
sensors

Review

Generative Design in Building Information Modelling (BIM):
Approaches and Requirements

Wei Ma 1, Xiangyu Wang 2,3,*, Jun Wang 4 , Xiaolei Xiang 1 and Junbo Sun 1

����������
�������

Citation: Ma, W.; Wang, X.; Wang, J.;

Xiang, X.; Sun, J. Generative Design

in Building Information Modelling

(BIM): Approaches and Requirements.

Sensors 2021, 21, 5439. https://

doi.org/10.3390/s21165439

Academic Editor: Hossam A. Gabbar

Received: 6 July 2021

Accepted: 9 August 2021

Published: 12 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Design and the Built Environment, Curtin University, Bentley, WA 6102, Australia;
wei.ma3@postgrad.curtin.edu.au (W.M.); Xiaolei.Xiang@curtin.edu.au (X.X.); tunneltc@gmail.com (J.S.)

2 School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang 330013, China
3 Australasian Joint Research Centre for Building Information Modelling, School of Built Environment,

Curtin University, Perth, WA 6102, Australia
4 School of Engineering, Design and Built Environment, Western Sydney University,

Kingswood, NSW 2747, Australia; jun.wang@westernsydney.edu.au
* Correspondence: xiangyu.wang@curtin.edu.au

Abstract: The integration of generative design (GD) and building information modelling (BIM),
as a new technology consolidation, can facilitate the constructability of GD’s automatic design solu-
tions, while improving BIM’s capability in the early design phase. Thus, there has been an increasing
interest to study GD-BIM, with current focuses mainly on exploring applications and investigating
tools. However, there are a lack of studies regarding methodological relationships and skill require-
ment based on different development objectives or GD properties; thus, the threshold of developing
GD-BIM still seems high. This study conducts a critical review of current approaches for developing
GD in BIM, and analyses methodological relationships, skill requirements, and improvement of
GD-BIM development. Accordingly, novel perspectives of objective-oriented, GD component-based,
and skill-driven GD-BIM development as well as reference guides are proposed. Finally, future
research directions, challenges, and potential solutions are discussed. This research aims to guide
designers in the building industry to properly determine approaches for developing GD-BIM and
inspire researchers’ future studies.

Keywords: generative design; building information modelling; technology integration; methodologi-
cal relationships; skill requirement and improvement; novel development perspectives

1. Introduction

Generative design (GD) as a rule-driven iterative design process is based on algo-
rithmic and parametric modelling to automatically explore, iterate, and optimise design
possibilities by defining high-level constraints and goals [1,2]. Building Information Mod-
elling (BIM) is a collection of regulations, procedures, and technologies enabling the
creation, recording, and management of buildings’ digital information through their entire
life cycle [3–7]. The GD-BIM integration combines a new intelligent design approach and
the technology of automated construction information generation [8–11]. It can facilitate
the constructability of GD’s automatic design solutions, and meanwhile improve BIM’s
capability in the early design phase. Thus, developing GD-BIM has drawn increasing
attention academically and practically [12–16].

The current research regarding GD-BIM development mainly focuses on exploring
applications and investigating tools. For instance, some GD-BIM are developed and
studied to creatively tackle design issues, while some research examine software and
programming means to compare developing tools [17–22]. However, there are a lack
of methodological relationship studies, specifically, determination of proper developing
approaches, skill requirements, and improvement paths based on different development
objectives or GD properties; thus, the threshold of developing GD-BIM still seems high.

Sensors 2021, 21, 5439. https://doi.org/10.3390/s21165439 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3384-4050
https://doi.org/10.3390/s21165439
https://doi.org/10.3390/s21165439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165439
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165439?type=check_update&version=3


Sensors 2021, 21, 5439 2 of 26

It is especially difficult for those designers in the building industry with little knowledge
of GD or programming. Therefore, appropriate and practicable methodological guidance
is in great demand to provide designers advice on developing GD in BIM.

The aim of this review is to investigate the current approaches of developing GD
in BIM to discover methodological relationships, skill requirements, and improvement,
to support designers on proper method selection for developing GD-BIM. Thus, publica-
tions regarding developing GD in BIM over the last decade are searched and reviewed
in this study. Section 2 clarifies the necessity and logic of developing GD in BIM by
investigating background knowledge. Section 3 explains research methods. Section 4
reviews, compares, and analyses the objectives, programming language suitability, and
skill learning of developing GD-BIM, to propose perspectives of objective-oriented, GD
component-based, and skill-driven GD-BIM development. In this section, a set of refer-
ence guides are suggested to designers on development methods selection, skill learning,
and improving paths. Section 5 discusses future research directions and challenges and
recommends potential solutions.

2. Generative Design and Building Information Modelling

This section aims to clarify the necessity and logic of developing GD in BIM by inves-
tigating background knowledge of GD, GD components, BIM, and GD-BIM integration.

2.1. Generative Design

GD is a rules-driven iterative design process [1]. It is based on algorithmic and
parametric modelling to automatically explore, iterate, and optimise design possibilities
by defining high-level constraints and goals [2]. Shea et al. [23] stated the aim of GD is
to “explore creative and constructable designs by creating new design processes using the
latest computing and manufacturing capabilities”. With development of computer power
and growing interest of researchers and practitioners, GD has become a new intelligent
design approach and has been studied and applied in many fields academically and
practically [8,24–38].

The most powerful capability of GD is to automatically explore and iterate design
possibilities, and permutate the best solutions to human designers for decision-making [34].
This process usually occurs at the conceptual design stage, where GD can operate while
other CAD applications are unable to support [39]. In fact, GD can explore design possi-
bilities for any type of AEC designs (e.g., architectural design, structural design, interior
design, urban design, or urban planning, etc.) at the design formulation stage. Thus, it is
considerably useful to implement GD at the early design stage in the AEC industry.

2.2. Components of a GD

Currently, there are different classifications of GD components from various perspec-
tives. Krish [39] breaks down the GD process into three components from the perspective
of design: (1) “a design schema”, (2) “a means of creating variations”, and (3) “a means
of selecting desirable outcomes”. Marsh [40] discussed GD components from the view of
performance measurement: (1) “Configuration Variation”, (2) “Performance Metric”, and
(3) “Decision-Making Response”. Nagy and Villaggi [2] states from the angle of formulating
GD: (1) “a generative model expressing broad design possibilities”, (2) “an evaluative com-
ponent consisting of proposed design targets”, and (3) “a metaheuristic search algorithm
navigating the design iterations”. It is seen that the classifications are determined based
on the corresponding research objectives. Thus, in this study, a GD will be decomposed
from the aspect of development, to facilitate the investigation of relationships between
GD properties and development methods.

Generally, creating a GD consists of several steps: define design goals, formulate
design constraints, determine algorithms, program the GD, run the GD, and modify
the generated parametric models based on goals and constraints until satisfied [33,39].
Among them, programming the algorithms and design constraints are the major devel-



Sensors 2021, 21, 5439 3 of 26

opment process, as the design goals are pre-defined, while the parametric models are
automatically generated accordingly [2]. Therefore, in this study, a GD is decomposed
into two major components from the perspective of developing its: (1) algorithm, and
(2) design constraints.

The algorithm is usually highly abstract as it is used to instruct the computer to
generate and optimise design possibilities through search methodologies. Singh and
Gu [34] summarised five commonly used algorithms, namely, generative design techniques,
as: Genetic Algorithms, Shape Grammars, L-systems, Swarm Intelligence, and Cellular
Automata. As for usages, the proper selection of algorithms is determined according to the
characteristic of design objectives [34]. For instance, if the design purposes are to discover
space layout or visual compositions exploratorily, then the Shape Grammars algorithm is
most likely selected. Or, if the objective is design improvement or optimisation, then the
Genetic Algorithm is usually employed.

The design constraints are relatively intuitive and used to limit the scope of design
exploration and narrow the search range of optimisation. The design constraints are a
series of design conditions or preferences, such as spatial or morphological requirements,
dimensional constraints, materials selections, manufacturing methods, or even cost con-
straints, etc. [26,29,41]. They are scripted by designers in a computer recognizable format
to control the design exploration, iteration, or evolution [42–44]. As for scripting, design
constraints are mostly manual scripted; however, research has started to develop automatic
methods. For example, approaches to extract constraints-related information from text
format to computer recognisable format have been studied and developed [45–48]. Yet,
manually scripting of design constraints is still more common and flexible so far.

To identify the methodological relationship between development methods and the
GD components, their different characteristics and properties need to be further studied.
Detailed analysis is elaborated in Section 4 (Analysis section).

A figure is proposed to indicate the relationship of GD components and the process
of running a GD, as presented in Figure 1. Firstly, the design goal is inputted into the
GD program in the computer along with appropriate algorithms and well-defined design
constraints. Then, parametric models are generated, iterated, and permuted to designers
for decision-making. Finally, designers modify parameters in the algorithm and design
constraints to adjust models until design goals are achieved.

Figure 1. Relationship of GD components and the process of running a GD.

2.3. Building Information Modelling

As a revolutionary technology, BIM has rapidly changed the paradigm of a building’s
conception, design, construction, and operation [49–52]. Back to 1970s, the initial research
of BIM began as parametric modelling research; however, the practical implementation
of BIM in the building industry started from the mid-2000s [49]. Since then, BIM has
quickly become the centrepiece of AEC technology [49]. Wang et al. [3] demonstrate



Sensors 2021, 21, 5439 4 of 26

that BIM is a collection of regulations, procedures, and technologies enabling interacting
to create a “digital representation of the projects’ physical and functional characters”.
In BIM, digital formatting of the building’s fundamental design and information data can
be recorded and managed through the projects’ entire life cycle [4–7]. Meanwhile, the
quality of designs and datasets in BIM can be well controlled and improved by various
approaches [53,54]. Therefore, it enables manipulation and maintenance of shared data
and information resource for all users [55–57]. In conclusion, “BIM is not just software; It is
a process and software” [49].

BIM software (e.g., Revit or ArchiCAD, etc.) provide an Application Programming
Interface (API), allowing the access, extraction, selection, and modification of a building’s
data and information. Besides, the API provides users a platform to develop add-ons by
writing a program or script to extend the application’s capabilities [58,59]. For instance,
the Revit API enables proficient Revit users to customize their own tools by programming
with it to enhance Revit’s capability, and to improve workflows [59].

2.4. Integration of GD with BIM

Although BIM is applicable throughout the project’s entire life cycle, its usages in the
design phase are mainly limited in the later design stages (e.g., the design development
stage, structural design stage, mechanical, electrical, and plumbing design stage, etc.).
In terms of design exploration in the early design stage or the creative phase (e.g., the
conceptual design stage), the capability of BIM is inadequate. However, integrating GD
demonstrates the potential to make up this deficiency of BIM.

GD, as a computer-aided design (CAD) method, mostly focuses on geometrical mod-
elling [39,60] to quickly explore design. However, the “information” attribute usually
cannot be generated. Differently, BIM produces components with both geometry and
information attributes to facilitate buildability [60–63]. Thus, integrating BIM can improve
the constructability of design solutions generated by GD.

The GD-BIM integration is beneficial to improve each other’s capability by making up
mutual deficiencies. The integration can support automatic and fast design explorations
and enable buildability of these GD solutions, while extending BIM’s capability in the early
design phase.

To implement the integration, the API in BIM provides possibility and platforms.
In fact, GD as a new feature is already available in Revit 2021 [64], the latest Revit version.
Although the current GD availability in Revit is limited (only three design studies), the
exploration and customization of more GD is allowed by using the Revit API. Therefore,
developing GD in BIM (e.g., Revit) has a promising future.

3. Review Methodology

This research conducted a critical review using the content analysis-based review
method [65–68] to obtain a novel understanding of methodological relationships, skill
requirements, and improvement for developing GD in BIM. Scopus is selected as the search-
ing database in this study as it is claimed the “largest abstract and citation database” [69]
and provides the broadest overview of international and interdisciplinary scientific data
and literature [70]. “Generative design” and “building information modelling” or “BIM”
are the primary keywords for searching. However, GD is often confused with parametric
design (PD) and algorithm design (AD), and used in parallel [71–74]. Therefore, it is
imperative to understand the relationship among these items before determining the final
searching keywords. According to Caetano et al. [71], “AD is a subset of GD”, and “PD
is orthogonal to AD and GD”, which means AD and certain PD can be considered as GD
as well. Therefore, AD and PD are added as a search key word as well to make the litera-
ture search as comprehensive as possible and avoid missing literature. To conclude, the
keywords are determined as “generative design” OR “parametric design” OR “algorithm
design” AND “building information modelling” OR “BIM”.



Sensors 2021, 21, 5439 5 of 26

The past 10 years (2010–2020) was set as the time frame for searching because de-
veloping GD in BIM is a newly emerged research area. There have been great leaps in
computational design, including GD and BIM, in the last decade; therefore, review of the
past 10 years period can provide a relatively sufficient overview of the present GD-BIM
development [29]. The document type was limited to articles and conference papers to
ensure the publication quality.

As such, the search criteria are as following:

• Scopus as the search database.
• Search within: article title, abstract, keywords.
• Search keywords: “Generative design” OR “Parametric design” OR “Algorithm de-

sign” AND “Building information modelling” OR “BIM”.
• Publications published between 2010 and 2020.
• Document type: articles and conference papers.
• Publication language: English.

Initially, 114 documents were found in the Scopus database, based on the above
search criteria. Non-related subject areas (e.g., Mathematics, Business, Management and ac-
counting, Energy, Medicine, Chemical Engineering, Economics, Econometrics and Finance,
Physics and Astronomy) are then excluded. Finally, 93 publications were selected as highly
relevant to this study area for review; 61 out of the 93 publications are conference articles
(accounting for 66%), while the rest 32 are journal papers (accounting for 34%).

The subject area of ‘Engineering’ makes up the largest proportion (46.2%), as shown
in Figure 2, which indicates the domain emphasis. Table 1 summarizes the top 5 sources
(in terms of amount and year) where the selected publications were published, including
The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA),
Automation in Construction, IOP Conference Series: Earth and Environmental Science,
International Symposium on Automation and Robotics in Construction (ISARC), and
Procedia Engineering. Table 1 indicates an increasing interest in this domain study.

Figure 2. Distribution of subject areas of the selected 93 publications.

Table 1. A summary of the top five publication sources in terms of amount and year (2010–2020).

Source Title 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Sum

CAADRIA 1 1 1 2 1 2 3 2 13

Automation in Construction 2 1 4 2 1 10

IOP Conference Series: Earth
and Environmental Science 3 3 6

ISARC 1 3 1 1 6

Procedia Engineering 2 2 4

Sum 0 1 1 4 4 2 7 4 5 7 4 39



Sensors 2021, 21, 5439 6 of 26

To investigate the methodology of developing GD in BIM, it is essential to under-
stand the development objectives, characteristics of the development objects, development
tools, and skill requirement. Accordingly, the categories and characteristics of GD-BIM
development objectives, characteristics of GD components, features and applications of pro-
gramming languages, and skill requirement and improvement frame the detailed review
in this study. Based on that, three major topics are analysed to discover the methodological
relationships and skill requirements, including:

1. Relationships between programming languages and developing different GD-BIM
objectives.

2. Relationships between programming languages and developing different GD compo-
nents.

3. Skill requirement and learning paths of programming languages for developing
GD-BIM.

Mixed methods of quantitative and qualitative research are used to review and analyze
the above three topics. Firstly, qualitative research method is used to categorise different
objectives of GD-BIM development, followed by quantitative research to investigate re-
lationships between GD-BIM development objectives and applications of programming
languages. Secondly, qualitative research is employed to examine the characteristics of
GD components and programming languages respectively to analyze the suitability rela-
tionship between programming languages and developing GD components. Thirdly, to
review discussions on skills of programming languages used to develop GD in BIM from
the selected literature and qualitatively study the skill requirements and improvement
paths. Accordingly, three novel perspectives of GD-BIM development and a set of reference
guides are proposed. Detailed analysis is elaborated in the following section.

4. Analysis

In this section, the GD-BIM development objectives, programming languages suit-
ability, and programming skills learning and improvement are reviewed and analysed
to investigate the methodological relationships. Accordingly, perspectives of objective-
oriented, GD component-based, and skill-driven GD-BIM development are proposed,
as well as a set of reference guides to designers in the building industry.

4.1. Objectives of Developing GD in BIM and the Relationship to Programming Languages
4.1.1. Categorising and Comparison of Different Objectives of GD-BIM Development

Through analysing the different characteristics of the objectives, the GD-BIM devel-
opment can be classified into two major categories: (1) solve specific design tasks, and
(2) support design processes. Table 2 compares these two categories in detail. The de-
velopment category of solving specific design tasks is usually project-based and mainly
developed by practitioners aiming to solve individual design tasks creatively and efficiently
within larger practical projects. To achieve this objective, GD is used to automatically ex-
plore and optimise design alternatives, while BIM generates multidimensional information
to facilitate the constructability. Detailed information of the examples for this objective
category can be found in [75–82], presented in Table 1. The advantages of these GD-BIM
developments are targeted and practical problem-solving, lower development difficulty,
and a shorter development period. However, the drawbacks of these developments are
less universal (as they are conducted based on specific practical design conditions) and too
preliminary for complicated tasks.



Sensors 2021, 21, 5439 7 of 26

Table 2. A summary of objective categories of developing GD in BIM.

Objective
Category Description Sub-Objectives Characteristic Evaluations Examples Programming Method Programming

Language

1. Solve specific
design tasks.

This objective is
to solve
individual
design tasks
creatively and
efficiently
within larger
practical
projects.

• Cope with design changes
efficiently.

• Shorten the design period.
• Generate, document, and

fabricate designs in great
detail.

• Improve design efficiency
by integration with
traditional design
workflow.

• Generate parametric
models efficiently.

• Explore building forms
automatically.

• Explore and generate
facade designs
automatically.

• Project based.
• Practical design

task orientated.
• Mostly

developed by
industry
practitioners.

• Relatively easy
to develop and
amend.

• Short
development
pe-
riod.Relatively
easy
programming
requirement.

• Solutions are
high targeted
but less
universal.

• Currently too
preliminary for
complicated
tasks.

Automate design and
production for
practical tunnel
projects [75].

Grasshopper (in Rhino)
and Dynamo (in Revit)
used in the Application
Programming Interfaces
(API’s).

Visual
programming
language (VPL)

Digital aided façade
design [76].

An add-in named GA
(generative design) in
Grasshopper.

VPL

Digital workflows in
contemporary
architecture and
construction [81].

Objected-oriented
programming, functional
programming, visual
programming, and
distributed visual
programming [81], based
on cases.

Textural
programming
language (TPL)
and VPL

An algorithmic BIM
approach in a
traditional design
studio [82].

Python and AutoLisp are
used to script algorithm;
Rosetta is used to support
BIM back-end.

TPL

BIM-integration of
solar thermal
systems [77].

Dynamo in Revit. VPL

BIM-based
parametric modelling
to Tapered Slip-Form
System [78].

SmartParts Script
Language of Allplan (a
BIM tool).

TPL

Parametric design of
Shanghai Tower’s
form and façade [79].

Microsoft Visual C# that
ran between Grasshopper
and Revit [79].

TPL.

BIM façade module
for diagrid twisted
structures [80].

Dynamo in Revit. VPL



Sensors 2021, 21, 5439 8 of 26

Table 2. Cont.

Objective
Category Description Sub-Objectives Characteristic Evaluations Examples Programming Method Programming

Language

2. Support
design
processes.

This objective
aims to support
design
processes in
BIM by
building
environments
or systems
integrating
with GD in the
context of BIM.

• Automate the design
evaluation.

• Automate designing,
modelling, and
documenting of
customized designs.

• Propose an early design
workflow in reducing
construction waste.

• Enhance the applicability
of BIM in various design
stages (such as conceptual
design, structural design,
etc.).

• Enhance the practicality of
BIM in various types of
design (such as interactive
brickworks design, green
building design, and
adaptive facade design,
etc.).

• Establish a portable
platform to develop GD in
BIM.

• Customise design tools.

• Research
based.

• System de-
velopment
orientated.

• Mostly
developed
by
researchers.

• Higher
programming
requirement.

• Higher
development
difficulty.

• Long
development
circle.

• Solutions are
higher
universally,
but at the
prototype
stage so far.

• Currently too
elementary to
support
complex
design
processes.

Generative design for
building interiors using
BIM [58].

domain-specific language
(DSLs) is used to script the
design rules.

TPL

Generative BIM workspace
for conceptual design
automation [84].

C#.Net in Revit Add in. TPL

Generative interior design
using BIM [85].

DSLs to script the design
rules. TPL

Automatic structural
design of RC wall-slab
buildings in BIM [86].

Not mentioned. N/A

Automated design and
modelling for
mass-customized timber
structure housing [87].

Grasshopper in Rhino. VPL

From layout generation to
construction document
production of customised
apartment plans [83].

Existing grasshopper (GH)
workflow nodes are used to
script design rules, Python
in GH is used to create new
nodes and script the
algorithm, and the
processing language is used
to develop the Graphic User
Interface (GUI).

VPL and TPL

A novel construction waste
reduction workflow using
parametric design and
module coordination [88].

Existing nodes in GH are
used to develop the
algorithm.

VPL



Sensors 2021, 21, 5439 9 of 26

Table 2. Cont.

Objective
Category Description Sub-Objectives Characteristic Evaluations Examples Programming Method Programming

Language

Portable generative design for
BIM [60].

An Integrated
Development Environment
named Rosetta is used to
support various TPLs as a
front-end, and a series of
CAD and BIM applications
are connected as back-ends
for GD model generation.

TPL

Design and analysis in a
generative tool with multi
back-ends [98].

Same as the above. TPL

Towards cloud informed
robotics [89].

Visual programming for
parametric design. VPL

A framework for a
dimensional customization
system [90].

Not mentioned.

A Green-BIM approach for
adaptive building facade
optimisation [91].

Dynamo is used for
information extraction; C# is
used to develop compliance
checking systems.

VPL and TPL

Virtual generative BIM
workspace for maximising
conceptual design innovation
in the AEC industry [92].

C#.Net programming. TPL

Exploit AEC conceptual
design innovation by
integrating GD with BIM [93].

C#.Net programming TPL



Sensors 2021, 21, 5439 10 of 26

Table 2. Cont.

Objective
Category Description Sub-Objectives Characteristic Evaluations Examples Programming Method Programming

Language

G-BIM framework and
development process for
design automation [94].

C#.Net programming TPL

Integrated generative
technique for brickworks
interactive design [95].

Grasshopper in rhino is used to
script the algorithm. Processing
is used to create the sketch tool.

VPL and TPL

Parametric and generative
methods with BIM [96]. C# TPL

Design of parametric
software tools [99] Grasshopper in Rhino VPL

Tool design for
architectural design [100]. Grasshopper in Rhino VPL

Parametric design based
on BIM for sustainable
buildings [97].

C# programming in Revit API TPL



Sensors 2021, 21, 5439 11 of 26

The development category of supporting design processes is not based on projects;
instead, it is mainly developed by researchers, aiming to support certain design processes
by establishing environments or systems in the context of BIM. These developments can
enhance the applicability, practicality, and compatibility of BIM in certain design stages
or fields. For instance, some GD-BIM are created to support designs in certain phases,
such as the conceptual design phase, interior design phase, structural design phase, or
design customization stage, etc. [58,83–97]. Meanwhile, some studies concentrate on
improving the portability of GD-BIM developments [60,98–100]. These developments have
advantages of higher universality, as they can work as platforms or programs allowing use
by a wider group of designers for similar design purposes. However, the disadvantages
are higher programming requirement, higher developing difficulty (due to the need of
multidisciplinary involvement), and long development cycle (due to the need of constant
testing and iteration before practical application). Also, most of the current developments
are at the prototype stage or the rhetorical stage, and too elementary to support complex
design processes [84,88,94].

4.1.2. Publications of Different Objectives of GD-BIM Development

Out of the filtered 93, 28 literatures (listed in Table 1) have discussed developing GD
in BIM. Figure 3 shows the distribution of publications based on the different objectives
classified above. Publications about the objective of “support design processes” occupy
the majority (20 in 28), which indicates the research focus and preference in the academic
domain. Moreover, the increasing number over the last five years illustrates growing
research in this area of study.

Figure 3. Distribution of publications on different objectives of GD-BIM developments (2010–2020).

4.1.3. Application of Programming Languages Based on Different Objectives

Programming methods and languages are examined and listed following each ex-
ample in Table 1. Categories of textural programming languages (TPL) and visual pro-
gramming languages (VPL) are adopted and investigated in this research. A TPL is a
programming language that uses text, code, symbol, and predefined syntax, etc. to develop
programs, while a VPL allows users to develop programs by interactively manipulating
visual elements, rather than scripting texturally [60,101]. Based on Table 1, there are 6 cases
using VPL and 5 cases using TPL in the Objective 1, while 8 cases using VPL and 13 cases
using TPL in Objective 2. Accordingly, Figure 4 shows the application distributions of
programming languages. It is seen that to develop GD-BIM for solving specific design tasks,



Sensors 2021, 21, 5439 12 of 26

the use of VPLs (55%) is slightly more than that of TPLs (45%); to develop GD-BIM for
supporting design processes, TPLs are more used than VPLs (62% and 38% respectively).

Figure 4. Application distributions of programming languages based on objectives of GD-BIM
development.

Therefore, the methodological relationship can be concluded: VPLs are applied more
to individual practical design tasks, for easier and quicker GD-BIM developments, while
TPLs are more accepted for harder, longer, and more systematic GD-BIM developments, to
establish application platforms or environments.

4.1.4. Perspective of Objectives-Oriented GD-BIM Development

A novel perspective of objective-oriented GD-BIM development is proposed based on
the above analysis, which is the selection of proper development of methods according
to the different objectives of developing GD-BIM. Firstly, GD-BIM developments have
two major categories based on development objectives, which are “solve specific design
tasks” and “support design processes”. Secondly, utilisation of programming methods
and languages differ according to different objectives. Thirdly, VPLs are more applicable
to easier and quicker GD-BIM development for the objective of solving specific practical
design tasks, while TPLs are more capable to develop harder, longer, and more systematic
GD-BIM, to establish application platforms or environments for the objective of supporting
design processes.

4.2. Suitability of Programming Languages for GD-BIM Development
4.2.1. Programming Languages and Software Used to Develop GD in BIM

A programming language and software (usually BIM software) are crucial and indis-
pensable tools in GD-BIM development [17,102,103]. Table 3 compares VPLs and TPLs
in detail regarding definitions, languages, advantages, and limitations [12,17,101–104].
Table 4 illustrates the popular software and applicable programming languages for script-
ing GD [25,103,105]. As shown in the Table 3, Revit, ArchiCAD, Grasshopper, and Gen-
erativeComponents are the commonly used software for developing GD. Among them,
Revit and ArchiCAD are BIM software, while Grasshopper and GenerativeComponents
are not (they are CAD software). However, Grasshopper and GenerativeComponents can
connect to BIM software by means of plug-ins or a specific edition, as indicated in the
Table [102,105]. Therefore, all of them can be considered as platforms for GD-BIM devel-
opment. As Grasshopper and Dynamo have abundant content in libraries and are easily
accessible forums for learners, and Python is easier to learn compared to C++, Grasshopper
and Revit are currently more popular for developing GD-BIM.



Sensors 2021, 21, 5439 13 of 26

Table 3. Comparison between VPLs and TPLs regarding definitions, languages, advantages, and limitations.

Categories Definitions Languages Advantages Limitations

Visual programming
languages (VPLs)

Any programming language
that allows users to develop
programs by manipulating
visual elements interactively.

• Grasshopper
• Dynamo
• Optimizer Node
• etc.

• Simpler operation.
• Intuitive and interactive.
• Immediate visual feedback.
• Good Interactive Development Environment

(IDE).
• Processes can be described graphically and

intuitively by a form of ‘pipes-and-filters’ logic.
• Convenient for small program development.
• Faster learning curve.
• Little programming background requirement.
• More productive and motivating for novices.

• Apply to very limited domains and highly
specialized solutions.

• Scale poorly with large and complex
design tasks.

• Absence of (sophisticated) abstraction
mechanisms, resulting in redundancy.

Textural programming
languages
(TPLs)

Any programming language
that uses lines of text, code,
symbol, predefined syntax,
etc. to develop programs.

• Python
• C#
• C++
• JavaScript
• AutoLISP
• Haskell
• VisualScheme
• etc.

• Various types of abstraction mechanisms.
• Easy to adjust to changing requirements.
• Significantly more productive for large scale and

complex design tasks.

• Absence of good IDE.
• Hard to learn for novices.
• Steeper learning curve.
• Require extensive knowledge and

proficient skill.

Table 4. Commonly used software and applicable programming languages for scripting GD.

Software Developer BIM Connectable to BIM Plug-In or Stand-Alone Applicable Programming Languages for Scripting GD

VPLs TPLs

Revit Autodesk Yes N/A Stand-alone Dynamo Python, C# in Revit API

ArchiCAD Graphisoft Yes N/A Stand-alone Grasshopper—Archicad Live
Connection C++ in ArchiCAD API

Grasshopper McNeel No Yes; by Lyrebird, etc. Plug-in for Rhinoceros Grasshopper GhPython in Grasshopper API

GenerativeComponents Bentley No
Yes.

GenerativeComponents
CONNECT Edition.

Stand-alone and Plug-in
for MicroStation

Optimizer Node in
CONNECTION Edition GCScript, C#



Sensors 2021, 21, 5439 14 of 26

As indicated in Table 2, TPLs and VPLs have different characteristics, pros, and cons.
Based on these features, studies have examined, compared, and evaluated their usages
and suitability in GD development [17,60,81,106]. For instance, Leitão et al. [17] have
conducted a comparative study to demonstrate that modern TPLs are more productive in
developing complex GD, as TPLs have the advantage in abstraction mechanisms. However,
due to their difficulty to learn, few designers possess extensive knowledge and proficient
ability of TPLs to skilfully use them [60]. In contrast, VPLs are much easier to learn and
grasp for beginners because of the advantages of intuitive and interactive properties and
simpler operation [107]. However, VPLs’ limitation in sophisticated abstraction mechanism
restricts their capability in complex GD development.

Therefore, in general, VPLs are more suitable to novice designers and simple GD-
BIM development, while TPLs are more suitable to expert players and complex GD-BIM
development. However, most of the current studies overlook the relationship to GD
components, which are inherent properties of GD-BIM. This gap is addressed in the
following section.

4.2.2. Suitability Relationship between Programming Languages and GD Component
Development

The application of programming languages varies, depending on the properties of
GD components. Generally, the algorithms component is highly abstract while the design
constraints component is intuitive. Thus, programming languages used to script these com-
ponents should have the corresponding characteristics. Leitão et al. [17] have summarised
the three fundamental dimensions of a full-featured programming language: primitive,
combination, and abstraction. Different programming languages have different advantages
in these dimensions. Specifically, VPLs have the advantage in primitive dimension, while
TPLs have strong points in combination and abstraction dimensions.

Thus, a suitability relationship is found between programming languages and GD
components development, as indicated in Table 5 [12,17,101,104]. VPLs have better prim-
itive dimensions, resulting in good performance of expressing intuitive ideas by simply
connecting various primitive components. Thus, VPLs are suitable to develop the “de-
sign constraints” component and straightforward algorithms which require intuitive and
explicit expression. However, due to the shortcomings in combination and abstraction
mechanisms [17], VPLs are not the ideal choice for complex algorithm development (e.g.,
genetic algorithms, shape grammars, etc.). Due to expression and production in complex
and abstract tasks, TPLs are more suitable to develop the complex algorithms component.
TPLs can also be used to develop complicated design constraints that require intricate
scripting in VPLs.

Therefore, the methodological relationship can be concluded: TPLs are more suitable
to develop abstract components such as the Algorithm component or intricate design
constraints, while VPLs are more suitable to develop intuitive components such as the
design constraints component or simple algorithms.

4.2.3. Perspective of GD Component-Based GD-BIM Development

A new perspective of GD component-based GD-BIM development is proposed, which
is the selection of proper development methods based on different GD components. Firstly,
developing a GD is mainly composed of programming the algorithm and design constraints
components. Secondly, the use of programming methods and languages differ based on the
different characteristics of the GD components. Thirdly, TPLs are more suitable to develop
abstract components, such as the algorithm component or intricate design constraints, while
VPLs are more suitable to develop intuitive components such as the design constraints
component or simple algorithms.



Sensors 2021, 21, 5439 15 of 26

Table 5. Suitability relationship between programming languages and GD components development.

Programming Languages
Characteristics of Programming Languages on Fundamental Dimensions Suitability for

GD Component DevelopmentPrimitive Combination Abstraction

VPLs
Such as:

• Dynamo
• Grasshopper
• Optimizer Node

• Implement a large set of
primitive components (e.g.,
ranges, mappings, and
geometric operations).

• Primitive components are with
a high degree of sophistication.

• Good in expressing intuitive
ideas by connecting primitives.

• Provide a single combination
paradigm.

• Rely on an extremely simple
metaphor (primitives combined
by connecting outputs and
inputs of components).

• This metaphor is too restrictive
to express:

â complex control
structure (e.g., iteration,
recursion, etc.), and

â algorithms without using
a TPL to script
customized primitive
components.

• Scale poorly with complex
design tasks, may result in
reading and maintenance issues.

• Provide ‘Cluster’ function,
which allows to group other
components or clusters as a
single component.

• Good for improving programs
clarity and parts reuse.

• Inability in centralized
definition (as clusters are
independent from their
copies).

• Not real abstraction.

• Intuitive design constraints,
• or straightforward algorithms.

TPLs
Such as:

• Python
• C#
• C++
• JavaScript
• AutoLISP
• Haskell
• VisualScheme

• Currently not as many
primitives as VPLs.

• Provide various combination
paradigms, such as functional,
imperative, and object-oriented.

• Including expression
composition, and various control
and data structures.

• Paradigms are extendable.
• Relay on underlying languages.
• Expressive in complex design

tasks.

• Provide various types of
procedurals, data, and control
abstraction.

• Good in simplifying solutions.
• Much easier to adjust to

changing requirements.
• Significantly more abstract

than VPLs.

• Abstract algorithms,
• or intricate design constraints.



Sensors 2021, 21, 5439 16 of 26

4.3. Programming Skill Learning & Improving for GD-BIM Development
4.3.1. Designers’ Learning of VPLs and TPLs

Research has revealed that VPLs have a faster learning curve, while TPLs have
a steeper one [17,101,102,104]. VPLs are easy to learn and use as they were invented
to enable easy interaction with computers and became educational tools to teach beginners
programming [108]. In terms of conducting design tasks, VPLs enable simpler and more
straightforward operation due to their sophisticated IDE and intuitive elements [17]. Thus,
VPLs are a good starter for designers to learn programming and create simple programs,
despite shortcomings in dealing with complex tasks.

TPLs are much harder to learn and master because they rely on hard coding and
a complicated syntax system, especially for creative professionals such as designers who
are not used to linear thinking [104]. However, additional time and effort spent on learning
TPLs can be “quickly recovered once the complexity of problems becomes significantly
large” [17,81]. Owning knowledge and experience of TPLs can even effectively enhance
the productivity of VPL users [17]. Therefore, although hard to learn, TPLs can be a quality
weapon for designers to improve design capability and productivity by developing complex
programs and customising design tools.

4.3.2. Influence from Portable Development Environments

Some studies have demonstrated that portable development environments can reduce
the requirement of learning new programming skills [17,60,81,82,98,102,109]. For instance,
Rosetta as a portable development environment enables a user proficient in one TPL
to create GD in various BIM environments without learning extra new programming
languages. Rosetta plays as the medium or converter role and allows users to script GD
using certain TPLs (as front-end languages) and generate identical GD models in multiple
software (as back-end environments).

Rosetta is beneficial to learning cost and design efficiency because of the portability
and interoperability. A study conducted by Caetano and Leitão [82] has demonstrated
this, in which Rosetta took advantage of both CAD and BIM to create outstanding design
solutions under a very tight deadline. Usually, CAD is more efficient in design exploration
than BIM, while BIM is much better at generating construction information. In this project,
designers first used a familiar TPL in Rosetta to explore designs and generate design
models in a CAD software. Then, once the design was confirmed, designers used the
same scripts in Rosetta, but connected to a BIM software to generate an identical model
equipped with construction information. Finally, a satisfying design solution with detailed
construction guide was produced in a very short time. Hence, learning and use of different
programming languages was avoided due to the portability of Rosetta between BIM and
CAD, which greatly saved time and improved design efficiency.

Despite the advantage in reducing learning effort for technically capable users, Rosetta
is not usable for all levels of designers. Studies have pointed out the drawbacks. Firstly,
back-end software that Rosetta currently support is inadequate [102]. Secondly, specialised
TPL programming knowledge is required [82]. Proficiency in at least one applicable TPL
is currently necessary to use Rosetta to either script GD or add new back-end; however,
few designers possess TPL skills. To conclude, Rosetta can provide positive effects in
programming skill learning and GD-BIM development to designers skilled in TPLs.

4.3.3. Recommendations to Designers on Skill Learning and Improving

Based on the analysis above, paths of skill learning and improvement of GD-BIM de-
velopment are recommended to designers, as shown in Figure 5. Firstly, designers without
programming skills can start by learning VPLs (e.g., Dynamo for Revit, Grasshopper for
Rhino, etc.) because VPLs are intuitive and easier for novices. Secondly, after mastering a
certain VPL, designers can develop simple GD with the existing workflow nodes of VPLs
to improve skills. Thirdly, learning one TPL is advised as the next step because modern



Sensors 2021, 21, 5439 17 of 26

TPLs are more productive in developing complex tasks [17]. Python is suggested as it is
easier to learn and apply compared to other complex TPLs such as C++ [81], and widely
accepted by the majority of applications, including Revit and Grasshopper. Afterwards,
the path can follow two directions once skilled in TPLs: (1) using TPLs to improve GD-BIM
development ability and programming skills in VPLs, and (2) using TPLs and Rosetta
to improve GD-BIM development ability and efficiency. Refer to the figure for detailed
information.

Figure 5. Paths of skill learning and improving GD-BIM development for designers.

4.3.4. Perspective of Skill-Driven GD-BIM Development

An original perspective of skill-driven GD-BIM development is proposed. Firstly,
skill in at least one type of programming language (either a VPL or TPL) is necessary for
designers to develop GD-BIM. Secondly, learning and proficiency in a VPL or TPL requires
different investments of time and energy; thus, they are applicable to different stages and
levels of GD-BIM development. Thirdly, the ability and efficiency of GD-BIM development
can be progressively enhanced by strategically learning and improving VPL and TPL skills.

5. Discussion

There are two major aspects worth discussing based on the review and analysis.
First, the GD-BIM developments to support design process have dominated the research



Sensors 2021, 21, 5439 18 of 26

according to the investigation of publication distribution, as shown in Figure 2. Increasingly,
researchers have explored the integration of GD into BIM to establish applications or
systems, allowing use by a wider group of designers. However, current attempts for this
objective are still at the prototype stage and too preliminary to solve complicated design
issues. Therefore, more sophisticated and systematic GD-BIM developments to support
more design processes is one future research direction.

Second, skill requirement for developing complex GD-BIM is high, because proficiency
in TPLs is necessary and difficult; it requires significant time to learn and practice, which
is unfriendly to most designers who are not used to programming, thus restricting wider
development and application of GD-BIM. Therefore, reducing programming difficulty for
designers will be another future research direction to facilitate GD-BIM development.

As such, future directions, challenges, and potential solutions are mapped in Table 6 [110]
and discussed in the following section.

Table 6. Future directions of GD-BIM development and corresponding challenges and potential solutions.

Future Directions Challenges Potential Solutions

Develop more sophisticated and
systematic GD-BIM to support more
design processes.

• Lack of diversity of GD design
scenes.

• Lack of consideration for
comprehensive design elements.

• Lack of mature GD-BIM
environments convenient to use for
complicated design.

• Lack of wider integration to form a
more extensive intelligent system.

• High development skill
requirement.

• Explore more sophisticated design
scenes.

• Introduce detailed and realistic
design elements as GD constraints.

• Built-in complex search algorithms
for convenient selection and use.

• Develop more industry-usable
GD-BIM applications for complex
design.

• Integrate with upstream or
downstream technologies such as
computer visioning or intelligent
output.

Reduce programming difficulties for
designers.

• High programming requirement for
designers.

• Lack of prior knowledge and
resource of GD.

• Develop more diversified, and
novice-friendly, compatible, and
portable development
environments.

• Create more domain-specific and
easy-to-use programming
languages.

• Establish expandable GD library to
leverage prior knowledge.

5.1. Develop More Sophisticated and Systematic GD-BIM to Support More Design Processes

To develop and apply more sophisticated GD-BIM applications, the information below
discusses challenges and methods. The current GD-BIM applications only consider limited
design elements, as GD attempts to quickly resolve simple design tasks, and presents
design scenes as research backgrounds too simply to facilitate prototype study. As a
result, the current drawbacks are the lack of comprehensive design elements, diversity of
design scenes, and mature and useful applications. Therefore, challenges are mainly three
aspects: comprehensiveness of design elements, diversity of design scenes, and maturity
of applications. To address these, firstly, detailed and realistic design elements such as
locations, dimensions, materials, multiple types of cost, energy performance, etc. should
be introduced to form complex GD constraints. Secondly, more design scenes covering
diverse design processes (e.g., from conceptual design to detailed design) are advised to
be studied, abstracted, and scripted into GD-BIM applications as research backgrounds.
Thirdly, various complex search algorithms (e.g., genetic algorithms, shape grammars,



Sensors 2021, 21, 5439 19 of 26

cellular automata, etc.) can be built-in for easy selection and use, based on practical tasks
to facilitate wider application of GD-BIM.

To implement broader integration, challenges and solutions are discussed below. The
intelligence extent of GD-BIM integration has much room to expand because their current
applications are mostly during the post-site analysis and pre-construction stages. There-
fore, a more extensive intelligent system can largely enhance GD-BIM’s capacity to solve
complicated problems. However, the largest challenge is to conduct wider integrations
based on GD-BIM, to form an entire intelligent system from pre-design (site analysis) to
construction. To address this, BIM can be a bridge to connect upstream and downstream
technologies. A framework of an extensive intelligent system formed by broad technology
integration based on GD-BIM is proposed, as presented in Figure 6. Firstly, upstream
technologies such as computer visioning or sensor technology [110–113] can be integrated
to intelligently capture site information and form design constraints. Secondly, down-
stream technologies such as 3D printing or robotic arms in construction [114–121] can be
integrated to automatically construct the GD solutions generated beforehand. Moreover,
GD-BIM demonstrates promising potential in smart engineering composites [122–124]
as well as artificial intelligence aided optimization [125–128]. Thus, an entire automated
process from site analysis, design exploration, construction information generation, to
design construction would be established, which could considerably save manpower and
improve the buildability of designs. This broad integration grown out of GD-BIM would
have great potential to solve comprehensive and complicated design issues and support
multiple design processes.

5.2. Reduce Programming Difficulties for Designers to Facilitate GD-BIM Development

Another direction is to reduce programming difficulties for designers to enable easier
development. Usually, designers in the building industry are not well equipped with
programming skills, and the existing programming languages are not perfect for all level
designers. Despite this, there have been instances of successful GD-BIM applications to
familiarise and master programming; this is still a huge threshold for designers. Therefore,
if the barriers of programming could be reduced, more designers would be willing to
develop GD-BIM, which is beneficial for both technology and industry. To reduce the
barriers, three potential solutions are suggested: (1) develop more compatible and portable
development environments, (2) create more domain-specific and easy-to-use programming
languages, and (3) establish GD library to leverage prior knowledge.

Firstly, compatible and portable development environments, enabling designers pro-
ficient in one TPL to develop GD in multiple software for multiple usages, can reduce
programming difficulty. One example of a portable development environment is Rosetta;
it can reduce the requirement of learning new programming languages. However, there
are shortcomings with Rosetta, such as insufficient back-end software, and high TPL skill
requirements [82,102]. Thus, the current Rosetta is not usable by all levels of designers, es-
pecially those who have little TPL knowledge. To address this, more back-end connections
or novice-friendly development environments accepting VPLs should be developed in the
future.

Secondly, programming languages more conforming to design languages can lower
the difficulty of learning brand new languages for designers, thereby reducing program-
ming difficulty. The text format domain-specific languages (DSLs) have this characteristic,
and “modern TPLs coupling with domain-specific primitives become better alternatives to
current VPLs for developing GD” [17]. They have already been applied in some GD-BIM
developments for easier use of designers [58,78,85]. However, the usage of current text
DSLs are still close to professional TPLs; thus, knowledge of textural programming is
required. Therefore, creating more DSLs conforming to design languages and improving
the availability to beginners are recommended.



Sensors 2021, 21, 5439 20 of 26

Figure 6. A framework of an extensive intelligent system (from site analysis to construction) formed by broad technology integration based on GD-BIM.



Sensors 2021, 21, 5439 21 of 26

Thirdly, decreasing the reliance on programming by leveraging prior knowledge or
resources can contribute to reduced programming difficulty. If the prior knowledge or
resource of GD were well documented, accessed, and reused, then less programming
would be required when developing new GD. For instance, three simple GD are available
in Revit 2021 [64], which eliminates the demands of developing extra GD with similar
functions, thus reducing programming necessity. Therefore, it inspires the recommendation
of establishing expandable GD libraries in BIM that allow simple and flexible storage, access,
use, and modification to decrease the reliance on programming.

6. Conclusions

The purpose of this review is to investigate the current approaches to developing GD
in BIM by reviewing publications over the past decade. This research demonstrates a novel
understanding of methodological relationships, skill requirement, and improvement for
developing GD in BIM. The significance is to support designers in the building industry
on the proper methods selection for developing GD-BIM. It is clear from the review and
analysis that programming skills are necessary for designers to develop GD-BIM, and
different types of programming languages have different suitability based on development
objectives and GD components. Specifically, VPLs are more applicable to develop simple
GD-BIM to solve specific practical design tasks, while TPLs are more capable of developing
complex and systematic GD-BIM to establish application platforms for supporting design
processes. Regarding developing GD components, TPLs are more suitable to develop
abstract components such as an algorithm component or intricate design constraints, while
VPLs are more suitable to develop intuitive components such as the design constraints
component or simple algorithms. The skills of programming and developing can be pro-
gressively enhanced by strategically learning and improving. Accordingly, three novel
perspectives of objective-oriented, GD component-based, and skill-driven GD-BIM devel-
opment, as well as a set of reference guides, are proposed regarding development method
selection, skill learning, and improvement.

It is also found that the GD-BIM developments to support design process have domi-
nated the research. However, most of the current attempts are still at the prototype stage
and too preliminary to solve complicated design issues. Also, the skill requirement for
developing complex GD-BIM is high, as proficiency in TPLs is necessary and difficult,
increasing the challenges in developing methods. Therefore, future research directions are
discussed, regarding: (1) development of more sophisticated and systematic GD-BIM to
support more design processes, and (2) facilitation of GD-BIM development by reducing
programming difficulties for designers. The main challenges are identified, and potential
solutions are recommended.

In conclusion, this review aims to guide designers in the building industry to select
proper methods or formulate skill-improving paths to develop GD-BIM and provides an
inspired map for researchers to explore new knowledge.

Author Contributions: Conceptualization, W.M. and X.W.; methodology, W.M.; software, W.M.;
validation, W.M.; formal analysis, W.M.; investigation, W.M.; resources, W.M., X.W. and J.S.; data
curation, W.M. and X.X.; writing—original draft preparation, W.M.; writing—review and editing,
W.M., J.W., J.S.; supervision, X.W. and J.W.; funding acquisition, X.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was co-funded by the Australian Research Council’s Linkage Projects, grant
number LP180100222.

Acknowledgments: I would like to extend my sincere thanks to Yongze Song for his valuable
advising and discussion.

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no conflict
of interest.



Sensors 2021, 21, 5439 22 of 26

References
1. Meintjes, K. ‘“Generative Design”—What’s That?—CIMdata’, CIMdata. 2017. Available online: https://www.cimdata.com/en/

news/item/8402-generative-design-what-s-that (accessed on 13 June 2020).
2. Nagy, D.; Villaggi, L. ‘Generative Design for Architectural Space Planning’. Autodesk University. 2020. Available online:

https://www.autodesk.com/autodesk-university/article/Generative-Design-Architectural-Space-Planning-2020 (accessed on
15 June 2020).

3. Wang, X.; Love, P.E.D.; Kim, M.J.; Park, C.-S.; Sing, C.P.; Hou, L. A conceptual framework for integrating building information
modeling with augmented reality. Autom. Constr. 2013, 34, 37–44. [CrossRef]

4. Zhu, J.; Wang, X.; Wang, P.; Wu, Z.; Kim, M.J. Integration of BIM and GIS: Geometry from IFC to Shapefile Using Open-Source
Technology. Autom. Constr. 2019, 102, 105–119. [CrossRef]

5. Wang, T.; Wang, J.; Wu, P.; Wang, J.; He, Q.; Wang, X. Estimating the environmental costs and benefits of demolition waste using
life cycle assessment and willingness-to-pay: A case study in Shenzhen. J. Clean. Prod. 2018, 172, 14–26. [CrossRef]

6. Zhang, C.; Gholipour, G.; Mousavi, A.A. Nonlinear dynamic behavior of simply-supported RC beams subjected to combined
impact-blast loading. Eng. Struct. 2019, 181, 124–142. [CrossRef]

7. Mou, B.; Li, X.; Bai, Y.; Wang, L. Shear Behavior of Panel Zones in Steel Beam-to-Column Connections with Unequal Depth of
Outer Annular Stiffener. J. Struct. Eng. 2019, 145, 04018247. [CrossRef]

8. Deshmukh, M.; Mahatme, C. Generative Design: A New Intelligent Design & Manufacturing Approach. Chemik 2020, 2, 193–198.
9. Abedini, M.; Zhang, C. Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical

Simulation, A State of the Art Review. Arch. Comput. Methods Eng. 2021, 28, 2921–2942. [CrossRef]
10. Alam, Z.; Sun, L.; Zhang, C.; Su, Z.; Samali, B. Experimental and numerical investigation on the complex behaviour of the

localised seismic response in a multi-storey plan-asymmetric structure. Struct. Infrastruct. Eng. 2021, 17, 86–102. [CrossRef]
11. Zenggang, X.; Zhiwen, T.; Xiaowen, C.; Xue-Min, Z.; Kaibin, Z.; Conghuan, Y. Research on Image Retrieval Algorithm Based on

Combination of Color and Shape Features. J. Signal. Process. Syst. 2021, 93, 139–146. [CrossRef]
12. Toth, B.; Janssen, P.; Stouffs, R.; Chaszar, A.; Boeykens, S. Custom Digital Workflows: A New Framework for Design Analysis

Integration. Int. J. Arch. Comput. 2012, 10, 481–499. [CrossRef]
13. Liu, J.; Liu, Y.; Wang, X. An environmental assessment model of construction and demolition waste based on system dynamics: A

case study in Guangzhou. Environ. Sci. Pollut. Res. 2020, 27, 37237–37259. [CrossRef]
14. Gao, N.; Tang, L.; Deng, J.; Lu, K.; Hou, H.; Chen, K. Design, fabrication and sound absorption test of composite porous

metamaterial with embedding I-plates into porous polyurethane sponge. Appl. Acoust. 2021, 175, 107845. [CrossRef]
15. He, L.; Shao, F.; Ren, L. Sustainability appraisal of desired contaminated groundwater remediation strategies: An information-

entropy-based stochastic multi-criteria preference model. Environ. Dev. Sustain. 2021, 23, 1759–1779. [CrossRef]
16. Song, Y.; Wang, X.; Tan, Y.; Wu, P.; Sutrisna, M.; Cheng, J.C.P.; Hampson, K. Trends and Opportunities of BIM-GIS Integration in

the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS Int. J.
Geo. Inf. 2017, 6, 397. [CrossRef]

17. Leitão, A.; Santos, L.; Lopes, J.D.A. Programming Languages for Generative Design: A Comparative Study. Int. J. Arch. Comput.
2012, 10, 139–162. [CrossRef]

18. Chen, Y.; Li, J.; Lu, H.; Yan, P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed
noise-driven shale gas-water supply chains. J. Clean. Prod. 2021, 278, 123209. [CrossRef]

19. Zhu, L.; Kong, L.; Zhang, C. Numerical Study on Hysteretic Behaviour of Horizontal-Connection and Energy-Dissipation
Structures Developed for Prefabricated Shear Walls. Appl. Sci. 2020, 10, 1240. [CrossRef]

20. Ma, H.-J.; Xu, L.-X.; Yang, G.-H. Multiple Environment Integral Reinforcement Learning-Based Fault-Tolerant Control for Affine
Nonlinear Systems. IEEE Trans. Cybern. 2021, 51, 1913–1928. [CrossRef] [PubMed]

21. Liu, Y.; Zhang, B.; Feng, Y.; Lv, X.; Ji, D.; Niu, Z.; Yang, Y.; Zhao, X.; Fan, Y. Development of 340-GHz Transceiver Front End Based
on GaAs Monolithic Integration Technology for THz Active Imaging Array. Appl. Sci. 2020, 10, 7924. [CrossRef]

22. Li, B.-H.; Liu, Y.; Zhang, A.-M.; Wang, W.-H.; Wan, S. A Survey on Blocking Technology of Entity Resolution. J. Comput. Sci.
Technol. 2020, 35, 769–793. [CrossRef]

23. Shea, K.; Aish, R.; Gourtovaia, M. Towards integrated performance-driven generative design tools. Autom. Constr. 2005, 14,
253–264. [CrossRef]

24. Wu, C.; Wang, X.; Chen, M.; Kim, M.J. Differential Received Signal Strength Based RFID Positioning for Construction Equipment
Tracking. Adv. Eng. Inform. 2019, 42, 100960. [CrossRef]

25. Computational Design Software, Buildings-GenerativeComponents. Available online: https://www.bentley.com/en/products/
product-line/modeling-and-visualization-software/generativecomponents (accessed on 21 January 2021).

26. Zhu, J.; Wang, X.; Chen, M.; Wu, P.; Kim, M.J. Integration of BIM and GIS: IFC Geometry Transformation to Shapefile Using
Enhanced Open-Source Approach. Autom. Constr. 2019, 106, 102859. [CrossRef]

27. Frazer, J. Creative Design and the Generative Evolutionary Paradigm. In Creative Evolutionary Systems; Elsevier BV: Amsterdam,
The Netherlands, 2002; pp. 253–274.

28. Luisa, C.; José, D. Implementation Issues in Generative Design Systems, First International Conference on Design Computing
and Cognition. 2004. Available online: http://home.fa.utl.pt/~jduarte/dcc08_workshop/2004_Proceedings_Workshop_3_DCC0
4.pdf (accessed on 21 January 2021).

https://www.cimdata.com/en/news/item/8402-generative-design-what-s-that
https://www.cimdata.com/en/news/item/8402-generative-design-what-s-that
https://www.autodesk.com/autodesk-university/article/Generative-Design-Architectural-Space-Planning-2020
http://doi.org/10.1016/j.autcon.2012.10.012
http://doi.org/10.1016/j.autcon.2019.02.014
http://doi.org/10.1016/j.jclepro.2017.10.168
http://doi.org/10.1016/j.engstruct.2018.12.014
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002256
http://doi.org/10.1007/s11831-020-09483-5
http://doi.org/10.1080/15732479.2020.1730914
http://doi.org/10.1007/s11265-019-01508-y
http://doi.org/10.1260/1478-0771.10.4.481
http://doi.org/10.1007/s11356-019-07107-5
http://doi.org/10.1016/j.apacoust.2020.107845
http://doi.org/10.1007/s10668-020-00650-z
http://doi.org/10.3390/ijgi6120397
http://doi.org/10.1260/1478-0771.10.1.139
http://doi.org/10.1016/j.jclepro.2020.123209
http://doi.org/10.3390/app10041240
http://doi.org/10.1109/TCYB.2018.2889679
http://www.ncbi.nlm.nih.gov/pubmed/30668491
http://doi.org/10.3390/app10217924
http://doi.org/10.1007/s11390-020-0350-4
http://doi.org/10.1016/j.autcon.2004.07.002
http://doi.org/10.1016/j.aei.2019.100960
https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/generativecomponents
https://www.bentley.com/en/products/product-line/modeling-and-visualization-software/generativecomponents
http://doi.org/10.1016/j.autcon.2019.102859
http://home.fa.utl.pt/~jduarte/dcc08_workshop/2004_Proceedings_Workshop_3_DCC04.pdf
http://home.fa.utl.pt/~jduarte/dcc08_workshop/2004_Proceedings_Workshop_3_DCC04.pdf


Sensors 2021, 21, 5439 23 of 26

29. BuHamdan, S.; Alwisy, A.; Bouferguene, A. Generative systems in the architecture, engineering and construction industry: A
systematic review and analysis. Int. J. Arch. Comput. 2020. [CrossRef]

30. Tsai, Y.-H.; Wang, J.; Chien, W.-T.; Wei, C.-Y.; Wang, X.; Hsieh, S.-H. A BIM-Based Approach for Predicting Corrosion under
Insulation. Autom. Constr. 2019, 107, 102923. [CrossRef]

31. Monizza, G.P.; Bendetti, C.; Matt, D.T. Parametric and Generative Design techniques in mass-production environments as
effective enablers of Industry 4.0 approaches in the Building Industry. Autom. Constr. 2018, 92, 270–285. [CrossRef]

32. Touloupaki, E.; Theodosiou, T. Energy Performance Optimization as a Generative Design Tool for Nearly Zero Energy Buildings.
Procedia Eng. 2017, 180, 1178–1185. [CrossRef]

33. Nagy, D.; Lau, D.; Locke, J.; Stoddart, J.; Villaggi, L.; Wang, R.; Zhao, D.; Benjamin, D. Project Discover: An Application of
Generative Design for Architectural Space Planning. In Proceedings of the Symposium on Simulation for Architecture and Urban
Design, Toronto, ON, Canada, 22–24 May 2017; Society for Modeling and Simulation International (SCS): San Diego, CA, USA;
New York, NY, USA, 2017; p. 7.

34. Singh, V.; Gu, N. Towards an integrated generative design framework. Des. Stud. 2012, 33, 185–207. [CrossRef]
35. Zheng, J.; Zhang, C.; Li, A. Experimental Investigation on the Mechanical Properties of Curved Metallic Plate Dampers. Appl. Sci.

2019, 10, 269. [CrossRef]
36. Zhang, C.; Wang, H. Robustness of the Active Rotary Inertia Driver System for Structural Swing Vibration Control Subjected to

Multi-Type Hazard Excitations. Appl. Sci. 2019, 9, 4391. [CrossRef]
37. Gholipour, G.; Zhang, C.; Mousavi, A.A. Nonlinear numerical analysis and progressive damage assessment of a cable-stayed

bridge pier subjected to ship collision. Mar. Struct. 2020, 69, 102662. [CrossRef]
38. Alam, Z.; Zhang, C.; Samali, B. The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced

concrete structures. Earthq. Eng. Eng. Vib. 2020, 19, 223–237. [CrossRef]
39. Krish, S. A practical generative design method. Comput. Des. 2011, 43, 88–100. [CrossRef]
40. Marsh, A. Generative and Performative Design: A Challenging New Role for Modern Architects. In The Oxford Conference 2008;

WIT Press: Oxford, UK, 2008; p. 5.
41. Abedini, M.; Mutalib, A.A.; Zhang, C.; Mehrmashhadi, J.; Raman, S.N.; Alipour, R.; Momeni, T.; Mussa, M.H. Large deflection

behavior effect in reinforced concrete columns exposed to extreme dynamic loads. Front. Struct. Civ. Eng. 2020, 14, 532–553.
[CrossRef]

42. Medjdoub, B.; Chenini, M.B. A constraint-based parametric model to support building services design exploration. Arch. Eng.
Des. Manag. 2013, 11, 123–136. [CrossRef]

43. Buonamici, F.; Carfagni, M.; Furferi, R.; Volpe, Y.; Governi, L. Generative Design: An Explorative Study. Comput. Des. Appl. 2020,
18, 144–155. [CrossRef]

44. Sun, L.; Yang, Z.; Jin, Q.; Yan, W. Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns.
Int. J. Struct. Stab. Dyn. 2020, 20, 2040004. [CrossRef]

45. Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Ontological Knowledge Base for Concrete Bridge Rehabilitation Project
Management. Autom. Constr. 2021, 121, 103428. [CrossRef]

46. Gholipour, G.; Zhang, C.; Mousavi, A.A. Numerical analysis of axially loaded RC columns subjected to the combination of impact
and blast loads. Eng. Struct. 2020, 219, 110924. [CrossRef]

47. Abedini, M.; Zhang, C.; Mehrmashhadi, J.; Akhlaghi, E. Comparison of ALE, LBE and pressure time history methods to evaluate
extreme loading effects in RC column. Structures 2020, 28, 456–466. [CrossRef]

48. Alam, Z.; Zhang, C.; Samali, B. Influence of seismic incident angle on response uncertainty and structural performance of tall
asymmetric structure. Struct. Des. Tall Spéc. Build. 2020, 29, 1750. [CrossRef]

49. Azhar, S.; Khalfan, M.; Maqsood, T. Building information modelling (BIM): Now and beyond. Constr. Econ. Build. 2015, 12, 15–28.
[CrossRef]

50. Zhu, J.; Wu, P.; Chen, M.; Kim, M.J.; Wang, X.; Fang, T. Automatically Processing IFC Clipping Representation for BIM and GIS
Integration at the Process Level. Appl. Sci. 2020, 10, 2009. [CrossRef]

51. Hardin, B. BIM and Construction Management: Proven Tools, Methods, and Workflows, 1st ed.; Wiley: New York, NY, USA, 2009.
52. Ju, Y.; Shen, T.; Wang, D. Bonding behavior between reactive powder concrete and normal strength concrete. Constr. Build. Mater.

2020, 242, 118024. [CrossRef]
53. Choi, J.; Lee, S.; Kim, I. Development of Quality Control Requirements for Improving the Quality of Architectural Design Based

on BIM. Appl. Sci. 2020, 10, 7074. [CrossRef]
54. Ariza-López, F.J.; Rodríguez-Avi, J.; Reinoso-Gordo, J.F.; Ariza-López, Í.A.; López, A. Quality Control of “As Built” BIM Datasets

Using the ISO 19157 Framework and a Multiple Hypothesis Testing Method Based on Proportions. ISPRS Int. J. Geo. Inf. 2019,
8, 569. [CrossRef]

55. Zhang, C.; Abedini, M.; Mehrmashhadi, J. Development of pressure-impulse models and residual capacity assessment of RC
columns using high fidelity Arbitrary Lagrangian-Eulerian simulation. Eng. Struct. 2020, 224, 111219. [CrossRef]

56. Zhang, W.; Tang, Z.; Yang, Y.; Wei, J. Assessment of FRP–Concrete Interfacial Debonding with Coupled Mixed-Mode Cohesive
Zone Model. J. Compos. Constr. 2021, 25, 04021002. [CrossRef]

57. Zhang, C.; Wang, H. Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical
modeling and experimental verification. Struct. Control. Heal. Monit. 2020, 27, 2543. [CrossRef]

http://doi.org/10.1177/1478077120934126
http://doi.org/10.1016/j.autcon.2019.102923
http://doi.org/10.1016/j.autcon.2018.02.027
http://doi.org/10.1016/j.proeng.2017.04.278
http://doi.org/10.1016/j.destud.2011.06.001
http://doi.org/10.3390/app10010269
http://doi.org/10.3390/app9204391
http://doi.org/10.1016/j.marstruc.2019.102662
http://doi.org/10.1007/s11803-020-0558-x
http://doi.org/10.1016/j.cad.2010.09.009
http://doi.org/10.1007/s11709-020-0604-9
http://doi.org/10.1080/17452007.2013.834812
http://doi.org/10.14733/cadaps.2021.144-155
http://doi.org/10.1142/S0219455420400040
http://doi.org/10.1016/j.autcon.2020.103428
http://doi.org/10.1016/j.engstruct.2020.110924
http://doi.org/10.1016/j.istruc.2020.08.084
http://doi.org/10.1002/tal.1750
http://doi.org/10.5130/AJCEB.v12i4.3032
http://doi.org/10.3390/app10062009
http://doi.org/10.1016/j.conbuildmat.2020.118024
http://doi.org/10.3390/app10207074
http://doi.org/10.3390/ijgi8120569
http://doi.org/10.1016/j.engstruct.2020.111219
http://doi.org/10.1061/(ASCE)CC.1943-5614.0001114
http://doi.org/10.1002/stc.2543


Sensors 2021, 21, 5439 24 of 26

58. Sydora, C.; Stroulia, E. Rule-based compliance checking and generative design for building interiors using BIM. Autom. Constr.
2020, 120, 103368. [CrossRef]

59. Mason, M. Extending BIM Design Value Using the Revit Api|AUGI-The World’s Largest CAD & BIM User Group. 2009. Available
online: https://www.augi.com/articles/detail/extending-bim-design-value-using-the-revit-api (accessed on 1 February 2021).

60. Feist, S.; Barreto, G.; Ferreira, B.; Leitão, A. Portable generative design for building information modelling. In Living Systems
and Micro-Utopias: Towards Continuous Designing; The Association for Computer-Aided Architectural Design Research in Asia:
Hong Kong, China, 2016; p. 10.

61. Huang, H.; Huang, M.; Zhang, W.; Pospisil, S.; Wu, T. Experimental Investigation on Rehabilitation of Corroded RC Columns
with BSP and HPFL under Combined Loadings. J. Struct. Eng. 2020, 146, 04020157. [CrossRef]

62. Huang, H.; Guo, M.; Zhang, W.; Zeng, J.; Yang, K.; Bai, H. Numerical investigation on the bearing capacity of RC columns
strengthened by HPFL-BSP under combined loadings. J. Build. Eng. 2021, 39, 102266. [CrossRef]

63. Huang, H.; Huang, M.; Zhang, W.; Yang, S. Experimental study of predamaged columns strengthened by HPFL and BSP under
combined load cases. Struct. Infrastruct. Eng. 2021, 17, 1210–1227. [CrossRef]

64. David, S. Generative Design in Revit Now Available, Revit Official Blog. 2020. Available online: https://blogs.autodesk.com/
revit/2020/04/08/generative-design-in-revit/ (accessed on 12 June 2020).

65. Wu, C.; Wu, P.; Wang, J.; Jiang, R.; Chen, M.; Wang, X. Critical Review of Data-Driven Decision-Making in Bridge Operation and
Maintenance. Struct. Infrastruct. Eng. 2020, 1–24. [CrossRef]

66. Zhang, C.; Gholipour, G.; Mousavi, A.A. Blast loads induced responses of RC structural members: State-of-the-art review. Compos.
Part. B: Eng. 2020, 195, 108066. [CrossRef]

67. Gao, N.; Wang, B.; Lu, K.; Hou, H. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic
black hole phononic structure. Appl. Acoust. 2021, 177, 107906. [CrossRef]

68. Li, A.; Spano, D.; Krivochiza, J.; Domouchtsidis, S.; Tsinos, C.G.; Masouros, C.; Chatzinotas, S.; Li, Y.; Vucetic, B.; Ottersten, B.
A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions. IEEE
Commun. Surv. Tutor. 2020, 22, 796–839. [CrossRef]

69. Welzenbach, R. Research Guides: Research Impact Metrics: Citation Analysis: Scopus. Available online: https://guides.lib.umich.
edu/citation/Scopus (accessed on 8 October 2020).

70. Elsevier. Content—How Scopus Works. Available online: https://www.elsevier.com/solutions/scopus/how-scopus-works/
content (accessed on 25 November 2020).

71. Caetano, I.; Santos, L.; Leitão, A. Computational design in architecture: Defining parametric, generative, and algorithmic design.
Front. Arch. Res. 2020, 9, 287–300. [CrossRef]

72. Zhang, C.; Wang, H. Swing Vibration Control of Suspended Structure Using Active Rotary Inertia Driver System: Parametric
Analysis and Experimental Verification. Appl. Sci. 2019, 9, 3144. [CrossRef]

73. Zhu, J.; Yang, K.; Chen, Y.; Fan, G.; Zhang, L.; Guo, B.; Guan, X.; Zhao, R. Revealing the substitution preference of zinc in ordinary
Portland cement clinker phases: A study from experiments and DFT calculations. J. Hazard. Mater. 2021, 409, 124504. [CrossRef]

74. Zhu, J.; Chen, Y.; Zhang, L.; Guo, B.; Fan, G.; Guan, X.; Zhao, R. Revealing the doping mechanism of barium in sulfoaluminate
cement clinker phases. J. Clean. Prod. 2021, 295, 126405. [CrossRef]

75. Roovers, K.; Raucroix, X.; Wyns, K.; Meerkerk, A.; van Steirteghem, J. Design and production automation for the A16 tunnel
in Rotterdam. In IABSE Congress, New York, New York 2019: The Evolving Metropolis; International Association for Bridge and
Structural Engineering (IABSE): Zürich, Switzerland, 2019; pp. 1844–1850.

76. Ma, C.; Zhu, C.; Xiang, K. Digital Aided Façade Design Introduced in A Traditional Design Workflow. In Proceedings of the 24th
CAADRIA Conference, Wellington, New Zealand, 15–18 April 2019; pp. 675–684.

77. Castro, A.B.; Bío, U.D.B.; Alvarado, R.G. BIM-Integration of solar thermal systems in early housing design. Rev. Constr. 2017, 16,
323–338. [CrossRef]

78. Yoo, B.; Yoon, H.; Kim, Y.; Lee, K.M. Stepwise Application of BIM-based Parametric Modeling to Tapered Slip-Form System.
Procedia Eng. 2016, 145, 112–119. [CrossRef]

79. Xia, J.; Peng, M. The parametric design of Shanghai Tower’s form and façade. In Proceedings of the CTBUH 2012 9th World
Congress, Shanghai, China, 19–21 September 2012.

80. Akkoyunlu, T. Parametric BIM Façade Module Development for Diagrid Twisted Structures. In Proceedings of the 35th
International Symposium on Automation and Robotics in Construction (ISARC), International Association for Automation and
Robotics in Construction (IAARC), Berlin, Germany, 20–25 July 2018; pp. 1056–1061.

81. Wortmann, T.; Tuncer, B. Differentiating parametric design: Digital workflows in contemporary architecture and construction.
Des. Stud. 2017, 52, 173–197. [CrossRef]

82. Caetano, I.; Leitão, A. Integration of an algorithmic BIM approach in a traditional architecture studio. J. Comput. Des. Eng. 2018, 6,
327–336. [CrossRef]

83. Veloso, P.; Celani, G.; Scheeren, R. From the generation of layouts to the production of construction documents: An application in
the customization of apartment plans. Autom. Constr. 2018, 96, 224–235. [CrossRef]

84. Abrishami, S.; Goulding, J.; Rahimian, F. Generative BIM workspace for AEC conceptual design automation: Prototype
development. Eng. Constr. Arch. Manag. 2020, 28, 482–509. [CrossRef]

http://doi.org/10.1016/j.autcon.2020.103368
https://www.augi.com/articles/detail/extending-bim-design-value-using-the-revit-api
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002725
http://doi.org/10.1016/j.jobe.2021.102266
http://doi.org/10.1080/15732479.2020.1801768
https://blogs.autodesk.com/revit/2020/04/08/generative-design-in-revit/
https://blogs.autodesk.com/revit/2020/04/08/generative-design-in-revit/
http://doi.org/10.1080/15732479.2020.1833946
http://doi.org/10.1016/j.compositesb.2020.108066
http://doi.org/10.1016/j.apacoust.2020.107906
http://doi.org/10.1109/COMST.2020.2980570
https://guides.lib.umich.edu/citation/Scopus
https://guides.lib.umich.edu/citation/Scopus
https://www.elsevier.com/solutions/scopus/how-scopus-works/content
https://www.elsevier.com/solutions/scopus/how-scopus-works/content
http://doi.org/10.1016/j.foar.2019.12.008
http://doi.org/10.3390/app9153144
http://doi.org/10.1016/j.jhazmat.2020.124504
http://doi.org/10.1016/j.jclepro.2021.126405
http://doi.org/10.7764/rdlc.16.2.323
http://doi.org/10.1016/j.proeng.2016.04.028
http://doi.org/10.1016/j.destud.2017.05.004
http://doi.org/10.1016/j.jcde.2018.11.004
http://doi.org/10.1016/j.autcon.2018.09.013
http://doi.org/10.1108/ECAM-04-2020-0256


Sensors 2021, 21, 5439 25 of 26

85. Sydora, C.; Stroulia, E. Generative Interior Design using BIM. In Proceedings of the 6th ACM International Conference on Systems
for Energy-Efficient Buildings, Cities, and Transportation, Association for Computing Machinery (ACM), New York, NY, USA,
13–14 November 2019; pp. 354–355.

86. Tafraout, S.; Bourahla, N.; Mebarki, A. Automatic structural design of RC wall-slab buildings using a genetic algorithm with
application in BIM environment. Autom. Constr. 2019, 106, 102901. [CrossRef]

87. Bianconi, F.; Filippucci, M.; Buffi, A. Automated design and modeling for mass-customized housing. A web-based design space
catalog for timber structures. Autom. Constr. 2019, 103, 13–25. [CrossRef]

88. Banihashemi, S.; Tabadkani, A.; Hosseini, M.R. Integration of parametric design into modular coordination: A construction waste
reduction workflow. Autom. Constr. 2018, 88, 1–12. [CrossRef]

89. Stumm, S.; Neu, P.; Brell-Cokcan, P.N.A.S. Towards Cloud Informed Robotics. In Proceedings of the 34th International Symposium
on Automation and Robotics in Construction (ISARC); International Association for Automation and Robotics in Construction
(IAARC), Taipei, Taiwan, 28 June–1 July 2017; pp. 59–64.

90. Khalili-Araghi, S.; Kolarevic, B. Development of a framework for dimensional customization system: A novel method for
customer participation. J. Build. Eng. 2016, 5, 231–238. [CrossRef]

91. Chen, J.-Y.; Huang, S.-C. Adaptive Building Facade Optimisation. In Proceedings of the 21st International Conference of the
Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016, Melbourne, Australia, 30 March–2 April
2016; pp. 259–268.

92. Abrishami, S.; Goulding, J.; Rahimian, F.; Ganah, A. Virtual generative BIM workspace for maximising AEC conceptual design
innovation. Constr. Innov. 2015, 15, 24–41. [CrossRef]

93. Abrishami, S.; Goulding, J.; Pour Rahimian, F.; Ganah, A. Integration of BIM and generative design to exploit AEC conceptual
design innovation. Electron. J. Inf. Technol. Constr. 2014, 19, 350–359.

94. Abrishami, S.; Goulding, J.; Pour Rahimian, F.; Ganah, A.; Sawhney, A. G-BIM Framework and Development Process for
Integrated AEC Design Automation. Procedia Eng. 2014, 85, 10–17. [CrossRef]

95. Afsari, K.; Swarts, M.E.; Gentry, T.R. Integrated Generative Technique for Interactive Design of Brickworks. J. Inf. Technol. Constr.
2014, 19, 225–247.

96. Fernando, R.; Drogemuller, R. Parametric and Generative Methods with Building Information Modelling: Connecting BIM with
explorative design modelling. In Proceedings of the Beyond Codes and Pixels, Hong Kong, China, 4 April 2012; pp. 537–546.

97. Wang, J.; Li, J.; Chen, X. Parametric Design Based on Building Information Modeling for Sustainable Buildings. In Proceedings of
the 2010 International Conference on Challenges in Environmental Science and Computer Engineering; Institute of Electrical and
Electronics Engineers (IEEE), Wuhan, China, 6–7 March 2010; Volume 2, pp. 236–239.

98. Leitão, A.; Castelo-Branco, R.; Cardoso, C. Algorithmic-Based Analysis-Design and Analysis in a Multi Back-end Generative
Tool. In Proceedings of the 22nd CAADRIA Conference, Xi’an Jiaotong-Liverpool University, Suzhou, China, 5–8 April 2017;
pp. 137–146.

99. Sabra, J.B.; Mullins, M.F. Design of parametric software tools: Optimizing future health care performance by integrating
evidence-based knowledge in architectural design and building processes. Light Eng. Archit. Environ. 2011, 121, 37–49.

100. González-Márquez, R.J.; Esparza, R.M. Tool Design as a Strategy for Architectural Design. In Proceedings of the Presentation for
the XXXVII IAHS World Congress on Housing, Santander, Spain, 26–29 October 2010; p. 9.

101. Noone, M.; Mooney, A. Visual and textual programming languages: A systematic review of the literature. J. Comput. Educ. 2018,
5, 149–174. [CrossRef]

102. Ferreira, B.; Leitão, A. Generative Design for Building Information Modeling. In Proceedings of the 33rd eCAADe, Vienna,
Austria, 16–18 September 2015; pp. 635–644.

103. Loomis, M. Rhino Grasshopper VS Generative Components, Designplaygrounds. 2011. Available online: http://
designplaygrounds.com/deviants/rhino-grasshopper-vs-generative-components/ (accessed on 13 February 2021).

104. Boshernitsan, M.; Downes, M. Visual Programming Languages: A Survey; University of California: Berkley, CA, USA, 2004.
105. An Overview of Generative Components-Generative Components Community Wiki-Generative Components-Bentley Com-

munities. Available online: https://communities.bentley.com/products/products_generativecomponents/w/generative_
components_community_wiki (accessed on 15 February 2021).

106. Leitão, A.; Cabecinhas, F.; Martins, S. Revisiting the Architecture Curriculum: The programming perspective. In Proceedings of
the 28th eCAADe, Zurich, Switzerland, 15–18 September 2010; pp. 81–88.

107. Zhao, R.; Zhang, L.; Fan, G.; Chen, Y.; Huang, G.; Zhang, H.; Zhu, J.; Guan, X. Probing the exact form and doping preference of
magnesium in ordinary Portland cement clinker phases: A study from experiments and DFT simulations. Cem. Concr. Res. 2021,
144, 106420. [CrossRef]

108. CHEN, V. A History of Visual Programming: From Basic to Bubble, Bubble Blog-The Best Way to Build Web Apps without Code.
2020. Available online: https://bubble.io/blog/visual-programming/ (accessed on 20 February 2021).

109. Leitão, A.; Caetano, I.; Correia, H. Processing architecture. Int. J. Arch. Comput. 2016, 14, 147–157. [CrossRef]
110. Xu, S.; Wang, J.; Shou, W.; Ngo, T.; Sadick, A.-M.; Wang, X. Computer Vision Techniques in Construction: A Critical Review. Arch.

Comput. Methods Eng. 2021, 28, 3383–3397. [CrossRef]
111. Sun, L.; Li, C.; Zhang, C.; Liang, T.; Zhao, Z. The Strain Transfer Mechanism of Fiber Bragg Grating Sensor for Extra Large Strain

Monitoring. Sensors 2019, 19, 1851. [CrossRef]

http://doi.org/10.1016/j.autcon.2019.102901
http://doi.org/10.1016/j.autcon.2019.03.002
http://doi.org/10.1016/j.autcon.2017.12.026
http://doi.org/10.1016/j.jobe.2016.01.001
http://doi.org/10.1108/CI-07-2014-0036
http://doi.org/10.1016/j.proeng.2014.10.523
http://doi.org/10.1007/s40692-018-0101-5
http://designplaygrounds.com/deviants/rhino-grasshopper-vs-generative-components/
http://designplaygrounds.com/deviants/rhino-grasshopper-vs-generative-components/
https://communities.bentley.com/products/products_generativecomponents/w/generative_components_community_wiki
https://communities.bentley.com/products/products_generativecomponents/w/generative_components_community_wiki
http://doi.org/10.1016/j.cemconres.2021.106420
https://bubble.io/blog/visual-programming/
http://doi.org/10.1177/1478077116638927
http://doi.org/10.1007/s11831-020-09504-3
http://doi.org/10.3390/s19081851


Sensors 2021, 21, 5439 26 of 26

112. Li, C.; Sun, L.; Xu, Z.; Wu, X.; Liang, T.; Shi, W. Experimental Investigation and Error Analysis of High Precision FBG Displacement
Sensor for Structural Health Monitoring. Int. J. Struct. Stab. Dyn. 2020, 20, 2040011. [CrossRef]

113. Ma, H.-J.; Xu, L.-X. Decentralized Adaptive Fault-Tolerant Control for a Class of Strong Interconnected Nonlinear Systems via
Graph Theory. IEEE Trans. Autom. Control. 2021, 66, 3227–3234. [CrossRef]

114. Ma, G.; Sun, J.; Wang, L.; Aslani, F.; Liu, M. Electromagnetic and microwave absorbing properties of cementitious composite for
3D printing containing waste copper solids. Cem. Concr. Compos. 2018, 94, 215–225. [CrossRef]

115. Ma, G.; Sun, J.; Aslani, F.; Huang, Y.; Jiao, F. Review on electromagnetic wave absorbing capacity improvement of cementitious
material. Constr. Build. Mater. 2020, 262, 120907. [CrossRef]

116. Ma, G.; Zhang, J.; Wang, L.; Li, Z.; Sun, J. Mechanical characterization of 3D printed anisotropic cementitious material by the
electromechanical transducer. Smart Mater. Struct. 2018, 27, 075036. [CrossRef]

117. Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Properties of a double-layer EMW-absorbing structure containing a graded nano-sized
absorbent combing extruded and sprayed 3D printing. Constr. Build. Mater. 2020, 261, 120031. [CrossRef]

118. Sun, J.; Huang, Y.; Aslani, F.; Ma, G. Electromagnetic wave absorbing performance of 3D printed wave-shape copper solid
cementitious element. Cem. Concr. Compos. 2020, 114, 103789. [CrossRef]

119. Ma, H.-J.; Yang, G.-H. Adaptive Fault Tolerant Control of Cooperative Heterogeneous Systems with Actuator Faults and
Unreliable Interconnections. IEEE Trans. Autom. Control. 2016, 61, 3240–3255. [CrossRef]

120. Sun, J.; Huang, Y.; Aslani, F.; Wang, X.; Ma, G. Mechanical enhancement for EMW-absorbing cementitious material using 3D
concrete printing. J. Build. Eng. 2021, 41, 102763. [CrossRef]

121. Sun, J.; Aslani, F.; Wei, J.; Wang, X. Electromagnetic absorption of copper fiber oriented composite using 3D printing. Constr.
Build. Mater. 2021, 300, 124026. [CrossRef]

122. Aslani, F.; Sun, J.; Bromley, D.; Ma, G. Fiber-reinforced lightweight self-compacting concrete incorporating scoria aggregates at
elevated temperatures. Struct. Concr. 2019, 20, 1022–1035. [CrossRef]

123. Aslani, F.; Hou, L.; Nejadi, S.; Sun, J.; Abbasi, S. Experimental analysis of fiber-reinforced recycled aggregate self-compacting
concrete using waste recycled concrete aggregates, polypropylene, and steel fibers. Struct. Concr. 2019, 20, 1670–1683. [CrossRef]

124. Sun, J.; Lin, S.; Zhang, G.; Sun, Y.; Zhang, J.; Chen, C.; Morsy, A.M.; Wang, X. The effect of graphite and slag on electrical and
mechanical properties of electrically conductive cementitious composites. Constr. Build. Mater. 2021, 281, 122606. [CrossRef]

125. Sun, J.; Ma, Y.; Li, J.; Zhang, J.; Ren, Z.; Wang, X. Machine learning-aided design and prediction of cementitious composites
containing graphite and slag powder. J. Build. Eng. 2021, 43, 102544. [CrossRef]

126. Hou, L.; Wu, S.; Zhang, G.; Tan, Y.; Wang, X. Literature Review of Digital Twins Applications in Construction Workforce Safety.
Appl. Sci. 2021, 11, 339. [CrossRef]

127. Sun, J.; Aslani, F.; Lu, J.; Wang, L.; Huang, Y.; Ma, G. Fresh and mechanical behaviour of developed fibre-reinforced lightweight
engineered cementitious composites for 3D concrete printing containing hollow glass microspheres. Ceram. Int. 2021. [CrossRef]

128. Sun, J.; Wang, Y.; Yao, X.; Ren, Z.; Zhang, G.; Zhang, C.; Chen, X.; Ma, W.; Wang, X. Machine-Learning-Aided Prediction of
Flexural Strength and ASR Expansion for Waste Glass Cementitious Composite. Appl. Sci. 2021, 11, 6686. [CrossRef]

http://doi.org/10.1142/S0219455420400118
http://doi.org/10.1109/TAC.2020.3014292
http://doi.org/10.1016/j.cemconcomp.2018.09.005
http://doi.org/10.1016/j.conbuildmat.2020.120907
http://doi.org/10.1088/1361-665X/aac789
http://doi.org/10.1016/j.conbuildmat.2020.120031
http://doi.org/10.1016/j.cemconcomp.2020.103789
http://doi.org/10.1109/TAC.2015.2507864
http://doi.org/10.1016/j.jobe.2021.102763
http://doi.org/10.1016/j.conbuildmat.2021.124026
http://doi.org/10.1002/suco.201800231
http://doi.org/10.1002/suco.201800336
http://doi.org/10.1016/j.conbuildmat.2021.122606
http://doi.org/10.1016/j.jobe.2021.102544
http://doi.org/10.3390/app11010339
http://doi.org/10.1016/j.ceramint.2021.06.124
http://doi.org/10.3390/app11156686

	Introduction 
	Generative Design and Building Information Modelling 
	Generative Design 
	Components of a GD 
	Building Information Modelling 
	Integration of GD with BIM 

	Review Methodology 
	Analysis 
	Objectives of Developing GD in BIM and the Relationship to Programming Languages 
	Categorising and Comparison of Different Objectives of GD-BIM Development 
	Publications of Different Objectives of GD-BIM Development 
	Application of Programming Languages Based on Different Objectives 
	Perspective of Objectives-Oriented GD-BIM Development 

	Suitability of Programming Languages for GD-BIM Development 
	Programming Languages and Software Used to Develop GD in BIM 
	Suitability Relationship between Programming Languages and GD Component Development 
	Perspective of GD Component-Based GD-BIM Development 

	Programming Skill Learning & Improving for GD-BIM Development 
	Designers’ Learning of VPLs and TPLs 
	Influence from Portable Development Environments 
	Recommendations to Designers on Skill Learning and Improving 
	Perspective of Skill-Driven GD-BIM Development 


	Discussion 
	Develop More Sophisticated and Systematic GD-BIM to Support More Design Processes 
	Reduce Programming Difficulties for Designers to Facilitate GD-BIM Development 

	Conclusions 
	References

