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Abstract: Background: Right heart catheterization is the gold standard for evaluating hemodynamic
parameters of pulmonary circulation, especially pulmonary artery pressure (PAP) for diagnosis of
pulmonary hypertension (PH). However, the invasive and costly nature of RHC limits its wide-
spread application in daily practice. Purpose: To develop a fully automatic framework for PAP as-
sessment via machine learning based on computed tomography pulmonary angiography (CTPA).
Materials and Methods: A machine learning model was developed to automatically extract mor-
phological features of pulmonary artery and the heart on CTPA cases collected between June 2017
and July 2021 based on a single center experience. Patients with PH received CTPA and RHC ex-
aminations within 1 week. The eight substructures of pulmonary artery and heart were automati-
cally segmented through our proposed segmentation framework. Eighty percent of patients were
used for the training data set and twenty percent for the independent testing data set. PAP param-
eters, including mPAP, sPAP, dPAP, and TPR, were defined as ground-truth. A regression model
was built to predict PAP parameters and a classification model to separate patients through mPAP
and sPAP with cut-off values of 40 mm Hg and 55 mm Hg in PH patients, respectively. The perfor-
mances of the regression model and the classification model were evaluated by analyzing the intra-
class correlation coefficient (ICC) and the area under the receiver operating characteristic curve
(AUCQC). Results: Study participants included 55 patients with PH (men 13; age 47.75 + 14.87 years).
The average dice score for segmentation increased from 87.3% = 2.9 to 88.2% + 2.9 through proposed
segmentation framework. After features extraction, some of the AI automatic extractions (AAd,
RVd, LAd, and RPAd) achieved good consistency with the manual measurements. The differences
between them were not statistically significant (t =1.222, p =0.227; t =-0.347, p=0.730; t = 0.484, p =
0.630; t =-0.320, p = 0.750, respectively). The Spearman test was used to find key features which are
highly correlated with PAP parameters. Correlations between pulmonary artery pressure and
CTPA features show a high correlation between mPAP and LAd, LVd, LAa (r=0.333, p=0.012; r =
-0.400, p = 0.002; r =-0.208, p =0.123; r =-0.470, p = 0.000; respectively). The ICC between the output
of the regression model and the ground-truth from RHC of mPAP, sPAP, and dPAP were 0.934,
0.903, and 0.981, respectively. The AUC of the receiver operating characteristic curve of the classifi-
cation model of mPAP and sPAP were 0.911 and 0.833. Conclusion: The proposed machine learning
framework on CTPA enables accurate segmentation of pulmonary artery and heart and automatic
assessment of the PAP parameters and has the ability to accurately distinguish different PH patients
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with mPAP and sPAP. Results of this study may provide additional risk stratification indicators in
the future with non-invasive CTPA data.

Keywords: artificial intelligence; pulmonary hypertension; computed tomography; artery pressure;

diagnosis; automatic assessment; parameter

1. Introduction

Pulmonary hypertension (PH) is a malignant pulmonary circulation disease charac-
terized by two aspects: a progressive pulmonary artery pressure increases and a poor nat-
ural prognosis. Untreated PH can lead to right ventricular failure due to hypertrophy and
remodeling of the right ventricle [1,2]. Further, the median survival in patients with PH
without therapy is approximately 2.8 years [2]. Given that PH is a chronic and progressive
disease, it should be diagnosed and intervened as early as possible.

PH is defined as a resting mean pulmonary artery pressure (mPAP) of 25 mm Hg or
above, and critical PH is defined as 20-25mm Hg [1,3]. Currently, right heart catheteriza-
tion (RHC) is the only way to measure mPAP accurately. Therefore, a diagnosis of PH is
only accepted as confirmed (or excluded) by RHC [4].

A non-invasive and effective method to diagnose PH is essential [5]. Although RHC
is the most reliable way to establish the diagnosis of PH, as an invasive procedure, it might
be delayed due to its potential complications [6]. In addition, this invasive procedure re-
quires anesthesia so it is not suitable for early screening, and not all the medical institu-
tions have the requirement for RHC inspection. As a non-invasive screening method,
which has the advantage of providing more details in high-resolution 3D images [7], com-
puted tomography pulmonary angiography (CTPA) can be routinely used to observe the
structure of pulmonary blood vessels, pulmonary parenchyma, and the heart to analyze
or exclude possible PH causes. The morphological features in CTPA images serve as im-
portant references to assist clinicians in diagnosing PH. Assuming that the morphological
features hidden in CTPA images are further excavated, we might be able to build a regres-
sion model to predict the PAP value based on CTPA images.

Using CTPA images to assist physicians in risk stratification of patients in PH is an-
other meaningful study. Previous studies have shown that chronic obstructive pulmonary
disease (COPD) is one of the most common causes of PH [8,9]. Although patients with
COPD often present mild or moderate PH, typically with mPAP between 20 and 40 mm
Hg, mild mPAP elevations can also lead to poor prognosis [9]. Patients with severe PH
are defined as having a resting mPAP > 35 to 40 mm Hg, and a sharp increase in mPAP
often leads to right ventricular failure. Moreover, these patients often have severe hypox-
emia and exhibit hypocapnia, reducing their life expectancy [10]. In addition, Nadrous et
al. [11] proved that idiopathic pulmonary fibrosis patients with pulmonary artery systolic
pressure (sSPAP) of >50 mm Hg had a higher mortality with evidence of 1-year and 3-year
mortalities of 56% and 68%. Further, in patients with > moderate primary mitral regurgi-
tation [12], the risk of adverse events is higher for patients of SPAP > 55 mmHg. Another
study pointed out that in patients with asymptomatic primary mitral valve regurgitation
or flail leaflet, the prognostic value of peak exercise sPAP > 50 mm Hg is significant [13].
Therefore, it is of great significance to explore the possibility to classify patients in PH
based on mPAP of 40 mm Hg and sPAP of 55 mm Hg by non-invasive measurements in
order to carry out risk stratification of PH patients.

Artificial intelligence (AI) has great potential in cardiovascular function assessment.
One of the major applications of Al in this field is to assess functional parameters from
morphological features in CTPA of patients, which includes constructing regression mod-
els and classification models to help with the diagnosis of PH. Liu et al. [14,15] has demon-
strated that some specific cardiovascular parameters of CTPA could be the predictors to
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assess chronic thromboembolic pulmonary hypertension (CTEPH) severity and right ven-
tricular function. Melzig et al. [16] pointed out that some morphological parameters of
CTPA such as 3D volumes are valuable in noninvasively estimating pulmonary artery
functional parameters, which means that CTPA data are beneficial for noninvasively pre-
dicting PH. Dong et al. [17] claimed that several morphological parameters of CTPA per-
formed well in evaluating the severity of right ventricular dysfunction. Beyond the pul-
monary field, in the study that shows the performance of coronary CT angiography-de-
rived fractional flow reserve (CT-FFR) in diagnosing ischemia in myocardial bridging
(MB), Zhou et al. [18] found that machine learning-based coronary CT-FFR showed good
diagnostic performance compared to invasive FFR.

In this study, aiming to evaluate the value of CTPA morphological data analysis in
the diagnosis of PH, we proposed a methodology to extract and select the morphological
features from CTPA images, and then build regression and classification models based on
machine learning methods. Using this methodology, we implemented a workflow for the
auxiliary diagnosis of PH based on the analysis of CTPA images.

2. Materials and Methods

The overall workflow of the proposed method is shown in Figure 1. After the acqui-
sition and selection of the study population, CTPA data and RHC data of the correspond-
ing patients were both collected and recorded. Then, four main steps were followed to
finish the work. First, we accomplished the annotation task via computer software and
the segmentation of eight selected substructures of the heart and pulmonary from the CTPA
images using a proposed segmentation framework. After that, we extracted the morphologi-
cal features and their second-order features within the substructures for subsequent analysis.
To establish a better regression model to predict the mPAP, sPAP, pulmonary artery diastolic
pressure (dPAP), and total pulmonary resistance (TPR) of a specific patient, we selected some
morphological features which are highly correlated with the pulmonary arterial pressure and
reduced the dimensions of the selected features matrix. Then, we built a regression model to
predict the PAP parameters and implemented a series of statistical analysis to verify the con-
sistency between predicted and true values. In addition, we used 10-fold cross-validation to
establish a classification model to determine whether a patient has severe pulmonary arterial
pressure or not based on mPAP and sPAP.
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Patients with PH received CTPA and RHC
exam between 2017.6 and 2021.7 (n = 84)

Excluded:

1.the interval of CTPA and RHC exam longer than 1 week (n = 14);

2.inferior image quality of CTPA(n = 3);

3.inadequate clinical data acquired from the electronic medical record system(n = 12);
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Figure 1. The overall workflow. After the selection and exclusion of patient population and CTPA
images acquisition, eight substructures of heart and pulmonary arteries were automatically seg-
mented as regions of interest (ROIs). Morphological features and their second-order features are
extracted from these ROIs. Then, the essential features were selected through statistical methods
and then reconstructed to reduce the redundancy of the features matrix. In the last step, meaningful
features and corresponding results are set as an input through machine learning algorithms to ob-
tain a regression model and a classification model.
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2.1. Patients

A total of 55 patients with PH were retrospectively enrolled in this study between
June 2017 and July 2021 from a single tertiary center of Beijing Anzhen Hospital. PH was
diagnosed as a mean pulmonary artery pressure >25 mm Hg at rest as evaluated by right-
heart catheterization (RHC) [19]. The PH types were defined as the 5-classification stand-
ard [20]. Patients who received CTPA and right-heart catheterization exam within 1 week
were included. Demographic and clinical data were retrieved from each patient’s elec-
tronic medical record. Exclusion criteria included the following: (i) the interval of CTPA
and RHC exam longer than 1 week; (ii) inferior image quality of CTPA; and iii) inadequate
clinical data acquired from the electronic medical record system. The study was approved
by the local institutional ethics review committee. Informed consent was waived because
of the retrospective study.

2.2. Imaging Protocol

A 320-row CT system (Aquilion ONE, Toshiba, Otawara, Japan) was used in all pa-
tients for CTPA scanning. All the exams were performed with non-ECG-gated helical scan
protocol. Patients were positioned supine and feet first into the gantry. Dual scanograms
were used for determination of the anatomical coverage. The volume was placed to cover
the entire lung fields from the pulmonary apex to the posterior costophrenic angle. Each
volume CTPA data acquisition was acquired with a single breath-hold. The CT gantry
rotation time was 330 ms. The tube voltage was 100-120 kV; effective tube current was
200-300 mA adjusted by personal body mass index (BMI). The collimation was 0.625 mm;
pitch was 0.99. All the data were reconstructed using a standard soft-tissue and lung ker-
nel (FC56). Images were reconstructed with slice thickness of 0.9 mm, interval of 0.45 mm.

A total of 40-50 mL contrast medium (Omnipaque 350, GE Healthcare, Shanghai,
China) was intravenously injected by using a dual-head power injector with the injection
rate of 3.5-4.5 mL/s adjusted according to BMI and the CT data acquisition time. A saline
chaser bolus of 30 mL was injected with the same rate as the contrast medium. A region
of interest was placed at the level of the main pulmonary artery for bolus tracking. The
exposure was triggered with a 5 s delay after the 150 HU threshold was reached.

2.3. Right-Heart Catheterization

Right-heart catheterization was performed with the Seldinger technique. Under X-
ray fluoroscopic guidance, an 8F Swan-Ganz catheter (Baxter Healthcare, Irvine, CA,
USA) was induced through the right internal jugular vein. After 10 min rest, the hemody-
namic parameters including sPAP, dPAP, pulmonary capillary wedge pressure (PCWP),
and cardiac output (CO) were obtained at end-expiration. The mPAP and pulmonary vas-
cular resistance (PVR) were calculated.

2.4. Segmentation Ground-Truth Definition
2.4.1. Data Standardization and the Localization of Heart and Pulmonary Artery

CTPA images were all automatically cropped into 512 x 512 x 480 pixels, which in-
cluded the full volume from the top of the main pulmonary artery to the bottom of the
right ventricle.

2.4.2. Contours of Eight Substructure Delineation

The preprocessed images were segmented into eight substructures with the use of
computer-assisted tools by an experienced radiologist (N.Z., with 9 years of experience in
CTPA image interpretation). These compartments included: (1) left ventricle blood cavity
(LV); (2) right ventricle blood cavity (RV); (3) left atrium blood cavity (LA); (4) right atrium
blood cavity (RA); (5) left pulmonary artery (LPA); (6) right pulmonary artery (RPA); (7)
main pulmonary artery (MPA); and (8) the ascending aorta (AA). Following manual de-
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lineation, annotations were visually inspected and manually retraced as needed by an-
other experienced radiologist for quality checking (J.Y.L., with 25 years of experience in
cardiovascular imaging) [21].

2.5. Image Segmentation

Prior to training our model, the dataset was randomly split into training (80%; 44 of
55) and test (20%; 11 of 55) sets. After data preprocessing, the training set was further
divided into training (80%; 35 of 44) and validation (20%; 9 of 44) sets. We adopted a deep
learning framework referred to as a nnU-Net [22] to perform segmentation on the prepro-
cessed data. Then, we selected a full resolution 3D U-Net architecture to perform segmen-
tation. Using this architecture, eight substructures of the lungs and heart were segmented,
with four substructures for each part. Therefore, two independent 3D U-Net networks
were trained for segmentation. The convolutional neural network architecture is shown
in Figure 2. The batch-size is 2 and the patch-size is 128 x 128 x 128. In addition, the loss
function is a combination of the cross-entropy loss function and the Dice loss function.

Pre-Segmentation
Full resolution 3D U-Net architecture

m’ 32x128x128x128
y

L 64%64%64%x64

4 I
i nput L 128x32x32x32

Conv-IN-LReLu

5
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Figure 2. Segmentation framework architecture for accurate segmentation of the substructures of
pulmonary artery and heart, respectively. The proposed segmentation framework consists of full-
resolution 3D U-Net; contours feature extraction; and positive mask decision.
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However, some of the outputs were larger or smaller than the ground-truth due to
the low contrast between the segmentation part and the adjacent structures, which is
mainly caused by the lack of contrast agent. To optimize these segmentation results, we
proposed a framework to create a better mask for poor results. First, we selected the axi-
omatic good results as positive masks and the others as negative masks. Second, we ex-
panded and contracted every mask slightly to obtain a group of masks including the cur-
rent, the expanded, and the contracted one. Then, the image intensities of the mask con-
tours were extracted and flattened into a one-dimension vector. After zero padding, the
vectors were concatenated and then fitted into a self-attention module followed by a fully
connected neural network which determined whether the input was a positive mask or
not. The program would continuously resize the input mask until the output became pos-
itive mask. Finally, all the segmentations were used to automatically and reliably measure
the morphological features, thus putting them into predictive models.

2.6. Features Extraction and Selection
2.6.1. The Extraction of Morphological and Second-Order Features

Since it is proven that pulmonary artery and ventricles are strongly correlated with
pulmonary arterial hypertension, the morphological features of all the eight substructures
and their second-order features may contain direct correlations to the medical metrics
such as the mean pulmonary artery pressure. Therefore, we obtained as many morpho-
logical features and their second-order features from the segmentations as possible. Liu et
al. [14] demonstrated that some specific morphological parameters of CTPA could be used
to assess chronic thromboembolic pulmonary hypertension (CTEPH).

2.6.2. Feature Selection and Dimension Reduction

As shown in Figure 3, the following four methods were used to reduce data redun-
dancy and select meaningful morphological features and second order features. First, the
Spearman test was used to pick up significant features. Second, the Pearson correlation coef-
ficient r between any two features was calculated. When r > 0.9, the feature with a lower Pear-
son correlation coefficient with the dependent variable was removed. Third, we normalized
the features to a range of data with mean 0 and variance 1. This can be implemented with
StandardScaler in Python scikit-learn environment. Finally, the principal components analysis
was adopted to reduce the dimension of the features in an unsupervised way. Therefore, we
selected reasonable morphological features and second-order features.
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Figure 3. Some of the morphological features on CTPA are shown above. (a) Diameter of main pul-
monary artery (MPAd), (b) diameter of ascending aorta (AAd), (c) diameter of right pulmonary
artery (RPAd), (d) area of LPA (blue), RPA (green), MPA (red), and AA (yellow), (e) diameter of left
ventricle, (f) diameter of right atrium, (g) diameter of right ventricle, (h) area of LV (red), RV (green),
LA (blue), and RA (yellow). They were all assessed on transversal images in the diastole. The fea-
tures extracted from the original CTPA images were first organized in a table, sorted by the Spear-
man’s rank correlation coefficient between one feature and mean pulmonary artery pressure. Since
any two features we selected may contain a strong correlation, we removed redundant features by
calculating the Pearson coefficient of all features with each other. Then we selected r features from
all features we obtained. The considerately selected features were then normalized and feature di-
mension reduction was performed by principal component analysis. Finally, we chose m features
for the regression and classification model.

2.7. Regression and Classification Model Construction

We used statistical analysis to compare the manual and automated measurement
methods and to verify the correlation of the two measurements. At the same time, we also
compared the performance of different models on Al automatic measurement features,
and finally selected the XGBoost model to complete regression and classification. After
comparing with the SVM model and CatBoost model, the features of 55 patients were used
as input for the XGBoost [23] regression and classification model. The PAP parameters the
regression model aimed to predict included mPAP, sPAP, dPAP, and TPR, while the classifi-
cation model only used mPAP and sPAP to stratify the risk of patients with PH. The max
depth of the model is set as 3. We completed 20 times ten-fold cross validation to ensure the
validity of the results stratified on patient level [24]. Finally, we proved that our workflow
could assess functional parameters through CTPA to help the auxiliary diagnosis of PAH.
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2.8. Statistics Analysis

All statistical analyses were performed using SPSS ver. 27.0 (SPSS Inc., Chicago, IL, USA).
We used dice score to evaluate the performance of the proposed segmentation framework
compared with the nnU-Net. After that, we compared the Al automatic measurements and
manual measurements through Paired t-test and Bland—Altman analyses. Then, the correla-
tion of morphological features with mPAP, sPAP, dPAP, and TPR was determined by the
Spearman test. After that, the statistical differences of selected features were determined
by the Pearson test. Using RHC results as the ground truth, intraclass correlation coefficients
(ICC) between mPAP, sPAP, dPAP, and TPR measured by RHC and the output of our regres-
sion model were calculated. After that, we set the classification threshold as 40mm Hg and 55
mm Hg for mPAP and sPAP to separate the patients into different risk classes, respectively.
Then, we calculated sensitivity and specificity of the patient risk level derived from RHC re-
sults with the output of our classification model. In addition, the receiver operating charac-
teristic curve (ROC) was used to evaluate the classification performance.

3. Results
3.1. Study Population Characteristics

A total of 55 patients with PH were included in this study with clinical characteristics
shown in Table 1. Chronic pulmonary embolism (15/55, 27.27%) was the most common
reason of pulmonary hypertension in this study. There was only 1 patient diagnosed with
mPAP > 70 mm Hg.

Table 1. Clinical and hemodynamic characteristics of patients with PH.

Characteristics Values
Baseline Parameters (Mean * SD)

Age (years) 47.75 +14.87

Disease duration (years) 3.55+7.02

Gender (male/female) 13/42

Body mass index (kg/m?) 23.94 +3.87

Body surface area (m?) 1.65+0.15

BNP (pg/mL) 289.67 +268.97
Clinical classification of PH (1)

I 12 (21.8%)

II 6 (10.9%)

11 10 (18.2%)

v 15 (27.3%)

\Y% 12 (21.8%)

Class of mPAP (n)
Mild (25-39 mm Hg) 21 (38.2%)
Severe (=70 mm Hg) 34 (61.8%)
Class of sPAP (n)
Mild (44-55 mm Hg) 8 (14.5%)
Severe (=55 mm Hg) 47 (85.4%)
NYHA classification (1)

I 11 (20.0%)

11 20 (36.4%)

11 22 (40.0%)

v 2 (3.6%)
Hemodynamics (mean + SD)

sPAP (mmHg) 68.35 + 20.62

dPAP (mmHg) 35.65 + 42.53
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mPAP (mmHg) 42.82+12.74
CO (I/min) 4.64+254
PCWP (mmHg) 6.86 £4.79
PVR (dynes.sec.mm™) 979.03 + 594.73

Note. BNP, B-type natriuretic peptide; CO, cardiac output; dPAP, pulmonary artery diastolic pres-
sure; mPAP, mean pulmonary artery pressure; NYHA, New York Heart Association; PCWP, pul-
monary capillary wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular re-
sistance; sSPAP, pulmonary artery systolic pressure.

3.2. Computational Time

The average training time of the segmentation network on each patient is about 6
min. During the testing, the average inference time of the network model on each patient
is about 10 min. The training and testing of the segmentation network were all done on
NVIDIA A100 Tensor Core GPU. Moreover, the average time for feature extraction on
each case is about 17 s. In the prediction phase, the computational time is about 8 s for the
regression and classification for each case. The feature extraction and prediction of the
regression and classification model were all tested on AMD Ryzen 7 5800H with Radeon
Graphics CPU.

3.3. The Performance of the Segmentation Framework

Using an independent testing dataset, the average dice score for segmentation is
87.3% + 2.9 with original nnU-Net. However, from Table 2, we can see that the dice score
of each part improved significantly and the average dice score becomes 88.2% + 2.9. Apart
from dice score, the improvements can be seen in Figure 4. Compared with the result of pro-
posed network framework in Figure 4c, myocardium of LV is mis-segmented as chamber of
LV using nnU-Net in Figure 4b which overestimates the area of LV. In addition, the MPA
segmentation mask which does not cover the original pulmonary artery in Figure 4e is slightly
expanded to a plausible mask in Figure 4f.

Table 2. Dice score between the original nnU-Net and the proposed framework.

LV RV LA RA MPA LPA RPA AA
nnU-Net  824+7.8 869+68 869+52 889+103 91.6+55 90.8+29 864+51 845+90
Proposed o) 71 870470 874447 907458 925434 913424 869+46 86480

framework

Note. The values show the mean (+ standard deviation) of all images from the CTPA for each seg-
mentation label. AA, ascending aorta; LA, left atrium; LPA, left pulmonary artery; LV, left ventricle;
MPA, main pulmonary artery; RPA, right pulmonary artery; RA, right atrium; RV, right ventricle.
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Figure 4. The performance of the proposed network framework. (a,d) are the original image of heart
and pulmonary artery, respectively; (b,e) are the segmentation outputs of nnU-Net; (c,f) are the
segmentation outputs of the proposed network framework.

3.4. Comparison of Manual Measurement and Al Automatic Measurement

Table 3 shows that the differences in RPAd, AAd, RVd, and LAd measured by the
manual measurement and the Al automatic measurement were not statistically significant
(t=1.222, p=0.227; t=-0.347, p=0.730; t = 0.484, p = 0.630; t =—0.320, p = 0.750, respectively).
However, the results also suggest that the differences in MPAd, LPAd, LVd, and RAd
measured by the manual the Al automatic measurements were statistically significant (t
=-3.573, p=0.001; t =4.394, p <0.001; t = 4.255, p <0.001; t =-7.096, p < 0.001; respectively).
Nevertheless, according to the correlation between these features and the PAP parame-
ters, only LVd is valuable for regression and classification. Then, Bland—Altman analyses
[25] for features assessed by manual and Al automatic measurements were carried out,
and the corresponding biases (limits of agreement) of MPAd, RPAd, LPAd, AAd, LVd,
RVd, LAd, and RAd are -2.25 mm (-11.4 mm, 6.90 mm), 0.575 mm (-6.28 mm, 7.43 mm),
2.84 mm (-6.56 mm, 12.25 mm), —0.15 mm (-6.45 mm, 6.15 mm), 5 mm (-12.18 mm, 22.18
mm), 0.52 mm (-15.27 mm, 16.31 mm), —0.27 mm (-12.86 mm, 12.31 mm), and -11.68 mm
(-35.83 mm, 12.46 mm), respectively. Figure 5 shows Bland—Altman analyses between
manual and Al measurements.

Table 3. Comparison of manual measurement and Al automatic measurement (paired samples -test).

Features The Difference of Manual Al Automatic Manual
and AI Automatic Measurement Measurement  Measurement

Mean Test Statistict  95% CI of Difference  Sig. Mean = SD Mean = SD

MPAd (mm)  -2.249 -3.573 -3.511 to -0.9874 0.001  34.48 +3.98 36.73 £5.98
RPAd (mm) -0.5759 1.222 -0.3693 to 1.521 0.227  24.33+3.01 23.75 +3.82
LPAd (mm) 2.843 4.394 1.546 to 4.140 0.000 2542 +4.61 22.57 £3.73
AAd (mm) -0.1506 -0.347 -1.020 to 0.718 0.730  29.81+4.61 29.96 + 5.57
LVd (mm) 4.975 4.255 2.632 to 7.319 0.000 39.78 +8.51 34.80 £ 9.66
RVd (mm) 0.5214 0.484 -1.636 to 2.679 0.630  44.39 +5.62 43.87 £9.32
LAd (mm) -0.2745 -0.320 -1.994 to 1.445 0.750  29.60 + 6.52 29.88 £ 9.06
RAd (mm) -11.68 -7.096 -14.98 to -8.382 0.000 46.47 +7.49 58.15 + 15.15

Note. AAd, diameter of ascending aorta; LAd, diameter of left atrium; LPAd, diameter of left pul-
monary artery; LVd, diameter of left ventricle; MPAd, diameter of main pulmonary artery; RAd, diame-
ter of right atrium; RPAd, diameter of right pulmonary artery; RVd, diameter of right ventricle.
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Figure 5. Bland—Altman analyses for features assessed by Al automatic and manual measurements
show that the metrics measured by our automatic measurement method are in accordance with the
ground-truth measured manually by experienced physicians.
3.5. The Correlations between Pulmonary Artery Pressure and Selected Features
The correlations between morphological features and their second-order features ob-
tained by automatic measurement and pulmonary artery pressure obtained by RHC are
shown in Table 4. The table lists some of the characteristics and four pulmonary artery
pressure values that are highly correlated with each other: mean pulmonary artery pres-
sure, pulmonary artery systolic pressure, pulmonary artery diastolic pressure, and total
pulmonary resistance. Correlations between pulmonary artery pressure and CTPA fea-
tures show a positive correlation between mPAP and RAd/LAd (r =0.333, p = 0.012), and
a negative correlation between mPAP and LAd, LVd, LAa (r=-0.400, p = 0.002; r =-0.208,
p=0.123; r = -0.470, p = 0.000; respectively), but no correlation was found between mPAP
and MPAd, MPAd/AAd, RPAd, LPAd, RVd, RAd.
Table 4. Correlation between pulmonary artery pressure and CTPA features by Spearman test.
Mean * SD (n=55) mPAP (n =55) sPAP (n=54) dPAP (n =54) TPR (n =48)
MPAd (mm) 34.48+3.98 r=-0.107 (p=0435) r=-0.185(p=0.180) r=0.011(p=0.938) r=-0.115 (p = 0.435)
RPAd (mm) 24.33+3.01 r=-0.149 (p=0277)  r=-0.115(p=0.410) r=-0.065(p=0.640) r=-0.250 (p =0.087)
LPAd (mm) 2542 +4.61 r=-0120 (p=0.381)  r=0.050(p=0.721) r=-0.156(p=0261) r=-0.170 (p =0.249)
AAd (mm) 29.81 +4.61 r=-0.265(p=0050) r=-0279(p=0041)* r=-0.183(p=0.186) r=-0.156(p=0.289)
MPAd/AAd 1.17£0.17 r=-0.212 (p =0.121) r=0.175 (p = 0.216) r=0.208 (p =0.131) r=0.091 (p = 0.539)
RPAd/LPAd  0.988+0.235 r=-0.034 (p=0.806) r=-0.194(p=0.161) r=0.051(p=0731)  r=0.004 (p=0.978)
LVd (mm) 39.78 +8.51 r=-0.208 (p=0.123) r=-0.348 (p=0.009) * r=-0.183 (p=0.181) r=-0.107 (p =0.470)
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RVd (mm)
RVd/LVd
LAd (mm)
RAd (mm)
RAd/LAd

LAa (mm?)
RAa (mm’)
LVa (mmz)
RVa (mm’)

44.39 +5.62 r=0.227 (p =0.092) r=0243 (p=0.074) r=0207 (p=0.129)  r=0.195 (p = 0.185)
117 £0.34 r=0302 (p=0.023)* r=0416(p=0.002)* r=0270(p=0.046)* r=0.259 (p=0.075)

29.60 + 6.52 r=-0.400 (p =0.002) * r=-0.351 (p =0.009) ** r=-0.318 (p =0.018) ** r=-0.453 (p = 0.001) **

46.47 £7.49 r=0.024 (p=0.859) r=-0.058(p=0.675) r=0038(p=0783) r=0.182(p=0.216)
1.64 +0.45 r=0333(p=0012)* r=0203(p=0.138) r=0.328(p=0.015)* r=0.512(p=0.000)**

174644 £621.63  r=-0.470 (p=0.000) * 1=-0.445 (p=0.001) ** r=-0.409 (p =0.002) ** r=—0.494 (p = 0.000) **
2761.05+912.31 r=0.067 (p=0.622)  r=-0.003 (p=0982) r=-0.043(p=0.754) r=0.192 (p=0.185)
242586 +779.36  r=-0.155(p=0254) r=0267(p=0.049)* r=-0.120(p=0.381) r=-0.124(p=0.398)
3210.62 + 830.67 r=0257 (p=0.055)  r=0262(p=0054) r=0.191(p=0.163) r=0.182 (p=0.210)

Note. AAd, diameter of ascending aorta; LAa, left atrium area; LAd, diameter of left atrium; LPAd,
diameter of left pulmonary artery; LVa, left ventricular area; LVd, diameter of left ventricle; MPAd,
diameter of main pulmonary artery; MPAd/AAd, the ratio of diameter of main pulmonary artery to
diameter of ascending aorta; RAa, right atrium area; RAd, diameter of right atrium; RAd/LAd, the
ratio of diameter of right atrium to diameter of left atrium; RPAd, diameter of right pulmonary
artery; RVa, right ventricular area; RVd, diameter of right ventricle; RVd/LVd, the ratio of diameter
of right ventricle to diameter of left ventricle. * p < 0.05; ** p <0.001.

3.6. The Performance of the Regression Model

In the regression task, we compared three commonly used regression models includ-
ing XGBoost, CatBoost, and SVM. As shown in Figure 6, with the same testing dataset of
patients in mPAP regression task, XGBoost (MSE = 12.81) performed better than SVM
(MSE = 60.24) and CatBoost (MSE = 28.37). Thus, we chose XGBoost regressor to predict
the sPAP, dPAP, and TPR values of patients in this study. Figure 6 shows that the MSE of
the results on dPAP, sPAP, and TPR is 16.94, 21.88, and 69,862.59, respectively. To demon-
strate the consistency between the predicted and true values with different models and
pressure types, we calculated the ICC of these two groups. As shown in Table 5, assuming
the interaction effect is absent, the ICC of CATBoost regressor, SVM regressor, and
XGBoost regressor to predict mPAP value is 0.689, 0.138, and 0.934, respectively. Moreo-
ver, the ICC of XGBoost regressor to predict sPAP, dPAP, and TPR is 0.981, 0.903, and
0.685, respectively. The above results show that the XGBoost regressor is able to predict
mPAP, sPAP, and dPAP on a small dataset of adult patients with PH.
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Figure 6. (a) CatBoost regression on mPAP (MSE = 28.37), (b) SVM regression on mPAP (MSE =
60.24), (c) XGBoost regression on mPAP (MSE = 12.82), (d) XGBoost regression on dPAP (MSE =
16.94), (e) XGBoost regression on sPAP (21.88), (f) XGBoost regression on TPR (MSE = 69,862.59).

Table 5. ICC of different models and pressure types.

95% Confidence Interval F Test with True Value 0
Task and Method ICC? Lower Bound Upper Bound Value Sig.
mPAP and CatBoost

Single Measures 0.5252 -0.289 0.898 3.211 0.091
Average Measures 0.689 © -0.813 0.946 3.211 0.091

mPAP and SVM

Single Measures 0.074 -0.668 0.742 1.160 0.431
Average Measures 0.138 « -4.015 0.852 1.160 0.431

mPAP and XGBoost
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Single Measures 0.877 2 0.447 0.978 15.211 0.002
Average Measures 0.934 « 0.617 0.989 15.211 0.002
dPAP and XGBoost

Single Measures 0.824 0.280 0.967 10.355 0.006
Average Measures 0.903 © 0.438 0.983 10.355 0.006
sPAP and XGBoost

Single Measures 0.963 2 0.803 0.994 53.139 0.000
Average Measures 0.981 ¢ 0.890 0.997 53.139 0.000
TPR and XGBoost

Single Measures 0.521 2 -0.294 0.897 3.173 0.093
Average Measures 0.685 © -0.834 0.946 3.173 0.093

Note. Two-way mixed effects model where people effects are random and measures effects are
fixed; 2. The estimator is the same, whether the interaction effect is present or not; ® Type C intraclass
correlation coefficient using a consistency definition. The between-measure variance is excluded
from the denominator variance; <. This estimate is computed assuming the interaction effect is ab-
sent, because it is not estimable otherwise.

3.7. The Performance of the Classification Model

In the classification task, we also compared three commonly used classification mod-
els, namely XGBoost, CatBoost, and SVM. Setting the cut-off value as 40 mm Hg, we tested
the above three different machine learning models to classify patients with PH based on
mPAP. As shown in Figure 7, using the same testing dataset of patients in mPAP classifi-
cation task, XGBoost (AUC = 0.911, p <0.001) performed better than SVM (AUC =0.679, p
= 0.2846) and CatBoost (AUC = 0.893, p < 0.001). Similarly, we used these three models to
classify patients with PH by sPAP with a cut-off value of 55 mm Hg. The results are also
shown in Figure 6, yielding AUC of 0.556 (p = 0.8257), 0.639 (p = 0.6262) and 0.833 (p =
0.0057) for CatBoost, SVM and XGBoost, respectively.

ROC of three classification models on mPAP ROC of three classification models on sPAP
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Figure 7. Area under the receiver operating characteristic curve (AUC) shows XGBoost model per-
forms better than CatBoost and SVM model. The AUC of XGBoost model classification on mPAP
and sPAP is 0.911 (p <0.001) and 0.833 (p = 0.0057), respectively.

4. Discussion

In this study, we developed a fully automated CTPA image-based framework for the
additional diagnosis of PH. First, this framework can achieve the segmentation of eight
substructures of pulmonary artery and heart (LV, RV, LA, RA, LPA, RPA, MPA, and AA).
Using an independent testing dataset, the average Dice score for segmentation with our
proposed framework could reach 88.2%. Second, we completed the features extraction
based on the segmentation outcome. Some of the Al automatic extractions (AAd, RVd,
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LAd, and RPAd) achieved good consistency with the manual measurements. However,
the differences between MPAd, LPAd, LVd, and RAd, respectively measured by Al and
physicians, are statistically significant (p < 0.001). Then, we selected morphological fea-
tures or their second-order features with high correlations between mPAP, sPAP, dPAP,
and TPR, and achieved features dimension reduction using principal component analysis.
Finally, the regression model for predicting mPAP, sPAP, dPAP, and TPR and the classi-
fication model for separating patients with PH by mPAP or sPAP with different risk levels
were executed. Good consistency existed between the outcome of the regression model pre-
dicted mPAP, dPAP, and sPAP and the ground-truth from RHC (ICC=0.934, p =0.002; ICC =
0.903, p=0.006; ICC =0.981, p = 0.000, respectively). The AUC of ROC curve of the classification
model reached 0.911 (p <0.001) for mPAP data and 0.833 (p = 0.0057) for sPAP data.

The segmentation for the eight substructures were based on our proposed frame-
work. The part after pre-segmentation of this framework is a complement which relies on
the performance of nnU-Net based pre-segmentation. The proposed method utilizes the
image intensity information near the edge of the mask to obtain the feature map through
an attention mechanism. The feature map that aims to represent the drastic changes be-
tween the segmentation part and the adjacent area is a useful input for the classification
neural network. However, the pre-segmentation outputs for some parts may appear as
unpredictable results, such as a sudden disappearance in a certain plane or the results
appear as two separate pieces. These problems cannot be solved by current framework,
so it is necessary to propose a better segmentation method combining latest knowledge in
machine learning field.

In this study, the morphological features contained in CTPA images were extracted
based on 3D image segmentations. Previous studies have shown that some morphological
parameters manually measured by physicians have high correlations between pulmonary
vascular resistance in patients with chronic thromboembolic pulmonary hypertension
[7,14,15]. However, Liu’s study did not achieve automatic extraction of morphological pa-
rameters, thus lack of repeatability. Our study is more efficient and ensures strong repeatabil-
ity through automatic segmentation and morphological parameter extraction. Nevertheless,
the present network based on nnU-Net for segmentation cost about 10 min to inference. There-
fore, we may try to improve the network’s segmentation performance and prediction speed
by improving the network structure or using methods such as model pruning.

The analysis of morphological features in this study represents mainly an extension
of the existing research. Liu [14] and Jia [17] et al. proposed that not only the morpholog-
ical features themselves but also the ratio between them were correlated to the mPAP
levels or right ventricular dysfunction. Melzig et al. [16] used the volume of main, right,
and left pulmonary arteries and combined echocardiographic sPAP to achieve a higher
accuracy for the prediction of mPAP. Our study included one-dimensional and two-di-
mensional morphological features of heart and pulmonary arteries and the ratio between
selected features, such as RAd/LAd, LVd, and LAa. In recent years, radiomics has gradu-
ally emerged, which can extract many invisible shapes, textures, and image intensity fea-
tures. Cetin et al. [26] demonstrated the feasibility and the clinical value of the cardiac
MRI radiomics in analyzing the cardiovascular risk factors including diabetes, hyperten-
sion, high cholesterol, and smoking. Moreover, Lu et al. [27] proposed a combined model,
including morphological features and radiomics features from CT scan, to distinguish
minimally invasive adenocarcinomas and invasive adenocarcinomas, with high potential
to provide for the auxiliary diagnosis. Therefore, if hundreds of thousands of features
could be extracted from images by radiomics, and features extraction and dimension re-
duction can be performed on them, then the performance of the regression and classifica-
tion model in our study may be better.

The regression model proposed in this study is designed to assess pulmonary arterial
pressure in the diagnosis of PH based on CTPA images. The ICC coefficient between the
predicted value and the actual value of this regression model of mPAP, sPAP, and dPAP
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is 0.934, 0.903, and 0.981, respectively. The regression model results demonstrate the po-
tential feasibility of inferring the functional parameters of patients based on morphologi-
cal features obtained from CTA images without RHC. However, the number of samples
in this study is small, and all of them are adult patients with PH. There is a lack of samples
from different groups, such as people without PH and children in PH. Therefore, it is
necessary to conduct research in the future with inclusion of larger and more diverse sam-
ples to verify the generalizability of the results of this model.

The classification model used in this study uses 40 mm Hg and 55 mm Hg as the cut-
off value of mPAP and sPAP to characterize PH patients into two categories. The classifi-
cation model is a further extension and application of the regression model proposed in
this study, and has a certain potential to achieve risk stratification for patients with PH.
However, since the samples in this study did not contain patients without PH, the ability
of the model to discriminate between PH and non-PH patients remains to be determined.
Therefore, patients without PH can be introduced to construct a classification model ca-
pable of diagnosing PH in the future. On the other hand, the mPAP values of patients
with PH in this study are concentrated and the lower sPAP values are not enough, result-
ing in unbalance of the samples. In the future, we may construct a large number of sam-
ples of patients with a balanced distribution of mPAP and sPAP values. Then we may be
able to complete the multi-classification of patients in PH.

At present, the classification model proposed in this study focuses on the auxiliary
diagnosis. For a better realization of a pathological clear division of patients with pulmo-
nary arterial hypertension (pulmonary hypertension caused by left heart disease, pulmo-
nary disease and hypoxia, chronic thromboembolic pulmonary hypertension, and un-
known multi-factor mechanism), it is necessary to further improve the diversity of col-
lected samples and integrate more information contained in multimodal medical images
into the analysis, therefore achieving the purpose of pathological classification for PH. As
discussed previously, our study was limited in analyzing one-dimensional and two-di-
mensional morphological features of heart and pulmonary arteries and the ratio between
the selected features. In future study, we will explore the volumetric information of heart
and pulmonary artery morphology as well as the spatial relationship between different
intra- and extra-cardiac structures to improve the accuracy of PAP parameter evaluation.

5. Conclusions

In this study, we developed a fully automatic framework for supplementary diagno-
sis of PH based on CTPA images. We achieved automatic segmentation of eight substruc-
tures (LV, RV, LA, RA, LPA, RPA, MPA, and AA) of the pulmonary artery and the heart
with high accuracy by our proposed segmentation framework. Based on this segmentation
result, the extraction of morphological features was automatically carried out by the machine
learning, which was highly repeatable. Our results showed that it is feasible to assess PAP
parameters in patients with PH from CTPA images rather than invasive RHC examinations.
Furthermore, our proposed framework can also perform a preliminary classification of PH
patients, which is a contribution to the diagnosis or management of PH patients.
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Abbreviations

AUC area under the receiver operating characteristic curve
CTPA computed tomography pulmonary angiography
dPAP pulmonary artery diastolic pressure

ICC intraclass correlation coefficient

mPAP mean pulmonary artery pressure

MSE mean square error

PH pulmonary hypertension

RHC right heart catheterization

sPAP pulmonary artery systolic pressure

TPR total pulmonary resistance
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