nonlinear because it is written in terms of 

the complex apparent power S which is the product of “voltage” and “complex conjugate 

of current” (𝑆 = 𝑉 ∙ 𝐼∗). Furthermore, we have ignored the higher order terms of the 

Taylor Series (Eq. 4.10); therefore, the load flow solution (Eqs. 4.12, 4.14-15) is obtained 

using an iterative procedure. The most popular iterative methods used in power networks 

are the Newton-Raphson and the Gauss-Seidel [125]. 

Figure 4.3 presents the overall flow chart of the Newton-Raphson algorithm which is used 

in this thesis to solve the power grid without and PEV battery charging. The iterative 

Newton-Raphson power flow solution can be summarized as follows. 

Iteration 0 (Make an Initial Guess V⁽⁰⁾ for Voltage Vector Solution):  

• Step 1- Starts with an initial guess solution for the voltage vector V⁽⁰⁾ (Eq. 4.3). The 

most popular and convenient guess is to set all bus voltage magnitudes to 1.0 per 

unit with angles of zero degree (Vk = 1.0 pu∟0⁰, for k = 1, 2, …, n).  

• Step 2- Calculate admittance matrix Ybus and mismatch power F(V⁽⁰⁾) (Eqs. 4.5-4.9). 

• Step 3- If mismatch power F(V⁽⁰⁾) ≤ ε   stop; otherwise, set V = V⁽⁰⁾ and continue. 

Iteration i (Calculate Correction Voltage Vector ∆V and Check Convergence): 

• Step 1- Calculate the Jacobian matrix J(V) (Eq. 4.13). 

• Step 2- Calculate the correction voltage vector ∆V (Eq. 4.14). 
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• Step 3- Update the solution voltage vector V = V + ∆V (Eq. 4.15).                  
• Step 4- Calculate the mismatch power vector F(V) (Eq. 4.9).  

Check Convergence (F(V) ≤  ε or ∆V ≤  ε): 

• Step 1a (Stop)- If F(V) = 0, stop. In practice, the iterative procedure is stopped when 

F(V) and/or ∆V are smaller than a tolerance of error ε. For the Newton-Raphson load 

flow algorithm adapted in this thesis, the tolerance is selected to be ε = 1×10⁻⁵ and 

the iterative procedure is stopped when |F(Vk)| ≤ ε  at all buses of the network.   

• Step 1b (Iterate)- Otherwise (F(V) > ε ), set “i = i + 1” and repeat “Iteration i”. 

 

 
Fig. 4.3 Flow chart of the Newton-Raphson algorithm for power flow solution  

 

4.3. Concepts and Formulation of OL-MSSCC  

According to Fig. 4.1, the proposed OL-MSSCC is classified as an “Online Charging” 

algorithm within the “Centralized Coordination” strategies. It aims to perform a 

combination of “Optimal Finance” (by reducing the cost according to Eq. 4.16) and 

“Optimal Operation” (by controlling bus voltage profiles and preventing overloading of 

transformers and lines according to Eqs. 4.17-18).  

4.3.1. Concepts of OL-MSSCC 

The concepts of OL-MSSCC algorithm are similar to those adapted in references [52], 

[55], [63], [51], [55], [124]: 

§ Problem Formulation of OL-MSSCC (Eqs. 4.16-4.18)- The PEV problem 



75 

 

formulation is based on cost minimization and is solved online (e.g., every 5 minutes) 

based on the updated grid, PEV and WDG information received by the smart meters. 

§ Planning Time Horizon and Time Interval of OL-MSSCC (Fig. 4.4)- The scheduling 

time horizon for PEV coordination is selected to be 24 hours. It starts at 1600h for 24 

hours and is divided into 24(60)/5=288 time intervals. Therefore, each time interval is 

∆t = 5 minutes. 

§ Independent System Operator (ISO)- oversees grid operation and centralized PEV 

battery charging coordination. Upon random arrival of each PEV: i) a signal is sent to 

ISO by the PEV charger/controller, ii) ISO implements the OL-MSSCC algorithm and 

sends a signal to the PEV to start charging, and iii) PEV charger sends a signal back 

to ISO upon unplugging. 

§ Charging Time Zones of OL-MSSCC (Fig. 4.4)-  three time zones are defined to 

factor in variable energy pricing including: i) the PEV charging time between 1800h 

and 2200h (called the red time zone) is dedicated for high-priority customers paying 

high tariff, ii) the PEV charging time between 2200h and 0200h (called the blue time 

zone) is dedicated for medium-priority customers paying medium tariff and iii) the 

PEV charging time between 0200h and 0800h (called the green time zone) is dedicated 

for low-priority customers that would like to pay low tariff. 

§ Subscription (High, Medium and Low) Priority Options of OL-MSSCC (Fig. 4.4)- 

are defined to consider customer preferences and enquires: i) high-priority customers 

who are willing to pay high tariff for quick charging during early evening hours within 

the red time zone, ii) medium-priority customers who are willing to pay medium tariff 

for late night charging within the blue time zone, and iii) low-priority customers 

looking for inexpensive overnight charging within the green time zone.  
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§ PEV-Queue Table of OL-MSSCC (Table 4.1)- is established and updated on real-

time bases (e.g., every 5 minutes) to keep track of all vehicles’ statuses. At the 

beginning of each time interval t=∆t, the PEV-Queue Table is resorted to update the 

order of PEVs according to their subscription priority (red, blue or green) and plugged-

in / plug-out times such that the vehicles with highest priority are placed at the top 

rows of the table while the lower priority vehicles are pushed towards the bottom of 

the table. If it is not possible to service a high-priority PEV due to a constraint violation 

(Eqs. 4.17-4.18), the charging will be postponed to the next time interval; however, 

the EV will be kept at the top rows of the queue up table. This process will be continued 

until leftover PEV is charged as soon as possible. Therefore, the PEV-Queue Table 

may contain uncharged vehicles from prior time interval(s) that are waiting to be 

charged since they were not attended due to voltage and/or demand violations.    

§ Random PEV Plug-In Times Replicated by Gaussian Distribution- The proposed 

PEV coordination algorithms of this Ph.D. thesis and their simulations are performed 

for random arrivals (e.g., random plug-in) of PEVs at homes. However, in order to 

compare simulation results for various coordination strategies and various case studies 

presented in Chapters 4-7, Gaussian (Normal) distributions of charging loads ([55], 

[63]) with PEV injections of 16%, 32%, 47% and 63% occurring within red (1800h-

2200h), blue (1800h-0100h) and green (1800h-0800h) charging time zones are 

generated and used in this thesis (Fig. 4.4(b)). 

Therefore, the cost/fee of purchasing energy that is required for EV charging will be 

reduced by: 1) introducing charging zones at different hours that correspond to the utilities 

intentions to cut generation cost during peak hours of residential loads, 2) allowing the 

customers (PEV owners) to select their own preferred charging time zones, 3) classify 
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high-, medium-, and low-priority customers according to the selected charging time 

zones, 4) designing the proposed OL-MSSCC algorithm to accommodate these 

preferences at each time interval t=∆t while considering the objective cost function (Eq. 

4.16) and system constraints (Eqs. 4.17-4.18). 

In the literature, there are no standards or classifications for the PEV injection/penetration 

levels and the PEV charging time zones. The selected very low (16%), low (32%), 

medium (47%) and high (63%) EV injection levels (Fig. 4.7) as well as the chosen red 

(1800h-2200h), blue (1800h-0100h) and green (1800h-0800h) PEV changing time zones 

(Fig. 4.4) are adopted from references [62] and [63] which are well-known papers and 

have been cited over 370 and 950 times, respectively. 

 

 

Fig. 4.4(a). PEV charging time zones, price of energy and residential daily load curve (based on 

Fig. 1a of [55]).   
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Fig. 4.4(b). The Gaussian (Normal) distribution of vehicle arrivals for PEV injections of 63% 

[55], [63]. Similar Gaussian distribution charging loads are generated for PEV injections of 16%, 

32% and 47% and used to compare simulation results for various coordination strategies and 

various case studies presented in Chapters 4-7. The red, blue and green colors represent high, 

medium, and low priority PEVs, respectively.   
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Table 4.1. An example of the PEV-Queue Table showing the order of PEVs within the three 

subscription priority options. Within each priority group, the PEVs are sorted according to the 

MSS vector of Eq. 4.19 and are waiting in the queue to be scheduled for charging by the ISO. 

PEV-Queue Table for Online Coordinated Battery Charging (OL-MSSCC) of PEVs 

Sorting 
Scheme 

PEV 
Type 

PEV Number 
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Bcharged,1 Charged 
….. ….. 
Bcharged,max Charged 
Bcharging,1 Charging  
….. ….. 
Bcharging,max Charging  
Bwaiting,1 Waiting to be scheduled with medium priority* 
….. ….. 
Bblue,max Waiting to be scheduled with medium priority * 
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Gcharged,1 Charged 
….. ….. 
Gcharged,max Charged 
Gcharging,1 Charging  
….. ….. 
Gcharging,max Charging  
Gwaiting,1 Waiting to be scheduled with low priority* 
….. ….. 
Ggreen,max Waiting to be scheduled with low priority * 

*) Uncharged vehicles from prior time interval(s). 
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4.3.2. Problem Formulation of OL-MSSCC 

The problem formulation of OL-MSSCC is similar to references [51], [52], 62], and [63] 

with the addition of WDGs injecting active power into the grid. The PEV coordination is 

formulated as a constrained optimization problem which is solved in real-time (e.g., every 

5 minutes) based on the grid status and WDGs information transmitted by smart meters.  

The objective function of OL-MSSCC is to reduce the overall cost of PEV battery 

charging plus system energy losses [63]: 

     min𝐹5'6" = 𝐹5'6"7('66 +	𝐹5'6"7.*,  

									= ∑ 𝐾2 ∙ 𝑃",('66" + ∑ 𝐾",J ∙ 𝐷","'"%( ,						𝑡 = ∆𝑡, 2∆𝑡,… . 24	ℎ𝑜𝑢𝑟𝑠."                (4.16) 

In above equation, the total losses are 𝑃",('66 = ∑ 𝑅>,>ST�|𝑉>�T − 𝑉>|²𝑦>,>ST²�
b,7T

>��  while 

the the total costs of losses and generation are represented by 𝐹5'6"7('66 and 𝐹5'6"7.*, , 

respectively.  𝐷","'"%( is the total demand at time t (see Eqs. 4.18).  is the selected 

time interval which is equal to 5 minutes, 𝐾2 is the cost per MWh of system losses which 

is equal to 50 $/MWh, [126]-[128] and 𝐾",J  is the MWh generation cost at time t (e.g., 

Fig. 4.4) while n and k represent total number of buses and the bus number, respectively. 

There are two constraints associated with Eq.  4.16 [52], [63], [124]:  

1) The bus voltage constraint is included by considering a maximum voltage deviation 

limit (set by ISO or the utility): 

 ∆𝑉> = |𝑉> − 𝑉+%"*@| ≪ ∆𝑉$%&,				for	𝑘 = 1,…… , 𝑛.                                         (4.17) 

where ∆𝑉>  is the per unit (pu) voltage deviation of bus k which is limited to ∆𝑉$%& =

0.1	pu	in this thesis.  

2) A limit for the total maximum system demand to prevent overloading of transformers 

and lines from PEV battery charging: 

tD



81 

 

 𝐷","'"%( = ∑ 𝑃",>('%@> + ∑ 𝑃",N123N − ∑ 𝑃",$OPJ$ ≪ 𝐷",$%&				for	 µ
𝑘 = 1,… . 𝑛		
𝑗 = 1,… 𝑗$		
𝑚 = 1,…𝑚$

    (4.18) 

where k, j and m are the counters for load-buses (PQ buses without PEVs), PEV-

buses, and WDGs, respectively. The 𝑃",>('%@  and 𝑃",N123  are the total active load power 

and total PEV charge demand at bus k  at time t = ∆t while 𝑃",$OPJ  is the injected wind 

DG power at bus j at time t = ∆t. 𝐷",$%& is the highest allowed demand (that may be 

set based on the highest loading of the distribution transformer) at t = ∆t that can be 

set to the maximum demand without any PEVs. 

At each time interval t=∆t, the OL-MSSCC needs to assess the state of the SG with PEV 

which is necessary for the calculation of the objective function (Eq. 4.16) and checking 

of constraints (Eqs. 4.17-4.18). This is done by using Newton-Raphson power flow 

calculations where: i) loads in the residential and distribution sectors are considered as 

constant power type loads with their P and Q values updated according to their daily load 

curves (Fig. 4.4), ii) all PEV battery charging loads are treated as constant active power 

loads and, iii) all WDGs are treated as constant power sources injecting active power to 

the grid. 

4.4. Implementation of OL-MSSCC 

The centralized OL-MSSCC algorithm will manage the start times and the order of PEVs 

battery charging by using the SG communications system that can send and receive 

signals from/to the independent system operator (ISO) to/from the individual PEV 

chargers. Consequently, PEV battery charging is centrally controlled by the OL-MSSCC 

algorithm rather than the PEV owners.  

Therefore, based on the PEV owner preferences for charging time zone, the energy prices, 

load variations over the scheduling/planning time horizon of 24 hour, and the load flow 
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solutions, the OL-MSSCC algorithm will assign charging schedules to each PEV to 

improve SG operational performance Eqs. 4.17-4.18 (e.g., bus voltage profiles and 

transformer loadings) while reducing the cost (Eq. 4.16). 

4.4.1. PEV Coordination Based on Maximum Sensitivity Selections   

The online PEV battery charging of OL-MSSCC involves loss reduction (first component 

of Eq. 4.16, 𝐹5'6"7('66), voltage magnitude regulation (Eq. 4.17) and maximum demand 

control (Eq. 4.18) while also considering PEV owner (high-, medium-, low-priorities) 

preferences and generation cost reduction (second component of Eq. 4.16, 𝐹5'6"7.*,). 

This can be achieved through AI optimization methods such as genetic and particle swarm 

optimization algorithms (GA and PSO). However, while most AI optimizations are 

accurate, many of them are not computationally suitable for online optimization of large 

networks that require small time steps (e.g., 5 minutes as selected in this thesis). 

Therefore, OL-MSSCC utilizes the fast and practical MSS approach adopted in [63] to 

sort PEV buses within a given priority (high, medium, low) group. Bus sorting is done 

based on the sensitivity of network losses to PEV battery charging power demand.   

The MSS vector is calculated by considering the objective function sensitivities (Eq. 4.16, 

𝐹5'6"7.*,) to the PEV power consumption and location using the following partial 

derivatives [63]: 

    𝑀𝑆𝑆",N = 	 𝜕𝑃",('66 𝜕𝑃",N123⁄ 		𝑓𝑜𝑟		𝑗 = 1,… . 𝑗$                                                      (4.19) 

where 𝑀𝑆𝑆",N (the entry number j of the vector at time interval t=∆t) is the sensitivity of 

system losses to EV battery charging at bus j at time t , 𝑗$ is the total/overall number of 

PEVs,  is the total/overall value of SG loss at the time t, and 𝑃",N123 is the total/overall 

power consumption of the EV that are connected to bus number j. At each time interval, 

the partial derivatives of Eq. 4.19 are extracted from the Jacobian (already calculated) 

matrix J (Eq. 4.13): 

loss,tP
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Therefore, determination of the MSS vector (Eq. 4.19) does not require any extra 

calculations since the Jacobian matrix (Eq. 4.13) is already calculated by the Newton-

Raphson load flow. 

 

4.4.2. Updating of MSS Vector and PEV-Queue Table    

Since PEV scheduling based on MSS is simple, fast and efficient without requiring 

complex calculations, it is practical for centralized online charging coordination of PEVs 

in large networks. It quantifies the objective function sensitivities (system losses) to the 

PEV charger loads at each time interval t=∆t. This is done by defining a new bus type 

(called PEV-bus) in the load flow program and calculating the MSS vector consisting of 

the system losses sensitivities with respect to active power demand of the PEV-buses. 

The MSS vector is calculated and is used to update the PEVs order in the PEV-Queue 

Table based on the following steps: 

1) Temporarily activating all PEV-buses with about 5% of their nominal battery charger 

power ratings.    

2) Executing the load flow program and using Jacobian entries to compute the loss 

sensitivities due to power consumption of each EV (Eq. 4.4), and storing the results 

in the MSS vector. 

3) Using the MSS vector to update the order of PEVs in the PEV-Queue Table. 

Consequently, OL-MSSCC will first schedule the PEVs that have less impacts on the 

system losses.  

4) Steps 1-3 are repeated at each time interval for each of the descending priority group. 

The result of steps 1-4 is a PEV-Queue Table.  



84 

 

4.4.3. Inclusion of Wind Distributed Generations in OL-MSSCC 

The first contributions of this Ph.D. thesis is the inclusion of WDGs in the centralized 

online PEV battery charging coordination (RT-SLM) algorithm of [63]. 

In the formulation of OL-MSSCC, WDGs are included as negative active power loads. 

The WDG characteristics used in this thesis is generated by scaling down 

readings/measurements of an existing wind farm; the Walkway wind farm in WA, 

Australia on July 7, 2012 (Fig. 4.5). In the later sections of this chapter, the impact of 

wind power generation characteristic on the performance of OL-MSSCC will be 

scrutinized by shifting the peak out power period. Two of these characteristics are shown 

in Fig. 4.5 with the peak power period shifted to early evening hours1800h-2100h (WDG 

#1) and early morning hours 2400h-0300h (WDG #2). 

 

Fig. 4.5. The output power of wind DGs used for the simulations of this thesis which are 

generated by scaling down the measurements of an existing wind farm; the Walkway 

wind farm in WA, Australia on July 7, 2012, with the peak output power periods shifted to 

early evening hours1800h-2100h (WDG #1) and early morning hours 2400h-0300h (WDG #2) 

(based on Fig. 1(b) of [55]).  

 

4.4.4. The Flow Chart Representation of Proposed OL-MSSCC Considering WDGs 

The OL-MSSCC algorithm reduces the cost/expenditure of generating/supplying energy 

for EV battery charging (Eq. 4.16) while considering network operation constraints 
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(Eqs.4.17-4.18). This is done by: 1) prioritizing/ranking PEVs according to the  

sensitivity/MSS vector of Eq. 4.19, 2) with the consideration of the real-time variations 

of loads and energy pricing (Fig. 4.4), 3) utilizing the energy generated by WDGs (Fig. 

4.5) for EV charging, and 4) considering consumers’ preferences by defining charging 

time zones (Fig. 4.4) that correspond to utilities interest in reducing generation cost during 

peak load hours.  

The flow chart of OL-MSSCC algorithm is shown in Fig. 4.6 [55]. There are four stages 

associated with each time interval t = ∆t = 5 minutes. 

Stage 1 (Updating PEV and WDG Status):  

§ Step 1.1- Check for random arrival (plug-in) and departure (plug-out) of PEVs. 

§ Step 1.2- Update PEV-Queue Table 4.1 according to plug-in/out of all EVs. 

§ Step 1.3- Update status of WDGs according to wind information by smart meters. 

§ Step 1.4- Update Dt,max (Eq. 4.18) based on WDGs output power. 

§ Step 1.5- Update market energy price based on real-time pricing. 

 
Stage 2 (Online MSS-Based PEV Coordination Scheduling):  

§ Step 2.1- Run Newton-Raphson load flow of Fig. 4.3. 

§ Step 2.2- Extract MSS vector (Eq. 4.19) from the Jacobian (already calculated) matrix 

(Eq. 4.13). 

§ Step 2.3- Calculate cost function (Eq. 4.16) and network constraints (Eqs. 4.17-18). 

§ Step 2.4- Sort the PEVs in Table 4.1 in accordance with Eq. 4.19. 

§ Step 2.5 (Scheduling of eligible PEVs): 

Ø Step 2.5.1- Temporary charge the PEV at top of PEV-Queue Table 4.1. 

Ø Step 2.5.2- If ∑demands>Dt,max then go to Step 2.5.7 (postpone charging of this PEV 

until next ∆t since it causes a damned constraint violation according to Eq. 4.18). 
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Ø Step 2.5.3- Run Newton-Raphson load flow of Fig. 4.3. 

Ø Step 2.5.4- If voltage violation (|∆V|≤ ∆Vmax (Eq. 4.17)) then go to Step 2.5.7 

(postpone charging of this PEV until next time interval since it causes a voltage 

constraint violation according to Eq. 4.17). 

Ø Step 2.5.5- Schedule the PEV for charging. 

Ø Step 2.5.6- Remove the Scheduled PEV from PEV-Queue Table 4.1. 

Ø Step 2.5.7- Go to Step 2.5.1 for scheduling next eligible PEV. 

Stage 3 (Updating Daily Load Curve):  

§ Step 3.1- Update the daily load curve by including the scheduled PEVs. 

Stage 4 (Go to Next Time Interval ∆t and Repeat):  

§ Step 4.1- If t = 24 hours, then stop. 

§ Step 4.2- Repeat Stages 1-3 for the next time interval ∆t. 
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Fig. 4.6. Flow chart of the proposed OL-MSSCC algorithm (based on Fig. 2 of [55]). 
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4.5. The 449 Smart Power Grid Distribution System  

The 449-bus smart power grid test system of Fig. 4.7 with three WDGs [55] is used to 

demonstrate the performance of the proposed OL-MSSCC algorithm.  

4.5.1. Topology of Smart Power Grid System  

The designated system for the simulations and analysis of this Ph.D. thesis is the 449-bus 

network of Fig. 4.7 [55],[63]. It is based on the IEEE 31 bus 23 kV distribution test system 

[129] combined with three WDGs and 22 low voltage 415 V residential feeders [55]. 

Each residential feeder has 19 buses. Simulations are performed for PEVs injection levels 

of 3/19≈16%, 6/19≈32%, 9/19≈47% and 12/19≈63%.  

 
 (a)  

 
(b)  

Fig. 4.7. The 449-bus smart power grid comprising of the IEEE 31-bus high-voltage 23 kV 

distribution network [129] joint with three WDGs (at buses 4, 7 and 12) and twenty two low-

voltage 415 V residential feeders; (a) system one-line diagram, (b) One of the residential feeders 

with PEV injections of 3/19≈16%, 6/19≈32%, 9/19≈47% and 12/19≈63% highlighting  the high 

(red color), medium (blue color) and low (green color) priority consumers/PEVs [55], [63].     
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The PEV, load and line data are presented in Tables 4.2 and 4.3. The selected buses for 

PEV battery charging and the corresponding assigned priorities and charging time zones 

are presented in Fig. 4.7(b). 

 
Table 4.2. The PEV parameters and the loads of the 19-bus LV residential feeders and the 31-bus 

HV distribution system of Fig. 4.7 [55], [63], [124]. 

Linear and PEV Load (Figs. 4.7a-b) Power 

Load Type  Load Location (kW) (kVAR) 

Household  PQ loads Buses  a - s (Fig. 4.7(b)) 2.0 0.97 

PEV charger  load  Selected buses (Table 4.4) 4.0 0 

 

Table 4.3a. Parameters of the lines in residential feeders of Fig. 4.7 [55], [63], [124]. 

Line  
Between 
Buses 

Resistance 
of Line 
R (mΩ) 

Reactance 
of Line 
X (mΩ) 

Line  
Between 
Buses 

Resistance 
of Line 
R (mΩ) 

Reactance 
of Line 
X (mΩ) 

a and b 41.5 14.5 f and l 1360.5 135.7 

b and c 42.4 18.9 d and m 140.0 14.0 

c and d 44.4 19.8 c and n 776.3 77.4 

d and e 36.9 16.5 b and o 597.7 59.6 

e and f 52.0 23.2 a and p 142.3 49.6 

f and g 52.4 23.4 p and q 83.7 29.2 

g and h 0.50 0.20 q and r 312.3 31.1 

g and i 200.2 19.9 a and s 16.3 6.2 

g and j 173.4 172.9 Reactance of Distribution 
Transformers                 

DT-10 to DT-31 
65.4 f and k 260.7 26.0 

 
 
Table 4.3b. Line parameters of 31-bus 23 kV distribution test system of Fig. 4.7 [124]. 

Line  
Between 
Buses 

Resistance 
of Line 
R (Ω) 

Reactance 
of Line 
X (Ω) 

Line  
Between 
Buses 

Resistance 
of Line 
R (Ω) 

Reactance 
of Line 
X (Ω) 

2 and 3 0.4 6.9 12 and 13 259.7 146.3 

2 and 29 52.7 2.8 13 and 14 259.7 146.3 

3 and 4 83.9 83.0 14 and 15 163.3 142.0 
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4 and 5 163.3 142.0 16 and 17 163.3 142.0 

4 and 23 163.3 142.0 17 and 18 259.7 146.3 

5 and 6 259.7 146.3 19 and 20 163.3 142.0 

6 and 7 259.7 146.3 20 and 21 83.9 83.0 

7 and 8 259.7 146.3 23 and 24 83.9 83.0 

7 and 19 259.7 146.3 24 and 25 163.3 142.0 

7 and 22 259.7 146.3 25 and 26 163.3 142.0 

8 and 9 259.7 146.3 26 and 27 163.3 142.0 

9 and 16 259.7 146.3 27 and 28 259.7 146.3 

9 and 10 0.2597 0.1463 29 and 30 52.7 2.8 

10 and 11 0.2597 0.1463 30 and 31 259.7 146.3 

11 and 12 163.3 142.0 

 

Table 4.4. Details of charging time zones [55], [63]. 

19-Bus Feeders 
(Fig. 4.7(b)) 

PEV Injection Levels (see Fig. 4.7(b))* 
16% 32% 47% 63% 

bus a     
bus b     
bus c     
bus d     
bus e     
bus f     
bus g     
bus h     
bus i     
bus j     
bus k     
bus l     

bus m     
bus n     
bus o     
bus p     
bus q     
bus r     
bus s     

                        *) Table entries with white color are buses without any PEVs. 
 
4.5.2. PEV Energy Requirements  

The PEV batteries are usually a few tens of kWh. In this thesis, the PEV battery capacities 

are assumed to be 10 kWh with the justification that small affordable EVs will more likely 

lead the future market [63]. To prevent premature aging of the battery and optimize its 
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life, reference [63] chooses DOD of 70% of the rated battery life. This means the PEV 

battery can deliver 7 kWh. Assuming 88% charger efficiency [130], a single EV battery 

demands 8 kWh of energy from the smart power grid.  

4.5.3. Residential Load Profiles and EV Battery Chargers  

In Australia, there are standard 240V single-phase outlets as well as 5A single-phase and 

20A three-phase outlets that can supply approximately 2.4kW, 4 kW and 14.4 kW, 

respectively. References [55] and [63] use a fixed charging power of 4 kW since this is 

readily available in most Australian residential households without requiring 

infrastructure reinforcement. These references also use a representative residential load 

curve based on readings from a distribution transformer in Western Australia to represent 

the domestic load variations without any PEV battery charging activities for a typical day 

(Fig. 4.4). The maximum power intake of each resident is 2 kW at 0.9 power factor.  In 

this thesis, the PEV energy requirements, battery size, charger size, and the residential 

daily load curve of references [55] and [63] are used for the simulations. 

4.5.4. Injection and Designated Priorities of PEVs 

PEV injection level is specified as the number of buses with PEVs in each residential 

feeder divided by the total 19 buses. Each household is assigned a maximum of one PEV. 

Electric vehicles are arbitrarily placed along the LV networks. The PEVs are divided in 

three groups as demonstrated in Fig. 4.7. Four PEV injection levels with the assigned 

locations and priorities for of Table 4.4 and Fig. 4.7(b) are simulated: 

ü Very low PEV injection of (3 PEVs) / (19 LV buses) ≈ 16%. 

ü Low PEV injection of (6 PEVs) / (19 LV Buses) ≈ 32%. 

ü Medium PEV injection of (9 PEVs) / (19 LV Buses) ≈ 47%. 

ü High PEV injection of (12 PEVs) / (19 LV Buses) ≈ 63%. 
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Majority of PEVs owners are subscribed to green and blue time zones to represent a 

realistic breakdown of priorities ([55], [63]).  

4.6. Simulation and Analyses of PEV Coordination with Proposed OL-MSSCC 

Simulations and assessments are done for the 449-bus smart power grid network of Fig. 

4.7 for both uncoordinated/random and coordinated (using the proposed OL-MSSCC) 

PEV battery charging situations without/with WDGs. Comprehensive simulations are 

performed for PEV injections of 16%, 32%, 47% and 63%, as well as various 

locations/buses, various peak times, and various rates of WDGs. A time interval (∆t) of 

five minutes is used for all simulations.  Table 4.5 shows the simulated scenarios for the 

smart power grid network of Fig. 4.7. Simulation results are presented in Figs. 8-13 and 

summarized in Tables 4.6 and 4.7. 

The following six cases are simulated ad analysed (Table 4.5): 

§ Case A: Uncoordinated PEV battery charging without WDGs. Simulation results are 

shown in Fig. 4.8. 

§ Case B: Coordinated PEV battery charging (using proposed OL-MSSCC algorithm) 

without WDGs. Simulation results are presented in Fig. 4.9. 

§ Case C: Coordinated PEV battery charging (using proposed OL-MSSCC algorithm) 

with three WDGs (Fig. 4.5; WDG #1) having total peak wind generation of 3×0.2=0.6 

MW (corresponding to wind power injection of 3×20%=60%). Simulation results are 

presented in Fig. 4.10.  

§ Case D: Same as Case C except the wind peak generation time is shifted to 8 pm, 10 

pm, and 12 am. Simulation outcomes are presented in Fig. 4.11. 

§ Case E: Same as Case C except wind power injections are adjusted to 5%, 10%, 20%, 

30% and 40%. Simulation results are presented in Fig. 4.12. 
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§ Case F: For the PEV injection of 63%, the impacts of WDG locations on system losses 

are examined by alternately placing one large WDG of 0.6 MW (corresponding to wind 

power injection of 60%) at buses 2 to 31 of the 449-bus network (Fig. 4.7). Simulation 

results are presented in Fig. 4.13.  

Table 4.5. Simulated case studies for the online MSS-based OL-MSSCC PEV battery charging 

coordination of the 449-bus smart power grid network in Fig. 4.7. 

Case 
Study 

PEV 
Coordination  

Injection of 
PEV (%) 

Injection of 
WDG (%) 

Locations 
of WDGs  

WDG Peak 
Time 

Results 

A Uncoordinated 16, 32, 47, 63% 0 - - Fig. 4.8 
B OL-MSSCC 16, 32, 47, 63% 0 - - Fig. 4.9 
C OL-MSSCC 16, 32, 47, 63% 3 × 20 = 60% Buses 4, 

7, 12 
6 pm Fig. 4.10 

D OL-MSSCC 63% 3 × 20 = 60% Buses 4, 
7, 12 

6 pm, 8 pm, 
10 pm,12 am 

Fig. 4.11 

E OL-MSSCC 63% 5% to 40% Buses 4, 
7, 12 

6 pm Fig. 4.12 

F OL-MSSCC 63% 1 × 60 = 60% Buses 2 to 
31 

6 pm Fig. 4.13 
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4.6.1. Random Charging of PEVs without WDGs (Case A) 

The first case study (Case A) investigates the impacts/effects of uncoordinated/arbitrary 

EV battery charging on the network of Fig. 4.7 by considering random plugging of 

electric vehicles without any waiting for the centralized coordination. In order to compare 

simulation results, Gaussian (Normal) distributions of charging loads (Fig. 4.4(b)) with 

PEV injections of 16%, 32%, 47% and 63% within the three battery charging time zones 

(Fig. 4.4(a)) are generated and used for the simulations of Cases A-F. According to the 

simulations results of Figs. 4.8a-c and Table 4.6 (rows 2-6), the following points can be 

highlighted which are also confirmed in [55] and [63]:  

ü Even at low PEV injections (e.g., 16% corresponding to only two PEVs in each residential 

feeder of Fig. 4.7), there are some increases in power demand, power generation, voltage 

deviations, and power losses predominantly during peak load hours as reported in Figs. 

4.8a-c and Table 4.6 (row 3).  

ü At high injections of PEVs (e.g., 47% and 63% corresponding to nine and twelve PEVs 

in each residential feeder of Fig. 4.7), there are significant increases in the overall cost 

(up to 50% and 59% as reported in column 6 (rows 5-6) of Table 4.6). This is primarily 

due to the consuming of electricity for PEV battery charging at high prices during the 

evening hours when most PEVs are being randomly plugged-in (Fig. 4.8(a)) and charged 

without any coordination.  

ü There could also be issues with substation transformer loadings. For example, transform 

loading is increased by 0.8 MW, as PEV injection is increased from %16 injection to %64 

injection as reported in Table 4.6 (column 7, rows 2 and 6). 
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(a) 

 
     (b)   

 
(c) 

Fig. 4.8. Simulation results for Case A: Uncoordinated PEV battery charging in Fig. 4.7 without 
WDGs; (a) System power demand for 63% injection of PEVs, (b)-(c) Voltage deviation at worst 
bus and total system losses [55].  

4.6.2. The OL-MSSCC of PEVs without WDGs (Case B) 

The second simulated scenario (Case B) demonstrates the performance of OL-MSSCC 

algorithm for the coordination of PEVs in Fig. 4.7 without the three WDGs. Simulation 

results are presented in Fig. 4.9 which are also published by the author in [55]. Note that 
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the maximum demand level (Dt,max in Eq. 4.18) is intentionally reduced after midnight 

to push the charging load of low-priority PEVs to early morning hours with lower energy 

prices (Fig. 4.4(a)). Based on the simulations results of Figs. 4.9a-c and Table 4.6 (rows 

7-11), the following analysis are made [55]:  

ü There are notable augmentations in system performance with notable reductions in the 

operational expenses/costs (Fig. 4.9 and Table 4.6, rows 7-11).  

ü Unlike Case A (uncoordinated PEV battery charging), all bus voltages are regulated 

within the permitted limit of ∆Vmax = 10% (Eq. 4.17) even at high injection levels of 

47% and of 63%. 

ü In addition, OL-MSSCC algorithm has effectively managed to control the peak 

generation, distribution transformer loading and system losses. 

4.6.3. The OL-MSSCC of PEVs with WDGs (Case C) 

Case C is intended to demonstrate the first contribution of this thesis which is the 

inclusion of WDGs in the MSS-based coordination of PEVs. Three WDGs with the total 

peak wind generation of 3×0.2=0.6 MW (corresponding to wind power injection of 

3×20%=60%) are positioned at buses 4, 7 and 12 of Fig. 4.7. The wind peak generation 

time is 6-9 pm (Fig. 4.5; WDG #1). Simulations results are presented in Fig. 4.10 and 

Table 4.6 (rows 12-16) [55]. Comparison of the PEV battery charging without (Fig. 4.9) 

and with (Fig. 4.10) wind power generation indicates that WDGs will generally improve 

the overall system performance and PEV scheduling: 

ü Depending on the speed, duration and peak time of the wind, WDGs can provide 

opportunities to charge more PEVs beyond the maximum demand level without 

overloading the substation transformer. This is due to the distributed nature of WDGs 

acting as local energy generation resources.  
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ü Wind power can significantly decrease the burden on the substation transformer 

reducing its loading. For example, substation transformer loading is declined from 

0.85 MW (without WDGS) to 0.75 MW (with WDGS) as reported in Table 4.6 (last 

column, rows 7-11 and 12-16). 

ü As expected, the addition of wind power has also reduced the generation and total 

costs. As an example, for 16% PEV injection, the increase in cost has improved from 

+5.96% to -10.56% (Table 4.6; column 6, rows 8 and 13). 

4.6.4. Impacts of Peak Wind Generation Times on OL-MSSCC of PEVs (Case D)  

Case C is repeated with the wind peak generation time shifted form 6 pm (Fig. 4.5; WDG 

#1) to 8 pm (Case D1), 10 pm (Case D2) and 12 am (Case D3). Simulation results are 

presented in Fig. 4.11 and Table 4.6 (rows 17-31) [55]. These results reveal: 

ü Altering the wind peak DG time within 6 pm to 12 am will not have a major impact 

on OL-CAA scheduling; however, the overall system performance is improved 

compared with both Case A (uncoordinated/random PEV battery charging) and Case 

B (coordinated PEV battery charging with no wind DGs). 

ü  The ideal situation is when the peak wind generation time overlaps with the peak PEV 

battery charging demand (Case C). 

 
4.6.5. Impact of Wind Power Injection on OL-MSSCC of PEVs (Case E) 

Five WDG sizes corresponding to the total wind power injections of 5%, 10%, 20%, 30%, 

and 40% are simulated and the results are summarized in Table 4.7 [55]. For this case 

study, the PEV injection is 63%. The impacts of wind power injection on the substation 

transformer loading are shown in Fig. 4.12. According to these results: 

ü There are considerable reductions in transformer loading as the wind power injection 

is increased (Fig. 4.12). 
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ü There are also gorgeous cost reductions as the wind power injection is increased. For 

example, the total cost for wind power injection of 5% is +10.30% (e.g., 10.30% more 

than the cost with no PEVs) while this cost drops to -15.4% when the wind power 

injection is 40% (Table 4.7, column 6; rows 3 and 7).  

ü  However, increasing the wind power injection beyond 10% will not have substantial 

influences on the total system losses (Table 4.7, column 3; rows 5-7).    

4.6.6. Impacts of WDG Positions on OL-MSSCC of PEVs (Case F)  

To investigate the influences of WDG locations/positions on the OL-MSSCC strategy 

and system performance, a large WDG of 0.6 MW (corresponding to wind power 

injection of 60%) is alternately placed on the HW buses 2 to 31 of the 449-bus SG network 

(Fig. 4.7). The PEV injection is 63% and simulation results are shown in Fig. 4.13. 

According to the results: 

ü The proposed OL-MSSCC algorithm can successfully coordinated PEV battery 

charging with substantial improvements compared with uncoordinated Case A and 

coordinated Case B without WDGs. 

ü However, distributing the wind power resources along the HV network is more 

advantageous. For example, using three WDGs rated at 3× 0.2 MW distributed along 

the HW network results in less system losses as compared with installing one WDG 

rated at 1× 0.6 MW. 

ü The most beneficial areas for the installation of WDGs are located at the ends of HV 

feeders.  

ü The best buses for the placement of WDGs in the order of preference are: i) buses 10-

15, ii) buses 6-8, iii) buses 16-18, iv) buses 20-21, and v) buses 24-28.  

  



99 

 

  
                                     (a)                                                                          (a)  

  
                                      (b)                                                                           (b) 

 
                                     (c)                                                                          (c) 
Fig. 4.9. Simulation results for Case B: 
Coordinated (OL-MSSCC) PEV battery 
charging in Fig. 4.7 without WDGs; (a) 
System power demand for 63% injection of 
PEVs, (b)-(c) Voltage deviation at worst bus 
and total system losses [55]. 
 

 Fig. 4.10. Simulation results for Case C: 
Coordinated (OL-MSSCC) PEV battery 
charging in Fig. 4.7 with three 0.2 MW 
WDGs with wind peak generation time at 
6pm; (a) System power demand for 63% 
injection of PEVs, (b)-(c) Voltage deviation 
at worst bus and total system losses [55]. 
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Fig. 4.11. Simulation results for Case D: Coordinated (OL-MSSCC) PEV battery charging in Fig. 

4.7 with three 0.2 MW WDGs (total injection of 3×20%=60%) and maximum wind output power 

at 6, 8, 10 and 12pm; (a) System power demand, (b)-(c) Voltage deviation and total system losses 

[55]. 

      

 

 
       (b) 

Fig. 4.12. Simulation results for Case E: Substation transformer loading for coordinated (OL-

MSSCC) PEV battery charging in Fig. 4.7 with wind power injections of 5%, 10%, 20%, 30% 

and 40% (wind peak power generation at 6pm) [55]. 
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Fig. 4.13. Case F simulations: Impacts of WDG positions/locations on the total network losses of 

Fig. 4.7 with coordinated (OL-MSSCC) PEV battery charging. For the PEV injection of 63%, 

one large WDG of 0.6 MW (corresponding to wind power injection of 60%) is alternately placed 

at HW buses 2 to 31 [55].  
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Table 4.6. Summary of simulation results for Cases A, B and C showing the performance of 
proposed OL-MSSCC for the smart power grid network of Fig. 4.7 without and with WDGs. Each 
WDGs has a maximum output power of 0.2 MW (corresponding to 20% wind power injection) 
with unity power factor. The time interval (∆t) is 5 minutes [55]. For comparison, the same 
Gaussian function is used to generate random Gauss PEV distributions and random Gauss PEV 
plug-in times in all residential feeders. For nominal operation without any PEVs or WDGs, the 
values for “|DV|”, “Imax”, “Generation Cost” and “Total Cost” are 7.646%, 0.147%, 770.3 $/day and 
786.2 $/day. 

PEV 
(%) 

| DV | 
(%) 

Imax 
(%) 

Cost of Generation 
($/day) / (%)* 

Total Network Cost  
(see Eq.4.16)  

($/day) / (%)* 

Loading of 
Substation 

Transformer (MW) 
Case A: Uncoordinated/random PEV battery charging without WDGs; Figs. 4.8a-c 

63 17.60 0.307 958/24.4 1,250/59.0 1.80 
47 16.20 0.263 916/18.9 1,180/50.0 1.50 
32 9.050 0.218 871/13.07 1,090/38.6 1.30 
16 7.690 0.179 829/7.62 1,030/31.0 1.00 

Case B: Coordinated (OL-MSSCC) PEV battery charging without WDGs; Figs. 4.9a-c 

63 10.00 0.171 875/13.59 895/13.84 0.86 
47 10.00 0.160 858/11.38 878/11.67 0.85 
32 7.65 0.159 838/8.79 855/8.75 0.85 
16 7.65 0.159 808/4.89 825/4.93 0.85 

Case C: Coordinated (OL-MSSCC) Charging with WDGs  
(Peak Generation at 6pm; Fig. 4.10) 

63 10.00 0.170 761/-1.20 781/-0.63 0.76 
47 10.00 0.166 742/-3.67 761/-3.18 0.76 
32 7.52 0.172 720/-6.53 737/-6.23 0.75 
16 7.46 0.163 687/-10.81 703/-10.56 0.66 

Case D1: Coordinated (OL-MSSCC) Charging with WDGs  
(Peak Generation at 8pm; Fig. 4.11)  

63 10.00 0.172 768/-0.29 787/0.12 0.78 
47 10.00 0.166 748/-2.89 767/-2.41 0.75 
32 7.59 0.172 726/-5.75 743/-5.47 0.75 
16 7.55 0.163 694/-9.90 710/-9.67 0.74 

Case D2: Coordinated (OL-MSSCC) Charging with WDGs  
(Peak Generation at 10pm; Fig. 4.11) 

63 10.00 0.172 773/-0.35 792/0.76 0.84 
47 10.00 0.167 752/-2.37 771/-1.90 0.79 
32 7.61 0.172 730/-5.23 747/-4.96 0.79 
16 7.59 0.172 696/-9.64 712/-9.41 0.79 

Case D3: Coordinated (OL-MSSCC) Charging with WDGs  
(Peak Generation at 12pm; Fig. 4.11) 

63 10 0.172 771/-0.99 791/0.64 0.83 
47 9.98 0.189 750/-2.89 769/-2.16 0.81 
32 7.72 0.173 726/-6.30 743/-5.47 0.81 
16 7.62 0.176 691/-10.29 707/-10.05 0.81 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
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Table 4.7. Impact of WDG injection on losses, cost and substation transformer loads of Fig. 4.7 

with the proposed OL-MSSCC, PEV injection of 63%, unity WDG power factor and time interval 

(∆t) of 5 minutes [55]. For nominal operation without any PEVs or WDGs, the values for “|DV|”, 

“Imax”, “Generation Cost” and “Total Cost” are 7.646%, 0.147%, 770.3 $/day and 786.2 $/day, 

respectively. 

WDG 
(%) 

| DV |  
(%) 

Total Network 
Power Loss   
(MW/day) 

Cost of 
Generation 

($/day) / (%)* 

Total Network Cost  
(see Eq.4.16)  

($/day) / (%)* 

Loading of 
Substation 

Transformer (MW) 
Case E: Coordinated (OL-MSSCC) PEV battery charging with WDG Injections of 5 to 40%  

(PEV Injection of 63% and Peak Wind Generation at 6 pm; Fig. 4.12) 
40 10.00 0.2025 646/-16.13 665/-15.40 0.69 

30 10.00 0.2041 704/-8.60 723/-8.02 0.73 

20 10.00 0.2068 761/-1.20 781/-0.63 0.76 

10 10.00 0.2101 818/6.19 838/6.61 0.79 

5 10.00 0.2112 847/9.99 867/10.3 0.82 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
 

4.7. Discussions and Conclusions 

In this chapter, a centralized online MSS-based coordinated battery charging (OL-

MSSCC) algorithm for PEVs in smart power grid networks with WDGs is proposed, 

formulated, and implemented [55].  The OL-MSSCC is intended for real-time PEV 

battery charging (e.g., every 5 minutes) and relies on the grid, PEVs and WDGs 

information that are to be collected by smart meters and transmitted to the ISO who will 

supervise the central coordination. The approach is like the real-time smart load 

management (RT-SLM) algorithm of [63] but with the addition of WDGs. To 

demonstrate the performance of OL-MSSCC, it is implemented on the IEEE 449-bus 

smart power grid network of Fig. 4.7 without and with WDGs considering high- medium- 

and low-priority PEVs with injection levels of 16%, 32%, 47% and 63%. The following 

main conclusions are noted based on the detailed simulations results of Tables 4.6- 4.7 

and Figs. 4.8-4.13: 
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• Uncoordinated vehicle charging can result in substantial escalations in demand, voltage 

changes/deviations, losses and generation predominantly in the evening peak load 

hours with large number of PEVs being charged [55], [63].  

• The proposed OL-MSSCC algorithm can effectively schedule vehicle battery charging 

without and with WDGs at all PEV injections [55]. This is done by considering three 

consumer (high, medium, and low) priorities, three charging time zones (red, blue and 

green), dynamic energy prices and grid operation constraints within the formulation 

and implementation of OL-MSSCC.  

• The proposed OL-MSSCC algorithm is a potential candidate for online coordination of 

PEVs in large smart power grid networks since it is quite simple, fast, practical and 

easy to implement.    

• Increasing the injection of wind power generation will substantially reduce system 

losses, generation cost and transformer loadings. The proposed OL-MSSCC takes 

advantage of the available renewable wind energy for charging more PEVs. For the 

smart power grid network of Fig. 4.7, there are significant cost reductions as the wind 

power injection is increased.    

• The best spots for the installation of WDGs are near the residential feeders with high 

injections of PEVs, at the ends of the HV feeders and close to the charging stations. 

For the simulated smart power grid network of Fig. 4.7, the best buses for the placement 

of WDGs in the order of preference are: i) buses 10-15, ii) buses 6-8, iii) buses 16-18, 

iv) buses 20-21, and v) buses 24-28. 

• If possible, moving the wind peak generation periods to early evening hours will 

enhance the overall network performance. The ultimate situation is when the peak wind 

DG generation overlaps with the peak PEV battery charging. 
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CHAPTER FIVE: CENTRALIZED ONLINE FUZZY COORDINATED BATTERY 

CHARGING OF PEVS IN SMART POWER GRIDS CONSIDERING WIND 

GENERATION   

 

The second contribution of this Ph.D. thesis is a new centralized online fuzzy coordinated 

battery charging (OL-FCC) algorithm for PEVs in smart power grid networks with WDGs 

which was published by the author during his Ph.D. studies in reference [56]. The 

approach is like the OL-MSSCC of Chapter 4; however, fuzzy reasoning is included to 

improve the PEV coordination performance and achieve additional reduction in the total 

grid cost. The proposed OL-FCC algorithm is also solved on real-time bases using the 

grid, PEVs and WDGs information transmitted by the smart meters. The performances of 

uncoordinated PEV battery charging, coordinated sensitivity-based charging (OL-

MSSCC of Chapter 4 [55]) and the fuzzy-based charging (OL-FCC of this chapter [56]) 

are compared and their impacts on total cost, gird losses and voltage profiles are 

investigated by implementing them on the 449-bus network of Fig. 4.7 without and with 

WDGs. The key advantage/benefit of OL-FCC compared with OL-MSSCC of Chapter 4 

is a further cost reduction within the selected scheduling/planning time horizon (e.g., 24 

hours).    

The proposed fuzzy-based coordination charging algorithm of this chapter has the 

following advantages compared to the existing EV coordination techniques (discussed in 

Chapter 3): 

ü The low computational cost and high calculation speed of OL-FCC makes it a good 

candidate for online PEV coordination in real-life smart grid networks.  
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ü The outstanding processing efficiency of OL-FCC makes it possible to perform large-

scale PEV coordination using low-cost microcontrollers. 

ü The complex nonlinear EV coordination optimization process is simplified by 

minimizing the objective function based on the sensitivity of network losses to 

charging demand. 

ü Simple mathematics, expert knowledge, and fuzzy human reasoning are used to 

incorporate optimization constraints associated with loss and voltage regulation.    

ü The quality of coordination solution is further improved by incorporating time-

dependent maximum demand weighting factors associated with the red, blue, and 

green time zones designed for high-, medium, and low-priority PEV groups.  

This chapter is organized as follows: 

• Section 5.1 reviews fuzzy sets, Fuzzification and Defuzzification techniques. 

• Section 5.2 presents the formulation and flow chart of the proposed OL-FCC 

algorithm for PEVs. 

• Section 5.3 investigates the performance of the proposed OL-FCC algorithm 

without WDGs by performing detailed simulations for coordination of PEVs in the 

449-bus smart power grid network of Fig. 5.7. 

• Section 5.4 investigates the performance of the proposed OL-FCC algorithm with 

three WDGs in the 449-bus smart power grid network. 

• This chapter ends with the conclusions in Section 5.5.  

5.1. Fuzzy Sets, Fuzzification and Defuzzification Techniques 

In 1975, Professor Lotfi Aliasker Zadeh (L.A. Zadeh) defined a number of new and 

impacting ideas regarding fuzzy systems that have been extensively used by many 

researchers both in theory and applications in many fields including Science and 
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Engineering. Zadeh defined the concept of type-2 fuzzy set along with the associated 

concepts and mathematical functions [131]-[134]: 

ü The extension principle (EP) that extends the conventional point-valued operations 

from the crisp mathematical setting to a corresponding fuzzy mathematical setting. 

This is the essential idea used for fuzzifying the classical mathematical concepts. 

ü The α-cut (also called λ-cut) decomposition theorem that allows the same extension of 

the EP but in a set-valued manner.  

Zadeh’s idea is to decompose fuzzy sets (FSs) into a collection of crisp sets related 

together via the α levels. This decomposition theorem has been extended to fuzzy sets 

with interval membership grades known either by interval valued fuzzy sets (IVFSs) or 

interval type-2 fuzzy sets (IT2FSs).  

5.1.1. Fuzzy Set   

Fuzzy numbers are an extension of real numbers [131]. However, a fuzzy number does 

not refer to one single value but rather to a set of possible values that have weights (called 

membership function) between 0 and 1. Fuzzy sets were introduced by Zadeh in 1965 and 

are somewhat like the classical sets whose elements have degrees of membership [131]. 

• Let A be a crisp subset of the universe X, it is a function A : X →{0 , 1} that assigns 1 

to elements of the domain that belong to A and 0 otherwise. Let C(X) be the set of all 

crisp subsets of X1. Let A be an interval over X. It is defined by A = [x⁻ ,  x⁺] where x⁻, 

x⁺ ∈ X and x⁻ ≤ x⁺. 

• In addition, let I(X) be the set of all interval subsets of X. Note that an interval is a 

special crisp set with A(x) = 1,  x⁻ ≤ x ≤ x⁺] and 0 otherwise.  

• Let a type-1 fuzzy set T1FS (also called fuzzy set (FS)) A be a subset of X, and defined 

to be a function A : X → [0 , 1]. It is a generalization of both crisp sets and intervals. 

Let F(X) be the set of all fuzzy subsets of X. 
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5.1.2. Fuzzification 

Fuzzification is the process of converting a crisp quantity to a fuzzy quantity [134]. This 

is done since most realistic crisp quantities are in fact are not deterministic at all since 

they carry considerable uncertainty. If the uncertainty of a quantity is due to imprecision, 

ambiguity, or vagueness, then the quantity is probably fuzzy and can be represented by a 

membership function. 

For example, in the real world, most hardware such as digital voltmeters provide crisp 

reading values, but these values are subject to experimental error. Fig. 5.1 shows a 

possible range of error (e.g., ±1.5%) for a typical voltage reading and the associated 

triangular membership function that can be used to characterize its imprecision.    

 
Fig. 5.1. A membership function representing the imprecision associated with a voltmeter 

measurement (based on Fig. 4.6 of [134]). 

5.1.3. Membership Functions  

All information contained in a fuzzy set is described by its membership function. For a 

fuzzy set A, Fig. 5.2 shows the terms used to describe special features of its membership 

function µ(x) [134]: 

• The core of µ(x) is the region of universe characterized by full membership in the set 

A. The core includes those elements x of the universe such that µ(x) = 1.  

• The support of µ(x) is the region of universe characterized by nonzero membership in 

set A. The support includes those elements x of the universe such that µ(x) > 0. 
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• The boundaries of µ(x) is the region of universe containing elements that have a 

nonzero membership but not complete membership. The boundaries include those 

elements x of the universe such that 0 < µ(x) < 1. These elements have some degree of 

fuzziness, or only	partial membership in the fuzzy set A. 

There are various types of fuzzy sets (Fig. 5.3) [134]:  

• A normal fuzzy set A (Fig. 5.3a) has membership function with at least one element x 

in the universe whose membership value is unity. Otherwise, the fuzzy set is 

subnormal (Fig. 5.3b). 

• A convex fuzzy set A (Fig. 5.3c) has membership values that are: i) strictly 

monotonically increasing or, ii) strictly monotonically decreasing or, iii) strictly 

monotonically increasing then strictly monotonically decreasing with increasing 

values for elements in the universe. Otherwise, the fuzzy set is nonconvex (Fig. 5.3d). 

• Fuzzy membership functions can be continuous or discrete. There are different types 

(shapes) of fuzzy membership functions such as triangular, trapezoidal, exponential, 

bell-shaped, sigmoidal, Gaussian, z-shape and s-shape. 

 
Fig. 5.2. A typical membership function of a fuzzy set showing its core, support, and boundaries 

(based on Fig. 4.1 of [134]). 
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                                   (a)                                                                     (b)  

 

 
                                  (c)                                                                     (d)  
Fig. 5.3. Examples of Fuzzy membership functions; (a) normal, (b) subnormal, (c) convex normal, 

(d) nonconvex normal  (based on Figs. 4.2-4.3 of [134]). 

 

5.1.4. Defuzzification Using Alpha-Cut Method  

In many engineering applications such as the PEV coordination problem of this chapter 

there is a need to “defuzzify” the fuzzy results obtained from a fuzzy system analysis 

[131], [134]. For example, if we decide to fuzzify the constraints associated with the 

vehicle battery charging, then the PEV coordination algorithm will require their 

corresponding crisp values (e.g., defuzzified values) to perform scheduling. Therefore, 

defuzzification process consists of reducing a fuzzy number to a crisp number, or a fuzzy 

set to a crisp single-valued quantity, or a fuzzy matrix to a crisp matrix. In order words, 

defuzzification is the process of deducing the membership degrees into a specific decision 

or real value. A famous approach for defuzzification of fuzzy sets is the α-cut (also known 

as λ-cut). 

Consider a fuzzy set A and define a crisp set called α-cut set such that [131], [134]: 

    𝐴Ã = {𝑥	|	𝐴(𝑥) ≥ 𝛼}				where					𝛼 ∈ [0, 1], 𝑥 ∈ 𝑋.                                               (5.1) 

Any particular fuzzy set A can be transformed into an infinite number of α-cut sets. 
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For example, consider the discrete fuzzy set shown in Fig. 5.4 that can be defined on the 

universe 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} as follows [134]:  

𝐴 = Ð
1
𝑎 +

0.95
𝑏 +

0.65
𝑐 +

0.3
𝑑 +

0.01
𝑒 +

0
𝑓
Õ	 

The above fuzzy set A can be reduced based on Eq. 5.1 into several crisp α-cut sets. For 

example, we can define α-cut sets for α = 1, 0.95, 0.3, 0+, and 0 as follows [134]: 

𝐴T = {𝑎}, 𝐴�.Ö× = {𝑎, 𝑏}, 𝐴�.Ø = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐴�S = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, 𝐴� = 𝑋. 

 
 

Fig. 5.4. An Example of discrete fuzzy set A (based on Fig. 4.8 of [134]). The horizontal red line 

visualizes α-cut defuzzification of A for α = 0.3 resulting in A0.3 = {a, b, c, d}.    

5.2. Formulation of Proposed Online Fuzzy Coordinated Battery Charging (OL-

FCC) Algorithm for PEVs to Reduce Total Cost 

This chapter leverages the stimulating fuzzy technology to attain additional reduction in 

total cost of PEV battery charging. Formulations of the objective cost function and the 

associated constraints are the same as Chapter 4 with the addition of fuzzy reasoning.   

5.2.1. Objective Cost Function and Constraints of Proposed OL-FCC   

The previously defined formulations of objective cost function (Eq. 4.16), constraints 

(Eqs. 4.17-4.18) and MSS vector (Eqs. 4.19-4.20) are also used in the proposed OL-FCC. 

Therefore, the quick and fairly precise MSS-based cost minimization methodology of 

Chapter 4 ([55], [63]) is also used in the proposed OL-FCC to quantify/measure the 

sensitivity of objective (network losses) function to PEV battery charging at each time 

interval t = ∆t. However, a Fuzzy approach is used to incorporate the constraints.  
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5.2.2. Fuzzification of System Losses and Constraints Using Membership Functions 

At each time interval t = ∆t of OL-FCS, fuzzy reasoning is used to participate the PEV 

constraints of Eqs. 4.17-4.18 in the coordination process and to pick the most 

appropriate/suitable vehicles for charging within the high-, medium- and low-priority 

PEV groups defined in Section 4.3.1 and Fig. 4.4. This is done using the fuzzy/fuzzified 

membership functions that are shown in Figs. 5.5 (a)-(c). The new ideas are [56]: 

a) Fuzzify the sensitivities of losses (  in Eq. 4.16), voltage deviation (  in 

Eq. 4.17) and maximum demand level ( in Eq. 4.18) for battery/PEV charging 

at each bus k using the fuzzy/fuzzified membership functions that are presented in 

Figs. 5.5(a), (b) and (c), respectively. These ideas are formulated in Eqs. 5.2-5.4.  

b) To assure full charge of all vehicle batteries by 6am, consider time-dependent 

weighting factors to adjust (Fig. 5.5 (d)) for red, blue and green charging time 

zones. This idea is implemented in Eq. 5.4 and the maximum demand membership 

function of Fig. 5.5(c). 

Fuzzifying Voltage Deviations (∆Vk) 

 At each bus (e.g., bus number k), the exponential function of the membership (Eq. 5.2; 

plotted in Fig. 5.5(a)) is employed to fuzzify the constraints (Eq. 4.17) related to the 

deviations/changes of voltage magnitude with respect to the vehicle battery charging at 

the same bus  [56]: 

    𝜇∆3] = Ð
1																												if		∆𝑉> ≤ ∆𝑉�				
𝑒7(∆3]7∆3�)/ÛÜ 				if	∆𝑉> > ∆𝑉�						

for	𝑘 = 1,				𝑛.                                   (5.2) 

where 𝑇3 is the time constant of the membership function for voltage deviation and the 

value of ∆𝑉� = ∆𝑉$%& 2⁄  is elected such that all system buses that have voltage deviations 

less than ∆𝑉�	will have get full memberships. In this thesis, ∆𝑉� = 0.05	pu. Also, 𝑇3	is 

loss,tP kVD

max,tD

max,tD
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chosen to be 𝑇3 = 0.034; which means 𝜇∆3] = 0.23 for ∆𝑉> = ∆𝑉$%& = 0.1	pu 

(Equation 4.17). Therefore, according to Eq. 5.2 and Fig. 5.5(a), OL-FCC algorithm will 

assign low membership values to PEV buses with high voltage deviations. 

Fuzzifying Total Losses (Pt,loss) 

At each t = ∆t of OL-FCS, an exponential membership function (Eq. 5.3; plotted in Fig. 

5.5(b)) is used to constrain the total power losses (Eq. 4.16) resulting from PEV battery 

charging [56]: 

    𝜇('66 = 𝑒71Þ,º»¼¼/Ûº»¼¼                                                                                              (5.3) 

where 𝑇('66 is the time constant of the membership function for loss deviation and should 

be adjusted such the system losses at time interval t are less than the rated losses 

𝑃('66,+%"*@  (e.g., rated losses without any PEV battery charging activities). In this thesis,  

𝑇('66=0.034; such that 𝜇('66 = 0.5 when total losses are equal to the rated losses  (𝑃",('66 =

𝑃('66,+%"*@  without any PEV battery charging; Eq. 4.16). Therefore, according to Eq. 5.3 

and Fig. 5.5(b), OL-FCS will assign low membership values to PEV battery charging 

situations that results in high system losses. 

 

Fig. 5.5(a-b). Fuzzy membership functions for the proposed OL-FCC algorithm; (a) voltage 

deviations (Eq. 4.17 and Eq. 5.2), (b) total system losses (Eq. 4.16 and Eq. 5.3) [56]. 

Fuzzifying Maximum Demand Level (Dt,max) 

lossµ

]pu[P loss,t

1
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(c)                                                                  (d) 
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At each t = ∆t of OL-FCS, two exponential membership functions (Fig. 5.5(c)) are used 

to control the maximum total demand (Eq. 4.18) during PEV battery charging periods 

[56]: 

    𝜇P = ß
𝑒7∆P/Ûàá				if		∆𝐷 = 𝐷","'"%( −𝑊P𝐷",$%& ≥ 0
𝑒S∆P/Ûàâ				if		∆𝐷 = 𝐷","'"%( −𝑊P𝐷",$%& < 0

                                   (5.4) 

where 𝑊P  is the maximum demand weight factor, 𝑇PS and  𝑇P7 are the time constants of 

the membership functions for over-demand and under-demand conditions, respectively. 

In general, it is desired to: i) set  𝑇PS << 𝑇P7 to avoid situations where the  total 

system demands is larger than the designated maximum value of 𝐷",$%& (Eq. 4.18) and, 

ii) adjust 𝑊P	based on the PEV waiting times recorded in the queue table. In this thesis, 

the time constant values are selected to be 𝑇PS = 0.0125 and 𝑇P7 = 0.125 while the 

three time-dependent characteristics of Fig. 5.5(d) are uses for 𝑊P  in the three designated 

charging time zones. Therefore, according to Eq. 5.4 and Fig. 5.5(c), OL-FCS will assign 

low membership values to PEV battery charging situations that results in total demands 

that are either higher or lower than 𝐷",$%& . 

Time-Dependent Maximum Demand Weight Factors (WD(t)) 

At each time interval t = ∆t of OL-FCS, three linear time-dependent maximum demand 

weight factors with steep, moderate and sharp slopes (𝑊Pin Eq. 5.4 and Fig. 5.5(c)) are 

adopted for the PEV battery charging in the three designated charging time zones as 

shown in Fig. 5.5(d). The main reason for using time-depending weight factors for the 

maximum demand membership functions of Fig. 5.5(c) is to design OL-FCC so that on 

one hand vehicle battery charging are deferred to off-peak hours as frequently as possible 

(e.g., aiming for the reduction of energy cost) and on the other hand PEVs are charged as 

+DT
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soon as possible (e.g., aiming to assure/improve customer satisfaction by fully charging 

all/most EV batteries before 0600h) [56]. 

The next section presents a procedure for the Fuzzy combination of OL-FCC membership 

functions of Figs. 5.5(a)-(c). 

 

Fig. 5.5(c-d). Fuzzy membership functions for the proposed OL-FCC algorithm; (c) exponential 

functions to set the maximum demand level (Eq. 4.18 and Eq. 5.3), (d) linear functions to set 

maximum values of the demand weighting factors (Eq. 5.3 and Fig. 5.5(c)) [56]. 

5.2.3. Fuzzied Combination of All Membership Functions  

To combine the fuzzy membership functions we can use the additive generators or 

multiplicative generators of a t-norm (also called triangular norm) [135], [136]. For the 

simulations and analyses of this thesis, an additive t-norm generator is adapted to 

cluster/combine the selected membership functions for the voltage deviations ∆Vk (Figs. 

5.5(a)), system losses 𝑃",$%&  (Figs. 5.5(b)) and maximum demand level 𝐷",$%& (Figs. 

5.5(c)) [56]: 

    𝜇123,N = 𝑊3 ∙ 𝜇∆3] + 𝑊Z ∙ 𝜇('66 + 𝑊P ∙ 𝜇∆P								for			𝑗 = 1,… , 𝑗$                       (5.5) 

where: i) WV is the weighting factor for voltage deviation membership function, ii) WL is 

the weighting factor for system loss membership function and, iii) WD is the weighting 

factor for maximum demand membership function. In this thesis, the selected weighing 

factors of Eq. 5.5 are WV = 0.3, WL = 0.3 and WD = 0.4. 

1
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5.2.4. Defuzzifiation Based on α-Cut Method 

To direct OL-FCC toward the permissible constraint region, the α-cut process (Eq. 5.1) 

is used to defuzzify µPEV,j (Eq. 5.5) and to find the its crisp value (e.g., the sensitivity of  

buses with PEV to the charging demand):  

𝑆123,N = {𝑋	|	𝜇123,N(𝑥) ≫ 𝛼 = 0.6},								𝑥 ∈ 𝑋				and			𝑗 = 1,… , 𝑗$                                (5.6) 

where SPEV,j is the crisp (defuzzified) value of the combined fuzzy membership function 

value of the jth PEV representing the sensitivity of  bus with this PEV to the charging 

demand. For the simulations and analyses of this thesis, the α-cut level in Eq. 5.6 is 

selected to be α =0.6.  

Therefore, at each time interval ∆t, all PEVs with the crisp value of SPEV,j ≥ 0.6 will be 

allowed to start charging while the charging of the vehicles with SPEV,j < 0.6 will be 

postponed to the next time interval.  

 

5.2.5. Analyses of Proposed OL-FCC Algorithm  

The proposed OL-FCC algorithm monitors all charging events by continually updating 

the vehicle statistics (e.g., locations and priorities of all vehicles, and the corresponding 

times for their plug-in/out times) and resorting their orders in the queue table at the 

beginning of each time interval.  

§ However, since OL-FCC is online, there are no information on the numbers and plug-

in times of the vehicle in the upcoming (next) time intervals. This makes the online 

PEV battery charging quite complicated. 

§ Therefore, OL-FCC is designed to use time-dependent maximum demand weighting 

factors WD(t). The value and the slop of WD(t) in the fuzzy membership functions of 

Eq. 5.4 and Fig. 5.5(c) are deliberately changed with time as shown in Fig. 5.5(d). 

§ Furthermore, OL-FCS will assign larger WD values to red zone PEV battery charging 

(e.g., WD = 0.96 to 0.98) as compared with blue zone (e.g., WD = 0.75 to 0.85) and 

green zone PEV battery charging (e.g., WD = 0.50 to 0.75). 
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§ Finally, the slop of  is increased as ∆t approaches early morning hours (Fig. 5.5(d)) 

to assure (or increase the possibility of) full charge of the vehicle batteries by the 

designated time of 0600h. That is the positive slope of WD(t) is very sharp for green 

zone charging (e.g., (0.75-0.50) / (0600h-0200h) = 0.625) and flattens for blue zone 

charging (e.g., (0.85-0.75) / (0200h-2200h)= 0.025) and red zone charging (e.g., (0.98-

0.96) / (2200h-1800h) = 0.005).  

At each t = ∆t, OL-FCC algorithm will use the recorded and/or calculated data to either 

start charging of a vehicle or defer it to next time interval. The decision will depend on:  

1) The vehicle priority group. The high-priority consumers who are willing to pay high-

tariff for quick PEV battery charging in the red zone will be attended first, followed 

by the medium-priority and low-priority consumers. 

2) The vehicle ranking/location in the queue table (Eq. 4.19 and Table 4.1). 

3) The vehicle combined fuzzy membership value (Eq. 5.5) and its corresponding 

defuzzified (crisp) value 𝑆123,N calculated by Eq. 5.6.  

Therefore, at each time interval ∆t, all PEVs with the crisp value of SPEV,j ≥ α will be 

allowed to start charging while the charging of the vehicles with SPEV,j < α will be 

postponed to the next time interval. Obviously, the postponing of a PEV battery charging 

is due to one (or all) of the following anticipated issues (based on the fuzzy reasoning 

associated with by membership functions; Figs. 5.5):  

ý Voltage violation. 

ý Maximum demand volition. 

ý  High system losses due to PEV battery charging.  

DW
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5.2.6. The OL-FCC Flow Chart 

The OL-FCC algorithm of this chapter minimizes/optimizes the cost of energy required 

for PEV battery charging with the consideration of network operation constraints 

(Eqs.4.16-4.18). This is done by: i) ranking PEVs considering the MSS sensitivity vector 

(Eq. 4.19) and the consumers’ preferences by defining charging time zones of Fig. 4.4, 

ii) considering real-time load variations, energy pricing, and WDGs outputs (Fig. 4.4-

4.5), iii) continuously recording and resorting vehicle statues in the PEV-Queue Table 

4.1, and iv) deciding to start (or defer) vehicle battery charging at each time interval t = 

∆t based on vehicle combined fuzzy membership value (Eq. 5.5) and the corresponding 

defuzzified crisp value (Eq. 5.6). 

The flow chart of OL-FCC is shown in Fig. 5.6 [56]. There are four stages associated with 

each time interval t = ∆t = 5 minutes. Stages 1, 3 and 4 are like the OL-MSSCC of Chapter 

4 (Fig. 4.6). 

Stage 1 (Updating PEV, WDG, Energy Price and Maximum Demand):  

§ Step 1.1- Update PEV-Queue Table 4.1 according the random arrival (plug-in) and 

departure (plug-out) of PEVs. 

§ Step 1.2- Update Dt,max (Eq. 4.18) based on WDGs output power according to wind 

information by smart meters. 

§ Step 1.3- Update market energy price based on real-time pricing of Fig. 4.4. 

 
Stage 2 (Online Fuzzy-Based PEV Coordination Scheduling for Time Interval ∆t):  

§ Step 2.1- Run Newton-Raphson load flow (Fig. 4.3), calculate cost objective function 

with constraints (Eqs. 4.16-18), extract MSS vector from Jacobian matrix (Eqs. 4.13 

and 4.19), and sort the queue table according to the MSS values (Eq. 4.19). 
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§ Step 2.2 (Fuzzification)- Fuzzify losses and constraints by constructing fuzzy 

membership functions of Figs. 5.5(a)-(c) considering the time-dependent maximum 

demand weighting factor of Fig. 5.5(d). 

§ Step 2.3 (T-Norm & α-Cut Defuzzification to Select Most Suitable PEVs for Charging) 

Ø Step 2.3.1- Temporary charge the PEV at top of PEV-Queue Table 4.1. 

Ø Step 2.3.2- Run Newton-Raphson load flow (Fig. 4.3). 

Ø Step 2.3.3- Calculate membership function values (Eqs. 5.2-5.4). 

Ø Step 2.3.4- Combine the membership function values using the additive t-norm 

approach (Eq. 5.5). 

Ø Step 2.3.5- Defuzzify the combine membership function value using α-cut to 

calculate its crisp value SPEV (Eq. 5.6). 

Step 2.4 (Check Suitability of PEV for Charging)- For each vehicle check the crisp value 

of SPEV,j to decide on whether to permanently charge it or defer its charging to the next 

time interval.  

Step 2.5- Repeat Steps 2.1 to 2.4 for all high- medium- and low-priority PEVs. 

Stage 3 (Updating Daily Load Curve):  

§ Step 3.1- Update the daily load curve by including the scheduled PEVs. 

Stage 4 (Go to Next Time Interval ∆t and Repeat):  

§ Step 4.1- If t = 24 hours, then stop. 

§ Step 4.2- Otherwise, repeat Stages 1-3 for the next time interval ∆t. 
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Fig. 5.6. Flow chart of the proposed OL-FCC algorithm [56]. The algorithm is based on the load 

flow solution of Eqs. 4.1-4.15, the MSS PEV battery charging coordination of Eqs. 4.16-4.20 and 

the Fuzzy reasoning of Eqs. 5.2-5.6. 

5.3. Simulation Results of OL-FCC of PEVs without WDGs 

The same 449-bus smart power grid test system that is used in Chapter 4 (Fig. 4.7) is also 

utilized in this chapter (Fig. 5.7) to compare the performance of the proposed OL-FCC 

[56] with the OL-MSSCC of Chapter 4 [55] without and with the three WDGs. The load, 

PEV and line parameters are presented in Tables 4.3 to 4.4. The WDG active power 

characteristics are presented in Fig. 4.5 which is based on the scaled down actual 
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recordings from the Walkway wind farm in Western Australia on July 7, 2012. 

Eight case studies are investigated (Table 5.1; Cases A-H). Simulation results with time 

interval of 5min for PEV injection levels of 16%, 32%, 47% and 63% without and 

with the three WDGs are presented in Figs. 5.8-5.15 and Tables 5.2-5.3.  

 
 (a)  

 
(b)  

Fig. 5.7 (Same as Fig. 4.7). The 449-bus smart power grid comprising of the IEEE 31-bus high-

voltage 23 kV distribution network [129] joint with three WDGs (at buses 4, 7 and 12) and twenty 

two low-voltage 415 V residential feeders; (a) system one-line diagram, (b) One of the residential 

feeders with PEV injections of 3/19≈16%, 6/19≈32%, 9/19≈47% and 12/19≈63% highlighting  

the high (red color), medium (blue color) and low (green color) priority consumers/PEVs [55], 

[63].                                                                      
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Table 5.1. PEV battery charging scenarios for the online MSS-based (OL-MSSCC) and Fuzzy-

based (OL-FCC) PEV coordinated battery charging of the 449-bus SG system in Fig. 5.7 with 

three WDGs (Fig. 4.5) considering the three designated battery charging time zones, the energy 

pricing and the residential daily load curve of Fig. 4.4 (based on Table I of [56]). 

Case Battery Charging Coordination Method Results 

A PEV battery charging without coordination Fig. 4.8 and  
Table 5.2  

B PEV battery charging with OL-MSSCC coordination (Fig. 4.6) 
without WDGs 

Fig. 5.8 and  
Table 5.2 

C PEV battery charging with OL-FCC coordination (Fig. 5.6) 
without WDGs 

Figs. 5.9-5.10 and  
Table 5.2 

D OL-MSSCC with WDGs (wind power injection = 3×5%=15%)  Fig. 5.11(a) and 
Table 5.2 

E OL-FCC with WDGs (wind DG power injection = 3×5%=15%) Fig. 5.11(b) and 
Table 5.2 

F OL-FCC: Investigating effects of peak wind generation time  Fig. 5.12 

G OL-FCC: Investigating effects of wind injection level Fig. 5.13and 
Table 5.3 

H OL-FCC: Investigating effects of wind location  Fig. 5.14 

 
5.3.1. PEV Battery Charging without Coordination (Case A) 

This case study is the same as Case A in Section 4.6.1 (Fig. 4.8 and Tables 4.6). For 

comparison, simulation results are presented again in Table 5.2 (rows 4-8).  As mentioned 

in Chapter 4, uncoordinated PEV battery charging is very convenient for the consumers 

as they can start charging their vehicles as soon as it is plugged. However, it can result in 

significant increases in voltage deviations, power generation, power losses, power 

demand, and total cost. According to Table 5.2, even for the very low PEV injection of 

16%, the total cost is increased by 31% (Table 5.2; row 5, column 6).     

5.3.2. PEV Battery Charging with OL-MSSCC Coordination (Case B) 

The PEV coordination/management methodology of Chapter 4 is used and the simulation 

results are summarized in Fig. 5.8 and rows 9-13 of Table 5.2. As expected, and observed 

in Chapter 4, there are significant improvements compared with the uncoordinated battery 

charging of Case A. All voltage deviations even at extremely high PEV injection of 63% 

are within the permitted range of 10%. There are considerable cost savings. For example, 

the increase in total cost for PEV injections of 47% has dropped from 50.19% (Case A) 

to 12.44% (Case B). 
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5.3.3. PEV Battery Charging with OL-FCC Coordination (Case C) 

The OL-FCC algorithm of this chapter (Fig. 5.6) is applied to the network of Fig. 5.7 

without the WDGs. The results are presented in Figs. 5.9-5.10 and Table 5.2 (rows 14-

18). Comparisons of Figs. 4.8 and 5.8-5.10 reveals significant improvements in the 

network operation and performance compared with both uncoordinated (Case A) and OL-

MSSCC coordinated (Case B) PEV battery charging: 

ü As expected, the proposed OL-FCC provides significant improvements compared 

with uncoordinated battery charging of Case A in terms of maximum demand and 

voltage regulation and as well as system losses and total cost.  

ü Both coordination methods keep the maximum demand levels and the bus voltage 

magnitudes within the designated allowable limits at all PEV injection levels.  

ü Unlike the OL-MSSCC algorithm of Chapter 4, the proposed OL-FCC of this Chapter 

permits small violations of the voltage constraint (according the functions of Fig. 

5.5(a)) and small violations of the maximum demand/constraint (based on Fig. 5.5(c)). 

This is done to allow more PEV battery charging and improve the chances of full 

charging for all vehicles before 0600h. For example, there are minor voltage 

violations from 2315h to 2345h for PEV injection of 47% (Fig. 5.9(b)). There are also 

minor maximum demand violations around 2100h and 2000h as shown in Fig. 5.10(a) 

and Fig. 5.10(b), respectively. 

ü Unlike OL-MSSCC algorithm that charges the medium-priory (blue) and the low-

priority (green) vehicles as soon as possible, the proposed OL-FCC intentionally 

postpones their services to later hours and charges them with lower energy prices. 

This is done according to the time-dependent maximum demand weighting factors 

WD(t) of Fig. 5.5(d). For example, for the PEV injection of 63%, OL-MSSCC starts 

charging the medium-priory (blue) and low-priority (green) vehicles at 2100h and 

2300h (Fig. 5.8(a)) while OL-FCC postpones their services to 2215h and 0100h (Fig. 

5.9(a)), respectively. 

ü As a result of postponing medium- and low-priority PEV battery charging according 

to the fuzzy membership functions of Fig. 5.5, OL-FCC can decrease the total cost as 

demonstrated in Table 5.2 (see the cost statistics in the last column). For instance, at 

PEV injection of 63%, the percentage increase of total cost (Table 5.2, column 6; rows 

8, 13 and 18) is improved from 59 percent (for battery charging without coordination) 
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and 15.2 percent (for battery charging with OL-MSSCC coordination) to 12.7 percent 

(for battery charging with OL-FCC coordination). 

 
(a) 

 
(a) 

 
(b) 

 
(b) 

 
(c)  

(c) 
Fig. 5.8. Simulation results for Case B: 
Coordinated (OL-MSSCC) PEV battery 
charging in Fig. 5.7 without WDGs; (a) 
System power demand for 63% injection of 
PEVs, (b)-(c) Voltage deviation at worst bus 
and total system losses (Tables 5.1 and 5.2) 
[56]. 

Fig. 5.9. Simulation results for Case C: 
Coordinated (OL-FCC) PEV battery 
charging in Fig. 5.7 without WDGs; (a) 
System power demand for 63% injection of 
PEVs, (b)-(c) Voltage deviation at worst bus 
and total system losses (Tables 5.1 and 5.2)  
[56]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.10. More simulation results for Case C: System power consumption for coordinated (OL-

FCC) PEV battery charging in Fig. 5.7 without WDGs for PEV injections of; (a) 63%, (b) 47%, 

(c) 32%, (d) 16% (Tables 5.1 and 5.2) [56]. 

 

5.4. Simulations of PEV Battery Charging with OL-FCC Coordination and WDGs 

This section investigates the impacts of WDGs injection levels, locations and peak 

generation times (Table 5.1, Cases D-H) on the operation of the 449-bus network of Fig. 

5.7 with the proposed OL-FCC PEV coordination strategy. 

 5.4.1. Fuzzy and MSS-Based PEV Charging Coordination with WDGs (Cases D-E) 

Both the proposed OL-MSSCC (of Chapter 4) and the proposed OL-FCC (of this chapter) 

are able to accommodate wind energy by simulating them as PQ buses that inject power 

into the network. The amount, time and period of the injected power will depend on the 

wind status which is updated at each time interval of OL-MSSCC and OL-FCC. To 
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demonstrate the possibility of wind energy resources participations and their pollution-

free contributions to PEV battery charging: 

1) Three WDGs (with peak output power of 50kW at 6pm, Fig. 4.5) are connected at 

buses 4, 7 and 12 as shown in Fig. 4.7. This will represent a total wind injection of 

3×5%=15%.  

2) Detailed simulation are performed with both OL-MSSCC (proposed in Chapter 4) 

and OL-FCC (proposed in this Chapter) coordination approaches for 63% PEV 

injection and the corresponding system power consumptions are plotted in Fig. 

5.11(a) and Fig. 5.11(b), respectively. These results are also presented in Table 5.2 

(rows 19-28). 

Inspection of Table 5.2 (rows 19-28) and comparisons of Fig. 5.11(a) and Fig. 5.11(b) 

reveals the advantages and limitations of OL-FCC compared with OL-MSSCC:  

ü The presence of WDGs will further improve the overall system performance at all 

PEV injection levels by the decreasing total cost, lowering losses, and reducing 

voltage deviations. 

ü The OL-MSSCC strategy makes use of the entire accessible WDG power to charge 

as many vehicles as possible. This is particularly appreciated during the peak hours of 

load as well as the late evening hours (Fig. 5.11(a), 1700h-2200h). However, the 

problem with this easy sensitivity based battery charging approach (e.g., proving 

charging service to all consumers including the medium-priority (blue) and low-

priority (green) vehicles in early evening hours) is the possibility of not being able to 

provide full service to vehicles with high priority that may be plugged within the next 

few time intervals.  

ü Consequently, the proposed OL-FCC strategy prefers to use the available WDG 

power during peak hours to strictly charge the high-priority vehicles as demonstrated 

in Fig. 5.11(b) for the period of 1700h to 2000h. In this way, OL-FCC will also reduce  

transform loading and may even prevent its overloading during peak (see Fig. 5.12). 

This is done through the designed time-dependent maximum demand weighting 

factors of Fig. 5.5(d). For instance, at PEV injection of 16%, OL-FCC quickly charges 

all high-priority (red) vehicles as they are being randomly plugged-in within 1630h-

2100h while the charging of the medium-priority (blue) and low-priority (green) 

vehicles are done within 2200h-0200h and 0100h-0600h, respectively (Fig. 5.11(b)). 
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This is justified since high-priority consumers are seeking quick services and willing 

to pay high-tariff energy prices.  

 

Fig. 5.11. Comparison of simulation results for Cases D-E: System power consumption of Fig. 

5.7 with the total WDG injection of 3×5=15%; (a) Case D with the OL-MSSCC coordination of 

Chapter 4 [55], (b) Case E with the OL-FCC coordination of this Chapter [56]. 

 

5.4.2. Effects of Peak Wind Generation Time on OL-FCC (Case F) 

WDGs have the potential to decrease total losses and total cost of smart power grid 

networks as well as the reducing transformer loading. However, the time and duration of 

wind power generation resources will randomly change within the selected charging 

planning time horizon of 24 hours. In most practical cases, the peak wind generation times 
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will not coincide with the peaks of residential and/or PEV-charging loads as illustrated in 

Figs. 4.4 and 4.5. To explain the impacts of peak wind generation time on the performance 

of OL-FCC algorithm, we have repeated Case C, but shifted the wind peak generation 

time from 6pm (1800 h) to i) 8pm (2000 h), ii) 10pm (2200 h) and, iii) 12pm (2400 h). 

Fig. 5.12 compares these simulations results. As expected, we see more reduction in 

transformer loading for wind peak times during early evening hours (e.g., 0600-0800h) 

due to more sustainable PEV battery charging activities. 

5.4.3. Effects of Wind Injection Level on OL-FCC (Case G) 

The impacts of total WDG injection on the distribution transformer loading are explored 

and the results are presented in Fig. 5.13. Six scenarios with total wind power injections 

of 5, 15, 10, 20, 30, and 40 percentages and PEV injection of 63% are investigated. 

Simulation results with OL-FCC coordination are also summarized in Table 5.3. As 

expected, there are substantial reductions in system losses, generation cost and 

particularly transformer loading as the wind injection is increased from 5% to 40%. 

According to Fig. 5.13: 

ü During the early peak evening hours (1600h-1800h), the distribution transformer 

loading in reduced from 0.85 MW (without WDGs) to 0.75 MW (with wind injection 

of 20%), to 0.68 MW (with wind injection of 30%), and to 0.62 MW (with wind 

injection of 40%). This indicates significant distribution transformer loading 

reductions of (0.85 - 0.75) / 0.85 = 11.8% (with wind injection of 20%), (0.85 - 0.68) 

/ 0.85 = 20% (with wind injection of 30%), and (0.85 - 0.62) / 0.85 = 27% (with wind 

injection of 40%). 

ü There are no reduction in transformer loadings 1800h-1900h since the WDG output 

slightly deceased (Fig. 4.5) and the OL-FCC is starting to slowly charge the high-

priority (red) vehicles (see Fig. 5.9(a)).   

ü During the late evening hours around 2100h, the distribution transformer loading in 

reduced from 0.85 MW (without WDGs) to 0.7 MW (with wind injection of 20%), to 

0.63 MW (with wind injection of 30%), and to 0.58 MW (with wind injection of 40%). 

This indicates significant distribution transformer loading reductions of (0.85 - 0.7) / 

0.85 = 17.6% (with wind injection of 20%), (0.85 - 0.63) / 0.85 = 25.9% (with wind 

injection of 30%), and (0.85 - 0.58) / 0.85 = 31.8% (with wind injection of 40%). 
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ü Around 0600h with WDG injection of 40%, there is reverse power flow (the extra 

wind power is being exported to the main utility grid at bus 1 and the distribution 

transformer loading is negative (-0.1MW). This fortunate situation is due to high wind 

injection and no PEV battery charging activities providing the opportunity to the 

microgrid of Fig. 5.7 to export its extra green power generation to the main utility 

grid.  

      

Fig. 5.12. Case F: Effects of peak wind generation on the loading of distribution transformer (OL-

FCC battery charging coordination with 63% PEV injection) [56]. 

 

 

Fig. 5.13. Case G: Effects of wind injection level on the loading of distribution transformer (OL-

FCC charging coordination with 63% PEV injection and peak wind generation at 6pm) [56]. 
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5.4.4. Effects of Wind Location on OL-FCC (Case H) 

To explore the effects of wind location on the operation of Fig. 5.7 with OL-FCC of 

PEVs, a 21kW WDG unit is sequentially attached at each bus. Fig. 5.14 illustrates the 

corresponding total system/network losses for the PEV injection of 63%. Bases on the 

information in Fig. 5.14, the most beneficial areas for the installation of WDGs are at the 

ends of the HV lines, near residential feeders and close to the charging stations. The best 

buses for the placement of WDGs in the order of preference are: i) buses 10-15, ii) buses 

6-8, iii) buses 16-18, iv) buses 20-21, and v) buses 24-28.  

 

Fig. 5.14. Case G: Effects of wind location on total losses (OL-FCC battery charging coordination 

with 63% PEV injection and one 21kW wind unit connected at different buses) [56]. 
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Table 5.2. Detailed simulation results for the impact of uncoordinated PEV battery charging and 

coordinated PEV battery charging (with the OL-MSSCC of Chapter 4 [55] and the proposed OL-

FCC of this chapter [56]) on the network of Fig. 5.7 without and with WDGs. For comparison, 

the same Gaussian function is used to generate Gauss random PEV distributions and Gauss 

random PEV plug-in times. For nominal operation without any PEVs or WDGs, the values for 

“|DV|”, “Imax”, “Generation Cost” and “Total Cost” are 7.646%, 0.147%, 770.3 $/day and 786.2 

$/day, respectively. 

PEV 
(%) 

| DV | 
(%) 

Imax 
(%) 

Cost of Generation 
 ($/day) / (%)* 

Total Network Cost (see Eq. 4.16)  
($/day) / (%)* 

Case A: Uncoordinated PEV without WDGs; Fig. 4.8 
63 17.60 0.307 958/24.4 1,250/59.0 
47 16.20 0.263 916/18.9 1,180/50.0 
32 9.050 0.218 871/13.07 1,090/38.6 
16 7.690 0.179 829/7.62 1,030/31.0 

Case B: OL-MSSCC Coordination [55] without WDGs; Fig. 5.8 
63 10.00 0.172 886/15.02 906/15.24 
47 10.00 0.163 865/12.29 884/12.44 
32 7.66 0.167 841/9.17 858/9.12 
16 7.67 0.161 808/4,89 825/4.93 

Case C: OL-FCC Coordination [56] without WDGs; Figs. 5.9 and 5.10 
63 9.72 0.159 866/15.02 886/12.70 
47 10.32 0.160 842/9.30 861/9.51 
32 7.65 0.158 828/7.49 845/7.48 
16 7.65 0.159 805/4.50 821/4.42 

Case D: OL-MSSCC Coordination with (15% injection) WDGs; Fig. 5.11(a) 
63 10.00 0.182 805/4.5 825/4.93 
47 10.00 0.189 782/1.51 801/1.88 
32 7.83 0.178 754/-2.11 771/-1.91 
16 7.66 0.177 717/-6.91 733/-6.76 

Case E: OL-FCC Coordination with WDGs (15% injection); Fig. 5.11(b) 
63 9.78 0.172 778/0.99 797/1.37 
47 10.04 0.160 753/-2.22 771/-1.93 
32 7.78 0.160 738/-4.19 755/-3.97 
16 7.65 0.160 714/-7.30 730/-7.14 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
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Table 5.3. Detailed simulation results for Case G: Effects of WDG injection on the network of 

Fig. 5.7 with 63% PEV injection and OL-FCC battery charging coordination. For nominal 

operation without any PEVs or WDGs, the values for “|DV|”, “Imax”, “Generation Cost” and 

“Total Cost” are 7.646%, 0.147%, 770.3 $/day and 786.2 $/day, respectively. 

WDG 

(%) 

| DV | 
 (%) 

Cost of Generation  
 ($/day) / (%)* 

Total Network Cost (see Eq. 4.16)  
($/day) / (%)* 

Total Network Power 
Loss  (MW/day) 

40 10.05 639/-17.04 658/-16.3 0.2012 
30 9.96 696/-9.64 715/-9.05 0.2031 
20 9.87 753/-2.24 772/-1.81 0.2053 
15 9.78 781/1.39 801/1.88 0.2065 
10 9.74 808/4.89 827/5.19 0.2078 
5 9.70 838/8.79 858/9.13 0.2093 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
 

 

5.4.5. Power Consumption of OL-FCC without and with WDGs Considering  

To further investigate the impacts of WDGs on the outcomes and performance of the 

proposed OL-FCC algorithm, the power consumptions (daily load curve with PEV 

coordination) of the 449-bus SG network are plotted and compared for two additional 

operating conditions with three and two consumer groups without and with WDGs. 

A. OL-FCC Power Consumption with Three Consumer Priority Groups and WDGs 

The total power consumptions of the 449-bus SG network with the proposed fuzzy-based 

PEV coordination are plotted and compared in Fig. 5.15 without and with the three 

WDGs. Three types of consumer groups including high-priority (red), medium-priority 

(blue) and low-priority (green) customers are considered. Comparisons of the power 

consumption plots in Fig. 5.15(a),(c),(e),(g) and Fig. 5.15(b),(d),(f),(h) indicates that: 

§ The presence of WDGs improves the performance of OL-FCC coordination in 

providing faster services to more PEVs. The level of improvement depends on the times 

and durations of the peak wind power generations. The improvements are noted at all 

vehicle injections, particularly for the high PEV injections of 63% and 47%. 

§ For PEV injection of 63% without WDGs (Fig. 5.15(a)), the charging process does not 

essentially start until 1830h due to the maximum power demand restriction of 0.83 

MW. This will reduce the maximum number of high-priority consumers that can be 
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attended within the red charging time zone. It will also delay the charging of medium-

priority and low-priority consumers to early morning hours.   

§ However, the addition of the three WDGs (Fig. 5.15(b)) provides the opportunity to 

charge most of the high-priority PEVs during early evening hours around 1800h-2100h 

without overloading the network. It has also accelerated the service to medium-priority 

and low-priority consumers.   

B. OL-FCC Power Consumption with Two Consumer Priority Groups and WDGs 

The pervious scenario is repeated with only high-priority (red) and low-priority (green) 

customers. The network power consumptions without and with WDGs are plotted and 

compared in Fig. 5.16. Note that: 

§ The proposed OL-FCC strategy can successfully perform PEV coordination with any 

number of consumer groups. All PEVs are fully charged by 0600h for operating 

conditions with three consumer groups (Fig. 5.15(a),(c),(e),(g)) and two consumer 

groups (Fig. 5.16(a),(c),(e),(g)).  

§ The addition of WDGs will further improve the OL-FCC performance (Fig. 

5.16(b),(d),(f),(h)). It has provided the opportunity to charge more high-priority PEVs 

at early evening hours without overloading the network and accelerate the service to 

the low-priority PEVs.      

§ The absence of medium-priority group (Fig. 5.16), will not impact the service to the 

high-priority consumers, but will improve the quality of service to the low-priority 

PEVs without and with WDGs.  
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(a) PEV of 63% without WDGs 

  
(b) PEV of 63% with WDGs 

 
(c) PEV of 47% without WDGs 

  
(d) PEV of 47% with WDGs 

 
(e) PEV of 32% without WDGs  

 (f) PEV of 32% with WDGs 

 
(e) PEV of 16% without WDGs  

 (f) PEV of 16% with WDGs 
Fig. 5.15. The power consumption of the 449-bus SG (Fig. 5.7) with high (red)-, medium 

(blue)- and low (green)-priority consumers and the proposed OL-FCC strategy for PEV 

injections of 63%, 47%, 32% and 16% without and with the three WDGs. 
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(a) PEV of 63% without WDGs 

  
(b) PEV of 63% with WDGs 

 
(c) PEV of 47% without WDGs 

  
(d) PEV of 47% with WDGs 

 
(e) PEV of 32% without WDGs  

 (f) PEV of 32% with WDGs 

 
(e) PEV of 16% without WDGs  

 (f) PEV of 16% with WDGs 
Fig. 5.16. Power consumption of the 449-bus SG (Fig. 5.7) with high (red)- and low (green)-

priority consumers and the proposed OL-FCC strategy for PEV injections of 63%, 47%, 32% 

and 16% without and with the three WDGs. 
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5.5. Conclusion 

A practical and fast online fuzzy coordinated battery charging coordination (OL-FCC) 

strategy for PEVs is proposed and implemented in this chapter which is based on MSS 

and fuzzy reasoning. The algorithm is implemented and tested on a 449-bus 23 kV smart 

power grid system with three WDGs and 22 low voltage residential networks that are 

populated with PEVs. For comparison, the same Gaussian function is used to generate 

random PEV distributions and random PEV plug-in times. Comprehensive simulations 

are performed for four levels of PEV injections and three customer priority types. 

Simulation results of Tables 5.2-5.3 and Figs. 5.9-5.14 indicate the following points, 

advantages, and capabilities of the proposed OL-FCC algorithm for PEVs in smart power 

grids: 

§ As with the OL-MSSCC of Chapter 4, the proposed OL-FCC also considers three 

customer battery charging time zones which are designed based on the client 

priorities. It also regulates voltage magnitudes of all buses and limits the network peak 

demand to enhance the economy and efficiency the network by lowering the costs of 

energy generation and losses.  

§ However, compared to the OL-MSSCC of Chapter 4, the proposed OL-FCC of this 

chapter offers further improvements in terms of total system loss and total cost 

reduction as it relies on fuzzy reasoning and fuzzy membership functions (Fig. 5.5) 

to: i) provide quick service to the high-priority consumers and charge their vehicles 

during early evening hours, ii) intentionally postpone the services to medium-priority 

and low-priority consumers to reduce the total cost, iii) dynamically adjust the 

tolerance of maximum demand level by using time-dependent maximum demand 

weighting factors (Fig. 5.5(d)) and, iv) allow minor violations in voltage deviation 

and maximum demand constraints. 
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§ Due to its inherent online monitoring and control nature, the proposed OL-FCC does 

not necessitate any forms of renewable or EV forecast information. All required 

information are gathered based on the online smart meter readings. 

§ The coordination strategy of OL-FCC will intrinsically lower the loadings of the 

network transformers and consequently lowers the risk of equipment failures.  

§ The main advantage of OL-FCC compared with OL-MSSCC is the applications of 

fuzzy theory, fuzzy reasoning and fuzzy membership functions to improve the 

chances of finding a better-quality solution predominantly at high injections of PEVs. 

However, for a give network, OL-FCC requires the knowledge of experienced 

engineers to design and develop suitable fuzzy membership functions.    
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CHAPTER SIX: DELAYED (OVERNIGHT) MSS-BASED COORDINATED 

BATTERY CHARGING OF PEVS IN SMART POWER GRID  

The third contribution of this Ph.D. thesis is a new centralized delayed (overnight) MSS-

based coordinated battery charging (DL-MSSCC) algorithm for PEVs in smart power 

grid networks which was published by the author during his Ph.D. studies in reference 

[57]. The methodology is like the OL-MSSCC algorithm of chapter 4. But, instead of 

aiming to charge the vehicles (particularly the high-priority PEVs) as soon as they are 

being randomly plugged-in, the services for all consumers will be deferred/delayed to 

early morning hours. Therefore, unlike the OL-MSSCC of Chapter 4 and the ON-FCC of 

Chapter 5, the proposed DL-MSSCC of this chapter does not offer any priority options to 

the PEV owners. In this chapter, the concept, formulation and algorithm of DL-MSSCC 

are introduced and its performance is compared with the online OL-MSSCC of Chapter 

4 and the online OL-FCC of Chapter 5 for the 449 SG network of Fig. 6.3. 

This chapter is organized as follows: 

• Section 6.1 presents the formulation of the proposed DL-MSSCC algorithm for 

coordinated overnight charging of PEVs. 

• Section 6.2 presents the formulation of DL-MSSCC. 

• Section 6.3 presents the formulation of DL-MSSCC. 

• Section 6.4 investigates the performance of the proposed DL-MSSCC algorithm by 

performing detailed simulations for coordination of PEVs in the 449-bus smart 

power grid network of Fig. 6.3. 

• This chapter ends with the conclusions in Section 6.5.  
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6.1. Concepts of Proposed Delayed PEV Coordinated Battery Charging  

In contrast to the online OL-MSSCC and OL-FCC EV coordination ideas of the previous 

chapters that try to charge vehicle batteries as quickly as possible staring with the high-

priority consumers, the proposed delayed DL-MSSCC strategy of this chapter aims to 

take full advantage of the inexpensive electricity prices during the off-peak (early 

morning) hours. This is done by postponing the PEV battery charging process until a later 

time after the peak-load hours.  The concepts of DL-MSSCC are like those adopted in 

Chapter 4 for the OL-MSSCC with the following resemblances and differences: 

§ PEV Coordination Strategy of DL-MSSCC- Unlike the online OL-MSSCC 

coordination algorithm of Chapter 4, the strategy of DL-MSSCC is offline and the 

PEV battery charging is deliberately pushed to a later time Tdelay after the peak-load 

hours.  

§ Planning Time Horizon and Time Interval of DL-MSSCC (Fig. 6.1)- The scheduling 

time horizon for PEV coordination is selected to be 24 hours which is like the OL-

MSSCC of Chapter 4 (Fig. 4.4). It starts at 1600h for 24 hours and is divided into 

24(60 minutes) / (5 minutes) =288 time intervals. Therefore, each time interval of DL-

MSSCC is ∆t = 5 minutes. 

§ Independent System Operator (ISO)- As with the OL-MSSCC of Chapter 4, the ISO 

oversees grid operation and executes the centralized but delayed (off-line) EV battery 

charging coordination based on the DL-MSSCC tactic. This is accomplished as 

follows: i) PEV charger sends a signal to the ISO upon random plugging, ii) ISO 

updates the PEV-Queue Table, implements the DL-MSSCC algorithm and sends a 

signal back to the PEV to start charging, and iii) PEV charger sends a signal back to 

the ISO upon unplugging or full-charge. 
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§ Charging Time Zone and Subscription Priority Options of DL-MSSCC (Fig. 6.1)-  

Unlike the OL-MSSCC and OL-FCC of Chapters 4-5 that consider three designated  

battery charging time zones and three chosen consumer priorities, the DL-MSSCC of 

this chapter is designed to charge all vehicles in only one (green) time zone with low 

tariff without considering any consumer priorities.  

§ PEV-Queue Table of DL-MSSCC (Table 6.1)- As with the OL-MSSCC,  the PEV- 

Queue Table of DL-MSSCC is also  filled and updated on real-time bases (e.g., every 

5 minutes) to keep track of all vehicles’ statuses. At the beginning of each time interval 

t=∆t, the newly plugged-in vehicles are added to the end of the PEV-Queue Table 

without considering any priorities (reordering).   

§ Random PEV Plug-In Times Replicated by Gaussian Distribution- As with the OL-

MSSCC and OL-FCC of Chapters 4-5, the random arrival times of PEVs are generated 

using Gaussian (Normal) distributions ([55], [63]) with PEV injections of 16%, 32%, 

47% and 63%. 

 

Fig. 6.1. The delayed PEV charging time zone, price of energy and residential daily load curve 

for the formulation and implementation of the proposed DL-MSSCC algorithm [57].   
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Table 6.1. An example of the PEV-Queue Table for the DL-MSSCC algorithm showing vehicles 

waiting to be scheduled for charging. It is similar to Table 4.1 with the exception of allowing for 

only one charging time zone. The PEVs are added in the table upon random plugging and their 

order is sorted at each time interval ∆t after t = Tdelay according to the MSS vector of Eq. 4.19.  

PEV-Queue Table for Delayed Overnight Coordinated battery charging (DL-MSSCC) of PEVs 

Sorting 
Scheme 

PEV 
Type 

PEV Number 
in the Queue 

PEV Status 
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G1 Charged 
….. ….. 
Gcharged,max Charged 
Gcharging,1 Charging  
….. ….. 
Gcharging,max Charging  
Gwaiting,1 Waiting to be scheduled for overnight charging 
….. ….. 
Gblue,max Waiting to be scheduled for overnight charging 

6.2. Formulation of DL-MSSCC  

Formulation of DL-MSSCC is the same as the OL-MSSCC of Chapter 4. Therefore, the 

previous definitions for the cost objective function (Eq. 4.16), constraints (Eqs. 4.17-4.18) 

and the sensitivity vector (Eq. 4.19) are also used in the formulation of DL-MSSCC. 

However, all battery charging activities will begin and terminate at designated times 

which are not within the peak load periods while the amount of maximum demand for 

overnight charging (𝐷",$%&  in Eq. 4.18) is set according to the following estimated value: 

𝐷",$%& = 𝐷",$%&,')*+,-./" = 	 �𝑁123 × 𝐸123 + 𝐸('%@,')*+,-./"�/�𝑡@*(%W − 𝑡*,@�      (6.1) 

In the above equation, 𝑡@*(%W   and 𝑡*,@ are the selected beginning/starting time and 

terminating/ending time for the overnight EV battery charging, 𝑁123 is the total number 

of PEVs in the PEV-Queue Table at time 𝑡 = 𝑡@*(%W , 𝐸123  is the energy required to charge 

one PEV, and 𝐸('%@,')*+,-./" is the estimated total load energy for the period of delayed 

charging (𝑇@*(%W = 𝑡@*(%W − 𝑡*,@) plus the energy required to charge vehicles that are 
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plugged-in after time 𝑡 = 𝑡@*(%W .  

For the simulations and analyses of this thesis, the selected values are 𝑡@*(%W=2400h, 

𝑡*,@=0600h, 𝑇@*(%W = 6 hours, 𝐸('%@,')*+,-./"= (0.334 kW/hour)(6 hours)= 2 kW, and 

𝐸123= 8 kW (see Section 4.5.2). For example (Fig. 6.3 and Eq. 6.1): 

1) For the PEV injection of 63% corresponding to Nçèé= (12 PEVs) (22 residential 

feeders) = 264 PEVs, the estimated value of Dë,ìíî=Dë,ìíî,ïðñòóôõöë for 

delayed/overnight charging is: 

 𝐷",$%&,')*+,-./" = (Tb	1236	×bb	÷**@*+6)×ø>OS�.ØùúO×û
(Tb��/7�û��/)

= [ù.T×búO]
û

 = 0.692𝑀𝑊.    

2) For the PEV injection of 47% corresponding to Nçèé= (9 PEVs) (22 residential 

feeders) = 198 PEVs, the estimated value of Dë,ìíî=Dë,ìíî,ïðñòóôõöë for 

delayed/overnight charging is: 

 𝐷",$%&,')*+,-./" = (Ö	1236	×bb	÷**@*+6)×ø>OS�.ØùúO×û
(Tb��/7�û��/)

= [Ø.ûbùúO]
û

 = 0.604𝑀𝑊.    

3) For the PEV injection of 32% corresponding to Nçèé= (6 PEVs) (22 residential 

feeders) = 132 PEVs, the estimated value of Dë,ìíî=Dë,ìíî,ïðñòóôõöë for 

delayed/overnight charging is: 

 𝐷",$%&,')*+,-./" = (û	1236	×bb	÷**@*+6)×ø>OS�.ØùúO×û
(Tb��/7�û��/)

= [Ø.�ÖûúO]
û

 = 0.516𝑀𝑊.    

4) For the PEV injection of 16% corresponding to Nçèé= (3 PEVs) (22 residential 

feeders) = 66 PEVs, the estimated value of Dë,ìíî=Dë,ìíî,ïðñòóôõöë for 

delayed/overnight charging is: 

 𝐷",$%&,')*+,-./" = (Ø	1236	×bb	÷**@*+6)×ø>OS�.ØØúO×û
(Tb��/7�û��/)

= [b.×ûøúO]
û

 = 0.428𝑀𝑊.    

6.3. Flow Chart of Proposed DL-MSSCC 

The DL-MSSCC strategy is similar to the OL-MSSCC of Chapter 4 with the following 
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differences: 

v There are no consumer priority options and there is only one (green) charging time 

zone. 

v Only the recordings of network information and updating of PEVs status (Table 6.1) 

are done online while the actual PEV battery charging coordination is delayed until 

a later time 𝑡@*(%W  after the peak-load hours.  

v The starting (𝑡@*(%W) and ending (𝑡*,@) times of coordination are selected by ISO. 

v The maximum demand level for overnight PEV battery charging (𝐷",$%&  in Eq. 4.18) 

is estimated using Eq. 6.1.  

Fig. 6.2 reveals the overall arrangement of DL-MSSCA which is like the OL-MSSCC of 

Fig. 4.6 with some modifications required to execute a delayed PEV battery charging 

tactic. There are four stages associated with each time interval t = ∆t = 5 minutes. 

Stage 1- Online Updating of PEV and WDG Status (Fig. 6.2):  

§ Step 1.1- Check for random arrival (plug-in) and departure (plug-out) of PEVs. 

§ Step 1.2- Update PEV-Queue Table 6.1 according to plug-in and plug-out of PEVs . 

§ Step 1.3- Update status of WDGs according to wind information by smart meters. 

§ Step 1.5- Update market energy price based on real-time pricing. 

§ If  𝑡@*(%W ≥ 𝑡 ≥ 𝑡*,@ go to Stage 3. 

 
Stage 2- Delayed MSS-Based PEV Coordination Scheduling (Fig. 6.2):  

§ Step 2.1- Estimate the maximum demand level for delayed overnight PEV battery 

charging (𝐷",$%& in Eq. 4.18) using Eq. 6.1 (𝐷",$%& = 𝐷",$%&,')*+,-./").  

§ Step 2.2- Run Newton-Raphson load flow of Fig. 4.3. 

§ Step 2.3- Excerpt MSS vector (Eq. 4.19) from the Jacobian matrix (Eq. 4.13). 
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§ Step 2.4- Sort the order of EV in the queue table according to the MSS (Eq. 4.19). 

§ Step 2.5 (Scheduling of Eligible PEVs): 

Ø Step 2.5.1- Temporary charge the PEV at top of PEV-Queue Table 4.1. 

Ø Step 2.5.2- If ∑𝑑𝑒𝑚𝑎𝑛𝑑𝑠 ≪ 𝐷",$%&, go to Step 2.5.7 (postpone charging this PEV 

until next ∆t since it causes a damned constraint violation according to Eq. 4.18). 

Ø Step 2.5.3- Run Newton-Raphson load flow of Fig. 4.3. 

Ø Step 2.5.4- If 	|∆𝑉| ≪ ∆𝑉$%&, go to Step 2.5.7 (postpone charging this PEV until 

next time interval since it causes a voltage constraint violation based on Eq. 4.17). 

Ø Step 2.5.5- Schedule the PEV for charging and remove it from PEV-Queue Table 6.1. 

Ø Step 2.5.7- Go to Step 2.5.1 for scheduling the next eligible PEV. 

Stage 3- Updating Daily Load Curve (Fig. 6.2):  

§ Step 3.1- Update the daily load curve by including the scheduled PEVs. 

Stage 4- Go to Next ∆t and Repeat (Fig.6.2):  

§ Step 4.1- If t = 24 hours stop; otherwise, repeat Stages 1-3 for the next time interval ∆t. 

 

The proposed PEV battery charging coordination algorithms of this Ph.D. thesis including 

the DL-MSSCC algorithm of this chapter rely on the smart grid communication system 

for the energy management to make reliable communications between the EV owners and 

the ISO (central controller or aggregator). As with all centralized PEV coordination 

schemes, any interruption or loss of communication can have negative impacts on the 

performance of the proposed algorithms such as: 

§ Interruptions or loss of communication may cause a single point of failure (SPOF) at 

the ISO level. A SPOF is referred to a part of the system that, if it fails, will terminate 

the entire communication system. 
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§  In case of SPOF, the optimal PEV scheduling problem cannot be solved, or the attained 

solutions will not be accurate due to the lack of PEVs, grid and DGs information. This 

could potentially collapse the entire EV coordination algorithm.   

§ Interruptions or loss of communication may also disturb the quality of service to the 

consumers.  

§ The severity of disturbance depends on the number and durations of the interruptions. 

It could cause unexpected delays in charging services for the affected PEVs since their 

charge requests will not be submitted to ISO on time but postponed to the next time 

step when the communication system is restored.  

The impacts of communication failure on the reliability and expectancy of EV 

coordination is still an open issue. However, the above-mentioned impacts can be 

prevented by incorporating backup communication networks and/or alternative 

communication paths. 

The impacts of communication failure and/or interruptions on the performance and 

resilience of the purposed EV battery charging coordination algorithms are recommended 

as a potential field for future research work.  
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Fig. 6.2. Flow chart of DL-MSSCC for inexpensive overnight PEV battery charging 

coordination 

6.4. Simulation Results for Delayed DL-MSSCC Coordinated battery charging of 

PEVs  

Detailed simulations are performed in this section for the SG test network of Fig. 6.3 

(without and with the three WDGs) considering random and coordinated PEV battery 

charging with the online OL-MSSCC strategy of Chapter 4 and the proposed delayed 

overnight DL-MSSCC approach of this chapter. Four PEV injection levels are considered 

with 3, 6, 9 and 12 electric vehicles in each of the 22 residential feeders of Fig. 6.3(a) 
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which correspond to PEV injections of 3/19≈16%, 6/19≈32%, 9/19≈47% and 

12/19≈63%, respectively. Four PEV battery charging scenarios without WDGs (Cases A-

C) and with WDGs (Case D) are simulated (Table 6.2). Simulation results with time 

intervals of five minutes are provided in Figs. 6.4-6.8 and summarized in Table 6.3.   

 
 (a) 

 
(b)  

Fig. 6.3 (Similar to Figs. 4.7 and 5.7). The 449-bus smart power grid comprising of the IEEE 31-

bus high-voltage 23 kV distribution network [129] joint with three WDGs (at buses 4, 7 and 12) 

and twenty two low-voltage 415 V residential feeders; (a) system one-line diagram, (b) One of 

the 19-bus residential feeder with PEV injections of 3/19≈16%, 6/19≈32%, 9/19≈47% and 

12/19≈63% highlighting the high (red color), medium (blue color) and low (green color) priority 

consumers/PEVs [55], 57], [63].  
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Table 6.2. The simulated PEV battery charging cases for uncoordinated, online MSS-based (OL-

MSSCC) and delayed MSS-based (DL-MSSCC) PEV coordinated battery charging of 449-bus 

SG system in Fig. 6.2 considering the designated delayed battery charging time zone, energy 

pricing, and residential load variations of Fig. 6.1. 

Case Battery Charging Coordination Method Simulation Results 

 A PEV battery charging (no coordination, without WDGs). Table 6.3, Figs. 6.4(a), 
6.5(a), and 6.6(a) 

B PEV battery charging with OL-MSSCC coordination    
(Fig. 4.6) without WDGs 

Table 6.3, Figs. 6.4(b), 
6.5(b), and 6.6(b) 

 C PEV battery charging with DL-MSSCC (Fig.6.2)       
without WDGs. 

Table 6.3, Figs. 6.4(c), 
6.5(c), 6.6(c), 6.7, and 6.8 

 

Table 6.3. Detailed results for uncoordinated, OL-MSSCC (of Chapter 4 [55]), and proposed DL-

MSSCC (of this chapter [57]) PEV battery charging in SG of Fig. 6.3 without the three WDGs. 

For comparison, the same Gaussian function is used to generate random Gauss PEV distributions 

and random Gauss PEV plug-in times in residential feeders. For nominal operation without any 

PEVs or WDGs, the values for “|DV|”, “Imax”, “Generation Cost” and “Total Cost” are 7.646%, 

0.147%, 770.3 $/day and 786.2 $/day. 

PEV 
(%) 

| DV | 
(%) 

Imax 
(%) 

Cost of Generation 
 ($/day) / (%)* 

Total Network Cost (see Eq. 4.16)  
($/day) / (%)* 

Case A: Uncoordinated/Random PEV battery charging; Figs. 6.4(a), 6.5(a), 6.6(a) 
63 17.60 0.307 958/24.4 1,250/59.0 
47 16.20 0.263 916/18.9 1,180/50.0 
32 9.050 0.218 871/13.07 1,090/38.6 
16 7.690 0.179 829/7.62 1,030/31.0 

Case B**: Coordinated (OL-MSSCC) PEV battery charging; Figs. 6.4(b), 6.5(b), 6.6(b) 

63 10 0.171 883.52/14.69 903.99/15.00 
47 10 0.160 862.78/12.00 882.37/12.23 
32 7.65 0.159 839.44/8.97 857.14/9.11 
16 7.65 0.159 808.33/4.93 824.84/4.92 

Case C: Coordinated (DL-MSSCC) PEV battery charging; Figs. 6.4(c), 6.5(c), 6.6(c), 6.7 

63 9.45 0.147 843.67/9.52 863.33/9.81 
47 9.35 0.147 825.53/7.17 844.28/7.39 
32 7.65 0.147 806.94/4.75 823.97/4.80 
16 7.65 0.147 788.21/2.32 804.4/2.31 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
**) Assuming only low-priority PEV battery charging option.  
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6.4.1. Random PEV Battery Charging (Case A) 

The first simulated scenario is the same as Case A in Chapters 4 and 5. Simulations 

outcomes are presented here (Table 6.3, rows 4-8) to compare them with the delayed 

coordinated PEV battery charging of Case C. In this situation, the charging process starts 

as soon as vehicles are being randomly plugged in during early evening rush hours. As 

verified in Sections 4.6.1 and 5.3.1, random PEV battery charging results in substantial 

power demand (Fig. 6.4(a)), voltage deviations (Fig. 6.5(a)) and power losses (Fig. 

6.6(a)). Particularly, at high PEV injection levels of 63% and 47%, random charging has 

noticeably increased the overall network cost by 50.1% and 59%, respectively (see Table 

6.3, last column, rows 7-8).  

6.4.2. Online MSS-Based OL-MSSCC Coordinated PEV Battery Charging (Case B) 

The second simulated scenario is like Case B in Chapters 4 and 5 except for assuming all 

consumers have selected the low-priority PEV battery charging option and pay low tariff. 

Since there are no high and medium priority consumers, the OL-MSSCC algorithm of 

Chapter 5 will start charging the vehicles as quickly as possible. Therefore, some lucky 

consumers will have fast services during early evening hours while paying inexpensive 

low tariff. Simulations results are presented in order to compare them with the delayed 

coordinated PEV battery charging of Case C. Note that the vehicles’ information such as 

their priorities and plug-in times are continuously recorded and stored in the EV queue  

(Table 6.1). Nevertheless, the orders and times of vehicle charging are determined by the 

OL-MSSCC algorithm of Chapter 4 based on their plug-in times, their priorities (e.g., 

only low-priority consumers in this case) and the MSS vector of Eq. 4.19.  

As verified in Sections 4.6.2 and 5.3.2, compared to Case A, the online MSS-based 

coordinated PEV battery charging greatly reduces power demand (Fig. 6.4(b)), improves 

voltage regulation (Fig. 6.5(b)) and decreases power losses (Fig. 6.6(b)). Detailed 
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simulation results are provided in Table 6.3 (row numbers 9-13). For instance, at PEV 

injection of 47%, voltage deviation ∆V is improved from 16.2% (Case A) to 10%, 

generation cost has dropped from 916 $/day (Case A) to 862.78 $/day and the total cost 

is reduced from 1180 $/day (Case A) to 882.37 $/day. 

6.4.3. Delayed Coordinated PEV Battery Charging without Wind DGs (Case C) 

Performance of the delayed DL-MSSCC (Table 6.3; rows 14-18) is better than both the 

random charging of Case A (Table 6.3; rows 4-8) and the online OL-MSSCC of Case B 

(Table 6.3, row numbers 9-13): 

ü For EV injection of 63%, the increase in total system cost compared with the nominal 

operation with no PEVs has improved from 59% (Case A) and 15% (Case B) to only 

9.8% (Case C) according to Table 6.1 (last column, rows 8, 13 and 18). The generation 

cost has also significantly improved from 958 $/day and 883.52 $/day (Cases A and 

B) to 843.67 $/day for Case C (Table 6.1; column 4, rows 8, 13 and 18).  

ü For the EV injection of 47%, the increase in the total cost compared with the nominal 

situation with no PEVs has improved from 50.1% (Case A) and 12.23% (Case B) to 

only 7.39% (Case C) according to Table 6.1 (last column, rows 7, 12 and 17). The 

generation cost has significantly improved from 916 $/day for Case A and 862.78 

$/day for Case B to 825.53 $/day for Case C (Table 6.1; rows 7, 12 and 17).  

ü Similar figures are noticed for the PEV injections of 32% and 16%. 

The significant improvements associated with the DL-MSSCC coordination are also 

confirmed by the waveforms of Figs. 6.4-6.6. In all studied cases, there was a markable 

enhancement in the performance of the system compared to the uncoordinated and OL-

MSSCC PEV battery charging. The total system power consumption is limited way below 

the designated maximum value (Fig. 6.4(c)) and there is a markable reduction in total 

network losses as shown in Fig. 6.6(c) while voltage magnitude regulations are within the 
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acceptable chosen limit of 10% (Fig. 6.5(c)).  

 
(a) 

 
(b) 

 
(c) 

Fig. 6.4. The power intake for the network of Fig. 6.3 with 63% PEV injection; (a) uncoordinated 

PEV battery charging, b) online OL-MSSCC coordinated PEV battery charging of Chapter 4 

(assuming only low-priority PEVs), c) proposed delayed DL-MSSCC coordinated PEV battery 

charging of this chapter [57]. 
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(a) 

 
(b) 

  
(c) 

Fig. 6.5. The voltage profile/variation characteristics of worst affected buses for gird of Fig. 6.3 

with; (a) uncoordinated EV battery charging, b) online OL-MSSCC coordinated PEV battery 

charging of Chapter 4 (assuming only low-priority PEVs), c) proposed delayed DL-MSSCC 

coordinated PEV battery charging of this chapter [57]. 
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(a) 

 
(b) 

 
(c) 

Fig. 6.6. The characteristics of total system power losses for network of Fig. 6.3 with; (a) 

uncoordinated PEV battery charging, b) online OL-MSSCC coordinated PEV battery charging of 

Chapter 4 (assuming only low-priority PEVs), c) proposed delayed DL-MSSCC coordinated PEV 

battery charging of this chapter [57]. 
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(a) PEV of 63% without WDGs 

 
(c) PEV of 32% without WDGs 

 
             (b) PEV of 47% without WDGs 

 
(d) PEV of 16% without WDGs 

Fig. 6.7(a)-(d). Power consumption of the 449-bus SG (Fig. 6.3) with the proposed DL-

MSSCC strategy for PEV injections of 32% and 16% without the WDGs. 
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(b) 

Fig. 6.8. Power consumption for the SG of Fig. 6.3 with the proposed delayed (DL-MSSCC) 

coordinated PEV battery charging with inaccurate estimates of 𝐷",$%&  resulting in some vehicles 

not being fully charged by 0600h with PEV injections of; (a) 63%, (b)16%. 

 

6.5. Analyses of Proposed Delayed PEV Coordinated battery charging Strategy 

The philosophy and coordination results of the proposed DL-MSSCC algorithm of this 

chapter are different than the OL-MSSCC of Chapter 4 and the OL-FCC of Chapter 5. To 

analyze and compare the performances of uncoordinated/random and coordinated (OL-

MSSCC, OL-FCC and DL-MSSCC) EV battery charging, Table 6.4 is generated from 

the information of Tables 4.6, 5.2 and 6.3.  

Main Advantages of Proposed DL-MSSCC:  

ü Unlike the OL-MSSCC which is designed to charge PEVs as soon as possible, the 

DL-MSSCC strictly avoids costly vehicle charging during the evening peak load 

hours. This is done to reduce cost and perform peak demand shaving.  

ü Comparison of rows 17-21 and 2-6 of Table 6.4 indicates that DL-MSSCC algorithm 

can overcome issues associated with random PEV battery charging such as high 

generation, high total costs, unacceptable voltage regulation and transformer 

overloading. 

ü  Comparison of rows 17-21 and 7-11 of Table 6.4 indicates the DL-MSSCC algorithm 
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has better performance than the OL-MSSCC algorithm. It provides less losses and 

lower total cost without any voltage deviations and/or system overloading. 

ü  Comparison of rows 17-21 and 12-16 of Table 6.4 indicates the DL-MSSCC 

algorithm also has better performance than the OL-FCC algorithm. It results in lower 

losses and cost with similar voltage deviations and system power consumptions. 

Main Limitations of Proposed DL-MSSCC:  

ü With the proposed DL-MSSCC we may end up with less customer satisfaction since 

it does not allow different charging options. In order words, DL-MSSCC sacrifices 

consumer priorities to force inexpensive early morning PEV battery charging to 

reduce the overall network cost. Therefore, DL-MSSCC is not recommended for 

networks with many consumers who would like to have very quick high-priority or 

fast medium-priority PEV battery charging.  

ü Some vehicle batteries may not be fully charged by the selected end time ( = 

0600h) since the predicted maximum network demand level (𝐷",$%&) of Eq. 6.1 is 

based on the number of PEVs in the PEV-Queue Table 6.1 at time  𝑡 = 𝑡@*(%W  = 2400h 

whilst some vehicles could be unpredictably plugged (arrive) after 𝑡@*(%W . For 

instance, two such unlikely scenarios are shown in Fig. 6.8(a) for a PEV injection of 

63% and 6.8(b) for a PEV injection of 16%.  A possible solution (not investigated in 

this Ph.D.) is to consider a dynamic 𝐷",$%& with its level being continuously updated 

based on Eq. 6.1 and the updated value 𝑁123 in the PEV-Queue Table. 

  

endT
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Table 6.4. Comparison of performances and PEV coordination results of online MSS-based OL-

MSSCC algorithm of Chapter 4 (Table 4.6), the online fuzzy-based OL-FCC algorithm of Chapter 

5 (Table 5.2) and the delayed MSS-based DL-MSSCC algorithm of this Chapter (Table 6.3). For 

nominal operation without any PEVs or WDGs, the values for “|DV|”, “Imax”, “Generation Cost” 

and “Total Cost” are 7.646%, 0.147%, 770.3 $/day and 786.2 $/day, respectively. 

PEV 
(%) 

| DV | 
(%) 

Imax 
(%) 

Cost of Generation 
 ($/day) / (%)* 

Total Network Cost (see Eq. 4.16)  
($/day) / (%)* 

Uncoordinated (Random) PEV battery charging  
Case A of Chapters 4-6: Table 6.3; Rows 2-6 

63 17.60 0.307 958/24.4 1,250/59.0 
47 16.20 0.263 916/18.9 1,180/50.0 
32 9.050 0.218 871/13.07 1,090/38.6 
16 7.690 0.179 829/7.62 1,030/31.0 

Online MSS-Based Coordinated battery charging of PEVs (OL-MSSCC)** 
Case B of Chapter 4 (Table 4.6; Rows 7-11) 

63 10.00 0.171 875/13.59 895/13.84 
47 10.00 0.160 858/11.38 878/11.67 
32 7.65 0.159 838/8.79 855/8.75 
16 7.65 0.159 808/4.89 825/4.93 

Online Fuzzy-Based Coordinated battery charging of PEVs (OL-FCC)** 
Case C of Chapter 5 (Table 5.2; Rows 12-16) 

63 9.72 0.159 866/15.02 886/12.70 

47 10.32 0.160 842/9.30 861/9.51 

32 7.65 0.158 828/7.49 845/7.48 

16 7.65 0.159 805/4.50 821/4.42 

Delayed MSS-Based Coordinated battery charging of PEVs (DL-MSSCC)*** 
Case C of this Chapter (Table 6.3; Rows 12-16)* 

63 9.45 0.147 843.67/9.52 863.33/9.81 

47 9.35 0.147 825.53/7.17 844.28/7.39 

32 7.65 0.147 806.94/4.75 823.97/4.80 

16 7.65 0.147 788.21/2.32 804.4/2.31 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
**) Considering high-, medium- and low-priority PEV battery charging options. 
**) Considering only low-priority PEV battery charging option. 
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6.6. Conclusion 

A delayed MSS-based coordinated battery charging (DL-MSSCC) algorithm is 

implemented in this chapter for the overnight/delayed battery charging of PEVs in smart 

power grids. The proposed strategy is practical, inexpensive, and relatively easy to 

implement. Therefore, it is suitable for realistic applications where usually PEV users 

want low PEV battery charging options. However, DL-MSSCC many cause customer 

dissatisfactions for consumers who would like to have very quick high-priority or fast 

medium-priority PEV battery charging.  
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CHAPTER SEVEN: COMBINED ONLINE FUZZY AND DELAYED MSS 

COORDINATED BATTERY CHARGING OF PEVS IN SMART POWER GRIDS 

WITH WIND AND SOLAR DISTRIBUTED GENERATIONS 

 

The fourth and final contribution of this Ph.D. thesis is a new centralized online 

combined/hybrid fuzzy and delayed MSS-based coordinated battery charging (OL-F/DL-

MSSCC) strategy for PEVs in smart power grid networks considering wind and solar 

(rooftop) distributed generations which was published by the author during his Ph.D. 

studies in Reference [58]. The proposed strategy aims to improve PEV owners’ 

satisfaction by providing consumer priority options for i) expensive fact online charging 

during early evening hours, ii) inexpensive online daytime charging utilizing rooftop PV 

generations and, iii) cheap overnight service that guarantees full charge by 0600h. In 

addition, the proposed strategy attempts to reduce generation costs by charging the 

vehicle batteries during high wind and solar energy generation periods. This chapter 

introduces the concepts and formulations of the recommended OL-F/DL-MSSCC 

strategy and implements it on the 449 bus SG network considering both wind and solar 

(rooftop) distributed generations. This chapter is organized as follows: 

• Section 7.1 introduces the concepts of proposed OL-F/DL-MSSCC algorithm. 

• Section 7.2 presents problem formulation with the inclusion of wind and solar 

(rooftop) distributed generations.  

• Section 7.3 presents the flow chart of OL-F/DL-MSSCC algorithm. 

• Section 7.4 investigates the performance of OL-F/DL-MSSCC algorithm by 

implementing it on the 449-bus SG network without and with renewable DGs. 

• This chapter ends with the conclusions in Section 7.5.  
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7.1. Concepts of Online Combined/Hybrid Fuzzy and Delayed MSS Coordinated 

battery charging OL-F/DL-MSSCC Strategy for PEVs 

The concepts of proposed OL-F/DL-MSSCC strategy are aimed to improve the customer 

satisfaction by providing a variety of charging options and to reduce the generation cost 

by directly utilizing available renewable energy to charge the PEVs [58].    

7.1.1. Consumer Priority Groups for Proposed OL-F/DL-MSSCC Strategy 

Three consumer priority groups are defined to improve customer (PEV owners) 

satisfaction. These options are different than those defined in Chapters 4 and 5. 

a)  The High-Priority Consumer Group- This luxury group is intended for the PEV 

owners who request fast service and are happy to pay the high tariff to have their 

vehicles charged as soon as arriving home during early evening peak-load hours. The 

recommended OL-F/DL-MSSCC strategy will first attend these customers and try to 

charge their vehicles quickly as they are being randomly plugged-in. However, if the 

charging action causes any constraint violations, their service will be delayed to the 

next time interval until the violation is resolved. The online fuzzy-based PEV 

coordination charging strategy of Chapter 5 (OL-FCC) will be used to provide quick 

service to these high-priority customers.  

b)  The Low-Priority Consumer Group- This group is intended for the PEV owners 

who are requesting inexpensive service. They are not in hurry but need their vehicles 

fully charged by 0600h for their next day trips. Therefore, their vehicle charging is 

delayed and done overnight. The delayed MSS-based PEV coordination charging 

strategy of Chapter 6 (DL-MSSCC) will be used to provide overnight service to these 

low-priority customers while taking advantage of the available wind power 

generations. 
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c)  The Medium-Priority Consumer Group- This group is intended for the PEV 

owners who park their vehicles at homes, public parking lots (e.g., park and ride 

bus/train stations) or offices to be charged during daytime for their afternoon trips. 

They don’t immediately need their vehicles but require enough charging to get back 

home during the afternoon hours. The online OL-FCC algorithm of Chapter 5 with 

modified fuzzy membership functions tailored for daytime PEV battery charging will 

be used here while taking advantage of the available solar (rooftop) generations at 

residences, industrial and commercial buildings, public parks and parking lots. 

7.1.2. Battery Charging Time Zones for OL-F/DL-MSSCC Strategy 

Three time zones as shown in Fig. 7.1 are defined to decrease the grid cost related to 

purchasing the required energy for PEV battery charging [58].    

a)  Red Time Zone for Fast Battery Charging During Early-Evening Hours 

Considering Renewable DGs- This time zone is during the residential peak-load 

hours (1800h to 2200h). It is intended for the high priority PEV consumers seeking 

fast and expensive charging quickly after plugging their vehicles. As mentioned in the 

previous section, the fast OL-FCC strategy of Chapter 5 will be used in this charging 

time zone. The OL-FCC algorithm will rely on the fuzzy objective functions of Fig. 

5.5 to accommodate the high-priory vehicles quickly after being plugged-in with the 

consideration of the grid cost objective function and the associated constraints of Eqs. 

4.16-4.18. The online part of the recommended OL-F/DL-MSSCC aims to charge as 

many number of vehicles as possible using any the available renewable energy 

resources. 

b)  Green Time Zone for Delayed Battery Charging During Early-Morning Hours 

Considering Renewable DGs- This time zone is during the early-morning hours 

(2400h to 0600h) and is intended for the low-priority consumers seeking cheap 
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charging services. These consumers request their vehicles to be fully charged for the 

next day trip (e.g., by 0600h). As mentioned in the previous section, the delayed DL-

MSSCC algorithm of Chapter 6 will be used to charge the low-priority PEVs. 

c)  Blue Time Zone for Daytime PEV Battery Charging Considering Renewable 

DGs- This time zone is from 0800h to1600h. It is intended for medium-priority 

consumers who plugged-in their vehicles at homes and publicly locations (e.g., 

industrial buildings and parking stations) and request daylight service. As mentioned 

in the previous section, the fast OL-FC algorithm of Chapter 5 will be used here. 

However, the fuzzy membership functions are modified for daytime charging utilizing 

solar energy. 

7.1.3. PEV-Queue Table for Proposed OL-F/DL-MSSCC Strategy 

The PEV-Queue Table of the proposed OL-F/DL-MSSCC is shown in Table 7.1. It is 

very similar to the queue tables for the online and delayed PEV coordination strategies of 

Chapters 4-7 (Table 4.1 and Table 6.1) with the following differences: 

• There are three types of PEV battery charging coordination; i) fuzzy-based evening 

charging, ii) MSS-based overnight charging and, iii) fuzzy-based daytime charging. 

• Both wind and solar DGs are considered.  

• Each charging scheme is dedicated to only one type of consumers. Evening and 

daytime charging are allowed for the high-priority and the medium-priority 

consumers, respectively. Overnight charging is only allowed for the low-priority 

consumers. 

• The membership functions for online evening fuzzy charging (Fig. 5.5) are slightly 

modified for online fuzzy daytime charging (Fig. 7.2). 
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Fig. 7.1. Charging time zones (red, green and blue), service options (fast online fuzzy OL-FCC, 

delayed overnight DL-MSSCC and fast daytime fuzzy OL-FCC), price of energy, typical 

residential daily active power and reactive power curves [58].    
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Table 7.1. An example of the PEV-Queue Table for the proposed OL-F/DL-MSSCC strategy. 

Within each priority, some PEVs are already charged, some are in charge and others are 

waiting to be scheduled for (evening, overnight or daytime) charging by the ISO. 

PEV-Queue Table for Proposed Combined Online Fuzzy and Delayed MSS Coordinated 
battery charging (OL-F/DL-MSSCC) of PEVs 
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B1 Charged 
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Bcharged,max Charged 
Bcharging,1 Charging  
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Bcharging,max Charging  
Bwaiting,1 Waiting to be scheduled for daytime charging 
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Bgreen,max Waiting to be scheduled for daytime charging 
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7.2. Formulation of Proposed OL-F/DL-MSSCC Strategy  

The formulation of proposed OL-F/DL-MSSCC strategy for PEVs is the same as the 

MSS-based formulation of Chapter 4 (Eqs. 4.16-4.18) and the fuzzy-based formulation 

of Chapter 5 (Eqs. 5.2-5.6 and Fig. 5.5).  The only difference is that the fuzzified 

membership characteristics of Fig. 5.5 are slightly modified for the daytime PEV battery 

charging employing solar energy resources as shown in Fig. 7.2.    

 
                                  (a)                                                                           (b) 

 
                                  (c)                                                                            (d) 
Fig. 7.2. Fuzzy membership functions of the proposed OL-F/MSSCC algorithm (Section 7.3, 

Stage 2) for; (a) voltage deviations (Eq. 4.17 and Eq. 5.2), (b) total system losses (Eq. 4.16 and 

Eq. 5.3), (c) maximum demand level (Eq. 4.18 and Eq. 5.3), (d) weighting factors for maximum 

network demand (Eq. 5.3 and Fig. 5.5(c))  [58]. Note that the membership functions of (a)-(c) are 

the same as the ones in Fig. 5.5(a)-(c).  

 

7.2.3.  Inclusion of Wind and Solar (Rooftop) Distribution Generations 

The proposed OL-F/DL-MSSCC algorithm utilizes the available wind and solar energy 

for both online and delayed PEV battery charging. The scenarios of Section 7.4 are 

simulated for the SG network of Fig. 7.4 with the following number and locations of 

renewable energy resources: 
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ü Three wind DGs are connected to high voltage 23 kV buses number 4, 7, and 12. 

ü Four solar DGs (rooftop PVs) are connected to each of the 22 residential feeders aet 

low voltage 415 V buses number a, i, l and n.  

For the load flow calculations of Eqs. 4.1-4.14 (Fig. 4.3), the solar and wind energy 

resources are considered as PQ buses (loads) injecting negative active power to the 

network. In addition, the maximum network demand level Dt,max (Eq. 4.18) is 

dynamically adjusted according to the available renewable energy.  Therefore, the 

proposed OL-F/DL-MSSCC algorithm activates more PEVs during the peak wind/solar 

generation periods.   

7.3. Flow Chart of Proposed OL-F/DL-MSSCC Algorithm 

Flow chart of the proposed OL-F/DL-MSSCC algorithm is shown in Fig. 7.3. For each 

randomly plugged-in PEV depending on its consumer priority group (Section 7.1.1), the 

OL-F/DL-MSSCC algorithm will perform either quick online fuzzy-based evening 

charging, delayed MSS-based overnight charging or fast online fuzzy-based daytime 

charging. All charging options accommodate renewable (wind, solar) energy resources 

[58]. The algorithm minimizes the cost of purchasing/generating energy for PEV battery 

charging by directly utilizing the available renewable energy whilst maintaining 

maximum network demand and voltage deviation constraints (Eqs. 4.16-4.18).  

There are five stages associated with each time interval t = ∆t = 5 minutes of the proposed 

OL-F/DL-MSSCC algorithm (Fig. 7.3). Stages 1, 4-5 are the same as the ones used in 

Chapters 4-6. Stage 2 is like Stage 2 of the OL-FCC algorithm of Chapter 5 (Fig. 5.6) and 

Stage 3 is like Stage 2 of the DL-MSSCC algorithm of Chapter 6 (Fig. 6.2). 

Stage 1 (Updating PEV, Wind and Solar DGs Statuses (Fig. 7.3):  

§ Step 1.1- Update PEV-Queue Table 7.1 according random PEV plug-in and plug-out. 



167 

 

§ Step 1.2- Update Dt,max (Eq. 4.18) based on wind and solar DGs output power. 

§ Step 1.3- Update market energy price based on real-time pricing of Fig. 7.1. 

§ Step 1.4- Run Newton-Raphson load flow (Fig. 4.3), calculate cost objective function 

with constraints (Eqs. 4.16-18), extract MSS vector from Jacobian matrix (Eqs. 4.13 

and 4.19) and sort the order of EVs in the queue table according to the MSS values. 

§ Step 1.5- If  𝑡@*(%W ≥ 𝑡 ≥ 𝑡*,@ go to Stage 2 (online); otherwise, go to Step 3 (delayed). 

Stage 2 (Online Fuzzy-Based Evening or Daytime PEV Scheduling (Fig. 7.3):  

§ Step 2.1 (Fuzzification of Losses and Constraints) 

Ø Step 2.1.1- If 𝑡@*(%W ≥ 𝑡 ≥ 1600h (e.g., evening PEV battery charging) then 

Fuzzify losses and constraints using the memberships of Figs. 5.5 for online Fuzzy 

evening PEV coordination. 

Ø Step 2.1.2- If 1600h > 𝑡 > 𝑡*,@ (e.g., daytime PEV battery charging) then Fuzzify 

losses and constraints using the memberships of Figs. 7.2 for online Fuzzy daytime 

PEV coordination. 

§ Step 2.2 (T-Norm & α-Cut Defuzzification to Choose Most Suitable EVs to Charge) 

Ø Step 2.2.1- Temporary charge the PEV at top of queue in Table 7.1. 

Ø Step 2.2.2- Run Newton-Raphson load flow (Fig. 4.3). 

Ø Step 2.2.3- Calculate membership function values (Eqs. 5.2-5.4). 

Ø Step 2.2.4- Combine the membership function values using the additive t-norm 

approach (Eq. 5.5). 

Ø Step 2.2.5- Defuzzify the combine membership function value using α-cut to 

calculate its crisp value SPEV (Eq. 5.6). 

Step 2.3 (Check Suitability of PEV for Charging)- For each vehicle, check the crisp value 

of SPEV,j to decide on whether to permanently charge it or defer its charging to next ∆t.  
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Step 2.4- Repeat Steps 2.2 to 2.3 for all high-priority PEVs (seeking online evening 

charging) and all medium-priority PEVs (seeking online daytime charging). 

Stage 3- Delayed Overnight MSS-Based PEV Coordination Scheduling (Fig. 7.3):  

§ Step 3.1- Estimate the maximum demand level for delayed overnight PEV battery 

charging (𝐷",$%& in Eq. 4.18) using Eq. 6.1 (𝐷",$%& = 𝐷",$%&,')*+,-./").  

§ Step 3.2- Run Newton-Raphson load flow of Fig. 4.3. 

§ Step 3.3- Excerpt MSS vector (Eq. 4.19) from the Jacobian matrix (Eq. 4.13). 

§ Step 3.4- Sort the order of EVs in the queue Table 7.1 in accordance to the MSS values 

of Eq. 4.19. 

§ Step 3.5 (Scheduling of Eligible PEVs): 

Ø Step 3.5.1- Temporary charge the PEV at top of PEV-Queue Table 7.1. 

Ø Step 3.5.2- If ∑𝑑𝑒𝑚𝑎𝑛𝑑𝑠 ≪ 𝐷",$%&, go to Step 3.6 (postpone charging this PEV 

until next ∆t since it causes a damned constraint violation according to Eq. 4.18). 

Ø Step 3.5.3- Run Newton-Raphson load flow of Fig. 4.3. 

Ø Step 3.5.4- If 	|∆𝑉| ≪ ∆𝑉$%&, go to Step 3.6 (postpone charging this PEV until next 

time interval since it causes a voltage constraint violation based on Eq. 4.17). 

Ø Step 3.5.5- Permanently schedule the PEV for charging and remove it from the PEV-

Queue Table 7.1. 

§ Step 3.6- Repeat Steps 3.2 to 3.5 for all low-priority PEVs. 

Stage 4 (Updating Daily Load Curve):  

§ Step 4.1- Update the daily load curve by including the scheduled PEVs. 

Stage 5 (Go to Next Time Interval ∆t and Repeat):  

§ Step 5.1- If t = 24 hours stop; otherwise, repeat Stages 1-4 for the next time interval ∆t. 
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Fig. 7.3. Flow chart of the proposed OL-F/DL-MSSCC algorithm for combined online, 

delayed/overnight, and offline/daytime PEV battery charging considering wind and solar DGs. 
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7.4. Simulation Results Supporting Performance of OL-F/DL-MSSCC Algorithm 

For the simulations and analyses of the proposed combined online and delayed PEV 

coordination charging OL-F/DL-MSSCC algorithm, the 449-bus SG topology of 

Chapters 4-6 (Fig. 7.4) is used. However, in addition to the three wind DGs at buses 4, 7 

and 12, four rooftop PVs are also included in each of the 22 residential feeders at buses 

a, i, l and n. System and PEV parameters are provided in Tables 4.2-4.4 and Sections 

4.5.2-4.5.4. Four PEV injections of 16%, 32%, 47% and 63% are considered that 

correspond to 3, 6, 9 and 12 houses with electric vehicles in each of the 22 low voltage 

residential feeders. For example, for the PEV injection of 63%, there are a total of 264 

vehicles with 132, 88 and 44 vehicles in the blue, green, and red battery charging time 

zones of Fig. 7.1, respectively. The chosen output power characteristics of the wind and 

solar (rooftop) DGs are shown in Fig. 7.5(a) and 7.5(b), respectively.  

 
(a)  

 
(b) 

Fig. 7.4. The 449-bus smart power grid comprising of the IEEE 31-bus high-voltage 23 kV 

distribution network [129] joint with three WDGs (at buses 4, 7 and 12) and twenty two low-

voltage 19-bus 415 V residential feeders with rooftop PVs at buses a, i, l and n; (a) system one-

line diagram, (b) One of the residential feeders with PEV injections of 12/19≈63% (corresponding 
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to the total of 264 vehicles) highlighting  the high (red color), medium (blue color) and low (green 

color) priority consumers/PEVs [58].                                                            

 
                                     (a)                                                                            (b)  	

Fig. 7.5. The active output power characteristics of the renewable DGs in Fig. 7.4; (a) for the 

three wind DGs at buses 4, 7 and 12 which is based on the scaled down actual recordings from 

the Walkway wind farm in Western Australia on July 7, 2012 with the peak output power period 

shifted to early evening hours1800h-2100h ([58]), (b) for the 4(22)=88 rooftop  PVs (based on 

actual recordings of rooftop PV generation in WA, Australia ([58]).  

 

combined online, delayed/overnight, and offline/daytime 

The recommended combined/hybrid online, delayed/overnight, and offline/daytime OL-

FC/DL-MSSCC strategy is used to simulate the following four PEV battery charging 

scenarios (Table 7.2): 

ü Case A- Uncoordinated (random) PEV battery charging with no wind and solar DGs. 

ü Case B- Uncoordinated (random) PEV battery charging with the three wind DGs and 

the 4(22)= 88 rooftop PVs. 

ü Case C- Coordinated PEV battery charging (using the proposed OL-FC/DL-MSSCC 

scheme) with no wind and solar DGs. 

ü Case D- Coordinated PEV battery charging (using the proposed OL-FC/DL-MSSCC 

algorithm) with the three wind DGs and the 88 rooftop PVs. 

Detailed simulation results are presented in Figs. 7.6-7.7 and summarized in Table 7.3. 
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Table 7.2. The simulated uncoordinated and coordinated PEV battery charging case studies 
without/with wind and solar DGs for the 449-bus smart power grid of Fig. 7.4 with the 
characteristics of Fig. 7.1. 

Case Battery Charging Coordination Method Simulation Results 
(Table 7.3) 

A PEV battery charging without coordination, without DGs Figs. 7.6(a, c, e, g) 
B PEV battery charging without coordination, with wind/solar DGs Figs. 7.6(b, d, f, h) 

C PEV battery charging with OL-F/DL-MSSCC coordination (Fig. 
7.3) without wind/solar DGs 

Figs. 7.7(a, c, e, g) 

D PEV battery charging with OL-F/DL-MSSCC coordination (Fig. 
7.3) without wind and solar DGs 

Figs. 7.7(b, d, f, h) 

 
Table 7.3. Detailed simulation results for the four scenarios (case studies) of Table 7.2 [58].  
For comparison, the same Gaussian function is used to generate random PEV distributions and 
random PEV plug-in times in all residential feeders. For nominal operation without any PEVs or 
WDGs, the values for “|DV|”, “Imax”, “Generation Cost” and “Total Cost” are 7.646%, 0.147%, 
770.3 $/day and 786.2 $/day, respectively. 

PEV 
(%) 

| DV | 
(%) 

Imax 
(%) 

Cost of Generation 
 ($/day) / (%)* 

Total Network Cost (see Eq. 4.16)  
($/day) / (%)* 

Case A: Uncoordinated PEV Battery Charging without DGs; Figs. 7.6(a, c, e, g) 
63 17.600 0.307 958.0/24.36 1,250/59.00 
47 16.200 0.265 915.0/18.78 1,182/50.30 
32 9.080 0.219 871.0/13.07 1,093/39.00 
16 7.730 0.181 828.0/7.49 1,028/30.80 

Case B: Uncoordinated PEV Battery Charging with DGs; Figs. 7.6(b, d, f, h) 
63 17.600 0.306 639.0/-17.04 876.0/11.40 
47 16.200 0.263 595.0/-22.75 808.0/2.77 
32 8.960 0.216 551.0/-28.47 719.0/-8.50 
16 7.420 0.177 508.0/-34.05 654.0/-16.80 

Case C: Proposed Coordinated (OL-F/DL-MSSCC) PEV Battery Charging  
without Wind and Solar DGs; Figs. 7.7(a, c, e, g) 

63 12.240 0.159 869.0/12.81 889.0/13.10 
47 12.350 0.160 841.0/9.17 860.0/9.40 
32 7.650 0.158 828.0/7.50 835.0/6.20 
16 7.640 0.159 797.0/3.47 814.0/3.50 

Case D: Proposed Coordinated (OL-F/DL-MSSCC) PEV Battery Charging  
with Wind and Solar DGs; Figs. 7.7(b, d, f, h) 

63 9.510 0.164 553.0/-28.21 568.0/-27.80 
47 9.510 0.152 525.0/-31.84 539.0/-31.40 
32 7.370 0.152 502.0/-34.83 515.0/-34.40 
16 7.400 0.152 482.0/-37.42 494.0/-37.20 

*) Increase or decrease in daily cost (excluding renewable energy cost) in percentage of the nominal cost 
without any PEVs or WDGs. 
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7.4.1. PEV Battery Charging without Coordination and Renewable DGs (Case A) 

The first simulated scenario is the same as Case A in Chapters 4, 5 and 6. The outcomes 

are repeated in Table 7.3 (row numbers 4-8) to compare them with the results of Cases B, 

C and D. For Cases A-B, all vehicles charging activities start as they are randomly 

plugged-in from 1800h to 2200h without considering their detrimental impacts on the SG 

network. As most people usually get home during early evening hours, this uncoordinated 

PEV battery charging situation (Case A) results in enormous power demand (Fig. 7.6(a)), 

transformer overloading (Fig. 7.6(c)), power losses (Fig. 7.6(e)) and voltage deviations 

((Fig. 7.6(g)).  

7.4.2. Random PEV Battery Charging with Renewable DGs (Case B) 

This case study is the same as Case A except for the inclusions of the three WDGs and 

the 88 rooftop PVs. Simulation results are plotted in Figs. 7.6(b), (d), (f) and (h) and 

summarized in Table 7.3 (rows 9-13). As anticipated, the introductions of wind and solar 

DGs have not considerably reduce power consumption, transformer loading and voltage 

deviations but resulted in significantly cost reductions. 

• Comparison of Figs. 7.6(a) and 7.6(b) indicates that the addition of renewable DGs 

will not have significant impacts on the daily load curve (system power 

consumption) even for the high PEV injection of 63%. 

• Figs. 7.6(c)-(d) and Table 7.3 (column 3, rows 4-8 and 9-13) confirm that the 

addition of renewable DGs will not have significant impacts on substation 

transformer loading for PEV injections of 16%, 32%, 47% and 63%. 

• Comparison of Figs. 7.6(e) and 7.6(f) indicates that the accommodation of 

renewable DGs will not have significant impacts on system losses. This is true for 

all PEV injections of 16%, 32%, 47% and 63%. 
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• Figs. 7.6(g)-(h) present the voltage profiles at worst buses for PEV injections of 

16%, 32%, 47% and 63% without and with DGs, respectively. Comparison of these 

figures and rows 4-8 and 9-13 of Table 7.3 (second column) reveals that the 

inclusion of renewable DGs will have slight impacts on voltage regulations at all 

PEV injections. 

• However, the addition of wind and solar DGs will significantly reduce the 

generation cost and the total cost as confirmed by rows 4-8 and 9-13 of Table 7.3 

(columns 4-6). For instance, for situation with 63% of PEV injection, the generation 

cost has dropped from 958 $/day (without renewable DGs) to 639 $/day (with 

renewable DGs) while the total cost has reduced from 1,250 $/day to 876 $/day. As 

a result, the percentage of increase in total cost (compared with the nominal cost) 

has decreased from +59% to 11.4% (Table 7.3, last column, rows 8 and 13). Similar 

improvements are noted for the PEV injections of 47%, 32% and 16%.  

7.4.3. PEV Battery Charging with OL-FC/DL-MSSCC Coordination without 

Renewable Wind and Solar DGs (Case C) 

The proposed OL-FC/DL-MSSC algorithm of this chapter is executed on the smart power 

grid of Fig. 7.4 (without the wind and solar DGs) and results are presented in Table 7.3 

(rows 14-23) and Figs. 7.7 (a), (c), (e) and (g). As expected, there are considerable 

enhancements in the network operation in comparison to the uncoordinated PEV battery 

charging scenarios of Cases A-B.  

7.4.4. PEV Battery Charging with OL-FC/DL-MSSCC Coordination with 

Renewable Wind and Solar DGs (Case D)  

Case C is repeated with the addition of the three WDGs and the 88 rooftop PVs. As 

expected, the introduction of renewable DGs has further improved the system 

performance in all categories: 
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• According to Table 7.3 (last column, row numbers 8, 13, 18 and 23), there are 

considerable improvements in the increased amount of  total network cost with 63% 

PEV injection from the unacceptable figure of 59% (without coordination without 

DGs) to the an satisfactory figure of 13.1% (coordinated battery charging without 

DGs) and from the large figure of 11.4% (without coordination  with DGs) to the 

striking figure of -27.8% (coordinated battery charging with DGs) while all bus 

voltages and maximum network demand levels are kept within their permitted 

limits. Similar cost reductions are noticed for PEV injections of 47%, 32% and 16%.  

• According to Table 7.3 (column 5, rows 8, 13, 18 and 23), there are considerable 

reductions in the generation cost for 63% PEV injection from 958 $/day 

(uncoordinated battery charging without DGs) to 869 $/day (coordinated battery 

charging without DGs) and from 639 $/day (uncoordinated battery charging with 

DGs) to only 553 $/day (coordinated battery charging with DGs). Similar reductions 

in generation costs are observed for PEV injections of 47%, 32% and 16%.  

• Unlike the MSS-based delayed overnight coordination strategy (DL-MSSCC) of 

Chapter 6, the fuzzy-based online (evening and/or daytime) coordination algorithm 

of this chapter will allow for small violations of maximum network demand (see 

Fig. 7.7(a); t ≈ 21:30h) and small deviations of bus voltages (see Fig. 7.7(g); t ≈ 

11:30h-14:00h). These are attained in accordance with the chosen membership 

functions that aim to limit losses and reduce the cost of generating energy. 
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(a) PEV battery charging without coordination, without DGs 

 
(b) PEV battery charging without coordination, with DGs 

Fig. 7.6(a-b). Cases A-B (Uncoordinated PEV battery charging)- Daily load curves (system power 

consumption) for PEV injection of 63% without and with DGs. 
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(c) PEV battery charging without coordination, without DGs 

 
(d) PEV battery charging without coordination, with DGs 

Fig. 7.6(c-d). Cases A-B (Uncoordinated PEV battery charging)- Substation Transformer 

loadings for PEV injections of 63%, 47%, 32% and 16% without and with DGs. 
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(e) PEV battery charging without coordination, without DGs 

 
(f) PEV battery charging without coordination, with DGs 

Fig. 7.6(e-f). Cases A-B (Uncoordinated PEV battery charging)- System losses for PEV injections 

of 63%, 47%, 32% and 16% without and with DGs. 
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(g) PEV battery charging without coordination, without DGs 

 
(h) PEV battery charging without coordination, with DGs 

Fig. 7.6(g-h). Cases A-B (Uncoordinated PEV battery charging)- Voltage profiles at worst bus 

for PEV injections of 63%, 47%, 32% and 16% without DGs and with DGs. 
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(a) Coordinated PEV battery charging without DGs 

 
(b) Coordinated PEV battery charging with DGs 

Fig. 7.7(a-b). Cases C-D (Coordinated PEV battery charging with proposed OL-F/DL-MSSCC)- 

Daily load curves (system power consumption) for 63% PEV injection without/with DGs. 
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(c) Coordinated PEV battery charging without DGs 

 
(d) Coordinated PEV battery charging with DGs 

Fig. 7.7 (c-d). Cases C-D (Coordinated PEV battery charging with proposed OL-F/DL-MSSCC)- 

Substation Transformer loadings for PEV injections of 63%, 47%, 32% and 16% without/with 

DGs. 
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(e) Coordinated PEV battery charging without DGs 

 
(f) Coordinated PEV battery charging with DGs 

Fig. 7.7 (e-f). Cases C-D (Coordinated PEV battery charging with proposed OL-F/DL-MSSCC)- 

System losses for PEV injections of 63%, 47%, 32% and 16% without/with DGs. 
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(g) Coordinated PEV battery charging without DGs 

 
(h) Coordinated PEV battery charging with DGs 

Fig. 7.7 (g-h). Cases C-D (Coordinated PEV battery charging with proposed OL-F/DL-MSSCC)-

Voltage profiles at worst bus for PEV injections of 63%, 47%, 32% and 16% without/with DGs. 
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7.5. CONCLUSION 

 
This chapter proposed a new combined/hybrid online fuzzy and delayed sensitivity-based 

coordinated battery charging (OL-FC/DL-MSSCC) strategy for PEVs in SGs. The 

proposed algorithm is implemented and verified on the 449-bus smart power grid network 

that includes the IEEE 22 kV distribution system plus 22 low voltage 415 V residential 

feeders with PEVs. Based on the comprehensive simulations and detailed analyses, the 

main contributions and advantages of the proposed OL-FC/DL-MSSCC algorithm are: 

ü It improves customer satisfaction by providing options for consumer priority (e.g., 

high- medium- and low-priority groups), PEV battery charging types (e.g., expensive 

fast online evening, inexpensive online daytime and cheap delayed overnight PEV 

battery charging) and charging time zones (e.g., red, blue and green time zones).  

ü  It reduces the generation cost and the total network cost by considering short term 

market energy prices and directly utilizing distributed renewable (wind and solar) 

energy for vehicle charging.  

ü It keeps the bus voltages and maximum demand constraints within the permissible 

limits by using maximum sensitivity selections and fuzzy reasoning.  

ü The online part of the algorithm performs: i) fast expensive fuzzy-based evening PEV 

battery charging intended for high-priority consumers who are willing to pay high 

tariff rates for quick vehicle charging in the red charging time zone (1800h-2200h) 

and, ii) quick inexpensive fuzzy-based daytime PEVs charging intended for medium-

priority consumers who are willing to pay moderate tariff rates for fast vehicle 

charging in the blue charging time zone (0800h-1600h).  

ü The delayed part of the algorithm performs cheap overnight MSS-based PEV battery 

charging that assurances full charge of all vehicles by 0600h and is intended for low-
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priority consumers who are seeking low tariff rates but would like to have their 

vehicles fully charged for the next day trip. 

ü It decreases the burden on the (distribution/substation) transformers to reduce the 

possibility and cost of equipment failures and outages.  

ü It offers substantial improvements in terms of loss saving, voltage regulation, cost 

reduction, line and transformer loadings compared to the uncoordinated, online MSS-

based coordinated, online fuzzy-based coordinated and delayed MSS-based 

coordinated PEV battery charging strategies of Chapters 4-6.   

 

 

 

 

 

 

 

 

  



187 

 

CHAPTER EIGHT: THESIS SUMMARY AND CONTRIBUTIONS  

This Ph.D. dissertation investigates the effects PEV battery charging on the performance 

and operation cost of smart power grids. In addition to the conventional uncoordinated 

(random) battery charging of vehicles, four new PEV coordinated battery charging 

strategies based on maximum sensitivities selections (MSS) and Fuzzy reasoning are 

proposed, analyses, simulated and tested. To enhance the coordination outcomes, online, 

delayed and combined online-delayed charging strategies are considered. The proposed 

algorithms are implemented on an assembled 449-bus SG network that consist of the 

IEEE 31-bus high-voltage 23 kV distribution network [94] and several residential feeders 

with PEVs, wind DGs and rooftop PVs. Simulations are done for random plugged-in 

times and random distributed locations of PEVs with injection levels of 16%, 32%, 47% 

and 63% that correspond to 3, 6, 9, and 12 vehicles in each of the 22 residential networks, 

respectively. The total number of PEVs are 3x22=66 (for 16% injection), 6x22=132 (for 

16% injection), 9x22=198 (for 16% injection), and 12x22=264 (for 16% injection). 

To improve customer satisfaction and reduce the cost, real-time variable energy pricing, 

three consumer priority groups, three battery charging time zones and three charging 

options (expensive fast online evening, inexpensive online daytime and cheap delayed 

overnight) are considered.  Comprehensive simulations and detailed analyses indicate that 

the four proposed PEV coordination algorithms mange to charge all vehicles and reduce 

the costs associated with energy generation and network losses while controlling the bus 

voltage deviations/regulations and maximum network demands within selected limits.   

8.1.  Ph.D. Thesis Summary  

Chapters 2-3 present literature reviews on the innovating subjects of SG and coordinated 

PEV battery charging. Chapters 4-7 implement four new PEV coordinated battery 
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charging strategies and evaluate their performances with random battery charging, and 

with each other: 

§ In Chapter 4, a centralized online MSS-based coordinated battery charging (OL-

MSSCC) algorithm for PEVs in SGs [55] is proposed and implemented which is an 

enhancement to the real-time smart load management (RT-SLM) algorithm of [63] 

with the inclusion of WDGs. The proposed OL-MSSCC algorithm is intended to be 

centrally executed by the independent system operator (ISO), operates on online bases 

with time intervals of ∆t = 5 minutes, and relies on the grid, PEVs and WDGs 

information transmitted by the smart meters. Chapter 4 starts with a quick review of 

the load flow solution. Sections 4.3 to 4.6 present the concepts, formulation, flow 

chart, implementation, and simulations (including six case studies) of the OL-MSSCC 

algorithm and investigate the impacts of WDGs on its performance. The main 

advantage of the proposed OL-MSSCC over the RT-SLM method is the direct 

utilization of WDGs energy for PEV battery charging to reduce the possibility of 

overloading the lines and distribution transforms particularly during peak-load hours. 

§ In Chapter 5, a new centralized online fuzzy coordinated battery charging (OL-FCC) 

algorithm for PEVs in smart power grid networks with WDGs [56] is proposed, 

implemented and tested to achieve further reductions in the total grid cost while 

monitoring consumers priorities and controlling (voltage regulations and network 

demand) constraints. Chapter 5 starts with a quick review of fuzzification and 

defuzzification techniques. Sections 5.2 to 5.4 present the concepts, formulation, flow 

chart, implementation, and simulations (including ten case studies) of the proposed 

OL-FCC algorithm and compare its performance with uncoordinated/random and OL-

MSSCC coordinated PEV battery charging strategies. The key benefits of OL-FCC 
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compared with OL-MSSCC of Chapter 4 are further savings in total cost under various 

operating conditions. 

§ In Chapter 6, a new and inexpensive PEV coordinated strategy is proposed and 

implemented that records the network and vehicle information online but postpones   

the PEV battery charging to early morning hours to reduce the total cost. A new 

centralized delayed sensitivity-based coordinated PEV battery charging (DL-

MSSCC) tactic [57] is proposed, implemented, and tested. Unlike the OL-MSSCC 

and ON-FCC schemes of Chapters 4-5, the DL-MSSCC algorithm does not offer any 

priority group options to the PEV owners. Sections 6.2 to 6.5 present the concept, 

formulation, flow chart, implementation, and simulations (including four case studies) 

of the proposed DL-MSSCC strategy and compare its performance with the OL-

MSSCC and OL-FCC algorithms. The main advantage of DL-MSSCC over OL-

MSSCC and OL-FCC of Chapter 4-5 is an additional reduction in the total grid cost; 

however, it does not offer any consumer priority options and may end up with some 

customer dissatisfactions. 

§ In Chapter 7, the online and delayed coordination ideas of Chapters 4-6 are merged. 

A new centralized online combined fuzzy and delayed sensitivity-based coordinated 

battery charging (OL-F/DL-MSSCC) strategy [58] for PEVs in SG networks is 

proposed, implemented and tested that directly utilizes the WDGs and rooftop PVs 

energies for PEV battery charging. Sections 7.1 to 7.4 present the concept, 

formulation, flow chart, implementation and simulations (including four case studies) 

of the proposed OL-F/DL-MSSCC strategy and compare its performance with the OL-

MSSCC, OL-FCC and DL-MSSCC algorithms. The main advantage of the proposed 

OL-F/DL-MSSCC strategy over the OL-MSSCC, OL-FCC and DL-MSSCC 
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algorithms of Chapter 4-6 is further reductions in the total cost while also improving 

customer satisfaction by offering three (high, medium and low) priority groups, three 

battery charging time zones and three (online evening, overnight and online daytime) 

charging options. It also considers the impacts and contributions of solar DGs (rooftop 

PVs) that are not included in Chapter 4-6. 

The proposed PEV coordinated strategies are implemented in MATLAB and executed on 

the 449-bus SG network without/with PEVs, rooftop PVs and wind DGs. 

8.2. Contributions of the Ph.D. Thesis 

The key contributions of this research are: 

ü A centralized online sensitivity-based coordinated battery charging (OL-MSSCC) 

strategy for the management of PEVs in smart power grids with WDGs [55].   

ü A new centralized online fuzzy-based coordinated battery charging (OL-FCC) 

strategy for PEVs in SG networks with the consideration of WDGs [56]. 

ü A new centralized delayed (overnight) MSS-based coordinated battery charging (DL-

MSSCC) strategy for managing PEVs in SG networks with WDGs [57]. 

ü A new centralized combined online fuzzy and delayed sensitivity-based coordinated 

battery charging (OL-F/DL-MSSCC) strategy for PEVs in SG networks with the 

consideration of wind and solar (rooftop) DGs [58]. 

The algorithms for the proposed strategies are implemented in MATLAB and executed 

on the 449-bus SG network. In addition, their performances are compared without and 

with wind and/or solar DGs.  

8.3. Conclusions of the Ph.D. Thesis  

This thesis starts with literature reviews on smart power grid and PEV technologies. The 

reviews highlight the detrimental impacts of uncoordinated PEV battery charging and the 
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need for practical and fast coordinated battery charging strategies that concurrently 

consider customer satisfaction, network constraints and cost. Therefore, four new 

centralized PEV coordinated battery charging strategies are proposed and implemented: 

1) an online MSS-based (OL-MSSCC) algorithm [55] which is an enhancement to the 

RT-SLM algorithm of [63], 2) an online fuzzy-based (OL-FCC) algorithm [56], 3) a 

delayed MSS-based (DL-MSSCC) algorithm [57] and 4) an online combined fuzzy and 

delayed sensitivity-based (OL-F/DL-MSSCC) algorithm [58].  

All proposed strategies leverage the available renewable solar/wind resources by directly 

charging the vehicles’ batteries from the available wind and/or solar DGs. All proposed 

strategies are coded/implemented in MATLAB and tested/executed on an assembled 449-

bus SG network that consists of the IEEE 31-bus distribution system [94], 22 residential 

feeders, rooftop residential PVs, PEVs, and residential/distribution wind DGs. 

The following are the main conclusions of this thesis: 

• Uncoordinated EV battery charging can have detrimental impacts on the distribution 

network. It can result in substantial increases in electricity demand, power generation 

requirement and network losses, as well as bus voltage regulation and maximum 

demand violations especially during peak hours of residential loads hosting large 

numbers of PEVs. 

• All recommended algorithms rely on the SG communication resources. Their online 

nature eliminates the necessity of forecasting information related to the PEV and DGs 

statuses.    

• All proposed strategies leverage the available renewable wind/solar resources by 

directly charging the vehicles’ batteries from the available wind and/or solar DGs. 

This is done to lower transformer loadings and reduce the costs associated with 
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equipment failures and outages.  

• All proposed algorithms can effectively schedule vehicle battery charging without and 

with renewable DGs and reduce the costs associate with generation and losses while 

retaining bus voltage deviations and maximum network demands within the 

designated permissible boundaries. 

• The OL-MSSCC algorithm effectively schedules vehicle battery charging without and 

with WDGs at all PEV injection levels by considering three consumer (high, medium 

and low) priorities, three battery charging time (red, blue and green) zones, dynamic 

energy prices and grid operation constraints within its formulation.  

• The OL-FCC algorithm relies on fuzzy membership functions to: i) provide quick 

service to the high-priority consumers during early evening hours, ii) intentionally 

postpone the services to medium-priority and low-priority consumers to reduce the 

total cost by dynamically adjusting the tolerance of maximum demand using time-

dependent weighting factors and, iii) allow minor violations in voltage deviation and 

maximum demand constraints to accommodate more PEVs. 

• The chief privilege of OL-FCC compared with OL-MSSCC is the applications of 

fuzzy reasoning to augment the probability of arriving at a better PEV coordination 

plan with less cost. However, it requires the knowledge of experienced engineers to 

design and develop suitable fuzzy membership functions.  

• The DL-MSSCC algorithm is more practical compared to the OL-MSSCC and OL-

FCC strategies as it is simple, inexpensive, and relatively easy to implement. 

Therefore, DL-MSSCC is a good candidate for real-life applications where most PEV 

drivers/owners are requesting cheap PEV battery charging options. However, it may 

cause customer dissatisfaction for consumers who require high-priority quick PEV 
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battery charging during peak load hours.  

• The OL-F/DL-MSSCC algorithm offers the advantages of OL-MSSCC, OL-FCC and 

DL-MSSCC while resolving most of their limitations.  It is a potential candidate for 

online coordination of PEVs in large smart power grid networks since it is relatively 

simple, fast, practical, and easy to implement. It improves customer satisfaction by 

offering: i) three consumer (high, medium and low) priority options, ii) three charging 

types (fast online evening, online daytime and cheap overnight) options, iii) three 

battery charging time (red, blue and green) zones and, iv) the ability to charge at high, 

medium or low tariff rates. It reduces the total network cost by considering short term 

market energy prices and directly using the accessible renewable (wind and solar) 

energy for battery charging while keeping bus voltages and maximum network 

demand constraints within the allowable bounds based on maximum sensitivity 

selections and/or fuzzy reasoning.  

• The online part of the OL-F/DL-MSSCC algorithm performs: i) fast expensive fuzzy-

based evening PEV battery charging intended for high-priority consumers who are 

willing to pay high tariff rates for quick vehicle charging in the red battery charging 

time zone (1800h-2200h) and, ii) quick inexpensive fuzzy-based daytime PEVs 

charging intended for medium-priority consumers who are willing to pay moderate 

tariff rates for fast vehicle charging in the blue charging time zone (0800h-1600h).  

• The delayed part of the OL-F/DL-MSSCC algorithm performs cheap overnight MSS-

based PEV battery charging that guarantees full level of battery charge of all vehicles 

by 0600h and is intended for low-priority consumers who are seeking low tariff rates 

but would like to have their vehicles fully charged for the next day trips. 

• Renewable energy resources substantially enhance the performance of all proposed 
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strategies by reducing system losses, the cost of generation and the loading of 

transformers. The most appropriate areas for the installation of wind generation units 

are near the residential feeders with high injections of PEVs, the end of the high 

voltage feeders and close to the charging stations. For the smart power grid network 

of Fig. 4.7, the best buses for the placement of WDGs in the order of preference are: 

i) buses 10-15, ii) buses 6-8, iii) buses 16-18, iv) buses 20-21, and v) buses 24-28. The 

complete system performance will be enhanced if the peak WDG generation times are 

during early evening hours or if they overlaps with the peak PEV battery charging 

demands. 

8.4. Future Recommendations 

This thesis has considered and addressed several issues related to battery charging of 

electric vehicles and their possible impacts on the power networks. However, there are 

still several scopes and research directions for further studies: 

• The proposed scheduling algorithms do not consider vehicle battery discharging 

scenarios which is still an open area for further research. The proposed MSS-based 

and the fuzzy-based PEV battery charging coordination solutions can be extended to 

also include battery discharging to inject active and/or reactive power into the grid.   

• The proposed scheduling algorithms do not consider the impacts of driving paths and 

the traffic flows. Future research can be on the impacts of rush hour traffic and the 

high PEV demands at the charging stations on the power network. 

• Finding the optimal locations and the optimal sizes of the public charging stations is 

another interesting research area. Then, the proposed centralized online fuzzy charging 

algorithm of chapter 5 can be extended to supervise the drivers and encourage them to 

charge their vehicles at the charging stations with shorter queues.  
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• The proposed PEV battery charging management tactics may be enhanced to also 

optimize customer’s/driver’s satisfaction. 

• The implemented PEV coordinated battery charging algorithms can be improved by 

considering the impacts of traffic on trip patterns, times, and durations. 

• Investigating the impacts of communication failure and/or communication 

interruptions on the performance and resilience of the EV battery charging 

coordination algorithms. 
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