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Abstract

Online audio-visual source separation entails the fusion of measurements from multiple
modalities to decompose the input mixture signals into the individual source signals.
Online operation requires the output signals to be produced synchronously with the
input signals up to a fixed delay. Separation is typically challenging for an unknown and
time-varying number of moving sources. One approach to this problem is a three-stage
process of detection, tracking, and (spatial) filtering (DTF). The construction of a spatial
filter to separate each source signal and suppress interfering sources requires knowledge
of each source position and its identity. However, audio-visual measurements from
the detection stage are typically unlabeled and subject to noise, spurious, and missing
measurements. Further, both modalities reside in different observation spaces, even
though they observe the same scene. These factors give rise to the multi-modal space-

time permutation problem, which hampers separation.

The central aspect of the DTF approach is to solve the permutation problem and
estimate the source trajectories (tracking) to facilitate source separation. The labeled
random finite set (RFS) framework provides a principled mechanism for fusing multiple
modalities in a statistically consistently manner. The framework offers the capability of
specifying a stochastic model that characterizes the unknown and time-varying number
nature of moving sources, and a joint audio-visual stochastic model that encapsulates
the uncertainties in the audio and visual measurements, as well as their respective phys-
ical relationships to the sources. Based on these RFS models, a principled and tractable
Bayesian recursion can be derived to solve the multi-modal space-time permutation and

jointly estimate the source positions and labels in an online fashion.

In support of building an audio-visual system for multi-source separation, this dis-
sertation first explores the difficulties of audio-only separation using the DTF approach.
The RFS framework specifies an audio likelihood model that encapsulates the uncer-
tainties in the audio measurements from multiple arrays and their physical relationships
with the source states. This dissertation subsequently explores the challenges of 3D
multi-object tracking using multiple cameras. The RFS framework specifies a visual
likelihood model that describes the uncertainties in the measurements, including the
physical relationship between the 2D monocular detections and the 3D object states
based on a camera model. Additionally, a tractable 3D detection model that is amenable

to Bayesian multi-object tracking is introduced to handle visual occlusions in crowded
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scenarios.

Finally, the RFS framework provides a systematic and principled mechanism for
combining both audio and visual measurement models. Under the same framework, a
tractable online Bayesian tracking algorithm is formulated to facilitate the joint estima-
tion of the source positions and labels. By knowing the number of sources and their
respective whereabouts for each time frame, a time-varying set of spatial filters can be
constructed to separate each individual source and suppress other interfering sources.
Results indicate that the fusion of audio-visual data yields better tracking and separation

performances compared to audio data only.
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Chapter 1

Introduction

1.1 Motivation and Scope

One of the key features of human perception is the ability to fuse information from
multiple modalities — chiefly audio and vision senses — to make decisions [1]. Human
perception has inspired significant research effort on autonomous systems with audio
and visual sensors with the aim of developing a system capable of utilizing data from
heterogeneous sensors synergistically to achieve tasks like source/speech separation [2—
4] and multi-source (or object) tracking [5—8]. However, in the literature, computer
audition (signal processing) and computer vision (image processing) have traditionally

proceeded as two independent research fields.

In the field of computer audition, the tasks of signal-based perceptual system are
blind source separation (BSS), acoustic source localization, and tracking [4, 8]. BSS is
the decomposition of observed mixture signals into individual source signals with little
information about the mixing process [4]. BSS has been extensively utilized in wireless
communications for speech enhancement and noise suppression [4]. One of the limi-
tations of conventional BSS algorithms is that they require the number of sources, and
assume that sources are static. Since, in practical scenarios, sources are typically mov-
ing and the number is unknown, source localization and tracking approaches are needed
in advance for more sophisticated BSS algorithms [4]. Source localization provides ob-
servations of the source positional information, and tracking exploits these observations
from past to present to infer the individual source trajectories [8]. The ability to localize
and track acoustic sources provides machines with awareness of the surrounding envi-
ronment, which underpins applications such as acoustic scene analysis [9, 10], spatial

filtering for source separation [11, 12], and automatic speech recognition [13].

In the field of computer vision, object detection and multi-object tracking (MOT)
have been two ongoing topics of research over the past decade [6, 7, 14]. The task of
object detection is to pinpoint object instances in digital images [14]. Object detection

is foundational to other important computer vision tasks such as image recognition and
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object tracking [15]. Due to the rapid growth of deep learning techniques, state-of-the-
art object detectors have now reached real-time speed and accuracy, leading to many
real-world applications (e.g., robot vision, smartphone cameras, and video surveillance)
[14]. MOT differs from object detection in that it involves filtering detections with
respect to the objects, retaining their labels/identities, and generating their individual
trajectories [7, 16]. Given an input video, online MOT algorithms attempt to accurately
track multiple objects in the least amount of time possible. Real-time implementation is
imperative for applications like robot navigation, security surveillance, and autonomous
driving [7]. Aside from tracking speed, further MOT difficulties are the occurrences of
appearance changes and occlusions, which may lead to falsely terminated tracks and
identity switches. There has been much effort in the literature to improve MOT against
such adverse conditions [7].

While the separate fields of audio and visual processing have their respective chal-
lenges, the processing of both audio and visual data is important for building a more ro-
bust perceptual system since many machines are now equipped with both microphones
and cameras [1]. A fusion algorithm for multiple microphones and cameras enables
a joint analysis of a scene (e.g., audio-visual source tracking and separation, which
underpins the development of conferencing applications with multi-modal interfaces,
meeting analysis, smart homes and intelligent vehicles systems) [1, 17, 18]. The de-
velopment of a suitable fusion strategy for the widespread deployment of audio-visual
systems is a nontrivial task that requires disciplinary expertise [1]. To this end, several
multi-modal fusion strategies have been proposed for audio-visual systems [1, 17, 18].

This dissertation focuses on developing an online audio-visual source separation
solution that can handle multiple moving sources whereby the number of sources is
time-varying and unknown. The approach taken is based on the process of detection,
tracking, and filtering (DTF). The underlying theme of this dissertation is that the pro-
posed solutions are online and model-centric based on the labeled random finite set
(RES) framework [19-22]. Our model-centric approach relies on deriving stochastic
and physical models to characterize the problems. In practice, online model-centric
approaches are suitable for time-critical applications like audio-visual (online) confer-
encing, meeting analysis, and smart homes, where the constraints of synchronization,
latency and explainability are vital. The following sections detail the research problems,

objectives, and contributions of this dissertation.

1.2 Audio-Visual Source Separation

Source separation is the task of decomposing a mixture of signals received at sensor
elements into isolated sounds corresponding to individual sources [23, 24]. Source
separation approaches can be classified into batch (or offline) processing and online

processing. In the context of source separation, an online algorithm is a sampled sys-
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tem whereby the analogue mixture (input) and individual source (output) signals are
synchronized up to a fixed delay. In contrast, batch or offline algorithms process the
entire history of signal samples before producing a decomposition.

Batch Processing

Conventional audio-related separation methods include the independent component anal-
ysis (ICA) [25], sparse component analysis (SCA) [26], and non-negative matrix fac-
torization (NMF) [27]. Conventional methods assume a mixing model with a fixed and
known number of static sources, and utilize different statistical properties of the source
signals to achieve separation [4]. A common theme amongst these methods is the use
of a batch processing operation to optimize a cost function based on a particular separa-
tion criterion (e.g., independence, sparseness, or non-negativity of the individual signal
components in the mixture) [4].

Audio-related data-centric approaches are based on training a deep neural network
to achieve separation [28, 29]. The difficulty of training a deep neural network in a
scenario of multiple talkers is the label ambiguity problem as there is no information on
how to provide a correct reference to the corresponding output layers. The method in
[29] proposed a novel permutation invariant training criterion that determines the best
output-reference association and then minimizes the error given the association. The
method in [28] uses a trained deep network to produce spectrogram embeddings that
are discriminative for segmenting and separating the source signals. Both audio-based
data-centric approaches have been shown to separate up to three non-moving speakers.

Due to the proliferation of audio-visual applications, data-centric approaches have
incorporated visual data in combination with audio data to create a more robust and
improved source separation algorithm. Recent works have incorporated deep learning
architectures to effectively fuse information from audio and visual data to perform sep-
aration [30, 31]. These techniques are inspired by the way humans employ both audio
and visual senses to hone in on any speaker of interest in a loud and noisy environment.
By exploiting the audio-visual association between lip movements and speech utter-
ances, data-centric approaches rely on training a neural network to learn such audio-
visual features to achieve source separation [30].

Though the data-centric approaches have typically shown promising separation re-
sults, they require offline training on a large amount of data to function desirably. One
of the drawbacks is that training tends to be computationally expensive and restrictive in
cases where training data are unavailable. Further, data-centric approaches can be very
sensitive to environmental changes and may require constant retraining when there is a
model mismatch. Consequently, the abovementioned batch separation approaches are
not directly applicable to time-critical applications such as audio-visual online confer-

encing, particularly where outputs are required to be produced on the fly.
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Online Processing

In contrast to batch processing, online separation methods aim to produce the decom-
posed output signals synchronously with the input mixture signals up to a fixed delay.
The online requirement is typically incompatible with batch separation methods which
exploit certain statistical properties captured over the entire length of the data. Con-
sequently, online separation approaches are more appealing due to their suitability for

real-time applications such as audio-visual online conferencing.

In audio source separation, several online separation approaches have been pro-
posed in the literature [32—-35]. Most online separation methods are variations of the
conventional (batch) methods through a recursive update of the model parameters. For
example, the batch ICA method can be formulated as an incremental estimation of the
independent components from online data [32]. In [33], an incremental NMF method
based on volume constraint is proposed for online separation. In [35], the author pro-
poses an alternative to the Fourier transform called polyphase subband decomposition
that also permits an online implementation. Further recursive algorithms that rely on
source independence and non-stationarity to separate the source signals have been pro-
posed in [36-38].

Recent online data-centric approaches are the DANet [39] and TasNet [40]. The
DANet [39] method achieves separation via an attractor network that solves the label
ambiguity problem without knowing the number of sources. The TasNet [40] method
uses an encoder-decoder framework to estimate the source masks, which are then are
applied to mixture weights to separate the source signals. Note that while these meth-
ods have been shown to meet real-time implementation speed, they still require offline
training and are not amenable to applications where training data are unavailable. For
audio-visual conferencing applications, it is necessary to use online processing since

there are strict requirements on synchronization and latency.

Unknown and Time-Varying Number of Moving Sources

The aforementioned online separation approaches assume sources to be static with a
fixed and known number. In a real multi-source scenario with more than one audio
and visual sensors, sources are moving, and the number of sources is time-varying and
unknown. In this case, conventional separation techniques that assume time-invariant
mixing are unsuitable [41, 42]. In addition, it is not clear whether data-centric ap-
proaches for either audio or audio-visual data can be extended to accommodate for
unknown movement, appearance, and disappearance of sources. Before delving into
the approach and challenges, a use-case example is given to show the importance of

developing an online separation algorithm that can handle these problems.
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Figure 1.1: Online Audio-visual Teleconferencing

Use-case Example

Teleconferencing is an online audio-visual meeting with people who are physically and
remotely present. An audio-visual teleconferencing room is typically set up with a
control panel, connectivity module, high definition display screens, cameras and micro-
phones as shown in Fig. 1.1. In an online teleconference, a large group of people in
an organization can conveniently communicate and exchange collaborative information
worldwide. However, audio-visual teleconferencing is not yet as natural as in-person
meeting, especially during a collaborative discussion where people may move around
and engage in conversations. In this scenario, remote participants may have difficulty
listening and understanding multiple concurrent speakers. Moreover, undesired back-
ground noise in the room may further corrupt the audio stream. While the number of
participants in the meeting is usually known, the number of concurrent speakers is un-
known and time-varying throughout the meeting. To this end, having a voice separation
feature designed to handle an unknown number of speakers that are moving, enables on-
line users to listen in on any person of interest without interference from other speakers.
In addition, it is also advantageous to have an on-screen tracking system that locates and
tracks any person of interest as they move, as this helps online users to easily identify

the person who is talking.
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The Online Model-Centric DTF Approach

To solve the online multi-source separation problem, several audio-related works have
applied a tracking algorithm on audio measurements obtained from standard localiza-
tion algorithms to estimate the trajectories of the sources (i.e., the positions and identi-
ties of the sources), and then use adaptations of standard source separation techniques
to perform source separation [42—44]. These approaches are based on the model-centric
three-step process of detection, tracking, and filtering (DTF), which relies on the phys-
ical models of the dynamics of the sources as well as the characteristics of the sensors
(cameras and microphones) and their measurements for the estimation of the positions
and identities (or labels) of the sources. The labels are important for determining the
respective trajectories of the sources. Knowledge of each source trajectory underpins
the construction of a model-based separation filter capable of isolating the source sig-
nals and suppressing interference from other sources. The model-centric DTF approach
has the salient features of being capable of operating online, amenable to audio and vi-
sual data, and able to cater for a time-varying and unknown number of moving sources
without the need of constant training/retraining.

Adoption of model-centric DTF approaches to audio-visual separation is relatively
uncommon in the literature. More importantly, there is currently no online solution
for audio-visual separation of a time-varying and unknown number of moving sources.
Online solutions are more versatile and applicable to time-critical applications such as
online conferencing [17, 18, 45] and meeting analysis [1, 46, 47], where both audio and
visual modes are readily available and likely to be more effective than using audio data
alone. While there are a few works on online multi-source tracking using either audio-
only [42, 44] and audio-visual data [48, 49], these Bayesian tracking algorithms do
not estimate the positions and labels of the sources in a statistically consistent manner,
as they resolve each source trajectory individually using (heuristic) track management
techniques. From a tracking perspective, it is more complete to have a Bayes-optimal
solution that jointly estimates the source positions and labels in a principled manner, as

it has the potential to improve tracking performance and thus separation performance.

Key Challenges of the Online DTF Approach

Online audio-visual separation of a time-varying and unknown number of moving sources
is a challenging problem because the estimation of individual source signals needs to
be done for a dynamic scene. In addition, since it is an online process, the generation of
the separated signals must be done synchronously with the input signals with minimal
delay. The DTF approach has the capability of operating online by utilizing knowledge
of the scene (i.e., the positions and labels of the sources) at every time frame to design
a time-varying set of separation filters for signal separation and interference suppres-

sion. To achieve this, the concept of online detection and tracking is applied to inform
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Figure 1.2: Problem Illustration

a separation algorithm.
In the detection stage, audio and visual measurements obtained from the standard
detection algorithms are unsuitable for the construction of any separation filter due to

the following problems:

* Audio measurements from acoustic localization algorithms are usually in the time
or space domain, while visual measurements from detection algorithms are typi-
cally in the 2D image domain. As a result, both modalities are different physical
quantities that do not fall in the same observation space, even though they observe
the same physical space (see Fig. 1.2).

* The audio and visual measurements are unlabeled, and subject to noise, false

measurements and missing measurements (see Fig. 1.2).

* As sources are subject to unknown movement, appearance and disappearance
over time, all abovementioned factors give rise to the multi-modal space-time
permutation problem, since it is not known how measurements are associated

across domains, and generated by which sources across space and time, if any at
all (see Fig. 1.2).

For these reasons, an online Bayesian multi-source tracking system that encapsu-
lates the abovementioned problems and jointly estimates the source labels and positions
using the obtained audio and visual measurements at each time frame is required. This
solves the inherent multi-modal space-time permutation problem. Based on the tracking
estimates at each time frame, a set of spatial filters (beamformers) can be constructed

to achieve separation and suppression, all in an online fashion.
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1.3 Objectives and Contributions

The dissertation proposes an online and model-centric solution via the DTF approach
for audio-visual separation, which is useful for audio-visual conferencing-type appli-
cations where the constraints of synchronization and latency are vital. Since audio and
visual measurements obtained from standard detection algorithms give rise to the inher-
ent multi-modal space-time permutation problem, an online tracking algorithm plays an
integral part in solving the permutation problem in order to achieve separation.

To achieve audio-visual multi-source tracking, a stochastic model that captures the
time-varying and unknown nature of multiple sources and a stochastic model that de-
scribes the relationship between the multi-modal measurements and source (labeled)
states are needed. It is crucial that the stochastic model for the multi-modal measure-

ments captures the following three components:

* the respective physical relationships between the audio and visual measurements,

and the source states

* the noise or perturbations in the audio and visual measurements due to hardware

and environmental factors

* the inherent multi-modal space-time permutation issue, since it is unknown which
measurements in both modes are associated to which sources across space and

time, if any at all.

The thesis of this dissertation is that the labeled RFS framework offers a principled
mechanism for the modeling and fusion of multiple measurement modalities, thereby
enabling online solutions for audio-visual separation problems. To support the thesis,
this dissertation first explores the difficulties in tracking and separation using audio
data only, and proposes a labeled RFS-based stochastic model for characterizing the
nature of the audio measurements and the physical relationship between the audio mea-
surements and source states. Subsequently, the dissertation explores the difficulties in
multi-object tracking using visual data only, and proposes a labeled RFS-based stochas-
tic model for characterizing the nature of the visual measurements and the physical re-
lationship between the visual measurements and source states. Finally, given that both
modalities observe the same scene, the labeled RFS provides a systematic and princi-
pled mechanism for the fusion of both audio and visual measurement models. Under
the same framework, an online Bayesian tracking algorithm is constructed to recur-
sively estimate the labels and positions of the sources jointly. Given the online tracking
estimates, a time-varying set of spatial filters can then be constructed to separate each

source signal and suppress the inference from other sources.



1.3 Objectives and Contributions

1.3.1 Audio Multi-Source Tracking and Separation

The dissertation first explores the challenges in online tracking and separation for mul-
tiple moving sources (i.e., the number of sources is time-varying and unknown) using
audio data only. Standard acoustic localization algorithms are used to acquire audio
measurements, which are unlabeled, and subject to false negatives, false positives and
noise. Moreover, audio measurements are typically based on some form of nonlinear
transformation corresponding to the source position, which result in low observability.
Multiple microphone arrays are used to mitigate the observability issue since indepen-
dent sets of audio measurements generated by the arrays can be used collectively to infer
the positions of the sources. However, the main challenge is the space-time permuta-
tion ambiguity problem, as associations between the multi-array measurements and the
sources across space and time are unknown.

The labeled RFS tracking framework provides a principled way of addressing the
aforementioned problems and facilitates a joint estimation of the labels and positions of
the sources. The framework enables specifications of statistically consistent stochastic
models for capturing the physical relationship between the multi-array (audio) measure-
ments and the sources, including the measurement uncertainties. A multi-sensor multi-
source Bayes filter is applied to recursively estimate the trajectories of the sources (i.e.,
the source labels and positions), thereby solving the permutation ambiguity problem.
Knowledge of the positions and labels of the sources enables the construction of a time-
varying set of spatial filters capable of separating each source signal and suppressing
interference from other sources. The overall algorithm is online and scales linearly with
the number of arrays.

The proposed online solution is evaluated using real data in mild reverberation and
simulated data in low, mild, and high reverberation. To show that the method can han-
dle multiple moving sources that are time-varying and unknown, the experiment is de-
signed to first have an active source moving in the scene, followed by two other sources
appearing and moving at different times. The times when the sources appear and disap-
pear are unknown to the system. The Optimal Sub-Pattern Assignment (OSPA) metric
[50] is used to evaluate the quality of the multi-array measurements. Subsequently, the
tracking results are evaluated using the OSPA®@ metric [51], which is an extension of
the OSPA metric capable of penalizing labeling errors in the tracks. Finally, the separa-
tion results for both real and simulated data are evaluated using the ITU-T P.835 based
listening tests [52]. This contribution has been published in [53] and is the basis for
Chapter 3 of this dissertation.

1.3.2 Visual Multi-Object Tracking with Occlusion Handling

The dissertation further explores the task of designing an online multi-camera 3D multi-

object tracking (MOT) algorithm with occlusion handling. The interest of visual track-
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ing is to estimate the labels and positions of the objects based on visual measurements
(e.g., bounding boxes) obtained from standard object detectors. The visual measure-
ments are typically unlabeled with respect to the objects, and are not perfect for state
estimation and track management due to noise, missing measurements and false mea-
surements (or clutter). The occurrence of missing and false measurements are typically
caused by failure of the detector to correctly register the objects of interest, and by
occlusions when objects are obstructed by other objects in the camera. These imper-
fections in the measurements may potentially give rise to identity switching, track frag-
mentation, and track loss. Consequently, occlusion handling is an important element of

MOT to improve tracking performance.

In a multi-view (or multi-camera) setting, an object that is visually obstructed in
one camera may be visible by other cameras, therefore complementary multi-camera
data can be exploited to resolve occlusions [54]. Further, the deployment of multi-
ple cameras can potentially improve the overall tracking performance, as data from
multiple cameras reduce the uncertainty on the states of the objects. However, the im-
plementation of multi-view MOT is challenging, mainly due to the high-dimensional
space-time permutation problem between the objects and visual measurements across
different cameras. To date, the best solutions for multi-view MOT are batch algorithms
[55-57]. These methods rely on a data-centric multi-camera detector to obtain the ob-
ject measurements, which are processed to produce tracking estimates in the 2D ground
plane. Such multi-camera detectors require training in a high-dimensional input space
(as the number of combinations across multiple cameras is large) [58], and retraining

when there is a reconfiguration or extension in the multi-camera system.

This dissertation proposes an online multi-view MOT solution that relies on monoc-
ular detector training, thereby avoiding any training process when there is an exten-
sion or a reconfiguration in the multi-camera system. The solution is a model-centric
Bayesian MOT filter derived using the labeled RFS framework to handle the sub-
tasks of state estimation, track management, occlusion handling, and clutter rejec-
tion. The framework permits a statistically consistent manner of characterizing the
false/missing measurements, random appearance/disappearance of the objects, and the
multi-dimensional space-time permutation problem. Further, a novel 3D detection
model is proposed to handle occlusions. The proposed detection model is incorporated
in the RFS Bayesian tracking filter, which enables the filter to retain occluded tracks

correctly.

The proposed multi-view MOT algorithm operates in the 3D world coordinates. The
relationship between the objects in 3D and the detections in 2D is established via the
camera matrix, which can be obtained using standard camera calibration techniques.
Operating in the 3D world frame allows tracking people falling and jumping, which
is suitable for applications like school environment monitoring, age care, and sports

analytics. Further, the proposed algorithm has a linear complexity in the total number
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of measurements (from all cameras), which is desirable for scalability and online im-
plementation. The proposed method is validated on the latest WILDTRACKS dataset
and show comparable results with its best-performing method [57]. To evaluate the 3D
tracking performance of the proposed method, a new dataset with varying degrees of
crowded scenarios is developed. Based this new dataset, an experiment on multi-camera
reconfiguration is performed to show that the proposed method is able to operate unin-
terrupted. Lastly, the proposed method is evaluated on a dataset with people jumping
and falling. This contribution has been published in [59] and is the basis for Chapter 4

of this dissertation.

1.3.3 Audio-Visual Multi-Source Tracking and Separation

Lastly, this dissertation achieves online tracking and separation of multiple moving
sources (i.e., the number of sources is time-varying and unknown) using audio and
visual data. In audio-only tracking, multiple microphone arrays are needed to com-
pensate for the observability issue. By exploiting the complementarity of visual assis-
tance, the inclusion of a camera device with only a single microphone array has the
capability to achieve desirable tracking performance and, subsequently, some degree
of source separation. The main challenge in fusing both modalities is that they fall in
different observation spaces. For example, 2D bounding-box detections from images
are in pixel coordinates, while audio measurements obtained via acoustic localization
algorithms can be in the form of Cartesian coordinates, time-delays, time-difference-
of-arrivals or direction-of-arrivals. In addition, both modalities are susceptible to noise,
false measurements and missing measurements. Consequently, these factors give rise to
the multi-modal space-time permutation problem as the associations between sources
and the multi-modal measurements across space and time are unknown.

To achieve separation, an online multi-source tracking solution is required to ad-
dress the space-time permutation issue. The proposed tracking solution is a dynamic
Bayesian estimation approach formulated under the labeled RFS framework to fuse both
audio and visual data in a principled manner for tracking multiple sources. The RFS
approach enables the development of a stochastic model that describes the dynamics
of the time-varying and unknown number of sources and their physical motions over
time, in addition to the development of a stochastic model that captures the physical
relationships between the measurements and the sources including the abovementioned
uncertainties. The tracking filter is capable of estimating the labels and positions of
the sources jointly, thereby addressing the multi-modal space-time permutation prob-
lem. The tracking estimates inform the construction of a time-varying set of generalized
sidelobe cancellers (GSCs) [60] for achieving source separation and interference sup-

pression.

Experimental verification is carried out on real data with live human speakers. The
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algorithm is tested with live human speakers in a near-field scenario and a far-field
scenario. In addition, an ablation study for each scenario is presented whereby the
measurements, tracking and separation are performed using the audio data only. This is
undertaken to demonstrate the improvement in performance due to the combination of
audio and visual data. The OSPA [50], OSPA® [51], and ITU-T P.835 based listening
tests are applied for the evaluation of the audio measurements, tracking, and separation
results [52], respectively. This contribution has been submitted for publication [61] and
is the basis for Chapter 5 of this dissertation.



Chapter 2
Background

N this dissertation, the detection, tracking and filtering (DTF) approach is applied
I to online audio-visual separation for multiple moving sources where the number
of sources is unknown and changing over time. The online requirement is that output
signals are synchronous with the input signals up to a fixed delay. The construction of an
online separation filter to isolate a source signal and suppress the interference from other
sources requires knowledge of each source position and its unique label for each time
frame. However, audio and visual measurements acquired from detection algorithms
at each time frame give rise to the multi-modal space-time permutation problem. The
central aspect of this approach is to solve the permutation problem and estimate the
source trajectories (tracking) in a recursive manner to facilitate the construction of a
time-varying set of separation filters. The labeled random finite set (RFS) framework is
incorporated to address the problem for audio and visual data separately and jointly.

This chapter lays the foundation for the development of the proposed solutions
to audio, visual and audio-visual data. Section 2.1 reviews the techniques for blind
source separation (BSS), acoustic source localization and tracking, and spatial filtering.
Section 2.2 reviews the evolution of visual object detections, techniques on occlusion-
handling, and multi-object tracking (MOT). Section 2.3 reviews related works on audio-
visual source separation. Section 2.4 provides a detailed account of the classical Bayesian
state estimation or filtering techniques and their principled extension to multiple objects

via the RFS system.

2.1 Microphone Array Signal Processing

A microphone array is a set of microphones arranged in specific geometry to sample
an acoustic field [62]. Microphone array processing involves the blind extraction (or
separation) of source signals and the localization of sources using the (mixture) signal
information at the input of the array [62].

The objective of the BSS problem is the decomposition of mixture signals into the
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respective source signals with minimal knowledge about the mixing process [4, 23, 24,
63]. This is a complicated problem because the mixture signals are convolutive mixtures
of the clean source signals with a corresponding acoustic channel (e.g., a room impulse
response (RIR)) [64-66]. Traditional BSS methods are generally constructed based
on the assumption that source signals are statistically independent and that sources are
static with a known and fixed number [24]. However, in reality, this assumption is
often violated, especially in applications like speech separation in meeting room where
the speakers are subject to move freely. Accordingly, recent works have been geared
toward solving BSS for multiple sources where the number of sources is time-varying
and unknown [42, 44].

Source localization is an important aspect in the blind separation of multiple mov-
ing sources. In acoustics, localization is achieved by estimating intermediary parame-
ters (e.g., the direction-of-arrival and the time-difference-of-arrival), which are essen-
tial cues for inferring the source location via triangulation, multilateration or tracking
[8, 67-69]. Alternatively, the use of region search algorithms enables a direct form
of estimating the source positions without any intermediary steps [70]. In practice,
approaches to source localization are complicated by estimation errors (noise), miss-
ing estimates of sources (missing measurements), and false estimates (spurious mea-
surements), which are caused by reverberation, interference, dynamic variations in the
source-sensor geometries, and source (speech) inactivity [8].

For the abovementioned reasons, localization algorithms are coupled with special-
ized tracking algorithms to achieve acoustic source tracking [69, 71-73]. The ability
to localize and track multiple acoustic sources informs the construction of a set of sep-
aration filters to isolate the respective sources and suppress interference [42, 44]. The
following subsections elaborate the aforementioned methods (BSS approaches, acoustic
source localization, tracking, and spatial filtering).

2.1.1 Blind Source Separation

Conventional BSS algorithms can be categorized into four groups, namely Independent
Component Analysis (ICA) [24, 74-76], Non-negative Matrix Factorization (NMF)
[24, 77, 78], Sparse Component Analysis (SCA) [3, 24, 79, 80], and Bounded Com-
ponent Analysis (BCA) [24, 81-83]. These BSS approaches are typically based on a
mixing model that is solved via optimizing a particular cost function based on a sepa-
ration criterion, e.g., independence, sparseness, or non-negativity [4]. The optimization
requires the number of sources to be known in advance and is usually a batch process
since the algorithm exploits certain statistical properties and the non-stationarity of the
source signals [4].

The ICA method is one of the first BSS solutions that aims to segregate the mixture

signal into its additive source signals (subcomponents) by estimating the linear trans-
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formation (mixing matrix) via maximizing the independence and non-Gaussianity of
source signals [2]. As ICA assumes that the mixing matrix is invertible, it is only op-
timal for determined and overdetermined cases (where the number of sources is equal
or less than the number of microphones) [2, 25]. In addition, under a convolutive mix-
ture model, frequency-domain ICA suffers from the permutation ambiguity problem,
whereby the frequency bins may not be properly aligned so that the source signals are
correctly reconstructed [84]. To counteract some of ICA limitations, recent extensions
of the ICA method, such as the independent vector analysis (IVA) [85] and the indepen-
dent low-rank matrix analysis ILRMA) [86, 87], have been proposed. These methods
sidestep the inherent permutation ambiguities by defining dependence between multi-
variate components of the source signals [85] and using nonnegative matrix factoriza-

tion to model the power spectrograms of the source signals [88].

NMF methods decompose the mixture spectrogram into its constituents in a non-
destructive manner based on non-negative constraints [89]. This decomposition can be
achieved using several optimization techniques in a supervised or unsupervised manner
[90]. The supervised solution of NMF leverages prior knowledge of the kinds of sources
present, while the unsupervised solution makes use of the spatial covariance matrix
formed by mixtures from distributed (multichannel) microphones [42]. Note that spatial
covariance matrix methods are sensitive to initialization, hence, in practice, they require

careful fine-tuning in the learning/training stage for good results [41].

SCA methods exploit the sparsity of source signals to achieve separation. The
sparseness assumption suggests that significant time-frequency points are likely to be
dominated by only one source. This means that there is no overlapping in the time—
frequency representations of different sources, which is likely the case for speech sig-
nals [91]. One of the well-known SCA methods is the degenerate unmixing estimation
technique (DUET), which uses time-frequency masking to separate the sources [91].
The masks are constructed from stereo sensor observations using the clustering of rel-
ative attenuation and phase information [26]. DUET has stirred a plethora of demixing
methods [92, 93], culminating in the extension of DUET to anechoic and multiple sen-

sors with arbitrary arrangement [94].

The BCA method exploits the geometric boundedness property of source signals as
opposed to the source independence condition, for the decomposition of the mixture
signal [81]. BCA extracts each individual source component based on convex support
and Cartesian decomposition of the mixture signals [4, 81, 83]. To date, BCA has been
widely applied to the fields of wireless communication, and is regarded as an emerging
technique of BSS [4].

In summary, conventional BSS approaches operate in the batch mode, as they as-
sume static sources and exploit certain statistical properties of the source signals to
achieve separation. For an unknown number of sources, several BSS solutions have

been proposed in [95, 96]. Online BSS methods are typically variation of the batch
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methods through a recursive update of the model parameters [32, 33]. Further online
BSS algorithms that rely on source independence and non-stationarity have been pro-
posed in [36-38, 97, 98]. Note that these online separation algorithms have not been
demonstrated in a dynamic acoustic environment where sources are moving and are

subject to unknown appearance and disappearance.

2.1.2 Acoustic Source Localization

The premise of acoustic localization is that sources at different positions exhibit dif-
ferent relative delays between pairs of spatially separated microphones i.e., the time-
difference-of-arrivals (TDOAs), from the source position to the respective microphones
in the array. In the presence of multiple arrays, this property enables techniques of

triangulation and multilateration to determine the actual source positions [62, 99].

A TDOA of a signal generated by a source at position @ € R between two micro-
phones of indices 1 and 2 located at u'") € R3 and u® e R3 respectively, is given by:

712 = (@, u") — (e, u®), 2.1
where (m)
_,,(m
ey = el 2.2)
Cs

is the time-of-travel or time-delay from source position @ and microphone position 1™,

¢s 1s the propagation speed of sound, and ||-|| represents the Euclidean norm.

Signal Model

Each source in an acoustic environment is indexed by ne {1, ..., N}, where N denotes
the number of sources. The source situated at position a, € R? emits a signal that is
denoted by s,. The source signals impinge on an array of M microphones and the
signal received by each microphone element m is contaminated with noise v(™. In a
reverberant condition where the multipath effect is present, the received signal at each

microphone is modeled as:

N
Y= (s gl )+ 0), (2.3)
n=1

where gogf) is the room impulse response (RIR) that captures the signal’s multipath and

direct-path propagations.
Estimating the TDOAs based on the signal model above is an extremely difficult
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problem, hence it is simpler to assume the (direct-path) signal model below [62]:

- N s, (I—T(a/n,u(m))) -
(1) ~ +v"(1). 24
Y% ) e+ ) 24

n=1

To estimate the delay parameter, acoustic localization approaches exploit the cross-
correlation between signals of various microphone pairs. In the literature, traditional
approaches to acoustic source localization can be categorized into two main classes:
indirect and direct [100]. Additionally, there has been a recent development of source

localization using deep learning as detailed below.

Indirect Localization Approach

The indirect approach has two steps. First, estimate the TDOAs between a pair of mi-
crophones in the array. Then, based on the geometry of the array and the estimated
delays, estimate the source positions [101]. Consider the direct-path model with only
two microphones in an array (i.e., M = 2), the estimation of the TDOA can be achieved
via the generalized cross-correlation (GCC) function, which is the inverse Fourier trans-
form of a cross spectral density of two observed signals in the frequency domain along

with a frequency-dependent weighting function @(w) [102]:

R1(r) = / " (@) Y (@) du, (2.5)

[0

where Y (w) denotes the Fourier transformed observed signal y™ from microphone
of index m and the asterisk * denotes the complex conjugate. One common weighting
function that is purposed to pre-whiten the correlated speech signals is known as the
phase transform (PHAT) [103]:

1

)= @ (@)

(2.6)

In a single source scenario (i.e., n = N = 1), the TDOA estimate for the source can be
obtained by maximizing the GCC-PHAT function #(? = argmax, R () [102]. Sub-
sequently, the estimated TDOA is used to determine the source directions, for example,

using triangulation [104—106], or multi-dimensional lookup tables [107].

In the presence of multiple sources, the GCC function comprises the cross-correlations

of various paths due to the respective sources, yielding multiple peaks in the GCC func-
tion. In this case, multiple TDOAs are estimated from the GCC function via picking
more than one peak in (2.5) [72]. However, in a realistic acoustic environment, the
source signal is immersed in ambient noise and subject to a multipath propagation. The
noise and multipath propagation effect cause perturbed and spurious peaks in the GCC

function, which give rise to noisy, false and missing TDOA measurements.
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Direct Localization Approach

Direct approaches perform the estimations of TDOAs and source positions all in a single
step by searching over the space of source location and choosing the most probable
source location based on significant sound intensity [108—110]. One example of the
direct approach is the steered response power phase transform (SRP-PHAT) localization
algorithm. The SRP-PHAT is interpreted as a spatial filtering technique that relies on
the array’s ability to focus on signals originating from a particular position or direction
in space [109].

Given a microphone array of M microphone elements, the SRP-PHAT is given by
[103]:

M-1 M ()
© Y)Yy (w) | ®) (a)
— jo(r(au®)-1(au ))d 2.7

a=1b=a+1%"

where @ € R? is the source position and Y @)(w) denotes the Fourier transformed ob-
served signal y" from microphone m.

Assuming that there is only a single source, the SRP-PHAT algorithm aims to search
for the source position estimate @ by maximizing (2.7), i.e.,& =argmax,P(«). Unlike
the GCC-PHAT, localization using the SRP-PHAT approach is computationally expen-
sive due to a large dimensional search in the SRP space [103]. Effective optimization
algorithms, for example, the coarse-to-fine region contraction and the stochastic region
contraction (SRC) have been shown to be capable of reducing the computational cost
without loss of accuracy [70, 111]. Further, the work in [109] has proposed a mod-
ified SRP-PHAT approach that performs an exploration search over sampled spaces
produced by a GCC function [109].

Similar to the GCC-PHAT approach, in the presence of multiple sources, the posi-
tion estimates can be obtained via peak-picking (2.7) with a certain threshold. Nonethe-
less, the presence of ambient noise and significant multipath in highly reverberant envi-
ronments give rise to noisy, false, and missing source position candidates or measure-

ments.

Deep Learning Approach

In the recent years, there has been an active research on deep learning strategies for
acoustic source localization [112]. Most deep-learning based localization approaches
typically rely on different kinds of input features that are extracted from the microphone
signals [113]. These extracted features are generally low-level signal representations
like spectrograms, waveforms, or adopted from traditional signal processing methods,
e.g., GCC-PHAT and SRP-PHAT. In standard machine learning fashion, these input fea-
tures are eventually fed into a deep neural network (DNN) which estimates the source
locations or direction-of-arrivals (DOAs) based on different output strategies [113].

In general, there are two output strategies in a DNN to estimate the locations or
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DOA s of the sources, 1.e., classification and regression [113]. In a classification paradigm,
the localization search space is divided into equal size grids that are associated to dif-
ferent classes, and the DNN generates a probability value to each class. Such a classifi-
cation strategy has been applied to localizing multiple sources, as the DNN is trained to
determine the probability of a source activity without prior knowledge of the number of
sources [113]. In contrast, a regression strategy directly estimates the values of source
positions or DOAs, which are usually in the spherical or Cartesian coordinates. How-
ever, to build a robust DNN model with high estimation accuracy, a sufficiently diverse
training dataset is generally required [113].

Convolutional neural networks (CNN) have been widely adopted in source localiza-
tion, due to their property of being translation invariant [114]. The works in [115, 116]
are some of the early research papers that have shown to use CNNs to estimate the
azimuth angles of multiple speakers under high reverberation. The approach in [115]
cast a source DOA estimation into a deep CNN classification problem. The idea is to
first transform the received microphone signals into the STFT domain, then utilizing the
phase component of the STFT coefficients to learn relevant features for the estimation
of source DOAs. As an extension to this work, the authors have used the W-disjoint
orthogonality (WDO) assumption [26] on speech signals to achieve a CNN that learns
from phase correlations between adjacent microphone signals [116]. More recent deep-
learning based localization techniques have shown to directly input raw multichannel
waveforms into a CNN to predict the Cartesian coordinates of the sources [117, 118].

Consequently, DNNs have shown to be powerful models that are able to learn the
relationships between raw microphone signals and source locations under reverberant
and noisy environment. To achieve great results, training a DNN model for source lo-
calization requires a sufficiently large and discriminative amount of training examples
[112]. As a result, one of the major drawbacks of neural network localization meth-
ods is the lack of generality because a network that is trained for a particular sensor

configuration may not produce desirable results once the setting has changed [113].

2.1.3 Acoustic Source Tracking

Acoustic source localization approaches only provide estimates of the source TDOA
or position, without the dependence of past observations [8]. These obtained source
TDOAs and positions are referred to as acoustic (or audio) measurements that are unla-
beled and cannot be easily joined with measurements from the past to get the sources’
trajectories [8]. Moreover, localization systems are prone to missing and spurious can-
didates, as well as localization errors due to reverberation and noise in real scenarios.
Specialized tracking algorithms are commonly applied to address the abovementioned

issues.

Bayesian state estimation algorithms apply a two-stage process that uses past in-



20

Background

formation to predict the source locations via a dynamic motion model and corrects the
predicted estimates based on the measurements/candidates produced by the localization
system via a likelihood model [8]. Classical dynamic state estimation technique (e.g.,
particle filtering) has been shown to track a single source in [69, 71, 119]. For scenarios
where the number of sources is changing over time and unknown, tracking using the
classical single-object Bayesian tracking framework is not suitable because it does not
incorporate the uncertainty in the number of sources [8].

The tracking of multiple sources entails solving the inherent space-time permutation
problem because the associations between the sources and audio measurements across
space and time are unknown. This problem also includes the possible appearance and
disappearance of the sources, which are unknown to the system. In the literature, spe-
cialized online multi-object tracking algorithms, for example, the Rao-Blackwellised
particle filter (RBPF) [42, 120], the probabilistic data association (PDA) filter [121],
and the probabilistic multiple hypothesis tracker (PMHT) [44] have been demonstrated
for tracking multiple moving sources.

The random finite set (RFS) framework [122] provides a principled mechanism for
accommodating a time-varying and unknown number of sources, and is directly ap-
plicable to acoustic tracking [8]. Online RFS Bayesian methods have been applied to
tracking multiple acoustic sources in [72, 123, 124]. Further, the probability hypothesis
density (PHD) filter [10, 43, 125, 126], the cardinalized PHD (CPHD) filter [127, 128],
the cardinality-balanced multi-object multi-Bernoulli (CBMeMBer) filter [129], and
the RFS particle filter [ 130], have also been demonstrated for tracking multiple sources.
These RFS-based filtering algorithms are elaborated on in Section 2.4.

While the above online multi-object tracking algorithms are capable of handling
multiple sources, they have not provided a statistically consistent approach for estimat-
ing the source positions and identities (or labels) of the sources, which are essential
for determining the respective trajectories of the sources. Instead, they rely on addi-
tional post-processing (e.g., a track management scheme) to obtain the source trajecto-
ries. Further, when multiple microphone arrays are used to observe the tracking scene,
the number of measurements acquired in a multi-array system poses a highly complex
(multidimensional) data association issue. From a tracking perspective, it is desirable
to have a tracking solution that jointly estimates the source positions and labels in a
principled manner, as tracking performance can potentially be improved. In addition, a
tracking solution that scales linearly in the number of microphone arrays (sensors) and

measurements provides the benefits of extensibility and scalability.

2.1.4 Spatial Filtering for Moving Source Separation

Conventional BSS approaches based on time-invariant mixing (i.e., for static and fixed

number of sources) are not directly suitable for conditions where sources are moving
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with respect to the microphones [42]. In a short-time block/frame, the assumption of
time-invariant mixing can be achieved by treating moving sources as stationary within
that time block [42]. Block-wise ICA approaches in [131-133] separate moving sources
by propagating a block-wise mixing matrix that adapts and preserves source ordering
in successive blocks. In [41, 89], a multichannel NMF method has been demonstrated
for separating moving sources but the overall algorithm requires an additional state-of-
the-art separation technique to assist the initialization in a blind setting. Alternatively,
blind moving source separation can be achieved by using spatial filtering.

Spatial filtering or beamforming is a technique used in microphone array processing
for separating a target source signal by forming a beam directed at a desired location
[63]. The operation of spatial filtering consists of the following steps, synchronization
and weight-and-sum [62]. In the first step, each microphone element signal is delayed
by a certain amount of time to synchronize the signal components coming from a de-
sired direction. In the second step, the aligned signals are weighted and added to form
a beamformed output [62].

Delay-and-Sum Beamformer

A standard delay-and-sum (DAS) beamformer is classified as a fixed beamforming
method that does not depend on statistical properties of the observed data [60]. The
important aspect of a DAS beamformer is the filter weight design. In the frequency do-
main, these weights represent a phase correction term that corresponds to time-aligning
the signals from all microphone elements in the time domain, which are then added up

to form a single beamformed signal.

Based on the signal model in Section 2.1.2, let Y")(w) be the Fourier transform of
an observed signal y™ at microphone of index m, the DAS beamformer is expressed
as [62]:

M
SPA () = (W(’")(w))H YO (), (2.8)

m=1
where ¥ is the Hermitian transpose, M is the number of microphone elements, W (w)
is the beamformer weight for each element, and S®PAS(w) is the beamformed signal
in the frequency domain. One of the drawbacks of a DAS beamformer is the direc-
tivity issue at lower frequencies [62]. Moreover, the presence of significant off-axis
pick-ups (i.e., the beamformer side-lobes) causes leakages in the beamformed signal.
Therefore, estimating the beamformer weights in an adaptive manner using statistical
characteristics of the signals and noise has the potential to improve the performance of
the beamformer [60].
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Minimum Variance Distortionless Response

The minimum variance distortionless response (MVDR) beamformer is one of the
most widely used optimal beamformers whose goal is to minimize the variance of the
recorded signal [62]. Given that ®pgp is the power spectral density matrix of the mi-
crophone array input signals, MVDR seeks to minimize the output power to acquire the
filter weights W [62]:

mui/nW(a))TCDpSD(w)W(w) subjectto  W(w) d(w) =1, (2.9)

where T
d(w) = [efolr@™)  gio(red™) (2.10)

is the representation of the delays or travel times (refer to (2.2)) in the frequency do-
main which depend on the actual geometry of the array, i.e., the positions of individual
microphones u(V, ..., u™) and the position of the source signal @. The use of Lagrange
multipliers has been demonstrated to solve (2.9) [62]. Assuming that noise and the
desired signal are independent, the sum of the variances of noise and the desired sig-
nal is the variance of the observed signal [62]. Thus, the MVDR beamformer aims to
minimize this sum, which keeps the desired signal while mitigating the effect of the

noise.

Linearly Constrained Minimum Variance

The linearly constrained minimum variance (LCMYV) beamformer aims to keep the de-
sired signal of interest while allowing for addition constraints to suppress any known
interfering signals (or jamming signals) [60]. This requires not only the desired sig-
nal position to be known but also the positions of interfering (undesired) signals. The
LCMYV seeks to minimize the same expression as MVDR expressed in (2.9), but with
different constraints designed to keep the desired signal and cancel any known jammer
directions [60, 134]:

subjectto  D(w)TW(w) = Iy(n), (2.11)
ejw(r(al,u(l))) . ejw(‘r((tN,u(l)))

D(w)= : - : , (2.12)
ejw(T(alvu(M))) e ejw(T(a'Nvu(M)))

where 7(a;, u'/)) is the time of travel from source position a; to microphone position 1"/,
Iy is a selection vector whose dimension varies depending on the estimated number of
sources N, i.e., Iy(n)=[61[n], . ..,on[n]]" such that 6,[b]equals to one if a=b, otherwise
it equals to zero. An example of designing the LCMYV to keep a desired signal while

suppressing the other interfering source signals is by selecting n =1 as the signal of
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interest with its location as a1, and the interfering sources as n=2,..., N with locations

{a, }r]:/:z' The solution to (2.11) can be obtained using Lagrange multipliers [60, 134].

Generalized Sidelobe Canceller

A generalized sidelobe canceller (GSC) is an unconstrained version of an LCMV whose
objective is to steer a beam toward the desired signal and suppress interference by
nulling the interfering signals [60]. The GSC composes of an upper beamformer that
keeps the desired signal and a blocking system that allows any signal other than the
desired signal from entering the canceller [60]. The upper part of the GSC, in its sim-
plest form, can be the DAS beamformer (2.8), and the bottom part comprises a blocking

matrix B(w) given by[60]:
B(w) = I- W(w)|[(W(w) W(w)] ' W(w)” (2.13)

where W(w) = [WD(w),... WM (w)]" is the upper beamformer weights, and I is an
identity matrix. The weight vector of the GSC G(w) is given by [60]:

G(w) =W(w)-B(w)V(w). (2.14)
The weights V(w) are computed by minimizing the spectral density error [60]:
e(w) = (W(w)-B@)V)"Y ().

where Y(w) = [YP(w),.... Y™ (w)]" is the frequency-domain observation signals from

all microphone elements. The output of the GSC is therefore given by [60]:

SGSO (W) = (G(W)! Y(w). (2.15)

In summary, the GSC is derived based on the fact that the weights of the LCMV
beamformer can be decomposed into two parts, one part fulfilling the constraint and the
other part responsible for minimization. One of the advantages of the GSC is that it can
be solved in an unconstrained manner which makes it more efficient than solving the
abovementioned MVDR and LCMYV beamformers [135]. Furthermore, it has also been
shown that the GSC is capable of producing good suppression under strong interference
from concurrent signals. However, a slight disadvantage of a GSC filter is that signal
distortions can be difficult to control since it is inevitable to have a mismatch between
design model and real-life scenario [60]. Based on these properties and the relative
advantages, the GSC beamformer has been adopted as the spatial filter for the proposed

online separation algorithms discussed in this dissertation.
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Application of Spatial Filtering to Multi-Source Separation

The use of beamformers for source separation requires some knowledge of the sources
(i.e., the source spatial positions or direction-of-arrivals) [66]. Because of this, com-
plementary algorithms for estimating the beamformer parameters are usually applied to
achieve source separation in a blind setting. For example, in [136], a blind approach for
learning the beamformer parameters was proposed based on the speakers’ TDOAs. Al-
ternatively, blind moving source separation can be achieved using a Bayesian tracking
algorithm to estimate the source trajectory (the position and label) based on acoustic
measurements obtained from an acoustic localization technique, then using the infor-
mation to construct a beamformer. Salient features of the Bayesian approach are that
possible outliers are incorporated into the problem formulation and the source loca-
tion is sequentially predicted and corrected with respect to time via a Markov transition
model and a likelihood model, respectively [8].

The strategy of acoustic detection, tracking and filtering (DTF) is adopted in [42,
44, 137] for blind separation of multiple moving sources where the number of sources
is unknown and subject to change over time. In [44], the PMHT is used to facilitate the
construction of an MVDR filter for source separation, while in [42], the RBPF is used to
inform a NMF separation filter. In the context of spatial filtering, it is important to point
out that knowledge of the source positions and their unique labels (trajectories), are
necessary for constructing a beamformer capable of separating a source and suppressing
the other interfering sources. However, the above multi-source tracking algorithms do
not jointly estimate the source positions and labels in statistically consistent manner.
Instead, they rely on track management (post-processing) techniques to resolve each
source trajectory individually. For online conferencing applications, it is desirable to
have a tracking system that jointly estimates the source positions and labels for each
time frame, so that a time-varying set of spatial filters can be constructed to perform

separation and suppression, all in an online fashion.

2.2 Computer Vision and Image Processing

Computer vision is the study of extracting useful information from images [138]. Re-
searchers in the field of computer vision have been developing techniques to detect and
recognize objects, and to reconstruct their properties, such as shape, illumination, and
color distribution [139]. Vision sensors observe things in a 3D world, and when com-
puters attempt to analyze objects in 3D space, the visual sensors (cameras) usually give
2D images due to projective geometry. This projection to a lower dimension incurs an
enormous loss of information [139]. Consequently, we seek to recover some unknowns
and details of the 3D world, given information from a 2D image, to fully specify a
solution [139].



2.2 Computer Vision and Image Processing

25

The last 20 years have seen rapid progress in the field of computer vision due to
improved processing power, storage capacity, and random-access-memory of state-of-
the-art computers. A few commonly known visual applications include object detec-
tions, multi-object tracking, 3D modeling, medical imaging, optical character recog-
nition, and surveillance [139]. As a portion of this dissertation is focused on visual
multi-object tracking (MOT), the following subsections review visual object detection,

occlusion-handling techniques, and MOT.

2.2.1 Visual Object Detection

The aim of object detection is to devise computational techniques for determining the
class of an object in the image and returning the spatial location and extent of that object
if present [140]. In the past two decades, researchers have oriented toward solving the
following difficulties in object detection: object localization accuracy, object rotation
and scale changes, detection speed (capable of real-time use), and object occlusions
[14]. Over years of development, object detectors have been through two evolutionary

periods: the traditional period and deep learning period. [14].

Traditional Object Detectors

In the traditional object detection period, Viola and Jones invented the first human face
detector using the concept of sliding windows that slide through all locations and scales
in the image [141]. The histogram of oriented gradients (HOG) feature descriptor [142]
was then proposed as a significant improvement for scale invariant feature transform
(SIFT) [143, 144] and shape contexts [145], primarily for pedestrian detection. The
HOG detector inspired the development of the deformable part-based model (DPM)
detector [146-149].

A typical DPM detector consists of a root-filter that is equivalent to a HOG model
with image pyramid for capturing the object boundary, and a number of part-filters
or the so-called the deformable parts, which capture finer resolution edges and details
of the object [146]. A sliding window strategy is adopted by the detector to run a
classifier over the entire image [146]. For improving detection accuracy, the DPM has
incorporated hard negative mining and bounding box regression, both of which are
valuable insights that inspire many subsequent object detectors in the literature [14].

The downside of HOG and DPM detectors is that the computation of features at
every scale of an image is very slow [14]. This is mainly due to the use of the classical
sliding window strategy, which generally involves a large number of windows that do
not scale linearly with the number of image pixels [15]. Further, the HOG and DPM de-
tectors require searching over multiple aspect ratios and image scales to achieve robust
detection [15]. Because of this, improved detection accuracy is always accompanied by

increased computational cost.
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The Aggregated Channel Features (ACF) object detector has subsequently been
proposed to counteract slow detection speed without accuracy loss by extracting fea-
tures directly as pixel values in extended channels, instead of direct feature computation
[150]. The types of channels include color, gradient magnitude, and gradient histogram
[151, 152]. ACF not only has the advantage over accelerated detection speed but also

over richer representation, and more accurate localization of objects [150].

Deep Learning based Detectors

The aforementioned object detectors rely on handcrafted features and they have be-
come saturated in terms of detection performances and speed [14]. This is because
handcrafted features are sophisticated feature representations due to the lack of effec-
tive image representation and computing resources 25 years ago [140]. As opposed to
traditional handcrafted features, a more robust and information-rich feature representa-
tion of the image can be achieved via a deep convolutional neural network (CNN) [153].
CNN are superior to handcrafted features because they are able to exploit properties like
compositional hierarchies, translation invariance, and local connectivity [15].

A typical CNN is designed to adaptively learn object features through a hierar-
chical structure composed of multiple convolutional layers, pooling layers, and fully
connected layers [153]. The operation of a CNN begins with a convolution that is per-
formed on an image with N 2D convolutional kernels (or filters) to obtain feature maps.
Each convolution is subject to a bias term and a nonlinear operation, which is referred to
as rectified linear unit (ReLU). Finally, the process of pooling downsamples/upsamples
the feature maps. The sequential operations of convolution, ReLLU, and pooling are
illustrated in Fig. 2.1. Note that every subsequent step results in a reduction of reso-
lution/dimension up to the fully connected layer. The fully connected layer is capable
of recognizing global patterns and providing a compact representation of features for
classification/detection [15].

Training a CNN requires optimizing an objective function (e.g., a mean squared er-
ror loss) using stochastic gradient descent [153]. The accuracy of a deep CNN detector
is dependent on the different feature extraction networks, which are called the “engines”
or the backbones of a detector. Over the years, many well-known backbones of a CNN
detector have been proposed, e.g., GoogLeNet [154], AlexNet [153], VGG [155], and
ResNet [156]. Despite the attractive qualities of a CNN detector, the implementation is
prohibitively expensive in high-resolution and large-scale images, or more importantly,
CNN s cannot straightforwardly segment images into multiple objects [140]. Therefore,
the construction of effective and efficient detection algorithms is central to reducing
this computational cost. Milestone approaches proposed to overcome the computa-
tional bottlenecks can be categorized into two classes: a two-stage detection framework
that has a separate object (or region) proposal module for detection, and a one-stage

detection framework that unifies the process of object proposal and detection [15].
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Figure 2.1: The three repeated operations of a CNN: convolution with linear filters,
nonlinearities (e.g., ReLU), and local pooling (e.g., max pooling). N filters are applied
to M feature maps from previous layer. The result of this operation is passed into a
nonlinear function (e.g., ReLU) and pooled to obtain feature maps at a lower resolution.

Figure 2.2: RCNN Pipeline

Two-Stage RCNN

Region CNN (RCNN) incorporates a region proposal algorithm in a CNN, which is
responsible for generating a set of candidate regions containing an object [157]. This
strategy modularizes the detection pipeline so that computational bottleneck is allevi-
ated and overall system efficiency improved [157]. Training an RCNN consists of the
following steps [15]. First is the use of selective search [158] to propose candidate re-
gions (bounding boxes) that might contain objects. Then, these regions are warped into
fixed standard size images and used for training a CNN model [153]. Lastly, features
extracted by the CNN are used to train the back-end classifiers, while the bounding box
regressors are trained on each object class to refine the localization of bounding boxes
[15]. These steps are illustrated in Fig. 2.2.

While RCNN has been shown to achieve significant performance and speed im-

provements over its predecessor, there are several shortcomings [15]. First, the training
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Figure 2.3: Fast RCNN Pipeline

process of the classifier and bounding box regressor are not scalable with the num-
ber object proposals in each image, making it expensive both in memory and time for
large-scale detection [15]. Second, the training process is a multistage pipeline, which
is computationally expensive and hard to optimize [15]. Lastly, the testing process is
slow because the CNN features are selected from every region proposal of the image

without computation sharing [15].

Two-Stage Fast RCNN

Fast RCNN [159] trains the classifiers and class-specific bounding box regressors si-
multaneously, as opposed to separately in RCNN [15]. The detector computes the con-
volution across region proposals efficiently (by computation sharing) and includes a
region of interest (Rol) layer in the network [15] (see Fig. 2.3). Pooling is performed
on the Rol layer to generate a feature vector for each region proposal [15]. These fea-
tures are fed into a series of fully-connected layers which then lead into the classifiers
and bounding box regressors for object category prediction and refinement, respectively
[15]. Compared to RCNN, Fast RCNN trains three times faster and is ten times faster
in testing with higher detection accuracy [15]. Nonetheless, the approach still relies on

an external region proposal module, which remains as a computational bottleneck.

Two-Stage Faster RCNN

Faster RCNN [160] improves detection speed by introducing a region proposal network
(RPN) in place of the conventional selective search. Reference boxes (or anchors) of
different scales are initialized by the RPN in the convolutional feature map [15]. Each
anchor is mapped into a vector of low dimension and fed into two sibling fully con-
nected layers (i.e., the bounding box regression layer and the classification layer), as
shown in Fig. 2.4 [15]. The RPN shares convolutional features, thereby enabling a
highly efficient region proposal computation. In summary, the RPN has been shown
to efficiently generate region proposals with multiple scales and aspect ratios without

much computational bottleneck [160].
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Figure 2.4: Faster RCNN Pipeline

Two-Stage Mask and Mesh RCNN

An alternative way of proposing object candidates is the use of instance segmenta-
tion [161, 162]. Unlike region proposal methods, segmentation is a more challenging
task that requires the predictions of all objects along with their per-pixel segmentation
masks [163]. The work in [161] introduces segment proposals using a deep network
called DeepMask, which is responsible of predicting a segmentation mask and an as-
sociated objectness score corresponding to how likely an object is present. The author
later introduced a second version of this network called SharpMask that can efficiently
incorporate rich spatial and strong semantic information to generate the object masks
[162]. Since segmentation is more information-rich than bounding box proposal, sev-
eral works have used instance segmentation to improve the performance of object detec-
tion [15]. A recent technique that has taken advantage of object instance segmentation
is Mask RCNN, which is an extension of Faster RCNN by including an operation of
generating object masks alongside the existing operation of bounding box generation
[164]. As a follow-up, the recently proposed Mesh RCNN augments Mask RCNN with
a mesh prediction operation, allowing the inference of 3D object shapes [165].

One-Stage YOLO

The aforementioned region-based (two-stage) approaches have demonstrated reliable
detection performance, however the pipeline of a region-based detector is slow and
each individual component requires to be trained separately [15]. Instead of training
a complex region-based neural network, researchers have investigated a unified detec-
tion pipeline for high-speed detectors. The state-of-the-art object detector You Only
Look Once (YOLO) has adopted the unified detection pipeline wherein object bound-
ing boxes and class probabilities are predicted directly from the images with a single
CNN, without the use of a region proposal module, as shown in Fig. 2.5 [15].

A YOLO detector divides the input image into grids, where each grid is responsible

for predicting a number of bounding boxes and the confidence scores for those boxes
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Figure 2.5: YOLO Pipeline

[166]. The prediction of each bounding box has the following parameters: the center
positions, width, height, and the confidence. Each grid cell also predicts several class
probabilities for object classification [166]. YOLO is based on GoogLleNet [154] that
has a network composed of 24 convolutional layers and two fully connected layers
[166]. The network has been trained on the ImageNet 1000-class competition dataset
[167] at half the input image resolution [166].

The first version of YOLO limits the bounding box prediction such that each grid
cell can only predict two boxes with only a single class. This spatial constraint limits the
detection of nearby objects and causes high missed detections on objects that are small
and appear in groups [168]. To overcome these issues, the inventors of YOLO made
modifications to the CNN, the prediction of bounding boxes, and training techniques.
These changes led to the release of the second and third versions of YOLO, named
YOLOV2 [168] and YOLOvV3 [169], respectively.

In YOLOV2, the network is replaced with DarkNet19, which has 19 convolutional
layers, six max pooling layers and without the fully connected layers [168]. Compared
to YOLO, DarkNet19 has been shown to be less complex but outperforms YOLO in
terms of accuracy and speed [168]. In YOLOv3, DarkNetl9 is substituted by a more
powerful DarkNet53, which has 53 convolutional layers [169]. As per reported in [169],
DarkNet53 achieves the highest measured floating point operations per second, which

indicates that the network is more efficient to evaluate and hence faster.

One of the salient features of YOLOv2 and YOLOV3 is the use of anchor boxes
(inspired by Faster RCNN [160]) to predict the extent of the bounding box as offsets
from the centroid instead of the actual coordinates of bounding boxes [168]. These
anchor boxes are object candidates of various aspect ratios and sizes. The selection of
these boxes is done via k-means clustering to get good priors for the training model
[168]. Moreover, YOLOV2 and YOLOV3 both adopt a multi-scale training scheme,
where instead of fixing the size of the input image, the neural network randomly chooses
a new image size from multiples of 32 (i.e., {320,352, ...,608}; the smallest image size
being 320x320 and the largest being 608x608) [168]. This scheme enables the network

to predict accurately across various input dimensions.
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2.2.2 Occlusion-Handing Detectors

The aforementioned monocular (single-view) object detectors are reliable and robust
against object rotation and scale changes, object localization accuracy, and detection
speed, but they remain limited in handling dense and occluded objects. Although deep
layers of CNNs have rich semantics, they are not effective in detecting dense objects
[14]. One way of solving this is to design loss functions by considering the attraction of
objects and the repulsion of other surrounding objects [170]. Previous works have used
the ensemble of part detectors [171, 172] and attention mechanism [173] to improve
occluded pedestrian/people detection. In practice, a more effective way of handling
object occlusion is the use of multiple cameras [174].

In [175], a multi-camera pedestrian detector is proposed. The method is based on a
multi-view Bayesian network that models the occlusion relationship, ground locations
and the geometrical constraints across all camera views. The work in [174] accounts for
occlusion by utilizing information from multiple views jointly using the probabilistic of
occupancy map (POM) technique. This method uses background subtraction to ex-
tract foreground (moving) objects from their background, then estimate the occupancy
probabilities using mean-field inference. A variant of this method uses a modified op-
timization scheme to leverage time consistency [176], while further modifications and
improvements have been made in [177, 178]. The main issue with background sub-
traction preprocessing is the cause of ambiguity when foreground segmented blobs are
interconnected with the background. This limits the performance under crowded sce-
narios, in addition to erroneously segmenting objects in the scene that are not of interest.

Recently, researchers have investigated the integration of deep CNN into a multi-
camera object detection architecture. The work in [55] uses monocular and multi-view
data to train multi-camera detectors (MCDs). An extension of this work that uses mean
field variational inference and conditional random field (CRF) modeling has shown to
achieve remarkable performance in a crowded scenario [56]. While deep MCD ap-
proaches have been shown to outperform monocular detectors in challenging scenarios,
they require training on a large dataset, which is expensive due to a high-dimensional
input space [58].

2.2.3 Visual Multi-Object Tracking

MOT is another computer vision task that aims to process and analyze stream of im-
ages (video) to associate a unique identity to each object of one or more categories
(e.g., pedestrians, animals, vehicles) without any prior knowledge of the appearance
and number of objects [6]. In the literature, MOT is fundamental to many computer
vision applications such as behavior analysis [179], human-computer interaction [180],
action recognition [181], pose estimation [182], visual surveillance [183], and virtual
reality [184].
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MOT algorithms have two types of processing modes: online tracking and offline
tracking [7]. In online tracking [185—188], images are processed in a step-wise man-
ner (i.e., only past observations available up to the current frame are utilized) and the
trajectories of objects are produced on-the-fly for each frame. In offline tracking or
batch processing [189-192], observations from all the frames are analyzed and pro-
cessed jointly to estimate the object trajectories. In principle, batch algorithms typically
performs better than online algorithms because all the data is used for estimation [193—
197]. However, online algorithms that are designed to synchronously process data up
to the current time and output the results are more suited for time-critical applications
[198-202].

Most existing MOT works can be classified into detection-based tracking (DBT) and
detection-free tracking (DFT) [7]. The DBT approach, which is known as the tracking-
by-detection paradigm, relies on object detectors applied to each image frame to ob-
tain object detections that are unlabeled (observation or measurements), then (online or
offline) tracking is conducted to join detections together to form consistent trajectories
[199, 203, 204]. The DFT approach, which is also known as track-before-detect (TBD),
processes the entire image sequentially without requiring any form of pre-trained ob-
ject detectors [185, 205-207]. However, DFT is often more computationally expensive
and does not perform as well as DBT in challenging scenarios [198]. Due to the rapid

evolution of object detectors, many DBT approaches for MOT have been developed.

Detection-Based MOT

The goal of detection-based MOT is to determine the trajectories of a time-varying and
unknown number of objects from a collection of detections (or measurements) [208—
210]. The tasks of a MOT system are state estimation, track management, and occlusion
handling. Track management pertains to the identification, termination, and initiation of
individual object trajectories, while state estimation determines the state vectors of the
trajectories [7]. These MOT tasks are hindered by identity switching, track fragmenta-
tion, and track loss, which are typically caused by noise, false negatives (misdetection),
and false positives (clutter) in the visual measurements. One of the factors contribut-
ing to misdetection and clutter is the occurrence of occlusion when objects are blocked
visually from a camera.

Theoretical developments for occlusion handling in MOT are relatively scarce [175].
This is due to the complex relationship between objects and computational tractability
since all possible sets of object partitions have to be considered [198]. To date, few
heuristic techniques have been proposed to handle occlusion in a single-camera/view
setting. One of them is the “part-to-hold” strategy, which exploits the assumption that
when occlusion occurs, some part of the object remains visible [147, 185, 192]. This
strategy divides a bounding box into several parts, and when the tracker detects an

occlusion, the visible parts of the object are utilized for estimation. Another occlu-
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sion handling strategy is based on remembering the object states before occlusion and
buffering the observations during the occlusion to recover object states after the oc-
clusion [211-213]. Further methods have resolved occlusions by exploiting a priori
information about the objects [193, 194, 201, 202, 214].

Multi-Camera MOT Approaches

The use of multiple cameras in MOT is an effective way of resolving occlusions since
an occluded object may not be may not be occluded in another view [54]. Further, the
combined information from multiple cameras has the potential to reduce uncertainty in
the object states, which improves tracking performance.

In [197], a hierarchical composition approach is proposed to construct estimates in
the ground plane using monocular information from multiple views. Another multi-
view approach preprocesses image data from multiple camera views via background
subtraction to estimate the occupancies on the ground plane [174]. In [215], an occlu-
sion model is formulated by utilizing 2D visual angles from multiple views. A more
sophisticated approach in [175] proposes a multi-view Bayesian network that models
the homography correspondence and occlusion relationship between multiple views to
obtain detections on the ground plane for tracking. Further, 3D object estimation and
tracking using stereo cameras have been demonstrated in [216-218].

Data-centric approaches have also been applied to multi-camera MOT. One example
is the use of MCD [55] combined with batch processing to estimate the object trajec-
tories [57]. In [56], the authors have demonstrated remarkable MOT performance in
a high (people) density scenario using mean field variational inference and CRF mod-
eling [219]. Subsequent deep learning based multi-view MOT approaches have been
proposed in [220, 221]. Model-centric approaches that exploit the characteristics and
geometry of the cameras and the physical models of object dynamics have been ap-
plied to 3D online MOT with monocular data, using 3D point cloud techniques [5], 3D
object proposals [216], and 2D object detections [222]. Further, RFS-based filtering
solutions have been applied to visual MOT problems [223-227]. In-depth expositions

on model-centric MOT algorithms are provided in Section 2.4 of this chapter.

2.3 Audio-Visual Source Separation

Conventional source separation approaches are based on processing audio data only
[25-27, 80]. More recent (audio-only) data-centric source separation approaches have
been proposed in [28, 29, 39, 40]. These data-centric approaches require the number of
speakers to be known and static during training and testing [31]. The main challenge
of these approaches is the permutation ambiguity in distinguishing between different

speech signals when the vocal characteristics of the speakers are similar, or when any
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underlying assumption of signal independence is violated [30].

Instead of using audio data only to achieve source separation, the synergistic use of
both audio and visual data has shown to improve separation performance over audio-
only methods [30]. The idea of the approach is to train a neural network that leverages
the audio-visual correspondence between human lip movements and speech utterances
to address the permutation problem [30]. A different approach in [228] has achieved
localization and separation by exploiting the low-rank and sparse representations of au-
dio and visual data to capture the associations between the two modalities. Further, a
time domain-based audio-visual separation deep network that captures lip embeddings
and phonetic information has been proposed to improve speech separation performance
[31]. The training process of the aforementioned data-centric approaches can be com-
putationally intensive and restrictive in cases where training data are unavailable. Fur-
thermore, these approaches have not been demonstrated with moving sources whereby

the number of sources is time-varying and unknown.

Alternatively, audio-visual source separation is achieved using the three-step pro-
cess of detection, tracking, and filtering (DTF). This approach can be designed to op-
erate online without pre-training and to accommodate multiple moving sources. The
DTF approach uses the characteristics of the audio and visual measurements acquired
from standard detection algorithms and physical models of the source dynamics for the
estimation (or tracking) of the source spatial positions and identities (trajectories) over
time. The trajectory estimates gathered by such tracking system can then be leveraged

for source separation with a model-based separation filter.

The difficulty in tracking multiple sources using both audio and visual data is that
measurements from both modalities are unidentified (unlabeled) and do not fall in the
same observation space. Moreover, these measurements are subject to missing mea-
surements, false measurements, and noise. These issues give rise to the multi-modal
space-time permutation problem: in space, it is unknown how the measurements of
different modalities are associated across domains with respect to the sources; and in
time, it is unknown how the measurements are associated to which sources, if any at all.
Further, the solution must accommodate the unknown disappearance and appearance of

moving sources.

So far, a number of audio-visual tracking algorithms have been proposed in the
literature [48, 49, 229, 230]. In [48, 49, 229], a Bayesian particle filtering frame-
work that builds on audio-visual likelihood models has been proposed for audio-visual
multi-speaker tracking. However, a limitation is that the algorithm is unable to asso-
ciate the multi-modal measurements to sources. Hence, it invokes an external post-
processing mechanism that provides the associations. In [230], the authors use a vari-
ational Bayesian inference and an expectation maximization solver to propagate the
approximate filtering distribution over time. The method accounts for the observation-

to-person association problem without post-processing, but the formulation is based on
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functional approximations and the resulting algorithm is not scalable for an extended

number of sensors and measurements.

2.4 Advances in Model-Centric Object Tracking

The common theme of this dissertation is the estimation (or tracking) of source posi-
tions and labels, which, when combined across space and time, form the source tra-
jectories. This information is central to the development any separation filter for mul-
tiple moving sources whereby the number of sources is time-varying and unknown.
Whether using audio, visual or audio-visual data, a model-centric object tracking solu-
tion is grounded on dynamic state-space estimation. Standard object tracking models
are used to capture the evolution of an object state over time and to update the ob-
ject state using the measurement. The Bayesian paradigm offers a framework for dy-
namic state-space estimation. Conventional Bayes estimation methods are designed for
single-object tracking. This subsection further discusses the extensions of single-object
tracking algorithms to MOT. This includes the RFS and the labeled RFS formalisms
for Bayesian state estimation, which are the foundations of the proposed tracking algo-

rithms in this dissertation.

2.4.1 Bayesian Estimation

In Bayesian state estimation, a state vector is usually the kinematic characteristics of
the object. Let the state of an object be represented by a vector xj that resides in a
state space X, where k denotes the time step. At time k, the object state x; generates a
measurement z; that resides in an observation space Z. The measurement z; and object
state x; are treated as realizations of random (vector) variables in their respective vector
spaces and that their uncertainties are represented by probability densities [231]. The
objective is to compute a probability density mo.; of the object states xp.x = (X0, ..., Xk)
(where xq is the initial state), given the measurements zj.; = (zy,...,zx) at the start of
time to the current time. All available information for the object states is obtainable
from the probability density 7.%.

In the Bayesian paradigm, the density 7., is called the posterior probability density
and it is computed recursively over time. The posterior probability density mg.x is given
by the Bayes rule [232]:

8r(xiclz) Sy k=1 (il Xk 1) 7ok -1 (X0:k—1121:5-1)

[ grCxeil zic) fig—r (k| Xk—1 ok -1 (Xosk—1 1216 -1 ) Xo0:k

7o:k(X0:x121:%) = (2.16)

where mo.x—1(+|-) is the previous posterior probability density, fix-1(-|-) is the Markov
transition density, and g (-|-) is the likelihood function. The recursive computation of

the posterior probability density considers the entire history of object states up to the



36

Background

current time given the history of measurements. Since the posterior density embodies
all statistical information about the object states, it is a complete solution to the esti-
mation problem [231]. However, the computation of the posterior density can become
computationally demanding as the dimension begins to grow over several recursions.

A cheaper alternative is to consider the filtering density mx(xg|z1:x) = f 700:1(X0: %
|z1:x )dx0:.k—1, Which is the marginal of the posterior density. The filtering density can be
propagated via the Bayes filter [231, 232]:

8k (Zk | X0 ) Tk -1 (Xk | 21:01)
[ grzrlx)mepe—1 (xil z1k—1)dx

mi(xxl|z1:x) = (2.17)

where
Tipk—1(Xk | 21:0-1) = /fk|k—1(xk |zk- D) r—1(Xk-1121:6-1)d Xk -1, (2.18)

is the prior density or the so-called predicted density that is computed via the Chapman-
Kolmogorov equation [232].

The implementation of Bayes filter is recursive and can be broken down into two
stages per recursion: the prediction and the update. The prediction stage is governed by
the Chapman-Kolmogorov equation, which is responsible for computing the predicted
filtering density 7y —1 (the prior (2.18)) using the state transition density fix—1, where
mr—1 denotes the filtering density computed at the previous time k — 1. The update stage
is based on the Bayes rule to compute the filtering probability density ;. (i.e., (2.17))
at the current time k using the likelihood g;. Consequently, at time k, all information
about object state x; given all past observations z;.x is captured in the filtering proba-

bility density .

Dynamic Model

The dynamic transition of an object state x € R of n, dimension is characterized by a

stochastic model:

Xk = ax(Xk—1,Vk-1), (2.19)

where vi_1 is the process noise. The nonlinear function a; describes the mapping of
Ug—1 and xx_; to x;. This state dynamic model can also be described by a Markov
transition density fix—1(+|-), where the probability density that a state x;_; transitions
to xi 18

Sepk=1(xx|xr-1)-

The state of an object moving in the physical world is typically specified by the
3D position and velocity vectors. Object motions are generally classed into two cat-
egories: non-maneuver and maneuver [233]. A non-maneuvering motion is described
as a constant-velocity level and straight motion. The nearly-constant-velocity model

(NCV) is an example of such non-maneuvering motion [233]. Accelerations in respec-
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tive axes or Cartesian coordinates are typically modeled as Gaussian noise to account
for undesirable modeling errors. It is called “nearly-constant-velocity” because the
perturbation in the accelerations is small [233]. NCV dynamic model is suitable for
tracking instances where objects follow a straight-line path with minimal sharp turns.

On the other hand, an example of a maneuvering motion model is the nearly-
constant-turn (NCT) model [233]. In this model, a turn rate parameter is added for
capturing the maneuvering of an object. Constant turn rate means that the object mo-
tion follows an approximately constant angular velocity with perturbations captured by
the process noise. For most practical applications, the turn rate parameter is included in
the object state in order to be estimated based on the latest velocity estimates. The NCT
model is commonly used to model the motions of vehicular objects such as aircrafts,
cars and trucks. Another maneuvering motion model is the Langevin model which is
used to characterize various types of stochastic motions [234]. Motions in each Carte-
sian coordinate is assumed to be an independent first-order process. This model is
commonly used in acoustic source tracking [71, 234].

Measurement Model

The generation of a measurement z € R of n, dimension by an object state x; is given
by:
2k = hic(xi, wie), (2.20)

where w; denotes the noise in the measurement. The nonlinear function /; describes
the mapping of the state vector x; and measurement noise wy to the measurement vector
Zr. This model can equivalently be represented by the likelihood function denoted by
gr(-|), where

gr(zk|xr)

characterizes the probability density that a state x; generates the measurement vector
Zk-

Measurements obtained from a particular live sensor in a sensor coordinate system
usually differ from the coordinate system of the object states. For example, object mo-
tion is best described in a Cartesian coordinate system, whereas visual detections from
cameras fall in the pixel coordinate frame. Audio measurements such as the TDOAs are
in the time domain, which has a lower dimension compared to the Cartesian coordinate
system. When there are multiple heterogeneous sensors, the obtained measurements
are generated in multiple different sensor coordinate systems. The measurement model
is a crucial aspect of object motion tracking as it constitutes the relationship between
measurements in the sensor coordinates to the states in the Cartesian coordinates. The
measurement models used in this dissertation are described in the subsequent chapters.
For detailed considerations of the coordinates systems and the respective transforma-

tions, the reader is referred to [235].
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Bayes Filter State Estimators

The estimate of an object state can be computed optimally from a given filtering density
mr(+]-) with respect to a specific criterion. The most common Bayes estimators that
have been shown to minimize the Bayes risks [236, 237] are the maximum a posteriori

(MAP) and expected a posteriori (EAP) estimators:

M = argsup i (xlz10). 2.21)
Xk
#A = / e (el 2 dx. (2.22)

2.4.2 Solutions for the Single-Object Bayes Filter

The implementation of the Bayes recursion is generally intractable in practice due to the
normalizing term at each iteration. Traditional grid-based filters have exploited state-
space discretization to overcome complexity [232]. However, since the complexity
grows exponentially with the state-space dimension, grid-based filters are only feasible
in low-dimensional problems [232]. The following subsections provide an outline of

notable closed-form solutions and tractable approximations to the Bayes filter.

Kalman Filter

The Kalman filter is a closed-form solution to the Bayes filter given that the measure-
ment and dynamic models, expressed in (2.20) and (2.19), respectively, are linear trans-
formations with additive Gaussian noise [238]:

Zk = Hyxg +wy, (2.23)

X = Froixeo1 vy, (2.24)

where wy is an independent zero-mean Gaussian noise with covariance matrix Ry, and
Hy is the measurement matrix, vi—; is an independent zero-mean Gaussian noise with
covariance matrix Qy_;, and Fj_; is a transition matrix, .

In the following, the notation N(-;m,P) is used to denote a Gaussian density func-
tion with mean m and covariance matrix P. Under the linear Gaussian assumption

above, the measurement likelihood and transition density are expressed as:

gr(zklxk) = N (zi; Hiex, R ), (2.25)
Srle-1(exexk-1) = N (s Fr—1 x6-1, Qee-1)- (2.26)

At time k — 1, if the filtering density is Gaussian:

mr—1(Xg-11z1:-1) = N (xp—1;mi—1,Pr-1), (2.27)
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then the predicted density is also a Gaussian [232]:

Tipk—1(Xk | 21:0-1) = N e -1, Prgr-1)s (2.28)

where
M i-1 = Fr-1Xk-1, (2.29)
Piik-1 = Qo1 + Fioi Pt Fy_ . (2.30)

According to the Bayes rule, at time k, the updated filtering density is also a Gaus-
sian [232]:

(il 21:6) = N (xie; mi, Po)s (2.31)
where
my = my k-1 + Ki(zx = Hexge-1), (2.32)
Py = Pyt — KiSiKJ, (2.33)
Sk = Ry + Hy Pyt HL, (2.34)
Ky = Py—1H; S; (2.35)

In summary, if both dynamic and measurement models assume a linear Gaussian
form, then the filtering density can be propagated via the Kalman recursion, which is a

tractable solution to the single-object Bayesian filter.

Extended Kalman Filter

The extended Kalman filter (EKF) is a technique that accommodates for mildly nonlin-
ear dynamic and measurement models. Consider the nonlinear dynamic function (2.19),
where the process noise vi_; is modeled by a Gaussian with covariance matrix Qy_1,
and the measurement function (2.20), where the measurement noise wy is modeled by
a Gaussian with covariance matrix R;. Note that the Gaussian vectors of the process
and measurement noises are zero-mean and independent. The EKF assumes a linear
approximation to the Kalman filter via localized approximations [232]. Considering
the leading terms of the Taylor series expansion on ai_;(-,-) and h(-,-) results in the
following local linearizations:

. dag_1(x,0) A day—1(my-1,v)
o . L U N 2.36
k-1 70 P— Qi1 90) lu=0 (2.36)

. Oh(x,0) L Ohg(myji—1,w)
g, = 0 LTSRN 2.37
k 6(X) |X—mk‘k_1 k 6(W) |W 0 ( )
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At time k — 1, let the filtering density be a Gaussian:
M1 (Xe—1121:6-1) = N (xk—13 M1, Pie-1). (2.38)

At time k, the predicted and filtering densities are, respectively, as follows [232]:

Tpk—1(Xk|21:0-1) = N e -1, Prga-1), (2.39)
(x| z1:x) = N (s m, Py, (2.40)
where

Mijk—1 = ag-1(mi-1,0), (2.41)

Prjeot1 = Quo1Qu1 QF_ + Frmy Py FL_ (2.42)

my = myqi—1 + Ky (zk = hi(myi-1,0)), (2.43)

Py = Pyt — Ki Sk K}, (2.44)

Sk = RkRyRY + Py HJ, (2.45)

Ky = Prp—1HES; (2.46)

Since the EKF is based on first-order approximation, it will perform poorly under

severe nonlinearities in the dynamic and measurement models.

Unscented Kalman Filter

The unscented Kalman filter (UKF) approximates the Kalman filter using the princi-
ples of sampling according to the unscented transform (UT) [239, 240]. The UT seeks
to generate a set of weighted sample points such that they encompass the mean and
the covariance of the density from which they are sampled [239, 240]. For nonlinear
transition and measurement functions (i.e., (2.19) and (2.20), respectively), the UKF
propagates the first and second moments of the filtering density using the UT.

The process noise of the dynamic model vx_; is a zero-mean independent Gaussian
vector of n,, dimension with covariance matrix Qy_;, and the noise of the measurement
model wy 1s a zero-mean independent Gaussian vector of n,, dimension with covariance

matrix Rg. At time k — 1, let the filtering density be a Gaussian:
1 (Xe—1121:6-1) = N (k-1 -1, Pie-1). (2.47)
Let Cx and i and be the augmented covariance and mean, respectively defined as:

Ci = diag(Pr—1, Qx—1,Ry), (2.48)
pe=[ml_, 0" 0F 17, (2.49)
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the set of weighted sample points { ()E,(:), w(i))}ili , are generated via the following criteria
[232]:

20 = W= U i=0, (2.50)
ny +¢u
#0 = g+ [\/(nU+ gU)Ck] W — i1 2.51)
i 2(ny +sv)
. |
#0 = gy - [\/(nU n gU)Ck] W= — i ay+l..E. (252)
i 2(ny +sv)

where E = 2ny + 1, ny = ny +n, +n,,, gy denotes a scaling parameter on the condition
that ny + ¢y # 0, and [-]; denotes the ith row of the matrix. Fori =0,..., E, each sample
point can thus be partitioned into:

(1) [(x(l) )T (U(l) )T (W(’))T] (2.53)

In the prediction step, all sample points x( i) , and v(i) are inserted into the nonlinear

@) @)
klk—1 -1V

compute the predicted Gaussian dens1ty with mean my ;1 and covariance Py;_;:

function to obtain x = ap(x (’) ) These 1nd1v1dual points are then used to

Mk 1—Zw(’) . (2.54)

Pye-1= Zw(’) Xkt ~ Mklk- 1][x/((i|)k_1_mk|k—l]T~ (2.55)

(@)
k|k-1

function to obtain zg|)k_1 = hk(x,ii')k_l,w,({i)). These individual points are then used to

compute the updated filtering density at time k with mean m; and covariance Py:

(@)

In the update step, all sample points x and w,’ are inserted into the nonlinear

my = myk—1 + K (zk = 2 jk-1), (2.56)
Py = Pyt = PracPracPp (2.57)
where
E
Tk|k-1 = Zw(’)zgfk 1 (2.58)
Ky = PrcPi L (2:59)
Przz = Zw(l) Zk|k |~ Zhlk— 1][254),{ = k-] (2.60)

Z“’(l) Xilk—1 ~ Mklk~ 1][11(4),C 1 Zk|k—1]T. (2.61)
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Particle Filter

The particle filter is a random sampling-based approximation to the densities in Bayes
filter [232]. Based on the concept of SMC, the particle filter is applicable to more
generic probability densities that are non-Gaussian to which variations of the Kalman
filter cannot be applied. Readers can refer to detailed tutorial articles for comprehensive
treatments in [231, 241, 242]. A basic description of the particle filter framework is
given below.

Given an arbitrary probability density n(-), if N independent samples denoted by
{x(i)}i]\i |» can be drawn from the density, then the density 7(-) can be approximated by
[232]:

1 N
n()~ ~ Z §.(x), (2.62)
i=1

where 9.(-) is the Dirac delta function. Convergence analysis of the above approxima-
tion can be found in [243, 244].

In the case that a density 7(-) is only known up to a normalizing constant, impor-
tance sampling can be used to propagate the filtering density. The basic idea of impor-
tance sampling is to draw samples from a proposal density g(-), which is selected to be
close to the actual density 7(-). These samples are then weighted accordingly to obtain
a Monte Carlo approximation to 7(-) [232]. The proposal density g(-) has to be chosen
such that its support must contain the support of the actual density 7(-) [232]. The den-
sity () can therefore be approximated by a weighted point mass representation given
by [232]:

N
m(x) ~ Z @6 o (x), (2.63)
i=1
where
, (@)
oW = ;‘)L)., (2.64)
Zj:l w(x(]))
. (@)
o = P (2.65)
q(x®)

In the Bayesian paradigm, sequential importance sampling (SIS) is used to compute

a point mass approximation of the filtering density. At time k — 1, let the filtering density
. N

mr—1(+) be represented by a large set of weighted samples denoted by {(xl(gl, ‘”1(21)}. ;

1.e.,

N N
mp—1(xk-1121:4-1) = ngiléxl((i)l(xk—l) where ngil =1. (2.66)
i=1 - i=1

. N N
Based on the proposal density g (- |x,({’11, Zr), anew set of weighted particles {(x,({’), wg))} .
1=
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that approximates the filtering density () at time k is computed [232]:

N
mClzi) )00 () (2.67)
i=1
and
~(l) — w(l)/valw(l) (268)
(’) = qiC1x Lz, (2.69)
@ = 0 gk(Zk|x( ))fk|k 1(x(l)|x(’)
“i S (2.70)
.0
qk(x |.xk I’Zk)

The SIS algorithm is subject to a problem known as particle depletion, where after
several recursions, nearly all of the particles have negligible weights. This problem
is mitigated with a resampling process, which is based on the premise that particles of
negligible weights are replaced by replication of particles with higher weights [232]. As
resampling is a non-parallelizable process, it is thus the main computational bottleneck
in the particle filter. Recent works have investigated the use of graphic processing unit to
improve execution time [245, 246]. Further development of the particle filter has been

shown to improve tracking performance and computational tractability [232, 247-249].

Extension to Multiple Measurements

The aforementioned solutions to the Bayes filter are only for single object tracking
with a single measurement. In actual tracking scenarios, the sensor may potentially
pick up false measurements and be subjected to missed detections. In these cases, the
aforementioned filters are not directly applicable. One simple way of tackling this issue
is to use the nearest neighbor (NN) filter [250-253]. Both the NN filter and Kalman
filter shares the same prediction step. In the update step, the closest measurement to
the predicted state is used to compute the Kalman update. If no near measurements are
available, no update is performed. While the NN filter is easy to implement, it performs
poorly in dense clutter or/and low detection profiles due to the inability to pick up the
true measurement.

The probabilistic data association (PDA) [250-253] filter is designed to be more
robust than the NN filter. It shares a similar prediction step to the NN filter. In the
update step, gating is used to select candidate measurements, which are used to com-
pute the likelihoods given the predicted object state (the association probabilities). The
Kalman update is subsequently conducted using an average of the weighted measure-
ments. A variation is made to the PDA filter in [254], which propagates a Gaussian

mixture filtering density compared to a single Gaussian in the standard PDA.
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The multiple hypothesis tracking (MHT) filter [250, 253, 255] is a data-association-
oriented method for MOT. The MHT filter seeks to search for all measurement-to-object
associations across previous time steps that are likely to make up the object trajectories,
in order to reduce the association uncertainty [255]. Since single-object tracking is a
special case for multi-object tracking, the MHT filter can also be applied to single-object
tracking.

2.4.3 Classical Approaches to Multi-Object Tracking

Standard Bayesian estimation techniques for single-object tracking are not directly ap-
plicable to MOT for the following reasons: the number of objects is unknown and
subject to change over time; the measurements collected from various types of sensor
are unlabeled and unordered, giving rise to the inherent data association (or the space-
time permutation) problem, i.e., mappings of the received measurements to multiple
objects are unknown and combinatorial; and the received measurements are subject to
noise, missing measurements, and false measurements. Classical approaches to MOT
have been constructed based on adaptations of the aforementioned single-object track-

ing solutions.

Global Nearest Neighbor filter

The global nearest neighbor (GNN) is designed for fixed and known number of multiple
objects [250-253]. The object-to-measurement mappings of the GNN filter are based
on the condition that one measurement can only be mapped onto one object at most.
A mapping is obtained by minimizing a particular cost function so that the standard
Kalman prediction and update can be performed individually on each object. The cost
function can be the total summed distance or the association probability. Although easy
to implement, the GNN filter performs poorly under dense clutter and low detection
profiles.

Joint Probabilistic Data Association Filter

The joint probabilistic data association (JPDA) filter [251] is designed to handle a con-
stant and known number of multiple objects and multiple unordered measurements.
Similar to the GNN filter, the JPDA filter performs Kalman prediction for each object
individually. The difference is in the update step where Kalman update is performed on
a weighted average measurement, which is computed using neighboring measurements.

The drawback of the JPDA filter is that the complexity of the data association com-
ponent increases with the number of measurements and objects exponentially. Subopti-
mal strategies have been proposed to reduce the complexity [256-258]. Subsequently,
the author in [259] has proposed a variation of the JPDA called the joint integrated prob-
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abilistic data association (JIPDA) filter to accommodate for multiple objects whereby

the number of objects is time-varying and unknown.

Multiple Hypothesis Tracking

The multiple hypothesis tracking (MHT) filter [250, 253, 255] works by propagating
multiple measurement-to-object associations from past to present, known as hypothe-
ses. This formulation enables the MHT filter to defer difficult data association deci-
sions, which usually happen when objects are close together or/and under a low de-
tection profile. As it is infeasible to propagate all possible hypotheses, the MHT filter
only selects those hypotheses with high weights calculated via the Kalman filer. Since
a new set of hypotheses is generated with new measurements received, which could
be assigned to an existing track, new track or clutter, the MHT is capable of handling
multiple objects whereby the number of objects is time-varying and unknown.

The main limitation of the MHT filter is that the number of hypotheses grows ex-
ponentially after several recursions, rendering the algorithm intractable. To counter this
issue, MHT uses the gating of measurements along with pruning/merging of hypothe-
ses [250, 253, 255]. Improved deterministic techniques for selecting and propagating
the best hypotheses have been proposed in [253, 260, 261]. A modified version of the
MHT filter called the probabilistic multiple hypothesis tracking (PMHT) filter [262] is
constructed based on the assumption that the data associations are independent over the
objects tracks. By this assumption, the PMHT filter achieves a computational complex-
ity lower than that of the MHT filter.

Rao-Blackwellized Particle Filter

In its most general form, the Rao-Blackwellized particle filter (RBPF) is designed to use
the optimal estimator for linear-Gaussian subspaces to track time-varying and unknown
number of objects [263]. The unknown births and deaths of objects are encapsulated by
a stochastic process model. As oppose to computing the filtering equations with pure
Monte Carlo sampling, the Rao—Blackwell theorem used in the formulation of this filter
suggests that some of the filtering equations can be computed analytically, while the
others are computed using Monte Carlo sampling [263]. RBPF performs the estimation
of the filtering density by first resolving the data associations. Based on the computed
data associations, the filter then applies single-object tracking. By conditioning on the
data associations, RBPF calculates the filtering equations in closed-form rather than
using particle sampling for all steps, which in principle, leads to better tracking results
[263].
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2.4.4 Random Finite Set and Multi-Object Filtering

Algorithms like JPDA and MHT hypothesize the associations between objects and mea-
surements over time to achieve tracking. The common characteristic of these association-
based techniques is that a hypothesis is treated as a state variable. A critique has been
made as to the observability, consistency and correctness of modeling a hypothesis as
a state variable that is to be estimated [237]. Hence, it is unclear whether or not these
methods are Bayes-optimal and consistent with the Bayesian paradigm. To reach a
rigorous formulation of multi-object Bayesian estimation, a set of principled mathe-
matical tools is needed to underpin the derivation of a principled multi-object Bayesian
filter and its approximations.

The RFS approach provides a mathematically consistent and association-free multi-
object Bayesian formulation. The RFS approach has provided a systematic and prin-
cipled framework for the multi-object Bayesian paradigm via the Finite Set Statistics
(FISST) [122, 237]. Due to its rigorous construction and underpinnings, the frame-
work is functional to many unconnected sub-disciplines of data fusion [236, 264, 265],
and it has the potential to develop useful and tractable multi-object Bayes filter [21]
and extensions, such as multi-sensor multi-object filtering [22] and multi-scan (batch)
multi-object filtering [266].

By definition, an RFS is a random variable whereby the number of elements in the
set as well as each element of the set are random. Note that the elements of an RFS
are unordered and distinct from one another. Therefore, RFSs are natural represen-
tations of the multi-object measurements and states which are described later in this
subsection. These representations along with appropriate models of the dynamics and
measurements, lead to solutions that naturally incorporate track initiation (birth), termi-
nation (death), missing measurements (false negatives), and false measurements (false

positives or clutter).

Probability Density and Finite Set Statistics

An RFS X on X is defined as a measurable mapping from a sample space to the space
of finite subsets of X (i.e., F(X)) [122, 267]. Similar to that of a random vector, the
probability density of an RFS is essential as it a useful descriptor in Bayesian filtering
and estimation. Contrary to a random vector, the space ¥ (X) of an RFS does not
inherit the usual Euclidean notion of a density. One of the key concepts of defining the
notion of a density is the reference measure [268]. It has been shown in point process
theory that the dimensionless unnormalized distribution of a Poisson point process is a
conventional choice of reference measure for a probability density on F(X) [268]. With
respect to this reference measure, the probability density of an RFS can be defined via
Radon-Nikodym’s derivative, which is dimensionless [268].

In the single-object case, derivative and integral transforms are fundamental to
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Bayesian inferencing. These operations are also important in the multi-object statis-
tics. The Finite Set-Statistics (FISST) is the first rigorous and principled treatment of
multi-object calculus using RFS [237]. In FISST, three fundamental statistical descrip-
tors of an RFS are the belief mass function, FISST density and probability generating
functional (p.g.fl). These descriptors facilitate the derivations of many RFS-based MOT
solutions in the literature. For more details on the importance of these descriptors, the
reader may refer to [237] pg. 357. The set derivative and set integral are the basic
FISST operations that describe the relationships between the statistical descriptors of
an RFS.

For any subset 7~ C 7 (X), the set derivative of a belief mass function 8: 7~ — [0, )
at a point x € X is a mapping (df), : 7 — [0, ) defined as [268]

_ L BTUA-BT)
= W0 ey

(2.71)

where Ag(Ay) is the volume (Lebesgue measure) of a neighborhood A, of x in units of
XK. The set derivative is given by the recursion [268]

(dﬁ){xl,...,x,,} (T)=( (dﬁ){xl Xn—l})xn (7), 2.72)

.....

where (df3)y = 8 by convention. Let 7 be a FISST density defined by n(X) = (dB)y (0),
the set integral of 7 over 7~ C F(X) is defined as [268]

/ﬂ(X)éX:Z%'/T a({x1, ... x, }dx1, ..., dx,. (2.73)
! Jyn

Since a FISST density is based on the measure A that has a unit, all FISST densities
are unit-dependent. It has been shown in [268] that a (measure-theoretic) probability
density of an RFS with respect to the unnormalized distribution of a Poisson point pro-
cess is a FISST density without its unit. Therefore, in this dissertation, FISST density
and the probability density of an RFS are used interchangeably for convenience. Some
common (unlabeled) RFSs, the standard multi-object transition and likelihood models
that constitute the multi-object Bayes filter, and its approximate solutions are outlined
below. In terms of the notations, this dissertation follows the convention in RFS track-
ing literature, where lower case letters (e.g., x, z) are used to denote single element and
upper case letters (e.g., X, Z) are used to denote sets.

Common Unlabeled RFSs
Poisson RFS

A Poisson RFS X is completely described by an intensity function v(-). The cardinality
of a Poisson RFS is Poisson distributed (on {0} UN) with mean N = / v(x)dx. The
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elements of X for any finite cardinality are distributed independently and identically ac-
cording to probability density (or a spatial distribution) v(-)/N. The probability density
of a Poisson RFS 7(-) is given by [122, 267]:

a({x1, ..., xp}) = eV l_[v(x,-), (2.74)
i=1

with H?z , v(x;) = 1 by convention. Note that the intensity function is also known as the
probability hypothesis density, which is the first-order moment of an RFS.

Independent and Identically Distributed Cluster RFS

An i.i.d cluster RFS X is a generalization of the Poisson RFS. The cardinality of this
RFS is encapsulated by an arbitrary cardinality distribution p(-) on the condition that the
mean of the cardinality distribution is N = f v(x)dx. The i.i.d cluster RFS’s probability
density is given by [122, 267]:

1%

(2.75)

n({x1,...,m,}) =n'p(n) 1_[ ;l)
i=1

Bernoulli RFS

A Bernoulli RFS X in space 7 (X) is either a singleton with probability r, whereby the
element is characterized by a probability density p(-) defined on X, or an empty set with
probability 1 —r. The probability density of a Bernoulli RFS is given by [122, 267]:

rp(x) X ={x}
7X)={1-r X=0 . (2.76)
0 1X] > 1

Multi-Bernoulli RFS

A union of finite and constant number of independent Bernoulli RFSs is a multi-Bernoulli
RFS. This RFS can be characterized by a parameter set {(r®, p(i)(-))}f‘;’ |» Where M is

the number of Bernoulli RFSs and the pair (r®), p®(-)) denotes the existence probability

and the spatial probability density of the ith Bernoulli RFS. The probability density of

such a multi-Bernoulli RFS is expressed as [122, 267]:

Z n r(i_/')p(ij)(xj). 077

M
A({X1, o2 }) = ]1(1 —r) —

j 1<it#...#i, <M j=1
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Standard Multi-Object Dynamic Model

At time k, let the collection of states be formally represented as a (finite) set or a multi-

object state:
Xk = {Xk 150 Xk N, (2.78)

where Ny = |X}| is the number of objects and |- | is the cardinality of the set. In a
standard multi-object system, new objects may appear (or be born) in the state space,
existing objects may survive and transition to the next step with a new state, and some
objects may disappear (death) or cease to exist.

Given Xj_1, an object with state x;_; € X;_ either survives with probability Pg(x;_1)
and transitions according to the transition density fix—1(:|xx—1) to a new state, or not
with probability 1 — Ps(xz-1). The RFS for the surviving objects is therefore modeled
by a multi-Bernoulli RFS:

K- = | B, (2.79)

Xi-1€Xk-1

where Fi(xx—1) is a Bernoulli RFS that is parameterized by (Ps(xx-1), fijk—1(-|xk1)).
At time k, the appearance of newly born objects is characterized by the RFS By,
which can be modeled as either a multi-Bernoulli RFS, an i.i.d cluster RFS, or a Poisson
RFS. Based on the surviving objects Si(Xx—1) and newly born objects By, the multi-
object state X at time k is the superposition of both the surviving and newly born
objects:
Xi = Si(Xi-) | Br. (2.:80)

It is important that the surviving objects Si(Xj-1) and birth objects By are independent

of one another.

Based on FISST convolution formula, the multi-object transition density fix—1(Xk|Xk-1)

for the multi-object set X; given the multi-object set Xj_; is expressed as [122, 237]:

kXl Xe-) = D fs(U1Xe1) (X = U), 2.81)
UeXy

where fs(-|Xx-1) is the transition density of the surviving object set S;(X;—1) and f3(-)
is the probability density of the newly born object By, and X; — U is the set difference
between X; and U.

Standard Multi-Object Measurement Model

The measurements obtained at time k from any form sensor processing algorithm that

produces point detections are represented as a finite set:

Zi = {2k 1 2k 24| I (2.82)
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where |Z;| denotes the number of measurements. In the standard multi-object mea-
surement model, each measurement in the measurement set Z; may be a spurious mea-
surement or generated by a certain object in the multi-object state X; (i.e., a detected

measurement).

If an object x; € X}, either generates a noisy measurement z; with probability Pp(xy)
and likelihood g (zx|xx), or missed detected with probability 1 — Pp(x;), the RFS of all
measurements generated the multi-object state Xj is modeled by a multi-Bernoulli RFS:

DX = | ) (o), (2.83)

X €Xx

where Ji(x;) is a Bernoulli RFS with parameters (Pp(xy ), gx(:|xx)) for the detection of
object xi.

A sensor may also generate incorrect or clutter measurements. Let K; denote the
RFS for clutter measurements at time &, it is conventional in the RFS tracking literature
to model K as a Poisson RFS with intensity denoted by «i(-). Consequently, given
the multi-object state Xj, the entire set of measurements Z; is the superposition of the
detected Dy (Xy) and clutter measurements Kj:

Zi(X) = De(Xo) | K. (2.84)

It is important that the detected points Dy(Xj) and clutter points K; are both indepen-
dent of one another.

Based on this RFS formulation, it follows from FISST convolution formula that the
probability density for the multi-object observation set Z; given the multi-object state
Xy 18 derived as [122, 237]:

g (ZilX) = > mp(U1Xe)m(Zi —U) (2.85)
UcZy

where p(-| Xk ) is the probability density of the detected observations Dy (Xy), mx(-) is
the probability density of the clutter measurements Ky, and Z; — U is the set difference
between Z; and U.

Multi-Object Bayes Recursion

Given the measurement history Z.x = (Zy, ..., Zx), all information on the set of objects
Xo:x = (Xo, ..., Xi) is captured in the multi-object posterior density 7mq.x(-|Z;:x), which is

computed recursively for k > 1 according to:

70k (Xo:x 1 Zo:x) o< 8k (Zic| Xi) frejk—1 (X | Xx—1)7w0:1-1(Xo:k- 11 Z0:k-1), (2.86)
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where g is the likelihood given in (2.85) and fj |1 is transition density given in (2.81).
Implementation of the (full) posterior Bayes recursion is computationally expensive.
Several works in the tracking literature have demonstrated tractable approaches to prop-
agate an approximate multi-object posterior [269-271]. In the context of labeled RFS,
the recursion (2.86) has an analytic solution with a tractable implementation via Gibbs

sampling [266].

A cheaper alternative is the propagation of the multi-object filtering density, which
is the marginal of the multi-object posterior density at the current time. In Bayesian
filtering, let mx—(:|Z1.x—1) be the filtering density for the multi-object state at time k — 1,
where Z;.x—; denotes all measurements received by the filter from time 1 up to time
k —1. In the context of Bayesian filtering, this density mz_1(-|Z;.x-1) at time k — 1
is predicted forward to obtain the predicted density mgx—1(-|Z1.x-1) via the Chapman-

Kolmogorov equation:

7Tk|k-1(Xk|21:k—1)=/fk|k-1(Xk|X)7Tk—1(X|21:k—1)5X- (2.87)

Note that f ;1 is the transition density expressed in (2.81), which is derived from the
multi-object transition model that includes new object births, existing object survivals
and deaths.

The predicted density 7 x—1(-|Z1.x-1) for the multi-object state is updated with the
measurement set Z; received at time k using the Bayes rule to obtain the new filtering

density mx(-|Z;.x) at time k:

8k (Zi| X )i k=1 (Xi| Z1:5-1)
[ i(Zk| X) -1 (X1 Z1:k-1)5 X

(Xl Zy:x0) = (2.88)
Note that g, is likelihood function given in (2.85), which is derived from the multi-
object observation model that includes missed detections, true measurements and false

alarms (clutter). Note that the integral with respect to 6X is the set integral from FISST
[237] as described in (2.73).

In summary, Eq. (2.87) and (2.88) constitute the recursive multi-object Bayes filter.
In general, the complex computation of the set integrals and the combinatorial complex-
ities in the multi-object densities render the implementation of the filter computationally
expensive [272]. Implementations of the multi-object Bayes filter using SMC methods
have been demonstrated in [268, 273-275]. Further, cheap and tractable solutions to the
multi-object Bayes filter by means of moment and density approximations, for exam-
ple, the PHD filter [267, 276], CPHD filter [277, 278], and the CBMeMBer filter [279]
have been proposed. In the context of labeled RFS, the recursive multi-object Bayes

filter has an analytic solution, which is discussed in Section 2.4.5.
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Probability Hypothesis Density Filter

The PHD filter is derived by approximating the predicted and filtering multi-object
RFSs as Poisson RFSs. According to FISST, the first moment of the multi-object filter-
ing density is the PHD function, which, in this case, is the intensity function of a Poisson
RFS [267]. The PHD filter operates by propagating the intensity function. Based on the
standard multi-object dynamic and measurement models, the PHD filter operates only
on the single-object state space and sidesteps the data association problem.

The complete derivation of the PHD filter is presented in [267], followed by an
SMC implementation in [268] and a Gaussian mixture implementation in [276]. Con-
vergence analyses for the PHD filter implementation in [268] are given in [280] and a
convergence analysis for the implementation in [276] is given in [281]. Estimates for
individual object states can be extracted by selecting the points in the single-object state
space with the highest intensities. The PHD filter is computationally cheap yielding a
algorithmic complexity that is linear in the number of filtered objects and measure-

ments.

Cardinalized Probability Hypothesis Density Filter

Only a single parameter is used to describe the cardinality distribution of a PHD filter
(i.e., the mean of the cardinality distribution, which is Poisson distributed) [278]. As
a result, the estimation of the cardinality by a PHD filter has a high variance when the
number of objects is high, because the cardinality is Poisson distributed and a Poisson
distribution has equal variance and mean [278]. The CPHD filter generalizes the PHD
filter by permitting an arbitrary cardinality distribution rather than confining it to be
Poisson as the PHD filter does. Specifically, the CPHD filter is derived by assuming the

filtering densities as i.i.d cluster RFSs.

The CPHD filter computes both the cardinality distribution and the intensity of the
multi-object density recursively through time. While this means that CPHD filter is
computationally more expensive than the PHD filter, the upshot is better accuracy in
object state estimation and lower variance in the cardinality distribution. The ground-
work for the CPHD filter was laid in [277] and analytic implementations ware given
in [278]. Different implementations presented in [278] are based on the Kalman filter,
EKF, UKF and the particle filter. It is also important to point out that based on the
standard multi-object measurement and dynamic models, the CPHD filter sidesteps the
requirement to perform data association, thereby contributing to a large saving in al-
gorithmic complexity. It has been shown that the CPHD filter has a complexity that is

cubic in the number of measurements and linear in the number of filtered objects.
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Cardinality Balanced Multi-Bernoulli Filter

The CBMeMBer filter [279] approximates the multi-object filtering density by means
of the parameters of a multi-Bernoulli RFS. The CBMeMBer filter can be implemented
via a Gaussian mixture for linear Gaussian models, with EKF and UKF extensions for
mildly nonlinear Gaussian scenarios [279]. In addition, an SMC implementation for
the CBMeMBer filter is proposed to accommodate for nonlinear models [279]. The
advantage of implementing a CBMeMBer filter is that the multi-object state extraction
is more accurate and less computationally expensive compared to, for example, the
SMC-PHD filters that require particle clustering to acquire the state estimates, which is
computationally expensive [268]. Similar to the PHD filter, the CBMeMBer filter has
a complexity that is linear in the number of received measurements and hypothesized
objects. A convergence analysis of the SMC-CBMeMBer implementation is undertaken
in [282].

2.4.5 Labeled Random Finite Set

The drawbacks of the aforementioned multi-object filters are two-fold. First, these
filters are derived based on some form of functional approximations to the multi-object
Bayes filter, resulting in certain limitations. For example, the PHD and CBMeMBer
filters only work best in low clutter and high probability of detection scenarios [277,
279]. Second, these approximate multi-object filters are not formulated for estimating
object trajectories, which is supposed to be the goal of MOT [19]. Thus, additional
heuristic track management techniques (post-processing) are applied to the multi-object
state estimates to obtain the object trajectories.

The notion of labeled RFSs addresses the trajectories of objects via the assignment
of unique labels. When each object state is tagged by a unique label, the history of the
multi-object states can then be interpreted as a set of object trajectories. Therefore, the
estimation or filtering of multi-object labeled states amounts to multi-object trajectory
estimation [266]. By definition, a labeled RFS is essentially an RFS on X XL, where
each element in the RFS is augmented with a unique label denoted by ¢ that takes
values in a discrete label space L [19, 20]. As the labels are unique and distinct, the
cardinality of the label set is equal to the cardinality of the labeled RFS itself. By
convention, a labeled object state is represented by bold lower case (e.g., x = (x,¢),
where x denotes the object state and ¢ denotes the distinct label) and a labeled multi-
object state is denoted by a bold uppercase (i.e., X = {x1, ...,x|X|}) [19, 20].

More labeled RFS notations and operators are specified in the following:

¢ The label extractor

L(X)={L(x):x € X} where L((x,0)) =¢, (2.89)
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Note that a realization X of a labeled RFS always satisfies | L(X)| = | X|.

Distinct label indicator

A(X) = ox(| L(X)]) (2.90)
 Standard inner product
(t.9) = [ fgas 2.91)
* Multi-object exponential
[h]* = ﬂ h(x) (2.92)
xeX
¢ Inclusion function
1 if XCY
1y(X) = (2.93)
0 otherwise
¢ Kronecker delta function
1 if X=Y
oy[X] = (2.94)

0 otherwise

A labeled RFS distributed according to 7 is related to its unlabeled version 7 ac-
cording to [19]:

a({x, )= > w{(, 0 Con G))). (2.95)

(f],,_,,fn)GLn

This shows that marginalizing the labels of the labeled RFS density yields the density
of its unlabeled version. The set integral for a function 4 : (X xL) — R is given as
[19]:

/ h(X)(SX:ZO% > /X ({16, (i GO (1) (296)

" (l1y..lp)ELn

The following subsections discuss how the integration of distinct labels into the
RFS framework yields some simplified representations of the conventional RFSs and
introduce a generalized density representation that is vital for the derivation of a closed-

form multi-object Bayesian filter.

Labeled Poisson RFS

Augmenting the Poisson RFS X using labels from discrete label space L, yields the
labeled Poisson RFS X on X XL with intensity v. Note that the set of labeled states is
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not distributed according to a Poisson RFS, rather its density is given by [19]:

ﬂ({(X1, 51 )9 s (xn’ fi’l)}) = 5]].4(”)[{51’ s fn}]POiS<V,1>(n) D %9 (297)
where L(n) = {¢; € L} | and Pois,, (n) = e~ A,/n! is the Poisson distribution with rate
Ap={(v,1).

The procedure below demonstrates sampling from a labeled Poisson RFS [19]:

Drawing Samples from a Labeled Poisson RFS

Initialize X =0
Draw n ~ Pois, 1)
fori=1:n
Draw x ~ v(-)/{(v, 1)
Assign X = X U{(x,£)}
end for

It can be shown that applying (2.95) to (2.97) and simplifying the sum of labels
result in (2.74). Therefore, marginalizing the labels of a labeled Poisson RFS yields a

Poisson RFS with intensity v.

Labeled Multi-Bernoulli RFS

Augmenting the successful Bernoulli components from a multi-Bernoulli RFS using
labels from discrete label space L, yields the labeled multi-Bernoulli (LMB) RFS X on
X x L with a (finite) parameter set {(r©), p©)) : ¢ € ¥}. Given a successful Bernoulli
component (4, p©)), the label of a state is given by a 1-1 mapping 0 : ¥ — L. The
pseudocode below demonstrates how a sample from the LMB RFS is drawn [19]:

Drawing Samples from a LMB RFS

Initialize X =0
for{ eV
Draw u ~ Uniform[0, 1]
If u < r®
Draw x ~ p9()
Assign X = X U{(x,0({))}
end if
end for
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The expression for the (multi-object) density of the LMB RFS on X X L with pa-
rameter set {(r©), p(©)): £ € ¥} is [19]:

m(X) = AX)1 oy (L)X )], (2.98)
where

MX:0) = ) o[ Op D)+ (1 =100 (e@)(1 -r9). (2.99)
(x,0)eX

It can be shown that applying (2.95) to (2.98) and simplifying the sum of labels result
in (2.77). Therefore, marginalizing the labels of a LMB RFES yields a multi-Bernoulli
RFS.

Generalized Labeled Multi-Bernoulli RFS

A generalized labeled multi-Bernoulli (GLMB) RFS on X X L is distributed according
to [19]:

7(X) = AX) Y o 9(LX) [p@] . (2.100)

ecE

where E is a discrete index set with w(®)(L) and p'® satisfying

Z Zw(e)(L) =1, (2.101)

Lell ecE

/ px, O)dx = 1. (2.102)
xeX

A GLMB has a mixture of components, where each component consists of a weight

w'¥(L(X)) and a multi-object exponential [p'©)]X. Note that the GLMB weight w'*)(L(X))

depends only on the set of labels, and [p'®]X depends on the entire multi-object state. It

is easy to verify that the GLMB density integrates to 1, as it should, by applying (2.96)
to (2.100).

The previously described types of labeled RFSs are special cases of the GLMB RFS.
For example, the labeled Poisson RFS is a special case of the GLMB RFS with

P 0) = v(x)/(v, 1), (2.103)
W' UL) = 614 [ L1Poisg, 1y (ILI), (2.104)

and the LMB RFS is a special case of the GLMB RFS with

Px,0) = pO(x), (2.105)
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0L =[] (1 - r(i)) [1 L@, (2.106)

iel telL

Note that the superscript (e¢) is not necessary because the index space has only one

element.

2.4.6 The Generalized Labeled Multi-Bernoulli Filter

If a filtering density is modeled as a GLMB, all subsequent predicted and updated den-
sities remain in the GLMB form based on the standard multi-object dynamic model and
measurement model [19]. In other words, the GLMB density is a conjugate prior under
the Bayes rule [19].

To specify the GLMB filter, we express the GLMB in a different but equivalent form

[19]:
P =AK) Y ol Ll [ 2.107)

(L&EeF (L)xE

where in this form (originally called the 6-GLMB), the GLMB is a set of weighted
components generated over the space of (L) x E. Each component is represented by
(1,¢), which is a pair of label set and association map history from space ¥ (L) X E.
In filtering, the GLMB density (2.107) is computed recursively through time. Hence,
I € F(L)is a set of labels that exists up to the current time while & = (6, ...,0;) € Z is the
history of association maps for the filtering density at time k, where 6; is an association

map at time i that maps object labels to their corresponding measurements.

Note that the history of association mappings only arises due to the standard multi-
object measurement model where each measurement follows a positive 1-1 mapping
to the object label. This is further illustrated later in this subsection. The pair (/,¢)
therefore represents a hypothesis that the label set I has the association map history &.
The probability (also referred to as the weight) of the component (7,¢) is represented
by w™) and p¥)(-,¢) represents the spatial probability density function for the label
¢ € I and the association map history &. Also note that the A(-) operator ensures that
the probability of a multi-object state with repeated labels is zero. The GLMB filter
operates by propagating recursively the predicted and filtering multi-object densities (in
GLMB form) forward in time. Below, we show that this propagation is analytical (i.e.,
can be computed in closed form) and, therefore, an exact solution to the multi-object
Bayes filter.

For the remainder of this chapter, we suppress the time index k& and use ‘4’ to
indicate the next time step for sets, functions, parameters, and densities (e.g., X used in

place of X} and X used in place of X,1).
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The GLMB Prediction

The following is similar to Section 2.4.4, except that the multi-object dynamic model
is now described by a labeled multi-object state and the labeled RFS. Given a labeled
multi-object state X at the current time step, an object x = (x,{) € X either survives
with probability of survival Pg(x) and changes to a new state (x,, ;) in the next time
step according to the density fs 4 (x|x,€)d¢[{], or not with probability 1 — Pg(x). With
the inclusion of label into the state, the label remains unchanged during the transition
and only the state of the object changes.

As discussed in Section 2.4.4, given the set of objects existing previously, the sur-
vivability of objects is modeled as a multi-Bernoulli RFS. As a corollary, let S, be the
set of surviving objects out of X in the next time step, it follows from (2.98) that S, is

a labeled multi-Bernoulli RFS expressed as [19]:
fs(S+1X) = AGS)AX) 1 £y (LS)HIT(S ;)1 (2.108)
where:

IH(S4+:;x,0) = Z o[£+ ]Ps(x, f)fS,+(x+|x) + (1 + 1L(S)(f)) (1-Ps(x,0)). (2.109)
(x4,01)€S

Aside from surviving objects, new objects may also be born in the next time step.
Let B, denote the label space for newly born objects. If L denotes the label space
for objects at the current time step (which includes the labels of all objects born up to
that time), then L, is the label space for all objects at the next time step (i.e., L, =
LUB,; and LNB; = 0) [19]. This property reflects the uniqueness of the labels which
is fundamentally the basis of labeled RFS.

Let B be the set of the new labeled objects. Using the labeled multi-Bernoulli birth
model with parameter set {(r(?, fg)(-)) }KGB , the density of B is given as [19]:

5
f8(B1) = A(B)wp(L(B)[f3.+()1"", (2.110)

where 5
ws(LB) =] |a-rg)) |] % 2.111)

icB, teL®.) 1-7g,
for(x.0) = f3 (). 2.112)

Consequently, the complete set of object states in the next time step is denoted
by X = X wB,, which is the superposition of the sets of surviving and the newborn
objects. Using (2.108) and (2.110), the multi-object transition kernel f_(-|-) is given by
[19]:

f(X41X) = fs(X: n(XXD)[X) fp(X+N(XXB,)). (2.113)
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Note that difference between (2.81) and (2.113) is that the combinatorial sum in (2.81)
is nonexistent in the labeled version of multi-object transition kernel (2.113). This
contributes to a huge computational saving.

Let a multi-object prior be a GLMB as expressed in (2.107), applying FISST and
the Chapman-Kolmogorov equation yield a predicted multi-object density that remains

in the same form, which is computed by [19]:

Xy
nX)=AX) W Laol|p] (2.114)
(I+.€4)eF (L )XE
where
W\ =wp(L NBWE (1. NL), (2.115)
1g, (O)r?
_ (0 g
wp(B) =] | (1 B‘+)]—[—®, (2.116)
i€B, {€B 1_”B,+
© Gk 03] )
o) =[P Y 1P| w9, 2.117)
IDL
PO €) =10(E)PS (e, €0) + 1, (64) s (x4, C4), (2.118)
(ér) <PS( Co) fs+(xel 64), PO, €+)>
( +9€+)_ (‘f) (2‘119)
Pgi(Ly)
PO =(PsC. L0, 00), (2.120)
o (e €) =3 (x0). (2.121)
The GLMB Update

For a given X, an object with labeled state x € X produces a measurements in one of
two ways: there is no measurement with probability of missed detection 1 — Pp(x), or a
measurement z € Z is produced with detection probability Pp(x) and likelihood g(z|x).
As discussed in Section 2.4.4, each labeled state x € X generates a Bernoulli RFS
parameterized by (Pp(x),g(:|x)). Given X, all individual Bernoulli RFSs generated by
the object states are conditionally independent of one another. Therefore, the set of
detected measurements denoted by W C Z is modeled as a multi-Bernoulli RFS that
is parameterized by {Pp(x),g(-|x): x € X}. Conditioned on X, the detected set of
measurements W has a probability density given by [19]:

mp(WIX) = {Pp(x),8(:[x) : x € X}(W). (2.122)

Apart from the detections, the multi-object measurement set Z may also contain
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false or clutter measurements. Recall from Section 2.4.4 that the set K C Z denotes the
set of false measurements, which by assumption is statistically independent of W C Z.
A Poisson RFS is the standard model for the collection of false measurements. Hence,
the set of false measurements K has a probability density given by [19]:

nx(K) = e SV k)X, (2.123)

where «(-) is the intensity of a Poisson RFS, and («, 1) is the rate of the Poisson distri-

bution

Consequently, the measurement set Z is the superposition of false measurements
and detected measurements. Based on FISST convolution [122, 237], the multi-object
likelihood of Z is given by [19]:

¢(Z|X) = Z mp(U|X)ng(Z - U). (2.124)
Uucz

This expression is similar to that in Section 2.4.4 because only the object states are la-
beled while the measurements remain unlabeled as previously described. Consequently,

the combinatorial sum remains in the likelihood of the GLMB filter.

The inclusion of labels in the object states enables the multi-object likelihood (2.124)
to be expressed in a compact form [19]:

g(Z|1X) = e *D” Z Sg-10404 i [ LWz (01X, (2.125)
0e®

where:
PoxDgtiaelx) gepy

Wz(x,6;0) = «(zo(¢))

: (2.126)
1-Pp(x,f)  6(6)=0

® is the space of positive 1-1 mappings 6 : L — {0: |Z|} = {0,1,...,|Z]|} such that
6(i) = 6(i") > 0 implies i =i’. The mapping condition ensures that at any point in time, an
object can only generate at most one measurement. The term d4-1((:z)3)(L(X)) ensures
that only mappings with domain £(X) are considered, which makes the summation of
[¥2(-;0)]X over all 6 valid.

Let a multi-object prior be a GLMB as expressed in (2.107), then substituting the
multi-object likelihood (2.125) into the Bayes formula and using FISST yield a filtering

density that remains in the same form, which is computed by [19]:

rXI2)=AK) Y Y @eLopoun| . i
(LE)eF (L)XE €O
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where:
1,¢) |,7.(6.0) !
Sp-1({0:1zip (D™ [‘/’z ]
w9 (z2) = -, (2.128)
T(£,0
D 16)eF(LxE 20e0 Op-1 (107 z ) (D) [W(Zg )]
(£,0) p(f)(xa f)wZ(x’ 5’ 0)
P l2) = o) : (2.129)
vy (0)
7500 = (PO 0p(x,.6:0)). (2.130)
Implementation

A close examination of the predicted and filtering density of the GLMB filter reveals
that it is not feasible to generate hypotheses on the entire spaces of ¥ (L;) X E and
F (L) x ExO respectively over time. To avoid an exhaustive computation of all GLMB
hypotheses (or components), it is shown in [20] that keeping components with signif-
icant weights and discarding the insignificant ones minimizes the Li-error from the
actual density. In the original implementation, the predicted and filtering density of the
GLMB filter are truncated via deterministic optimization algorithms (i.e., the k-shortest
path [283] and Murty’s ranked assignment [284]), which are implementable in poly-
nomial time. Both algorithms seek to find the highest-weighted GLMB components
without resorting to exhaustive enumeration. This implementation of the GLMB filter
achieves an overall complexity that is, at best, cubic in the number of measurements
[20].

Having two truncations of the predicted and filtering GLMB densities result in an
issue where a large portion of predicted components would yield updated components
with negligible weights. Consequently, the propagation is inefficient since most com-
putations are wasted on predicted components that result in low-weighted updated com-
ponents. An efficient implementation uses a joint prediction and update scheme [21],
which requires exactly one joint truncation process per recursion. The joint propagation
strategy avoids the wastage in the prediction while retaining the filtering performance.
This efficient implementation of the GLMB filter truncates the filtering density based
on Gibbs sampling which is a simulation-based approach that generates components
according to their weights. Using the Gibbs sampler, the GLMB filter achieves a lin-
ear complexity in the number of measurements [21]. The computational savings of the
Gibbs sampler comes from not being required to generate a solution that is ranked or
ordered as opposed to the deterministic approaches. This is not an issue because such

ordering of the components is not needed in the truncated GLMB densities.
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Multi-Object State Estimation

Given a multi-target filtering density with a parameter set {(w"), p'©)) : (I,&) € F(L) x
=}, the state estimates can be obtained via the Bayes-optimal joint multi-object estima-
tor and marginal multi-object estimator [237]. However, these estimators are difficult

to compute.

A suboptimal yet tractable implementation of the marginal multi-object estimator is
achieved by first finding the maximum a posteriori (MAP) cardinality estimate from the
cardinality distribution [19]:

o(n) = Z W), (2.131)
(LEeF(L)XE
ii = argmax p(n). (2.132)
n

where 7, (L) denotes the finite subsets of L with exactly n elements. Then, compute the

highest-weighted component (1,£) based on the MAP cardinality estimate 7:

([,&) = argmax  w")5;(|1)). (2.133)
(1,

Lastly, the estimate of the multi-object state X is obtained by:
X={&0:lel),

where the state estimate £ of any track ¢ € [ is obtained from its probability density
p(é ) using, for example, its mean or mode. It is important to know that multi-object
estimates produced by this estimator may result in track fragmentations, i.e., tracks that
do not have consecutive labels over time. This is because the estimator is instantaneous

and does not consider past observations.

Note that the GLMB filtering density is indeed consistent with respect to track conti-
nuity, as the density encapsulates the association histories of all tracks or labels accord-
ing to the standard multi-object system model, which is consistent with the inherent
constraints for objects and labels. Given an estimated association history Ex(0,...0;)
for each estimated object with label £, a posterior density p(lé::l)c(.|zé1(é)29k(€)) can be con-
structed via a recursive algorithm, e.g., the Rauch-Tung-Striebel or Kalman smoother
[285, 286]. Extracting a state estimate £.; from the posterior density p(lfl)c of the object
guarantees a continuous track with no fragmentations. It is stressed that the presence
of track fragmentations is caused by the choice of a naive estimator for the multi-object
state estimates and is not due to any inconsistency in the propagation of the GLMB

filtering density.
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2.4.7 Developments of Labeled RFS

The establishment of the labeled RFS framework has prompted a myriad of efforts and
developments in MOT. The following are some of the research topics related to the
labeled RFS in the literature.

Centralized and Distributed Multi-Sensor Tracking

The GLMB filter can be extended to centralized multi-sensor networks with tractable
implementations [22, 287]. To further alleviate computational burden, approximate so-
lutions to multi-sensor tracking have been proposed [288, 289]. In scenarios where
sensors are widely distributed, it is more prudent to implement a decentralized (or dis-
tributed) tracking system, which benefits from lower communication cost and fault oc-
currences. The consensus for distributed fusion for multi-sensor tracking systems are
the generalized covariance intersection [290, 291], minimum information loss [292,
293], and distributed cross-entropy [294, 295].

Sensor Control

In advanced tracking systems, sensor control is implemented to improve the quality
and information content of measurement data for better tracking performance. Sensor
control typically involves orientation and movement of sensor platform, which affect
the sensor’s ability to observe objects in the scene. In the literature, single-sensor con-
trol method with GLMB filtering has been proposed in [296], while multi-sensor control
methods have been proposed in [297-300]. Solutions that enable multiple sensors to co-
operate with each other for information sharing are useful for application in autonomous
vehicles and robotics [301-303]. A unified method that generalizes the GLMB filter for

MOT and sensor management is proposed in [304].

Jump Markov System (Multiple Models)

In standard form, MOT solutions have assumed the same stochastic dynamic model for
all objects. This assumption can be violated, for example, in traffic monitoring situa-
tions where some objects fit well in a NCV model, while faster maneuvering objects fit
better in a NCT model. The GLMB filter has the versatility to be extended for multiple
models as proposed in [305-307]. The tracking of maneuvering and interactive objects
using LMB filtering is proposed in [308, 309].

Generic Measurement Models

In the standard measurement model, measurements are assumed to be preprocessed into

point detections where each object only generates one detection at most. Based on this
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model, the GLMB density is a conjugate prior for the standard multi-object measure-
ment likelihood, which forms the basis for the GLMB filter [19-21]. In contrast, a
generic measurement model has no simplifying assumptions on the multi-object like-
lihood, enabling it to encapsulate tracking with TBD, superpositional measurements,
merged and extended measurements, and acoustic amplitude observations [310]. Since
the GLMB density is not necessarily a conjugate prior for a generic measurement like-
lihood, several works have proposed methods to overcome this issue. For example, a
labeled RFS filter with a generic measurement model [310-312], a labeled RFS filter
for tracking objects with extended and merged measurements [313, 314], and a joint

detection and tracking of multi-sensor image observations [315, 316].

Adaptive Models and Parameter Estimation

The GLMB filter typically requires a priori knowledge of the birth locations, process
noise parameters, detection probability, and clutter rate. In practice, these parameters
may not be known and may also be time-varying. To this end, several works have incor-
porated adaptive birth models for the GLMB filter [317, 318]. Moreover, an adaptive
measurement gating technique has been proposed in [319]. The unknown detection
profile and clutter rate can be estimated with an online multi-object tracker via the so-
called multi-class GLMB filter [320]. Further robust GLMB filtering techniques have
been proposed in [321-327].

Practical Applications

The GLMB filter has been applied to a variety of real-world applications. Aside from
audio and visual tracking and separation, GLMB filtering has been used for tracking
biological cells [328-332], space debris [333-337], sea ice [338], people [59, 227, 339],
and vehicles with laser range finder [340, 341]. Further, several works have applied
labeled RFS trackers in satellite management [342, 343], acoustic source tracking and
separation [53, 344, 345], simultaneous localization and mapping [346-348], active
sonar [349], autonomous drones [350], and radar tracking [351-359].



Chapter 3

Audio Multi-Source Tracking and
Separation

HIS chapter proposes a novel solution for separating an unknown and time-varying
T number of moving acoustic sources in a blind setting using multiple microphone
arrays. A standard steered-response power phase transform method is applied to ex-
tract source position measurements, which inevitably contain noise, false detections,
missed detections, and are not labeled with the source identities. The imperfect mea-
surements lead to the space-time permutation problem, as there is no information on
how the measurements are associated to the sources in space, nor how the measure-
ments are connected across time, if at all. To solve this problem, a labeled random
finite set tracking framework is adopted to jointly estimate the source positions and
their labels or identities. Based on these trajectory estimates, a corresponding set of
time-varying generalized side-lobe cancellers is constructed to perform source separa-
tion. The overall algorithm operates in a block-wise or an online fashion and is scalable
with the number of microphone arrays. The quality of the measurements, tracking, and
separation, are evaluated respectively, with the OSPA metric, OSPA® metric, and ITU-
T P.835 based listening tests, on both real-world and simulated data. The content of this
chapter has been published in [53].

3.1 Introduction

In microphone array processing, blind source separation (BSS) is the estimation of
source signals, using only the received mixture signals with no information about the
original sources and the mixing process [24]. In a realistic auditory scene, one of the
main challenges for separating a mixture of concurrent sources is not only that the
sources are moving, but also that the number of sources is unknown and time-varying,
1.e., new sources can appear and existing sources can disappear or undergo silence pe-
riods. For static sources, established solutions to BSS include independent component
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analysis (ICA) [25], sparseness-based approaches [26, 80], and non-negative matrix
factorization (NMF) [27]. These methods can be extended for moving sources by using
a block-wise approach wherein moving sources are assumed to be static within a short
time block [41, 42].

An alternative and a more recent block-wise approach is based on tracking of multi-
ple moving sources, and followed by spatial filtering for extracting the signal-of-interest
(SOI) from the estimated position/direction at each time [42—44, 137]. One of the main
difficulties in tracking an unknown number of sources in a reverberant environment is
that acoustic localization measurements are subject to noise and false positives or neg-
ative, i.e., spurious or missing measurements. Moreover, the more pertinent issue is the
space-time permutation problem. As in space, it is not known which measurements are
connected to which sources, and in time, it is not known how the measurements are con-
nected across time frames with respect to the sources. Furthermore, the solution must
cater for possible appearance of new sources, movement of active or inactive sources,

and disappearance of existing sources.

Classical dynamic Bayesian estimation techniques such as the particle filter have
been applied to single source tracking in [69, 71, 119]. For multiple sources, there is un-
certainty not only in the source position, but also in the number of sources, and the latter
is not accounted for within the classical Bayesian framework [8]. Recent solutions for
addressing multiple sources have relied on adaptations of the Rao-Blackwellised Par-
ticle Filter (RBPF) [42, 120], the Probabilistic Multiple Hypothesis Tracker (PMHT)
[44], and the Joint Probabilistic Data Association (JPDA) filter [121]. The newer RFS
framework based on Finite Set Statistics (FISST) [122], offers a principled mechanism
to cater for an unknown and time-varying number of sources in a Bayesian setting, and
is directly applicable to acoustic tracking [8]. The first RFS based solution for multi-
source acoustic tracking was proposed in [72]. Subsequent RFS-based solutions have
been proposed for multi-source acoustic tracking with the Probability Hypothesis Den-
sity (PHD) filter [10, 43, 126, 360], the Cardinalized PHD filter [128], the Cardinality-
Balanced Multi-Target Multi-Bernoulli filter [129], and the RFS Particle Filter [130].

However, these above methods do not directly estimate source tracks, which are
source position estimates associated with a common label. Consequently, they require
a post-processing step such as track management to resolve each track individually.
These methods are thus suboptimal in the sense that they solve the space-time permu-
tation problem separately. As the spatial filtering module relies on accurate label or
identity estimates, the presence of labeling errors results in switching in the separated
signal estimates. Solving the space-time permutation problem jointly has the potential
to significantly improve tracking performance and hence separation performance. Fur-
thermore, the above mentioned approaches do not scale linearly in the number of arrays
used in the system, thereby making them impractical for online implementation when

the number of arrays is large.
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In this chapter, we propose a novel online solution for multi-array BSS with an
unknown time-varying number of moving sources in a 3D auditory scene. Our solu-
tion follows the approach of first obtaining position measurements, then tracking of
multiple sources, and finally separation using spatial filtering, all in an online or block-
wise fashion. Source position measurements obtained through Steered-Response Power
Phase Transform (SRP-PHAT) [70] exhibit the space-time permutation issue, where it
is not known which measurement (if any) is connected to which source at the current
time, nor which measurements are connected to the same source across time. This work
is the first to formally address the space-time permutation problem, using a labeled ran-
dom finite set (RFS) approach [19-21] to jointly estimate the number of sources, their
positions and their labels. The solution invokes the Multi-Sensor Generalized Labeled
Multi-Bernoulli (MS-GLMB) tracker [22], which is a tractable linear complexity recur-
sive filter for estimating the source trajectories from raw measurements. The tracking
estimates at each frame are used to construct a set of time-varying beamformers, known
as the Generalized Side-lobe Canceller (GSC) [60], which are used for multi-source
separation. The proposed method is evaluated using real recordings and under differ-
ent reverberation times via simulation. We use the Optimal Sub-Pattern Assignment
(OSPA) which is a metric for two sets of points [50], to evaluate the quality of the ar-
ray measurements. The tracking performance is evaluated using a variant of the OSPA
metric called the OSPA®), which is a proper metric for two sets of tracks [51]. Finally,
we evaluate the separation performance via subjective listening tests according to the
ITU-T P.835 methodology [52].

3.2 Problem Formulation and Solution Overview

One of the main challenges in BSS for multiple moving sources is the inherent space-
time permutation problem, since acoustic localization techniques are generally unable
to identify and produce exactly one measurement for each source. It is then necessary
to estimate the trajectory of each source from the measurements, which entails knowing
when a source appears or enters the scene, disappears or exits the scene, and how its
position changes over each time instance. This is effectively an online tracking problem
where the objective is to estimate, at each time instance, the number of sources, their
positions and unique labels. Knowledge of the correct source positions and their labels
is crucial, as it resolves the inherent space-time permutation problem, thereby enabling
the application of a set of time-varying spatial filters to achieve source separation. The

underlying signal model and overview of the proposed solution are given below.
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3.2.1 Signal Model

We consider a scenario consisting of N(¢) point sources where each source is indexed by
ne{l,...,N(r)} with 3D position denoted by (1) eR3 at discrete time instance ¢. Each
source signal is denoted by s,,, and all sources are assumed to be mutually uncorrelated,
1.e., the cross power spectral density between two sources is zero. An array indexed by
g€{l,...,Q}, comprises M, microphone elements. The source signals impinge on each
microphone element m € {1,...,M,} of array ¢, and are corrupted with non-directional
diffuse noise v(¢™. The mixture signal at microphone (g, m) is represented by some
mapping function o of the source signals sy, ..., sy(), source positions a1, ...,ay(,), and
noise v(¢™ evaluated at time 7:

Y@M ()= Q(s Iy eer SN(Op @1 e N (1) v(""")) (). 3.1)

For stationary sources in an invariant and homogeneous acoustic environment, the
mixture signal can be modeled via the sum of the convolutions of source signals and
the room impulse response (RIR), which encapsulates the direct path (time-delay) and
multipath terms (reflections) between the sources and microphone element (g, m) [361,
362]. However when sources are moving, the effective RIR becomes time-varying. To

circumvent this issue, we consider the source signal in blocks:

K K
$u(0)= ) sy (1= (k=1)T)= Y seal). (32)
k=1 k=1

where wr 1s a window function of length 7', and & is the index of a time block/frame
with length 7. Specifically, we assume source stationarity at each frame k of length 7,
i.e., au(t)=ar, and N(t) =Ny for t =(k — 1)T,...,kT. Thus, the signal is filtered by a
new RIR for each time frame:

K Ni

YR YN (skax g Y1)+ 1), (3.3)
k=1 n=1

n

(g.m)
k,a’k,n

@, and microphone element (¢, m), at frame k. From this representation, each source

where * denotes convolution, and ¢ denotes the RIR between source n with position
signal is assumed to be a point source (in a fixed position) in frame k, which is filtered
by a linear time-invariant system, where the time invariance is assumed over the frame at
length 7'. For tractability reasons, we focus only on the direct path term and approximate

the mixture signal as:

K Nk Sk.n (I_T(a'k,n’ u(q,m)))

(@m) (1) ~ +y M), 3.4
RPN Yev e S G
=1n=1 ’
where || - || is the Euclidean distance, 7(an, u'?™) 2 ¢! ||ax., — u'?™)|| is the time de-

lay between source # at position a;, and microphone (g,m) at position u'%™ eR3 (c,
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Figure 3.1: Processing Chain of the Proposed Method.

is the speed of sound). Based on this model, the objective is to estimate the individ-
ual source signals for every frame k (frame by frame) using only the mixture signals

yh, . y(@Mo) and no prior knowledge on the sources.

3.2.2 Overview of the Proposed Method

The processing chain of the proposed method is depicted in Fig. 3.1. Raw microphone
signals are segmented into frames and transformed into the frequency domain. Then,
acoustic localization techniques that rely on source features such as direction-of-arrivals
(DOAs), are used to acquire the source position candidates at each frame. The position
candidates from each array are subjected to noise (disturbance), they may not reflect a
source that is present (false negative), and some may not correspond to any source (false
positive). Above all, there is a space-time permutation problem because the acquired
position candidates from each array are unidentified (without labels) across time. As
a result, there is no trajectory information on the sources, and spatial filtering cannot
be applied for source separation. To remedy this, spatial distributions of the position
candidates from all arrays are exploited to jointly estimate the number of sources, their
positions and labels for each frame. The estimation of the source labels is important
because it resolves the permutation ambiguity. Based on this information, a series of
time-varying spatial filter can be constructed using the direct path model for source sep-
aration. The proposed method can be broken down into 3 stages: signal pre-processing,
multi-source tracking and source separation.

In the first stage, raw microphone signals yD, .., y(@Mo) from all arrays are pre-
processed into frames of data in the frequency domain using the short-time Fourier
transform (STFT). For each frame, we use the Steered-Response Power Phase Trans-
form (SRP-PHAT) [70], and apply a region search algorithm known as Stochastic Re-
gion Contraction (SRC) proposed in [70], to obtain 3D position candidates from each
array. Due to noise, false positives, false negatives, and the space-time permutation
problem, the obtained source position candidates from all arrays are not fit for spatial
filtering to achieve source separation.

In the second stage, we employ a Bayesian state estimation framework that pro-
cesses the obtained position candidates from all arrays, herein referred to as the multi-
array measurements, and produces estimates of the source positions and labels at each

frame. The tracking filter works by recursively propagating a posterior density which
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characterizes the uncertainty of a set of labeled states given all multi-array measure-
ments up to the current time. This framework accounts for noise, false positives and
false negatives in the multi-array measurements. Source labels, motions, appearances
and disappearances are also incorporated into the formulation. The joint estimation of
the source labels and positions resolves the space-time permutation problem.

In the third stage, source separation is achieved via constructing a type of spatial
filter known as the Generalized Side-lobe Canceller (GSC) for each frame. The GSC
aims to emphasize and separate the source of interest while actively cancelling interfer-
ing sources. In order to do this, it is necessary to have the estimated source positions
and the labels at each frame, which is provided by the proposed tracking solution. In
addition, we utilize the GSC signals to construct a time-frequency mask for enhancing
the separated signals. Finally, the time-domain separated signals are recovered using
the inverse STFT.

3.3 Signal Pre-processing

This section describes the segmentation of raw signals into frames of data using the
short-time Fourier Transform (STFT), followed by the use of Steered-Response Power
Phase Transform (SRP-PHAT) combined with Stochastic Region Contraction (SRC) to
obtain the 3D source position candidates. The shortcomings of the obtained position

candidates are outlined and discussed.

3.3.1 Short-Time Fourier Transform (STFT)

Each raw microphone signal y(¢™ is segmented into yiq’m), - yg(q’m) via:
(1) = Y e+ (k= DT (1), (3.5)

where @y is a selected window function of length 7. The window function is chosen
such that it captures enough information while reducing signal discontinuities at the
edges, e.g., a Hann window @r(t)=0.5 - 0.5cos(2nt/T), t =0,...,T—1. We denote
the discrete short-time Fourier transform of y,((q’m)(t) by Yk(q’m)(/l) where A is the fre-
quency bin index. To represent the segmented frequency-domain raw signals from all
microphones at array g in a compact form, we stack them into a vector:

YW = [re ) (3.6)

Mq
i=1
3.3.2 Steered-Response Power-Phase Transform

Steered-Response Power Phase Transform (SRP-PHAT) is an acoustic source localiza-

tion solution well known for its robust performance in adverse acoustic environments
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Figure 3.2: SRP-PHAT Measurements

[363]. The SRP is the output power of a delay-and-sum beamformer that is steered
to a set of source positions which are defined under a specified spatial grid [70]. The
Phase Transform (PHAT) is a weighting technique to avoid peak spreading in the SRP
by emphasizing the phase information of the involved signals [70].

Given Yk(q) received at array ¢, the spatial power that emanates from the direction of
the source location a € R? at each frame k, is computed using Steered-Response Power
(SRP) with PHAT by [70]:

M1 M, Y(q,a)(/l)YZ(%b) (/1)

-3 3 5

a=1 b=a+1 A ‘Yk(q’a)(/l)ylj(%b)(/l)

ejw,l(r(a/,u("*b))—‘r(a,u("’“))) (3 7)

where w, = 2n(1—1)Fs/T (Fy is the sampling frequency), the PHAT weighting is the
inverse magnitude of the frequency components of the involved signals, and the ex-
ponential term is responsible for time-aligning the microphone signals based on time-
difference-of-arrival. Searching for multiple local maxima of (3.7) at any frame k cor-
responds to source position candidates that are present at that time frame. However, this

process is computationally expensive as it involves a large search space.

3.3.3 Stochastic Region Contraction (SRC)

Using the computationally efficient SRC algorithm [70], the 3D source position candi-
dates are obtained via peak-picking SRP-PHAT for every array with a certain threshold.
For each array ¢, we denote the collection of the position candidates as a measurement

set:

0= (29,29 %, (3.8)
: k| Z)|

where |Z]((q)| denotes the number of measurements (see Fig. 3.2). For multiple arrays,
we define Z; = (Z(l), - Z](CQ)) as the multi-array measurements. The multi-array mea-
surements are utilized to deduce the optimal positions of the sources. However, due to
nonlinearity, noise and reverberation (in real-world conditions), the multi-array mea-

surements have the following issues:

(9)

¢ A measurement Z,

obtained from a single array (if it is generated by a source) is
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noisy after undergoing a highly nonlinear transformation.

* The multi-array measurements contain false positives, which are measurements
not generated by any active source; and false negatives, which are missing mea-
surements even when sources are active.

* Furthermore, we are faced with the inherent space-time permutation problem
as the multi-array measurements are unordered and have no identities/labels.
Specifically, in space, it is not known which individual measurement in the sets
Z,(cl), ...,Z,iQ) is generated by which source. In time, it is not known how an in-
dividual measurement from the sets Z]EI), -
ZI(<1+)1’ e Z,((_QF)1 at the next frame, is connected with respect to an existing source.

Also, the appearance of a new active source or the disappearance of an existing

Z,(CQ) at the current frame, to the sets

active source is unknown.

3.4 Tracking of Multiple Sources

This section presents a labeled RFS solution for estimating the source trajectories from
the source measurements thereby addressing the space-time permutation problem. The
solution entails the recursive multi-source Bayes filter, which requires specification of
the multi-source transition and multi-array likelihood models. A tractable implementa-
tion is given in the form of the Multi-Sensor Generalized Labeled Multi-Bernoulli filter.

These are summarized as follows.

3.4.1 Multi-Source Bayesian Tracking Filter

Given the multi-array measurements Z; = (Z,(Cl), ...,Z,({Q)), the objective is to estimate the
number of the sources, their positions and labels at each frame k. In order to do so,
it is necessary to have a stochastic model to characterize the time-varying nature of
the number of sources and the individual source positions, which arises due to source
appearance, disappearance and physical motion. Similarly, it is necessary to have a
stochastic model to characterize the multi-array measurements as the number of mea-
surements for each array is also time-varying, partly because the number of sources is
time-varying, but also because the measurements are subjected to noise, false negatives
and false positives.

A random finite set (RFS) is a natural representation for the collection of source
positions (with labels), and for each of the array measurements, because an RFS is
essentially a set-valued random variable, wherein the number of points as well as the
values of individual points are random [19, 72, 122]. In order to develop an online

solution for estimating the number of sources, their positions and labels based on RFS
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Figure 3.3: Two sources appear at frame k—1 and persist until frame k+1, while a third
source appears at k and persists until k+1. (a) [llustration of measurements from two
arrays, Z) and Z® (time subscript k is suppressed). (b) Illustration of desired tracking
result to resolve the space-time permutation problem.

modeling for each frame, we cast the problem into a recursive Bayesian estimation

framework.

In the context of this framework, source appearances and disappearances are re-
ferred to as source births and deaths respectively, while false negatives and false posi-
tives are referred to as missed detections and false detections respectively. Recall that
the time permutation problem arises due to source motions, appearances and disappear-
ances, while the space permutation problem arises due to the absence of labels in the
array measurements, which are also subjected to noise, missed and false detections.
The space-time permutation problem is referred to as the data association problem and
can be addressed using the RFS tracking framework. Fig. 3.3 gives an illustration of
the array measurements prior to tracking as well as the desired result after tracking is
applied.

Each source at frame k has a state denoted by x; = (x¢,€), where x; = (@, @) 1s a
vector capturing the 3D position and velocity of the source, and ¢ is a unique label from
a discrete space L. Note that the velocity component is an auxiliary variable needed for

the state transition model in the Bayesian framework. The states of multiple sources at
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each frame k, are represented as a finite set:

Xe={xt1,- XN} 3.9

herein referred to as a multi-source state. Note that the existence of unique labels in
the multi-source state means that consecutive states with the same label across frames

constitute the trajectory of the source movement (see Fig. 3.3 (b)).

The RFS representation of X naturally accounts for the movements of active sources,
births of new sources and deaths of existing sources, while the RFS representation of
the sets Z,({l), ...,Z](CQ) naturally accounts for, noise, missed detections, and false detec-
tions in the measurements across all arrays. In Bayesian RFS tracking, the aim is to
estimate frame-by-frame (recursively) the multi-source state X, given the multi-array
measurements obtained from the beginning of time up to the current time frame «, i.e.,
Zi.«x =(Zy,...,Z;). The solution is the multi-object Bayes filter, which is a recursive
mechanism that computes the probability density of X given Z;.x [19]. In the context
of Bayesian filtering, this probability density is referred as the filtering density denoted
by myk(X«|Z1:1). At any given frame k, all uncertainty in the multi-source state X
given Zj.x, is captured in 7 (X «|Z;.x) [19].

The propagation of the filtering density is a recursive two-step procedure. The first

step is the time update of the current filtering density 7 x(X«|Z1.) via [19]:

7fk+1|k(Xk+1|21:k)=/f(Xk+1|Xk)7fk|k(Xk|lek)5Xk, (3.10)

where the integral is not the usual Euclidean notion of integration, rather it is a set
integral defined under Finite Set Statistics (FISST) for dealing with RFSs in a mathe-
matically consistent manner [237], and f(X 1| X ) is known as the multi-source tran-
sition density which gives the probability density that multi-source state X at frame k
transitions to Xy, at the next frame k + 1. The multi-source transition density is for-
mulated based on a stochastic model that encapsulates all possible source births, deaths
and motions, i.e., the time permutation aspect. The details of this transition model are
further discussed in Section 3.4.2. Consequently, the time-updated density (3.10) char-
acterizes the transition of X to X4, given all multi-array measurements Zj.x up to
the current time frame, and addresses the time permutation part of the data association
problem. The second step is the data update of 7. 1i(X+1]Z1.x) with the multi-array

measurements Z;,; obtained at frame k + 1 via [19]:

8 Zi sl Xk )7 i)k (X k411 Z1210)
[8(Zk 1l X k)T etk (X k11 Z1:0)0X a1

T k1 (X k11 Z1:k11) = (3.11)

where g(Zy+1|Xk+1) 1s known as the multi-array measurement likelihood which
gives the probability density of the multi-array measurements Z;,1, given the multi-

source state Xy1. The multi-array measurement likelihood is formulated based on a
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Table 3.1: Parameters for the Multi-Source Transition Density (3.12)

Probability of survival Pg
Single-source transition density  fs(-|-)
Probability of birth rp(-)
Birth density f8(")

stochastic model that encapsulates noise, detections, missed detections, false detections
and association uncertainty, i.e., the space permutation aspect, in the obtained multi-
array measurements. The details of this multi-array measurement model are given in
Section 3.4.3. The data-updated density (3.11) contains all information about the num-
ber of sources and their states (with labels) at the next time frame k + 1, conditioned on
the multi-array measurements up to that frame. This step consequently addresses the
space permutation part of the data association problem.

In summary, the combination of both time-update and data-update steps in the prop-
agation of the filtering density solves the space-time permutation problem. To obtain
a multi-source state estimate at each frame, which contains the estimated number of
sources, their positions and labels, a conventional Bayesian multi-source estimator is
applied to the filtering density at each frame. The closed-form representation of the
filtering density and the implementation of the filter, i.e., the tractable (recursive) prop-
agation of the filtering density, are discussed in Section 3.4.4.

3.4.2 The Multi-Source Transition Model

The function f(|-) is a probability density function characterizing all possible source
births, deaths and motions that take place in the transition of a multi-source state from
one frame to the next [19]. The function f(:|-) is parameterized as per Table 3.1, and
explanations of these parameters are given as follows.

Given the multi-source state X, each state x; = (xg, {;) € X either survives with
probability Ps and transition to a new state (xg.1, {x+1) that inherits the same label whose
uncertainty is captured by the transition density fs(xi+1|xk,€k)0¢, [Ck+1], or dies with
probability 1—Ps. At this next time, a set of new sources denoted by By, with labels
{€k+1: (xk+1,€k+1) € Br+1} can be born or appear individually with probability rg(€x+1)
and distributed according to the birth density fp(-,€x+1). Recall that labels of a multi-
source state are distinct/unique for all frames, hence a label is defined as € =(¢,¢) €Ly,
where ¢ € {k} denotes the time frame of birth and (€ N denotes the index of source
born at the same time [19] (see Fig. 3.3 (b) for illustration). Consequently, the label
space for all sources up to time k (including those born prior to k) is the disjoint union
Ly = Lﬂfzo B;, where B; denotes the label space for sources born at time i, (note that
Ly =Lg_1 WByg).

The multi-source state X is the superposition of the surviving sources Wy, and
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Table 3.2: Parameters for the Multi-Array Measurement Likelihood (3.13)

Probability of detection Pg), - PE)Q)
Single-source likelihood gM(:|), ..., g D(-|-)
False detection intensity ~ «(D(.), ..., k©@(")

the new born sources By, which are assumed to be statistically independent. Let
Fs(Wii11Xk) and f 5(By+1) be the probability densities of the survivability of X to
Wi+1, and the new born sources By, respectively, then the multi-source transition

density is given by [19]:

S X1l X)=f sWistl Xi) f g(Brs1) - (3.12)

The product in (3.12) presents a model for addressing the time permutation problem.
In particular, source appearance, disappearance and motion are considered to be sta-
tistically independent. However, labels are kept the same for sources that move and
continue to be active, and appearing active sources are assigned a new distinct label,
while deactivated sources are removed. The derivation of (3.12) is beyond the scope of

this dissertation, but interested readers are referred to [19].

3.4.3 The Multi-Array Measurement Likelihood Model

The function g(-|-) is a probability density function characterizing noise, missed detec-
tions, false detections and association uncertainty in the multi-array measurements. The
function g(-|-) is parameterized as per Table 3.2, and explanations of these parameters
are given as follows.

Given the multi-source state X, each x; =(xg, {x) € X is either detected at array ¢
with probability PE)q) and generates a detection z,((q) € Z](cq) with likelihood g(¢) (ziq) | X, €k ),
or missed detected with probability 1—Pg’). The detection process also generates false
detections at array g, conventionally characterized by an intensity function «x@)(-) £
AE,Q)(L{ (-) on the measurement space [19, 122]. The number of false detections is mod-
eled by a Poisson distribution with mean /lg,q), and the false detections themselves are
uniformly distributed in the measurement space according to U(-). In standard multi-
source tracking, it is standard to assume that the detections are statistically independent
from the false detections [19].

A single-array association 95:1) € @5{‘1) is defined as a mapping from the source labels
to the measurement indexes, i.e., 6;{51) Al (x G e Xy —{0: |Z,Eq)|}. Note that @5(‘])
is the space of all mappings, such that no two distinct arguments are mapped to the
same positive value [19]. This property ensures each detection comes from at most

one source. For example, qu) (€x) > 0 corresponds to source ) generating detection
(@)

690 at array ¢, while 95:1)(&() =0 means source ¢} is misdetected at array g. For
20, (L

<
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multiple arrays, a multi-array association is the vector §; = (9(1), Hig)) € O of all

single-array associations having the same aforementioned positive one-to-one property,

where @ = @5(1)><...><®§<Q) is the space of all possible multi-array associations [22].
Under the assumption that the set Z,((q) at array ¢ is conditionally independent from

those at other arrays, the multi-array measurement likelihood is given by [22]:

Q @
(@6(6)
g(Zk|Xk)oc§ E | | | |¢Zq(q)k e ), (3.13)
k

D@D 4@ a@ (x.l) g=1
0,0l 690! ()ékX]I:)q

where
sz)g(q) (Z](:’]ﬂxk,fk) .
(g.J) = W, =
Ul (ke i) = T\ . o

It is important to note that the nested sum in (3.13) indicates the enumeration of all
possible multi-array associations, thereby taking into account all possible combinations
of missed detections, false detections and the source detections. In other words, the
nested sum in (3.13) presents a model for addressing the space permutation problem by
considering all possible mappings of position candidates to source labels. The deriva-
tion for (3.13) is beyond the scope of this dissertation, but interested readers are referred
to [19, 22, 122].

3.4.4 The Multi-Sensor Generalized Labeled Multi-Bernoulli

Under the transition and measurement models as described above, the time-updated
and data-updated (filtering) densities admit a closed-form solution via the Generalized
Labeled Multi-Bernoulli (GLMB) density [19, 20, 22]:

A(X)=AXg) ), o PLE))| [P0, (3.15)

01.k€0 1 X €Xg

where L(X )= {€r: (xx, €x) € X}, A(+) is a distinct label indicator, i.e., A(X)=1 if and
only if the cardinality | L(X¢)|=|Xk|, 01:x €®1.« is the history of multi-array association
mappings up to frame k, i.e., 61.x = (61,...,0;). Each w%)(L(X})) is a non-negative

Z Z w (L) =1, (3.16)

LCLok 01:k€011

weight such that

and can be interpreted as the probability of sources with label set £(X ) being active, as
well as being associated with the detections given by the association history 61.;. Each
p@x) (. £) is a probability density of the source state with label £, and association
history 6;.x, where p(elik) (xx, € ) 1s the probability density of the source with label ¢4
being located at state x; = (ay, @).

In plain terms, the GLMB (3.15) can be interpreted as a mixture model, i.e., a
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weighted sum of the products of single-source probability densities, where each weight
is a function of the labels in the multi-source state. In the context of Bayesian filtering,
the GLMB density (3.15) at time k can be rewritten as [22]:

x(X)= A(X)Zw“f%s[ LON] [p9 ), (3.17)

xeX

where I € F(IL) and each £ € E represents a history of (multi-sensor) association maps,
i.e., & = (01.x). For notational compactness, the time subscript k in the expression (3.17)
has been suppressed. It follows from [22] that under the standard multi-source transition
and measurement models as described in Section 3.4.2 and Section 3.4.3, respectively,
a GLMB filtering density (3.17) at time k can be propagated forward to k + 1 via a joint

prediction and update given by:

1 (X)=AX) Y, WMogt s Lol [P0 3a)

LELL0, xeX

where the time subscript ‘+’ is used to indicate the next time step, I € F(L), & € E,
I, e F(Ly), 0, € ©O,(1,), and

_oa1I-I 1 _ 1IN
w(ZIf,u,m) = Lo, (62) [1 _ ng)] [ P(f)]

s [1=rp 5" Bmh[:ﬁ 9+”] : (3.19)
PE ) = (p© (- 6), Ps (- 0)), (3.20)
dy () = <p(§)( L)y ), (321)
(9+(€+))(X+,€) l—lw(q(qe) (€+))(X+,€+), (322)
) For (il ), pPE( L,
ﬁf)(xh&) = 1L(£+)< il )fS Ez;)| AL )>

Pg(Ly)

+1p, (04) fa+ (x4, €4), (3.23)
5O (0:(6.)

Py (x5, +)¢ (x4, €4)

Pt = 7 M({ ) . (3.24)

From an implementation standpoint, the number of terms in the GLMB filtering
density grows exponentially over time, partly due to the enumeration of all possible
multi-array associations at each time frame. To maintain tractability, pruning of the
terms with low weights is required, and has been shown to minimize the L; approx-
imation error [22]. The Multi-Sensor GLMB (MS-GLMB) filter offers a polynomial
time implementation mechanism that generates highly weighted components without

exhaustive enumeration of the sum in (3.15), which has a linear complexity in the sum
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Figure 3.4: Spatial Filtering via Generalized Side-lobe Canceler (GSC)

of the total number of measurements across all arrays [22]. A multi-source state esti-
mate can be obtained from the GLMB posterior density via a simple GLMB estimator
[20, 22]. Since we only require the position component of the single-source state, the

estimated multi-source state X; at frame k is:

)A(k = {(&'k,l,é\l),~~~,(&k’|fgk|,é|)2k|)}, (3.25)

where N =|X| is the estimated number of sources.

3.5 Source Separation

This section describes the use of the multi-source state estimate from the MS-GLMB
filter to construct a Generalized Side-lobe Canceler (GSC) for source separation. For
post-processing, we adopt a time-frequency masking step to further suppress interfering
speech.

3.5.1 Spatial Filtering

At each frame k, the tracking filter provides the multi-source state estimate X, which
contains the estimated source positions and labels from the available data. The com-
bination of source positions and labels constitutes the estimated source tracks, thereby
solving the space-time permutation problem that arises from the multi-array measure-
ments as depicted in Fig. 3.3. With this information, we design a set of spatial filters
that is changing at each frame depending on X, based on a free space near-field room
model. We adopt a variant of the linearly constrained minimum variance beamformer
called the Generalized Side-lobe Canceler (GSC). A GSC is a constrained beamformer
that has been converted to a non-constrained design by means of a blocking matrix [60].
The GSC contains two parts: a beamformer that determines the response of the source
of interest (SOI), and a mechanism that blocks the SOI from entering the canceler. Fig.
3.4 shows a block diagram of the GSC.

In the first part, we use a beamformer that emphasizes the direction of the SOI
specified by label £; with position Qri, while nulling other interfering sources specified
by {(ax, j,f )€ X k};\z‘] for i # j. For each TF point (4, k), the weight of the beamformer
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W/Eqé)- (1) is given by:

(@) H &) 5
(DY () W) =1, (G

o g\t .
= ((off, ) 15,0 526

where the operator 7 is the Hermitian transpose, the dagger 1 denotes the Moore-
Penrose pseudo-inverse, /g is a selection vector whose dimension varies depending
on the estimated number of sources Ny, i.e., lNk(&) = [% [@],...,6@% [£:]]7 such that

0;[j]=1if i=j and zero otherwise, and

ejw/i(r(&k’hu(qal))) . ejw,l (T(&kﬂk,u(%l)))
Dy5 )= : - : , (3.27)

. A i &, o u@Mq)
erA(T(ak’l’u(q,Mq))) eJ""/l(T("k,Nk’”q q ))

is a matrix with columns representing the steering vectors for each estimated source.
The number of columns depends on the estimated number of sources Ni. Note that if

Ny =1, (3.26) reduces to the classical delay-and-sum beamformer.

The second part involves a blocking matrix that is defined to be the orthogonal
. H
complement to (W;{qf)' (/l)) [60]:
(@) sl @y v @l o
Bk,&(ﬁ):I_Wk,&(/l) [(Wk,@(/l)) Wk,&(/l)] (Wk,&-(/l)) ’ (3.28)
where I is an identity matrix. Subsequently, the weight vector of the GSC is defined by:
G\ (1) = W (1) =B ()Vi(A) (3.29)
k.t k,C; k.t; ’ '
where

5 (q) (q) ool
(W%(A)—B%(A)v) Y90,
.4 .t

k
_ : k-n
Viopr(A) = arg mvlnz;)( (3.30)
77:

X €10,1] is a positive constant. Eq. (3.30) can be solved recursively using recursive

least squares [364].

The output of the GSC for estimated source label £; at each TF point (1, k) and array
q is given by:

GSCa) 1y _ (@ () y@
s (/l)—(iji(/l)) YO, (3.31)
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3.5.2 Post-processing: Time-Frequency Masking

To improve the quality of the separated source signals, we exploit the spatial-spectral
content of the GSC signals to construct a time-frequency (TF) mask following the ap-
proach in [365]. The construction of the TF mask relies on the assumption that the

power spectrum of S(Gsc’q)(/l) is dominated by its corresponding source ;. For each

source &;, a TF binary mask M(qg is constructed by comparing the relative power of the
SOI to each of the interfering sources, with the intention of suppressing the interference.
The estimated source is given by S](Cq;' () =M, ;. (D) S(GSC (1), and the time-domain

signal § A(q) is given by the inverse STFT. In separating the source, we simply select the

closest array to the estimated source position at each frame.

3.6 Experiments

In this section, we present the evaluations of the obtained multi-array measurements,
the tracking filter performance, and the source separation performance on real data
recorded in a physical room. Based on the same setting, we go further in evaluating
the tracking and separation performance on simulated data with different reverberation
times. The experimental setup is summarized in Section 3.6.1. The parameters used
for the proposed method are explained in Section 3.6.2. Subsequently, we evaluate
the quality of the SRP-PHAT multi-array measurements in Section 3.6.3, followed by
the tracking performance of the multi-source Bayesian filter in Section 3.6.4, and the

separation performance in Section 3.6.5.

3.6.1 Experimental Setup

The experiment is conducted in a 7.67m X 3.41m X 2.7m enclosed room with reverber-
ation measured at 7o ~ 0.25s using 4 linear arrays of 6 microphones (total of 24 mics),
where all microphones are calibrated to the same gain/sensitivity. These microphones
are connected into 3 RME-OctaMic 8-channel pre-amps. Each pre-amp is daisy-chained
via MADI cables into the computer. All 4 microphone arrays are placed at the sides of
the room as shown in Fig. 3.5.

As our proposed method is capable of handling an unknown number of moving
sources, we design the experiment such that an active source (female speech) first ap-
pears in the scene and starts moving, followed later by another 2 active sources (male
and female speech). It is also important to point out that the times at which these sources
appear and disappear from the scene are unknown. The movement of each individual
source is annotated by hand and the trajectories of the sources are illustrated in Fig.
3.5. In recording the source signals, we traverse each source according on the indicated

path so that we can evaluate the tracking results. Note that the sources are continuously
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Figure 3.5: Experimental Room Setup

active with typical short pauses in speech.

To evaluate the performance of the proposed method with different reverberation
times, i.e., T50 =0.05s,0.25s,0.55s, we use the Image Source Model (ISM) [361, 362]
to simulate the acoustic room response for these reverberation times. The movements
of the sources are the same as the annotated (ground-truth) trajectories in Fig. 3.5,
and the source signals are convolved with simulated room impulse responses using a

512-sample frame length.

3.6.2 Parameters Breakdown
Multi-Array Measurements

The microphone signals are sampled at Fy=16kHz and subjected to high-pass filtering
with 1kHz cutoff to minimize the impact of reverberation on the multi-array measure-
ments. The STFT of the raw signals is performed with a Hann window of frame length
T=512, where each frame increment corresponds to a 32ms time frame. The multi-
array position measurements are obtained via peak-picking with an empirically selected
threshold.

Multi-Source Bayesian Tracking Filter

Recall that the parameters of the multi-source transition density are shown in Table 3.1
of Section 3.4.2. In audio speaker tracking where speech typically has short pauses,
the Langevin model [69, 72, 234] is an appropriate choice for acoustic speaker tracking
[71]. The motion model has the following state space equations [234]: a1 = ok +
Pay, A+ = e By +vV1 — e=2B¢y;, where ay and ¢y are the 3D position and velocity
vectors respectively, S is the rate constant that controls the rate at which the velocity
decays, v is the steady-state root-mean-square velocity constant, ¢ is the discretization
time step interval and vy 1s the process noise. The process noise vy models random

disturbances in the state transition, and vy is a 3-dimensional Gaussian random vector
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with zero mean and covariance O'UO'5 , where o, is a column vector of the component
standard deviations. Note that each component of vy is a Gaussian random variable that
is statistically independent of one another and across time.

Based on this motion model, we specify the single-source state transition density
as fs(xpe1|xx) = N(xro1;Fxp, RRT), where x; 2 (ax, @x), N(-;Fxi, RRT) is a Gaussian
pdf with mean Fx; and covariance RR”, F= Fpseudo ® I3, R = Rpseudo ® I3, I3 an identity
matrix of 3 dimensions, ® is the Kronecker product, and

1
Fpseudo = lo e_(l;¢

0
Rpseudo = 0y lV =7 —6_25¢] .

In the experiment, the values of the Langevin model parameters are set to ,8 =10s71,
v=1ms~!, and $=32ms. The noise standard deviation is o, =[4.7,4.7,0.7]"ms ™!, where
the z-component standard deviation is lower than that of the other components because
movements in the z-axis are small. A high probability of survival Pg=0.999 is selected

as existing sources are likely to be persist.

The birth parameters are given by {rz(£;), fp(-. ;) = N(-;my (@ P(’))}3 where rg({;)
is the birth probability of a source with label ¢; and f3(-, f,) is the birth probability
density which is a Gaussian with mean mg) and covariance Pg) . The Gaussian mean is a
vector containing the expected location of source birth while the associated covariance
specifies its spatial uncertainty. In the experiment, the values of these parameters are:
ra(61) = ra(62) = rg(£3)=0.005, m\)) = [5.0 1.0 1.8 00 0)7, m}’ = [4.03.0 1.50 0 0],

mY=125051.5000]", P} = pY =pY = dlag([O.15;0.15,0.15,0.15;0.15;0.15]T)2.
Note that the Gaussian means have units of m for the 3D position components and ms ™!

for the 3D velocity components.

Subsequently, recall that the parameters of the multi-array measurement likelihood
are shown in Table 3.2 of Section 3.4.3. The obtained array measurements are noisy
in nature. Hence, each measurement from each array z(q) is related to the source
@ — @ where g=1,..,0, H=[I,0],

is an additive Gaussian random vector that is used to model noise in the
(@)

state x; via the measurement equation: 2 =Hux; + W

and w(q)
measurement. Similar to the process noise, W, 1s a 3-dimensional Gaussian ran-
dom vector with zero mean and covariance 0'W<q>0'W( 0 where 0, 1s a column vector
of the component standard deviations. Note that each component is a Gaussian ran-
dom variable that is statistically independent of one another and across time. Based
on this measurement model, the single source likelihood for each array ¢ is given as:
g(Q)(z,(:’)|xk) =N (z(q) Hxy, o W(qm' .- In the experiment, the noise standard deviation
vector is set to o) = [0.1,0.1,0.1]"m for g=1,...,0. The probability of detection
P(DQ) =0.6 for g=1,...,0Q is chosen to reflect the quality of the obtained measurements.
The intensity function «'9(-)=10U(-) for g=1,...,Q denotes an average of 10 false de-

tections per frame where each individual false detection is uniformly distributed in its
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Figure 3.6: Observed measurements projected onto 2D ground plane as represented by
black crosses at frames k=120, 121 and 122 for Array 2. The true positions for the
active sources at the relevant times are denoted by colored asterisks.

space.

Source Separation

In the separation module, the STFT of the raw microphone signals is performed with a
1024-sample Hann window with 50% overlap to reduce the effect of windowing [366].
Since STFT from a 1024-sample with 50% overlapping window corresponds to the
same number of frames as STFT from a 512-sample window with no overlapping, the
frames are synchronized from the tracking module to the separation module, so that

tracking estimates obtained at each frame are used for the separation accordingly.

3.6.3 Evaluation of SRP-PHAT Multi-Array Measurements

Due to space constraints, we only present the evaluation on real data. Fig. 3.6 (a)
shows the real measurements obtained from an array compared with the ground-truth
source positions. Notice that there is noise, missed detections (false negatives) and false
detections (false positives) as expected across time frames. To evaluate the quality of
the obtained multi-array measurements, we need a distance function between two sets
of points, i.e., the set which contains the array measurements and the set which contains
the ground-truth source positions. This distance function must be able to capture the
accuracy of the individual points and the mismatch in number of points. Conceptually,
the distance function must satisfy the three axioms of a metric: identity, symmetry
and triangle inequality. While the first two axioms are often easily met, the triangle
inequality is equally important. Conformity with the triangle inequality ensures the
metric to be consistent with geometric interpretation, i.e., the shortest distance between
two points is a straight line.

To this end we employ the Optimal Sub-Pattern Assignment (OSPA) distance which
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Figure 3.7: OSPA distance between the obtained source measurements and true source
positions (lower is better) for each microphone array.

Table 3.3: Average OSPA distance on the obtained source measurements.

Average OSPA Components (m)

Array Localization Cardinality OSPA
1 0.32 0.51 0.83
2 0.31 0.54 0.85
3 0.33 0.53 0.86
4 0.33 0.51 0.84

is an established mathematically consistent and physically meaningful metric between
two finite sets of points [50]. The OSPA distance captures both localization and cardi-
nality errors between two finite sets with a suitable base-distance between the points.
The Euclidean distance (2-norm) is often used as the base-distance, and the result-
ing OSPA distance captures the perturbation error (localization) in the measurements
caused by noise, and the error in the number of measurements (cardinality) caused by
potential missed detections and false detections. Base-distances between two points
that exceed the cutoff are capped at the cutoff value. The cutoff value is effectively
the threshold at which a localization error is deemed as a cardinality error. A higher
cutoff value brings more emphasis on the cardinality errors, and vice versa. The OSPA
distance between the set containing the array measurements and the set containing true
source positions is interpreted as a per-point error that ranges from zero to the cutoff

value with units in meters. Interested readers can refer to [50] for full details.

For this evaluation, we compute the OSPA distance between the set of measure-
ments obtained from each array and the set of source ground-truth trajectories with
cutoff of 1m as shown in Fig. 3.7. It is observed that the OSPA distance for each array
has a time average of about 0.8m. This is supported by Table 3.3, which shows the time
average OSPA distance for each array along with its localization and cardinality com-
ponents. The table indicates that the average localization error for each array is about
0.3m, while the average cardinality error for each array is about 0.5m. From these val-
ues, we observe that the OSPA distances have noticeable localization errors but are still
dominated by cardinality errors. Consequently, when measurements corresponding to
the direct path are obtained, they are somewhat noisy, while it it also clear that there
is a high number of missed detections and false detections. Combined with the fact

that the measurements have no identities or labels, and that the number of sources are
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unknown and time-varying, it is clear that source separation via spatial filtering using

the multi-array measurements is not viable.

3.6.4 Evaluation of Multi-Source Tracking Filter

The multi-array measurements are fed into the multi-source Bayesian tracking filter
(MS-GLMB filter) at each frame, which outputs the filtering density. This output is
fed back into the filter to process multi-array measurements at the next frame, and into
the estimator to generate the multi-source state estimate which contains the estimated
source tracks (positions and labels).

A track is defined when the source position estimates across frames are associated
with a common label. Specifically, the mathematical definition of a track is a function
whose domain is the set of time instants at which the source exists. In online tracking, a
track can be fragmented or “broken” when the estimated source labels are not matching
across time frames. Another common error is track switching which occurs when the
label of a track switches to another. While the OSPA distance provides an indication of
the acoustic measurement performance, it does not account for labeling errors between
the estimated and true sets of tracks. As a result, it does not penalize track switching
and fragmentation. In order to evaluate the estimated source tracks against the ground-
truth source trajectories, we need a distance function to characterize the error between
tracks over a time window.

To achieve this, we use the OSPA® metric which is defined for two sets of tracks,
i.e., the set of estimated source tracks and the set of true source tracks. The construction
of the OSPA®) metric is based on the OSPA metric. In particular, OSPA® uses a time-
averaged OSPA distance (over the common track times, with an appropriate cutoff)
between a pair of tracks as the base-distance. The OSPA® distance treats the indi-
vidual tracks as individual points in a larger space of tracks. The OSPA® distance is
constructed as the OSPA distance between the two sets of tracks where the base distance
is defined directly above [51]. Hence, the name OSPA® reflects the OSPA-on-OSPA
nature in its construction. The OSPA® distance is capable of penalizing track switches
(label changes) and fragmentations (“broken” tracks). The OSPA® is also parameter-
ized by the cutoff value, which provides a sensitivity tradeoff between localization and
cardinality errors between the tracks. The interpretation of the OSPA®) distance eval-
uated over a fixed time window is consequently a time-averaged per-track error. The
complete breakdown of the OSPA® metric can be found in [51].

For online tracking, it is desirable to have the tracking performance as a function of
time. This can be achieved by computing the OSPA® distance over a sliding window
instead of a fixed time window. This means that the OSPA® distance is plotted against
time as the sliding window moves forward. Tracks whose domains lie outside the win-

dow are disregarded. This is useful for “forgetting” errors that were made further in the
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Figure 3.8: 3D estimated source tracks (colored dots) vs the true source trajectories
(colored lines) plotted against time.

Figure 3.9: OSPA® distance between estimated and true source trajectories (lower is
better).

past. For this evaluation, a cutoff of Im and a window length of 30 frames are used.

Real Data

The 3D estimated tracks (colored dots) from the MS-GLMB tracking filter are com-
pared with the source ground-truth trajectories (colored lines) in Fig. 3.8, where the
color of a dot represents the label of a particular track. While the estimated tracks
for Source 1 (red), 2 (green) and 3 (blue) at frame 1, 11 and 61 respectively have slight
delays in the initiations, we observe that the tracking filter manages to initiate and main-
tain all 3 estimated tracks consistently across frames with respect to the ground-truth
trajectories.

Fig. 3.9 shows the OSPA® distance between the estimated tracks and the ground-
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Figure 3.10: OSPA® distance between estimated and true source trajectories (lower is
better).

truth trajectories plotted against time. Notice that the spikes of the curve correspond
to the errors caused by the late track initiations and terminations of Source 1, 2 and 3
as depicted Fig. 3.8. Despite noise, false detections (false positives) and missed detec-
tions (false negatives) in the obtained multi-array measurements, the result validates the
proposed tracking filter for solving the space-time permutation problem, and producing
tracks for each source with reasonable accuracy as corroborated by both Fig. 3.8 and
Fig. 3.9.

Simulated Data

Due to space constraints, we omit the 3D-track plots for simulated data and only present
the OSPA®? distances for the tracking estimates generated at reverberation times Tgo =
0.05s,0.25s, and 0.55s in Fig. 3.10.

At Tso=0.05s (in black), the MS-GLMB tracking filter achieves the lowest OSPA®
distance compared to the other 2 curves, indicating that the tracking result is the best
out of the other 2 examples. This is expected as the multi-array measurements capture
the direct path.

At Ts0=0.25s (in blue), we see that the error curve is similar to the OSPA® error
curve on real data, where the spikes are caused by the delays in track initiations and
terminations. This indicates an agreement between the simulation and the real mea-
surements.

At Tgo =0.55s (in red), we observe that the error curve is higher than that of the
previous two curves, indicating a poorer tracking result. This increase in error is caused
by late track initiations and terminations, and larger localization error due to higher

reverberation.

3.6.5 Evaluation of Source Separation

For moving sources, the delay of the source signal with respect to any microphone array
is changing over time. In our proposed method, the selection of the array for source sep-
aration depends on the source position at each frame. Therefore, perceptual measures
such as PESQ [367], STOI [368] and PEASS [369] that rely on delay-compensation,
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Table 3.4: Scales of SIG, BAK and OVRL in the Subjective Listening Test.

SIG
Rating Description
5 Very natural, no degradation
4 Fairly natural, little degradation
3 Somewhat natural, somewhat degraded
2 Fairly unnatural, fairly degraded
1 Very unnatural, very degraded
BAK
Rating Description
5 Not noticeable
4 Somewhat noticeable
3 Noticeable but not intrusive
2 Fairly conspicuous, somewhat intrusive
1 Very conspicuous, very intrusive
OVRL
Rating Description
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

are not directly applicable. One possibility for using these measures is to consider time
frames where the sources are almost stationary. However, this is outside the scope of
this dissertation as there may not be enough signal information in those frames, and a
very complex study is needed with the development of suitable measures. Conventional
BSS performance measures that are based on signal (energy) ratios, i.e., the BSSEval
[370], require an exact time-alignment between the estimated and true signals to work
[370]. As our experiment involves sources that are moving, and the exact times at which
the sources appear in the scene are unknown, BSSEval is also not suitable for evaluating
the source separation performance.

To evaluate the separation performance, we administered a subjective listening test
on all scenarios based on the ITU-T P.835 methodology specifically designed to eval-
uate the distortions and overall quality of noise suppression algorithms [52]. In the
test, each participant is instructed to listen to the clean speech signal (upper anchor
reference), the separated speech signal (to be evaluated) and the mixture signal (lower

anchor reference), then rate them on:
* The speech signal alone using a five-point scale of signal distortion (SIG);

* The background interfering noise alone using a five-point scale of background

intrusiveness (BAK);
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Figure 3.11: Mean scores for SIG, BAK, and OVRL for the estimated source signals,
ablation study (estimation without post-processing), and original mixture signals eval-
uated on real data.

* The overall quality using the scale of mean opinion score (OVRL).

The scales of SIG, BAK and OVRL are described in Table 3.4. The listening tests are
carried out on the separated signals both before and after the post-processing step. This
form of ablation study is undertaken with the intention of understanding the trade-off
between additional speech suppression and signal distortion due to the optional post-
processing.

In this evaluation, 17 people (11 males, 6 females) of ages from 20 to 40 are re-
cruited to partake in the listening test. To assess the overarching discrepancies between
the test ratings on the separated speech signal and the unprocessed mixture signal, a
statistical analysis of variance (ANOVA) is adopted to present the significant statisti-
cal difference between the quality of the separated speech signal and the unprocessed
mixture based on a 0.05 significance level.

Real Data

For the subjective listening test, the mean scores over all 3 aspects, i.e., SIG, BAK and
OVRL, of the separated/estimated source signals and the unprocessed mixture signals
are presented in Fig. 3.11. We observe that the BAK and OVRL mean scores of all
three estimated source signals from the proposed method (the blue bars) are relatively
high as compared to the mean scores of the mixture signals, while the SIG mean scores
of all estimated and mixture signals are relatively close. This indicates that the source
signals are well separated with minimal signal distortions.

The p-values of the one-way ANOVA test between the estimated source signals and
the unprocessed mixture signals are tabulated in Table 3.5. In terms of SIG, the table
shows that all values of the proposed method are higher than 0.05, which means that

there is no statistically significant difference in signal distortion between the estimated
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Table 3.5: One-way ANOVA test between the estimated source signals and original
mixture signals on real data, and corresponding ANOVA test for the ablation study
(estimation without post-processing).

Source p-value
SIGT BAK| OVRL ]
] Proposed 0.0791* 0.0001  0.0001
Ablation  0.9247* 0.0058  0.0053
) Proposed 0.1122* 0.0001  0.0001
Ablation  0.9349* 0.0059 0.0051
3 Proposed 0.1494* 0.0001  0.0001

Ablation 0.8694* 0.0054 0.0052

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

source signals and the mixture signals. In terms of BAK and OVRL, the table shows that
all values of the proposed method are less than 0.05, indicating a statistically significant
difference in speech intrusiveness and overall quality respectively.

From the results of the ablation study in Fig. 3.11 (the green bars) and Table 3.5, it
can be seen that the BAK and OVRL means scores are slightly poorer than that of the
proposed method, but the SIG mean scores are better than that of the proposed method
across the board. Subsequently, the BAK and OVRL p-values indicate that there is a
statistically significant difference in speech intrusiveness and overall quality, whereas
the SIG p-values indicate that there is no statistically significant difference in signal
distortion. These observations indicate that the proposed method minus post-processing
achieves noticeable speech suppression with negligible signal distortion. The addition
of the post-processing does indeed further enhance interference suppression, but at the

cost of some signal distortion which manifests as musical noise in the estimated signals.

In summary, the proposed method achieves source separation with good noise (in-
terfering speech) suppression, which is corroborated by both the mean scores and the
ANOVA test in Fig. 3.11 and Table 3.5 respectively. The audio files for this experiment
are available in https://github.com/researchwork888/BSMMS_via_Tracking.

Simulated Data

The mean scores for the subjective listening test on the estimated source signals and
the unprocessed mixture signals, obtained under reverberation times 759 =0.05s,0.25s
and 0.55s, are shown in Fig. 3.12. Based on the relative differences for SIG, BAK and
OVRL between all estimated and mixture signals at Tgg =0.05s and 0.25s, we observe
a similar pattern as for the real data, which shows that the proposed algorithm is capa-
ble of separating the sources reasonably well. However, at 5o =0.55s, the separation
performance degrades as the mean scores between all estimated and mixture signals are

relatively close. Overall, we observe a downward trend in mean scores of the estimated
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Figure 3.12: Mean scores for SIG, BAK, and OVRL for the estimated source signals,
ablation study (estimation without post-processing), and original mixture signals eval-
uated on simulated data.

source signals from low Tgo to high Tgg. This degradation is expected because both

tracking and separation performance degrades with increasing reverberation.

The p-values of the one-way ANOVA test between the estimated source signals and
the unprocessed mixture signals are tabulated in Table 3.6. In terms of SIG, the p-values
for all three sources at all reverberation times are above 0.05. This indicates that signal
distortions between the estimated source signals and mixture signals are very similar.
In terms of BAK and OVRL, the computed p-values for all three sources at T = 0.05s
and 0.25s are below 0.05. This suggests that speech intrusiveness and the overall quality
of the estimated source signals are statistically different from the mixture signals, thus

indicating good separation.

At Tgo = 0.55s however, we see that the p-values on OVRL for all three sources
are higher than 0.05, suggesting that there is no statistically significant difference be-
tween the overall quality of the estimated source signals and the mixture signals. This,
combined with the fact that the BAK values are fairly close to 0.05, suggests an over-
all poorer separation performance as interfering speech is not well suppressed. This
decrease in performance is most likely due to two main reasons. The first being as
reverberation time increases, the quality of tracking deteriorates, resulting in more lo-
calization errors. The second being the failure in the signal sparsity assumption, which

results in leakage in the TF masking.

Examination of the ablation results in Fig. 3.12 and Table 3.6 reveals similar trends
to those observed in the real-data experiments. For each of the three reverberation lev-
els, the proposed method minus post-processing achieves noticeable suppression with
negligible distortion, but the addition of the post-processing involves a trade-off be-

tween further suppression and audible distortion.



3.7 Conclusion

93

Table 3.6: One-way ANOVA test between the estimated source signals and original
mixture signals on simulated data, and corresponding ANOVA test for the ablation
study (estimation without post-processing).

p-value
SIGT BAK| OVRL |
Proposed 0.1903* 0.0001  0.0001

Tso(s) Source

! Ablation 0.7393* 0.0031 0.0034

0.05 ) Proposed 0.2279* 0.0001  0.0001
Ablation 0.7618* 0.0031 0.0033

3 Proposed 0.2169* 0.0001  0.0001

Ablation 0.6511* 0.0031 0.0032

| Proposed 0.1802* 0.0001  0.0001

Ablation 0.8421* 0.0051  0.0048

0.25 ) Proposed 0.1885* 0.0001  0.0001
Ablation 0.7978* 0.0051  0.0047

3 Proposed 0.1868* 0.0001  0.0001

Ablation 0.7296* 0.0048  0.0049
| Proposed 0.1629* 0.0355 0.1051*
Ablation 0.8397* 0.0411 0.2481*
0.55 ) Proposed 0.1741* 0.0396 0.3791*
' Ablation 0.9711* 0.0443 0.4521*
3 Proposed 0.0791*% 0.0343 0.2041*

Ablation 0.8883* 0.0403 0.3451*

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

It can be seen that the separation performance on simulated data at 7gp = 0.25s
matches the results on real data, and that the separation performance generally de-
grades as reverberation time increases. This is corroborated by both the mean scores
and the ANOVA test in Fig. 3.12 and Table 3.6. We also note the presence of more
perceptible signal distortion in real data compared to simulated data. This is likely due
to the mismatch between the real room environment and the simulated room model,
which leads to additional spectral leakage in the time-frequency masking of the post-
processing. The audio files for the experiments on simulated data are also provided in
https://github.com/researchwork888/BSMMS_via_Tracking.

3.7 Conclusion

This chapter proposes a block-wise or online solution for blind source separation with
multiple microphone arrays, which can accommodate an unknown time-varying num-
ber of acoustic moving sources in mild reverberation. The proposed solution is based
on first obtaining source position measurements, then estimating the trajectories of the
sources, and finally separating the mixed signal with corresponding spatial filtering.
In real acoustic recordings measured at Txo = 0.25s, it is observed that the SRP-PHAT
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source measurements are relatively noisy, and contain significant false and missed de-
tections. In addition, the measurements are unlabeled, and coupled with the unknown
appearance, disappearance and movement of sources, it is not known which source
generated which measurement at the current time, nor which measurements are con-
nected to the same source across time. These observations verify the extent of the
inherent space-time permutation problem, which is then addressed with the application
of a labeled RFS based MS-GLMB tracking filter. Results indicate that the tracking
filter is able to recover the source trajectories (i.e., the positions and identities) from the
imperfect source measurements with some delay in initiation and termination. Sepa-
ration is carried out via a corresponding set of time-varying generalized side-lobe can-
cellers. Evaluations with subjective listening tests confirm acceptable performance in
mild reverberation. Additional experiments via acoustic room simulations with the ISM
method indicate clear separation performance at lower reverberation 7y =0.05s, match-
ing performance in mild reverberation 79 = 0.25s, and noticeable deterioration at higher

reverberation 750 =0.55s.



Chapter 4

Visual Multi-Object Tracking with
Occlusion Handling

HIS chapter proposes an online multi-camera multi-object tracker that only requires
monocular detector training, independent of the multi-camera configurations, al-
lowing seamless extension/deletion of cameras without retraining effort. The proposed
algorithm has a linear complexity in the total number of detections across the cam-
eras, and hence scales gracefully with the number of cameras. It operates in the 3D
world frame, and provides 3D trajectory estimates of the objects. The key innova-
tion is a high fidelity yet tractable 3D occlusion model, amenable to optimal Bayesian
multi-view multi-object filtering, which seamlessly integrates, into a single Bayesian
recursion, the sub-tasks of track management, state estimation, clutter rejection, and
occlusion/misdetection handling. The proposed algorithm is evaluated on the latest
WILDTRACKS dataset, and demonstrated to work in very crowded scenes on a new

dataset. The content of this chapter has been published in [59].

4.1 Introduction

The interest of visual tracking is to jointly estimate an unknown time-varying number of
object trajectories from a stream of images [209]. The challenges of visual tracking are
the random appearance/disappearance of the objects, false positives/negatives, and data
association uncertainty [194]. Multiple object tracking (MOT) algorithms can operate
online to produce current estimates as data arrives, or in batch which delay the estima-
tion until further data is available [197, 198]. In principle, batch algorithms are more
accurate than online as they allow better data integration into the estimates [193-196].
Online algorithms, however, tend to be faster and hence better suited for time-critical
applications [198-200, 202, 210].

The common sub-tasks, traditionally performed by separate modules in a MOT sys-

tem are track management, state estimation, clutter rejection, and occlusion/misdetection
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handling. Track management involves the initiation, termination and identification of
trajectories of individual objects, while state estimation is concerned with determining
the state vectors of the trajectories. Problems such as track loss, track fragmentation
and identity switching are caused by false negatives that can arise from occlusions when
objects of interest are visually blocked from a sensor, or from misdetections when the
sensor/detector fails to register objects of interest. On the other hand, false positives
can lead to false tracks and identity switching. Hence, occlusion/misdetection handling

and clutter rejection are critical for improving tracking performance.

While occlusion handling is just as challenging compared with the other sub-tasks,
theoretical developments are far and few [175]. This is due mainly to the complex
object-to-object and object-to-background relationships, as well as computational tracta-
bility because, theoretically, all possible partitions of the set of objects need to be con-
sidered [198]. In a single-view setting, useful a priori information about the objects of
interest are exploited to resolve occlusions [193, 194, 202, 371]. However, there are
fundamental limitations on what can be achieved with single-view data. In contrast,
a multi-view setting naturally allows exploiting complementary information from the
data to resolve occlusions since an object occluded in one view may not be occluded in
another [54]. Furthermore, from an information theoretic standpoint, data from diverse
views will reduce the uncertainty on the set of objects of interest, thereby improving
overall tracking performance. Given the proliferation of cameras in today’s world, it
is imperative to develop effective means for making the best of the information-rich
multi-view data sources, not only for occlusion handling, but ultimately to achieve bet-

ter visual tracking.

The perennial challenge in multi-view visual MOT is the high-dimensional data as-
sociation problem between the detections and objects, across different views/cameras
[174, 175]. Two common architectures for multi-view MOT are shown in Fig. 4.1. So
far the best solutions are batch algorithms with the architecture in Fig. 4.1 (a). These
solutions are based on: generative modeling and dynamic programming [174]; convo-
lutional neural network (CNN) multi-camera detection (MCD), trained on multi-view
datasets [55], followed by track management [57]; and MCD via multi-view CNN train-
ing combined with Conditional Random Fields (CRF) models to exploit multi-camera
geometry (followed by track management) [56]. These MCD based MOT solutions,
which produce trajectories on the ground plane, have been shown to outperform previ-
ous works [55], and demonstrated remarkable performance in crowded scenarios [56].
Note that such data-centric MCDs require retraining when the multi-camera system is
extended/reconfigured, and that training/learning is expensive as the input space is very
high-dimensional due to the large number of possible combinations across the cameras
[58].

In practice, it is desirable to have an online multi-view MOT system whose com-

plexity scale linearly with the number of cameras, and do not require multi-view train-
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ing so that reconfiguration (including addition and deletion) of cameras can be per-
formed without interruption to the operation. Moreover, in a multi-view context, it is
more prudent to have trajectories in the 3D world frame for applications such as sports
analytics, age care, school environment monitoring, etc. While there are solutions to
online 3D multi-view MOT with monocular data such as [372, 373], they do not scale
gracefully with the number of cameras. Similar to the mentioned batch-processing
methods, these solutions are more data-centric as they rely, respectively, on deep train-
ing for object depth information, and motion learning.

At the other end of the spectrum are the model-centric approaches that rely largely
on physical models of the dynamics of the objects, the geometry and characteristics of
the sensors/cameras. Such model-based solutions to 3D online MOT with monocular
data, using 2D object detections, 3D object proposals, and 3D point cloud techniques
were developed, respectively, in [5, 216, 222]. From a state-space modeling perspective,
a natural choice for online MOT is the multi-object Bayes filter [267]. Since the incep-
tion of the Random Finite Sets (RFS) framework for multi-object state-space models, a
number of multi-objects Bayesian filters have been developed [122, 237] and applied to
visual MOT problems [198, 210, 374].

In addition to algorithms, datasets for performance evaluation are also an impor-
tant aspect of 3D multi-view MOT research. Existing multi-view datasets include
DukeMTMC [375], PETS 2009 S2.L.1 [376], EPFL - Laboratory, Terrace and Passage-
way [174], SALSA [377], Campus [197] and EPFL-RLC [55]. However, in [57] the
authors discussed a number of their shortcomings and introduced a seven-camera high-
definition (HD) unscripted pedestrian dataset known as WILDTRACKS to provide a
high quality, highly crowded and cluttered evaluation scenario. It comes with accurate
joint (extrinsic and intrinsic) calibration, and 7 series of 400 annotated frames for de-
tection at a rate of 2 frames per second (fps). The annotations of the tracks are given
both as locations on the ground plane and 2D bounding boxes projected onto each view.

While WILDTRACKS is more extensive than earlier datasets, it is still not suffi-
cient for comprehensive 3D MOT performance evaluation. Specifically, for actual 3D
MOT applications where objects may also move vertically (e.g., sport analytics, age
care, etc.), ground plane annotations are simply not adequate for evaluating tracking
performance in full 3D, i.e., changes in all 3 x, y, z-coordinates. To this end, the Curtin
Multi-Camera (CMC) dataset is proposed to enrich the datasets and to enable perfor-
mance evaluation in full 3D. This new dataset comprises four calibrated cameras, on
scenarios of varying difficulties in crowd density and occlusion, as well as scenarios
with people jumping and falling, all with 3D centroid-with-extent annotations, along
with camera locations and parameters. Note that in addition to extrinsic and intrin-
sic parameters, we also provide the absolute camera locations needed for testing and
evaluation of model-centric solutions that exploit multi-camera geometry.
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(a) b)

Figure 4.1: Multi-view Architectures: (a) Multi-view Detection + Single-sensor Multi-
object Tracking; (b) Monocular Detection + Multi-sensor Multi-object Tracking.

This chapter proposes a model-centric, online multi-view visual MOT solution that
only requires one-off monocular detector training (or off-the-shelf monocular detec-
tors), independent of the multi-camera configurations, via the architecture of Fig. 4.1
(b). Hence, no retraining of the detectors is needed when the multi-camera system is
extended/reconfigured. More importantly, our algorithm has a linear complexity in the
total number of detections, thereby scales gracefully with the number of cameras. The
algorithm intrinsically operates in the 3D world frame by exploiting multi-camera ge-
ometry, allowing it to track people jumping and falling, suitable for applications such as
sports analytics, age care, school environment monitoring, etc. The proposed method is
validated on the latest WILDTRACKS dataset on ground plane and show comparable
results with Deep-Occlusion+KSP+ptrack [57]. To evaluate tracking performance in
the 3D world frame, the new CMC dataset is used, which has varying degrees of diffi-
culties on scenarios with very closely spaced people, with addition/deletion of cameras
during operation, and with people jumping and falling.

The key innovation is a high fidelity yet tractable 3D occlusion model, amenable
to Bayesian multi-sensor multi-object filtering [22], which seamlessly integrates, into a
single Bayesian recursion, the sub-tasks of track management, state estimation, clutter
rejection, and occlusion/misdetection handling. In the Bayesian paradigm, the multi-
object filtering density captures all information on the set of trajectories in 3D, encapsu-
lated in the observations, as well as dynamic and observation models. The novel occlu-
sion model, incorporated in the multi-object measurement likelihood function, enables
the MOT Bayesian filter to correctly maintain occluded tracks that would have other-
wise been incorrectly terminated. The schematic in Fig. 4.2 shows the integration of the

novel occlusion model into a near-optimal multi-sensor multi-object Bayes filter known
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Figure 4.2: MV-GLMB-OC filter Processing Chain. Monocular detections from mul-
tiple cameras are fed into the filter, which outputs the filtering density. This output is
fed into: the estimator to generate track estimates; and back into the filter to process
detections at the next time. The Occlusion Model (red) is an add-on that takes the filter
output and compute the detection probabilities for the filter on-the-fly.

as the Multi-Sensor Generalized Labeled Multi-Bernoulli (MS-GLMB) filter [22]. This
configuration enables the proposed algorithm, herein referred to as Multi-View GLMB
with OCclusion modeling (MV-GLMB-OC), to address occlusions, and inherits the nu-
merical efficiency of the MS-GLMB filter. In short, the main technical contributions

are:

* A tractable and realistic detection model that accommodates 3D occlusion by tak-
ing into account the Lines of Sights (LoSs) of all objects in the scene with respect
to the cameras. In contrast, conventional detection models either neglect the LoSs
of the objects or are computationally intractable, leading to poor tracking perfor-
mance in the presence of occlusions. Our new detection model can be regarded

as a generalization of tractable conventional detection models;

* The first Bayesian multi-view MOT filter for such detection model, which re-
solves occlusion online and is scalable with the number of sensors. Experiments

show better performance than the latest multi-camera tracking algorithm;

* A new dataset with full 3D annotations (not restricted to the ground plane), in
terms of position and extent in all 3 X, y, z-coordinates, including sequences
that involve changes in the z-coordinate due to people jumping and falling. In-
stead of reporting performance for the entire scenario duration (as done tradi-
tionally), we also introduce live or online tracking performance evaluation over
time, using the OSPA® metric [51], to characterize the behavior of the algo-
rithm and demonstrate uninterrupted operation when the multi-camera system is

extended/reconfigured.



100

Visual Multi-Object Tracking with Occlusion Handling

4.2 Bayesian Formulation

This section formulates the multi-view MOT problem (Sections 4.2.1-4.2.4), including
the proposed occlusion/detection model (Section 4.2.5), and the new tractable filter with
occlusion handling capability (Section 4.2.6).

4.2.1 Bayes Filter

We first recall the classical Bayesian filter where the state x of the object, in some finite
dimensional state space X, is modeled as a random vector. The dynamic of the state is
described by a Markov chain with transition density f.(x4|x), i.e., the probability den-
sity of a transition to the state x, at the next time given the current state x. Note that for
simplicity we omit the subscript for current time and use the subscript ‘+’ denotes the
next time step. Additionally, the current state x generates an observation z described by
the likelihood function g(z|x), i.e., the probability density of receiving the observation z
given x. All information on the current the state is encapsulated in the filtering density'

p, which can be propagated to the next time as p., via the celebrated Bayes recursion
[232]

pa(re) o g (zelxe) / £ ) p () dx. @.1)

The multi-view MOT Bayes filter used in this work is conceptually identical to the
classical Bayes filter above by replacing: x and x; with the sets X and X.; p and
p+ with the multi-object filtering densities r and m.; f; and g with the multi-object
transition density f, and multi-object observation likelihood g; z; with the observation
set Z,; and the integral with the set integral [122], i.e.,

7o (X)) o g (Z4]X,) / £ (X, X) 7 (X)6X. 4.2)

The sets X (and X ;) containing the object states at the current (and next) time, is called
the current (and next) multi-object state. Each element of the multi-object state X is
an ordered pair x = (x,£), where x € X is a state vector, and € = (g, ¢) is a unique label
consisting of the object’s time of birth ¢, and an index ¢ to distinguish those born at the
same time [19]. The cardinality (number of elements) of X and X, may differ due to
the appearance and disappearance of objects from one frame to the next.

Under the Bayesian paradigm, the multi-object state is modeled as a random finite
set, i.e., a finite-set-valued random variable, characterized by Mahler’s multi-object
density [122, 237] (equivalent to a probability density [268]). The multi-object tran-
sition density f, captures the motions as well as births and deaths of objects. The

multi-object observation likelihood g captures the detections, false alarms, occlusions,

!The filtering densities are conditioned on the observations, which have been omitted for notational
compactness.
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and misdetections.

4.2.2 Motion and Birth/Death Models

An object at time k, represented by a state x = (x,{), either survives with probability
Ps(x) and evolves to state x, = (x4, ;) at the next time with transition density

fS,+(x+|x) = fS,+(x+|X’€)5€[€+], (4.3)

or dies with probability 1 — Pg(x) [19]. At this next time, an object with label ¢ is born
with probability rp 1 (£), and with feature-vector x distributed according to a probability
density fp+(:,¢). Note that the label of an object remains the same over time, and hence
the trajectory of an object is a sequence of consecutive states with a common label [19].

Let By denote the finite set of all possible labels for objects born at time k, then the
label space for all objects up to time & is the disjoint union Ly = Lﬂfzo B;. For simplicity
we omit the time subscript k, and let £ (x) denote the label of an x € XX L. For any
finite X ¢ X XL, we define £L(X) = {L(x):x € X}, and the distinct label indicator
A(X) £ 0x([|-L(X)]]. Atany time, the set X of (states of) objects in the scene must have
distinct labels, i.e., A(X) = 1. Conditional on the current set of objects, it is standard
practice to assume that objects are born or displaced at the next time, independently of
one another. The expression for the multi-object transition density f . is not needed in

this work, interested readers are referred to [19].

4.2.3 Multi-Sensor Observation Model

Suppose that at time k, there are C cameras (sensors), and a set X of current objects.
Each x € X is either: detected by camera ¢ € {1:C}, with probability P(DC) (x; X—{x})
and generates an observation z(¢) in the measurement space Z(©) with likelihood g(°)(z(?)|
x); or missed with probability 1 — Pg) (x; X—{x}). Note that to account for occlusions
(and uncertainty in the detection process), the probability of detecting an object x also
depends on the states of other current objects X —{x }. However, most MOT algorithms
neglect this dependence for computational tractability.

The detection process also generates false positives at camera ¢, usually character-
ized by an intensity function «*) on Z(°). The standard model is a Poisson distribution,
with mean (), 1), for the number of false positives, and the false positives themselves
are i.i.d. according to the probability density «©/(«x(°),1) [237, 251, 253]. Moreover,
conditional on the set X of objects, detections are assumed to be independent from
false positives, and that the set Z'©) of detections and false positives at sensor ¢, are
independent from those at other sensors.

An association hypothesis (at time k) associating labels with detections from camera

¢ is a mapping y\9: L — {-1:|Z(©|}, such that no two distinct arguments are mapped to
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the same positive value [19]. This property ensures each detection comes from at most
one object. Given an association hypothesis y©): y(9)(£) = —1 means object ¢ does not
exist; y(9)(£) = 0 means object ¢ is not detected by camera c¢; y'“)(£) > 0 means object
¢ generates detection z,) at camera c; and the set L)y 2 {£eL:y9¢) >0} are
the live labels of y(©). Under standard assumptions, the (multi-object) likelihood for
camera c is given by the following sum over the space I') of association hypotheses
with domain L and range {—1:|Z)|} [19]:

¢ X
g7« Y 6ol LOONwi O (44)

Y(©)er(©)

) — ¢,(©
where Z(©) = {Z1:|Z<C>|}’ and

oy |17 PB X~ {x ), ¥ L0))=0
w7

)(x) (©) (©
=1 P (e X~ {x))g ] Ix) . R 4.5)
e e YOLE)=j>0

J

Note that wgg;ﬁ(;l)(x) also depends on Z(°), but we omitted it for clarity. Interested
readers are referred to the texts [122, 237] for the derivation/discussion.

A multi-sensor (association) hypothesis is an array y £ (y1, ..., (©)) of association
hypotheses with the same set of live labels, denoted as L(y). The likelihood that X
generates the multi-sensor observation Z £ (Z(3:9)) is the product Hle g NZx),

which can be rewritten as [22]

X
g(ZIX)x ) o)L 0] (4.6)

yel

where I is the set of all multi-sensor hypotheses,

ormlJ] = 1—[ 0 riytenlJ], 4.7
( ) ( ())
VY ey () l—[%f e @) 4.8)

Remark: The sets of objects, observations, and possibly the number of sensors and
their parameters, may vary with time. However, for clarity we suppressed the time

index.

4.2.4 Multi-Sensor GLMB Filter

Most of the literature on tracking assumes the probability of detection Pg) (x; X—{x})=
Pg) (x), i.e., independent of X —{x}. In this case, the Bayes recursion (4.2) admits an
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analytical solution based on Generalized Labeled Multi-Bernoulli (GLMB) models.
A GLMB is a multi-object density of the form [19]
! X
7(X)=AX) Y o 081 L 01|
L

4.9

where: I € 7 (L) the space of all finite subsets of L; ¢ € = the space of all (multi-sensor)
association hypotheses histories up to the current time, i.e., & £ y;.¢; each w’%) is a
non-negative weight such that 3, . ") = 1; and each p'¥)(-,¢) is a probability density

on X. For convenience, we represent a GLMB by its parameter-set
72 {(w,p9) : (1.6) e FLIXE]. (4.10)

Each GLMB component (I,£) can be interpreted as a hypothesis with probability w(!¢),
and each individual object £ € I of this hypothesis has probability density p© (-, £).

A simple multi-object state estimate can be obtained from a GLMB by first deter-
mining: the most probable cardinality n* from the cardinality distribution [19]

Prob(| X| :n)=26n[|l|]w(1’§); A.11)
L¢
and then the hypothesis (1%, £*) with highest weight such that |/*| = n*. The current state
estimate for each object £ € I* can be computed from p¢ (-, €), e.g., the mode or mean.
Alternatively, the entire trajectory of object £ € I* can be estimated using the forward-
backward algorithm, starting from its current filtering density p'¢ )(-,£) and propagating
backward to its time of birth [22, 286].

Under the Bayes recursion (4.2), and the standard multi-object model (i.e., with
no occlusions, Pg) (x; X—{x}) = Pg) (x) hence 1//?_) {x}(x) = )(x)), the multi-object
filtering density at any time is a GLMB [19]. Moreover, if (4.10) is the current GLMB
filtering density, then the next GLMB filtering density

mo={ (@) (g e FLOXES, 4.12)

can be computed via the MS-GLMB recursion Q [22]

. =Q(m; Ppy), (4.13)
where Pp , = (Pg)+, PE)CJ)r) and the mathematical expressions for the MS-GLMB re-
cursion operator Q : 7 +— . are:

L, =B, & =(&y4) 4.14)

]BM (4.15)

W) = 1y oLy |6
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<A§V+)(X+|,,5),p(§)(., 0)), e L(ys)—B4

P (x,., £) o= S (4.16)
A7 (x4, 0), te Lys)NBy
—PO), e Ll -B,
_(f }’+)
5Er(0) = | A7), e £(7+)—IBB+’ @.17)
1-rp.(6), €€ L(ys)NB.
Ag0),  teLiy)nB,
pgf) () =(Ps(-,€), (-, 0)), (4.18)
AYD (0 =g xs, 0 fig o (0, Orp 1 (€), (4.19)
A(Sm(hly, ) :l/’(7+)(x+,f) fs+(xi|y, O)Ps(y, 0), (4.20)
mw)/ﬁmgwu 4.21)
(§7+)( £) = / (AL (x| ), pE(, 0))dx. (4.22)

Note that the recursion operator €2 also depends on the measurement Z, , and model pa-

rameters for birth (rp 4, f.+), death/survwal Pg, motion f g ., false alarms k; = (K(l) e,

(1) 8y © ) (described in Section 4.2.3). However, for our

)) and detection g = (g,
purpose it suffices to show the dependence on detection probabilities.

While the MS-GLMB filter can applied directly to multi-view MOT, a detection
probability (of an object x) that does not depend on other objects, i.e., X —{x}, is un-
able to capture the effect of occlusions. On the other hand, accounting for occlusions
with Pg) (x; X—{x}) that actually depends on X —{x}, results in filtering densities that
are not GLMBs. One example is the merged-measurement model [314], which in-
volves summing over all partitions of the set X, making it intractable [314]. Although
the resulting filtering density can be approximated by a GLMB, this solution is still
computationally demanding and not suitable for large number of objects [314]. In what
follows, we propose a new detection model that addresses occlusions and permits effi-

cient multi-view MOT implementations.

4.2.5 Detection Model with Occlusion

For tracking in 3D, we consider the state x = (x,¢), where:
x = (xP, ) x)); (4.23)

x) is the object’s position (centroid) in 3D Cartesian coordinates; x”) is its velocity;
and x¥) is its shape parameter. The region in R occupied by an object with labeled
state x is denoted by R(x).
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Consider camera ¢ and the set X of current objects. In this work, an object (x,¢) €
X is regarded as occluded from camera ¢ when its position x is not in the line of
sight (LoS) of the camera, i.e., x?) is in the shadow regions of the other objects in X.
Assuming straight LoSs, the shadow region of an object with labeled state x’, relative

to camera c (see Fig. 4.3), is given by

SO(x') = {a eR3: (U9, a) N R(x') # (z)}, (4.24)

where (u©), @) £ {ya + (1 — x)u'® : y €[0,1]} is the line segment joining the position
u'®) of camera ¢ and . Note that for an ellipsoidal region R(x”), the indicator function

1 gz (+) of its shadow region can be computed in closed form (see Section 4.3.1).

Figure 4.3: The shadow region (in yellow) of object with labeled state x’, relative to
camera c.

To incorporate the effect of occlusions into the detection model, the probability
that x € X be detected by camera ¢ should be close to zero when it is occluded from
camera c. This can be accomplished by extending the standard detection probability so
that: when x is in the LoS of camera c, its detection probability is Pg) (x); and when
occluded by the other objects its detection probability scales down to ,uP(DC) (x), where

p is a small positive number. More explicitly,

Px;X—{x})= P(Dc)(x)((V(x;X—{x}) + (1 —V(x;X—{x}))), (4.25)
where
VaX-{x)= [] (1—1S<c>(x,)(x)) (4.26)
x’'eX—{x}

Conditional on detection, x is observed at camera ¢ as a bounding box z(¢) £ (zﬁf), zgc)),
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(c) + (c)

where z,” is the center, and z, ' is the extent, parameterized by the logarithms of the
width (x-axis) and height (y-axis), in image coordinates. The observed z(¢) is a noisy
version of the box Y“)(x) bounding the image of R(x) in the camera’s image plane, un-
der the projection of the camera matrix P( ) . This matrix projects homogeneous points
in the world coordinate frame to homogeneous points in the image plane of camera c,
and can be obtained by standard calibration techniques (see [378] for details). Note
that for an ellipsoidal region R(x), the axis-aligned Y(°)(x) on the image plane can be

computed analytically (see Section 4.3.1). This observation process can be modeled by

the likelihood
02x1 . (C)
. ,dia . 4.27
_Wgw/z] g([ (©) 4.27)

are respectively the vector of noise variances for the center and

g(z91x) = N[5 1 (x) +

(c)

where w D (©)

and w,
the extent (in logarithm) of the box. This Gaussian model of the logarithms of the
width and height is equivalent to modeling the actual width and height as log-normals,
which ensures that they are non-negative. Note that these log-normals have mean 1,

() ()

) © ©
and variances e¢"«! — 1 and e"<2 — 1, where w,, and w_ are the two components of

(C) This means the observed width and helght are randomly scaled versions of their

nominal values, with an expected scaling factor of 1.

4.2.6 Multi-View GLMB Filtering with Occlusions

This subsection presents a tractable GLMB approximation to the multi-view Bayes filter
to address occlusions. The proposed filter (with the new detection model to account for
occlusion) is referred to as Multi-View GLMB with occlusion modeling (MV-GLMB-
0C).

Given the current GLMB filtering density (4.10), the predicted density f fi(X+
|X)mr (X)6X in the Bayes recursion (4.2) is also a GLMB [19], which we denote by

7(X,) = A(X»Zw(”f)éh cox[p]" (4.28)

where I, € ¥(L,). Multiplying (4.28) by the likelihood (4.8) yields the next (unnor-

malized) multi-object density

X,
T(X) & AXL) Y S LW DS, L&A 0 @29
1.6y

where
p(Xiw{)x }(x+) p(f) (X+)¢§Z+3{x+}(x+)~ (4.30)
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(§’7+)
Xi—{x:}
depends on X, —{x,}. Nonetheless, a good GLMB approximation of (4.29) can be ob-
(€7+)
Xi—{x+}

Note that ;l/g:_) ) is the only factor of p(‘c y+{)x X which depends on X, —{x.}
(see (4.30)). Further inspection of (4.5) and (4.8) reveals that the detection probabil-
ity functions P(C) (53X —{x+}), ce{1:C} are the only constituent terms that depend on
X,—{x,}. Moreover, it follows from (4.25) that P(C) L (x+; X1 —{x}) only takes on two

values, depending on whether x falls in the shadow region of X, —{x.} w.r.t. camera

As previously alluded to, the multi-object density (4.29) is not a GLMB because p

tained by approximating p with a density that is independent of X, —{x.}.

c. Assuming the positions of the elements of X, —{x .} are concentrated around their
predicted values accordlng to the prediction densities p(f)( 0), e L(X,—{x:}), we
can approximate P ( X;—{x.}) by replacing the set X, — {x.} with its predicted
value. Noting that the term 07, [£L (X5)] in (4.29) implies L(X) = I, the prediction of
Xi—{x,}is

X (0 0y el - Lx)), 4.31)

where x("c © denotes an estimate (e.g., mean, mode) from the density p(f)( ), which is
either the birth density f3 (-, €) if € € B, or [ fs.(-|x,0)p®) (x,0)dx if € ¢ B, [19].

The above approximation translates to

(&v+) ~ (&y+)
PX _(x.} pX(f 1) (4.32)

which is independent of X, — {x}, thereby turning (4.29) into a GLMB. Moreover, the
computation of this GLMB approximation to (4.29) only differs from the MS-GLMB
recursion (4.13) in the detection probabilities

PO 2 (PR (20X ), P (£,0:X 1), (4.33)

where £ = L(x,), and £, denotes an estimate (e.g., mean, mode) from the density
(f)( {). Specifically, the GLMB approximation of the multi-object filtering density
can be propagated by the MS-GLMB recursion

7r+:Q( {PER ) e I (6, I+)EHXT(L+)}) (4.34)

The integration of the proposed occlusion model (via the detection probabilities) into
the MS-GLMB filter is shown in Fig. 4.2. The implementation of this so-called MV-
GLMB-OC filter is discussed in the next section.

4.3 Implementation

This section describes the implementation of the proposed filter for ellipsoidal objects.

Section 4.3.1 provides mathematical representations for the objects and the multi-object
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model parameters. Propagation of the MV-GLMB-OC filtering density is then de-
scribed in Section 4.3.2.

4.3.1 Object Representation and Model Parameters

Each object is represented by an axis-aligned ellipsoid. For an object with labeled state
x = (x,£), the position x”) is the centroid, and the shape parameter x*) is a vector con-
taining the logarithms of the half-lengths of the ellipsoid’s principal axes. Further, the
time-evolution of the state vector x is modeled by a linear Gaussian transition density:

0
fs,+(x+|x,€>=N(x+;Fx+ _U?j)l/z ,Q), (4.35)
where
1 ¢ |
L® ' 0
F=| > |0 1] o, (4.36)
03x6 I3
¢2
diac(v™Me| = [¢_2 ] 0
0- iag(v'”) s |2 ¢ 63| 437)
03x6 diag(v")

¢ is the sampling period, v and v*) are, respectively, 3D vectors of noise variances
for the components of the centroid and shape parameter (in logarithm) of the ellipsoid.
This transition density describes a nearly constant velocity model for the centroid and
a Gaussian random-walk for the shape parameter. Gaussianity of the logarithms of the
half-lengths is equivalent to modeling the half-lengths as log-normals, which ensure
that they are non-negative. Note that these log-normals have mean 1, and variances
e”ES) —-1,i=1,2,3, where vfs) is the ith components of v®). Hence, the observed half-
lengths are randomly scaled versions of their nominal values, with an expected scaling

factor of 1.

Empirically, objects that are in the scene for a long time, are more likely to remain
in the scene, unless they are close to the borders (exit regions). This can be modeled via
the following object survival probability [198]:

b(x)
1 +exp(—7(k—£[1,0]7))

where b(x) is the the scene mask (chosen to be close to one in the middle of the scene,

PS(-x’f) =

(4.38)

and close to zero in the designated exit regions and beyond) as depicted in Fig. 4.4 (a),

and 7 is the control parameter of the sigmoid function that is dependent on the duration
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Figure 4.4: Illustration of the survival probability model: (a) The scene mask b(x); (b)
The control parameter 7 of the sigmoid function.

(age) of the track k —£[1,0]” as depicted in Fig. 4.4 (b).

The detection probability (4.25)-(4.26) can be computed in closed form when the
objects extents are ellipsoids. As alluded to in Section 4.2.5, the shadow region indica-
tor function 1g)(,+)(-) used for checking whether an object is in the shadow region of
the object x’, can be determined analytically. Suppose that R(x”) in (4.24) is a quadric,
then it intersects the line (u(©), x() (between u'®) and x)) if the roots of a certain
quadratic equation are real [379]. Consequently, for an axis-aligned ellipsoidal object

representation, the shadow region indicator function is given by

1, (B(C)’)2_4ﬂ(c)/c(€) >0
13(c)(x/)(x) = o ] e P (439)
0, otherwise

where
N2
&z{ic’x, :(X(P) _M(C))T (diag(x(s) )) (x(p) —u(c)), (4.40)
-2
B = =) [2 (diag(x“) )) W + 1y |, (4.41)
, \—2
CY) =(u')" (diag(X‘” )) W+ hy | + 8w, (4.42)
X W |
et == 2 B = Hx 2| -1, (4.43)

and u'® is the position of camera ¢, with multiplication/division of two vectors of the
same dimension to be understood as point-wise multiplication/division. The derivation

of the shadow region indicator function is given in Appendix A.

In addition, using quadric projection [380, pp. 201], the relationship between the

estimated bounding box Y()(x) and measured bounding box z'©) captured in the mea-
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Figure 4.5: The projections P of two quadrics (in cyan and pink) onto two image
views (¢ = 1,3) result in 2D conics. The transformation Z yields the corresponding
estimated bounding boxes (in cyan and pink). The estimated bounding box and the
measured bounding box (in red) from monocular detector formulate the measurement
likelihood (4.27).

surement likelihood (4.27), has the following closed form

T(x) £ Z(P(x)), (4.44)
where

-1 -1

- ONE
¢ 50 (diag(x'¥))™: 7y /2 (0)
PO e | ) )
; -QD™'Q"r
A e -0.5
Z rT*): 2v||[1,01QD™%|, |, (4.46)
f 2v||[0,1]1@D%3|,
v=("QD™'Q"r - ¢)°?, (4.47)

Q is a matrix containing the eigenvectors of A, and D is a diagonal matrix of the eigen-

: : )] ©)
values of A. Given the camera matrices | SRPTR S

jection that transforms the quadric into a conic on each image of camera ¢ [380, pp.

50(6)(.) is a matrix-to-matrix pro-

201]. Z(-) is a matrix-to-vector transformation that transforms the conic into a 4D
bounding box (in the same format as 7(9). The illustration of the overall transformation

(4.44) is depicted in Fig. 4.5, and the derivation is given in Appendix B.

The Poisson false alarms intensity for camera ¢ is ¢ £ A,U(-), where 4, is the
false-positive (clutter) rate, and U(+) is a uniform distribution on the measurement space
7, In many visual tracking cases, this value can either be estimated offline or manu-
ally tuned. The false alarm intensity can be estimated by the Cardinalized Probability
Hypothesis Density (CPHD) clutter estimator [381]. In this work, we bootstrap the
CPHD clutter intensity estimator output to the tracker [359].
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4.3.2 MV-GLMB-OC Filter Implementation

The number of components of the GLMB filtering density grows super-exponentially
over time. To maintain tractability in GLMB filter implementations, truncating in-
significant components has been proven to minimize the L; approximation error [22].
This truncation strategy can be formulated as an NP-hard multi-dimensional assignment
problem [22]. Nonetheless, it can be solved by exploiting certain structural properties,
and suitable adaptation of 2D assignment solutions such as Murty’s or Auction [22].

The MV-GLMB-OC recursion described in Section 4.2.6, can be directly imple-
mented with separate prediction and update, i.e., by computing a truncated version
of the prediction (4.28) and the corresponding detection probabilities {Pg’f)(f) e
I.,(&1,)e EXF (L)}, then using these to compute a truncated version of the update
(4.34). This strategy requires keeping a significant portion of the predicted components
that would end up as updated components with negligible weights, thereby wasting
computations in solving a large number of 2D assignment problems. Thus, this ap-
proach is inefficient and becomes infeasible for systems with many sensors [22].

In this work, we exploit an efficient GLMB truncation strategy that has a linear
complexity in the sum of the measurements across all sensors [22]. This approach by-
passes the prediction truncation, and returns the significant components of the next
GLMB filtering density (4.34) by sampling from a discrete probability distribution
proportional to the weights of the components [22]. This means GLMB components
with higher weights are more likely to be selected than those with lower weights. For
the MV-GLMB-OC recursion, this discrete probability distribution ¥(-; Pp ) of the
GLMB components, is determined by the detection probabilities Pp 4 = {Pg’f)(f) e
L, (&, 1) eEXF (L)} (and other multi-object system parameters, which are suppressed
for clarity) [22]. However, since truncation of the prediction (4.28) has been bypassed,
the predicted components {(&,1;)€EXF (L, )} and their corresponding detection prob-
abilities are not available. Nonetheless, importance sampling can be used to generate
weighted samples of J(:; Pp +) by sampling from 9(:; ﬁD,+), where I§D,+ £ {Pg”iWB*) (€):
tel¥wB,, (& 1)eEXF (L)}, and then re-weight the resulting samples accordingly [232].
Note that the detection probabilities P\D,Jr can be readily computed from the components
of the (truncated) current GLMB filtering density {(w"¥), p©)):(1,&) e F(L)xZ}. More-
over, Pg’iw&) < Pg,’f), for any I, C1wB,, it follows from [21] that ﬂ(-;ﬁDﬂL) is more
diffused than 9(-; Pp_+), i.e., the support of 9(-; I?D,Jr) contains the support of J(-; Pp ).

The MS-GLMB and MV-GLMB-OC recursions are presented in Algorithm 4.1 and
4.2 respectively. Observe that the main difference is the additional computation of the
detection probabilities prior to and re-weighting after the Gibbs sampling step in the
MV-GLMB-OC filter.

In this work, the object’s birth density fp(-,£), single-object transition (4.35) and
likelihood (4.27) are all Gaussians. Standard Kalman prediction and Unscented Kalman

update are used to evaluate the single-object filtering density p(f*), which results in a
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Gaussian.

Algorithm 4.1 MS-GLMB Filter [22]

Global Input: {(r.+(0). f5.+(+0)} s+ F 5.+ (). Ps()
Global Input: «, Pp, g

Input: & = {(w(l,sf)’p(-f)) (L&) e T(L)XE}
Output: m, = {(wg+,§+)’p<+§+)) (L&) € T(L+)x5+}

for (1,§) e F(L)XE
Construct stationary distribution from inputs
Run Gibbs sampler to obtain samples vy, [22, Algorithm 3]
Use samples v, to compute 7,

end for

Extract labeled state estimates

Algorithm 4.2 MV-GLMB-OC Filter

Global Input: {(r3,+(é’),fB,+(-,5))}[6B+,fs,+(-|-),PS(-)
Global Input: «, Pp, g

Input: 7 2 { (w9, p©)) : (1.6) € F(L)xE|
Output: x, = {(wf*’f*),pif*)) (164 € T(L+)XE+}

for (1,§) e F(L)XE

Compute occlusion-based probability of detection
(P75 (0) e TWB.} via (4.33)

Construct stationary distribution from inputs and
(P17 (0) e 1wB,)

Run Gibbs sampler to obtain samples vy, [22, Algorithm 3]

Update occlusion-based probability of detection
(P EO(0): e L(y.)}, via (4.33)

Use samples 7y, {P(Déi’f(y*))(f) :{ € L(ys)} to compute 7,

end for

Extract labeled state estimates

4.4 Experiments

This section demonstrates the three main advantages of the proposed MV-GLMB-OC
approach. The first is the capability to produce 3D object trajectories using independent
monocular detections from multiple views, where each object is represented as a 3D el-

lipsoid of unknown location and extent (Section 4.4.2). The second is the amenability
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for uninterrupted/seamless operation in the event that cameras are added, removed or
repositioned on the fly (Section 4.4.3). The third is the flexibility of not confining ob-
jects to the ground plane, which is demonstrated by tracking people jumping and falling
(Section 4.4.4). The effectiveness of the proposed occlusion model is also studied, by
comparing the tracking performance of the MV-GLMB-OC against that of the standard
MS-GLMB filter.

We first focus our demonstrations on the latest WILDTRACKS dataset?, which in-
volves seven-cameras at 1920x1080 resolution with overlapping views. The WILD-
TRACKS dataset is also supplied with calibrated intrinsic and extrinsic camera parame-
ters, along with 3D ground plane annotations although these are restricted to the ground
plane. WILDTRACKS was initially introduced to address various perceived shortcom-
ings in older multi-view datasets, the arguments for which were originally presented
in [57] and are summarized as follows. The DukeMTMC dataset [375] is essentially
non-overlapping in views and is now no longer available. The PETS 2009 S2.L1 dataset
[376] has supposed inconsistencies when projecting 3D points across the views. The
EPFL, SALSA and Campus datasets [174, 197, 377] involve a relatively small number
of people, and are relatively sparse in terms of person density, but do not provide 3D an-
notations. In addition, the EPFL-RLC dataset [55] only provides annotations for a small
subset of the last 300 of 8000 frames. For the same reasons that the authors of WILD-
TRACKS were motivated to introduce their new dataset, the older multi-view datasets
superseded by WILDTRACKS are not suitable for evaluating the MV-GLMB-OC filter
in the 3D world frame.

In the context of demonstrating the MV-GLMB-OC approach however, the WILD-
TRACKS dataset is not suitable for evaluating tracking performance in full 3D, i.e.,
changes in all 3 x, y, z-coordinates. While WILDTRACKS provides 3D annotations,
these are restricted to the ground plane. Moreover the annotations are for centroids
only, and do not capture the extent (in terms of length, width and height) of objects in
the world coordinates. In our performance comparisons, the outputs of the proposed
MV-GLMB-OC filter on WILDTRACKS are limited to the estimated centroids pro-
jected onto the ground plane. To demonstrate the full capabilities of MV-GLMB-OC,
it is critical to have annotations of the 3D centroids and their 3D extent, along with
the ground truths for each of the camera locations. Consequently we introduce a new
Curtin Multi-Camera (CMC) dataset which meets these requirements.

The new CMC dataset is a four-camera 1920x1024 resolution dataset recorded at
4fps in a room with dimensions 7.67m x 3.41m x 2.7m. The CMC dataset has 5 dif-
ferent sequences with varying levels of person density and occlusion: CMCI1 has a
maximum of 3 people and virtually no occlusion; CMC2 has a maximum of 10 people
with some occlusion; CMC3 has a maximum of 15 people with significant occlusion;

while CMC4 and CMCS5 involve people jumping and falling with a maximum of 3 and 7

Zhttps://www.epfl.ch/labs/cvlab/data/data-wildtrack/
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people respectively. CMC1 and CMC4 have low person density and are intended for ba-
sic testing, while CMC2, CMC3 and CMCS5 have higher person density and significant
visual occlusions across multiple overlapping cameras, and are intended to highlight
performance differences. The convention for the world coordinate frame is illustrated
in Fig. 4.6. The origin is at the lower corner and the ground plane corresponds to
the x-y plane i.e., z = 0. In every sequence, each person enters the tracking area at
(2.03m,0.71m) with an average height of 1.7m. The dataset is also supplied with cam-
era locations and parameters, along with annotations for 3D centroid and extent. The
2D monocular annotation for bounding boxes is carried out with the MATLAB Image
Labeler Tool, and the world coordinates are obtained by averaging the homographic
projection of the feet coordinates from each view. The actual height and width of each
person is used for the annotation.

Figure 4.6: Layout for CMC dataset: The blue line denotes the boundary of the tracking
area. The yellow boxes denote the coordinates of the boundary in (X,y,z) axes. The 4
cameras are positioned (in sequence) at the top 4 corners of the room.

A common setting for object survival and detection model parameters is used in
both evaluations on the WILDTRACKS and CMC datasets. Specifically: the survival
probability Pg(x) given by (4.38), is parameterized by the control parameter 7 = (0.5
and the scene mask b(-) with a margin of 0.3m inside the border of the tracking area;
the detection probability, given in Section 4.2.5 is parameterized by Pg)(x) =0.9 and
u = 0.1. For all cameras, the observed bounding box model is described in (4.27), with

(c) _

position noise parameterized by w),” = [400, 400]”, and the extent noise parameterized

by w' = [0.01,0.0025]7 (on the logarithms of the half-lengths of the principal axes).

4.4.1 Performance Evaluation Criteria

Standard Evaluation on 3D Position Estimates

The performance of various combinations of detectors and trackers are evaluated using
the CLEAR MOT devkit provided in [382]. For computing CLEAR MOT, we adhere to
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the convention of using the Euclidean distance (L,-norm) on the estimated 3D centroid
with a threshold of 1m.

For MOT, the following performance indicators are reported: Multiple Object Track-
ing Accuracy (MOTA) which penalizes normalized false negatives (FNs), false posi-
tives (FPs) and identity switches (IDs) between consecutive frames; Multiple Object
Tracking Precision (MOTP) which accounts for the overall dissimilarity between all
true positives and the corresponding ground truth objects [383]; Mostly Tracked (MT),
Partially Tracked (PT), Mostly Lost (MT) which indicate how much of the trajectory
is retained or lost by the tracker; Fragmentations (FM) which account for interrupted
tracks based on ground truth trajectories; Identity Precision (IDP), Identity Recall (IDR)
and F; score (IDF1) which are analogous to the standard precision, standard recall and
F score with identifications (tracks) [375]. For reference, we also provide performance
indicators on the bounding box detections, where we set the threshold at 0.5 and report:
Multiple Object Detection Accuracy (MODA) which accounts for misdetections and
false alarms; Multiple Object Detection Precision (MODP) which accounts for the spa-
tial overlap information between the bounding boxes; precision which is the measure
of exactness; and recall which is the measure of quality.

We note that CLEAR MOT is traditionally calculated over the entire scenario win-
dow, and thus the tracking performance is reported after the entire data stream has been
processed. To evaluate the live or online tracking performance over time, we employ
the Optimal Sub-Pattern Assignment (OSPA®) distance between two sets of tracks
[51]. This distance is based on the OSPA metric that captures both localization and
cardinality errors between two finite sets of a metric space with a suitable base-distance
between objects (e.g., the Euclidean distance) [50]. The OSPA® metric is defined as
the OSPA distance between two sets of tracks over a time window. Details for OSPA
and OSPA® metrics are given in Appendix C. By design, OSPA® captures both local-
ization and cardinality errors between the set of true and estimated tracks, and penalizes
switched tracks or label changes [51]. The resultant metric carries the interpretation of
a time-averaged per-track error. In our evaluation of the position estimate in real world
coordinates, we use a 3D Euclidean base-distance for OSPA® with order parameter 1
and cutoff parameter Im. Performance evaluation for live or online tracking is given by
plotting the error over a sliding window of length L,, = 10 frames, while overall perfor-
mance is captured in a single number by calculating the error over the entire scenario

window.

GIoU Based Evaluation on 3D Position with Extent

As the proposed MV-GLMB-OC filter outputs 3D estimates of the object centroid and
extent, we extend the performance evaluations to capture the joint error in the centroid
and extent. This is achieved by employing an alternative base-distance between two

objects, in this case a 3D generalized intersection over union (GIoU), which extends
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the commonly used IoU to non-overlapping bounding boxes [384]. The details for the
IoU and GloU metrics are given in Appendix D. It is important to note that if there
is no overlap between the ground truth and estimated shape, the IoU distance is zero
regardless of their separation, whereas the GloU distance captures the extent of the
error while retaining the metric property [384]. We present evaluations of the estimated
centroid with extent for CLEAR MOT (using a GIoU base-distance with a threshold
of 0.5) and OSPA® metric with GIoU base-distance (and with unit order and cut-off
parameters). We refer the reader to [385] for the rationale and discussions on the use of
OSPA®@-GIoU for performance evaluation.

4.4.2 WILDTRACKS Dataset

We test MV-GLMB-OC against the latest multi-camera detector (Deep-Occlusion) [56]
coupled with the k-shortest-path (KSP) algorithm [196] and ptrack as shown in [57]
(Deep-Occlusion+KSP+ptrack). KSP is an optimization algorithm that finds the most
likely sequence of ground plane occupancies (trajectories) given by the multi-camera
detector, and ptrack described in [386] improves and smooths over tracks by learn-
ing motion patterns. As a baseline comparison, we employ the Deep-Occlusion multi-
camera detector combined with single-view GLMB (Deep-Occlusion+GLMB). Since
WILDTRACKS provides annotations in real-world coordinates but restricted to the
ground plane, tracking is performed in real-world coordinates but also restricted to the
ground plane. To further explore the performance of MV-GLMB-OC, we also run ex-
periments using monocular detections from each of the cameras. For the detectors, we
use the monocular backbone of the Deep-Occlusion detector i.e., VGG16-net trained
using Faster-RCNN [160], and separately with the newer YOLOv3 [169], to produce
separate monocular detections for input to MV-GLMB-OC. Since WILDTRACKS does
not supply the camera positions required for our proposed occlusion model, we recon-
struct the camera positions from the given camera parameters. We note that KSP and/or
ptrack is an offline or batch method, while GLMB is online or recursive, and provides

estimates on the fly.

Model Parameters

The birth density is adaptive/measurement-driven (see Section F in [387]) with rp +(€) =
0.001 and fp+(x,0) =N (x;mg{r,o.lzlg) where mglr is obtained via clustering (e.g., k-
means). The single-object transition is as described in (4.35) with position noise and

extent (in logarithm) noise parameterized by:

v =10.0016,0.0016,0.0016]7,
v =[0.0036,0.0036,0.0004]" .
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Discussion

Table 4.1 shows the CLEAR MOT and OSPA® benchmarks for MV-GLMB-OC (with
occlusion modeling) and MS-GLMB (without occlusion modeling) with two different
detectors YOLOV3 and Faster-RCNN(VGG16). Results for Deep-Occlusion+KSP+ptr-
ack being the reference, are reproduced directly from the original paper [57]. The
results indicate that the two trackers based on multi-camera detections, i.e., Deep-
Occlusion+KSP+ptrack and Deep-Occlusion+GLMB, have very similar tracking per-
formance in terms of MOTA/MOTP and OSPA®. Importantly, closer examination of
the tracking results based on multiple monocular detections indicates that performance
is significantly improved with the addition of the occlusion model. This can be seen
from the relative changes in the MOTA/MOTP and OSPA®. Several observations can
also be drawn from comparing the multi-camera detector with batch processing method
(Deep-Occlusion+ KSP+ptrack), and the related monocular detector with online pro-
cessing (Faster-RCNN(VGG16)+MV-GLMB-0OC). While the MOTP improves due to
the use of multiple monocular detectors, the MOTA degrades due to the use of an on-
line method which is unable to correct past estimates. This is corroborated by the
overall OSPA® value which improves slightly from Deep-Occlusion+KSP+ptrack to
Faster-RCNN(VGG16)+MV-GLMB-OC. Surprisingly, the results based on YOLOvV3
are better across the board than that for Faster-RCNN(VGG16), even though YOLO v3
is more efficient than Faster-RCNN(VGG16). For reference, the CLEAR evaluations
for the detectors used in the experiment are presented in Appendix E, from which it is
noted that the monocular detections are generally much poorer than the multi-camera

detections due to severe occlusions.



Visual Multi-Object Tracking with Occlusion Handling

118

‘(]2pout Uo1SN]I20 INOYIIM AOSUDS-TIINUL) GINTO-SIA PUD (12pout U01SNjI20 YiM Ma1A-1pnut) DO-FIWTO-AW ‘(L10suas-a13uis)
GINTO 40 Yo043d+JSY - PALoPISUOD 24D SA4IDA] Jo SadL) 2241 ] “(4DINO0UOUL) CAQTOX PUD (4DNnd0ouout) (QTODAINNIY-L2ISD (ADnoounul) uoisnird0Q-daa(J- paiapisuod
24D $1012213P JUAL[IP 224Y [ *(42}32q S1 42MO] SUDIUL T 2]IYM 12112q S1 L2YS1Y SUDIUL | ) S210ULISD UONISOd PADPUDIS UO PIIDINIIDI 4D 2IUDISIP (7)VASO Pu $21055 JOW JVATO

weL0 %e09 | BWTTIL | S6 €01 | 0€8S | LOOC | ST | vL | TL | BI'EL | BV V8 | %Y 8L yoend+dSy+uoisn(dQ-deoq
weLo B1E9 | BIOL ¥9 LOT | 066 | 096 | 6€ | 98 | 091 | %BTTL | BLT8 | BSTL GIN'TO+uoIsndQ-doa

wgg'0 %8S9 | BST9 | 911 6L1 | OILT | V11T | T8 |¥O1 | 86 | %EVL | B89L | %S SL FINTO-SIN+H(O TDDAINNDY-1AISE]
weLo %6 1L | HES9 18 YOl | 1291 | S¥S | Ly |SI1| 611 | %0°0L | %S¥8 | %S 9L | DO-HINTO-AIN+HOTDDAINNIY-1ISE

wig) || %89 | %619 | SOI | 6€1 | 1S61 | 1¥8 | €8 | S8 | 911 | %669 | %BO6L | BTYL GINID-SIN+EAOQTOA
w690 || %BTEL | BL69 | 98 | ¥OI | €€€1 | ¥Tb | LE | 111 | 9ET | %6'SL | %0°S8 | %HEVL D0-GIN'ID-AIN+EAOTOX
T@VdSO ||| JIOW|| VIO | TINA | Tsal | TNA | Tdd |TTN|TId|L IN| L¥al | ldadr || 1dd1 ID[OBI], PUE 10309307

(ouerd punoi3 oy 03 PaIdLISAI) sAJeWNSH UONISOJ (€ 10J SYTRWYOUIG oURULIONd SDVILATIM :1'H 9[qeL



4.4 Experiments

119

4.4.3 Curtin Multi-Camera Dataset 1, 2 and 3

This subsection focuses on scenarios with people walking in order of increasing diffi-
culty, i.e., CMCI1-CMC3. Similar to the WILDTRACKS evaluation, we evaluate our
method based on 2 monocular detectors, namely Faster-RCNN(VGG16) and YOLOV3.
For each sequence, the effect of the occlusion model is studied by comparing the pro-
posed MV-GLMB-OC with the standard MS-GLMB filter.

Model Parameters

Unlike WILDTRACKS where objects enter the scene from anywhere at the boundary,
in CMC we know the location of objects entering the scene. Hence, we specify the birth
parameters as 7. (€) = 0.001 and fz(x,£) = N(x;mp,0.1°Iy) where

mp.. =[2.0300.7100.8250 —1.2 —1.2 —0.18]".

We use the single-object transition density (4.35) with position noise and extent (in
logarithm) noise parameterized by:

v =10.0012,0.0012,0.0012]7,
v =10.0036,0.0036,0.0004]" .

Effectiveness of Occlusion Model

Table 4.2 shows the CLEAR MOT and OSPA® benchmarks with a Euclidean base-
distance, for the estimated 3D centroids only. Table 4.3 shows the CLEAR MOT and
OSPA® benchmarks with a 3D GIoU base-distance, for the estimated 3D centroids
and extent. Both tables compare the tracking performance with and without and oc-
clusion model, i.e., MV-GLMB-OC and MS-GLMB respectively. The asterisked entry
denotes the multi-camera reconfiguration case which is discussed later on. All results
are presented for two different detectors YOLOvV3 and Faster-RCNN(VGG16).

We focus our initial examination on the non-asterisked entries in Tables 4.2 and 4.3.
This corresponds to the case where all cameras are operational. For the sparse scenario
CMCI1, both MV-GLMB-OC and MS-GLMB on either detectors achieved a close to
perfect CLEAR MOT scores in MOTA and MOTP. Some of the flagged FPs are caused
by track initiation/termination mismatches with the ground truths (annotations). The
OSPA®@ values are relatively low due to the sparsity of the scenario.

For the medium scenario CMC2, Fig. 4.7 shows a screenshot of the detections and
the MV-GLMB-OC estimates. In this case, MV-GLMB-OC on both detectors managed
to maintain consistent tracks and accurate estimates overall. The CLEAR MOT bench-
marks for CMC2 show high MOTA and MOTP but with some FNs and FPs. We observe
an improvement in performance for MV-GLMB-OC over MS-GLMB, and on both de-
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tectors due to the inclusion of occlusion modeling. The improvement in performance
due to occlusion modeling is also reflected in the OSPA®.

For the dense scenario CMC3, MV-GLMB-OC on both detectors managed to achieve
acceptable MOTA/MOTP scores, but is penalized with high FPs, FNs, IDs and FMs.
This outcome occurs even with the proposed occlusion model, as the algorithm fails
when a person is totally occluded in all views. An example of this occurrence is illus-
trated in Fig. 4.8, where the red bounding boxes denote detections, while the yellow
bounding boxes indicate people who are undetected in all views. Such an event could
cause track termination/switching and is reflected in the performance evaluation. It is
evident from Tables 4.2 and 4.3 that the tracking performance improves considerably
with the occlusion model. Examination of the OSPA® error leads to a similar conclu-
sion.

Overall, YOLOvV3+MV-GLMB-OC performs slightly better than Faster-RCNN (V-
GG16)+MV-GLMB-OC due to better detections. The tracking performance of the pro-
posed MV-GLMB-OC filter generally degrades as the number of people in the scene
increases, since the visual occlusions become more frequent and more difficult to re-
solve. The results of this study on the proposed occlusion model suggest that without
proper modeling of the probability of detection, the algorithm fails to maintain tracks,
resulting in poorer tracking results. The CLEAR evaluation for the monocular detectors

used are given in Appendix E.
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(a)

(b)

Figure 4.7: CMC2 Camera 1 to 4 (top left to bottom right): (a) YOLOv3 detections and
(b) MV-GLMB-OC estimates.
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Figure 4.8: CMC3 Camera 1 to 4 (top left to bottom right): YOLOvV3 detections (red
bounding boxes) and people that are occluded in all four cameras (yellow bounding
boxes).
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Multi-Camera Reconfiguration

The MV-GLMB-OC approach requires only a one-off training on each monocular de-
tector, and hence can operate without retraining and without interruption, in the event
that cameras are added, removed or repositioned on the fly. To demonstrate this capabil-
ity, we design a multi-camera reconfiguration experiment. At the start of the sequence,
all four cameras are operational. Later, one camera is taken offline to mimic a camera
failure. Subsequently, two cameras are taken offline to mimic a more severe camera
failure. After this, the two previously offline cameras are made operational, while the
previously operational cameras are taken offline, which mimics the event that the two
operational cameras are moved to different locations. We benchmark the multi-camera
reconfiguration experiment against the ideal case when all cameras are operational.

Results for the experiments on multi-camera reconfiguration are denoted with an
asterisk in Tables 4.2 and 4.3. The reported CLEAR MOT scores and OSPA® errors
show similar trends in respect of inclusion of the occlusion model, increasing scenario
density, and relative performance on the two detectors. The tracking performance in the
multi-camera reconfiguration case is generally worse than the case when all cameras
are active. This relative observation is in line with expectations, as there is less sensor
data to resolve occlusions and perform estimation.

To facilitate an examination of the relative performance in further detail, Fig. 4.9
plots the OSPA® error with 3D GloU base-distance over a sliding window with time.
As a reference point for the performance comparison, the YOLOv3+MV-GLMB-OC
with all cameras operational case is also shown. The spikes in the error curve at the
beginning and the end of the scenario are due to mismatches in track initiation and
termination with the ground truths. For CMC1, we observe that the error curves are rel-
atively close to the reference case. This would be expected for a sparse scenario as there
are virtually no occlusions even when some cameras are offline. For CMC2 and CMC3,
the error curves for both YOLOv3+MV-GLMB-OC* and Faster-RCNN(VGG16)+M V-
GLMB-OC* begin to deviate midway into sequence from the all cameras operational
reference. The errors become more pronounced entering the 2-camera only segment,
as the more crowded scenarios exacerbate the effect of occlusions and misdetections.
Nonetheless, the results show that the MV-GLMB-OC filter is able to accommodate

on-the-fly changes to the camera configurations.
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4.4.4 Curtin Multi-Camera Dataset 4 and 5

Here we present the first multi-camera dataset with people jumping and falling, which is
more challenging for MOT than scenarios with only normal walking. We demonstrate
the versatility of the proposed MOT framework by using a Jump Markov System (JMS),

to cater for potential switching between upright and fallen modes [320].

Model Parameters

Each state is augmented x with a discrete mode or class 0€{0,1}, where 0=0 cor-
responds to a standing state and o=1 corresponds to a fallen state. We consider the
single-object state as (x, 0), with single-object density p©)(x, 0) = p©)(x|0)n©)(0). The

following single-object transition density and observation likelihood are used

Fs(xe041x,0)= £ (xal v, €,0)6e €4 In(04]o)

()
0 w
(2Cx01) Jdiag || o l]]-
—We’ / 2 We'

The mode transition probabilities are 7,(0]0) = 0.6, n.(1]0) = 0.4, n,(0]1) = 0.6 and
n+(1]1) =0.4.

For a standing object, i.e., 0=0, we have w'“® =w'?=[0.01,0.0025]" in the above
observation likelihood. Further, standing objects typically have a bounding box size

29 9x,0) o< g U IN |2 1O (x) +

ratio (y-axis/x-axis) greater than one, thus the mode dependent likelihood component

(©) (@017 1.01)-1)

is chosen as ggc)(ze 0) = ¢’ for all cameras, where p = 2 is a control

0)

parameter. The transition density to another standing state fS( +(x4+|x,£,0), is the same

as per the previous subsection.
For a fallen object, i.e., 0=1, we have wgc’l) =[0.0025,0.01]7 in the above observa-

tion likelihood, and the mode dependent likelihood component is chosen as ggc)(zgc)l 1)=

—p(([O,l]zéc)/[l,o]zg"))—l) . . .
e for all cameras because fallen objects typically have a bounding box

size ratio (y-axis/x-axis) less than one. The transition density to another fallen state
]CS(}Jr)()c+ |x,€, 1) is the same as that for standing-to-standing except for the large variance
v®) =10.15,0.15,0.04]" to capture all possible orientations during the fall.

For a state transition involving a mode switch i.e., standing-to-fallen or fallen-to-
standing, the transition density f, Jfl)(x+|x, £,0) or f JEO)(erlx, {,1) takes the form (4.35),

with position noise and extent (in logarithm) noise parameterized by:

v =[0.0049,0.0049,0.0049]",
v =[0.01,0.01,0.01]".

Notice that the position noise is increased in the case of a mode switch compared to

the case of no switching, in order to capture the abrupt change in the size of the object
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Figure 4.10: CMCS5 Camera 1: YOLOV3 detections (left) and MV-GLMB-OC esti-
mates (right).

during mode switching.

The birth density is an LMB with parameters rp (£) = 0.001 and

fB,+(x, ¢,0) :O-9N(X;WLB,+,O, PB,+,0),
S (x,6,1) =0.IN (x:mp 0.1, P11,
mp+0=[2.0300.7100.8250 -1.2 —-1.2 —0.18]T,
mp41 =[2.0300.7100.4130 —0.18 —0.18 —1.2]7,

Pp.0=Pp.1=0.1%1.

Effectiveness of Occlusion Model

Tables 4.4 and 4.5 show the CLEAR MOT and OSPA® benchmarks for MV-GLMB-
OC and MS-GLMB on both detectors YOLOvV3 and Faster-RCNN(VGG16). The CLEAR

evaluations for the monocular detections are given in Appendix E.

For CMC4 which has a maximum of 3 people, both MV-GLMB-OC and MS-
GLMB on either detectors achieved high CLEAR MOT scores in MOTA/MOTP, and
low OSPA® errors. The incidence of FPs and FNs is caused by track initiation/termination
mismatches with the ground truths. Nonetheless, we observe that on MOTA/MOTP and
OSPA®, MV-GLMB-OC outperforms MS-GLMB.

For CMCS5 which has a maximum of 7 people, both MV-GLMB-OC and MS-GLMB
on either detectors were still capable of producing reasonable MOTA/MOTP scores and
OSPA® errors. Fig. 4.10 shows a snapshot of detections and estimates on a single view.
However, due to poor detections and more occlusions in CMCS5, we observe many IDs
and FNs. Again on MOTA/MOTP and OSPA®, MV-GLMB-OC outperforms MS-
GLMB.
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Multi-Camera Reconfiguration

The multi-camera reconfiguration experiment described in Section 4.4.3 is repeated for
the multi-modal datasets CMC4 and CMCS5. The results for the multi-camera recon-
figuration are denoted with asterisks in Tables 4.4 and 4.5. The plot for OSPA® with
3D GIoU base-distance over a sliding window with time is given in Fig. 4.11. While
similar observations can be made from the experiments without jumping and falling
(CMCI1-CMC3), the results for CMC4-CMCS5 exhibit different behavior for people in
the fallen state. The estimated extent is warped out of its ordinary shape when the per-
son is on the ground, and more data is required to infer the corresponding state of the
fallen person. In CMC4-CMCS3, the effect of occlusions or misdetections is exacer-
bated by having fewer cameras when the person is on the ground, which would likely
lead to track termination or switching. Nonetheless, the results confirm that the JMS
variant of the MV-GLMB-OC algorithm can automatically accommodate multi-camera

reconfiguration.
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Table 4.6: MV-GLMB-OC Runtime on WILDTRACKS and CMC

Dataset (Cams) | Frames | No. Obj (avg) | Exec. Time (s/frame)
W.T. (7) 400 20 18.0
CMCl14) 261 3 0.1
CMC2 (4) 263 10 3.2
CMC3 4) 263 15 7.9
CMC4 (4) 147 3 0.4
CMC5 4) 560 7 5.5

4.4.5 Runtimes

The runtimes for the MV-GLMB-OC filter on the WILDTRACKS and CMC datasets
are summarized in Table 4.6. The current implementation is via unoptimized MATLAB
code. The reported runtimes appear to be consistent with the computational complexity
of the MV-GLMB-OC algorithm: quadratic in the number of objects and linear in the
sum of the number of detections across all cameras.

4.5 Conclusion

By developing a tractable 3D occlusion model, we have derived an online Bayesian
multi-view multi-object filtering algorithm that only requires monocular detector train-
ing, independent of the multi-camera configurations. This enables the multi-camera
system to operate uninterrupted in the event of extension/reconfiguration (including
camera failures), obviating the need for multi-view retraining. Moreover, it addresses
the multi-camera data association problem in a way that is scalable in the total number
of detections. Experiments on existing 3D multi-camera datasets have demonstrated
similar performance to the state-of-the-art batch method. We also demonstrated the
ability of the proposed algorithm to track in densely populated scenarios with high oc-

clusions, and with people jumping/falling in the 3D world frame.






Chapter 5

Audio-Visual Multi-Source Tracking
and Separation

EETING or conference assistance is a popular application that typically requires
M compact configurations of co-located audio and visual sensors. This chapter
proposes a novel solution for online separation of an unknown and time-varying num-
ber of moving sources using only a single microphone array co-located with a single
visual device. The approach exploits the complementary nature of simultaneous audio
and visual measurements, accomplished by a model-centric 3-stage process of detec-
tion, tracking, and (spatial) filtering, which performs separation in a block-wise or re-
cursive fashion. Fusing the measurements requires solving the multi-modal space-time
permutation problem, since the audio and visual measurements reside in different ob-
servation spaces, but also are unidentified or unlabeled (with respect to the unknown
and time-varying number of sources), and are subject to noise, extraneous measure-
ments and missing measurements. A labeled random finite set tracking filter is applied
to resolve the permutation problem and recursively estimate the source identities and
trajectories. A time-varying set of generalized side-lobe cancellers is constructed based
on the tracking estimates to perform online separation. Evaluations are undertaken with

live human speakers. The content of this chapter has been published in [61]'.

5.1 Introduction

Source separation refers to the estimation of individual source signals from an un-
known mixture signal recorded by one or more microphones. A common challenge
in source separation is the permutation ambiguity problem [24]. Traditional approaches
to blind source separation (BSS) such as independent component analysis (ICA) [25],

sparseness-based solutions [26, 80] and non-negative matrix factorization (NMF) [27]

1© 2022 IEEE. Reprinted, with permission, from J. Ong, B. T. Vo, S. Nordholm, B. -N. Vo, D.
Moratuwage and C. Shim, “Audio-Visual Based Online Multi-Source Separation,” in IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 30, pp. 1219-1234, 2022.
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have demonstrated strong interference suppression with minimal signal distortion on a
mixture of static speech sources. These approaches typically assume a fixed and known
number of stationary sources and exploit their individual statistics in order to achieve
separation. More recent deep neural network (DNN) based approaches such as uPIT
[29], DPCL [28], DANet [39], and TasNet [40] have also shown promising separation
performance for pre-trained speaker models. Similarly, these approaches rely on the
assumption that the number of speakers and their characteristics are fixed and known
during training and testing [31].

Source separation for an unknown and time-varying number of moving speakers is
even more challenging since the room impulse response for each source varies in both
time and position [8]. As a result, standard BSS techniques which rely on stationar-
ity assumptions may not be directly applicable [41, 42]. In addition, it is not clear if
DNN based approaches can be extended to accommodate the unknown and spontaneous
appearance and disappearance of active sources. An alternative to BSS and DNN ap-
proaches is a model-centric approach based on a 3-step process of detection, tracking,
and filtering (DTF), which has the salient feature of being able to accommodate an un-
known and time-varying number of moving sources without pre-training [42, 44, 137].
In our previous work [53], the DTF approach was further demonstrated for online or
recursive operation using the latest generation of random finite set (RFS) tracking tech-
niques [122, 237], where separation of multiple speech sources was achieved through
initially taking audio measurements from multiple microphone arrays, then tracking the
sources in space and time, and finally carrying out beamforming in the direction of
the estimated source. While each of the abovementioned approaches has relative ad-
vantages and disadvantages in different applications, the common element is that they

exclusively rely on audio content to perform separation.

In noisy or loud settings, humans can employ both audio and visual cues to hone
in on the speaker of interest, and are thought to incorporate the audio-visual correspon-
dence between lip movements and speech utterances [30]. Motivated by traditional BSS
approaches, an unsupervised audio-visual solution is proposed in [228], which employs
low-rank matrices to model the background audio-visual information, while sparsity
is used to extract sources through correlations between the audio and visual modali-
ties. The DNN-based solution proposed in [388] uses an off-the-shelf face detector in
combination with a face recognition model to extract face embeddings and estimate
the associations of speech signals to their respective speakers. Subsequent works in
[31, 389] incorporate a DNN-module that extracts lip embeddings and facial appear-
ance directly from video streams, exploiting joint audio-visual features in matching lip
movements and voice fluctuations to the correct speaker. The work in [390] further ana-
lyzes the close connection between facial motion and emitted speech, proposing that the
consistency between voice elements and facial appearance can facilitate the isolation of

speech from overlapping sounds.
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DNN-based solutions for audio-visual source separation have also been specialized
to exploit the naturally occurring features in the case of musical sources. Live musical
sounds typically emanate from a person playing an instrument with a unique action,
and it is possible to exploit the distinctive correspondence between the audio and visual
cues of music generation to achieve separation. To date, numerous DNN-based solu-
tions have shown promising audio-visual based separation performance. The work in
[391] demonstrates that a mix of different musical instruments playing on video can be
separated by locating the cluster of pixels corresponding to the sound from a particu-
lar instrument. This method exploits the natural synchronization of audio and visual
modalities to enable joint audio-visual learning without supervision [391], and was ex-

tended to train a self-supervised network for vehicle tracking with stereo sound [392].

When multiple similar instruments are playing, relying solely on audio and visual
semantics is typically insufficient. The more recent solution in [393] additionally incor-
porates temporal motion information from the video to improve source differentiation
and hence sound separation. An alternative approach in [394] considers the correspon-
dence between body dynamics and finger movements to create a context-aware network
which enables more robust audio-visual separation of both heterogeneous and homo-
geneous musical sources. Network training can further be improved with a so-called
sounding object visual grounding technique [395], which distinguishes between active
and silent sources to avoid learning noise from the latter. Noting that simultaneous mu-
sical instruments are usually interactive in their timing, the approach in [396] improves
on one-time separation solutions by recursively minimizing the residual information
in the spectrogram. DNN-based audio-visual solutions have also found applications
in robot navigation [397, 398], automatic speech recognition [399—401], and person
recognition [402—405].

The abovementioned approaches to audio-visual based separation are broadly clas-
sified as being data-centric, in the sense that they require some form of training to
capture the correspondence between the two complementary modes. Data-centric ap-
proaches generally rely on large training sets to work desirably [388, 390] which can
be computationally intensive during the learning stage. Moreover, the abovementioned
data-centric approaches are generally regarded as offline or batch methods, as the output
decompositions are produced only after processing the entire input history, as opposed
to online methods where the output and input are synchronized up to a fixed delay. In
addition, it is not immediately clear if such approaches are amenable for the separation

of an unknown and time-varying number of moving sources.

In contrast to data-centric, model-centric DTF approaches to audio-visual based
separation are virtually unexplored. The use of co-located audio and visual sensors is
intuitively appealing since the two complementary modalities are used to observe the

same scene. This approach is also naturally suited to online conferencing or meeting
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analysis type applications, where both modes are readily available and are likely to be
more effective than using audio data alone. One of the main difficulties lies in fusing the
two measurement modes since the 3D audio measurements and 2D video measurements
reside in different observation spaces even though they observe the same physical space
or state space. Furthermore, the audio and visual measurements are subject to noise,
spurious or missing measurements, and are unlabeled or unidentified. In addition, active
sources can move, while new sources can appear and existing sources can disappear.
Collectively, these issues give rise to the multi-modal space-time permutation problem,
since it is not known which measurements are connected to which sources (if any at all)
in both measurement modes and across space and time.

Multi-source separation becomes far more challenging in the popular commercial
application of meeting or conference assistance. Such applications require a compact
configuration with a small number of co-located audio and visual sensors for spatial effi-
ciency and portability as well as facilitating synchronization and calibration [406]. The
ensuing technological question is whether multi-source separation can be achieved with
this minimal configuration. Apart from the low observability, the absence of widely
spaced sensors reduces the available spatial information, thereby causing more noise in
the measurements [407]. A co-located sensor configuration therefore relies on the com-
plementarity of both modalities to yield accurate tracking results and improve source
separation. Intuitively, visual observations are used to reduce the uncertainty in 3D
localization and assist the audio measurement [408, 409], which facilitates better direc-
tionality and suppression in spatial filtering.

This work proposes a novel model-centric DTF based algorithm for online source
separation, using only a single microphone array co-located with a single visual device.
The proposed approach caters for an unknown and time-varying number of moving
sources, without pre-training, by exploiting the complementary nature of simultaneous
audio and visual measurements. An RFS framework [122, 237] is adopted to address
the fusion of the multi-modal measurements and to facilitate the tracking of multiple
moving sources. The RFS approach entails the development of stochastic models which
capture the physical relationship between the measurements and the sources, including
the abovementioned uncertainties. An RFS tracking filter known as the Multi-Sensor
Generalized Labeled Multi-Bernoulli (MS-GLMB)) filter [19-22] is applied to recur-
sively estimate the number of sources as well as their identities and trajectories, thereby
addressing the multi-modal space-time permutation problem. The tracking estimates
inform the construction of a time-varying set of spatial filters, known as Generalized
Side-lobe Cancellers (GSCs) [60] for achieving source separation. Near-field and far-
field evaluations are undertaken with live human speakers.

In summary, our main contribution is a novel audio-visual source separation algo-

rithm, which is the first to demonstrate

* Model-based solution via detection, tracking and filtering,



5.2 Problem Formulation and Solution Overview

139

* Operation in an online fashion or as the data arrives,
* An unknown time-varying number of moving sources,

» Separation without pre-training of the audio signals.

5.2 Problem Formulation and Solution Overview

5.2.1 Signal Model

Consider a scenario where the number of sources is time-varying, and let N(¢) denote
the number of sources in the scene at discrete time instance ¢. Each source indexed
by n e {1,...,N(¢)} is located at position vector a,(¢) € R? at the time instance 7. The
signal emitted by source n is denoted by s, and all signals are assumed to be mutually
uncorrelated. The source signals propagate and are received by a single array of M
microphones, where each microphone element indexed by m € {1,..., M} is corrupted
with non-directional diffuse noise v(™. In this work, we assume source stationarity at
each frame k of length 7, i.e., a,(t) =k, and N(¢t)= Ny for t =(k —1)T,...,kT. In this

case, the source signal s, can be represented in blocks of frames:

K K
sa()= ) suO@r (1= (k=1DT)= ) sea(0), (5.1)
k:l k:1

where @y is a window function of length 7', and & is the index of a time block/frame
with length 7. Based on the direct path term only, the mixture received by microphone
element m is approximated by:

K Nk Sk.n (t - T(ak,n’ u(m)))

M (1)~ +v 5.2
Y(e) ;Z pPP—T (1), (5.2)
=1n=1 >
where || - || is the Euclidean distance, 7(axp, umy £ e g, — u™|| is the time delay

between source n at position ay , and microphone m at position u™ eR3, and c is the
speed of sound propagation. The objective is to estimate the individual source signals
frame by frame using the mixture signals y!, ..., y™) with no prior knowledge on the
number of sources, their positions and identities/labels.

5.2.2 Visual Assistance

To estimate the individual source signals, knowledge of the source positions and their
labels is crucial, as they are needed to direct a set of time-varying spatial filters to per-
form source separation. In our previous work [53], this is achieved by tracking multiple

sources in 3D space using audio-only data obtained from four microphone arrays that
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Figure 5.1: System Diagram.

are spaced around the room. The use of multiple microphone arrays is necessary be-
cause the audio measurements obtained from a single array alone typically have insuffi-
cient observability to allow accurate 3D tracking. An alternative to multiple microphone
arrays is to use complementary audio-visual data to observe multiple human speakers
in a common physical space. According to recent surveys [15, 140], visual detections
or measurements via standard object detectors, e.g., body [169], face [410], and pose
[411], have become highly robust and accurate over the years. Thus the use of a single
visual device in combination with a single microphone array is likely to facilitate ac-
curate tracking performance. Due to the complementary nature of the audio and visual
measurements, which are conditionally independent measurements of the same active
sources in a common physical space, it is natural to exploit both modalities simulta-
neously. To incorporate 2D visual measurements with 3D audio measurements, it is

necessary to specify the physical relationship ?‘(,c), which maps the 3D source position

(c)

«@ to the 2D camera projection a,".

5.3.2.

Details of this relationship are given in the Section

5.2.3 Overview of the Proposed Method

The processing chain of the proposed method is shown in Fig. 5.1. Audio and visual
measurements of the same (multiple) sources in a common (physical) space are syn-
chronized and segmented into frames indexed by discrete time k£ = 1,...,K. At each
frame, raw microphone signals are fed into an acoustic localization technique to ac-
quire the 3D source position candidates. In parallel, images from multiple cameras are
fed into a monocular face detection algorithm to acquire 2D centroid measurements of
the same sources present. Measurements acquired from both modalities are subjected
to noise (disturbance), they may not reflect a source that is present (false negative), and
some may not correspond to any source (false positive). Furthermore, the audio and
visual measurements undergo different transformations and hence reside in different
observations spaces. Consequently, the audio and visual measurements have an inher-
ent multi-modal space-time permutation issue, since the measurements are unlabeled
or unidentified with respect to the time-varying and unknown number of sources. The
space permutation aspect refers to the fact that in a given frame, it is not known which
measurements (if any) correspond to which sources, while the time permutation aspect
refers to the fact that across time, it is not known which measurements (if any) corre-

spond to the same source. A labeled RFS approach [19-22] can be used to model the
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stochastic relationship between the multi-modal measurements and source states, and
jointly estimate the number of sources, their positions and labels. Based on the tracking
estimates, a set of time-varying spatial filters can be constructed based on the direct path
signal model to perform source separation. The proposed method can be described in
three stages: audio-visual measurement acquisition, multi-source tracking, and source

separation.

Audio-Visual Measurement Acquisition

In the first stage, audio measurements are obtained by first performing the Short-Time
Fourier Transform (STFT) on the raw microphone signals. For each frame, the Steered-
Response Power Phase Transform (SRP-PHAT) and a region search algorithm known
as Stochastic Region Contraction (SRC) [70], are used to obtain 3D position candidates
from the microphone array. In parallel, visual measurements are obtained by passing
images into the Dual-Shot Face Detector (DSFD) [410] to acquire visual detections in
the form of bounding boxes, and then picking the centroids as 2D position candidates

of the human lips.

Multi-Modal Multi-Source Tracking

In the second stage, we adopt a labeled RFS framework [19-22] to fuse the multi-modal
(audio-visual) measurements, and produce estimates of the 3D source positions and la-
bels at each frame, in a statistically consistent manner. In this framework, the relation-
ship between the multi-modal measurements and multi-source states is established by
the multi-sensor audio-visual measurement model. The motion, appearance, and disap-
pearance of sources are encapsulated by the multi-source transition model. Specifically,
a tracking filter known as the Multi-Sensor Generalized Labeled Multi-Bernoulli (MS-
GLMB) filter [22] is employed. The recursive filter propagates a so called filtering
density, which provides a stochastic description of the set of labeled source states at the
current time frame, given all audio-visual measurements up to the current time frame.
An estimator is applied to the filtering density to output the source positions and labels

at each frame.

Source Separation via Spatial Filtering

In the third stage, source separation is achieved via constructing a type of spatial fil-
ter known as the Generalized Side-lobe Canceller (GSC) [60]. A set of GSCs is con-
structed, one for each source present, using the estimated source positions and the labels
at each frame. Each GSC is employed to emphasize each source of interest while si-
multaneously suppressing other interfering sources. Finally, the time-domain separated

signals are recovered using the inverse STFT.
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Figure 5.2: SRP-PHAT Measurements.

5.3 Audio-Visual Data Pre-Processing

5.3.1 Audio Measurement Acquisition

Each raw microphone signal y is segmented into yim), . y%") via:

Yy =y + (k- D)@ (r), (5.3)

where @y is a selected window function of length 7. The window function is chosen
to capture enough signal information while reducing signal discontinuities at the edges,
e.g., a Hann window w7(t)=0.5-0.5cos(2nt/T), t=0,...,T—1.

We denote the discrete STFT of yf{m) by Y,fm). To represent the segmented frequency-
domain raw signals from all microphones in a compact form, we stack them into a

vector (where A is the frequency bin index):

M
_ 5.4

v = r)|
Given Yy, received at the array, the spatial power that emanates from the direction of the
source location ay € R3, is computed using SRP-PHAT by [70]:

— «(0)
SR SRSRACL AN

Par(a)= Z Z Z

a=1b=a+l 1 ‘Ylfa)(ﬂ)Yf(b)(ﬂ)

jw,l(r(w,u(b))—r(w,u@)) (5.5)

where w, = 2n(1 - 1)F,/T, F; is the sampling frequency, the PHAT weighting
is frequency-dependent, and the exponential term time-aligns the microphone signals
based on the propagation delays. Using the computationally efficient SRC algorithm
[70], the 3D source position candidates are obtained via peak-picking on SRP-PHAT
with a certain threshold (see Fig. 5.2). We denote the collection of the 3D position
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candidates as a measurement set:

Zak ={zak 15 ZAK|Zc| b (5.6)

where |Z4 x| denotes the number of elements of Z .

5.3.2 Visual Measurement Acquisition

Objects in the 3D world coordinate frame are observed by multiple cameras indexed
by ¢ € {1,...,C}, wherein each camera produces object detections as 2D points in the
camera image coordinate frame. Each camera is treated as a projective device that
converts 3D world points onto the 2D image plane [380]. The perspective projection of
a point in the 3D coordinate frame (world) to a point in a 2D coordinate frame (plane)
is a nonlinear transformation because it can be interpreted as a many-to-one morphism
R3 — R? (except for an orthographic projection). Alternatively, this projection can be
realized as a linear transformation in the homogeneous coordinates of the projective
space P, which is an extension of Euclidean space by adding an extra dimension [380].

Let SD(C) be the projective transformation of camera c that takes an arbitrary point «

(c)

in 3D to a point ;" in 2D (see Fig. 5.3). Based on the pinhole camera model [380],

the transformation 73‘(,6) first converts the vector a = (a1, as, a/3)T into its homogeneous
form @ = (a1, as, a3, I)T (where the subscript indexes refer to the respective coordinate

values), and then performs a linear transformation via the camera matrix Pgiz 4 to obtain

~(C)

the projected homogeneous point &;,” on camera c, i.e.,

<O _ ple) 5
dy’ =Py ,a. (5.7)

(c)

The actual 2D point on the image plane «,," is recovered via dividing the first two

~(c) _ (~(C) ~(¢) ~(C)

coordinate values of &, @y @y, &

)T by the value of its last coordinate, i.e.,

(6) — (@ (C)/ g/c; ~(C)/ ~(c) )T (5.8)
The camera matrix P(32 4 of camera c¢ captures the intrinsic parameters (the focal length,
skew coefficient and projection center), and the extrinsic parameters (the rotation and
translation of the camera), which are obtainable via standard camera calibration tech-
niques [378].

Denote the image obtained from camera c at time frame k by 7, k(c). The image is fed
into a Dual-Shot Face-Detector [410] which is represented as detection operator D)
and produces a set of 2D visual detections at frame k:

(©) _ () 7()y — g,(0) (c)
ZV,k _ D ¢ (Ik ) - {ZV,k,l’ ey ZVykJZg‘:;J}, (5'9)

© — (), )

v Gk 2)T is a point specified in 2D image coordinates, |Z‘(/C}(| denotes

where Zy
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Figure 5.3: Projective transformation P‘(,C) of a point @ in 3D to a point agf ) in 2D for
camera c.

the number of visual measurements at camera c. Note that the projective transformation
P‘(,C) between a 3D point in world coordinates and the observed point in 2D image
coordinates establishes the relationship between the 3D source positions and the 2D

visual measurements.

5.3.3 Audio-Visual Measurements

The multi-modal measurements Z; at frame k comprise all the constituent measurement

sets from the audio and visual sensors, i.€.,

Zk = (Zaj Zy i) (5.10)

where Zy ; = (Z‘(,li, - Z‘(,Ck) ). The multi-modal measurements are the basis for estimat-
ing the states and labels of the sources. However, the following difficulties arise in the

estimation:

¢ While the audio and visual sensors observe the same scene and same sources, the

individual audio measurements z4x € Z4x and individual visual measurements

(c)

((;) . . .
2y € Zv, . are in different observation spaces.

* Due to undergoing different and highly non-linear transformations, individual
measurements are noisy, and each measurement set may contain false positives
(measurements not generated by any source) and false negatives (missing mea-

surements or missed detections).

» These factors give rise to the inherent multi-modal space-time permutation prob-

lem, since in space it is not known how the audio measurements from Z, ; and
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the visual measurements from Z‘(,II)C, Z‘(,Clz are associated, or generated by which

source if any; and in time, it is not known how the individual audio and visual

(1) (©)
ke Zv,k

1 c
those from Z4 41 and Zx(/,/)<+1’ . Z\(/,12+1 at the next frame.

measurements from Z4; and Z at the current frame are connected to

In the next section, we show how the multi-modal space-time permutation problem
can be solved using a dynamic Bayesian estimation framework. A labeled RFS model
[19-22] facilitates a statistically consistent specification of the multi-source transition
model and the multi-modal measurement model. The transition model is given by a
transition density that captures the appearance, disappearance and motion of the sources
over time, and captures the uncertainties due to the time permutation issue. The mea-
surement model is given by a likelihood which is based on the assumption that the
audio and visual measurements are conditionally independent given the source states,
since the audio and video sensors produce complementary measurements of the same
sources in a common scene. Consequently, the audio-visual measurement likelihood
is separable and can be written as a product of the audio likelihood and visual likeli-
hood. The audio likelihood function describes the relationship between the SRP-PHAT
measurements and the source positions, including the uncertainties due to the space
permutation issue. The visual likelihood function describes the relationship between
the DSFD measurements and the source positions, based on the pinhole camera model,
including the uncertainties due to the space permutation issue. Based on these stochas-
tic transition and measurement models, a Bayesian RFS filter recursively estimates the

source trajectories and labels.

5.4 Tracking of Multiple Sources

5.4.1 Multi-Source Bayes Tracking Filter

The Bayesian RFS framework [122, 237, 268] facilitates the stochastic modeling of the
time-varying nature of the number of sources and the individual source positions, as
well as the stochastic modeling of the time-varying nature of the number of measure-
ments which are subjected to noise, false measurements (false positives) and missing
measurements (false negatives). In tracking terminology, false negatives and false pos-
itives are termed missed detections and false detections respectively, while source ap-
pearance and disappearance are termed birth and death respectively. The multi-modal
space-time permutation problem is referred to as the data association problem and can
be addressed using a labeled RFS tracking filter [19-22]. A visual illustration of the
nature of the multi-modal measurements along with the desired tracking result is shown
in Fig. 5.4.

Each source at frame k has a state denoted by xj = (xz,{x), where x; = (@, @) is

a vector capturing the 3D position and velocity of the source, and £} is a unique label
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Figure 5.4: Three sources existing from frame k —1 to k+ 1. The top row shows an
illustration of the audio measurements (3D position candidates). The middle row shows
an illustration of the visual measurements (2D point detections). The bottom row shows
an illustration of the tracking result addressing the multi-modal space-time permutation
problem.
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from a discrete space Lo.;. The inclusion of the velocity component is necessary as an
auxiliary variable for the specification of the state transition model. At each frame k,
the collection of states for multiple sources is represented as a finite set:

Xi={xt1, XN} (5.11)

herein referred to as a multi-source state, where Ny is the number of sources. A key
feature of labeled RFS modeling is the assumption of unique labels in the multi-source
state, which treats the trajectory of an individual source as a sequence of states with a

common label (see Fig. 5.4).

In Bayesian RFS filtering, the aim is to estimate frame-by-frame (recursively) the
multi-source state Xy, given the multi-modal measurements obtained from the begin-
ning of time up to the current time frame k, i.e., Zy.x =(Zy, ..., Zx). The multi-source
Bayes filter is a recursive mechanism for computing the probability density of X given
Z1.r. In the Bayesian paradigm, such a probability density is referred to as the filtering
density denoted by 7y x(X«|Z1.k), which captures all uncertainty in the multi-source

state given Z.x.

The propagation of the filtering density is a recursive procedure consisting of a time-
update followed by a data-update. The first step is given by:

7Tk+1|k(Xk+1|21:k)=/f(Xk+1|Xk)7fk|k(Xk|Z1:k)5Xk, (5.12)

where the above set integral is derived from Finite Set Statistics (FISST) for dealing
with probability densities of RFSs in a mathematically consistent manner [122, 237],
and the probability density f(Xj+1|Xx) is the multi-source transition density or the
probability density that multi-source state X at frame k transitions to X at the next
frame k + 1. The multi-source transition density is derived from a stochastic model that
captures all possible source births, deaths and motions, i.e., the previously discussed
time permutation aspect. The parameters for the transition model are given in Section
5.4.2. The time-updated density (or predicted density) (5.12) describes the uncertainty
in X1, given all multi-modal measurements Z;.; up to the current time frame, and

addresses the time permutation part of the data association problem.

The second step is given by:

8(Zil X kr )7 s e (X k411 Z1210)
[8(Zkll X k)T etk (X k11 Z1:0)0X ka1

Tt k1 (X1 Z1k41) = (5.13)

where the probability density g(Z+1| X r+1) is the multi-modal (audio-visual) measure-
ment likelihood or the probability density of the multi-modal measurements Z; | given
the multi-source state X ;1. The multi-modal measurement likelihood is derived from a

stochastic model that encapsulates noise, detections, missed detections, false detections
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and multi-modal association uncertainty, i.e., the previously discussed audio-visual
space permutation aspect. The parameters for the multi-modal measurement model
are given in Section 5.4.3. The data-updated density (or new filtering density) (5.13)
contains all information about X;.;, conditioned on the multi-modal measurements
Z1.k+1 up to the new time frame, and addresses the space permutation part of the data

association problem.

5.4.2 The Standard Multi-Source Transition Model

Given the multi-source state X, each state x; = (x, ;) € X either persists and survives
with probability Pg and transition to a new state (xx.1,¢x+1) that inherits the same la-
bel with transition density fs(xx+1|xx, €k )o¢, [Cx+1], or dies with probability 1—Pg. The
single-source transition density fs(xx+1|xx,€x) gives the probability density of source
label £ moving from state xj to state xi. For tracking live human speakers, a popular
choice for the transition density is the Langevin model [69, 72, 234], which takes on
the form:

Fs(ekelxr, ) = N (xe1;Fx, RRT), (5.14)

where N(-;Fx;,RRT) is a Gaussian probability density function with mean Fx; and
covariance RR”, F = Fpseudo ® 13, R = Rpseudo ® I3, I3 an identity matrix of 3 dimensions,
® is the Kronecker product,

¢
O e_ﬂ¢

0
1::pseudo = [ Rpseudo =0y [Vm] . (5.15)

Here, f is the rate constant that controls the rate at which the velocity decays, v is
the steady-state root-mean-square velocity constant, ¢ is the discretization time step
interval, and o, is a 3D column vector of the component standard deviations of the
process noise.

At this next time, a set of new sources denoted by By.; with labels {41 : (xg+1,€x+1) €
By1} can appear individually with probability rg({ 1) and distributed according to the
birth density f(-,€x+1). A label follows the convention £ =(g,t) €Ly, where ¢ € {k} de-
notes the time frame of birth and ¢ €N denotes the index of source born at the same time
[19]. Consequently, the labels of a multi-source state are distinct/unique for all frames,
and the label space for sources at frame k is constructed recursively by Lo.x =Lo.x—1ULg.

The RFS X, is the union of the survivals W and births B, which are assumed
to be statistically independent. Denote by f¢(W41|X) and f 5(By+1), the probability
densities of the surviving sources W, from X, and the births of new sources By

respectively. The multi-source transition density is given by [19]:

S Xl X)=f sWistl Xi) f g(Bis1) - (5.16)



5.4 Tracking of Multiple Sources

149

The above product is a stochastic model for addressing the time permutation problem.
Under this model, source appearance, disappearance and motion are statistically in-
dependent. Importantly, distinct/unique labels are propagated for existing sources that
continue to be active. The appearance of new sources is catered for with new distinct la-
bels, while deactivated sources are removed without reusing their labels. The derivation
and full expression for (5.16) is not required for this dissertation, however readers are
referred to the original work [19] for details. The transition density (5.16) captures all
possible source births, deaths and motions in the transition of a multi-source state from
one frame to the next, and is parameterized by: the probability of survival Pg, single-
source transition density fs, probability of birth rg, and the birth density fz. Specific
values for these parameters are provided in the experimental section.

5.4.3 The Standard Multi-Sensor Measurement Model
Microphone Array Measurements

Given a multi-source state Xy, each x; = (x, ;) € X is either detected by the micro-
phone array with probability P4 p and generates a detection z4 x € Z4 ; with a likelihood
g4(za k| Xk, €k ), or is missed with probability 1—P4 p. The audio single-source likeli-
hood ga(zak|xk, €x) gives the probability density of the audio measurement z4 given
the source state (xg, {x). For SRP-PHAT measurements, the likelihood has the form:

8a(zak|xe, €) = N(zax; Hxg, a0y, (5.17)

where H=I3,0], and o4 is a 3D column vector of the component standard deviations
describing the uncertainty in the audio measurement (0'A0'£ is the 3-by-3 noise covari-

ance matrix).

The detection process also generates false detections, conventionally characterized
by an intensity function k4(zax) = A4, Ua(z4 ) on the measurement space [122, 237].
The number of false detections is modeled by a Poisson distribution with mean Ay4 ,
and the false detections themselves are uniformly distributed in the audio measurement
space according to Uy. It is standard to assume that the audio detections are statistically
independent from the false detections [122, 237].

Let £(X) be a set of all distinct source labels present in Xy, i.e., L(Xy)={¢:
(xx,€)€ Xk }. A single-array association 64 € ®4 is defined as a mapping from the
source labels to the audio measurement indices, i.e., 04k : {€k :Cx € L(Xk)} —{0:1Zaxl},
such that no two distinct arguments are mapped to the same positive value [19]. This
property ensures each audio measurement comes from at most one source. For example,
64,k (€x) > 0 corresponds to source ¢, generating detection z4 16, ,(¢,)» While 64, (£x)=0

means a missed detection for source ;.
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The multi-source audio measurement likelihood is given by:

Oax (&
gaZadXyec Y [ ] uis ™ o o) (5.18)
04,k €Ok (xx,lr)
eXy

where

Pa.pga(za,|x.te)
IWX)ZA (X b)) = xa(2aks)
s 1 - PA,D, ] :O

, j>0
. (5.19)

The mixture form of the audio measurement likelihood (5.18) takes in account all pos-
sible combinations of missed detections, false detections and the source detections that

can occur in the audio measurements.

Camera Measurements

Given a multi-source state X, each x; = (xg,€x) € X is either detected by the cam-

era ¢ with probability P‘(,C)D and generates a detection z\°) € Z‘(,‘Z with a likelihood

V.k
ggf)(zgfllxk,é’k), or is missed by camera ¢ with probability 1—P‘(/C)D.

& 3{ |x, €k ) for camera c gives the probability density of the visual

given the source state (x,f;). For 2D camera detections, the likeli-

The visual single-

source likelihood gg,c )(Z
()
V.k
hood for camera ¢ takes on the form:

measurement z

gy (2 ) [xe ) = N2y 32 Py (Hx), o o, (5.20)

where P‘(,C) is the transformation described in Section 5.3.2, and O'(C) is a 2D column

|4
vector of the component standard deviations describing the uncertainty in the visual

(c) ()T

measurement (o, "o, * is the 2-by-2 noise covariance matrix).

4
The detection process also generates false measurements or detections, convention-
ally characterized by an intensity function Kg/c ) (zg,i L) = /15,6’ LWV(Z;C, 3{) on the measurement
space for camera ¢ [122, 237]. The number of false detections is modeled by a Pois-
son distribution with mean /lg,i 1)0 and the false detections themselves are uniformly dis-
tributed in the visual measurement space according to Uy . It is standard to assume that
the visual detections are statistically independent from the false detections [122, 237].
A single-camera association Oif)k € G)i,c)k is defined as a mapping from the source
labels to the visual measurement indices, i.e., Hgf)k Al e LX)} —{0: |Z‘(,‘3(|},
such that no two distinct arguments are mapped to the same positive value [19]. This
property ensures each visual measurement comes from at most one source. For multi-
ple cameras, a multi-camera association is the vector Oy ; = (9&,1’),(, 9&,52) €Oy of all
single-camera associations having the same aforementioned positive one-to-one prop-
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erty, where Oy ; = ®(1) X.. ><®(C) is the space of all possible multi-camera associations
[22].

The multi-source visual measurement likelihood is given by:

sz Xo e > ST ﬂw“ﬁéf“’”% G0, (5.21)

65/1) H(C) (Xk,fk) c=

EXk
(1) (1) (©) (o]
Whereev’keé)v’ ,GVk @Vk, and
o (b tt)
(c.j) BIRG) , J>0
ot )=y N (%) : (5.22)
V.Zy 1— P€/C)D’ ]:O

The mixture form of the visual measurement likelihood (5.21) takes in account all pos-
sible combinations of missed detections, false detections and the source detections that

can occur in the visual measurements.

Audio-Visual Measurement Likelihood

While the audio and visual sensors produce different measurements in different obser-
vation spaces, they are nonetheless observing the same human speakers in a common
physical space. Consequently, the measurement sets from each (audio or visual) sen-
sor can be treated as conditionally independent given the multi-source state, and the

multi-modal measurement likelihood at time &k can be written as:

8(Zk|X k) = 8a(Zax| X k) 8v(Zyi| X k). (5.23)

Each constituent likelihood function in (5.23), i.e., g4 or gy, contains a nested sum that
enumerates all possible associations in that measurement domain, thereby taking into
account all possible combinations of missed detections, false detections and the source
detections. The product of g4 and gy in (5.23) therefore contains all combinations of
cross-domain associations, thereby presenting a model for addressing the multi-modal

space-time permutation problem.

In summary, the multi-modal measurement likelihood describes the statistical con-
nection between the audio measurements Z4 ; and the visual measurements Zy ; which
are complementary observations of the same state Xy. The multi-modal measurement
likelihood 1s parameterized by: the audio sensor’s probability of detection P4 p, single-
source likelihood g4, false detection intensity, «4; and the visual sensors’ probabilities

of detection P‘(,1 )D, . P‘(,Cg, (1)

(1) (©)
Ve Ky

single-source likelihoods g, . ,g(c) false detection inten-

sities, «



152

Audio-Visual Multi-Source Tracking and Separation

5.4.4 Implementation and State Estimation

The MS-GLMB filter [22] is the analytic solution to the multi-source Bayes recursion
(i.e., (5.12) and (5.13)) under the standard multi-source transition and multi-sensor mea-
surement models. The filter propagates the time-updated and data-updated filtering
densities in a GLMB form:

T(X)=AX) D WP LX) [P o, (5.24)

01:k€0 1k xieXy
where A(+) is a distinct label indicator, i.e., A(X ) =1 if the cardinality | L(X;)|=|X«k|,
0.1 €O is the history of multi-sensor association mappings up to frame %, i.e., 6.5 =

(61, ...,0r) where 6 = (641,0vx) and O = @4 X Oy . Each wfl}f)() is a non-negative

Z Z ng;ﬁ(L) =1, (5.25)

LCLo:x 01:k€01k

weight such that

and can be interpreted as the probability of sources with label set L being active, as well

as being associated with the audio and visual measurements given by the association

(Gl:k)
k|k

and association history ..

history 61.x. Each p (+,€) is the probability density of the source state with label ¢
The MS-GLMB filter offers a polynomial time implementation mechanism, which
has a linear complexity in the sum of the total number of measurements across all sen-

sors [22]. At each frame k, the MS-GLMB filter outputs a multi-source state estimate

Xk = {(&k,lvgl)a"-a(dk’|Xk|’é\|Xk|)}7 (526)

via a standard GLMB estimator applied to the GLMB filtering density (5.24) [22]. The
source positions and labels over time constitute the estimated source tracks, thereby
resolving the space-time permutation problem that arises from the multi-modal mea-

surements as depicted in Fig. 5.4.

5.5 Source Separation

5.5.1 Spatial Filtering

The estimate X ; acquired at each frame from the tracking filter informs the construction
of a set of time-varying beamformers based on a free space direct-path model. We use
the GSC [60], which contains two parts: a beamformer that determines the response of
the source of interest (SOI), and a blocking mechanism to prevent the SOI from entering
the canceler.

To estimate the SOI specified by label ;, the corresponding beamformer is con-

structed to achieve two objectives: select the direction of the source specified by the
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estimated position & ;, and suppress other interfering sources specified by {(d@x, ij) €
X k};.vjl for i # j, where N = | X | is the estimated number of sources. For each time-
frequency (TF) point (4, k), the weight of the beamformer Wk’ ¢,(4) is given by [53]:

R H\T )
Wk,fi(/l):((Dk,f(k(/l)) ) Ig (L), (5.27)

where  is the Hermitian transpose, T denotes the Moore-Penrose pseudo-inverse, [ N

is a selection vector whose dimension varies depending on the estimated number of

sources Ng, i.e., lﬁk(@): [531 [4],.. "64910 [:]]7 such that 6;[j] =1 if i = j and zero other-
k

wise, and
pioa(tlg ™) . gioa(ra g a0)
Dy x, ()= : - : : (5.28)
ploa(T@ ™)) @ (T(@k,Nk»”(M)))
i1s a matrix with columns representing the steering vectors for each estimated source.

The number of columns depends on the estimated number of sources Nj. Note that if

Ny =1, (5.27) reduces to the classical delay-and-sum beamformer.

. H
The blocking matrix is defined to be the orthogonal complement to (Wk’ / (/1))
[53, 60]:

1

a n H RN H
Bk,gi(ﬂ):I—iji(ﬂ)[(wkjiu)) ijiu)] (ijiu)), (5.29)

where 1 is an identity matrix. Subsequently, the GSC weight vector is defined by:

G i (D) =W, ;. () =B, ;(DVi(), (5.30)
where
k H o)
Vi.opt(4) = arg mvinz)("‘” (Wn,@(ﬂ) - B,]ji(/l)V) Y,()| , (5.31)

=1
x €1]0,1] is a positive constant. Eq. (5.31) can be solved recursively using Recursive
Least Squares (RLS) [364].
The output of the GSC beamformer for the estimated source label {; at each TF point
(4, k) is given by:

Sk = (G (ﬂ))HYk(/l). (5.32)

Finally, the estimated time-domain signal §; of source label £; is given by the inverse
STFT.
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Figure 5.5: Audio-Visual Sensor Setup.

Figure 5.6: Scenario 1A (left) and Scenario 2 (right).
5.6 Experiments

In this section, we present the evaluations for the proposed audio-visual based separa-
tion method for live human speakers in an acoustic room. The algorithm is tested in
scenarios where human speakers are talking and walking at the same time. We initially
consider a detailed analysis of the proposed algorithm in near-field vs far-field. In Sce-
nario 1A, the human speakers are situated closer to the audio-visual sensors, while in
Scenario 2, human speakers are situated farther away from the audio-visual sensors. In
addition, we present an ablation study for each scenario whereby the measurements,
tracking and separation are performed using the audio data only. This is undertaken
to demonstrate the improvement in performance due to the combination of audio and
visual data. The experimental setup is summarized in Section 5.6.1, and the parameters
used for the proposed algorithm are explained in Section 5.6.2. The evaluation of the
accuracy of the SRP-PHAT measurements is given in Section 5.6.3, followed by the
tracking performance of the MS-GLMB filter in Section 5.6.4, and the separation per-
formance in Section 5.6.5. Subsequently in Section 5.6.6, we consider two additional
near-field experiments. Scenario 1B has up to three moving sources appearing at dif-
ferent times, and Scenario 1C has at most one source but with two distinct modes of

background interference.
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5.6.1 Experimental Setup

The experiment is conducted in a 7.67m X 3.41m X 2.7m enclosed room with reverber-
ation measured at Tgo ~ 0.25s, using a single linear array of 6 microphones, which are
calibrated to the same gain/sensitivity. These microphones are connected into 3 RME-
OctaMic 8-channel pre-amps. Each pre-amp is daisy-chained via MADI cables into the
computer. For the visual sensor, a ZED 2 stereo camera from StereoLabs is used to
record at 1080p. The linear microphone array and ZED 2 stereo camera are co-located
and placed close to the wall of the room as shown in Fig. 5.5.

To demonstrate the multi-source tracking and source separation performance of the
proposed method, Scenario 1A considers three people talking and walking towards the
sensors as shown in Fig. 5.6 (left). The participants stop talking and turn their faces
away from the cameras at different times to simulate an exit. A more challenging Sce-
nario 2 employs a similar setup but with the speakers further away from the sensors
as shown in Fig. 5.6 (right). To acquire the original speech signals for evaluation, the
participants self-recorded their speech while performing the experiments.

5.6.2 Algorithm Parameters

Table 5.1: Parameters for microphone array measurements

F 16kHz
High-pass filtering 1kHz
Window function Hann
T 2048
Detector SRP-PHAT [70]

Table 5.2: Parameters for visual device measurements

c 1 (left camera) and 2 (right camera)
FPS 8
[ —1021.7 -827.2 -575.8 7071.5 |
129 3.8 1420 -1184.0 2012.8

| 004 -083 -0.56 3.81 |
[ —1021.9 -822.9 —579.0 6940.6 |
Py, 283 1313 —1192.6 2030.0
| 003 -0.82 -057 381
Detector Dual-Shot Face Detector [410]
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Table 5.3: Parameters for MS-GLMB transition

Multi-source transition density

B 10s~!

v Ims™!

¢ 0.128s

oy [1.2,1.2,0.2]"ms™!

Py 0.999
{ra()};., r(€;)=0.005 for all i
(fs:6)2  my=[2.0071.7000],

N(ml PO <2) ~[3.00.51.7000],
‘3) =[4.00.61.7000],
P(’) 0.2 for all i

Table 5.4: Parameters for MS-GLMB likelihood

Audio likelihood
oA [0.1,0.1,0.1]"m
Pup 0.6
KA 10U 4
Visual likelihood
o) [20,20]" for ¢ = 1,2
Py, 0.99 for ¢ = 1,2
(C) 1Uy forc=1,2

Table 5.5: Parameters for source separation via spatial filtering

Beamformer Generalized Side-lobe Canceller
Solver Recursive Least Squares
Window function Hann
T 2048
Overlap 50%

5.6.3 Evaluation of SRP-PHAT Measurements

The audio measurements generated from the single microphone array via SRP-PHAT
are in the form of 3D position candidates for active sources. The measurements are not
only noisy, but are also subjected to false measurements and missing measurements.
To evaluate the accuracy of the audio measurements at each frame, the Optimal Sub-
Pattern Assignment (OSPA) metric [50] is applied to quantify the error between the set

of audio measurements and the set of true source positions. The OSPA metric typically
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Figure 5.7: Scenario 1A (top) and Scenario 2 (bottom): OSPA distance on the SRP-
PHAT measurements (lower is better).

Table 5.6: Average OSPA distance on the obtained SRP-PHAT measurements.

Average OSPA Components (m)

Scenario Localization Cardinality OSPA
1A 0.253 0.561 0.814
2 0.291 0.595 0.886

uses a standard Euclidean distance as a base distance, and a cut-off value beyond which
a localization error is deemed to be cardinality error. Consequently, the OSPA metric
captures both localization and cardinality errors between the set of measurements and
set of truths. The numerical value of the OSPA metric lies between zero and the chosen
cut-off, which can be interpreted as a per-point error with units of meters. Further
details on the OSPA metric can be found in [50].

The OSPA metric with a cut-off at Im is shown versus time in Fig. 5.7 for Scenarios
1A and 2. It can be seen that the error values are consistently high in both scenarios and
occasionally saturate at the cut-off value. The time averaged OSPA errors are shown
in Table 5.6, along with the localization and cardinality components. The high average
value indicates that the audio-based measurements alone are inaccurate. Furthermore,
the large localization component indicates significant positional errors, and the rela-
tively high proportion of the cardinality component indicates significant false and miss-
ing measurements. The overall higher errors in Scenario 2 compared to Scenario 1A are
due to the sources being farther away from the array. Consequently, the OSPA results in
both scenarios suggest that the audio measurements alone are insufficient for accurate
tracking of the sources, due to the lack of observability with only a single microphone

array.
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Figure 5.8: Scenario 1A (top) and Scenario 2 (bottom): OSPA® distance between
estimated and true source trajectories (lower is better).

5.6.4 Evaluation of Multi-Source Tracking Filter

The multi-modal audio and visual measurements are modeled in the RFS framework
and processed into trajectory estimates with the MS-GLMB filter. The output of the
MS-GLMB tracking filter is a set of unique source labels and corresponding position
estimates over time which together constitute a set of tracks or trajectories. Due to
the imperfect nature of the multi-modal measurements, it is possible that the estimated
trajectories will be noisy, in addition to potentially having incorrect labels and/or mis-
aligned starting and finishing times, and extraneous or missing trajectories. To evaluate
the accuracy of the audio-visual source tracking, the OSPA®) metric [51, 53] can be
used, which quantifies the error between the two sets of estimated and true source tra-
jectories. The OSPA® metric uses a time averaged OSPA distance as a base distance
between two individual tracks, and has a separate cut-off value beyond which a tracking
error is deemed to be a labeling error. Consequently, the OSPA®) metric captures both
tracking and labeling errors, and the numerical value is interpreted as time-averaged
per-track error with units of meters. The metric is typically calculated over a moving
window and plotted versus time. Further details on the OSPA®® metric can be found in
[51].

For this evaluation, a cut-off of 1m is used, with a 10-scan moving window. The
OSPA? evaluation for combined audio-visual tracking is shown in Fig. 5.8 for Scenar-
ios 1A and 2, which for comparison also shows the OSPA? evaluation for audio-only
tracking with the single microphone array. It can be seen that in Scenario 1A, combined
audio-visual tracking is consistently accurate with low errors below 0.1m. Similarly for
Scenario 2, the combination of audio and visual measurements produces consistently
accurate tracking estimates with low errors below 0.2m, although the average errors are
higher than in Scenario 1A, due to increased distance of the sources from the sensors.

Furthermore, the tracking results with only audio measurements from a single micro-
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Table 5.7: Scales of SIG, BAK and OVRL in the Subjective Listening Test.

SIG
Rating Description
5 Very natural, no degradation
4 Fairly natural, little degradation
3 Somewhat natural, somewhat degraded
2 Fairly unnatural, fairly degraded
1 Very unnatural, very degraded
BAK
Rating Description
5 Not noticeable
4 Somewhat noticeable
3 Noticeable but not intrusive
2 Fairly conspicuous, somewhat intrusive
1 Very conspicuous, very intrusive
OVRL
Rating Description
5 Excellent
4 Good
3 Fair
2 Poor
1 Bad

phone array are consistently poor with very high errors in both scenarios. The cause
of the relatively high errors for tracking with only audio measurements are not only
due to the high positional errors, but also due to label switching errors, and some in-
cidence of extraneous and missing source trajectories. These observations suggest that
the multi-modal combination of audio and video measurements enables accurate multi-
source tracking, and further highlight the limitations on the observability of the source

trajectories with only a single microphone array.

5.6.5 Evaluation of Source Separation

The set of position and identity estimates from the MS-GLMB tracking filter are used to
perform spatial filtering or source separation via a set of GSCs. As the sources are mov-
ing within the room, the delays of each source signal, with respect to the microphone
array, are changing over time. Therefore, perceptual measures such as PESQ [367],
STOI [368] and PEASS [369], that rely on delay-compensation, are not directly appli-
cable for performance evaluations. While it may be possible to apply these measures on
time blocks during which sources are almost stationary, there may be insufficient signal
information within each short block to allow a meaningful evaluation [53].

Instead, we administer subjective listening tests based on the ITU-T P.835 method-

ology which evaluates the extent of signal distortion and the overall quality of noise
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Figure 5.9: Mean scores for SIG, BAK, and OVRL for the estimated source signals and
original mixture signals evaluated on Scenario 1A.

suppression [52]. In the test, each participant is instructed to listen to the clean speech
signal (upper anchor reference), the separated speech signal (to be evaluated) and the
mixture signal (lower anchor reference), and then rate them on: The speech signal alone
using a five-point scale of signal distortion (SIG); The background interfering noise
alone using a five-point scale of background intrusiveness (BAK); The overall quality
using a five-point scale of mean opinion score (OVRL). The scales for SIG, BAK and
OVRL are described in Table 5.7.

The evaluation considers the separation performance based on a single microphone
array combined with visual tracking assistance from a single camera device (proposed
method), and for comparison considers the separation performance using audio-only
data without visual tracking assistance (ablation study). In the evaluation, 20 people
(12 males, 8 females) of ages from 20 to 30 are recruited to participate in the listening
test. A statistical analysis of variance (ANOVA) test at a 0.05 significance level is used
to determine if there is a statistically significant difference between the quality of the
separated speech signal and the mixture. All video/audio files for both scenarios are
available via GitHub: https://github.com/researchwork888/AVseparation.

Scenario 1A

Examination of the audio-visual outputs suggests that there is some degree of interfer-
ence suppression, though the overall performance is naturally constrained by the use of
a single microphone array. The mean scores of all 3 criteria, i.e., SIG, BAK and OVRL,
are shown in Fig. 5.9. Some difference is observed in the BAK and OVRL mean scores
for all 3 estimated source signals (blue bars) and the mixture signals (orange bars),
while the SIG mean scores are relatively similar across the board, which confirms the
observed suppression with minimal distortion.

The corresponding p-values for the ANOVA test are given in Table 5.8. The BAK

and OVRL p-values for all three sources are below the 0.05 significance value, which
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Table 5.8: One-way ANOVA test between the estimated source signals and original
mixture signals on Scenario 1A.

Source p-value
SIGT BAK| OVRL|
1 Proposed 0.871* 0.0052  0.0058
Ablation 0.831* 0.0641* 0.0931*
) Proposed 0.913* 0.0069  0.0072
Ablation 0.893* 0.0591* 0.1213*
3 Proposed 0.844* 0.0044  0.0051

Ablation 0.884* 0.0626* 0.0824*

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

suggests a statistically significant difference between the separated and mixture signals
in terms of background interference level and overall speech quality. The SIG p-values
are well above the 0.05 significance level, which suggests that there is no statistically
significant difference in terms of signal distortion between the estimated and the mixture
signals.

The BAK and OVRL mean scores for the audio-only ablation method (green bars)
are much lower than for the proposed audio-visual method, while the SIG mean scores
are on par across the board. Furthermore, the BAK and OVRL p-values for the ablation
are above 0.05 for all sources, which suggests that the audio-only approach produces
poor separation performance. In particular, the separated signals produced by the audio-
only approach not only have poor interference suppression and overall quality, but are
truncated at the start and end of the signals due to late tracking initiation and termina-
tion.

Consequently, a co-located audio-visual configuration is capable of performing sep-
aration, but is naturally constrained by the limited spatial coverage of the single micro-
phone array. Nonetheless, the use of visual assistance to complement the audio data is
still significantly better than an audio-only approach, which is due to vastly improved
tracking performance as observed in the previous subsection.

Scenario 2

The mean scores of all 3 criteria, i.e., SIG, BAK and OVRL, are shown in Fig. 5.10,
and the results for ANOVA test are given in Table 5.9. A similar trend is observed to
Scenario 1A, although now with lower SIG and BAK scores in Scenario 2. As expected,
the proposed audio-visual based approach still achieves a small degree of separation but
clearly deteriorates as the sources are placed farther away from the microphones.

The results for the audio-only ablation indicate more pronounced failures. The BAK
and OVRL means scores for all estimated source signals are low and almost match the
scores of the mixture signals. The results of the ANOVA tests also confirm poor sep-

aration performance. These failures in the audio-only ablation are expected since the
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Figure 5.10: Mean scores for SIG, BAK, and OVRL for the estimated source signals
and original mixture signals evaluated on Scenario 2.

Table 5.9: One-way ANOVA test between the estimated source signals and original
mixture signals on Scenario 2.

p-value
SIGT BAK| OVRL|
Proposed 0.811* 0.0077  0.0081

Source

! Ablation 0.781* 0.2542* 0.3415*
) Proposed 0.753* 0.0091  0.0089

Ablation 0.803* 0.3218* 0.4035*
3 Proposed 0.714* 0.0072  0.0074

Ablation 0.694* 0.2966* 0.3211*

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

effectiveness of the GSC beamformer is highly dependent on the accuracy of the track-
ing estimates, which in this case have large localization errors, in addition to extraneous
and missing tracks, as well as late initiations and terminations.

In short, while the proposed audio-visual tracking maintains accuracy when sources
are farther away, the separation performance degrades with increasing distance between
the sources and the single microphone array. However, compared to using audio-only
where the separation fails due to erroneous tracking information, the audio-visual ap-

proach still maintains consistency in the output.

5.6.6 Additional Near-field Experiments

In the previous subsections, it was observed that near-field performance (Scenario 1A)
was markedly better than far-field performance (Scenario 2), in all aspects of mea-
surements, tracking, and separation. It was also observed via the ablation studies that
audio-visual based separation is much more effective than audio-only separation. We
now further explore the audio-visual near-field case with two additional scenarios as

described below.
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Figure 5.11: Screenshots of Scenario 1B (top) and Scenario 1C (bottom).
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Figure 5.12: Mean scores for SIG, BAK, and OVRL for the estimated source signals
and original mixture signals evaluated on Scenario 1B.

Table 5.10: One-way ANOVA test between the estimated source signals and original
mixture signals on Scenario 1B.

p-value
SIGT BAK| OVRL|
1 Proposed 0.891* 0.0057 0.0061
2 Proposed 0.853* 0.0041 0.0044
3 Proposed 0.824* 0.0039 0.0051

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

Source

In Scenario 1B, three distinct sources enter the scene at different times, and all are
moving while they are speaking. In Scenario 1C, the source enters mid-scenario but
its audio is obscured by background noise from a blender and a vacuum cleaner in the
room. In both cases the algorithm has no knowledge of the number of sources or the
times of their entry. The objective is to separate the mixture of an unknown and time
varying number of moving sources.

The screenshots in Fig. 5.11 illustrate the setup of the two additional scenarios. Due
to space constraints we omit the evaluation of the measurements and tracking, as well as
the ablation study with audio-only measurements. We only present the evaluation of the
separation in a similar manner to Section 5.6.5. All video/audio files for the additional

scenarios are available via GitHub: https://github.com/researchwork888/AV separation.

Scenario 1B (Time-varying Number of Speakers)

The mean scores of all 3 criteria, i.e., SIG, BAK and OVRL, are shown in Fig. 5.12,
and the results for ANOVA test are given in Table 5.10. The mean scores and p-values
of the OVRL and BAK criteria suggest that all three estimated sources achieve good
overall speech quality with moderate interference suppression, and similarly the mean

scores and p-values of the SIG component indicate there is minimal signal degradation
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Figure 5.13: Spectrograms for signals from Scenario 1B. Top row: mixtures; middle
row: estimated signals; bottom row: ground-truth signals.

or distortion. Additionally, the spectrograms for each of estimated signals are presented
in Fig. 5.13. In this scenario, Source 2 enters the scene a few seconds after Source 1, and
Source 3 first appears a few seconds after Source 2. Examination of the spectrograms
confirms that the proposed method is able to detect and track all three sources from the
point they each enter the scene. As a result, the individual signals for each of the three
sources is reconstructed correctly. It is also important to point out that there are no
identity switches in the estimation of the trajectories of the sources, which is necessary
for the correct reconstruction of the three uninterrupted waveforms. Overall, the results
of this scenario demonstrate that the proposed method can handle an unknown and

time-varying number of moving sources.

Scenario 1C (Loud Background Noise)

The mean scores of all 3 criteria, i.e., SIG, BAK and OVRL, are shown in Fig. 5.15,
and the results for ANOVA test are given in Table 5.11. Additionally, the spectrograms
of the obtained signals are presented in Fig. 5.14. The results indicate that the proposed
method is able to detect and track Source 1 quite accurately, and as a consequence, is
able to achieve moderate noise suppression with close to no signal distortion. The onset
of the source at the two second mark is also correctly initiated with negligible delay,
even in the presence of background noise. This is largely due to the exploitation of the
complementary audio and visual modes. The results indicate that the proposed method
is able to identify the presence, and enhance the speech signal of the moving speaker,

with both a blender and vacuum cleaner running simultaneously in the background.
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Figure 5.14: Spectrograms for signals from Scenario 1C. Top row: mixtures; middle
row: estimated signals; bottom row: ground-truth signals.
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Figure 5.15: Mean scores for SIG, BAK, and OVRL for the estimated source signals
and original mixture signals evaluated on Scenario 1C.

Table 5.11: One-way ANOVA test between the estimated source signals and original
mixture signals on Scenario 1C.

p-value
SIGT BAK | OVRL |
1 Proposed 0.841* 0.0097 0.0088

The asterisk (*) denotes values that are above the selected significance level, i.e., 0.05. (T means higher
is better while | means lower is better.)

Source
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5.7 Conclusion

This chapter proposes a solution for online separation of an unknown and time-varying
number of moving sources, based on a model-centric approach involving sequential
stages of detection, tracking, and spatial filtering. The solution exploits simultaneous
audio and video measurements, taken from a single microphone array co-located with
a single visual device, to produce complementary measurements of an active scene.
A labeled random finite set model describes the underlying statistical relationship be-
tween the audio-visual measurements and the multi-source states, including the inher-
ent multi-modal space-time permutation uncertainty. A Multi-Sensor GLMB filter is
applied to resolve the permutation problem and recursively estimate the source trajec-
tories and labels. A corresponding time-varying set of generalized side-lobe cancellers
then performs online source separation.

The proposed solution is evaluated in a real experimental setting with up to 3 live
and moving human speakers. An ablation study on audio-only data without the visual
mode confirms audibly poor performance due to limited observability with a single
microphone array. With the addition of a co-located visual sensor, in near-field ex-
periments, we demonstrate that multi-source separation is possible, despite the limited
spatial coverage of the single microphone array. For far-field experiments, the perfor-
mance is considerably reduced, but still maintains consistency in the output. In both
near-field and far-field experiments, the audio-visual approach demonstrably outper-
forms the audio-only approach. The proposed combination of audio-visual modes is
easily extended to the case of multiple visual devices with multiple microphone arrays,
which should significantly improve separation performance.






Chapter 6
Conclusion and Future Works

N this dissertation, online audio-visual separation for multiple sources where the
I number of sources is time-varying and unknown, is achieved using the three-step
approach of detection, tracking, and (spatial) filtering (DTF). In a dynamic multi-source
scenario, the construction of a time-varying set of spatial filters to separate each source
signal and suppress interfering sources requires knowledge of every source position and
its unique label at each time frame. During each frame, audio measurements obtained
from peaks of a cross-correlation or power-response function are either in the time or
space domain respectively, while visual measurements obtained from object detectors
lie in the 2D image domain. It is clear that both types of measurements are different
entities of multiple observation spaces that are not common to the source state space.
Since these measurements are typically unlabeled, it is not known how measurements
of different modes are associated together with respect to an observed source across
space and time. Moreover, the measurements are subject to missing measurements,
false measurements, and noise, in addition to the sources themselves being subject to
unknown movement, appearance, and disappearance.

These factors give rise to the multi-modal space-time permutation ambiguity prob-
lem (data association problem), which must be resolved in order to inform the construc-
tion of spatial filters for separation (in a blind multi-source condition). To address the
problem, a joint audio-visual stochastic model that captures the relationship between the
audio-visual measurements and the source states and a Bayesian mechanism to solve the
inherent multi-modal space-time permutation problem are required. The labeled RFS
framework provides a principled mechanism for combining multiple modalities in a
statistically consistently manner. Therefore, the framework facilitates the specification
of the joint audio-visual stochastic model that encapsulates the uncertainties in the au-
dio and visual measurements, as well as their respective physical relationships to the
sources. In support of building the model, this dissertation has proposed a labeled RFS-
based audio model for multi-source tracking and separation and a labeled RFS-based
visual model for MOT with occlusion handling. The joint audio-visual model is then

developed in a principled manner.
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In short, the proposed solutions revolve around the multi-sensor generalized labeled
multi-Bernoulli (MS-GLMB) tracking filter which facilitates an online estimation of
the positions and labels of the sources jointly. The MS-GLMB filter consists of the
multi-source dynamic model (which characterizes the dynamics of the source move-
ments, appearance and disappearance in a statistically consistent manner) and the multi-
source measurement model (which characterizes the nature of the measurements and is
amenable to multiple modalities given that a physical relationship between the source
states and the measurements for each mode can be established). The MS-GLMB filter
has a complexity that scales linearly with the total number of audio-visual measure-
ments and sensors, which is well-suited for online audio-visual applications. Based
on the online estimates, a corresponding spatial filter can then be constructed to per-
form source separation all in an online fashion. The following subsections present the
conclusions for the audio DTF approach, visual MOT, and audio-visual DTF approach.

6.1 Audio Multi-Source Tracking and Separation

In Chapter 3, based on a direct-path signal model, multiple microphone arrays are used
for online separation involving multiple sources where the number of sources is time-
varying and unknown. The SRP-PHAT localization method is applied on real acous-
tic recordings from a mild reverberation room to obtain the position candidates of the
sources, which are referred to as audio measurements. These measurements are un-
labeled, noisy, and containing many missing and false measurements as indicated via
the OSPA metric. Moreover, the sources are subject to unknown movement, disappear-
ance, and appearance. Consequently, these factors give rise to the space-time permu-
tation problem, because the associations between sources and the measurements from
multiple arrays across space and time are unknown.

The MS-GLMB tracking filter is adopted to address the space-time permutation is-
sue. The tracking filter is derived based on the labeled RFS framework. The source
evolutions and kinematics and the nature of the audio measurements are modeled in
a statistically consistent manner via the RFS-based multi-source transition and mea-
surement models. Despite the imperfect source measurements from real-world data, it
has been demonstrated that the MS-GLMB filter is able to estimate the source trajecto-
ries with some delay in initiation and termination, as indicated via the OSPA® metric.
Finally, a time-varying set of GSCs (one for each source present) is used to perform
source separation and suppression. Further interference suppression is achieved via a
post-processing step (i.e., time-frequency masking). The estimated signals acquired
before post-processing and after post-processing are evaluated using the ITU-T P.835
based listening tests.

Results from the listening tests show that the proposed method can produce well-

separated source signals with minimal signal distortions. The post-processing step fur-
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ther enhances interference suppression but introduces some signal distortion (musical
noise) in the estimated signals. Additional experiments using the image source model
(ISM) for room simulation indicate strong separation performance in low reverberation,
matching performance with the real-world setup in mild reverberation, and poor perfor-
mance in higher reverberation. Such results are in line with the use of the direct-path

signal model.

6.2 Visual Multi-Object Tracking with Occlusion Han-
dling

In Chapter 4, multiple cameras were used to perform online MOT in full 3D. State-of-
the-art multi-view tracking methods have relied on a data-centric multi-camera detector
that requires expensive training and retraining for any multi-camera system extension or
reconfiguration. In contrast, the proposed online MOT solution is based on monocular
detector training, thereby avoiding any training process when there is an extension or
a reconfiguration in the multi-camera system. Further, the solution is able to operate
uninterrupted during a camera failure.

The unknown time-varying number of moving (human) objects and the nature of
the image-domain visual measurements from multiple cameras are encapsulated by the
RFS-based multi-object transition and multi-camera measurement models, respectively.
The physical relationship between the objects in 3D and visual measurements in 2D
is established via the camera matrix, which can be obtained using standard camera
calibration techniques. In addition, a tractable 3D detection model that serves to inform
the detection probabilities is incorporated into the measurement likelihood function,
enabling the modified MS-GLMB filter to retain occluded tracks correctly, all while
maintaining scalability in the number of visual detections and cameras.

The proposed online method was evaluated on the latest multi-camera dataset called
WILDTRACKS [57], which only provides the ground truths on the 2D ground plane.
Results indicate comparable results with the best-performing batch (offline) method
of WILDTRACKS. The proposed method was further evaluated on the new full 3D
CMC dataset, which has varying degrees of crowded scenarios. Results indicate that in
an extremely crowded scenario when some people are not visible by the cameras, the
performance of the proposed tracker drops. This is expected since the number of severe
occlusion increases, which become more difficult to resolve. The ablation study on
the proposed 3D detection model indicates that the algorithm fails to retain tracks even
with mild occlusion when the probability of detection for each object is not correctly
assigned. Moreover, evaluations on this dataset have shown that the proposed filter can
accommodate for reconfigurations in the multi-camera system. Lastly, results indicate

that the proposed algorithm can be extended via a Jump Markov System (JMS) for
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tracking people falling and jumping.

6.3 Audio-Visual Multi-Source Tracking and Separation

In Chapter 5, the task of separating moving live human sources (where the number of
sources is time-varying and unknown) using both audio and visual data is performed
using a single microphone array co-located with a single visual device. The proposed
approach is online and model-centric involving the sequential stages of audio and vi-
sual detection, tracking and spatial filtering. Standard detection algorithms are applied
to both audio and visual data to produce complementary measurements of the scene of
interest. These measurements are unlabeled and do not reside in the same observation
space. Additionally, they are susceptible to noise, false measurements, and missing
measurements. As a result, these issues give rise to the multi-modal space-time per-
mutation problem, since the associations between measurements of both modes and

sources across space and time are unknown.

The labeled RFS framework provides a principled and systematic mechanism for
fusing both audio and visual measurements in a statistically consistent manner. The
labeled RFS framework is employed to specify the multi-source dynamic model that
captures the nature of multiple sources where the number of sources is time-varying
and unknown. The framework also specifies the multi-modal measurement model that
captures the stochastic uncertainties and imperfections of the audio and visual measure-
ments, as well as the physical relationship between the visual measurements and sources
through a 3D-to-2D camera (transformation) model. Collectively, the MS-GLMB filter
resolves the multi-modal space-time permutation problem and recursively estimates the
labels and positions of the sources. Finally, a time-varying set of GSCs is utilized to

perform separation, all in an online fashion.

The proposed approach was evaluated on live and moving human sources in two sce-
narios, a near-field condition and a far-field condition. An ablation study was carried out
for each scenario whereby the measurements, tracking and separation were performed
using the audio data only. The OSPA evaluations for both scenarios reveal that the au-
dio measurements are highly erroneous, mainly due to the lack of observability with
only a single microphone array. The OSPA?® evaluations for both scenarios highlight
the limitation on the observability of the source trajectories with a single microphone
array but suggest that the multi-modal combination of audio and video measurements
enables accurate multi-source tracking. Lastly, the listening test results confirm that in
near-field experiments, the proposed method exhibits modest separation performance,
while for far-field experiments, the performance is limited. Nonetheless, the ablation

study confirms poor separation performance for both scenarios.
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6.4 Future Works

This dissertation has developed a solution to the inherent multi-modal space-time per-
mutation problem in audio-visual separation of a time-varying and unknown number of
moving sources. This problem has been explored in the three core chapters of this dis-
sertation, i.e., by using only audio measurements (Chapter 3), then visual measurements
(Chapter 4), and finally audio-visual measurements (Chapter 5).

The following delineates future directions of the proposed solutions that are beyond
the current scope of this dissertation. These are given in the interest of improving the
algorithm as well as pointing out the shortcomings in the proposed solutions for further

development.

6.4.1 Audio Multi-Source Tracking and Separation

The multichannel localization model assumed in the current algorithm is based on a
generic time-delay model that indirectly estimates the direction-of-arrival (DOA) for
each microphone element via the time difference of arrival. This effectively makes the
localization algorithm a far-field model where directionality is the only spatial com-
ponent about the source. In scenarios where sources are in the near-field region of a
microphone array, it is advantageous to apply a near-field source localization approach
to improve tracking performance. A near-field localization model assumes that wave-
fronts impinging on a sensor array are curved as opposed to planar (far-field), requiring
both ranges and arrival angles of the sources to be estimated. The addition of range com-
ponent decreases ambiguity in audio measurements, which should lead to better track
estimates and consequently separation results via the proposed filters. A 3D near-field
signal model for localization has been established by various works [412—414]. How-
ever, localizing multiple unknown sources entails decomposing a spatial covariance
matrix into orthogonal subspaces which ultimately requires a multi-dimensional search
and is often not feasible without knowing the number of sources [415, 416]. Therefore,
future work may research on near-field solutions that can blindly estimate the 3D ranges
and arrival angles of the sources. To robustly localize multiple sources under high re-
verberation, various works have exploited a fundamental principle whereby all signal
onsets are dominated by the direct path [417-419]. Given a pair of microphone signals,
the method in [418, 419] has introduced a so-called direct-path relative transfer func-
tion (DP-RTF) feature in the TF domain, and proposed a consistency test to either retain
the DP-RTF feature in a given TF bin that is associated to one of the active sources or
disregard it. A complex Gaussian mixture model is used to cluster the selected TF bins
and localization is achieved by selecting Gaussian components with large weights. In a
blind scenario with reverberation up to 500ms, their results have shown that the method
outperformed SRP-PHAT in all aspects of localization error, missed detection rate and

false alarm rate [418]. Given that the approach operates on a frame-by-frame basis and
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is able to blindly localize multiple sources via peak selection, it would be interesting to
adapt this algorithm for an array of microphones and use the obtained measurements to

improve tracking performance under high reverberation.

6.4.2 Visual Multi-Object Tracking with Occlusion Handling

Chapter 4 has proposed a 3D multi-view multi-object tracking algorithm with a novel
detection model capable of maintaining smooth track estimates in spite of occluded and
closely-spaced human objects. In a realistic people tracking scenario, a person may
exit the scene and re-enters after a period of time. In this circumstance, the algorithm
may erroneously assign a new label/identity to the returning object as the proposed
algorithm only processes spatial measurements without any appearance information of
the object. Hence, it would be interesting to investigate integrating an appearance model
into the current labeled RFS tracking framework, which would enable a formulation of
a likelihood for the state labels given some form of statistical representation of visual
features of the objects. A survey of appearance models in visual object tracking can be
found in [420]. Appearance features such as patterns, object contours, and colors, are
key to defining the uniqueness of an object. A recent work relevant to this proposition
is the Siamese neural network for online object tracking [421, 422]. One of the salient
features of a Siamese network in object tracking is the ability to use the available data
online to adjust the weights of a pre-trained network [421]. A learning strategy proposed
in [423] has enabled a Siamese network to effectively learn background suppression and
target appearance variation from previous frames. Since each hypothesis for a track in
the GLMB has a stored online memory of all its past (measured) visual features, it is
conceptually feasible to leverage this information to build an appearance model that

updates its discriminative power over time [424].

6.4.3 Audio-Visual Multi-Source Tracking and Separation

Chapter 5 has proposed a audio-visual multi-source separation algorithm that processes
audio and video measurements, taken from a single microphone array co-located with
a single visual device, to track and separate multiple moving sources. Results have
demonstrated better tracking and separation performance in a near-field setting as com-
pared to a far-field setting. To improve both the tracking and separation performance
for a larger field, a future direction may include distributing multiple visual devices
and multiple microphone arrays in the tracking field. This is feasible because the MS-
GLMB filter has a complexity that scales linearly with the total number of measure-
ments across all sensors. The extension to multiple distributed cameras and micro-
phones makes the work interesting, as more cameras and microphones observing the
scenario from different vantage points provide more significant information for both

tracking and separation. This also enables the integration of the proposed occlusion
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model in Chapter 4 and the flexibility of selecting the closest microphone array to a
source for beamforming in order to achieve better separation quality. Moreover, fu-
ture work may investigate and incorporate the abovementioned future works on audio
tracking under reverberation and visual tracking with source reappearance. This could
potentially culminate in the development of an audio-visual multi-source separation so-

lution that is robust against reverberation and source reappearance.






Appendix A

Derivation of The Shadow Region
Indicator

Let an object of labeled state x = (x, £) be an axis-aligned ellipsoid, where x £ (x(?), x(*)),
x) is a vector representing the centroid, and x(*) is a vector containing the half-lengths
of the ellipsoid’s principal axes. From Section 4.3.1 of Chapter 4, the shadow region

indicator function is given by

(¢) \2 (c) (o)
Lo (8)2-4a.c8 20

13(c)(xr)(X) = (Al)
0, otherwise
where
L\ -2
ﬂicl =(x®) — T (diag(x(s) )) (x?) — ), (A2)
-2
3)(:))5 :(x(P)_u(C))T [2 (diag(x(s) )) u(c)+hxf ’ (A3)
L\ -2
L) =y l(diag(x(s) )) U+ e | + 8y, (A.4)
v )
R S - S (OGN €34 |
e =2 B = 0 -1, (AS)

and u'© is the position of camera ¢, with multiplication/division of two vectors of the
same dimension to be understood as point-wise multiplication/division. The derivation

of (A.1) is given in the following.

Consider a set of objects X and a camera of index c, the region occupied by a labeled
state x” € X is given by [380]:

Rx)={aeR’:a"A wa+nh, a+E, <0}, (A.6)
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where

-2
Aoy = (diag(x(s) )) , (A7)

N0
hx’ ——2m, (AS)

’ ’ 2
&y = Hx@) 2 -1 (A.9)

The shadow region of an object with labeled state x” € X, relative to camera c, is given
by (as described in Section 4.2.5 of Chapter 4):

SO(x') = {a eR: (U9, a) N R(x') # @}, (A.10)

where (1), @) £ {ya + (1 — x)u'® : y €[0,1]} is the line segment joining the position
u'®) of camera ¢ and «.

The indication of x € X falling in the shadow region of x’, i.e. 1 S(c)(x,)(x) =1,1is
determined by whether the line segment between «(°) and xP) of x, crosses the boundary
of the ellipsoid x’ twice. Therefore, substituting the line (u(%), x()) into the ellipsoid
boundary equation of x” yields [425]:

((x@) — U YA oy (xP) — u@)) en
((x(p) - u(c))T [2Ax(syu(c) + hx/] ) X+

((u(c))T [Axmfu(c) +7’le] +8x’) =0, (A.11)

where A sy, Iy, and &, are specified in (A.7), (A.8), and (A.9) respectively.
Consequently, the indicator function is specified by determining whether the roots
of (A.11) are real, or equivalently, checking whether the discriminant of the (A.11) is a

positive number, i.e.

1 if the discriminant of (A.11) is a positive number
Lsexn(x) = ‘ . (A.12)
0 otherwise



Appendix B

Derivation of The Object-to-Detection
Transformation

Let an object of labeled state x = (x, £) be an axis-aligned ellipsoid, where x £ (x?), x(9)),
x) is a vector representing the centroid, and x(*) is a vector containing the half-lengths
of the ellipsoid’s principal axes. The transformation Y“)(x) in the measurement likeli-
hood from Section 4.2.5 of Chapter 4 has the following closed form

T(x) £ Z(P(x)), (B.1)
where

-1 -1

- ONSE
oo |diag(x*) 7" e /2| o) 1
P(C)(x) = P3cx4 ’’’’’ hz}’z”””("é;’” (P3L;<4) > (BZ)
x(P)
hx = —2m, (B3)
2
Ex = Hx@ x| -1, (B.4)
: —QD_IQTI"
A r -0.5
Z S AN ) = 2v||[1,01@D™*3|, |, (B.5)
i 2v||[0,1]1@D~%3|,
v=(rTQD'QTr - €)%, (B.6)

Q is a matrix containing the eigenvectors of A, and D is a diagonal matrix of the eigen-

values of A. The derivations for £(°)(-) and Z(-) are given in the following.

The function P(°)(-) is a matrix-to-matrix projection that transforms the quadric P

into a conic C,(CC) on each image of camera c. In the homogeneous coordinate system,
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Figure B.1: Illustration of a conic to bounding box transformation.

an axis-aligned ellipsoid x is a quadric represented by [380]:

,,,,,,,,,,,,,,,,,,,,,,,,,,

()))-2 !
\Px-l(dlag(’“ V22 | ®7)

The perspective projection of a quadric (B.7) under the camera matrix P(32 4 of camera

¢, results in a conic represented by a symmetric 3 X 3 matrix C,(CC) [380, pp. 201]:

1
cl = (pg24xpx (P(C)4)T) , (B.8)

The function Z(-) is a matrix-to-vector transformation that transforms the conic C)(f)
into a 4D bounding box specified by its center and extent (width and height):

(c)

X,C1

(c)
AU e ’ E2
2 || (gx,ula gxﬂ’l ) ||2

2 || ((x,uz’ gX,VZ) ||2

where {5 © = (£ (Cc)l,g“,(c )T is the centroid of the conic, and £\ = (£¢ (ifl,g)ﬁ 7, @ =
04 §°31,§ )(C )T are the orthogonal half-length vectors of the conic respectively (see Flg.
B.1). To compute £ )ECC), )ECJ )(CCV) € R? from C“), the conic

,,,,,,,,,,

: (B.10)

is expressed in its polynomial form:

a’Aa+@2r)a+e=0, (B.11)
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where a € R? dummy/free variable, A is a 2 X 2 positive symmetric definite matrix, r is
a vector and e is a number. Subsequently, we conduct a change of basis to obtain the
standard form of the ellipse, so that the ellipse centroid and lengths of the half-axes can
be identified.

Based on eigendecomposition, the positive symmetric definite matrix A can be de-
composed into, A = QDQ™!, where Q is an orthogonal matrix containing the eigenvec-
tors of A, and D is a diagonal matrix of the eigenvalues of A. Substituting this into
(B.11), yields

(aTQ) D (Q—la) +@r)a+e=0. (B.12)

Leta’ = (Q‘la) be the dummy variable in this new coordinate system, then the equation
(B.12) becomes

@) D(@)+ ((2r)TQ) o +e=0. (B.13)

By completing the square of the above equation, and arranging the terms, we get the
standard form of an ellipse (note: an inverse of an orthogonal matrix is equal to its

transpose):

(o} - (-D'Q"r),)’

+
((rTQD—IQTr _ e)—O.S ||[1,O]D_0'5||1)2

(25 - (-D7'Q"r),)°

=1, (B.14)
((rTQD—IQTr _ e)—O.S ||[0, 1]D—0.5||1)2

where the subscripts 1 and 2 denote the x-axis and y-axis of the vector respectively, and
II]|,, is the n-norm. With the standard form of an ellipse, it is straightforward to identify

the ellipse’s centroid and lengths of the half-axes.

To retrieve the centroid vector £ )(Ccc) in the original coordinate system, we undo the

transformation by multiplying with the matrix Q, i.e.

© - _QD'Q"r. (B.15)

Subsequently, the two orthogonal half-length vectors of the conic ¢ )Ecu), 4 ,ECV) are obtained
by scaling the eigenvectors by the length of the half-axes:

-0.5
[ . )E,Cv)] = (rTQD‘lQTr—e) QD™ (B.16)
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Consequently, substituting (B.15) and (B.16) into (B.9) yields:

-QD'Q"r
Zc¥) = | 2(:7@D1Q@"r - ¢)**||[1,01@D], | (B.17)
2(7QD'Q@"r e ‘°5|| 0,11@D3|,



Appendix C

OSPA/OSPA® Metrics

Consider a space W with d : WXW — [0; c0) as the base-distance between the elements
of W. Let d)(x,y) = min (c,d(x,y)), and I1,, be the set of permutations of {1,2,...,n}.
The Optimal Sub-Pattern Assignment (OSPA) distance of order p > 1, and cut-off ¢ > 0,
between two finite sets of points X = {xy,...,x,} and Y = {yy,..., y,} of W is defined by
[50]

1
m P
(p:c)
d" (XY )= n(;relll_[n E x,,y,r(l) cp(n—m))) , (C.1)

if n>m >0, and dP)(X,Y) = dP)(Y,X) if m > n > 0. In addition, dP(X,Y) = ¢
if one of the set is empty, and dép ’C)((Z), 0) = 0. The integer p plays the same role as

the order of the £,-distance for vectors. The cut-off parameter ¢ provides a weighting
between cardinality and location errors. A large ¢ emphasizes cardinality error while a
small ¢ emphasizes location error. However, a small ¢ also decreases the sensitivity to
the separation between the points due to the saturation of c_l(c) at c.

The OSPA® distance between two sets of tracks is the OSPA distance with the
following base-distance between two tracks f and g [51]:

. 4 (f ()} {2 (DY)
d9fg)= Y, =2 ;0D

(C.2)
tEDfUDg

if DrUD, #0, and d'(f,8) =0 if DyUD, = 0, where Dy U D, denotes the set
of instants when at least one of the tracks exists, and d[(]c)({ f(@®)},{g(¢)}) denotes the
OSPA distance between the two sets containing the states of the two tracks at time ¢
(the set {f(¢)} (or {g(¢)}) would be empty if the track f (or g) does not exist at time
t). Note that the order parameter p of the OSPA distance in (C.2) is redundant because

only sets of at most one element are considered.






Appendix D

Intersection-over-Union (IoU) and
Generalized IoU (GIoU) Metrics

For bounding boxes x, y, the IoU similarity index is given by
IoU(x,y) = [xNyl/[xUy| €[0;1], (D.1)
where |-| denotes hyper-volume, while the Generalized IoU index is given by
GloU(x,y) = IoU(x,y) = |C(x Uy) \ (x Uy)I/|C(x U ), (D.2)

where C(x U y) is the convex hull of x Uy [65]. The metric forms of IoU and GloU,
respectively are d,,(x,y) =1-1IoU(x,y) and d, ., (x,y) = %U(x’y), both of which
are bounded by one [384].






Appendix E

Monocular Detector Results

Table E.2 shows the CLEAR evaluation for detections on the CMC dataset, which is
referenced from Section 4.4.3 and Section 4.4.4 of Chapter 4. Table E.1 shows the
CLEAR evaluation for detections on WILDTRACKS dataset, which is referenced from
Section 4.4.2 of Chapter 4.

Table E.1: CLEAR Evaluation for Detection Results on WILDTRACKS Dataset

Detector MODA T | MODP T | Precision T | Recall T

- YOLOv3 12.2% 70.1% 0.55 0.62
F-RCNN(VGGI16) | -17.1% 69.6% 0.44 0.62

© YOLOv3 31.7% 68.5% 0.68 0.58
F-RCNN(VGGI16) | 28.4% 68.3% 0.67 0.57

3 YOLOv3 -24.4% 69.2% 0.42 0.68
F-RCNN(VGG16) | -34.6% 69.0% 0.40 0.69

4 YOLOv3 272.4% | T1.1% 0.14 0.57
F-RCNN(VGGI16) | -300.0% | 70.1% 0.14 0.57
YOLOV3 -94.4% 70.0% 0.29 0.69

© F-RCNN(VGGL16) | -113.0% 67.8% 0.27 0.71
YOLOv3 -12.6% 63.4% 0.44 0.50

<o F-RCNN(VGGI16) | -30.5% 65.4% 0.39 0.53
YOLOv3 -79.2% 70.1% 0.33 0.77

7 F-RCNN(VGG16) | -100.3% 69.3% 0.31 0.77
All | Deep-Occlusion 74.1% 53.8% 0.95 0.80
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Table E.2: CLEAR Evaluation for Detection Results on
CMCI1 to CMC5

CMCl1 Detector MODA T | MODP T | Pren T | Rell T
ot YOLOV3 206% | 802% | 056 | 097
F-RCNN(VGG16) | 12.0% | 803% | 053 | 097
o YOLOV3 205% | 788% | 056 | 097
F-RCNN(VGG16) | 12.0% | 80.1% | 053 | 0.98
s YOLOV3 132% | 797% | 053 | 097
F-RCNN(VGG16) | 10.1% | 808% | 051 | 097
o YOLOV3 121% | 797% | 051 | 096
F-RCNN(VGG16) | 11.1% | 803% | 041 | 096
CMC2 Detector MODA T | MODP T | Pren T | Rell T
o YOLOV3 512% | 762% | 077 | 072
E-RCNN(VGG16) | 375% | 765% | 067 | 0.73
YOLOV3 453% | 765% | 072 | 072
Camz | RCNN(VGGI6) | 355% | 766% | 066 | 073
YOLOV3 8B4% | 772% | 071 | 072
Cam3 | RCNN(VGGI6) | 344% | 772% | 066 | 072
YOLOV3 4713% | 717% | 074 | 071
Camd | RCNN(VGGI6) | 374% | 78.0% | 067 | 072
CMC3 Detector MODA T | MODPT | Pren T | Rell T
YOLOV3 44.9% | 764% | 079 | 0.60
Caml | RCNN(VGGI6) | 331% | 760% | 067 | 061
YOLOV3 398% | 753% | 073 | 062
Camz | L RCNN(VGGI6) | 309% | 754% | 066 | 0.63
YOLOV3 36.1% | 744% | 072 | 058
Cam3 | RCNN(VGGI6) | 206% | 740% | 066 | 061
YOLOV3 37.0% | 749% | 072 | 059
Camd | RCNN(VGGI6) | 27.6% | 746% | 065 | 060
CMC4 Detector MODA T | MODPT | PrenT | Rell T
YOLOV3 86.8% | 82.0% | 093 | 093
Caml | RCNN(VGGI6) | 767% | 82.6% | 084 | 094
YOLOV3 752% | 79.1% | 087 | 088
Cam2 | E RCNN(VGGI6) | 68.3% | 803% | 082 | 088
YOLOV3 86.7% | 84.6% | 093 | 093
Cam3 | RCNN(VGGI6) | 77.3% | 870% | 084 | 095
s YOLOV3 815% | 827% | 094 | 087
F-RCNN(VGG16) | 759% | 822% | 082 | 097
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CMCs5 Detector MODA T | MODPT | Pren T | Rell T
Caml YOLOV3 48.7% 75.1% 0.77 0.68
F-RCNN(VGGI16) | 50.3% 74.8% 0.71 0.69

Cam2 YOLOv3 49.8% 75.6% 0.66 0.65
F-RCNN(VGG16) | 45.3% 76.4% 0.67 0.61
YOLOv3 50.7% 73.1% 0.65 0.66

Cam3 F-RCNN(VGGI16) | 44.7% 74.3% 0.65 0.65
Camd YOLOv3 49.8% 76.2% 0.65 0.68
F-RCNN(VGGI16) | 46.7% 74.1% 0.61 0.69
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Statements of Contribution

Publication 1

To whom it may concern, I, Jonah Ong Soon Xuan, contributed to the theoretical de-
velopment of the algorithm, implementation (MATLAB), evaluation and drafting of the
paper titled:

J. Ong, B. T. Vo and S. Nordholm, "Blind Separation for Multiple Moving Sources With
Labeled Random Finite Sets," in [IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 29, pp. 2137-2151, 2021, doi: 10.1109/TASLP.2021.3087003.

(Jonah Ong Soon Xuan)

The co-authors listed below contributed towards theoretical developments, drafting,
and editing the paper, suggesting the design of the experiments, surveying for suitable
existing techniques for comparisons, and providing insights on the evaluation of the

source separation results.

I, as a co-author, endorse that this level of contribution by the candidate indicated
above is appropriate.

(Ba Tuong Vo)

(Sven Nordholm)
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Publication 2

To whom it may concern, I, Jonah Ong Soon Xuan, contributed to the theoretical de-
velopment of the algorithm, implementation (MATLAB), evaluation and drafting of the
paper titled:

J. Ong, B. -T. Vo, B. -N. Vo, D. Y. Kim and S. Nordholm, "A Bayesian Filter for Multi-
view 3D Multi-object Tracking with Occlusion Handling," in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 44, Issue: 5, pp. 2246-2263, 2022, doi:
10.1109/TPAMI.2020.3034435.

(Jonah Ong Soon Xuan)

The co-authors listed below contributed by way of making theoretical develop-
ments, drafting and editing the paper, documenting the novel occlusion model and
tracking filter, providing insights into state-of-the-art visual detection and tracking al-

gorithms and surveying related datasets for experimental comparisons.

I, as a co-author, endorse that this level of contribution by the candidate indicated

above is appropriate.

(Ba Tuong Vo)

(Ba-Ngu Vo)

(Du Yong Kim)

(Sven Nordholm)
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Publication 3

To whom it may concern, I, Jonah Ong Soon Xuan, contributed to the theoretical de-
velopment of the algorithm, implementation (MATLAB), evaluation and writing of the
paper titled:

J. Ong, B. T. Vo, S. Nordholm, B. -N. Vo, D. Moratuwage and C. Shim, “Audio-Visual
Based Online Multi-Source Separation,” in IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 30, pp. 1219-1234, 2022, doi: 10.1109/TASLP.2022.315
6758.

(Jonah Ong Soon Xuan)

B.T. Vo, S. Nordholm and B.N. Vo contributed towards theoretical developments,
drafting and editing the paper. D. Moratuwage and C. Shim contributed by way of
recording the dataset, providing insights into carrying out the experimental evaluations
and editing the paper.

I, as a co-author, endorse that this level of contribution by the candidate indicated
above is appropriate.

(Ba Tuong Vo) (Changbeom Shim)

(Sven Nordholm)

(Ba-Ngu Vo)

(Diluka Moratuwage)
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Publication 4

To whom it may concern, I, Jonah Ong Soon Xuan, contributed to the theoretical de-
velopment of the algorithm, implementation (MATLAB), evaluation and drafting of the
paper titled:

J. Ong, D. Y. Kim and S. Nordholm, "Multi-sensor Multi-target Tracking Using La-
belled Random Finite Sets with Homography Data," 2019 International Conference on
Control, Automation and Information Sciences (ICCAIS), 2019, pp. 1-7, doi: 10.1109/IC-
CAIS46528.2019.9074716.

(Jonah Ong Soon Xuan)

The co-authors listed below contributed by way of editing the paper and proposing
ideas for the experiments.

I, as a co-author, endorse that this level of contribution by the candidate indicated

above is appropriate.

(Du Yong Kim)

(Sven Nordholm)
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Statements of Contribution

Publication 5

To whom it may concern, I, Jonah Ong Soon Xuan, contributed to the theoretical de-
velopment of the algorithm, implementation (MATLAB), evaluation and drafting of the
paper titled:

J. Ong, D. Y. Kim and C.T. Do, “A Tractable Multi-Target Detection Model for Line-
of-Sight Measurements,” 2021 International Conference on Control, Automation and
Information Sciences (ICCAIS), 2021, doi: 10.1109/ICCAIS52680.2021.9624664.

(Jonah Ong Soon Xuan)

The co-authors contributed by way of editing the paper and proposing ideas for the

experiments.

I, as a co-author, endorse that this level of contribution by the candidate indicated

above is appropriate.

(Du Yong Kim)

(Cong-Thanh Do)
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