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Abstract 

Humans increasingly use automated decision aids. However, environmental 

uncertainty means that automated advice can be incorrect, creating the potential for humans 

to action incorrect advice or to disregard correct advice. We present a quantitative model of 

the cognitive process by which humans use automation when deciding whether aircraft would 

violate minimum separation. The model closely fitted the performance of twenty-four 

participants, whom each made 2400 conflict detection decisions (conflict vs non-conflict), 

either manually (with no assistance) or with the assistance of 90% reliable automation. When 

the decision aid was correct, conflict detection accuracy improved, but when the decision aid 

was incorrect, accuracy and response time were impaired. The model indicated that 

participants integrated advice into their decision process by inhibiting evidence accumulation 

toward the task response incongruent with that advice, thereby ensuring that decisions could 

not be made solely on automated advice without first sampling information from the task 

environment.  
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Statement of Relevance 

In modern workplaces and industries such as aviation and healthcare, automated 

decision aids that recommend actions to humans are increasingly prevalent. However, 

automated advice can be wrong, creating the potential for humans to action incorrect advice 

or to disregard correct advice, with potentially catastrophic consequences. While prior 

research has identified several factors that impact how people use automation, there are 

currently no quantitative theories of the underlying cognitive mechanisms. We present an 

evidence-accumulation model of the cognitive process by which humans use automated 

advice to decide whether aircraft would violate minimum separation. The model provided a 

good fit to the observed effects (i.e., increased participant accuracy with correct advice, 

decreased accuracy/increased response time with incorrect advice) and indicated that advice 

from the decision aid was used to inhibit the task response incongruent with that advice. The 

model provides a tractable, quantitative theoretical framework for understanding how humans 

use automated advice. 
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Human interaction with automation has been a major area of inquiry for over 40 years 

(Bainbridge, 1983; Wiener & Curry, 1980). Decision aids that recommend actions to human 

operators are increasingly prevalent: in healthcare, decision aids support diagnoses and 

provide treatment advice; in air traffic control (ATC), decision aids advise controllers how to 

maintain aircraft separation; in defence, decision aids recommend how to coordinate 

unmanned vehicles; and in airports, decision aids support luggage inspection. 

Decision aids benefit performance and reduce workload (Onnasch, Wickens, Li, & 

Manzey, 2014). However, the uncertainty inherent in complex work systems means 

automated advice can be incorrect. This creates the potential to erroneously action incorrect 

advice (misuse1; Lee & See, 2004), or disregard correct advice (disuse), although this is less 

likely with reliable automation (Wickens & Dixon, 2007). Automation misuse by experts can 

occur in work domains where incorrect decisions risk serious consequences, including 

aviation, healthcare, and process control. 

Research has identified several design (e.g., reliability, transparency) and 

environmental (e.g., task demands, uncertainty) factors that impact automation use (Endsley, 

2017; Parasuraman & Manzey, 2010). However, extant research has relied largely on verbal 

psychological theories, and tests of partial performance measures such as accuracy and mean 

response time (RT), with little progress towards quantitative theories of cognitive 

mechanisms. Quantitative human performance modelling is advantageous because it can 

provide theoretical insights, unify interpretation of seemingly disparate data, refine 

predictions, and predict performance when human in-the-loop testing is not feasible (Byrne & 

Pew, 2009; Farrell & Lewandowsky, 2010). 

                                                 

1 As defined, “misuse” and “disuse” can occur even when the operator is using automation optimally, e.g.,  

always following the recommendation of a decision aid that has a better chance of being right than they do, as if 

the recommendation happens to be wrong on a particular occasion that would be classified as misuse. However, 

such optimality considerations are not the focus of the current paper. 
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In the current paper, we apply a quantitative model of decision making (Boag, 

Strickland, Heathcote, Neal & Loft, 2019) to automation use in a simulated ATC conflict 

detection task. Conflict detection requires humans to decide whether aircraft will violate 

minimum separation standards in the future based on their altitude, speed, and relative 

distance from intersection (Loft, Bolland, Humphreys, & Neal, 2009). Decision aids are 

increasingly used to maximise airspace capacity. Conflict detection is particularly suitable to 

examine the cognitive dynamics of human-automation interaction, as decision uncertainty 

can trade-off with temporal pressure (Loft, Sanderson, Neal, & Mooij,  2007), and it is 

representative of other work contexts where operators make judgments about moving objects 

on displays (e.g., unmanned vehicle control, maritime surveillance). 

A Model of Human Adaptation to Automation 

Evidence accumulation models are the most successful class of model for 

understanding speeded binary choice decisions (Ratcliff & Smith, 2004). We model conflict 

detection with the linear ballistic accumulator (LBA; Brown & Heathcote, 2008), an evidence 

accumulation model where evidence for each possible decision accrues linearly and 

independently, with the first accumulator to reach threshold determining the decision made 

(Figure 1). 
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Figure 1. LBA model of conflict detection. Evidence for each accumulator begins at a start point, drawn from a 

uniform distribution, and increases at an accumulation rate, which is drawn from a normal distribution. The first 

accumulator to reach threshold determines the observed response.  

 

The LBA provides estimates of the cognitive processes underlying observed 

performance. Accumulation rates index how fast evidence accrues towards each response. 

They are classified as either matching (i.e., accumulation toward the correct response, e.g., 

responding ‘conflict’ when aircraft are in conflict), or mismatching (i.e., accumulation toward 

the incorrect response). Thresholds index the amount of evidence required for each decision 

and reflect cognitive control. For example, raising thresholds increases accuracy, but at the 

cost of slower responding.  

In the model, decision aids provide inputs to the decision process (automation inputs), 

integrated with task information (stimulus inputs) in a “feedforward” manner (Figure 2; see 

Boag et al., 2019; Strickland, Loft, Remington & Heathcote, 2018). Accumulation rates are 

simultaneously increased by excitation from stimulus inputs that match the response and 

decreased by inhibition from mismatching inputs, an assumption consistent with the finding 

that biased information affects decision making via a constant effect on rates (Hanks, 
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Mazurek, Kiani, Hopp & Shadlen, 2011). For example, processing stimulus inputs that match 

a conflict response (e.g., close predicted relative arrival times of aircraft; Loft, Neal, & 

Humphreys, 2007) excites the conflict accumulator and inhibits the non-conflict accumulator. 

Similarly, if a decision aid recommends a conflict decision, it excites the conflict accumulator 

and inhibits the non-conflict accumulator. The final accumulation rate is determined by 

summing the inhibition and excitation provided from both automation and stimulus inputs.  

 

 

Figure 2. Impacts of automation inputs and stimulus inputs on evidence accumulation. Both stimulus inputs and 

automation inputs can potentially excite corresponding accumulators (solid lines), increasing accumulation 

rates, but also inhibit the opposing accumulator (dashed lines), decreasing accumulation rates. 

 

The model can answer fundamental questions about automation use. Decision aids are 

typically provided with the expectation that humans will not solely rely on them. In model 

terms, over-reliance on automation occurs if excitation from the decision aid causes enough 



Modelling Human Use of Automated Advice  7 

accumulation to trigger a response without requiring excitation from stimulus inputs. Given 

the risks of over-reliance, humans may be reluctant to purely use automation excitation when 

accuracy is important. By contrast, inhibition of decisions that mismatch the decision aid 

cannot trigger a response without excitation from stimulus inputs but can increase the 

accuracy of decisions when automation inputs are correct. Thus, when automation is not 

perfectly reliable, inhibition may be preferable to encourage appropriate automation use 

while minimising misuse. In addition, humans might adjust response thresholds. For instance, 

when automation is less than 100% reliable, they could increase response thresholds to 

minimize noise in their own decision-making.  

The Current Study 

We use the model to quantify the excitation, inhibition, and threshold control 

underlying performance in an ATC conflict detection task with an automated decision aid. 

The automation had 90% accuracy, and based on Boag et al. (2019), the task parameters were 

expected to produce around 90% human manual accuracy, allowing us to study an 

approximately equal ability human-automation team.  

There were two within-subjects conditions: “manual”, in which participants detected 

conflicts unassisted, and “automation”, in which a decision aid recommended a response. 

Participants were informed the automation was not perfectly reliable and were encouraged, 

with scoring and a financial incentive, to avoid complete reliance on automation. We 

expected that when the automation was correct, it would benefit accuracy. Thus, on 

“automation correct” trials, accuracy should be higher than for manual trials. By contrast, 

automation should impair performance when recommending an incorrect decision, decreasing 

accuracy relative to manual trials. RT could also be affected by automation. If automation 

causes excitation, responses that automation recommends should be faster compared with 

manual trials. If automation causes inhibition, non-recommended decisions should be slower 
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compared with manual trials.  

Method 

Participants 

To ensure adequate measurement for cognitive modelling ― where reliable inference 

depends on the number of trials per participant, rather than the number of participants (Smith 

& Little, 2018) ― the experiment ran over two days, yielding 2400 total trials for each 

participant. We tested 27 participants, with the data from three excluded (one participant 

received their conditions in the wrong order; one had chance level performance during 

manual trials; one due to computer error). For the remaining 24 (14 female, 10 male), the 

mean age was 22.29 (range: 18-37). Participants were from a convenience sample of 

psychology students, and the University of Western Australia’s community research pool. 

Participants received either course credit or $40 AUD. For all participants, an additional 

reward between $0 and $20 AUD was provided based on performance. The study was 

approved by the University of Western Australia’s Human Research Ethics. 

Design 

Participants completed two sessions, each lasting approximately 90 minutes. In each, 

participants had one block with automated advice and one without (manual), with condition 

order counterbalanced across days. Each block contained 600 trials. The conflict detection 

task included two possible response key assignments, counterbalanced across participants, 

either ‘f’ for conflicts and ‘j’ for non-conflicts, or ‘j’ for conflicts and ‘f’ for non-conflicts.  

Materials 

ATC Conflict Detection Task. The conflict detection task (Fothergill, Loft & Neal, 

2009) has previously been used to test expert controllers (Loft et al., 2009), balancing 

representativeness with experimental control. Figure 3 depicts the display. The sector was 

180 nautical miles (nmi) by 112.5nmi. At the start of each trial, two aircraft appeared within 
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the circular light grey sector and flew on straight paths towards the intersection. Adjacent to 

each aircraft was a data block containing: the aircraft callsign (e.g., TVU740) and type (e.g., 

B737), flight level (e.g., 370 indicates 37,000 feet), and speed in knots (nmi per hour) divided 

by 10. A 10nmi by 20nmi scale was included on the left of the display, and a probe vector 

was attached to aircraft indicating their heading and predicted position in one minute. 

Figure 3. An example of the air traffic control simulator display. Next to each aircraft callsign (e.g., TVU740), 

aircraft type (e.g., B737), current and cleared altitude (e.g., 370 >370), and airspeed (e.g., 53) are displayed. 

Note that airspeed only shows two digits (e.g., 530 knots would be ‘530’). A trial countdown timer is displayed 

on the top left. The automated advice is placed under the data block of each aircraft. For example, in this screen 

capture, the decision aid is recommending a ‘conflict’ decision. In manual conditions, this was replaced with a 

string that had no special meaning, ‘########’. 

 

Conflict detection stimuli. Participants judged whether aircraft pairs would conflict 

in the future (they had no control over aircraft). Aircraft pairs were in conflict if they would 

simultaneously travel within 5nmi (laterally) and 1,000ft (vertically). Altitude for all aircraft 

was fixed at 37,000 feet, and thus decisions were based on lateral separation. The spatial 

variables defining the aircraft pairs are included in Table 1. Conflict and non-conflict status 
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were created using the lateral distances of minimum separation (dmin). For conflict stimuli, 

dmin was drawn from uniform distribution U [0,1.5] nmi. For non-conflict stimuli, dmin was 

drawn from uniform distribution U [8.5,10] nmi. The angle of approach of one of the aircraft 

was randomly sampled between 0 and 360 degrees. The relative angle of approach between 

aircraft was fixed at 90 degrees. Other features were varied randomly to avoid instance-based 

learning (Bowden & Loft, 2016). Aircraft speeds were fixed randomly between 400 and 700 

knots, and time to minimum separation between 120 and 210 seconds. On half the trials, the 

faster aircraft reached the intersection first, and on the other half the slower aircraft did.  

Table 1 

Ranges of the spatial variables defining aircraft stimuli. Distance of minimum separation is referred to as dmin , 

and time to minimum separation referred to as tmin.  

Spatial variable Lower Upper Units  

dmin (conflicts) 0 1.5 nmi  

dmin (non-conflicts) 8.5 10 nmi  

Airspeed 400 700 knots  

Direction of approach 0 360 degrees  

tmin 120 210 seconds  

First Pass Aircraft 

 

0 1 0 = fastest, 1 = slowest   

 

Automated decision aid. During training, participants performed the task with no 

decision aid. In automation conditions, advice was placed under the data block of each 

aircraft (Figure 3). The advice read 'CONFLICT', to recommend classifying the pair of 

aircraft as in conflict, or 'NON-CONF’ (non-conflict). In manual conditions, a string 
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‘########’ was placed under the data block of each aircraft, with no special meaning.  

Participants completed 2400 trials. In the automation condition, the decision aid failed 

on one randomly selected trial out of every 10, and equally often for conflicts and non-

conflicts. This resulted in 60 automation failures on conflict trials (30 each session), and 60 

on non-conflict trials. The non-failure stimuli in the automated condition for each day were 

matched to the manual condition in terms of aircraft speeds and distances from intersection. 

To minimize learning across matched aircraft pairs, presentation order and angle of approach 

were randomized for each condition (whilst maintaining a relative angle of 90 degrees 

between aircraft), and different callsigns were assigned. The automation failure stimuli in the 

automated condition were presented in the same trial positions as in the manual conditions. 

This provided 60 conflict and non-conflict ‘matched manual’ trials that had matched stimulus 

properties and trial positions across automated and manual blocks. 

Automation Trust Questionnaire. After completing the experiment, participants 

rated their trust in the decision aid (supplementary materials). Participants rated six trust 

questions on a five-point scale from ‘strongly disagree’ to ‘strongly agree’. 

Procedure 

Experimental Procedure. Participants provided informed consent and then viewed 

training instructions followed by a demonstration that showed aircraft pairs with different 

dmin to help participants gauge whether aircraft pairs were in conflict. Subsequently, 

participants completed 40 training trials. After training, participants completed their first 

experimental block (either manual or automation). A financial reward was associated with 

accuracy, ranging from $0 to $20 AUD. The maximum reward for each block was $5. In the 

manual condition, rewards were calculated by reward =
5

600
 × (𝑁correct − 𝑁incorrect −

𝑁nonresponses) . In the automated condition, rewards were calculated by reward =
5

600
 ×

(𝑁correct − 9 × 𝑁incorrectaccept
−  𝑁incorrectreject

− 𝑁non-responses). The cost of incorrectly 
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accepting automation was highly weighted so that participants could not receive a substantial 

reward for relying primarily on the automation. Participants were not informed of the precise 

weightings of the reward scheme, but were instructed that: “Although the automation is 

highly reliable, it is not perfect. In the event that the automation makes an incorrect 

recommendation, it is essential that you perform the correct action. Rejecting the automated 

recommendation when it is actually correct will reduce your performance score and 

subsequent bonus. Accepting the automated recommendation when it is wrong will result in a 

substantially greater reduction in your performance score and subsequent bonus.” In manual 

conditions, participants were informed that there was no automated advice, and instead just a 

string ‘########’ which they should ignore. They were also instructed that “Incorrect 

responses will reduce your performance score and subsequent bonus.”  

Participants took self-paced breaks between each block and also mid-block. After 

each block, they were presented accuracy feedback for that block. In the automation blocks, 

their feedback was broken down into the percentage of trials on which they incorrectly 

disagreed with the decision aid and the percentage of trials on which they incorrectly agreed 

with the decision aid. The end of the first block of each session was followed by instructions 

for the subsequent block. Participants returned for session two within 10 days of session one. 

The procedure for session two was the same as session one, except that session two did not 

include a demonstration of dmin, and after session two participants completed the trust 

questionnaire.  

Trial Procedure. Trials began with an aircraft pair heading towards a common 

intersection. Participants had 8 seconds to respond. A trial completed once the participant 

responded, or once 8 seconds had elapsed. If participants submitted a correct response, the 

next trial began. If they submitted an incorrect response, or did not respond, then they 

received feedback. The feedback informed participants they were incorrect, and which 
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decision would have been correct (e.g. “Incorrect! This pair was in conflict”). Participants 

clicked an ‘ok’ button to proceed to the next trial.  

Results 

Trials were excluded from analysis if participants failed to respond (0.17% of trials) or 

responded very quickly (< 0.2 seconds; 0.03% of trials). We report analysis of accuracy and 

correct RTs with linear mixed effects models. We examined four factors – stimulus type 

(conflict/non-conflict), condition (automated /manual), automation accuracy (correct/ 

incorrect), and session (one/two). For manual conditions, ‘automation incorrect trials’ refer to 

trials that were matched to ‘automation incorrect trials’ in the automation condition; and 

‘automation correct trials’ refer to the other manual trials. To examine accuracies, we fitted a 

generalized linear model with a probit link to response accuracy on every trial (either 0 or 1). 

To examine RTs, we fit a linear mixed effects model to the mean correct RTs of each 

participant. Significance tests of the factors in each model are tabulated in supplementary 

materials, as are follow-up contrasts. Our aim was to identify strong effects. Thus, our 

significance criterion was set at p < .005 (Benjamin et al., 2018). The standard errors reported 

in text use the Morey (2008) bias-corrected method for within-subjects designs. 

Accuracy 

Summaries of participant accuracies and mean RTs are displayed in Figure 4. There 

were main effects of stimulus type, session, condition, and automation accuracy on 

participant accuracy. Responses were slightly more accurate on conflict trials (M = 0.87, SE = 

0.04) than non-conflict trials (M = 0.86, SE = 0.04). Accuracy was lower on session one (M = 

0.84, SE = 0.04) than session two (M = 0.88, SE = 0.03). Condition and automation accuracy 

interacted. Accuracy was higher for trials where participants were provided correct 

automation (M = 0.94, SE = 0.02) than matched manual trials (M = 0.89, SE = 0.01), and 

lower when participants were provided incorrect automation (M = 0.73, SE = 0.01), than for 
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matched manual trials (M = 0.89, SE = 0.01). This suggests that participants used automation 

to their advantage, but when automation failed, it imposed a cost. However, importantly, 

accuracy on automation incorrect trials was far from floor, suggesting that participants did 

not rely on the automation entirely. 

 

Figure 4. Summaries of performance. Each panel corresponds to one stimulus type, on one experimental 

session, for either participant response accuracy or mean RT. The error bars included were calculated using the 

Morey (2008) bias-corrected method for within-subjects error bars. 
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Response Times 

There were main effects of stimulus type, session, condition, and automation accuracy 

on mean correct RTs. Correct responses were slower on conflict trials (M = 2.24, SE = 0.15) 

than non-conflict trials (M = 2.06, SE = 0.14). Condition and automation accuracy interacted. 

Correct RTs were similar on trials where participants were provided correct automation (M = 

2.08 SE = 0.1) compared with matched manual trials (M = 2.03 SE = 0.09). By contrast, they 

were much slower on automation-incorrect trials (M = 2.48 SE = 0.15) than matched manual 

trials (M = 2.02 SE = 0.09). Condition and session interacted. In session one, RTs were 

slower in the automation condition (M = 2.61, SE = 0.13) than the manual condition (M = 

2.22, SE = 0.09). In session two, RTs were slower in the automation condition (M = 1.95, SE 

= 0.09) than the manual condition (M = 1.82, SE = 0.06), though the magnitude of the 

difference was attenuated relative to session 1, and failed to reach the p < .005 threshold. 

We conducted exploratory analyses of the correlations between the costs and benefits 

of automation. We examined whether the accuracy advantage provided by correct automation 

(correct automation trial accuracy - matched manual trial accuracy) was associated with the 

cost of automation on failure trials to accuracy (matched failure trial accuracy - automation 

failure trial accuracy) or RT (automation failure trial correct RT - matched manual correct 

RT). The increased accuracy provided by correct automation was positively correlated with 

the accuracy cost of automation on automation-incorrect trials, r (22) = 0.79, p < .001. The 

accuracy increase on automation-correct trials was positively correlated with the correct RT 

increase on automation-failure trials, r (22) = 0.42, p = .04, although this did not reach 

significance at p < .005. We report correlations between the three above measures and 

automation trust in the supplementary materials, although no significant associations were 

found. 
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In summary, when the decision aid was correct, participant accuracy was higher 

compared to manual trials. By contrast, when it was incorrect, accuracy was lower compared 

to manual trials. When the decision aid was correct, RTs were not impacted, but when it was 

incorrect RTs were slower compared to manual trials. These effects generally support an 

inhibition account of decision aid use, in which the response incongruent with the decision 

aid advice is inhibited. In the next section, we present LBA modelling to formally measure 

latent processes such as inhibition. 

Model Results 

Model Specification 

We applied a two accumulator LBA (Figure 1), with each conflict and non-conflict 

decision assigned an accumulator. Evidence for each accumulator begins at a start point 

independently drawn from U [0, A]. It then accumulates linearly at a rate drawn from a 

normal distribution N (v, sv) truncated at 0, until one accumulator reaches its threshold b, 

determining the response. We estimate thresholds in terms of the positive quantity B = b – A. 

Total RT is determined by decision time plus non-decision time (i.e., the time to encode the 

stimulus and produce a motor response). To facilitate estimation, we only allowed one A 

parameter and one non-decision time parameter for each participant. The variability in 

mismatching accumulation rates was fixed at 1 as a scaling parameter. One sv parameter 

indexing variability in matching accumulation rates was estimated for each participant. Mean 

accumulation rates could vary by stimulus type, condition, and automation accuracy. We 

estimated separate thresholds for each accumulator, experimental condition, and session. 

Thresholds did not vary across stimulus type to avoid circularity (if the stimulus type were 

known, there would be no point in the decision process). However, a reviewer suggested 

participants might initially process the aid’s advice without processing stimuli inputs, leading 

to an initial one step-change in evidence, which would be mathematically equivalent to a 
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threshold change. In supplemental materials, we explore a model that allows thresholds to 

adapt in response to the automation’s recommendation. However, we did not find support for 

this mechanism, and thus we report the simpler model below.  

Model Fit 

We performed Bayesian parameter estimation using the Dynamic Models of Choice R 

Suite (Heathcote et al., 2019; see supplementary materials). This provides posterior samples 

estimating probability distributions of the model parameters. Figure 5 displays fits of the 

model to the data. The model closely fit the data, including the effects of automation on 

accuracy and RT. 

Parameter Inference 

For inference we created a group posterior distribution, by averaging the values of 

each posterior sample across participants. The values of the averaged model parameters are 

tabulated in supplementary materials. In the following sections, we examine the effect of 

automation on accumulation rate and threshold parameters. To test parameter differences, we 

calculate a one-tailed posterior p, corresponding to the proportion of posterior samples on 

which one parameter value was higher than another. We report the p value against whichever 

direction was closest to an observed effect (i.e., a p near 0 is evidence in favor of an effect). 

Many effects were ‘significant’ in the sense that p < .005. To estimate effect size, we report 

the mean of the parameter differences divided by the standard deviation, referred to as Z. 
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Figure 5. Posterior predictions of group performance. The model predictions correspond to the white circles, the 

posterior means correspond to the black shaded dots. The error bars display the 95% posterior credible intervals 

of the predictions. Three quantiles of response time (RT) are depicted, with the 0.1 quantile of RT grouped on 

the bottom, the median RT at the middle, and the 0.9 quantile of RT at the top. 

 

Excitation and Inhibition 

Accumulation rates are plotted in Figure 6. We compared accumulation rates on 

automation trials with accumulation rates on matched manual trials. Excitation is indicated by 

increased accumulation towards the accumulator that agrees with the decision aid (i.e., 
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match). For example, on a conflict trial on which the automation recommends “conflict”, 

excitation would increase the conflict accumulation rate. Inhibition is indicated by reduced 

accumulation towards the accumulator that disagrees with the decision aid (i.e., mismatch). 

For example, for conflict trials on which the decision aid recommends “conflict”, inhibition 

would reduce accumulation in the non-conflict accumulator. 

Table 2 presents statistical tests of excitation and inhibition. We found evidence of 

both. However, inhibition was much larger in magnitude. Further, several further analyses 

reinforce that inhibition was more relevant to automation use (supplementary materials). 

First, simulations from the fitted model indicated that inhibition was responsible for the 

majority of automation’s benefits to accuracy on automation correct trials, and for cost to 

accuracy and RT on failure trials. Second, exploration of individual differences indicated that 

inhibition was observed more consistent across participants than excitation, and was more 

responsible for automation benefits to accuracy. Third, inhibition was correlated across 

participants with accuracy improvements brought about by automation, whereas excitation 

was correlated with the accuracy costs of incorrect automation.  

A final supplemental analysis included an additional model that allowed excitation 

and inhibition to vary over the “session” factor, to explore learning effects. This analysis 

indicated qualitatively similar patterns over experimental sessions, with a smaller (but still 

substantial) inhibition effect in session two, corresponding to the smaller effects in our 

conventional results.  
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Figure 6. Estimates of accumulation rates. The shapes indicate the posterior means and the error bars 

correspond to the mean plus or minus the posterior standard deviation. 

 

 

 

 

 

 

 

 

 

 



Modelling Human Use of Automated Advice  21 

 

Table 2 

Tests of automation-induced excitation and inhibition effects. We depict Z(p), where Z is the posterior mean of 

the parameter difference divided by its standard deviation, and p is the one-tailed posterior probability against 

their being an effect. 

Trial Type  Excitation Inhibition 

Conflict Automation Success 2.13 (0.015) 11.41 (<.001) 

Conflict Automation Failure 2.65 (0.003) 10.24 (<.001) 

Non-conflict Automation Success 2.13 (0.015) 13.21 (<.001) 

Non-conflict Automation Failure 2.65 (0.003) 9.8 (<.001) 

 

Threshold effects 

Threshold estimates are plotted in Figure 7. Statistical tests of differences in 

thresholds across automated and manual conditions are included in Table 3. Overall, 

automation had little effect on thresholds. In session two, both conflict and non-conflict 

thresholds were slightly higher in manual than automated conditions. Simulations suggest 

that these effects did not substantially affect performance (supplementary materials). Thus, 

automation primarily affected participants’ evidence accumulation, with little evidence for 

shifts in speed-accuracy trade-off or bias. 
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Figure 7. Estimates of thresholds. The shapes indicate the posterior means and the error bars correspond to the 

mean plus or minus the posterior standard deviation. 

 

Table 3  

Tests of differences in thresholds across automated and manual conditions. We depict Z(p), where Z is the 

posterior mean of the parameter difference divided by its standard deviation, and p is the one-tailed posterior 

probability against their being an effect. 

Accumulator  Session one Session two 

Conflict 1.44 (0.073) 3.18 (<.001) 

Non-conflict  -0.54 (0.299) 2.09 (0.019) 
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Discussion 

We used a quantitative model to illuminate the cognitive processes by which humans 

use automation in an ATC conflict detection task. The automated decision aid increased 

accuracy when correct but decreased accuracy when incorrect. Correct RTs were longer when 

the decision aid was incorrect, demonstrating an RT cost from failed automation. Our 

evidence-accumulation model provided a good fit to the effects of automation use, indicating 

that advice from the decision aid was primarily integrated into the decision by inhibiting 

evidence towards the response incongruent with that advice.  

Participants may have used inhibition to integrate the decision aid advice because this 

would increase accuracy without directly increasing the evidence (excitation) in either 

response accumulator, thereby avoiding the risk that decisions could be made solely based on 

the decision aid (i.e., complete reliance on automation inputs). Although we also found small 

excitation effects, it is unlikely that this was strong enough to trigger a response without 

sampling task information (stimulus inputs). Supplementary analyses, including simulations 

and exploration of individual differences, provided further support for the idea that inhibition 

can improve accuracy while minimizing misuse, whereas excitation can lead to risk of 

misuse. 

The asymmetry observed between automation-induced inhibition and excitation may 

reflect a broader property of human information processing. In conflict tasks such as the 

Stroop task, participants are slower to respond to stimuli with incongruent dimensions (e.g., 

identifying that the word “red” is printed in green) than without (e.g., identifying the word 

“stage” is printed in green), referred to as interference (MacLeod, 1991; also see the picture-

word interference task; Starreveld & La Heij, 2017). Participants can also be faster to identify 

stimuli with two congruent dimensions (e.g., identifying the word “green” is printed in green) 

than without, referred to as facilitation, however, this effect is much smaller (MacLeod, 
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1991). This asymmetry mirrors our results, in which decision aids cause strong inhibition, but 

only weak excitation. However, in our task, participants were aware that the decision aid was 

informative, and were encouraged to integrate it with stimulus inputs, whereas in Stroop they 

are requested to base decisions solely on one information source. Stroop conflict is attributed 

to interference from an automatically retrieved competing response, whereas in our model, 

inhibition arises due to mismatching inputs. Nonetheless, both our task and conflict tasks 

require participants to execute a response potentially cued by two conflicting sources of 

information, and thus it is reasonable to expect similarities in the underlying processes.  

The success of our model in accounting for the effects of automation is a critical first 

step to moving beyond identifying disparate factors affecting automation use, and towards the 

identification and quantification of the cognitive mechanisms underlying automation use. Our 

tractable quantitative modelling framework has the potential to be able to be used to 

generalize and unify findings across the automation literature. 

Practical Implications 

To the extent that humans integrate decision aids into their decisions via inhibition, 

rather than excitation, incorrect decision aids are likely to slow RTs. Thus, in situations with 

high time pressure, providing imperfect decision aids may produce undesirable RT costs. 

However, in situations without time pressure, inhibition may boost accuracy, making decision 

aids desirable. Had we found that decision aids caused excitation, rather than inhibition, this 

would suggest decision aids can speed up performance and alleviate time pressure, but this 

was not the case. Given the apparent importance of inhibition for interacting with automation, 

inhibitory abilities may be a desirable quality to either train or select for in work contexts that 

require humans to interact with less than perfect decision aids. However, more work is 

needed to identify the boundary conditions under which inhibition is the mechanism 

underlying automation use. For example, our task did not require visual search, whereas 
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many dynamic display tasks do. In situations where automation can reliably direct visual 

attention, it seems likely it would improve rather than cost RT.  

In many human factors studies, including in field settings, there may not be enough 

observations to directly apply our model. Fortunately, our findings highlighted a 

characteristic pattern in the manifest data that was associated with inhibition. Accurate 

decision aids benefitted accuracy, inaccurate decision aids reduced accuracy, and inaccurate 

automation slowed mean RT. Identifying this pattern provides a means to identify inhibition 

mechanisms in situations that are more difficult to cognitively model, such as high-fidelity 

task simulations and field studies.  

A longer-term practical implication is the advancement of a human performance model 

of human-automation interaction, which could be used to predict performance and inform 

work design. With its dynamic decision ‘front end’ that predicts choice and RT, our model 

could provide a crucial link from performance data to cognitive architectures like ACT-R 

(Anderson & Lebiere, 2014), which in turn could be inputted to broader task network 

architectures like IMPRINT (Samms, 2010), to account for system-level work performance 

(Lebiere et al., 2005).  

Future Directions 

One key direction is to examine how the cognitive mechanisms underlying automation 

use change under different conditions. For example, the current automation was 

approximately equal to human ability. When using automation known to be more accurate 

than they are, humans may implement excitation-based strategies, possibly even to the extent 

that they routinely base their decisions solely on automation input. Similarly, the cognitive 

mechanisms underlying automation use may vary depending on the relative cost of errors 

when automation fails and succeeds. We instructed participants in a way that made the 

possibility of automation failure salient (incorrectly agreeing with automation was more 
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costly than incorrectly disagreeing), to encourage them not to rely entirely automation. If 

instead the cost of accepting faulty automated advice is low, the mechanisms underlying 

automation use may differ. Another direction is to extend our model to account for the effects 

of time on task and practice. Our supplemental analysis suggested that in participants’ second 

experimental session, inhibition and subsequent behavioural effects, although remaining 

substantial, were reduced. This suggests it would be fruitful to pursue future studies that 

examine models of automation incorporating learning and adaptive processes.  
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