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Abstract

Image segmentation is the task of partitioning images into meaningful sub-regions.

It is a fundamental problem in image processing and integral part of higher-level com-

puter vision problems such as object detection and recognition, target tracking, 3D

reconstruction, etc. Variational models have been widely applied to the segmentation

problem due to their effectiveness, versatility, and solid foundation in mathematics.

In a variational model, the problem is framed as an energy functional whose mini-

mization yields the solution. Many variational models using different image features

have been designed, such as the edge-based snakes model, the geodesic active con-

tour model, the region-based Mumford-Shah model, and the Chan-Vese model, etc.

Though variational models have seen much success in solving segmentation problems

based on the extracted image features, the image features alone do not always suffice,

such as in the case of object adhesion, occlusion, missing information in the image,

etc. In these cases, prior knowledge is necessary to assist with segmentation. The

works of this thesis focus on novel variational level set models with prior constraints

and the efficient design of their numerical solutions.

When crucial information is missing from the image, it is necessary to introduce

prior knowledge. Landmarks are useful tools that can guide the segmentation con-

tour towards given locations. They can be obtained through manual placement or

automatic detection, dependant on the applications. Aside from serving as guid-

ance, they can also facilitate the inpainting of illusory contours. The first work in

this thesis proposes a new variational image segmentation model where the contour

crosses some pre-defined landmarks. It builds on the Chan-Vese model by adding a

new landmarks-based constraint term. The resulting optimization problem can be

efficiently solved through the split-Bregman method. Experimental results show that

the Chan-Vese model with landmarks (CVL) can not only increase the robustness

but also improve the accuracy of segmentation.

On the other hand, it is relatively difficult to create large sections of the contour

with the CVL since the model favors shorter contours. The second work proposes the
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Chan-Vese model with landmark constraints and elastica (CVLE) that specializes in

the interpolation of longer contours with fewer landmarks. The new model is solved

with the split-Bregman method, and experimental results show that the CVLE works

well for generating illusory contours in large regions with landmarks while maintaining

the segmentation details.

In applications such as cell image segmentation, the subjects often appear similar

and adhere to each other. Therefore, they are difficult to separate with either edge-

based or region-based variational models and should require additional constraints.

One useful constraint is topology preservation, where if topology of the subject is

known a priori, it remains invariant throughout segmentation. The self-repelling

snakes (SR) model achieves this by making the segmentation contours repel to prevent

merging and splitting. The original solution is based on additive operator splitting

which has a high memory requirement. The third work of this thesis proposes an

alternate solution to the SR model with the split-Bregman method and a differently

smoothed label function that increases the stability of contour evolution. Applications

of the new algorithm to cell image segmentation and MRI imagery segmentation

demonstrate its effectiveness.

In summary, this thesis contains three new works relating to variational level set

models for image segmentation with constraints. The first is the design of the Chan-

Vese model with landmarks along with its solution via the split-Bregman method.

Next, the Chan-Vese model with elastica and landmarks is proposed for inpainting

long illusory contours, and its solution is devised via the split-Bregman method as

well. Finally, a memory-efficient solution with a stable label function formulation is

proposed for the self-repelling snakes model which preserves topology.
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Chapter 1

Introduction

1.1 Image segmentation

Image segmentation, i.e. the task of partitioning an image into subsections based

on certain defined criteria, is a classical problem in computer vision and image anal-

ysis. By extracting meaningful parts of the image, we can further process or access

them to glean more information. It is the basis for a variety of higher-level problems

such as object detection and recognition, target tracking, three-dimensional (3D)

reconstruction, etc. Its practical applications are limitless. To name a few, segmen-

tation methods are useful for cropping objects in a photo editing software, detecting

road conditions with self-driving cars, and rebuilding models of organs from com-

puted tomography (CT) scans. The problem has been extensively studied in the past

few decades, and many solutions were proposed that stemmed from disciplines such

as statistics, applied mathematics, computer science, physics, etc. Recently, certain

data-driven, end-to-end deep neural networks have achieved major breakthroughs in

the field of image segmentation coupled with recognition and detection. Despite the

immense progress, image segmentation remains an area of active research. One rea-

son is that it generates a great amount of practical value, and another is that the

problem itself is highly variable and complicated to solve. It is an inverse ill-posed

problem, meaning that a unique segmentation is not guaranteed for a given image.

The images may be captured differently, contaminated by different kinds of noise,
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or missing information due to poor capturing condition. Some objects are hard to

pick out in an image even by the human eye. As of now, notable issues still exist in

the mainstream algorithms with respect to accuracy, speed, robustness, the level of

human intervention, and the amount of specialized data required.

The image segmentation problem can be formally defined as follows. Let Ω be

the domain of the image and 𝑓(𝑥) : Ω ⊂ R𝑚 → R𝑝 be the image, where 𝑚 is the

dimensionality and 𝑝 is the number of channels in the image. We want to divide Ω

into 𝑛 sub-regions, Ω1,Ω2, . . . ,Ω𝑛, such that,

∙
⋃︀𝑛
𝑖=1 Ω𝑖 = Ω

∙ Ω𝑖

⋃︀
𝑖 ̸=𝑗 Ω𝑗 = 𝜑

where each Ω𝑖 corresponds to a meaningful partition of 𝑓(𝑥). By this definition, the

task is to identify homogeneous regions in an image. For example, a color image

can be approximated as blocks of uniform colors, where each block is a sub-region.

Sometimes we may also define a curve 𝐶 ⊂ R𝑚, where 𝐶 is the boundary of the sub-

regions. In this case, the problem becomes the mapping of the segmentation contours

boundaries of the objects in the image. The above two definitions are adopted by

region-based and edge-based image segmentation methods respectively, as illustrated

in Fig. 1-1 (c) and (e).

In computer vision, the techniques for image segmentation range from simple to

sophisticated, hand-engineered heuristics to high-level abstraction and model design.

Approaches such as thresholding [2], edge-detection [1], region-growing [11], and wa-

tershed [3] are directly based on pixels, e.g. whether the pixels are similarly colored,

adjacent to each other, display sharp changes in intensity, etc. We consider these

algorithms simple and classical, because the information utilized is low-level.
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(a) (b) (c)

(d) (e) (f)

Fig. 1-1: Classical methods for image segmentation. (a) the original image, (b) image
segmented with the Canny filter [1], (c) Gaussian-blurred image (𝜎 = 3.2) segmented
with the Canny filter, (d) image segmented with Otsu’s thresholding method [2], (e)
the previous result post-processed with morphological operations, (f) separation of
the foreground instances with the watershed method [3].

One trait of classical approaches is that they tend to miss the "big picture",

oftentimes leading to naive solutions. As shown in Fig. 1-1, the segmentation results

in (b) and (d) leave much to be desired. Pre-processing and post-processing measure

were introduced in (c) and (e) to improve accuracy. However, the additional steps also

made the pipeline less robust and increased the number of parameters to tune. With

more and more steps, the algorithm eventually becomes too convoluted and case-

specific for real applications. To solve this dilemma, high-level models were designed

that could organically combine the various parts of the algorithm while staying robust

to the variabilities in the images.

There are many high-level models for the image segmentation problem. The more

influential ones are based on neural networks [12], variational methods and partial

differential equations (PDEs) [13, 14], graph combinatorial optimization [15], statis-

tics and probability models such as Markov random fields [16], etc. These models
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are versatile and able to incorporate many kinds of information and segmentation

criteria. They transcend the simple combination of steps and aim to express the

segmentation problem as a comprehensive model. Each model has its pros and cons,

although generally speaking, the more information a model has access to (both from

the image and pre-existing knowledge), and the more patterns it recognizes, the bet-

ter the model tends to perform. Currently, artificial neural networks (ANNs) [12, 17]

have taken center stage. The ANNs are combined networks of feature extraction

filters, threshold switches, and other components whose parameters are tuned on a

database of images. In other words, the segmentation criteria are "learned" from

sample images rather than dictated by the human. This is a different line of thinking

from the traditional one where models are designed from top to bottom. The ANNs

often work well on the kinds of images they are trained on, making them ideal for

engineering applications. Nonetheless, there are trade-offs. It takes much domain-

specific data to tune a network for a task. If the network under-performs, changes

are more difficult to implement. There is a general lack of understanding of machine

learned parameters, and the collection of data and tweaking of hyperparameters is a

long process. Overall, much uncertainty still remains, and a lot of research have been

based mostly on experimentation. This thesis takes a mathematical approach and fo-

cuses on variational methods and PDE-based methods [18] instead, starting from the

design of objective functionals to the derivation of solutions. It is the author’s belief

that both approaches hold merits and that concepts are often transferable between

bodies of knowledge. A representative case in point is the variational autoencoder

[19], a successful integration of variational Bayes in deep neural networks and the

basis for some state-of-the-art image segmentation algorithms. More parallels and

joint models are being investigated, such as in [20, 21].

Having said that, variational models are powerful and versatile in their own right.

Similar to purely PDE-based methods, variational models are essentially mathemat-

ical formulations designed to describe real-world problems. The basic idea is to for-

mulate an energy functional that, upon being minimized, yields the solution in the

form of a function. The difference between purely PDE-based methods and varia-
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tional methods is that the former directly defines the PDE while the latter derives it

(a Euler-Lagrange equation) from the steady-state solution of the energy functional.

This step involves the calculus of variations, hence the name “variational”. Compared

to pure PDE models, variational models are more intuitive and are easier to incor-

porate other models, such as those based on statistics and information theory. The

mathematical theories of variational methods are based on the calculus of variations,

PDEs, numerical analysis, differential geometry, viscosity solutions theory, and etc.

[22]. With an abundance of theoretical tools, the existence and uniqueness of the so-

lutions to the models can be proven in the continuous space, while efficient algorithm

implementations can be realized in the discrete space with numerical optimization

methods. Indeed, the versatility of variational models stems from its powerful frame-

work of energy functional minimization. The functional constitutes a combination

of terms that each serves a specific purpose. By playing with the terms, different

functionals can be constructed to describe an extensive range of problems. Besides

image segmentation, the variational paradigm has also been successfully implemented

in areas of image processing such as denoising, deblurring, inpainting, compression,

enhancement, motion analysis, 3D reconstruction, and etc. [23]. For image segmenta-

tion in particular, variational models based on color, edge, texture, motion, statistical

distribution, shape prior, etc. have been proposed. Fig. 1-2 shows a few examples of

image segmentation using variational models.

1.2 Variational models in image segmentation

As mentioned above, variational models are a special type of PDE-based models

where the PDEs are derived from energy functionals. PDEs have always played a vi-

tal role in the modeling of real-world physical phenomenon, such as in the Maxwell’s

equations of electromagnetism, the Schrödinger’s equation of quantum-mechanics,

etc. The history of PDEs in image processing dates back to the discovery the equiv-

alence of the Gaussian filter to the solution of the heat equation [24, 25]. From this

concept emerged PDE-based models for image deblurring and enhancement such as
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(a) (b) (c)

(d) (e) (f)

Fig. 1-2: Variational image segmentation based on (a) the piecewise constant as-
sumption, (b) edges and topology preservation, (c) gradient vector flow, (d) color
and texture, (e) shape priors, (f) optical flow. Results (a)(c)(d)(e)(f) are taken from
[4, 5, 6, 7]

.

the Perona-Malik model [26]. Two variational models for image segmentation stood

out at that time, the active contours model [13] and the Mumford-Shah model [27].

They paved the way for edge-based and region-based image segmentation models

within the variational paradigm.

In 1988, Kass, Witkin and Terzopoulos proposed the active contours model (ACM,

or snakes) [13]. In this variational model, curves delineating the segmentation con-

tour gradually move towards the object edges, giving the appearance of "snakes".

The curves were initially parametric functions, later on superseded by implicit rep-

resentations. There were several problems with regards to the original ACM: the

curves could be trapped by weak edges and noise, and then find it hard to move into

recessed areas, and cannot change topology. The ensuing models worked to improve

the ACM. To overcome potential weak edges and noise, Chohen et al. [28] proposed

the addition of a balloon force that pushes the curves out of local minima. The gra-

21



dient vector flow velocity field proposed by Xu et al. [29, 30] moves the curves into

recessed areas. Finally, implicit curve representations were adopted to resolve the

issue of inflexible topology. Caselles et al. [31] and Malladi et al. [32] independently

introduced the level set function [33] into the ACM in 1993 and 1995. In [31, 32],

the level set (instead of the parametric curve) evolves through time and the con-

tour is denoted by the zero level set. The nice mathematical properties of the level

set function [33] enabled the implementation of some fast optimization methods and

the variatioal level set framework enjoyed increasing popularity. In 1997, Caselles et

al. [9] proposed the geodesic active contours (GAC) model, a much simplified but

equally effective formulation of the ACM. The GAC model removes the higher-order

terms and adopts the concept of geodesic distance in the Riemannian space. Many

edge-based models designed thereafter are extensions of the GAC model.

The most representative region-based variational image segmentation model is the

Mumford-Shah model [27] proposed in 1989. It aims to approximately recreate the

image as piecewise smooth patches, where each patch is a sub-region of segmentation.

The original model has one main problem, which is that the energy functional consists

of both the recreated image and the contour; the dimensions of the two variables

are mismatched. To solve the model in practice, approximations models are used

based on Γ-convergence [34] and the level set method [14, 35]. In particular, the

Chan-Vese (CV) model [14] using the level set approach has been widely popular. It

is a simplification of the Mumford-Shah model by removing the higher-order term,

and the scope of the problem is narrowed down to two-phase segmentation. Since

its proposal, the CV model has been extended to multi-phase [36], and integrated

with texture [37], motion [38], noise [39], shape priors [40, 41], etc. Compared to

the edge-based models, region-based models are not concerned with weak edges and

less dependent on initialization. However, they are also less sensitive to local details

which led to lower segmentation accuracy. Kimmel et al. [42] combined the CV model

and the GAC model to consider both edges and regions. More details on classical

variational image segmentation models are presented in Chapter 2.

The theories of variational methods are based on the calculus of variations, PDEs,
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numerical analysis, differential geometry, viscosity solutions theory, and etc. [22].

With this comprehensive set of tools, the existence and uniqueness of the solutions to

the models can be proven in the continuous space, and efficient algorithm implemen-

tations can be realized in the discrete space with numerical optimization methods.

Relevant theories from the calculus of variations, PDEs, and numerical analysis are

presented in Chapter 2, with a focus on the variational level sets.

1.3 Current challenges

Though the variational paradigm opens up many possibilities, it also comes along

with challenges. The minimization of the variational energy functional results in a

Euler-Lagrange equation, a nonlinear PDE. Very rarely can this be solved analytically,

and we must look for the steady-state solution of a dynamic equation via gradient de-

scent most of the time. The iterative approach slows the algorithm down and imposes

constraints on the time step, since convergence is now another factor to be considered.

Furthermore, the discretization scheme, singularities, and boundary conditions must

all be considered in concert to ultimately arrive at the correct solution. These issues

all need to be addressed with the proposal of each new variational model. Attempts

are also made to improve existing models through model simplification or methods

to raise computational efficiency.

Fast optimization methods are often used to simplify and speed up the numeri-

cal algorithms. For example, the total variation (TV) term [14] is present in many

variational level set models and serves the function of smoothing contours. It cannot

be solved directly, and the gradient descent equation obtained through variational

methods includes a curvature term. Calculating the curvature term in each iteration

is computationally expensive, so split variable optimization methods are utilized to

circumvent the term. By introducing auxiliary variables, the minimization problem

can be broken down into some smaller sub-problems, which can then be minimized al-

ternatingly. The dual method [35], split-Bregman method [43], augmented lagrangian

method (ALM) [44], and the alternating directional method of multipliers (ADMM)
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[45] are commonly used for this purpose.

Aside from optimization methods, the design of new variational models also poses

a challenge. With the recent surge in "big data", the development of image seg-

mentation algorithms has seen a shift in direction towards more usage of data. The

reason behind this trend is that a database of images contains a rich pool of prior

knowledge. To draw an analogy, the human recognizes an object not only based on

visual perception, but also on previously learned knowledge about that object. The

way that variational models tap into prior knowledge is through prior constraints.

A typical example is the use of prior shapes to segment similarly shaped objects in

images [7, 40, 41]. Aside from shapes, priors can take on many other forms such as

probability maps in segmentation [21], noise distributions in denoising [20], etc. They

can also be conveniently obtained through deep learning methods [46]. The works in

this thesis explore two kinds of prior constraints in variational level set models for

image segmentation, namely landmarks and topology.

1.3.1 Landmark priors

Landmarks are key points in images that denote important image features. They

can be used in a number of image processing tasks. For example, in image registration,

i.e. the matching of objects or object features in different images, landmarks are used

to track a moving object in a series of frames. In image segmentation, they are used to

specify target objects, improve segmentation contours, and inpaint missing sections

of contours caused by object obstruction or damages to the image. Landmarks can be

assigned manually or detected automatically via feature point extraction algorithms

such as the scale-invariant feature transform (SIFT) [47], the speeded up robust fea-

tures (SURF) [48], etc. Recent works in landmark localization [49] use deep learning

methods to generate more accurate landmarks, which makes it possible to remove the

human from the loop and perform segmentation in an end-to-end manner. Therefore,

the subject of landmarks in image segmentation is now more relevant than ever.

Under the variational level set framework, however, there is no known model that

enforces landmark constraints where the segmentation contour passes through the
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landmarks. The works of this thesis aim to construct two new variational level set

models that use landmarks to improve the quality of segmentation.

1.3.2 Topological priors

The topology of a geometric shape is the set of mathematical qualities that are

preserved under continuous deformations. For a more intuitive understanding, let us

consider two circles in 2D space. Deformations such as expansion and compression

preserve the circles’ topology, while merging and splitting do not. The idea is often

referenced in active contour models, as the evolving contours are effectively deforming

shapes. 1-3 illustrates the concept of topology preservation in image segmentation

via active contours.

(a) (b) (c)

Fig. 1-3: Two circles segmented by the repulsive snakes model [8] and the GAC
model [9], (a) initialization of the contour in red, (b) the contour with preserved
topology, (d) the contour with altered topology.

.

Though a flexible contour topology is an important feature in active contour mod-

els, it also benefits to maintain the topology in certain situations. For instance, if

the topology of the object is known in advance, we would like to preserve the initial

topology in order to use the topological prior. One example application is the seg-

mentation of cells in histopathology images, where cells are usually present in clusters

and difficult to separate. Knowing the number of cells in advance (possibly through

the detection of cell nuclei), we can use topology preservation to ensure the number

of cells stays constant, thus preventing under-segmentation and over-segmentation.
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This thesis aims to improve an existing topology preservation model, the self-repelling

snakes (SR) model [8].

1.4 Research objectives

The objectives of research can be summarized as follows:

∙ To design a constraint term under the variational level set framework for landmarks-

assisted image segmentation, where the contour passes through pre-defined land-

mark points.

∙ To experiment with the inclusion of constraints, i.e. landmark constraints,

Euler’s elastica, and topology preservation, in variational level set models and

construct new models.

∙ To improve the numerical algorithm for SR model for image segmentation with

topology preservation and increase the efficiency and robustness of the algo-

rithm.

∙ To devise fast and memory efficient numerical algorithms for the variational

models with constraints.

1.5 Structure of thesis and summary of contribu-

tions

The rest of the thesis concerns the theories behind variational level set models

and the three novel works on variational image segmentation models with landmark

and topology preservation constraints.

Chapter 2 reviews theories from the calculus of variations and PDEs, the level

set formulation, and finite difference discretization schemes for approximating con-

tinuous derivatives. Some classical variational image segmentation models based on

both edge and region features are also presented, with an emphasis on the level set
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formulation for intrisic contour representation. To solve a variational model, we first

derive its Euler-Lagrange equation representing the stationary state or energy min-

imum. Then, we derive its gradient flow and iteratively descend the functional to

the energy minimum. The PDEs are discretized with the fitting numerical schemes.

To simplify the optimization problem, we demonstrate the split-Bregman method for

alternating direction minimization using the total variation model as an example.

Chapter 3 proposes a variational model to address the problem of region-based

image segmentation assisted by pre-defined landmarks. Specifically, the segmentation

contour is constrained to pass through the given landmark points. In the proposed

Chan-Vese model with landmark constraints (CVL), the landmarks not only serve

to guide the contour away from suboptimal segmentation results, but also to refine

the contour in critical regions in order to increase the level of detail and accuracy n

those regions. The main contributions in this chapter are the design of a new

constraint term that embodies landmark information, the incorporation of the new

constraint into the Chan-Vese model, the proof of convergence for the new model,

and the proposal of a fast numerical solution for the new model based on the split-

Bregman method and projection method. Experimental results on synthetic, noisy,

and real-world CT images illustrate the effectiveness of the CVL model.

Chapter 4 proposes an extension to the CVL model that interpolates long illu-

sory contours with the help of landmarks. This is useful for segmenting occluded or

damaged objects, where the contour information is missing in the image and may be

given by landmarks. Though the CVL model is effective otherwise, it is not suitable

for connecting landmarks to the segmentation contour when they are too far away

from the object boundary. One the other hand, the Euler’s elastica has been used

successfully in image and contour interpolation or inpainting. With the proposed

Chan-Vese model with landmark constraints and elastica (CVLE), farther landmarks

can now be connected and fewer landmarks are required, facilitating the creation of

illusory contours. The main contributions in this chapter are the design of the

new model incorporating the elastica term into the CVL, and the proposal of a fast

numerical solution for the CVLE using the split-Bregman method with projection.
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Experimental results on synthetic images with damages and real-world MRI images

with noise demonstrate the inpainting capability of the CVLE.

Chapter 5 presents a new solution to the self-repelling snakes (SR) model. The

SR model segments the image by edges and makes use of repulsion between the con-

tours to preserve contour topology. The original solution based on additive operator

splitting has a memory requirement the square of the image size. The new solution

via the split-Bregman method with projection simplifies the optimization problem

and reduces the memory requirement down to a linear dependency. The stability of

the SR model is also enhanced through a different Heaviside function which restricts

the repulsive force to narrow bands around the contour. The main contributions

in this chapter are a proposed fast numerical solution for the SR model using the

split-Bregman method with projection, and the replacement of the original Heaviside

function. Experimental results on synthetic images and real-world medical images

show that the new solution has comparable performance to the original one, while

stability has improved noticeably.

Chapter 6 summarizes the contributions of the thesis. The impacts of the current

works are discussed and potential directions of future research are speculated.
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Chapter 2

Variational Image Segmentation

Models

2.1 Variational methods

The core of variational models lies in the construction of energy functionals and

the devising of their solutions. In a variational model, a functional is designed to

describe a problem such that the minimization of the functional yields the solution

to the problem as a function. Let a function be two-dimentional with continuous first

order derivatives, 𝑢(𝑥) : Ω ⊂ R2 → R where 𝑥 = (𝑥1, 𝑥2) ∈ Ω, 𝑑𝑥 = 𝑑𝑥1𝑑𝑥2. Let the

energy functional be dependent on up to the first order derivative of 𝑢(𝑥), such that

𝐸(𝑢) =

∫︁
Ω

𝐹 (𝑥, 𝑢(𝑥),∇𝑢(𝑥))𝑑𝑥. (2.1)

Note that the energy functional is the integration of the functional 𝐹 that describes

the problem over the domain of the image. The minimum of the energy functional

can be found when the first order variation of (2.1) reaches 0. In other words, the

Gâteaux derivative 𝜕𝐸(𝑢)
𝜕𝑢

= 0. The problem can be formally framed as follows: For

all 𝜂(𝑥) and an infinitely small number 𝜉, the solution to the minimization problem

satisfies
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<
𝜕𝐸(𝑢)

𝜕𝑢
, 𝜂 >= lim

𝜉→0

𝐸(𝑢+ 𝜉𝜂) − 𝐸(𝑢)

𝜉
=
𝜕𝐸(𝑢+ 𝜉𝜂)

𝜕𝜉
|𝜉=0 = 0 (2.2)

Plugging the standard energy functional (2.1) into (2.2), we can derive

<
𝜕𝐸(𝑢)

𝜕𝑢
, 𝜂 > =

𝜕

𝜕𝜉
|𝜉=0

∫︁
Ω

𝐹 (𝑥, 𝑢+ 𝜉𝜂,∇𝑢+ 𝜉∇𝜂)𝑑𝑥

=

∫︁
Ω

𝜕

𝜕𝜉
𝐹 (𝑥, 𝑢+ 𝜉𝜂,∇𝑢+ 𝜉∇𝜂)𝑑𝑥

=

∫︁
Ω

(𝐹𝑢𝜂 + 𝐹∇𝑢 · ∇𝜂)𝑑𝑥,

(2.3)

where 𝐹𝑢 = 𝜕𝐹
𝜕𝑢

and 𝐹∇𝑢 = 𝜕𝐹
𝜕(∇𝑢) =

⎛⎝ 𝜕𝐹
𝜕𝑢𝑥1

𝜕𝐹
𝜕𝑢𝑥2

⎞⎠. Applying the Green’s formula to the

second term in (2.3) yields

<
𝜕𝐸(𝑢)

𝜕𝑢
, 𝜂 >=

∫︁
Ω

(𝐹𝑢 −∇ · (𝐹∇𝑢))𝜂𝑑𝑥+

∫︁
𝜕Ω

𝐹∇𝑢 · 𝑛⃗𝜂𝑑𝑠, (2.4)

where 𝑛⃗ is the outward normal vector on the boundary 𝜕Ω. For (2.4) to satisfy the

stability condition (2.2), the integral must reach 0 both within the image and on the

boundary. Therefore, we can derive the Euler-Lagrange function with the boundary

condition as

⎧⎪⎨⎪⎩𝐹𝑢 −∇ · (𝐹∇𝑢) = 0 𝑥 ∈ Ω

𝐹∇𝑢 · 𝑛⃗ = 0 𝑥 ∈ 𝜕Ω.

(2.5)

The derivation of Euler-Lagrange functions is a crucial first step to solving varia-

tional models.

2.2 Gradient descent equations

The Euler-Lagrange equations are nonlinear PDEs that typically cannot be solved

analytically. In order to derive the minima 𝑢̂ dynamically, we introduce a time factor,

𝑡, and evolve the function 𝑢 in the direction of gradient descent, such that
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𝜕𝑢

𝜕𝑡
= −𝜕𝐸

𝜕𝑢
(2.6)

With respect to (2.1), the dynamic energy functional is

𝐸(𝑢(𝑥, 𝑡)) =

∫︁
Ω

𝐹 (𝑥, 𝑢(𝑥, 𝑡),∇𝑢(𝑥, 𝑡))𝑑𝑥 (2.7)

To minimize the energy functional, we update 𝐸 such that 𝜕𝐸
𝜕𝑡

≤ 0. The gradient

can be derived as below

𝜕𝐸

𝜕𝑡
=

∫︁
Ω

(︂
𝐹𝑢𝑢𝑡 +

𝜕𝐹

𝜕𝜉
(∇𝑢)𝑡

)︂
𝑑𝑥

=

∫︁
Ω

(𝐹𝑢𝑢𝑡 −∇ · 𝐹∇𝑢𝑢𝑡) 𝑑𝑥+

∫︁
𝜕Ω

𝜕𝐹

𝜕𝑛⃗
𝑢𝑡𝑑𝑠

=

∫︁
Ω

(𝐹𝑢 −∇ · 𝐹∇𝑢)𝑢𝑡𝑑𝑥,

(2.8)

where 𝑢𝑡 = 𝜕𝑢
𝜕𝑡

and (∇𝑢)𝑡 = 𝜕(∇𝑢)
𝜕𝑡

. The first step uses the Green’s theorem and the

the next step applies the Neumann boundary condition where 𝜕𝐹
𝜕𝑛⃗

= 0 to eliminate

the third r.h.s. term in (2.8).

Since the goal is to ensure that 𝜕𝐸
𝜕𝑡

≤ 0, we can set 𝑢𝑡 as

𝜕𝑢

𝜕𝑡
= − (𝐹𝑢 −∇ · 𝐹∇𝑢) (2.9)

which is the gradient flow for gradient descent. 𝑢̂ can be found when 𝜕𝐸
𝜕𝑡
< 𝑇𝑜𝑙 where

𝑇𝑜𝑙 is a small tolerance value.

2.3 The level set method

In variational models for image segmentation, the solution 𝑢̂ denotes the seg-

mentation contour or the association of pixels to disjoint subsections. This can be

represented explicitly or implicitly. For example, a 2D segmentation contour can

be a parametric curve, 𝐶 = {𝑥 ∈ Ω|𝑥 = (𝑥1(𝑞), 𝑥2(𝑞)), 𝑞 ∈ [0, 1]}. Implicit repre-

sentations generally allow for more flexibility in curve evolution. One popular for-
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mulation that embeds the contour in a higher dimension is the level set function

[33, 31, 32], where 𝜑(𝑥) : Ω ⊂ R𝑛 → R and the segmentation contour is defined

as 𝐶 = {𝑥 ∈ Ω|𝜑(𝑥) = 𝑛, 𝑛 ∈ Z}, or the level line of 𝜑(𝑥) at 𝑛. For two phase

segmentation, the level line at zero often denotes the contour, as shown in Fig. 2-1.

→ → →

Fig. 2-1: The function 𝜑(𝑥) over a 2D image domain for the two phase segmentation
problem. 𝜑(𝑥) > 0 denotes the object, 𝜑(𝑥) < 0 denotes the background, and 𝜑(𝑥) = 0
marks the segmentation contour in red. The top-down view shows how the contour
changes topology (splits) as it evolves.

.

𝜑(𝑥) is often chosen to be a signed distance function, such that

𝜑(𝑥) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑑(𝑥,𝐶) 𝑖𝑓 𝑥 ∈ Ω1

0 𝑖𝑓 𝑥 ∈ 𝐶

−𝑑(𝑥,𝐶) 𝑖𝑓 𝑥 ∈ Ω2

, (2.10)

where 𝑑(𝑥,𝐶) is the Euclidean distance from a point to the segmentation contour

𝐶, and Ω1 and Ω2 are the two subdomains. The signed distance function has the
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property

|∇𝜑(𝑥)| = 1. (2.11)

Compared to the parametric curve, the level set function allows for free changes

in the topology of the contour. Furthermore, many geometric quantities can be

represented more intuitively. To describe the areas of the subsections and the length

of the contour, we introduce a Heaviside function 𝐻(𝜑(𝑥)),

𝐻(𝜑(𝑥)) =

⎧⎪⎨⎪⎩1 𝑖𝑓 𝜑(𝑥) ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2.12)

It is easy to see that the area of Ω1 is just
∫︀
Ω
𝐻(𝜑(𝑥))𝑑𝑥 and the area of Ω2 is∫︀

Ω
𝐻(1 − 𝜑(𝑥))𝑑𝑥. The length of 𝐶 is

∫︀
Ω
|∇𝐻(𝜑(𝑥))|𝑑𝑥, as the value of 𝐻 changes

only upon the contour. The partial derivative of 𝐻(𝜑(𝑥))with respect to 𝜑 is the

Dirac function

𝛿(𝜑(𝑥)) =
𝜕𝐻(𝜑(𝑥))

𝜕𝜑(𝑥)
. (2.13)

On the other hand, to observe the other geometric quantities relating to the seg-

mentation contour, we can express the contour through a curve coordinate, such that

𝜑(𝑥(𝑠)) = 0, (2.14)

and the derivative of the contour with respect to the curve coordinate is

∇𝜑(𝑥(𝑠)) · 𝑥𝑠 = 0. (2.15)

Thus, the unit tangent vector, unit normal vector and curvature on the contour

can be defined as

𝑇 (𝑥) =
𝑥𝑠
|𝑥𝑠|

, (2.16)
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𝑁(𝑥) =
∇𝜑(𝑥)

|∇𝜑(𝑥)|
, (2.17)

𝜅 = ∇ ·
(︂

∇𝜑(𝑥)

|∇𝜑(𝑥)|

)︂
. (2.18)

Introducing the time factor 𝑡, we can observe the time evolution of the contour.

While it evolves, the contour satisfies the following condition

𝜑(𝑥(𝑡), 𝑡) = 0, (2.19)

the derivative of (2.19) with respective to 𝑡 is

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
+ ∇𝜑(𝑥, 𝑡) · 𝜕𝑥(𝑡)

𝜕𝑡
= 0. (2.20)

Substituting (2.17) into (2.20), we can derive the standard level set equation

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
+ 𝑣𝑁 |∇𝜑(𝑥)| = 0, (2.21)

where 𝑣𝑁 = 𝜕𝑥(𝑡)
𝜕𝑡

· 𝑁(𝑥) is the speed function of curve evolution. In fact, (2.21) is a

typical dynamic Hamilton-Jacobi equation in physics.

2.4 Variational models

As mentioned earlier, variational models are constructed as the integral of a func-

tional over the domain of an image. To gain more insight into the nature of the

functionals, we present some classical variational models for image segmentation be-

low.

2.4.1 Edge-based models

The pioneering work by Kass, Witkin and Terzopoulos [13] know as the active

contour model (ACM), or the snakes model, is an energy functional minimization
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problem over a closed elastic curve, shown as below,

min
𝑐
𝐸(𝐶) = 𝛼

∫︁ 1

0

|𝐶𝑝𝑝(𝑝)|2 𝑑𝑝+ 𝛽

∫︁ 1

0

|𝐶𝑝(𝑝)|2 𝑑𝑝+ 𝛾

∫︁ 1

0

𝑔2(𝐶(𝑝))𝑑𝑝, (2.22)

where 𝐶(𝑝) is a parametric curve with 𝑝 ∈ [0, 1]. The first and second terms are the

inner elastic energy of the curve, while the third term is the external energy based on

an edge detector

𝑔(𝐶(𝑝)) =
1

1 + 𝑣 |∇ (𝐺𝜎 * 𝑓(𝐶(𝑝)))|2
(2.23)

where 𝛼, 𝛽, 𝛾 are standard weighting parameters. Using standard variational methods

[18], we can obtain its static Euler-Lagrange equation and the corresponding gradient

descent equation for curve evolution as

𝛼𝐶𝑝𝑝𝑝𝑝 − 𝛽𝐶𝑝𝑝 + 𝛾𝑔∇𝑔 = 0 (2.24)

𝜕𝐶

𝜕𝑡
+ 𝛼𝐶𝑝𝑝𝑝𝑝 − 𝛽𝐶𝑝𝑝 + 𝛾𝑔∇𝑔 = 0. (2.25)

The original model suffers from one major problem, that it is overly dependent on

parameterization. Later on, Caselles, Kimmel and Sapiro [9] proposed the celebrated

geodesic active contour (GAC) model which minimizes the geodesic length of the

contour (a quantity independent of parameterization),

min
𝑐
𝐸(𝐶) =

∫︁ 1

0

𝑔(𝐶(𝑝)) |𝐶𝑝| 𝑑𝑝 =

∫︁
𝐿

𝑔(𝐶(𝑠))𝑑𝑠. (2.26)

The corresponding curve evolution equation is

𝜕𝐶

𝜕𝑡
= (𝜅𝑔 − (∇𝑔 ·𝑁))𝑁. (2.27)

The GAC model is often distracted by weak edges and noise interference. To

overcome this problem, a balloon force was later added,

35



𝜕𝐶

𝜕𝑡
= ((𝛼 + 𝜅)𝑔 − (∇𝑔 ·𝑁))𝑁. (2.28)

The main drawback of models (2.25), (2.27) and (2.28) is that they cannot handle

the problem of topology adaption due to the external parametrization of the curve.

On the other hand, the level set method is a good choice for the dynamic evolution

of curves and surfaces with adaptive topology. Substituting (2.28) into (2.20), we

can obtain the dynamic evolution equation of the curve in the form of the level set

equation (2.21) as

𝜕𝜑

𝜕𝑡
= ∇𝑔 · ∇𝜑+ 𝛼𝑔|∇𝜑| + 𝜅𝑔|∇𝜑| (2.29)

The GAC model (2.26) can be rewritten under the variational level set framework

as

min
𝜑
𝐸(𝜑) =

∫︁
Ω

𝑔(𝑥)|∇𝐻(𝜑(𝑥))|𝑑𝑥 =

∫︁
Ω

𝑔(𝑥)|∇𝜑(𝑥)|𝛿(𝜑(𝑥))𝑑𝑥. (2.30)

Its dynamic evolving equation can be obtained via variational method and the

gradient descent strategy as below

𝜕𝜑

𝜕𝑡
= 𝛿(𝜑(𝑥))∇ ·

(︂
𝑔(𝑥)

∇𝜑(𝑥)

|∇𝜑(𝑥)|

)︂
. (2.31)

Replacing 𝛿(𝜑(𝑥)) with |∇𝜑(𝑥)|, the parabolic equation (2.31) can be transformed

into the following hyperbolic equation, i. e., a Hamilton-Jacobi equation with second

order derivatives,

𝜕𝜑

𝜕𝑡
= |∇𝜑(𝑥)|∇ ·

(︂
𝑔(𝑥)

∇𝜑(𝑥)

|∇𝜑(𝑥)|

)︂
. (2.32)

The above is in fact the same as (2.29) with no balloon force.
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2.4.2 Region-based models

Region-based variational models for image segmentation are typically more ro-

bust than edge-based models. They divide the images into different sub-regions as

determined by region-based features, e.g. mean intensity, variance of intensity, colors,

etc.. The first region-based variational image segmentation model was proposed by

Mumford and Shah [27]. It approximates the image using piecewise smooth regions

divided by boundaries with minimal length. The formulation is

min
𝑢,𝐶

𝐸(𝑢,𝐶) = 𝛼

∫︁
Ω

(𝑓 − 𝑢)2𝑑𝑥+ 𝛽

∫︁
Ω/𝐶

|∇𝑢|2𝑑𝑥+ 𝛾

∫︁
𝐶

𝑑𝑠. (2.33)

The first term on the r.h.s. is a data term that controls the similarity between

the original image 𝑓 and the piecewise smooth (approximated) image 𝑢. The second

term controls the smoothness of 𝑢, the third term controls the length of boundaries,

and 𝛼, 𝛽, 𝛾 are three tuning parameters.

It is difficult to solve the Mumford-Shah model (2.33) directly since 𝑢 and 𝐶 are

in two dimensional space and one dimensional space respectively. If curve 𝐶 divides

Ω into two sub-regions Ω1 and Ω2 such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅ , and we

let

𝑢(𝑥) =

⎧⎨⎩ 𝑢1(𝑥) 𝑥 ∈ Ω1

𝑢2(𝑥) 𝑥 ∈ Ω2

, (2.34)

(2.33) can be restated as

min
𝑢1,𝑢2,𝐶

𝐸 (𝑢1, 𝑢2, 𝐶) = 𝛼

(︂∫︁
Ω1

(𝑓 − 𝑢1)
2 𝑑𝑥+

∫︁
Ω2

(𝑓 − 𝑢2)
2 𝑑𝑥

)︂
+ 𝛽

(︂∫︁
Ω1

|∇𝑢1|2 𝑑𝑥+

∫︁
Ω2

|∇𝑢2|2 𝑑𝑥
)︂

+ 𝛾

∫︁
𝐶

𝑑𝑠,

(2.35)

Chan and Vese [14] simplified (2.35) by making the piecewise constant approxi-

mation rather than piecewise smooth,
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min
𝑢1,𝑢2,𝐶

𝐸 (𝑢1, 𝑢2, 𝐶) = 𝛼1

∫︁
Ω1

(𝑓 − 𝑢1)
2 𝑑𝑥+ 𝛼2

∫︁
Ω2

(𝑓 − 𝑢2)
2 𝑑𝑥+ 𝛾

∫︁
𝐶

𝑑𝑠. (2.36)

Finally, the well-known Chan-Vese model [14] was proposed under the variational

level set framework as

min
𝑢𝑢,𝑢2,𝜑

𝐸 (𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻(𝜑)𝑑𝑥

+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2 (1 −𝐻(𝜑))𝑑𝑥+ 𝛾

∫︁
Ω

|∇𝐻(𝜑)|𝑑𝑥.
(2.37)

2.5 The numerical methods

Having established the energy functional, the function formulation, and the gradi-

ent flow of the function, the next step is to put the continuous functions into discrete

space. Since the image is a discrete matrix (consisting of pixels at vector coordinate),

the PDEs must be discretized with numerical methods. Next, we will look at some

numerical methods for discretizing typical parabolic and hyperbolic equations.

2.5.1 Discretization

As seen in the previous sections, the PDEs in variational models may involve

quantities relating to derivatives, such as the gradient ∇𝜑 = [𝜕𝑥1𝜑, 𝜕𝑥2 ]
ᵀ, divergence

∇·𝑤⃗ = 𝜕𝑥1𝑤1+𝜕𝑥1𝑤2, Laplacian ∆𝜑(𝑥) = ∇·(∇𝜑(𝑥)), curvature 𝜅(𝑥) = ∇·
(︁

∇𝜑(𝑥)
|∇𝜑(𝑥)|

)︁
,

and geodesic curvature 𝜅𝑔(𝑥) = ∇ ·
(︁
𝑔(𝑥) ∇𝜑(𝑥)

|∇𝜑(𝑥)|

)︁
, etc. All of the above should be

approximated to discretized forms corresponding to the images.

For an image of size𝑀×𝑁 with indices 𝑖 = 0, 1, 2, . . . ,𝑀−1 , 𝑗 = 0, 1, 2, . . . , 𝑁−1,

we let the spacial step be one pixel, then, 𝑥1𝑖 = 𝑖, 𝑥2𝑗 = 𝑗, and 𝜑𝑖,𝑗 = 𝜑 (𝑥1𝑖, 𝑥2𝑗).

For the time-wise discretization, we let the time step be 𝜏 , then the time at step 𝑘 is

𝑡𝑘 = 𝑘𝜏, (𝑘 = 0, 1, . . .) .
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The gradient with regards to first order partial derivatives can be approximated

with the first order forward finite difference, backward finite difference or central finite

difference below

∇+𝜑𝑖,𝑗 =

⎡⎣ 𝜕+𝑥𝑖𝜑𝑖,𝑗

𝜕+𝑥𝑖𝜑𝑖,𝑗

⎤⎦ =

⎡⎣ 𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

⎤⎦ , (2.38)

∇−𝜑𝑖,𝑗 =

⎡⎣ 𝜕−𝑥 𝜑𝑖,𝑗

𝜕−𝑥𝑖𝜑𝑖,𝑗

⎤⎦ =

⎡⎣ 𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗

𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1

⎤⎦ , (2.39)

∇0𝜑𝑖,𝑗 =

⎡⎣ 𝜕0𝑥1𝜑𝑖,𝑗

𝜕0𝑥2𝜑𝑖,𝑗

⎤⎦ =

⎡⎣ 1
2

(𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗)

1
2

(𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1)

⎤⎦ . (2.40)

Similarly, the divergence ∇·𝑤⃗ may have three forms of discretization. For example,

its backward finite difference is

∇ · 𝑤⃗𝑖,𝑗 = 𝜕−𝑥1𝑤li,𝑗 + 𝜕−𝑥2𝑤2𝑖,𝑗 = 𝑤1𝑖,𝑗 − 𝑤1𝑖−1,𝑗 + 𝑤2𝑖,𝑗 − 𝑤2𝑖,𝑗−1. (2.41)

The Laplacian is a parabolic operator. It should be discretized via the forward

and backward finite differences, or the central finite difference at half point as

∆𝜑𝑖,𝑗 = ∇− ·
(︀
∇+𝜑𝑖,𝑗

)︀
= 𝜑𝑖+1,𝑗 + 𝜑𝑖−1,𝑗 + 𝜑𝑖,𝑗+1 + 𝜑𝑖,𝑗−1 − 4𝜑𝑖,𝑗. (2.42)

Curvature is a nonlinear parabolic operator,

𝜅𝑖,𝑗 = ∇− ·
(︂

∇+𝜑𝑖,𝑗
|∇+𝜑𝑖,𝑗|

)︂
= 𝑐1𝑖,𝑗𝜑𝑖+1,𝑗+𝑐2𝑖,𝑗𝜑𝑖−1,𝑗+𝑐3𝑖,𝑗𝜑𝑖,𝑗+1+𝑐4𝑖,𝑗𝜑𝑖,𝑗−1+𝑐𝑖,𝑗𝜑𝑖,𝑗, (2.43)

where,

𝑐𝑖,𝑗 = 𝑐1𝑖,𝑗 + 𝑐2𝑖,𝑗 + 𝑐3𝑖,𝑗 + 𝑐4𝑖,𝑗, (2.44)
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𝑐1𝑖,𝑗 =
1√︁

(𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗)
2 + (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗)

2 + 𝜀
, (2.45)

𝑐2𝑖,𝑗 =
1√︁

(𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗)
2 + (𝜑𝑖−1,𝑗+1 − 𝜑𝑖−1,𝑗)

2 + 𝜀
, (2.46)

𝑐3𝑖,𝑗 =
1√︁

(𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗)
2 + (𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗)

2 + 𝜀
, (2.47)

𝑐4𝑖,𝑗 =
1√︁

(𝜑𝑖+1,𝑗−1 − 𝜑𝑖,𝑗−1)
2 + (𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1)

2 + 𝜀
. (2.48)

The geodesic curvature is usually discretized via the central finite difference at

half point

𝑘𝑔𝑖,𝑗 = 𝜕0𝑥1

(︁
𝑎𝑖+ 1

2
,𝑗𝜕

0
𝑥1
𝜑𝑖+ 1

2
,𝑗

)︁
+ 𝜕0𝑥2

(︁
𝑎𝑖,𝑗+ 1

2
𝜕0𝑥1𝜑𝑖,𝑗+ 1

2

)︁
= 𝑐1𝑖,𝑗𝜑𝑖+1,𝑗 + 𝑐2𝑖,𝑗𝜑𝑖−1,𝑗 + 𝑐3𝑖,𝑗𝜑𝑖,𝑗+1 + 𝑐4𝑖,𝑗𝜑𝑖,𝑗−1 + 𝑐𝑖,𝑗𝜑𝑖,𝑗

(2.49)

where,

𝑐𝑖,𝑗 = 𝑐1𝑖,𝑗 + 𝑐2𝑖,𝑗 + 𝑐3𝑖,𝑗 + 𝑐4𝑖,𝑗, (2.50)

𝑐1𝑖,𝑗 = 𝑎𝑖+ 1
2
,𝑗 =

1

2
(𝑎𝑖+1,𝑗 + 𝑎𝑖,𝑗) , 𝑐2𝑖,𝑗 = 𝑎𝑖−1,𝑗 =

1

2
(𝑎𝑖−1,𝑗 + 𝑎𝑖,𝑗) , (2.51)

𝑐3𝑖,𝑗 = 𝑎𝑖,𝑗+ 1
2

=
1

2
(𝑎𝑖,𝑗+1 + 𝑎𝑖,𝑗) , 𝑐4𝑖,𝑗 = 𝑎𝑖,𝑗− 1

2
=

1

2
(𝑎𝑖,𝑗−1 + 𝑎𝑖,𝑗) , (2.52)

and 𝜅𝑔 = ∇ ·
(︁
𝑔 ∇𝜑
|∇𝜑|

)︁
= ∇ · (𝑎∇𝜑), 𝑎 = 𝑔

|∇𝜑| .

For the Hamilton-Jacobi equations, for example (2.29), that include both hyper-

bolic and parabolic components, choosing the correct finite difference schemes is very

important to numerical stability. Usually, the up-wind scheme is used on the hyper-
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bolic parts and the central finite difference method is used on the parabolic parts.

For example, the terms in (2.29) can be approximated as

∇𝑔𝑖,𝑗 · ∇𝜑𝑖,𝑗 = max (𝜕𝑥1𝑔𝑖,𝑗, 0) 𝜕+𝑥 𝜑𝑖,𝑗 + min (𝜕𝑥1𝑔𝑖,𝑗, 0) 𝜕−𝑥2𝜑𝑖,𝑗

+ max (𝜕𝑥1𝑔𝑖,𝑗, 0) 𝜕+𝑥2𝜑𝑖,𝑗 + min (𝜕𝑥2𝑔𝑖,𝑗, 0) 𝜕−𝑥2𝜑𝑖,𝑗,
(2.53)

𝛼𝑖,𝑗 |∇𝜑𝑖,𝑗| = min (𝛼𝑖,𝑗, 0)

⎯⎸⎸⎸⎷max
(︀
𝜕−𝑥1𝜑𝑖,𝑗, 0

)︀2
+ min

(︀(︀
𝜕+𝑥1𝜑𝑖,𝑗, 0

)︀)︀2
+ max

(︀
𝜕−𝑥2𝜑𝑖,𝑗, 0

)︀2
+ min

(︀(︀
𝜕+𝑥2𝜑𝑖,𝑗, 0

)︀)︀2
+ max (𝛼𝑖,𝑗, 0)

⎯⎸⎸⎸⎷min
(︀
𝜕−𝑥1𝜑𝑖,𝑗, 0

)︀2
+ max

(︀(︀
𝜕+𝑥1𝜑𝑖,𝑗, 0

)︀)︀2
+ min

(︀
𝜕−𝑥2𝜑𝑖,𝑗, 0

)︀2
+ max

(︀(︀
𝜕+𝑥2𝜑𝑖,𝑗, 0

)︀)︀2
. (2.54)

Overall, the discretization of curvature, geodesic curvature, and hyperbolic terms

are very complicated. One of the alternatives to avoid this process is to introduce

splitting variables and transform the original problem into a series of simpler sub-

problems of optimization. Next, we present the split-Bregman algorithm.

2.5.2 The split-Bregman algorithm

The split-Bregman algorithm was proposed by Goldstein and Osher [43] to solve

the classic total variation (TV) model [50] for image restoration. The formulation for

the TV model is

min
𝑢
𝐸(𝑢) =

1

2

∫︁
Ω

(𝑢− 𝑓)2𝑑𝑥+ 𝛾

∫︁
Ω

|∇𝑢|𝑑𝑥, (2.55)

where, 𝑓 is an observed image with noises, 𝑢 is the restored clear image, and 𝛾 is a

penalty parameter. Its Euler-Lagrange equation is

⎧⎨⎩ 𝑢− 𝑓 − 𝛾∇ ·
(︁

∇𝑢
|∇𝑢|

)︁
= 0 𝑥 ∈ Ω

∇𝑢 · 𝑛⃗ = 0 𝑥 ∈ 𝜕Ω
, (2.56)

which, as we can see, includes curvature. The discretization of the curvature is a
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source of complications. To bypass the curvature term, we can introduce an auxiliary

variable 𝑤⃗ = ∇𝑢 to transform (2.55) into the following minimization problem with

an added constraint

⎧⎨⎩ min𝐸(𝑢, 𝑤⃗) = 1
2

∫︀
Ω

(𝑢− 𝑓)2𝑑𝑥+ 𝛾
∫︀
Ω
|𝑤⃗|𝑑𝑥

s.t. 𝑤⃗ = ∇𝑢
. (2.57)

The split-Bregman algorithm for alternating optimization can then be derived as

(︀
𝑢𝑘+1, 𝑤⃗𝑘+1

)︀
= arg min

𝑢,𝑤̄
𝐸
(︁
𝑢, 𝑤⃗, 𝑏⃗𝑘

)︁
=

⎧⎨⎩
1
2

∫︀
Ω

(𝑢− 𝑓)2𝑑𝑥+ 𝛾
∫︀
Ω
|𝑤⃗|𝑑𝑥

+𝜇
2

∫︀
Ω

⃒⃒⃒
𝑤⃗ −∇𝑢− 𝑏⃗𝑘

⃒⃒⃒2
𝑑𝑥

⎫⎬⎭ , (2.58)

𝑏⃗𝑘+1 = 𝑏⃗𝑘 −
(︀
𝑤⃗𝑘+1 −∇𝑢𝑘+1

)︀
, (2.59)

In each iteration, the original problem is decomposed into two simpler sub-problems,

i. e., for 𝑘 = 0, 1, 2, . . . , the first minimization problem on 𝑢 is

𝑢𝑘+1 = arg min
𝑢
𝐸
(︁
𝑢, 𝑤⃗𝑘, 𝑏⃗𝑘

)︁
=

1

2

∫︁
Ω

(𝑢− 𝑓)2𝑑𝑥+
𝜇

2

∫︁
Ω

⃒⃒⃒
𝑤⃗ −∇𝑢− 𝑏⃗𝑘

⃒⃒⃒2
𝑑𝑥. (2.60)

The Euler-Lagrange equation for 𝑢 can be obtained via standard variational meth-

ods as

⎧⎨⎩ 𝑢− 𝑓 + 𝜇∇ ·
(︁
𝑤⃗𝑘 −∇𝑢− 𝑏⃗𝑘

)︁
𝑥 ∈ Ω(︁

𝑤⃗𝑘 −∇𝑢− 𝑏⃗𝑘
)︁
· 𝑛⃗ = 0 𝑥 ∈ 𝜕Ω

(2.61)

Let 𝑓𝑘 = 𝑓 + 𝜇∇ ·
(︁
𝑏𝑘 − 𝑤⃗𝑘

)︁
, it then becomes a simple Helmholtz equation as

𝑢− 𝑓𝑘 − 𝜇∆𝑢 = 0, (2.62)

which has a simple discrete form
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𝑢𝑖,𝑗 − 𝑓𝑘𝑖,𝑗 − 𝜇 (𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗) = 0. (2.63)

Its Gauss-Seidel iterative algorithm is

𝑢𝑘+1,𝑙+1
𝑖,𝑗 =

𝑓𝑘𝑖,𝑗 + 𝜇
(︁
𝑢𝑘+1,𝑙
𝑖+1,𝑗 + 𝑢𝑘+1,𝑙+1

𝑖−1,𝑗 + 𝑢𝑘+1,𝑙
𝑖,𝑗+1 + 𝑢𝑘+1,𝑙+1

𝑖,𝑗−1

)︁
(1 + 4𝜇)

, 𝑢𝑘+1,0
𝑖,𝑗 = 𝑢𝑘𝑖,𝑗, (𝑙 = 0, 1, 2, . . . ),

(2.64)

On the other hand, the sub-problem on 𝑤⃗ is

𝑤⃗𝑘+1 = arg min
𝑤⃗
𝐸
(︁
𝑢𝑘+1, 𝑤⃗, 𝑏⃗𝑘

)︁
= 𝛾

∫︁
Ω

|𝑤⃗|𝑑𝑥+
𝜇

2

∫︁
Ω

⃒⃒⃒
𝑤⃗ −∇𝑢𝑘+1 − 𝑏⃗𝑘

⃒⃒⃒2
𝑑𝑥. (2.65)

Here, 𝑤⃗ has closed form solution as a generalized soft thresholding formula

𝑤⃗𝑘+1 = max

(︂⃒⃒⃒
∇𝑢𝑘+1 − 𝑏⃗𝑘

⃒⃒⃒
− 𝛾

𝜇
, 0

)︂
∇𝑢𝑘+1 − 𝑏⃗𝑘⃒⃒⃒
∇𝑢𝑘+1 − 𝑏⃗𝑘

⃒⃒⃒ , 0 −→
0

|−→0 |
=

−→
0 , (2.66)

with the discrete formation

𝑤⃗𝑘+1
𝑖,𝑗 = max

(︂⃒⃒⃒
∇+𝑢𝑘+1

𝑖,𝑗 − 𝑏⃗𝑘𝑖,𝑗

⃒⃒⃒
− 𝛾

𝜇
, 0

)︂ ∇+𝑢𝑘+1
𝑖,𝑗 − 𝑏⃗𝑘𝑖,𝑗⃒⃒⃒

∇+𝑢𝑘+1
𝑖,𝑗 − 𝑏⃗𝑘𝑖,𝑗

⃒⃒⃒ . (2.67)

At the end of each iteration, 𝑏⃗ is updated as (2.59)

𝑏⃗𝑘+1
𝑖,𝑗 = 𝑏⃗𝑘𝑖,𝑗 −

(︀
𝑤⃗𝑘+1
𝑖,𝑗 −∇𝑢𝑘+1

𝑖,𝑗

)︀
. (2.68)

The algorithm for the TV model is summarized in Algorithm 1.
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Algorithm 1 The split-Bregman algorithm for the total variation model.
(1) Initialization

setup 𝑢0 = 𝑓, 𝑏⃗0 =
−→
0 , 𝑤⃗0 =

−→
0 , 𝜇,𝐾, 𝑇𝑜𝑙

(2) Iterations
for k=1 to K
calculate 𝑢𝑘+1 with (2.64)
calculate 𝑤⃗𝑘+1 with (2.67)
calculate 𝑏⃗𝑘+1 with (2.68)

if |𝐸(𝑢𝑘+1)−𝐸(𝑢𝑘)|
𝐸(𝑢𝑘)

≤ 𝑇𝑜𝑙, break

endfor

2.6 Summary

Under the variational paradigm, numerous segmentation criteria such as color,

texture, shape priors, topology, etc. can be integrated into a model. Even for models

purely based on edge and region features, many strategies have been investigated in

hopes of speeding up convergence and increasing robustness. In this chapter, only

some classical models and their implementations which are closed related to our work

are presented.

For numerical optimization methods, we only focused on the split-Bregman algo-

rithm. Other fast algorithms such as the dual method, graph cut methods, multi-grid

methods, etc. can also be extended to the problems in the next chapters. However,

the split-Bregman algorithm introduced above already provides a general framework

for solving different optimization problems. This is sufficient for the works of this

thesis.

In the next chapter, we will present an extended Chan-Vese model with novel

landmark constraints and devise its numerical solution.
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Chapter 3

The Extended Chan-Vese Model with

Landmark Constraints

i Chapter 2 introduced some representative variational image segmentation models

using edge and region features. Among them, the Chan-Vese model [14] stands out

as a popular choice due to advantages such as multi-cue integration and adaptive

topology. The original Chan-Vese model [14] was proposed as a reduced piecewise

constant Mumford-Shah model [27] under the variational level set framework [52]. It

is a generic model for two-phase image segmentation using regional image intensities.

The model is most suitable for images with noise and weak boundaries, whereas edge-

based models based on the geodesic active contours model [9] may be used for images

with more complicated interiors and very distinct boundaries. The Chan-Vese model

has been extended for a range of image segmentation problems, e.g. the segmentation

of color [53], texture [54], noise [55], and motion [56] images. It also serves as the

foundation for multi-phase image segmentation models [36].

Much research has been conducted on how to solve the Chan-Vese model efficiently.

In order to preserve the signed distance property of the level set function, a computa-

tionally intensive re-initialization step is originally required during optimization. In

2005, Li et al. [57] proposed a modified Chan-Vese model without re-initialization
iChapter 3 is a reprint of [51]. Permission has been obtained from Elsevier to include the contents

into this thesis.
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via the penalty function method. In 2014, Duan et al. [58] proposed some fast al-

gorithms combining a projection scheme with variable splitting methods such as the

dual method [59], split-Bregman method [43], and augmented Lagrangian method

[44] to achieve higher computation efficiency and accuracy without re-initialization.

The work presented in this chapter extend the Chan-Vese model to the problem of

image segmentation with landmarks. Landmarks are pre-defined points that indicate

meaningful image features. Explicitly defined feature points have long been used in

image analysis, for example, in landmark-based image registration [60]. Inspired by

a series of landmarks-based image registration models [61, 62, 63, 64], we consider a

new kind of segmentation problem with constraints that induce the contour to pass

through some given landmark points. To the best of our knowledge, no variational

models under the level set framework has been designed for this task.

In this chapter, we propose a new variational model for image segmentation based

on the classical Chan-Vese model (CV) for the problem of segmentation with prior

landmarks. The Chan-Vese model with landmarks (CVL) incorporates prior land-

marks information as constraints in the optimization problem. We then investigate

the solvability of the new model and devise a numerical algorithm based on the split-

Bregman algorithm. Some segmentation experiments are conducted on gray value

images in comparison with the original CV model to show the benefits of using land-

marks.

3.1 The Chan-Vese model

Before presenting the CVL model, we first look at the original CV model and its

solution. The CV model [14] and split-Bregman algorithm [43] serve as the foundation

for the CVL model and its efficient implementation. In the simplest case, we consider

the two-phase segmentation of a gray value image using the variational level set

method. For an image 𝑓(𝑥) : Ω → 𝑅, 𝑥 ∈ Ω, the CV model divides it into two regions

Ω1, Ω2 with the respective constant image intensities 𝑢1 and 𝑢2. The image 𝑓(𝑥) can

be approximated as two sections of uniform intensity
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𝑓(𝑥) = 𝑢1𝐻(𝜑(𝑥)) + 𝑢2(1 −𝐻(𝜑(𝑥))), (3.1)

where 𝜑(𝑥) is the signed distance function in (2.10) (2.11) and 𝐻(𝜑(𝑥)) is the Heav-

iside function (2.12). For ease of computation, 𝐻(𝜑(𝑥)) and 𝛿(𝜑(𝑥)) are generally

mollified by a small positive constant 𝜀 [14], such that

𝐻𝜀(𝜑(𝑥)) =
1

2
(1 +

2

𝜋
arctan (

𝜑(𝑥)

𝜀
)) (3.2)

𝛿𝜀(𝜑) =
𝜕𝐻𝜀(𝜑)

𝜕𝜑
=

1

𝜋

𝜀

𝜑2 + 𝜀2
(3.3)

Incorporating the regularization term, the Chan-Vese model for image segmenta-

tion can be formulated as the following optimization problem,

min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+ 𝛾

∫︁
Ω

|∇𝐻𝜀(𝜑)|𝑑𝑥

𝑠.𝑡.|∇𝜑| = 1

(3.4)

where 𝛼1, 𝛼2 are penalty parameters for the data terms, and 𝛾 is a penalty param-

eter for the regularizer. Note that the last r.h.s. term regularizes the length of the

boundary. By using the standard variational method and gradient descent [18], we

can obtain the formulas for the estimation of 𝑢1 and 𝑢2 as

𝑢1 =

∫︀
Ω
𝑓(𝑥)𝐻𝜀(𝜑(𝑥))𝑑𝑥∫︀
Ω
𝐻𝜀(𝜑(𝑥))𝑑𝑥

, (3.5)

𝑢2 =

∫︀
Ω
𝑓(𝑥)(1 −𝐻𝜀(𝜑(𝑥)))𝑑𝑥∫︀
Ω

(1 −𝐻𝜀(𝜑(𝑥)))𝑑𝑥
, (3.6)

and the evolution equation of 𝜑(𝑥) via gradient descent can be derived as the following

dynamic equation
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕𝜑(𝑥,𝑡)
𝜕𝑡

= (∇ · ( ∇𝜑(𝑥,𝑡)
|∇𝜑(𝑥,𝑡)|) −𝑄(𝑥, 𝑢1, 𝑢2))𝛿𝜀(𝜑(𝑥, 𝑡)) 𝑡 > 0, 𝑥 ∈ Ω

𝜕𝜑(𝑥,𝑡)
𝜕𝑛⃗

= 0 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω

𝜑(𝑥, 0) = 𝜑0(𝑥) 𝑡 = 0, 𝑥 ∈ Ω ∪ 𝜕Ω

, (3.7)

where 𝑄(𝑥, 𝑢1, 𝑢2) = 𝛼1(𝑓(𝑥)− 𝑢1)
2 −𝛼2(𝑓(𝑥)− 𝑢2)

2 for simplicity of representation.

In (3.7), we have not yet enforced the constraint |∇𝜑(𝑥)| = 1. Without the

constraint, 𝜑(𝑥) cannot be preserved as a signed distance function. One approach

is to solve the static Hamilton-Jacobi equation for the constraint via the upwind

difference scheme [33], which is a complicated process. Instead, [14] proposed to solve

the following dynamic PDEs built on (3.7),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜕𝜑(𝑥,𝑡)
𝜕𝑡

+ sin(𝜓(𝑥))(|∇𝜑(𝑥, 𝑡)| − 1) = 0 𝑡 > 0, 𝑥 ∈ Ω

𝜕𝜑(𝑥,𝑡)
𝜕𝑛⃗

= 0 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω

𝜑(𝑥, 0) = 𝜓(𝑥) 𝑡 = 0, 𝑥 ∈ Ω ∪ 𝜕Ω,

(3.8)

via the upwind difference scheme. Here, 𝜓(𝑥) denotes the 𝜑(𝑥) obtained from (3.7).

The new dynamic equations now maintain the constraint in each iteration. However,

the computation can still be simplified further. Solving (3.7) involves the discretiza-

tion of curvature while solving (3.8) calls for specifically the upwind difference scheme.

In [57], the constraint is represented as a penalty term in the energy functional in-

stead. In this work, we choose to use the split-Bregman algorithm [43] with a simple

projection scheme [65].

3.2 The split-Bregman algorithm for the Chan-Vese

model

To address the computational problems arising out of the Chan-Vese model, Duan

et al. [58] designed some fast algorithms based on alternating direction minimization
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techniques. In these algorithms, a projection scheme is implemented per iteration in

place of the complex computation of the Eikonal equation (2.11). The split-Bregman

projection method for the Chan-Vese model as presented in [58] can be represented

as,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑤⃗𝑘+1) =

arg min
𝑢1,𝑢2,𝜑,𝑤⃗:|𝑤⃗|=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐸(𝑢1, 𝑢2, 𝜑, 𝑤⃗) =𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥

+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+ 𝛾

∫︁
Ω

|𝑤⃗|𝛿𝜀(𝜑)𝑑𝑥+
𝜃

2

∫︁
Ω

|𝑤⃗ −∇𝜑− 𝑏⃗𝑘|2𝑑𝑥

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
𝑏⃗𝑘+1 = 𝑏⃗𝑘 + ∇𝜑𝑘+1 − 𝑤⃗𝑘+1

𝑏⃗0 = 0, 𝑤⃗0 = ∇𝜑0,

(3.9)

where, 𝑤⃗ is an auxiliary variable to approximate ∇𝜑 and 𝑏⃗ is the Bregman iterative

parameter. In each iteration, the minimization problem can be decomposed into the

following three sub-problems,

(𝑢𝑘+1
1 , 𝑢𝑘+1

2 ) = arg min
𝑢1,𝑢2

𝐸(𝑢1, 𝑢2, 𝜑
𝑘, 𝑤⃗𝑘), (3.10)

𝜑𝑘+1 = arg min
𝜑

𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑, 𝑤⃗𝑘), (3.11)

𝑤⃗𝑘+1 = arg min
𝑤⃗:|𝑤⃗|=1

𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑤⃗). (3.12)

Using standard variational methods [18], their solutions can be obtained respec-

tively as

𝑢𝑘+1
1 =

∫︀
Ω
𝑓𝐻𝜀(𝜑

𝑘(𝑥))𝑑𝑥∫︀
Ω
𝐻𝜀(𝜑𝑘(𝑥))𝑑𝑥

, (3.13)
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𝑢𝑘+1
2 =

∫︀
Ω
𝑓(1 −𝐻𝜀(𝜑

𝑘(𝑥))𝑑𝑥∫︀
Ω

(1 −𝐻𝜀(𝜑𝑘(𝑥))𝑑𝑥
, (3.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑄(𝑢𝑘+1
2 , 𝑢𝑘+1

2 )𝛿𝜀(𝜑(𝑥)) + 𝛾|𝑤⃗𝑘(𝑥)|𝜕𝛿𝜀(𝜑(𝑥))
𝜕𝜑(𝑥)

𝑥 ∈ Ω

−𝜃(∆𝜑(𝑥) −∇ · 𝑤⃗𝑘(𝑥) + ∇ · 𝑏⃗𝑘(𝑥)) = 0

(𝑤⃗𝑘(𝑥) −∇𝜑(𝑥) − 𝑏⃗𝑘(𝑥)) · 𝑛⃗ = 0 𝑥 ∈ 𝜕Ω

𝜑𝑘+1,0(𝑥) = 𝜑𝑘(𝑥) 𝑥 ∈ Ω ∪ 𝜕Ω ,

(3.15)

⎧⎪⎨⎪⎩𝑤⃗
𝑘+1(𝑥) = max(|∇𝜑𝑘+1(𝑥) + 𝑏⃗𝑘(𝑥)| − 𝛾

𝜃
𝛿𝜀(𝜑

𝑘+1(𝑥)), 0) ∇𝜑𝑘+1(𝑥)+𝑏⃗𝑘(𝑥)

|∇𝜑𝑘+1(𝑥)+𝑏⃗𝑘(𝑥)|𝜀

𝑤⃗𝑘+1(𝑥) = 𝑤⃗𝑘+1(𝑥)
max(1,|𝑤⃗𝑘+1(𝑥)|𝜀) ,

(3.16)

where (3.15) is a typical Euler-Lagrange equation free of curvature calculations,

and (3.16) is a generalized soft thresholding formula in analytical form. The pro-

jection step in (3.16) circumvents the costly re-initialization otherwise required for

the constraint. With the help of auxiliary variables and the projection method, the

computation of the Chan-Vese model is now much simplified. To solve (3.15), we

derive its gradient descent equation and use the first-order finite difference scheme

temporally and spatially to obtain the Gauss-Seidel iterative scheme for 𝜑𝑘+1
𝑖,𝑗 , such

that

𝜑𝑘+1,𝑠+1
𝑖,𝑗 =

⎛⎜⎜⎜⎜⎜⎝
𝜑𝑘+1,𝑠
𝑖,𝑗 − 𝑡𝑄(𝑢𝑘+1

1 , 𝑢𝑘+1
2 )𝛿𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 )

− 𝑡𝛾|𝑤⃗𝑘𝑖,𝑗|
𝜕𝛿𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 )

𝜕𝜑
+ 𝑡𝜃(∇ · 𝑏⃗𝑘𝑖,𝑗 −∇ · 𝑤⃗𝑘𝑖,𝑗)

+ 𝑡𝜃(𝜑𝑘+1,𝑠+1
𝑖−1,𝑗 + 𝜑𝑘+1,𝑠+1

𝑖,𝑗−1 + 𝜑𝑘+1,𝑠
𝑖+1,𝑗 + 𝜑𝑘+1,𝑠

𝑖,𝑗+1 )

⎞⎟⎟⎟⎟⎟⎠
(1 + 4𝑡𝜃)

, 𝜑𝑘+1,0
𝑖,𝑗 = 𝜑𝑘𝑖,𝑗, (3.17)

until |𝐸𝑘+1,𝑠+1−𝐸𝑘+1,𝑠|
𝐸𝑘+1,𝑠 ≤ 𝑇𝑜𝑙. Here, 𝑡 is the time step, the spatial step is 1, 𝑇𝑜𝑙 is the

error tolerance, and 𝐸𝑘+1,𝑠 = 𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1,𝑠, 𝑤⃗𝑘).

Given that (3.9) is a typical local minimization problem, it follows that the final
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solution depends on the initialization conditions 𝜑0(𝑥), the initial level set. By in-

troducing landmark constraints as proposed below, we can guide the segmentation

contour to more meaningful locations despite poor contour initialization.

3.3 The Chan-Vese model with landmark constraints

To ensure that the segmentation contour passes through the given landmarks, we

introduce a new constraint term to the original CV model. Let the landmark points

be 𝑥𝐿 = {𝑥1, 𝑥2, . . . , 𝑥𝐿}, we can define a mask function for the points as

𝜂(𝑥) =

⎧⎪⎨⎪⎩1 𝑖𝑓 𝑥 ∈ 𝑥𝐿

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3.18)

Since the segmentation contour is the zero level set, to guarantee the landmark

points to be on the contour, we should enforce that

𝜑(𝑥) = 0, 𝑖𝑓 𝑥 ∈ 𝑥𝐿. (3.19)

The problem then becomes

min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+ 𝛾

∫︁
Ω

|∇𝐻𝜀(𝜑)|𝑑𝑥

𝑠.𝑡.𝜑(𝑥) = 0, 𝑖𝑓 𝑥 ∈ 𝑥𝐿

|∇𝜑| = 1

.

(3.20)

To incorporate the landmark constraints, we can frame them as an additional

penalty term regulated by the parameter 𝜇 > 0. The problem becomes
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min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+ 𝛾

∫︁
Ω

|∇𝐻𝜀(𝜑)|𝑑𝑥+
𝜇

2

∫︁
Ω

𝜂(𝑥)𝜑2𝑑𝑥

𝑠.𝑡.|∇𝜑| = 1

,

(3.21)

where 𝜂(𝑥) is defined in (3.18).

Here we briefly show that the new functional optimization problem (3.21) is equiv-

alent to (3.20). For 𝜇 > 0, we can suppose that (𝑢1(𝜇), 𝑢2(𝜇), 𝜑(𝜇)) is the unique

solution to the problem (3.19). For (3.21) we can use the split-Bregman approach

to obtain a sequence to approximate its solution, as detailed in the next section.

By Theorem 17.1 in [66], every limit point (𝑢*1, 𝑢
*
2, 𝜑

*) of the obtained sequence

{(𝑢1(𝜇
𝑘), 𝑢2(𝜇

𝑘), 𝜑(𝜇𝑘)), 𝑘 = 0, 1, 2, . . . } will be the solution of (3.20). Therefore,

a solution of problem (3.20) can be obtained by solving (3.21) for a large positive

number 𝜇 > 0.

During iteration, the landmark constraints will cause the segmentation contour to

shift towards the landmarks. Since 𝜑(𝑥) is maintained as a signed distance function,

the value of 𝜑(𝑥) is the distance to the segmentation contour. Therefore, setting 𝜑(𝑥)

to 0 for a landmark point entails that, relative to the landmark, 𝜑(𝑥) > 0 for points

closer to the contour and 𝜑(𝑥) < 0 for points farther away. This eventually causes

the landmarks to connect to the contour.

The convergence of the model can be shown by analyzing the evolution equation

of 𝜑(𝑥, 𝑡) via gradient descent method,

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= (∇ · (

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
) −𝑄(𝑥, 𝑢1, 𝑢2))𝛿𝜀(𝜑(𝑥, 𝑡)) − 𝜇𝜂(𝑥)𝜑(𝑥, 𝑡). (3.22)

At normal points where 𝜇𝜂(𝑥)𝜑(𝑥, 𝑡) = 0, the evolution equation is

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= (∇ · (

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
) −𝑄(𝑥, 𝑢1, 𝑢2))𝛿𝜀(𝜑(𝑥, 𝑡)), (3.23)
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which is the same as the equation for the original CV model. At the landmark points,

𝜇𝜂(𝑥)𝜑(𝑥, 𝑡) ̸= 0, and the following equation holds

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= ∇ · (

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
)𝛿𝜀(𝜑(𝑥, 𝑡)) − 𝜇𝜂(𝑥)𝜑(𝑥, 𝑡). (3.24)

If 𝜑(𝑥, 𝑡) > 0, the penalty term will cause 𝜑(𝑥, 𝑡) to decrease, and if 𝜑(𝑥, 𝑡) < 0,

the penalty term will cause 𝜑(𝑥, 𝑡) to increase. At points where 𝜂(𝑥) = 0, a more

simplified evolution equation applies such that

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= ∇ · (

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
)𝛿𝜀(𝜑(𝑥, 𝑡)). (3.25)

The above is a typical curve interpolation equation of an implicit level set function

via curvature diffusion. Therefore, the additional constraint term does not affect the

convergence of the model as compared to the original CV. Having proven that the

new model (3.21) converges, we will now develop an algorithm to solve it iteratively.

3.4 The split-Bregman algorithm for the Chan-Vese

model with landmark constraints

To use the split-Bregman algorithm for the CVL model, we introduce an auxiliary

variable 𝑤⃗(𝑥) = ∇𝜑(𝑥) and the Bregman iterative parameter 𝑏⃗(𝑥). (3.21) can be

turned into the following alternating iterative minimization problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑤⃗𝑘+1) =

arg min
𝑢1,𝑢2,𝜑,𝑤:|𝑤⃗|=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐸(𝑢1, 𝑢2, 𝜑, 𝑤⃗) =𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥

+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+ 𝛾

∫︁
Ω

|𝑤⃗|𝛿𝜀(𝜑)𝑑𝑥+
𝜇

2

∫︁
Ω

𝜂(𝑥)𝜑2𝑑𝑥

+
𝜃

2

∫︁
Ω

|𝑤⃗ −∇𝜑− 𝑏⃗𝑘|2𝑑𝑥

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
𝑏⃗𝑘+1 = 𝑏⃗𝑘 + ∇𝜑𝑘+1 − 𝑤⃗𝑘+1

𝑏⃗0 = 0, 𝑤⃗0 = ∇𝜑0

. (3.26)

In each iteration, we will solve three smaller sub-problems,

(𝑢𝑘+1
1 , 𝑢𝑘+1

2 ) = arg min
𝑢1,𝑢2

𝐸(𝑢1, 𝑢2, 𝜑
𝑘, 𝑤⃗𝑘), (3.27)

𝜑𝑘+1 = arg min
𝜑

𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑, 𝑤⃗𝑘), (3.28)

𝑤⃗𝑘+1 = arg min
𝑤⃗:|𝑤⃗|=1

𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑤⃗). (3.29)

The solutions to (3.27), (3.29) remain the same as (3.13), (3.14), and (3.16), but

the evolution equation of 𝜑(𝑥, 𝑡) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝜑
𝜕𝑡

= −𝑄(𝑢𝑘+1
2 , 𝑢𝑘+1

2 )𝛿𝜀(𝜑) − 𝛾|𝑤⃗𝑘(𝑥)|𝜕𝛿𝜀(𝜑)
𝜕𝜑

− 𝜇𝜂(𝑥)𝜑 𝑡 > 0, 𝑥 ∈ Ω

+𝜃(∆𝜑−∇ · 𝑤⃗𝑘 + ∇ · 𝑏⃗𝑘)

(𝑤⃗𝑘 −∇𝜑− 𝑏⃗𝑘) · 𝑛⃗ = 0 𝑡 ≥ 0, 𝑥 ∈ 𝜕Ω

𝜑𝑘+1,0 = 𝜑𝑘 𝑡 = 0, 𝑥 ∈ Ω ∪ 𝜕Ω.

(3.30)

The new Gauss-Seidel iterative scheme for 𝜑𝑘+1
𝑖,𝑗 can be derived as
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𝜑𝑘+1,𝑠+1
𝑖,𝑗 =

⎛⎜⎜⎜⎜⎜⎝
𝜑𝑘+1,𝑠
𝑖,𝑗 − 𝑡𝑄(𝑢𝑘+1

1 , 𝑢𝑘+1
2 )𝛿𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 )

− 𝑡𝛾|𝑤⃗𝑘𝑖,𝑗|
𝜕𝛿𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 )

𝜕𝜑
+ 𝑡𝜃(∇ · 𝑏⃗𝑘𝑖,𝑗 −∇ · 𝑤⃗𝑘𝑖,𝑗)

+ 𝑡𝜃(𝜑𝑘+1,𝑠
𝑖−1,𝑗 + 𝜑𝑘+1,𝑠

𝑖,𝑗−1 + 𝜑𝑘+1,𝑠
𝑖+1,𝑗 + 𝜑𝑘+1,𝑠

𝑖,𝑗+1 )

⎞⎟⎟⎟⎟⎟⎠
(1 + 𝑡𝜇𝜂𝑖,𝑗 + 4𝑡𝜃)

, 𝜑𝑘+1,0
𝑖,𝑗 = 𝜑𝑘𝑖,𝑗, (3.31)

until |𝐸𝑘+1,𝑠+1−𝐸𝑘+1,𝑠|
𝐸𝑘+1,𝑠 ≤ 𝑇𝑜𝑙. Here 𝑇𝑜𝑙 is the error tolerance, 𝑡 is the time step, the

spatial step is 1, and 𝐸𝑘+1,𝑠 = 𝐸(𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1,𝑠, 𝑤⃗𝑘).

It is not hard to tell by comparing (3.17) and (3.31) that the complexity of solving

the original CV model and the CVL model are the same. The split-Bregman algorithm

for the CVL can be summarized as Algorithm 2.

Algorithm 2 The split-Bregman algorithm for the Chan-Vese model with landmark
constraints.
(1) Initialization

setup penalty parameter 𝛼1, 𝛼2, 𝜃, 𝜇
setup iteration number K and tolerance 𝑇𝑜𝑙
setup timestep t
setup 𝑏⃗0 = 0⃗
read image f, initialize level set function 𝜑0

calculate 𝑤⃗0 = ∇𝜑0

(2) Iterations
for k=1 to K
calculate 𝑢𝑘+1

1 , 𝑢𝑘+1
2 by (3.13),(3.14)

calculate 𝜑𝑘+1 by (3.31)
calculate 𝑤⃗𝑘+1 by (3.16)
calculate 𝑏⃗𝑘+1 according to (3.26)
if |𝐸𝑘+1−𝐸𝑘+1|

𝐸𝑘+1 ≤ 𝑇𝑜𝑙, break
endfor

Compared to the algorithm for the CV model, Algorithm 2 differs only in the

iterative calculation of 𝜑 which has no impact on the convergence properties. The

new penalty parameter 𝜇 balances the landmark constraints with the data terms to

produce optimal results.

To summarize, we have proposed a new model based on the classical Chan-Vese
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model that performs image segmentation based on the pre-existing landmarks and

image data. The new model solves for contours passing through given points in a

computationally efficient way without compromising the convergence of the algorithm.

With explicit information guiding the evolution of contour, the segmentation result

can now depend less on the choice of the initial contour. Furthermore, the contour is

more accurate in the regions marked by landmarks. The experiments below illustrate

these advantages.

3.5 Experimental results

To show the performance of the new model with landmark constraints, we present

some segmentation experiments on gray value two-phase synthetic images, a synthetic

noisy image, and a real-world ultrasound image. The results are compared with those

obtained from the CV model to show the advantages of using landmarks. For the

experiments below, all initial contours and landmarks are selected by hand, though

they may also be generated automatically. The running environment is a PC (Intel

(R) Core (TM) i7-7700 CPU @ 3.60GHz 3.60 GHz; memory: 16.0 GB; code running

environment: Matlab R2017a).

In the following experiments, 𝛼1 and 𝛼2 are set to 1, and 𝑡 is 0.1 throughout for

easy tuning. In both the CV and the CVL model, 𝛾 and 𝜃 are increased for noisy

images in order to subdue the data terms, subsequently reducing the effect of noise

in the data terms. To emphasize the importance of the landmark constraints, both 𝜇

and 𝜃 are set higher to increase the weight of the landmark term while suppressing

the data terms. Finally, the threshold value 𝑇𝑜𝑙 is set so that convergence is reached

after the contour becomes stable.

One advantage of using landmarks is the lowered dependence of the segmentation

result on the choice of the initial level set and the penalty parameters. Since the

CVL model is a local minimization scheme, different setups of the initial contour may

converge to different energy minima. It is sometimes difficult to select the optimal

initialization for the CV model without resorting to a trial and error approach based
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on perceived results. However, with some given landmarks as guidance, bad initial-

ization can now converge to better contours without excessive tuning. This effect is

shown in Fig. 3-1 and 3-2. It is also worth noting that with some automated land-

mark detection methods, using the CVL can make the segmentation pipeline more

automatic.

(a) (b) (c)

(d) (e) (f)

Fig. 3-1: Synthetic image of scissors. (a-c) and (d-f) use two different initial contours.
(c, f) each uses one landmark while (b, e) do not use landmarks. The second initial
contour led to under-segmentation shown in (e), which was fixed by a landmark as
shown in (f). In both experiments, 𝛼1 = 1, 𝛼2 = 1, 𝛾 = 1, 𝜀 = 3, 𝜃 = 20, 𝑡 = .1,
𝑇𝑜𝑙 = 10−6. In (c, f), 𝜇 = 5.

In Fig. 3-1, the second initial contour failed to evolve into the cusp region in the

scissors using the CV model. The object was under-segmented as a result. However,

using the same parameters in CVL along with one landmark corrected the error. This

experiment shows that using landmarks via the CVL can mitigate inaccuracies caused

by bad initial contour selection.
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(a) (b) (c) (d)

Fig. 3-2: Synthetic image of scissors, close-up. (a-d) show the evolution of the
segmentation contour in the first 25 iterations, in chronological order.

A closer look at the beginning of the contour evolution via the CVL in Fig. 3-2

shows a section of contour originating from the landmark, later merging with the

main contour. This shows that the landmark constraint pushes the level set function

out of an undesirable local energy minimum.

(a) (b) (c)

(d) (e) (f)

Fig. 3-3: An image of a wrench with synthetic salt and pepper noise. (a-c) show
segmentation without landmarks, (d-f) show segmentation via CVL with four land-
marks, and (c, f) are close-ups of the critical region. In both rows, 𝛼1 = 1, 𝛼2 = 1,
𝛾 = 500, 𝜀 = 3, 𝜃 = 500, 𝑡 = .1, 𝑇𝑜𝑙 = 10−6. In the second row, 𝜇 = 20.

The same correctional effect can be seen in noisy images, as shown in Fig. 3-3. In

Fig. 3-3 (c), the segmentation error was not due to initialization, but rather to the

noise present. Though better results may be generated with further parameter tuning,

the process may involve excessive human interference and sacrificing the robustness
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of the algorithm. The CVL is able to correct contour in the critical region with four

landmarks, as shown in Fig. 3-3 (d-f).

Placing landmarks over important image features also improves the segmentation

accuracy around those points. For image features that are indistinct or poorly seg-

mented, we can use landmarks to define and improve them. For instance, we can

produce sharper corners in the contour by detecting the corner points and placing

them as landmarks, as demonstrated in Fig. 3-4 and 3-5. Particularly with the CV

model, the corners of the contour are often rounded due to the regularization term

which minimizes the length of the contour. Instead of re-tuning the penalty param-

eters, we can use the landmark constraints to improve the contour description in

specific regions. This is particularly useful for segmentation of critical regions that

demand high accuracy, such as in medical imagery. Another example is establishing

the eye corners in eye shape segmentation, which will likely improve the contours of

the eyes significantly.

Although the CVL model can reduce the effect of initialization and increase seg-

mentation accuracy, it is not without limitations. As shown in Fig. 3-6, the effect

of one landmark is insufficient to inpaint large sections of illusory contours. The

landmark point failed to connect to the contour due to the long distance between

them. Upon increasing the weight of the landmark constraint, the landmark con-

nected again, albeit at the expense of segmentation accuracy due to the data and

regularization terms losing effect. In this case, it appears that forcefully connecting

the landmark point through parameter manipulation is impractical. However, when

we increased the number of landmark points in Fig. 3-6 (d), the landmarks connected

more naturally again. The ideal solution is to introduce an extra elastica term into

the CVL model. The work is presented in the next chapter.

The segmentation problem with landmarks becomes illusory contour inpainting

when landmarks are placed too far from the object boundary. This can be detected

during contour evolution when the values 𝜑(𝑥, 𝑡) for all points adjacent to a landmark

remain above or below 0 for a long time, indicating that the contour failed to pass

through the said landmark. When an isolated landmark is detected, we can either
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(a) (b) (c)

(d) (e)

Fig. 3-4: A star shape. (a) is the original image with initial contour and landmarks,
(b) is the segmentation result without landmarks, and (c) is the result using CVL.
(d, e) are close-ups of (b, c) respectively. In (a-e), 𝛼1 = 1, 𝛼2 = 1, 𝛾 = 1, 𝜀 = 3,
𝜃 = 20, 𝑡 = .1, 𝑇𝑜𝑙 = 10−6. In (c, e), 𝜇 = 300.

(a) (b) (c)

Fig. 3-5: An ultrasound image. (b) is the segmentation result without landmarks,
and (c) is the result using CVL and three landmarks. In (b,c), 𝛼1 = 1, 𝛼2 = 1,
𝛾 = 500, 𝜀 = 3, 𝜃 = 500, 𝑡 = .1, 𝑇𝑜𝑙 = 10−6. In (c), 𝜇 = 500.

abort the segmentation or remove the isolated point from the set of landmarks 𝑥𝐿.

Alternatively, we can use more landmark points in the critical regions. For example

in [49], the landmarks detected initially are clusters rather than points. Methods
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(a) (b)

(c) (d)

Fig. 3-6: A clipped triangle. (b) is the segmentation result without using landmarks,
(c) is the result using CVL and one landmark, and (d) is the result using CVL with
multiple landmarks and more relaxed constraints. In (b-d), 𝛼1 = 1, 𝛼2 = 1, 𝛾 = 1,
𝜀 = 3, 𝑡 = .1. In (b), 𝜃 = 20, 𝜇 = 0, 𝜁 = 10−6. In (c), 𝜃 = 5 * 105, 𝜇 = 5 * 105,
𝜁 = 10−8. In (d), 𝜃 = 4 * 103, 𝜇 = 4 * 103, 𝑇𝑜𝑙 = 10−6.
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that detect a larger number of landmark points can be used alongside of the CVL to

provide the model with more guidance.

3.6 Summary

In this chapter, a modified Chan-Vese model that incorporates landmark informa-

tion as constraints was introduced. The numerical solution for the new model with

the split-Bregman method and the projection method was devised. The mathemat-

ical properties of the solution were analyzed and the convergence of the new model

was proven. Experiments show that the CVL model can effectively use landmarks

to counter bad initialization, refine segmentation contours, as well as define critical

regions in more detail.

One shortcoming of the proposed model is that it cannot handle contour inpainting

problems. This issue is addressed in the next chapter by incorporating the elastica

term. Another point worth mentioning is that the Chan-Vese model is a relatively

simple model designed for region-based two-phase image segmentation. In case of non-

uniform object interiors or other complications, we may choose alternative variational

models such as multi-phase models or contour-based models [13, 9] over the Chan-Vese

model. For future works, the proposed landmark constraints can be incorporated into

other models as well. Additionally, deep learning models can be used to automatically

generate landmarks such as in [49].
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Chapter 4

The Extended Chan-Vese Model with

Landmark Constraints and Elastica

iIn the previous chapter, the CVL model was proposed for landmark-guided image

segmentation. The model can circumvent the effect of bad initialization as well as

improve the segmentation accuracy in critical regions. However, since the CVL model

contains the total variation of the Heaviside function, the length of the contour is reg-

ularized and formation of large sections of illusory contours is generally discouraged.

As a results, landmark points may fail to connect to the segmentation contour when

they are too far away. To address this issue, we propose the Chan-Vese model with

landmark constraints and elastica.

The elastica regularizers proposed in the 1990s in depth segmentation [68] have

proved successful in many image processing problems, such as the inpainting of larger

broken images [69], restoration of images with smooth components [70, 71], and image

segmentation with larger damaged areas or occlusions [72, 73, 74]. In [72], Zhu et al.

propose a modified Chan-Vese model with elastica (CVE), combining the classic CV

model and the elastica regularizer to interpolate segmentation curves. Since the curve

interpolation relied purely on the penalty parameters, however, it was difficult for the
iChapter 4 only contains the parts of [67] that the author contributed to, as well as novel works

by the author that are currently unpublished. Permission has been obtained from all co-authors to
include the section of work from [67] contained in this chapter. The same contents will not be used
in any other thesis.
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inpainted curve to pass through desired regions. This control can be achieved with

guidance from landmarks. Here, we propose the Chan-Vese model with landmark

constraints and elastica (CVLE). Different from [72] which uses a piecewise constant

binary label function, the CVLE models the evolution of the contour which makes use

of geometric quantities such as the gradient exactly. Therefore, it uses a Lipschitz

smooth level set function defined as a signed distance function, same as the CVL.

Again, to solve the new model, we use the split-Bregman method [43] to divide

the original problem into simpler sub-problems and optimize them separately and

alternatingly. The sub-problems can be solved with the Gauss-Seidel iterative scheme

and generalized soft thresholding formula with projection method [58].

In this chapter, we first introduce the Euler’s elastica and the Chan-Vese model

with elastica. Next, we propose the Chan-Vese model with landmark constraints and

elastica. The numerical algorithm is then devised using the split-Bregman method

and a projection scheme. Finally, we show the performance of the CVLE model in

contour inpainting problems and compare its performance with the CVL.

4.1 The Chan-Vese model with elastica

The Euler’s elastica [75] is a functional proposed by Leohnard Euler in 1744 to

model deflections in an elastic rod. The form of the functional is

𝐸 =

∫︁
𝐶

(𝑎+ 𝑏𝑘2)𝑑𝑠, (4.1)

where 𝐶 is the length of the rod, 𝑑𝑠 is the differential element along the rod, and 𝑎, 𝑏

are parameters.

In 1990s, [76] extended the classical Mumford-Shah model [27] to address the

problems of depth image segmentation and illusory contour inpainting and proposed

the Nitzberg, Mumford and Shiota (NMS) model,

min
𝐶,𝑢

𝐸(𝐶, 𝑢) = 𝛼

∫︁
Ω

(𝑢− 𝑓)2𝑑𝑥+ 𝛽

∫︁
Ω/𝐶

|∇𝑢|2𝑑𝑥+

∫︁
𝐶

(𝑎+ 𝑏𝑘2)𝑑𝑠. (4.2)
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The model is designed based on the continuation principle of Kanisza where the

minimum curvature hypothetically leads to good curve interpolations. Drawing from

the same idea, [69] combined the classical total variation model [50] with the Euler’s

elastica to inpaint images with large areas of damage, proposing the second order

model below

min
𝑢
𝐸(𝑢) =

∫︁
Ω/𝐷

(𝑢− 𝑓)2𝑑𝑥+

∫︁
𝐷

(𝑎+ 𝑏(∇ · (
∇𝑢
|∇𝑢|

))2)𝑑𝑥, (4.3)

where 𝐷 is the damaged area.

Under the variational level set framework, [73, 74, 77] are some examples of in-

painting or interpolation of illusory contours using the Euler’s elastica. Notably, [72]

proposed the Chan-Vese model with elastica (CVE) below

min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻(𝜑)𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2 (1 −𝐻(𝜑))𝑑𝑥

+

∫︁
Ω

(𝑎+ 𝑏(∇ · (
∇𝐻(𝜑)

|∇𝐻(𝜑)|
))2|∇𝐻(𝜑)|𝑑𝑥

(4.4)

where 𝜑 is the signed distance function (2.10) and 𝐻(𝜑) is the Heaviside function

(2.12). Since 𝐻(𝜑) is a binary function and ∇ · ( ∇𝜑𝛿(𝜑)
|∇𝜑|𝛿(𝜑)) = ∇ · ( ∇𝜑

|∇𝜑|) = 𝑘, [72]

simplified (4.4) as

min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝜑𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 − 𝜑)𝑑𝑥

+

∫︁
Ω

(𝑎+ 𝑏𝑘2)|∇𝜑|𝑑𝑥,
(4.5)

with the additional constraint 𝜑 ∈ [0, 1].

65



4.2 The Chan-Vese model with landmark constraints

and elastica

Combining the CVL proposed in chapter 3 (3.21) and the CVE (4.4), we propose

the CVLE,

min
𝑢1,𝑢2,𝜑

𝐸(𝑢1, 𝑢2, 𝜑) = 𝛼1

∫︁
Ω

(𝑓 − 𝑢1)
2𝐻𝜀(𝜑)𝑑𝑥+ 𝛼2

∫︁
Ω

(𝑓 − 𝑢2)
2(1 −𝐻𝜀(𝜑))𝑑𝑥

+
𝜇

2

∫︁
Ω

𝜂(𝑥)𝜑2𝑑𝑥

+ 𝛾

∫︁
Ω

(𝑎+ 𝑏(∇ · (
∇𝜑
|∇𝜑|

))2)|∇𝐻𝜀(𝜑)|𝑑𝑥

𝑠.𝑡. |∇𝜑| = 1

, (4.6)

where 𝜂 is the mask function (3.18). With the landmark constraints as guidance

and the elastica term to facilitate contour interpolation, the CVLE can now tackle

illusory contour inpainting problems. However, the curvature term still causes com-

plications in the optimization. We will use the split-Bregman method to circumvent

the calculation of curvature.

4.3 The split-Bregman algorithm for the Chan-Vese

model with landmark constraints and elastica

To simplify the implementation of the CVLE model, we introduce auxiliary vari-

ables 𝑝, 𝑚⃗, 𝑛⃗, 𝑞, where

𝑝 = ∇𝜑, (4.7)

𝑚⃗ =
𝑝

|𝑝|
, (4.8)

𝑞 = ∇ · 𝑛⃗. (4.9)

Considering that |𝑚⃗ ≤ 1|, (4.8) can be replaced by a more relaxed set of con-
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straints, |𝑝| − 𝑝 · 𝑚⃗ ≥ 0 and |𝑚⃗ ≤ 1| [27]. Since 𝑝 = ∇𝜑, the Eikonal equation

|∇𝜑| = 1 can be rewritten as |𝑝| = 1. Additionally, we can introduce a variable

𝑛⃗ = 𝑚⃗ [27] for further splitting. Finally, the constraints (4.7), (4.8), (4.9) become

𝑝 = ∇𝜑, (4.10)

|𝑝| − 𝑝𝑚⃗ = 0, |𝑝| = 1, (4.11)

𝑛⃗ = 𝑚⃗, |𝑚⃗| ≤ 1, (4.12)

𝑞 = ∇ · 𝑛⃗. (4.13)

Next, to design the split-Bregman algorithm for the problem, we introduce the

Bregman iterators 𝑏1, 𝑏2, 𝑏3, 𝑏4 and the penalty parameters 𝛾1, 𝛾2, 𝛾3, 𝛾4 and reformu-

late (4.6) as the following

𝐸 (𝑢1, 𝑢2, 𝜑, 𝑝, 𝑛⃗, 𝑚⃗) =

∫︁
Ω

𝑄 (𝑥, 𝑢1, 𝑢2)𝐻 (𝜑) 𝑑𝑥

+ 𝛾

∫︁
Ω

(︀
𝑎+ 𝑏𝑞2

)︀
|𝑝|𝛿𝜀 (𝜑) 𝑑𝑥+

𝜇

2

∫︁
Ω

𝜂𝜑2𝑑𝑥

+

∫︁
Ω

𝜆1 (|𝑝| − 𝑝 · 𝑚⃗) 𝑑𝑥+ 𝛾1

∫︁
Ω

(|𝑝| − 𝑝 · 𝑚⃗) 𝑑𝑥

+
𝛾2
2

∫︁
Ω

⃒⃒⃒
𝑝−∇𝜑− 𝑏⃗𝑘2

⃒⃒⃒2
𝑑𝑥

+
𝛾3
2

∫︁
Ω

⃒⃒⃒
𝑛⃗− 𝑚⃗− 𝑏⃗𝑘3

⃒⃒⃒2
𝑑𝑥

+
𝛾4
2

∫︁
Ω

(︀
𝑞 −∇ · 𝑛⃗− 𝑏𝑘4

)︀2
𝑑𝑥+ 𝛿𝑅(𝑚⃗)

, (4.14)

where 𝑄(𝑢1, 𝑢2) = 𝛼1(𝑓(𝑥) − 𝑢1)
2 − 𝛼2(𝑓(𝑥) − 𝑢2)

2 for simplicity, |𝑝| = 1 and 𝛿ℛ(𝑚⃗)

is the characteristic function on the convex set ℛ = {𝑚 ∈ 𝐿2 (Ω) : |𝑚| ≤ 1a.e. in Ω},

given by

𝛿ℛ(𝑚⃗) =

⎧⎨⎩ 0 if 𝑚⃗ ∈ ℛ

+∞ otherwise
. (4.15)

The Bregman iterators are updated per iteration 𝑘 = 0, 1, 2...𝐾 as
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜆
(𝑘+1)
1 = 𝜆𝑘1 + 𝛾1

(︀⃒⃒
𝑝𝑘+1

⃒⃒
− 𝑝𝑘+1 · 𝑚⃗𝑘+1

)︀
𝑏⃗𝑘+1
2 = 𝑏⃗𝑘2 + ∇𝜑𝑘+1 − 𝑝𝑘+1

𝑏⃗𝑘+1
3 = 𝑏⃗𝑘3 + 𝑚⃗𝑘+1 − 𝑛⃗𝑘+1

𝑏𝑘+1
4 = 𝑏𝑘4 + ∇ · 𝑛⃗𝑘+1 − 𝑞𝑘+1

. (4.16)

The original minimization problem can be split into the following sub-problems,

𝑢𝑘+1
1 = arg min

𝑢1

𝐸
(︀
𝑢1, 𝑢

𝑘
2, 𝜑

𝑘, 𝑝𝑘, 𝑛⃗𝑘, 𝑚⃗𝑘, 𝑞𝑘
)︀
, (4.17)

𝑢𝑘+1
2 = arg min

𝑢2

𝐸
(︀
𝑢𝑘+1
1 , 𝑢2, 𝜑

𝑘, 𝑝𝑘, 𝑛⃗𝑘, 𝑚⃗𝑘, 𝑞𝑘
)︀
, (4.18)

𝜑𝑘+1 = arg min
𝜑

𝐸
(︀
𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑, 𝑝𝑘, 𝑛⃗𝑘, 𝑚⃗𝑘, 𝑞𝑘
)︀
, (4.19)

𝑝𝑘+1 = arg min
𝑝

𝐸
(︀
𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑝, 𝑛⃗𝑘, 𝑚⃗𝑘, 𝑞𝑘
)︀
, (4.20)

𝑛⃗𝑘+1 = arg min
𝑛⃗

𝐸
(︀
𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑝𝑘+1, 𝑛⃗, 𝑚⃗𝑘, 𝑞𝑘
)︀
, (4.21)

𝑚⃗𝑘+1 = arg min
𝑚⃗

𝐸
(︀
𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑝𝑘+1, 𝑛⃗𝑘+1, 𝑚⃗, 𝑞𝑘
)︀
, (4.22)

𝑞𝑘+1 = arg min
𝑞

𝐸
(︀
𝑢𝑘+1
1 , 𝑢𝑘+1

2 , 𝜑𝑘+1, 𝑝𝑘+1, 𝑛⃗𝑘+1, 𝑚⃗𝑘+1, 𝑞
)︀
. (4.23)

The solutions to the sub-problems are presented below. Using standard variational

methods, we solve (4.17) and (4.18) respectively as

𝑢𝑘+1
1 =

∫︀
Ω
𝑓 (𝑥)𝐻

(︀
𝜑𝑘 (𝑥)

)︀
𝑑𝑥∫︀

Ω
𝐻 (𝜑𝑘 (𝑥)) 𝑑𝑥

, (4.24)

𝑢𝑘+1
2 =

∫︀
Ω
𝑓 (𝑥)

(︀
1 −𝐻

(︀
𝜑𝑘 (𝑥)

)︀)︀
𝑑𝑥∫︀

Ω
(1 −𝐻 (𝜑𝑘 (𝑥))) 𝑑𝑥

. (4.25)

For the sub-problem of 𝜑 in (4.19), the Euler-Lagrange equations is

⎧⎨⎩𝐹
𝑘+1 + 𝜇𝜂𝜑𝑘+1 − 𝛾2∆𝜑

𝑘+1 = 0 𝑥 ∈ Ω(︁
∇𝜑+ 𝑏⃗𝑘2 − 𝑝𝑘

)︁
· 𝑁⃗ = 0

. (4.26)
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where 𝐹 𝑘+1 = 𝑄𝑘+1𝛿𝜀
(︀
𝜑𝑘
)︀

+ 𝛾(𝑎+ 𝑏(𝑞𝑘)2
)︀ ⃒⃒
𝑝𝑘
⃒⃒
𝛿′𝜀
(︀
𝜑𝑘
)︀

+ 𝛾2∇ · 𝑝𝑘 − 𝛾2∇ · 𝑏⃗𝑘2 = 0.

To solve (4.20), we can derive 𝑝𝑘+1 via a generalized soft thresholding formula and

projection formula,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴⃗𝑘+1 = ∇𝜑𝑘+1 + 𝑏⃗𝑘2 +

(︀
𝜆𝑘1 + 𝛾1

)︀
𝑚⃗𝑘

𝛾2

𝐵𝑘+1 = 𝛾
(︁
𝑎+ 𝑏

(︀
𝑞𝑘
)︀2)︁

𝛿𝜀
(︀
𝜑𝑘
)︀

⃗̃𝑝
𝑘+1

= max
(︂⃒⃒⃒
𝐴⃗𝑘+1

⃒⃒⃒
− 𝜆𝑘1 + 𝛾1 +𝐵𝑘+1

𝛾2
, 0

)︂
𝐴⃗𝑘+1⃒⃒⃒

𝐴⃗𝑘+1

⃒⃒⃒
+ 10−6

𝑝𝑘+1 =
⃗̃𝑝
𝑘+1⃒⃒⃒
⃗̃𝑝
𝑘+1
⃒⃒⃒ , 0⃒⃒⃒⃗⃗

0
⃒⃒⃒ = 0⃗

. (4.27)

For (4.21), the Euler-Lagrange equations on 𝑛⃗ is

𝛾3𝑛⃗− 𝛾4∇(∇ · 𝑛⃗) = 𝛾3

(︁
𝑚⃗𝑘 + 𝑏⃗3

)︁
+ 𝛾4∇

(︀
𝑏𝑘4 − 𝑞𝑘

)︀
(4.28)

𝑚⃗ in (4.22) can be obtained as an exact solution. Considering the constraint in

(4.12), the formula can be derived as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
̃⃗︀𝑚𝑘+1

= 𝑛⃗𝑘+1 − 𝑏⃗𝑘3 +

(︀
𝜆𝑘1 + 𝛾1

)︀
𝑝𝑘+1

𝛾3

𝑚⃗𝑘+1 =
̃⃗︀𝑚𝑘+1

max
(︁

1, | ̃⃗︀𝑚𝑘+1
|
)︁ . (4.29)

Lastly, 𝑞 in (4.23) also has an analytical solution

2𝑏𝑞𝑘+1
⃒⃒⃒
⃗𝑝𝑘+1

⃒⃒⃒
𝛿𝜀
(︀
𝜑𝑘+1

)︀
+ 𝛾4

(︀
𝑞𝑘+1 −∇ · 𝑛⃗𝑘+1 − 𝑏𝑘4

)︀
= 0. (4.30)

Having formulated the split-Breman algorithm for alternating direction optimiza-

tion, we will now solve each sub-problem numerically. We can discretize the image

domain pixel by pixel with the rows and column numbers as indices. The gradients

can be represented approximately by forward, backward and central finite differences
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∇+𝜑𝑖,𝑗 =

⎡⎣ 𝜕+𝑥1𝜑𝑖,𝑗

𝜕+𝑥2𝜑𝑖,𝑗

⎤⎦ , ∇−𝜑𝑖,𝑗 =

⎡⎣ 𝜕−𝑥1𝜑𝑖,𝑗

𝜕−𝑥2𝜑𝑖,𝑗

⎤⎦ , ∇𝑜𝜑𝑖,𝑗 =

⎡⎣ 𝜕𝑜𝑥1𝜑𝑖,𝑗

𝜕𝑜𝑥2𝜑𝑖,𝑗

⎤⎦ , (4.31)

where

⎧⎨⎩𝜕
+
𝑥1
𝜑𝑖,𝑗 = 𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

𝜕−𝑥1𝜑𝑖,𝑗 = 𝜑𝑖,𝑗 − 𝜑𝑖−1,𝑗

,

⎧⎨⎩𝜕
+
𝑥2
𝜑𝑖,𝑗 = 𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

𝜕−𝑥2𝜑𝑖,𝑗 = 𝜑𝑖,𝑗 − 𝜑𝑖,𝑗−1

,

⎧⎪⎨⎪⎩
𝜕𝑜𝑥1𝜑𝑖,𝑗 =

1

2
(𝜑𝑖+1,𝑗 − 𝜑𝑖−1,𝑗)

𝜕𝑜𝑥2𝜑𝑖,𝑗 =
1

2
(𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗−1)

.

(4.32)

The discretized Laplacian of 𝜑 can be stated as

∆𝜑𝑖,𝑗 = ∇− ·
(︀
∇+𝜑𝑖,𝑗

)︀
= 𝜑𝑖−1,𝑗 + 𝜑𝑖,𝑗−1 + 𝜑𝑖+1,𝑗 + 𝜑𝑖,𝑗+1 − 4𝜑𝑖,𝑗, (4.33)

where the other variables can be approximated in similar ways.

(4.17) and (4.18) can be calculated directly as

𝑢𝑘+1
1 =

𝑀∑︀
𝑖=1

𝑁∑︀
𝑗=1

𝑓𝑖,𝑗𝐻𝜀

(︀
𝜑𝑘𝑖,𝑗
)︀

𝑀∑︀
𝑖=1

𝑁∑︀
𝑗=1

𝐻𝜀

(︀
𝜑𝑘𝑖,𝑗
)︀ , (4.34)

𝑢𝑘+1
2 =

𝑀∑︀
𝑖=1

𝑁∑︀
𝑗=1

𝑓𝑖,𝑗
(︀
1 −𝐻𝜀

(︀
𝜑𝑘𝑖,𝑗
)︀)︀

𝑀∑︀
𝑖=1

𝑁∑︀
𝑗=1

(︀
1 −𝐻𝜀

(︀
𝜑𝑘𝑖,𝑗
)︀)︀ , (4.35)

where M and N are the numbers of rows and columns of the image 𝑓 .

Next, to discretize the formula of 𝜑 obtained in (4.26), we introduce the following

intermediate variables

⎧⎪⎨⎪⎩
𝐹 𝑘+1 = 𝑄𝑘+1𝛿𝜀

(︀
𝜑𝑘
)︀

+
(︁
𝑎+ 𝑏

(︀
𝑞𝑘
)︀2)︁ ⃒⃒

𝑝𝑘
⃒⃒
𝛿′𝜀
(︀
𝜑𝑘
)︀

+ 𝛾2∇ · 𝑝𝑘 − 𝛾2∇ · 𝑏⃗𝑘2 𝑥 ∈ Ω

𝐺⃗𝑘+1 = 𝑝𝑘 − 𝑏⃗𝑘2

,

(4.36)
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and write the original Eular-Lagrange equations in the more concise form below

⎧⎨⎩𝐹
𝑘+1 + 𝜇𝜂𝜑𝑘+1 − 𝛾2∆𝜑

𝑘+1 = 0 𝑥 ∈ Ω

∇𝜑𝑘+1 · 𝑁⃗ = 𝐺⃗𝑘+1 · 𝑁⃗ 𝑥 ∈ 𝜕Ω
. (4.37)

Based on (4.33) and (4.26), we can easily design the Gauss-Seidel iterative scheme

of 𝜑 as

(𝜇𝜂 + 4𝛾2)𝜑
𝑘+1,𝑙+1
𝑖,𝑗 = 𝛾2

(︁
𝜑𝑘+1,𝑙+1
𝑖−1,𝑗 + 𝜑𝑘+1,𝑙+1

𝑖,𝑗−1 + 𝜑𝑘+1,𝑙
𝑖+1,𝑗 + 𝜑𝑘+1,𝑙

𝑖,𝑗+1

)︁
− 𝐹 𝑘+1

𝑖,𝑗 . (4.38)

Alternatively, 𝜑 can be solved by Fast Fourier transform (FFT)[78]. The dis-

cretized solution of 𝑝 as obtained from (4.27) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐴⃗𝑘+1
𝑖,𝑗 = ∇+𝜑𝑘+1

𝑖,𝑗 +

(︀
𝜆𝑘1 + 𝛾1

)︀
𝑚⃗𝑘
𝑖,𝑗

𝛾2
+ ⃗𝑏2𝑖,𝑗

𝑘

𝐵𝑘+1 =
(︁
𝑎+ 𝑏

(︀
𝑞𝑘𝑖,𝑗
)︀2)︁

𝛿′𝜀
(︀
𝜑𝑘+1
𝑖,𝑗

)︀
⃗̃𝑝𝑘+1
𝑖,𝑗 = max

(︃⃒⃒⃒
𝐴⃗𝑘+1
𝑖,𝑗

⃒⃒⃒
−
𝜆𝑘1𝑖,𝑗 + 𝛾1 +𝐵𝑘+1

𝑖,𝑗

𝛾2
, 0

)︃
𝐴⃗𝑘+1
𝑖,𝑗⃒⃒⃒

𝐴⃗𝑘+1
𝑖,𝑗

⃒⃒⃒
+ 10−6

𝑝𝑘+1
𝑖,𝑗 =

⃗̃𝑝𝑘+1
𝑖,𝑗⃒⃒⃒
⃗̃𝑝𝑘+1
𝑖,𝑗

⃒⃒⃒ , 0⃒⃒⃒⃗⃗
0
⃒⃒⃒ = 0⃗

. (4.39)

Since the form of 𝑛⃗ in (4.28) is similar to that of 𝜑, the solution of 𝑛⃗ can also be

written similarly. Again, to simplify the equation, we introduce

⎧⎪⎨⎪⎩
𝐻⃗𝑘+1
𝑖,𝑗 = −𝛾3

(︁
𝑚⃗𝑘
𝑖𝑗 + 𝑏⃗𝑘3𝑖,𝑗

)︁
− 𝛾4∇

(︀
𝑏𝑘4𝑖𝑗 − 𝑞𝑘𝑖𝑗

)︀
𝑥 ∈ Ω

𝐺𝑘
𝑖,𝑗 = 𝑞𝑘𝑖,𝑗 − 𝑏4

𝑘
𝑖,𝑗 𝑥 ∈ 𝜕Ω

, (4.40)

and (4.28) becomes

⎧⎨⎩𝐻⃗
𝑘+1 + 𝛾3𝑛⃗

𝑘+1 − 𝛾4∇
(︀
∇ · 𝑛⃗𝑘+1

)︀
= 0 𝑥 ∈ Ω

∇ · 𝑛⃗𝑘+1𝑁⃗ = 𝐺𝑘𝑁⃗ 𝑥 ∈ 𝜕Ω
. (4.41)
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Introducing the discretized form of 𝑛⃗, its Gauss-Seidel iterative scheme can be

easily designed as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝛾3 + 2𝛾4)𝑛

𝑘+1,𝑙+1
1𝑖.𝑗 = 𝛾4

(︁
𝑛𝑘+1,𝑙+1
1𝑖−1,𝑗 + 𝑛𝑘+1,𝑙

1𝑖+1,𝑗 + 𝑛𝑘+1,𝑙
2𝑖+1,𝑗 − 𝑛𝑘+1,𝑙

2𝑖+1,𝑗−1 − 𝑛𝑘+1,𝑙
2𝑖,𝑗 + 𝑛𝑘+1,𝑙

2𝑖,𝑗−1

)︁
−𝐻𝑘+1

1𝑖,𝑗

(𝛾3 + 2𝛾4)𝑛
𝑘+1,𝑙+1
2𝑖,𝑗 = 𝛾4

(︁
𝑛𝑘+1,𝑙
1𝑖,𝑗+1 − 𝑛𝑘+1,𝑙

1𝑖−1,𝑗+1 − 𝑛𝑘+1,𝑙+1
1𝑖,𝑗 + 𝑛𝑘+1,𝑙+1

1𝑖−1,𝑗 + 𝑛𝑘+1,𝑙+1
2𝑖,𝑗−1 + 𝑛𝑘+1,𝑙

2𝑖,𝑗+1

)︁
−𝐻𝑘+1

2𝑖,𝑗

𝑛⃗𝑘+1,0
𝑖𝑗 = 𝑛⃗𝑘𝑖,𝑗

.

(4.42)

Here 𝑛⃗ can be solved with FFT as well. For 𝑚⃗ in (4.29), its discretized analytical

solution with projection formula is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⃗̃𝑚𝑘+1
𝑖,𝑗 = 𝑛⃗𝑘+1

𝑖,𝑗 +

(︀
𝜆𝑘1𝑖,𝑗 + 𝛾1

)︀
𝑝𝑘+1
𝑖,𝑗

𝛾3
− 𝑏⃗𝑘3𝑖,𝑗

𝑚⃗𝑘+1
𝑖,𝑗 =

⃗̃𝑚𝑘+1
𝑖,𝑗

max
(︁

1,
⃒⃒⃒
⃗̃𝑚𝑘+1
𝑖,𝑗

⃒⃒⃒)︁ . (4.43)

The 𝑞 obtained in (4.30) can also be drawn into a simple analytical solution

(︀
𝛾4 + 2𝑏𝛾

⃒⃒
𝑝𝑘+1
𝑖,𝑗

⃒⃒
𝛿𝜀
(︀
𝜑𝑘+1
𝑖,𝑗

)︀)︀
𝑞𝑖,𝑗 = 𝛾4∇ · 𝑛⃗𝑘+1

𝑖,𝑗 + 𝛾4𝑏
𝑘
4𝑖𝑗. (4.44)

After one complete iteration, the Bregman iterators are updated as (4.16). The

following error tolerances should also be checked to determine convergence, i. e.,

𝑇 𝑘+1
𝑠 ≤ Tol, (𝑠 = 1, 2, 3, 4) , Φ𝑘+1 ≤ Tol, Σ𝑘+1 ≤ Tol, (4.45)

where Tol = 0.01. 𝑇 𝑘+1
𝑠 , Φ𝑘+1, Σ𝑘+1 are defined as

{︁
𝑇 𝑘+1
1 , 𝑇 𝑘+1

2 , 𝑇 𝑘+1
3 , 𝑇 𝑘+1

4

}︁
=

{︃
‖𝜆𝑘+1

1 − 𝜆𝑘1‖𝐿1

‖𝜆𝑘1‖𝐿1

,
‖⃗𝑏𝑘+1

2 − 𝑏⃗𝑘2‖𝐿1

‖⃗𝑏𝑘2‖𝐿1

,
‖⃗𝑏𝑘+1

3 − 𝑏⃗𝑘3‖𝐿1

‖⃗𝑏𝑘3‖𝐿1

,
‖𝑏𝑘+1

4 − 𝑏𝑘4‖𝐿1

‖𝑏𝑘4‖𝐿1

}︃
,

(4.46)

Φ𝑘+1 =
‖𝜑𝑘+1 − 𝜑𝑘‖𝐿1

‖𝜑𝑘‖𝐿1

, Σ𝑘+1 =
‖𝐸𝑘+1 − 𝐸𝑘‖

‖𝐸𝑘‖
. (4.47)

The complete algorithm is summarized in Algorithm 3.
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Algorithm 3 The split-Bregman algorithm for the CVLE model
(1) Initialization: Set 𝛼1, 𝛼2, 𝜇, 𝑎, 𝑏.

(2) while any stopping criterion is not satisfied do

Calculate u𝑘+1
1 , u𝑘+1

2 from (4.24) and (4.25)

Calculate 𝜑𝑘+1 from (4.26)

Calculate 𝑝𝑘+1 from (4.27)

Calculate 𝑛⃗𝑘+1 from (4.28)

Calculate 𝑚⃗𝑘+1 from (4.29)

Calculate 𝑞𝑘+1 from (4.30)

Calculate 𝜆𝑘+1
1 , 𝑏⃗𝑘+1

2 , 𝑏⃗𝑘+1
3 , 𝑏𝑘+1

4 from (4.16)

end while

4.4 Experimental results

The following experiments compare the performance of the CV, the CVL, the

CVE, and the CVLE models in contour inpainting. The performance of the models

are tested against short and long sections of missing contours, different numbers of

landmarks, as well as real-world images and noisy images. The running environment

is PC (Intel (R) Core (TM) i7-7700 CPU @ 3.60GHz 3.60 GHz; memory: 16.0 GB;

code running environment: Matlab R2017a).

Since the CVE, the CVL, and the CVLE model all work for contour inpainting to

different extents, we designed experiments to compare them. The image of the letters

’CV’ contains some damaged regions. The original broken image is shown in Fig. 4-1

(a), and the initialization of the zero level set for all of the models is shown in Fig.

4-1 (b). Segmentation results obtained from the CV, CVL, CVE, and CVLE models

are shown in Fig. 4-1 (c-f) respectively. Some landmarks are placed in the middle of

the missing sections of the contour. Results show that the CVE and CVLE can both

inpaint small sections of the contour, though the parameters for the CVE are very

hard to tune. The CVL mostly failed due to the lack of landmarks.
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(a) (b) (c)

(d) (e) (f)

Fig. 4-1: Results of four different methods of repair broken letters ’CV’. (a) is the
original image, (b) is the initial contour, (c-f) are the segmentation results obtained
cia the CV, CVL, CVE, and CVLE models respectively. The parameters are 𝛾1 =
5, 𝛾2 = 5, 𝛾3 = 5, 𝛾4 = 5, 𝛼1 = 0.5, 𝛼2 = 0.5.
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(a) (b) (c) (d)

Fig. 4-2: Repair of a broken rectangle. (a) is the original image, (b) is the initial
contour and piror landmark, (c) is the result obtained from the CVL model, (d) is
the result obtained from the CVLE model. The parameters are 𝛾1 = 1, 𝛾2 = 3, 𝛾3 =
5, 𝛾4 = 10, 𝛼1 = 1.1, 𝛼2 = 0.9 for the CVLE model.

To compare the performance of the CVL and CVLE in recovering large missing

contours, we next segmented a rectangle with a clipped corner in Fig. 4-2. Fig. 4-2

(a) shows a triangle with a missing corner, Fig. 4-2 (b) shows the initial contour and

landmark points, Fig. 4-2 (c), (d) are segmentation results via the CVL and CVLE

model respectively. For similar inpainting effects, the CVL required 26 landmark

points whereas the CVLE only required 20.

Fig. 4-3 presents another comparison between the CVE and the CVLE. Fig.

4-3 (a) shows the original broken image, (b) presents the initial zero level set and

landmark points, and (c), (d) give the segmentation results via CVE and CVLE

model respectively. The same conclusion as in [72] can be drawn, i. e., it is difficult to

control the shape of the inpainted contours via the CVE, while the CVLE successfully

recreated the circle under the influence of the landmark constraints.

In the next set of experiments, we study the effect of the number of landmark

points and their positions on the segmentation contour. Setting different amounts

of landmark points lead to different segmentation results. The more landmarks we

set within a reasonable limit, the more the contour will be defined by landmarks.

However, setting more landmarks beyond the necessary amount will not increase

segmentation accuracy further, as shown in Fig. 4-4 (g), (h). In Fig. 4-4 (e-h), the

number of landmark points are 3, 9, 11, 15, respectively. As we can see, the inpainted

contour became more accurate with more landmarks. However, setting more than 15
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(a) (b) (c) (d)

Fig. 4-3: Broken circle repair experiment. (a) is the original image, (b) is the initial
contour and prior landmarks, (c) is the result obtained from the CVL model, (d) is
the result obtained from the CVLE model. The parameters for the CVLE model are
𝛾1 = 7, 𝛾2 = 20, 𝛾3 = 5, 𝛾4 = 2, 𝛼1 = 1.1, 𝛼2 = 1.2.

landmarks has no additional effects on the contour.

The placement of landmark points is also essential, especially when the total

number of landmarks is small. Using Fig. 4-4 (d) as an example of a well-segmented

image, we take away some landmarks from different locations in Fig. 4-5. In Fig.

4-5 (a), (b) and (c), we remove landmarks from the bottom, top, and middle of the

missing corner of the rectangle respectively. As a result, the recovered contour in

Fig. 4-5 (f) has distortions around the middle, the sharpness of the tip is not well

maintained in (e), but the result in (d) does not change significantly. Therefore, we

observe that it is more effective to place landmarks at the vertices or corners of an

object. It is typically the case that the better the landmarks are positioned, the fewer

landmarks we need.

One real-world application of the CVLE model is segmentation of medical images.

MRI images are often challenging due to the presence of detailed features and noise.

Fig. 4-6 (a) and Fig. 4-7 (a) are two examples of the original images from a brain

CT, Fig. 4-6 (b) and Fig. 4-7 (b) are the initial contours, Fig. 4-6 (c) and Fig. 4-7

(c) are the results obtained via the CV model, and Fig. 4-6 (d) and Fig. 4-7 (d)

are the results from CVLE. The CV model fails to segment the brain images due to

its simplicity, whereas the CVLE model produced good results under the same initial

level set function. This experiment demonstrates that the CVLE retains details better

in the segmentation of MRI images.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4-4: Different number of landmarks affect the inpainted contour. (a-d) are
the initial setups for 3, 9, 11, 15 landmarks respectively, (e-h) are the segmentation
results via the CVLE for 3, 9, 11, 15 landmarks respectively.
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4.5 Summary

In this chapter, we presented the Chan-Vese model with landmark constraints

and elastica (CVLE). The CVLE combines the Euler’s elastica and the Chan-Vese

model with landmark constraints (CVL) to inpaint large sections of illusory contours.

We then solved the CVLE model using the split-Bregman method and a projection

scheme.

Experiments show that the CVLE works well for guided contour inpainting as

well as sharpening of local details. The placement and quantity of landmarks both

affect the inpainting results. The more representative the landmarks are of the image

features, and the more landmarks are used within necessity, the more accurate and

better defined the interpolated contour typically will be. For future directions, we can

integrate automatic landmarks detection methods as well as incorporate the landmark

constraints and elastica term into other variational models.

In the next chapter, we will propose a new algorithm for solving the self-repelling

snakes model, a geodesic active contour-based model with the topology preservation

constraint.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 4-5: The significance of the location of landmarks. (a-c) are the initial setups
where landmarks are missing from the bottom, top, and middle of the missing corner
of the rectangle respectively. (d-f) are the segmentation results for (a-c) respectively
via the CVLE. (g) is the segmentation result using the full set of landmarks.
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(a) (b) (c) (d)

Fig. 4-6: Brain MRI image segmentation experiment, image taken from [10]. (a) is
the original image, (b) is the initial contour, (c) is the segmentation result via the
CV model, (d) is the segmentation result via the CVLE model.

(a) (b) (c) (d)

Fig. 4-7: Noisy brain MRI image segmentation experiments, image taken from [8].
(a) is the original image, (b) is the initial contour, (c) is the segmentation result via
the CV model, (d) is the segmentation result via the CVLE model.
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Chapter 5

The Self-repelling Snakes Model for

Topology Preservation

In the previous two chapters, we designed variational models with landmark con-

straints. In this chapter, we will design a new solution for a variational model with

the topology preservation constraint.

Topology preservation in image segmentation is an external constraint to dis-

courage changes in the topology of the segmentation contour. It typically applies

to problems where the object topology is known a priori. The concept of topology

preservation, or prevention of changes in the contour topology, can be intuitively

linked to contour evolution. Many variational models are designed to prevent the

contour from self-intersecting, i.e. merging or splitting, via a constraint term. For

example, Han et al. [79] proposed a simple-point detection scheme in an implicit level

set framework in 2003. Cecil et al. [80] monitored the changes in the Jacobian of the

level set. In 2005, Alexandrov et al. [81] recast the topology preservation problem

to a shape optimization problem of the level sets, where narrow bands around the

segmentation contours are discouraged from overlapping. Sundaramoorthi and Yezzi

[82] proposed an approach based on knot energy minimization, to the same effect.

Rochery et al. [83] used a similar idea while introducing a non-local regularization

term, which was applied in the tracking of long thin objects in remote sensing images.

Building on the previous ideas, the self-repelling snakes (SR) model was proposed by
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Le Guyader et al. in 2008 [8]. The SR uses an implicit level set representation for

the curve and adds a non-local repulsion term to the classic geodesic active contour

model (GAC) [9]. In the follow-up work [84], the short time existence/uniqueness and

Lipschitz regularity property of the SR model were studied. Later, [85] successfully

extended the SR model to non-local topology-preserving segmentation-guided regis-

tration. Attempts have also been made [86] to combine the SR with the region-based

Chan-Vese model [14], though a direct combination proved unsuccessful.

The SR model has intuitive and straightforward geometric interpretations, but

its non-local term leads to complications in the numerical implementation. To the

best of our knowledge, the SR model has always been solved through the additive

operator splitting (AOS) [87] strategy. The derivation of gradient descent equations is

complicated and requires the upwind difference discretization scheme. Furthermore,

though the AOS is stable, the memory requirement grows quadratically with the

size of the image. In this work, we propose an alternative solution using the split-

Bregman method that aims towards a more concise algorithm and less memory usage.

We introduce an intermediate variable to split the original problem into two sub-

problems, which turns a second-order optimization problem into two first-order ones.

Solving the new sub-problems no longer requires taking complex differentials of the

geodesic curvature term. We also replace the re-initialization of the signed distance

function with a simple projection scheme. As a result, the optimization of the level

set function is simplified. In addition, to address some problems arising from the

split-Bregman solution, we replace the Heaviside representation of the level set in [8]

with one that performed better in our algorithm.

In this chapter, we first review and provide some intuition to the original SR

model. Then, we design the split-Bregman algorithm for the SR model and derive

the Euler-Lagrange equations or gradient descent equations for the sub-problems.

Next, we present the discretization schemes for the sub-problems which are solved

by alternating iterative optimization. Finally, experimental results are provided and

comparisons are made between the two solutions.
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5.1 The self-repelling snakes model

The original SR model as proposed in [8] is an edge-based segmentation model

based on the GAC [9]. It adopts the variational level set formulation [52], where the

segmentation contour is implicitly represented as the zero level line of a signed distance

function [33]. An energy functional is minimized until convergence is reached and the

segmentation contour is obtained. The energy functional comprises three terms, two

of which are taken from the GAC model and contribute to edge detection and the

balloon force respectively, while the last one accounts for the self-repulsion of contour

as it approaches itself.

The definition of the SR model is as follows. Let 𝑓(𝑥) : Ω → 𝑅 be a scalar value

image, 𝑥 ∈ Ω, and Ω is the domain of the image. The standard edge detect function

𝑔(𝑥) ∈ [ 0, 1] is given by

𝑔(𝑥) =
1

1 + 𝜌|∇(𝐺𝜎 * 𝑓)|𝑠
, (5.1)

where 𝑠 = 1 or 2, 𝜌 is a scaling parameter, and 𝐺𝜎 denotes a Gaussian convolution

of the image with a standard deviation of 𝜎. The object boundary 𝐶 is represented

by the zero set of a level set function 𝜑,

𝐶 = {𝑥 ∈ Ω|𝜑(𝑥) = 0}. (5.2)

The level set function 𝜑 is defined as a signed distance function, as in (2.10). As

a signed distance function, 𝜑 satisfies the constraint condition (2.11), i.e. the Eikonal

equation. To represent the image area and contour, we make use of the Heaviside

function 𝐻(𝜑) and Dirac functions 𝛿(𝜑). Since the original Heaviside function is

discontinuous and therefore indifferentiable, we adopt the smoothed versions of the

function [52] below,
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𝐻𝜀(𝜑) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2

(︀
1 + 𝜑

𝜀
+ 1

𝜋
sin
(︀
𝜋𝜑
𝜀

)︀)︀
|𝜑| ≤ 𝜀

1 𝜑 > 𝜀

0 𝜑 < −𝜀

, (5.3)

𝛿𝜀(𝜑) =

⎧⎪⎨⎪⎩
1
2𝜀

(︀
1 + cos

(︀
𝜋𝜑
𝜀

)︀)︀
|𝜑| ≤ 𝜀

0 |𝜑| > 𝜀

. (5.4)

This scheme is different from the ones used in the original model in [8]. In particu-

lar, 𝜀 does not affect the entire image domain, which improves stability of edge-based

models. The effect is more apparent in our split-Bregman algorithm, as we will discuss

further in section 5.2.

Given the above, the energy functional 𝐸(𝜑) of the SR model can be written as

𝐸(𝜑) = 𝛾𝐸𝑔(𝜑) + 𝛼𝐸𝑎(𝜑) + 𝛽𝐸𝑟(𝜑), (5.5)

where 𝛾, 𝛼, 𝛽 are penalty parameters that balance three terms.

𝐸𝑔(𝜑) =

∫︁
Ω

𝑔(𝑥)|∇𝐻𝜀(𝜑(𝑥))|𝑑𝑥 =

∫︁
Ω

𝑔(𝑥)|∇𝜑(𝑥)|𝛿𝜀(𝜑(𝑥))𝑑𝑥. (5.6)

𝐸𝑔(𝜑) is the geodesic length of the contour. The total variation of the Heaviside

function, or the total length of the contour, is weighted by the edge detector in (5.1).

𝐸𝑎(𝜑) =

∫︁
Ω

𝑔(𝑥)(1 −𝐻𝜀(𝜑(𝑥)))𝑑𝑥. (5.7)

𝐸𝑎(𝜑) is the closed area of the contour also weighted by the edge detector. It

contributes to a balloon force that pushes the segmentation contour over weak edges

[28].

𝐸𝑟(𝜑) = −
∫︁
Ω

∫︁
Ω

𝑒
|𝑥−𝑦|2

𝑑2 (∇𝜑(𝑥) · ∇𝜑(𝑦))ℎ𝜀(𝜑(𝑥))ℎ𝜀(𝜑(𝑦))𝑑𝑥𝑑𝑦. (5.8)

𝐸𝑟(𝜑) describes the self-repulsion of the contour [8]. 𝑒−
|𝑥−𝑦|2

𝑑2 measures the distance
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of the two points 𝑥 and 𝑦, e.g. the further away the points the smaller the repulsion.

In (5.8), ℎ𝜀(𝜑(𝑥)) and ℎ𝜀(𝜑(𝑦)) denote the narrow bands around the points 𝑥 and 𝑦,

where,

ℎ𝜀(𝜑(𝑥)) = 𝐻𝜀(𝜑(𝑥) + 𝑙)(1 −𝐻𝜀(𝜑(𝑥) − 𝑙)), (5.9)

ℎ𝜀(𝜑(𝑦)) = 𝐻𝜀(𝜑(𝑦) + 𝑙)(1 −𝐻𝜀(𝜑(𝑦) − 𝑙)). (5.10)

When the points 𝑥 and 𝑦 are further than distance 𝑙 from the contour,

ℎ𝜀(𝜑(𝑥))ℎ𝜀(𝜑(𝑦)) → 0. This signifies that the points outside the narrow bands are

largely unaffected by repulsion. For −∇𝜑(𝑥) · ∇𝜑(𝑦), if the outwards unit normal

vectors to the level lines passing through 𝑥 and 𝑦 have opposite directions, i.e., the

contours passing 𝑥 and 𝑦 are merging or splitting, then the functional approaches the

maximum value. Thus, the minimization of 𝐸𝑟(𝜑) prevents the self-intersection of

the contour.

Given the energy functional (5.5) and the Eikonal equation (2.11) , the variational

formulation for SR is

min
𝜑
𝐸(𝜑) = 𝛾𝐸𝑔(𝜑) + 𝛼𝐸𝑎(𝜑) + 𝛽𝐸𝑟(𝜑)

s.t. |∇𝜑| = 1

, (5.11)

and the evolution equation of 𝜑(𝑥) derived from 𝐸𝑔(𝜑) and 𝐸𝑎(𝜑) is

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
= 𝛿𝜀(𝜑(𝑥, 𝑡))(𝛾∇ · (𝑔(𝑥)

∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
) + 𝛼𝑔(𝑥)), (5.12)

where

∇ · (𝑔(𝑥)
∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
) = ∇𝑔(𝑥) · ∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
+ 𝑔(𝑥)∇ · ∇𝜑(𝑥, 𝑡)

|∇𝜑(𝑥, 𝑡)|
. (5.13)

(5.13) is the geodesic curvature that shifts the contour towards the edges detected

by 𝑔(𝑥). In the image areas with near-uniform intensity, ∇𝑔(𝑥) → 0, 𝑔(𝑥) = 1. Since

∇ · (𝑔(𝑥) ∇𝜑(𝑥,𝑡)
|∇𝜑(𝑥,𝑡)|) → 0 in those areas, the geodesic curvature term has little effect and

the balloon force 𝛼𝑔(𝑥) dominates.
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Lastly, the evolution equation derived from the repulsion term is

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
=

4𝛽

𝑑2
ℎ𝜀(𝜑(𝑥, 𝑡))

∫︁
Ω

𝑒−
|𝑥−𝑦|2

𝑑2 ((𝑥− 𝑦) · ∇𝜑(𝑦, 𝑡))ℎ𝜀(𝜑(𝑦, 𝑡))𝑑𝑦, (5.14)

To summarize, by applying variational methods to the three energy terms and

substituting 𝛿𝜀(𝜑(𝑥)) with |∇𝜑(𝑥)|, the following evolution equations can be derived

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝜑(𝑥,𝑡)
𝜕𝑡

= |∇𝜑|(𝛾∇ · (𝑔(𝑥) ∇𝜑(𝑥,𝑡)
|∇𝜑(𝑥,𝑡)|) + 𝛼𝑔(𝑥))

+4𝛽
𝑑2
ℎ𝜀(𝜑(𝑥, 𝑡))

∫︀
Ω
𝑒−

|𝑥−𝑦|2

𝑑2 ((𝑥− 𝑦) · ∇𝜑(𝑦, 𝑡))ℎ𝜀(𝜑(𝑦, 𝑡))𝑑𝑦 𝑥 ∈ Ω, 𝑡 > 0

𝜑(𝑥, 0) = 𝜑0(𝑥) 𝑥 ∈ Ω ∪ 𝜕Ω, 𝑡 = 0

𝜕𝜑
𝜕𝑛⃗

= 0 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0

|∇𝜑| = 1

.

(5.15)

With regards to the constraint |∇𝜑| = 1, the dynamic re-initialization scheme

below is adopted in [8],

⎧⎪⎨⎪⎩
𝜕𝜓(𝑥,𝑡)
𝜕𝑡

+ sin (𝜑(𝑥))(|∇𝜓(𝑥, 𝑡)| − 1) = 0

𝜓(𝑥, 0) = 𝜑(𝑥)

. (5.16)

The above is a typical Hamilton-Jacobi equation that can be discretized and solved

through an up-wind difference scheme [33]. To solve (5.15), the original solution

adopts the AOS strategy [87]. The first term on the r.h.s. of (5.15) is discretized with

the half-point difference scheme and the harmonic averaging approximation. The next

two terms adopt the up-wind scheme. Two semi-implicit schemes are constructed by

concatenating the rows and columns of the image respectively,

(︀
1 − 2𝑡𝐴𝑥1

(︀
𝜑𝑘
)︀)︀
𝑣𝑘+1 = 𝜑𝑘 + 𝑡

(︀
𝑇 2
(︀
𝜑𝑘
)︀

+ 𝑇 3
(︀
𝜑𝑘
)︀)︀
,(︀

1 − 2𝑡𝐴𝑥2
(︀
𝜑𝑘
)︀)︀
𝑤𝑘+1 = 𝜑𝑘 + 𝑡

(︀
𝑇 2
(︀
𝜑𝑘
)︀

+ 𝑇 3
(︀
𝜑𝑘
)︀)︀
,

(5.17)
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where 𝐴𝑥1 , 𝐴𝑥2 are the two concatenation matrices, 𝑣 and 𝑤 are intermediate vari-

ables, and 𝑇 2, 𝑇 3 are the up-wind discretizations of the second and third term of the

r.h.s. of (5.15), the formulations of which are omitted here for brevity. For each

𝐴𝑙 (𝑙 ∈ (𝑥1, 𝑥2)),

𝐴𝑙𝑖𝑗
(︀
𝜑𝑘
)︀

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝛾|∇𝑜𝜑𝑘𝑖 |(︃ |∇𝑜𝜑𝑘
𝑖 |

𝑔𝑖
+
|∇𝑜𝜑𝑘

𝑗 |
𝑔𝑗

)︃ 𝑗 ∈ 𝑁𝑙(𝑖)

−
∑︀

𝑚∈𝑁𝑙(𝑖)

2𝛾|∇𝑜𝜑𝑘𝑖 |(︃ |∇𝑜𝜑𝑘
𝑖 |

𝑔𝑖
+
|∇𝑜𝜑𝑘𝑚|

𝑔𝑚

)︃ 𝑗 = 𝑖

0 𝑒𝑙𝑠𝑒

, (5.18)

where 𝑖, 𝑗 are two points in the image, 𝑁𝑙(𝑖) is the set of the nearest neighbors of 𝑖

in the matrix 𝐴𝑙,
⃒⃒
∇𝑜𝜑𝑘𝑖

⃒⃒
=

√︂(︁
𝜑𝑖+1,𝑗−𝜑𝑖−1,𝑗

2

)︁2
+
(︁
𝜑𝑖,𝑗+1−𝜑𝑖,𝑗+1

2

)︁2
, and 𝐴𝑙 is a diagonally

dominant tridiagonal matrix. Finally, 𝜑𝑘+1 can be calculated as

𝜑𝑘+1 =
1

2

(︀
𝑣𝑘+1 + 𝑤𝑘+1

)︀
. (5.19)

Since 𝑖 and 𝑗 span the entire image, if Ω ∈ 𝑅𝑚×𝑛, then 𝐴𝑙 ∈ 𝑅(𝑚×𝑛)×(𝑚×𝑛).

Consequently, the variable 𝐴 greatly increases the memory requirement for the AOS

solution. In the last step, (5.17) is solved via the Thomas algorithm which involves

LR decomposition, forward substitution, and backward substitution, with the con-

vergence rate of 𝑂(𝑁). In the following section, we will propose another solution

to the SR with the split-Bregman method that aims to be faster by replacing the

re-initialization step, more memory efficient by using compact intermediate variables,

and more concise by bypassing the complex discretization schemes.

5.2 The split-Bregman algorithm for the self-repelling

snakes model

The split-Bregman method is a fast alternating directional method often used in

solving 𝐿1-regularized constrained optimization problems [43]. To design the split-
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Bregman algorithm for (5.5), we first introduce a splitting variable 𝑤⃗ = ∇𝜑 and the

Bregman iterator 𝑏⃗. We can re-formulate the energy minimization problem as

(𝜑𝑘+1, 𝑤⃗𝑘+1) = arg min
𝜑,𝑤⃗

𝐸(𝜑, 𝑤⃗)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝛾
∫︀
Ω
𝑔(𝑥)|𝑤⃗(𝑥)|𝛿𝜀(𝜑(𝑥))𝑑𝑥+ 𝛼

∫︀
Ω
𝑔(𝑥)(1 −𝐻𝜀(𝜑(𝑥)))𝑑𝑥

−𝛽
∫︀
Ω

∫︀
Ω
𝑒−

|𝑥−𝑦|2

𝑑2 (𝑤⃗(𝑥) · 𝑤⃗(𝑦))ℎ𝜀(𝜑(𝑥))ℎ𝜀(𝜑(𝑦))𝑑𝑥𝑑𝑦

+𝜇
2

∫︀
Ω
|𝑤⃗(𝑥) −∇𝜑(𝑥) − 𝑏⃗𝑘(𝑥)|2𝑑𝑥

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

𝑠.𝑡. |𝑤⃗(𝑥)| = 1

(5.20)

𝑏⃗𝑘+1(𝑥) = 𝑏⃗𝑘(𝑥) + ∇𝜑𝑘+1(𝑥) − 𝑤⃗𝑘+1(𝑥), (5.21)

where 𝑏⃗0 = 0⃗, 𝑤⃗0 = 0⃗, and 𝜇 is a penalty parameter. The original problem can then

be solved as two sub-problems in alternating order for loops 𝑘 = 1, 2, ..., 𝐾. The

sub-problems are,

𝜑𝑘+1 = arg min
𝜑

𝐸1(𝜑) = 𝐸(𝜑, 𝑤⃗𝑘), (5.22)

𝑤⃗𝑘+1 = arg min
𝑤⃗

𝐸2(𝑤⃗) = 𝐸(𝜑𝑘+1, 𝑤⃗)

𝑠.𝑡. |𝑤⃗| = 1

. (5.23)

To solve the sub-problem (5.22), we can derive the following evolution equation

of 𝜑 via standard variational methods [18],

𝜕𝜑(𝑥, 𝑡)

𝜕𝑡
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝛾𝑔(𝑥)|𝑤⃗𝑘(𝑥)|𝛿′𝜀(𝜑(𝑥, 𝑡)) + 𝛼𝑔(𝑥)𝛿𝜀(𝜑(𝑥, 𝑡)) + 𝜇∆𝜑(𝑥, 𝑡)

+2𝛽ℎ′𝜀(𝜑(𝑥, 𝑡))𝑤⃗𝑘(𝑥) ·
∫︀
Ω
𝑒−

|𝑥−𝑦|2

𝑑2 𝑤⃗𝑘(𝑦)ℎ𝜀(𝜑(𝑦, 𝑡))𝑑𝑦

+𝜇(∇ · 𝑏⃗𝑘(𝑥) −∇ · 𝑤⃗𝑘(𝑥))

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (5.24)

The initial condition and boundary condition are as below,
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⎧⎪⎨⎪⎩𝜑
𝑘+1(𝑥) = 𝜑𝑘(𝑥) 𝑥 ∈ Ω ∪ 𝜕Ω

∇𝜑(𝑥, 𝑡) · 𝑛⃗ = (𝑤⃗𝑘(𝑥) − 𝑏⃗𝑘(𝑥)) · 𝑛⃗ 𝑥 ∈ 𝜕Ω, 𝑡 ∈ [0, 𝑇 ]

, (5.25)

where

ℎ′𝜀(𝜑(𝑥)) = 𝛿𝜀(𝜑(𝑥) + 𝑙)(1 −𝐻𝜀(𝜑(𝑥) − 𝑙)) −𝐻𝜀(𝜑(𝑥) + 𝑙)𝛿𝜀(𝜑(𝑥) − 𝑙). (5.26)

𝛿′𝜀(𝜑) =

⎧⎨⎩ − 𝜋
2𝜀2

sin
(︀
𝜋𝜑
𝜀

)︀
|𝜑| ≤ 𝜀

0 |𝜑| > 𝜀
, (5.27)

With the Heaviside function originally adopted in [8], the newly introduced com-

ponent 𝛿′𝜀(𝜑) in the split-Bregman algorithm may be excessively smoothed. Further-

more, as the SR is an edge-based model and the repelling force is local, smoothing

𝐻(𝜑) over the entire image causes the repelling force to propagate across the image,

resulting in unnecessary instability. With the new choice of Heaviside function, the

smoothing effect is restricted only to a narrow band of width 2𝜀 surrounding the

contour which in practice can stabilize the evolution of the contour.

For the sub-problem (5.23), if |𝑤⃗(𝑥)| ≠ 0, we can obtain the corresponding Euler-

Lagrange equation of 𝑤⃗(𝑥) as,

⎧⎪⎨⎪⎩𝛾𝑔(𝑥)𝛿𝜀(𝜑
𝑘+1(𝑥)) 𝑤⃗(𝑥)

|𝑤⃗(𝑥)| − 2𝛽ℎ𝜀(𝜑
𝑘+1(𝑥))

∫︀
Ω
𝑒−

|𝑥−𝑦|2

𝑑2 𝑤⃗(𝑦)ℎ𝜀(𝜑
𝑘+1(𝑦, 𝑡))𝑑𝑦

+𝜇(𝑤⃗(𝑥) −∇𝜑𝑘+1(𝑥) − 𝑏⃗𝑘(𝑥)) = 0

⎫⎪⎬⎪⎭
𝑠.𝑡. |𝑤⃗(𝑥)| = 1

.

(5.28)

However, since the second term in (5.28) contains the integral of 𝑤⃗(𝑦), it is difficult

to construct the iterative scheme for 𝑤⃗𝑘. An approximation formula with projection

is designed in the next section to address this issue.

For the next step in solving (5.24) and (5.28), we devise the discretization of
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the continuous derivatives. Let the spatial step be 1 and time step be 𝑡, and the

discrete coordinates for the pixel (𝑖, 𝑗) be 𝑥𝑖,𝑗 = (𝑥1𝑖, 𝑥2𝑗) where 𝑖 = 0, 1, 2, ...,𝑀 + 1,

𝑗 = 0, 1, 2, ..., 𝑁 + 1 , we get 𝜑𝑖,𝑗 = 𝜑(𝑥1𝑖, 𝑥2𝑗). Let the other variables take similar

forms. With the first order finite difference approximation, we can obtain the discrete

gradient, Laplacian, and divergences respectively as,

∇𝜑𝑖,𝑗 =

⎡⎣𝜑𝑖+1,𝑗 − 𝜑𝑖,𝑗

𝜑𝑖,𝑗+1 − 𝜑𝑖,𝑗

⎤⎦ ,
∆𝜑𝑖,𝑗 = 𝜑𝑖−1,𝑗 + 𝜑𝑖,𝑗−1 + 𝜑𝑖+1,𝑗 + 𝜑𝑖,𝑗+1 − 4𝜑𝑖,𝑗.

(5.29)

∇𝑤⃗𝑖,𝑗 = (𝑤⃗1𝑖,𝑗 − 𝑤⃗1𝑖−1,𝑗) + (𝑤⃗2𝑖,𝑗 − 𝑤⃗2𝑖,𝑗−1),

∇𝑏⃗𝑖,𝑗 = (⃗𝑏1𝑖,𝑗 − 𝑏⃗1𝑖−1,𝑗) + (⃗𝑏2𝑖,𝑗 − 𝑏⃗2𝑖,𝑗−1),
(5.30)

The first order time derivative of 𝜑𝑖,𝑗 can be approximated as 𝜕𝜑𝑖,𝑗
𝜕𝑡

=
𝜑𝑘+1
𝑖,𝑗 −𝜑𝑘𝑖,𝑗

𝑡
.

Therefore, from (5.24), a semi-implicit iterative scheme can be designed for 𝜑𝑘+1,𝑠+1
𝑖,𝑗

where 𝑠 = 0, 1, 2, ..., 𝑆, such that,

𝜑𝑘+1,0
𝑖,𝑗 = 𝜑𝑘𝑖,𝑗,

𝜑𝑘+1,𝑠+1
𝑖,𝑗 −𝜑𝑘+1,𝑠

𝑖,𝑗

𝑡
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−2𝛾𝑔𝑖,𝑗|𝑤⃗𝑘𝑖,𝑗|𝛿′𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 ) + 𝛼𝑔𝑖,𝑗𝛿𝜀(𝜑

𝑘+1,𝑠
𝑖,𝑗 )

+𝜇(𝜑𝑘+1,𝑠+1
𝑖−1,𝑗 + 𝜑𝑘+1,𝑠+1

𝑖,𝑗−1 + 𝜑𝑘+1,𝑠
𝑖+1,𝑗 + 𝜑𝑘+1,𝑠

𝑖,𝑗+1 − 4𝜑𝑘+1,𝑠+1
𝑖,𝑗 )

+2𝛽ℎ′𝜀(𝜑
𝑘+1,𝑠
𝑖,𝑗 )𝑤⃗𝑘𝑖,𝑗 · 𝑣⃗𝑘𝑖,𝑗 + 𝜇(∇ · 𝑏⃗𝑘𝑖,𝑗 −∇ · 𝑤⃗𝑘𝑖,𝑗)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(5.31)

until ‖𝜑
𝑘+1,𝑠+1−𝜑𝑘+1,𝑠‖
‖𝜑𝑘+1,𝑠‖+10−6

≤ 𝑇𝑜𝑙.

𝑣⃗𝑘,𝑠𝑖,𝑗 =

(︃
𝑑∑︁

𝑝=−𝑑

𝑑∑︁
𝑞=−𝑑

𝑒−
(𝑝2+𝑞2)

𝑑2 𝑤⃗𝑘𝑖+𝑝,𝑗+𝑞ℎ𝜀

(︁
𝜑𝑘+1,𝑠
𝑖+𝑝,𝑗+𝑞

)︁)︃
(5.32)

which is the discrete approximation of 𝑣⃗𝑘(𝑥) =
∫︀
Ω
𝑒−

|𝑥−𝑦|2

𝑑2 𝑤⃗𝑘(𝑦)ℎ𝜀(𝜑(𝑦, 𝑡))𝑑𝑦. 𝑦 de-

notes a point taken from a small window of size 2𝑑×2𝑑 around point 𝑥. The repulsion

from points further away is negligible, therefore we only check within a small window.

Note that the initial and boundary conditions in (5.25) still hold.
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Next, we will solve (5.28) iteratively. By temporarily fixing 𝑤⃗𝑘+1,𝑟(𝑦), we can

design a concise approximate generalized soft thresholding formula. For abbreviation,

let

𝑣⃗𝑘+1,𝑟(𝑥) =

∫︁
Ω

𝑒−
|𝑥−𝑦]2

𝑑2 𝑤⃗𝑘+1,𝑟(𝑦)ℎ𝜀
(︀
𝜑𝑘+1(𝑦)

)︀
𝑑𝑦, (5.33)

and 𝑤⃗𝑘+1,0(𝑦) = 𝑤⃗𝑘(𝑦). For 𝑟 = 0, 1, 2, . . . , 𝑅, since |𝑤⃗𝑘+1,𝑟
𝑖,𝑗 | = 1, the iterative formula

for 𝑤⃗𝑘+1 from (5.23) can be written as,

⃗̃𝑤𝑘+1,𝑟+1
𝑖,𝑗 ≈

𝜇∇𝜑𝑘+1
𝑖,𝑗 + 𝜇𝑏𝑘𝑖,𝑗 + 2𝛽ℎ𝜀

(︀
𝜑𝑘+1
𝑖,𝑗

)︀
𝑣⃗𝑘+1,𝑟
𝑖,𝑗

𝛾𝑔𝑖,𝑗𝛿𝜀(𝜑
𝑘+1
𝑖,𝑗 ) + 𝜇

, (5.34)

𝑤⃗𝑘+1,𝑟+1
𝑖,𝑗 =

⃗̃𝑤𝑘+1,𝑟+1
𝑖,𝑗⃒⃒⃒
⃗̃𝑤𝑘+1,𝑟+1
𝑖,𝑗

⃒⃒⃒ . (5.35)

In practice, a single iteration is often enough to compute 5.34. Alternatively, we

can directly use the soft thresholding formula to derive 𝑤⃗𝑘+1. For abbreviation, let

𝐵⃗𝑘+1 = ∇𝜑𝑘+1(𝑥) + 𝑏⃗𝑘 +
2𝛽

𝜇
ℎ𝜀
(︀
𝜑𝑘+1(𝑥)

)︀ ∫︁
Ω

𝑒−
|𝑥−𝑦]2

𝑑2 𝑤⃗𝑘+1(𝑦)ℎ𝜀
(︀
𝜑𝑘+1(𝑦)

)︀
𝑑𝑦. (5.36)

The formula for 𝑤⃗𝑘+1
𝑖,𝑗 is

𝑤⃗𝑘+1
𝑖,𝑗 ≈ max(|𝐵⃗𝑘+1

𝑖,𝑗 | − 𝛾

𝜇
𝑔𝑖,𝑗𝛿𝜀(𝜑

𝑘+1
𝑖,𝑗 ), 0)

𝐵⃗𝑘+1
𝑖,𝑗

|𝐵⃗𝑘+1
𝑖,𝑗 |

, 0
0⃗

|⃗0|
= 0⃗. (5.37)

The same projection scheme as (5.35) is used afterwards. After 𝜑𝑘+1
𝑖,𝑗 , 𝑤⃗

𝑘+1
𝑖,𝑗 have

been obtained, we can derive 𝑏⃗𝑘+1
𝑖,𝑗 directly from (5.21).

In summary, the split-Bregman algorithm proposed in this section has four main

advantages. 1) The memory requirement is reduced. For an image of size 𝑚× 𝑛, the

parameter 𝐴 in the AOS solution is size 2× (𝑚×𝑛)× (𝑚×𝑛). However, in the split-

Bregman algorithm, the sizes of both 𝑤⃗ and 𝑏⃗ are 2× (𝑚×𝑛) only. As the image size

increases, the memory usage in the original algorithm increases quadratically while

the one in the new algorithm increases linearly. This is an important point when
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dealing with large images. 2) The numerical solution can be simplified. In (5.15), the

convolution term containing ∇𝜑 is hyperbolic, which requires the upwind difference

scheme. By substituting ∇𝜑 with the auxiliary variable 𝑤⃗ we can remove the need for

complex discretization schemes. 3) The use of a simple projection scheme in place of

the initialization step improves algorithm efficiency. 4) Contour evolution is stabilized

by confining the smoothing of the Heaviside function to the narrow-bands around the

contours.

The proposed algorithm is summarized in Algorithm 4.

Algorithm 4 The split-Bregman algorithm for the self-repelling snakes model
(1) Initialize

Calculate 𝑔(𝑥) using (5.1)

Initialize 𝜑0(𝑥) as signed distance function and set 𝑤⃗0 =
−→
0 , 𝑏⃗0 =

−→
0

Set penalty parameters

Set tolerance errors, time step and iterative steps

(2) Iterations

For 𝑘=0,1,2,...,K

For 𝑠=0,1,2,...,S

Calculate 𝜑𝑘+1,𝑠+1 from (5.31)

End for 𝑠 when (5.22) converges

Calculate 𝑤⃗𝑘+1 from (5.37)

Calculate 𝑏⃗𝑘+1 from (5.21)

End for 𝑘 when (5.11) converges

5.3 Experimental results

The experiments below demonstrate that the split-Bregman solution of the SR

model can successfully prevents contour splitting (which causes over-segmentation)

and contour merging (which causes under-segmentation). The qualitative perfor-

mance is comparable to the original solution of SR. Two practical applications are
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shown as well as an extended case in 3D. All experiments are performed on the PC

(Intel(R) Core (TM) i7-7700 CPU @ 3.60GHz 3.60 GHz; 16.0 GB memory). The

segmentation program is written in Matlab and runs in Matlab environment R2018b.

(a) (b) (c)

(d) (e) (f)

Fig. 5-1: Segmentation of two circles with the split-Bregman algorithm, image taken
from [8]. (a) is the initial contour, (b-f) show the evolution of the contour. 𝛼 = 4.5,
𝛾 = 5, 𝛽 = 0.25, 𝜇 = 8, 𝑙 = 1, 𝑑 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤 = 5 × 5, 𝑆 = 5, 𝜀 = 1, 𝑡 = .05,
𝑇𝑜𝑙 = 10−6.

In Figure 5-1, contour splitting is successfully prevented and the topology is pre-

served. The parameter 𝛼 controls the outwards or inwards driving force, 𝛾 dictates

the geodesic length, 𝛽 weighs the repelling force, and 𝜇 weighs the constraint. A

large 𝛽 causes the contour to become unstable, as the repulsive force is a highly local

term. However, increasing 𝛽 and decreasing the window size narrows the gap between

the contours. Typically, the window size is 5 × 5 or 7 × 7 as according to [8]. The

time step 𝑡 is chosen according to the convergence condition 𝑡 ≤ 1
4𝜇

based on the

Courant-Friedrichs-Lewy condition [88]. Increasing 𝜀 improves the smoothness of the

contour but lowers the effectiveness of topology preservation, as it smooths out the

repulsive force.
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(a) (b) (c)

(d) (e) (f)

Fig. 5-2: Segmentation of synthetic hand with the split-Bregman algorithm, image
taken from [8]. (a) is the initial contour, (b-f) show the evolution of the contour.
𝛼 = 5, 𝛾 = 15, 𝛽 = 0.5, 𝜇 = 5, 𝑙 = 1, 𝑑 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤 = 7 × 7, 𝑆 = 5, 𝜀 = 1, 𝑡 = .05,
𝑇𝑜𝑙 = 10−6.

In Figure 5-2, contour merging is prevented as the fingers of the hand remain

separate. In the basic GAC model [9], the proximity of the contours would cause

them to merge despite there being a detected edge, because it reduces the total

geodesic length. The SR model prevents contour merging through the additional

repulsion term.
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(a) (b) (c)

(d) (e)

Fig. 5-3: Segmentation of a brain, image taken from [8]. (a) is the original image,
(b-c) uses the new Heaviside function with 𝛼 = 10, 𝛾 = 15, 𝛽 = 2, 𝜇 = 5, 𝑙 = 1,
𝑑 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤 = 7 × 7, 𝑆 = 5, 𝜀 = 1, 𝑡 = .1, 𝑇𝑜𝑙 = 10−6. (d-e) uses the original
Heaviside function with the same parameters.

Figure 5-3 compares the effect of two different Heaviside functions. The advantage

of the new Heaviside formulation lies in the stabilization of the repulsion term, which

makes the algorithm more robust. In the two experiments in Figure 5-3, the amount

of repulsion was set to very high through a large 𝛽 value. However, it did not disturb

the smoothness of the contour, cause the lose of necessary details, or alter the topology

in the new algorithm, as shown in Figure 5-3 (b-c). Using the same set of parameters

and the original Heaviside function in the old algorithm, the repulsive force of the

contour is dissipated across the whole image and the segmentation failed, as shown

in Figure 5-3 (d-e) where the topology and smoothness of the contour are no longer

maintained. This shows that the new Heaviside function lowers the dependence of

the algorithm on the choice of parameters and is therefore better at maintaining the

stability of the SR model and increasing robustness.
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(a) (b) (c)

Fig. 5-4: Segmentation of cells (image taken from [10]). (a) is the initial contour,
(b-c) show the process of contour evolution. 𝛼 = 4, 𝛾 = 4, 𝛽 = 0.2, 𝜇 = 5, 𝑙 = 1,
𝑑 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤 = 7 × 7, 𝑆 = 5 𝜀 = 1, 𝑡 = .05, 𝑇𝑜𝑙 = 10−6.

One example of a practical application of the algorithm is adhesive cell segmen-

tation. The centers of cells can be detected via k-means clustering or detector filters

such as the circle Hough Transform or the Laplacian of Gaussian [89]. Since the

topology is maintained, the number of cells remains the same. In Figure 5-4, the

repulsive force prevents cell contours from merging and separates the adhesive cells.

(a) (b)

Fig. 5-5: Segmentation of two orbs in 3D. The cyan surface is the zero level set
and the black orbs are the objects. (a) is the initial contour, (b) is the final contour.
𝛼 = 4, 𝛾 = 5, 𝛽 = 0.2, 𝜇 = 3, 𝑙 = 1, 𝑑 = 4, 𝑤𝑖𝑛𝑑𝑜𝑤 = 5 × 5, 𝑆 = 5 𝜀 = 1, 𝑡 = .05,
𝑇𝑜𝑙 = 10−6.

The algorithm can also be extended to 3D, where 𝜑(𝑥) : Ω ⊂ R3 → R. The

segmentation contour then becomes a surface whose topology remains the same during

segmentation. The segmentation of two orbs is presented in Figure 5-5, where contour
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splitting is prevented and the two orbs are segmented as one instance.

5.4 Summary

Preserving the contour topology during image segmentation is useful in many

practical scenarios. By keeping the contours isomorphic, it is possible to prevent

over-segmentation and under-segmentation, as well as to make the segmentation con-

tour adhere to given topologies. The self-repelling snakes model (SR) is a variational

model that preserves contour topology by combining a non-local repulsion term with

the geodesic active contour model (GAC). The SR is traditionally solved using the ad-

ditive operator splitting (AOS) scheme. Although this solution is stable, the memory

requirement grows quickly as the image size increases. In this chapter, we proposed

an alternative solution to the SR using the split-Bregman method. The proposed

algorithm breaks the problem down into simpler subproblems to use lower-order evo-

lution equations and approximation schemes. There are several advantages to the new

algorithm. 1) The memory usage is significantly reduced as the size of intermediate

variables is one order smaller before. 2) The need for complex discretization schemes

is circumvented. 3) The re-initionalization scheme is circumvented and calculations

are simplified. 4) The stability of the algorithm is increased through restricting the

repulsive force to strictly within the narrow bands around the contour. Experiments

show that compared to the original algorithm, the new algorithm is equally effective

while being less dependant on the parameters and requiring less memory.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

The image segmentation problem, as the foundation of many high-level image anal-

ysis and computer vision tasks, remains actively researched up till this day. There

are presently countless image segmentation methods, ranging from simple heuristics-

based pipelines to data-driven neural networks with up to millions of internal param-

eters. Though the task of separating the disjoint regions in an image appears simple

to the human, computer algorithms must set up and enforce many segmentation cri-

teria based on both the image and prior knowledge. Variational models are a branch

of mathematical models that dynamically solve problems through the minimization

of an energy functional. Since the late 1980s, they have gained much momentum in

areas of image analysis such as inpainting, denoising, segmentation, etc. With regards

to image segmentation, in particular, the active contour variational models have been

applied to mass-market commercial applications as well as in specialized solutions for

domain problems, especially in medicine.

The variational models have three main advantages. One, they are reliable and

interpretable. Each term inside the energy functional serves a specific, defined pur-

pose. Once the model has been designed term by term, we can prove its theoretical

solvability with mathematics and devise efficient numerical algorithms with modern

optimization methods. Two, they are highly customizable. Given the specific sce-
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nario, we can construct an energy functional that builds on terms that represent the

specific segmentation criteria to suit our purpose. Three, they are light-weight and

portable. There are no complex functions with many hyperparameters to store, yet

the models still fulfil their functions well.

The main directions of research in the variational image segmentation area are

designs of new model components, efficient numerical solutions, and variational mod-

els catering to real-world applications. In this thesis, we focused on designing and

implementing models with prior constraints.

In Chapter 3, we proposed the Chan-Vese model with landmark constraints (CVL)

model by combining a novel landmark constraint term with the Chan-Vese model,

a two-phase image segmentation model based on the piecewise constant assumption.

We proposed a numerical solution to the CVL using the split-Bregman method and

proved the theoretical convergence of the new model. As demonstrated in the ex-

periments on synthetic and real images, the CVL model improved both the overall

segmentation accuracy and the accuracy within critical regions. The guidance from

the landmarks successfully negated the effect of bad contour initialization by pushing

the level set function out of the local energy minima. The same correction effect can

be observed in noisy images when the contour is flawed. Critical regions also became

better defined when guided by landmarks. With the CVL model, image segmentation

based on homogeneous regions where the contour passes some pre-defined landmarks

can be realized.

However, it is observed that landmarks too far from the object boundary could

not be connected via the CVL. A new segmentation problem was defined in this case,

where the task is interpolating or inpainting the segmentation contour between land-

marks during segmentation. In Chapter 4, we proposed to incorporate the Euler’s

elatica into the CVL. The new model, the Chan-Vese model with landmark con-

straints and elastica (CVLE), specializes in the inpainting of long illusory contours.

We proposed the numerical solution to the new model via the split-Bregman method

a projection method, using more intermediate variables than previously to circumvent

the calculation of curvature. Experimental comparison between the CV, CVE, CVL,
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and CVLE show the advantage of the CVLE in producing smoother contour interpo-

lations and preserving more details in the segmentation result. The CVLE model can

address problems such as the segmentation of occluded and damaged objects with

the guidance of landmarks.

In Chapter 5, we designed a more stable, concise, and memory-efficient solution for

the self-repelling snakes (SR) model. The SR model initially uses the additive operator

splitting scheme, which induces a memory requirement to the order of the square of

the image size. The split-Bregman algorithm we proposed cuts down the memory

size by one order, as well as simplifies calculations with the projection scheme. We

also adopted a differently smoothed Heaviside function which increased the stability

of contour evolution by restricting the effect of contour repulsion to be within narrow

bands around the contour. Experiments compared the new algorithm to the original

one as well as demonstrated some real-world applications in MRI image segmentation

and cell segmentation. The algorithm has also been extended to segment 3D objects.

In summary, the works in this thesis addressed problems with regards to image

segmentation with constraints under the variational level set paradigm. The purpose

of enforcing constraints is to assist the segmentation process with more information.

The landmark constraints allow the contour to connect to pre-defined landmarks.

The term is useful in guiding the contour in the right direction and refining critical

regions to increase the segmentation accuracy. The landmark constraints combined

with the Euler’s elastica enables the contour to connect to more distant landmarks

to create long illusory contours. This is useful for reconstructing the contours of

objects whose boundaries are lost in the image due to occlusion or damages. The

topology preservation constraint prevents the segmentation contour from splitting or

merging. It is effective in stopping under-segmentation and over-segmentation, as

well as segmenting objects whose topologies are known in advance. Reducing the

amount of calculations and the memory requirement of the algorithms makes them

more applicable to practical scenarios, while lowering the dependence of the results

on the parameters and initial conditions increases the robustness of the variational

models.
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6.2 Future works

The focus of this thesis is on designing new constraints for variational models and

devising efficient numerical algorithms for their solution, as well as providing some

basic theoretical discussions. The landmark constraints and landmark constraints

combined with Euler’s elastica have only been incorporated into the classical Chan-

Vese model. Since the terms in a variational model are relatively customizable, it

is also possible to include these new constraints in other region-based models, edge-

based models, and models based on other image features. For example, the new

constraints can be applied to multi-phase [36], texture [37, 54], noise [55], and motion

[56] segmentation problems, even the 3D reconstruction of surfaces. Many existing

variational image segmentation models can benefit from the guidance of landmarks.

On the other hand, the subjects of efficiency, stability, and accuracy have al-

ways been of vital importance to variational models. Compared to other popular

approaches, PDE-based algorithms tend to suffer from elaborate calculations that

reduce their practicality from an engineering perspective. This disadvantage can be

countered by better algorithm design, parallelization, or priming the algorithms for

the GPU or other powerful hardware. With further efforts made in this regard, the

variational models proposed in this thesis can be utilized in many practical segmen-

tation problems, particularly those where landmarks are easily obtainable or readily

available.

A recent trend occasioned by the age of Big Data is the increasing importance

of the role of data in image processing. Much information can be gleaned from the

vast datasets online that may prove useful in segmentation problems. Landmarks and

topologies are both prior constraints. In the experiments conducted in this thesis, they

have been dictated by human. However, they can also be extracted automatically by

a machine learning-based algorithm. While variational models afford much control

to the human over the segmentation process, learning from prior information can

help increase the level of automation and robustness of the algorithms. Obtaining

landmarks and topological information automatically through neural networks and
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feeding them into the proposed variational algorithms may be a viable approach.
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