
Noise Characteristics in High Precision GPS Positioning

A.R. Amiri-Simkooei, C.C.J.M. Tiberius, P.J.G. Teunissen,
Delft Institute of Earth Observation and Space systems (DEOS), Delft University of Technology,
Kluyverweg 1, 2629 HS Delft, The Netherlands, e-mail: A.AmiriSimkooei@TUDelft.nl

Abstract. In this contribution we present the results
of three different studies in which the method
of least-squares variance component estimation
(LS-VCE) was used to infer the stochastic proper-
ties of GPS data. The three studies cover the GPS
geometry-free model, the GPS coordinate time series
model, and the GPS zero-baseline model. In the GPS
geometry-free model, LS-VCE is applied to assess
the precision of different observation types, correla-
tion between observation types on L1 and L2, and
satellite elevation dependence of the GPS observ-
ables precision. We show, for example, that the pre-
cision of code observations (for zero baseline) ranges
from 10 to 15 cm depending on the satellite ele-
vation and the type of the receiver used. The LS-
VCE time series analysis pertains to data of various
permanent GPS tracking stations. It reveals that the
noise can be divided into two components, namely
white noise and flicker noise. We show that both
noise components are spatially correlated (e.g. a
correlation coefficient of about 0.8 over short dis-
tances between permanent stations). Finally, in the
(classical) zero-baseline model, nonlinear LS-VCE
is applied to assess the noise characteristics of GPS
receivers based on covariance functions.
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1 Introduction

A proper choice of the data weight matrix is of
importance for many parameter estimation prob-
lems. This also holds true for the many applica-
tions of GPS. A realistic description of the GPS data
noise characteristics is required to obtain minimum
variance estimators through the functional model.
In the case of GPS, the functional model is well-
developed and well documented. The same can not
yet be said of the covariance matrix of the GPS data.

A systematic study of the GPS stochastic model is
of course far from trivial. In this contribution we
demonstrate this using three GPS applications.

Least-squares variance component estimation
(LS-VCE) is employed to assess the noise charac-
teristics of GPS data. Consider the following linear
model of observation equations with a p-number of
unknown (co)variance components

E{y} = Ax, D{y} = Qy =
p∑

k=1

σk Qk, (1)

where y is the m-vector of observables, x is the
n-vector of parameters of interest, and A is the
m × n design matrix. The covariance matrix Qy is
expressed as an unknown linear combination of the
known m×m cofactor matrices Qk’s. The LS estima-
tor for the p-vector of unknown (co)variance com-
ponents σ = [σ1 σ2 ... σp]T can then be obtained
as follows (Teunissen, 1988, Teunissen and Amiri-
Simkooei, 2007): σ̂ = N−1l with the p × p normal
matrix N and the p-vector l as

nkl = 1

2
tr(Q−1

y P⊥A Qk Q−1
y P⊥A Ql), (2)

and

lk =
1

2
yT Q−1

y P⊥A Qk Q−1
y P⊥A y; k, l = 1, ..., p,

(3)
where the orthogonal projector is given as P⊥A =
I−A(AT Q−1

y A)−1 AT Q−1
y . The estimators obtained

by this method are unbiased and of minimum vari-
ance. To apply the method, one starts with an ini-
tial guess for the (co)variance components and per-
forms iterations. The iterative procedure is repeated
until the estimated (co)variance components do not
change with further iterations. Since the method
is based on the least-squares principle, the inverse
of the normal matrix N automatically gives the
covariance matrix of the estimated (co)variance
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components, namely Qσ̂ = N−1 which offers us
measures of precision for the estimators.

2 GPS Geometry-Free Model

The GPS geometry-free observation model (GFOM)
is one of the simplest approaches to processing and
analysing data from a baseline and to integer GPS
double differenced (DD) ambiguity estimation in
particular. One advantage of using this model is its
ease which stems from the linearity of the obser-
vation model and its independence of satellite orbit
information. This model will be used in this section
as a favorable model for estimation of (co)variance
components via LS-VCE. The GFOM consists of
two parts: the functional model and the stochastic
model. The functional model relates the observations
to the parameters of interest whereas the stochas-
tic model describes the precision of and the mutual
correlation between the observations. The functional
model is based on the non-linearized DD dual fre-
quency pseudo range and carrier phase observation
equations. We use the LAMBDA method (see e.g.
Teunissen (1993)) to fix the DD ambiguities and then
introduce them into the model. For more information
we refer to Jonkman (1998).

We need to come up with a realistic and adequate
covariance matrix of the GPS observables in the case
of the linear and simple GFOM. To this end we
apply the LS-VCE. The construction of the covari-
ance matrix (for undifferenced observables) starts
from a scaled unit matrix per observation type and
takes place in different steps. In this application,
the following three characteristics of GPS observ-
ables will be evaluated: (1) the precision of the phase
and code observations, (2) correlation between the
observables on L1 and L2 frequencies, (3) satellite
elevation dependence of the observables precision.
Noise characteristics of the GPS observables have
recently been assessed by different authors. We refer
to e.g. Bischoff et al. (2005, 2006).

A data set was obtained from the Delfland 99
campaign in the Netherlands; one hour of Trimble
4000SSI zero baseline data, 8 satellites with four
observation types, namely C1-P1-L1-L2, and a 1 sec
interval. In the sequel, the estimated (co)variance
components for this receiver, over 3600 epochs
divided into 360 10-epoch groups, will be presented.

The goal now is to estimate one variance com-
ponent for each observation type when consider-
ing 10 epochs of all observations. We neglect here
the satellite elevation dependence of the observ-
ables precision, the time correlation, the covariance

between channels, and the covariance between differ-
ent observation types. The final (co)variances can be
obtained by multiplying the estimated (co)variance
components with their a-priori values 302 cm2 and
32 mm2 for undifferenced code and phase observ-
ables, respectively. Note that the estimation of two
individual variance components for L1 and L2 car-
rier phase data would cause the VCE problem to be
ill-posed. The ill-posedness will be removed if we
estimate one single variance component instead.

Figure 1 shows the groupwise estimates of vari-
ance components in the last iteration, using the full
hour of the data for the L1/L2 phase and C1 and
P2 code observations of Trimble receiver. The esti-
mated factors, if multiplied with their initial values
given in the cofactor matrices, give the final esti-
mates. In Figure 1 the estimated variance compo-
nents grow towards the end of the graph. It is likely
because of one satellite, which is setting and has the
lowest elevation angle (nearly 10◦). Table 1 gives
the standard deviation estimates (square-root of vari-
ance components) as well as their precision (in terms
of undifferenced observables). The results indicate
that the noise of GPS observations is about 0.3 mm,
10 cm, and 16 cm for phase, C1, and P2, respectively.
The precision of the estimates are at micrometre and
millimetre level for phase and code observations,
respectively.

In addition to the variances, one can for instance
estimate the covariance between C1 and P2. The
satellite elevation dependence of the observables
precision, the time correlation and the covari-
ance between channels are disregarded. Figure 2
shows the groupwise estimates of the correlation
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Fig. 1. Variance components groupwise estimated for L1 and
L2 phase and C1 and P2 code observables using LS-VCE.
Factors are to be multiplied by 302 cm2 and 32 mm2 for code
and phase observables, respectively.
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Table 1. Standard deviation estimates of phase and code
observables as well as their precision obtained using LS-VCE

Observation type σ̂ (mm) σσ̂ (mm)

L1/L2 0.29 0.001
C1 94.25 0.410
P2 155.09 0.510

coefficient. As can be seen, the mean is around ρ̂ =
0.44 and the estimates do not average out. In order
to test the significance of the correlation coefficient,
one needs to know the distribution of ρ̂. For some
special cases it is possible to determine the distribu-
tion. But in general one will have to be satisfied with
an approximation using a normal distribution, which
is not unrealistic when the redundancy of the model
is large. The correlation between C1 and P2 code
observations for the 4000SSI turns out to be signifi-
cant. This is verified when we compare the mean cor-
relation coefficient with its precision, namely σρ̂ =
0.007. This can also be simply resulted from the
Chebyschev inequality even when one does not spec-
ify a distribution for ρ̂.

To evaluate the satellite elevation dependence
of the GPS observables, 3 satellites have been
employed. Figure 3 shows the groupwise estimates
of variance components using the full hour of the
data (C1 code) of the satellites PRN 05, 29 and
09. The variance components computed for satellite
PRN 09, with the lowest elevation angle, are larger
than those estimated for satellites PRN 05 and 29.
Also, as the elevation angle decreases, a positive
trend is observed (for the last groups, on average, the
estimated variance components are larger than those
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Fig. 2. Groupwise estimated correlation coefficient between
C1 and P2 codes obtained from LS (co)variance estimates.
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Fig. 3. Groupwise estimated variance components of C1 code
estimated for different satellites. Factors are to be multiplied
by 302 cm2 for code observables.

of the first groups). Another point is that the variance
components estimated for satellites PRN 05 and 29
are negatively correlated. This can also be obtained
from the covariance matrix of the estimates Qσ̂ =
N−1. The correlation coefficients between satellites
PRN 05 and 29 are ρ̂φ = −0.70, ρ̂c1 = −0.63
and ρ̂p2 = −0.67, for phase, C1, and P2, respec-
tively. This implies that the precision of the data of
the satellites PRNs 29 and 05 is not much different.
This makes sense since they both have high elevation
angles. The numerical results indicate that the noise
of satellites PRN 05-29-09 observations is about 0.2-
0.2-0.8 mm, 5-8-13 cm and 4-12-33 cm for phase,
C1, and P2, respectively. The precision of these esti-
mates is at a few micrometre level, one millimetre
level, and a few millimetre level, respectively.

3 GPS Coordinate Time Series

In this section we assess the noise characteristics in
time series of daily position estimates for perma-
nent GPS stations using LS-VCE. The precision of
these estimates is often assessed by their repeatability
defined by the mean squared error (MSE) of individ-
ual coordinate components (i.e. north, east, and up)
about a linear trend. Except for a significant episodic
deformation, such as large earthquakes, a linear trend
can be a good representation of the (long term) defor-
mation behavior. Therefore, the site velocities are
usually determined by linear regression of individual
coordinate components.

Previous work reveals the presence of white noise,
flicker noise, and random walk noise in the GPS
time series (see e.g. Langbein and Johnson, 1997,
Zhang et al., 1997). If we now assume that the time
series of GPS coordinates are composed of white
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noise with variance σ 2
w , flicker noise with variance

σ 2
f , and random walk noise with variance σ 2

rw , the
covariance matrix of the time series can be written as
Qy = σ 2

w I +σ 2
f Q f +σ 2

rwQrw where I is the m×m
identity matrix, and Q f and Qrw are the cofactor
matrices relating to flicker noise and random walk
noise, respectively. The structure of the matrix Qy

is known (through I , Q f , and Qrw), but the contri-
butions through σw , σ f , and σrw are unknown. The
variance components σ 2

w, σ 2
f and σ 2

rw can now be
estimated using the method of LS-VCE.

We analyze global time series of site positions
which are supposed to have more noise than those
from a regional solution. The daily GPS solutions
of 5 stations, namely KOSG, WSRT, ONSA, GRAZ
and ALGO, processed by the GPS analysis center at
the Jet Propulsion Laboratory (JPL), are adopted. In
geophysical studies, for most available time series,
only one of σ 2

f and σ 2
rw is estimated along with σ 2

w

(Mao et al., 1999). One advantage of LS-VCE is
the possibility of hypothesis testing with the stochas-
tic model. Using the w-test statistic, we can in fact
decide which noise component, in addition to white
noise, is likely to be present in the time series; either
flicker noise or random walk noise. Based on the
results (not included here), a combination of white
noise plus flicker noise turns out in general to best
characterize the noise in all three position compo-
nents (see Amiri-Simkooei et al., 2007).

Table 2 gives the white and flicker noise ampli-
tudes for two stochastic models. We find in general
that the horizontal components are less noisy than the

vertical components by a factor of 2–4. Compared to
the white noise model only, the amplitude of white
noise for the white noise plus flicker noise model
is about 30% smaller. There exists significant flicker
noise in the data (compare flicker noise amplitudes
with their precision). We have obtained that the (for-
mal) standard deviations of the site velocity for white
noise plus flicker noise model compared to those for
the pure white noise model are larger by factors of
10–15. Therefore, the simple pure white noise model
gives too optimistic results for the site velocity uncer-
tainty.

A significant and comparable amount of flicker
noise (between sites) may reflect a common phys-
ical basis, such as seasonal atmospheric mass dis-
tribution, atmospheric noise, or second order iono-
spheric effects. Reduction in time-correlated noise
from global solutions to regional solutions sug-
gests that some of the noise is spatially correlated
(Williams et al., 2004). An issue related to the noise
in global time series is the impact of spatial correla-
tion on the rate uncertainties.

Using the LS-VCE, we have estimated the spatial
correlation, each time between two stations whereby
we obtain one correlation coefficient for each noise
component. Table 3 gives the numerical results. The
table includes the spatial correlation coefficients of
noise components (white and flicker noise). Both
noise components seem to be spatially correlated to
some extent. The spatial correlation of white noise
(absolute values) is less than that of flicker noise,
on average, by factors of 0.90, 0.70, and 0.65 for

Table 2. White noise and flicker noise amplitude estimates obtained by LS-VCE for north, east, and up components of site time
series for two stochastic models (white noise only: WN, combination of white noise and flicker noise: WN+FN); σ is standard
deviation of estimator; N: north, E: east, and U: up component

WN (mm) WN (mm) + FN (mm)

Site Code N E U N E U N E U

KOSG 3.34 3.44 7.45 2.45 2.54 5.21 3.41 3.67 8.82
σ 0.04 0.04 0.09 0.05 0.05 0.12 0.18 0.18 0.40

WSRT 2.76 2.82 7.12 2.12 2.35 5.08 2.58 2.37 8.24
σ 0.04 0.04 0.11 0.05 0.05 0.14 0.18 0.19 0.47

ONSA 3.35 3.65 7.85 2.54 2.70 5.28 3.39 3.45 9.62
σ 0.04 0.04 0.10 0.05 0.05 0.13 0.18 0.19 0.42

GRAZ 3.74 4.75 9.12 2.81 3.62 6.53 3.62 4.16 9.90
σ 0.05 0.06 0.11 0.06 0.07 0.15 0.20 0.25 0.49

ALGO 3.62 3.60 8.22 2.32 2.77 5.20 3.87 3.67 9.71
σ 0.04 0.04 0.10 0.05 0.06 0.13 0.17 0.19 0.40
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Table 3. Estimated spatial correlation coefficients of white
noise (top) and flicker noise (bottom) components obtained
from LS (co)variance estimates (using LS-VCE). Functional
model consists of two time series, i.e. between corresponding
N: north, E: east, or U: up components, and stochastic model
includes four white and flicker noise variance components as
well as two covariances of noise components between the two
series. This table presents only correlation coefficients. Preci-
sion of estimators ranges from 0.01 to 0.10

Correlation coefficient

Between Sites N E U

KOSG WSRT 0.85 0.61 0.70
KOSG ONSA 0.69 0.46 0.52
KOSG GRAZ 0.64 0.38 0.30
KOSG ALGO 0.16 −0.17 −0.20

WN WSRT ONSA 0.79 0.51 0.55
WSRT GRAZ 0.76 0.48 0.49
WSRT ALGO 0.30 −0.13 −0.09
ONSA GRAZ 0.62 0.46 0.39
ONSA ALGO 0.11 −0.18 −0.13
GRAZ ALGO 0.14 −0.12 −0.09

KOSG WSRT 0.92 0.89 0.88
KOSG ONSA 0.80 0.69 0.72
KOSG GRAZ 0.63 0.51 0.69
KOSG ALGO 0.27 −0.45 −0.15

FN WSRT ONSA 0.81 0.86 0.79
WSRT GRAZ 0.75 0.50 0.83
WSRT ALGO 0.20 −0.07 −0.28
ONSA GRAZ 0.62 0.49 0.57
ONSA ALGO 0.27 −0.26 −0.22
GRAZ ALGO 0.32 −0.35 −0.29

north, east, and up components, respectively. The
maximum correlations for both noise components
have been obtained between the nearest sites, i.e.
between KOSG and WSRT (they are only 100 km
apart). This confirms that the noise has a common
physical basis. Over the largest station separation
(between ALGO and other sites), the spatial correla-
tion is the lowest for the north component. It becomes
negative for the east and up components. These all
together confirm that the site velocity between sta-
tions will be correlated as well. If one treats the
time series individually, the correlation between time
series should be added after into the covariance
matrix of the site velocities.

4 GPS Receiver Noise Characteristics

We now consider a nonlinear variance component
estimation problem. For this purpose we apply the
LS-VCE to covariance functions. Using the Tay-
lor series expansion, it is in principle possible

to linearize the nonlinear stochastic model. When
expanded into the Taylor series, the covariance
matrix can be written as Qy = Q(σ ) ≈ Q0 +∑p

k=1 σk Qk . We can therefore apply the LS-VCE
to estimate σ (see Teunissen and Amiri-Simkooei,
2007). Since we linearize a nonlinear function, the
solution should be sought through an iterative proce-
dure. We can iterate until the estimated (co)variance
components do not change by further iterations.

The goal, as an example, is to assess the noise char-
acteristics of a GPS Trimble 4000SSI receiver (again
data from the Delfland 99 campaign). Our point of
departure here is the zero baseline time series. To
obtain such baseline components, the single differ-
encephaseobservationequation isemployed.Thedata
collected by the 4000SSI were static, but they were
processed in kinematic mode (new unknown coordi-
nates for every epoch). Baseline components and dif-
ferential receiver clock biases along with double dif-
ference ambiguities were estimated by least-squares.
We used the LAMBDA method to fix the ambigui-
ties (seeTeunissen,1993).Wetherefore introduced the
fixed ambiguities into the model (see Amiri-Simkooei
and Tiberius, 2007, Tiberius and Kenselaar, 2000). We
havenowtimeseriesofzero baselinecomponentswith
one second interval. This is considered as input for fur-
ther assessment by LS-VCE. We will focus on time
correlation.

In practice, covariance functions are formed by
combining a small number of simple mathemat-
ically acceptable expressions or models. We will
apply the method to the autoregressive noise (model
I) and Gaussian noise (model II) models to the
real data of the zero baseline test. The covariance
functions related to these models are Q1(τ ) =
σ 2

c exp (−ατ) and Q2(τ ) = σ 2
c exp (−ατ 2), respec-

tively. The parameters α and σ 2
c are the time-scale

(time-constant) and variance of the noise process,
respectively. Both α and σ 2

c are assumed to be
unknown and should be estimated using the non-
linear LS-VCE. In each noise model, we will also
include a white noise variance component, namely
σ 2
w . Therefore, for each model, three unknown

parameters are to be estimated; the variances σ 2
w and

σ 2
c and the time-scale α.
The numerical results are given in Table 4. The

results show that the 4000SSI is not free from time
correlation. The variance components σ 2

w and σ 2
c of

both stochastic models, when compared to their pre-
cision, are significant. This confirms that the time
series contain white and colored noise components.
The time-scale parameter α is on average 0.16
sec−1 and 0.04 sec−2 for the autoregressive and
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Fig. 4. Empirical (light line) and theoretical (black line) autocorrelation functions. Dashed lines show 95% confidence interval of
theoretical autocorrelation function; white plus autoregressive noise model (a); white plus Gaussian noise model (b).

Gaussian noise models, respectively. This implies
that there exist time correlation over about 10–20
seconds. One can also verify this by the empiri-
cal autocorrelation function which can simply be
obtained from the least-squares residuals êi as σ̂τ =
(
∑m−τ

i=1 êi êi+τ )/(m − τ ), τ = 0, ...,m − 1 (see
Teunissen and Amiri-Simkooei, 2007). On the other
hand, we can define the theoretical autocorrelation
function which is obtained from the LS estimates of
σ̂w , σ̂c, and α̂. Figure 4 shows the empirical and the-
oretical autocorrelation functions which match each
other well. Note that the empirical autocorrelation
function resulted from the weighted LS-VCE when
the weight matrix is taken as an identity matrix. The
presence of a sharp bend in both the empirical and
theoretical autocorrelation functions (at time lag of
τ = 1 sec) confirms that the noise of the time series

Table 4. Estimated variances σ 2
w and σ 2

c and time-scale α as
well as their precision by LS-VCE; white plus autoregressive
noise model (left); white plus Gaussian noise model (right)

model I model II

Component σ̂ σσ̂ σ̂ σσ̂
σ 2
w 0.039 0.003 0.065 0.002

N α 0.149 0.013 0.042 0.003
σ 2

c 0.195 0.013 0.156 0.010

σ 2
w 0.017 0.001 0.025 0.001

E α 0.146 0.014 0.036 0.002
σ 2

c 0.058 0.004 0.047 0.003

σ 2
w 0.098 0.007 0.164 0.005

U α 0.180 0.015 0.048 0.003
σ 2

c 0.436 0.026 0.346 0.021

is not all colored but partly white. This is also verified
by the numerical results (see Table 4).

5 Conclusions

In this study we demonstrated that the general LS-
VCE can easily handle different models and serve
different applications. We presented the results of
three different GPS application examples of the
method for which linear forms of the functional mod-
els were used. The goal was to assess the stochastic
properties of GPS data. On the basis of the numer-
ical results obtained, the following conclusions and
remarks can be given:

� The LS-VCE model is a powerful method for
estimation of the stochastic model parameters.
It also provides the precision of the estimators.
The method has several other attractive features
(see Teunissen and Amiri-Simkooei, 2007). This
method can therefore be introduced as a standard
method for estimation (and also testing) of the
(co)variance components in the stochastic model.

� In the GPS geometry-free model, LS-VCE was
used to assess the noise characteristics of GPS
observables. As expected, the variance of a GPS
observable generally depends on the elevation
of the satellite. Also, significant correlation can
occur between different observation types, e.g.
between the C1 and P2 codes. This is a good moti-
vation to study the GPS stochastic model in more
detail.

� The LS-VCE was applied to data of various per-
manent GPS tracking stations. It revealed that
both white and flicker noise components are sig-
nificant in GPS coordinate time series. In fact,
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ignoring the colored (flicker) noise, gives too opti-
mistic results for the site velocity uncertainty. We
also showed that both noise components are spa-
tially correlated. The largest correlation coeffi-
cients were obtained between the nearest stations.
This confirms that the noise has a common phys-
ical basis on the global time series.

� Finally, nonlinear LS-VCE was applied to assess
the temporal correlation of GPS receivers based
on covariance functions. The results showed that
the 4000SSI GPS receiver is not free from time
correlation. This was verified based on the empir-
ical and theoretical autocorrelation functions.
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