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Abstract

Inspired by an applied model arising from electric power markets with price caps that
is discussed in a previous paper [3], this paper studies the Nash equilibrium problem in
which the minimizing players’ objective functions are sums of composite separable con-
vex piecewise quadratic functions. Based on a fundamental but previously not proven
equivalence between a separable convex piecewise quadratic program and a standard con-
vex quadratic program, we show that the nonsmooth Nash equilibrium problem can be
equivalently reformulated as a generalized Nash equilibrium problem with coupled linear
constraints. We establish the convergence of a sequential penalized Nash algorithm for
solving the reformulated generalized Nash problem under a boundedness condition.

Key words: Piecewise quadratic program, Nash-equilibrium, sequential penalized Nash
algorithm
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1 Introduction

In a recent paper [3], a Nash-Cournot oligopolistic production model describing an electric
power market where the regional prices of electricity sales are subject to caps was formulated
and analyzed. This model leads to a Nash equilibrium problem where the players’ objective
functions are piecewise quadratic functions in the decision variables. Seemingly rather simple,
the model raises several computational questions that have not been formally investigated prior
to the cited work. Whereas these questions were settled affirmatively therein, due to their
fundamental nature, we feel that the questions need to be addressed in a broader context.
This constitutes the primary objective of the present paper.

Specifically, this paper deals with a standard Nash equilibrium problem [2, Subsection 1.4.2]
where each player’s objective function is piecewise quadratic (but of a special type) in all play-
ers’ decision variables and the players’ strategies are compact polyhedra. While the existence
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of an equilibrium solution is trivial, the computation of such an equilibrium solution is a chal-
lenge to the state of the art. Indeed, the piecewise quadratic nature of each player’s objective
function identifies the player’s problem as a nonsmooth optimization problem; as such, all
existing methods for computing equilibria via the variational inequality (VI) approach [2] are
in jeopardy because there is no single-valued formulation of the first-order conditions of an
equilibrium solution. As a matter of fact, all methods that depend on such a formulation are
invalidated by the nondifferentiability of the players’ objectives. Moreover, the multi-valued
VI formulation is not applicable either, because simple examples can easily be constructed (see
e.g. [3, Example 1]) to show that the defining mapping of such a VI is not monotone. Without
such overall monotonicity, no methods exist that can solve the resulting multi-valued VI of the
Nash game.

Exploiting the special structure of the applied model, the reference [3] establishes a fun-
damental complementarity formulation of the nonsmooth Nash-Cournot equilibrium problem
with price caps and shows that the well-known Lemke pivoting method [1, 4] can successfully
compute an equilibrium solution with a certain restricted multiplier property. In this paper, we
analyze the piecewise quadratic Nash equilibrium problem more fully. In order to better mo-
tivate our approach, we digress to give a brief historical account of separable convex piecewise
quadratic programming, which is a special class of monotropic programs [8].

It is a well-known elementary fact that a separable convex piecewise linear program is
equivalent to a standard linear program. While there has been extensive investigation of
piecewise quadratic programming [5, 6, 9, 10, 11, 12, 13, 14], especially in the context of
“linear-quadratic programming”, the extension of the mentioned fact to a separable convex
piecewise quadratic program has never been formally established in the literature (although it
is natural for one to conjecture its truth). This is not without a reason. Indeed, the conversion
appears to be of more conceptual significance than practical appeal. Our contention is that
while such an equivalent smooth reformulation of a piecewise quadratic program may not
be particularly noteworthy in an optimization context, it in fact offers a viable approach for
dealing with the piecewise quadratic Nash equilibrium problem.

Beginning with a formal proof of the aforementioned equivalent reformulation of a separa-
ble convex piecewise quadratic program to a standard convex quadratic program, this paper
describes a sequential penalized method for computing an equilibrium to a Nash equilibrium
problem with separable composite convex piecewise quadratic player objective functions. Our
treatment extends that of the special model in [3] and follows a different path. Indeed, via
a penalization of the “coupled constraints” in the resulting equivalent smooth formulation of
the nonsmooth Nash problem, a technique first proposed in [7] for a generalized Nash game,
we no longer need to rely on the “common multiplier” formulation that restricts the class of
equilibria to be computed.
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2 Piecewise Quadratic Programs

We begin by considering a separable convex piecewise quadratic program of the form:

minimize
n∑

i=1

pi(xi)

subject to x ∈ X,

(1)

where X is a polyhedron in <n and each pi is a convex piecewise quadratic function of one
variable, which we write as

pi(t) ≡





1
2 ai,0 t2 + bi,0 t + ci,0 if t ∈ (−∞, αi,0 ]
1
2 ai,j t2 + bi,j t + ci,j if t ∈ [αi,j−1, αi,j ], j = 1, . . . ,m
1
2 ai,m+1 t2 + bi,m+1 t + ci,m+1 if t ∈ [αi,m,∞ ),

where
−∞ < αi,0 < αi,1 < . . . < αi,m < ∞

is a partition of the real line into m + 2 consecutive closed intervals, within each of which pi is
quadratic; the constants {ai,0, ai,1, . . . , ai,m} and {bi,0, bi,1, . . . , bi,m} satisfy

(continuity) 1
2ai,jα

2
i,j + bi,jαi,j + ci,j = pi(αi,j) = 1

2ai,j+1α
2
i,j + bi,j+1αi,j + ci,j+1

for all j = 0, 1, . . . ,m;

(convexity-1) ai,jαi,j + bi,j = p ′
i(αi,j−) ≤ p ′

i (αi,j+) = ai,j+1αi,j + bi,j+1

for all j = 0, 1, . . . ,m;

(convexity-2) ai,0, ai,1, . . ., ai,m, ai,m+1 all nonnegative.

with p ′
i (αi,j−) and p ′

i (αi,j+) denoting the left- and right-derivative of pi(t) at the breakpoint
αi,j, respectively; i.e.,

p ′
i (αi,j−) ≡ lim

τ↓0

pi(αi,j) − pi(αi,j − τ)
τ

and p ′
i (αi,j+) ≡ lim

τ↓0

pi(αi,j + τ) − pi(αi,j)
τ

.

Our goal is to show that, upon a change of variables, the convex piecewise quadratic program
(1) is equivalent to a standard convex quadratic program. For this purpose, we let, for each
i = 1, . . . , n and j = 0, 1, . . . ,m + 1, yi,j denote the portion of xi in the interval [αi,j−1, αi,j],
where αi,−1 = −∞ and αi,m+1 = ∞. The variables yi,j satisfy the following conditions:

0 ≤ α̂i,j − yi,j ⊥ yi,j+1 ≥ 0, ∀ j = 0, 1, . . . ,m, (2)

where

α̂i,j ≡

{
αi,0 if j = 0

αi,j − αi,j−1 if j = 1, . . . ,m.
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In terms of the auxiliary variables yi,j, we can write

xi =
m+1∑

j=0

yi,j, pi(xi) = pi(yi,0) +
m+1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]
, (3)

where
pi,j(t) ≡ 1

2 ai,j t2 + bi,j t + ci,j , j = 1, . . . ,m + 1

is the quadratic function that coincides with pi(t) on the interval [αi,j−1, αi,j ]. Indeed, if xi

belongs to [αi,k−1, αi,k) for some k = 1, . . . ,m + 1, then yi,j = α̂i,j for all j = 0, 1, . . . , k − 1,
yi,k = xi − αi,k−1, and yi,` = 0 for all ` = k + 1, . . . ,m + 1; thus,

pi(xi) = 1
2 ai,k x2

i + bi,k xi + ci,k = pi(αi,k−1) + ( ai,k αi,k−1 + bi,k )yi,k + 1
2 ai,k y2

i,k

= pi(αi,k−1) + p ′
i,k(αi,k−1) yi,k + 1

2 ai,k y2
i,k;

inductively, it can be shown that

pi(αi,k−1) = pi(αi,k−2) + p ′
i,k−1(αi,k−2) yi,k−1 + 1

2 ai,k−1 y2
i,k−1

= · · · = pi(αi,0) +
k−1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]
,

from which the representation of pi(xi) in (3) follows readily. Consequently, (1) is equivalent
to the following quadratic program with linear complementarity constraints:

minimize
n∑

i=1



 pi(yi,0) +

m+1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]




subject to xi =
m+1∑

j=0

yi,j, i = 1, ..., n; x ∈ X

and 0 ≤ α̂i,j − yi,j ⊥ yi,j+1 ≥ 0, ∀ j = 0, 1, . . . ,m.

(4)

Note that for any given x, there exists a unique set of {yi,j, i = 1, ..., n; j = 0, ...,m + 1}

satisfying (2) such that xi =
m+1∑

j=0

yi,j, and thus (3) holds. We call this set of variables yi,j the

piecewise decomposition of x.

The following result shows that the orthogonality constraints can be dropped from the
program (4).
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Proposition 1 The two programs (4) and (5), where

minimize
n∑

i=1



 pi(yi,0) +

m+1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]




subject to xi =
m+1∑

j=0

yi,j, i = 1, ..., n; x ∈ X

and
0 ≤ α̂i,j − yi,j

0 ≤ yi,j+1

}
∀ j = 0, 1, . . . ,m.

(5)

have the same optimal objective value, which is possibly −∞. In particular, if an optimal
solution to (5) exists, then there exists an optimal solution (x, {yi,j}) to (5), in which {yi,j}
is the piecewise decomposition of x. Obviously, this solution satisfies the complementarity
conditions (α̂i,j − yi,j)yi,j+1 = 0 for all i = 1, . . . , n and j = 1, . . . ,m and is therefore an
optimal solution to (4).

Proof. It suffices to show that for any feasible solution (x, y) to (5), there exists ŷ such that
(x, ŷ) feasible to (4) such that, for all i = 1, . . . , n,

pi(ŷi,0)+
m+1∑

j=1

[
1
2 ai,j ŷ 2

i,j + p ′
i,j(αi,j−1) ŷi,j

]
≤ pi(yi,0)+

m+1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]
. (6)

Once this is established, the proposition follows.
For a given feasible solution (x, {yi,j}) to (5), let {ŷij} be the piecewise decomposition of x.

In turn, to establish the inequality (6), it suffices to show that if δk ≡ min(α̂i,k−yi,k, yi,k+1) > 0
for some k = 0, 1, . . . ,m, then letting ỹi,j = yi,j for all j except for ỹi,k ≡ yi,k + δk and
ỹi,k+1 ≡ yi,k+1 − δk, we have

pi(ỹi,0)+
m+1∑

j=1

[
1
2 ai,j ỹ 2

i,j + p ′
i,j(αi,j−1) ỹi,j

]
≤ pi(yi,0)+

m+1∑

j=1

[
1
2 ai,j y2

i,j + p ′
i,j(αi,j−1) yi,j

]
. (7)

Suppose k = 0. The above inequality reduces to

pi(ỹi,0) + 1
2 ai,1 ỹ 2

i,1 + p ′
i,1(αi,0) ỹi,1 ≤ pi(yi,0) + 1

2 ai,1 y 2
i,1 + p ′

i,1(αi,0) yi,1. (8)

Consider the convex quadratic function in δ:

ci,0 + bi,0 ( yi,0 + δ ) + 1
2 ai,0 ( yi,0 + δ )2 + 1

2 ai,1 ( yi,1 − δ )2 + p ′
i,1(αi,0) ( yi,1 − δ ),

which is equal to the right-hand side of (8) when δ = 0 and equal to the left-hand side when
δ = δ0; the minimum of this function is attained at

δ0,min ≡ ( bi,1 + ai,1αi,0 ) − ( bi,0 + ai,0αi,0 ) + ai,1 yi,1 + ai,0 (αi,0 − yi,0 )
ai,0 + ai,1

≥ δ0,
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where δ0,min is defined to be ∞ if the denominator is zero. Therefore, (7) holds with δ = δ0.
Suppose k > 0. The inequality (7) reduces to

1
2 ai,k ỹ 2

i,k + p ′
i,k(αi,k−1) ỹi,k + 1

2 ai,k+1 ỹ 2
i,k+1 + p ′

i,k+1(αi,k) ỹi,k+1

≤ 1
2 ai,k y 2

i,k + p ′
i,k(αi,k−1) yi,k + 1

2 ai,k+1 y 2
i,k+1 + p ′

i,k+1(αi,k) yi,k+1.

Consider the convex quadratic function in δ:
1
2 ai,k ( yi,k + δ ) 2 + p ′

i,k(αi,k−1) ( yi,k + δ ) + 1
2 ai,k+1 ( yi,k+1 − δ ) 2 + p ′

i,k+1(αi,k) ( yi,k+1 − δ ),

whose minimum is attained at

δk,min ≡
( bi,k+1 + ai,k+1αi,k ) − ( bi,k + ai,kαi,k ) + ai,k+1 yi,k+1 + ai,k ( α̂i,k − yi,k )

ai,k + ai,k+1
≥ δk,

For the same reason as before, (7) holds with δ = δk. �

Proposition 1 is easily applicable to a composite separable convex piecewise quadratic
program of the form: for some integer n ′ > 0,

minimize
n ′∑

i=1

pi

(
(ei)T x + fi

)

subject to x ∈ X,

(9)

where each ei is an n-dimensional vector and fi is a scalar. Indeed, (9) is clearly equivalent to

minimize
n ′∑

i=1

pi(ti)

subject to x ∈ X,

ti = (ei)T x + fi, i = 1, . . . , n ′,

(10)

which is in the form of (1) in the variables (x, t) ∈ <n+n ′
. The discussion so far forms the basis

for extension to a Nash equilibrium problem in which each player solves a convex nonsmooth
optimization problem of the form (9); in this case, complication arises because the constraints
of the equivalent smooth program (10) contain the rival players’ strategies. This feature turns
the resulting game into one of the generalized type. Another consideration is how the rivals’
strategies enter into each individual player’s piecewise quadratic objective function. Details
are discussed in the next section.

3 The Nash Equilibrium Problem

Consider a Nash equilibrium problem with N players each labeled by ν = 1, . . . , N . Player ν’s
optimization problem is to determine a strategy xν ∈ <nν to

minimize θν(x) ≡
n ′

ν∑

i=1

p ν
i

(
(e ν,i)T x + f ν

i , x−ν
)

subject to xν ∈ Xν

(11)
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for fixed but arbitrary x−ν ≡
(
xν ′

)
ν ′ 6=ν

∈
∏

ν ′ 6=ν

Xν ′
, where x ≡ (xν)N

ν=1 is the concatenation

of all the players’ strategies, each Xν is a polyhedron in <nν , e ν,i is a vector in <n, with

n ≡
N∑

ν=1

nν , f ν
i is a scalar, and p ν

i (·, x−ν) is a convex piecewise quadratic function of one

variable given by

p ν
i (t, x−ν) ≡





1
2 a ν

i,0 t2 + b ν
i,0(x

−ν) t + c ν
i,0 if t ∈ (−∞, α ν

i,0 ]
1
2 a ν

i,j t2 + b ν
i,j(x

−ν) t + c ν
i,j if t ∈ [α ν

i,j−1, α
ν
i,j ], j = 1, . . . ,mν

i

1
2 a ν

i,mν
i +1 t2 + b ν

i,mν
i +1(x

−ν) t + c ν
i,mν

i +1 if t ∈ [α ν
i,mν

i
,∞ ),

where
−∞ < α ν

i,0 < αν
i,1 < . . . < α ν

i,mν
i

< ∞

is a partition of the real line into mν
i + 2 consecutive closed intervals, each b ν

i,j(x
−ν) is a scalar

affine function of x−ν such that, for each fixed x−ν , the triple (a ν
i,j, b

ν
i,j(x

−ν), c ν
i,j) satisfies

the convexity and continuity conditions for p ν
i (·, x−ν). Note that under this setting, all the

functions pν
i (·, x−ν) have the same number of quadratic pieces, albeit with different breakpoints,

all of which are independent of x−ν . Each vector e ν,i is a concatenation of N subvectors
e ν,ν ′,i ∈ <nν ′ for ν ′ = 1, . . . , N so that

( e ν,i )T x ≡
N∑

ν ′=1

( e ν,ν ′,i )T x ν ′
.

It is easy to see that a tuple x∗ ≡ (x∗,ν)Nν=1 ∈ X ≡
N∏

ν=1

Xν is a Nash equilibrium if and only if

a vector a∗ ≡ (a∗,ν)Nν=1 ∈
N∏

ν=1

∂xν θν(x∗) exists such that

N∑

ν=1

(xν − x∗,ν )T a∗,ν ≥ 0, ∀ (xν )Nν=1 ∈ X;

i.e., x∗ is a Nash equilibrium if and only if it is a solution to the multi-valued variational
inequality defined by the pair (X,Θ), where

Θ(x) ≡
N∏

ν=1

∂xν θν(x),

where ∂xνθν(x) is the subdifferential of the convex function θ(·, x−ν) at xν . In general, Θ is not
monotone (see [3] for a simple example); thus no existing method is applicable to the latter
VI. In what follows, we discuss how an equilibrium solution to the above Nash problem can
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be computed based on the equivalent formulation of each player’s nonsmooth optimization as
a standard convex quadratic program with auxiliary variables.

Before proceeding further, we should say a few words about each function p ν
i , which is

a “multi-component composite piecewise quadratic function”. In the given form, the rivals’
variables x−ν affects this function in 2 ways: one, through the expression (e ν,i)T x+ f ν

i , which
is the first argument in p ν

i

(
(e ν,i)T x + f ν

i , x−ν
)
, and two, through the linear term in each

quadratic piece of p ν
i (·, x−ν). Note that both a ν

i,j and c ν
i,j are constants: replacing the constant

a ν
i,j by a function of x−ν destroys the quadratic feature of the overall function θν(x); replacing

the constant c ν
i,j by a function of x−ν has no effect on player ν’s optimization; thus the essential

term is the linear term of the quadratic pieces. An example of such a function p ν
i is a firm’s

revenue function in a Nash-Cournot production game with piecewise linear prices, where each
f ν

i = 0 and e ν,i is the vector with all components equal to zero except for the (ν, i) component
which is equal to one so that (e ν,i)T x + f ν

i = xν
i , and where

p ν
i (t, x−ν) ≡ −t πi(t + S−ν

i ), (12)

with S−ν
i ≡

∑

ν ′ 6=ν

xν ′
i denoting the sum of the rival firms’ sales in region i and πi being the

regional price that is a univariate, concave, decreasing, piecewise linear function of sales.
By Proposition 1, (11) is equivalent to

minimize
n ′

ν∑

i=1



 p ν

i (y ν
i,0, x

−ν) +
mν

i +1∑

j=1

[
1
2 aν

i,j ( yν
i,j )2 + (p ν

i,j)
′
t(α

ν
i,j−1, x

−ν) yν
i,j

]




subject to xν ∈ Xν

( e ν,i )T x + f ν
i =

mν
i +1∑

j=0

yν
i,j, i = 1, . . . , n ′

ν

and
0 ≤ α̂ ν

i,j − y ν
i,j

0 ≤ y ν
i,j+1

}
∀ j = 0, 1, . . . ,mν

i ,

(13)

where (p ν
ij)

′
t (t, x−ν) = a ν

i,jt + b ν
i,j(x

−ν) is the partial derivative of the j-th quadratic piece of
p ν

i (·, x−ν) with respect to t (thus p ν
ij(t, x

−ν) ≡ 1
2a ν

i,jt
2 + b ν

i,j(x
−ν)t + c ν

i,j), and

α̂ ν
i,j ≡

{
α ν

i,0 if j = 0

α ν
i,j − α ν

i,j−1 if j = 1, . . . ,mν
i .

Note the presence of the rivals’ strategies in the constraints of the above optimization problem.
As such, the resulting Nash equilibrium problem is of the generalized type with player ν’s
variables being (xν , yν), where yν = (yν

i,j). We first state the necessary and sufficient conditions
for an equilibrium solution of the game, which are obtained by concatenating the respective
Karush-Kuhn-Tucker (KKT) conditions of the individual players’ optimization problems (13).
For this purpose, we write

Xν ≡ {xν ∈ <nν
+ : D νxν ≤ d ν },
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for some matrix D ν and vector d ν of appropriate orders. Letting λ ν and µ ν
i,j be the Lagrange

multipliers of the constraints D νx ν ≤ d ν and 0 ≤ α̂ ν
i,j − y ν

i,j, respectively, we obtain the KKT
conditions for the overall Nash game as follows: for all ν = 1, . . . , N ,

0 ≤ x ν ⊥
n ′

ν∑

i=1

η ν
i e ν,ν,i + (D ν )T λ ν

0 ≤ λ ν ⊥ d ν − D νx ν ≥ 0

0 = ( e ν,i )T x + f ν
i −

mν
i +1∑

j=0

yν
i,j

0 = b ν
i,0(x

−ν) + a ν
i,0 y ν

i,0 + µ ν
i,0 − η ν

i

0 ≤ µ ν
i,0 ⊥ α̂ ν

i,0 − y ν
i,0 ≥ 0

0 ≤ y ν
i,mν

i +1 ⊥ (p ν
i,mν

i +1)
′
t (α ν

i,mν
i
, x−ν) + a ν

i,mν
i +1y

ν
i,mν

i +1 − ην
i ≥ 0





i = 1, . . . , n ′
ν

0 ≤ y ν
i,j ⊥ (p ν

i,j)
′
t (α

ν
i,j−1, x

−ν) + a ν
i,j yν

i,j − ην
i + µ ν

i,j ≥ 0

0 ≤ µ ν
i,j ⊥ α̂ ν

i,j − y ν
i,j ≥ 0





j = 1, . . . ,mν
i

i = 1, . . . , n ′
ν .

(14)

Note the absence of the constants c ν
i,j in the above conditions. This confirms our previous

remark that these constants have no effect on the players’ optimization problems. We can con-
vert the above mixed linear complementarity problem into a standard linear complementarity
problem (LCP) by eliminating the variables y ν

i,0 and η ν
i using the two equations:

y ν
i,0 = ( e ν,i )T x + f ν

i −
mν

i +1∑

j=1

yν
i,j

and
η ν

i = b ν
i,0(x

−ν) + a ν
i,0 y ν

i,0 + µ ν
i,0

= a ν
i,0 f ν

i + b ν
i,0(x

−ν) + a ν
i,0


 ( e ν,i )T x −

mν
i +1∑

j=1

yν
i,j


 + µ ν

i,0.

Substituting these expressions into the rest of the KKT conditions, we obtain, for ν = 1, . . . , N ,

0 ≤ x ν ⊥
n ′

ν∑

i=1

e ν,ν,i



a ν

i,0 f ν
i + b ν

i,0(x
−ν) + a ν

i,0


 ( e ν,i )T x −

mν
i +1∑

j=1

yν
i,j


 + µ ν

i,0





+(D ν )T λ ν ≥ 0

0 ≤ λ ν ⊥ d ν − D νx ν ≥ 0

9



0 ≤ µ ν
i,0 ⊥ α̂ ν

i,0 − ( e ν,i )T x − f ν
i +

mν
i +1∑

j=1

yν
i,j ≥ 0

0 ≤ y ν
i,m+1 ⊥ (p ν

i,mν
i +1)

′
t (α ν

i,mν
i
, x−ν) + a ν

i,mν
i +1y

ν
i,mν

i +1 − a ν
i,0f

ν
i − b ν

i,0(x
−ν)

− a ν
i,0


 ( e ν,i )T x −

mν
i +1∑

j=1

yν
i,j


 − µ ν

i,0 ≥ 0





i = 1, . . . , n ′
ν

0 ≤ y ν
i,j ⊥ (p ν

i,j)
′
t(α ν

i,j−1, x
−ν) + a ν

i,j yν
i,j − a ν

i,0 f ν
i − b ν

i,0(x
−ν)−

− a ν
i,0


 ( e ν,i )T x −

mν
i +1∑

j=1

yν
i,j


 − µ ν

i,0 + µ ν
i,j ≥ 0

0 ≤ µ ν
i,j ⊥ α̂ ν

i,j − y ν
i,j ≥ 0





j = 1, . . . ,mν
i

i = 1, . . . , n ′
ν .

Handling the case where X is bounded, the sequential penalized Nash approach solves a se-

quence of Nash subproblems obtained by penalizing the constraints ( e ν,i )T x+f ν
i −

mν
i +1∑

j=0

yν
i,j = 0

that contain the rival players’ variable x−ν . Specifically, let {ρ`} be an arbitrary sequence of

positive scalars such that lim
`→∞

ρ` = ∞. For each `, let (x`, y`), where y` ≡
(
y`,ν

)N

ν=1
, be

an equilibrium solution to a Nash subgame, wherein player ν’s optimization problem in the
variable (xν , yν) for fixed x−ν is:

minimize
n ′

ν∑

i=1



 p ν

i (y ν
i,0, x

−ν) +
mν

i +1∑

j=1

[
1
2 aν

i,j ( yν
i,j )2 + (p ν

i,j)
′
t(α

ν
i,j−1, x

−ν) yν
i,j

]




+
ρ`

2

n ′
ν∑

i=1


 ( e ν,i )T x + f ν

i −
mν

i +1∑

j=0

yν
i,j




2

subject to xν ∈ Xν

and
0 ≤ α̂ ν

i,j − y ν
i,j

0 ≤ y ν
i,j+1

}
∀ j = 0, 1, . . . ,mν

i ,

(15)

where ρν > 0 is a positive penalty parameter. We may assume without loss of generality that
y` satisfies:

( α̂ ν
i,j − y `,ν

i,j ) y `,ν
i,j+1 = 0, ∀ j = 0, 1, . . . ,mν

i ; ∀ i = 0, 1, . . . , n ′
ν . (16)

There are two issues that need attention: (a) existence of each (x`, y`) for given ρ` > 0, and
(b) convergence of the sequence {(x`, y`)} when ` → ∞. The first issue is complicated by the
possible unboundedness of the variables y ν

i,0 and y ν
i,mν

i +1 (all the other y ν
i,j for j = 1, . . . ,mν

i

10



are bounded), a situation that can be eliminated when each Xν is bounded. The following
result formally addresses this issue.

Proposition 2 Suppose that X is bounded and that, for each x−ν ∈ X−ν , each ν = 1, . . . , N ,
and every i = 1, . . . , n ′

ν ,
inf

y ν
i,0≤α̂i0

p ν
i (y ν

i,0, x
−ν) > −∞ (17)

and
inf

y ν
i,mν

i
+1

≥0

[
1
2 aν

i,mν
i +1 ( yν

i,mν
i +1 )2 + (p ν

i,mν
i +1)

′
t (αν

i,mν
i
, x−ν) yν

i,mν
i +1

]
> −∞. (18)

Then, for every ρ` > 0, there exists an equilibrium (x`, y`) to the Nash subgame where each
player ν’s optimization problem is (15).

Proof. Since p ν
i (y ν

i,0, x
−ν) and 1

2aν
i,mν

i +1(y
ν
i,mν

i +1)
2 + (p ν

i,mν
i +1)

′
t (α

ν
i,mν

i
, x−ν)yν

i,mν
i +1 are convex

quadratic functions of y ν
i,0 and y ν

i,mν
i +1, respectively, whose linear terms are parameterized by

x−ν belonging to the compact polyhedron X−ν , it follows that

inf
x−ν∈X−ν

inf
y ν

i,0≤α̂i0

p ν
i (y ν

i,0, x
−ν) > −∞ (19)

and

inf
x−ν∈X−ν

inf
y ν

i,mν
i
+1

≥0

[
1
2 aν

i,mν
i +1 ( yν

i,mν
i +1 )2 + (p ν

i,mν
i +1)

′
t(α

ν
i,mν

i
, x−ν) yν

i,mν
i +1

]
> −∞. (20)

Fix ρ` > 0. For each integer k > 0, consider a Nash subgame wherein player ν’s problem (15)
is augmented by the constraints: y ν

i,0 ≥ −k and y ν
i,m+1 ≤ k. Such a game has an equilibrium

which we denote (x̂ k, ŷ k). By Proposition 1, it follows that

( α̂ ν
i,j − ŷ k,ν

i,j ) ŷ k,ν
i,j+1 = 0, ∀ j = 0, 1, . . . ,mν

i ; ∀ i = 0, 1, . . . , n ′
ν . (21)

We claim that the sequence {(ŷ k
i,0, ŷ

k
i,m+1)}, and thus (x̂ k, ŷ k), is bounded as k → ∞. Fix any

(x̃, ỹ) such that for each ν, the pair (x̃ ν , ỹ ν) is feasible to (15) with the augmented constraints.
We then have

n ′
ν∑

i=1



 p ν

i (ŷ k,ν
i,0 , x̂ k,−ν) +

mν
i +1∑

j=1

[
1
2 aν

i,j ( ŷ k,ν
i,j )2 + (p ν

i,j)
′
t(α

ν
i,j−1, x̂

k,−ν) ŷ k,ν
i,j

]
+

ρ`

2

n ′
ν∑

i=1


 ( e ν,i )T x̂ k + f ν

i −
mν

i +1∑

j=0

ŷ k,ν
i,j




2 



≤
n ′

ν∑

i=1



 p ν

i (ỹ ν
i,0, x̂

k,−ν) +
mν

i +1∑

j=1

[
1
2 aν

i,j ( ỹ ν
i,j )2 + (p ν

i,j)
′
t(α

ν
i,j−1, x̂

k,−ν) ỹ ν
i,j

]
+

ρ`

2

n ′
ν∑

i=1


 ( e ν,ν,i )T x̃ ν +

∑

ν ′ 6=ν

( e ν,ν ′,i )T x̂ k,ν ′
+ f ν

i −
mν

i +1∑

j=0

ỹ ν
i,j




2 

 .
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Since the right-hand side is bounded, (19) and (20) imply that

sup
k

∣∣∣∣∣∣
( e ν,i )T x̂ k + f ν

i −
mν

i +1∑

j=0

ŷ k,ν
i,j

∣∣∣∣∣∣
< ∞,

which in turn yields
sup

k

∣∣∣ ŷ k,ν
i,0 + ŷ k,ν

i,mν
i +1

∣∣∣ < ∞.

From this and (21), the boundedness of {(ŷ k,ν
i,0 , ŷ k,ν

i,mν
i +1)} follows readily. Therefore, the se-

quence {(x̂k, ŷk)} is bounded. It is easy to show that every accumulation point of the latter
sequence, at least one of which must exist, is a desired equilibrium asserted by the proposition.
�

Clearly, (17) and (18) hold if a ν
i,0 > 0 and a ν

i,mν
i

> 0 for all pairs (ν, i); in the case where
either anu

i,0 = 0 or a ν
i,mν

i
= 0, the (17) and (18) impose some restrictions on the functions

b ν
i,0(x

−ν) and b ν
i,m+1(x

−ν) on the set X−ν .
We next address the convergence of the sequence {(x`, y`)} when ` → ∞. To state the

optimality conditions for (15), we let λ `,ν and µ `,ν
i,j be the Lagrange multipliers of the constraints

D νx ν ≤ d ν and 0 ≤ α̂ ν
i,j − y ν

i,j, respectively, we obtain the Karush-Kuhn-Tucker (KKT)
conditions of (15),

0 ≤ x `,ν ⊥ ρ`

n ′
ν∑

i=1


 ( e ν,i )T x` + f ν

i −
mν

i +1∑

k=0

y `,ν
i,k


 e ν,ν,i + (D ν )T λ `,ν ≥ 0

0 ≤ λ `,ν ⊥ d ν − D νx `,ν ≥ 0

0 = b ν
i,0(x

−ν) + a ν
i,0y

`,ν
i,0 + µ `,ν

i,0 + ρ`

[
m+1∑

k=0

y `,ν
i,k − (e ν,i)T x` − f ν

i

]

0 ≤ µ `,ν
i,0 ⊥ α̂ ν

i,0 − y `,ν
i,0 ≥ 0

0 ≤ y `,ν
i,mν

i +1 ⊥ (p ν
i,mν

i +1)
′
t (α

ν
i,mν

i
, x−ν) + a ν

i,mν
i +1y

`,ν
i,mν

i +1 + ρ`




mν
i +1∑

k=0

y `,ν
i,k − (e ν,i)T x` − f ν

i


 ≥ 0

i = 1, . . . , n ′
ν





0 ≤ y `,ν
i,j ⊥ (p ν

i,j)
′
t (α

ν
i,j−1, x

−ν) + a ν
i,j y`,ν

i,j + ρ`




mν
i +1∑

k=0

y `,ν
i,k − ( e ν,i )T x` − f ν

i


 + µ `,ν

i,j ≥ 0

0 ≤ µ `,ν
i,j ⊥ α̂ ν

i,j − y `,ν
i,j ≥ 0

j = 1, . . . ,mν
i , i = 1, . . . , n ′

ν .





The next proposition establishes the boundedness of the sequence {(x`, y`, µ`)} under the
boundedness of the set X.
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Proposition 3 Suppose that X is bounded. Then so is the sequence {(x`, y`, µ`)}∞`=1.

Proof. The boundedness of {x`} is trivial. Next we show the boundedness of {y`}. In turn,
it suffices to show that, for all ν = 1, . . . , N and i = 1, . . . , n ′

ν ,

lim inf
`→ ∞

y`,ν
i,0 > −∞ and lim sup

`→ ∞
y`,ν

i,mν
i +1 < ∞.

By way of contradiction, assume that lim inf
`→ ∞

y`,ν
i,0 = −∞ for some pair (ν, i). Without loss of

generality, assume that lim
`→ ∞

y`,ν
i,0 = −∞. It then follows that y`,ν

i,0 < α̂ ν
i,0 for all ` sufficiently

large, which implies, by complementarity, that µ `,ν
i,0 = 0. Moreover, by (16), we have y`,ν

i,j = 0
for all j = 1, . . . ,mν

i + 1. But this contradicts the equation

0 = b ν
i,0(x

−ν) + a ν
i,0y

`,ν
i,0 + µ `,ν

i,0 + ρ`




mν
i +1∑

k=0

y `,ν
i,k − (e ν,i)T x` − f ν

i


 . (22)

Hence {y`,ν
i,0 } is bounded. Suppose that lim sup

`→ ∞
y`,ν

i,mν
i +1 = ∞. Without loss of generality, we may

assume that lim
`→ ∞

y`,ν
i,mν

i +1 = ∞. Hence, by (16), we have y`,ν
i,j = α̂ ν

i,j > 0 for all j = 0, . . . ,mν
i ,

which implies, by complementarity,

(p ν
i,j)

′
t(α

ν
i,j−1, x

−ν) + a ν
i,j yν

i,j + ρ`




mν
i +1∑

k=0

y `,ν
i,k − ( e ν,i )T x` − f ν

i


 + µ `,ν

i,j = 0.

Finally, we need to show the boundedness of {µ`,ν
i,j } for all (ν, i, j). The boundedness of {µ`,ν

i,0}
follows from (22). That of {µ`,ν

i,j } for j = 1, . . . ,mν
i follows from the last two complementarity

conditions in the KKT conditions of (15). �.

The next result shows that every accumulation point of the sequence {(x`, y`)} is a Nash
equilibrium of the original game with piecewise quadratic costs.

Theorem 1 Suppose that the assumptions of Proposition 2 hold. Every accumulation point
of the sequence {x`} is an equilibrium solution of the Nash game with the players’ problems
given by (11) for ν = 1, . . . , N .

proof. The equation (22) implies that


 ρ`




mν
i +1∑

k=0

y `,ν
i,k − (e ν,i)T x` − f ν

i








∞

`=1

is bounded. Hence

lim
`→∞




mν
i +1∑

k=0

y `,ν
i,k − (e ν,i)T x` − f ν

i


 = 0.
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Define

η`,ν
i ≡ ρ`


 ( e ν,i )T x` + f ν

i −
mν

i +1∑

k=0

y `,ν
i,k




For simplicity, assume that

lim
`→∞

(x`, y`, µ`, η` ) = (x∗, y∗, µ∗, η∗ )

exists. We have, for all i = 1, . . . , n ′
ν ,

mν
i +1∑

k=0

y ∗,ν
i,k = (e ν,i)T x∗ + f ν

i ,

and
( α̂ ν

i,j − y∗,νi,j ) y∗,νi,j+1 = 0, ∀ j = 0, 1, . . . ,mν
i .

From

0 = ρ`

n ′
ν∑

i=1


 ( e ν,i )T x` + f ν

i −
mν

i +1∑

k=0

y `,ν
i,k


 e ν,ν,i + (D ν )T λ `,ν

0 ≤ λ `,ν ⊥ d ν − D νx `,ν ≥ 0,

we may assume without loss of generality that, for each ν, the sequence {λ`,ν}∞`=1 is bounded,
and by working with an appropriate subsequence if necessary, that

lim
`→∞

λ` = λ∗

exists. Therefore, passing to the limit ` → ∞ in the KKT conditions of (15), we deduce

0 ≤ x∗,ν ⊥
n ′

ν∑

i=1

η∗,νi e ν,ν,i + (D ν )T λ ∗,ν ≥ 0

0 ≤ λ ∗,ν ⊥ d ν − D νx ∗,ν ≥ 0

0 = b ν
i,0(x

∗,−ν) + a ν
i,0y

∗,ν
i,0 + µ ∗,ν

i,0 − η∗,νi

0 ≤ µ ∗,ν
i,0 ⊥ α̂ ν

i,0 − y ∗,ν
i,0 ≥ 0

0 ≤ y ∗,ν
i,mν

i +1 ⊥ (p ν
i,mν

i +1)
′
t (α

ν
i,mν

i
, x∗,−ν) + a ν

i,mν
i +1y

∗,ν
i,mν

i +1 − η∗,νi ≥ 0





i = 1, . . . , n ′
ν

0 ≤ y ∗,ν
i,j ⊥ (p ν

i,j)
′
t (α

ν
i,j−1, x

∗,−ν) + a ν
i,j y∗,νi,j − η∗,νi + µ ∗,ν

i,j ≥ 0

0 ≤ µ ∗,ν
i,j ⊥ α̂ ν

i,j − y ∗,ν
i,j ≥ 0





j = 1, . . . ,mν
i

i = 1, . . . , n ′
ν .

This shows that (x∗,ν , y∗,ν) is an optimal solution of (13) with x−ν = x∗,−ν . Thus x∗ is a
desired equilibrium of the original game. �
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