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Abstract. We present a primal-dual interior-point algorithm for solving optimization problems
with nonlinear inequality constraints. The algorithm has some of the theoretical properties of trust
region methods, but works entirely by line search. Global convergence properties are derived without
assuming regularity conditions. The penalty parameter ρ in the merit function is updated adaptively
and plays two roles in the algorithm. First, it guarantees that the search directions are descent
directions of the updated merit function. Second, it helps to determine a suitable search direction in
a decomposed SQP step. It is shown that if ρ is bounded for each barrier parameter µ, then every
limit point of the sequence generated by the algorithm is a Karush-Kuhn-Tucker point, whereas if ρ
is unbounded for some µ, then the sequence has a limit point which is either a Fritz-John point or a
stationary point of a function measuring the violation of the constraints. Numerical results confirm
that the algorithm produces the correct results for some hard problems, including the example
provided by Wächter and Biegler, for which many of the existing line search-based interior-point
methods have failed to find the right answers.
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1. Introduction. Applying an interior-point approach to nonlinear program-
ming has been the subject of intensive studies in recent years; see [1, 4, 5, 11, 12, 15,
16, 18, 23, 24, 25, 27, 28, 29]. For simplicity of presentation, we concentrate in this
paper on inequality constrained nonlinear programs

minimize f(x) subject to c(x) ≤ 0,(1.1)

where c(x) = (c1(x), . . . , cm(x))>, f : <n → < and c : <n → <m. We do not assume
any convexity on f and c. However, we suppose that f and c are twice continuously
differentiable throughout this paper.

The interior-point approach solves, as µ ↓ 0, the barrier problems

minimize f(x)− µ
m∑
i=1

ln yi subject to c(x) + y = 0.(1.2)

The direction-finding Newton equations then include

c(x) + y +∇c(x)>dx + dy = 0.(1.3)

Note that (1.3) is always feasible even if the linearized inequality

c(x) +∇c(x)>dx ≤ 0(1.4)

may be inconsistent, which presents difficulties in convergence of interior-point based
methods. The examples discussed by Byrd , Marazzi, and Nocedal [7] and Wächter
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and Biegler [26] show that the interior-point methods using (1.3) may not find a
feasible point of the original problem or a point with stationary properties. We also
notice that the global convergence analysis of most existing interior-point methods
requires rather strong assumptions on regularity at all iterates. Wächter and Biegler
[26] indicate that these assumptions may not hold even though the local minima have
very good regularity properties.

A remedy to these problems is to apply sequential quadratic programming (SQP)
techniques to the barrier problems and to use a trust region strategy to ensure the
robustness of the algorithm. Such algorithms have recently been proposed by Byrd,
Gilbert, and Nocedal [4] and Tseng [24], for example. The numerical experiments in
[5] show that the trust region-type algorithm is very promising.

We provide a different approach in this paper. Instead of introducing additional
trust region constraints, we use refined line search rules to generate a new iterate
in a decomposed SQP framework. The search direction is determined by either a
Newton-type step or a Cauchy-type step with the choice being made with reference
to a penalty parameter in the merit function. In addition, we adjust the penalty
parameter of the merit function adaptively. As a result, we have been able to analyze
convergence without regularity conditions and to avoid the convergence problems
mentioned above. However, unlike the trust region methods, the algorithm does not
have the flexibility to allow the direct use of indefinite second order derivatives.

The convergence properties of the algorithm can be summarized as follows. Let ρk
be the value of the penalty parameter of the merit function at iterate k. If {ρk}∞k=0 is
bounded independent of the barrier parameter µ, then every convergent subsequence
produced by the algorithm converges to a Karush-Kuhn-Tucker (KKT) point of the
problem. If ρk → ∞ for some µ, then the sequence has a limit point that is either
feasible with linearly dependent gradients of the active constraints (i.e., a Fritz-John
point) or infeasible but stationary with respect to the function ‖max[0, c(x)]‖, which
is obviously a measure of the violation of the constraints (`2-infeasibility for short).

Besides, we show that, if the penalty parameters are bounded, then the algo-
rithm generates the identical search directions with the original primal-dual methods
such as LOQO (Shanno and Vanderbei [23, 25]) after a finite number of iterations.
Thus, superlinear convergence may be derived by existing works, such as [6, 29], un-
der suitable conditions; while in the unbounded case, the algorithm may have linear
convergence. For brevity, we mainly consider global convergence in this paper. By the
same token, practical implementation techniques are not discussed. The interested
reader is referred to the related literatures, such as [6, 8, 11, 15, 16, 23, 25, 28, 29],
for details.

Our numerical results show that the proposed algorithm can find solutions of the
examples in [7, 26] and the least `2-infeasibility solution for an infeasible example in
[3], among others.

The paper is organized as follows. In Section 2, we present a two-step decompo-
sition scheme of SQP and specify the requirement for an approximate solution to the
resulting unconstrained penalty subproblems. In section 3, this scheme is applied to
the barrier problem (1.2) and we present a modified primal-dual system of equations
that is used in the algorithm for the barrier problem. The global convergence of the
algorithm is analyzed in Section 4. In Section 5 we present the overall algorithm
for problem (1.1) and its global convergence results. We provide some computational
formulae for the approximate solutions of the unconstrained penalty subproblems and
report our preliminary numerical results in Section 6.
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We use standard notation from the literature of interior-point methods and non-
linear programming. For example, a letter with superscript k is related to the kth
iteration, the subscript i is the ith component for a vector or the ith column for a
matrix. The norm ‖ · ‖ is the Euclidean norm. We also use simplified notations such
as fk = f(xk), gk = ∇f(xk), ck = c(xk), and Ak = ∇c(xk). For vector y, Y = diag(y)
is the diagonal matrix whose ith diagonal element is yi. All vector inequalities are
understood componentwise. For two symmetric matrices A and B, A � (�)B means
that A−B is positive definite (semidefinite).

2. A decomposition scheme of SQP.

2.1. The basic idea. The barrier problem

minimize f(x)− µ
m∑
i=1

ln yi subject to c(x) + y = 0

is simply expressed as

minimize ψµ(z)(2.1)

subject to h(z) = 0,(2.2)

where z = (x, y), h(z) = c(x) + y, and ψµ(z) = f(x) − µ
∑m
i=1 ln yi. It is obvious

that ψµ(z) is a continuously differentiable function for y > 0. At the current iteration
point z, the SQP approach for (2.1)-(2.2) generates the search direction dz by solving
the quadratic programming problems

minimize ∇ψ(z)>d+
1

2
d>Qd(2.3)

subject to h(z) +∇h(z)>d = 0,(2.4)

where Q is a positive definite approximation to the Lagrangian Hessian at z. Then
the new iteration point z+ is derived by a line search procedure,

z+ = z + αdz,(2.5)

where α ∈ (0, 1] is the steplength along dz. This general framework requires regularity
assumptions on h(z) at all iterates. Otherwise, some of the slack variables may tend
to zero too quickly and the algorithm may fail to find the right solution [26].

Our idea is rooted in the work of Fletcher [13, 14], Liu [19], and Yuan and Liu
[20] although in the original works [19, 20] the authors need to exactly solve all the
subproblems, including a nonsmooth unconstrained optimization problem. For the
barrier problem, we first approximately solve the penalty optimization problem

minimized∈<n

1

2
d>Qd+ ρ‖h(z) +∇h(z)>d‖,(2.6)

where ρ > 0 is the penalty parameter in the merit function

φ(z; ρ) = ψµ(z) + ρ‖h(z)‖.(2.7)

Let d̃z be an approximate solution to (2.6). Then we generates the search direction
dz by solving the subproblem

minimize ∇ψ(z)>d+
1

2
d>Qd(2.8)

subject to ∇h(z)>d = ∇h(z)>d̃z.(2.9)
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We consider subproblem (2.8)-(2.9) since it can provide us with the estimates of the
multipliers, which are needed in the primal-dual interior-point approach. It can be
proved (see Proposition 3.1) that, for sufficiently large ρ, the solution dz to (2.8)-(2.9)
is a descent direction of the merit function.

The idea is similar to the trust region interior-point method, in which the auxiliary
step d̃z is generated by minimizing ‖h(z) +∇h(z)>d‖ on a trust region; see [4, 9, 10,
21, 22]. Here, by adding a quadratic term we remove the trust region constraint in
deriving the auxiliary step for the modified system of primal-dual equations.

2.2. The approximate solution to subproblem (2.6). In this subsection we
describe how to generate the approximate solution to subproblem (2.6) . Subproblem
(2.6) can be simply written as

minimize q(d) =
1

2
d>Qd+ ρ‖r +R>d‖,(2.10)

where ρ > 0, Q is any positive definite matrix, r is a vector, and R is a matrix with
full column rank. It is easy to note that the exact solution is d = 0 if r = 0. Thus, in
the following discussion, we assume that r 6= 0.

We generate the approximate solution d̃z to problem (2.10) by the following pro-
cedure.

Procedure 2.1.
(1) Compute the Q-weighted Newton step for minimizing ‖r +R>d‖:

d̃Nz = −Q−1R(R>Q−1R)−1r.(2.11)

If q(d̃Nz ) ≤ νq(0) (ν ∈ (0, 1) is a fixed constant), then d̃z = d̃Nz ; else go
to (2).

(2) Calculate the Q-weighted steepest descent step (Cauchy step)

d̃Cz = −Q−1Rr.(2.12)

Find d̃z in the subspace spanned by d̃Nz and d̃Cz (see details in Section
6.1) such that

q(d̃z) ≤ max{νq(0), q(αC d̃Cz )},(2.13)

where αC = argmin α∈[0,1]q(αd̃
C
z ).

Let us point out that, when our algorithm produces a sequence converging to a
KKT point of the barrier problem, the Q-weighted Newton step will eventually be
accepted under suitable conditions, so the direction-finding process (2.6)-(2.9) will
generate an identical direction with the original primal-dual interior-point methods
(see Section 3). Intuitively, the Newton step can be rejected only if q(d̃Nz ) > νq(0),
namely,

1

2
r>(R>Q−1R)−1r > ρν‖r‖.(2.14)

With a moderate value of ρ, if R>Q−1R is nonsingular, the above relationship indi-
cates that ‖r‖ is large, at least is of the order of ρ. This cannot happen for an iterate
close to a KKT point x∗ since this iterate must be nearly feasible, i.e., ‖r‖ must be
small. Later, we will present more detailed analysis on this point (see Propositions
3.2 and 3.3).
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We next provide a technical result on the decrement of the Cauchy step for later
reference.

Proposition 2.2. There holds

q(αC d̃Cz )− q(0) ≤ 1

2

{
1− ρmin

[
1

‖r‖
,
η

‖r‖

]}
r>(R>Q−1R)r,(2.15)

where η = [r>(R>Q−1R)r]/[r>(R>Q−1R)2r].
Proof. Let χ(d) = ‖r +R>d‖. We have

χ(0)2 − χ(αd̃Cz )2 = ‖r‖2 − ‖(I − αR>Q−1R)r‖2

= 2αr>(R>Q−1R)r − α2r>(R>Q−1R)2r.(2.16)

Suppose that α̃ ∈ [0, 1] minimizes χ(αd̃Cz ). Then we have the following two cases:
(i) If η ≤ 1, then

χ(0)2 − χ(α̃d̃Cz )2 = ηr>(R>Q−1R)r,(2.17)

which implies that

χ(0)− χ(α̃d̃Cz ) ≥ η

2‖r‖
r>(R>Q−1R)r.(2.18)

(ii) If η > 1, then α̃ = 1 and r>(R>Q−1R)r > r>(R>Q−1R)2r; thus

χ(0)− χ(α̃d̃Cz ) ≥ 1

2‖r‖
r>(R>Q−1R)r.(2.19)

Then it follows from (2.18), (2.19), and α̃ ≤ 1 that

q(α̃d̃Cz )− q(0) ≤ 1

2

{
1− ρmin

[
1

‖r‖
,
η

‖r‖

]}
r>(R>Q−1R)r.(2.20)

Since q(αC d̃Cz ) ≤ q(α̃d̃Cz ), we obtain (2.15).

3. The algorithm for the barrier problem. We now specialize the formulae
in the last section to the barrier problem (1.2) and present a modified primal-dual
system of equations for generating the search directions. Later, based on this modifi-
cation, we will propose our algorithm for the barrier problem.

By writing z as (x, y), ψµ(z) as ψµ(x, y), and h(z) as h(x, y), the barrier problem
is

minimize ψµ(x, y) = f(x)− µ
m∑
i=1

ln yi(3.1)

subject to h(x, y) = c(x) + y = 0,(3.2)

where y = (y1, . . . , ym)> > 0 and µ is a fixed positive scalar. The Lagrangian of
problem (3.1)-(3.2) is

L(x, y, λ) = ψµ(x, y) + λ>h(x, y),(3.3)

and its Hessian is

∇2L(x, y, λ) =

(
∇2`(x, λ)

µY −2

)
,(3.4)
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where λ ∈ <m is a multiplier vector associated with (3.2) and `(x, λ) = f(x)+λ>c(x).
The KKT conditions of program (3.1)-(3.2) can be written as

Fµ(x, y, λ) =

 g(x) +A(x)λ
Y Λe− µe
c(x) + y

 = 0,(3.5)

where g(x) = ∇f(x), A(x) = ∇c(x), Y = diag(y), Λ = diag(λ) and e = (1, . . . , 1)>.
Byrd, Marazzi, and Nocedal [7] showed that the algorithm using the norm of

the residual function ‖Fµ(x, y, λ)‖ as the merit function may fail in converging to
a stationary point of the problem. In this paper, as mentioned in (2.7), our merit
function is

φµ(x, y; ρ) = ψµ(x, y) + ρ‖h(x, y)‖,(3.6)

where ρ > 0 is the penalty parameter and is updated automatically during the itera-
tions. Then we have the following result.

Proposition 3.1. For any ρ ≥ 0, y > 0, and (dx, dy) ∈ <n+m, the directional

derivative φ
′

ρ((x, y); (dx, dy)) of φµ(x, y; ρ) along (dx, dy) exists, and

φ
′

ρ((x, y); (dx, dy)) ≤ πρ((x, y); (dx, dy)),(3.7)

where

πρ((x, y); (dx, dy))

= g(x)>dx − µe>Y −1dy + ρ(‖c(x) + y +A(x)>dx + dy‖ − ‖c(x) + y‖).(3.8)

Proof. The second term of (3.6), ψµ, is continuously differentiable. Its directional
derivative is

ψ
′

µ((x, y); (dx, dy)) = g(x)>dx − µe>Y −1dy.(3.9)

Let θ(x, y) = ‖h(x, y)‖. Its directional differentiability follows from its convexity.
Since

θ
′
((x, y); (dx, dy))

= lim
α↓0

[θ(x+ αdx, y + αdy)− θ(x, y)] /α

= lim
α↓0

[
‖c(x) + αA(x)>dx + y + αdy + o(α)‖ − ‖c(x) + y‖

]
/α

≤ lim
α↓0

[
‖c(x) + y + α(A(x)>dx + dy)‖ − ‖c(x) + y‖

α
+
‖o(α)‖
α

]
≤ ‖c(x) + y +A(x)>dx + dy‖ − ‖c(x) + y‖+ lim

α↓0
o(α)/α,

where the last two inequalities follow from the triangle inequality and the convexity
of the norm. The result follows immediately.

Suppose that (xk, yk) is the current iteration point and λk is the corresponding
approximation of the multiplier vector. For problem (3.1)-(3.2), by substituting

Q =

(
Bk

Y −1k Λk

)
, R =

(
Ak
I

)
, d =

(
dx
dy

)
, and r = (ck + yk)(3.10)
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into (2.10), our approach first approximately solves the problem

minimize qk(dx, dy) =
1

2
d>xBkdx +

1

2
d>y Skdy + ρk‖ck + yk +A>k dx + dy‖,(3.11)

where Bk � 0 is an approximation to matrix∇2`(xk, λk), Sk = Y −1k Λk, Yk = diag(yk),
Λk = diag(λk), ck = c(xk), Ak = A(xk), and ρk is the current value of the penalty
parameter. The Q-weighted Newton step and the Q-weighted steepest descent step
defined in Procedure 2.1 are, respectively,

(d̃kx)N = −B−1k Ak(A>k B
−1
k Ak + S−1k )−1(ck + yk),(3.12)

(d̃ky)N = −S−1k (A>k B
−1
k Ak + S−1k )−1(ck + yk), and(3.13)

(d̃kx)C = −B−1k Ak(ck + yk), (d̃ky)C = −S−1k (ck + yk).(3.14)

Let (d̃kx, d̃
k
y) be the approximate solution obtained through Procedure 2.1. We

generate the search direction (dkx, d
k
y) for the new iterate by solving

minimize (gk)>dx − µe>Y −1k dy +
1

2
d>xBkdx +

1

2
d>y Skdy(3.15)

subject to A>k dx + dy = A>k d̃
k
x + d̃ky ,(3.16)

where gk = ∇f(xk). Since (d̃kx, d̃
k
y) is a feasible solution to problem (3.15)-(3.16), by

(3.8), we have the formula

πρk((xk, yk); (dkx, d
k
y)) +

1

2
(dkx)>Bkd

k
x +

1

2
(dky)>Skd

k
y

≤ πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)>Bkd̃

k
x +

1

2
(d̃ky)>Skd̃

k
y ,(3.17)

which plays an important role in our later global convergence analysis for the case
ρk →∞.

The KKT conditions of problem (3.15)-(3.16) are

Bkdx +Akλ̃ = −gk,(3.18)

Skdy + λ̃ = µY −1k e,(3.19)

A>k dx + dy = A>k d̃
k
x + d̃ky ,(3.20)

which, by letting dλ = λ̃−λk, can be equivalently written as the modified primal-dual
system of equations

Bkdx +Akdλ = −(gk +Akλ),(3.21)

Λkdy + Ykdλ = −(YkΛke− µe),(3.22)

A>k dx + dy = A>k d̃
k
x + d̃ky .(3.23)

It is well known that the original primal-dual interior-point approach generates
the search direction by solving the system of equations

Bkdx +Akdλ = −(gk +Akλ),(3.24)

Λkdy + Ykdλ = −(YkΛke− µe),(3.25)

A>k dx + dy = −(ck + yk),(3.26)
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which follows from the Newton method applied to (3.5); for example, see [11, 16, 23,
25, 28]. Then we have following results.

Proposition 3.2. The modified approach using (3.21)-(3.23) generates the same
search directions as the original primal-dual interior-point methods using (3.24)-(3.26)
if the weighted Newton step (3.12)-(3.13) is used.
Proof. If d̃kx = (d̃kx)N and d̃ky = (d̃ky)N , then A>k d̃

k
x+ d̃ky = −(ck+yk). Thus the system

(3.21)-(3.23) is the same as the system (3.24)-(3.26).

Proposition 3.3. Suppose that the two sets {(xk, yk)}∞k=0 and {(A>k B
−1
k Ak +

S−1k )−1)}∞k=0 are bounded. Then there exists a positive constant ρ̂ (which is not de-

pendent on k) such that for ρk ≥ ρ̂, the Newton step ((d̃kx)N , (d̃ky)N ) defined in (3.12)-
(3.13) will be accepted by Procedure 2.1.
Proof. We have

qk((d̃kx)N , (d̃ky)N )− νqk(0, 0)

=
1

2
(ck + yk)>(A>k B

−1
k Ak + S−1k )−1(ck + yk)− νρk‖ck + yk‖(3.27)

≤
[

1

2
‖(A>k B−1k Ak + S−1k )−1(ck + yk)‖ − νρk

]
‖ck + yk‖.

By the assumptions of the proposition, there exists a constant ρ̂ > 0 such that for all
k we have

‖(A>k B−1k Ak + S−1k )−1(ck + yk)‖ ≤ 2νρ̂.(3.28)

Thus, for every ρk ≥ ρ̂, qk((d̃kx)N , (d̃ky)N ) ≤ νqk(0, 0).

In the following, we describe our algorithm for the barrier problem (3.1)-(3.2),
which solves the problem (3.11) and the system of equations (3.21)-(3.23) at each
iteration.

Algorithm 3.4. (The algorithm for problem (3.1)-(3.2))

Step 1. Given (x0, y0, λ0) ∈ <n × <m++ × <m++, 0 ≺ B0 ∈ <n×n, 0 < β1 < 1 < β2,
ρ0 > 0, 0 < δ < 1, 0 < σ0 <

1
2

, ε1 > 0, ε2 > ε3 > 0. Let k := 0.

Step 2. Compute an approximate solution (d̃kx, d̃
k
y) of problem (3.11) by Procedure 2.1

(see section 6.1 on its implementation).

Step 3. Calculate the search direction (dkx, d
k
y , d

k
λ) by solving the system of equations

(3.21)-(3.23).

Step 4 (Update ρk). If

πρk ((xk, yk); (dkx, d
k
y)) ≤ −1

2
(dkx)>Bkd

k
x −

1

2
(dky)>Skd

k
y ,(3.29)

then set ρk+1 = ρk; Otherwise, we update ρk by

ρk+1 =

max

{
ψ′µ((xk, yk); (dkx, d

k
y)) + 1

2
(dkx)>Bkd

k
x + 1

2
(dky)>Skd

k
y

∆k
, 2ρk

}
,(3.30)

where
πρk ((xk, yk); (dkx, d

k
y)) = (gk)>dkx − µe>Y −1

k dky − ρk∆k(3.31)

and
∆k = ‖ck + yk‖ − ‖ck + yk +A>k d

k
x + dky‖.(3.32)
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Step 5 (Line search). Compute

α̂k =
−0.995

min{(yki )−1(dky)i, i = 1, . . . ,m;−0.995}
.(3.33)

Select the least non-negative integer l such that

φµ(xk + δlα̂kd
k
x, y

k + δlα̂kd
k
y ; ρk+1)− φµ(xk, yk; ρk+1)

≤ σ0δ
lα̂kπρk ((xk, yk); (dkx, d

k
y)).(3.34)

Let αk = δlα̂k. The new primal iterate is generated as

xk+1 = xk + αkd
k
x,(3.35)

yk+1 = max{yk + αkd
k
y ,−ck+1}.(3.36)

Step 6 (Update dual iterate). If there exists γ ∈ [0, 1] such that

β1µe ≤ Yk+1(Λk + γDk
λ)e ≤ β2µe(3.37)

where Dk
λ = diag(dkλ), then we select the maximum γk ∈ [0, 1] satisfying with

(3.37) and then update λk by

λk+1 = λk + γkd
k
λ;(3.38)

otherwise, we increase l by 1 successively such that (3.37) holds, and then
update the primal and dual iterates in the same way as in (3.35), (3.36) and
(3.38).

Step 7 (Check the stopping criteria). We terminate the algorithm if one of the fol-
lowing conditions is satisfied:

(i) ‖Fµ(xk+1, yk+1, λk+1)‖ < ε1;

(ii) ‖ck+1 + yk+1‖ ≥ ε2 and ‖
(

Ak+1

Yk+1

)
(ck+1 + yk+1)‖ < ε3;

(iii) ‖ck+1 + yk+1‖ < ε3 and det(A>Ik+1
AIk+1) < ε3, where Ik+1 = {i|ck+1

i ≥
−ε3} and AIk+1 is a submatrix of Ak+1 consisting of all columns indexed by
Ik+1.

Else update the approximate Hessian Bk by Bk+1, let k := k + 1, and go to
Step 2.

We make the following remarks on the algorithm:
• The new primal and dual iterates are generated, respectively, by using differ-

ent steplengths. Such a strategy has been used by [8, 28, 29]. We hope that
γk = 1 can be accepted even if αk < 1.

• By (3.33), we have yk + α̂kd
k
y ≥ 0.005yk. If dkyi ≥ 0, we have yki +αkd

k
yi ≥ yki ,

else αkd
k
yi ≥ α̂kd

k
yi since αk ≤ α̂k. Thus we always have yk+1 ≥ 0.005yk by

(3.36).
• Formula (3.36) was first introduced by [4], a similar, but more sophisticated,

technique is also used in [24]. Since yk+1 ≥ yk + αkd
k
y and ‖ck+1 + yk+1‖ ≤

‖ck+1 + yk + αkd
k
y‖, we have

φµ(xk+1, yk+1; ρk+1)− φµ(xk, yk; ρk+1)

≤ φµ(xk + αkd
k
x, y

k + αkd
k
y ; ρk+1)− φµ(xk, yk; ρk+1),(3.39)

thus φµ(xk+1, yk+1; ρk+1) ≤ φµ(xk, yk; ρk+1) for all k ≥ 0.
• A way to implement (3.37) will be introduced in Section 6.2. The well-

definedness of this step is shown in Lemma 4.4.
• Since we do not assume any regularity on the constraints, the stopping con-

dition (i) may never hold, in which case the algorithm will terminate at con-
dition (ii) or (iii) of Step 7 by the convergence results in next section.
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4. The analysis of global convergence. The global convergence of Algorithm
3.4 is analyzed in this section. Suppose that in the algorithm the tolerance ε2 is small,
tolerances ε1 and ε3 are very small, and an infinite sequence {(xk, yk, λk)} is generated.

We need the following blanket assumption for all analysis in what follows.
Assumption 4.1.
(1) Functions f and c are twice continuously differentiable functions on <n;
(2) The set {xk}∞k=0 is bounded;
(3) There exist positive constants ν1 and ν2 such that ν1I � Bk � ν2I for all k,

where I stands for the identity matrix.
Assumptions (1) and (2) are used in the convergence analysis of most algorithms

for nonlinear programming. Assumption (3) guarantees the existence of the solution
of system (3.21)-(3.23). Similar assumptions are also used by most line-search-based
interior-point methods for nonlinear programming. An exception is [8], in which the
global convergence results are derived by assuming Bk to be uniformly positive definite
and bounded on the null space of the linear equality constraints.

By Algorithm 3.4, for each integer k ≥ 0, we have either ρk+1 = ρk or ρk+1 ≥ 2ρk.
Thus, the sequence {ρk} is a monotonically nondecreasing sequence.

Lemma 4.2. If there exist a positive integer k̂ and a positive constant ρ̂ such that
ρk = ρ̂ for all k ≥ k̂, then we have that
(i) both {yk} and {λk} are bounded above and componentwise bounded away from
zero. The same is true for the diagonal of Sk.
(ii) {(dkx, dky , dkλ)} is bounded.
Proof. (i) Without loss of generality, we suppose that ρk = ρ̂ for all k ≥ 0. By (3.34)
and (3.39), φµ(xk, yk; ρ̂) is monotonically decreasing; thus φµ(xk, yk; ρ̂) ≤ φµ(x0, y0; ρ̂)
for all k. Now we prove that yk is bounded above by contradiction. Suppose that
maxi{yki } → ∞. We have also that

fk − µ
m∑
i=1

ln yki + ρ̂‖ck + yk‖ ≤ φµ(x0, y0; ρ̂).(4.1)

Dividing both sides of (4.1) by maxi{yki } and taking the limit when k →∞, we have
that ρ̂ ≤ 0 since each term approaches zero except limk→∞ ‖ck + yk‖/maxi{yki } ≥ 1.
This is a contradiction.

By the fact that xk and yk are bounded and that

−µ
m∑
i=1

ln yki ≤ −fk − ρ̂‖ck + yk‖+ φµ(x0, y0; ρ̂),(4.2)

yk is componentwise bounded away from zero. It follows from (3.37) that λk is
bounded above and componentwise bounded away from zero, so is the diagonal of Sk
since Sk = Y −1k Λk.

(ii) By Assumption 4.1(3), matrix B̂k = Bk + AkY
−1
k ΛkA

>
k is invertible. By

simple computation, the system (3.21)-(3.23) can be written as(
Bk Ak
A>k −Λ−1k Yk

)(
dkx
dkλ

)
=

(
−(gk +Akλ

k)

(Yk − µΛ−1k )e+ (A>k d̃
k
x + d̃ky)

)
(4.3)

and

dky = (µΛ−1k − Yk)e− Λ−1k Ykd
k
λ.(4.4)
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Since (
Bk Ak
A>k −Λ−1k Yk

)−1
=

(
B̂−1k B̂−1k AkY

−1
k Λk

ΛkY
−1
k A>k B̂

−1
k Pk

)
,(4.5)

where Pk = −Y −1k Λk + Y −1k ΛkA
>
k B̂
−1
k AkY

−1
k Λk, the boundedness of (dkx, d

k
λ) follows

from (4.3). By (4.4), dky is bounded.

By Lemma 4.2, there exist constants b1 > 0 and b2 > 0 such that yk ≥ b1e and
‖dky‖ ≤ b2 for all k. If α̂1 = min{1, 0.995b1/b2}, then yk + α̂1d

k
y ≥ 0.005yk. Thus, for

all α ∈ [0, α̂1],

yk + αdky ≥ 0.005yk.(4.6)

Lemma 4.3. If {ρk} is bounded, then there is a constant α̂2 ∈ (0, α̂1] such that,
for every α ∈ (0, α̂2] and for all k ≥ 0, there holds that

φµ(xk + αdkx, y
k + αdky ; ρk+1)− φµ(xk, yk; ρk+1) ≤ ασ0πρk+1

((xk, yk); (dkx, d
k
y)).(4.7)

Proof. Without loss of generality, we suppose that ρk = ρ̂ for all k ≥ 0. Then (3.29)
holds at all iterates. For α ∈ (0, α̂1], by (4.6), we have

(Yk + αDk
y)−1 � 200Y −1k ,(4.8)

where Dk
y = diag(dky). Thus, for α ∈ (0, α̂1],

−
m∑
i=1

ln[yki + α(dky)i] +

m∑
i=1

ln yki + αe>Yk
−1dky

= e>
∫ α

0

[Y −1k − (Yk + tDk
y)−1]dkydt(4.9)

= e>
∫ α

0

Y −1k (Yk + tDk
y)−1(tDk

y)dkydt ≤ 100α2‖Yk−1dky‖2.

Since f and c are twice continuously differentiable, there are positive constants
b3 and b4 such that

f(xk + αdkx)− f(xk)− αg(xk)>dkx ≤
1

2
α2b3‖dkx‖2(4.10)

and

‖c(xk + αdkx) + yk + αdky‖ − ‖c(xk) + yk + αA(xk)>dkx + αdky‖

≤ ‖c(xk + αdkx)− c(xk)− αA(xk)>dkx‖ ≤
1

2
α2b4‖dkx‖2.(4.11)

The constants b3 and b4 are the first order Lipschitzian constants of f and c, respec-
tively.

Let b5 = max{100µ, 12 (b3 + ρ̂b4)}. Since

πρ̂((x
k, yk); (αdkx, αd

k
y))

= αψ
′

µ((xk, yk); (dkx, d
k
y)) + ρ̂(‖ck + yk + αA>k d

k
x + αdky‖ − ‖ck + yk‖)(4.12)
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by (3.8), it follows from (4.9), (4.10), and (4.11) that

φµ(xk + αdkx, y
k + αdky ; ρ̂)− φµ(xk, yk; ρ̂)− πρ̂((xk, yk); (αdkx, αd

k
y))

≤ α2b5(‖dkx‖2 + ‖Y −1k dky‖2).(4.13)

It is easy to note that πρ̂((x
k, yk); (αdkx, αd

k
y)) is a convex function on α ∈ [0, 1].

Thus, we have

πρ̂((x
k, yk); (αdkx, αd

k
y))− απρ̂((xk, yk); (dkx, d

k
y)) ≤ 0,(4.14)

and as a result,

πρ̂((x
k, yk); (αdkx, αd

k
y))− ασ0πρ̂((xk, yk); (dkx, d

k
y))

≤ α(1− σ0)πρ̂((x
k, yk); (dkx, d

k
y))(4.15)

≤ −1

2
α(1− σ0)δ̂(‖dkx‖2 + ‖Y −1k dky‖2),

where δ̂ = min{ν1, β1µ} and the last inequality follows from (3.29), Assumption 4.1(3),
and (3.37).

Let α̂2 = min{α̂1, (1− σ0)δ̂/(2b5)}. Then, by (4.13) and (4.15), (4.7) holds for
all α ∈ [0, α̂2] and k ≥ 0.

Lemma 4.4. Under the assumption of Lemma 4.2, if β1µe ≤ YkΛke ≤ β2µe, then
there exists a constant α̂3 ∈ (0, 1] such that

β1µe ≤ (Λk + αDk
λ) max{yk + αdky ,−c(xk + αdkx)} ≤ β2µe(4.16)

for all α ∈ [0, α̂3] and all k.
Proof. At first, we prove that

β1µe ≤ (Yk + αDk
y)(Λk + αDk

λ)e ≤ β2µe(4.17)

for all α ∈ [0, ᾱ3] and all k, where ᾱ3 ∈ (0, 1] is a constant.
By (3.22), we have (Yk + αDk

y)(Λk + αDk
λ)e = αµe+ (1− α)YkΛke+ α2Dk

yD
k
λe.

Thus,

(Yk + αDk
y)(Λk + αDk

λ)e ≥ β1µe+ α(1− β1)µe+ α2Dk
yD

k
λe,(4.18)

(Yk + αDk
y)(Λk + αDk

λ)e ≤ β2µe− α(β2 − 1)µe+ α2Dk
yD

k
λe.(4.19)

Since (dky , d
k
λ) is bounded and 0 < β1 < 1 < β2, there exists a constant ᾱ3 ∈ (0, 1]

such that (4.17) holds for all α ∈ [0, ᾱ3] and all k ≥ 0.
If max{yk +αdky ,−c(xk +αdkx)} = yk +αdky for all k ≥ 0 and all α ∈ [0, ᾱ3], then

the lemma follows from (4.17) directly. Now we suppose that, for some k and some
constant ᾱ

′

3 ∈ (0, ᾱ3], we have yki + αdkyi < −ci(xk + αdkx) for all α ∈ (0, ᾱ
′

3]. We
prove that there exists a constant α̃3 ∈ (0, 1] not dependent on k such that, for all
α ∈ [0, α̃3],

−(λki + αdkλi)ci(x
k + αdkx) ≤ β2µ.(4.20)

For convenience of statement, we define pi(α) = −(λki + αdkλ)ci(x
k + αdkx). Then

pi(0) = −cki λki . We show that there exists a positive constant ε̄ such that we have
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either pi(0) ≤ β2µ− ε̄ or p
′

i(0) ≤ −ε̄ < 0. Then (4.20) follows from the continuity of
function pi and the boundedness of (dkx, d

k
λ).

By (3.36), we have ck+yk ≥ 0 and λk > 0 for k ≥ 1. Thus, pi(0) ≤ yki λki . For any
given small constant ε > 0 satisfying β2µ− cε > µ (c > 1 is a constant), if cki +yki ≥ ε,
or cki +yki < ε and yki λ

k
i ≤ β2µ− ε, then pi(0) ≤ β2µ− ε̄ for some constant ε̄ > 0. Now

suppose cki + yki < ε and yki λ
k
i > β2µ − ε. Then, by Procedure 2.1 and Lemma 4.2,

there exists a small positive constant ε
′

dependent on ε such that A>kid
k
x + dkyi ≥ −ε

′
.

Thus, p
′

i(0) = −λkiA>kidkx−cki dkλi ≤ λki dkyi+yki d
k
λi+ε

′′
for some small positive constant

ε
′′
. By (3.22), we have p

′

i(0) ≤ µ− yki λki + ε
′′
< ε+ ε

′′ − (β2 − 1)µ < 0 since
β2 > 1.

Let α̂4 = min{α̂2, α̂3}, where α̂2 and α̂3 are defined as in Lemmas 4.3 and 4.4,
respectively. Then 0 < α̂4 ≤ 1. By Step 5 of Algorithm 3.4, αk > δα̂4 for all k, which
implies that our line search procedure is well-defined.

Lemma 4.5. If ρk = ρ̂ for all k ≥ k̂ and if {(xk, yk, λk)} is an infinite sequence
generated by Algorithm 3.4, then we have

lim
k→∞

dkx = 0, lim
k→∞

dky = 0,(4.21)

lim
k→∞

‖ck+1 + yk+1‖ = 0,(4.22)

lim
k→∞

Yk+1Λk+1e = µe,(4.23)

lim
k→∞

‖gk+1 +Ak+1λ
k+1‖ = 0.(4.24)

Proof. It follows from Lemma 4.2 that the sequence {φµ(xk, yk; ρ̂)} is bounded. Com-
bined with its monotonicity, the limit of {φµ(xk, yk; ρ̂)} exists as k → ∞. Since
αk > δα̂4 > 0 and πρ̂((x

k, yk); (dkx, d
k
y)) ≤ 0 for all k, by taking the limit on the

two sides of (3.34), we have limk→∞ πρ̂((x
k, yk); (dkx, d

k
y)) = 0, which implies that

limk→∞(dkx, d
k
y) = 0 by (3.29) and Lemma 4.2.

By (4.21) and (3.23), we have A>k d̃
k
x + d̃ky → 0 as k → ∞. If (d̃kx, d̃

k
y) satisfies

qk(d̃kx, d̃
k
y) ≤ νqk(0, 0), then

‖ck + yk +A>k d̃
k
x + d̃ky‖ − ν‖ck + yk‖ ≤ 0,(4.25)

which implies that (4.22) holds. Otherwise, since qk(d̃kx, d̃
k
y) ≤ qk(0, 0), for k →∞ we

have

0 ≥ − 1

2ρk

(
d̃k>x Bkd̃

k
x + d̃k>y Skd̃

k
y

)
≥ ‖ck + yk +A>k d̃

k
x + d̃ky‖ − ‖ck + yk‖ → 0.(4.26)

It follows that (d̃kx, d̃
k
y) → 0 as k → ∞. Thus, by Procedure 2.1, formulae (3.12)-

(3.14), Lemma 4.2, and Assumption 4.1, we have limk→∞ ‖ck + yk‖ = 0. This proves
(4.22) by (4.21).

It follows from (3.22) that Yk(λk + dkλ) = µe−Λkd
k
y . Thus, by (4.21) and Lemma

4.2, limk→∞ Yk+1(λk+dkλ) = limk→∞ Yk(λk+dkλ) = µe. Then, by Step 6 of Algorithm
3.4, we have λk+1 = λk + dkλ for sufficiently large k; thus (4.23) holds. Moreover, for
sufficiently large k, by (3.21), we have

gk +Akλ
k+1 = −Bkdkx.(4.27)

Thus, (4.24) follows immediately from Assumption 4.1 and (4.21).
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It follows from Lemmas 4.2 and 4.5 that the weighted Newton step will be accepted
at last if {ρk}∞k=0 is bounded, since (3.28) is satisfied after a finite number of iterations.

Now we consider the case of ρk → ∞. For simplicity of statement, we give the
following definitions.

Definition 4.6.
(1) x∗ ∈ <n is called a singular stationary point of the problem (1.1), if c(x∗) ≤ 0

and Ai(x
∗), i ∈ I, are linearly dependent, where I = {i|ci(x∗) = 0, i = 1, . . . ,m};

(2) x∗ ∈ <n is called an infeasible stationary point of the problem (1.1), if x∗

is an infeasible point of the problem (1.1) and A(x∗)c(x∗)+ = 0, where c(x∗)+ =
max{c(x∗), 0}.

It is easy to see that both the singular stationary point and the infeasible station-
ary point have some first order stationary properties. Similar definitions are also used
in [2, 20, 30]. A singular stationary point is also a Fritz-John point; where the linearly
independent constraint qualification does not hold. An infeasible stationary point is
also a stationary point for minimizing ‖c(x)+‖ because A(x∗)c(x∗)+ = 0. Moreover,
if all constraint functions are convex, then the infeasible stationary point is the “least
infeasible solution” in `2 sense.

Lemma 4.7. If ρk →∞, then
(i) the sequence {yk} is bounded;
(ii) {yk} is not componentwise bounded away from zero.
Proof. (i) By (3.34), we have φµ(xk+1, yk+1; ρk+1) ≤ φµ(xk, yk; ρk+1) for all k ≥ 0.
The boundedness of {xk} implies that there exists a constant b7 > 0 such that |fk| <
b7. Thus,

1

ρk+1
φµ(xk+1, yk+1; ρk+1)− 1

ρk
φµ(xk, yk; ρk)

≤
(

1

ρk
− 1

ρk+1

)
(−ψµ(xk, yk))(4.28)

≤
(

1

ρk
− 1

ρk+1

)
(b7 + µm ln ‖yk‖).

It follows from (4.28) that

1

ρk+1
φµ(xk+1, yk+1; ρk+1)

≤ 1

ρ0
φµ(x0, y0; ρ0) +

(
1

ρ0
− 1

ρk+1

)(
b7 + µm max

0≤j≤k+1
ln ‖yj‖

)
.(4.29)

On the other hand, we have

1

ρk+1
φµ(xk+1, yk+1; ρk+1)

≥ − 1

ρk+1

(
b7 + µm max

0≤j≤k+1
ln ‖yj‖

)
+ ‖yk+1‖ − ‖ck+1‖.(4.30)

Thus, by (4.29) and (4.30), there is a constant b8 > 0 such that

b8 +
µm

ρ0
max

0≤j≤k+1
ln ‖yj‖ ≥ ‖yk+1‖ for all k ≥ 0,(4.31)

which implies that {yk} is bounded.
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(ii) If {yk} is componentwise bounded away from zero, then, by (i) and (3.37), the
sequence {λk} is also bounded above and componentwise bounded away from zero.
Thus, matrix Sk is uniformly bounded. Let K = {k|ρk < ρk+1}. Then K is an infinite
index set. It follows from Assumption 4.1 and Proposition 3.3 that there exists a
positive constant ρ̂ such that the weighted Newton step defined by (3.12) and (3.13)
is accepted at iterate k ∈ K if ρk > ρ̂. Thus, ∆k = ‖ck + yk‖ by Proposition 3.2 and
(3.32). Moreover, there exists a constant b9 > 0 such that, for sufficiently large k ∈ K,

‖d̃kx‖ ≤ b9‖ck + yk‖, ‖d̃ky‖ ≤ b9‖ck + yk‖ and ‖Skd̃ky‖ ≤ b9‖ck + yk‖.(4.32)

Hence, by the boundedness of ‖ck+yk‖ and Assumption 4.1(3), there exists a constant
b10 > 0 such that, for all sufficiently large k ∈ K,

πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)>Bkd̃

k
x +

1

2
(d̃ky)>Skd̃

k
y

≤ b10‖ck + yk‖ − ρk‖ck + yk‖,(4.33)

which, by (3.17), implies that we have (3.29) for all iterates k ∈ K with ρk ≥
max{ρ̂, b10}. This contradicts the fact that K is an infinite set.

By Lemma 4.7 and (3.37), λk is componentwise bounded away from zero. Thus,
both Λ−1k and S−1k are bounded above.

Lemma 4.8. Let K = {k | ρk < ρk+1}. If ρk → ∞ and if K̃ is any subset of K
such that (xk, yk)→ (x∗, y∗) as k ∈ K̃ and k →∞, then

det[(A∗J )>A∗J ] = 0,(4.34)

where J = {i|y∗i = 0, i = 1, . . . ,m}.
Proof. We prove this lemma by contradiction. Suppose that there is a set K̃ ⊆ K
such that, as k ∈ K̃ and k → ∞, (xk, yk) → (x∗, y∗) and Ai(x

∗), i ∈ J , are linearly
independent. Then, by Assumption 4.1 and (3.37), there exists a constant b11 > 0
such that A(x∗)>(B∗)−1A(x∗) + G∗ � b11I, where I is the identity matrix and for
simplicity we assume that Bk → B∗ and S−1k → G∗ as k ∈ K̃ and k → ∞. Thus, by
the continuity of A(x), there exists a constant b12 > 0 such that

‖(A>k B−1k Ak + S−1k )−1‖ ≤ b12(4.35)

for all sufficiently large k ∈ K̃. It follows from (3.27) that the weighted Newton step
defined by (3.12) and (3.13) is accepted. Hence, we have the same results as (4.32)
and (4.33), which result in a contradiction to the definition of K.

Lemma 4.9. If ρk → ∞, then there must be a limit point which is either a
singular stationary point or an infeasible stationary point.

In order to prove Lemma 4.9, we need to prove three other lemmas first.
Lemma 4.10. If {(d̃kx, d̃ky)} is a sequence such that qk(d̃kx, d̃

k
y) ≤ ωqk(0, 0) for

0 < ω ≤ 1, then ‖d̃kx‖/
√
ρk and ‖Y −1k d̃ky‖/

√
ρk are uniformly bounded above.

Proof. Let (d̂kx, d̂
k
y) = (d̃kx/

√
ρk, Y

−1
k d̃ky/

√
ρk). Then by qk(d̃kx, d̃

k
y) ≤ ωqk(0, 0), we

have

1

2
d̂k>x Bkd̂

k
x +

1

2
d̂k>y YkΛkd̂

k
y + ‖ck + yk +

√
ρkA

>
k d̂

k
x +
√
ρkYkd̂

k
y‖ ≤ ω‖ck + yk‖.(4.36)

The boundedness of (d̂kx, d̂
k
y) follows from the uniform lower boundedness of the

quadratic terms by Assumption 4.1 and (3.37).
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Lemma 4.11. Suppose that (d̃kx, d̃
k
y) is an approximate solution of program (3.11)

such that qk(d̃kx, d̃
k
y) ≤ qk(αCk (d̃kx)C , αCk (d̃ky)C), where ((d̃kx)C , (d̃ky)C) is the weighted

steepest descent step (see Procedure 2.1 and (3.10)), αCk ∈ [0, 1] minimizes the function

qk(α(d̃kx)C , α(d̃ky)C). Then there exist positive constants ρ̃ and ω̃ such that, for ρk ≥ ρ̃,
we have

qk(d̃kx, d̃
k
y)− qk(0, 0) ≤ −ω̃ρk

∥∥∥∥( Ak
Yk

)
(ck + yk)

∥∥∥∥2 .(4.37)

Proof. By (3.10), the value of η in Proposition 2.2 is

ηk = ‖(A>k B−1k Ak + S−1k )
1
2 (ck + yk)‖2/‖(A>k B−1k Ak + S−1k )(ck + yk)‖2.(4.38)

It follows from Assumption 4.1 and (3.37) that

(ck + yk)>
(
Ak
I

)>(
B−1k

YkΛ−1k

)(
Ak
I

)
(ck + yk)

≥ ω1

∥∥∥∥( Ak
Yk

)
(ck + yk)

∥∥∥∥2 ,(4.39)

where ω1 = min{ν−12 , β−12 µ−1}. By Assumption 4.1 and Lemma 4.7(i), there is a
constant ω2 > 0 such that ‖ck + yk‖ ≤ ω2. Let ρ̃1 = 2ω2. Then, for ρk ≥ ρ̃1, we
have 1 − (ρk/‖ck + yk‖) ≤ −ρk/(2ω2). If ηk ≥ 1, by Proposition 2.2, we have (4.37)
if ω̃ ≤ ω1/(4ω2).

Now we suppose that ηk < 1. By Assumption 4.1, Lemma 4.7, and (3.37), there
is a constant ω3 > 0 such that ‖(A>k B

−1
k Ak + S−1k )1/2‖2‖ck + yk‖ ≤ ω3 for all k.

Since ηk ≥ 1/‖(A>k B
−1
k Ak + S−1k )1/2‖2 by (4.38), if we select ρ̃2 = 2ω3, then, for

ρk ≥ ρ̃2, we have 1 − (ρkηk/‖ck + yk‖) ≤ −ρk/(2ω3). Thus, for ρk ≥ ρ̃2, it follows
from Proposition 2.2 and (4.39) that (4.37) holds if ω̃ ≤ ω1/(4ω3).

Let ω̃ = min{ω1/(4ω2), ω1/(4ω3)}. Then the result follows by taking the constant
ρ̃ = max{ρ̃1, ρ̃2}.

Lemma 4.12. Let K = {k | ρk < ρk+1}. If ρk →∞, then∥∥∥∥( Ak
Yk

)
(ck + yk)

∥∥∥∥→ 0(4.40)

as k ∈ K and k →∞.

Proof. Suppose that (4.40) does not hold. Then there exist an infinite subset K̃ ⊆ K,
positive constants τ1 and τ2 such that

‖
(
Ak
Yk

)
(ck + yk)‖ ≥ τ1(4.41)

and ‖ck + yk‖ ≥ τ2 for all k ∈ K̃.

The approximate solution (d̃kx, d̃
k
y) is generated such that either qk(d̃kx, d̃

k
y) ≤

νqk(0, 0) or qk(d̃kx, d̃
k
y) ≤ qk(αCk (d̃kx)C , αCk (d̃ky)C) (which implies that qk(d̃kx, d̃

k
y) ≤

qk(0, 0)). Then, by Lemma 4.10, there is a constant τ3 > 0 such that ‖d̃kx‖ ≤ τ3
√
ρk,

‖Y −1k d̃ky‖ ≤ τ3
√
ρk.



A ROBUST INTERIOR-POINT ALGORITHM 17

If qk(d̃kx, d̃
k
y) ≤ νqk(0, 0) for all k ∈ K̃, then there exists a constant τ4 > 0 such

that

πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)>Bkd̃

k
x +

1

2
(d̃ky)>Skd̃

k
y

≤ (gk)>d̃kx − µe>Y −1k d̃ky − (1− ν)ρk‖ck + yk‖(4.42)

≤ τ4
√
ρk − (1− ν)τ2ρk.

Thus, by (3.17), we can select a positive constant ρ̂ such that (3.29) holds for all
ρk ≥ ρ̂. This contradicts the definition of K. Hence, there must exist an infinite
subset K̂ of K̃ such that qk(d̃kx, d̃

k
y) ≤ qk(αCk (d̃kx)C , αCk (d̃ky)C) for all k ∈ K̂. Thus, it

follows from Lemma 4.11 that (4.37) holds for all k ∈ K̂. Then, by (4.41), there is a
positive constant b13 such that, for all k ∈ K̂,

qk(d̃kx, d̃
k
y)− qk(0, 0) ≤ −b13τ21 ρk.(4.43)

Thus, we have

πρk((xk, yk); (d̃kx, d̃
k
y)) +

1

2
(d̃kx)>Bkd̃

k
x +

1

2
(d̃ky)>Skd̃

k
y

≤ (gk)>d̃kx − µe>Y −1k d̃ky − b13τ21 ρk(4.44)

≤ τ4
√
ρk − b13τ21 ρk

for all sufficiently large k ∈ K̄, which implies a contradiction to the definition of
K.

Proof of Lemma 4.9. Since (xk, yk) is bounded, without loss of generality, we
suppose that (Ak, c

k, xk, yk, Yk)→ (A∗, c∗, x∗, y∗, Y ∗) as k ∈ K and k →∞, where K
is defined as in Lemma 4.12, A∗ = A(x∗) and c∗ = c(x∗). If the limit point (x∗, y∗)
is such that c∗ + y∗ = 0, i.e., c∗i = 0 if and only if y∗i = 0, then this limit point is a
singular stationary point by Lemma 4.8 since I = J , where I and J are defined as in
Definition 4.6 and Lemma 4.8, respectively. Now we consider the case of ‖c∗+y∗‖ 6= 0.
By Lemma 4.12, (

A∗

Y ∗

)
(c∗ + y∗) = 0(4.45)

and so for any i

y∗i > 0 ⇒ c∗i + y∗i = 0 ⇒ c∗i < 0.(4.46)

Since ck + yk ≥ 0 and yk ≥ 0 for all k ≥ 1 by the algorithm, for each i such that
c∗i + y∗i 6= 0, one has y∗i = 0 by (4.45) and hence c∗i > 0, implying that x∗ is infeasible.
Then c∗+ y∗ = c∗+ = max{c∗, 0}. It follows from (4.45) that A∗c∗+ = 0. Therefore, x∗

is an infeasible stationary point. The proof is finished.

Now we can state our global convergence theorem on Algorithm 3.4.
Theorem 4.13. Suppose that {(xk, yk, λk)} is an infinite sequence generated by

applying Algorithm 3.4 to the barrier problem (3.1)-(3.2) and suppose that Assump-
tion 4.1 holds. The penalty parameter sequence {ρk} is automatically updated and
monotonically nondecreasing.
(i) If {ρk} is bounded, then any cluster point of {(xk, yk, λk)} is a KKT point of the
barrier problem (3.1)-(3.2). In this case, {yk} is componentwise bounded away from
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zero, {xk} is asymptotically strictly feasible for the constraints (1.1), and gk+Akλ
k →

0.
(ii) If ρk → ∞, then {yk} is not componentwise bounded away from zero and there
is at least one cluster point of {(xk, yk, λk)}, which is either a singular stationary
point or an infeasible stationary point. In the latter case, if (xk, yk) is asymptotically
feasible for constraints (3.2), then {xk} is asymptotically feasible for and close to the
boundary of constraints (1.1). At the limit the gradients of active constraints of (1.1)
are linearly dependent. If (xk, yk) is not asymptotically feasible for constraints (3.2),
then at the limit point x∗ we have A∗c∗+ = 0.
Proof. Part (i) follows from Lemma 4.5. Part (ii) can be derived directly by Lemma
4.9.

5. The overall interior-point algorithm and its convergence. We denote
by F the class of continuous functions θ : <++ → <++ satisfying limµ→0 θ(µ) = 0.
Now we present our algorithm for nonlinearly constrained optimization (1.1).

Algorithm 5.1. (The line-search-based interior-point algorithm for (1.1))

Step 1. Given initial point (x0, y0, λ0) ∈ <n × <m++ × <m++, initial barrier parameter
µ0 > 0, τ ∈ (0, 1), tolerance ε > 0, and function θ ∈ F . Let j := 0.

Step 2. For the given barrier parameter µj, we apply Algorithm 3.4 to the barrier
problem (3.1)-(3.2). If the iterate (xkj , ykj , λkj ) satisfies

‖Fµj (xkj , ykj , λkj )‖ < θ(µj),(5.1)

then let
(xj+1, yj+1, λj+1) = (xkj , ykj , λkj )(5.2)

and ρj+1 = ρkj , and go to Step 3; if one of conditions (ii) and (iii) of Algo-
rithm 3.4 holds, stop.

Step 3. If µj < ε stop; otherwise, let µj+1 = τµj, j := j + 1, and go to Step 2.

Now we consider the convergence of Algorithm 5.1. The result closely depends on
how Algorithm 3.4 behaves for each µj . For θ(µj) > 0, if condition (5.1) is satisfied,
then Algorithm 5.1 will proceed to a less µj+1. The global convergence results of the
algorithm are as follows.

Theorem 5.2. Suppose that θ ∈ F and {(xj , yj , λj)} is a sequence generated by
Algorithm 5.1. If for each barrier problem, Assumption 4.1 holds, {(xk, yk, λk)} is a
sequence generated by Algorithm 3.4, then, for sufficiently small ε, Algorithm 5.1 may
terminate in finitely many steps at one of the following two cases:
(i) For some µj, Algorithm 5.1 terminates at Step 2. If the termination point is an
approximately feasible point, then it is an approximately singular stationary point.
Otherwise, it is an approximately infeasible stationary point.
(ii) For each µj, Algorithm 3.4 terminates at (5.1). Then Algorithm 5.1 terminates
at Step 3, in which case an approximate KKT point of the original problem (1.1) is
obtained.
Proof. The results follow immediately from Theorem 4.13 and Algorithm 5.1.

6. Numerical experiment.

6.1. Formulae used in Procedure 2.1. We present an implementation of
Procedure 2.1 in this subsection.

Suppose that the full Q-weighted Newton step is not accepted. Then we compute
the weighted Cauchy step d̃Cz and try to get an approximate solution d̃z to (2.10)
along the Q-weighted Newton step, or the so-called dog-leg step, so that (2.13) holds
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and q(d̃z) has as much reduction as possible. If this is impossible, then we do a line
search along the Q-weighted steepest descent step and take the approximate solution
d̃z to be either the truncated Q-weighted Newton step or the truncated Q-weighted
steepest descent step, so that q(d̃z) has more reduction. Thus, (2.13) holds. The
details are as follows.

We first compute the optimal steplength along the Q-weighted Newton step to
derive as much reduction as possible in this direction. Thus, we solve the single-
variable minimizing problem

minimizeα∈[0,1] q̂(α) =
1

2
α2d̃N>z Qd̃Nz + ρ‖r + αR>d̃Nz ‖.(6.1)

By direct computation, we have the solution

α̃1 = min

{
ρ‖r‖

r>(R>Q−1R)−1r
, 1

}
.(6.2)

Set d1z = α̃1d̃
N
z . Then we have q̂(α̃1) ≤ q̂(0). It is more convenient in the implementa-

tion to compute a dog-leg step in the line segment spanned by the Q-weighted Newton
step d̃Nz and the following scaled Cauchy step (where η is defined as in Proposition
2.2):

d̃Cz = −min{η, 1}Q−1Rr.(6.3)

It is apparent that this scaling on d̃Cz will not result in any change in our theoretical
results. If η ≤ 1, then d̃Cz is the so-called Cauchy point in minimizing ‖r + R>d‖2
with starting point d = 0. Let dz(α) = αd̃Nz + (1− α)d̃Cz . Then we calculate α̃2 by

minimizeα∈[0,1]q̃(α) =
1

2
dz(α)>Qdz(α) + ρ‖r +R>dz(α)‖.(6.4)

By setting q̃
′
(α) = 0, we have

α∗2 =
ρ‖r +R>d̃Cz ‖ − (d̃Nz − d̃Cz )>Qd̃Cz

(d̃Nz − d̃Cz )>Q(d̃Nz − d̃Cz )
.(6.5)

If α∗2 ≤ 0, then α̃2 = 0; else if α∗2 ≥ 1, then α̃2 = 1; else we have α̃2 = α∗2.
If min{q̂(α̃1), q̃(α̃2)} ≤ νq(0) (where ν is defined as in Procedure 2.1), we define
d2z = dz(α̃2), else we set d2z = α̃3d̃

C
z , where α̃3 ∈ (0, 1] minimizes the function

q̄(α) =
1

2
α2(d̃Cz )>Qd̃Cz + ρ‖r + αR>d̃Cz ‖.(6.6)

We select the approximate solution d̃z from d1z and d2z, whichever gives a lower value
of q(d̃z).

The process for solving (2.10) approximately is summarized into the following
algorithm.

Algorithm 6.1. (The algorithm for solving problem (2.10) approximately)

Step 1. Compute the Newton step d̃Nz by (2.11). If q(d̃Nz ) ≤ νq(0), then d̃z = d̃Nz .
Stop.

Step 2. Compute the steepest descent step d̃Cz by (2.13).

Step 3. Calculate d1z = α̃1d̃
N
z by (6.2) and d2z = α̃2d̃

N
z + (1 − α̃2)d̃Cz by (6.4). If

min{q̂(α̃1), q̃(α̃2)} ≤ νq(0), then go to Step 5.

Step 4. Calculate d2z = α̃3d̃
C
z by (6.6). If q̂(α̃1) ≤ q̄(α̃3), we have the approximate

solution d̃z = d1z; else we select d̃z = d2z. Stop.

Step 5. If q̂(α̃1) ≤ q̃(α̃2), then d̃z = d1z; else we have d̃z = d2z. Stop.
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6.2. Numerical results. The algorithm is programmed in MATLAB 6.1 and is
run on a personal computer under Windows 98. In order to obtain rapid convergence,
it is also necessary to carefully control the rate at which the barrier parameter µ and
the tolerance θ(µ) are decreased. This question has been studied by [6, 11, 29].

It is restrictive to require that (3.37) holds for given β1 and β2 for all iterates of
Algorithm 3.4 in practice. In our implementation, we update the dual iterate flexibly
by selecting the maximal γk ∈ [0, 1] such that

min{Yk+1Λke, β̄1µe} ≤ Yk+1Λk+1e ≤ max{Yk+1Λke, β̄2µe},(6.7)

where 0 < β̄1 < 1 < β̄2, Λk+1 = diag(λk+1) and λk+1 = λk + γkd
k
λ. If {ρk}∞k=0 is

bounded, then, by Lemma 4.2 and (6.7), there exist β1 and β2 such that (3.37) holds
for all iterates. In the case of ρk → ∞, suppose that Algorithm 3.4 is terminated
within a given number of iterations (for example, 300 iterations). Then, by the
fact that yk+1 ≥ 0.005yk and (6.7), Yk+1Λk+1e ≥ min{0.005YkΛke, β̄1µe}. Thus,
YkΛke ≥ β1µe if we select β1 = 0.005300 min{µ−1Y0Λ0e, 200β̄1e}. If yki λ

k
i → ∞ as

k → ∞ for some i, then, by (6.7), λki ≤ λk−1i and λki → ∞ as k → ∞ since {yk} is
bounded. This is a contradiction. Thus, there exist a constant β2 > 0 and an infinite
index set K such that YkΛke ≤ β2µe for k ∈ K. Hence, we have (3.37) for all k ∈ K.

We select the initial parameters µ0 = 0.01, β̄1 = 0.01, β̄2 = 10, σ0 = 0.1, δ = 0.8,
and the initial matrix B0 to be the n × n identity matrix. The scalar in Algorithm
6.1 is ν = 0.98. The choice of the initial penalty parameter ρ0 is scale dependent and
ρ0 = 1 is chosen for our experiment. Simply, we select θ(µ) = µ, τ = 0.01, ε = 10−6.
For conditions (ii) and (iii) of Step 7 of Algorithm 3.4, we select ε2 = ε and ε3 = ε2.

The approximate Lagrangian Hessian Bk+1 is computed by the damped BFGS
update formula

Bk+1 = Bk −
Bks

k(sk)>Bk
(sk)>Bksk

+
wk(wk)>

(sk)>wk
,(6.8)

where

wk =

{
ŵk if (ŵk)>sk ≥ 0.2(sk)>Bks

k,
θkŵ

k + (1− θk)Bks
k otherwise,

(6.9)

and ŵk = gk+1−gk+(Ak+1−Ak)λk+1, sk = xk+1−xk, θk = 0.8(sk)>Bks
k/((sk)>Bks

k−
(sk)>ŵk). For all test problems, we select the initial slack and dual variables as

y0 = e, λ0 = e(6.10)

if not specified.
First, we apply our algorithm to three simple examples. The first one is the

example presented by Wächter and Biegler and further discussed by Byrd, Marazzi,
and Nocedal [7, 26]:

minimize x1(6.11)

(TP1) subject to x21 − x2 − 1 = 0,(6.12)

x1 − x3 − 2 = 0,(6.13)

x2 ≥ 0, x3 ≥ 0.(6.14)

Note that the initial point (x01, x
0
2, x

0
3) = (−4, 1, 1) satisfies the conditions of Theorem

1 of [26]. There is a unique stationary point for this problem, which is the global
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Table 1. Numerical results by Algorithm 3.4 when µ = 0.01.

IT x1 x2 x3 RC1 RC2 ρ d̃x
0 -4 1 1 14 -7 1 full-Newton

1 -3.6590 12.3880 0.0050 0 -5.6640 2 dog-leg

2 -2.2786 4.1919 0.0040 0 -4.2826 4 full-Newton

3 -1.3633 0.8586 0.0030 0 -3.3663 4 full-Newton

4 -1.0500 0.1025 0.0026 0 -3.0525 8 dog-leg

5 -0.8756 0.0005 0.0019 -0.2339 -2.8775 8 dog-leg

6 -0.4536 0.0015 0.0000 -0.7957 -2.4537 8 dog-leg

7 0.4972 0.0430e-03 0.5770e-03 -0.7528 -1.5033 8 dog-leg

8 1.4035 0.9697 0.0009 0 -0.5975 8 full-Newton

9 2.0008 3.0031 0.0008 0 -0.9324e-09 8 full-Newton

10 2.0017 3.0067 0.0017 0 0 8

Table 2. Numerical results by the ordinary approach
with yk+1 generated by (3.36) when µ = 0.01.

IT x1 x2 x3 RC1 RC2 ρ

0 -4 1 1 14 -7 1

1 -3.6590 12.3880 0.0050 0 -5.6640 2

2 -1.9746 2.8990 0.0028 0 -3.9774 5.2958

3 -1.2442 0.5480 0.0018 0 -3.2460 11.9755

4 -1.0251 0.0508 0.0007 0 -3.0258 101.7079

5 -1.0004 0.8606e-03 0.1721e-03 0 -3.0006 4.4576e+03

6 -1.0000 0.0449e-04 0.1219e-04 0 -3.0000 1.1483e+06

7 -1.0000 0.0224e-06 0.1183e-06 0 -3.0000 7.7089e+08

8 -1.0000 0.1122e-09 0.5969e-09 0 -3.0000 9.1419e+12

9 -1.0000 0.0561e-11 0.2984e-11 0 -3.0000 3.0875e+17

minimizer. Moreover, this problem is well-posed, since at the solution the second
order sufficient optimality condition, strict complementarity, and nondegeneracy hold.
However, it is proved by [26] that many existing interior-point methods using line
search (let us call them the “ordinary” interior-point methods for convenience) fail to
converge to the stationary point.

Algorithm 5.1 terminates at the approximate KKT point (2, 3, 0) with the La-
grangian multiplier (0, 1) in 16 iterations. The residuals, respectively, are ‖gk +
Akλ

k‖=6.3283e-14, ‖YkΛke−µke‖=2.0000e-08, and ‖ck+yk‖=0.8232e-17. The value
of the penalty parameter is ρ̂=8. In order to see the performance clearly, we give the
numerical results of Algorithm 3.4 when µ=0.01, which is listed in Table 1, where
RC1 and RC2 are residual values of constraints (6.12) and (6.13), respectively. The
last column in Table 1 shows the performance of Algorithm 6.1, where “full-Newton”
means that the approximate solution to (3.11) is the full weighted Newton step and
“dog-leg” represents the dog-leg step. In order to observe how the ordinary interior-
point approach using (3.24)-(3.26) behaves, we also solve this example by solving
(3.24)-(3.26) with yk+1 generated by (3.36) and yk+1 = yk + αkd

k
y , respectively; the

results are presented in Tables 2 and 3.

It is easy to note from Table 1 that Algorithm 3.4 terminates at the approximate
feasible point when µ = 0.01. The approximate feasibility will be further improved
when µ is decreased in Algorithm 5.1. However, the results in Tables 2 and 3 show that
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Table 3. Numerical results by the ordinary approach
with yk+1 = yk + αkd

k
y when µ = 0.01

IT x1 x2 x3 RC1 RC2 ρ

0 -4 1 1 14 -7 1

1 -3.6590 0.9438 0.0050 11.4442 -5.6640 2

2 -3.4809 0.0047 0.0029 11.1118 -5.4838 11.9086

3 -3.4789 0.0236e-03 0.3727e-03 11.1028 -5.4793 5.4425e+03

4 -3.4788 0.0118e-05 0.8007e-05 11.1017 -5.4788 3.8388e+05

5 -3.4787 0.0059e-07 0.4240e-07 11.1017 -5.4787 8.9516e+08

6 -3.4787 0.0029e-09 0.2121e-09 11.1017 -5.4787 3.3359e+13

the ordinary interior-point approach using (3.24)-(3.26) terminates at the infeasible
points as µ = 0.01. The infeasibility can not be improved by decreasing µ since x2
and x3 are close to the boundary of the feasible region.

The last column of Table 1 shows that the weighted Newton steps are accepted
as the iterates are nearly feasible, which is important for the algorithm to have rapid
convergence.

Our second test example is taken from [3], which minimizes any objective function
on an obviously infeasible set defined by the constraints:

(TP2) x2 + 1 ≤ 0, x ≤ 0.(6.15)

We select to minimize x as the objective. The initial point is x0 = 4. For µ =
0.01, Algorithm 3.4 terminates at the point x∗ = −6.0363e-07, and correspondingly
the slack variables y∗1 = 6.3712e-13 and y∗2 = 6.0363e-07 after 38 iterations. It is
easy to note that x∗ is close to a point by which the norm ‖c(x)+‖ is minimized.
Algorithm 6.1 takes 4 full weighted Newton steps at first and then uses the truncated
weighted Newton steps in later 34 iterations. The value of the penalty parameter is
ρ̂ = 1.2767e+10.

The third simple test problem is a standard one taken from [17, Problem 13]:

minimize (x1 − 2)2 + x22(6.16)

(TP3) subject to (1− x1)3 − x2 ≥ 0,(6.17)

x1 ≥ 0, x2 ≥ 0.(6.18)

The standard initial point (−2,−2) is an infeasible point. The optimal solution (1, 0)
is not a KKT point but is a singular stationary point, at which the gradients of active
constraints are linearly dependent. This problem has not been solved in [23, 25, 28],
but has been solved in [5, 24].

Algorithm 5.1 applied to problem (TP3) terminates at the singular stationary
point in 44 iterations and µ=0.01, y∗ = (0, 1, 0), λ∗ = (3.4923e+10, 0.0, 3.4923e+10).
The residuals, respectively, are ‖gk + Akλ

k‖=1.2716, ‖YkΛke − µke‖=0.0292, ‖ck +
yk‖=0.0, and the value of the penalty parameter is ρ̂ = 2.6370e+10.

We also apply our algorithm to some other test problems taken from [17], which
are numbered in the same way as that in [17]. For example, “TP022” is Problem
22 in the book. We use these test problems (but not all test problems) since they
have only inequality constraints, and thus are suitable for testing the algorithm. The
initial points are the same as [17]. The numerical results are reported in Table 4,
where “Iter” represents the number of iterations, RD=‖gk + Akλ

k‖, RP=‖ck + yk‖,
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Table 4. Numerical results by Algorithm 5.1

Problem Iter RD RP RG ρ̂

TP001 25 2.5953e-11 0 1.0000e-08 1

TP002 22 3.8447e-12 0 1.0000e-08 2

TP003 16 1.9997e-09 0 1.0000e-08 1

TP004 10 1.7656e-13 8.8947e-17 2.0001e-08 4.9402

TP010 18 2.4976e-14 3.0564e-14 1.0000e-08 1

TP011 15 1.1383e-14 9.2021e-16 1.0000e-08 4

TP012 15 2.5011e-14 1.8881e-15 1.0000e-08 1

TP020 38 9.0994e-14 0.5983e-17 5.0000e-08 512

TP021 18 1.3468e-09 0 5.0000e-08 1

TP022 11 1.0991e-12 1.4037e-16 2.0000e-08 1

TP023 14 7.1677e-12 7.1056e-15 9.0000e-08 1

TP024 14 2.5103e-12 4.3581e-16 5.0000e-08 1

TP038 95 7.6785e-09 0 8.0000e-08 1

TP043 22 2.7486e-10 7.2071e-13 3.0000e-08 2

TP044 15 1.3328e-13 7.8580e-16 1.0000e-07 2

TP076 17 2.6222e-09 1.1974e-15 7.0000e-08 1

RG=‖YkΛke − µke‖, and ρ̂ is the value of penalty parameter when the algorithm
terminates.
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