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Summary/Abstract 

Deficits in neurocognitive abilities have been claimed to be an aetiological feature of 

psychopathology. However, to date there no consistent neurocognitive deficit has been found 

within any psychopathological disorder, indeed the associations between neurocognitive 

performance and psychopathology have been found to be extensively heterogeneous. One reason 

for this demonstrated heterogeneity may be due to the dominant use of the traditional nosological 

approach to diagnosis, using tools such as the Diagnostic and Statistical Manual of Mental 

Disorders (DSM). The traditional nosological approach has been met with multiple challenges, 

including high levels of comorbidity and poor diagnostic stability, meaning that the study of any 

single disorder is difficult. Recently, dimensional structural models of psychopathology have 

been developed through factor analysis that, instead of categorising psychopathology, view 

psychopathological experience on a dimension across multiple higher and lower order factors 

and indicators. Arising from these models are factors such as internalising, externalising and the 

p-factor. The p-factor in particular has drawn much interest and was said to be a substantive 

construct representing individuals’ overall propensity toward psychopathology. The present 

thesis explores the associations between neurocognition and dimensional conceptualisations of 

psychopathology, including the p-factor, and explores our claim that non-linear multidimensional 

interactions between neurocognitive components underly the functional association between 

neurocognition and psychopathology.  

 To provide an initial understanding of the potential for the higher-order factors of 

psychopathology to have a universal substantive meaning, we explored the utility and 

consistency of four popular models of psychopathology in a range of population subgroups . We 

then examined the consistency of the neurocognitive correlates of the models’ factors to provide 

an indication of substantive consistency. Only eight out of the sixty-three population subgroups 

fit any of the four popular structural models of psychopathology tested; the correlated factors 

model, the bifactor model, the revised bifactors model or the single factors model.. The strength 

of the neurocognitive correlates of the factors derived from the subgroups differed substantially 

from the correlations to the factors derived from the total sample. Overall, this suggests that the 

utility of structural models of psychopathology is best on the population level and that the 

substantive meaning of the factors differs between different samples. Developing a universal 
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substantive meaning of the higher-order factors of psychopathology may therefore be 

challenging and, if it was to be developed, it would only be applicable at the population level. 

 Informed by study one, the second study examined the potential for an alternative 

structural model of psychopathology, the S-1 bifactor model, to elucidate the associations 

between neurocognition and dimensional psychopathology. We developed S-1 bifactor models 

where the general factor (i.e., the p-factor) is defined by overall neurocognitive performance. 

This , therefore, mitigates the issue of a general factor without substantive meaning. We show in 

this study that the S-1 bifactor approach provides distinct advantages over the typical bifactor 

approach by allowing for the assessment of individual factor loadings on the general (cognitive) 

factor, and the associations between the psychopathology factors after accounting for the 

cognitive factor, can help form hypotheses. However, the S-1 bifactor approach is limited to 

providing only an understanding of the associations between psychopathology and overall 

neurocognition (or a single neurocognitive component) across the population. Therefore, to 

provide an understanding of the variability of neurocognition and its associations to 

psychopathology, supplementary approaches are required.  

 The third study looked to develop statistical models of psychopathology and explore if, 

the factors of psychopathology had different neurocognitive correlates. These results would 

elucidate potential aetiological explanations of the separate factors. We collected data 

participants on dimensional measures of psychopathology and substance use, as well as eight 

neurocognitive tasks measuring working memory, shifting, inhibition and speed of processing. 

Both the correlated factors model and the single factor model provided a good fit for the data. 

Only the tasks that measured speed of processing were significantly associated with 

internalising, externalising, and the p-factor. Therefore, on the population level, these results 

provided evidence that neurocognitive performance does not differentiate between the factors of 

psychopathology and instead speed of processing is a common correlate across the domains.  

 The final study directly compared two conceptualisations of the association and 

functionality between neurocognition and psychopathology: our non-linear multidimensional 

interactive conceptualisation versus the traditional linear conceptualisation. Using the 

neurocognitive, psychopathology, and substance use data previously collected, we compared the 

predictive accuracy of artificial neural network models to traditional linear models with regards 

to lower-level and higher-level psychopathology. Both the artificial neural network models and 
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the linear models had the same predictors; age, gender, and the eight neurocognitive tasks. The 

artificial neural network models were significantly more accurate than the linear models at 

predicting both (a) lower-level (i.e., depression, hostility, cannabis use) and (b) higher-level 

psychopathology (internalising, externalising, and the p-factor). These results provide support for 

the non-linear multidimensional interactive conceptualisation being superior to traditional linear 

conceptualisations of neurocognition within psychopathology. We do note however that, as 

shown in study one, a universal substantive meaning of the higher-level factors is not apparent, 

and therefore, even although a dynamic multidimensional approach is useful in predicting these 

factors, nuanced examinations of the multidimensional functionality of neurocognition in 

psychopathology may be best at the lower-level (i.e., non-factorised) domains.  

 Overall, this thesis provides important knowledge to forward our understanding of the 

structure, function, and conceptualisation of both psychopathology and neurocognition. This 

thesis provides an understanding of the considerations of the substantive interpretation of the 

factors of psychopathology, an illustration of an alternative structural approach to examine 

neurocognition within psychopathology, a greater understanding of the neurocognitive correlates 

of higher-order dimensional psychopathology across the population, and support for a 

multidimensional interactive conceptualisation of neurocognition within psychopathology. 

Future research should further examine the substantive interpretability of the factors of 

psychopathology, utilise the S-1 bifactor approach to further our understanding of trends of 

neurocognitive dysfunction within psychopathology across the population, and further examine 

the non-linear multidimensional integrative conceptualisation through computational modelling, 

descriptive, and artificial neural network approaches. Our findings, along with future research 

extending upon this work, may be used to inform dynamic multidimensional tools and 

approaches to prediction, assessment, treatment, and rehabilitation pertaining to 

psychopathology. 
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Author’s Note 

This thesis is presented as a hybrid thesis. The hybrid thesis includes, in the form of 

thesis chapters, manuscripts that have been published in peer-reviewed journals. While the 

thesis’ chapters build upon each other, each chapter, apart from the general discussion, was 

produced to be a stand-alone publication. Therefore, some repetition, particularly in the 

background sections of each chapter is unavoidable. Each chapter is preceded by a preface that 

describes the contribution of the chapter to the overall aims of the thesis. The preface also acts to 

link each chapter, creating a unified body of research and discussion. The references for each 

manuscript are presented together at the end of the thesis to facilitate readability.  
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Preface to Chapter 1 

The following chapter sets the scene of the current state of the literature regarding the association 

and dynamics of psychopathology and neurocognitive abilities, and provides a road map, in the 

form of four specific directions for future research. Chapter one blends evidence and theory from 

clinical psychology, neuropsychology, biology, and philosophy into an integrated narrative 

outlining the development of the literature in this area to date, including both historical 

perspectives and recent developments. After discussing the development of the literature, we 

provide several pertinent considerations and unknowns for the exploration of psychopathology 

and neurocognitive abilities and propose the application of a non-linear multidimensional 

interactive neurocognitive conceptualisation to the study of structural models of 

psychopathology. The proposed road forward that concludes this chapter will be followed in the 

remaining chapters of this thesis.    
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Chapter 1: Psychopathology and Neurocognition in the Era of the p-Factor: The Current 

Landscape and the Road Forward 

1.1 Introduction 

A consensus exists within the study of typical human development that variability in 

neurocognitive abilities accounts for a large proportion of individual differences in domains such 

as problem solving, reasoning, thinking and planning. Furthermore, deficits in neurocognitive 

processes have been repeatedly implicated in studies of psychopathology (Snyder et al., 2015). 

For example, deficits in the executive function (EF) processes of shifting, updating and 

inhibition have each been separately argued to explain symptoms of schizophrenia (e.g., Galletly 

et al., 2007; Gilleen et al., 2016; Kiehl et al., 2000), depression (e.g., De Lissnyder et al., 2010; 

Joormann & Gotlib, 2008; Joormann et al., 2007) and substance use disorder (e.g., Brooks et al., 

2017; Mahmood et al., 2013; Noël et al., 2013). However, the literature shows little agreement as 

to which neurocognitive processes are of primary importance in any given disorder. One reason 

for this is that, within the context of clinical diagnoses, individuals diagnosed with the same 

psychopathological disorder can exhibit markedly different symptoms. Another reason is that 

many individuals diagnosed with a specific psychopathological disorder are also found to meet 

the criteria for other disorders (Newman et al., 1998); thus, making the pure study of any given 

disorder more challenging. 

Issues to do with the heterogeneity of symptoms and the comorbidity of disorders have 

motivated the development of several structural models of psychopathology aimed at accounting 

for covariation amongst psychopathology and providing a dimensional framework that can be 

used for the description and understanding of psychopathology (Caspi et al., 2014; Kotov et al., 

2017; Lahey et al., 2012). Whilst in some instances transdiagnostic approaches have been hailed 

as achieving a degree of success (e.g., Aldao et al., 2016; Mansell et al., 2012; McManus et al., 

2010), an explanation of the mechanisms of dysfunction remains limited.  

In this paper, we discuss some of the main issues that have prevailed within the 

classification and study of psychopathology and discuss the development of dimensional 

structural models of psychopathology. We use Caspi et al.’s (2014) seminal work as a basis of 

this paper due to its popularity and how recent literature has used their findings to further 

develop the understanding of structural models of psychopathology, thereby facilitating 

discussion of the development of this literature. We describe the rise of the p-factor and 
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components claimed to be integral to the factor’s existence, as well as the debate surrounding the 

nature of the p-factor as a substantive or artefactual construct. We briefly review key 

neurocognitive accounts relating to the basis of psychopathology and how dimensional models 

may facilitate the exploration of the association between psychopathology and neurocognitive 

abilities and describe the multidimensional hypothesis (Haywood & Baughman, 2021). This 

hypothesis is based on the idea that psychopathologies are rarely the consequence of deficits to 

single neurocognitive mechanisms. Rather that cognitive dysfunctions are more often the 

outcome of the dynamics of a system comprised of uneven profiles in abilities. We conclude by 

providing a road forward for a better understanding of the relation between neurocognitive 

mechanisms and psychopathology. 

1.2 Classifying Psychopathology 

Griesinger (1817–1868) argued for psychiatric symptoms (or “madness”) being the result 

of a singular disease, and referred to this as the “unitary psychosis” (Rybakowski, 2019). Emil 

Kraepelin (1856–1926) later devised the Kraepelinian Dichotomy, the characterisation of mental 

disorder into dementia praecox (to be later reconceived as schizophrenia) and manic-depressive. 

psychosis (to be later reconceived as bipolar disorder). This dichotomy led to the development of 

modern diagnostic manuals (Rybakowski, 2019). In the current day, psychopathology is 

generally defined and determined through a traditional nosological approach, classifying 

pathology into single, discrete categories (Krueger & Eaton, 2015). The Diagnostic and 

Statistical Manual (DSM) and the International Classification of Diseases (ICD) have become 

standard tools used to guide the diagnosis of psychopathology (Clark et al., 1995). However, the 

reliance on these tools have raised particular issues regarding comorbidity and diagnostic 

stability. For example, Newman et al.’s (Newman et al., 1998) work showed that of individuals 

who meet the diagnostic criteria for one DSM-3 defined disorder, approximately half will meet 

the criteria for a second, and approximately half of those will meet the criteria of a third disorder, 

and so on. These issues of comorbidity have also been seen in subsequent issues of the DSM (see 

(Kotov et al., 2017)). The poor stability of disorder diagnosis is a further issue for the 

nosological approach. For example, a high proportion of anxiety disorders transition to a 

different anxiety disorder over a six-year period (Hovenkamp-Hermelink et al., 2016). 

Aetiological similarities between disorders also suggest that disorders are not so distinct. For 

example, schizophrenia and bipolar affective disorder share aetiological markers across genetic, 
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environmental, neurological and cognitive domains (Burdick et al., 2006; Lichtenstein et al., 

2009; Smucny et al., 2018). Ultimately, the high level of comorbidity between disorders, in 

addition to a plethora of biological, cognitive and environmental evidence, suggests that 

disorders are not as distinct as previously assumed (Krueger & Eaton, 2015). On a practical 

level, this has many implications. For example, high levels of comorbidity and low levels of 

diagnostic stability make the study of any individual disorder difficult, as well as complicates 

treatment decision making (see Newman et al., 1998). 

To combat issues of comorbidity and diagnostic stability, and to better facilitate the 

growing aetiological evidence suggesting low-level mechanistic commonalities, several 

structural models of psychopathology have been developed. Kotov et al. (2021) integrates the 

available evidence of structural models of psychopathology, providing a synthesised model. 

However, the size and specifications of this structure makes it difficult to test and use in its 

entirety. Structural models view psychopathology as dimensional and explore hierarchical 

relationships among psychopathological symptoms to develop subordinate and superordinate 

components of psychopathology. Furthermore, it has been suggested that these dimensional 

models may be used to inform treatment by basing and prioritising treatment decisions on the 

symptom dimensions at the various levels of the models’ hierarchy (see Kotov et al., 2021; 

Ruggero et al., 2019). The most prominent models were developed through Caspi et al.’s (2014) 

longitudinal research. This research saw the development and assessment of hierarchical models 

of psychopathology that are claimed to enhance our understanding of disorders. 

1.3 Caspi et al.’s Structural Models of Psychopathology 

Caspi et al. (2014) used data from the Dunedin Multidisciplinary Health and 

Development Study consisting of a battery of biological, developmental, clinical, personality and 

neurocognitive measures administered to a representative community sample of 1000 

participants across a total of 11 time points over a 35-year period (ages 3, 5, 9, 11, 13, 15, 18, 21, 

26, 32 and 38). Using the Diagnostic Interview Schedule (Robins et al., 1995), clinicians counted 

the number of symptoms each participant reported in accordance with 11 predetermined, 

common, DSM defined disorders at five time points (ages 18, 21, 26, 32 and 38). Disorders and 

symptomology assessed included various substance use disorders (e.g., alcohol, cannabis, 

tobacco), conduct disorder, major depressive episode, fears and phobia symptoms, obsessive 

compulsive disorder, mania symptoms, and schizophrenia (Caspi et al., 2014). Caspi et al. (2014) 
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showed that the array of symptoms could be reliably fit to a correlated factors model, with 

factors pertaining to symptom counts of each disorder over time, and three higher-order factors 

called internalising, externalising and thought disorders (see Figure 1.1). Figure 1.1 shows the 

11 disorder symptom counts over time, loading onto their specific disorder factor, representing 

longitudinal symptomology. Figure 1.1 also shows the disorder specific factors then further 

loading onto one of the three higher-order factors of psychopathology. 

Figure 1.1.  

Correlated Factors Model Adapted from Caspi et al. (2014).  

 

 

Notes. Ovals represent latent symptom factors; boxes represent the symptoms related to each 

disorder. The 11 disorders included in the model are: ALC = Alcohol. CAN = Cannabis. DRG = 

Hard drugs. TOB = Tobacco. CD = Conduct disorder. MDE = Major depressive episode. GAD = 

General Anxiety Disorder. OCD = Obsessive Compulsive Disorder. SCHIZ = Schizophrenia. 
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Caspi et al. (2014) tested another structural model of psychopathology, called the bifactor 

model. The bifactor model contained not only the disorder specific and higher-order factors but 

also a single General Psychopathology factor (see Figure 1.2). The addition of the general factor 

accounted for further symptom variance among all disorders included in the model, over and 

above that only accounted for by the internalising, externalising and thought disorder factors. 

The thought disorder factor was subsumed by the introduction of the general factor and so was 

subsequently removed from the model (Caspi et al., 2014). The bifactor model was found to be a 

better for the data than the correlated factors model, and has subsequently become highly popular 

in psychiatric and psychological research. 

Figure 1.2.  

Revised Bifactor Model Adapted from Caspi et al. (2014). 

 

Note. Ovals represent latent symptom factors; boxes represent the symptoms related to each 

disorder. The 11 disorders included in the model are: ALC = Alcohol. CAN = Cannabis. DRG = 

Hard drugs. TOB = Tobacco. CD = Conduct disorder. MDE = Major depressive episode. GAD = 

General Anxiety Disorder. OCD = Obsessive compulsive disorder. SCHIZ = Schizophrenia. 
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The general psychopathology factor was named the p-factor, in line with its likeness to 

the g-factor, originating in the literature on intelligence. Indeed, like the g-factor, Caspi et al. 

(2014) argue that, conceptually, the p-factor is normally distributed within the population. Caspi 

et al. (2014) took the view that general psychopathology factor is a substantive construct that 

determines the presence and absence of all pathological symptoms. Crucially, the higher the p-

factor, the greater the propensity towards psychopathology. Overall, Caspi et al. (2014) found 

that their bifactor model successfully accounted for psychopathology in a hierarchical manner. 

The p-factor accounts for the common variance of all psychopathological symptoms, while the 

internalising and externalising factors account for the remaining common variance of a subgroup 

of similar disorders, and lastly, the disorder specific factors account for symptom variance that is 

unique to each disorder. Recent research has also found that the p-factor is also supported in 

multi-method multi-trait modelling, providing evidence that the p-factor is not just the result of 

common method variance from the included indicators (Watts et al., 2022). Following the work 

of Caspi et al. (2014), a range of research attempted to discover what the substantive p-factor is 

(see Watts et al., 2020a). In other words, various theoretical explanations occurred regarding the 

substantive meaning of p. 

1.4 What is the p-Factor? 

As the p-factor is claimed to determine an individual’s overall propensity toward 

psychopathology (Caspi et al., 2014), knowing the substantive meaning of p has potentially 

important implications for the understanding and treatment of psychopathology. A range of 

conflicting research has laid claim to the substantive meaning of p. For example, research has 

evidenced neuroticism as the primary driver of the p-factor (Brandes et al., 2019), and other 

research has offered that p represents functional impairment (Smith et al., 2020), impulsive 

responsivity to emotion (Carver et al., 2017), or disordered thought (Caspi & Moffitt, 2018). 

Each of these proposals make conceptual sense. However, each of the explanations are of high-

level psychological domains, underpinned by a range of other mechanisms. Therefore, other 

lower-level mechanisms, in particular neurocognitive abilities, have been claimed to be a 

primary driver of the general factor (see Heinrich et al., 2020). 

Indeed, each explanation for the p-factor, neuroticism, functional impairment, impulsive 

responsivity to emotion, and disordered thought are significantly accounted for by a range of 

neurocognitive abilities (Caspi et al., 2014; Caspi & Moffitt, 2018; Crow, 2019; Smith et al., 
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2020). Furthermore, neurocognitive abilities are also significantly associated with the 

internalising, externalising and thought disorder factors in Caspi et al.’s (2014) correlated factors 

model, as well as the p-factor of psychopathology in the bifactor model. In fact, Caspi et al. 

(2014) found that, that within the tested age range, from ages 3 to 38, every direct measure of 

neurocognitive ability was significantly associated with the p-factor. Furthermore, a systematic 

review of risk factors predictive of the statistically derived factors of psychopathology in young 

people found deficits in neurocognitive abilities to be a primary risk factor for higher 

psychopathology factor scores (Lynch et al., 2021). Ultimately, there is evidence that 

neurocognitive abilities are not only related to diagnosed pathologies, but even within the general 

population, neurocognitive abilities are related to the proposed propensity toward 

psychopathology (Caspi et al., 2014). The importance of neurocognitive abilities in the 

understanding of the p-factor, and bifactor models of psychopathology generally, has been 

communicated early on from Caspi et al.’s (2014) longitudinal work. For example, Snyder et al. 

(2015) proposed that exploring associations between Caspi et al.’s (2014) bifactor model and 

executive functioning “…has the potential to greatly clarify the nature of EF impairments 

associated with particular forms of psychopathology, and thus accelerate progress in 

understanding how EF impairments may contribute to both comorbidity across disorders and 

heterogeneity within disorders…” (p. 17). To set the scene for our discussion of neurocognitive 

abilities and structural models of psychopathology, in the following section we summarise the 

primary neurocognitive abilities used in clinical research, as well as each ability’s association 

with Caspi et al.’s (2014) components of psychopathology. 

1.4.1 Neurocognitive Abilities as Important to the Factors of Psychopathology 

Cognition partly consists of higher-level processes and components. These components 

include problem solving abilities and the control of attention, among other higher-level human 

abilities (Lezak et al., 2004; Norman & Shallice, 1986). Baddeley (1992) famously proposed a 

single component, termed the executive, which governs, organises and controls high-level 

abilities. Various accounts of the executive exist, raising contention as to whether the executive 

is a unitary component or a collection of components (e.g., Miyake, Emerson, et al., 2000; 

Norman & Shallice, 1986; Zelazo et al., 1997). However, there is broad agreement regarding the 

existence and importance of the executive(s) as fundamental to the control of cognition. 

Recently, the term executive functioning has become the norm to describe these control 
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processes, and most work has been focused on the three executive functioning components 

described by Miyake, Emerson, et al. (2000) namely, updating, shifting and inhibition. The role 

of each executive function component differs. Updating is considered to be involved in the 

removal, addition and monitoring of the contents of working memory; shifting is involved in 

disengaging with the present mental set and engagement with a more relevant mental set, while 

inhibition is described as the process that suppresses a dominant response that is not currently 

useful (Miyake, Emerson, et al., 2000). Additionally, other singular neurocognitive components 

have been considered in both the theoretical and empirical domains. The most prominent of these 

neurocognitive components include speed of processing (Salthouse, 1996) and working memory 

capacity (Baddeley, 1992). Speed of processing relates to the speed at which individuals can 

process information (Salthouse, 1996), while working memory capacity is considered as the 

amount of information that can be held in working memory and is often conceptualised and 

measured in accordance with working memory updating (Baddeley, 1992; Miyake, Emerson, et 

al., 2000). 

Lezak et al. (2004) argue that the proper functioning of these neurocognitive abilities, 

including executive function, are crucial to everyday behaviours, including the control of 

appropriate, goal-oriented and responsible behaviour. It is perhaps therefore unsurprising that 

abnormalities in these processes have been repeatedly indicated in a variety of 

psychopathologies. 

1.4.2 Deficits in Neurocognitive Processes and Their Relation to Psychopathology 

It is often suggested that deficits in neurocognitive abilities underlie pathological 

symptoms across Caspi et al.’s (2014) factors of psychopathology. The following subsections 

present examples of symptoms of internalising, externalising and thought disorders that have 

been suggested to be underpinned by neurocognitive abnormalities. 

1.4.2.1. Internalising 

Neurocognitive deficits have been proposed to underlie a range of symptoms associated 

with internalising disorders. Deficits in the updating and capacity of working memory have been 

suggested to be central to elevated rumination in depression, due to issues in removing negative 

material from working memory (Joormann & Gotlib, 2008). Similarly, deficits in shifting mental 

set are claimed to underlie issues in shifting attention away from negative thoughts and stimuli in 

anxiety (Johnson, 2009). Inhibition has been seen to be an important aetiological mechanism in a 



NEUROCOGNITION AND PSYCHOPATHOLOGY  32 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

range of internalising symptoms. For example, depression is often accompanied by a range of 

negative attentional and memory biases and deficits in inhibition that are proposed to underlie 

this issue (Gilleen et al., 2016). Another salient symptom of depression is a general cognitive 

slowing (Tsourtos et al., 2002), and this often has a great impact on the life of the person and is 

said to be underlain by speed of processing deficits (Tsourtos et al., 2002). 

1.4.2.2. Externalising 

Externalising disorders, including behavioural and substance use disorders, are strongly 

associated with a range of neurocognitive abilities. For example, working memory deficits are 

said to mediate disinhibited decision making in externalising disorders (Endres et al., 2014; 

Endres et al., 2011). Another example is that deficits in shifting mental set are claimed to 

underlie the poor consideration of behavioural outcomes in substance addiction (Noël et al., 

2013). Furthermore, the uncontrolled intake of substances has also been claimed to be associated 

with deficits in inhibition (Mahmood et al., 2013). Speed of processing is often associated with 

aspects of behavioural disorders such as attention-deficit/hyperactivity disorder. For example, 

speed of processing issues are claimed to underlie reading fluency issues often seen in ADHD 

(Jacobson et al., 2011; Shanahan et al., 2006). 

1.4.2.3. Thought Disorder 

Thought disorders, such as schizophrenia and mania in bipolar disorder, have been 

subject to a large amount of neurocognitive research. There has been broad suggestion that 

deficits in a variety of neurocognitive abilities are important mechanisms of the aetiology of 

thought disorder symptoms. For example, the difficulties people with schizophrenia have in 

engaging with the environment may be due to working memory deficits, resulting in a lack of 

flexibility toward environmental stimuli (Galletly et al., 2007). Deficits in shifting mental set are 

also proposed to underlie the level of insight into their disorder that people with schizophrenia 

have (Gilleen et al., 2016), and episodes of mania in bipolar disorder are accompanied by mental 

set shifting deficits (Kurtz & Gerraty, 2009). Schizophrenia is often accompanied by a range of 

behavioural issues and deficits in inhibition that are often claimed to be central to these issues. 

For example, deficits in inhibition are said to be deterministic of the poorly planned and 

impulsive behaviour in schizophrenia (Kiehl et al., 2000). Furthermore, deficits in a person with 

schizophrenia’s speed of processing has been seen to mediate these broad neurocognitive deficits 

(Rodríguez-Sánchez et al., 2007). 
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Ultimately, neurocognitive abilities seem to be fundamental to understanding 

psychopathology symptoms across Caspi et al.’s (2014) internalising, externalising and thought 

disorder components. General deficits in neurocognitive abilities are robustly associated with a 

range of psychopathologies and their symptoms. It is important to remember, however, that 

Caspi et al.’s (2014) model is ultimately a description of psychopathological behaviours that 

often co-occur. Caspi et al. (2014) proposed that exploring how internalising, externalising and 

substantive p-factor comes to exist will require a range of measurements across biological, 

cognitive and environmental domains. Therefore, to examine what the hierarchical components 

of domains such as Caspi et al.’s (2014) bifactor model represent, a mechanistic approach 

exploring the association between domains such as neurocognitive abilities and the factors are 

required. 

1.5 A Mechanistic Approach 

A mechanistic alternative to descriptive models of psychopathology comes from the 

Research Domain Criteria (RDoC; Cuthbert, 2020; Cuthbert & Insel, 2013). The RDoC 

Framework reverses Caspi et al.’s (2014) top-down processes to describing psychopathology by 

starting with the consideration of how genetic, neurological and cognitive variation can give rise 

to the occurrence of psychopathological symptoms. The RDoC framework has led to 

programmes of research that have advanced our knowledge of the mechanisms that might 

underlie psychopathology (e.g., Clarkson et al., 2019; Ip et al., 2019). However, the RDoC 

approach is also not without limitations. Kotov et al. (2021) argue that by disregarding clinical 

phenotypes, and basing the exploration of psychopathology at the most basic levels, the RDoC 

framework has little current clinical utility. Kotov et al. (2017) and Patrick et al. (2013) suggest 

that the weaknesses of both the symptomatic based hierarchical structures, such as Caspi et al. 

(2014), and the weakness of the lower-level, mechanistically oriented RDoC framework, can be 

reconciled by combining the approaches. It has been suggested that joining symptomatic 

psychopathology structures with the RDoC constructs is likely to result in mechanisms that are 

measurable, consistent and explanatory of the phenotypes of psychopathology (Kotov et al., 

2017; Patrick et al., 2013). 

Linking descriptive (e.g., Caspi et al., 2014) and mechanistic approaches (e.g., RDoC; 

Cuthbert, 2020) to psychopathology requires the use of domains that are robustly associated with 

psychopathology at both the lower (e.g., chemical, genetic and neurological) and higher (e.g., 
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psychopathological symptoms) levels. Neurocognitive abilities are included as one of the key 

domains in the RDoC system, as these abilities are associated with a wide range of 

psychopathology at each level of analysis (Genes, Molecules, Cells, Circuits, Physiology, 

behaviour and self-report; see Cuthbert, 2020; Cuthbert & Insel, 2013). Furthermore, 

neurocognitive abilities are also significantly associated with the internalising, externalising and 

thought disorder factors in Caspi et al.’s (2014) correlated factors model, as well as the p-factor 

of psychopathology in the bifactor model. Therefore, satisfying both criteria, neurocognitive 

abilities are an excellent candidate for joining the two approaches to the study of 

psychopathology. However, our ability to successfully link these two approaches relies on 

developing a thorough understanding of the meaning of p, and the specific factor of 

psychopathology. Recent literature has uncovered a range of methodological and conceptual 

issues that have important implications for the use of p as a substantive construct. 

1.6 p, Substantive Factor, or Statistical Artifact? 

In recent years several important questions and critiques have been made regarding the 

structural approach to psychopathology; many of these have important implications towards 

using these frameworks when exploring what may underpin psychopathology. Recent literature 

explores the question of if the p-factor is a substantive, meaningful construct, or rather simply a 

statistical artefact derived from the characteristics of the methods used. Snyder and Hankin 

(2017) explain that the general factor of psychopathology is dependent on the characteristics of 

its makeup, and therefore is an inherently inconsistent construct. Lahey et al. (2021b) describes p 

as the “weighted average” (p. 61) of the symptoms of a sample at that point in time. This 

conflicts with p being a potentially substantive construct with a consistent meaning and 

interpretation. Furthermore, Levin-Aspenson et al. (2020) explored the applicability of the p-

factor among different samples. Levin-Aspenson et al. (2020) used three large datasets to 

conduct their exploration: (1) the National Comorbidity Survey (Kessler & Merikangas, 2004), 

(2) Collaborative Psychiatric Epidemiology Surveys (Heeringa et al., 2004), and (3) the Methods 

to Improve Diagnostic Assessment and Services (Zimmerman, 2016). The first two being large 

(N = 8098 and N = 19,823, respectively) epidemiological datasets, and the third being a large 

dataset (N = 2900) from an outpatient psychiatric hospital. The authors found bifactor models to 

be a good fit in each population; however, the loadings of the disorders on the p-factor varied 

extensively across the populations. Furthermore, issues have been raised regarding the indices 
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often used to justify the p-factor. Greene et al. (2019) assessed the possibility that the better fit 

generally found by bifactor models (those that include the p-factor) over correlated factor models 

(with no p-factor) may simply be due to fit indies unfairly biasing the bifactor models. This may 

mean that, even though bifactor models tend the fit collections of diagnoses and symptoms best, 

this may not be due to any substantive reason. Greene et al. (2019) found data simulated from a 

correlated factors model most often better fit a bifactor model rather than a correlated factors 

model through which the data was created. Greene et al. (2019) called for the selection of a 

model of psychopathology to be based on substantive interpretability and the utility of the model 

to facilitate the goals of the research, rather than model fit. 

The applicability and substantive meaning of the p-factor, as well as externalising, 

internalising and thought disorder factors needs also to be considered within samples. Given that 

the factors of psychopathology are derived from covariation amongst of psychopathological 

symptoms across the sample, the applicability and substantive meaning of those factors will 

likely vary greatly for subgroups and individuals within the sample. While p and the other factors 

of psychopathology might do well at summarising symptomology for the population, they may 

be of substantially less utility for a substantial number of individuals within that sample. This 

consideration means it is difficult to conclude what may underpin psychopathology on the 

individual and subgroup level and any conclusions made might lead us astray. For example, 

Caspi et al. (2014) found the large majority of measures of neurocognitive ability to be 

significantly associated with externalising, internalising, and thought disorder factors. However, 

with the introduction of the p-factor in the bifactor model, the associations between the measures 

of neurocognitive ability and the internalising, externalising and thought disorder factors almost 

all fell to non-significant, and instead each measure of neurocognitive ability was significantly  

associated to the p-factor. This might lead us to the conclusion that neurocognitive ability has the 

greatest importance to psychopathology at the p-factor level. However, it is likely that a number 

of individuals in Caspi et al.’s (2014) sample had a high number of psychopathological 

symptoms, but a low p score, due to, for example, a lack of general comorbidity of symptoms 

and a different pattern of symptoms to the mean. We might then naively assume, due to the 

importance of neurocognitive abilities to psychopathology seemingly being at the p-factor level, 

that neurocognitive abilities may not be important to understanding this person’s 

psychopathology. To summarise, the primary limitations of CFA structural models are as 
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follows: (a) it is unclear if the factors of psychopathology have, or can have, universal 

substantive meaning, (b) fit indices often used to champion one model over another are biased 

toward bifactor models, and (c) the applicability and consistency of structural models within 

subgroups of a population is not currently known. 

Ultimately, for the p-factor to be useful in the exploration of neurocognitive abilities and 

psychopathology, a fuller understanding of the characteristics of the factor is needed. The 

methodological and conceptual issues of substantive p have led to a host of authors calling for a 

consensus on a definition on what the p-factor is, as well as an agreement on what should predict 

the general factor, and what the general factor should predict, in order to establish the factor as a 

substantive construct (Fried et al., 2021; Greene et al., 2019; Levin-Aspenson et al., 2020; Watts 

et al., 2020a). Further, other authors have argued for an alternative model to mitigate the fluidity 

of a general factor of psychopathology (Eid, 2020; Haywood et al., 2021a; Heinrich et al., 2020). 

1.6.1 An Alternative Approach 

The issues of developing a universal substantive p have led some authors to prioritise an 

alternative structural model, called the S-1 bifactor model (Burke & Johnston, 2020; Eid, 2020; 

Heinrich et al., 2020). The S-1 bifactor model is named as such due to it containing one less 

specific factor than standard bifactor models (Eid, 2020). In a traditional bifactor model, each 

indicator loads onto the general factor, as well as one specific factor. However, in an S-1 bifactor 

model, a chosen set of indicators does not load onto any specific factor and only loads onto the 

general factor. Eid (2020) describes these indicators as being the ‘reference domain’. The 

reference domain, as it only loads onto the general factor, and ‘becomes’ or defines that factor. 

Therefore, a researcher can pre-specify precisely what the general factor represents, 

circumventing the issues with an undefined general factor (e.g., the p-factor). The variance in an 

S-1 model’s specific factors reflects the common variance amongst the factor indicators after 

taking into account the general factor (Eid, 2020). The reference domain, and therefore the 

general factor, can reflect any theoretically outstanding variable of interest (Heinrich et al., 

2020). 

Interestingly, some traditional bifactor models have ended up transforming to S-1 bifactor 

models unknowingly. For example, Heinrich et al. (2020) showed that when Caspi et al. (2014) 

removed the thought disorder factor from their bifactor model due to a Heywood case, they 

turned their model into an S-1 bifactor model, as OCD, mania and schizophrenia loaded onto the 
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p-factor and no specific factor. Thought disorder, therefore, came to represent the general factor, 

and the p-factor was therefore not an indication of general psychopathology. 

S-1 bifactor models may offer a useful way to explore how neurocognitive abilities are 

associated to psychopathology. It is possible to use a range of measures of neurocognitive 

abilities as direct indicators of the general factor, thereby defining its meaning (Haywood et al., 

2021a). This could provide information that other approaches could not. For example, it would 

then be insightful to examine the unique variance of each symptom indicator, as well as the 

variance within each specific factor, after accounting for the general (neurocognitive) factor. The 

S-1 approach could be used with a correlated factors model to provide more information 

regarding the associations of specific neurocognitive components. The S-1 bifactor approach has 

promise for advancing our understanding of neurocognitive abilities association to 

psychopathology across a sample; however, it means the rejection of a general factor of 

psychopathology and limitations in accounting for the heterogeneity among the associations 

between neurocognitive abilities and psychopathology that characterise this research. The 

heterogeneity of neurocognitive abilities’ association with psychopathology is key to developing 

a nuanced or mechanistic understanding of the aetiology of symptoms (Haywood & Baughman, 

2021). Therefore, it is important to consider this variation and the approaches most suitable for 

its exploration. 

1.7 Heterogeneity of Psychopathology and Neurocognition 

Associations between neurocognitive abilities and psychopathologies, a direct one-to-one 

correspondence, or perfect association, between neurocognitive abilities and the psychological, 

behavioural and biological components of psychopathologies has never been found. Therefore, a 

neurocognitive ability cannot be seen as deterministic of psychopathology. A large body of 

literature has explored the specific causes of disorders across biological and cognitive 

mechanisms. However, finding singular mechanisms with a one-to-one, deficit-diagnosis 

correspondence with a disorder has been elusive. For example, at the biological level, the search 

for specific genes with a one-to-one correspondence with a disorder has been met with limited 

success (e.g., Ripke et al., 2014). The COMT gene, while reliably shown to be associated with a 

variety of disorders, does little to account for the phenotype of a disorder on an individual level 

(Egan et al., 2001; International Schizophrenia, 2009). Similarly, across each level of biological 

analysis, heterogeneity on an individual level is the rule rather than the exception (e.g., Cowen, 
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2016)). This means that, while certain variations may be associated with a disorder (or multiple) 

at a population level and may increase the risk of developing the symptoms of a disorder, that 

variation is not deterministic of psychopathology. 

Cognitive endophenotype approaches have been used in attempts to uncover underlying 

biological mechanisms of disorders (Snyder et al., 2015). If performance on a particular 

neurocognitive task is associated with the genetic basis of the disorder (i.e., poor performance is 

seen in people with the disorder, as well as their healthy first-degree relatives), then it may be 

reasonable to assume that the specific neurocognitive mechanisms underlying performance on 

that task can be deduced to a biological basis of the disorder. However, this approach has also 

been met by the problem of inconsistency. For example, associating specific components of 

neurocognition with endophenotypic markers of psychopathology has been mixed. For example, 

greater than average perseveration errors on the Wisconsin Card Sorting Task are found for 

people with schizophrenia and their first-degree relatives (Stefanopoulou et al., 2009; Szöke et 

al., 2005). However, even though the WCST is a general executive function task involving the 

use of updating, shifting and inhibition, there is research crediting each of these components as 

primarily determining the amount of perseveration errors performed on the task (Barceló & 

Knight, 2002; Gamboz et al., 2009; Hartman et al., 2001; Manoach et al., 2002). This makes 

deducing the biological basis of the specific neurocognitive components contributing to 

perseveration errors impossible. A multitude of studies have explored the neurocognitive 

heterogeneity of singular disorders. At a population level, there are clear general neurocognitive 

deficits among psychopathologies. However, at an individual level the precise neurocognitive 

components that are deficit range dramatically. For example, Martino et al. (2008) found that, 

within bipolar disorder, 38% were not deficit in any neurocognitive domain, 40% were deficit in 

one to two domains and 22% were deficit in three to four domains, and the disorder was not 

deterministic of a deficit in any particular neurocognitive domain. Raffard and Bayard (2012) 

found similar heterogeneity in people with schizophrenia. Ninety four percent of people with 

schizophrenia had deficits in at least a single neurocognitive task, 27% showed deficits in two 

tasks 23% showed deficits in three tasks, while 23% showed deficits in four neurocognitive tasks 

(Raffard & Bayard, 2012). Furthermore, functioning in these neurocognitive domains is 

generally not associated with duration of the illness, current psychoticism status or medication 

(e.g., Raffard & Bayard, 2012). Even when comparing disorders, deficits in particular 
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neurocognitive domains that are able to separate the disorders are generally not uncovered 

(Moritz et al., 2002). The heterogeneity of the mechanisms of psychopathology has led to the call 

to disband the medically derived cause model when exploring psychopathology (e.g., Bringmann 

& Eronen, 2018). However, the question of “where to from here” is still unclear. 

1.7.1 Multiple Realisation and Psychopathology 

Perhaps embracing heterogeneity in the study of neurocognitive abilities and 

psychopathology, rather than seeing it as an error or something that should be minimised, would 

lead to a greater understanding of their associations. The notion of multiple realisation comes 

from the philosophy of mind that postulates that a mental state, event or component can be 

determined by multiple different biological states, events or components (Putnam, 1988). It has 

been proposed that wide, varied physicalities can each experience the same mental state, event or 

component form and yet share no physical similarities. For example, it is generally accepted that 

a wide range of creatures such as humans, birds, molluscs and amphibians experience pain, yet 

these creatures often share very few physical properties (Putnam, 1988). Pain can therefore be 

multiply realised by many different physical states, events or components. Originally based to 

combat reductionism, the postulate of multiple realisation has been applied to many subjects, 

including psychopathology. 

Multiple realisation is useful in explaining the biological heterogeneity of disorders. It 

gives us an idea with which to explain the lack of success in finding specific biological 

mechanisms underlying psychopathology and provides a platform to separate mental and 

physical states, events or components. There has been a range of support for this concept through 

different methods. For example, Pavão et al.’s (2015) computational work found that 154 

computational models, each representing a different grouping on brain alterations, produced 

activity that represented the neural activity of schizophrenia. 

Application of multiple realisation at the cognitive level may also provide a platform to 

explain the heterogeneity of neurocognitive abilities in psychopathology. Might we also extend 

multiple realisation to include the same set of realisers, but at various levels of functioning? 

Haywood and Baughman (2021) termed this proposal as the multidimensional hypothesis. The 

multidimensional hypothesis states that various different neurocognitive components, each with 

different ability levels (i.e., strengths and weaknesses) can explain a psychopathological 

phenotype equally well (see Haywood & Baughman, 2021 for a detailed explanation). 
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The hypothesis posits that the overall neurocognitive ability of a person, or their 

susceptibility to a psychopathology, cannot be explained by a single neurocognitive component, 

nor can it be explained by a linear, additive model. Instead, the importance lies within the non-

linear interactions between the neurocognitive components’ abilities. Testing this hypothesis, 

Haywood and Baughman (2021) proposed that the high amount of perseveration errors 

performed on the Wisconsin Card Sorting Task by people with schizophrenia and their first-

degree relatives could be multiply realised by various different ability combinations among the 

neurocognitive components updating, shifting and inhibition. Applying computational methods, 

Haywood and Baughman (2021) found that the performance on the task of people with 

schizophrenia, their first-degree relatives and control participants’ could be simulated by 

computational models with different levels of abilities of updating, shifting and inhibition. This 

suggests that general neurocognitive ability, a robust endophenotype of psychopathology, may 

be better explained by the interactions among neurocognitive components rather than primarily 

by a single deficit, thus explaining the inability to find a consistent neurocognitive ability deficit 

throughout individuals with a certain disorder. 

It is important to note that, over time, the fundamental postulates of multiple realisation 

have been questioned (e.g., Bechtel & Mundale, 1999; Bregant, 2006; Polger & Shapiro, 2016)). 

It has been suggested that many cases of multiple realisation (Figure 1.3A) can be explained by 

either splitting the mental state, event or component into two or more states, events or 

components (Figure 1.3B), or merging the realisers (Figure 1.3C; see  Pernu, 2019 for a 

summary). Splitting is done if it is found that the mental state, event or component is better seen 

as multiple. Take, for example, if (M; Figure 1.3B) working memory is split into (M1) working 

memory capacity and (M2) working memory updating, we might find each mental component to 

be realised by separate physical properties (i.e., N1 and N2, respectively). Merging is done if the 

realisers are found to be the same physically (see Figure 1.3C). Pernu (2019) provides the 

example that the intention to grasp an object (M; Figure 1.3C) can be found with the mean neural 

activity of some specific neuronal structures (N1 and N2). N1 and N2 in this case will be 

merged, resulting in a singularly realised (N) component. However, it seems that there are many 

contexts in which neither splitting nor merging can be easily applied and conform to existing 
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empirical evidence (e.g., hunger; see Putnam, 1988); in these cases, multiple realisation gives us 

a useful platform to understand heterogeneity.1 

Figure 1.3.  

Splitting and Merging Realisers  

 

 Note. Depiction of splitting and merging realisers accounting for multiple realisation. Panel A: 

Working memory (M) being realised by two separate physical properties (N1 and N2, 

respectively). Panel B: Working memory (M) being split into working memory updating (M1) 

and working memory capacity (M2), M1 and M2 being realised by two separate physical 

properties (N1 and N2, respectively). Panel C: The intention to grasp an object (M) being realised 

by the mean neural activity of some specific neuronal structures (N1 and N2), resulting in a 

singular unified realiser (N). 

 

 

 

1 There is also an inverse proposition of multiple realisation, namely reverse multiple realisation 

(Pernu, 2019). Reverse multiple realisation is the claim that the same physical states, events or 

components could realise different mental states, events and components. Bringing this concept to 

psychopathology would suggest that the same biological properties could underlie different mental 

disorders. Pernu (2019) points out that reverse multiple realisation has support within the neuroplasticity 

and neural reuse literature. For example, Anderson (2010) illustrates that neural circuits can be deployed, 

over time, for a different purpose if the need arises. Therefore, the same physical states, events or 

components can realise multiple different mental states, events or components. 

 



NEUROCOGNITION AND PSYCHOPATHOLOGY  42 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

Ultimately, the notion of multiple realisation provides a platform for questioning the 

relationship between neurocognitive abilities and psychopathology. Other than the preliminary 

evidence in support of the multidimensional hypothesis (Haywood & Baughman, 2021), little is 

known about the applicability of multiple realisation to solely cognitive and psychological states, 

events or components. That is, can a psychological or cognitive state, event or component be 

multiply realised by various other cognitive or psychological states, events or components at 

different levels of functioning? Further research exploring neurocognitive variability in 

psychopathology is therefore needed. 

Another possibility is that the heterogeneity of neurocognitive abilities within disorders 

may be minimised when assessing statistically derived symptomatic components of 

psychopathology (i.e., internalising, externalising and thought disorder), rather than DSM 

defined disorders with a great level of overlap. For example, there may be clear patterns of 

neurocognitive ability profiles within the internalising, externalising and thought disorder 

components of psychopathology, and these patterns may help explain those symptom clusters 

and their aetiology. However, the neurocognitive heterogeneity within DSM disorders might also 

be seen in the statistically derived components of psychopathology, as per the multidimensional 

hypothesis (Haywood & Baughman, 2021). 

1.8 The Road Forward 

Structural models of psychopathology provide a promising framework to advance our 

understanding of the relation between neurocognitive abilities and psychopathology. Finding 

reliable, specific associations or patterns of association, and supporting causal explanations 

between neurocognitive abilities and psychopathology, is unlikely if explorations continue to be 

based upon DSM/ICD defined disorders. Take, for example, that within the DSM there are a 

total of 227 different possible symptom combinations that fulfil the criteria for a diagnosis of 

major depressive disorder (Park et al., 2017). Therefore, at the phenotype level, the symptom 

heterogeneity and lack of stability as well as the comorbidity between disorders, means that 

consistent associations between neurocognition and DSM/ICD defined disorders are unlikely. 

However, as per the call of Levin-Aspenson et al. (2020), a consensus around the substantive 

meaning of the p-factor is needed. The uncertainty of the meaning and applicability of the factors 

of psychopathology greatly limits our confidence to draw conclusions. Future research should 

first assess the applicability of the factors of psychopathology within subgroups of a community 
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sample. This will advance our understanding of how the sample derived factors of 

psychopathology reflect individuals and subgroups within the sample. Future research should 

also assess how neurocognitive abilities are related to these factors of psychopathology within 

the subgroups and explore association differences between these subgroups. The differences in 

the associations between the subgroups may illuminate, not only the applicability and utility of 

the factors within subgroups, but also provide useful knowledge on the substantive meaning of 

the factors and how this might differ depending on subgroup and population. 

S-1 bifactor models offer a promising method of explaining neurocognitive abilities’ 

associations with psychopathology, while mitigating the questionable substantive validity of the 

undefined p-factor (Haywood t al., 2021a). The S-1 bifactor model, supplemented by the 

correlated factors model, seems particularly useful at the population level for examining how 

cognitive functioning may be associated with psychopathology. While the traditional use of the 

structural approaches are limited in explaining the neurocognitive heterogeneity within 

psychopathology, is it possible to use these approaches to elucidate potential neurocognitive 

performance patterns within psychopathology. If somewhat reliable patterns of associations, and 

causal accounts between neurocognitive components and psychopathology, are to be supported, 

it might be at the level of internalising, externalising and thought disorders, rather than at the 

level of individual disorders. However, neurocognitive abilities’ association with 

psychopathology may also be explained by non-linear dynamic interactions as implied by the 

multidimensional hypothesis (Haywood & Baughman, 2021), and the two possibilities are not 

mutually exclusive. The non-linear multidimensional conceptualisation is applicable at the 

internalising, externalising, and thought disorder, and p-factor levels, and it will be further 

supported if it is seen that, even within statistically derived components of psychopathology, 

non-linear multidimensional interactions are superior to linear conceptualisations at predicting 

psychopathology. Ultimately, in our view, to progress knowledge about the underpinnings of 

psychopathology, future research should: 

a. Further examine if a universal substantive p (and specific factors) could be developed by 

the assessment of the utility and consistency of structural models of psychopathology in 

subgroups. 

b. Use the S-1 bifactor model in explorations of neurocognitive ability and 

psychopathology. 
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c. Assess if the factors of psychopathology can be partly explained by discrete association 

patterns of neurocognitive performance. 

d. Assess if each factor of psychopathology (e.g., internalising, externalising, thought 

disorder and the p-factor) is explained by multidimensional interactive components of 

neurocognition. 

1.9 Thesis Outline and Aims 

The overarching objective of this thesis is to provide an improved understanding of the 

associations between neurocognition and psychopathology, taking into consideration the rise of 

dimensional and structural psychopathology. The findings of the thesis will inform theoretical 

understandings of the dynamics of neurocognition and psychopathology as well as advance our 

understanding of the applied relevance of the association. In this thesis, I use a simulation, 

computational, and empirical techniques to achieve the overarching objective. Underlying this 

objective are four specific aims of this thesis: 

(1) To further examine if a universal substantive p (and specific factors) could be developed 

by the assessment of the utility and consistency of structural models of psychopathology 

in subgroups. 

(2) To use the S-1 bifactor model in explorations of neurocognitive ability and 

psychopathology. 

(3) To assess if the factors of psychopathology can be partly explained by discrete 

association patterns of neurocognitive performance. 

(4) To assess if each factor of psychopathology (e.g., internalising, externalising, thought 

disorder and the p-factor) is usefully explained by multidimensional interactive 

components of neurocognition. 

 

Each of the thesis aims will be explored within a separate chapter. The thesis is comprised of four 

studies, one examining each aim. Preceding each chapter is a preface, which provides an outline, 

rationale, and goal of the chapter.  
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Preface to Chapter 2 

In chapter two the first direction of future research in chapter one of our road forward for the 

exploring of psychopathology and neurocognitive abilities is examined. This direction of future 

research coincides with the first aim of the thesis. Chapter two examines the important question 

of whether a universal substantive p-factor (and specific factors) could be developed by 

assessing the applicability, loading pattern consistency, and neurocognitive correlates of four 

popular structural models of psychopathology within population subgroups. We use data 

simulation methods to create a large dataset that is capable of being split into groups of 

individuals with various levels and types of symptom heterogeneity. We then assess the 

applicability of the structural models within these subgroups and examine the consistency of 

factor loadings and neurocognitive correlates between the groups. This chapter,, therefore, 

provides important information for the potential development of a consistent substantive p-factor 

with which associations between the p-factor and neurocognitive components could be 

interpreted consistently. 
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Chapter 2 (Study 1): One p-Factor for All? Exploring the Applicability of Structural Models of 

Psychopathology within Subgroups of a Population 

2.1 Introduction 

Methodologies using confirmatory factor analytic (CFA) techniques have recently arisen 

as alternatives to traditional diagnostic approaches in the study of psychopathology. These 

approaches have risen to mitigate the issues of extensive comorbidity and diagnostic instability 

found when using traditional categorical systems, such as the Diagnostic and Statistical Manual 

(see Caspi et al., 2014; Lahey et al., 2021b). Factor analytical approaches typically take a 

dimensional approach to the presentations of psychopathology and organise hierarchical 

structures of specific and more general factors (Lahey et al., 2021b). In essence, these 

approaches examine the number (and type) of psychological symptoms that are present in a 

population and then fit these symptoms onto statistical models that posit different structural 

relations between higher order factors. The bifactor model of psychopathology, comprising of a 

hierarchical structure of a range of psychopathological symptoms and a smaller collection of 

higher-order factors, has emerged as the preferred CFA model to summarise psychopathology 

(Fried et al., 2021; Greene et al., 2019; Lahey et al., 2021b). Particularly noteworthy from the 

bifactor literature are (1) the findings that a single higher-order factor emerges from the 

statistical analysis of symptoms, and (2) the claim that this factor (subsequently named the p-

factor; as in ‘psychopathology factor’) may refer to an individual’s propensity towards 

psychological disease and illness (see Caspi et al., 2014; Lahey et al., 2021b). Whilst both these 

points relate to issues that occur when cognitive processes go awry, they are highly similar in 

nature to claims regarding the structure of the typical development of intelligence. For instance, 

both the p-factor and the g-factor (the general factor of intelligence) emerge from the analysis of 

population data (Caspi et al., 2014). However, whereas the g-factor is assumed to relate to the 

typical development of intellectual abilities, the p-factor is held to represent atypical 

psychological functioning. Additionally, similar to work on the structure of intelligence is the 

claim that levels of p at the individual level are normally distributed within the population (Caspi 

et al., 2014). 

The key reason why p is of interest is the claim that one’s p represents a substantive 

property of the system that determines one’s propensity towards psychopathology (Caspi et al., 

2014; Caspi & Moffitt, 2018). In intelligence, g has been variously argued to relate to properties 
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such as the capacity of the system, the speed of information processing, or the complexity of 

information that is represented, (e.g., Gottfredson, 1998). In the study of the p-factor, claims for 

p representing a substantive construct are popular. For example, it has been suggested that p may 

primarily represent functional impairment (Smith et al., 2020), neuroticism (Brandes et al., 

2019), cognitive abilities (see Lahey et al., 2021b), impulsive responsivity to emotion (Carver et 

al., 2017), and disordered thought (Caspi & Moffitt, 2018). However, there is a range of 

evidence suggesting that, in a purely statistical state, the p-factor may not realistically represent a 

substantive construct or property (e.g., Watts et al., 2020b). 

The p-factor is a function of the dataset from which it is extracted (Murray et al., 2016; 

Snyder & Hankin, 2017), and therefore it is inherently fluid and is a different factor depending 

on the characteristics of the sample and the methods of extraction (Levin-Aspenson et al., 2020). 

Lahey et al. (2021b) describes p as a “weighted-average” (p. 61) of aspects of all the symptoms 

assessed. Indeed, Fried et al. (2021) showed that p derived from bifactor models is not notably 

different to a simple sum of symptoms. Furthermore, even though a bifactor model is often 

chosen over a correlated factors model (a model with no p-factor and correlated specific factors) 

due to better fit (e.g., Caspi et al., 2014), Greene et al. (2019) showed that fit statistics unfairly 

favour the more accommodating bifactor model. These issues have led to multiple authors 

claiming that if the p-factor is to be a substantive construct, substantive p must be built “on-top” 

of statistical p (Fried et al., 2021; Greene et al., 2019; Watts et al., 2020a). That is, a theoretical 

construct of p not only must be informed by its statistical make up but also must incorporate 

predefined predictors and boundaries so that p can be falsified (Fried et al., 2021; Levin-

Aspenson et al., 2020; Watts et al., 2020a). The development of a universal substantive p may 

have important implications for etiological and treatment domains of psychopathology (Fried et 

al., 2021; Lahey et al., 2021b). However, for substantive p to be useful in the treatment setting, it 

must be a construct applicable to every individual in the population. On the individual level, a 

person’s p score is a function of the sample, and therefore would differ depending upon the 

attributes of the dataset in which they lie.  

Previously, we have claimed that there is a need to assess the applicability and 

consistency of structural models in heterogeneous subgroups of a population (Haywood et al., 

2021c). Bifactor models have been successfully fitted to normative and clinical populations 

(even though the makeup of p changes); however, it is unclear if structural models can fit 
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heterogeneous subgroups within a population (Haywood et al., 2021c). It is possible that the 

factors of psychopathology within a dataset are differentially applicable to a number of 

individuals in the sample. For example, the p-factor might not have substantial utility for a 

number of individuals or subgroups within a sample, even though the factor has utility for the 

sample as a whole. Specifically, this may mean factor scores derived from within a subgroup 

may be better (or worse) at representing those individuals’ symptomologies when compared with 

factor scores derived from the total sample. However, an alternative model (e.g., a correlated 

factors model) may be a better fit for some subgroups within a sample or, indeed, no substantial 

model would adequately account for the subgroups’ symptoms. Practically, this may mean that 

when parsing out the remaining individuals from a population for a collection of individuals or 

subgroups within a dataset, the p-factor and/or the specific factors of psychopathology might (a) 

not be applicable, (b) have different factor loading patterns, and/or (c) have different correlates 

or correlates with different utility. Any of these possibilities would suggest that the factors would 

have a different substantive meaning within each subgroup when compared with the sample as a 

whole. However, it is unknown the degree to which subgroups with clear symptomatic 

boundaries, but with adequate variation to use CFA techniques, could be fit to structural models 

of psychopathology. This has implications for the representativeness of both statistical p and any 

potential, universal, substantive p. Therefore, consideration must also be extended from not just 

what the p-factor might represent between samples (e.g., Levin-Aspenson et al., 2020)) but also 

to what it might represent within samples. 

Levin-Aspenson et al. (2020) call for an agreed upon definition of the p-factor with 

corresponding expectations of what constructs should, and should not, correlate with the factor. 

However, if the p-factor has substantial differences in factor loading patterns within a subgroup 

of a sample, or if a meaningful number of similar individuals within the sample are not 

adequately represented by the p-factor (or the second-order factors), there is unlikely to be a 

universal (i.e., over the population and different groups) agreement on what the attributions of 

the p-factor (and the specific factors) are. In order to develop a universal substantive meaning of 

the factors of psychopathology, a within-sample exploration of the factors’ applicability and 

loading characteristics, as well as the stability of their predictors is needed. However, the issue of 

poor statistical power arises from fitting CFA models to large subgroups within a sample. Data 

simulation methodologies not only allow adequate power by having a sample size fit to purpose 
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but also allow the user to control the characteristics of the data. These aspects make simulation 

methodologies particularly suited to questions related to structural models of psychopathology 

(e.g., see Greene et al., 2019)). 

To inform considerations for the use of the factors of psychopathology as both a 

statistical and substantive construct, in this study we aimed to (a) explore the applicability, (b) 

loading patterns, and (c) factor associations of various popular structural models of 

psychopathology to subgroups of a sample using a simulated data approach. The findings of this 

research may be used to assess the likelihood that consistent, universal, substantive constructs of 

psychopathology may be developed. 

2.2 Materials and Methods 

2.2.1 Data Generation 

2.2.1.1. Symptoms 

Caspi et al. (2014) used data from the Dunedin Multidisciplinary Health and 

Development Study (n = 1000) approved by the University of Otago Ethics Committee, 

including symptom counts using the Diagnostic Interview Schedule (Robins et al., 1995) and a 

range of potential correlates of psychopathology (see Caspi et al., 2014 for futher details). 

Similar to Greene et al. (2019), we took a top-down data simulation approach whereby the use of 

existing factor loadings provided by the final bifactor model of Caspi et al. (2014) (see Figure 

2.1) allowed us to generate a population dataset consisting of distributions of symptom counts of 

the 11 disorder categories for 100,000 individual subjects. The distribution of symptom counts 

were positively skewed to approximately 2.0 across the population (following Greene et al., 

2019). This level of positive skew is representative of distributions of symptoms typically found 

in the population (Curran et al., 1996). The resulting population dataset therefore, represented a 

summary of symptom counts from Caspi et al. (2014). 
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Figure 2.1.  

Bifactor Model Used for the Development of the Simulated Data. 

 

Note. Depiction of the received bifactor model from Caspi et al. (2014) used to develop the 

simulated data. Alc = alcohol; Can = cannabis; HD = hard drugs; Tob = tobacco; CD = conduct 

disorder; MDE = major depressive episode; GAD = generalized anxiety disorder; Fear = fears 

and phobias; OCD = obsessive-compulsive disorder; Man = mania; Schi = schizophrenia; Ext = 

externalizing; Int = internalizing. 

2.2.1.2. Intelligence 

To explore potential variation in correlates of the factors of psychopathology between 

samples, we produced IQ scores (analogous to Wechsler Adult Intelligence Scale-IV; WAIS-IV 

scores) that consisted of normally distributed composite scores (mean = 100, SD = 15) for the 

Verbal Comprehension (VC), Perceptual Reasoning (PR), Working Memory (WM), and 

Processing Speed (PS). Each IQ score was generated by matching the associations reported 

between each subscale score and the externalising factor, internalising factor, and the p-factor of 

Caspi et al. (2014). RStudio was used with the Lavaan package (Rosseel, 2012) to develop and 

analyse the simulation data. 

2.2.2 Summary of Generated Population Data 

Diverging from Greene et al. (2019), we did not use Monte Carlo simulations. To better 

fit the purposes of this research, we produced a single dataset to represent data collected from a 

single sample as per empirical research and to facilitate a detailed exploration of subgroup 

characteristics. Our final population dataset comprised of data for 100,000 subjects that included 
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simulated scores on the WAIS-IV subscales, each normally distributed, and the symptoms counts 

of 11 disorder categories (alcohol, cannabis, hard drugs, tobacco, conduct disorder, fears and 

phobias, major depressive episode, generalised anxiety disorder, obsessive-compulsive disorder, 

mania, and schizophrenia), with an average positive skew of approximately 2.0. WAIS-IV 

Scores and symptom counts within the population were simulated from the revised bifactor 

model and resulting associations from Caspi et al. (2014). 

The characteristics of the simulated data closely resembled that of Caspi et al. (2014) and 

had a mean skew of 1.99 (SD = .35) between the 11 observed variables. Table 2.1 below presents 

the revised bifactor model factor loadings of Caspi et al. (2014), and loadings of the full 

simulated dataset fitted to the same model are shown in Figure 2.1. Table 2.1 also presents 

bivariate associations between each WAIS-IV subscale and internalising factor, externalising 

factor, and the p-factor for both Caspi et al. (2014) and our simulated data (see the Analysis and 

Subgroup Generation section for details regarding the CFA estimation method and fit indicators 

used). As shown in Table 2.1, there is slight divergence between the factor loadings and 

associations of Caspi et al. (2014) and our simulated data. This is due to both random data 

generation factors, data constraints, potential differences in skew between each Caspi et al. 

(2014) variable and the simulated data, and the use of continuous variables and different 

estimators (WLSMV vs. MLR). However, the Caspi et al. (2014) revised bifactor model of 

psychopathology fit the simulation data well (χ2(35, N = 100,000) = 41.82, CFI = 1.00, TLI = 

1.00, SRMR = .002, RMSEA = .001, 90% CI = [.000, .003]), and the simulated data largely 

retained the factor loading and relationship patterns of Caspi et al. (2014). Furthermore, 

mirroring Caspi et al. (2014), the correlated factors model fit our simulated data well (χ2(41, N = 

100,000) = 4484.98, CFI = .989, TLI = .986, SRMR = .031, RMSEA = .033, 90% CI = 

[.032, .034]) (see Table 2.2 for loading comparisons), and like Caspi et al. (2014) the original 

bifactor model (Figure 2.2B) had a convergence issue due to the thought disorder factor being 

subsumed by the p-factor. Lastly, like Caspi et al. (2014), the single-factor model (Figure 2.2D) 

did not fit the data well (χ2(44, N = 100,000) = 86,267.82, CFI = .792, TLI = .740, SMRM 

= .116, RMSEA = .140, 90% CI = [.139, .141]). Therefore, we conclude that our simulated data 

are a good representation of the data used by Caspi et al. (2014). Following this, the factor 

loadings were saved back to the dataset, then, as per Caspi et al. (2014), we standardised the p-

factor loadings to a mean of 100 and a standard deviation of 15. 
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Figure 2.2.  

Four Structural Models from Caspi et al. (2014) 

 

Note. Depiction of the four structural models used by Caspi et al. (2014) and tested in this 

research. Panel A: Correlated factors model; Panel B: Full bifactor model; Panel C: Revised 

bifactor model; Panel D: Single-factor model. Alc = alcohol; Can = cannabis; HD = hard drugs; 

Tob = tobacco; CD = conduct disorder; MDE = major depressive episode; GAD = generalized 

anxiety disorder; Fear = fears and phobias; OCD = obsessive-compulsive disorder; Man = mania; 

Schi = schizophrenia; Ext = externalizing; Int = internalizing; Tht = thought disorder. 
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Table 2.1  

Comparison Between Caspi et al.’s (2014) Revised Bifactor Model in the Original and Simulated Data. 

Dataset Factor Alc Cann HD Tob CD Dep GAD Fears OCD Mania Schiz VC~ PR~ WM~ PS~ 
Ext~ 

Int 

Caspi et al. (2014) 

(N = 1000) 
                 

                 −.471 

 p .397 .455 .452 .504 .557 .835 .812 .623 .725 .973 .819 −.129 −.129  −.183 −.176  

 Ext .626 .811 .709 .420 .691 - - - - - - −.084 −.054 −.028 −.035  

 Int - - - - - .340 .497 .441 - - - .112 .062 −.027 .019  

Simulation Data 

(N = 100,000) 
                 

                 
−.387  

** 

 p .294 .309 .320 .398 .394 .605 .582 .476 .709 .969 .805 −.120 ** −.123 ** −.176 ** −.167 **  

 Ext .536 .629 .577 .368 .559 - - - - - - −.120 ** −.068 ** −.015 ** −.035 **  

 Int - - - - - .247 .388 .347 - - - .110 ** .060 ** −.007 * .032 **  

Note. Significance of the correlations was not reported by Caspi et al. for each variable. ~ = Correlation; Alc = alcohol; Cann = 

cannabis; HD = hard drugs; CD = conduct disorder; Dep = major depressive episode; GAD = generalized anxiety disorder; Fears = 

fears and phobias; OCD = obsessive-compulsive disorder; Schiz = schizophrenia; VC = Verbal Comprehension; PR = perceptual 

reasoning; WM = Working Memory; PS = Processing Speed; Ext = externalizing; Int = internalizing. 

All factor loadings are significant at p < .01. * = p < .05. ** = p < .01.  
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Table 2.2  

Comparison Between Caspi et al.’s (2014) Correlated Model in the Original and Simulated Data. 

Dataset Factor  Alc Cann HD Tob CD Dep GAD Fears OCD Mania Schiz VC~ PR~ WM~ PS~ 
Ext~ 

Int 

Ext~ 

Tht 

Int~ 

Tht 

Caspi et al. (2014) 

(N = 1000) 
                    

                  .328 .577 .849 

 Ext  .733 .885 .839 .668 .909 - - - - - - −.139 −.166 −.126 −.126    

 Int  - - - - - .972 .934 .704 - - - −.049 −.077 −.154 −.134    

 Tht  - - - - - - - - .726 .982 .826 −.115 −.116 −.171 −.166    

Simulation Data 

(N = 100,000) 
                    

                  
.296  

** 

.531 

** 

.869 

** 

 Ext  .604 .678 .652 .545 .694 - - - - - - 
−.166 

** 

−.125 

** 

−.114 

** 

−.125 

** 
   

 Int  - - - - - .682 .677 .563 - - - 
−.075 

** 

−.094 

** 

−.166 

** 

−.148 

** 
   

 Tht  - - - - -    .709 .968 .805 
−.120 

** 

−.123 

** 

−.176 

** 

−.167 

** 
   

Note. Significance of the associations was not reported by Caspi et al. for each variable. ~ = correlation; Alc = alcohol; Cann = 

cannabis; HD = hard drugs; CD = conduct disorder; Dep = major depressive episode; GAD = generalized anxiety disorder; Fears = 

fears and phobias; OCD = obsessive-compulsive disorder; Schiz = schizophrenia; VC = Verbal Comprehension; WM = Working 

Memory; PS = Processing Speed; Ext = externalizing; Int = internalizing; Tht = thought disorder. 

All factor loadings are significant at p < .01. * = p < .05. ** = p < .01.   
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2.2.3 Analysis and Subgroup Generation 

2.2.3.1. CFA 

As per Greene et al. (2019), we used maximum likelihood estimation (MLR) with 

robust standard errors and Pearson’s correlations for our CFAs to assess the fit of the models 

of psychopathology. MLR was chosen for its corrections to chi-square statistics and standard 

errors when used with skewed data. Sample and estimated variance and covariance 

differences were assessed via the standardized root-mean-square residual (SRMR; Hu & 

Bentler, 1995), degree of model fit was determined by root-mean-square error of 

approximation (RMSEA; Steiger, 1990), and the comparative fit index (CFI; Bentler, 1990) 

and Tucker–Lewis index (TLI) was used to assess fit improvement in relation to a model that 

is saturated. RMSEA values of <.05 (Bollen & Curran, 2006) and CFI and TLI values of 

>.95, with all significant loadings, no negative loadings, no non-positive-definite 

identification issues, and no negative variance were used as thresholds for a good fit and 

model utility (Hu & Bentler, 1995). 

2.2.3.2. Models Tested 

Caspi et al. (2014) attempted to fit their full sample’s data to four models of 

psychopathology. A correlated factors model (Figure 2.2A), a bifactor model (with correlated 

higher-order factors; Figure 2.2B), a revised bifactor model (with correlated higher-order 

factors; Figure 2.2C) and a single-factor model (Figure 2.2D). Caspi et al. (Caspi et al., 2014) 

found the correlated factors model (χ2(1018, N = 1000) = 1737.16, CFI = .962, TLI = .958, 

RMSEA = .027, 90% CI = [.024, .029]), and the revised bifactor model (χ2(1012, N = 1000) 

= 1652.59, CFI = .966, TLI = .963, RMSEA = .025, 90% CI = [.023, .027]) fit the data well. 

The original bifactor model did not successfully converge (the thought disorder factor was 

subsumed by the p-factor), and the single-factor model did not fit the data well (χ2(1021, N = 

1000) = 3404.57, CFI = .875, TLI = .862, RMSEA = .048, 90% CI = [.047, .050]). To assess 

the applicability of each model and the factors of psychopathology within a sample, we tested 

the fit of each of these models on each of our devised subgroups. 

2.2.3.3. Subgroup Determination 

To ensure that we captured the heterogeneity and the variation of comorbidity of 

symptoms within a population, we created overlapping subgroups from our simulated data 

(i.e., a single case or subject could appear in more than one subsample) determined by thirds 

of the total sample’s disorder symptom and factor scores. Specifically, each case was 

characterised as within the lower, middle, or upper third of scores for (1) at least one disorder 

reflecting a (a) internalising, (b) externalising, or (c) thought disorder, and further by (2) their 
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scores on the (a) externalising and (b) internalising factors and by (3) their p-factor score. 

These permutations resulted in 63 subgroups. Twenty-seven of the subgroups were 

externalising variants, created using all permutations of upper, middle, and lower scores for at 

least one externalising disorder, the externalising factor, and p. A further 27 were 

internalising variants, resulting from all permutations of upper, middle, and lower scores for 

at least one internalising disorder, the internalising factor, and p. Lastly, 9 further subgroups 

were thought disorder variants, resulting from all permutations of the upper, middle, and 

lower scores for at least one thought disorder and p. The thought disorder factor did not 

appear in the Caspi et al. (2014) revised bifactor model; thus, thought disorder factor 

permutations were not possible. In this paper, we refer to subgroups in a A(x)-B(x)-C format, 

where A represents either the upper (1), middle (2), or lower (3) third of the symptomology 

of at least one externalising factor, internalising factor, or thought disorder, represented by 

“x” (“ext”, “int”, or “tht”). B represents either the upper (1), middle (2), or lower (3) third of 

externalising or internalising factor scores, again with the factor represented by “x”. Lastly, C 

represents either the upper (1), middle (2), or lower (3) third of p-factor scores. 

Each of the 63 subgroups were fit to each of the four models of psychopathology to 

explore the applicability of the sample level structure to the subgroups and the precise factor 

loading characteristics of each subgroup. Furthermore, bivariate associations between the 

four WAIS-IV subscales and internalising, externalising, thought disorder, and the p-factor in 

each subgroup were examined. 

2.3 Results 

Of the 63 subgroups, only 8 fit at least one of the four structural models, with all 

significant loadings, no negative loadings, no negative variance, and no non-positive-definite 

identification issues. All eight subgroups fit the correlated factors model (Figure 2.2A), none 

fit the original bifactor model (Figure 2.2B), four subgroups fit the revised bifactor model 

(Figure 2.2C), and one subgroup fit the single-factor model (Figure 2.2D). Of the eight 

subgroups, four fit only one model, and four fit two of the models of psychopathology. Five 

externalising and three thought disorder subgroup variants fit the correlated factors model 

(A), while one externalising and three thought disorder subgroup variants fit the revised 

bifactor model (C). Lastly, only a single subgroup, an externalising variant, fit the single-

factor model. None of the four CFA models of psychopathology fit any of the internalising 

subgroup variants. The fit indices for the subgroups that fit at least one model are presented 

in Table 2.3, and their loadings and associations are presented in Table 2.4. 
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Table 2.3  

Fit Statistics for Subgroups That Fit At Least One Model Well 

Model Subgroup Chi-Square df CFI TLI SRMR RMSEA [90% CI] 

Correlated 

Factors Model 

(A) 

       

 
1(ext)/1(ext)/3 

(n = 10,684) 
133.73 41 .992 .990 .012 .015 [.012, .017] 

 
3(ext)/3(ext)/1 

(n = 9,163) 
93.22 41 .990 .987 .012 .012 [.009, .015] 

 
3(ext)/3(ext)/2 

(n = 11,738) 
36.81 41 1.00 1.00 .007 .000 [.000, .005] 

 
3(ext)/3(ext)/3 

(n = 12,305) 
201.57 41 .990 .987 .015 .018 [.015, .020] 

 
2(ext)/1(ext)/3 

(n = 11,306) 
122.38 41 .996 .994 .011 .013 [.011, .016] 

 
1(tht)/X/1(tht) 

(n = 33,218) 
525.24 41 .991 .987 .017 .019 [.017, .020] 

 
2(tht)/X/2(tht) 

(n = 32,610) 
52.22 41 1.00 .999 .005 .003 [.000, .005] 

 
3(tht)/X/3(tht) 

(n = 33,255) 
791.28 41 .989 .985 .022 .023 [.022, .025] 

Revised 

Bifactor 

Model (C) 

       

 
3(ext)/3(ext)/3 

(n = 12,305) 
35.94 35 1.00 1.00 .005 .001 [.000, .007] 

 
1(tht)/X/1(tht) 

(n = 33,219) 
6.07 35 1.00 .999 .004 .005 [.003, .007] 

 
2(tht)/X/2(tht) 

(n = 32,610) 
24.32 35 1.00 1.00 .003 .000 [.000, .002] 

 
3(tht)/X/3(tht) 

(n = 33,255) 
23.91 35 1.00 1.00 .003 .000 [.000, .001] 

Single- 

Factor Model 

(D) 

       

 
2(ext)/1(ext)/3 

(n = 11,306) 
545.76 44 .974 .967 .023 .032 [.019, .034] 

Note. df = degrees of freedom; CFI = comparative fit index; TLI = Tucker–Lewis index; 

SRMR = standardized root-mean-square residual; RMSEA = root-mean-square error of 

approximation; 90% CI = 90% confidence interval; Ext = externalizing; Int = internalizing; 

Tht = thought disorder
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Table 2.4  

Loadings and Associations for Subgroups That Fit At Least One Model Well 

Model Subgroup Factor Alc Cann HD Tob CD Dep GAD Fears OCD Mania Schiz 
Ext~ 

Int 

Ext~ 

Tht 

Int~ 

Tht 

Correlated Factors Model (A)                 

 
1(ext)/1(ext)/3 

(n = 10,684) 
               

              .641 ** .955 ** .674 ** 

  Ext .206 .255 .234 .259 .307 - - - - - -    

  Int - - - - - .506 .495 .377 - - -    

  Tht - - - - - - - - .462 .916 .584    

                 

 
3(ext)/3(ext)/1 

(n = 9163) 
               

              .257 ** .655 ** .590 ** 

  Ext .156 .161 .182 .209 .222 - - - - - -    

  Int - - - - - .438 .467 .426 - - -    

  Tht - - - - - - - - .359 .846 .481    

                 

 
3(ext)/3(ext)/2 

(n = 11,738) 
               

              −.116 ** .258 ** .253 ** 

  Ext .215 .341 .272 .132 .221 - - - - - -    

  Int - - - - - .312 .418 .412 - - -    

  Tht - - - - - - - - .115 .512 .196    

                 

 

 

 

 

3(ext)/3(ext)/3 

(n = 12,305) 

               

              .455 ** .733 ** .721 ** 

  Ext .290 .374 .351 .307 .415 - - - - - -    

  Int - - - - - .527 .535 .401 - - -    

  Tht - - - - - - - - .482 .916 .602    
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Model Subgroup Factor Alc Cann HD Tob CD Dep GAD Fears OCD Mania Schiz 
Ext~ 

Int 

Ext~ 

Tht 

Int~ 

Tht 

 
2(ext)/1(ext)/3 

(n = 11,306) 
               

              .800 ** .992 ** .732 ** 

  Ext .316 .373 .349 .327 .406 - - - - - -    

  Int - - - - - .528 .510 386. - - -    

  Tht - - - - - - - - .522 .935 .628    

                 

 
1(tht)/X/1(tht) 

(n = 33,218) 
               

              −.135 ** .265 ** .620 ** 

  Ext .564 .652 .618 .429 .621 - - - - - -    

  Int - - - - - .465 .508 .437 - - -    

  Tht - - - - - - - - .403 .879 .525    

                 

 
2(tht)/X/2(tht) 

(n = 32,610) 
               

              −.381 ** .062 ** .181 ** 

  Ext .553 .663 .605 .405 .603 - - - - - -    

  Int - - - - - .336 .466 .395 - - -    

  Tht - - - - - - - - .109 .568 .183    

                 

 
3(tht)/X/3(tht) 

(n = 33,255) 
               

              −.050 ** .317 ** .710 ** 

  Ext .577 .666 .623 .448 .642 - - - - - -    

  Int      .536 .556 .430 - - -    

  Tht - - - - - - - - .496 .921 .616    

Revised Bifactor Model (C)                 

 
3(ext)/3(ext)/3 

(n = 12,305) 
               

              −.148 **   

  p .199 .261 .249 .258 .309 .399 .376 .275 .483 .916 .602    

  Ext .263 .338 .268 .079 .243 - - - - - -    

  Int - - - - - .248 .476 .322 - - -    

                 

 
1(tht)/X/1(tht) 

(n = 33,219) 
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Model Subgroup Factor Alc Cann HD Tob CD Dep GAD Fears OCD Mania Schiz 
Ext~ 

Int 

Ext~ 

Tht 

Int~ 

Tht 

              −.391 **   

  p .138 .137 .152 .189 .184 .320 .302 .249 .402 .881 .523    

  Ext .547 .645 .600 .387 .590 - - - - - -    

  Int - - - - - .289 .436 .391 - - -    

                 

 
2(tht)/X/2(tht) 

(n = 32,610) 
               

              −.399 **   

  p .036 .034 .039 .047 .030 .092 .080 .051 .109 .573 .181    

  Ext .552 .662 .604 .403 .602 - - - - - -    

  Int - - - - - .323 .459 .395 - - -    

                 

 
3(tht)/X/3(tht) 

(n = 33,255) 
               

              −.401 **   

  p .156 .175 .183 .230 .230 .410 .383 .280 .496 .922 .615    

  Ext .560 .651 .597 .387 .594 - - - - - -    

  Int - - - - - .277 .449 .377 - - -    

Single Factor Model (D)                 

 
2(ext)/1(ext)/3 

(n = 11,306) 
               

                 

  p .318 .377 .352 .330 .409 .421 .389 .287 .527 .915 .635    

Note. ~ = correlation; Alc = alcohol; Cann = cannabis; HD = hard drugs; CD = conduct disorder; Dep = major depressive episode; GAD = 

generalized anxiety disorder; Fears = fears and phobias; OCD = obsessive-compulsive disorder; Schiz = schizophrenia; Ext = externalizing; Int = 

internalizing; Tht = thought disorder. 

All factor loadings significant at p < .01. * = p < .05. ** = p < .01.
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2.3.1 Correlated Factors Model (A) 

Regarding the correlated factors model (A), symptom loadings on externalising varied 

substantially between the total sample and the subgroups. Loadings on externalising in the total 

sample ranged from .545 to .694, while the loadings on externalising among the subgroups 

ranged from .156 to .666. As expected, externalising variant subgroups had the largest 

externalising loading differentiation (ranging from .105 to .406), while the thought disorder 

variants (loadings ranging from .405 to .666) had more similar factor loadings to the total 

sample. Internalising factor loadings also varied between the total sample and the subgroups. 

Loadings on internalising for the total sample were typically higher than for the subgroups. The 

loadings on internalising for the total sample ranged from .563 to .682, while the loadings on 

internalising for the subgroups ranged from .312 to .556. Loadings of externalising (ranging 

from .312 to .535) and thought disorder (ranging from .336 to .556) subgroup variants on the 

internalising factor were similar. Lastly, factor loadings on thought disorder between the full 

sample and the subgroups varied considerably. Loadings on thought disorder in the total sample 

ranged from .709 to .968, while the loadings on thought disorder among the subgroups ranged 

from .109 to .935. Thought disorder variant subgroups (loadings ranging from .109 to .921) and 

the externalising variants (loadings ranging from .115 to .935) had similar variation in factor 

loadings on thought disorder. Subgroup variants of higher thought disorder symptoms did not 

typically load higher than the other subgroups on the thought disorder factor, instead the 

combination of total sample p-factor level and thought disorder symptom level seemed to drive 

the factors loadings. For example, subgroup 1(tht)-X−1 had thought disorder loadings ranging 

from .403 to .879, while subgroup 2(tht)-X−2 had thought disorder loadings ranging from .109 

to .568. Similarly, externalising variant 1(ext)−1(ext)−3 had higher factor loadings on 

externalising (ranging from .206 to .307) than subgroup variant 3(ext)−3(ext)−1 (ranging 

from .156 to .222). 

Out of the eight subgroups that fitted the correlated factors model well, four had a 

negative association between internalising and externalising. This contrasts with the positive 

association of .296 between the externalising and internalising factors of the full simulation 

sample. Externalising–internalising association among the four subgroups with a positive 

relationship ranged from .257 to .800 and included only externalising variant subgroups. The 

associations among the four subgroups with negative relationships ranged from −.381 to −.050   
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and included one externalising and three thought disorder variant subgroups and had no 

consistencies in thirds rankings. This suggests that even though the models with negative 

relationships between externalising and internalising fit the correlated factors model well, the 

characteristics of these models are fundamentally different from that of the total sample. 

2.3.2 Revised Bifactor Model (C) 

Regarding the revised bifactor model (C), one externalising subgroup variant and three 

thought disorder variants fit the model well, and, like the correlated factors model, symptom 

loadings on externalising for the revised bifactor model (C) varied substantially between the total 

sample and the subgroups. Loadings on externalising in the total sample ranged from .368 

to .629, while the loadings on externalising among the subgroups ranged from .079 to .662. 

Loadings on internalising for the subgroups were typically higher than the full sample, ranging 

from .248 to .459, while the total sample ranged from .247 to .347; however, loadings were 

closer to the full sample loadings when compared to externalising. This may be expected as no 

internalising variant subgroups fit the revised bifactor model. The only externalising subgroup 

variant that fit the revised bifactor model was the subgroup with the lowest externalising 

loadings (ranging from .079 to .338), even though this subgroup only contained participants in 

the upper third for at least one externalising disorder, as well as the upper third for the 

externalising factor score and p-factor score (3(ext)/3(ext)/3). The other subgroups that fit the 

bifactor model well were all thought disorder variants, with matching thirds between their 

thought disorder symptoms and their p-factor scores. This supports the suggestion that in the 

Caspi et al. (Caspi et al., 2014) revised bifactor model, the p-factor largely represents thought 

disorder (Caspi & Moffitt, 2018). 

Symptom loadings on the p-factor differed substantially between the subgroups and the 

total sample. Externalising disorder symptom loadings on p ranged from .030 to .309 in the 

subgroups and .294 to .398 in the total sample. Loadings of externalising disorder symptoms on 

p were generally lower than in the total sample, with the 2(tht)-X−2 subgroup providing the 

lowest externalising disorder loadings on p ranging from .030 to .047. Internalising disorder 

symptom loadings on p ranged from .051 to .476 in the subgroups and .476 to .605 in the total 

sample. Like externalising, loadings of internalising disorder symptoms on p were generally 

lower than in the total sample, and once again the 2(tht)-X−2 subgroup provided the lowest 
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internalising disorder loadings on p, ranging from .051 to .092. Thought disorder symptom 

loadings on p once again differed substantially between the subgroups, ranging from .109 

to .922, and the total sample, ranging from .709 to .805. Again, the 2(tht)-X−2 subgroup 

provided the lowest thought disorder loadings, ranging from .109 to .573. The loading 

characteristics of 2(tht)-X−2 provide an example of a subgroup where, although the bifactor 

model fit well, the p-factor is not representative of the participants’ propensity towards 

psychopathology, and rather the lower-order factors (i.e., externalising and internalising) are 

better representations of the subjects’ collective symptoms. 

The association between externalising and internalising for all four subgroups that fit the 

bifactor model well were negative and ranged from −.148 to −.401, compared with the full 

sample externalising–internalising association of −.387. Only the externalising subgroup variant 

had the lowest externalising–internalising relationship (−.148) and differed the greatest when 

compared with the total sample. The thought disorder variants had an externalising–internalising 

relationship ranging from −.391 to −.401, closely resembling the total sample and providing 

more evidence that thought disorder drives the p-factor in this revised bifactor model. 

2.3.3 Single-Factor Model (D) 

Only a single subgroup, 2(ext)/1(ext)/3, fit the single-factor model well, indicating that p 

alone is generally unable to successfully account for the symptoms of psychopathology at the 

total sample and the subgroup level. Within subgroup 2(ext)/1(ext)/3, externalising and 

internalising disorders loaded on p at a similar level. Externalising disorders loadings on p 

ranged from .318 to .409, and internalising disorders loadings on p ranged from .287 to .421; 

however, similar to the correlated factors and bifactor models, the thought disorders loaded on p 

to a greater extent. The three thought disorders loadings on p ranged from .527 to .915, 

suggesting that whether second order factors are included (e.g., the bifactor model) or not (e.g., 

the single-factor model), within the total sample and the subgroups, p in this dataset is largely 

defined by thought disorder symptomology. Given that the single-factor model was not a good fit 

for the total sample, any comparison of factor loadings between the total sample and the 

subgroup would not be appropriate. 

2.3.4 Factor Associations 

The associations between the factor scores derived from within each subgroup and the 

factor scores for the subgroup derived from the total sample are presented in Table 2.5. 
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Regarding the correlated factors model (A), the data in Table 2.5 show that while the subgroup-

derived and total-sample-derived factor scores for internalising and thought disorder are very 

similar (internalising ranging from .921 to .999; thought disorder ranging from .983 to 1.00), 

subgroup- and total-sample-derived externalising scores vary (ranging from .663 to .999). 

Externalising factor score associations tended to be lower in the externalising subgroup variants 

(ranging from .663 to .973) than in the thought disorder subgroup variants (ranging from .997 

to .999). This may suggest that externalising factor scores are particularly susceptible to 

individual and subgroup differences, while internalising and thought disorder scores largely 

follow the same pattern of scores within the total sample and the subgroups in a correlated 

factors model. Regarding the revised bifactor model (C), associations between the total-sample- 

and subgroup-derived factor scores were generally consistent and high (ranging from .941 to 

1.00). This suggests the pattern of externalising, internalising, and p-factor scores were generally 

consistent in the total sample and the subgroups. This mirrors the factor loading characteristics 

that showed, generally, that subgroup p-factor loadings followed a similar pattern to the total 

sample, even when the magnitude of the loadings differed. Similarly, even though the single-

factor model did not fit the total sample well, the subgroup-derived p-factor for the single 

subgroup that fit the model well had a very strong relationship with the total-sample-derived p-

factor (.996). 

Table 2.5 

Total Sample and Within Subgroup p-factor Associations  

Model Subgroup  
Total Sample 

EXT 

Total Sample 

INT 

Total Sample 

THT 

Total Sample  

p 

Correlated Factors Model 

(A) 
      

 
1(ext)/1(ext)/3 

(n = 10,684) 
     

  Subgroup EXT .759 ** .849 ** .992 ** - 

  Subgroup INT .495 ** .996 ** .869 ** - 

  Subgroup THT .723 ** .858 ** .997 ** - 

 
3(ext)/3(ext)/1 

(n = 9163) 
     

  Subgroup EXT .663 ** .538 ** .924 ** - 

  Subgroup INT .149 ** .976 ** .789 ** - 

  Subgroup THT .348 ** .778 ** .999 ** - 

 
3(ext)/3(ext)/2 

(n = 11,738) 
     

  Subgroup EXT .973 ** −.220 ** .364 ** - 

  Subgroup INT −.136 ** .921 ** .406 ** - 

  Subgroup THT .279 ** .592 ** .996 ** - 
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Model Subgroup  
Total Sample 

EXT 

Total Sample 

INT 

Total Sample 

THT 

Total Sample  

p 

 

 

 

3(ext)/3(ext)/3 

(n = 12,305) 

     

  Subgroup EXT .887 ** .687 ** .890 ** - 

  Subgroup INT .425 ** .990 ** .887 ** - 

  Subgroup THT .605 ** .888 ** .999 ** - 

 
2(ext)/1(ext)/3 

(n = 11,306) 
     

  Subgroup EXT .825 ** .908 ** .996 ** - 

  Subgroup INT .691 ** .990 ** .902 ** - 

  Subgroup THT .831 ** .883 ** .997 ** - 

 
1(tht)/X/1(tht) 

(n = 33,218) 
     

  Subgroup EXT .999 ** −.152 ** .343 ** - 

  Subgroup INT −.126 ** .999 ** .771 ** - 

  Subgroup THT .312 ** .764 ** .999 ** - 

 
2(tht)/X/2 

(n = 32,610) 
     

  Subgroup EXT .997 ** −.454 ** .143 ** - 

  Subgroup INT −.535 ** .949 ** .297 ** - 

  Subgroup THT .136 ** .504 ** .983 ** - 

 
3(tht)/X/3 

(n = 33,255) 
     

  Subgroup EXT .998 ** .050 ** .368 ** - 

  Subgroup INT .032 ** .998 ** .843 ** - 

  Subgroup THT .413 ** .873 ** 1.00 ** - 

Revised Bifactor Model 

(C) 
      

 
3(ext)/3(ext)/3 

(n = 12,305) 
     

  Subgroup EXT .986 ** −.501 ** - .029 ** 

  Subgroup INT −.239 ** .941 ** - .072 ** 

  Subgroup p  .163 ** −.139 ** - .999 ** 

 
1(tht)/X/1(tht) 

(n = 33,219) 
     

  Subgroup EXT .999 ** −.652 ** - .066 ** 

  Subgroup INT −.592 ** .997 ** - .033 ** 

  Subgroup p  .067 ** .033 ** - .998 ** 

 
2(tht)/X/2 

(n = 32,610) 
     

  Subgroup EXT .998 ** −.622 ** - .097 ** 

  Subgroup INT −.606 ** .992 ** - .136 ** 

  Subgroup p  −.020 ** −.032 ** - .983 ** 

 
3(tht)/X/3 

(n = 33,255) 
     

  Subgroup EXT .997 ** −.587 ** - .027 ** 

  Subgroup INT −.620 ** .998 ** - .052 ** 

  Subgroup p  −.052 ** .003 - 1.00 ** 

Single-Factor Model (D)       

 
2(ext)/1(ext)/3 

(n = 11,306) 
     

  Subgroup p - - - .996 ** 

Note. EXT = externalizing; INT = internalizing; THT = thought disorder. 
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* = p < .05. ** = p < .01. 

 

2.3.5 The Factors of Psychopathology and Intelligence 

Next, we compared the total-sample-derived factor scores and subgroup-derived factor 

scores’ associations with intelligence for each successfully fitted subgroup. The results are 

presented in Table 2.6. Regarding the correlated factors model, associations between the total 

sample factor scores and the WAIS subscales varied greatly from the subgroup p-factor scores 

derived from both the (a) total sample and the (b) subgroups. For example, the associations 

between the verbal comprehension (VC) subscale and the subgroups’ externalising score derived 

from the total sample (ranging from −.076 to −.176) and subgroup (ranging from .055 to −.177) 

varied greatly. Furthermore, only the higher end of that relationship range was representative of 

the total sample’s externalising relationship with the VC subscale. This may suggest that, within 

subgroups, factors of psychopathology might be differentially predicted by a range of constructs 

and thereby have a different substantial meaning for each subgroup. For the correlated factors 

model, the subgroups’ associations between the WAIS subscales and the total-sample-derived 

factor scores and subgroup-derived factor scores were generally quite consistent. For example, 

the subgroup-derived thought disorder factor scores and the total-sample-derived thought 

disorder factor scores’ associations with the WAIS subscales never differed by more than .004. 

However, in other instances associations differed between the total-scale-derived and subgroup-

derived factors and the WAIS subscales. For example, the relationship between working memory 

(WM) and the total sample (−.085) and subgroup-derived externalising score (−.135) for 

subgroup 1(ext)/1(ext)/3 differed by .05. 

Regarding the revised bifactor model (C), associations between the total sample factor 

scores and the WAIS subscales also varied from the subgroup p-factor scores derived from both 

the (a) total sample and the (b) subgroups. For example, the associations between the processing 

speed (PS) subscale and the subgroups’ p-factor score derived from the total sample (ranging 

from −.030 to −.170) and subgroup (ranging from .029 to −.171) varied greatly compared with 

the relationship between the total sample’s p-factor score and the PS subscale (−.167). However, 

the subgroups’ associations between the WAIS subscales and the total-sample-derived and 

subgroup-derived p-factor scores were very similar, never differing by more than .003. This 

suggests that while the characteristics of p might differ for each subgroup, as indicated by 
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heterogeneous subgroup associations to the WAIS subscales, p derived from within a subgroup 

and the total sample may reflect the same construct. 

Lastly, even though the single-factor model (D) was not a good fit for the total sample 

and was only a good fit for a single subgroup, associations between the WAIS subscales and the 

total sample and subgroup-derived p scores for the subgroup were very similar. The largest 

WAIS subscale relationship difference between the total-sample-derived p and the subgroup-

derived p was .005, once again suggesting that within-group-derived p is the same construct as 

total sample p. 

Table 2.6  

Psychopathology Factors and WAIS Subscale Associations  

Model Subgroup  VC PR WM PS 

Correlated Factors Model (A)       

 
1(ext)/1(ext)/3 

(n = 10,684) 
     

  Total sample EXT −.083 ** −.080 ** −.085 ** −.109 ** 

  Total sample INT −.021 ** −.049 ** −.129 ** −.086 ** 

  Total sample THT −.073 ** −.087 ** −.137 ** −.118 ** 

  Subgroup EXT −.078 ** −.090 ** −.135 ** −.122 ** 

  Subgroup INT −.020 ** −.048 ** −.127 ** −.087 ** 

  Subgroup THT −.077 ** −.089 ** −.136 ** −121 ** 

 

 

3(ext)/3(ext)/1 

(n = 9163) 

     

  Total sample EXT −.076 ** −.043 ** −.014 ** −.046 ** 

  Total sample INT .016 −.010 −.010 −.020 

  Total sample THT −.032 ** −.032 ** −.027 * −.035 ** 

  Subgroup EXT −.055 ** −.045 ** −.028 ** −.043 ** 

  Subgroup INT .005 −.016 −.010 −.028 ** 

  Subgroup THT −.031 ** −.032 ** −.027 * −.034 ** 

 
3(ext)/3(ext)/2 

(n = 11,738) 
     

  Total sample EXT −.097 ** −.048 ** −.032 ** −.028 

  Total sample INT .028 ** .021 * −.026 ** −.012 

  Total sample THT −.047 ** −.014 −.041 ** −.043 ** 

  Subgroup EXT −.101 ** −.048 ** −.036 ** −.033 * 

  Subgroup INT .031 ** .020 * −.025 ** −.004 

  Subgroup THT −.050 ** −.015 −.041 ** −.044 ** 

 
3(ext)/3(ext)/3 

(n = 12,305) 
     

  Total sample EXT −.162 ** −.117 ** −.067 ** −.125 ** 

  Total sample INT −.055 ** −.071 ** −.125 ** −.139 ** 

  Total sample THT −.118 ** −.110 ** −.135 ** −.170 ** 

  Subgroup EXT −.157 ** −.127 ** −.114 ** −.167 ** 

  Subgroup INT −.062 ** −.075 ** −.122 ** −.139 ** 

  Subgroup THT −.121 ** −.111 ** −.135 ** −.171 ** 

 
2(ext)/1(ext)/3 

(n = 11,306) 
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Model Subgroup  VC PR WM PS 

  Total sample EXT −.099 ** −.101 ** −.116 ** −.133 ** 

  Total sample INT −.044 ** −.064 ** −.149 ** −.116 ** 

  Total sample THT −.091 ** −.101 ** −.156 ** −.142 ** 

  Subgroup EXT −.090 ** −.100 ** −.155 ** −.143 ** 

  Subgroup INT −.047 ** −.067 ** −.148 ** −.120 ** 

  Subgroup THT −.095 ** −.104 ** −.154 ** −.145 ** 

 
1(tht)/X/1(tht) 

(n = 33,218) 
     

  Total sample EXT −.098 ** −.065 ** −.022 ** −.029 ** 

  Total sample INT .026 ** .002 −.027 ** −.020 

  Total sample THT −.039 ** −.040 ** −.040 ** −.043 ** 

  Subgroup EXT −.099 ** −.065 ** −.023 ** −.039 ** 

  Subgroup INT .025 ** .001 −.027 ** −.022 ** 

  Subgroup THT −.038 ** −.039 ** −.040 ** −.042 ** 

 
2(tht)/X/2 

(n = 32,610) 
     

  Total sample EXT −.106 ** −.053 ** −.025 ** −.027 ** 

  Total sample INT .069 ** .036 ** −.016 ** −.002 

  Total sample THT −.027 ** −.009 −.039 ** −.031 ** 

  Subgroup EXT −.106 ** −.054 ** −.024 ** −.026 ** 

  Subgroup INT .089 ** .045 ** −.005 .008 

  Subgroup THT −.026 ** −.009 −.037 ** −.029 ** 

 

 

 

 

3(tht)/X/3 

(n = 33,255) 

     

  Total sample EXT −.179 ** −.120 ** −.069 ** −.104 ** 

  Total sample INT −.017 ** −.049 ** −.138 ** −.110 ** 

  Total sample THT −.102 ** −.103 ** −.153 ** −.150 ** 

  Subgroup EXT −.177 ** −.117 ** −.062 ** −.097 ** 

  Subgroup INT −.004 −.040 ** −.134 ** −.103 ** 

  Subgroup THT −.102 ** −.104 ** −.153 ** −.150 ** 

Revised Bifactor Model (C)       

 
3(ext)/3(ext)/3 

(n = 12,305) 
     

  Total sample EXT −.130 ** −.082 ** −.004 −.053 ** 

  Total sample INT .122 ** .077 ** .008 .046 ** 

  Total sample p −.117 ** −.109 ** −.135 ** −.170 ** 

  Subgroup EXT −.121 ** −.075 ** .011 −.034 ** 

  Subgroup INT .076 ** .043 ** −.017 .003 

  Subgroup p  −.120 ** −.111 ** −.135 ** −.171 ** 

 
1(tht)/X/1(tht) 

(n = 33,219) 
     

  Total sample EXT −.094 ** −.057 ** −.014 ** −.030 ** 

  Total sample INT .086 ** .049 ** .005 .016 ** 

  Total sample p −.039 ** −.041 ** −.040 ** −.043 ** 

  Subgroup EXT −.093 ** −.057 ** −.012 * −.029 ** 

  Subgroup INT .082 ** .046 ** .003 .013 ** 

  Subgroup p  −.038 ** −.040 ** −.040 ** −.040 ** 

 
2(tht)/X/2 

(n = 32,610) 
     

  Total sample EXT −.103 ** −.053 ** −.020 ** −.023 ** 

  Total sample INT .101 ** .050 ** .006 .017 ** 

  Total sample p −.027 ** −.009 −.039 ** −.030 ** 
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Model Subgroup  VC PR WM PS 

  Subgroup EXT −.105 ** −.054 ** −.022 ** −.025 ** 

  Subgroup INT .096 ** .048 ** .001 .013 * 

  Subgroup p  −.027 ** −.009 −.037 ** −.029 ** 

 
3(tht)/X/3 

(n = 33,255) 
     

  Total sample EXT −.145 ** −.080 ** −.002 −.037 ** 

  Total sample INT .148 ** .087 ** −.011 .041 ** 

  Total sample p −.102 ** −.103 ** −.153 ** −.150 ** 

  Subgroup EXT −.153 ** −.088 ** −.011 * −.049 ** 

  Subgroup INT .145 ** .083 ** −.018 ** .035 ** 

  Subgroup p  −.102 ** −.104 ** −.153 ** −.150 ** 

Single-Factor Model (D)       

 
2(ext)/1(ext)/3 

(n = 11,306) 
     

  Total sample p −.087 ** −.098 ** −.156 ** −.141 ** 

  Subgroup p −.092 ** −.102 ** −.155 ** −.144 ** 

Note. VC = verbal comprehension; PR = perceptual reasoning; WM = working memory; PS = 

processing speed; EXT = externalizing; INT = internalizing; THT = thought disorder. 

* = p < .05. ** = p < .01. 

 

2.4. Discussion 

The main objective of this study was to explore the extent to which popular structural 

models of psychopathology could be fit to subgroups of individuals within a sample and to 

explore the similarities and differences between characteristics of the factors within the 

subgroups. We generated a large sample of symptom and intelligence data that simulated that of 

empirical work published by Caspi et al. (2014) and explored the (a) applicability, (b) loading 

patterns, and (c) factor associations of four models of psychopathology on a subgroup level. 

In analysing the fit of models to each of the 63 subgroups, we were able to determine the 

extent to which different structural models are successful in capturing the utility of the p-factor 

and the specific factors of psychopathology in representing symptoms. Of the 63 subgroups, each 

of which was fitted to four different models of psychopathology, only eight were found to fit one 

or more model well. Put differently, only 3.17% of the models tested showed a reliable fit. At 

first pass, these results suggest that when exploring the nature of symptoms in subgroups of a 

population, traditional structural models of psychopathology may be of low utility. This 

suggestion may seem to contrast with previous research. For example, structural models have 

been shown to fit well in specific circumstances (i.e., populations with a specific diagnosis), 

suggesting structural models are robust to mild symptom range limitation (Shevlin et al., 2016; 
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Xie et al., 2012). However, we explored different combinations of symptoms and factor loadings 

to better capture deviation amongst the general population. 

Of the eight subgroups that were found to fit one or more models, all eight fit the 

correlated factors model, none fit the full bifactor model, only four fit the revised bifactor model, 

and a single subgroup fit the one-factor model. This may be unexpected, given that bifactor 

models are more accommodating and fit indices are biased towards bifactor models over 

correlated factor models (Greene et al., 2019). This suggests that within subgroups, including 

individuals with variability in lower-level symptom counts and higher-level factors scores 

(derived from the full sample), the p-factor is of little utility. 

Our results, therefore, lend support to the suggestion that the p-factor is poor at 

representing variations in the number of symptoms displayed per disorder at the subgroup level, 

while the specific factors of psychopathology can better account for deviations. Future research 

should consider these findings when discussing the use of the p-factor in individualised treatment 

settings. Furthermore, it is important to note that the four subgroups fit the revised bifactor 

model rather than the standard bifactor model. Heinrich et al. (2020) explain that p in the revised 

bifactor model, which did not include the specific thought disorder factor, reflects the thought 

disorder factor and not general psychopathology. When Caspi et al. (2014) removed the thought 

disorder-specific factor from the model, it became an “S−1” bifactor model (see  Burns et al., 

2019; Eid, 2020; Heinrich et al., 2020). The p-factor came to represent thought disorder, and 

internalising and externalising reflected the variance of their indicators over and above the 

variance subsumed by the thought disorder-referenced p-factor (Heinrich et al., 2020). Therefore, 

as no subgroups fit the standard bifactor model well and only a single subgroup fit the one-factor 

model well, p as understood as a general factor of psychopathology did poorly at accounting for 

the symptoms of the subgroups. It is also important to acknowledge that the factor loadings and 

factor covariance for each of the subgroups differed markedly. This variability between different 

groups mirrors findings of Levin-Aspenson et al. (2020) and supports the proposition that the 

factors of psychopathology reflect different components within different groups. Ultimately, our 

results suggest that within subgroups of a population, the factors of psychopathology do poorly 

at accounting for psychopathological symptoms, especially the p-factor. 

Associations between the total-sample- and subgroup-derived factor scores were 

generally very high. This suggests that even though the subgroup-derived factors of 
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psychopathology have different loading characteristics when compared with the full sample, for 

the small number of subgroups that fit a model well, the factors’ scores derived from within the 

subgroup largely reflect that of the scores derived from the sample. However, there was one 

notable exception: the externalising factor scores derived from the subgroups for the correlated 

factors model, in some instances, differed substantially compared with the population derived 

scores. It is possible that the externalising factor from these models is more tolerant of deviation, 

while still fitting the assigned CFA model well. Future research should explore what differs 

between externalising, internalising, and thought disorder to allow for this tolerance. 

The associations between the WAIS subscales and both the subgroup- and total-sample-

derived factor scores were very similar. This parallels the finding that, generally, the subgroup- 

and sample-derived factor scores correlated highly for the subgroups. However, the associations 

between the WAIS subscales and the factor scores of the total sample differed markedly from 

many of the subgroups’ factor scores. The variation of association strength between the 

subgroups’ and the full samples’ factor scores and the WAIS subscales has implications for the 

development of a substantive construct of the factors, including the p-factor. For example, if a 

substantive construct of the p-factor was to be developed, with prespecified constructs with 

which it must correlate within a certain range (e.g., Levin-Aspenson et al., 2020), it is likely this 

definition of p would only be applicable to a full population sample. Therefore, our results 

suggest that not only do the factors of psychopathology do poorly at accounting for the 

symptoms of subgroups, especially p, but also even for the small number of subgroups for which 

the factors do have utility, large variations in outcome correlates (in our case WAIS subscales) 

suggest that developing a universal substantive meaning of the factors would be challenging. 

Furthermore, these results also reinforce the importance of considering neurocognitive 

associations with psychopathology at the individual level (Haywood & Baughman, 2021; 

Haywood et al., 2021c). 

Recently, authors have described the S−1 bifactor approach to the study of 

psychopathology as an alternative to the standard bifactor approach (Burns et al., 2019; Eid, 

2020; Heinrich et al., 2020). The S−1 approach allows for the predefinition of the substantive 

construct of the general factor by loading theoretically important indicators representing a 

domain of interest directly on the general factor (Burns et al., 2019; Haywood et al., 2021a). 

Indeed, the S−1 approach combats many of the issues that we present here with regard to the 
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bifactor model. The approach allows for a clear understanding of what the general factor reflects 

and for a clear interpretation of what the specific variances, factor loadings, and covariance 

represent (Eid, 2020). The S−1 approach is clearly useful for exploring specific questions and the 

utility of a specific domain of interest in accounting for the common variance of 

psychopathological symptoms. However, exclusive use of the S−1 approach means abandoning 

the possibility of a general factor that may reflect the overall propensity towards 

psychopathology (e.g., Caspi et al., 2014). Furthermore, the S−1 approach may not be unaffected 

by some of the issues we raise here. For example, the correlated factors model also did poorly at 

accounting for the symptoms of our subgroups, and it also had substantial variability in the 

strengths of correlates. It is possible that the S−1 approach may be subject to similar issues. 

Further research should explore these possibilities. 

2.4.1 Limitations and Directions for Future Research 

 This study, while accounting for the issues of statistical power when conducting this 

type of research, had some limitations. The simulation approach taken means that the results 

need to be interpreted with some caution. It is likely that, even though symptom and WAIS data 

were developed based on known sample characteristics (Caspi et al., 2014), the simulation data 

differed from the simulated sample. We based symptom distributions on the general skew of 

symptoms found in the population (Curran et al., 1996), and this has been successfully utilised in 

previous research (Greene et al., 2019). However, it is likely that the distributions from the base 

sample varied from our simulated data, which may have implications on the characteristics of the 

subgroups. Furthermore, we chose to develop a single dataset instead of using Monte Carlo 

simulations. The use of a single dataset had strengths that were important to this research, such 

as allowing for a nuanced assessment of the fit, loadings, and associations of each subgroup and 

the parallel with empirical research. However, Monte Carlo simulations in which the populations 

conditions may be varied systematically would offer further insight into the boundaries of 

structural model applicability. We also used continuous variables representing symptom counts. 

Once again, even though this has been used successfully in previous research (e.g., Greene et al., 

2019), it differs from the ordinal data derived from the base sample. Further, the first level of 

categorisation we used for the subgroups was the symptom level. We used the threshold of at 

least one disorder representing each factor to be in the lower, middle, or upper third of the total 

sample. This approach was chosen to account for individuals with just one pervasive difficulty 
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(e.g., pervasive alcohol use while not displaying significant comorbidity). However, this also 

meant that individuals were often nested within more than one subgroup. Lastly, we tested the 

four models of psychopathology used by Caspi et al. (2014). These models were chosen based on 

their popularity in the literature. However, we did not test a higher-order factor model—a model 

where the specific factors load onto the p-factor rather than the p-factor taking variance directly 

from the disorder level (see Bornovalova et al., 2020)—or a more traditional bifactor model that 

does not have correlated specific factors. It is possible that the use of a higher-order factor model 

or a traditional bifactor model might have produced differential findings. 

Future research should look to use Monte Carlo simulations to attempt to validate and 

extend these findings and also explore various different grouping methods to accommodate the 

nesting limitation mentioned above. However, even though simulation and computational 

methodologies are useful for providing a way to discretely and precisely examine a research 

question (see Haywood, Lawrence, et al., 2021), research using large samples of human data is 

needed to validate these findings. Future research may also measure a larger range of correlates 

and assess the applicability of the higher-order factor model and the traditional bifactor model at 

the subgroup level. Research should then explore the development and maintenance of the factor 

scores on the individual level. This could be done through computational approaches exploring 

how variations of symptoms over time impact an individual’s factor scores at different time 

points. Lastly, future research should explore the availability, variability, and correlates of the 

factors of psychopathology in S−1 bifactor models and should determine if the limitations of the 

structural models that we present here are applicable to that approach. 

2.5. Conclusions 

Ultimately, our work suggests that the models of psychopathology we tested are poor at 

accounting for the symptoms of psychopathology within subgroups of the population. 

Furthermore, with respect to the utility of the p-factor, we showed that p has little utility in 

accounting for the symptoms of individuals within subgroups. Associations between the WAIS 

subscales and psychopathology factor scores within the subgroups had significant variability and 

often differed markedly from the associations in the total sample. Together, these findings not 

only suggest that bifactor models of psychopathology be of limited utility at the subgroup level, 

and therefore at the individual level, but also suggest that developing universal substantive 

constructs of the factors may be difficult. If universal substantive constructs of the p-factor and 
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the specific factors of psychopathology are to be developed, they may only be useful for 

describing a sample or population as a whole. The factors may have little utility in describing a 

subgroup’s psychopathological symptom structure. This has implications for the use of the 

factors within the treatment setting. 
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Preface to Chapter 3 

Chapter three explores the second direction of future research provided in chapter one of road 

forward in the exploration of psychopathology and neurocognitive abilities. This second 

direction of future research coincides with the second aim of this thesis. The following chapter 

also moves forward from the findings in chapter two in that a universal consistent p-factor for the 

exploration between psychopathology and neurocognitive abilities is unlikely to be developed. 

As with chapter three we use data simulation methods. However here we created datasets to 

provide three examples of the use of S-1 bifactor models, where the general factor (the p-factor 

in traditional psychopathology bifactor models) is referenced by neurocognitive abilities. This 

chapter ultimately provides examples and a discussion of how the use of S-1 bifactor models 

(with correlated factors models) offers distinct advantages over more traditional methods of 

assessment and mitigates the issue of an inconsistent and non-replicable general factor for the 

study of psychopathology and neurocognitive abilities. 
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Note: The following chapter has been published in International Journal of Environmental 

Research and Public Health in the special issue titled Diagnosis and Advances in Research on 

Human Behavior. 
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Minor edits have been made to the following chapter, such as phrasing and Australian Spelling, 
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Chapter 3 (Study 2): Going “Up” to Move Forward: S-1 Bifactor Models and the Study of 

Neurocognitive Abilities in Psychopathology 

3.1 Introduction 

In recent years, there has been a body of research that has moved away from the study of 

any single disorder (see Lahey et al., 2021a). This work is driven by issues of high comorbidity 

and low diagnostic stability within the traditional nosological approach to diagnosis (see 

Hovenkamp-Hermelink et al., 2016; Krueger & Eaton, 2015; Newman et al., 1998). In particular, 

the rise of dimensional structural models of psychopathology has led to explorations of the 

commonalities of disorders, as well as what may underpin these commonalities (Lahey et al., 

2021a). One of the most prominent structural models of psychopathology, the bifactor model, 

revealed that a significant amount of variance from symptoms of a range of disorders could be 

accounted for by a single general factor at the “top” of the model, while specific disorder 

variance could be largely accounted for by a group of lower-order, or “specific” factors, such as 

externalising, internalising and thought disorder (e.g., Caspi et al., 2014). The general factor was 

termed the p-factor, likened to the g factor of intelligence, and said to be a normally distributed 

property across the population that determines an individual’s propensity toward all common 

psychopathological symptoms (Caspi et al., 2014). A range of research, with little consensus, has 

attempted to uncover what is the substantive construct of p, or in other words, what p represents. 

For example, the p-factor has been claimed to reflect neuroticism (Brandes et al., 2019), 

disordered thought (Caspi & Moffitt, 2018), functional impairment (Smith et al., 2020), and 

impulsive responsivity to emotion (Carver et al., 2017). Furthermore, constructs, such as 

neurocognitive abilities, due to their reliable correlation with the general factor, have been 

claimed to be a key driver of the p-factor (Lahey et al., 2021a). 

Higher-order neurocognitive abilities have long been theorized to be important 

components and processes underlying the development and maintenance of psychopathology 

(e.g., Beck & Rector, 2005; Cannon, 2015; Kéri & Janka, 2004; Trivedi, 2006). However, 

evidence of the contributions of higher-order neurocognitive abilities to psychopathology is often 

inconsistent (e.g., Bloemen et al., 2018; Geurts et al., 2014; Kofler et al., 2019; Raffard & 

Bayard, 2012). One possible reason for this heterogeneity may be the diagnostic instability and 

comorbidity present in research grounded in the nosological approach (e.g., see Trivedi, 2006). 
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Therefore, exploring how neurocognitive abilities may contribute to p, and the specific factors of 

psychopathology using the dimensional based structural approach, is appealing. 

However, recently, there has been strong evidence against p as a substantive construct. 

Murray et al. (2016) and Snyder and Hankin (2017) explain that the p-factor, is a function of the 

sample from which it is derived. Levin-Aspenson et al. (2020) demonstrated that the p-factor 

derived from two different samples is a substantially different construct, and Fried et al. (2021) 

showed that, statistically, p is simply a representation of the combination of an individual’s 

diagnosis. Furthermore, using simulation methodologies, Greene et al. (2019) showed that fit 

indices, often used to champion the bifactor model (with a p-factor) over a correlated factors 

model (without a p-factor), unfairly bias the more accommodating bifactor model. Correlations 

between specific factors in a bifactor model also often switch signs when compared to the 

specific factor associations in the correlated factors models (e.g., Caspi et al., 2014), and these 

changes do not have a strong theoretical explanation (Pettersson et al., 2021). Furthermore, 

recently, we have demonstrated the particular lack of applicability and consistency of the p-

factor within subgroups of a population (Haywood et al., 2021b), limiting the possibility of a 

universal substantive p. Ultimately, Lahey et al. (2021a) explains that p is simply “…a “weighted 

average” of some aspects of all symptoms exhibited by each person at that point in time” (pp. 

61), and it is unclear whether p can have any substantive, theoretical meaning. 

As neurocognitive abilities are associated with a wide range of disorders, p as a 

substantive construct has promise for increasing our understanding of how neurocognitive 

abilities are involved in the development, maintenance, and treatment of psychopathology. 

However, without a theoretical consensus on what p is (See Fried et al., 2021; Levin-Aspenson et 

al., 2020; Watts et al., 2020a), it may not greatly enhance our understanding of the association 

between neurocognitive abilities and psychopathology. Relatedly, as p is inherently fluid, 

changes in the makeup of p also result in substantive changes to the specific factors of the 

models, further limiting our ability to consistently interpret the associations between 

neurocognitive abilities and psychopathology. To combat the statistical concerns of p, alternative 

bifactor models have been developed. In particular, there has been increasing interest in the use 

of the S-1 bifactor model in the study of psychopathology (Burns et al., 2019; Eid, 2020; 

Heinrich et al., 2020). The S-1 bifactor model includes a “reference domain” that acts to 

predefine the meaning of the general factor (see Burns et al., 2019; Eid, 2020; Heinrich et al., 
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2020, for detailed explanations). The predefining of the general factor removes the issues 

presented in the traditional bifactor literature in that p is an undefined, flexible statistical 

construct (Eid, 2020). An S-1 bifactor model includes a reference domain with typically two or 

more indicators that load only onto the general factor, while the other indicators load onto the 

general factor as well as a specific factor (Burns et al., 2019). The general factor in a S-1 bifactor 

model therefore represents the reference domain, and the specific factors represent the “…true 

score variance in non-reference symptom facets that is not shared with the general reference 

factor” (Burns et al., 2019, pp. 885). Further, the correlations between the specific factors 

represent the shared variance between the two factors that is not common with the general factor. 

Heinrich et al. (2020) explain that when Caspi et al. (2014) removed the thought disorder factor 

from their bifactor model, due to a Heywood case (an indicator with negative variance), their 

model became an S-1 bifactor model and the thought disorder factor became the reference 

domain for the p. Effectively, p in Caspi et al.’s (2014) revised bifactor model became the 

thought disorder factor, rather than a general factor of psychopathology (Heinrich et al., 2020). 

This demonstrates the difficulties with an undefined general factor (e.g., the p-factor), because as 

p is a non-stable statistical weighted summary of symptoms, it is susceptible to changes in 

meaning in line with changes in model structure and indicators. Therefore, currently, knowledge 

stemming from associations between the p-factor and theoretically important constructs and 

processes, such as neurocognitive abilities, lack substantive meaning. In contrast, S-1 bifactor 

models allow us to predefine the meaning of the general factor with a theoretically outstanding 

candidate (Eid, 2020) and, as the general factor has substantive meaning, unexpected or novel 

findings, such as specific factors switching signs, could have clear theoretical interpretations and 

facilitate hypotheses development. Furthermore, a large limitation of traditional bifactor models 

is inconsistency. However, the inclusion of a reference domain means that the S-1 bifactor 

models are consistent and therefore replicable (Eid, 2020). Previously, S-1 bifactor models have 

predominantly been used with a symptom domain as the general factor. However, as Greene et 

al. (2021) states, any such etiological domain of interest could be modelled as the general factor 

in an S-1 bifactor model and facilitate the exploration of that domain and psychopathology. 

Further, Thone et al. (2022) have successfully used S-1 bifactor modelling in multi-trait multi-

method models, suggesting that the utility of the S-1 bifactor modelling approach does not arise 

from common method variance.  
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Recently, we called for the use of S-1 bifactor models in the study of associations 

between neurocognitive abilities and psychopathology, by using neurocognitive abilities as the 

reference domain (Haywood et al., 2021b, 2021c). S-1 bifactor models account for many of the 

limitations of both the traditional nosological approach, and the traditional bifactor models. In 

the following sections, we use data simulation methods to illustrate how S-1 bifactor models 

could be used to examine the association between neurocognitive abilities and psychopathology 

and how, even when an S-1 bifactor model has unexpected results, it is able to facilitate a 

theoretical interpretation and hypotheses development. 

3.2 Materials and Methods 

3.2.1 Data Generation 

3.2.1.1. Symptoms 

Caspi et al. (2014) developed and tested models of psychopathology using data from the 

Dunedin Multidisciplinary Health and Development Study (total N = 1037; N = 1000) used by 

Caspi et al. (2014). The symptom data were gathered using the Diagnostic Interview Schedule 

(Robins et al., 1995) and comprised of the number of DSM-IV symptoms with which each 

individual presented for a range of common disorders (see Caspi et al., 2014). Caspi et al. (2014) 

also used a range of potential correlates of psychopathological symptoms from the Dunedin 

Multidisciplinary Health and Development Study, including measures of neurocognitive ability, 

to further examine their models. To develop our simulated data, we used a top-down approach 

from previous work (see Haywood et al., 2021b) that is similar to Greene et al.’s (2019) 

approach in order to develop a dataset comprising of 11 disorder variables for 10,000 

participants. Specifically, we used the loadings of Caspi et al.’s (2014) revised bifactor model to 

develop 11 continuous variables representing the symptom counts of (1) alcohol use, (2) 

cannabis use, (3) hard drug use, (4) tobacco use, (5) conduct disorder, (6) fears and phobias, (7) 

major depressive episode, (8) generalised anxiety disorder, (9) obsessive compulsive disorder, 

(10) mania, and (11) schizophrenia, respectively. Like Greene et al. (2019), we then assigned a 

skew of approximately positive skew of 2.0 across the variables to represent the distributions of 

symptoms typically found in the general population (Curran et al., 1996). All data generation and 

analysis were conducted with RStudio using the Lavaan package (Rosseel, 2012). 
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3.2.1.2. Intelligence 

Following the development of the symptom counts, we fitted the Caspi et al. (2014) 

revised bifactor model to the data (details are presented in the analysis section) and saved the 

factor loadings back to the dataset. We then developed three variables simulating Caspi et al.’s 

(2014) measures of the intelligence quotient (IQ) from (1) the Stanford–Binet Intelligence Scale 

(age 5), (2) the Wechsler Intelligence Scale for Children-Revised (WISC-R; ages 7–11), and (3) 

the Wechsler Adult Intelligence Scale-IV (WAIS-IV) full scale. The data for the three IQ 

measures were based on the correlations between each measure of IQ and externalising, 

internalising and the p-factor from Caspi et al.’s (2014) revised bifactor model, as well as the 

correlations between each of the IQ measures from longitudinal research (Kaufman & Van 

Hagen, 1977; Spector, 2013). The IQ variables were normally distributed and standardised to a 

mean of 100 and a standard deviation of 15. 

3.2.1.3. Executive Functioning  

We also developed, and added to the dataset, variables representing two of Caspi et al.’s 

(2014) measures of executive functioning, the Trail Making Test-B (TMT-B) and the Cambridge 

Neuropsychological Test Automated Battery - Rapid Visual Information Processing task 

(CANTAB: RVIP). We developed these data based on the correlations between the two 

executive functioning measures and externalising, internalising and the p-factor from Caspi et 

al.’s (2014) revised bifactor model, as well as correlations found within the literature between the 

two executive functioning variables, and adult measures of IQ (Ardila et al., 2000; Green et al., 

2019; Smith et al., 2013). To illustrate how S-1 bifactor models can facilitate the interpretation of 

novel findings, we also developed a second set of data for the TMT-B and the CANTAB: RIVP. 

We developed the second set of data for these measures based on the unlikely scenario of the 

measures having an r = 0.8 correlation, an undefined association with g, no correlation with 

externalising or internalising, but a maximum possible association with p from the revised 

bifactor model (actual correlations differed slightly to the assigned correlations in the data 

producing code, due to random data generation factors and association compatibility constraints).  

3.2.2 Analysis 

First, to validate the simulated dataset, and to act as a comparison to the S-1 bifactor 

models, we tested the fit of two of Caspi et al.’s (2014) structural models (see Figure 3.1), (A) 
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the revised bifactor model that the simulated data was based on, and (B) the correlated factors 

model, a popular model in psychopathology research (e.g., see Caspi et al., 2014). 

 

Figure 3.1  

Caspi et al.’s (2014) Confirmatory Factor Analysis Models 

 

Note. Depiction of the bifactor model and the correlated factors model adapted from Caspi et al. 

(2014). Panel A: Revised bifactor model. Panel B: Correlated factors model. Alc = alcohol. Can 

= cannabis. HD = Hard drugs. Tob = Tobacco, CD = Conduct disorder. MDE= Major depressive 

episode. GAD = Generalized anxiety disorder. Fear = Fears and phobias. OCD = obsessive 

compulsive disorder. Man = Mania. Schiz = Schizophrenia. Ext = Externalising. Int = 

Internalising. Tht = Thought Disorder. 

 

For both confirmatory factor analyses (CFAs), we used a maximum likelihood estimation 

with robust standard errors (MLR), and Pearson’s correlations in RStudio. MLR is robust to 

deviations of normality, such as symptom count data, by correcting chi-square statistics and 

standard errors to compensate for skewed data. MLR is also widely used in psychopathology 
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research (see Greene et al., 2019) and is used for continuous indicators, such as our symptom 

count dimensions. We used the root mean square error of approximation (RMSEA; Steiger, 

1990), the Tucker–Lewis Index (TLI) and the comparative fit index (CFI; Bentler, 1990) to 

determine model fit, while we also report standardised root mean square residual  (SRMR; Hu & 

Bentler, 1995). A good-fitting model was determined by RMSEA values of <0.05 (Bollen & 

Curran, 2006) and CFI and TLI values of >.95. However, it is important to note that good model 

fit, is not a theoretically robust way to choose a model and is not the focus of this research (e.g., 

see Greene et al., 2019). Rather, the loading patterns and specific factor covariance will be the 

focus in this paper. 

Next, we tested the fit of three S-1 bifactor models using the simulated datasets (see 

Figure 3.2). The first S-1 bifactor model (Figure 3.2A) used IQ over time, measured by (1) the 

Stanford–Binet Intelligence Scale (age 5), (2) the WISC-R (ages 7–11), and (3) the WAIS-IV 

full scale, as the reference domain for the general factor (in this model, the IQ factor), and 

externalising, internalising and thought disorder as specific factors. Each disorder loaded onto 

the general factor as well as one of the specific factors as per Caspi et al. (2014). Following the 

directions of Burns et al. (2019), Heinrich et al. (2020), and Eid (2020), the unstandardised 

loading of the first indicator of the reference factor, and each specific factor, was fixed to 1, and 

acted as a reference indicator for that factor. The fit of the S-1 bifactor models was determined 

using the same criteria as the revised bifactor and correlated factors models. 
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Figure 3.2.  

S-1 Bifactor Confirmatory Factor Analysis Models 

 

Note. Depiction of the two S-1 bifactor models used in this research. Panel A: S-1 bifactor 

model—IQ. Panel B: S-1 bifactor model executive functioning. IQ = Intelligence quotient. Alc = 

alcohol. Can = cannabis. HD = Hard drugs. Tob = Tobacco, CD = Conduct disorder. MDE = 

Major depressive episode. GAD = Generalized anxiety disorder. Fear = Fears and phobias. OCD 

= Obsessive compulsive disorder. Man = Mania. Schiz = Schizophrenia. SB-IQ = Stanford–Binet 

Intelligence Scale—intelligence quotient. WISC = Wechsler Intelligence Scale for Children—

intelligence quotient. WAIS = Wechsler Adult Intelligence—intelligence quotient. TMT = Trail 

Making Test. RVIP = Rapid Visual Information Processing. Ext = Externalising. Int = 

Internalising. Tht = Thought Disorder. g = General Factor 

 

The second S-1 bifactor model (see Figure 3.2B) used the same specifications as above. 

However, executive functioning, measured by the TMT-B and the CANTAB: RVIP, acted as the 

reference domain for the general factor (in this model, the executive functioning factor) and the 

first indicator of the factor (TMT-B) acted as the reference indicator. Externalising, internalising 

and thought disorder remained the specific factors and their first indicator, respectively, 

remained as the reference indicator. 
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The final S-1 bifactor model was used to illustrate that even when unexpected, or novel 

findings occur in S-1 bifactor models, they may have theoretical explanations and drive 

hypotheses. The S-1 bifactor model was identical to the executive functioning reference domain 

model above (Figure 3.2B). However, unlike the model above, which used simulated executive 

functioning data based on empirical research, this model used data for the TMT-B and 

CANTAB: RVIP, based on a very unlikely combination of correlations (see data generation 

section). 

3.3. Results 

The simulated data fit the Caspi et al. (Caspi et al., 2014) revised bifactor model well 

(Figure 2.3A) (χ2(35, N = 10,000) = 44.78, CFI = 1.00, TLI = 1.00, SRMR = 0.005, RMSEA = 

0.004, 90% confidence interval (CI) = [0.000, 0.009]), as well as the correlated factors model 

(Figure 3.2B), χ2(41, N = 10,000) = 432.27, CFI = 0.990, TLI = 0.987, SRMR = 0.29, RMSEA = 

0.031, 90% CI) = [0.028, 0.034]). Table 3.1 shows the loadings and association characteristics of 

the revised bifactor model, and Table 3.2 shows the loadings and association characteristics for 

the correlated factors model. The factor loadings and correlations with IQ and executive 

functioning do slightly differ to Caspi et al. (2014) due to random data generation factors, 

potential skew differences between Caspi et al.’s (2014) data and the simulation data, different 

estimators, correlation compatibility constraints, and the use of continuous instead of ordinal 

variables. However, our models’ loading patterns and characteristics, as well as factor 

associations with IQ and executive functioning, closely resemble that of Caspi et al. (2014). 

Therefore, we conclude that our simulated data represent that of Caspi et al. (2014) well.
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Table 3.1  

Loadings and Associations of the Revised Bifactor Model. 

Note. The indication of significance appears below the corresponding association figure in the table.  ~ = Correlation. Alc = Alcohol. Can = Cannabis. HD = 

Hard drugs. CD = Conduct disorder. MDE= Major depressive episode. GAD = Generalized anxiety disorder. Fear = Fears and phobias. OCD = Obsessive 

compulsive disorder. Schiz = Schizophrenia. SB-IQ = Stanford–Binet Intelligence Scale - intelligence quotient. WISC-IQ = Wechsler Intelligence Scale for 

Children - intelligence quotient. WAIS-IQ = Wechsler Adult Intelligence Scale - intelligence quotient. TMT = Trail Making Test. RVIP = Rapid Visual 

Information Processing. Ext = Externalising. Int = Internalising. 

All loadings significant at p < 0.01. * = p < 0.05. ** = p < 0.01. 

 

 

 

 

 

 

Factors Alc Can HD Tob CD MDE GAD Fear OCD Mania Schiz SB-

IQ~ 

WISC-

IQ~ 

WAIS-

IQ~ 

TMT~ RVIP~ Ext~Int 

                 −0.366 

** 

p 

(Unstandardised) 

0.284 

(0.205) 

0.311  

(0.251) 

0.336 

(0.258) 

0.391 

(0.265) 

0.387 

(0.304) 

0.609 

(0.477) 

0.589 

(0.471) 

0.472 

(0.328) 

0.695 

(0.361) 

0.969 

(0.507) 

0.804 

(0.428) 

−0.252 

** 

−0.129  

** 

−0.231 

** 

0.133  

** 

−0.181 

** 

 

Ext 

(Unstandardised) 

0.546 

(0.394) 

0.628  

(0.508) 

0.558 

(0.428) 

0.383 

(0.260) 

0.557 

(0.437) 

- - - - - - 0.000 0.054  

** 

−0.042 

** 

−0.045 

** 

−0.026 

** 

 

Int 

(Unstandardised) 

- - - - - 0.248 

(0.194) 

0.394 

(0.315) 

0.334 

(0.233) 

- - - −0.004 −0.056  

** 

0.027  

* 

0.061 

 ** 

0.004  
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Table 3.2  

Loadings and Associations of the Correlated Factors Model 

Note. The indication of significance appears below the corresponding association figure in the table. ~ = Correlation. Alc = Alcohol. Can = Cannabis. HD = 

Hard drugs. CD = Conduct disorder. MDE = Major depressive episode. GAD = Generalized anxiety disorder. Fear = Fears and phobias. OCD = Obsessive 

compulsive disorder. Schiz = Schizophrenia. SB-IQ = Stanford–Binet Intelligence Scale-intelligence quotient. WISC-IQ = Wechsler Intelligence Scale for 

Children Intelligence Quotient. WAIS-IQ = Wechsler Adult Intelligence Scale - intelligence quotient. TMT = Trail Making Test. RVIP = Rapid Visual 

Information Processing. Ext = Externalising. Int = Internalising. Tht = Thought Disorder. 

All loadings significant at p < 0.01. * = significant at p < 0.05. ** = significant at p < 0.01.

Factors Alc Can HD Tob CD MDE GAD Fear OCD Mania Schiz 
SB- 

IQ~ 

WISC-

IQ~ 

WAIS-

IQ~ 
TMT~ RVIP~ 

Ext 

~Int 
Ext~Tht Int~Tht 

                 
0.307  

** 

0.530  

** 

0.870  

** 

Ext 

(Unstandardised) 

0.604 

(0.436) 

0.679 

(0.549) 

0.649 

(0.498) 

0.553 

(0.375) 

0.687 

(0.540) 
- - - - - - 

−0.145  

** 

−0.031  

* 

−0.166 

** 

0.041  

* 

−0.126 

** 
   

Int 

(Unstandardised) 
- - - - - 

0.685 

(0.537) 

0.683 

(0.546) 

0.555 

(0.386) 
- - - 

−0.237  

** 

-0.138 

** 

−0.206 

** 

0.144  

** 

−0.167 

** 
   

Tht 

(Unstandardised) 
- - - - - - - - 

0.695 

(0.361) 

0.969 

(0.507) 

0.803 

(0.428) 

−0.252  

** 

−0.129 

** 

−0.231  

* 

0.133  

** 

-0.181 

** 
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Table 3.3 shows the loadings and association characteristics of the first S-1 bifactor model (Figure 

3.2A). This S-1 bifactor model used IQ over time as the reference domain and the first indicator of each 

factor as the reference indicator. The data fit the model well (χ2(63, N = 10,000) = 787.91, CFI = 0.988 TLI 

= 0.982, SRMR = 0.030, RMSEA = 0.034, 90% CI) = [0.032, 0.036]). Largely, as the IQ general factor’s 

loadings on the symptom indicators show, the IQ general factor did poorly at accounting for variance 

amongst the symptoms. However, on closer inspection, the IQ general factor accounted for notably more 

variance amongst the internalising and thought disorder indicators when compared to the externalising 

indicators. This mirrors the trend of bivariate correlations between the specific factors and the measures of 

IQ in the correlated factors model above. In the correlated factors model, associations between the specific 

factors and the measures of IQ represent the correlations between the variance of the items that load onto 

each specific factor, respectively. In the S-1 bifactor model, loadings of indicators on the general, 

predefined, factor represent the variance of each indicator that is accounted for by that factor. The S-1 

bifactor model therefore not only answers a different research question (e.g., “what amount of variance of 

each symptom can be accounted for by the general predefined factor?”) when compared to the correlated 

factors model, but also allows us to explore the partial associations between the specific factors after 

accounting for the general predefined factor. As Table 3.3 shows, the covariation between the specific 

factors fell slightly when compared to the correlated factors model (Table 3.2) and fell by a similar 

magnitude, indicating that the IQ general factor accounts for a small amount of the association between 

externalising, internalising and thought disorder.
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 Table 3.3 

Loadings and Associations of the IQ S-1 Bifactor Model 

 

Note. The indication of significance appears below the corresponding association figure in the table. ~ = Correlation. IQ g = Intelligence quotient general factor. 

Alc = Alcohol. Can = Cannabis. HD = Hard drugs. CD = Conduct disorder. MDE = Major depressive episode. GAD = Generalized anxiety disorder. Fears = 

Fears and phobias. OCD = Obsessive compulsive disorder. Schiz = Schizophrenia. SB-IQ = Stanford–Binet Intelligence Scale - intelligence quotient. WISC-IQ 

= Wechsler Intelligence Scale for Children - intelligence quotient. WAIS-IQ = Wechsler Adult Intelligence Scale - intelligence quotient. Ext = Externalising. 

Int = Internalising. Tht = Thought Disorder. 

All loadings significant at p <.01. * = p < 0.05. ** = p < 0.01.

Factors 
SB-   

IQ 

WISC- 

IQ 

 WAIS-

IQ 
Alc Can HD Tob CD MDE GAD Fear OCD Mania Schiz Ext~Int Ext~Tht Int~Tht 

               
0.287  

** 

0.518  

** 

0.863  

** 

IQ g 

(Unstandardised) 

0.936 

(1.00) 

0.790 

(0.844) 

0.826 

(0.883) 

−0.071 

(−0.004) 

−0.085 

(−0.005) 

−0.078 

(−0.004) 

−0.082 

(−0.004) 

−0.099 

(−0.006) 

−0.159 

(−0.009) 

−0.149 

(−0.009) 

−0.124 

(−0.006) 

−0.188 

(−0.007) 

−0.255 

(−0.010) 

−0.201 

(−0.008) 
   

Ext 

(Unstandardised) 
- - - 

0.601 

(1.00) 

0.674 

(1.26) 

0.645 

(1.14) 

0.546 

(0.856) 

0.679 

(1.23) 
         

Int 

(Unstandardised) 
   - - - - - 

0.666 

(1.00) 

0.668 

(1.02) 

0.541 

(0.722) 
- - -    

Tht 

(Unstandardised) 
   - - - - - - - - 

0.669 

(1.00) 

0.935 

(1.41) 

0.778 

(1.19) 
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Table 3.4. shows the loadings and association characteristics of the second S-1 bifactor model 

(Figure 3.2B). This S-1 bifactor model used executive functioning as the reference domain and the first 

indicator of each factor as the reference indicator. The data fit the model well (χ2(51, N = 10,000) = 419.96, 

CFI = 0.991, TLI = 0.987, SRMR = 0.023, RMSEA = 0.027, 90% CI) = [0.025, 0.029]). The loading of the 

CANTAB-RVIP was negative as lower TMT-B scores reflect better performance and TMT-B was the 

reference indicator for the general factor. The executive functioning referenced general factor did better than 

the IQ referenced general factor in accounting for variance amongst the symptoms. However, the executive 

functioning general factor accounted for notably less variance amongst the first three externalising indicators 

(alcohol, cannabis, and hard drugs use) when compared to the rest of the symptoms. The executive 

functioning general factor did better than the IQ general factor at accounting for tobacco use and conduct 

disorder symptoms, comparatively similar when accounting for internalising indicators, and better when 

accounting for thought disorder indicators. The finding that the executive functioning general factor did 

notably poorer at accounting for alcohol, cannabis and hard drugs use when compared to the other indicators 

might inform hypotheses regarding their aetiological interrelations and separability when compared to other 

symptomology. As Table 3.4 shows, like with the IQ referenced S-1 model, partial covariation between the 

specific factors fell slightly when compared to the correlated factors model (Table 3.2). However, 

association between specific factors fell by a greater magnitude when compared to the IQ referenced domain 

S-1 model. The association between the externalising and thought disorder factors, and the association 

between internalising and thought disorder factors fell, when compared to the correlated factors model by a 

similar magnitude (0.18 and 0.16, respectively). However, the association between externalising and 

internalising fell to a greater extent (0.34). This may inform hypotheses, such as executive functioning 

completely mediating the association between internalising symptoms (e.g., generalised anxiety) and 

externalising behaviours (e.g., substance use).
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 Table 3.4  

Loadings and Associations of the Executive Function S-1 Bifactor Model 1 

 

 

 

 

 

 

 

Note. The indication of significance appears below the corresponding association figure in the table. ~ = Correlation. EF g = Executive function 

general factor. Alc = Alcohol. Cann = Cannabis. HD = Hard drugs. CD = Conduct disorder. MDE = Major depressive episode. GAD = Generalized 

anxiety disorder. Fears = Fears and phobias. OCD = Obsessive compulsive disorder. Schiz = Schizophrenia. TMT = Trail Making Test. RVIP = 

Rapid Visual Information Processing. Ext = Externalising. Int = Internalising. Tht = Thought Disorder 

All loadings significant at p <.01. ** = p < 0.01. * = p < 0.05.

Factors TMT RVIP Alc Can HD Tob CD MDE GAD Fears OCD Mania Schiz Ext~Int Ext~Tht Int~Tht 

              
0.273 

** 

0.512 

** 

0.854 

** 

EF g 

(Unstandardised) 

0.467 

(1.00) 

−0.552 

(−1.22) 

0.046 

(0.069) 

0.077 

(0.130) 

0.083 

(0.132) 

0.174 

(0.132) 

0.132 

(0.217) 

0.237 

(0.387) 

0.223 

(0.372) 

0.166 

(0.241) 

0.238 

(0.258) 

0.329 

(0.359) 

0.270 

(0.300) 
   

Ext 

(Unstandardised) 
- - 

0.608 

(1.00) 

0.678 

(1.25) 

0.645 

(1.129) 

0.529 

(0.818) 

0.672 

(1.21) 
         

Int 

(Unstandardised) 
  - - - - - 

0.642 

(1.00) 

0.647 

(1.03) 

0.531 

(0.734) 
- - -    

Tht 

(Unstandardised) 
  - - - - - - - - 

0.653 

(1.00) 

0.912 

(1.41) 

0.757 

(1.20) 
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Lastly, to demonstrate how S-1 bifactor models facilitate hypothesis generation from unexpected or 

novel findings, we tested the same S-1 bifactor model above, but with executive functioning data with a 

highly unexpected correlation matrix (see Data Generation, section 3.2.1). The data fit the model well 

(χ2(51, N = 10,000) = 215.17, CFI = 0.997, TLI = 0.996, SRMR = 0.12, RMSEA = 0.018, 90% CI) = [0.18, 

0.020]). The loadings and associations of this model are displayed in Table 3.5. The general factor, with 

executive functioning as the reference domain, did well in accounting for variance amongst the symptoms. 

As expected, due to the measures’ assigned correlation with p from the revised bifactor model, the thought 

disorder indicators loaded the highest on the executive functioning general factor in this S-1 bifactor model. 

Loadings of the externalising and internalising indicators on the executive functioning general factor were 

also comparatively high, due to the common variance between the specific factors, even though they were 

assigned not to correlate in the revised bifactor model during data generation. Due to the highly abnormal 

executive functioning data, partial associations between the specific factors differ extensively when 

compared to the correlated factors model and the previous S-1 bifactors models. The association between the 

externalising and internalising factors switched signs, and the factors had minimal relation (−0.044), while 

the covariation of the externalising and thought disorder factors, and the internalising and thought disorder 

factors, dropped substantially when compared to the correlated factors model (0.115 and 0.191). If we were 

to interpret these patterns of covariation, in particular the negative externalising and internalising factors 

association, in a standard bifactor model there would be little theoretical reason for the association to change 

signs, and substantive interpretation would be difficult due to the ambiguity of the p-factor (see Pettersson et 

al., 2021). However, in a S-1 bifactor model the general factor is defined a-priori. The knowledge of what 

the general factor represents, in this case executive functioning, allows us to make substantive 

interpretations of the changes in specific factor associations and develop hypotheses as a result. For 

example, the substantial reduction in the association between the externalising and internalising factors in 

this S-1 bifactor model, when compared to the correlated factors model, may have led to the hypothesis that 

executive functioning is a full mediator of the association between internalising symptoms, such as 

depression or anxiety, and externalising behaviours, such as substance use. This demonstrates the utility of 

using of a typical structural model, the correlated factors model, in conjunction with the S-1 bifactor model 

for data interpretation. Furthermore, these results may have suggested that, when executive functioning is 

accounted for, those with more internalising symptoms are conversely slightly less inclined to externalising 

behaviours. This hypothetical illustration shows that theory building, and testing is a useful characteristic of 

S-1 bifactor models.
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 Table 3.5  

Loadings and Associations of the Executive Function S-1 Bifactor Model 2. 

   

Note. The indication of significance appears below the corresponding association figure in the table. ~ = Correlation. EF g = Executive function general Factor. 

Alc = Alcohol. Can = Cannabis. HD = Hard drugs. CD = Conduct disorder. MDE = Major depressive episode. GAD = Generalized anxiety disorder. Fears = 

Fears and phobias. OCD = Obsessive compulsive disorder. Schiz = Schizophrenia. TMT-B = Trail Making Test-B. RVIP = Rapid Visual Information 

Processing. Ext = Externalising. Int = Internalising. Tht = Thought Disorder. 

All loadings significant at p < 0.01. * = p < 0.05. ** = p < 0.01.

Factors TMT-B RVIP Alc Can HD Tob CD MDE GAD Fears OCD Mania Schiz Ext ~Int Ext~Tht Int~Tht 

              
−0.044  

* 

0.315  

** 

0.679  

** 

EF g  

(Unstandardised) 

0.849 

(1.00) 

−0.980 

(−1.06) 

0.233 

(0.140) 

0.265 

(0.178) 

0.282 

(0.180) 

0.334 

(0.189) 

0.324 

(0.189) 

0.517 

(0.338) 

0.504 

(0.336) 

0.392 

(0.228) 

0.593 

(0.257) 

0.823  

(0.359) 

0.676 

(0.300) 
   

Ext  

(Unstandardised) 
- - 

0.568 

(1.00) 

0.640 

(1.26) 

0.587 

(1.10) 

0.434 

(0.720) 

0.599 

(1.15) 
- - - - - -    

Int 

(Unstandardised) 
- - - - - - - 

0.437 

(1.00) 

0.466 

(1.09) 

0.407 

(0.827) 
- - -    

Tht 

(Unstandardised) 
- - - - - - - - - - 

0.362 

(1.00) 

0.512  

(1.43) 

0.433 

(1.23) 
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3.4 Discussion 

 In this paper, we provided the case for the use of S-1 bifactor models in the 

exploration of neurocognitive abilities in psychopathology. We used simulation methodologies to 

show how no matter the results of a S-1 bifactor model, using neurocognitive abilities as a 

reference domain, due to the general factor reflecting a substantive construct, an interpretable 

hypothesis or theoretical explanation could emerge. S-1 bifactor models account for the issues of 

substantive and statistical inconsistency of an undefined general factor in psychopathology 

research (Burns et al., 2019; Eid, 2020; Heinrich et al., 2020). We provided three examples of 

how S-1 bifactor models could be used to further our understanding of the associations between 

neurocognitive abilities and psychopathology. In our first example, we used IQ over time as the 

reference domain for our general factor with externalising, internalising and thought disorder 

serving as the specific factors. The IQ general factor accounted for a small amount of variance 

among the symptoms, with the thought disorder indicators generally having the strongest loading 

on the IQ general factor. This example showed the utility of the S-1 bifactor approach over the 

sole use of the correlated factors model. Using the S-1 approach we could see the loading of each 

specific disorder on the IQ general factor, allowing us to examine the proportion of variance in 

each indicator that was accounted for by the IQ general factor, as well as the indicators loadings 

on the specific factors. For example, if we look to the associations between the measures of IQ 

and the externalising, internalising and thought disorder factors in the correlated factors model, 

we see generally consistent strengths of association (minus WISC-IQ and externalising). 

However, this only tells part of the story, as the factors reflect the common variance amongst 

their specific indicators, and not the common variance amongst the indicators after the general 

factor has been taken into account, as per the S-1 model. Therefore, while correlated factors 

models can show us the association between IQ and the common variance of indicators for each 

specific factor, the S-1 bifactor model can show us the common variance amongst the specific 

indicators once IQ has been taken into account, as well as the loadings of each specific indicator 

on IQ. Therefore, given the attributes of each approach, we suggest that the correlated factors 

model and the S-1 bifactor model should be used in parallel to answer different research 
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questions and provide a range of evidence assessing the association between neurocognitive 

abilities and psychopathology. 

Our second example used executive functioning as the reference domain for the general 

factor. In this example, the executive functioning general factor typically accounted for more 

variance in psychopathology symptoms when compared to the IQ general factor. The 

externalising indicators had the lowest loadings on the executive functioning general factor when 

compared to the internalising or thought disorder indicators. However, as S-1 bifactor models 

allow us to examine the loadings of each indicator on the predefined general factor, we can see 

that alcohol and cannabis use had noticeably lower loadings on the executive functioning general 

factor when compared to the other indicators. This indicates that, in this instance, when compared 

to other disorders/symptoms, executive functioning did not have as much utility in accounting for 

alcohol and cannabis use. Results such as this, due to the knowledge of what the substantive 

construct of the general factor is, can drive hypotheses for future work. In this model, the 

associations between the specific factors all fell when compared to the correlated factors model. 

In particular, the associations between the externalising and internalising factors fell notably. As 

in S-1 bifactor models the associations between the specific factors are partial associations after 

accounting for the predefined general factor, it may be possible to hypothesise that executive 

functioning may be particularly important in the association between internalising symptoms 

(e.g., anxiety) and externalising behaviours (e.g., substance use). 

Lastly, we used the same symptom data but developed data based on unrealistic patterns 

of associations for the two measures of executive functioning. In the data simulation code, the 

two measures were made to be highly correlated with each other and the p-factor from the revised 

bifactor model, but that had almost no correlation with the externalising and internalising factors 

from that model. These data were developed to illustrate that even when models produce novel 

results, when using a S-1 bifactor approach, the results can still have substantive interpretation 

due to the known “meaning” of the general factor. In this S-1 model, the general factor, 

referenced by executive functioning, did well in accounting for symptomology. Loadings on the 

executive functioning general factor were typically high when compared to the previous models 
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and the thought disorder indicators again had the strongest loadings on the executive functioning 

general factor. Here, our focus is on the covariation between the specific factors externalising, 

internalising and thought disorder. Traditional bifactor models often result in the associations 

between the specific factors changing signs and differing substantially from the correlated factors 

model (e.g., Caspi et al., 2014). Pettersson et al. (2021) point out that due to the unspecified 

nature of the p-factor in a traditional bifactor model, associations between the specific factors 

changing substantially are difficult to interpret and have no clear theoretical explanation. 

However, if this occurs in a S-1 bifactor model, due to the a priori specification of the general 

factor, if the associations between specific factors do change substantially, it can be clearly 

interpreted. In our example, the association between externalising and internalising fell 

substantially and the two factors were negatively associated. As we clearly understand what the 

associations between the specific factors in a S-1 bifactor model represent, we may use the results 

to develop hypotheses. In our example, we may, for instance, hypothesise that executive 

functioning is all important in the association between internalising symptoms and externalising 

behaviours, such that executive functioning is a full mediator. Then, as the general factor is 

predefined, further research could attempt to replicate and build upon this finding. This is 

impossible using standard bifactor approaches. This research was conducted to inform the use of 

the S-1 bifactor approach for the study of neurocognitive abilities in psychopathology in the 

research setting. However, recently, there have been suggestions that structural models such as 

these may inform a clinicians’ practices in the treatment setting. A detailed discussion regarding 

the utility of these approaches in a treatment setting is beyond the scope of this research. Ruggero 

et al. (2019) provides information and a case illustration of how structural approaches can guide 

clinical practice. For example, a clinician taking a dimensional structural approach might, instead 

of viewing a clients’ symptoms as representing a certain diagnosis, view the symptoms as 

dimensional indicators that share commonality and relations at different hierarchical levels (see 

Ruggero et al., 2019 for a detailed demonstration) for a detailed demonstration). With regard to 

the clinical usefulness of the exploration of neurocognitive abilities using the S-1 bifactor 

approach, it is possible to use the patterns of loadings typically presented between the general 
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neurocognitive factor and a range of symptomology to inform how the specific collection of 

symptoms (and their severity) an individual client is experiencing may be functionally associated 

with their neurocognitive performance and direct their treatment accordingly. 

3.4.1 Limitations of the S-1 Bifactor Approach in the Study of Neurocognitive Abilities and 

Psychopathology 

It is important to acknowledge the potential limitations of the S-1 bifactor approach for 

studying neurocognitive abilities in psychopathology. There are three primary limitations for 

using the S-1 bifactor approach: first, the sole use of the S-1 approach would remove the ability 

to examine the associations of particular neurocognitive abilities and psychopathological 

symptoms or factors. However, the combined use of the S-1 approach and the correlated factors 

model (with bivariate correlations) mitigates this issue. Second, similar to other structural models 

(see Haywood et al., 2021b), it is likely that, the S-1 bifactor model would have limited utility 

subgroups of a population. However, as the general factor is predefined S-1 bifactor models 

would likely have better consistency when compared to other structural models. This means that 

the S-1 bifactor model may only be useful for a general population sample, or a sample with large 

variability in symptoms and limited symptom heterogeneity (see Haywood et al., 2021b). Third, 

given that having neurocognitive abilities modelled as the general factor results in symptoms 

loading directly on the factor, it limits our ability to explore nuanced proposals (i.e., the 

multidimensional hypothesis Haywood & Baughman, 2021) of the heterogeneity of 

neurocognition within psychopathology on the individual level. However, again mitigating this 

issue by using the S-1 approach in conjunction with the correlated factors model approach, it may 

be possible to explore the heterogeneity of neurocognitive abilities within the factors derived 

from a correlated factors model on the individual level (Haywood et al., 2021c) 

3.4.2 Limitations of the Research and Directions for Future Research 

This study, while demonstrating the usefulness of the S-1 bifactor model to explore 

neurocognitive abilities and psychopathology, did have some limitations. First, all data used were 

simulated from Caspi et al. (2014). The simulated data approach allowed for useful control over 

the data to facilitate the demonstration of different modelling circumstances (e.g., the data based 
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on a very unlikely combination of executive functioning correlations). However, the results 

should be considered as a demonstration of the use of the S-1 bifactor model in this context, 

rather than used to elucidate any important contributions of neurocognitive abilities toward 

psychopathology. In line with this, we developed continuous data for 11 disorder categories that 

summarised Caspi et al.’s (2014) longitudinal data. This, while providing a neater dataset to 

demonstrate the usefulness of the S-1 bifactor model, did diverge from the base ordinal data that 

were gathered from five different time points in adulthood. Furthermore, to facilitate a neat 

demonstration, we did not use Monte-Carlo simulations that are often used in simulation research 

of this kind, and while we based the positive skew of psychopathological symptoms on empirical 

data, it is likely that it differed to the skews of individual symptoms from Caspi et al. (2014). We 

therefore encourage further research to use human data with a number of neurocognitive and 

symptom measures within a S-1 bifactor approach. 

Recently, there have been calls for CFA structural models of psychopathology to be 

developed, validated and crosschecked with exploratory factor analytic (EFA) approaches to 

mitigate the issues such as collapsing specific factors and over extraction (Greene et al., 2021). 

Future S-1 bifactor models may be synergistically developed through the use of both EFA and 

CFA. Further, even although we advocate for the use of the correlated factors model and the S-1 

bifactor model, future research may also continue to explore the traditional bifactor approach, and 

the possibility of a universal substantive meaning of the p-factor. The S-1 bifactor model allows 

us to examine specific theoretically important variables (e.g., neurocognitive abilities) within a 

dimensional psychopathology framework (Eid, 2020). However, the traditional bifactor approach 

facilitates a useful description and, in the future, possible explanations of psychopathological 

symptoms at the population level. Therefore, we welcome future research examining a theoretical 

conceptualisation of p built on top of its statistical make up (e.g., Fried et al., 2021; Watts et al., 

2020a)). 

3.5. Conclusions 

In this paper, we showed the utility of the S-1 bifactor approach to the study of 

neurocognitive abilities and psychopathology. We demonstrated the distinct advantages that the 
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S-1 bifactor model has over the traditional bifactor model for examining the potential 

contribution of neurocognitive abilities towards psychopathology. Specifically, we show how S-1 

bifactor models, using neurocognitive abilities as the reference domain for the general factor, 

allow for the assessment of each individual indicator’s loadings on the neurocognitive ability 

referenced general factor, and how those factor loadings and the associations between the specific 

factors, even if unexpected, can inform hypotheses and theoretical understandings. We also 

suggest that the correlated factors model and the S-1 bifactor model can be used in parallel to 

explore associations of neurocognitive abilities and psychopathology due to their distinct ability 

to answer different research questions and facilitate data interpretation through comparison. 

Lastly, even though we argue for the benefits of the S-1 bifactor model over a traditional bifactor 

model for the exploration of neurocognitive abilities in psychopathology, we welcome the 

possibility of the development of a theoretical, substantive conceptualisation of p that is useful on 

the individual and subgroup level (Haywood et al., 2021c), and that can be replicated and is 

falsifiable. 
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Preface to Chapter 4 

Chapter four explores the third direction of future research in presented chapter one. The third 

direction of future research coincides with the third aim of this thesis. The following chapter also 

builds upon the previous chapters by exploring whether each of the factors of psychopathology 

can be partly explained by discrete association patterns of neurocognitive performance. If discreet 

association patters were to emerge this would suggest there is utility in further understanding 

linear trends of neurocognitive deficits relating to each of the factors of psychopathology. Unlike 

chapters two and three that employed simulation methods, in this chapter we collected data from 

human participants to examine our aim. This chapter builds upon the previous chapter by using 

analysis techniques that provide additional information that is distinct from that provided by S-1 

bifactor modelling approaches. We collected symptom, substance use, and neurocognitive ability 

data from a representative community sample. We used the data collected to build and test 

structural models of psychopathology and examine the neurocognitive correlates of the models’ 

factors. This chapter ultimately provides an empirical assessment and discussion of 

neurocognitive performance associated with each of the factors of psychopathology to determine 

if there were clear patterns of differentiation between the factors. 
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Note: The following chapter has been published in Brain Sciences in the special issue titled 

Diagnosis and Advances in Research on Human Behavior. 
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 Chapter 4 (Study 3): What accounts for the factors of psychopathology? An investigation 

of the neurocognitive correlates of internalising, externalising, and the p-factor 

4.1 Introduction 

Neurocognitive abilities refer to cognitive capabilities grounded in particular neuro-

logical properties or systems, and include both higher and lower level cognitive processes (Lezak 

et al., 2004). Higher level neurocognitive processes include executive functioning that is 

responsible for the control of mental abilities, including the control of working memory (i.e., 

updating), attention (i.e., shifting), and predominant responses (i.e., inhibition) (Miyake, 

Friedman, et al., 2000). While lower-level neurocognitive processes, such as general information 

processing (i.e., speed of pro-cessing), are more basic to the system (Salthouse, 1996). The proper 

functioning of neurocognitive abilities, at both higher and lower levels, govern the ability to 

conduct goal-oriented activity, respond to environmental demands in a timely and appropriate 

way, and are fundamental to the successful completion of many everyday activities (Lezak et al., 

2004). It is therefore understandable that deficits in neurocognitive performance may result in 

adverse cognitive and behavioural experiences. 

Neurocognitive deficits have been consistently associated with a wide range of 

psychopathological disorders (McTeague et al., 2016). Neurocognitive deficits have been 

proposed to not only be a consequence of the development of psychopathology but also directly 

involved in the aetiology of psychopathology (e.g., Beck & Rector, 2005; Romer & Pizzagalli, 

2021). It has been suggested that humans are often exposed to novel and conflicting information. 

To effectively deal with this information, humans need to stop, reflect, and choose the most 

appropriate behaviours (Cunningham et al., 2007; Romer & Pizzagalli, 2021; Zelazo, 2015). 

Cunningham et al. (2007), Romer and Pizzagalli (2021), and Zelazo (2015) suggested that the 

reflection and selection actions require proper neurocognitive performance, including the 

updating of the contents of working memory, switching between mental sets, inhibiting a 

predominant response, and effectively processing information. Romer and Pizzagalli (2021) also 

proposed that deficits in neurocognitive processes may therefore result in the selection of 

inappropriate behaviours, poor adaptive ability, and poor conflict resolution, all of which are 
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features of many psychopathologies. Further evidence for neurocognitive abilities being an 

aetiological feature of psychopathology comes from recent longitudinal research that has found 

that executive functioning deficits were typically present prior to the development of 

psychopathology in adolescence, and that deficits in executive functioning predicted change in 

psychopathological symptoms over the following two years (Romer & Pizzagalli, 2021). Given 

the proposed importance of neurocognitive abilities in psychopathology, there have been vast 

amounts of research attempting to uncover what particular neurocognitive abilities contribute to 

each specific diagnosis. This line of research has had little success. Even though neurocognitive 

deficits are common in most disorders, the nature of neurocognitive deficits within disorders is 

extensively heterogeneous (Haywood & Baughman, 2021). For example, Martino et al. (2008) 

and Raffard and Bayard (2012) found extensively heterogeneous combinations of neurocognitive 

deficits within their samples of people diagnosed with bipolar disorder and schizophrenia, 

respectively. Furthermore, even when comparing different disorders, particular neurocognitive 

deficits cannot differentiate diagnoses (Moritz et al., 2002). 

One possible reason for the extensive heterogeneity of the associations between 

neurocognitive performance and psychopathology is the predominant use of the traditional 

nosological approach to diagnosis (Haywood et al., 2021c). Traditional nosological approaches to 

the diagnosis of mental disorder, which use tools such as the DSM, have resulted in high levels of 

comorbidity and poor diagnostic stability (e.g., Hovenkamp-Hermelink et al., 2016; Newman et 

al., 1998), making the study of any single psychopathological disorder difficult (Haywood et al., 

2021c). Further, the overlapping symptoms present between different disorders, as well as the 

ability for two people to be diagnosed with the same disorder and having no, or very few, 

common symptoms (Fried, 2021; Fried et al., 2020), means that finding particular collections of 

neurocognitive deficits fundamental to any particular disorder is unlikely (Haywood, et al., 

2021a; Haywood & Baughman, 2021; Haywood et al., 2021c). 

In recent years, to mitigate the issues of comorbidity and diagnostic stability of the 

traditional nosological approach, there have been calls to move towards dimensional approaches 

to describing and explaining psychopathology (Kotov et al., 2017). Rather than classifying 
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collections of symptoms into categories known as diagnoses, dimensional approaches typically 

assess symptoms and organise them into dimensional structures of psychopathology using factor 

analytic approaches (Kotov et al., 2017; Kotov et al., 2021). Many such structural models of 

psychopathology exist. Two structures, the correlated factors model and the bifactor model, have 

gained the most interest within the literature. The correlated factors model contains a range of 

symptoms, serving as indicators, and a smaller collection of specific factors (such as 

internalising, externalising, and thought disorder) that account for the common variance of 

closely related symptoms. The bifactor model contains the same fundamental components as the 

correlated factors model but also incorporates a single higher-order general factor (called the p-

factor) that has been claimed to represent general psychopathology or the propensity toward all 

psychopathological symptoms (Caspi et al., 2014). Other common structures include the single-

factor model that incorporates the symptom indicators and the p-factor, but no specific factors 

(Caspi et al., 2014). 

As structural models of psychopathology do not create diagnostic categories and in-stead 

measure dimensionally, it has been suggested that structural models will improve our ability to 

find more reliable patterns of risk factors and outcomes associated with psychopathology 

(Haywood et al., 2021a; Haywood et al., 2021c; Kotov et al., 2021). While it is important to note 

that there is a lack of consensus on the substantive interpretation of the factors of 

psychopathology, in particular the p-factor, and their applications to subgroups of a population 

(for further detail see Fried et al., 2021; Haywood et al., 2021a; Haywood et al., 2021b), 

structural models of psychopathology offer a useful framework for examining the associations 

between neurocognitive abilities and psychopathology (Haywood et al., 2021c). Previously, we 

suggested that it may be possible to find, at a population level, patterns of association between 

neurocognition and the factors of psychopathology that help explain the differentiation between 

the factors. That is, factors from structural models such as internalising, externalising, and 

thought disorder might have discrete patterns of neurocognitive ability associations that 

differentiate the factors (Haywood et al., 2021c). This finding may provide insight into what 

neurocognitive abilities are particularly salient for the common variance of collections of 
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different types of symptoms. This knowledge may then inform the starting point for assessment 

and treatment decisions on the individual level and direct longitudinal work exploring the specific 

neurocognitive risk factors for collections of psychopathological symptoms. However, there has 

been a lack of detailed examination of the associations between specific neurocognitive processes 

and psychopathology factors from different types of structural models. Previous studies of the 

association between neurocognitive abilities and structural models of psychopathology have 

typically only reported the bivariate correlations between the factors of psychopathology and 

neurocognitive tasks and composite scores (Caspi et al., 2014) or used a single neurocognitive 

ability score (Martel et al., 2017). Further, other work has modelled neurocognitive abilities as a 

factor within the structural models of psychopathology (Eadeh et al., 2021; Haywood et al., 

2021a). Modelling neurocognition within models of psychopathology, while having several 

unique strengths (see Haywood et al., 2021a), does not allow for the exploration of the patterns of 

association between discreet neurocognitive abilities and the different factors of 

psychopathology. For example, we called for the use of S-1 bifactor models, with neurocognitive 

abilities modelled as the general factor, to explore neurocognitive abilities associated with 

psychopathology (Haywood et al., 2021a). We describe how S-1 bifactor models, with 

neurocognition modelled as the general factor, offer the unique opportunity of mitigating the 

issue of the un-known substantive meaning of the p-factor. However, we also described how the 

S-1 bi-factor approach is limited as neurocognitive abilities may only be explored as a single 

factor, and therefore the sole use of this approach means it is not possible to examine the 

associations of particular neurocognitive abilities with each of the factors of psychopathology 

[18], an area that is particularly lacking within the literature. Due to this limitation of the S-1 

approach, and the complementary information that may be obtained, we suggested that using 

other modelling approaches (e.g., the correlated factors model) to examine neurocognition in 

psychopathology remains important. Ultimately, to provide a starting point for assessment and 

treatment decisions, as well as to inform the future assessment of neurocognitive risk factors of 

psychopathology, it is important to gain a de-tailed understanding of the specific relations 

between various neurocognitive abilities and the different factors of psychopathology found in 
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the literature. Yet, to date, the degree to which psychopathology factors may differ regarding 

patterns of neurocognitive ability associations is unknown. 

In this paper, our first aim was to (1) develop and test the fit of three of the most 

prominent models of psychopathology within a community sample; (a) the correlated factors 

model, (b) the bifactor model, and (c) the single factor model, using dimensional symptom 

measures. Our second aim (2) was to explore the degree to which tasks measuring four prominent 

neurocognitive components, (a) working memory, (b) shifting, (c) inhibition, and (d) speed of 

processing, are associated with, and can account for, the fac-tors of psychopathology regarding 

each model. 

4.2 Materials and Methods 

4.2.1 Participants 

 Through Prolific, we collected data online from a representative community 

sample (based on simplified census data on age, gender, and ethnicity) of 425 participants in the 

USA. Exclusion criteria were (1) any condition or injury that could impact their motor 

movements, thereby interfering with the participants’ ability to complete the cognitive tasks, and 

(2) colour blindness or colour perception issues. This study was approved by the Curtin 

University Human Research Ethics Committee (HRE2021-0105). 

4.2.2 Procedure 

After providing consent, participants provided demographic information (i.e., age, 

gender), psychiatric history information (i.e., diagnosis, psychiatric hospital admissions), and 

information of any psychotropic medication use. Participants then completed measures of 

substance use (ASSIST V3.1; WHO, 2002), psychiatric symptoms (the Brief Symptom 

Inventory; Derogatis & Melisaratos, 1983), and completed eight neurocognitive tasks. 

Participants were instructed to complete the survey and tasks in an environment as free from 

distractions as possible. Online neurocognitive data collection does not allow for controlling the 

participants’ testing environment or hardware. However, a myriad of research supports the 

validity and quality of online, crowd-sourced, neurocognitive data and has found participants’ 

performance comparable to laboratory-based studies (Crump et al., 2013; Johnson et al., 2021; 
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Merz et al., 2020; Sauter et al., 2020). Furthermore, Prolific recently has been shown to obtain 

behavioural task data practically indistinguishable from in-person lab testing, far outperforming 

similar crowd-sourcing platforms concerning quality and comparability (Uittenhove et al., 2022). 

4.2.3 Materials 

4.2.3.1. Substance Use and Symptomology 

To measure substance use and personal, social, and legal issues related to that use, we 

used the Alcohol, Smoking, and Substance Involvement Screening Test (ASSIST) V3.1 (WHO, 

2002). The ASSIST assesses the use of tobacco products, alcoholic beverages, cannabis, cocaine, 

amphetamine-type stimulants, inhalants, sedatives or sleeping pills, hallucinogens, opioids, and 

other substances. Each participant indicates frequency of use, desire or urge to use, and frequency 

of health, social, legal, and financial issues related to the use of each substance used within the 

last three months. The ASSIST generates a substance involvement score for each substance 

assessed. The ASSIST has shown strong reliability and validity in general community samples 

(WHO, 2002). 

Psychiatric symptoms were measured via the Brief Symptom Inventory-53 (BSI) [27]. 

The BSI is a psychiatric symptom measure that assesses symptoms over the past seven days, and 

is valid and reliable in both clinical and community samples (Akhavan Abiri & Shairi, 2020). The 

measure is comprised of 53-items, measured on a five-point Likert-type scale, that jointly assess 

nine symptom dimensions based on the original factor structure. The nine symptom dimensions 

are somatisation, obsession-compulsion, interpersonal sensitivity, depression, anxiety, hostility, 

phobic anxiety, paranoid ideation, and psychoticism. 

4.2.3.2. Neurocognitive Abilities 

Participants completed eight neurocognitive tasks presented in randomised order. The 

performance metric for each task that involved both speed of response and accuracy was 

calculated using the Rate-correct Score (RCS) method (Vandierendonck, 2017), in which the 

number of correct responses is divided by total reaction time (in milliseconds) to provide a metric 

number of correct responses per millisecond. For the tasks that did not require a speed of 
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response aspect, we used only a metric of accuracy. All tasks were developed in JavaScript. The 

details of each task are provided below. 

4.2.3.2.1. Working Memory 

Working memory was assessed via (1) a digit span task, and (2) a visual working memory 

task designed after the visual array task described in Cowan et al. (2006). In the digit span task, 

participants were presented with number sequences, in which each number remained on screen 

for 1000 ms. Following the presentation of the last number in each sequence, participants were 

prompted to enter the previously shown sequence, in order, using an on-screen keypad and their 

PC mouse. The task was designed so that trials increased in difficulty, starting with a 3-digit 

sequence and progressing to the most challenging 15-digit sequence. Sequences across trials 

either increased by one digit for each correct response or decreased in length by one digit for 

every two consecutive errors made. Participants completed 12 trials of the digit span task, with a 

maximum digit span possible of 15. The outcome variable used was the maximum digit span 

across the 12 trials. 

In the visual memory task, participants completed 84 trials showing sets of either 4, 6, 8, 

or 10 coloured dots. The initial presentation of dots remained on-screen for 300ms, followed by a 

brief interstimulus interval of 1000 ms before a second set of dots was presented. Participants 

were instructed to indicate whether a circled dot in the second presentation was different in 

colour to the initial presentation. Performance was assessed via accuracy on the number of 

correct responses across all 84 trials. 

4.2.3.2.2. Shifting 

Shifting was assessed using a Shape-Number switching task and the Inferring Relevance 

shifting task (Wilson & Niv, 2012). The Shape-Number task was adapted from the Letter-

Number task (Kimberg et al., 2000). It consisted of participants completing 96 trials in which, 

following familiarization blocks, they were required to respond to either the number (i.e., 2 vs. 3 

dots) or shape (i.e., square or diamond) as stimuli were presented in a 2 × 2 grid. Stimuli 

appeared sequentially and in a clockwise pattern, and participants used either the Z or M key on 

their keyboard to respond. For stimuli that appeared in the top row, participants responded based 
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on their shape. When stimuli appeared on the bottom row, participants responded based on the 

number of dots. Our outcome variable for the Shape-Number task was the number of correct 

responses divided by total reaction time. Our outcome variable for the Shape-Number task was 

the number of correct responses divided by total reaction time. 

The Inferring Relevance task (Wilson & Niv, 2012) was derived from the Wisconsin Card 

Sorting task (WCST; Heaton et al., 1981) and the Intra-Dimensional/Extra-Dimensional Shifts 

task (Mackintosh, 1965). This task required that participants use their PC mouse to select one of 

three different on-screen stimuli, depending on what they believed to be the dimension-to-match, 

in a given trial. Participants completed 200 trials whereby the dimension-to-match was either 

‘shape’ (i.e., squares, triangles, and circles), ‘colour’ (i.e., shapes outlines were either red, green, 

or yellow), or ‘pattern’ (i.e., within each shape was either grid lines, dots, or waves). The correct 

dimension-to-match changed after 15–25 consecutive trials of one dimension. As per the WCST, 

correctly identifying the dimension-to-match occurs initially via trial and error and feedback 

presentation. However, to increase task difficulty, participants’ certainty of response was 

interfered with by providing incorrect feedback on 25% of trials (Wilson & Niv, 2012). The 

primary outcome measure was the number of correct responses divided by total reaction time. 

4.2.3.2.3. Inhibition 

Inhibition was assessed via computerized versions of (1) the Stroop Task [41] and (2) the 

Go/NoGo task (Nosek & Banaji, 2001). The Stroop task comprised a total of 48 trials, with 16 

trials each for neutral (four “X”s appeared in one of three colours: blue, red, or green), congruent 

(words “BLUE”, “RED”, or “GREEN” appeared in colours that matched the meaning of the word 

presented; i.e., the word “BLUE” appeared in the colour blue), and incongruent (words “BLUE”, 

“RED”, or “GREEN” appeared in colours that did not match the meaning of the word presented; 

i.e., the word “RED” appeared in the colour green) conditions. In all trials, participants were 

required to indicate the colour of letters presented on screen, using their mouse to select one of 

three corresponding buttons on-screen (“Blue”, “Red”, or “Green”). Participants were asked to 

select, as quickly as possible, the box that corresponded to the colour of the text presented. 

Therefore, in the incongruent condition, participants had to inhibit selecting the box that 



NEUROCOGNITION AND PSYCHOPATHOLOGY  111 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

corresponded to the text rather than the colour (MacLeod, 1992). The primary outcome variable 

was the number of correct responses for congruent stimuli divided by the total reaction time for 

those stimuli, subtracted from the number of correct responses for incongruent stimuli divided by 

the total reaction time for those stimuli. 

The Go/NoGo task (Nosek & Banaji, 2001) used consisted of 120 trials. One of two 

stimuli, either an “M” or a “W”, was presented on-screen, and participants were instructed to 

press the space bar as quickly as possible when presented with the “M” (the “Go” stimuli) but not 

to press the space bar when presented with the “W” (the “NoGo” stimuli). Out of the 120 stimuli, 

the “Go” stimuli accounted for 80%, while the “NoGo” accounted for 20%. This weighting of 

“Go and “NoGo” stimuli has been shown to provide adequate variability of errors (Wilson et al., 

2016). Stimuli were presented between 1000 ms and 1550 ms apart, and participants were given 

1200 ms to respond. As 80% of the stimuli were “Go” stimuli, when presented with a “NoGo” 

stimuli, participants were required to actively inhibit the predominant response of pressing the 

space bar. Our primary outcome variable of the Go/NoGo was the number of correct NoGo 

omissions divided by the total reaction time of responses. 

4.2.3.2.4. Speed of Processing 

Speed of processing was assessed via two tasks, (1) a simple reaction time task and (2) the 

Inspection Time (IT) task (Anderson et al., 2001). For the simple reaction time task, participants 

were instructed to respond to the on-screen presentation of a blue “circle” by pressing the space 

bar on their keyboard as quickly as possible. Participants completed a total of 40 trials, with each 

trial separated by an interval of between 1000 ms and 1750 ms (this was to avoid participants 

preempting responses). The outcome variable for the simple reaction time task was the number of 

correct responses divided by the total reaction time. 

On the IT task, participants were presented with images depicting an alien with two 

antennae (Anderson et al., 2001). Four variations of this stimulus were used, showing (1) both 

short antennae, (2) both long antennae, (3) the left antennae being longer than the right antennae, 

and (4) the right antennae being longer than the left. The exposure duration of stimuli was 

manipulated so that stimuli were tested at 4 ms increments, between 6 ms and 62 ms a total of 4 
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times each, thus comprising a total of 60 trials. After each presentation, a mask was presented on 

screen, and participants were required to indicate whether the previously shown antennae were 

the same (via pressing the “Z” key) or were different (via pressing “M”) in length. Our outcome 

variable was a + b where: a = the lowest exposure duration for two consecutive blocks where 

accuracy was at 75% or higher. And b = a growing sum of exposure duration blocks with greater 

than 75% accuracy, divided by the number of blocks over 75%. Lower scores, therefore, reflected 

better performance. 

4.2.1 Analysis 

The analysis of this data occurred in multiple steps. Step one was to confirm the factor 

structure of the Brief Symptom Inventory (BSI). We used confirmatory factor analysis (CFA) to 

test two structures of the BSI from the literature. (1) the original Derogatis and Melisaratos 

(1983) nine-factor/49-item structure, and (2) a more recent six-factor, 40-item structure found by 

Schwannauer and Chetwynd (2007). Step two of the analysis was used to create the subscale 

scores for the choice of BSI factor structure, and to examine the bivariate correlations between 

the demographic, BSI, and ASSIST variables. Step two of the analysis used exploratory factor 

analysis (EFA), among the BSI subscales and the ASSIST variables, to support the development 

of the models of psychopathology. Step three consisted of choosing the specific psychopathology 

factors by devising correlated factors models based on the EFA and conceptual interpretation and 

using CFA to test the models’ fit. In step four, the four structural models of neurocognition were 

tested; a correlated factors model, two versions of a bifactor model, and a single-factor model. 

Finally, step five consisted of assessing partial bivariate correlations (accounting for covariates) 

between the neurocognition and the factors of psychopathology, and a multivariate multiple 

regression analysis to examine the degree to which the participants’ performance on the 

neurocognitive tasks could account for the factors of psychopathology after accounting for 

covariates and the common variance of the tasks. 

For our CFIs, we applied less stringent rules of thumb to indicate a good fitting model and 

used these rules in combination with conceptual interpretation when choosing a model from 

alternatives. This approach was taken due to a smaller sample size with an initial large number of 
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observed variables (Shi et al., 2018) and Greene et al. (2021) suggesting the use of conceptual 

interpretation and the minimisation of the reliance on fit measures when choosing models. For 

our CFAs, an RMSEA of <0.05 indicated a good fit, <0.08 indicated a reasonably good fit, and 

<0.10 indicated a mediocre fit (Browne & Cudeck, 1992). An SRMR of <0.09 indicated a good 

fit (Hu & Bentler, 1999), while the earlier convention of the TFI and the CFI of =>0.9 was used 

to indicate a good fit, rather than using the later convention of =>0.95 due to the tendency of a 

=>0.95 cut off to over reject true-population models with smaller sample sizes (<N = 500; Hu & 

Bentler, 1995; Hu & Bentler, 1999). All factor loadings were required to be significant at the 

alpha level of <0.05. For all models, the MLR estimator with robust test statistics was used. 

Regarding the EFA, an oblique (GeominQ) rotation was used, with an ML estimator, and 

a model was chosen from alternatives based on information derived from the EFAs, as well as the 

subsequent CFAs, in combination with theoretical and conceptual interpretation. Therefore, 

models were chosen based upon an exploratory-confirmatory continuum (Greene et al., 2021), 

incorporating the importance of conceptual interpretation of the models. 

4.3. Results 

After cleaning the data, 25 of the 425 participants were removed due to incomplete data 

for one or more of the neurocognitive tasks, leaving a final sample of N = 400. The demographic 

and clinical variables for our final sample can be found in Table 4.1. 

Table 4.1  

Participant Characteristics. 

Variable  Mean (SD/%)/Count Min Max 

Age  44.47 (16.35) 18 83 

     

Gender     

 Male 194 (48.5%) - - 

 Female 206 (51.5%) - - 

Diagnosis (Yes/No)     

 Yes 114 (28.5%) - - 

 No 286 (71.5%) - - 

Diagnoses a     

 Depression 66 (16.5%) - - 

 Generalised Anxiety 57 (14.2%) - - 

 Agoraphobia 2 (0.5%) - - 

 Social Anxiety 7 (1.8%) - - 

 Panic Disorder 4 (1.0%) - - 

 Schizoaffective 1 (0.3%) - - 
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Variable  Mean (SD/%)/Count Min Max 

 Psychosis 2 (0.5%) - - 

 Eating Disorder 1 (0.3%) - - 

 Cyclothymia 1 (0.3%) - - 

 Bipolar 17 (4.3%) - - 

 OCD 3 (0.8%) - - 

 Impulse Control 1 (0.3%) - - 

 BPD 3 (0.8%) - - 

 PTSD 19 (4.8%) - - 

 Substance Use 3 (0.8%) - - 

 Trichotillomania 1 (0.3%) - - 

     

Year of First Diagnosis  2007.69 (10.71) 1980 2021 

     

Admitted to a Mental Health 

Facility (Yes/No) 
    

 Yes 26 (6.5%) - - 

 No 374 (93.5%) -  

     

Year of First Admission  2003.31 (13.14) 1980 2020 

     

Using Psychotropic 

Medication (Yes/No) 
    

 Yes 60 (15.0%) - - 

 No 340 (85.0%) - - 

4.3.1 Step-One 

First, we confirmed the structure of the BSI by testing the original nine-factor model [27] 

and the newer six-factor model (Schwannauer & Chetwynd, 2007). The original, nine-factor, BSI 

structure (Derogatis & Melisaratos, 1983) did not fit the data well, with the CFI and the TLI not 

meeting the criteria for a good fit (χ2 (1091, N = 400) = 2350.07, CFI = 0.867, TLI = 0.857, 

SRMR = 0.064, RMSEA = 0.066, 90% CI = [0.051, 0.056]), and had multiple non-positive 

definite identification issues. This suggested that there were multiple redundant items within the 

factor structure. However, the Schwannauer and Chetwynd (2007) six-factor structure provided a 

“reasonably good fit”, with regards to RMSEA, a “good fit” regarding the SRMR, and bordering 

on a good fit for the TFI and the CFI (χ2 (725, N = 400) = 1518.41, CFI = 0.891, TLI = 0.885, 

SRMR = 0.058, RMSEA = 0.064, 90% CI = [0.049, 0.055]). The six-factor structure also had no 

identification issues and very good-to-excellent internal consistency (Cronbach’s Alpha’s ranging 

from 0.858 to 0.940). Therefore, we concluded that, overall, the six-factor structure provided an 

adequate fit for the data while offering clearly conceptually interpretable factors. The six-factors, 

with names devised from examining the contents of each factor, their associated BSI item 

numbers, the original factor they were placed within the nine-factor solution, and their 



NEUROCOGNITION AND PSYCHOPATHOLOGY  115 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

Cronbach’s Alpha’s, can be found in Table 4.2. Although the factor named “mental fog” 

contained only items from the BSI aimed at measuring distress related to obsessive-compulsive 

symptoms, it was named as such due to the subset of items retained reflecting perceived mental 

performance in daily life, just one aspect of the obsessive-compulsive phenotype. Example items 

included “Having to check and double-check what you do” and “Your mind going blank” 

(Derogatis & Melisaratos, 1983). 

Table 4.2  

The Six-Factor Model 

Factor Name Item Numbers Original Factor Cronbach’s Alpha 

Depression   0.940 

 17 Depression  

 18 Depression  

 16 Depression  

 14 Psychoticism  

 35 Depression  

 50 Depression  

 44 Anxiety  

Agoraphobia   0.865 

 8 Phobic Anxiety  

 43 Phobic Anxiety  

 28 Phobic Anxiety  

 31 Phobic Anxiety  

 45 Anxiety  

Hostility   0.832 

 13 Hostility  

 46 Hostility  

 41 Hostility  

 40 Hostility  

 6 Hostility  

Mental Fog   0.909 

 36 Obsessive-Compulsive   

 5 Obsessive-Compulsive   

 26 Obsessive-Compulsive   

 32 Obsessive-Compulsive   

 27 Obsessive-Compulsive   

 15 Obsessive-Compulsive   

Interpersonal Anxiety   0.904 

 21 Interpersonal Sensitivity   

 22 Interpersonal Sensitivity  

 51 Paranoid Ideation  

 20 Interpersonal Sensitivity   

 42 Interpersonal Sensitivity   

 48 Somatisation  
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Factor Name Item Numbers Original Factor Cronbach’s Alpha 

 24 Paranoid Ideation  

 4 Paranoid Ideation  

 10 Paranoid Ideation  

Somatisation   0.858 

 7 Somatisation  

 30 Somatisation  

 33 Somatisation  

 29 Somatisation  

 23 Somatisation  

 2 Somatisation  

 37 Somatisation  

 1 Anxiety  

 

4.3.2 Step-Two 

Following the choice of the six-factor BSI solution, scores for each of the six factors were 

created from the relevant BSI items using the original scoring procedure. An “other substances” 

ASSIST variable was also created by adding together scores from the cocaine, amphetamine, 

inhalants, sedatives, and hallucinogens categories, as there was little variation within these 

substances. The combination of less commonly used substances is standard amongst the literature 

(e.g., Caspi et al., 2014). The bivariate associations between the six BSI and the four ASSIST 

variables were explored. This was done to test for the appropriateness of using each BSI and 

ASSIST variable in developing our models of psychopathology. The bivariate correlations can be 

found in Table 4.3. All BSI and ASSIST variables had significant positive correlations, except for 

tobacco, which was only significantly associated with one of the six BSI variables 

(Somatisation). As the development of structural models of psychopathology is grounded in 

significant positive associations between the variables, tobacco use was not included in the 

development of the models of psychopathology or any other subsequent analyses.



NEUROCOGNITION AND PSYCHOPATHOLOGY  117 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

 

 

Table 4.3  

Symptom and Substance Bivariate Correlations 

 Dep Agor Host Fog Inter. Anx Somat Tob Alc Cann Other  

Depression 1 0.627 ** 0.620 ** 0.761 ** 0.808 ** 0.690 ** 0.040 0.132 ** 0.262 ** 0.185 ** 

Agoraphobia 0.627 ** 1 0.534 ** 0.621 ** 0.667 ** 0.718 ** 0.070 0.133 ** 0.244 ** 0.211 ** 

Hostility 0.620 ** 0.534 ** 1 0.668 ** 0.698 ** 0.655 ** 0.022 0.206 ** 0.193 ** 0.227 ** 

Mental Fog 0.761 ** 0.621 ** 0.668 ** 1 0.765 ** 0.745 ** 0.070 0.138 ** 0.275 ** 0.223 ** 

Inter. Anxiety 0.808 ** 0.667** 0.698 ** 0.765 ** 1 0.723 ** 0.076 0.150 ** 00.257 ** 0.233 ** 

Somatisation 0.690 ** 0.718 ** 0.655 ** 0.745 ** 0.723 ** 1 0.124 * 0.195 ** 0.302 ** 0.262 ** 

Tobacco 0.040 0.070 0.022 0.070 0.076 0.124 * 1 0.303 ** 0.257 ** 0.279 ** 

Alcohol 0.132 ** 0.133 ** 0.206 ** 0.138 ** 00.150 ** 0.195 ** 0.303 ** 1 0.279 ** 0.201 ** 

Cannabis 0.262 ** 0.244 ** 0.193 ** 0.275 ** 0.257 ** 0.302 ** 0.257 ** 0.279 ** 1 0.349 ** 

Other Drugs 0.185 ** 0.211 ** 0.227 ** 0.223 ** 0.233 ** 0.262 ** 0.279 ** 0.201 ** 0.349 ** 1 

Note. *. Correlation is significant at the 0.05 level (two-tailed). **. Correlation is significant at the 0.01 level (two-tailed). Dep = Depression. Agor = Agoraphobia. Host = Hostility. Fog = 

Mental Fog. Inter. Anx = Interpersonal Anxiety. Somat = Somatisation. Tob = Tobacco. Alc = Alcohol. Cann = Cannabis. Other = Other Substances 
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4.3.2 Step-Three 

In step three, we used EFA to inform the development of the specific, second-order 

factors of psychopathology. Given we had nine observed variables, six BSI variables, and three 

ASSIST variables, we started by examining a four-factor structure, which is the largest structure 

with the possibility of at least two observed variables loading onto each factor. The EFAs can be 

found in table 4.4. For the four-factor EFA, a factor emerged consisting of depression, mental 

fog, and interpersonal anxiety. This factor also showed a cross-loading between factor two for 

agoraphobia. Furthermore, a second factor emerged consisting of the cross-loaded agoraphobia 

variable and somatisation, and a third factor consisting of a single loading > 0.3 in hostility. 

Finally, a fourth factor emerged consisting of the three substance use variables. Next, we assessed 

a 3-factor structure. The three-factor structure revealed similar results when compared to the four-

factor structure. A factor still emerged consisting of depression, hostility, mental fog, and 

interpersonal anxiety, but now also included hostility, which was moved from its own factor. 

Factor two emerged still consisting of somatisation and the agoraphobia cross-loading with factor 

1. The third factor contained the three substance use variables. Finally, we tested a two-factor 

solution. The two-factor solution consisted of a factor accounting for the BSI items and for the 

ASSIST items. The results of the EFAs are presented in Table 4.4.  

Table 4.4  

EFA Factor Loadings 

Number of Factors Item Factor 1 Factor 2 Factor 3 Factor 4 

4      

 Depression 0.936    

 Agoraphobia 0.398 0.418   

 Hostility   0.960  

 Mental Fog 0.617    

 
Interpersonal 

Anxiety 
0.797    

 Somatisation  0.975   

 Alcohol    0.376 
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Number of Factors Item Factor 1 Factor 2 Factor 3 Factor 4 

 Cannabis    0.712 

 
Other 

Substances 
   0.450 

3      

 Depression 0.903   - 

 Agoraphobia 0.396 0.400  - 

 Hostility 0.604   - 

 Mental Fog 0.699   - 

 
Interpersonal 

Anxiety 
0.931   - 

 Somatisation  0.981  - 

 Alcohol   0.401 - 

 Cannabis   0.685 - 

 
Other 

Substances 
  0.489 - 

      

2      

 Depression 0.900  - - 

 Agoraphobia 0.711  - - 

 Hostility 0.739  - - 

 Mental Fog 0.862  - - 

 
Interpersonal 

Anxiety 
0.920  - - 

 Somatisation 0.772  - - 

 Alcohol  0.429 - - 

 Cannabis  0.595 - - 

 
Other 

Substances  
 0.524 - - 

Note. Factor loadings < 0.3 are hidden. 
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The three and two-factor models provided the most parsimonious solutions, and were 

chosen to be further explored using CFAs. First, we tested two different three-factor models and 

two different two-factor models. The first three-factor model tested (a), following the exact 

structure as the three-factor EFA, and loading agoraphobia onto factor two, due to its slightly 

stronger loading, and its conceptual relationship to somatisation. The second three-factor CFA 

tested (b) was the same as the first. However, hostility was loaded onto factor three, with the 

substance use variables. All of the three factors were allowed to correlate. The first two-factor 

solution tested (c) was derived directly from the two-factor EFA, but the second two-factor model 

tested (d), like the three-factor model (b), had hostility loaded on as a factor with the substance 

use variables. We tested the alternative two and three-factor models for two reasons; the four-

factor solution showed hostility loading on a separate factor, not on factor one, and hostility or 

conduct issues are primarily conceptualized with substance use as an “externalising” factor within 

the literature (e.g., Caspi et al., 2014). Furthermore, regarding the alternative two-factor solution, 

by having hostility loading onto a factor with substance use, we tested a model with 

“Internalising” and “Externalising” factors. These factors have been repeatedly validated and 

received a great amount of interest throughout the literature (Caspi et al., 2014; Caspi & Moffitt, 

2018; Haywood et al., 2021b, 2021c; Lahey et al., 2012). For all models, the factors were allowed 

to correlate. 

The two three-factor solutions showed to be a “reasonably good” and “mediocre” fit, 

respectively. The first model (a) (χ2 (24, N = 400) = 34.00, CFI = 0.993, TLI = 0.989, SRMR = 

0.020, RMSEA = 0.032, 90% CI = [0.000, 0.052]), with hostility loaded onto factor one provided 

a marginally better fit than the second model (b) (χ2 (24, N = 400) = 73.34, CFI = 0.963, TLI = 

0.945, SRMR = 0.057, RMSEA = 0.072, 90% CI = [0.057, 0.087]), with hostility loaded onto 

factor three with the substance use variables. 

Next, we tested the fit of the two variations of the two-factor model. The first two-factor 

model tested (c), with hostility loading onto factor one, was a “reasonable” fit for the data with 

regards to the RMSEA, and a good fit for the CFI, TLI, and SRMR (χ2 (26, N = 400) = 96.73, 

CFI = 0.975, TLI = 0.966, SRMR = 0.027, RMSEA = 0.057, 90% CI = [0.042, 0.073]). The 
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alternative two-factor solution tested (d) was a “mediocre”-to-“reasonable” fit for the data with 

regards to the RMSEA, and a good fit for the CFI, TLI, and the SRMR (χ2 (26, N = 400) = 96.73, 

CFI = 0.942, TLI = 0.926, SRMR = 0.059, RMSEA = 0.081, 90% CI = [0.068, 0.097]). 

Given that all of the four CFAs tested provided a fit for the data, each model may have 

been acceptable to select. However, given that a two-factor “Internalising” and “Externalising” 

model fitted the data and that there is a large amount of conceptual and empirical evidence 

supporting the use of these factors, we selected this model as our correlated factors model (Caspi 

et al., 2014; Caspi & Moffitt, 2018; Haywood et al., 2021b, 2021c; Lahey et al., 2012). 

Next, after developing the choice of the correlated-factors model, we tested the fit of two 

different bifactor models. Each model tested consisted of the same observed variables and the 

same specific factors (Internalising and Externalising) as in the correlated factors model, but 

included a higher-order p-factor. Each of the nine observed variables loaded onto the p-factor as 

well as either Internalising or Externalising. What differentiated the models was whether the 

specific factors were allowed to correlate. In the first model tested (a), the specific factors were 

not allowed to correlate, but in the second model (b), the specific factors were allowed to 

correlate. We tested both of these versions of the bifactor model as previous research has applied 

both types successfully (Caspi et al., 2014; Watts et al., 2019) 

The first bifactor model tested (a), without correlated specific factors fit the data well (χ2 

(18, N = 400) = 23.82, CFI = 0.996, TLI = 0.992, SRMR = 0.020, RMSEA = 0.029, 90% CI = 

[0.000, 0.053]). However, none of the three observed variables retained significant loadings on 

the Internalising specific factor, and hostility did not retain its significant loading on the 

Externalising factor. Finally, there was also a Heywood case, an observed variable with negative 

variance (somatisation). These findings are thought to be due to the higher-order p-factor 

subsumed the Internalising specific factor, as well as the variance in hostility accounted for by the 

Externalising factor. The second bifactor model tested (b), that contained correlated specific 

factors, also fit the data well (χ2 (17, N = 400) = 21.18, CFI = 0.997, TLI = 0.993, SRMR = 

0.017, RMSEA = 0.025, 90% CI = [0.000, 0.051]). However, the second model (b) shared many 

of the same issues as the first (a). For model two (b), none of the observed variables retained 
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significant loadings on Internalising. Hostility also did not retain its significant loading on 

Externalising. Furthermore, somatisation was also a Heywood case within this model. Overall, 

for both bifactor models, the p-factor subsumes the Internalizing factor. A specific factor being 

subsumed is relatively common in bifactor models of psychopathology, and previous research has 

removed the factor subsumed (Caspi et al., 2014). However, this is now known to be poor 

practice, as if the subsumed factor is removed, the p-factor becomes defined by that removed 

factor, changing its interpretation (Eid, 2020; Haywood et al., 2021a). Therefore, the bifactor 

model is not appropriate to explore further within this data. The results do, however, suggest a 

single-factor model may be a good fit for the data. 

Lastly, we tested the fit of the single-factor model of psychopathology within our sample. 

The single-factor model consists of the same nine observed variables used in the other models, 

however, containing one higher-order p-factor and no specific factors. The single factor provided 

a “mediocre”-to-“reasonably” good fit for with regards to the RMSEA, and a good fit for the CFI, 

TLI, and SRMR (χ2 (27, N = 400) = 98.12, CFI = 0.946, TLI = 0.928, SRMR = 0.062, RMSEA = 

0.081, 90% CI = [0.067, 0.095]). All of the nine-observed variables loaded significantly of the p-

factor. Therefore, we decided to use the (A) correlated factors model and (B) the single-factor 

model for our examination of the utility of neurocognitive abilities in accounting for the factors 

of psychopathology. Figure 4.1 displays two final models. 
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Figure 4.1  

Final Structural Models of Psychopathology. 

  

Note. Depiction of the two final structural models used models used in this chapter. Panel A: 

Correlated factors model. Panel B: Single-factor model. DEP = Depression. AGOR = 

Agoraphobia, FOG = Mental Fog, INTER ANXI = Interpersonal Anxiety. SOM = Somatisation, 

HOSTI = Hostility. ALC = Alcohol. CANN = Cannabis. OS = Other Substances. 

 

The factor loadings for both the final correlated factors model and the single-factor model 

can be found in Table 4.5. As specified by Caspi et al. (2014), we standardised the p-factor scores 

to a mean of 100 and a standard deviation of 15. The internalising and externalising factors were 

mildly-to-moderately correlated (r = 0.743), while the correlations between the p-factor in the 

single factor model and specific factors in the correlated factors model were strong (p and 

Internalising, r = 0.996; p and Externalising, r = 0.799). The p-factor and Internalising correlated 

almost perfectly, indicating the p-factor in the single-factor model largely represented 

Internalising symptoms. 
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3.3.3 Step-Four 

After The choice of structural models of psychopathology, we examined the fit of three different 

structural models of neurocognition; (a) a correlated factors model, (b) a bifactor model with 

correlated specific factors, (c) a bifactor model without correlated specific factors, and (d) a 

single factor model. Figure 4.2 depicts the four models. Unlike our approach to developing the 

models of psychopathology, we did not precede the confirmatory with exploratory factor 

analyses. This is because, unlike the components from our measure of psychopathology, we 

actively chose two specific tasks to measure each theoretically driven neurocognitive component. 

Therefore, it would be inappropriate to conduct exploratory factor analyses as any alternative 

structures would forgo the conceptual interpretation and theoretical foundations of the 

neurocognitive components.

Table 4.5  

CFA for the Final Two Models 

Model Factor Depr Agor Fog 
Int. 

Anx. 
Soma Host Alc Cann Other Int~Ext 

Correlated 

Factors  
          0.743 ** 

 Internalising 0.862 0.750 0.867 0.896  0.842      

 Externalising      0.806 0.227 0.328 0.300  

Single-Factor            

 p 0.861 0.750 0.867 0.896 0.842 0.758 0.192 0.316 0.272  

Note. Depr = Depression. Agor = Agoraphobia. Fog = Mental fog. Int. Anx. = Interpersonal Anxiety. 

Soma = Somatisation. Host = Hostility. Alc = Alcohol. Cann = Cannabis Other = Other Substances. Int = 

Internalising. Ext = Externalising. ~ = correlation. 
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Figure 4.2 

Neurocognitive Structural Models Tested 

 

Note. Depiction of the neurocognitive structural models tested. Panel A: Correlated factors model. Panel B: bifactor model with specific factors. Panel C: 

bifactor model with higher-order factors. Panel D: single-factor model. Rele = Inferring Relevance task. WM = Working Memory. RT = Reaction Time. IT = 

Inspection Time. 



NEUROCOGNITION AND PSYCHOPATHOLOGY  126 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

All of the four tested models failed to converge. To explore if the different units of 

measurement between our data (e.g., RCS units Vs number of trails correct) caused the failure of 

convergence, we normalised the data and attempted to re-fit the models. All models, apart from 

the single-factor model, still failed to converge. The single-factor model, although it did converge 

with the normalised data, did not provide a good fit for data (χ2= 40.152, CFI = .876, TLI = .826, 

RMSEA = .05, 90% CI = [.027, .073]. SRMR = .05), and three (Digit Span, Simple Reaction 

Time, and IT) out of the eight variables did not significantly load onto the general factor This 

may be expected based on the generally low correlations amongst the neurocognitive 

components. These results suggested it would be most appropriate to examine each 

neurocognitive test independently within our remaining analyses. Descriptive statistics for the 

neurocognitive tests are presented in Table 4.6. 

Table 4.6  

Neurocognitive Task Descriptive Statistics. 

 Minimum Maximum Mean Std. Deviation 

Digit Span 4 14 7.82 1.79 

Visual WM 27 74 57.09 8.76 

Inferring Relevance 0.0002761 0.0019141 0.0008937 0.0002978 

Shape-Number 0.0000799 0.0016144 0.0006979 0.0002565 

Stroop −0.0002305 0.0008982 0.0002402 0.0001444 

Go/NoGo 0.0001582 0.0005083 0.0003417 0.0000592 

Simple RT 0.0002084 0.0003973 0.0003921 0.0000206 

IT 28.67 112.00 67.53 22.08 

Note. Values presented for the Inferring Relevance, Shaper-Number, Stroop, Go/NoGo, and 

Simple Reaction Time relate to the number of correct responses per millisecond. 

4.3.4 Step-Five 

In Step Five we examined the partial (controlling for age and gender) correlations 

between the neurocognitive tasks and internalising, externalising and the p-factor. We controlled 

for age and gender as both demographic variables were significantly associated with one or more 

of the factors of psychopathology. Higher age being associated with lower internalising, 
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externalising and p-factor scores (internalising, r = −0.422, p < 0.001; externalising, r = −0.348, p 

< 0.001; p-factor, r = −0.424, p < 0.001), and females (males = 1, females = 2) tended to have 

higher scores on internalising and the p-factor each factor (internalising, r = 0.201, p < 0.001; 

externalising, r = 0.006, p = 0.910; p-factor, r = 0.182, p < 0.001). Table 4.7. shows the bivariate 

correlations between the neurocognitive tasks and the factors of psychopathology after 

accounting for age and gender
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Table 4.7  

Partial Bivariate Correlations Between Neurocognition and Psychopathology. 

Control Variables  Digit Span 
Vis 

WM 
Infer. Rel. Shape-Num Stroop 

Go/No 

Go 
Simple RT  IT  Int Ext  p 

Age & Gender 

Digit Span 1.000 0.045 0.020 0.020 −0.020 0.050 0.060 −0.042 −0.060 0.038 −0.048 

Visual WM 0.045 1.000 0.187 ** 0.160 ** 0.064 0.122 * 0.203 ** −0.051 −0.053 −0.066 −0.056 

Infer. Rel. 0.020 0.187 ** 1.000 0.359 ** 0.177 ** 0.077 0.014 0.003 −0.016 −0.005 −0.015 

Shape-Number 0.020 0.160 ** 0.359 ** 1.000 0.100* 0.107* 0.078 0.021 −0.016 0.010 −0.013 

Stroop −0.020 0.064 0.177 ** 0.100 * 1.000 0.013 −0.017 −0.044 −0.032 0.031 −0.024 

Go/NoGo 0.050 0.122 * 0.077 0.107 * 0.013 1.000 0.223 ** −0.048 −0.088 −0.061 −0.087 

Simple RT 0.060 0.203 ** 0.014 0.078 −0.017 0.223 ** 1.000 −0.023 −0.130 ** −0.226 ** −0.148 ** 

IT −0.042 −0.051 0.003 0.021 −0.044 −0.048 −0.023 1.000 0.112 * 0.089 0.113 * 

Internalising −0.060 −0.053 −0.016 −0.016 −0.032 −0.088 −0.130 ** 0.112 * 1.000 0.719 ** 0.995 ** 

Externalising 0.038 −0.066 −0.005 0.010 0.031 −0.061 −0.226 ** 0.089 0.719 ** 1.000 0.782 ** 

p-Factor −0.048 −0.056 −0.015 −0.013 −0.024 −0.087 −0.148 ** 0.113 * 0.995 ** 0.782 ** 1.000 

Note. **. Correlation is significant at the 0.01 level (two-tailed). *. Correlation is significant at the 0.05 level (two-tailed). Vis WM = Visual Working Memory. Infer. Rel. = Inferring 

Relevance. Shape-Num = Shape-Number RT = Reaction Time. IT = Inspection Time. Int = Internalising. Ext = Externalising. p = p-factor  
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Of the eight neurocognitive tasks, after accounting for age and gender, only the two tasks 

designed to measure the speed of processing were significantly associated with one or more of 

the factors of psychopathology. Specifically, performance on the simple reaction time task was 

significantly negatively associated with internalising, externalising, and the p-factor. This finding 

indicates that better performance on the simple reaction time task is significantly associated with 

lower internalising and externalising symptoms, as well as the p-factor score. The Inspection 

Time task was significantly positively associated with internalising and the p-factor, indicating 

that better performance on the Inspection Time task was associated with lower internalising 

symptoms and lower p-factor scores. Combined, these results indicate that within our data, speed 

of processing is the primary neurocognitive correlate with higher-order psychopathology. 

Next, we used a multivariate multiple regression analysis to examine the degree to which 

each neurocognitive task could account for unique variance in the psychopathology factors, 

accounting for age and gender, as well as the common variance amongst the tasks. The model 

accounted for a significant 23.8% of variance in internalising (F(10, 389) = 12.17, p < 0.001, R2 

= 0.238), a significant 15.6% of variance in externalising (F(10, 389) = 8.37, p < 0.001, R2 = 

0.156), and a significant 23.6% of variance in the p-factor (F(10, 389) = 12.05, p < 0.001, R2 = 

0.236). Table 4.8 provides the results of the regression analysis.
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Table 4.8  

Multivariate Multiple Regression Analysis 

Predictors 
Internalising Externalising p-Factor 

B β p Partial  Sr 2 B β p Partial Sr 2 B β p Partial Sr 2 

Age −0.027 −0.433 <0.001 ** −0.404 0.148 −0.026 −0.346 <0.001 ** −0.321 0.095 −0.398 −0.434 <0.001 ** −0.404 0.149 

Gender 0.360 0.174 <0.001 ** 0.188 0.028 0.007 0.003 0.951 0.003 <0.001 4.68 0.156 0.001 ** 0.170 0.023 

Digit Span −0.024 −0.041 0.360 −0.046 0.002 0.036 0.054 0.249 0.058 0.003 −0.251 −0.030 0.505 −0.034 0.001 

Vis WM −0.002 −0.013 0.783 −0.014 0.001 −0.003 −0.022 0.669 −0.022 <0.001 −0.026 −0.015 0.758 −0.016 <0.001 

Infer. Rel. 13.03 0.003 0.950 0.003 <0.001 149.99 0.032 0.555 0.030 0.001 415.57 0.007 0.891 0.006 <0.001 

Shape-Num −9.37 −0.003 0.958 −0.003 <0.001 −61.02 −0.015 0.778 −0.014 <0.001 −214.33 −0.004 0.934 −0.004 <0.001 

Stroop −182.03 −0.025 0.578 −0.028 0.001 264.25 0.031 0.664 0.034 0.001 −1916.14 −0.018 0.686 −0.020 <0.001 

Go/NoGo −840.70 −0.048 0.297 −0.053 0.002 −203.95 −0.010 0.835 −0.011 <0.001 −11229.51 −0.044 0.336 −0.049 0.002 

Simple RT −4973.28 −0.099 0.034 * −0.107 0.009 −12291.50 −0.209 <0.001 ** −0.214 0.040 −84882.76 −0.117 0.012 * −0.126 0.012 

IT 0.004 0.094 0.040 * 0.104 0.008 0.005 0.082 0.083 0.088 0.006 0.064 0.095 0.037 * 0.105 0.009 

Note. *. is significant at the 0.05 level. **. is significant at the 0.01 level. Vis WM = Visual Working Memory. Infer. Rel. = Inferring Relevance. Shape-Num = Shape-Number RT = Reaction 

Time. IT = Inspection Time. 
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Regarding internalising, the simple reaction time task and the Inspection Time task 

remained significant predictors after accounting for the variance of age and gender, as well as the 

common variance of the neurocognitive tasks. Simple reaction time performance uniquely 

accounted for 0.9%, and the inspection time task accounted for 0.8% of the variance in 

internalising, respectively. This indicates that our tasks assessing the speed of processing are not 

only significantly associated with internalising after accounting for age and gender but can also 

account for a significant amount of unique variance in internalising after accounting for age and 

gender in addition to the common variance from the neurocognitive tasks. However, it is 

important to acknowledge that combined the unique variance in internalising accounted for by the 

speed of processing tasks was just 1.7%. 

Regarding externalising, simple reaction time performance was a significant predictor of 

externalising in our model after accounting for age, gender, and the common variance of the 

remaining neurocognitive tasks. Simple reaction time accounted for a significant 4.0% of unique 

variance in externalising that could not be explained by age and gender or the common variance 

of the remaining neurocognitive tasks. However, unlike internalising, our other measure of the 

speed of processing, the inspection time task, did not account for a significant amount of unique 

variance in externalising. 

Even though the internalising and the p-factor were highly correlated, to ensure a full 

investigation of the study aims and psychopathology factors, it was still important to examine the 

relations between neurocognitive performance and the general factor. Further, as the internalising 

and p-factor are highly, but not perfectly, correlated, the analyses remained important. Both 

simple reaction time and inspection time task performance accounted for a significant amount of 

unique variance in the p-factor over and above age, gender, and the common variance of the 

neurocognitive tasks. Simple reaction time performance accounted for a significant 1.2% of 

unique variance in the p-factor, while performance on the inspection time task accounted for a 

significant 0.9% of unique variance in the p-factor. Overall, our findings suggest that the tasks 

measuring the speed of processing were the most efficacious when compared to tasks measuring 
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working memory, shifting, and inhibition, in accounting for higher-order psychopathology within 

our sample. 

4.4 Discussion 

Strong evidence suggests that deficits in neurocognitive abilities play a role in the 

aetiology of psychopathology (e.g., Romer & Pizzagalli, 2021). In recent years, evidence has 

grown for the utility of dimensional structural models of psychopathology as an alternative to 

traditional nosological diagnostic approaches. However, there is a lack of understanding of how 

neurocognitive abilities are associated with factors of psychopathology derived from structural 

models. The aim of this paper was to (1) develop and test the fit of three popular models of 

psychopathology within a community sample; (a) the correlated factors model, (b) the bifactor 

model, and (c) the single factor model, using dimensional symptom measures. Our second aim 

(2) was to explore the degree to which tasks measuring four prominent neurocognitive 

components, (a) working memory, (b) shifting, (c) inhibition, and (d) speed of processing, are 

associated with, and can account for, the factors of psychopathology from each model. 

Within our sample, only the correlated-factors model and the single factors model fit our 

data well. The correlated factors model consisted of an internalising factor and an externalising 

factor. The internalising factor had loadings from depression, agoraphobia, mental fog, 

interpersonal anxiety, and somatisation, while the externalising factor had loadings from hostility, 

alcohol use, cannabis use, and other drug use. Our correlated factors model parallels many other 

correlated factors models found within the literature (e.g., Lahey et al., 2012). However, we did 

not find a third factor, namely “thought disorder”, that is commonly found within the literature. 

Thought disorder is commonly defined by psychotic symptoms (Caspi et al., 2014), and the 

absence of thought disorder factors from our models may be explained by the use of the six-factor 

BSI model over the original nine-factor model. The original nine-factor BSI model, which 

included a psychoticism factor, did not fit our data well, so the alternative six-factor model, 

which only included a single psychosis item amongst its factors, was used. Therefore, our six 

observed variables used to develop the models did not include strong indicators of psychoticism. 

The bifactor models fit our data well, although they had several non-significant factor loadings 
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and a Heywood case. The good fit of the bifactor models is not surprising given that fit indices 

bias bifactor models over correlated factors models (Greene et al., 2019). However, the single-

factor model also fit the data well. The p-factor from the single factor model, however, was 

almost perfectly correlated with the internalising factor from the correlated factors model. This 

suggests, along with the Heywood cases, that the bifactor models were a poor structure for the 

data because the p-factor primarily represented internalising. The issue of the p-factor being 

malleable and primarily representing a specific factor has been discussed previously in the 

literature (e.g., Haywood et al., 2021a; Haywood et al., 2021b; Haywood et al., 2021c; Heinrich 

et al., 2020). This represents a limitation of developing an understanding of the substantive 

meaning of p. 

We also attempted to fit different structural models of neurocognitive abilities. None of 

the models fit our data. This was unexpected as previous research generally finds similar models 

to be a good fit (e.g., Karr et al., 2018). However, we chose neurocognitive tasks that assessed 

different aspects of each neurocognitive domain. For example, to measure the speed of 

processing, we used a simple reaction time task that required participants to respond to a stimulus 

as quickly and as accurately as possible, as well as an Inspection Time task that did not involve 

any response speed but instead involved high-speed image processing. Furthermore, to measure 

shifting, we used a more traditional switching task, the shape-number task, that required 

participants to switch mental set in response to a known, defined rule (top or bottom of the grid), 

as well as a less traditional Inferring Relevance switching task (Wilson & Niv, 2012), that 

required participants to switch mental set in a probabilistic, more real-world, context. Therefore, 

given that we measured the breadth of each neurocognitive domain, it is understandable that 

performance heterogeneity resulted in the models of neurocognition not being a good fit. 

We found that, after controlling for age and gender, simple reaction time performance was 

significantly associated with the internalising and externalising factors concerning the correlated 

factors model, as well as the p-factor regarding the single factors model. We also found 

additionally, after controlling for age and gender, the IT task performance was significantly 

associated with internalising and the p-factor. However, tasks that measure working memory, 
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shifting, and inhibition were not significantly associated with any of the factors of 

psychopathology. Furthermore, after accounting for age, gender, and the common variance of the 

neurocognitive tasks, the simple reaction time task accounted for a significant 0.9%, 4.0%, and 

1.2% of the variance in internalising, externalising, and the p-factor, respectively. After 

accounting for age, gender, and the common variance of the neurocognitive tasks, the IT task 

accounted for a unique 0.8% and 0.9% variance in internalising and the p-factor. This suggests 

that, in our data, tasks that measured speed of processing had the greatest predictive utility, 

although limited to a combined predictive utility of 1.7%. The lack of predictive utility of 

working memory, shifting, and inhibition tasks regarding the factors of psychopathology both 

conflicts and supports findings from the limited research in this area. Caspi et al. (2014) found 

working memory to be significantly associated with internalising and externalising in their 

correlated factors model as well as to the p-factor in their bifactor model. However, paralleling 

our findings, Caspi et al. (2014)also found that a shifting task (i.e., the Trail-Making-Test-B) was 

not significantly associated with externalising within their correlated factors model but did find it 

was significantly associated with internalising. Finally, our findings also parallel previous 

findings (Caspi et al., 2014) in that speed of processing was significantly associated with both 

internalising and externalising, as well as the p-factor. Previously, we suggested that factors from 

structural models such as internalising, externalising, and the p-factor may have discrete patterns 

of neurocognitive ability associations that differentiate the factors (Haywood et al., 2021c). 

However, our results suggest that internalising, externalising, and the p-factor may not be clearly 

differentiated by neurocognitive performance, and that processing speed is a common correlate. 

The importance of processing speed has been primarily studied in relation to ageing 

(Albinet et al., 2012; Kail, 1991). However, there has been growing interest in the role speed 

processing in psychopathology plays in internalising and externalising disorders and symptoms. 

For example, a recent systematic review has found that people with major depressive disorder 

typically have processing speed deficits, and provided evidence that, to compensate for this 

deficit, people with major depressive disorder are required to use greater cognitive effort to 

perform daily tasks (Nuño et al., 2021). Nuño et al. (2021) also suggest that if a task requires a 
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high cognitive demand, deficits in the speed of processing cannot be compensated for by higher 

cognitive effort, and therefore task performance is poor. Deficits in the speed of processing in 

depression, therefore, have been suggested to negatively impact occupational performance (Nuño 

et al., 2021), and this may perpetuate depressive symptoms. Further evidence for the importance 

of speed of processing in psychopathology is that there is evidence for speed of processing being 

a reliable cognitive endophenotype for bipolar disorder, with not only people with bipolar 

disorder experiencing speed of processing deficits, but also significant proportions of relatives of 

those with bipolar disorder experiencing deficits in speed of processing (Daban et al., 2012). 

Furthermore, it has been found that an intervention designed to train speed of processing in the 

elderly resulted in a significant reduction in the risk of experiencing depressive symptoms 1 and 5 

years post-intervention, while training in perceptual reasoning, or working memory, had no 

impact (Wolinsky et al., 2009). Regarding externalising behaviours, there is a reliable association 

between alcohol use disorder and speed of information processing deficits (Galandra et al., 2021; 

Paolillo et al., 2019), and speed of processing may not only be a consequence of externalising 

behaviours but may also be involved in the aetiology of those behaviours. Durazzo et al. (2008) 

found that processing speed deficits significantly predicted relapse in people treated for alcohol 

dependence after accounting for demographic, psychiatric, metabolic, and clinical covariates. 

Furthermore, there is evidence that deficits in speed of processing are related to an earlier onset 

of conduct disorder (Johnson et al., 2015). Our findings, therefore, parallel previous research 

proposing the importance of speed of processing within psychopathology. However, our results 

extend the literature by employing dimensional structures of psychopathology in a representative 

community sample, showing that deficits in speed of processing are not only related to 

nosologically defined disorders but also statistically derived dimensions in the general 

population. 

4.4.1 Limitations of the Research and Directions for Future Research 

The data for this study was collected online through Prolific. Therefore, we had little 

experimental control over the context in which participants completed the survey and tasks and 

the devices and settings used. However, the range of evidence suggests that the quality of task 
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data collected online through crowd-sourcing platforms, such as prolific, is comparable to in-lab 

studies (Crump et al., 2013; Johnson et al., 2021; Merz et al., 2020; Sauter et al., 2020), and we 

used the most valid crowd-sourcing platform for this context (Uittenhove et al., 2022). Further, 

we only explored neurocognitive ability’s associations with the factors of psychopathology on the 

sample and not the individual level. Previously we provided evidence for compensatory 

neurocognitive profiles on the individual level that can explain the heterogeneous findings 

between specific neurocognitive abilities and psychopathology (Haywood & Baughman, 2021; 

Haywood et al., 2021c). Even though at the sample level, measures of working memory, 

inhibition, and shifting were not significantly associated with the factors of psychopathology, at 

the individual level, explanatory heterogeneous profiles of neurocognitive performance may 

exist. For example, there are two individuals with the same high p-factor score of 140. Individual 

One may have a pervasive deficit in working memory while having good shifting, inhibition, and 

speed of processing ability. However, Individual Two may have a good working memory, 

shifting, and inhibition ability, but a pervasive deficit in speed of processing. For each individual, 

their neurocognitive strength and weakness profile may explain their high level of p, however, on 

the sample level (N = 2), no associations would exist between any neurocognitive ability and 

their level of p due to the heterogeneity. 

Future research should validate our findings in a laboratory setting to limit potential 

confounding variables. Future research should also examine the associations between 

neurocognitive abilities and psychopathology factors on the individual level, exploring potential 

compensatory neurocognitive profiles and dynamic multidimensional explanations. 

4.5 Conclusions 

In this paper, we explored the associations between neurocognitive abilities and structural 

models of psychopathology. We found a correlated factors model and single factor model to best 

fit our psychopathology data. We found tasks measuring speed of processing had the most 

predictive utility for internalising, externalising, and the p-factor. Specifically, poorer 

performance on the simple reaction time task was significantly associated with higher scores of 

internalising, externalising, and the p-factor, and poorer performance on the Inspection Time 
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Task was significantly associated with higher scores of internalising and the p-factor. Tasks that 

measured working memory, shifting, and inhibition were not significantly associated with 

psychopathology factors. We found neurocognitive abilities were not differentially associated, 

but that speed of processing was a common correlate of psychopathology factors. 
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Preface to Chapter 5 

Chapter five investigates the fourth and final direction of future research presented in chapter 

one. The fourth direction of future research coincides with the fourth aim of this thesis. This 

chapter builds upon the previous chapter by directly comparing the linear models developed in 

chapter four to our alternative dynamic multidimensional conceptualisation and interprets the 

findings in relation to each of the previous chapters. Specifically, the following chapter examines 

if the factors of psychopathology (e.g., internalising, externalising, and the p-factor) are usefully 

explained by non-linear multidimensional interactions between neurocognitive components, and 

if this non-linear multidimensional conceptualisation is superior to the traditional linear 

conceptualisation of neurocognitive abilities at predicting both (a) lower-level and (b) higher-

level psychopathology. In chapter five we use the same data as in chapter four. This chapter 

ultimately provides a critical comparison of the traditional linear versus non-linear 

multidimensional interactive conceptualisations of neurocognition and their utility in enhancing 

our understanding of psychopathology. 
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Chapter 5 (Study 4): Neurocognitive Artificial Neural Network Models Are Superior to Linear 

Models at Accounting for Dimensional Psychopathology 

5.1 Introduction 

It has been contended that deficits in neurocognitive abilities are an aetiological feature of 

psychopathology(e.g., Beck & Rector, 2005; Romer & Pizzagalli, 2021). Not only do those with 

psychopathology typically have neurocognitive deficits, but these deficits in neurocognitive 

performance are seen to precede the development of psychopathology (Romer & Pizzagalli, 

2021). However, few, if any, deficits to underlying neurocognitive abilities appear to be 

deterministic in the study of psychopathology. Thus, the search for one-to-one correspondence 

between deficits and disorders has yielded little knowledge that can be constantly applied. 

Instead, evidence suggests that the associations between neurocognitive abilities and 

psychopathology are extensively heterogeneous (e.g., Carruthers, Gurvich, et al., 2019; 

Carruthers, Van Rheenen, et al., 2019; Haywood & Baughman, 2021; Malcolm et al., 2021; 

Martino et al., 2008; Moritz et al., 2002; Tan et al., 2021). For example, previous research has 

found that for people with bipolar disorder approximately 22% displayed deficits in three to four 

neurocognitive components, 40% showed deficits in one or two components, and 38% did not 

display any deficits (Martino et al., 2008). Of note is the fact that no consistent deficit could be 

isolated, in any single neurocognitive component. Multi-disorder research corroborates these 

findings as there is no evidence for specific, single neurocognitive deficits that reliably 

discriminate disorders(e.g., Moritz et al., 2002). 

One possible explanation for the extensive heterogeneity of the associations between 

neurocognitive abilities and psychopathology may stem from the use of traditional nosological 

approaches to diagnosis. Traditional approaches to diagnosis, using tools such as the DSM, have 

resulted in extensive comorbidity, and poor diagnostic stability (Hovenkamp-Hermelink et al., 

2016; Newman et al., 1998). The high levels of comorbidity and poor diagnostic stability, along 

with emerging aetiological evidence (Burdick et al., 2006; Craddock et al., 2006; Lichtenstein et 

al., 2009; Smucny et al., 2018), suggests that psychopathology may not be best represented as 

discrete diagnostic categories (Cuthbert, 2020; Kotov et al., 2021), and if this is the case, finding 
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associations between any particular neurocognitive component and a specific diagnostic category 

is unlikely. In recent years, the issues with the traditional nosological approach to diagnosis has 

led to the development of a range of dimensional, statistical models of psychopathology (Caspi et 

al., 2014; Lahey et al., 2012; Lahey et al., 2021b). These models of psychopathology do not 

categorise disorder, but rather represent symptoms dimensionally on a collection of higher-order 

statistically derived components of psychopathology. The models of psychopathology that have 

gained the most interest are the correlated factors model, the bifactor model, and the single-factor 

model. The correlated factors model contains a range of lower-level symptom indicators, such as 

depression, anxiety, and hostility, and two or more higher-level correlated dimensional factors, 

such as internalising and externalising (Caspi & Moffitt, 2018). The bifactor model is similar in 

structure, however it includes a single factor, named the p-factor, at the highest level of the 

structure that also receives its loadings from the lower-level symptom indicators (Caspi et al., 

2014). The single-factor model contains the same lower-level symptom indicators, but only the 

higher-level p-factor (Caspi et al., 2014). Previously, we suggested that by using these 

dimensional statistical models it may be possible to find clear specific associations between 

different neurocognitive abilities and the factors of psychopathology that discriminate the factors 

(Haywood et al., 2021b). However, more recently, only a common deficit in speed of processing 

was found to be related to higher scores of internalising, externalising and p, providing evidence 

that there may not be discrete neurocognitive associations among the factors (Haywood et al., 

2022). 

The challenges faced with isolating neurocognitive deficits associated with specific 

disorders, and the issues concerning the heterogeneity of behavioural symptoms in disorders, 

point to the need for approaches that can examine the effects of dynamical interplay in the 

underlying processes. Towards this end, we recently used computational models of the Wisconsin 

Card Sorting Task (WCST) to explore an alternative conceptualisation of the relation between 

neurocognitive abilities and psychopathology, termed the multidimensional hypothesis (Haywood 

& Baughman, 2021; Haywood et al., 2021c). Ultimately, we claimed that to understand the 

functional associations between neurocognition and psychopathology consideration of the non-
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linear interactions between neurocognitive components is of critical importance. This 

conceptualisation was inspired by the notion of Multiple Realisation from the study of the 

philosophy of mind; referring to the idea that any given state may be equally determined, or 

realised, by a number of different causes (Putnam, 1988). Rather than attempting to test which 

single process or ability related most to a given disorder, we tested the combined effects of 

various profiles of neurocognitive abilities on models’ performance on the WCST. The results of 

this work revealed that a range of manipulations to the processes pertaining to neurocognitive 

abilities of updating, shifting, and inhibition were equivalent in simulating performance on the 

WCST in people with schizophrenia, their healthy-first degree relatives, and controls. These 

findings, we argue, highlight the advantages of using dynamic multidimensional approaches in 

the study of psychopathology (Haywood et al., 2021c). 

Artificial neural networks (ANN) have been successfully used across levels, from 

psychological to genetic to help understand psychopathological and behavioural phenomena 

(Baughman & Thomas, 2008; Bosia et al., 2019; Dolce et al., 2020; Haywood, Lawrence, et al., 

2021; Simeoli et al., 2021; Thomas et al., 2009; Tryon et al., 2017; Wei et al., 2022) and 

potentially provides an even richer methodology for studying the relations between 

neurocognitive abilities and psychopathology. For example, in a standard 3-layer feed-forward 

network, for which a problem may be specified and for which the desired outcome is known, 

input units are provided with a representation of the problem and the output of each unit is fed 

forward to all units it is connected to within a hidden layer (comprised of a number of processing 

units). The hidden units in turn feed forward to the output layer that represents the solution. 

Throughout the model, each connection partially determines (via its strength of connection, or 

weight) the final value, and the degree of error in the model’s solution is then used to alter 

weights within the model with the goal of achieving a more accurate outcome on the next cycle. 

Traditionally, research in the domain of neurocognition and psychopathology has relied on linear 

explanations, often using popular correlational techniques. For example, multiple linear 

regression allows one to determine the unique and common contributions for any number of 

independent variables on an outcome. Whilst multiple linear regression is particularly accessible 
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and easy to perform, using any of a variety of modern statistical analysis packages, it allows only 

for additive combinations of a linear form (Vetter & Schober, 2018). The issue with this is that 

for many psychological phenomena, it appears that rather than contributing linearly to such 

outcomes, that instead factors interact in more dynamic ways in producing effects.  

Towards the other end of the complexity spectrum, in terms of analytical techniques, are 

machine learning techniques, or artificial neural networks (ANN). The potential advantage of 

such approaches is that they allow highly complex, non-linear patterns of relations to be found 

between any number of variables and an outcome. However, studies examining the difference 

between standard analytical techniques, such as MLR, and machine learning approaches are 

lacking. Knowing what the potential benefits are, of one approach over another, offers clear 

advantages for elucidating the true role factors play in influencing specific outcomes, and the 

degree to which dynamic multidimensionality holds. The central objective of this study is to 

compare multiple linear regression models (MLR) to artificial neural network models (ANN), in 

order to determine the degree to which each are able to predict specific psychopathological 

outcomes. In each instance, to facilitate comparison, the models we develop represents the more 

accessible of techniques that exist with the respective approaches. 

5.1.2 Aims and Hypotheses 

The aim of this research is to compare the accuracy of linear models versus non-linear 

artificial neural network models with regard to how well they each predict (a) lower-level and (b) 

higher-level psychopathology. 

Hypothesis One. The average correlations between the actual lower-level 

psychopathology scores and the models’ predicted psychopathology scores will be significantly 

stronger for the ANN model when compared to the linear model. 

Hypothesis Two. The correlations between actual and model predicted (a) internalising, 

(b) externalising, and (c) general psychopathology (the p-factor) scores will be significantly 

stronger for the ANN models when compared to the linear models. 
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5.2 Materials and Methods 

5.2.1 Participants 

In a large-scale study (Haywood et al., 2022), 425 people from a representative 

community sample from the USA were recruited through Prolific (Palan & Schitter, 2018). 

Participants completed a demographics and clinical characteristics survey (Derogatis & 

Melisaratos, 1983), a substance use measure (WHO, 2002), and eight neurocognitive tasks. After 

data cleaning 400 participants were retained. The mean age of the sample was 44.47 (SD = 

16.35), 51.5% were female, and 28.5% reported having a previous or current mental health 

diagnosis. The detailed demographic and clinical characteristics of the sample can be found in 

Haywood et al. (2022). 

5.2.2 Procedure 

After providing consent, participants completed the demographic and clinical 

characteristics questions, and then completed measures on substance use, mental health 

symptomology, and then each of the eight neurocognitive tasks (see Haywood et al., 2022 for 

further information) for further information. This research was approved by the Curtin Human 

Research Ethics Committee (HRE2021-0105). 

5.2.3 Measures 

In this study, we used a subset of variables collected in the larger study (Haywood et al., 

2022). We used structural models of psychopathology developed in the larger study derived from 

data collected using the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) 

V3.1 (WHO, 2002), and the 53 item Brief Symptom Inventory (BSI-53) (Derogatis & 

Melisaratos, 1983). The ASSIST is the gold-standard measure for substance involvement across 

tobacco products, alcoholic beverages, cannabis, cocaine, amphetamine-type stimulants, 

inhalants, sedatives or sleeping pills, hallucinogens, opioids, and other substances (WHO, 2002). 

The BSI is a 53-item psychiatric symptom measure that assesses degree of distress associated 

with a wide-range of psychiatric symptoms over the previous seven days (Derogatis & 

Melisaratos, 1983).  
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Data from eight computerised neurocognitive tasks were also collected. To measure 

working memory we used the Digit Span task, and a visual array task based on Cowen (2016). To 

measure shifting we used the Shape-Number task, based on the Letter-Number task (Kimberg et 

al., 2000), and the Inferring Relevance Task (Wilson & Niv, 2012). To measure inhibition, we 

used a computerised version of the Stroop task (MacLeod, 1992) and the Go/NoGo task (Nosek 

& Banaji, 2001). Lastly, to measure speed of processing we used the Simple Reaction Time task, 

and the Inspection Time (IT) task (Anderson et al., 2001). The Rate-Corrected Score (RCS) 

method was used for tasks that required both speed and accuracy to measure performance.  

Haywood et al. (2022) provides further detail on the tasks used and the metrics assessed. 

5.2.3 Analysis 

In this study, we used structural models of psychopathology that had previously been 

developed (Haywood et al., 2022). These structural models were developed and tested through 

confirmatory factor analysis in line with structural and hierarchical conceptual interpretations of 

psychopathology (e.g., Caspi et al., 2014). These models used a six-factor BSI model 

(Schwannauer & Chetwynd, 2007), with the six domains being Depression, Agoraphobia, 

Hostility, Mental Fog, Interpersonal Anxiety, and Somatisation, and three domains of substance 

use derived from the ASSIST V3.1, namely alcohol use, cannabis use, and other substance use. 

These nine domains were included as ‘lower-level’ indicators in our structural models. Regarding 

the structural models, we used the correlated factors model, with internalising and externalising 

specific factors, and the single factors model, developed previously (Haywood et al., 2022). 

However, the bifactor model was not used as it had a Heywood case (a variable with a negative 

variance estimate). The models included the BSI domains, derived from the Schwannauer and 

Chetwynd (2007) factor structure, and the ASSIST components as the observed variables (see 

Haywood et al., 2022 for further detail). All models were developed and tested in RStudio using 

the MLR estimator with robust test statistics, and the final models were chosen from the 

alternatives based on a combination of model fit, factor loadings, and conceptual interpretation 

see (see Haywood et al., 2022). The final correlated-factors model and the single factor model are 

depicted in Figure 5.1 
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Figure 5.1  

Correlated Factors Model and the Single Factor Model 

 

Note. Adapted from Haywood et al. (2022), final structural models of psychopathology 

used in this research. Pictured is the Correlated Factors Model (A) and Bifactor Model (B). DEP 

= Depression. AGOR = Agoraphobia, FOG = Mental Fog, INTER ANXI = Interpersonal 

Anxiety. SOM = Somatisation, HOSTI = Hostility. ALC = Alcohol. CANN = Cannabis. OS = 

Other Substances.  

 

Factor scores for internalising, externalising, and the p-factor were extracted for each 

participant. These scores were the ‘higher-level’ psychopathology variables that the linear and 

ANNs models were to predict to test hypothesis two. Further, we used the scores for each of the 

six BSI variables, and the three ASSIST variables, as the ‘lower-level’ psychopathology scores 

that the two types of models were to predict in order to test hypothesis one.  

5.2.3.1. Linear Models 

Multivariate multiple regression analyses were used as the linear method to predict 

psychopathology from neurocognitive abilities. The models included the eight neurocognitive 

tasks, as well as age and gender as predictors. The outcome variables for the lower-level model 

were the six BSI domains; Depression, Agoraphobia, Hostility, Mental Fog, Interpersonal 
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Anxiety, and Somatisation, and the three ASSIST variables; Alcohol, Cannabis, and other drug 

use. The higher-level psychopathology model included the same predictors, but the outcome 

variables were internalising, externalising, and p-factor scores. 

5.2.3.2. Artificial Neural Network Models 

Multivariate multiple regression analyses were used as the linear method to predict 

psychopathology from neurocognitive abilities. The models included the eight neurocognitive 

tasks, as well as age and gender as predictors. The outcome variables for the lower-level model 

were the six BSI domains; Depression, Agoraphobia, Hostility, Mental Fog, Interpersonal 

Anxiety, and Somatisation, and the three ASSIST variables; Alcohol, Cannabis, and other drug 

use. The higher-level psychopathology model included the same predictors, but the outcome 

variables were internalising, externalising, and p-factor scores. 

We developed two ANN models, one for lower-level psychopathology, and one for 

higher-level psychopathology. Both models were 3-layer feedforward connectionist networks 

consisting of an input layer of 10 units (representing age, gender, and performance on each of the 

eight cognitive tasks) a hidden layer of 10 units, and an output layer of either 9 units (lower-level 

psychopathology model) or 3 units (higher-level psychopathology model). In the lower-level 

model, the output layer comprised of 9 units, representing depression, agoraphobia, mental fog, 

interpersonal anxiety, somatisation, hostility, alcohol, cannabis, and other substances, while in the 

higher-level model the output layer consisted of 3 units, representing internalising, externalising 

and the p-factor. We used sigmoidal activation functions for units and the model was trained 

randomly, with replacement, on 100 of the 400 cases using back-propagation for 1000 epochs, 

with a learning rate of 0.03, and with the initial weights for all units randomised between ±0.5. 

The model was tested against the full set of 400 cases. To safeguard against possible under, or 

over-fitting our data, we examined the effect of varying the learning rate (0.01 to 0.5), and the 

number of hidden units (5, 10, 15, 20). These manipulations to the model’s parameters did not 

alter the outcome or pattern of results, although greater differentiation was noted for some 

extremes. For example, by the end of training, a higher learning rate (0.5) had little effect in 

reducing error in the model with 5 units in the hidden layer. In contrast, in those models with 
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greater than 5 units in the hidden layer (i.e., 10, 15, 20) by the end of training, error was 

considerably smaller.  

We did not explore the effects of using different activation function nor did we examine 

the effect of increasing the number of hidden layers in the model. These variations potentially 

may be of interest to us for future work. However, overall, and given the purpose of this study, to 

compare linear models to ANN models, the model described here offers a useful starting 

framework. The models were developed in MatLab. Figure 5.2 depicts the lower-level 

psychopathology ANN model, while Figure 5.3 depicts the higher-level psychopathology ANN 

model. 

Figure 5.2  

Lower-level Psychopathology Artificial Neural Network Model 

 

Note. Depiction of the lower-level psychopathology artificial neural network model used 

in this research. The first layer of the model contains 10 input units consisting of age, gender, and 

the eight neurocognitive tasks. The second layer is the hidden layer consisting of 10 units. The 

final layer is the output layer consisting of nine output units, namely depression, agoraphobia, 

mental fog, interpersonal anxiety, somatisation, hostility, alcohol, cannabis, and other substances. 
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Figure 5.3  

Higher-level Psychopathology Artificial Neural Network Model 

 

Note. Depiction of the higher-level psychopathology artificial neural network model used 

in this research. The first layer of the model contains 10 input units consisting of age, gender, and 

the eight neurocognitive tasks. The second layer is the hidden layer consisting of 10 units. The 

final layer is the output layer consisting of three output units, namely internalising, externalising, 

and the p-factor. 

 

5.2.3.3. Model Comparison 

The predictive accuracy of the linear models and the ANN models was assessed by 

statistically comparing the correlations between the respective models’ predicted outcome 

variable scores, and the actual outcome variable scores. The correlations between the models’ 

predicted and actual scores for Depression, Agoraphobia, Hostility, Mental Fog, Interpersonal 

Anxiety, Somatisation, Alcohol, Cannabis, and Other Drugs were averaged to provide an overall 

indication of the predictive accuracy of the lower-level psychopathology models. The overall 

correlation for the linear and the ANN was compared using the Daniel Soper calculator (Soper, 
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2022), that applies a Fisher transformation (Hauke & Kossowski, 2011) to compare two 

correlations. Similarly, the correlations between the predicted and actual (a) internalising, (b) 

externalising, and (c) p-factor scores were statistically compared for the linear and the ANN 

model. Superior predictive accuracy of the ANN over the linear models at both the lower-level 

(BSI and ASSIST variables) and higher-level of psychopathology (internalising, externalising 

and p-factor), would evidence the existence of non-linear interactive relationships between the 

predictors (neurocognition, age, and gender) and the outcomes (psychopathology) (Warner & 

Misra, 1996). 

5.3 Results 

5.3.1 Linear Models 

5.3.1.1. Lower-Level Psychopathology 

Regarding lower-level psychopathology, the linear model with the predictor variables of 

the eight neurocognitive variables and age and gender were able to account for a significant 

amount of variance in each of the nine symptom domains. The model accounted for 18.9% of 

depression (F(10, 389) = 9.08, p < 0.001, R2 = 0.189), 10.9% of agoraphobia (F(10, 389) = 4.77, 

p < 0.001, R2 = 0.109), 17.1% of hostility (F(10, 389) = 8.03, p < 0.001, R2 = 0.171), 22.7% of 

Mental Fog (F(10, 389) = 11.40, p < 0.001, R2 = 0.227), 20.1% of interpersonal anxiety (F(10, 

389) = 9.80, p < 0.001, R2 = 0.201), 22.0% of somatisation (F(10, 389) = 10.98, p < 0.001, R2 = 

0.220), 7.2% of alcohol use (F(10, 389) = 3.00, p = 0.001, R2 = 0.072), 5.5% of cannabis use 

(F(10, 389) = 2.28, p = 0.013, R2 = 0.055), and 5.9% of other substance use (F(10, 389) = 2.43, p 

= 0.008, R2 = 0.059). Table 5.1 provides the utility of the individual predictors in the model. 

Table 5.1  

Lower-Level Psychopathology Linear Model Outcomes 

Dependent Variable Parameter B Β Sig. 

Depression 

    

Age −0.024 −0.396 <0.001 ** 

Gender 0.275 0.137 0.007 ** 

Digit Span −0.051 −0.091 0.067 

Visual WM 0.002 0.014 0.790 

Inferring Relevance 117.25 0.030 0.598 

Shape-Number 155.76 0.046 0.410 

Stroop −337.60 −0.049 0.334 
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Dependent Variable Parameter B Β Sig. 

Go/NoGo −512.58 −0.030 0.550 

Simple RT −2866.43 −0.059 0.250 

IT 0.003 0.068 0.177 

Agoraphobia 

    

Age −0.015 −0.241 <0.001 ** 

Gender 0.221 0.111 0.007 ** 

Digit Span −0.002 −0.004 0.913 

Visual WM −0.002 −0.018 0.673 

Inferring Relevance −65.82 −0.017 0.714 

Shape-Number −84.80 −0.025 0.578 

Stroop 100.15 0.014 0.722 

Go/NoGo −709.85 −0.042 0.305 

Simple RT −3372.44 −0.070 0.094 

IT 0.002 0.038 0.342 

Hostility 

    

Age −0.015 −0.238 <0.001 ** 

Gender 0.036 0.018 0.566 

Digit Span 0.018 0.032 0.306 

Visual WM 0.000 −0.004 0.905 

Inferring Relevance 61.31 0.016 0.659 

Shape-Number −39.83 −0.012 0.736 

Stroop 96.77 0.014 0.657 

Go/NoGo −293.64 −0.017 0.584 

Simple RT −5504.99 −0.114 <0.001 ** 

IT 0.002 0.050 0.112 

Mental Fog 

    

Age −0.025 −0.410 <0.001 ** 

Gender 0.348 0.174 <0.001 ** 

Digit Span −0.029 −0.051 0.245 

Visual WM −0.002 −0.017 0.718 

Inferring Relevance 35.30 0.009 0.859 

Shape-Number −37.12 −0.011 0.825 

Stroop 22.51 0.003 0.942 

Go/NoGo −1498.37 −0.089 0.050 

Simple RT −1794.27 −0.037 0.419 

IT 0.004 0.081 0.071 

Interpersonal Anxiety 

    

Age −0.022 −0.358 <0.001 ** 

Gender 0.214 0.107 0.007 ** 

Digit Span −0.007 −0.012 0.747 

Visual WM −0.003 −0.027 0.522 

Inferring Relevance 40.08 0.010 0.817 

Shape-Number −143.92 −0.043 0.329 

Stroop −271.37 −0.039 0.319 

Go/NoGo 53.71 0.003 0.936 

Simple RT −4043.57 −0.083 0.038 * 

IT 0.004 0.081 0.038 * 

Somatisation 

    

Age −0.014 −0.228 <0.001 ** 

Gender 0.272 0.136 <0.001 ** 

Digit Span −0.005 −0.008 0.776 

Visual WM 0.000 0.002 0.941 

Inferring Relevance −89.74 −0.023 0.501 

Shape-Number 107.08 0.032 0.345 

Stroop −57.52 −0.008 0.783 

Go/NoGo −766.38 −0.045 0.136 

Simple RT −5405.81 −0.112 <0.001 ** 
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Dependent Variable Parameter B Β Sig. 

IT 0.003 0.070 0.020 * 

Alcohol 

    

Age −0.029 −0.468 0.223 

Gender −1.62 −0.811 0.022 ** 

Digit Span 0.240 0.430 0.214 

Visual WM −0.041 −0.356 0.343 

Inferring Relevance −297.26 −0.076 0.848 

Shape-Number −393.96 −0.117 0.765 

Stroop −682.54 −0.099 0.779 

Go/NoGo 8663.47 0.513 0.149 

Simple RT −69,091.17 −10.426 <0.001 ** 

IT 0.021 0.461 0.188 

Cannabis 

    

Age −0.052 −0.857 0.005 ** 

Gender −0.646 −0.323 0.252 

Digit Span −0.183 −0.328 0.234 

Visual WM 0.012 0.106 0.722 

Inferring Relevance 1064.69 0.273 0.389 

Shape-Number −295.90 −0.088 0.778 

Stroop 861.75 0.124 0.657 

Go/NoGo 4069.70 0.241 0.394 

Simple RT −34,946.23 −0.721 0.012 * 

IT 0.002 0.046 0.868 

Other Substances 

    

Age 0.014 0.223 0.648 

Gender −0.332 −0.166 0.712 

Digit Span 0.533 0.954 0.031 * 

Visual WM −0.112 −0.980 0.040 * 

Inferring Relevance 1196.78 0.307 0.545 

Shape-Number 1123.99 0.335 0.503 

Stroop 5111.74 0.738 0.100 

Go/NoGo 475.96 0.028 0.950 

Simple RT −61098.64 −1.261 0.006 ** 

IT 0.024 0.525 0.238 

Note. * is significant at the 0.05 level. ** is significant at the 0.01 level. WM = Working Memory. RT = Reaction 

Time. IT = Inception Time. 

The neurocognitive performance tasks failed to account for any unique variance in 

depression, agoraphobia, and mental fog. The speed of processing tasks provided unique 

predictive utility for the remaining six lower-level psychopathology domains. The working 

memory tasks were also able to account for unique variance in other substance use. No other 

neurocognitive tasks offered unique predictive utility for any of the symptom domains. 

5.3.1.2. Higher-Level Psychopathology 

As reported in Haywood et al. (2022), our multivariate multiple regression analyses 

revealed that our eight neurocognitive tasks in addition to age and gender accounted for a 

significant amount of variance in each internalising, externalising and the p-factor. The model 
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accounted for 23.8% of the variance in internalising (F(10, 389) = 12.17, p < 0.001, R2 = 0.238), 

15.6% of the variance in externalising (F(10, 389) = 8.37, p < 0.001, R2 = 0.156), and 23.6% of 

the variance in the p-factor (F(10, 389) = 12.05, p < 0.001, R2 = 0.236). Table 5.2 provides the 

results of the regression analyses as reported in Haywood et al. (2022) 

 

Table 5.2  

Higher-Level Psychopathology Linear Model Outcomes 

Predictors 
Internalising Externalising p-Factor 

B β p B β p B β p 

Age −0.027 −0.433 <0.001 ** −0.026 −0.346 <0.001 ** −0.398 −0.434 <0.001 ** 

Gender 0.360 0.174 <0.001 ** 0.007 0.003 0.951 4.68 0.156 0.001 ** 

Digit Span −0.024 −0.041 0.360 0.036 0.054 0.249 −0.251 −0.030 0.505 

Vis WM −0.002 −0.013 0.783 −0.003 −0.022 0.669 −0.026 −0.015 0.758 

Infer. Rel. 13.03 0.003 0.950 149.99 0.032 0.555 415.57 0.007 0.891 

Shape-Num −9.37 −0.003 0.958 −61.02 −0.015 0.778 −214.33 −0.004 0.934 

Stroop −182.03 −0.025 0.578 264.25 0.031 0.664 −1916.14 −0.018 0.686 

Go/NoGo −840.70 −0.048 0.297 −203.95 −0.010 0.835 −11,229.5 −0.044 0.336 

Simple RT −4973.28 −0.099 0.034 * −12291.5 −0.209 <0.001 ** −84882.8 −0.117 0.012 * 

IT 0.004 0.094 0.040 * 0.005 0.082 0.083 0.064 0.095 0.037 * 

Note. * is significant at the 0.05 level. ** is significant at the 0.01 level. Vis WM = Visual 

Working Memory. Infer. Rel. = Inferring Relevance. Shape-Num = Shape-Number. RT = 

Reaction Time. IT = Inspection Time. 

 

Only the neurocognitive tasks measuring speed of processing accounted for significant 

unique variance in higher-level psychopathology. Simple reaction time and Inspection Time were 

significant predictors of internalising and the p-factor, while simple reaction time was the sole 

significant predictor of externalising, bar age and gender. Tasks that measured working memory, 

shifting, or inhibition did not provide any unique predictive utility for the higher-level 

psychopathology factors. For further detail of these results see Haywood et al. (2022). 

5.3.2 Artificial Neural Network Models 

5.3.2.1. Lower-Level Psychopathology 

Over the 1000 epochs of the basic backwards propagation, the lower-level 

psychopathology ANN model provided a final summed squared error of 34.76 and root mean 

squared error (RMSE) of 0.29. The model performed well with the relatively small number of 
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hidden units and a single hidden unit layer and learned very efficiently. For example, the summed 

squared error dropped from 190.27 following the first epoch to just 53.99 following the sixth 

epoch, and then learned steadily to end at a summed squared error of 34.76 on the 1000th epoch. 

The summed squared error to epochs for the lower-level psychopathology ANN are depicted in  

Figure 5.4  

Root Mean Squared Error to Epochs for the Lower-level Psychopathology Artificial Neural 

Network Model 

 

Note. Depiction of the accuracy and learning rate of the higher-level psychopathology 

artificial neural network model used in this research. The grey area under the blue line represents 

the summed squared error of the model that after particular number of epochs. 

 

5.3.2.1. Higher-Level Psychopathology 

Over the 1000 epochs the higher-level psychopathology ANN model provided a final 

summed squared error of 14.02 and a RMSE of 0.19. The higher-level psychopathology ANN 

performed better than the lower-level psychopathology ANN model (had a lower RMSE), 

however this may be attributed to the lower-level model having twice the number of output units. 

Again, even though the model was basic with a relatively small number of hidden units, and a 

single hidden unit layer, it learned efficiently. The summed squared error dropped from 67.55 
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following the first epoch to just 21.71 following the fifth epoch and learned progressively to end 

at a summed squared error of 14.02 on the 1000th epoch. The summed squared error to epochs 

for the higher-level psychopathology ANN are depicted in Figure 5.5. 

Figure 5.5  

Root Mean Squared Error to Epochs for the Higher-Level Psychopathology Artificial Neural 

Network Model. 

 

Note. Depiction of the accuracy and learning rate of the higher-level psychopathology 

artificial neural network model used in this research. The grey area under the blue line represents 

the summed squared error of the model that after particular number of epochs. 

 

5.3.3 Model Comparison 

5.3.3.1. Lower-Level Psychopathology 

The bivariate correlations between each lower-level psychopathology domain scores and 

the linear model and ANN model predicted scores are presented in Table 5.3. To allow easier 

comparisons to be made between linear and ANN approaches, Table 5.3 shows the results for 

linear and ANN models next to one another. For instance, the table shows the correlation between 

the observed depression scores and that predicted by the linear model (LM-Dep) is r = 0.435, 

versus r = 0.648 in the neural network model (ANN-Dep).
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Table 5.3  

Correlations Between Predicted and Actual Lower-Level Psychopathology Scores 

 
LM-

Dep 

ANN-

Dep 

LM-

Agor 

ANN-

Agor 

LM-

Host 

ANN-

Host 

LM-

Fog 

ANN-

Fog 

LM-

Int. 

Anx 

ANN-

Int. Anx 

LM-

Soma 

ANN-

Soma 

LM-

Alc 

ANN-

Alc 

LM-

Cann 

ANN-

Cann 

LM-

Other 

ANN-

Other 

Dep 0.435 0.648                 

Agor   0.331 0.577               

Host     0.414 0.655             

Fog       0.476 0.711           

Int. Anx         0.449 0.675         

Soma           0.469 0.710       

Alc             0.268 0.338     

Cann               0.235 0.413   

Other                 0.243 0.552 

Note. All correlations significant at p < 0.01 (one-tailed). LM = Linear Model. ANN = Artificial Neural Network Model. Dep = Depression. Agor = 

Agoraphobia. Fog = Mental Fog. Int. Anx = Interpersonal Anxiety. Soma = Somatisation. Alc = Alcohol use. Cann = Cannabis Use. Other = Other Substance 

use. 
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For each of the nine lower-level symptom domains the predicted values of the ANN 

model had a stronger correlation with the actual values when compared to the linear model. The 

correlations between the linear model’s predicted values and the actual symptom values ranged 

between 0.243 and 0.476, while the correlations between the predicted values of the ANN model 

and the actual symptom values ranged between 0.338 and 0.711. The average correlation between 

the linear model’s predicted values and the actual values was 0.369, while the average correlation 

between the ANN’s predicted values and the actual values was 0.587. The difference between the 

linear and ANN models’ average correlations with the actual values amongst the lower-level 

psychopathology domains was significant at a Bonferroni adjusted alpha level of 0.0125 (Z = 

−4.027. p < 0.001). Therefore, supporting hypothesis one, the ANN model performed 

significantly better than the linear model at predicting lower-level psychopathology. 

5.3.3.2. Higher-Level Psychopathology 

The bivariate correlations between each higher-level psychopathology factor scores and 

the linear model and ANN predicted scores are presented in Table 5.4. 

Table 5.4  

Correlations Between Predicted and Actual Higher-Level Psychopathology Scores 

 LM-Int ANN-Int LM-Ext ANN-Ext LM-p ANN-p 

Internalising 0.488 0.661     

Externalising   0.421 0.619   

p-factor     0.486 0.666 

Note. All correlations significant at p < 0.01 (one-tailed). LM = Linear Model. ANN = Artificial 

Neural Network Model. Int = Internalising. Ext -= Externalising. p = p-factor 

 

Once again, for each of the three higher-level symptom domains the ANN model’s 

predicted values had a stronger correlation with the actual values when compared to the linear 

model. The correlations between the linear model’s predicted values and the actual symptom 

values ranged between 0.421 and 0.488, while the correlations between the ANN models’ 

predicted values and the actual symptom values ranged between 0.619 and 0.666. The difference 

between the linear and ANN models’ correlations with the actual values for internalising, 
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externalising, and the p-factor was significant at a Bonferroni adjusted alpha level of 0.0125. The 

ANN model was more accurate than the linear model at predicting internalising (Z = −3.679. p < 

0.001), externalising (Z = −3.867. p < 0.001), and p-factor scores (Z = −3.842. p < 0.001). 

Therefore, supporting hypothesis two, the ANN model performed significantly better than the 

linear model at predicting lower-level psychopathology. 

5.4 Discussion 

The aim of this research is to compare the accuracy of linear models versus non-linear 

artificial neural network models with regard to how well they each predict (a) lower-level and (b) 

higher-level psychopathology. Overall, we found support for non-linear interactive relationships 

between the neurocognitive predictors and psychopathology.  The ANN models were 

significantly more accurate than the linear models at predicting both lower-level and higher-level 

psychopathology. There is consensus that there is a high level of heterogeneity of neurocognition 

within psychopathology (Martino et al., 2008; Moritz et al., 2002), however understanding of the 

variability has been limited primarily by the use of descriptive or linear approaches and the use of 

DSM diagnostic categories. Previously, through computational modelling, we found that multiple 

different executive functioning profiles were able to account for the general neurocognitive 

performance of people with schizophrenia (Haywood & Baughman, 2021). This finding provided 

initial support for the multidimensional hypothesis, however, was limited by using a DSM 

defined disorder category that ignores that dimensionality and comorbidity of psychopathology. 

Using a dimensional approach, we find that the non-linear multidimensional conceptualisation is 

superior to traditional linear conceptualisations of the associations and functionality between 

neurocognition and psychopathology. Given that it is claimed that neurocognition is an 

aetiological feature of psychopathology (e.g., Beck & Rector, 2005; Romer & Pizzagalli, 2021), 

an accurate functional conceptualisation is fundamental to improving our understanding of 

psychopathology.  

Previously, the search for a primary deficit of neurocognition within psychopathology has 

dominated the literature (Haywood et al., 2021c). While an understanding of a general trend of 

dysfunction across a specific population may be useful as a starting point to a fuller 
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understanding, our findings suggest further assessment of the within individual functionality of 

neurocognition is required. To illustrate, we recently found that measures of speed of processing, 

but not working memory, shifting, or inhibition, could significantly account for higher-level 

psychopathology linearly (Haywood et al., 2022). However, as in the present research the ANN 

models were superior in accuracy to the linear models, it suggests that working memory, shifting, 

and/or inhibition likely still play an important role in understanding the associations between 

neurocognition and psychopathology. Ultimately, as per the multidimensional hypothesis, the 

dynamic interactions between neurocognitive processes seem integral to a detailed understanding 

of the associations and functionality between neurocognition and psychopathology. 

The use of dimensional, rather than categorical, conceptualisations of psychopathology in 

the present research has multiple strengths, including mitigating or accounting for the issues of 

comorbidity and diagnostic stability of the nosological approach (Kotov et al., 2021). However, 

examining the dynamic multidimensionality of neurocognition with regard to statistically derived 

higher-level factors of psychopathology does have conceptual considerations. While the lower-

level scores of dimensional psychopathology (e.g., depression, hostility, etc.) were not factorised, 

scores of higher-level factors of psychopathology are intrinsically influenced by the scores of the 

population from which they were derived. For example, Lahey et al. (2021b) suggests that the p-

factor is a “weighted average” (p. 61) of the sample’s symptoms. Therefore, the p-factor (and 

internalising and externalising) scores on the individual level are dependent on the factors 

loadings of the indicators included in the sample model. Indeed, we have previously found that 

the underlying weightings of different lower-level psychopathology domains vary considerably 

between different samples (Haywood et al., 2021a). Findings such as these have led to the 

understanding that higher-level psychopathology factors may not have a universal substantive 

meaning (Haywood et al., 2021a; Levin-Aspenson et al., 2020). Considering the substantive 

interpretation difficulties of higher-level psychopathology, lower-level dimensional 

psychopathology may be better suited to enhance our understanding of the dynamics of 

neurocognition and psychopathology on the individual level.  
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An individual approach to neurocognition within developmental conditions, such as 

intellectual disability and autism spectrum disorder, is common in case conceptualisations and 

treatment approaches (Danielsson et al., 2012; Kleinhans et al., 2005). However, even though 

neurocognitive deficits are highly prevalent, albeit to generally a lesser severity, in 

psychopathology, this level of assessment and understanding is not commonplace (Egger et al., 

2007). Our findings indicate that the dynamic multidimensionality, rather than general deficits, of 

neurocognition may be important to consider when understanding an individual’s 

psychopathology. Further, our results imply that, beyond just strengths and weakness assessment 

common amongst developmental conditions’ case conceptualisation, a consideration of the 

interactions between different neurocognitive domains’ performance on the individual level may 

be important to understanding a person’s psychological experience. 

5.4.1 Limitations of the Research and Directions for Future Research 

This research has four primary limitations. First, the data was collected online through 

Prolific (Palan & Schitter, 2018). Therefore, we had little control over the conditions under which 

data were obtained. However, there is evidence that the quality of task data collected through 

online platforms, in particular Prolific, is comparable to in-lab data (Crump et al., 2013; Johnson 

et al., 2021; Merz et al., 2020; Uittenhove et al., 2022). Second, age and gender were required to 

be predictors in both the linear and ANN models due to their associations between both 

neurocognition and psychopathology. While the role of age and gender in the linear models is 

easy to interpret, due to the structure and function of the ANN models the role age and gender 

played in these models is difficult to parse. Third, the comparisons between the linear models and 

the ANN models were able to provide evidence that the non-linear multidimensional 

conceptualisation of neurocognitive abilities in psychopathology is superior to the linear 

conceptualisation. However, our approach to the assessment of the ANN models was unable to 

provide the necessary information to detail the nuance of the multidimensional functionality. For 

example, we were not able to provide results for what neurocognitive profiles existed in the data, 

the specific interaction functionality, and what, if any, compensatory profiles existed. 

Nonetheless, the current research establishes the importance of considering dynamic 
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multidimensional explanations and provides future research with a platform for which to build 

upon. Lastly, in this study the type of ANN and linear models we developed were among the 

more accessible of techniques in their respective domains. More complex regression techniques, 

as well as more complex machine learning techniques exist. Examining how well some of these 

more complex techniques compare to one another, remains of interest to us for future work. 

Related to this last point, we also did not test a range of other architectures, activation functions, 

or use a larger data set. Though clearly each of these offer possible avenues for further study. 

Future research should use tightly controlled lab-based data collection to explore non-

linear multidimensional conceptualisations. Future research should also attempt to map the 

neurocognitive profiles that exist amongst the population, the functional dynamics of the 

neurocognitive domains, and their associations to dimensional psychopathology. More complex 

regression techniques and more complex machine learning techniques should be also examined 

and compared by future research. This knowledge may be used to inform aetiological theories of 

neurocognition and psychopathology and inform case conceptualisations on the individual level. 

Future research that uses a combination of computational modelling approaches(e.g., Haywood & 

Baughman, 2021), ANN approaches, and descriptive approaches may extend our knowledge of 

the non-linear multidimensionality. 

5.5 Conclusion 

In this research, we examined if neurocognitive ANN models were superior to linear 

models at predicting dimensional lower-level and higher-level psychopathology. We found 

support for the non-linear multidimensionality of neurocognition in psychopathology as the ANN 

models were significantly more accurate than the linear models at predicting both lower-level and 

higher-level psychopathology. Neurocognition was only able to account for a modest amount of 

variance in psychopathology, and our modelling approaches could not parse the variance in 

psychopathology accounted for by neurocognition, and age and gender. However, we still suggest 

that a non-linear multidimensional conceptualisation of neurocognition within psychopathology 

may be useful  for aetiological examination and case conceptualisations. We also suggest that, 

due to the difficulties in interpreting the substantive meaning of higher-level factors of 
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psychopathology, the utility of examining the multidimensional functionality of neurocognition 

and psychopathology is greatest at the lower levels of psychopathology using dimensional 

measures. 
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6.0 General Discussion 

In this, the final chapter of this thesis, I provide a summary of the key findings of this 

thesis related to each aim. I also provide a summary of the primary theoretical and practical 

implications for each study. I then conclude by providing an examination of the limitations of this 

work and directions for future research and an overall conclusion to the thesis.  

6.1 Summary of Findings; Aim One 

The first aim of this thesis was to examine if a universal substantive p-factor (and specific 

factors) could be developed by the assessment of the utility and consistency of structural models 

of psychopathology in subgroups. To address aim one, we used data simulation methods to create 

a dataset that closely mirrored the properties of that dataset used by Caspi et al. (2014) but had 

100,000 rather than 1,000 cases. We then separated the dataset into 63 samples with 

heterogeneous symptom profiles, but adequate dimensional variability and attempted to fit four of 

the most popular structural models of psychopathology to each subgroup. We found that only 

eight out of the 64 subgroups fit one or more of the structural models. Of those eight subgroups 

they all fit the correlated factors model, none fit the bifactor model, four fit the revised bifactor 

model, and one subgroup fit the single factor model. Furthermore, the factor loadings and the 

neurocognitive correlates of subgroups fitted to the same model was highly variable.  

6.1.1 Theoretical Implications 

Overall, the structural models did poorly at accounting for the psychopathological 

symptoms of the subgroups. Simulation work has shown that fit indices bias bifactor models over 

correlated factors models (Greene et al., 2019), suggesting that the bifactors models were 

particularly poor at accounting for symptoms in our subgroups. Surprisingly, the correlated 

factors model fit more subgroups than the bifactors model. These findings have important 

theoretical implications, one of which is that structural models may be best suited to 

understanding the symptoms of the population as a whole, rather than subgroups with fairly 

homogenous symptom profiles. It is however, important to note that other research, has found 

structural models to account for symptoms in populations with a specific diagnosis or ailment 

(Shevlin et al., 2016; Xie et al., 2012). Therefore, in the context of the available literature, 
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structural models may be useful to describe some specific populations’ symptoms, as long as the 

population in question generally has strong within group psychopathological symptom 

variability.  

A second important implication is related to our finding that, for different subgroups that 

fit the same model (e.g., the bifactor model), the underlying factor loadings as well as the strength 

of the neurocognitive correlates, varied substantially. This suggests that the factors of 

psychopathology, for example the p-factor, have a different underlying substantive meaning 

between the subgroups. Therefore, a major implication of these finding is that it is unlikely that a 

universal substantive meaning of p (Fried et al., 2021; Levin-Aspenson et al., 2020) (and the 

other higher-order factors) could be developed. We did however find that for the eight subgroups 

that fit at least one model, their factors loadings were very highly correlated with the total 

population model’s factor loadings. This may suggest that if a universal substantive meaning of 

the factors was to be developed (e.g., with specific components with which it must correlate 

within a specified range) it may only be found over the population as a whole.  

The results of the exploration of aim one resulted in an improved understanding of the 

meaning and applicability of the factors of psychopathology; generating fundamental knowledge 

for the assessment of how neurocognition is associated with psychopathology. These results 

directed the methodological choices, and the interpretation of results in the remaining chapters.  

6.1.2 Practical Implications 

The potential for the development of a universal substantive p, and specific factors, has 

important implications for etiological and treatment domains of psychopathology (Fried et al., 

2021; Lahey et al., 2021b). Ronald (2019) explains that treatment of psychopathology could be 

structured as specific (i.e., aimed at lower-level indicators, such as hostility), and general (i.e., 

aimed at the p-factor). Therefore, research exploring the underpinnings of the factors of 

psychopathology may lead to targeted (i.e., aimed to lessen specific lower-level 

psychopathology) and transdiagnostic (i.e., aimed to lessen the severity of general, p, experience) 

interventions (Ronald, 2019). However, for p and other factors of psychopathology to be useful in 
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the treatment setting, they need to be substantive constructs that can be applied to every 

individual consistently. 

An important practical implication of our findings regarding aim one is that p and the 

other factors of psychopathology are fundamentally flexible entities that reflect a different 

construct depending upon (a) factor structure and components, and (b) the individual level data of 

the group being assessed. Therefore, applying research findings to treatment approaches that 

target p or other higher-order factors may lack transferability into the treatment setting more 

broadly. Our results suggest that more research into the nature, methodology, and substantive 

interpretation of structural models of psychopathology is required to optimise their applicability 

to treatment sectors.  

6.2 Summary of Findings; Aim Two 

The second aim of this thesis was to use and detail the S-1 bifactor model methodology in 

an exploration of neurocognitive ability and psychopathology. Driven by the findings of study 

one, that the fluidity of the underlying meaning of the p-factor limits clear interpretation of 

findings of the association between neurocognition and psychopathology (Haywood et al., 

2021a), we examined the utility of the S-1 bifactor approach in understanding the association. 

Using simulated data, we found that that neurocognition could be successfully modelled as the 

general factor in a structural model of psychopathology. We found that within the simulated data 

a general executive functioning general factor was superior to an IQ factor in accounting for 

dimensional psychopathology. The association between internalising and externalising in the EF 

referenced S-1 bifactor model fell substantially when compared to the correlated factors model 

using the same data.  

6.2.1 Theoretical Implications 

The major theoretical implication of these findings is the demonstration of the use of 

neurocognition to pre-specify the substantive meaning of the general factor, mitigating the 

fluidity of an unspecified p-factor. We, in study one, along with work by other authors (e.g., Fried 

et al., 2021; Greene et al., 2021; Levin-Aspenson et al., 2020), have demonstrated that the p-

factor lacks substantive consistency across models, samples, and methods. Therefore, even 
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though the p-factor has been claimed to be a substantive entity representative of peoples’ overall 

propensity toward psychopathology, p has little consistency in its statistical make up (e.g., Fried 

et al., 2021; Greene et al., 2021; Levin-Aspenson et al., 2020), making the interpretation of 

neurocognitive findings relating to p difficult.  

The utility of using S-1 bifactor models, with neurocognition modelled as the general 

factor, offers a unique way to assess and interpret the multifactorial associations between lower 

and higher-level psychopathology that mitigates the theoretical issues associated with having a 

fluid general factor. However, it is important to acknowledge three important limitations of the S-

1 bifactor approach for these purposes. First, the use of a neurocognitive S-1 bifactor model relies 

on each of the neurocognitive measures having a relatively strong correlation. Secondly, solely 

using the S-1 bifactor model means that the investigation of conceptualisations between 

individual domains of neurocognitive and psychopathology (i.e., the multidimensional 

hypothesis) cannot be made. Thirdly, this approach, as with other structural modelling 

approaches (Haywood et al., 2021b), may only be applicable to the population as a whole, and 

not subgroups. Therefore, in addition to the S-1 approach, other methodologies are required to 

develop a full understanding of the true relation between neurocognition and psychopathology.  

6.2.2 Practical Implications 

The primary practical implication, of our S-1 bifactor model findings, is related to the 

dynamics between neurocognition, internalising and externalising. In the executive functioning 

referenced S-1 bifactor model, the correlation between internalising and externalising fell 

substantially when compared to the correlated factors model, suggesting that executive 

functioning may be particularly important in the functional dynamic between internalising 

symptoms (e.g., anxiety) and externalising behaviours (e.g., substance use). This suggests, across 

this sample, that neurocognitive abilities accounts for most of the comorbid dimensional 

symptoms across internalising and externalising. Therefore, clinical utility of the S-1 bifactor 

approach to examine neurocognitive abilities and psychopathology is that findings, in the way of 

patterns of factor loadings, may point towards specific collections of symptoms that people 

experience and the severity of those symptoms, and how they may be functionally related to their 



NEUROCOGNITION AND PSYCHOPATHOLOGY  167 

 

DARREN HAYWOOD  SCHOOL OF POPULATION HEALTH 

neurocognitive abilities. This can then be used to inform case conceptualisations, and treatment 

and rehabilitation approaches (Reser et al., 2019). The lack of clear and consistent substantive 

interpretation of the p-factor in traditional structural models, demonstrated in study one 

(Haywood et al., 2021b), means the clinical utility of associations between neurocognition and p 

is unclear. However, as demonstrated in study two (Haywood et al., 2021a), the S-1 bifactor 

model, with a general neurocognitive factor, can lead to important, clinically transferable, 

findings. 

6.3 Summary of Findings; Aim Three 

The third aim of this thesis was to examine if, at the population level, each of the factors 

of psychopathology can be partly explained by discrete association patterns of neurocognitive 

component abilities, with little variability. As explored in detail in chapters one, two and three, 

the higher-level factors of psychopathology are proposed to be separate but related, substantive 

constructs (Haywood et al., 2021a, 2021b, 2021c). In study three we explored if there are discrete 

patterns of neurocognitive associations between the factors to inform our understanding of their 

substance, and the utility of neurocognition in accounting for the factors. Using human, rather 

than simulated data as in previous chapters, we found that a correlated factors model, with 

internalising and externalising higher-order factors, and a single factor model, provided good fits 

for our psychopathology data. However, the internalising factors in the correlated factors model 

was almost perfectly correlated with the p-factor from the single factor model. Using these 

models, we found that tasks that measured speed of processing, but not tasks that measured 

working memory, shifting or inhibition, had a significant association with the three factors. Each 

factor, internalising, externalising and p therefore, had a common negative association with speed 

of processing, but not any other measured neurocognitive components. Although, speed of 

processing significantly accounted for each of the factors of psychopathology, it is important to 

acknowledge the modest percentage of unique variance explained by the speed of processing 

tasks (1.7 - 4%). We believe that this modest percentage of unique variance is still useful to 

inform theoretical developments and practical applications, each of which is discussed the 

following sections. 
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6.3.1 Theoretical Implications 

There are several major theoretical implications to the findings related to aim three. First, 

the p-factor from the single factor model represented internalising, rather than general 

psychopathology. This is evidenced by the almost perfect correlation between internalising and p. 

This finding illustrates the issues presented in chapters one, two and three regarding the lack of a 

constant substantive meaning of p (Haywood et al., 2021a, 2021b, 2021c). This finding is not 

exclusive. For example, Caspi et al. (2014)’s p-factor was shown to represent thought disorder 

rather than general psychopathology (Eid, 2020; Haywood et al., 2021a; Junghänel et al., 2020), 

leading them to later suggest that the substantive meaning of p is thought disorder (Caspi & 

Moffitt, 2018). Our results further demonstrate the lack of a consistent interpretation of p.  

The second major theoretical implication of our findings is that, within our data, the 

factors of psychopathology could not be discerned by discrete patterns of neurocognitive abilities. 

Therefore, within this data and at the population level, the separate theoretical substantive nature 

of each of the factors cannot be explained via neurocognitive profiles. The general negative 

association between speed of processing measuring and each factor of psychopathology, across 

both the correlated factors model, and the single factor model, suggests that poor speed of 

processing is associated with higher general psychopathology. Therefore, on the population level 

using linear methods, speed of processing is useful at accounting for general, but not more 

specific psychopathology, while other forms of neurocognition do not add significant predictive 

utility. This finding does add support for a theoretical conceptualisation of depression by Nuño et 

al. (2021). Nuño et al. (2021) suggests that people with high levels of depression symptomology 

have speed of processing deficits and compensate for this by using greater cognitive effort. 

However, if the task at hand is of a high level of difficulty therefore requiring high levels of 

cognitive effort, the speed of processing deficits cannot be compensated for, and poor 

performance emerges. Nuño et al. (2021) states that, in this way, speed of processing may partly 

explain poorer occupational performance of people with depression. Given that in our data 

internalising (where depressive symptoms is located) came to also represent p, it lends support to 
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this theoretical conceptualisation of functionality, while speed of processing has a known 

consistent functional association with externalising symptoms (e.g., Durazzo et al., 2008).  

The final theoretical implication of these findings is that a dynamic multidimensional 

approach to exploring neurocognition and psychopathology may be superior to the linear 

approach use in this study. Only speed of processing was significantly associated with each of the 

factors at the population level using linear methods, however working memory, shifting, and 

inhibition each had theoretical grounding functionally linking them to psychopathology 

(Haywood et al., 2021c; Romer & Pizzagalli, 2021). These findings further drove our 

explorations in study 4 that explored if the dynamic multidimensional conceptualisation of 

neurocognitive performance would be superior to the linear approach.  

6.3.2 Practical Implications 

The findings of study three have two main practical implications. The first implication is, once 

again, the potential for the p factor to drive treatment and rehabilitation approaches (Ronald, 

2019). In this study, p in the single factor model mirrored internalising in the correlated factors 

model. If, taken on face value, or the associations between the different models’ factors were not 

explored, p might have (as theoretically suggested) been interpreted as representing general 

psychopathology. Therefore, this research shows that the practical application of the p-factor 

from research to the treatment and rehabilitation setting is fraught by the inconstant nature of the 

p-factor. This research provides further knowledge to clinicians and researchers alike to exercise 

caution in interpreting research on a fluid p-factor in context of treatment and rehabilitation.  

The second main practical implication is the general negative association between speed 

of processing and the factors of psychopathology. Evidence for the functional association 

between speed of processing and psychopathology is growing (Nuño et al., 2021), and the 

findings of study three reinforce the potential importance of speed of processing in 

psychopathology across domains. Speed of processing has been primarily studied, and considered 

by clinicians, in the domain of ageing (Albinet et al., 2012; Kail, 1991), however our results, 

along with emerging evidence, suggests that across the population people with higher levels of 

psychopathology generally have deficits in speed of processing. Speed of processing deficits may 
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then have a negative impact on daily life and exacerbate their psychopathology (Nuño et al., 

2021). Clinicians may look to assess speed of processing in their patients and understand the 

impact speed of processing may have on their daily life and psychopathology. Clinicians and 

researchers may also look to implement, and further trial, training cognitive training specifically 

for speed of processing which has primarily been used in ageing and dementia (e.g., Verghese et 

al., 2021) 

6.4 Summary of Findings; Aim Four 

The fourth aim of this thesis was to assess if each factor of psychopathology (e.g., 

internalising, externalising, and the p-factor) is usefully explained by multidimensional 

interactive components of neurocognition. In each of the chapters thus far we discussed the 

potential for an alternative multidimensional conceptualisation of neurocognitions association 

with psychopathology. This conceptualisation proposed that instead of general trends of deficits 

in neurocognition in psychopathology across the population, the association may be best 

conceptualised by acknowledging the potential dynamic multidimensional interactions between 

different neurocognitive domains and dimensional psychopathology. In study four we explored if 

neurocognitive artificial neural network models, that learn multidimensional patterns in the data, 

were superior to linear neurocognitive models in predicting both lower-level and higher-level 

psychopathology. We used the data and models of psychopathology developed in study three to 

examine this research question. The artificial neural network models were significantly more 

accurate than the linear models at predicting both lower-level and higher-level psychopathology.  

6.4.1 Theoretical Implications 

The findings relating to aim four supported our dynamic multidimensional interactive 

conceptualisation of neurocognition in psychopathology and provided important theoretical 

implications. As discussed in chapter one, historically the dominance of the application of a 

common cause model to psychiatry has meant that theoretical conceptualisations of 

neurocognitive dysfunction in psychopathology have been linear or dichotomous (Haywood et 

al., 2021c). The association between neurocognition and psychopathology is now understood to 
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be extensively heterogeneous (Martino et al., 2008; Moritz et al., 2002), but conceptual 

understandings of the functionality primary remain linear or dichotomous.  

To illustrate the major theoretical implication of study four, that multifinality of 

neurocognition in psychopathology is superior to linear or dichotomous approaches, I will 

contrast the approaches taken in study three and study four. In study three we applied a linear 

conceptualisation and showed that, across the population, deficits in speed of processing were 

associated with greater levels of high-level psychopathology (Haywood et al., 2022). While this 

finding is potentially useful to inform risk models or understandings of cognitive and 

psychological experiences across the population, it may also be taken to suggest that, 

theoretically, the other neurocognitive domains measured were not important to consider. In 

contrast, in study four we used a dynamic multidimensional conceptualisation and developed 

artificial neural network models that learned non-linear association patterns between the 

neurocognitive components. We found that the artificial neural network models were superior to 

the linear models used in study three. Therefore, it is likely that working memory, shifting, 

inhibition and speed of processing were all important to understanding psychopathology, while 

study three pointed towards speed of processing as being the only neurocognitive domain of 

interest. These alternate approaches have the potential of supporting and directing differing 

theoretical and aetiological explanations, and therefore it is paramount for future research to 

apply dynamic multidimensional conceptualisations. The findings from studies one and two were 

also integral to interpreting the findings of study four. The higher-order factors of 

psychopathology, in particular the p-factor, through our work in studies one and two, as well as 

other literature (Eid, 2020; Fried et al., 2021; Heinrich et al., 2020) are now understood to be 

flexible domains without universal substantive interpretation. Therefore, we suggest that to better 

understand the functionality between neurocognition and psychopathology, theoretical 

explanations should be contrived using a dynamic multidimensional approach at the lower-level 

(non-factorised), rather than the higher-level, of dimensional psychopathology. To conclude, the 

primary theoretical implication of the findings relating to aim four was that dynamic 
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multidimensional conceptualisations of neurocognition in psychopathology are integral to 

understanding their functional association.   

6.4.2 Practical Implications 

There are a number of pertinent practical implications resulting from our findings 

assessing aim four. The key implications relate to case conceptualisations, and treatment and 

rehabilitation approaches. Neurocognition in conditions such as intellectual disability and autism 

are often assessed at the individual level, and this informs case conceptualisations and responses 

(Danielsson et al., 2012; Kleinhans et al., 2005). This level of detailed assessment is not 

commonly completed within broader psychopathology (Egger et al., 2007), and may provide 

integral information to facilitate optimal care, including treatment, rehabilitation, and practical 

aids.  

Our finding related to aim four suggesting that considering the dynamic 

multidimensionality of neurocognition is important to understand the cognitive and psychological 

experiences of an individual, points towards to the need for nuanced assessment of the dynamics 

of neurocognition in clinical settings. Related to assessment approaches, our findings suggest that 

in the clinical setting, ideally, tasks designed to assess individual domains of neurocognition (i.e., 

working memory, shifting, inhibition, and speed of processing), should be preferred to tasks that 

measure their performance simultaneously as individual contributions and interactions cannot be 

teased apart (Haywood & Baughman, 2021). Further, our findings suggest going beyond just 

strength and weakness assessments common when using tools such as the WAIS (Zimmerman et 

al., 1973). More advanced tools are needed that consider the functional dynamics between 

different domains of neurocognition and their associations with the outcome of interest. The 

dynamic multidimensional conceptualisation may also inform the development of more advanced 

cognitive remediation approaches that consider the multidimensionality of neurocognition in 

psychopathology. Ultimately, the findings related to aim four provide a host of practical 

implications for current service provision, as well as for the development of future assessment 

and treatment approaches.   
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6.5 Limitations and Future Directions 

The primary limitations of the research and directions for future research are presented in 

each chapter and are related to the data simulation approach taken in studies one and two, and the 

collection of data for studies three and four using an online crowdsourcing platform. For studies 

one and two we developed data that simulated the data used by Caspi et al. (2014) in their pivotal 

work developing structural models of psychopathology. Instead of using Monte-Carlo simulation 

methods, that can be used to sample subsets of data from a range of population parameters 

(Mooney, 1997), we developed a single dataset (with a large sample size) for each study to 

parallel empirical examinations using human data. While, our approach had the strength of 

extending current knowledge developed by specifically paralleling the data and approach used by 

pivotal work (Caspi et al., 2014) in this domain of inquiry, a Monte-Carlo approach may allow 

for the exploration of boundaries of explanation using the structural models and improved 

generalisation across different samples (e.g., Greene et al., 2019). Future work should look to 

further use Monte-Carlo methods to explore the boundaries of utility of structural models of 

psychopathology.  

 Limitation in studies three and four relate primarily to the data collection methods. We 

used the crowd-sourcing platform Prolific to collect data on psychopathology, substance use and 

neurocognitive performance. By using this approach to data collection, we did not have control of 

the specific environments the participants completed the neurocognitive tasks, or the hardware 

used. This may have introduced noise in the data, specifically for the neurocognitive tasks. 

However, evidence points towards the quality of behavioural task data collected using crowd-

sourcing platforms being comparable to lab-based studies (Crump et al., 2013; Johnson et al., 

2021; Merz et al., 2020; Sauter et al., 2020). Further, we used the Prolific crowd-sourcing 

platform which has been shown to be the most valid platform to collect data of this type 

(Uittenhove et al., 2022). Future research should look to replicate our findings using tightly 

controlled lab settings. 

 A limitation of the each of the studies in this thesis generally is that the analyses were all 

cross-sectional. Even though the simulated data was developed from Caspi et al.’s (2014) models 
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that used longitudinal data, our explorations were primarily not across different time points. For 

example, in study two we used intelligence measures administered at timepoints 5 years of age, 

7-11 years of age, and adult in the same S-1 bifactor model to represent lifetime IQ. Deficits in 

neurocognition that that are commonly seen in psychopathology have been shown to often pre-

date the onset of psychopathological symptoms (Romer & Pizzagalli, 2021), and many 

aetiological explanations of psychopathology incorporate neurocognitive deficits as predisposing, 

precipitating, and perpetuating factors (e.g., Beck & Rector, 2005). However, our cross-sectional 

approach to exploring neurocognition did not facilitate insight into the developmental trajectory 

or association profiles between neurocognition and dimensional psychopathology. Future 

research should use longitudinal data and multilevel modelling analysis approaches to further 

elucidate developmental insights into neurocognition and structural psychopathology over time 

and may use S-1 bifactor modelling approaches to facilitate interpretation. Further, the 

longitudinal approaches, given the encouraging results relating to the dynamic multidimensional 

conceptualisation of neurocognition in psychopathology, should seek to apply a multidimensional 

approach to neurocognition in psychopathology. This future research may then facilitate the 

development of a neurocognitive assessment package, analysed by artificial neural networks, that 

is predictive of psychopathology over time, and is superior to the predictive accuracy of current 

linear-based approaches. 

6.6 Conclusion to the Thesis 

The objective of this thesis was to provide an improved understanding of the associations 

between neurocognition and psychopathology, taking into consideration the rise of dimensional 

and structural psychopathology. We examined the (a) applicability, utility and potential for a 

substantive meaning of the p-factor and other higher-order factors of psychopathology, (b) the 

utility of an alternative structural modelling approach to psychopathology to mitigate the 

substantive fluidity of the p-factor (c) the neurocognitive correlates of the factors of 

psychopathology and if the profile of neurocognitive correlates differed substantially between the 

factors, and (d) if a non-linear multidimensional conceptualisation of neurocognition in 

dimensional psychopathology was superior to traditional linear conceptualisations. Overall, the 
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findings suggested that structural models of psychopathology may not be particularly applicable 

to many subgroups of a population, and it will be difficult to develop a universal substantive 

meaning of the factors, particularly the p-factor. S-1 bifactor modelling approaches, using 

neurocognition as the general factor, offer a unique way to mitigate the issue of a general factor 

without consistent substantive interpretation and facilitate the interpretation of the associations 

between neurocognition and psychopathology. Although, while S-1 bifactor models have many 

unique strengths, they are unable to answer research questions involving the assessment of 

individual neurocognitive components, and therefore additional approaches are needed. We found 

that the factors of psychopathology did not have discrete patterns of neurocognitive correlates, 

and instead, a general negative association was found between tasks that measured speed of 

processing and each factor of psychopathology. We proposed that, although this result might on 

face-value point toward working memory, shifting and inhibition not being important to 

understanding the samples psychopathology, the traditional linear conceptualisation used cannot 

account for potential non-linear functional dynamics between the neurocognitive components. 

Supporting this proposition, we found that artificial neural network models, that can learn 

complex non-linear relations between predictors and outcomes, had significantly greater accuracy 

at predicting both lower-level and higher-level psychopathology, when compared to a traditional 

linear approach. We therefore suggested that using dynamic multidimensional conceptualisations 

regarding the associations between neurocognition and psychopathology is integral to advancing 

aetiological theories as well as assessment and treatment approaches. Future research should look 

to use Monte-Carlo simulation techniques to further understand the boundaries of utility of 

structural models of psychopathology. Future research should also look to replicate our findings 

using in-lab data collection and extend upon our findings by exploring longitudinal data. We 

suggest that future research, due to the fluidity of the p-factor and the higher-order factors, use 

the multidimensional neurocognitive approach primarily on the lower-levels of dimensional 

psychopathology. Practically, our findings, along with future research, may be used to develop 

multidimensional prediction, assessment, treatment, and rehabilitation approaches for 

psychopathology.
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Appendix B - Brief Symptom Inventory (Derogatis & Melisaratos, 1983) Used in Chapters 4 

and 5 

 

Brief Symptom Inventory 

Below are a list of problems people sometimes have. Please indicate HOW MUCH THAT 

PROBLEM HAS DISTRESSED OR BOTHERED YOU DURING THE PAST 7 DAYS 

INCLUDING TODAY. 

 

0 = Not at all 

1 = A little bit 

2 = Moderately 

3 = Quite a bit 

4 = Extremely 

R = Refused 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

1. Nervousness or shakiness inside        0 1 2 3 4 R 

2. Faintness or dizziness         0 1 2 3 4 R  

3. The idea that someone else can control your thoughts     0 1 2 3 4 R  

4. Feeling others are to blame for most of your troubles    0 1 2 3 4 R  

5. Trouble remembering things        0 1 2 3 4 R  

6. Feeling easily annoyed or irritated       0 1 2 3 4 R  

7. Pains in the heart or chest        0 1 2 3 4 R  

8. Feeling afraid in open spaces        0 1 2 3 4 R  

9. Thoughts of ending your life        0 1 2 3 4 R 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

10. Feeling that most people cannot be trusted      0 1 2 3 4 R  

11. Poor appetite          0 1 2 3 4 R  
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12. Suddenly scared for no reason        0 1 2 3 4 R  

13. Temper outbursts that you could not control     0 1 2 3 4 R  

14. Feeling lonely even when you are with people      0 1 2 3 4 R  

15. Feeling blocked in getting things done       0 1 2 3 4 R  

16. Feeling lonely          0 1 2 3 4 R  

17. Feeling blue          0 1 2 3 4 R  

18. Feeling no interest in things        0 1 2 3 4 R 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

19. Feeling fearful          0 1 2 3 4 R  

20. Your feelings being easily hurt        0 1 2 3 4 R  

21. Feeling that people are unfriendly or dislike you     0 1 2 3 4 R  

22. Feeling inferior to others        0 1 2 3 4 R  

23. Nausea or upset stomach        0 1 2 3 4 R  

24. Feeling that you are watched or talked about by others    0 1 2 3 4 R  

25. Trouble falling asleep         0 1 2 3 4 R  

26. Having to check and double check what you do     0 1 2 3 4 R  

27. Difficulty making decisions        0 1 2 3 4 R 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

28. Feeling afraid to travel on buses, subways, or trains    0 1 2 3 4 R  

29. Trouble getting your breath        0 1 2 3 4 R  

30. Hot or cold spells          0 1 2 3 4 R  

31. Having to avoid certain things, places, or activities because they frighten you 0 1 2 3 4 R  

32. Your mind going blank         0 1 2 3 4 R  

33. Numbness or tingling in parts of your body      0 1 2 3 4 R  

34. The idea that you should be punished for your sins     0 1 2 3 4 R  

35. Feeling hopeless about the future       0 1 2 3 4 R  
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36. Trouble concentrating         0 1 2 3 4 R 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

37. Feeling weak in parts of your body     0 1 2 3 4 R  

38. Feeling tense or keyed up     0 1 2 3 4 R  

39. Thoughts of death or dying    0 1 2 3 4 R  

40. Having urges to beat, injure, or harm someone     0 1 2 3 4 R  

41. Having urges to break or smash things     0 1 2 3 4 R  

42. Feeling very self-conscious with others    0 1 2 3 4 R  

43. Feeling uneasy in crowds     0 1 2 3 4 R  

44. Never feeling close to another person    0 1 2 3 4 R  

45. Spells of terror or panic     0 1 2 3 4 R 

 

DURING THE PAST 7 DAYS, how much were you distressed by: 

46. Getting into frequent arguments   0 1 2 3 4 R  

47. Feeling nervous when you are left alone   0 1 2 3 4 R  

48. Others not giving you proper credit for your achievements    0 1 2 3 4 R  

49. Feeling so restless you couldn’t sit still   0 1 2 3 4 R  

50. Feelings of worthlessness    0 1 2 3 4 R  

51. Feeling that people will take advantage of you if you let them    0 1 2 3 4 R  

52. Feeling of guilt    0 1 2 3 4 R  

53. The idea that something is wrong with your mind    0 1 2 3 4 R 
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Appendix C - The Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) V3.1 (WHO, 

2002) 

Question 1. In your life, which of the following 

substances have you ever used (non-medical use 

only)? 

 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

No Yes - - - 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

No Yes - - - 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

No Yes - - - 

d. Cocaine (coke, 

crack, etc.) No Yes 

No Yes - - - 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

No Yes - - - 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

No Yes - - - 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

No Yes - - - 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

No Yes - - - 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

No Yes - - - 
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j. Other – 

specify__________ 

No Yes - - - 

Question 2. In the past three months, how often 

have you used the substances you mentioned (first 

drug, second drug, etc)? 

 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

d. Cocaine (coke, 

crack, etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 
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j. Other – 

specify__________ 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

Question 3. During the past three months, how 

often have you had a strong desire or urge to use 

(first drug, second drug, etc)? 

 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

d. Cocaine (coke, 

crack, etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 
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j. Other – 

specify__________ 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

Question 4. During the past three months, how often has your use of (first drug, second 

drug, etc) led to health, social, legal or financial problems? 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

d. Cocaine (coke, 

crack, etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 
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j. Other – 

specify__________ 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

Question 5. During the past three months, how often have you failed to do what was 

normally expected of you because of your use of (first drug, second drug, etc)? 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

d. Cocaine (coke, 

crack, etc.) No Yes 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 
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j. Other – 

specify__________ 

Never Once or 

twice 

Monthly Weekly Daily or 

almost 

daily 

Question 6. Has a friend or relative or anyone else ever expressed concern about your use 

of (first drug, second drug, etc)? 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

d. Cocaine (coke, 

crack, etc.) No Yes 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

i. Opioids (heroin, 

morphine, methadone, 

buprenorphine, 

codeine, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 
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j. Other – 

specify__________ 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

Question 7. Have you ever tried to cut down on using (first drug, second drug, etc) but 

failed? 

a. Tobacco products 

(cigarettes, chewing 

tobacco, cigars, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

b. Alcoholic beverages 

(beer, wine, spirits, 

etc.) No Yes 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

c. Cannabis 

(marijuana, pot, grass, 

hash, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

d. Cocaine (coke, 

crack, etc.) No Yes 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

e. Amphetamine-type 

stimulants (speed, 

meth, ecstasy, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

f. Inhalants (nitrous, 

glue, petrol, paint 

thinner, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

g. Sedatives or 

sleeping pills 

(diazepam, alprazolam, 

flunitrazepam, 

midazolam, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

h. Hallucinogens 

(LSD, acid, 

mushrooms, trips, 

ketamine, etc.) 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

i. Opioids (heroin, 

morphine, methadone, 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 
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buprenorphine, 

codeine, etc.) 

j. Other – 

specify__________ 

No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 

Question 8. Have you ever used any drug by injection (non-medical use only)? 

 
No, never Yes, in the 

past 3 

months 

Yes, but 

not in the 

past 3 

months 

- - 
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