
Mining Frequent Sequences Using Itemset-Based Extension

Zhixin Ma, Yusheng Xu, Tharam S. Dillon, Chen Xiaoyun

Abstract-In this paper, we systematically explore an
itemset-based extension approach for generating candidate
sequence which contributes to a better and more
straightforward search space traversal performance than
traditional item-based extension approach. Based on this
candidate generation approach, we present FINDER, a novel
algorithm for discovering the set of all frequent sequences.
FINDER is composed of two separated steps. In the first step, all
frequent itemsets are discovered and we can get great benefit
from existing efficient itemset mining algorithms. In the
second step, all frequent sequcnces with at least two frequent
itemsets are detected by combining depth-first search and
item set-based extension candidate generation together. A
vertical bitmap data representation is adopted for rapidly
support counting reason. Several pruning strategies are used to
reduce the search space and minimize cost of computation. An
extensive set ofexperiments demonstrate the effectiveness and
the linear scalability of proposed algorithm.

Index Terms--Frequent sequence mining, data mining
algorithms, frequent pattern, sequence database.

I. INTRODUCTION

The sequences mining task, which discovers all frequent
subsequences from a large sequence database, is an important
data mining problem. It has attracted considerable attention
from database practitioners and researches because of its
broad applications in many areas such as analysis of sales
data, discovering ofWeb access patterns in Web-log dataset,
extraction ofMotifs from DNA sequence, analysis ofmedical
database, identifying network alarm patterns, etc.

Tn the last decade, a number of algorithms have been
proposed to deal with the problem of mining sequential
patterns from sequence database. Most of them are based on
Apriori property which states that any SUb-pattern of a
frequent pattern must be frequent. These Apriori-Iike
algorithms utilize a bottom-up candidate generation-and-test
method and a breadth-fist search space traverse strategy. In
each candidate generation step, algorithm iteratively genef'dte
all candidate k-sequences from all frequent (k-l)-sequences.

Manuscript received November 20,2007. This work was supported in
part by National Natural Science Foundation of China under grant No.
90612016 and grant No. 60473095.

Ma Zhixin is with the School oflnformation Science and Technology.
Lanzhou University, Lanzhou, 730000, China, (phone:
86-13038799505; fax: 86-931-8912778; e-mail: mazhx@ Izu.edu.cn).

Xu Yusheng and Chen Xiaoyun are with the School of Information
Science and Technology, Lanzhou University. Lanzhou, 730000, China,
(e-mail: xuyusheng@lzu.edu.cn.chenxy@lzu.edu.cn).

Tharam S. Dillon is with School of Information System, Curtin
University, Perth, Australia, (e-mail: tharam.dillon@Cbs.curtin.edu.au)

Because each candidatek-sequences has one more item than a
frequent (k-l)-sequences, this candidate generation method
can be considered as an item-based extension approach. In
other words, all these algorithms deal with the problem of
mining sequential patterns using an item-based viewpoint.
The main bottleneck of these algorithms is that huge number
of candidate sequences could be generated and the cost of
candidate generation, test and support counting is very
expensive. In fact, a lot ofcandidate sequences is infrequent or
not exist in database. Furthermore, some algorithms require
multiple full database-scans as the longest frequent sequence
and the cost of 110 is very expensive, some approaches use
very complicated internal data structures to maintain database
in memory which add great space and computation overhead.

In this paper, we systematically explore an itemset-based
extension approach for generating candidate sequence which
contributes to a better and more straightforward search space
traversal performance than traditional item-based extension
approach. The general idea is outlined as follow: A candidate
sequence can be generated by adding one frequent itemset
into the end ofa frequent sequence instead ofadding one item
into a frequent sequence each time. Since any candidates with
infrequent itemsets are not generated, the number of
candidates is reduced efficiently. This idea is derived from
Apriorial1 [I), the first sequence mining algorithm which uses
itemset, not item, to generate candidate sequence.

Based on this candidate generation approach, we present a
novel algorithm, called FINDER (Frequent Sequence Mining
usiNg ltemset-baseD Extension AppRoach), for discovering
the set ofall frequent sequences. FINDER is composed oftwo
separated steps. In the first step, all frequent itemsets are
discovered and we can get great benefit from existing efficient
itemset mining algorithms [3](5). In the second step, all
frequent sequences with at least two frequent itemsets are
detected by combining depth-first search and itemset-based
extension candidate generation together. For rapidly support
counting reason, we adopt vertical bitmap data representation
proposed in SPAM [2]. Tn addition, FTNDER can reduce the
search space and minimize cost of computation efficiently by
using several pruning strategies.

The rest of the paper is organized as follows: Section 2
introduces the basic concepts related to the sequence mining
problem. Section 3 discusses the related work. Section 4
presents our item set-based extension approach in detail. In
Section 5, we describe FINDER algorithm with pruning
strategies and vertical bitmap data representation. An
experimental study is presented in Section 6. We conclude in
Section 7 with a discussion of future works.

II. PROBLEM STATEMENT

Let!={h h ... ,im}bea set ofm distinct items comprising the

alphabet. An itemset e = {ib i], ...• it} is a non-empty
unordered collection of items, Without loss of generality, we
assume that items of an itemset are sorted in lexicographic
order and denoted as (i}iz ... ik). Asequence s ={eb eb ." .en } is
an ordered list ofitem sets and denoted as (e rer ... -en), where
ei is anitemset. An item can occur at most once in an itemset of
a sequence, but can occur multiple times in different item sets
ofa sequence. The numberofinstances of items in a sequence
is called the length of sequence. Let le,l refer to the number of
items initemsetei, a sequence with lengthl is called/-sequence,
where/=? ~iland l=i=n. For example, C-AB-A is a 4-sequence.

A sequence s}=(ar ar ". -am) is said to contained in
another sequences]=(b rbr ". -bn) ifand only if 3 II, i], im,

such that l=i}<i1<'" <im=n, and a} k bil,a2kbi2, ..., am k blm' If

5} is contained in 5], s} is a subsequence of S1 and S2 is a
supersequence of s /. This relationship is denoted by s / k S].

For example, the sequence A -C is a subsequence of (AS-CD).
On the other hand, the sequences (C-A) and (AC) are not

subsequence of (AB-CD).
The database Dfor sequence mining consists ofa collection

of input-sequences. Each input-sequence has a unique
identifier called sequence-id (sid) and each itemset in a given
input-sequence also have an unique identifier called
itemset-id (eid).

Given a sequence database D, the support count of a
sequence s, denoted as

For example, each itemset is a l'-sequence because its size
is 1, sequence (AC-CD) is a 2'-sequence because its size is 2.
Note that the sizeof a sequence is different from the length of
a sequence.

Definition 3. Given sequence database D, a user-specified
threshold min_sup, we say that an itemset e is frequent if
support(e) is greater than or equal to min_sup. The set of all
frequent itemsets is denoted as FE .

Definition 4. A frequent sequence of size k is called a
frequent k '-sequence.

From above definitions, it is obvious that each itemset in a
frequent sequence is a frequent itemset, each frequent itemset
is a frequent l' -sequence, and the set ofall frequentitemsets is
a subset of the set of all frequent sequences, FEr;;;;, FS.

As an example, consider the database shown in figure 1
which has four items (A to D) and four input-sequences. The
figure also shows all the frequent sequences with a min_supof
50%. In this example we have eight frequent itemsets
(I'-sequence), seven frequent 2'-sequences and three
frequent 3'-sequences.

Example dallibase
!rid seouences
001 ABG-ABo..AD
002 ABO
003 AB-CO
004 A·Bo..O

FreQuent seguences (min SUP"-50%)
Frequenl I'·sequence A, AB, ABD, AD,

B BD CO
FrequenI2'·sequence A·B, A·BO. A·D. AB·D,

B-D Bo..O D-D
Froouent 3'·seouence A·B-DA·Bo..O A-D-D

Figure 1: Example database and frequent sequences

Lexicographic Tree for sequences. The lexicographic
subset tree is presented originally by Rymon [10] and adopted
to describe the itemset lattice in most of well-known frequent
itemset mining algorithms such as MAFIA [3] and CHARM
[16]. This approach is extended to describe the framework of
sequence lattice in SPAM [2]. Assume there is a partial
ordering relationship, denoted as ~8n sequences. Lets) and s]

are two sequences, ifs 1 is a subsequence ofs2 thens) ~s].lfsl
is not a subsequence ofs 1, then there is no relationship in this
order. All sequences can be arranged in a lexicographic
sequence tree whose root is null sequence labeled with 0 and

each node in tree represents a sequence. Each lower level k in
tree contains all of k-sequences which are ordered
lexicographically. Ifn is a node in the tree, the children ofn are

all nodesn 'such thatn=n 'and \1 E ~ => ~

straightforward than lexicographic sequence tree. It gives us a
new and simple viewpoint to analyzing the problem of
sequence mining. Assume that the database to be mined has n
different items and the maximal size ofsequence in database is
m. In item set-based tree, there would be 2n_1 different itemsets
in level I and (2n-lt different k'-sequences in level k. Because
all nodes in tree compose the sequence lattice of database, the
problem of mining frequent sequence can be considered as a
process oftraversing the itemset-based tree and finding a cut
through this lattice such that all nodes above the cut are
frequent sequences, and all nodes below are infrequent.
Theoretically, the maximal search space size ofmining frequent
sequence problem is Tgiven by equation (I).

generating and testing all k item set-based extension
sequences (candidate sequences) will waste a lot of
computation. Extremely, ifthe database has plenty offrequent
itemsets, our algorithm is still impractical.

Theorem 2. Given a node nand its EL={e joe]..... ed. Ifejis a
frequent extension item set ofn and ejb ei, then ej is a frequent

extension itemset ofn.
Proof. If ejbei, then (n E!) ej) is a subsequence of (n E!) e,).

Since all subsequences of a frequent sequence are frequent,
(n E!) ej) is a frequent sequence and ej is a frequent extension

itemsetofn.
Pruning strategy 4abbr. PS2). Given a node n and its

EL={eJ,ez•...,ed. Each ejE EL is checked iteratively. If one
frequent extension itemset ei is found, we scan the rest
itemsets in EL and find each ej which is asubset of ej. Since ej
is a frequent extension itemset, sequence t;I E!) e) can be

inserted into the set ofall frequent sequences directly without
further testing.

For example: given a frequent sequence (A -AC) and its
ED={ A, AB, ABC, AC, B, BC,C}. If sequence (A-AC-AB) is
frequent, (AB) is a frequent extension itemset of (A -AC). We
scan the restitemsets inEL and find (B) is subitemset of (AB).
So, (A-AC-B) is a frequent sequence and can bc added into FS
without testing.

Theorem 3. Given a node n and its EL={eJ,e], ...,ed. If ej is
an infrequent extension itemset of nand e,b ej, then eJ is an

infrequent extension itemset of n.
Proof. Ifeihe}, then (n aJ e) is a supersequence of (nE!)eJ.

Since all supersequences of an infrequent sequence are not
frequent, fi E!) e) is an infrequent sequence and ej is a1

infrequent extension itemset of n.
Pruning strategy l:abbr. PS3). Given a node n and its

EL={ eJ,e2, ... ,ek}. Each e,E EL is checked iteratively. Ifone
infrequent extension itemset e, is found, we scan the rest
itemsets in EL and trim offall itemsets which are superitemsets
ofej.

For example: given a fequent sequence (A-AB) and its
EL={A, AB, ABC, AC, B, BC,C}. If(A-AB-A) is not frequent,
(A) is an infrequent extension item set of (A -AB). We scan the
rest itemsets in EL and find all superitemsets of (A). So,
item sets (AB), (ABC) and (AC) are infrequent extension
item sets of (A-AB) and can be trimmed off from EL without
testing.

Theorem 4. Given node m and node n, if n is an
item set-based extension sequence of m. then the frequent
extension item sets list of n is the subset of the frequent
extension itemsets Iist 0 f m.

Proof. LetFLLmand FELn be the frequent extension itemsets
list ofm andn respectively. Note that m is a subsequence ofn
since n is anitemset-based extension sequence of m. For each
ei E FELm (n E!) ei) is a frequent sequence. Since m is a
subsequence of n. then (mE!)ei) is a subsequence of (nE!)ej).

Since all subsequences of a frequent sequence are frequent,
(mE!) ei) is a frequent sequence and eiE FELm. Thus, if n is an
itemset-based extension sequence of m. FELn ~ FELm.

Pruning strategy «abbr. PS4). Given a node n and its
itemset list EL={ebe] ek}. Each eiE EL is checked

iteratively and the frequent extension itemsets list FEL is
generated. We can use the FEL as n's children's EL.

Since each lower node's EL is its parent node's FEL. the
lower node's EL is reduced and the total search space is
pruned efficiently. In practice, the benefit of using PS4 is
signi ficant.

Figure 6 shows the pseudo-code of procedure DFS with all
pruning strategies discussed above. At each node n, every
ejE EL is checked iteratively. Ifsupport(n E!) ej)=min_sup. then

use PS2 to trim theitemsets inEL .lfsupport(n E!)ej)<min_sup,
then use PS3 to trim the itemsets in EL. We use frequent
extension item sets list FEL to perform PSI. Because FEL
contains only frequent extension itemsets of n, we do not
repeat depth-first search on n's infrequent children which can
be seemed as being pruned by usingPSI. At last, the frequent
extension item sets list FEL is transferred to n's frequent
children as their EL.

DFS(n, EL)
I with pruning strategies

1) FEL=1l
2) for each event eIE E L do
3) if support(ne e,) ~ min_sup then
4) FS~FS u (nEl1e,); FEL=FELue,;
5) for each eJE EL and}>! do
6) if €j r;;; € , then
7) 	 FS= FSu {n eHiL

FEL~ FELu Ie,};

EL=EL-(ej};

8) if supporl(n$ ej)<min_sup then

9) for each ejE EL lind j>i do

10) if ejr;;; e, then

11) EL=EL-(ej},

12) for each e,E FEL do

14) s=nee"

Option Description

D Number of customers

C A verage transactions per customer

T Average items per transaction
S Average length of maximal pattern

Figure 6: Pseudeo-code of DFS with pruning

C. Data representation

For efficient support courting reason, FINDER adopts the
vertical bitmap data representation which is first presented by
Ayres et al. We reter the reader to [2) for additional detail on
the vertical bitmap.

VI. ExPERIMENTAL RESULTS

In this section, we study the performance of proposed
FINDER algorithms by comparing it with SPADE and SPAM.
The experiment') were performed on a 1.7GHz Pentium 4 PC
with 512MB main memory, running Microsoft Windows 2003
server. We obtained the source code of SPADE and SPAM
from their authors' websites. All three algorithms are written in
C++, and compiled using g++ with option -03. Same as SPAM,
all synthetic datasets are generated by using the IBM
AssocGen program [1] which takes the parameters listed in
table 1

Table 1: Parameters used in dataset generation

I

performance at higher values ofsupport. The primary reason is

A. ComparisonwithSPADEandSPAM

We compared FINDER with SPADE and SPAM on several
synthetic datasets for various minimum support values. The
results of these tests are shown in Figures 8.

The figures clearly show that FINDER outperforms SPADE
by about a factor of average 1.5 on small datasets and better
than an order of magnitude for reasonably large data sets.
There are several reasons why FINDER outperforms SPADE: 1)
FINDER uses itemset·based extension approach for
generating candidate sequence which insures no candidate
with infrequent itemsets is generated, the number of
candidates is reduced efficiently. 2) Since FINDER discovers
all frequent item sets in the first step, we can get great benefit
from existing efficient itemset mining algorithms. 3) FINDER
adopts vertical bitmap representation of data structure which
performs counting process in an extremely efficient manner.

The Figures 8 also shows thatSPAM outperforms FINDER
For each dataset, SPAM is about twice as fast as FINDER at
lower values ofsupport and two algorithms have near I equal

due to space requirement problem of FINDER. Assume that
the database to be mined hasn different items, there would be
2n.) different possible frequent itemsets in database. It is
obvious that keeping all bitmaps of frequent itemsets in
memory is not practical. [n implementation of F[NDER, only
bitmaps of each item are kept in main memory, each bitmap of
frequent itemset is generated and released dynamically.
Because same bitmap of a frequent item set should be
generated several times, the costs of runtime are increased
accordingly.

B. Scale-up

We study the scale -up performance ofalgorithms as several
parameters in dataset generation were varied. For each test,
one parameter was varied and the others were kept fixed. The
parameters that we varied were number ofcustomers, average
transactions per customer, average items per transaction and
average length of maximal pattern. The results of tests are
shown in Figure 9. It can be easily observed that the FINDER
scales linearly with four varying parameters.

a) Dataset D ICIOT5S8 b) Dataset D7C7T7S7 c) Dataset D5Cl5TIOSIO

d) Dataset D I 5 C 1 5 T I 5 S 1 5 e) Dataset D5C20T20S20 f) Dataset 18C18T18S18

Figure 7: Execution times on different synthetic datasets for various minimum support values

a) Varying number of customer
Dataset D?C20T20S20

! ~~.
~ 250

!I."""
.$>r

Hill

,~.

.
A ..u,,"<;p ""',,..."',

b) Varying average transactions per customer
Dataset D 15C?T20S20

i
I

J

c) Varying average items per transaction
DatasetDl2C20T?S20

d) Varying average length of maXimal pattern
Dataset D15C20T15S?

Figure 8: Scale-up with varying parameters of database

I. CONCLUSION

In this paper, we systematically explore an item set-based
extension approach for generating candidate sequence. Based
on this approach, a novel algorithm for discovering the set of
all frequent sequences is presented which can reduce the
search space and minimize cost of computation efficiently by
using several efficient pruning strategies.

The itemset-based extension approach opens several
research opportunities and future work will be done in various
directions. First, we are studying how to discover maximal or
closed sequential patterns by using proposed approach.
Second, we are investigating how to apply this approach to
incremental mining of sequential patterns. In addition,
extending FINDER for parallel sequence mining is also
considered.

REFERENCES

[I] 	 R. Agrawal and R. Srikan!. Mining Sequential Patterns. In Proc. of
11th Int'l Conf. on Data Engineering, pp. 3-14, Mar. 1995.

[2] 	 J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential Pattern
Mining Using a Bitmap Representation. In Proc. of ACM SIGKDD
Conf. on Knowledge Discovery and Data Mining, pp. 429-435,
2002.

[3] 	 D. Burdick, M. Calimlim, J. Gehrke. MAFIA: A maximal frequent
itemset algorithm for transactional databases. In Proc. of 17th
Infl Conf. on Data Engineering. pp. 443-452, 200 I.

[4] 	 L. Feng, T. DILLON. Mining XML-Enabled association rule with
templates. In Proc. of3rd In!'1 workshop on Knowledge Discovery
in Inductive Databases, pp. 66-88, 2004.

[5J 	 J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate
generation. In Proc. of the 2000 ACM SIGMOD Int'I Conf on
Management of Data, pp. 1-12, 2000.

[6] 	 B. Kao, M. Zhang, C. Yip, and D.W. Cheung. Efficient Algorithms
for Mining and Incremental Update of Maximal Frequent
Sequences. Data Mining and Knowledge Discovery. Vol. 10, pp.
87-116,2005.

[7] 	 H. Mannila. H. Toivonen, and A.!. Verkamo. Discovery of
Frequent Episodes in Itemset Sequences. In Proc. of 1st InCl Conf.
on Knowledge Discovery and Data Mining. Vol. t, pp. 210-215,
1995.

[8] 	 H. Mannila and H. Toivonen, Discovering Generalized Episodes
Using Minimal Occurrences. In Proc. of 2nd Inl'l Conf. on
Knowledge Discovery and Data Mining. 1996.

[9J 	 J. Pei, J. Han, B. Mortazavi-Asi, J. Wang, H.Pinto, and Q. Chen.
Mining Sequential Patterns by Pattern-growth: The PrefixSpan
Approach. [EEE Transactions on Knowlcde and Data Engineering.
Vol. 16, pp. [-[7,2004.

[10] 	R. Rymon. Search through systematic set enumeration. In Proc. of
3rd [nt'[Conf. on Principles of Knowledge Representation and
Reasoning, pp. 539-550, 1992.

[1 I] R. Srikant and R. Agrawal Mining Sequential Patterns:
Generalizations and Performance Improvements. [n Proc. of [5th
Int'l Conf. on Extending Database Technology, pp. 3·[7,1996.

[12J 	H. Tan, T. Dillon, F. Hadzic, L. Feng, E. Chang. IMB3-Miner:
Mining InducedlEmbedded Subtrees by Constraining the Level of
Embedding. [n Proc. of Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 2006.

[13] H. Tan, T. Dillon, F. Hadzic, L. Feng, E. Chang. Tree Model Guided
Candidate Generation for Mining Frequent Patterns from XML
Documents. ACS TOIS Journal(2005} (Submitted).

[14] 	H. Tan, T. Dillon, F. Hadzic, E. Chang. SEQUEST: Mining
frequent subsequences using DMA Strips. In Proc. of Data Mining
& Information Engineering'06, 2006.

[I 5] M.J. Zaki. SPADE: An Efficient Algorithms for Mining Frequent
Sequences. Machine Learning. Vol. 40, pp.31-60, 200 I.

[16] 	M. J. Zaki and C. Hsiao. Efficient algorithm for mining closed
itemsets and their lattice structure. IEEE Transactions on
Knowledge and Data Engineering. Vol. 17(4}, pp. 462-478, 2005.

