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ABSTRACT 

In this study, the adaption of the recently published molecular GFN-FF force field for periodic 

boundary conditions (pGFN-FF) is described through the use of neighbor lists, combined with 

appropriate charge sums to handle any dimensionality from 1-D polymers through 2-D surfaces 

through to 3-D solids. Numerical integration over the Brillouin zone for the calculation of 𝜋 

bond orders of periodic fragments is also included. Aside from adapting the GFN-FF method 

to handle periodicity, improvements to the method are proposed in regard to the calculation of 

topological charges through the inclusion of a screened Coulomb term that leads to more 

physical charges and avoids a number of pathological cases. Short-range damping of three-

body dispersion is also included to avoid collapse of some structures. Analytic second 

derivatives are also formulated with respect to both Cartesian and strain variables, including 

pre-screening of terms to accelerate the dispersion/coordination number contribution to the 
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Hessian. The modified pGFN-FF scheme is then applied to a wide range of different materials 

in order to examine how well this universal model performs. 

 

1. INTRODUCTION 

Force field methods are a valuable tool for the rapid calculation of material structure and 

properties via optimization and lattice dynamics. Whether used as a precursor to more 

accurate and computationally demanding first principles techniques, or standalone, they offer 

a means to explore the influence of different interaction models on the results, thereby 

offering physical insight. Unfortunately, the initial creation of a force field model for a new 

material via fitting can be a long and involved process that negates the benefit of the speed of 

the calculations that are ultimately performed. Hence a key objective of the simulation field is 

to find models that have as broad applicability as possible, with the idea of a universal force 

field covering all possible systems representing the perfect scenario that eliminates the need 

for specific parameterization. 

Despite the appeal of a universal force field for all materials, there have been relatively few 

published models that aim for broad coverage with minimal or, ideally, no user intervention. 

One of the first attempts was the DREIDING force field1 that offered coverage of organic 

molecules and a number of primarily main group elements, with the stated objective that it 

would be simple to add further elements and their corresponding parameters. In a similar vein, 

other force fields offering parameters for a mix of organics and inorganics also began to appear, 

such as CFF91.2 Shortly afterwards came the Universal Force Field (UFF),3 which offered, for 

the first time, full coverage of the periodic table as it then stood. As with any generic force 

field, it is unlikely to be the optimal model for any given specific system and so UFF has been 

subsequently refined for particular materials such as metal-organic frameworks.4 There have 
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also been modifications proposed, such as XUFF,5 to address the inconsistency between 

geometry-dependent charges generated via the QEq model6 for electronegativity equalization 

and the UFF electrostatics that use fixed (or no) charges with a pure Coulomb potential. 

Given the rapid advances made in the space of a few years at the start of the 1990s, it is 

surprising that further progress in the development of universal force fields has been a long 

time coming. While the recent surge in the use of machine-learning approaches could be 

viewed as use of a universal force field,7 insofar as the representation is largely agnostic to the 

details of the material being studied, such methods place even greater demands on the 

parameterization phase than traditional, physically-motivated force fields. Recently, Spicher 

and Grimme have proposed a new general force field model, GFN-FF,8 that is capable of 

handling compounds of all elements up to and including radon (atomic number 86). Results 

were presented indicating that GFN-FF is capable of successfully modelling a wide range of 

systems from biomolecules through to inorganic materials. To date, this new force field has 

only been available in the XTB code9 and was only implemented for finite systems (i.e., clusters 

or molecules). The objective of this work is to first describe the extension of the GFN-FF 

approach to periodic boundary conditions, as well as the implementation of analytic second 

derivatives to supplement the gradients that were previously available. This includes the 

addition of derivatives with respect to strain to augment those for atomic coordinates.  

During the implementation of periodicity it became apparent that there were a number of 

opportunities for improvement of some aspects of the methodology, which has led to the 

proposal to adopt a slightly modified form better suited to condensed phases, which we denote 

as pGFN-FF. Having implemented this method, we perform an examination of how successful 

(p)GFN-FF is for the prediction of geometries, energies and properties for several important 

classes of solid-state material. 
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2. METHODS 

The GFN-FF method is designed to provide a general force field that is fully automated for 

all atoms, thereby removing some of the difficulties of other approaches where (often manual) 

assignment of atom types is required. The main components of the energy are electrostatics, 

dispersion, hydrogen-bonding and covalent terms covering bond stretching, angle bending, 

torsions and out of plane distortions. A full description of the method can be found in the 

original manuscript,8 plus the source code of the implementation in XTB,9 and so the focus here 

will be primarily on the features that require modification for implementation within periodic 

boundary conditions.  

2.1. Periodic boundary conditions.  

The primary objective of this work is to allow GFN-FF to be applied to solids, surfaces and 

polymers in addition to molecules. Therefore, the main change is that configurations now 

include not just the atomic coordinates, but also a general number of lattice vectors up to and 

including three. This means a unit cell (3D), surface vectors (2D) or a single repeat direction 

(1D) can be specified alongside an appropriate combination of Cartesian and/or fractional 

coordinates appropriate to the dimensionality.  

In the original XTB implementation of GFN-FF the distance between a pair of atoms was 

pre-computed for each configuration and stored in a lower-half triangular matrix. When 

working within general periodic boundary conditions, without the pre-condition of the 

minimum image convention, there will now be potentially multiple interactions per pair of 

atoms due to the translational images. To handle this, as well as the presence of general 

boundary conditions, our implementation of GFN-FF uses a neighbor list for each atom that 

stores each image that lies within the maximum cut-off distance applicable to that atom. This 

has several advantages. Firstly, the nature of the boundary conditions being used is confined to 

the construction of the neighbor list and is largely hidden during the calculation of the GFN-
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FF energy. Secondly, in the limit of spatially large systems, the memory required to store the 

interactions scales linearly with the number of atoms, rather than quadratically. The present 

implementation also has the option to choose between building the neighbor list via looping 

over all images of pairs of atoms or using a domain-decomposition algorithm which is more 

efficient for large systems. 

A further consequence of periodicity is that optimization with respect to the lattice vector(s) 

is often required, as well as the calculation of properties that depend on the curvature of the 

energy surface with respect to the repeat unit, such as elastic constants and bulk moduli. The 

variation of lattice vectors, R, is accomplished through the application of the Voight strain 

matrix, 𝜺, to a reference set of lattice vectors, R0: 

𝑹 = 𝜺𝑹𝟎 

𝜺 =

⎝

⎜
⎜
⎛
1 + 𝜀"

1
2 𝜀#

1
2 𝜀$

1
2 𝜀# 1 + 𝜀%

1
2 𝜀&

1
2 𝜀$

1
2 𝜀& 1 + 𝜀'⎠

⎟
⎟
⎞

 

Here the matrix is written for the 3-D periodic case where there are 6 unique components of 

the tensor, while for 2-D and 1-D boundary conditions this reduces to 3 and 1 components, 

respectively. Based on this equation it is straightforward to compute the derivatives of the 

energy with respect to the strain alongside the Cartesian derivatives of the coordinates, 𝛼: 
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Note that here the conventional approach is taken of using the current lattice vectors as the 

reference set, such that the strain derivatives are computed in the limit of the strains being 

infinitesimal, in order to simplify the result expressions for the derivative of the vector norm 
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squared with respect to strain. Full expressions for the first and second derivatives using this 

approach can be found elsewhere.10 

2.2. Electrostatics 

 In GFN-FF, the electrostatic energy is computed as a pairwise sum over the interaction 

between atom-centered point charges. Here, the charges are geometry-dependent and 

determined by electronegativity equalization.11 In practice, there are actually two sets of atomic 

charges that are utilized in the method; the first set is determined based on an idealized 

topological configuration and is used for the charge-dependence of force field parameters, 

while the second set is computed for the actual geometry to determine the electrostatic energy. 

This dual charge model eliminates the need to compute the extra derivatives of force field 

parameters arising due to the charge-dependence, as the topological charges are independent 

of the actual configuration, provided the bonding pattern remains the same. Focusing on the 

charge-determination for the actual geometry of a system with 𝑁 atoms, the expression for the 

energy is given by; 
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where 𝑞) is the charge on atom i, 𝑟)+ is the distance between atoms i and j, and the pairwise 

sum over Coulomb interactions excludes the case of 𝑖 = 𝑗 when they are in the same unit cell. 

There are two key points to highlight regarding this equation. Firstly, the electronegativity of 

each atom has a contribution that depends on the coordination number (expressed via a square-

rooted log function as 𝑐), scaled by an atom-specific factor, 𝜅)) in addition to the standard 

elemental value, 𝜒), while the hardness is given by 𝜂). Secondly, the Coulomb interaction 

between two atoms is damped at short-range through the inclusion of the error function with a 

decay factor, 𝛾)+, that depends on the atomic radii of the two atoms involved.  
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Arguably the most significant change required between finite systems and periodic boundary 

conditions is the need to handle the conditional, or slow, convergence of the electrostatic 

energy sums. As is standard, we choose to handle this in 3-D and 2-D through partial 

transformation into reciprocal space of the Coulomb terms as proposed in the Ewald12 and 

Parry13 sums, respectively: 

𝑈'- = 𝑈./0)1'- + 𝑈./23 + 𝑈4/35 
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Here, 𝑉 and 𝐴 are the volume and area of a 3-D and 2-D repeating system, respectively. The 

distance 𝑧 in 2-D represents the height normal to the surface plane. The parameter 𝜂 determines 

the balance between real and reciprocal space, and is chosen to minimize the computational 

work in summing over real space vectors, 𝒓, and reciprocal lattice vectors, 𝑮, out to the cut-off 

values that are selected to converge the energy to a given number of significant figures (by 
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default 12 in the present work). It should be noted that the above sums again exclude the real 

space terms where 𝑟)) = 0, as well as the reciprocal space case of 𝐺 = 0. 

In the case of 1-D polymer boundary conditions, the Coulomb sum is convergent, but slow 

to do so. Therefore, we utilize the method proposed by Saunders et al14 to accelerate the 

convergence of the electrostatics for this case. Because, as noted above, GFN-FF multiplies the 

Coulomb term by the error function, it is necessary to compute an additional term in real space 

that corrects for the difference between the standard lattice sums for 1/r and this modified form. 

The cut-off radius for this correction is set by default to four times the largest atomic radius 

that enters into the coefficient for the error function. This leads to an error of the order of 10-8 

in the numerator, but the overall error is lower than this due to division by the distance and the 

cancellation of differences when multiplied by charge products summed across the lattice for 

a charge neutral system. 

Having computed the Coulomb matrix elements between atoms in the system, then it is 

necessary to solve the electronegativity equalization equations in order to determine the 

charges for which 𝑈( is at a minimum, subject to the charge constraints on fragments, from 

which the final electrostatic energy can be calculated. This can be written as; 

𝑨	𝒒 = 𝒃 

where 𝑨 is the matrix of all terms that depend linearly on the atomic charges, which are 

contained in the vector, 𝒒, while the final vector, 𝒃, contains the corresponding terms that are 

charge-independent, such as the electronegativities and any external potential. In the original 

implementation of GFN-FF the solution of this equation is performed by factorization and 

solution of the electronegativity problem to avoid explicit inversion of the matrix. Although 

not connected with periodicity, we have added an alternative approach here which is to exploit 

the variational nature of the problem and minimize the charges using conjugate gradients under 

the total charge constraint for each fragment, as used previously in GULP for other 
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electronegativity equalization approaches and also by others.15 For large systems where the 

charges vary slowly between energy evaluations (as is typically the case during molecular 

dynamics or a nearly converged optimization) the use of minimization can be advantageous 

since it has a lower scaling with problem size and exploits the fact that a good approximation 

to the final solution is already known.  

In the iterative minimization of the charges described above, it is useful to precondition the 

conjugate gradients algorithm to accelerate the rate of convergence: 

(𝑷𝑨)𝒒 = (𝑷𝒃) 

where the preconditioning matrix, 𝑷, is used to approximate 𝑨:". By default, the algorithm 

uses the reciprocal of the diagonal elements of 𝑨 as a simple approximation to the full inverse, 

which is reasonable if the system is diagonally dominant. This appears to work reasonably well 

for conventional electronegativity equalization, in that after an initially large number of 

iterations, and assuming the charge vector is initialized to zero, then the convergence rapidly 

reduces to fewer iterations for a sequence of relatively similar geometries (such as during a 

molecular dynamics trajectory). In the case of GFN-FF, it was found that the number of 

iterations per step may not always decay as quickly, which may be due to the fragment-based 

charge constraints rather than a single global one. Hence, we have also implemented an option 

to compute the exact inverse of 𝑨 for the first step, which can then be used as a preconditioner 

for subsequent iterative solutions. Here, the initial overhead of the matrix solve is compensated 

if, for example, molecular dynamics is subsequently performed. In the case of a cubic box 

containing 520 water molecules, the use of the full inverse preconditioner reduces the number 

of iterations for the conjugate gradients solver from of order 200 per step to less than 10. Given 

the algorithm already includes several dense matrix-vector multiplies, the extra cost of full 

preconditioning does not dramatically increase the overall computational demands. This 
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scheme could be further improved by using an updating scheme such as DFP or BFGS to allow 

the preconditioning matrix to evolve during the simulation. 

When computing only first derivatives, the variational nature of the charges means that the 

Hellmann-Feynman theorem applies and so there is no need to explicitly calculate the 

derivatives of the charges with respect to the coordinates or strain. However, the 

implementation of analytic second derivatives necessitates the determination of these 

quantities. In this case, the charge first derivatives with respect to a coordinate 𝛼, which could 

be a Cartesian component or strain, are given by: 

0
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Since this requires the inverse of the matrix used in electronegativity equalization, the 

explicit inverse is computed and temporarily stored for second derivative evaluations. 

When computing the second derivative matrix for GFN-FF the charge first derivatives are 

included via the following expression: 
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Here, the first term on the right-hand side is the conventional second derivative for fixed 

charges, the second term represents the partial second derivative of the energy with respect to 

both charges for pairwise interactions, while the final terms are the mixed partial derivatives 

of the gradients with respect to charge. The optimization variables, 𝛼 and 𝛽, are the coordinates 

for atoms k and l in the system, with corresponding expressions for the strain and mixed 

derivatives. The key point to highlight in this equation is that the evaluation of the second term 

as written scales as 𝑁%, but since the number of second derivative matrix elements also has the 

same scaling, the cost of evaluating this contribution can potentially increase to 𝑁&. If 
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implemented in this form, then this rapidly becomes the computational bottleneck for the 

method, as it is the only operation that exceeds the cubic scaling of other operations such as 

matrix inversion or diagonalization. Therefore, we compute the second term via two successive 

operations involving multiplication and summing over one charge derivative term, with storage 

of the intermediate matrix, which reduces the scaling to 𝑁'. Furthermore, rather than adding 

the terms “on the fly” as the partial second derivatives with respect to two charges are 

computed, these terms are stored as a matrix with the addition of this term in the charge 

derivatives being added at the end of the Coulomb sum. For solids, this reduces the cost by a 

factor of two, if real and reciprocal space terms are determined separately, for the overhead of 

a matrix that is 9 times smaller than the Hessian or dynamical matrix. 

Although GFN-FF is designed to be a fully automated universal force field, there are choices 

that can be made that significantly influence the outcome of a calculation: One of these is the 

total charge of the fragments involved. While the default is to constrain all fragments to be 

neutral, this can lead to problems for some systems where this goes against chemical intuition. 

For example, there are a range of metal-organic framework structures that have perchlorate 

(ClO4
-) as a counter ion within the structure, while numerous minerals have molecular anions 

within their structure, such as carbonate and sulfate. If these fragments are allowed to remain 

as neutral entities, then the optimizations can fail as the coordination of the species is not 

appropriate to their charge. In the current implementation, initial charges can be input as part 

of the structure and these decide the net fragment charge. Hence, setting a charge on Cl to -1 

for perchlorate, with zero for the corresponding oxygens, implies that the fragment charge will 

be constrained to -1. The influence of setting fragment charges during the initialization of the 

force field calculation will be considered later in discussion of the results for minerals 

containing molecular anions. 
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During the analysis of results for some materials, such as perovskites as discussed below, it 

became apparent that the fragments created were not always those that would be expected 

based on the bonding topology of the system. This is because, in the original algorithm, the 

fragments are determined using the full neighbor list, rather than just the reduced bonding 

neighbor list. In order to provide a more intuitive connection between bonding and fragments, 

an option has been added to allow fragments to be determined strictly in accordance with the 

bonding topology. 

2.3. Topological charges 

 In addition to the charges that are computed on the fly during the actual energy evaluation, 

there are also charges that are used during the determination of force field parameters. Here the 

distances for the Coulomb interactions between atoms are set based on the bonding 

connectivity with all distances that are not explicitly defined for nearest-neighbors being set to 

a constant value. If this constant distance is large, then the Coulomb interaction naturally tends 

to zero. In the original implementation of GFN-FF this large limiting distance was intended to 

be very large (10+12 a.u.) but in practice ended up being set to 13 a.u.. For molecules, the 

difference between a small, but finite, value and an infinitesimally small value can often be 

less critical because the charges tend to be small and the range of interaction limited. For 

periodic systems, it is necessary for the Coulomb interaction to go to zero with increasing 

distance since there are, in principle, an infinite number of interactions unless a further cut-off 

is applied. Hence, in this work, all distances that are not set as part of the topological neighbor 

list are either excluded or set to a very large value, which amounts to the same thing in practice. 

A further difference relative to the original molecular implementation is how to handle the 

potential existence of multiple interactions between a given pair of atoms due to periodic 

images. This is achieved by building a topological neighbor list for all atoms, which is 

initialized to be equal to the bonding neighbor list, except that the distance between the atoms 
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is given by the sum of their atomic radii. Subsequently, iterations are performed over 

successive shells to search for new topological connections. Here, the search is over neighbors 

of a central atom that were added in the previous iteration and a second neighbor of the same 

atom. If the sum of the distances to the common central atom is less than the current distance 

between the pair, or if the pair doesn’t yet exist in the neighbor list, then the distance for the 

pair is set to the lower value or the pair added to the neighbor list with this value, respectively. 

All of this is subject to a maximum topological distance cut-off (which has a default value of 

12 a.u.). When checking for matches in the topological neighbor list, the vector between pairs 

of atoms is used rather than just the atom numbers in order to allow for multiple images of the 

same atom occurring. It should be noted that once the set of topological distances is complete 

then a scaling factor (1.175) is applied to all values, as per the original implementation. 

Tests on the convergence of the topological neighbor list suggest that 4 iterations, on top of 

the original bonding list, is sufficient for most systems to find all neighbors that lie within the 

cut-off distance. An interesting pathological case was found for the mineral gibbsite (Al(OH)3) 

where the Al is found to have 9-fold coordination within the GFN-FF criteria, due to binding 

6 hydroxyl groups and having bonds to the 3 adjacent Al atoms within the same layer. On the 

second pass through the topology determination, there was found to be an explosion in the 

number of neighbors resulting in a dramatic slowdown of the method. This was found to be 

caused by the initial set of topological charges in the first iteration being extreme and 

unphysical (i.e., some atoms had charges close to -5). The atomic radii used to define the 

bonding cut-off depend linearly on the charge according to; 

𝑅)+ = 𝑅)+<* − 𝑓)
(𝑞) − 𝑓+

(𝑞+ 

where 𝑅)+<* is the sum of the radii for a pair of atoms i and j corrected for the coordination 

number, and 𝑓)
( and 𝑓+

( are constants with the value 0.23 or 0.46 for non-metals and metals, 

respectively. Given this, if any charge becomes highly negative, then the bonding cut-off, and 
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thus also the number of neighbors, can dramatically increase. By including a reduced number 

of neighboring shells (for example 2) in the first iteration of the parameter set in GFN-FF, it 

was found that this problem could be avoided and convergence to the correct parameters was 

then achieved in a stable manner during subsequent iterations with the full set of topological 

neighbors. 

A further problem with unphysical charges when using the original algorithm was 

encountered for a number of systems, especially for more ionic combinations of elements. One 

such example was SrO in the rock salt structure when the lattice parameter is close to the 

experimental value. Here the charges again became unphysically large within the original 

algorithm. This led to a failure in the determination of the short-range repulsion where the 

presence of large negative charges resulted in the expression for an atom-centered parameter 

becoming negative and the pairwise interactions, which are given by the square root of the 

product for a pair of atoms, becoming complex in some cases. This exception is now trapped 

within our implementation, though it raises the question of what causes such behavior to occur 

and how to avoid it? Analysis of several of these cases also revealed that often it was the metal 

ions that were carrying the excessively negative charge and more broadly, even when the 

charges were small, it was quite common for the polarity to be the opposite of what might be 

anticipated for the compound.  

The cause of the above problems in an extended system is actually the use of a cut-off radius 

for the Coulomb interactions during the charge equalization scheme. Just as the need for an 

Ewald sum is readily appreciated for periodic systems, due to the conditional convergence of 

the charge sum, the same situation applies to the topological charges for any system where the 

dimensions exceed the cut-off radius, regardless of periodicity. Depending on where the cut-

off truncates the number of interaction shells of neighbors, this can lead to large fluctuations 

in the net charge experienced by a given atom with unphysical charges being the result. One 
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solution to this would be, in principle, to introduce periodic charge sums as discussed for the 

real charges of the system. However, this is problematic for the topological interactions since 

there is no explicitly specified periodic lattice from which to define the reciprocal space 

contribution. To stay within the spirit of the original approach of a finite number of interaction 

shells with a set of topological distances it is therefore proposed to use the so-called Wolf sum16 

technique. The advantage of this method is that the Coulomb interactions are evaluated purely 

in real space and so the correction does not require a priori knowledge of a lattice, plus the 

method can be applied even for non-periodic systems. In effect, this means that the Coulomb 

potential for the topological charges is scaled by a complementary error function and shifted 

such that the interaction goes to zero at the cut-off radius, 𝑅0: 

𝑉<=>3=?@
A=1= = 𝑒𝑟𝑓F𝛾)+𝑟)+G V

𝑒𝑟𝑓𝑐F𝜂B𝑟)+G
𝑟)+

−
𝑒𝑟𝑓𝑐(𝜂B𝑅0)

𝑅0
X 

This form of interaction introduces one new parameter that controls the rate of decay of the 

Coulomb interactions, 𝜂B, which can be chosen to balance the requirement to maintain the 

original unscreened interactions at short-range while causing the terms to decay sufficiently 

toward the cut-off radius. In the present work a value of 𝜂B = 0.2	Å:" was used. 

We note that there have been improvements to the Wolf sum suggested that address the 

smoothness and consistency of the energy and forces at the cut-off radius.17 However, here the 

original summation suffices since only the site potentials and energy are being computed. 

While results will be presented later to demonstrate the effect of the use of a Wolf sum to 

ensure convergent behavior based on a screened potential, it can be noted at this stage that this 

resolves the problem of excessive charges for all cases explored to date. Furthermore, it is also 

found to yield charges that are more in line with physical intuition, such as metal oxides where 

the metal is positive and the oxygen negative, since the Coulomb interactions are weighted 

more toward the first shell of neighbors. 
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2.4. p systems 

As part of the parameter determination, GFN-FF iteratively performs Hückel calculations for 

any conjugated systems to determine the hybridization state and bond orders for selected 

elements. Built into this is a check as to whether the occupation of the p system is reasonable 

based on the estimated number of p electrons. When an issue is detected then the total number 

of electrons is reduced by 1 and the process repeated. Given that conjugated systems can 

formally carry either an excess negative or positive charge, an option has been added to allow 

the number of electrons to be increased by 1 rather than decreased. Since the majority of cases 

where this will occur are for molecular anions, our implementation uses the sum of the atomic 

charges for the atoms in the p system to determine whether the number of electrons is 

incremented or decreased for negatively or positively charged systems, respectively. 

A further consideration when performing the Hückel calculation is that, for periodic 

boundary conditions, there may be a continuous conjugated system along one or more 

dimensions of the system. For example, graphene is such a case with a 2D periodic p system. 

This means that the Hückel equations must also be integrated across the Brillouin zone when 

determining the Fermi level for the system and p bond orders. As is conventional, this integral 

can be approximated by a sum over discrete points in reciprocal space, most commonly using 

a Monkhorst-Pack mesh18. Thus, we adopt a similar approach here and create a grid of k points 

at which the Hückel equations are solved. To simplify this process, the reciprocal space grid 

can automatically be generated in any number of dimensions using a single control parameter, 

kmax, which is the maximum allowed spacing between any two adjacent grid points. Note that 

the number of grid points is approximately halved due to time reversal symmetry. Convergence 

is then just a matter of decreasing the value until the energy of the system no longer changes 

to within an acceptable tolerance. Based on graphene, a value of 0.04 Å-1 for kmax appears to be 

sufficient to achieve convergence, and so this is taken as the default value. 
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Having defined the grid of k points, the Hückel equations can be formulated as; 

𝐻)+(𝒌) = 𝛿)+j𝐻)=C + 𝜆D1'𝑞) − 𝜆D15(𝑛)E − 1)m

− F1 − 𝛿)+G V𝑡"D 51 − 𝑡%D 0
2
3 − 𝑃)+

E36X 𝑒𝑥𝑝F𝑖𝒌𝒓)+G 

𝑡"D = q𝐻)
=55𝐻+

=55 − 𝜆D1.𝑟)+ 

𝑡%D = 𝜆D1)ℎA.)13/) ℎA.)13/
+  

where 𝜆D1', 𝜆D15 , 𝜆D1) 	and 𝜆D1. are constants for GFN-FF with the values -0.24, 0.53, 0.7 

and 10-9, respectively, 𝐻)=C is the on-diagonal self-term for the given element, 𝐻)
=55 and 

𝐻+
=55are the off-diagonal parameters for the elements corresponding to i and j, and 𝑛)E is the 

number of p electrons of atom i. The terms ℎA.)13/)  and ℎA.)13/
+  are either 1.45 or 1.0 depending 

on whether the atoms are involved in a triple bond or not, respectively. Numerical values for 

the Hamiltonian are all given in atomic units. The matrix element 𝑃)+E is from the density matrix 

from the previous iteration and is initialized to 2/3 for the first cycle. Subsequently, it is 

computed from the eigenvectors of the matrices 𝐻(𝒌), 𝜓E(𝒌), according to; 

𝑃)+E =88𝜓)CE∗(𝒌)𝑜C(𝒌)𝜓+CE (𝒌)
C;

𝑒𝑥𝑝F𝑖𝒌𝒓)+G 

where 𝑜C(𝒌) represents the occupancy of the nth eigenstate at the given point in reciprocal 

space, as determined by the Fermi level and electronic temperature. It should be noted that the 

GFN-FF formalism scales the eigenvalues by a factor of 0.1 to reduce the gap. 

Although the above sum over k points and the need for complex arithmetic increases the cost 

of determining the p bond orders significantly, this still typically represents an insignificant 

overhead as it is only required to be performed once at the start of each new material to set the 

parameters. It is also substantially more efficient than using the alternative of a supercell 

approach to remove the size dependence of the parameters, since this increases the cost of all 
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parts of the calculation. Since it is possible to use the neighbor list to automatically detect which 

p fragments are periodic and which are finite (even though they might be part of a periodic 

material), the extra cost can be minimized by only using the gamma point for non-periodic p 

systems. 

Once the p bond orders, 𝑃)+E, are determined according to the above procedure, the value is 

used to compute a correction to the equilibrium bonding distance between pairs of atoms, 𝑅)+G ,  

according to the formula: 

𝑅)+G = 𝑅)+GH + 0.34F0.37 − 𝑃)+EG 

In the original implementation of GFN-FF, the decision as to whether this correction should 

be applied is based on whether the p bond order is greater than zero. Unfortunately, this was 

found to be problematic since any rounding error in the calculation of the p bond order could 

lead to a small, but not exactly zero value, and since the p correction to bonding does not 

increase linearly with the p bond order then this can lead to a semi-random change in the 

parameters. For example, when running the mineral system calcite (CaCO3), where the 

carbonate groups sit on three-fold axes of rotation such that all bonds in the carbonate group 

are symmetry equivalent, symmetry breaking was found to occur in some groups. This was 

because the p bond order was 10-16 rather than exactly zero to double precision. To avoid such 

problems, a small, but finite tolerance (10-8) has been used to check the need for the p bonding 

correction. 

2.5. Cut-offs 

There are several interaction terms in GFN-FF that are evaluated with cut-offs that are 

controlled via a single accuracy parameter. Specifically, these limit the calculation of the 

dispersion, long-range repulsion, coordination number, and hydrogen bonding interactions. In 

the current implementation we have made two changes to this scheme. Firstly, a separate 
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accuracy parameter has been introduced for each term so that the convergence of each term 

can be controlled separately, if desired. Secondly, instead of having a hard cut-off, which can 

potentially lead to discontinuities and problems with the smoothness of the energy surface (e.g., 

when computing numerical derivatives from finite differences), a taper function, 𝑡, has been 

applied over a specified range from 𝑟?)C to 𝑟?2I. Here we use the MDF form of taper19: 

𝑥 =
(𝑟 − 𝑟?)C)

(𝑟?2I − 𝑟?)C)
 

𝑡(𝑥) = (1 − 𝑥)'(1 + 3𝑥 + 6𝑥%) 

This taper function ensures smooth transitions and consistent derivatives up to the order 

required for the present work. By default, the taper function is applied to go to zero over the 

final 5% of the interaction range as determined by the accuracy parameter(s). 

2.6. Dispersion 

In GFN-FF, the dispersion interactions are computed based on a modified form of the 

Grimme D4 scheme20 that utilizes C6 and C8 terms. Based on the default accuracy, this term is 

evaluated with a hard pairwise cut-off distance of 50 a.u.. For molecules, this is not a particular 

issue. However, for dense solids the long-range cut-off can become a small, but noticeable, 

cost in the calculation. Where the cost becomes far more problematic is during the evaluation 

of the derivatives of this term, especially to second order. This is because the dispersion 

interaction depends not only on the distance between a pair of atoms, but also the coordination 

number of each atom. Therefore, while the energy is a pairwise sum, this becomes a double 

summation for forces and a triple sum for second derivatives. Ultimately, this can mean that 

for a Hessian evaluation the dispersion term becomes the dominant term in the computational 

cost and for high coordination numbers can increase the time by at least two orders of 

magnitude. Analysis of the second derivative contributions show that the majority of 

coordination number derivative terms are negligibly small. This is exploited by introducing a 
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drop tolerance, 𝑡J.=1, for these terms such that the cost is dramatically reduced often with 

minimal effect on the Hessian matrix. Illustrative examples of the reduction in computational 

cost as a function of drop tolerance can be found in Table S1. Note that the drop tolerance is 

only used for the second derivatives and so, during optimization, there is no loss in precision 

for the converged final energy of the system. An example of how this is applied is given below: 

5
𝜕%𝑈F𝑑, 𝑙𝑛(𝑐)G

𝜕𝑟% 6
J

= 0
𝜕𝑈

𝜕𝑙𝑛(𝑐)3 5
𝜕𝑙𝑛(𝑐)
𝜕𝑐 6 5

𝜕%𝑐
𝜕𝑟%6

+ z0
𝜕𝑈

𝜕𝑙𝑛(𝑐)3 5
𝜕%𝑙𝑛(𝑐)
𝜕𝑐% 6 + 5

𝜕%𝑈
𝜕𝑙𝑛(𝑐)%65

𝜕𝑙𝑛(𝑐)
𝜕𝑐 6

%

{ 0
𝜕𝑐
𝜕𝑟3

%

 

Here 𝑈F𝑑, 𝑙𝑛(𝑐)G is an energy term that depends on a distance, 𝑑 (or potentially a set of 

distances), as well as one or more logarithms of coordination numbers, 𝑐. The above expression 

gives the partial second derivative with respect to an interatomic distance that contributes to 

one of the coordination numbers. If this term is below the drop tolerance, then the contribution 

is neglected. While strictly speaking the end result is, for example, the Cartesian second 

derivative contribution from this term, and so the magnitude of the derivatives of the distance 

with respect to the Cartesian components should be allowed for. However, screening each term 

at this level would create a much greater computational overhead, thereby reducing the benefit. 

Given that the missing terms are dependent on the magnitude of 𝑟, as is the term under 

consideration, then this neglect does not cause any significant contributions to be lost.  

In the case of the dispersion energy, the drop tolerance is applied to all coordination number 

second derivatives if 

5
𝜕%𝑈

𝜕𝑙𝑛(𝑐)%6 < 𝑡J.=1 

in order to accelerate the Hessian calculation. 
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2.7. Bonded three-body dispersion 

 The GFN-FF formalism also includes the Axilrod-Teller-Muto (ATM) three-body 

dispersion contribution: 

𝑈'@=JK =8𝐶L
)+; F3𝑐𝑜𝑠𝜃+);𝑐𝑜𝑠𝜃)+;𝑐𝑜𝑠𝜃);+ + 1G

𝑟)+'𝑟);' 𝑟+;'),+,;

 

Here, the dispersion coefficient, 𝐶L
)+;, depends on the atomic topological charges and scaled 

nuclear charges of the three participating atoms, 𝑖, 𝑗, 𝑘. What is unique about the inclusion of 

this term is that it is only computed within a set of atoms where two are connected via three 

covalent bonds and the remaining atom is bonded to one of the others.  

For optimizations of some systems, such as halides of Cs and Rb for example, the three-body 

dispersion term was found to be problematic. This is because the term becomes asymptotic to 

minus infinity at small distances, and so occasionally this dominates the short-range 

contribution from the repulsion, as can occur for the two-body Buckingham potential where 

the 𝐶# term is not damped. In the case of CsCl in the B2 structure, only a small barrier exists 

between the physically sensible minimum and a basin that leads to implosion of the structure 

and so there was a risk of the optimizer overstepping the barrier during the line search.  

The solution to the above problem is to introduce damping for the three-body dispersion, as 

is applied to the two-body terms. However, there is no universally agreed functional form that 

this damping should take, as discussed by Otero-de-la-Roza and Johnson.21 Here we have 

implemented the scheme A approach suggested by Proynov et al.22 which introduces a constant 

for each distance separately in the spirit of Becke-Johnson damping:23 

𝑈'@=JK =8𝐶L
)+; F3𝑐𝑜𝑠𝜃+);𝑐𝑜𝑠𝜃)+;𝑐𝑜𝑠𝜃);+ + 1G
F𝑟G,)+' + 𝑟)+'GF𝑟G,);' + 𝑟);' GF𝑟G,+;' + 𝑟+;' G),+,;

 



 

 22 

The pairwise radial constants, 𝑟G, that control the damping are determined following the 

protocol proposed for two-body dispersion24 starting from the same radial values, 𝑟0 (since 

these are already defined within the GFN-FF method), via a linear relationship: 

𝑟G = 𝛼"𝑟0 + 𝛼% 

While the values of the two coefficients, 𝛼" and 𝛼%, could be considered as free parameters 

to be optimized separately for three-body dispersion, there is a lack of data for the ATM term 

evaluated within covalently-connected triples in the way applied here. Hence, we have taken 

the values of 𝛼" = 0.58 and 𝛼% = 4.80 a.u. as used already for the two-body dispersion damping 

in GFN-FF. 

2.8. Hydrogen and halogen bonding 

The search for hydrogen and/or halogen bonds used here largely follows the same approach 

as the original method, except for allowing for periodic images via the use of a neighbor list 

containing all distances within the required range as described previously. One difference is 

that the list of valid hydrogen/halogen bonds is computed on the fly for each configuration 

rather than storing a list based on the initial geometry. This corresponds to enforcing an update 

at each step in the original approach. 

2.9. Consistency of the potential energy surface 

One of the strengths of GFN-FF is that potential parameters are tailored based on the specific 

structure being studied. In particular, this comes from the initial bonding topology as defined 

by a pairwise cut-off. However, this can also create issues, since the answer obtained can 

sometimes depend on the starting structure prior to optimization. For example, depending on 

the initial lattice parameter used, some rock salt structured materials, MX, can either have 

bonds defined just between nearest-neighbors (i.e., metal-halide) or they can have additional 

bonds between next-nearest neighbors (e.g., metal-metal and/or halide-halide bonds). In an 
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extreme case, there could even be no bonds at all, which leads to a very different interaction 

model.  

There are two aspects to the above problem that must be dealt with. Firstly, there is the issue 

of ensuring that calculations maintain the same parameters on restarting. Secondly, there is the 

question of defining the “correct” result for a given material when it depends on the starting 

point. Achieving consistent restarts is actually straight forward to address by saving the 

topology and parameters generated in the first run. Here we achieve this by capturing the initial 

structure and using this to regenerate the parameters on restart since this is a more concise way 

to capture the required information in the input file and the cost of determining the parameters 

is typically low. Finding a solution to the second issue is more complex. So far, we have yet to 

find a fully general solution. For dense ionic materials, it is possible to create a consistent initial 

geometry by re-scaling the closest neighbor distances to a specified fraction of the cut-off 

distance. However, for porous and network structures, this is more problematic. For now, the 

responsibility for the choice of a reasonable starting structure is left to the user, while options 

to control specific allowed bonds have been added (e.g., such as excluding metal-metal bonds). 

2.10. Properties 

The present implementation of (p)GFN-FF includes analytic second derivatives both with 

respect to Cartesian coordinates and/or strain. This allows the determination of the Hessian 

matrix for Newton-Raphson optimization with BFGS updating, as well as providing access to 

a range of material properties including the elastic constants, bulk and Young’s moduli, 

piezoelectric constants, dielectric constants and acoustic velocities, to name a few of those 

available. The mass-weighted Cartesian second derivatives also provide the vibrational 

frequencies. In the molecular case, these can be corrected to remove rotational and translational 

mixing using Eckart purification. For solids, surfaces and polymers, it currently is only possible 

to compute the gamma point phonons, though other points in the Brillouin zone can be accessed 
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via the use of supercells. Extension to include direct phasing of all interactions to facilitate the 

calculation of phonon dispersion, etc., is planned for future work. 

The pGFN-FF method, as described above, has been incorporated into a development version 

of the GULP code25 so that the force field can be used in conjunction with all of the 

functionality available for solid-state calculations. Energy and first derivative evaluations can 

be performed in parallel using a shared memory MPI algorithm. Extension to include parallel 

second derivatives with distributed memory, in line with the rest of the code, is currently 

underway. 

 
3. RESULTS AND DISCUSSION 

Having described the implementation of the GFN-FF method for periodic systems, along 

with a number of suggested modifications to improve the suitability for such materials, we now 

examine how well this universal force field performs for a range of periodic systems. The aim 

is not to comprehensively cover all materials, but to provide illustrations of the strengths and 

weaknesses spanning some common systems of interest from (organic) molecular crystals, 

close-packed ionic solids and layered systems, through to framework materials, minerals and 

liquid water.  

3.1. Molecular Crystals 

In order to assess the performance of GFN-FF for molecular crystals, we compare lattice 

energies computed using GFN-FF with ‘experimental’ lattice energies derived from 

thermodynamic data measured experimentally as given in the X23 benchmark set.26,27 This 

diverse set of well-determined molecular crystal structures consists of the original C21 set,26 

with the addition of hexamine and succinic acid. Unsurprisingly, experimental observations for 

these crystals were not at 0 K, so the ‘experimental’ lattice energies are back-corrected for the 

vibrational term and over time there have been revisions to the original energies. For this work, 

we use the recently revised X23b28 reference energies (unless otherwise specified). The 
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accurate reference values facilitate examining the effects of modifications to the GFN-FF 

procedure described here as part of the pGFN-FF scheme – in this case the Wolf sum for 

topological charges and the use of damped three-body dispersion – along with how these 

modifications may interact with one-another. 

To this end, each of the crystal structures in the X23 set were optimized starting from their 

experimental structure; i.e., X-ray diffraction structures from the CSD. The lattice energies 

were subsequently calculated relative to the gas-phase molecular structures optimized using 

the same settings, and subtracting these energies from the total crystal energy with 

consideration to 𝑍, the number of formula units in the crystal.  

Performance for molecular crystal lattice energies: The resulting lattice energies for the X23 

set are shown in Figure 1. GFN-FF almost universally over-binds molecular crystals, evidenced 

by the mean signed error (MSE) and mean absolute error (MAE) being almost the same in 

magnitude. It is evident that introducing three-body dispersion damping significantly improved 

energetic performance overall, and that the introduction of the Wolf sum either further 

improved performance or at least did not introduce additional errors. 
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Figure 1. Deviations of the lattice energy from the reference values of the X23b set of 

molecular crystals.28 The grey shaded region represents the mean energy from a variety of DFT 

methods,29 with upper and lower bounds being plus or minus one standard deviation. Results 

are shown for four variants of GFN-FF (Orig.=original implementation; W=Wolf sum; 

dATM=damped ATM 3-body dispersion term). 
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Performance overall (MSE/MAE -17.2/20.7 kJ/mol) is unsurprisingly worse than DFT 

methods, e.g., PBE-D3 (-1.8/4.1 kJ/mol)30 or tailored rigid-molecule forcefields like FIT31 

(7.9/9.1 kJ/mol) and revised W9932 (13.9/14.1 kJ/mol)1. However, when taking into 

consideration the generality of the approach, and the lack of molecule-specific parameters (FIT 

and W99 utilize multipole expansions for electrostatics derived from a molecular 

wavefunction), GFN-FF performs quite well, and offers a unique value proposition. Further, 

the original GFN-FF force field was never parameterized using crystalline systems, so were it 

to be re-parameterized incorporating crystalline systems then its performance should improve. 

Performance for molecular crystal structures: Since the crystal structures were optimized 

starting from the experimental structure, it is worth identifying which structures remained 

correct, and which relaxed to alternative structures. The crystal geometries were not very 

sensitive to introduction of the Wolf sum or three-body dispersion damping (see Tables S2 and 

S3), and utilizing these settings yielded the best overall results. Therefore, the following 

discussion will focus solely on the results obtained with these settings. 

The energetic over-binding of GFN-FF for molecular crystals is evident in the cell volume 

changes (see Figure S1). On average the unit cell volumes were approximately 18% smaller 

after optimization. While some of this contraction may be attributed to thermal expansion, the 

contraction is significantly larger than would be reasonably expected (for reference, DFT 

volumetric expansion results from Dolgonos et al.28 have a maximum reported expansion of 

~13% using PBE-D3 for s-triazine compared to the ~30% discrepancy seen here when using 

GFN-FF). 

Putting aside the exaggerated volume contraction, the majority of the optimized crystal 

structures were correct to within appropriate tolerances. Indeed 12 of the structures, namely 

 
1 For PBE-D3, FIT and W99, MSE and MAE are taken from Ref 30, Table 1. These values were obtained from 
comparisons against older reference values for the X23 benchmark set, but the differences will be insignificant 
for the purposes here. 
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ammonia, adamantane, benzene, carbon dioxide, hexamine, imidazole, pyrazine, s-triazine, s-

trioxane, succinic acid, urea and uracil were excellent matches to their reference crystal 

structures. Given the sensitivity of molecular crystal structures to subtle changes in the 

potential energy surface, it is not surprising that GFN-FF produces ‘incorrect’ minima in 

several cases, but the cyanamide was structure was particularly poor, as the molecular 

geometry was no longer linear – and the crystal packing unsurprisingly incorrect (see Figure 

S2). 

3.2. Close-Packed Ionic Solids 

With the GFN-FF force field being promoted as a universal force field applicable to all 

elements in the periodic table up to radon, we now assess its performance beyond molecular 

solids, focusing first on a series of close-packed ionic solids. Within this broad class of 

compounds are the alkali halides (MIX) and alkaline-earth oxides (MIIO) which are known to 

crystallize largely in the rock salt (B1) crystal structure, with the exception of CsCl, CsBr and 

CsI that adopt the cesium chloride (B2) crystal structure.33,34 (The reader is referred to Figure 

S3, Supporting Information, for a description of the conventional unit cells of the prototypical 

materials for these crystal structures). 

In recent years, several research groups have gathered the experimental structures for these 

ionic solids and have examined the performance of density functional theory (DFT) methods 

in describing the relative stabilities of these two phases, in addition to their mechanical 

properties (such as the bulk modulus).33,34,35 These studies emphasized the importance of 

including dispersion corrections to conventional DFT methods in order to capture the correct 

relative phase stabilities of these materials, given that these long-range interactions (even 

beyond nearest-neighbor36) become a driving force for the stability of the crystal structures as 

the size, or polarizability, of the ions within the solids increases.33,34 In addition to this, the close 

proximity of ions within these periodic systems prompted the need to appropriately damp the 
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van der Waals dispersion interactions at short interatomic distances to avoid divergence in the 

dispersion terms.33 As mentioned in earlier sections, the use of an undamped three-body 

dispersion term within the original GFN-FF implementation potentially leads to divergences 

in the computed van der Waals interaction terms for certain configurations of ionic solids (such 

as CsCl), which can ultimately cause the unit cell to “collapse” during geometry optimization. 

While the aforementioned DFT studies were mainly focused on determining relative 

cohesive energies of simple ionic solids, we note that this may not always be possible to 

replicate (or even assess at all) with the GFN-FF force field. While this force field is considered 

to be dissociable (i.e., bonds between two atoms may be broken to yield separate non-

interacting atoms), it does not allow for new bonds to be formed.8 Thus, unlike other force 

fields (such as UFF or models parametrized specifically for halides36,37) which can be 

formulated in terms of purely pairwise repulsive and dispersive interactions with no additional 

(covalent) bonding terms, the GFN-FF force field is unable to describe processes that involve 

changes in bonding topology. As a result, if one considers the cations and anions within the 

ionic solid in either the rock salt or cesium chloride phases to be (covalently) bonded to each 

other at the onset of a GFN-FF calculation, then comparing energies between these phases will 

not be appropriate, as atoms are bonded to a different number of neighbors (6 and 8 for the 

rock salt and cesium chloride phases, respectively). Conversely, comparing any two phases 

where atoms share the same coordination numbers and bonding topologies may be possible, 

such as for the case of the two experimentally stable phases of ZnS, sphalerite and wurtzite, 

which have been previously studied with force field methods.38 

It can be debated as to whether the ions in these nominally ionic solids should be considered 

to be covalently bonded or not to their neighbors, and whether energy terms for bonding, angle, 

torsion, etc. should be included in the total energy as the GFN-FF formulation intends. Here 

we examine the influence of controlling whether ions are covalently bonded or not, rather than 
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just allowing the criteria within GFN-FF to determine the topology based on the initial 

geometry. Performing pGFN-FF calculations while suppressing all covalent bonding terms 

between the ions in these metal halides and oxides largely led to structures being dynamically 

and/or mechanically unstable. Furthermore, in cases where stability was not an issue, the lattice 

parameters were severely overestimated. Only for a few intriguing cases (specifically RbBr, 

RbI, and for two of the three cesium halides in the B2 phase, CsCl and CsBr), did removing all 

covalent bonds lead to what seemingly were improved results in terms of lattice parameters 

compared to experimental values (see Table S4). These results suggest that suppressing 

covalent contributions in the GFN-FF formulation is generally inappropriate, even when they 

are counter-intuitive for ionic solids, or any system where atoms would be considered to be 

bound by ionic, rather than covalent, interactions. Future improvements to the non-bonded 

repulsion interaction could potentially alter this situation. 

Given the above findings, we ensured that for all further calculations the reference 

configurations of each alkali halide or alkaline-earth oxide had ions and their immediate 

oppositely-charged nearest neighbors covalently bonded, while any bonds between two like 

metal or halide ions were explicitly suppressed. This resulted in each ion being bonded to 6 

and 8 ions for the B1 and B2 phases, respectively. Each structure was then subjected to 

unconstrained geometry optimization in order to determine their lattice parameters and 

elastic/mechanical properties (represented here by the (static) adiabatic bulk moduli, though 

the full elastic tensor is available). The effect of utilizing various options and/or settings 

suggested to improve the robustness of the method – the use of the Wolf sum and/or a damped 

3-body ATM dispersion term – as discussed in earlier sections was also examined. The overall 

performance of different variants in comparison to UFF is captured in Table 1, while full results 

are available in the SI (see Table S4). 
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Table 1. Statistics on deviations of conventional unit cell lattice parameter	(Δ𝑎 in Å), and 

adiabatic bulk moduli	(Δ𝐵N in GPa), relative to experimental measurements for the alkali 

halide and alkaline-earth oxide materials studied herein as predicted by the periodic GFN-FF 

implementation (using various settings: Orig.=original implementation; W=Wolf sum; 

dATM=damped ATM 3-body dispersion term) and the UFF force field (using various settings: 

0=atomic charges set to zero; QEq=atomic charges obtained from the charge equilibration 

method; see Table S4). MSE: Mean Signed Error, MAE: Mean Absolute Error, RMSE: Root-

Mean-Square Error. 

 

Method Settings 
 Δ𝑎  Δ𝐵! 
 MSE MAE RMSE  MSE MAE RMSE 

Alkali halides, MIX (N=20) 

GFN-FF Orig.  -0.382 0.456 0.340  7.4 10.6 9.5 
 W  -0.382 0.455 0.340  8.6 11.1 8.5 
 dATM  -0.340 0.417 0.316  9.3 11.5 8.5 
 W+dATM  -0.344 0.416 0.309  10.1 11.8 7.8 
UFF 0  0.878 0.878 0.393  -22.5 22.5 13.7 
 QEq  -0.632 0.632 0.159  73.6 73.6 62.5 

Alkaline-earth Oxides, MIIO (N=4) 

GFN-FF Orig.  0.162 0.162 0.073  -52.8 52.8 31.3 
 W  0.192 0.192 0.079  -52.3 52.3 28.5 
 dATM  0.224 0.224 0.085  -49.3 49.3 30.0 
 W+dATM  0.200 0.200 0.073  -50.8 50.8 26.9 
UFF 0  1.637 1.637 0.272  -108.5 108.5 34.6 
 QEq  0.385 0.385 0.258  -67.5 67.5 35.8 

Total (N=24) 

GFN-FF Orig.  -0.292 0.407 0.372  -2.6 17.6 27.2 
 W  -0.286 0.411 0.379  -1.5 18.0 26.7 
 dATM  -0.246 0.385 0.358  -0.5 17.8 26.2 
 W+dATM  -0.253 0.380 0.349  0.0 18.3 26.2 
UFF 0  1.004 1.004 0.470  -36.9 36.9 37.2 
 QEq  -0.463 0.591 0.419  50.1 72.6 79.0 
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Of particular significance, damping the ATM 3-body dispersion term was found to help 

prevent the collapse of crystal structures due to (sometimes attractive) diverging ATM terms. 

Ionic solids with very polarizable atoms/ions, such as CsCl (see Figure S5) were found to 

benefit most from this methodological change, which meant geometry optimizations were less 

sensitive to the choice of initial geometry used for the calculation (e.g., experimental or 

benchmark geometries, or geometries obtained from computational databases like the 

Materials Project,39 or even unit cells constructed from interatomic distances based on 

empirical ionic radii,40 see Figure S3), provided of course that the initial bonding topology and 

coordination environment remained the same. That is, unless structures were compressed 

extensively, then no additional bonding, angle or torsion terms, or changes in coordination 

number/hybridization state, altered the bonding topology. Ultimately, choosing to utilize a 

damped ATM term in these calculations had little to no effect on the optimized lattice 

parameters, with the exception of expected ionic solids containing the larger and/or more 

polarizable ions, such as for the series of rubidium and cesium halides (see Figure S4A). 

The Wolf sum was found to provide more intuitive results in terms of attributing the expected 

polarity for the ions within the ionic solids (i.e., cations having a positive charge and anions 

being negatively charged, instead of the opposite). While there did not seem to be any trend as 

to where counter-intuitive charges might occur when using the original GFN-FF formulation 

(see Figure S6), changes in computed lattice parameters remained minimal (LiF and BaO being 

two of the more notable exceptions), whereas computed bulk moduli were more significantly 

impacted. This is a consequence of the topological charges having a direct influence on the 

force constant for the bonds, rather than the equilibrium distance. 

Absolute deviations between computed and experimental conventional unit cell parameters 

and adiabatic bulk moduli are presented in Figure 2. Given that utilizing the Wolf sum and a 

damped ATM term provided better stability and/or robustness to the (p)GFN-FF 
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implementation, we now focus only on these results for the remainder of the discussion 

(however, all other data points for the various settings can be found in Figure S4). 

 
Figure 2. Deviations of computed values for the conventional lattice parameter, Δ𝑎, and 

adiabatic bulk moduli, Δ𝐵N, relative to experimental values, 𝑎OPQR and 𝐵S,OPQR, for each of the 

alkali halide (MIX with X=F,Cl,Br,I) and alkaline-earth oxide (MIIX with X=O) structures 

studied here. Only the results for the pGFN-FF method, which utilizes the Wolf sum and a 

damped 3-body ATM dispersion term, are shown. Figure S4 (Supporting Information) contains 

the remainder of the results for the other variants of GFN-FF examined. 
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The computed unit cell lengths were generally found to be overestimated by ca. 5% on 

average for the MIF and MIIO solids, whereas other halides had largely underestimated 

parameters by ca. 10-20% relative to the experimental values. In particular, the cesium halides 

in the B2 phase (X = Cl, Br, and I) represented the largest outliers versus experiment. For most 

of the other alkali halides (M = Li, Na, Rb, Cs), the magnitude of the underestimation for the 

unit cell parameters largely follows the order MICl > MIBr > MII, although the reverse is true 

for the potassium halides. Whether in these cases this is due to a suboptimal description of the 

covalent bonding and electrostatics terms as a function of primarily the alkali metal (ions within 

alkali halides having similar partial charges regardless of the element), of dispersion 

interactions (being overestimated for smaller/less polarizable ions interacting with 

larger/polarizable ions, and vice versa), or from an imbalanced description between these terms 

(given the opposite trend to varying the halogen atoms within the potassium halides, as opposed 

to other alkali halides), remains to be explored. 

Overall, the deviations in predicted unit cell parameters to experimental values are not 

unexpected for a force field, let alone one that is meant to be universal (see Table 1). The mean 

signed and absolute errors are within reasonably acceptable values, and provide slightly better 

results than UFF (regardless of whether one fixes charges to zero or uses charges obtained 

through charge equilibration methods), with pGFN-FF slightly outperforming both in terms of 

mean absolute errors and spread of the data (RMSD values). Unlike UFF, pGFN-FF does 

however provide situations where the unit cell parameters are underestimated, while some 

systems are overestimated (MIF and MIIO). Compared to static lattice constant values computed 

by high-level dispersion-corrected DFT which display MSE’s and MAE’s ranging from ca. 

0.04–0.4 Å (although these are obtained from comparing experimental values back-corrected 

for zero-point vibrational effects – having but a minor effect on the absolute value for the lattice 

constant of alkali halides, ca. < 0.005 Å), pGFN-FF performs on par with some of the worst-
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performing of these methods. This is a reasonable result, given the significantly lower cost of 

force field calculations compared to these other methods. 

In terms of predicting the (static) adiabatic bulk moduli, pGFN-FF also performs very well 

(with a notable exception discussed below), yielding a mean absolute error just shy of 18.5 

GPa for the complete set of alkali halides and alkaline-earth oxides with respect to experimental 

values.  While it has been pointed out that comparison of these computed static bulk moduli 

with experimentally-measured values is not appropriate and can lead to erroneous conclusions 

on the suitability of a method at correctly computing these properties, given that the bulk 

modulus is substantially affected by changes in temperature,35 we stress here that the computed 

MAE values for pGFN-FF are very much in agreement with static bulk moduli computed by 

appropriate dispersion-corrected DFT methods (which in these cases had MAE’s ranging 

between ca. 5–15 GPa). In general, the predicted bulk moduli for the ionic solids all seemed to 

show clustering as a function of the anion more so than the cation; the largest range in errors 

occurring with decreasing order MIIO >> MIF > MICl ~ MIBr > MII, with the bulk moduli for 

the MIIO being more greatly underestimated relative to experiment (or even DFT 

computations35), and the bulk moduli of the alkali halides generally being overestimated in 

decreasing order MIBr > MII > MICl with MIF (see Figure 2B and C). Notably, pGFN-FF fails 

to predict reliable bulk moduli for the alkaline-earth oxides. These results echo similar 

substantial underestimations in bulk moduli predicted for the sphalerite and wurtzite phases of 

ZnS (Table S5). It has long been noted that the computed hardness of ionic materials tends to 

be strongly correlated with the choice of charges used. For ions with a formal charge greater 

in absolute magnitude than 1 most force fields overestimate bulk moduli unless partial charges 

are used. However, the charges generated for MIIO in pGFN-FF are arguably too low, being 

less than +0.4 for the metals (Figure S6), such that these are not adequately compensated for 

by the force constants of the metal-oxygen covalent bonds. Despite this, pGFN-FF succeeds in 
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terms of outperforming its competitor UFF for bulk moduli of ionic solids (barring neglect of 

zero-point vibrational and thermal effects). 

3.3. 2D Layered Materials 
 

Layered materials have attracted much interest over the past decade or so due to their 

promising applications as lubricants, ion transport materials, spintronic and optoelectronic 

devices, and more.41 Although graphene is the most well-known and studied of these materials 

so far, a vast array of other layered structures, such as hexagonal boron nitride, and various 

transition-metal dichalcogenides, and oxides, have since been examined due to their varied 

optoelectronic properties.42,43 In addition to these materials, the many recent ventures into the 

development of 2D layered (either all-inorganic44,45 or hybrid organic-inorganic46,47,48) 

perovskite heterostructures – materials which promise to provide improved solar 

cell/photovoltaic devices49,50 – also speaks to an increased interest in such materials. However, 

designing materials or devices that consist either completely (or partially) of a 2D layered 

structure and which have specific properties can prove to be a challenging task from both an 

experimental and/or computational point of view, given the vast number of factors which can 

influence the physical, chemical, and optoelectronic properties.42,44,45,47,49,50  

The utility of a universal force field like GFN-FF, being orders of magnitude faster than 

conventional ab initio methods, for studying complex material architectures is evident, 

especially if one is interested in screening a large number of potential structures or performing 

high-throughput analyses of materials in order to identify candidates with desirable physical 

and/or mechanical properties. In this section, we aim to highlight the various considerations 

which should be kept in mind when utilizing (p)GFN-FF in order to study 2D layered 

structures. 

Exfoliation (or binding) energy curves: It has been suggested that “establishing high thermal 

and chemical stability of a 3D material is essential before contemplating its 2D counterpart”.42 
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Benchmark sets of (bulk) layered materials have indeed been assembled in order to assess a 

computational method’s ability at reproducing not only accurate lattice parameters for these 

crystal structures, but also interlayer binding energies (which are approximately equal to 

exfoliation energies, and in turn indicative of whether formation of atomically thin layers is 

feasible).51,52 

For the purposes of examining the capabilities of pGFN-FF at reproducing structural 

parameters and binding energies for representative semiconducting materials, we chose the set 

assembled by Bjorkman and co-workers,51,52 although we note that more restrained53 and ever 

expanding43 sets/databases exist. This particular set consists of hexagonal crystal structures of 

graphene and boron nitride (h-BN), various trigonal (1T-) or hexagonal (2H-) crystal structures 

of transition-metal dichalcogenides (TMDCs, with an MX2 structure; M being a transition 

metal, and X being either S, Se or Te), along with the tetragonal lead oxide (2Q-PbO) structure 

(see Figure S7 for a more detailed description of these crystal structures). The most accurate 

reference data available for these layered materials (at least in terms of binding energies) was 

provided by RPA calculations, given that there is currently a lack of data with more accurate 

computational methods (such as Quantum Monte Carlo methods) and that there are often large 

uncertainties in experimentally determined measurements of exfoliation energies.52  

In order to determine the binding energies of the structures in this set, we first performed 

geometry relaxations for each structure (allowing for both intra- and inter-layer degrees of 

freedom to be relaxed). Binding energy curves (such as those illustrated in Figure 3) were then 

generated by varying the inter-layer separation in small increments, from slightly below the 

equilibrium value and up to the limit of large inter-layer separations (where slabs have 

negligible interaction), while performing energy evaluations at each of these incremental 

values. It is important here to note that allowing the force field parameters to be determined 

based on the actual structure for every point along these binding energy curves can lead to 



 

 38 

discontinuities in the potential energy surface, especially at small inter-layer separations (see 

Figure 3). These discontinuities arise because of either new coordination and/or bonding 

environments occurring for atoms that interact with neighboring layers, where no covalent 

interactions should occur. Therefore, if care is not taken to either fix the GFN-FF parameters 

based on a suitable reference geometry (e.g., at, or close to, the experimental geometry), or by 

explicitly ensuring that no bonds can form between atoms that are part of two different layers, 

then an incorrect or discontinuous binding energy curve may be obtained. Care should also be 

taken so as to not exclude bonds between atoms within a given slab of the material (e.g., 

disabling all C-C bonds in graphene leading to a non-bonded system, as opposed to only 

disabling bonds between C atoms of different layers). 
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Figure 3. Binding energy curves for graphene (panels A and B) and 1T-HfS2 (panels C and D). 

Δ𝑧 represents the deviation of the equilibrium lattice parameter along the c-axis, whereas the 

binding energy, Δ𝐸, is relative to two infinitely separated slabs of the layered material. Various 

binding-energy curves are depicted to illustrate the effect of (1) allowing the force field 

parameters to be determined by pGFN-FF for each point of the scan (“on-the-fly”), or keeping 

them fixed based on (2) expanded or (3) compressed reference geometries (using the specified 

Δ𝑧 value), or ensuring that bonds between specified atoms are removed (either all (X-X) bonds 

or only bonds between atoms that are part of two different layers (e.g., X1-X2)) are shown. 

Panels B and D depict an expanded view of panels A and C, respectively, in the region close 

to Δ𝑧 = 0. 
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Results for the deviations of unit cell parameters and binding energies for the structures 

examined here are shown in Figure 4. Focus is again placed on results obtained with the pGFN-

FF method, which makes use of the Wolf sum and a damped ATM term. Results for the original 

GFN-FF method, along with either and/or both of the other settings, can be found in Tables S7 

and S8. These results show that the Wolf sum aids in reversing the charge polarity in cases 

where these were counter-intuitive (i.e., for h-BN and PbO, where the less electronegative 

atoms were initially found to have negative partial charges, and vice versa) and in reducing the 

magnitude of these initial topological charges (HfTe2 and ZrTe2 being notable cases where the 

assigned partial charges were substantially larger in the reference configuration compared to 

all other layered materials). The use of a damping of the ATM term proved important to avoid 

structural collapse for PtS2, which faced similar issues to the CsCl structure noted in the 

previous section. However, utilizing only the damped ATM term (without the Wolf sum used 

to determine topological charges), led to an increased interlayer spacing within the structures 

just highlighted (PbO, PtS2, HfSe2, and ZrTe2). The nature of the ATM term tending to be a 

largely repulsive contribution to the dispersion energy has been noted before,54 and so these 

results are not unexpected given that the ATM term within the original GFN-FF 

implementation (as is the case in this work) is dependent on the partial charges assigned to 

each atom within the system. Therefore, in many cases, this contribution, when repulsive, can 

be exaggerated if the assigned partial charges are equally large in magnitude. 
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Figure 4. Deviations of computed values for the conventional lattice parameters, Δ𝑎 and Δ𝑐, 

and binding energies, Δ𝐸, relative to experimental and RPA values, 𝑎OPQR, 𝑐OPQR, and ETUV, 

respectively, for each of the layered materials that are part of Björkman’s set.51 Only the results 

for the pGFN-FF method, which utilizes the Wolf sum and a damped 3-body ATM dispersion 

term, are shown; results for other variants of GFN-FF, as well as the UFF force field, are 

tabulated in the Supporting Information (see Tables S7 and S8). Panel B omits the results for 

MoS2, MoTe2, and WSe2 for clarity (Δ𝑐 = 9.3, -0.6, and 9.2 Å, and 𝑐TUV = 12.302, 13.973, and 

12.960 Å, respectively). Panel C omits the result for PdTe2 for clarity (ETUV = 40.1 meV/Å2 

and Δ𝐸 = -12.4 meV/Å2). 
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There is a clear tendency of (p)GFN-FF to overestimate the binding energies for these 

structures (see Figure 4C), which is largely due to the (interlayer) unit cell parameters being 

significantly underestimated relative to the reference values (Figure 4B). This points to 

interactions between adjacent layers that are too strong, potentially as a consequence of the 

dispersion terms (a modified/simplified D4 scheme,8 with a damped or undamped ATM 

contribution) most likely having too large homoatomic dispersion coefficients for the 

chalcogen atoms involved.54 The results obtained with (p)GFN-FF for these materials are 

therefore expected, given the force field will undoubtedly inherit any characteristics of the 

models utilized to computed the different energy contributions (let alone those that come from 

fitting the parameters to reproduce specific theoretical reference data (B97-3c and/or PBEh-3c 

geometries, frequencies, and other theoretical data8). These observations are reflected in terms 

of overall performance of (p)GFN-FF at describing geometries and binding energies (see Table 

2). While more or less competitive with UFF, the computed MAE’s for (p)GFN-FF are in line 

with errors computed by DFT methods, at least energetically, that make use of dispersion 

corrections of the same class.52,53,54 For instance, the MAE’s for binding energies reported for 

PBE-D3(BJ) optimized geometries for all 26 systems studied here were found to be 14.16 

meV/Å2,54 as compared to 13.5 meV/Å2 from the present model. 
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Table 2. Statistics on deviations of conventional unit cell lattice parameters (Δ𝑎 and Δ𝑐 in Å), 

and binding energies (𝐸 in meV/Å2), relative to experimental measurements for the 2D layered 

materials part of Björkman’s set52 as predicted by the pGFN-FF implementation (using various 

settings: Orig.=original implementation; W=Wolf sum; dATM=damped ATM 3-body 

dispersion term) and the UFF force field (using various settings: 0=atomic charges set to zero; 

QEq=atomic charges obtained from the charge equilibration method; see Table S9). MSE: 

Mean Signed Error, MAE: Mean Absolute Error, RMSE: Root-Mean-Square Error. 

 

Method Settings N 
 Δ𝑎  Δ𝑐  𝐸 
 MSE MAE RMSE  MSE MAE RMSE  MSE MAE RMSE 

Sulfides, MS2 (N=8) 

GFN-FF Orig. 7 a  0.119 0.170 0.178  -0.453 0.453 0.296     
 W 8  0.094 0.168 0.186  -0.295 0.437 0.411     
 dATM 8  0.150 0.189 0.174  -0.281 0.545 0.578     
 W+dATM 8  0.101 0.165 0.180  -0.303 0.433 0.399  8.9 9.7 5.4 
UFF 0 b 7 b  0.096 0.195 0.199  0.166 0.436 0.565  -8.4 e 8.4 e 2.4 e 

 QEq 8  -0.016 0.162 0.187  -0.469 0.586 0.564  -7.4 7.4 2.0 

Selenides, MSe2 (N=9) 

GFN-FF Orig. 6 c  -0.104 0.123 0.146  -0.545 0.720 0.484     
 W 6 c  -0.021 0.112 0.143  -0.578 0.717 0.456     
 dATM 6 c  -0.024 0.084 0.100  -0.640 0.712 0.388     
 W+dATM 6 c  -0.002 0.100 0.126  -0.598 0.698 0.413  28.9 28.9 7.8 
UFF 0 9  0.164 0.193 0.142  0.390 0.390 0.324  -11.3 11.3 1.3 
 QEq 9  0.116 0.155 0.139  0.412 0.412 0.321  -10.8 10.8 1.3 

Tellurides, MTe2 (N=6) 

GFN-FF Orig. 6  0.236 0.336 0.298  0.041 0.410 0.572     
 W 6  0.116 0.191 0.196  0.079 0.402 0.550     
 dATM 6  0.173 0.209 0.175  0.191 0.390 0.471     
 W+dATM 6  0.154 0.188 0.170  0.044 0.397 0.521  2.6 6.9 7.8 
UFF 0 6  0.154 0.219 0.175  0.532 0.532 0.522  -14.7 14.7 7.3 
 QEq 6  0.115 0.184 0.166  0.556 0.556 0.515  -14.4 14.4 7.4 

Total (N=26, incl. graphite, BN, and PbO) 

GFN-FF Orig. 22 a,c  0.078 0.185 0.239  -0.280 0.572 0.626     
 W 23  0.063 0.145 0.176  -0.269 0.520 0.553     
 dATM 23  0.099 0.151 0.169  -0.220 0.584 0.654     
 W+dATM 23  0.083 0.141 0.166  -0.291 0.507 0.525  11.5 13.5 12.8 
UFF 0 24 b,d  0.095 0.198 0.203  0.163 0.445 0.577  -9.5 e 11.4 e 7.8 e 

 QEq 26  0.048 0.173 0.203  0.146 0.471 0.613  -7.7 11.0 9.1 

 

a In this case (1T-PS2), the geometry optimization leads to the unit cell imploding, due to the dispersion term 
tending to -∞ (largely a consequence of the undamped 3-body ATM term and the optimizer over-stepping during 
the line-search, as was the case for the B2 phase of CsCl described in the main text). 
b-e Structures are predicted to be dynamically unstable; in addition, performing geometry optimizations while 
constraining the cell to be orthorhombic results in the AB-stacked structure shearing and yielding the AA-stacked 
structure instead. Structures affected: b 2H-WS2; c MoSe2, NbSe2, and WSe2; d h-BN; e 2H-WS2; f 1T-TaS2. 
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It should be noted that for some of the 2H-MSe2 structures (with M = Mo, Nb, and W), 

imaginary modes were obtained during the unconstrained geometry relaxations and could not 

be removed without either the cell shearing (or if the cell was restrained to be orthorhombic, 

adjacent layers shearing) in order to yield the AA-stacked, instead of the AB-stacked, 

configuration. Regardless of the specific variant of GFN-FF used for these materials, the AB-

stacked configuration was never a stable configuration. 

Lattice mismatch, internal strain, and thermal expansion coefficient measurements: There is 

a myriad of potential applications where the (p)GFN-FF method could be extremely useful 

given its expediency in providing results for crystal structure geometries and mechanical 

properties, in contrast to the often-prohibitive costs which limit the scope and applicability of 

ab initio methods. In particular, much attention is currently being placed on high-throughput 

screening of complex 2D-layered perovskite architectures in an effort to improve upon the 

instability issues that impede commercialization of these materials. Aspects that could be 

improved include minimizing instabilities due to moisture, air or heat, while gaining an 

understanding in how internal strain (due lattice and/or thermal expansion mismatch) imparted 

by stacking various perovskite layers with other substrates, such as protective coatings,55 

during the fabrication of photovoltaic devices can lead to alterations in their stability (unwanted 

“black-to-yellow” phase transitions) and perhaps even their optoelectronic properties56,57,58,59 

For even the simplest of theoretical models for predicting strain due to lattice mismatch,55 let 

alone some of the more sophisticated ones,60 this can prove to be difficult if one is constrained 

to using high-level calculations to obtain reliable results. 

While a detailed examination of whether or not pGFN-FF can provide accurate results for 

this application is beyond the scope of this paper, we can highlight several complications that 

may occur when studying more complex ionic solids (in contrast to the earlier systems studied 

above) such as for perovskites. Here, we take a commonly studied perovskite material, CsPbI3 
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in its cubic phase (with space group Pm3�m) to illustrate a few points of interest, including a 

comparison with the results of a recent study using the AMOEBA force field.61 

The ideal cubic perovskite structure for ABX3 consists of a 3D network of corner-sharing 

BX6 octahedra, where B is a cation (Pb, Sn, etc.) and X is an anion (O, F, Cl, Br, I, etc.), while 

the larger cation A (Cs, Rb, organic cations, etc.) is found at the center of cubic space defined 

by the octahedra with 12-fold coordination to the anions, X. In terms of performing pGFN-FF 

calculations, it has been made evident from previous sections that the reference bonding 

topology can potentially affect the outcome of geometry optimizations if care is not taken. The 

situation is no different in this case, although a greater degree complexity can arise depending 

on how one interprets the bonding between A, B, and X ions within the perovskite structure, 

and which initial reference structure is utilized as input for the calculation. 

Figure 5 shows two different situations: either one allows bonds to exist between both B and 

X in addition to A and X ions (see Figure 5A), or only between B and X (see Figure 5B). In 

the first situation, this would mean that 18 covalent bonds (12 Cs-I and 6 Pb-I bonds) would 

be present in the initial bonding topology, whereas the second would lead to just 6 B-X (Pb-I) 

bonds. The latter is arguably the most intuitive description of the system, especially when 

extrapolating from the case of simple cations through to molecular cations on the A site. In 

either case, it is clear that depending on the choice of initial lattice parameters, geometry 

optimizations will lead to different potential energy surfaces being explored because of 

different bonding topologies, coordination environments and hybridization states being 

assigned to the ions within the crystal structure, which are kept fixed throughout the 

calculation. These overall changes in topology are reflected by the discontinuities present along 

the thick black curves in Figure 5, which have been constructed by performing single point 

energy calculations while varying the lattice parameter, thereby potentially allowing for a 

change in bonding topology to occur between different points. 
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Figure 5. Potential-energy curves for the CsPbI3 cubic perovskite structure where the initial 

bonding topology (A) may or (B) may not include A-X bonds. The thick black line represents 

the total energy curve computed by pGFN-FF as the unit cell parameter, 𝑎, is varied, where the 

initial bonding topology is determined at each point along the surface. The total number of 

bonds (sum of A-X and B-X bonds; thick green curve) and number of separate fragments (thick 

blue line) are indicated by 𝑛 along the right-hand y-axis. For each point where there are 

discontinuities (these are discussed in the main text), potential energy curves (thin-colored 

lines) are equally plotted by keeping the bonding topology fixed to the geometry of the closest 

point preceding the discontinuity. Inset structures show (A) CsPbI3 with 12 Cs-I and 6 Pb-I 

bonds, and (B) CsPbI3 with 6 Pb-I bonds. Atoms are colored as follows, Cs: green, Pb: gray, I: 

purple. The experimental cell parameter, 𝑎 = 6.297 Å at 645 K (taken from Ref. 61) is shown 

by the black dashed line. 
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Once a starting point is chosen during a geometry optimization run (i.e., choosing an initial 

value for the lattice parameter), GFN-FF determines the bonding topology (which fixes the 

bond, bend and torsional terms, atom type and hybridization, amongst other things, based on 

interatomic distances and coordination environments), and in turn fixes the potential energy 

surface that will be explored. The set of distinct potential energy surfaces are represented by 

the thin-colored lines in Figure 5. For instance, if one performs a calculation with an initial cell 

parameter 𝑎 < 6.17 Å, the optimization will proceed along the surface defined by the thin green 

potential energy curve, yielding an optimized unit cell with 𝑎 = 5.593 Å. However, 𝑎 > 6.17 Å 

causes the initial bonding topology to change. At the first point of discontinuity (point 1), the 

total number of bonds decreases from 18 to 6; i.e., only B and X ions are now bonded (similar 

to the scenario depicted in Figure 5B). However, if one starts with a unit cell parameter 6.17 Å 

< 𝑎 < 6.21 Å (point 2), GFN-FF now partitions the system into two separate fragments, which 

further changes the potential energy surface to be followed. In this case, GFN-FF ends up 

predicting a somewhat larger lattice constant, 5.748 Å, for the minimum energy geometry. The 

partitioning of the system into separate fragments within the original GFN-FF method is based 

on the neighbor list, which is distinct from the bonding neighbor list, and may imply (as just 

shown here), that changes in number of fragments may not occur simultaneously with the 

change in number of bonds. In order to address this issue (and to avoid additional 

discontinuities), an option has been added for pGFN-FF where it is the bonding topology, and 

not the neighbor list that controls how GFN-FF partitions the system into separate fragments. 

The result of using this option reduces the number of discontinuities and merges the point at 

which the system is split into an octahedral Pb complex coordinated to 6 I ions and a lone Cs 

cation (only one transition from point 1 to point 2 in Figure S8, as opposed to points 1, to 2, to 

3 in Figure 5A). The other remaining discontinuities (i.e., at larger distances with 𝑎 equal to 

ca. 6.21 Å and 7.56 Å, points 3 and 4 in Figure 5A), result from fluctuations in hybridization 
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states of the Pb ion; equilibrium angles that are inconsistent with the cubic perovskite structure 

may appear due to Pb being assigned an sp3 hybridization state instead of the octahedral (sp3d) 

hybridization state. This ultimately shifts the potential energy surface higher in energy, 

although the location of the minimum remains largely unaffected. Finally, if an extremely 

expanded geometry is utilized as the starting point, then no bonds are assigned between either 

Cs or Pb with I, and this results in exploring a purely repulsive potential-energy curve (point 

5). Similar observations can be made in Figure 5B, where all Cs-I bonds have been suppressed. 

In this instance, all discontinuities point to changes in the hybridization state of the ions within 

CsPbI3. 

The importance of choosing an appropriate reference configuration for a GFN-FF calculation 

should be clear from the above discussion. In most cases, however, the observed minimum 

appears to be consistently captured (ca. 5.75 Å, aside from when the system consists of 12 Cs-

I and 6 Pb-I bonds), despite the total energy of the system being highly variable depending on 

the force field description. For other properties of interest (e.g., mechanical properties) that 

depend on the curvature of the potential surface, the result does not appear to be greatly affected 

by the choice of input geometry (provided the number of bonds remains the same), which 

suggests that (p)GFN-FF could be usefully applied to screening of properties for such 

materials. 

3.4. Metal-Organic Frameworks  
 

Another significant family of materials where pGFN-FF can be applied is the simulation of 

the structural and mechanical properties of Metal Organic Frameworks (MOFs). Indeed, the 

original paper describing the GFN-FF force field highlighted the application to several such 

structures, though formulated as large clusters rather than periodic solids. The Cambridge 

Structural Database (CSD) contains more than 10,000 MOF structures, which display an 

incredible variety of metal centers and organic linkers, and a generic force field that can be 
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readily used to simulate any element in most of the periodic table will provide a unique 

opportunity to quickly screen hundreds of structures, which can then be further optimized and 

characterized with a higher level of theory.  

Although a comprehensive benchmark of the structural properties of MOFs predicted by 

GFN-FF is beyond the scope of the present work, it is worth comparing its performance at least 

against another recently developed universal force field that was parameterized specifically for 

application to MOFs (UFF4MOF).4 In Table 3, we report the lattice parameters, density, bulk 

modulus and shear modulus for a selection of the MOFs that were also previously optimized 

with UFF4MOF; we excluded Ni2(bdc)2(dabco) and MOF-235(Fe) because the experimental 

structures that we found were disordered and the current implementation of GFN-FF does not 

support partially occupied sites via a mean-field description. A depiction of the unit cells for 

each MOF studied here can be found in the Supporting Information, Figure S9. 
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Table 3. Lattice parameters (𝑎, 𝑏, and 𝑐 in Å), density (𝜌 in g/cm3), and elastic properties (bulk 

and shear moduli, 𝐵 and 𝐺, respectively, in GPa) of selected MOFs as predicted by pGFN-FF 

(with Wolf sum and damped 3-body ATM dispersion term). Percentage errors are quoted for 

the pGFN-FF results relative to experiment. The experimental and UFF4MOF lattice 

parameters were taken from Ref. 62. 

MOF 
Experimental 
space group 

 Lattice parameters  Error 
% 

 Properties 
  Expt. UFF4MOF pGFN-FF   ρ 𝐵 𝐺 

Cubic 
MOF-5 Fm3&m  𝑎 25.8849 26.08 25.952  0.26  0.5852 8.5 0.9 

IRMOF-8 a Fm3&m  𝑎 30.0915 30.34 30.276  0.61  0.4404 5.0 0.6 
IRMOF-10 a Fm3&m  𝑎 34.281 34.55 34.620  0.99  0.3216 5.2 0.4 
IRMOF-14 Fm3&m  𝑎 34.381 34.52 34.414  0.10  0.3723 5.8 0.5 

IRMOF-16 a Pm3&m  𝑎 42.9806 43.64 43.129  0.35  0.2031 3.6 0.3 
HKUST-1(Cu) Fm3&m  𝑎 26.343 26.94 26.036  -1.17  0.9829 13.4 1.9 
HKUST-1(Zn) Fm3&m  𝑎 26.520 27.49 26.079  -1.66  0.9863 12.4 2.4 
HKUST-1(Ni) Fm3&m  𝑎 26.594 26.48 26.098  -1.87  0.9541 14.2 1.9 
MFU-4(Co) Fd3&m  𝑎 21.731 20.98 21.001  -3.36  1.2976 21.6 6.5 
MFU-4(Zn) Pm3&m  𝑎 21.6265 21.62 21.338  -1.33  1.2814 13.9 4.3 

MFU-4l(Co4Zn) Fd3&m  𝑎 30.995 31.18 30.749  -0.79  0.5645 10.4 2.3 

Hexagonal 
MOF-177 P31c  𝑎 37.072 37.65 37.310  0.64  0.4204 7.2 0.6 

   𝑏 30.033 30.51 30.100  0.22     

Orthorhombic 

MIL-53(Cr) a Imma  𝑎 6.812 6.60 6.537  -4.04  1.1171 5.9 5.0 
   𝑏 16.733 16.48 15.513  -7.29     
   𝑐 13.038 12.66 13.610  4.39     

MIL-53(Al) a Imma  𝑎 6.608 6.51 6.532  -0.85  0.9804 20.2 8.2 
   𝑏 16.675 16.25 15.392  -7.69     
   𝑐 12.813 12.49 13.913  8.59     

MIL-53(Fe) a Imma  𝑎 15.9624 15.62 15.455  -3.18  1.0895 15.3 5.3 
   𝑏 14.3920 13.98 13.946  -3.10     
   𝑐 6.9351 6.61 6.675  -3.75     

Tetragonal 
DMOF-1(Zn) a P4/mmm  𝑎 10.929 11.31 10.792  -1.25  0.8967 12.0 4.0 

   𝑏 9.608 9.20 9.082  -5.47     
DMOF-1(Cu) a P4/mmm  𝑎 – 11.08 10.806  –  0.8868 13.8 3.3 

   𝑏 – 9.06 9.101  –     
a Structures were relaxed by constraining the cell to remain cubic, orthorhombic or tetragonal as appropriate. 

 
 

The starting coordinates for all structures were taken from the CSD apart from IRMOF-8, 

IRMOF-10 and the DMOF-1 MOFs, which were taken from the CoRE MOF database.62 All 

the structures were initially relaxed while preserving the experimental space group, apart from 

the structures taken from the CoRE MOF database (v1.1.3), which were already in P1 
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symmetry, where we constrained the cell to remain cubic (IRMOF-10 and IRMOF-16) or 

tetragonal (DMOF-1) as appropriate to the initial structure. The phonon frequencies were 

computed for all the relaxed structures, and IRMOF-10 and the MIL-53 showed imaginary 

modes that were removed by breaking the symmetry and relaxing the structures with 

orthorhombic or cubic constraints on the cell. In all cases the imaginary frequencies were 

related to small rotations of the phenyl rings of the organic linkers, which are averaged to a 

higher symmetry configuration in the crystallographic data.  

Overall, the two force fields, UFF4MOF and pGFN-FF, perform similarly, and they appear 

to be generally consistent in under-/over-estimating the lattice parameters, which might be an 

indication that simple force fields may not be able to capture the complexity of the atomic 

interactions in MOFs. pGFN-FF is slightly better at reproducing the experimental lattice 

parameters of the IRMOF structures and slightly worse for the MIL-53 structures. Although a 

systematic comparison of the elastic properties of MOFs is beyond the scope of the present 

work, the bulk and shear moduli reported in Table 3 are in line with those of MOFs with similar 

densities that are listed on MOF-explorer database63 hosted by the University of Cambridge. 

 

3.5. Minerals 

Minerals have been widely studied using force field methods over the last four decades due 

to their relevance to geology and geochemistry, as well as applications such as minerals 

processing. Obviously, there are a vast number of different minerals that exist and so a 

comprehensive study is not possible here. Instead, we choose to focus on two examples in 

detail to illustrate the performance of the current force field model for systems that can be 

classed as a 3D continuous network and a 2D layered structure with hydrogen bonding, while 

a general overview of the performance for minerals containing molecular anions will be given. 
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Arguably one of the most studied materials is a-quartz, as it is the most stable polymorph of 

SiO2 at ambient conditions and high density end-member for the extensive zeolite family of 

tetrahedral silica frameworks. Since a-quartz can occur naturally as large single crystals and 

crystallizes in a non-centrosymmetric space group, this also makes it an ideal system for the 

measurement of elastic and piezoelectric constant tensors.  

Here we have used pGFN-FF to optimize the a-quartz structure and compute the curvature 

related properties using analytic second derivatives, as implemented in this work. Results for 

the properties of a-quartz are given in Table 4, along with a comparison to a widely used formal 

charge shell model potential.64 Properties from experiment and quantum mechanical 

calculations at the hybrid functional level are also included. Both force field approaches, 

underestimate the lattice parameters of a-quartz, while the density functional result slightly 

overestimates them. However, the error from pGFN-FF in the c lattice parameter is the most 

substantial structural discrepancy at almost 4%, which is larger than any difference due to 

thermal expansion effects. Despite this contraction, the on-diagonal elastic constants are all 

substantially underestimated, while the quantum mechanical results, and to a lesser extent the 

shell model, do much better. It should be noted that the latter model was fitted to a-quartz and 

so it is unsurprising that it is more accurate for this system. Part of the softer mechanical 

response of pGFN-FF can be attributed to the electrostatics as the partial charge on Si is ~+1.1, 

which is lower than most force field charges used for this system. 
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Table 4. Hexagonal lattice parameters (𝑎 and 𝑐 in Å), elastic constants (𝐶)+ in GPa), and 

piezoelectric constants (𝑒)+ in C/m2) for a-quartz. Experimental values are from Antao et al.65, 

Heyliger et al.66, and Tarumi et al.,68 respectively. Quantum mechanical data (B3LYP) are from 

Harb et al.67 

Property Expt. 
Calc. 

GFN-FF B3LYP Shell model 
Lattice parameters 

𝑎 4.913 4.820 4.976 4.836 
𝑐 5.405 5.202 5.487 5.346 

Elastic constants 

𝐶"" 87.3 56.2 89.7 94.6 
𝐶'' 105.8 74.5 112.0 116.1 
𝐶&& 57.2 31.2 57.9 50.0 
𝐶## 40.4 16.0 38.5 38.1 
𝐶"% 6.6 24.3 12.8 18.4 
𝐶"' 12.0 8.2 16.4 19.7 
𝐶"& -17.2 -4.0 -14.8 -14.5 

Piezoelectric constants 
𝑒"" 0.149 0.770 0.184 2.690 
𝑒"& -0.057 -0.301 -0.055 -1.403 
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Piezoelectric strain constants for a-quartz are also given in Table 4. The agreement between 

the quantum mechanical data and experiment appears to be particularly good. However, the 

experimental data are for close-to room temperature, whereas the computed values are not.  

Given that piezoelectric strain constants are found to decrease substantially as the temperature 

is lowered,68 the agreement between these values is likely to be fortuitous. On the other hand, 

despite the piezoelectric constants computed by pGFN-FF being several times larger than 

experiment, they at least represent an improvement on the shell model values for this system, 

although we note that a similarly constructed shell model has been found to accurately 

reproduce the same properties for the closely-related berlinite (AlPO4) structure.69 Thus it is 

likely that the error obtained when using the shell model for a-quartz could have been 

minimized further had the fitting set included reference data for these strain constants. 

As noted for previous examples, care must be taken when using pGFN-FF to consider the 

relative thermodynamics of different structures. An illustration for the case of silica comes 

from comparison of a-quartz, the tetrahedral stable phase at ambient conditions, with 

stishovite, which is the high-pressure octahedral form. If naively computed, pGFN-FF would 

suggest that stishovite is more stable at 0 GPa by over 700 kJ/mol. Of course, this comparison 

cannot be made since both phases are described with different models generated specifically 

for the local coordination environment. However, pGFN-FF can be usefully applied to 

polymorphism of silica for comparison of a-quartz to nanoporous zeolite structures. Here the 

force field correctly predicts that a-quartz is the ground state based on comparison with all of 

the zeolites we have tested. 

For a second mineral example, let us briefly consider the case of aluminium hydroxide 

(Al(OH)3), which commonly occurs as the polymorphs gibbsite and bayerite. Both structures 

are monoclinic and consist of 2D layers that are hydrogen bonded together, while also 

containing intra-layer hydrogen bonds. Gibbsite and bayerite differ in the interlayer stacking 
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arrangement, as shown in Figure 6. This system represents a non-trivial system to model 

accurately with force fields due to the lower symmetry and hydrogen bonding. It was also a 

somewhat pathological case in that depending on the starting structure the initial charges could 

be too negative and the calculation has to be aborted due to unphysical parameters. 
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Figure 6. Interlayer stacking arrangement in the gibbsite and bayerite polymorphs of Al(OH)3. 

Here oxygen and hydrogen are represented by red and white spheres, respectively, while the 

octahedra for Al coordination are shown in blue. 

 

 
 

 

For the case of gibbsite, optimizing starting from the experimental structure leads to low 

errors in the cell parameters for such a complex system with the largest discrepancy being 2.1% 

on the c axis, which corresponds to the interlayer direction, while the volume and monoclinic 

angle have errors of only -0.3% and 1.2%, respectively. Analysis of the initial topology finds 

that this configuration includes some Al-Al bonds, but not for all nearest-neighbor pairs (only 

two thirds of the possible Al-Al bonds are present). By compressing the initial unit cell slightly 

it is possible to reach a configuration in which each Al in the structure has three Al-Al bonds. 

On relaxation, the errors in the lattice parameters now increase to a 5.8% overestimation of the 

volume, though the difference from experiment lies purely within the layers, as the interlayer 

direction and monoclinic angle are essentially in perfect agreement to within 0.1%.  

For bayerite, the initial configuration used here does not contain Al-Al covalent bonds. 

Compression of the bayerite structure until Al-Al bonds are formed is found to be problematic, 
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as only the point where 10 out of the 12 possible bonds can be reached before the initial charges 

become catastrophically negative. Hence the only way to achieve a meaningful comparison of 

gibbsite and bayerite as polymorphs is to explicitly exclude Al-Al bonds, even though this 

leads to larger errors in the structure. Under this constraint, bayerite is found to be the more 

stable structure by 10.8 kJ/mol, in contrast to the B3LYP internal energy difference of 9.9 

kJ/mol in favor of gibbsite,70 where the latter accords with the sign and approximate magnitude 

of the experimental free energy difference. Despite both structures having the same topology, 

the GFN-FF scheme yields slightly different parameters for the angles and torsions between 

the two structures, which again invalidates the energy comparison. Hence the only way to 

obtain a valid energy difference would be to use a common reference structure to generate the 

parameters, which are then applied unchanged to gibbsite and bayerite. Of course, the choice 

of reference structure may bias the outcome and mapping the equivalent atoms between 

structures would have to be performed. 

Finally for this system, one of the most widely used characterization methods for gibbsite is 

vibrational spectroscopy. The stretching modes for the OH groups give five distinct peaks in 

the range of 3373-3620 cm-1, which is in good agreement with quantum mechanical 

calculations.71 The computed stretching modes from pGFN-FF are found to occur over a 

narrower range and at lower frequency (2991-3150 cm-1), pointing to underestimation of the 

force constants for O-H bonds. This may be because the hydroxyl groups in gibbsite are 

bridging between two Al atoms, rather than terminal, and so this less common environment 

may not have formed part of the initial training set. 

A further class of minerals is those that contain discrete molecular anions within their 

structure, such as metal carbonates and sulfates. Here we use these systems as a means to 

address the best way to describe such minerals within (p)GFN-FF. There are two possible 

descriptions to examine: The anions (CO3
2-, SO4

2-) could either be covalently bonded to the 
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cations or treated as discrete species, and in the latter case the fragment is assigned a formal 

charge of -2. The optimized structures of a range of carbonate and sulfate minerals have been 

compared against experiment (see Tables S10 and S11). 

Examination of the results for a range of carbonate and sulfate minerals show that the 

accuracy of the structures can vary substantially with the choices made with no single approach 

proving to be universally the best. However, some general trends can be observed. Firstly, the 

description of these minerals tends to be most reliable when treating the systems as a covalent 

framework (i.e., the metal cations are bonded to the oxyanions). If the minerals are described 

as being composed of non-bonded metals and molecular anions (see Tables S12 and S13), then 

improved results are obtained by specifying formal charges on the fragments, rather than 

leaving them to be neutral as they would be by default, though the errors can still be large. 

Secondly, use of the Wolf sum for the topological charges leads to fewer failures in the 

calculations when starting from the experimental structures. The source of such failures is 

usually the initial charges being too negative, such that the repulsive parameters become 

imaginary. Results after including the Wolf sum also show lower mean absolute errors for the 

minerals when treated as covalent frameworks. Thirdly, damping of the three-body dispersion 

often only has a small effect, with the notable exception of barite where the unit cell is 

remarkably improved. Overall, the results for the carbonate and sulfate minerals indicate that 

it is best to treat these systems as framework materials within the pGFN-FF formalism.  

3.6. Liquid water 

So far, the focus has been on application of (p)GFN-FF to the solid-state. However, the 

inclusion of periodicity also facilities the study of liquids without the need to study droplets 

where surface effects can have an influence. Here we examine the performance of the current 

force field for water as it is one of the most widespread liquids in the environment. It also 

represents a challenging system to describe accurately, which has resulted in a large multitude 
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of models72 from simple atom-centered point charge force fields (rigid or flexible), though to 

those with multiple interaction centers, multipoles and/or polarizability. Quantum mechanical 

methods have also been widely used for liquid water, though accurate results potentially require 

consideration of dispersion, more advanced functionals and treatment of nuclear quantum 

effects.73,74 Use of machine learning, trained on high-level methods, may represent a pathway 

to affordable quality simulations of this system.75 

Molecular dynamics has been performed for a cubic cell of liquid water containing 520 

molecules at 300 K. Simulations have been run in the NPT ensemble with a stochastic barostat 

and thermostat with constants of 1 ps and 0.5 ps, respectively, and a time step of 1 fs. The 

simulation was initiated from a configuration that had previously been equilibrated with 

SPC/Fw water.76 During the initial phase of the molecular dynamics, a contraction of the unit 

cell was observed and so the simulation was equilibrated until the volume fluctuated around a 

constant value. Thereafter, production data was analyzed to determine the structure and 

dynamical properties of the water model. The total simulation length was approximately 350 

ps. 

As already noted above, the most obvious characteristic of the description of water by GFN-

FF, at ambient conditions, is that the density is substantially overestimated at 1.23 g/cm3. 

Further insight can be obtained by considering the radial distribution functions, as well as 

information on the angular correlations, shown in Figure 7. Taken overall, these plots indicate 

that while GFN-FF gives reasonable local hydrogen-bonding between molecules, the longer-

range structure and ordering of molecules deviates strongly from that expected. In particular, 

the O-O-O angular distribution for neighboring water molecules is essentially flat across a wide 

range of angles, instead of exhibiting a peak around the tetrahedral angle. This is a consequence 

of a particular broad distribution of water molecules in the first solvation shell which leads to 

an approximate number of neighbors of 10.5, in contrast to 4.4 for SPC/Fw.  
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Figure 7. Comparison of the radial distribution functions for O-H (top left) and O-O (top right) 

as computed for liquid water at room temperature and pressure using GFN-FF and SPC/Fw 

water. Experimental data are also included for comparison. For the O-O plot, the integral of 

the curves are also given (right-hand side y-axis). Probability curves for angular distributions 

are also given (lower panels) from the two computational models. 
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Given the increase in density and large coordination number of water molecules, it is 

important to ascertain whether the water is freezing or not, as the timescale for homogeneous 

nucleation of a new phase can be long and depend on the periodic boundary conditions 

imposed, especially as this has been a problem for previous water models.77 To check this, a 

further simulation was performed in which a slab of ice IX was created in 3D boundary 

conditions with a ~20 Å vacuum gap between layers. This was then simulated using similar 

parameters to the box of liquid water in an isotropic NPT ensemble, which prevents immediate 

collapse of the vacuum gap while allowing relaxation in all directions. Inclusion of a surface 

allows heterogeneous nucleation of melting to occur, and indeed the system rapidly reverts to 

the liquid phase. 

Finally, an important property of liquid water is the self-diffusion coefficient. This is 

computed with GFN-FF to be 2.06 x 10-5 cm2/s for the current cell size, which is in surprisingly 

good agreement with the experimental value of 2.35 x 10-5 cm2/s,78 despite the overestimated 

density and distinct local structure. Since the self-diffusion coefficient is dependent on the size 

of the simulation cell used,79 the present computed value is an underestimate of the converged 

GFN-FF value, and so extrapolation to the infinite cell limit is likely to lead to even better 

(fortuitous) agreement with experiment based on the corresponding correction for SPC/Fw 

water.80  

 

4. CONCLUSIONS 

In this study, we have described the extension of the universal GFN-FF force field from 

molecules and clusters to periodic systems. A few changes are mandated by the use of periodic 

boundary conditions, such as the introduction of Ewald or Parry sums for electrostatics, the 

sampling of the Brillouin zone for the calculation of the electronic structure of p systems, and 

the inclusion of strain derivatives to allow for optimization of the lattice vectors. However, a 
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number of areas for further modification were identified that are beneficial for extended 

materials, but also lead to changes in the results for finite systems and so the present force field 

is denoted pGFN-FF to indicate this deviation from the original method. Here the use of a small 

“p” is intended to indicate the motivation of periodic systems for the changes and the case to 

recognize that we do not wish to detract from the initial creation of GFN-FF as being the major 

contribution. Specifically, the main adjustments to the method proposed include the use of 

damped three-body dispersion to prevent collapse of structures in a small number of cases, and 

the use of the Wolf sum to screen the electrostatic interactions in the long-range limit during 

the determination of topological charges in preference to a hard cut-off for the Coulomb term. 

In addition, the calculation of analytic second derivatives with respect to Cartesian coordinates 

and/or strain variables has been formulated and implemented.  

We have examined the application of the original GFN-FF method, where possible, vs the 

current recommended modified form for a range of types of solid materials from organic 

molecular crystals through to close-packed ionic solids, layered materials and minerals. Where 

comparison is possible, we find the pGFN-FF form only leads to small changes in the resulting 

structures and thermodynamics at the benefit of increased robustness. There is no clear overall 

trend suggesting either a systematic improvement or deterioration, where the latter might be 

expected given that the parameters were fitted based on the original GFN-FF formulation.  

GFN-FF aims to be a universal force field and is indeed a major advance in terms of 

useability relative to previous models in this category, as there is no requirement for atom 

typing or separate determination of atomic charges. However, there are some important issues 

for someone working with the force field to consider and, where required, control. In particular, 

the initial geometry defines the bonding topology of the system, from which the parameters 

follow. Depending on the initial density or configuration chosen then the results may vary. 

Therefore, it is important to analyze the nature of the initial topology and check the assignment 
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of fragments before performing extensive calculations. It also comes with the caveat, that while 

it is universal (at least up for elements up to radon), it isn’t reactive; dissociation is allowed, 

but bonds are not formed by changing the topology on the fly. This means that care is required 

as to the intended usage. For relaxation of structures and determination of harmonic properties, 

such as elastic constants and vibrational frequencies, (p)GFN-FF is well-suited in most cases. 

For defect energies or determining the relative thermodynamics of different structures, such as 

polymorphism, then this approach will only be applicable for systems with molecular 

fragments such that no bonding changes are required during the process under examination. 

Extension of the GFN-FF approach to encompass reactivity should be possible in future 

though, as has been demonstrated for the universal force field for the case of the IM-UFF 

variant:81 Here weighting of atom and bond types is introduced to allow smooth transitions to 

occur between existing non-reactive interactions. The same effect could also be achieved by 

empirical valence bond theory or its multi-state variant.82  

Considering the overall performance of pGFN-FF for solids, we have found that it represents 

an improvement over UFF for the materials tested (with the possible exception of the interlayer 

lattice parameter of 2-D hexagonal materials) regardless of whether QEq charges are included 

or not in the latter method. It is even comparable in accuracy to specifically parameterized 

variants of UFF for the case of metal-organic frameworks. Organic molecular crystalline solids 

are found to be overbound, with lattice energies being too exothermic and unit cell volumes 

too small. Despite this, the average errors are often within a factor of two of those for more 

sophisticated force fields with complex electrostatic descriptions, which reflects the use of a 

contemporary dispersion model for these relatively weakly bound systems. The trend toward 

overbinding of molecular systems is also apparent for liquid water, which exhibits a density 

that is too high at ambient conditions. One of the reasons why GFN-FF may have systematic 

errors in intermolecular interactions is because of the limited data available for fitting when 
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restricted to molecules alone, especially from experiment. By extending the formalism to 

periodic systems, this opens up the potential to fit to a wide range of crystallographic, 

mechanical and thermochemical data in future that could lead to improvements in the 

intermolecular parameters. 

In the present study we have demonstrated the application of pGFN-FF to both lattice 

dynamics and molecular dynamics. While not explicitly considered here, the extension to 

Monte Carlo simulation is straightforward for ensembles where the number of particles is fixed. 

The case of Grand Canonical Monte Carlo is more complex as the full topology is no longer 

defined by the initial structure and will vary throughout the simulation. Provided the species 

being inserted/removed is restricted to one that has only non-bonded interactions with the rest 

of the system, as is typically the case, then this future extension would also be feasible. 

In conclusion, the extension of GFN-FF to periodic systems provides a valuable new tool for 

rapid simulation of materials. The automatic assignment of charges and atom types makes the 

method easy to use and ideal for large-scale screening of systems with minimal user 

intervention. It also has other potential applications, such as to aid more costly quantum 

mechanical techniques through providing initial Hessian matrices to accelerate geometry 

optimization. As with any universal force field, it is unlikely to represent the most accurate 

answer, but provides a valuable first insight into trends and properties. 
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