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Abstract-In this paper, we systematically explore an 
itemset-based extension approach for generating candidate 
sequence which contributes to a better and more 
straightforward search space traversal performance than 
traditional item-based extension approach. Based on this 
candidate generation approach, we present FINDER, a novel 
algorithm for discovering the set of all frequent sequences. 
FINDER is composed of two separated steps. In the first step, all 
frequent itemsets are discovered and we can get great benefit 
from existing efficient itemset mining algorithms. In the 
second step, all frequent sequcnces with at least two frequent 
itemsets are detected by combining depth-first search and 
item set-based extension candidate generation together. A 
vertical bitmap data representation is adopted for rapidly 
support counting reason. Several pruning strategies are used to 
reduce the search space and minimize cost of computation. An 
extensive set ofexperiments demonstrate the effectiveness and 
the linear scalability of proposed algorithm. 

Index Terms--Frequent sequence mining, data mining 
algorithms, frequent pattern, sequence database. 

I. INTRODUCTION 

The sequences mining task, which discovers all frequent 
subsequences from a large sequence database, is an important 
data mining problem. It has attracted considerable attention 
from database practitioners and researches because of its 
broad applications in many areas such as analysis of sales 
data, discovering ofWeb access patterns in Web-log dataset, 
extraction ofMotifs from DNA sequence, analysis ofmedical 
database, identifying network alarm patterns, etc. 

Tn the last decade, a number of algorithms have been 
proposed to deal with the problem of mining sequential 
patterns from sequence database. Most of them are based on 
Apriori property which states that any SUb-pattern of a 
frequent pattern must be frequent. These Apriori-Iike 
algorithms utilize a bottom-up candidate generation-and-test 
method and a breadth-fist search space traverse strategy. In 
each candidate generation step, algorithm iteratively genef'dte 
all candidate k-sequences from all frequent (k-l)-sequences. 
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Because each candidatek-sequences has one more item than a 
frequent (k-l)-sequences, this candidate generation method 
can be considered as an item-based extension approach. In 
other words, all these algorithms deal with the problem of 
mining sequential patterns using an item-based viewpoint. 
The main bottleneck of these algorithms is that huge number 
of candidate sequences could be generated and the cost of 
candidate generation, test and support counting is very 
expensive. In fact, a lot ofcandidate sequences is infrequent or 
not exist in database. Furthermore, some algorithms require 
multiple full database-scans as the longest frequent sequence 
and the cost of 110 is very expensive, some approaches use 
very complicated internal data structures to maintain database 
in memory which add great space and computation overhead. 

In this paper, we systematically explore an itemset-based 
extension approach for generating candidate sequence which 
contributes to a better and more straightforward search space 
traversal performance than traditional item-based extension 
approach. The general idea is outlined as follow: A candidate 
sequence can be generated by adding one frequent itemset 
into the end ofa frequent sequence instead ofadding one item 
into a frequent sequence each time. Since any candidates with 
infrequent itemsets are not generated, the number of 
candidates is reduced efficiently. This idea is derived from 
Apriorial1 [I), the first sequence mining algorithm which uses 
itemset, not item, to generate candidate sequence. 

Based on this candidate generation approach, we present a 
novel algorithm, called FINDER (Frequent Sequence Mining 
usiNg ltemset-baseD Extension AppRoach), for discovering 
the set ofall frequent sequences. FINDER is composed oftwo 
separated steps. In the first step, all frequent itemsets are 
discovered and we can get great benefit from existing efficient 
itemset mining algorithms [3](5). In the second step, all 
frequent sequences with at least two frequent itemsets are 
detected by combining depth-first search and itemset-based 
extension candidate generation together. For rapidly support 
counting reason, we adopt vertical bitmap data representation 
proposed in SPAM [2]. Tn addition, FTNDER can reduce the 
search space and minimize cost of computation efficiently by 
using several pruning strategies. 

The rest of the paper is organized as follows: Section 2 
introduces the basic concepts related to the sequence mining 
problem. Section 3 discusses the related work. Section 4 
presents our item set-based extension approach in detail. In 
Section 5, we describe FINDER algorithm with pruning 
strategies and vertical bitmap data representation. An 
experimental study is presented in Section 6. We conclude in 
Section 7 with a discussion of future works. 

II. PROBLEM STATEMENT 

Let!={h h ... ,im}bea set ofm distinct items comprising the 



alphabet. An itemset e = {ib i], ...• it} is a non-empty 
unordered collection of items, Without loss of generality, we 
assume that items of an itemset are sorted in lexicographic 
order and denoted as (i}iz ... ik). Asequence s ={eb eb ." .en } is 
an ordered list ofitem sets and denoted as (e rer ... -en), where 
ei is anitemset. An item can occur at most once in an itemset of 
a sequence, but can occur multiple times in different item sets 
ofa sequence. The numberofinstances of items in a sequence 
is called the length of sequence. Let le,l refer to the number of 
items initemsetei, a sequence with lengthl is called/-sequence, 
where/=? ~iland l=i=n. For example, C-AB-A is a 4-sequence. 

A sequence s}=(ar ar ". -am) is said to contained in 
another sequences ]=(b rbr ". -bn) ifand only if 3 II, i], .... im, 

such that l=i}<i1<'" <im=n, and a} k bil,a2kbi2, ..., am k blm' If 

5} is contained in 5], s} is a subsequence of S1 and S2 is a 
supersequence of s /. This relationship is denoted by s / k S]. 

For example, the sequence A -C is a subsequence of (AS-CD). 
On the other hand, the sequences (C-A) and (AC) are not 

subsequence of (AB-CD). 
The database Dfor sequence mining consists ofa collection 

of input-sequences. Each input-sequence has a unique 
identifier called sequence-id (sid) and each itemset in a given 
input-sequence also have an unique identifier called 
itemset-id (eid). 

Given a sequence database D, the support count of a 
sequence s, denoted as 



For example, each itemset is a l'-sequence because its size 
is 1, sequence (AC-CD) is a 2'-sequence because its size is 2. 
Note that the sizeof a sequence is different from the length of 
a sequence. 

Definition 3. Given sequence database D, a user-specified 
threshold min_sup, we say that an itemset e is frequent if 
support(e) is greater than or equal to min_sup. The set of all 
frequent itemsets is denoted as FE . 

Definition 4. A frequent sequence of size k is called a 
frequent k '-sequence. 

From above definitions, it is obvious that each itemset in a 
frequent sequence is a frequent itemset, each frequent itemset 
is a frequent l' -sequence, and the set ofall frequentitemsets is 
a subset of the set of all frequent sequences, FEr;;;;, FS. 

As an example, consider the database shown in figure 1 
which has four items (A to D) and four input-sequences. The 
figure also shows all the frequent sequences with a min_supof 
50%. In this example we have eight frequent itemsets 
(I'-sequence), seven frequent 2'-sequences and three 
frequent 3'-sequences. 

Example dallibase 
!rid seouences 
001 ABG-ABo..AD 
002 ABO 
003 AB-CO 
004 A·Bo..O 

FreQuent seguences (min SUP"-50%) 
Frequenl I'·sequence A, AB, ABD, AD, 

B BD CO 
FrequenI2'·sequence A·B, A·BO. A·D. AB·D, 

B-D Bo..O D-D 
Froouent 3'·seouence A·B-DA·Bo..O A-D-D 

Figure 1: Example database and frequent sequences 

Lexicographic Tree for sequences. The lexicographic 
subset tree is presented originally by Rymon [10] and adopted 
to describe the itemset lattice in most of well-known frequent 
itemset mining algorithms such as MAFIA [3] and CHARM 
[16]. This approach is extended to describe the framework of 
sequence lattice in SPAM [2]. Assume there is a partial 
ordering relationship, denoted as ~8n sequences. Lets) and s] 

are two sequences, ifs 1 is a subsequence ofs2 thens) ~s].lfsl 
is not a subsequence ofs 1, then there is no relationship in this 
order. All sequences can be arranged in a lexicographic 
sequence tree whose root is null sequence labeled with 0 and 

each node in tree represents a sequence. Each lower level k in 
tree contains all of k-sequences which are ordered 
lexicographically. Ifn is a node in the tree, the children ofn are 

all nodesn 'such thatn=n 'and \1 E ~ => ~ 



straightforward than lexicographic sequence tree. It gives us a 
new and simple viewpoint to analyzing the problem of 
sequence mining. Assume that the database to be mined has n 
different items and the maximal size ofsequence in database is 
m. In item set-based tree, there would be 2n_1 different itemsets 
in level I and (2n-lt different k'-sequences in level k. Because 
all nodes in tree compose the sequence lattice of database, the 
problem of mining frequent sequence can be considered as a 
process oftraversing the itemset-based tree and finding a cut 
through this lattice such that all nodes above the cut are 
frequent sequences, and all nodes below are infrequent. 
Theoretically, the maximal search space size ofmining frequent 
sequence problem is Tgiven by equation (I). 



generating and testing all k item set-based extension 
sequences (candidate sequences) will waste a lot of 
computation. Extremely, ifthe database has plenty offrequent 
itemsets, our algorithm is still impractical. 

Theorem 2. Given a node nand its EL={e joe]..... ed. Ifejis a 
frequent extension item set ofn and ejb ei, then ej is a frequent 

extension itemset ofn. 
Proof. If ejbei, then (n E!) ej) is a subsequence of (n E!) e,). 

Since all subsequences of a frequent sequence are frequent, 
(n E!) ej) is a frequent sequence and ej is a frequent extension 

itemsetofn. 
Pruning strategy 4abbr. PS2). Given a node n and its 

EL={eJ,ez•...,ed. Each ejE EL is checked iteratively. If one 
frequent extension itemset ei is found, we scan the rest 
itemsets in EL and find each ej which is asubset of ej. Since ej 
is a frequent extension itemset, sequence t;I E!) e) can be 

inserted into the set ofall frequent sequences directly without 
further testing. 

For example: given a frequent sequence (A -AC) and its 
ED={ A, AB, ABC, AC, B, BC,C}. If sequence (A-AC-AB) is 
frequent, (AB) is a frequent extension itemset of (A -AC). We 
scan the restitemsets inEL and find (B) is subitemset of (AB). 
So, (A-AC-B) is a frequent sequence and can bc added into FS 
without testing. 

Theorem 3. Given a node n and its EL={eJ,e], ...,ed. If ej is 
an infrequent extension itemset of nand e,b ej, then eJ is an 

infrequent extension itemset of n. 
Proof. Ifeihe}, then (n aJ e) is a supersequence of (nE!)eJ. 

Since all supersequences of an infrequent sequence are not 
frequent, fi E!) e) is an infrequent sequence and ej is a1 

infrequent extension itemset of n. 
Pruning strategy l:abbr. PS3). Given a node n and its 

EL={ eJ,e2, ... ,ek}. Each e,E EL is checked iteratively. Ifone 
infrequent extension itemset e, is found, we scan the rest 
itemsets in EL and trim offall itemsets which are superitemsets 
ofej. 

For example: given a fequent sequence (A-AB) and its 
EL={A, AB, ABC, AC, B, BC,C}. If(A-AB-A) is not frequent, 
(A) is an infrequent extension item set of (A -AB). We scan the 
rest itemsets in EL and find all superitemsets of (A). So, 
item sets (AB), (ABC) and (AC) are infrequent extension 
item sets of (A-AB) and can be trimmed off from EL without 
testing. 

Theorem 4. Given node m and node n, if n is an 
item set-based extension sequence of m. then the frequent 
extension item sets list of n is the subset of the frequent 
extension itemsets Iist 0 f m. 

Proof. LetFLLmand FELn be the frequent extension itemsets 
list ofm andn respectively. Note that m is a subsequence ofn 
since n is anitemset-based extension sequence of m. For each 
ei E FELm (n E!) ei) is a frequent sequence. Since m is a 
subsequence of n. then (mE!)ei) is a subsequence of (nE!)ej). 

Since all subsequences of a frequent sequence are frequent, 
(mE!) ei) is a frequent sequence and eiE FELm. Thus, if n is an 
itemset-based extension sequence of m. FELn ~ FELm. 

Pruning strategy «abbr. PS4). Given a node n and its 
itemset list EL={ebe] ..... ek}. Each eiE EL is checked 

iteratively and the frequent extension itemsets list FEL is 
generated. We can use the FEL as n's children's EL. 

Since each lower node's EL is its parent node's FEL. the 
lower node's EL is reduced and the total search space is 
pruned efficiently. In practice, the benefit of using PS4 is 
signi ficant. 

Figure 6 shows the pseudo-code of procedure DFS with all 
pruning strategies discussed above. At each node n, every 
ejE EL is checked iteratively. Ifsupport(n E!) ej)=min_sup. then 

use PS2 to trim theitemsets inEL .lfsupport(n E!)ej)<min_sup, 
then use PS3 to trim the itemsets in EL. We use frequent 
extension item sets list FEL to perform PSI. Because FEL 
contains only frequent extension itemsets of n, we do not 
repeat depth-first search on n's infrequent children which can 
be seemed as being pruned by usingPSI. At last, the frequent 
extension item sets list FEL is transferred to n's frequent 
children as their EL. 

DFS(n, EL) 
I with pruning strategies 

1) FEL=1l 
2) for each event eIE E L do 
3) if support(ne e,) ~ min_sup then 
4) FS~FS u (nEl1e,); FEL=FELue,; 
5) for each eJE EL and}>! do 
6) if €j r;;; € , then 
7) 	 FS= FSu {n eHiL 


FEL~ FELu Ie,}; 

EL=EL-(ej}; 


8) if supporl(n$ ej)<min_sup then 

9) for each ejE EL lind j>i do 

10) if ejr;;; e, then 

11) EL=EL-(ej}, 

12) for each e,E FEL do 

14) s=nee" 


Option Description 

D Number of customers 

C A verage transactions per customer 

T Average items per transaction 
S Average length of maximal pattern 

Figure 6: Pseudeo-code of DFS with pruning 

C. Data representation 

For efficient support courting reason, FINDER adopts the 
vertical bitmap data representation which is first presented by 
Ayres et al. We reter the reader to [2) for additional detail on 
the vertical bitmap. 

VI. ExPERIMENTAL RESULTS 

In this section, we study the performance of proposed 
FINDER algorithms by comparing it with SPADE and SPAM. 
The experiment') were performed on a 1.7GHz Pentium 4 PC 
with 512MB main memory, running Microsoft Windows 2003 
server. We obtained the source code of SPADE and SPAM 
from their authors' websites. All three algorithms are written in 
C++, and compiled using g++ with option -03. Same as SPAM, 
all synthetic datasets are generated by using the IBM 
AssocGen program [1] which takes the parameters listed in 
table 1 

Table 1: Parameters used in dataset generation 

I 



performance at higher values ofsupport. The primary reason is 

A. ComparisonwithSPADEandSPAM 

We compared FINDER with SPADE and SPAM on several 
synthetic datasets for various minimum support values. The 
results of these tests are shown in Figures 8. 

The figures clearly show that FINDER outperforms SPADE 
by about a factor of average 1.5 on small datasets and better 
than an order of magnitude for reasonably large data sets. 
There are several reasons why FINDER outperforms SPADE: 1) 
FINDER uses itemset·based extension approach for 
generating candidate sequence which insures no candidate 
with infrequent itemsets is generated, the number of 
candidates is reduced efficiently. 2) Since FINDER discovers 
all frequent item sets in the first step, we can get great benefit 
from existing efficient itemset mining algorithms. 3) FINDER 
adopts vertical bitmap representation of data structure which 
performs counting process in an extremely efficient manner. 

The Figures 8 also shows thatSPAM outperforms FINDER 
For each dataset, SPAM is about twice as fast as FINDER at 
lower values ofsupport and two algorithms have near I equal 

due to space requirement problem of FINDER. Assume that 
the database to be mined hasn different items, there would be 
2n.) different possible frequent itemsets in database. It is 
obvious that keeping all bitmaps of frequent itemsets in 
memory is not practical. [n implementation of F[NDER, only 
bitmaps of each item are kept in main memory, each bitmap of 
frequent itemset is generated and released dynamically. 
Because same bitmap of a frequent item set should be 
generated several times, the costs of runtime are increased 
accordingly. 

B. Scale-up 

We study the scale -up performance ofalgorithms as several 
parameters in dataset generation were varied. For each test, 
one parameter was varied and the others were kept fixed. The 
parameters that we varied were number ofcustomers, average 
transactions per customer, average items per transaction and 
average length of maximal pattern. The results of tests are 
shown in Figure 9. It can be easily observed that the FINDER 
scales linearly with four varying parameters. 

a) Dataset D ICIOT5S8 b) Dataset D7C7T7S7 c) Dataset D5Cl5TIOSIO 

d) Dataset D I 5 C 1 5 T I 5 S 1 5 e) Dataset D5C20T20S20 f) Dataset 18C18T18S18 

Figure 7: Execution times on different synthetic datasets for various minimum support values 

a) Varying number of customer 
Dataset D?C20T20S20 
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b) Varying average transactions per customer 
Dataset D 15C?T20S20 
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c) Varying average items per transaction 
DatasetDl2C20T?S20 

d) Varying average length of maXimal pattern 
Dataset D15C20T15S? 

Figure 8: Scale-up with varying parameters of database 



I. CONCLUSION 

In this paper, we systematically explore an item set-based 
extension approach for generating candidate sequence. Based 
on this approach, a novel algorithm for discovering the set of 
all frequent sequences is presented which can reduce the 
search space and minimize cost of computation efficiently by 
using several efficient pruning strategies. 

The itemset-based extension approach opens several 
research opportunities and future work will be done in various 
directions. First, we are studying how to discover maximal or 
closed sequential patterns by using proposed approach. 
Second, we are investigating how to apply this approach to 
incremental mining of sequential patterns. In addition, 
extending FINDER for parallel sequence mining is also 
considered. 
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