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ABSTRACT

Compared with low frequency data, high frequency data exhibit distinct empir-
ical properties, including, for instance, essentially discontinuous evolution paths,
time-varying intensities, and self-exciting features. All these make it more challeng-
ing to model appropriately the dynamics associated with high frequency data such
as order arrival and price formation. To capture more accurately the microscopic
structures and properties pertaining to the limit order books, this paper focuses on
modeling high frequency data using Hawkes processes. Two models, one with expo-
nential kernels and the other with power-law kernels, are introduced systematically,
algorithmized precisely, and compared with each other extensively from various per-
spectives, including the goodness of fit to the original data and the computational
time in searching for the maximum likelihood estimator, with search algorithm being
taken into consideration as well. To measure the goodness of fit, a number of quanti-
ties are proposed. Studies based on both multiple-trading-day data of one stock and
multiple-stock data on one trading day indicate that Hawkes processes with slowly-
decaying kernels are able to reproduce the intensity of jumps in the price processes
more accurately. The results suggest that Hawkes processes with power-law kernels
and their implied long memory nature of self-excitation phenomena could, on the
level of microstructure, serve as a realistic model for high frequency data.

KEYWORDS
Hawkes processes; high frequency financial data; intensity kernel; maximum
likelihood estimation; sample-path simulation

1. Introduction

In financial markets, the evolution of prices is driven by the interaction of buy and
sell orders. Nowadays, more and more equity exchanges have been organized as order-
driven markets, where orders are aggregated in a limit order book, which states quanti-
ties posted at each price level and is available to market participants. This new system
makes it possible for high-frequency trading, a program trading platform with power-
ful computers using complex algorithms to analyze multiple markets and to execute
orders based on market conditions at very fast speeds.

For high-frequency trading, it requires modeling the microstructure of the target
market, based on which sophisticated techniques may be implemented. Intuitively, by
modeling the dynamics of a limit order book, information on the current state of the
book may be utilized to predict its short-term behavior. Fundamentally, models of
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evolution. Practically, investors and trading desks may employ such models to design
trading strategies and optimize trade execution (Alfonsi et al., 2010; Obizhaeva and
Wang, 2013).

Due to the complexity involved, it has been a challenge to formulate the dynamics
of a limit order book, particularly with models both statistically realistic and quan-
titatively analytical, in which case practical measures such as goodness of fit may
naturally be more readily defined and evaluated. Equilibrium models, which use game
theory to incorporate strategic interaction between traders, shed light on the price for-
mation process, but with unobservable parameters indicating agent preferences (Fou-
cault et al., 2005; Parlour, 1998; Rosu, 2009). This makes them difficult to be applied
in reality. Empirical studies on properties of limit order books highlight statistical fea-
tures of order book dynamics, which somehow are usually unrealistic to be described
in a single model (Bouchaud et al., 2002; Doyne Farmer et al., 2004; Hollifield et al.,
2004). Meanwhile, most existing stochastic models assume steady-state distributions,
which are not necessarily verified by real high frequency data (Bouchaud et al., 2009;
Cont et al., 2010; Luckock, 2003; Maslov and Mills, 2001; Smith et al., 2003).

Point processes, in particular Hawkes processes, on the other hand, can be adopt-
ed to describe directly event times of an underlying system, without pre-conditions
assumed in the aforementioned models. This makes them more natural and suitable
to model high frequency data, for example, order arrival and microstructure noise
(Abergel et al., 2016; Bacry et al., 2015; Bauwens and Hautsch, 2009; Hawkes, 2018).

Hawkes processes with different kernels exhibit distinct behaviors, as partially il-
lustrated by the preliminary results (Zhang, 2016). This paper focuses on a relatively
complete and systematic study of the differences between exponential kernels and
power-law kernels in modeling high frequency financial data, based on which an ap-
propriate model can be identified. The results may then be adopted and applied readily
by practitioners directly or indirectly as well as other researchers for possible further
studies in high frequency trading as well as other related fields.

It is hoped that the study can make Hawkes-based models, which are analytically
tractable and possess flexible statistical properties, more visible to the community,
so that it may be applied in an even broader range of fields. In particular, although
Hawkes-based models for high frequency financial data have been more favorably ad-
dressed recently, so far it has not been seen intensively explicit results on real data.
The main focus in the literature has been more on Hawkes processes with exponen-
tial kernels. Power-law kernels have been referred to but have not been systematically
looked into, including the distinction from the exponential kernels from the practical
and computational perspectives. Compared with most of the existing literature, this
is one of the very first to present complete first-hand results on real data, particularly
the model with power-law kernels. In addition, since in the literature it still lacks the-
oretical results on the differences between the two models for high frequency financial
data, a further hope is then to call for deeper analytical studies behind the empirical
results demonstrated in this paper.

In the following Section 2, Hawkes processes and the associated properties are dis-
cussed, with models based on Hawkes processes being introduced in Section 3. A
detailed study is then carried out in Section 4 on the models for describing high fre-
quency financial data to investigate the differences between them from a variety of
perspectives. Section 5 outlines directions for possible future work.
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2. Point Processes to Hawkes Processes

Hawkes processes share a number of fine properties of the more generic point processes,
which are hence briefly introduced first.

2.1. Point Processes

A point process is a random collection of points falling in a certain space, in general
with each point representing the time (location) of an event such as a lightning strike
or earthquake. To describe event-time based phenomena whose underlying systems
move essentially by jumps, for example, the evolution of stock prices, point processes
have been proved to be powerful tools (Daley and Vere-Jones, 2003, 2008).

Let (§2, F,P) be a complete probability space with a filtration F = {F;};er of
o-algebras satisfying the usual conditions. Recall that a point process N is orderly if

I P(Nt1an > 1)
m

=0,Vt
At—0 At R

where Ny 11 aq is the number of points occurring in (¢, ¢ + At] (Khinchine, 1969). The
process {V; }+er, where V; is the number of points occurring before or at ¢, is called
the associated counting process. The complete intensity function of N is defined by

\ T P(N(t,t+At] > 0]F;)
t = 1m .
At—0 At

(1)

If Fo has a specified distribution, then for a given function A = {A:}+>0, there exists
at most one orderly point process in [0, 00) satisfying (1) and A determines the joint
interval distribution (Hawkes and Oakes, 1974). That is, for the event times {t;}r>1
With 0 <t <to < -+,

P(t; <a1|Fo) =1—exp (— /0961 Asds) (2)

and

Pty < zg|Fo,t1 = @1, ,tgo1 = Tp—1) = 1 —exp ( —/ Asds). (3)

Tk—1

If E[\] exists, then

b
ENoo) = [ ElAds

and for a stationary point process N, E[)\;] is constant.

2.2. Hawkes Processes

Among others, a particularly interesting class of point processes is Hawkes processes,
which are mathematically tractable and integrate two linear representations in one
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model, one for clustering and the other for conditional intensity (Hawkes, 1971; Vere-
Jones, 1970). Since it was introduced, Hawkes process has been widely applied in, for
instance, seismology, shot noises, biology, and criminology (Brémaud and Massoulié,
2002; Coleman and Gastwirth, 1969; Mohler et al., 2011; Ogata, 1999; Reynaud-Bouret
and Schbath, 2010; Zhuang et al., 2002). More recently, it has gradually become a
popular tool in finance, from estimating VaR and valuing credit derivatives to modeling
market event data, microstructure noise, and clusters of extremes (Bacry and Muzy,
2014; Chavez-Demoulin et al., 2005; Chavez-Demoulin and McNeil, 2012; Embrechts
et al., 2011; Errais et al., 2010; Giesecke et al., 2011; Zheng et al., 2014).

A Hawkes process N = {/V;}+cr in one dimension is a counting process defined by
the intensity, or the rate of arrival of events, A,

t
At = p+ / ¢t—sdNs = p + Z Gt—t,, (4)

t;<t

where 1t is a deterministic base intensity and the decay kernel ¢ represents the positive
influence of past events ¢; on the current value of the intensity process. In (4), the
range of the integral is (—oc,t) instead of (—oo,t]. This guarantees the predicability
of A (Ogata, 1978). For stationarity, it is assumed that g > 0, ¢ > 0,Vs > 0, and

/OOO Psds < 1. (5)

By the assumptions and the condition that E[)\;] is constant, it follows that

t [e%¢]
BM = Elnt [ i) =+ BN [ duds

which gives

I
E[)‘t] - 1 _ fooo (bst.

In addition, in this case, the interval distributions introduced in (2) and (3) can be
expressed explicitly and can in principle be used for predicting future events (Hawkes
and Oakes, 1974). Regarding existence and uniqueness, it has been proved that if
>0, ¢ >0,Vs > 0, and (5) is satisfied, then there exists a unique stationary
orderly process of finite rate whose complete intensity function is given by (4). Similar
results hold for mutually-exciting processes.

A stationary Hawkes process is thus essentially an immigrant-birth process, com-
posed of a homogeneous Poisson immigrant with rate ¢ and nonhomogeneous Poisson
descendants with rate ¢s. Accordingly, a Hawkes-based model exhibits self-exciting
behavior. That is, the arrival of one event increases the probability of occurrence of
new ones, or Cov(N(s, Niy) > 0, s <t < u, where N, is the number of points
occurring in (s,t] of the underlying process. If Cov(N,y, N(zy)) < 0, it is called a
self-correcting model, which is used in fields such as ecology and forestry to capture
occurrences that are well-dispersed (Isham and Westcott, 1979; Ogata and Vere-Jones,
1984).

For a d-dimensional multivariate mutually-exciting Hawkes process, the intensity
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function is given by
A;:w+2/ o7 dNJi=1,...,d, (6)
j=1"7%°

where qﬁj >0,Vs >0,i,7 =1,...,d. For stationarity, it is assumed that

the moduli of all eigenvalues of the matrix ® = (¢¥ )szl are less than one,  (7)

where ¢ = fooo ¢§jds,i,j =1,...,d.
For a stationary Hawkes process, the following statement holds (Hawkes, 1971).

Proposition 2.1. Let N = {N;}ier be a stationary Hawkes process whose intensity
is defined by (6). Then

E[Nt] = (I - q))_llutv

where I is the identity matriz, ® is as defined in (7), and p= (', ..., puHT.

2.2.1. Maximum Likelihood Estimation

To model an underlying system with a Hawkes process, a key step is to estimate the
parameters, which requires the calculation of the log-likelihood function.

Let T € (0,00). For a point process with conditional intensity A\ = A¢(), if the law
of the process is absolutely continuous w.r.t. that of a stationary standard Poisson
process, then the log-likelihood function on [0, 7] is given by

T T
r = A t— t )
LT(9) = /0 In A (6)dN, /0 A (0)dt (8)

which is used for maximum likelihood estimation of ¢ = (6?);. The estimator is obtained
as

07 = arg max LT(0).

As for the asymptotic properties, under certain assumptions, the maximum likeli-
hood estimator for sufficiently large T is consistent, asymptotically normal, and effi-
cient (Lewis, 1969; Ogata, 1978). Specifically, as T — oo, 67 converges in probability
to the true value 0%, that is,

lim P(|07 —6*| > &) = 0,Ve >0,
T—o00

VT(OT = 0*) ~ N (0, 1(6%)7Y),

10X OA

the variance.

]9:9*)”,, and 67 asymptotically reaches the lower bound of
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2.2.2. Sample-Path Simulation

For modeling and prediction purpose, an efficient algorithm is in demand to simulate
sample paths. For nonhomogeneous Poisson processes, there have existed a number of
simulating methods (Lewis and Shedler, 1976, 1979a,b). For a Hawkes process, it can
be simulated by a thinning algorithm based on Proposition 2.2 (Ogata, 1981).

Proposition 2.2. Let T € (0,00) and (2, F, P) be a complete probability space with

a filiration F = {Fi}icpo,m) of o-algebras satisfying the usual conditions. Consider a
multivariate point process N = { N} gé""’d on the interval (0,T] with joint intensity
A= {)\i f;(l)d Suppose it can be found a one-dimensional F-predictable point process

N = {]\7,:},20 with intensity function A= {S\t}tZO such that

d
Z)\,’; < A, Vit € (0,T], P-almost surely.
i=1
Letty,ta, ... tn, be the points of N on the interval (0,T]. Fork=1,2,...,n7, mark ty,
.,d. Then the points with marks i = 1,...,d provide

AL
as i with probability ;\f’“,
tk

a copy of N.

In Proposition 2.2, A\ is usually a piecewise-constant process changing its rate ac-
cording to the past hlstory By the predictability of )\, the three processes, \, {1},
and {t;}, are constructed sequentially. In particular, in the case of a one-dimensional
Poisson process, the steps are as follows:

e Suppose that the last point ¢; before time ¢ has been obtained. Then construct
)\t, which is F;,-measurable, piecewise constant, and satisfies N > A, VE >ty
e Simulate homogeneous Poisson points (> t;) according to the intensity Ae;

e For each of the points {#;}, the probablhty 2 i given conditionally independent

e

of ¢, under the past history Fis
e t;.1 is the first accepted point among 5 (> t;).

3. Hawkes-Based Models

It has been empirically observed that order flow exhibits those properties such as
time-varying intensity, autocorrelations in event arrivals, cross-correlations in arrival
rates of different order types, conditional properties, and self-exciting features. Most
of them are not appropriately captured by Poisson point processes (Chakraborti et al.,
2011).

Hawkes processes possess flexible statistical properties allowing to incorporate au-
tocorrelations, self-exciting and mutually-exciting features. Unlike time-series models
such as ACD-GARCH, they remain analytically tractable. Likelihood functions, con-
ditional distributions, moments, Laplace transforms, and characteristic functions can
all be computed analytically or by solving ODEs. For this, recently they have been
more favorably applied to model high frequency financial data (Abergel and Jedidi,
2011; Bacry et al., 2012, 2016; Bormetti et al., 2015; Cont, 2011; Filimonov et al.,
2014; Filimonov and Sornette, 2012; Lee and Seo, 2017). For example, order arrival in
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a single market can be modeled as a mutually-exciting multivariate point process, by
categorizing orders and cancelations into several types (Bowsher, 2007; Large, 2007).

As the Epps effect (Epps, 1979), microstructure noise is a stylized fact in high
frequency financial data (Ait-Sahalia et al., 2005, 2011; Barndorff-Nielsen et al., 2008;
Robert and Rosenbaum, 2011; Rosenbaum, 2011). It captures the property that on the
microscopic scales, an upward jump in price is more likely to be followed by a downward
jump and vice versa. This provides a perspective for microeconomic analysis of price
manipulation. On the other hand, the Epps effect states that the empirical correlation
between two assets vanishes on fine scales. When the scale goes coarser, both effects
become less significant and a diffusion starts to dominate (Bacry et al., 2013b).

For the price evolution of an asset, assume that the asset is traded in a single market
and that the price moves by one tick at most, then it can be modeled using a Hawkes
process (Bacry et al., 2013a). Let Py be the price at time 0. Then

P, = Py+ N} — N2, (9)

where N/ is the number of upward jumps and N7 is that of downward jumps between
0 and t. The intensities of N} and N? are A} and A2, respectively, with

A=t 4 Z/O ¢ dNI i =1,2, (10)
j=1

where ¢¢ > 0,Vs > 0,4, = 1,2.

Hawkes processes with different kernels exhibit distinct behaviors. This paper fo-
cuses on studying the differences between the two models whose intensities are defined
below by (11) and (12), respectively.

3.1. Model with Exponential Kernels

As a parameterization of the kernels in (6), the case that ¢¥ = a¥e™?"¢ with o/ > 0,
B9 > 0, and g—j < 1,14,7 =1,...,d is the most studied one (Ozaki, 1979). This is
partially due to the unique properties of exponential functions which lead to the pos-
sibility of closed-form expressions and recursive computation of quantities of interest.

In particular, in (10) if ¢¥ = a/e=P"* then the intensities of N! and N7 are given
explicitly by

2 t ij

i Z @ Jo;

)\t_,u + AmdNS,Z—1,2, (11)
i=1

where & > 0, Y > 0, and o‘—j <1,i,j=1,2.
Denote

iy
N
)
)
)

|QE|Q
e
|QE|Q
o
NN

| I

then by Proposition 2.1,

E[Nt] - (I - q))_llutv

EN{
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where T is the identity matrix and pu = (ut, u?)7.
Let {t;} and {2} be the event times of N' and N?, respectively. Then by (8), the
log-likelihood function on the time interval [0, 7] is

2
L7(0) = 3" Li(),
i=1

where for i = 1,2,

2
S [+ Y Y et ] < 23 3 O

L) =

6. <T J=1 ] <ty j= 1tJ<T

2
S s SR T - Y S S

ti<T j=1 j= ltJ<T

with
e_ﬁij(t;c_t;c—l)Rij(k_l)_'_ Z e_/Bij(ﬁ‘c—t{)7 Z#],
RU(k) = —BY(th—t]) _ L=
( ) € by St <ty

t <ti e—ﬁ"j(ti—tiﬂ)(l + Rij(k‘ _ 1))7 i=j.

The maximum likelihood estimator of § = ((u'), (%), (87),i,j = 1,2) is then ob-
tained as

07 = arg max LT(0).

By Proposition 2.2, a Hawkes process with exponential kernels can be readily sim-
ulated. In one dimension where

b
)\t:M+/O mdl\f&

a standard algorithm is as follows:

e Initialization: Set k =1 and A* = p
e First Event: Generate U ~ U 1) and set s = —/\—1* InU
o If s <T, set t; = s. Otherwise, go to Output
e General Routine: Set k =k + 1
o Update Maximum Intensity: Set \* = XA, |, + «
o New Event: Generate U ~ U1 and set s = s — %ln U; If s >T, go to
Output
o Rejection Test: Generate V ~ U 1}; If V' < %f, set t; = s and go to General
Routine, else update A* = A; and go to New Event
e Output: Retrieve the simulated process {t;} on [0, 7]

Multi-dimensional processes can be simulated by following similar steps.
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3.2. Model with Power-Law Kernels

It has been observed that Hawkes processes with power-law kernels describe certain
phenomena more accurately than exponential kernels (Vere-Jones, 1970). Take ¢g =

W with o/ > 0, % > 1, and 4% > 0, 4,j = 1, 2, then explicitly (10) becomes

Al = “*Z/ (t—s+w ﬁde =1,2. (12)

Assume that the moduli of all eigenvalues of the matrix

11 12

87 87

(81— 1;/11/311 1 (B12— 1);/12/312 1

« o
(821 — 1),\/21/321 1 (B22— 1),\/22/322 1

@:

are less than one. Then by (7) and Proposition 2.1,

E[Nt] = (I - q))_llutv

where T is the identity matrix and pu = (ut, u?)7.
Let {t;} and {2} be the event times of N' and N?, respectively. Then by (8) and
(12), the closed-form log-likelihood function is

2
L7(0)= 3" Li(),
i=1

where for i = 1,2,

2 ij A
L) = Y Iy ZZ%_ )T

] +71)%"

ti<T let{<t;;
j= 1tJ<T (T —t, + )

The maximum likelihood estimator of 6 = ((uf), (™), (8Y), (v9),4,7 = 1,2) is given
by

07 = arg max LT(0).

By Proposition 2.2, the process given in (12) can be simulated as follows:
e Initialization: Set k= 1,k* = 1,5 =1,2, and \* = )y = Z?Zl 7%
¢ First Event: Generate U ~Up,1) and set s = —i InU
o Ifs <T,| generate Vo~ Z/I[O 1) and set t1 = t1 =swhere j =1if V <& ~ and

J=2if & <V <E ;“ = 1. Otherwise, go to Output
e General Routine: Set k =k + 1 and ¥/ = kJ + 1
o Update Maximum Intensity: Set \* = Z A, t Zz 1 ”5”
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o New Event: Generate U ~ U1 and set s = s — %ln U; If s >T, go to
Output ‘

o Attribution-Rejection Test: Generate V ~ U 1p; If V' < Z}—l’\, set tij =
tkzswherejzlifVSi—%andj:Qifi—%<V§ ’\i;’\g,andgoto
General Routine, else update \* = 23:1 AL and go to New Event

¢ Output: Retrieve the simulated process {(t}.)}i=12 on [0,T]

4. Empirical Study

The two models (11) and (12) are carefully and rigorously computerized in MATLAB,
which is probably among the first to see in the literature. Since the focus is on the
distinction between the two types of kernels, the underlying price process does not
affect the result and the studies are hence based on the best bid. For consistency,
the same price process (9) is assumed, where P = {P;};>0 denotes the best bid,
N' = {N}};>0 the number of upward jumps with intensity A\', and N2 = {N?};>0 the
number of downward jumps with intensity A2. To verify the assumption, the jump sizes
of the best bid of ERICB (Ericsson Telephone Company) are examined for the trading
day (9:00-17:30) of September 7th, 2012 on five exchanges, namely BATS Europe
(BATE), Nasdaq OMX Stockholm (BOOK), Burgundy (BURG), Chi-X (CHIX), and
Turquoise (TRQX). As shown in Table 1, overall more than 97% (2222 = 0.9758) and
on the exchange CHIX over 98% (% = 0.9868) jumps are 1 tick only. It is thus
reasonable to first assume that the best bid moves by 1 tick for each jump. This is
further backed up by what is revealed in Table 2, which presents jump sizes of the
best bid of ERICB on all trading days in September 2012.

BATE BOOK BURG CHIX TRQX | Overall
1 tick 1334 1295 1391 1719 1533 7272

2 ticks 18 19 18 9 10 74
3 ticks 10 2 8 9 3 32
> 3 ticks 12 14 36 ) 7 74

Total 1374 1330 1453 1742 1553 7452
Table 1. Jumps of Best Bid of ERICB on Five Exchanges on 07/09/2012

BATE BOOK BURG CHIX TRQX | Overall
1 tick | 19283 15124 16047 26037 21385 97876

2 ticks 694 223 356 308 233 1814

3 ticks 216 62 86 134 66 564

> 3 ticks 216 193 448 109 271 1237

Total | 20409 15602 16937 26588 21955 | 101491
Table 2. Jumps of Best Bid of ERICB on Five Exchanges in 09/2012

To ensure that the data are in precise accordance with the models, in the following
numerical studies, jumps larger than 1 tick are adjusted to be 1 tick. Since the models
describe the event times of jumps, not the sizes of jumps, the adjustment does not
affect the estimation. In addition, as the event times in the original data are truncated
to be in milliseconds, upward and downward jumps occur within the same millisecond
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are then canceled one and another to reduce the possibility of multiple jumps occurring
at the same time.

Assume N' and N? are both self-exciting and mutually-exciting. For efficiency in
estimating the parameters, let o'l = a??, a'? = o2, g1 = %22, g2 = 32!, and
M = 412 = 421 = 422 i (11) and (12), respectively.

For a general picture of price evolution, Figure 1 and Figure 2, respectively, illustrate
the original evolution path, the adjusted evolution path, a randomly-simulated sample
path, and a randomly-resimulated sample path based on the estimated parameters
using the two models with exponential kernels and power-law kernels for the best bid
of ERICB on CHIX on 06/09/2012.

Evolution paths of best bid from 09:00 to 17:30
62—

—— Original Path
Adjusted path

61.5— b --- Simulated path

‘il - - - Re-simulated path|

Price (SEK)

58—

5 | 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7,

509:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:.00 14:30 15:00 1530 16:00 16:30 17.00 17:30
Time

Figure 1. Price Evolution Paths Using a Model with Exponential Kernels for Best Bid of ERICB on CHIX
on 06/09/2012

For a better resolution and an even clearer view, the corresponding sample paths for
a two-hour period (10:00-12:00) are displayed in Figure 3 and Figure 4, respectively.

4.1. Goodness of Fit

For the goodness of fit of a model, residual analysis is often employed (Ogata, 1988).
However, residual analysis is not consistently robust to reject the false model (Fil-
imonov and Sornette, 2015). Meanwhile, the focus of this paper is on examining the
two models to identify the more appropriate one for high frequency financial data. The
analysis is hence based on a set of proposed measures instead, potentially to provide
an alternative option for similar studies as well.

To study the goodness of fit of the two models with the real data, a number of
measures are introduced first.

Denote the time interval as (0, 7] after being shifted. Let N and N? be the numbers
of upward and downward jumps, respectively, and Ppax and Py, be the maximum
and minimum prices observed, respectively, of the price evolution path P = {Pt}te(o,T]

of the }real daAta. Accordingly, N 1, N 2, Ij)ma)u and If’min are the counterparts of a sample
path P = {P},c0,1) generated from a model with the estimation of the parameters
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Evolution paths of best bid from 09:00 to 17:30

—— Original Path
Adjusted path

- Simulated path

- - - Re-simulated path|

Price (SEK)

1 L 1 L L L L L L L L 1 1 L L L L
SSIOO 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14.00 14:30 15:00 1530 16:00 16:30 17.00 17:30
Time

Figure 2. Price Evolution Paths Using a Model with Power-Law Kernels for Best Bid of ERICB on CHIX
on 06/09/2012

Evolution paths of best bid from 10:00 to 12:00

— Original Path
Adjusted path
-~ Simulated path
- - Re-simulated path|

?BIUU 10‘130 11:00 11‘:30 12‘:00
Figure 3. Price Evolution Paths Using a Model with Exponential Kernels for Best Bid of ERICB on CHIX

in Two Hours on 06/09/2012

(&, &, B, ). N; is the estimated value of E[N¢] given in Proposition 2.1.
First, let

s(0) = 13 Pousl = Ban()

)
=1 Pmax - Pmin

where L is the number of simulated paths, Pmax(l) and If’min(l) are the highest and

lowest prices observed from the [th simulated sample path, respectively. S thus mea-
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Evolution paths of best bid from 10:00 to 12:00

— Original Path

: Adjusted path

N - - Simulated path
i - - - Re-simulated path

[ Ih_[l_l ||| |

1 L 1 |
:00 10:30 11:00 11:30 12:00
Time

803

Figure 4. Price Evolution Paths Using a Model with Power-Law Kernels for Best Bid of ERICB on CHIX
in Two Hours on 06/09/2012

sures the price fluctuation of the simulated paths relative to that of the real data. The
closer S to 1 is, generally the more stable a model is to capture price movement.
For i = 1,2, denote

L A . .
i Lo [V'(l) — N'|
Ri(L)=7Y —
=1

Here R’ indicates how far N’ diverges from N’ and so how well the underlying model

fits the data in terms of number of jumps. The smaller R’ is, the less discrimination

between N and N is and so the better the process models the intensity of jumps.
Next, define

L M |pnTi 1
Fri 1 ‘N(tmfl,tm](l) _N(tm—utm]‘ :
UL)=7> 3 N =12

=1 m=1

and

L T
A 1 .
V=13 [ 1B =P,
=1

where {t,, }m=01.. 0 is an even partition of the time interval (0,7 with ¢y = 0 and

IEEREEE)

tu =T, N(it ot is the number of jumps within (¢,,—1, ¢, from the real data, and
N? ](l) is that of the [th simulated sample path. f]i,i = 1,2 hence measure the

(tm—1,tm
overall discrepancy between the simulated paths and the evolution path from the real

data in both intensity and clustering of jumps. The smaller f]i,i = 1,2 are, the better
a model fits the real data. In this paper, if without being specified explicitly, it is
taken that ¢, —tm—1 = 1s, m = 1,..., M. From a different perspective, V' measures
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the total divergence of the simulated paths from the original evolution path. Hence in
general, a model with a smaller V fits the real data better.

_ To assess the estimated results, a one-sample Student’s {-test is undertaken for each
N? i =1,2 from each model. For each test, let Z be the sample mean, s the sample
standard deviation, and n the number of sample paths generated. Then, to verify the
null hypothesis that the population mean associated with a model is equal to the
corresponding value pp of the real data, the t-statistic is obtained as

The degree of freedom is n — 1.

To investigate whether there is a discrepancy between the estimated results from
the two models, i.e., the null hypothesis that the two population means of the two
models are equal, a Welch s t-test is conducted for each of N i U i 5’ and V i=1,2.
Since the same number of sample paths n are generated for both models7 for each test,
the t-statistic is then

and the degree of freedom is

L~ (511 53)°
si+s
n—1

>n—1,

i 3?, i = 1,2 are the sample mean and sample variance estimated from the

two models, respectively.

4.1.1. One Stock on One Trading Day

To evaluate the two models, 1000 sample paths are generated from each of them for the
best bid of ERICB on the exchange CHIX in a two-hour time period (10:00-12:00) on
September 6th, 2012. The estimated results, the Student’s t-tests for N, i = 1,2, and
the Welch’s t-tests for the measures are provided in Tables 3, 4, 5, respectively. The
Jarque-Bera tests given in Table 4 suggest that the numbers of jumps generally follow
normal distributions, which is complementarily verified visually by the histograms of
numbers of upward and downward jumps of the simulated paths from both models
respectively shown in Figures 7, 8, 9, and 10.

As shown in Table 5, the p-values of both N1 and N? are less than 0.01%, which
indicates that there is a significant difference between the numbers of both upward
and downward jumps estimated from the two models. This is further backed up by
the results presented in Table 4. For the model with power-law kernels, the p-values of
both N and N? are greater than 0.1%, which means with a significance level 0.001,
the null hypothesis that the mean numbers of both upward and downward jumps of the
simulated paths equal the counterparts of the real data cannot be rejected. It is hence
statistically verified that the intensity of jumps of the simulated path is in accordance
with that of the evolution path of the data. Clearly, this is not the case for the model
with exponential kernels, both p-values of which are far less than 0.01%, which tells
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Exponential Kernels | Power-Law Kernels
NT N? 60 67
Prax Pain 60.75 60.15
b 2 0.00000524  0.00000513 | 0.00000835  0.00000920
all @12 0.00020516  0.00113956 0.0025147  0.00000001
Bl p12 0.00077190  0.00774702 | 1.36345147  1.92390056
A1 — 0.99998405
N} N2 | 64.01972167 63.08666726 | 60.54599748  66.72305215

MLE of Best Bid of ERICB on CHIX from 10:00 to 12:00 on 06/09/2012

Exponential Kernels Power-Law Kernels
t-test Jarque-Bera Test t-test Jarque-Bera Test
Statistic p-value Statistic  p-value Statistic p-value Statistic p-value
Nt 9.437 15.021 0.0024 1.445 0.1489 5.136  0.0725
N2 -10.508 15.549  0.0021 -2.831  0.0047 1.034  0.5000

Table 4. Student’s t-tests and Jarque-Bera Test for Numbers of Jumps of Best Bid of ERICB on CHIX from
10:00 to 12:00 on 06/09/2012

An entry “-” means that the p-value is less than 0.0001.
Exponential Kernels Power-Law Kernels Welch’s ¢ Test
Mean Variance Mean Variance t-statistic  p-value
N1 | 63.43500000 132.49627127 | 60.34800000 58.03693293 7.072 -
N2 | 63.22500000 129.05943443 | 66.28000000 64.68628629 -6.941 —

S 1.61083333 0.29481634 | 1.47408333  0.22615865 5.991 —
U! 2.04268333 0.03661336 | 1.99013333  0.01635233 7.220 —
U2 1.92888060 0.02885839 | 1.97250746  0.01431305 -6.640 —

1% 0.87027389 0.27629331 | 0.64937867  0.13496205 10.893 —

Table 5. Welch’s t-tests for Best Bid of ERICB on CHIX from 10:00 to 12:00 on 06/09/2012

“_»

An entry means that the p-value is less than 0.0001.

that the null hypothesis should be rejected under the same significance level.

In Table 5, the p-values of both S and V are less than 0.01%, which implies that
the differences between the corresponding population means of the two models are
significant. The sample means of both measures of the model with power-law kernels
are less than the counterparts of the model with exponential kernels. This indicates
that the model with power-law kernels is more stable in capturing the price movement
and that on average the simulated paths diverge from the original price evolution
path less than the one with exponential kernels. The only measure that does not
differentiate the two models is U. The model with power-law kernels outperforms the
one with exponential kernels in U! and vice versa in U2. A plausible explanation of
this is that the two models result in different numbers of jumps of the simulated paths.
Larger number of jumps potentially leads to larger value of U, provided that jumps
do not occur intensively.

From the statistical studies, it can thus be inferred that overall the model with
power-law kernels fits the real data better than the one with exponential kernels. This
is further confirmed by the implications concluded in Sections 4.1.2 and 4.1.3.

15

URL: https://mc.manuscriptcentral.com/ors-jors



coNOTUVLL B WN =

couuuuuuuuuudbdDDBEDIEDDDBEDREDDWWWWWWWWWWNNNNNNNNNDN= =22 23 2 22020
owvwooONOUPPWN—_OUVONOOCULLDdDMDWN OOV OONOOCDULMPWN—_,rOVUOVUONOOCULLPDDWN—_LrOOVOUOOONODUEDWN=O

Journal of the Operational Research Society

4.1.2. One Stock on Multiple Trading Days

For robustness test on different trading days, the two models are further assessed on
data of all trading days in September 2012. For each trading day, 1000 sample paths
are generated for the best bid of ERICB on the exchange CHIX in a six-hour time
period (10:00-16:00). The Student’s t-tests for Ni, i =1,2 and the Welch’s t-tests for
the measures are reported in Tables 6 and 7, respectively.

N! N2
Date | N! Exponential Kernels Power-Law Kernels N? Exponential Kernels Power-Law Kernels
T s t* P T s t* PF T s t* p* z s t* p*
03/09 | 146 | 138.730 280 -13.728 - 146.334 143 0.884 0.3771 | 156 | 165.743 331  16.926 - 155.799 159 -0.504 0.6143
04/09 | 171 | 155.018 234 -33.004 171.320 184 0.745 0.4564 | 177 | 194.447 303  31.705 177.701 179  1.658 0.0976
05/09 | 328 | 323.807 961  -4.278 - 327.651 325 -0.612 0.5407 | 326 | 332.904 978 6.981 - 325.086 320 -1.615 0.1067
06/09 | 313 | 309.050 1067 -3.823 0.0001 | 311.990 305 -1.830 0.0676 | 309 | 315.863 1086 6.587 - 308.402 297 -1.096 0.2731
07/09 | 294 | 289.194 892  -5.089 - 293.689 288 -0.580 0.5622 | 323 | 325.662 888 2.825 0.0048 | 323.434 319 0.769 0.4423
10/09 | 236 | 209.105 414 -41.793 - 235.771 258 -0.451 0.6523 | 222 | 247.437 491  36.312 - 222.872 236 1.794 0.0731
11/09 | 281 | 247.828 585 -43.383 - 281.586 252 1.168 0.2433 | 267 | 301.312 649  42.608 - 267.522 267 1.010 0.3128
12/09 | 271 | 289.817 1397  15.922 - 272.087 258 2.139 0.0327 | 270 | 250.236 1202 -18.028 - 268.119 277 -3.576 0.0004
13/09 | 145 | 135.326 338 -16.630 - 145.017 149  0.044 0.9649 | 150 | 160.873 380  17.643 - 150.004 134 0.011 0.9912
14/09 | 206 | 187.393 452 -27.662 - 206.782 189  1.800 0.0721 | 187 | 207.505 457  30.317 - 187.890 183  2.079 0.0378
17/09 | 129 | 128.722 127  -0.779 0.4361 | 128.908 131 -0.254 0.7996 | 134 | 134.080 145 0.210 0.8334 | 133.974 132 -0.072 0.9429
18/09 | 195 | 181.518 458 -19.911 - 193.795 213 -2.613 0.0091 | 198 | 212.757 532  20.237 - 198.981 198 2206 0.0276
19/09 | 181 | 160.914 272 -38.511 = 180.954 169 -0.112 0.9108 | 181 | 200.159 315 34.115 - 181.188 184  0.439 0.6609
20/09 | 124 | 117.751 195 -14.146 - 124.102 126  0.288 0.7737 | 117 | 123.278 209 13.735 - 116.279 113 -2.146 0.0321
21/09 | 254 | 244.183 595 -12.731 - 253.487 256 -1.014 0.3106 | 262 | 271.738 640 12.174 - 261.550 261 -0.881 0.3785
24/09 | 113 | 104.272 225 -18.410 - 112,958 109 -0.127 0.8987 | 122 | 127.745 248 11.546 - 121.734 121 -0.766 0.4440
25/09 | 138 | 137.068 395 -1.484 0.1382 | 137.665 138 -0.903 0.3670 | 149 | 148.897 428 -0.157 0.8749 | 148.674 154 -0.830 0.4065
26/09 | 214 | 197.781 313 -28.967 - 213.299 229 -1.464 0.1434 | 220 | 236.581 347  28.137 - 220.137 221 0.292 0.7706
27/09 | 185 | 173.736 -1-12 -16.949 - 185.351 191 0.804 0.4217 | 197 | 208.626 512  16.251 - 197.108 202  0.240 0.8103
28/09 | 295 | 267.752 558 -36.480 294.481 310 -0.933 0.3512 | 297 | 326.710 611  38.013 297.256 311  0.459 0.6464
Table 6. Student s t-tests for Numbers of Jumps of Best Bid of ERICB on CHIX rom 10:00 to 16:00 in

09/2012

An entry “~” means that the p-value is less than 0.0001.
N1 N2 S R! R? Ut U? v
Date 7 7 7 i 7 7 * 7 7 7 * 7 7 7 7 i
03/09 | -11.687 - 14200 - 13243 - | 12332  — | 13403 - |-11.254 - 14511 - 2.945 0.0033
04/09 | -25.185 - 24133 - 28579 -~ | 16720 - | 18455 - |-24.696 - 24527 - 25783 -
05/09 | -3.390 0.0007 | 6.860 - 3.247 0.0012 | 15605  — | 15397 - 2456 0.0141 | 7.639 - 4501 -
06/09 | 2510 0.0122 | 6344 - |-10268 - | 17261 - | 17.486 - -1.306 0.1919 | 7344~ | -10.658 -
07/09 | -4.139 - 2.028 0.0427 | -2.851 0.0044 | 16483 - | 14357 - 3306 0.0010 | 2.873 0.0041 | 0.220 0.8258
10/09 | -32.524 - 28.813 - 15754~ [ 26193 - [23717 - | -31491 - 29245 - 40489 -
11/09 | -36.909 35311 - 33005 - | 3L032 - |20077 - |-34.920 - 35.655 - 52435 -
12/09 | 13782 - | -14.708 - 26.767 - | 23831 - | 24453 - 14134~ |-13.891 - 23326 -
13/09 | -13.884 - 15158 - 14124~ [15773 - |[17.370 - |-13.500 - 15243 - 11430 -
14/09 | -24.214  — 24506~ | -14414 - | 21703 - |22224 - |-238% - 243712 - 35609 -
17/09 | -0.366 0.7145 | 0.202 0.8403 | -0.118 0.9061 | -0.526 0.5992 | 1.865 0.0623 | -0.402 0.6878 | 0.190 0.8490 | -0.112 0.9107
18/09 | -14.986 - 16129 - 12797~ [ 15800 - [ 17479 - | -14.364 - 16.156 - 14.869 -
19/09 | -30.189 - 26.857 - 30349 -~ | 22566 - [ 20159 - [-29340 - 26363 - 28770 -
20/09 | -11.211 - 12337 - 7742~ 10030 - | 10622 - |-10874 - 12492 - 12220 -
21/09 | -10.089 - 10735 - 9208 -~ | 14959 - | 14837 - 9.014 - 11540 - 5766 -
24/09 | -15.039 - 9.906 - 9383 - | 15030 - | 11L175 - |-15.029 - 9.968 - 6.245 -
25/09 | -0.818 04133 | 0292 07701 | -7.709 - | 15056 - | 14100 - <0372 0.7101 | 0.900 0.3680 | -6.258 -
26/09 | -21.066 - 21.822 - 19.980 - [15369 - | 14801 - |-20402 - 21504 - 25517 -
27/09 | -14.607 - 13.630 - 16733~ [ 15800 - | 15820 - |-13.774 - 13849 - 5212 -
28/09 | -28.697 30.674 38.936 23.300 24.349 -27.740 30157 - 42232 -

Table 7. Welch’s t-tests for Best Bid of ERICB on CHIX from 10 00 to 16:00 in 09/2012

“

An entry means that the p-value is less than 0.0001.

In Tables 6, 7 and the following Tables 8, 9, z and s respectively represent the
sample mean and sample standard deviation of the corresponding Nt or N2, t* the
t-statistic, and p* the p-value.

As shown in Table 6, all forty p-values except six resulting from the model with
exponential kernels are less than 0.0001. In the meantime, the p-values of both N1
and N2 for all trading days from the model with power-law kernels are greater than
0.0001. This implies that with a significance level 0.0001, the null hypothesis that
the population means associated with the simulated paths equal the counterparts
observed from the real data should be rejected for almost all days for the model with
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exponential kernels and should not be rejected for any trading day for the model with
power-law kernels. This further restates what concluded from Table 4. Moreover, all
the forty p-values, except the one on N? of 25/09, from the model with exponential
kernels are less than the corresponding ones from the model with power-law kernels.
This is additionally illustrated by Figures 5, 6. That is, the curves resulting from
the model with power-law kernels almost surely overlap with the corresponding ones
from the real data, whereas those resulting from the model with exponential kernels
clearly sway away to some degree. Moreover, for the model with power-law kernels,
the null hypothesis that the population means associated with the simulated paths
equal the counterparts estimated from the real data should not be rejected for all
forty cases except two with a significance level 0.01 and for all forty cases except six
with a significance level 0.05. All these indicate that the model with power-law kernels
is consistently more stable than the one with exponential kernels in describing and
hence predicting the intensity of jumps for high frequency financial data.

From a closely related while slightly different perspective, Table 7 tells that there is a
significant discrepancy in the measures resulting from the two models. For U and U2,
the same implication holds as that in Section 4.1.1. Meanwhile, the resulting measure
from the model with power-law kernels, based on the t-statistics on the others, namely
]:21, ]:22, 5‘, and V, apparently outperforms that from the model with exponential
kernels in most cases. In particular, among the forty ¢-statistics related to R%,i =1, 2,
only one is nonpositive but still close to zero. The resulting t-statistics of all trading
days, except 17/09, are greater than 10. This further indicates that the model with
power-law kernels captures the intensity of jumps as well as the other features exhibited
by real data significantly better than the model with exponential kernels, which is in
consistence with what implied in Section 4.1.1.

Numbers of upward jumps of best bid on trading days in September 2012
T T T T T

-0~ Numbers of jumps of evolution path from real data
+ Mean numbers of jumps of simulated paths from model with exponential kernel
- @ Mean numbers of jumps of simulated paths from model with power-law kemels

300— : , —

03/09 04/09 05/09 06/09 07/09 10/09 11/09 12/09 13/09 14/09 17/09 18/09 19/09 20/09 21/09 24/09 25/09 26/09 27/09 28/09
Date

Figure 5. Numbers of Upward Jumps of Best Bid of ERICB on Trading Days in 09/2012

4.1.83. Multiple Stocks on One Trading Day

For robustness test on different stocks, the two models are examined further by using
data on October 1st, 2012 of ten stocks among those most liquid ones on the exchange
CHIX, including ATCOA (Atlas Copco), ELUXB (Electrolux), ERICB (Telefonak-
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Numbers of downward jumps of best bid on trading days in September 2012
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Figure 6. Numbers of Downward Jumps of Best Bid of ERICB on Trading Days in 09/2012

tiebolaget LM Ericsson), HMB (Hennes & Mauritz), NDA (Nordea Bank), SAND
(Sandvik), SEBA (Skandinaviska Enskilda Banken), SKFA (SKF), SWEDA (Swed-
bank), and VOLVB (Volvo). The results are presented in Tables 8 and 9.

N1 N2
Stock | N1 Exponential Kernels Power-Law Kernels N? Exponential Kernels Power-Law Kernels
z s t* P z s a p* z s t* P z s t* p*
ATCOA | 275 | 277.371 524 3.276 0.0011 | 273.250 257 -3.437 0.0006 | 260 | 258.402 479 -2.178 0.0296 | 250.531 235 -0.960 03371
ELUXB | 241 | 242.553 454  2.305 0.0214 | 240.782 239 -0.446 0.6555 | 228 | 227.788 390  -0.339 0.7343 | 227.965 227 -0.073 0.9414
ERICB | 144 | 148.147 261  8.113 142,884 137 -3.014 00026 | 150 | 146185 257  -7.520 150153 153 0391 0.6958

HMB | 383 | 417.958 1219 31.660 382331 362 -1.112 0.2666 | 404 | 365.619 1033 -37.762 403370 395 -1.003 0.3162

NDA | 102 | 108.542 170 15.884 102.406 109  1.227 0.2201 | 101 93.740 141 -19.314 101.113 102  0.354 0.7238
SAND | 331 | 344.830 665 16.958 329.040 341 -3.354 0.0008 | 328 | 314.909 604 -16.837 328.716 338 1.231 0.2186

SEBA | 182 | 196.789 380 23.997 180.806 173 -2.868 0.0042 | 179 | 163.782 319 -26.935 177.365 175 -3.908 0.0001

SKFA | 135 | 131.414 270 -6.907 133.941 127 -2.973 0.0030 | 129 | 132.619 264 7.038 128.287 125 -2.015 0.0441
SWEDA | 160 | 175.256 366 25.216 159.653 160 -0.866 0.3866 | 150 | 135.384 285 -27.388 149.995 155 -0.013 0.9899
VOLVB | 353 | 381.474 749 32.895 353.295 331 0.513 0.6082 | 365 | 336.849 626 -35.591 364.266 357 -1.228 0.2198
Table 8. Student’s ¢-tests for Numbers of Jumps of Best Bid of Ten Stocks from 10:00 to 16:00 on 01/10/2012
An entry “~” means that the p-value is less than 0.0001.

o LA i 5 A i ot o v
ATCOA | 4.655 -1.233  0.2179 5.524 10.020 10.542 5.360 e -0.324 0.7460 | 1.961 0.0500
ELUXB | 2.128 0.0335 | -0.225 0.8217 4.255 9.049 8.038 3.068 0.0022 0.914 0.3607 | 2.290 0.0221
ERICB | 8.338 -6.193 -6.640 10.183 9.185 8.698 = -5.537 6.646

HMB | 28.331 -31.594 22.006 25.712 28.449 29.987 -28.364 42212

NDA | 11.614 -14.943 12911 8.937 10.388 11.692 -14.750 9.589

SAND | 15.738 -14.220 15.832 13.641 12.061 16.470 -13.310 11.630

SEBA | 21.491 27.533 -19.320 16.683 17.890 21.856 -18.684 20.180

SKFA | -4.013 6.941 -4.626 11.306 10.651 -3.567  0.0004 7.613 0477 0.6333
SWEDA | 21.502 -22.036 35.621 17.621 18.161 21.160 -21.639 17.786
VOLVB | 27.112 -27.653 23.106 23.394 22.469 28.407 -25.194 29.110

Table 9. Welch'’s t-tests for Best Bid of Ten Stocks from

An entry

“~ means that the p-value is less than 0.0001.

10:00 to 16:00 on 01/10/2012

From the study, it is supplementarily indicated again that the model with power-law
kernels is a more appropriate one for high frequency data than the one with exponential
kernels. As can be noted from Table 8, the intensities of jumps of the simulated paths
from the model with power-law kernels consistently match those of the real data, which
can be told directly from the fact that all the resulting p-values are no less than 0.0001,
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while those from the model with exponential kernels do not, which is evidenced by the
fact that the majority of the resulting p-values are significantly less than 0.0001. From
Table 9, same observations and implications can be obtained as those from Table 5
and Table 7. In particular, all resulting t-statistics related to R’,i = 1,2 are close to
or greater than 10.

4.2. Computational Time

One possible disadvantage of power-law kernels, compared with exponential kernels,
could lie in the efficiency to obtain the maximum likelihood estimator, due to the fact
that the log-likelihood function of a model with exponential kernels can be calculated
recursively (Ogata, 1981).

For a model with exponential kernels, at each iteration, the number of multiplica-
tions for evaluating the log-likelihood function is in the scale of O(1). For a model
with power-law kernels, at each iteration, the log-likelihood function has to be reck-
oned explicitly and the number of multiplications is in the scale of O(n), where n
is the number of jumps. The computational times (in seconds) of MATLAB R2012b
using global search for 100 simulations, in a machine with CPU @2200MHz (AMD
Opteron™ Processor 6274) and RAM @128GB, to search for the maximum likelihood
estimators of the best bid of ERICB on CHIX in a one-hour time period (10:00-11:00)
on September 6th, 2012, are shown in Table 10.

Exponential Kernels Power-Law Kernels
Mean Variance Mean Variance

Time (Seconds) | 34.43669765 | 168.75639050 | 674.80850479 | 39826.69494600
Table 10. Computational Time in Seconds for Maximum Likelihood Estimator of Best Bid of ERICB on
CHIX in One Hour on 06/09/2012

As indicated by Table 10, the evaluation is indeed relatively more efficient with
exponential kernels than that with power-law kernels. The difference may potentially
be reduced by looking into more advanced algorithms.

4.3. Search Algorithm

When an algorithm is employed to determine the maximum likelihood estimator,
MATLAB generally adopts two options, local search and global search. The latter
is used for all results presented so far. To assess the two options, the estimated pa-
rameters as well as computational times based on 100 simulations using a model with
power-law kernels for the un-adjusted best bid of ERICB on CHIX in a one-hour time
period (10:00-11:00) on September 6th, 2012 are reported in Table 11.

Table 11 shows that between the two options, while the resulting maximum like-
lihood estimators and properties of simulated paths are comparable, local search is
significantly more efficient than global search.

In the case that there is significant difference in the estimated results, one option
to accelerate the convergence of global search is to apply advanced algorithms such as
parallel computing.
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Local Search Global Search
Mean Variance Mean | Variance

N' 78

N2 76

i 0.00002115 | 0.00000000 0.00002115 0.00000000
all 0.00135989 | 0.00000000 0.00131769 0.00000028
@t? 0.00135998 | 0.00000000 0.00140206 0.00000028
311 1.26455344 | 0.00000000 1.30029038 0.01640706
312 1.26455472 | 0.00000000 1.27752660 0.00704741
AL 0.99993098 | 0.00000000 0.99999971 0.00000000

Time (Seconds) | 9.03369287 | 0.02069485 | 674.80850479 | 39826.69494600

Nt 77.07000000 | 86.51020202 | 76.92000000 66.78141414
N2 76.18000000 | 76.06828283 | 76.38000000 69.89454545

Table 11. Estimated Results and Computational Times Using a Model with Power-Law Kernels for Best Bid
of ERICB on CHIX in One Hour on 06/09/2012

5. Conclusion

Hawkes processes with exponential kernels and with power-law kernels are studied
from a variety of perspectives, including maximum likelihood estimation for statistical
inference and sample-path generation for computer simulation. For consistence with
the setting-up of the models, data are first pre-processed, which essentially does not
affect the results. To examine the goodness of fit of the two models for high frequency
financial data, a number of measures are introduced and statistical tests are proposed
accordingly. It is robustly demonstrated by empirical studies based on one stock on
one trading day, one stock on multiple trading days, and multiple stocks on one trad-
ing day that, although with the former it is relatively more efficient in determining
the maximum likelihood estimator when using global search, the latter fits real data
notably better than the former. It is also shown that there is no significant differ-
ence in terms of optimality between local search and global search for the maximum
likelihood estimator, while it is significantly more efficient by using a local search al-
gorithm. This suggests that a Hawkes-based model with power-law kernels shall be an
appropriate choice for high frequency financial data and that a local search algorithm
may be used for maximum likelihood estimation in the first instance. The proposed
analysis integratingly from both statistical and computational perspectives may also
provide an alternative for similar studies.

The studies are largely based on models for one stock with jumps of 1 tick at most on
one exchange. There are several possible future directions for further work, including
the cases that one stock in different time intervals, different stocks in the same time
interval, and one stock in different markets. A few examples are outlined here.

For simplicity, it is assumed that o'l = a??, a!? = o?!, gl = 22, 512 = 52!, and
= 412 = 421 = 422 4p (11) and (12). Certainly by intuition as well as empirical
observations, the assumptions are not unreasonable. That is, the intensities of upward
and downward jumps do not diverse from each other in general. Meanwhile, it is

a full model to be considered is to remove the assumptions. This may be particularly
relevant in examining the robustness of the models during, for example, financial crises,
when the market is more moving in one direction than the other. Meanwhile, in this
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case, it is expected that the evaluation for the maximum likelihood estimator will be
slowed down accordingly.

It is indicated by Figure 1 or Figure 2 as well as the price evolution of different
stocks on different trading days that the intensities of jumps in different time intervals
follow non-identical patterns. This hints that it is worth considering dividing a whole
trading day into sub-intervals and modeling them separately.

In reality, the price may move by more than 1 tick, as shown in Tables 1, 2. Suppose
that the price of an asset moves up to d ticks for a jump, then the price can be
represented as a multivariate Hawkes model,

d d
Pr=Py+ Y i NP =Y i NP
=1 i=1

where Py is the price at time 0, NV 1 is the number of upward jumps with i ticks,
and N»? is that of downward jumps with i ticks between 0 and ¢, 7 = 1,...,d. The
intensities of N1 and N®2? are \b! and A\»2, respectively,

‘ A d ot , d o pt ,
AR = ik 1Y / paN + 3 / GIRZANIZ | = 1,2, (13)
j=1 i=1

It is not uncommon that an asset is traded on multiple exchanges. For example,
ERICB is traded in five markets, as shown in Table 1. Assume that an asset is traded
on d exchanges and that the price moves by 1 tick at most. Denote the price as

d d
P, =Py + ZNZ’I - ZNZ’Q,
i=1 =1

where Py is the price at time 0, N*! is the number of upward jumps on exchange 1,
and N2 is that of downward jumps on exchange i between 0 and ¢, i = 1,...,d. The
intensities of N©! and N2 are A\>! and \"?, respectively, as defined in (13).

It has been widely recognized that the price evolution of a stock is heavily affected
by large orders. Another direction is then to take into consideration the dimension of
market impact (Almgren and Chriss, 2000; Bertsimas and Lo, 1998).
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Figure 7. Histogram of Numbers of Upward Jumps of 1000 Sample Paths from a Model with Exponential
Kernels for Best Bid of ERICB on CHIX from 10:00 to 12:00 on 06/09/2012
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