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Abstract: Structural damage identification can be considered as an optimization problem, by 

defining an appropriate objective function relevant to structural parameters to be identified with 

optimization techniques. This paper proposes a new heuristic algorithm, named improved Jaya 

(I-Jaya) algorithm, for structural damage identification with the modified objective function based 

on sparse regularization and Bayesian inference. To improve the global optimization capacity and 

robustness of the original Jaya algorithm, a clustering strategy is employed to replace solutions with 

low-quality objective values and a new updated equation is used for the best-so-far solution. The 

objective function that is sensitive and robust for effective and reliable damage identification is 

developed through sparse regularization and Bayesian inference and used for optimization analysis 

with the proposed I-Jaya algorithm. Benchmark tests are conducted to verify the improvement in 

the developed algorithm. Numerical studies on a truss structure and experimental validations on an 

experimental reinforced concrete bridge model are performed to verify the developed approach. A 

limited quantity of modal data, which is distinctively less than the number of unknown system 

parameters, are used for structural damage identification. Significant measurement noise effect and 

modelling errors are considered. Damage identification results demonstrate that the proposed 

method based on the I-Jaya algorithm and the modified objective function based on sparse 
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regularization and Bayesian inference can provide accurate and reliable damage identification, 

indicating the proposed method is a promising approach for structural damage detection using data 

with significant uncertainties and limited measurement information. 
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1. Introduction 

Conducting damage identification and quantification of structures based on measured vibration 

data is one of the most significant research topics in the area of structural health monitoring (SHM), 

because it is relevant to assessing the service performance and evaluating the integrity of structures 

[1]. When structures have damages, alternations are observed in the dynamic vibration 

characteristics. Therefore, numerous methods have been developed for structural damage 

identification based on the changes in structural vibration characteristics [2-3].  

Basically, these methods can be categorized into two types, relying on the fact that structural 

damage identification is performed in the frequency domain or the time domain. Frequency domain 

based methods are developed to identify damages by using structural modal information, such as 

natural frequencies, mode shapes, damping ratios and other frequency domain data. Pandey and 

Biswas [4] used the flexibility matrices for damage identification. Shi and Law [5] developed the 

modal strain energy ratio to locate the structural damages. Yan et al. [6-7] used Principle 

Component Analysis (PCA) to analyze structural modal data for distinguishing the changes in 

vibration characteristics due to environmental variations or structural damage. Numerical and 

experimental studies illustrated that the proposed method can be effective for the linear and 

nonlinear structures. Furthermore, the spectral approach was also widely applied to address 

structural damage quantification, especially for nonlinear systems [8]. 

On the other hand, structural damage identification methods in the time domain have been 

developed rapidly in the recent years. Lu and Wang [9] proposed an enhanced sensitivity method to 

perform damage identification, in which a trust-region restriction was introduced to improve the 

performance of the traditional sensitivity approach. Hu et al. [10] developed a method using the 
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homotopy continuation algorithm to identify the cracks in beam structures, in which acceleration 

responses were used to formulate the objective function. Li et al. [11] developed a damage 

identification and optimal sensor placement method for structures under traffic-induced vibrations, 

based on response reconstruction in the time domain. Recently, the time domain methods have been 

also developed to conduct the identification of nonlinear structures. Yang et al. [12] developed an 

adaptive Extended Kalman Filter (EKF) approach to identify the damage in both the linear and 

nonlinear structures. Xie and Feng [13] applied the Iterated Unscented Kalman Filter (IUKF) for 

highly nonlinear structures. Experimental results demonstrated that IUKF can be used to provide 

better state estimation and parameter identification results than Unscented Kalman Filter (UKF). 

For damage identification in initially nonlinear systems, Shiki et al. [14] used a discrete Volterra 

model to separate the linear and nonlinear components of the dynamic responses of a system. 

Afterwards, hypothesis tests were introduced to detect variations in the statistical properties of the 

damage features. Villani et al [15] adopted the stochastic Volterra series to conduct damage 

identification for uncertain nonlinear systems, in which the uncertainties were simulated by the 

variation posed in the linear stiffness and damping coefficient. 

However, most of the above mentioned methods require a good guess of the initial system 

parameters and an accurate estimation of the gradients. Furthermore, difficulties arise when 

utilizing these methods for the identification of large scale structures when only few measurement 

data is available. Regularization in the solution would be essential to ensure that the identification 

results are physically meaningful. Considering that structural damage identification could be viewed 

as an optimization problem [16], computational intelligence techniques are developed to perform 

the optimization in structural damage identification, such as the genetic algorithms (GAs), the 
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particle swarm optimizer (PSO), the artificial bee colony algorithms (ABCs), the differential 

evolution (DE) algorithms, the artificial neural network (ANN), the support vector machine (SVM) 

and other machine learning methods. These intelligence methods generally make predictions via 

data instead of the specific formulas. Therefore, they could not only avoid the mentioned 

shortcomings (requiring good initial values and gradient information), but also enable to perform 

identification of large-scale and complex structures [17]. Wang [18] developed using the hybrid GA 

with the Gaussian-Newton method to identify the parameters of both linear and nonlinear structural 

systems. Guo and Li [19] developed a two-stage damage identification method based on the 

evidence fusion along with the improved PSO. Later, Chen and Yu [20] employed the PSO 

integrated with Nelder-Mead method to tackle the damage identification problem. Sun et al. [21] 

constructed a modified ABC algorithm to perform the identification of structural parameters, in 

which a nonlinear factor used for improving the convergence performance was introduced to 

achieve the balance between the global and local searches. Ding et al. [22-23] adopted ABC to 

identify structural damages and cracks by using the objective function based on natural frequencies 

and the modal assurance criteria (MAC). Tang et al. [24] proposed DE to identify structural 

parameters with and without considering noise contamination in the measurement data. Padil et al. 

[25] demonstrated that ANN is a good choice to solve the damage identification problem 

considering uncertainties. Bornn et al. [26] developed an approach using the autoregressive SVM to 

detect the damage in initially nonlinear systems. Santos et al. [27] presented four kernel-based 

algorithms for damage identification under varying operational and environmental conditions. From 

the above studies, it can be found that these computational intelligence approaches are promising 

tools for structural identification, however, challenges still exist, such as  
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(a) In some studies, the target structures used for investigation have a small number of elements. 

The uncertainty effect on the final identification results is rarely investigated; and 

(b) The performance and robustness of algorithms for the scenarios when only a limited 

number of measurement data are available and at the same time the data contain significant 

noise, need to be improved.  

Recently a new computational intelligence method, namely Jaya algorithm [28-29], has been 

developed. Compared with the above-mentioned computational intelligence methods [17-25], the 

distinct feature of the Jaya algorithm is that there are no special controlling parameters in the 

algorithm. In contrast for many other methods, GA needs a proper setting of crossover probability, 

mutation rate and selection operator, and ABC needs proper quantities of onlooker bees, scout bees 

and parameter ‘limit’. Furthermore, compared with other gradient-based algorithms [4-5], the Jaya 

algorithm has the following superiorities: (i) It is free from sensitivity analysis and initial guess of 

the parameters; and (ii) It does not require gradient information. When performing the damage 

identification of structures with a large number of elements, the gradient information may be 

difficult to obtain or the calculation is time consuming due to the significant computational demand 

with a large-scale system, which restricts the potential applications of these gradient-based methods. 

Therefore, it is interesting to develop and extend the Jaya algorithm for structural damage 

identification. Furthermore, to address the two challenges as mentioned above, modifications are 

introduced into the standard Jaya algorithm to enhance its global optimization ability and a better 

objective function that is more robust to identify structural parameters with limited measurement 

information is proposed. These are the two main contributions of this study. 

For addressing the first challenge, a relatively complex truss structure is used in the numerical 
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study. The uncertainty effects considered in this study include the uncertainties in the computational 

model parameters and the modeling errors. The former one results from a mathematical modeling 

process of the designed structure, which has parameters that could be subjected to certain level of 

statistical variations. The latter one denotes that the modelling process could introduce modelling 

errors, which is widely known as the modeling uncertainties [30-31]. To overcome the influences of 

these uncertain effects, following the study in Ref. [32], variations in each element stiffness 

parameters are introduced to simulate the uncertainties. The variation is modelled as a random 

Gaussian distribution vector with a mean value of 0 and a specific level of standard deviation.  

For addressing the second challenge as mentioned, when developing and applying optimization 

methods for damage identification, studies on developing more reasonable objective functions that 

are more robust and stable in optimization analysis for damage identification are conducted. To 

achieve this purpose, one way is to introduce the regularization technique to reform the objective 

function. Recently, the sparse regularization techniques with the enforcement of the sparsity 

constraint on the damage locations have been widely investigated and promising results are 

obtained, since damages are often observed at a few locations while the majority of elements remain 

intact [33-34]. Furthermore, the traditional objective functions [22-23] are usually ill-posed, and 

introducing the sparse regularization constraint on the damage identification is beneficial to 

overcome the ill-posedness in the inverse problems [35]. Another possible way to tackle this 

challenge is to employ the probabilistic analysis, i.e. based on the Bayesian inference. It considers 

the complete information relevant to the measured data for statistical inference with an appropriate 

likelihood function [36]. Bayesian-based methods have been developed for damage identification. 

For example, Beck et al. [37] presented a Bayesian statistical framework for structural identification 
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and adopted this theory to perform continuous online identification. Later, Bayesian spectral density 

approaches, Bayesian fast Fourier transform (FFT) methods [38-39], Bayesian-based Monte Carlo 

method [40] have been further developed for structural damage identification. The results in 

previous studies [20, 36] demonstrated that the Bayesian inference can be used to enhance the 

robustness of damage identification. Therefore, to improve the identification with a limited number 

of measurements of a significant noise effect, a new objective function is proposed by using 

incomplete modal data and the penalty items considering the sparse regularization and Bayesian 

inference.  

This paper proposes an improved Jaya algorithm (I-Jaya) to conduct damage identification of 

structures by using vibration measurement data. To enhance the capacity of the developed 

methodology for the identification of large-scale structures, two modifications are developed based 

on the standard Jaya algorithm to enhance its global search ability. 1% variation [32] is introduced 

into the elemental stiffness parameters to simulate the uncertainties in the structure. To improve the 

identification with a limited number of measurements of a significant noise effect, a new objective 

function is proposed by using incomplete modal data and the penalty items considering the sparse 

regularization and Bayesian inference. Classical mathematical benchmarks are utilized to validate 

the accuracy and improvement of the proposed approach. Numerical investigations on a 121-bar 

truss structure are performed to demonstrate the accuracy of the developed algorithm with the use 

of the modified objective function. Experimental validations on a reinforced concrete bridge are 

conducted to demonstrate the performance of the proposed method. 

 

2. Theoretical background  
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2.1 Damage identification of structures 

Changes in structural system parameters, i.e. stiffness, mass and damping, would introduce the 

alterations in structural vibration properties. Hence SDI could be conducted based on this fact by 

using vibration measurement data. Vibration characteristics, such as frequencies and mode shapes 

of a structure without considering the damping, could be obtained by solving the eigenvalue 

problem  

                       0)( 2 =⋅− iΦMK iω                               (1) 

where K  and M  represent the system stiffness and mass matrices, respectively; iω  and iΦ  

denote the ith  natural frequency and the corresponding mode shape, respectively.  

In this study, structural damage is assumed to be only related to the stiffness reduction, since 

the mass alteration of a structure could be easily inspected [41]. In this case, structural damage 

would be characterized via a scalar stiffness reduction variable for each element ),...,2,1( Nelhh =α  

with the value between 0 and 1 as follows 

                    ehd kK ⋅−=∑ =
)1(

1

Nel

h hα                          (2) 

where ehk  represents the h th elemental stiffness matrix under the undamaged state; Nel  

denotes the number of total elements of a structure; Kd represents the structural stiffness matrix 

under the damaged state; hα  denotes the elemental stiffness reduction parameter to be identified. It 

shall be noted that 1=hα  implies that this element is totally damaged, and 0=hα  means that the 

element is intact.  

The traditional objective function, denoted as fobj1, is defined based on the alterations of natural 

frequencies and Modal Assurance Criterion (MAC), which can be given as [20, 22-23] 
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where c
iω  and c

iΦ  represent the i th calculated natural frequency and mode shape from the finite 

element model analysis, respectively; m
iω  and m

iΦ  are the corresponding measured natural 

frequency and mode shape, respectively. NF and NM  represent the order numbers of natural 

frequencies and mode shapes, respectively. The calculated modal data are acquired by using the 

stiffness parameters ],...,,[ 21 Nelααα=α  with the finite element analysis. Generally speaking, SDI 

is treated as an ill-posed problem with the searching parameters that may have multiple local 

optimal points [22]. The optimization techniques can be used for identifying the optimal set of 

parameters that could minimize the objective function. When the input data is limited or even less 

than the number of unknown parameters to be identified and the data is contaminated with the 

significant measurement noise, the damage identification becomes much more difficult. To 

overcome these challenges, it is emerging to investigate and develop robust and powerful 

algorithms with proper objective functions, which may improve the identification of the complex 

structures. 

 

2.2 Proposed objective function 

2.2.1 The objective function based on sparse regularization 

In real situations, structural damages happen usually at a few locations [42]. Therefore the 

damage vector ],...,,[ 21 Nelααα=α
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at least close to zero, except the damaged elements with non-zero entries. When the number of 

measured data is less than the total number of unknown parameters in the inverse identification, 

Equation (3) is underdetermined and ill-posed. Therefore, the 1l  regularization technique [33] can 

be utilized to help solve the underdetermined inverse problem. The objective function based on 

sparse regularization, denoted as obj2, can be defined as 

      )||||)1((min arg)(minarg 111
2

2 ααα
αα

λω +−+∆== ∑∑ ==
∗ NM

i i
NF

i iobj MACf              (6) 

where 0>λ  is the regularization parameter and 1||||α  denotes the 1l  norm of the solution, 

namely, ||||||
11 ∑ =

=
Nel

h hαα . It should be noted that a small λ  would pose a higher penalty on the 

residual term, resulting in an over-fitting solution. Conversely, for a large λ  value, it would loss 

data fidelity. Therefore, the discrepancy principle (DP) rule [33] is employed here to select the 

optimal regularization parameter λ .  

 

2.2.2 The objective function based on Bayesian inference 

Vibration measurement data are usually polluted with the environmental noise, which could be 

considered as a zero-mean Gaussian white-noise in numerical simulations. The noisy response can 

be described as [20] 

                       )1( RXX ε+=noise                              (7) 

where noiseX  and X  are the noisy and original response vectors, respectively; ε  denotes the 

noise level ranging from 0  to 100%, while R  is a random vector with the standard normal 

distribution )1,0(N .  

     To improve the capacity of the developed algorithm against the noise effect in the 

optimization process, the Bayesian inference is introduced to modify the objective function. The 
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θ ) can be obtained via Bayes’ theorem [20] 

                         )()|()|( θθDDθ ppcp ⋅=                           (8) 

where )|( Dθp  represents the PDF of model parameters θ  given the modal data D , )|( θDp  

represents the likelihood function given the model parameter θ , and )(θp  denotes the prior PDF 

of model parameters θ  based on observations and/or modelling assumptions. Specifically, it ought 

to be noted that modal data D  means the real measured data, such as frequencies and mode shapes. 

In the Bayesian theory, these measured data are served to obtain the posterior probability density 

function of the model parameters θ . In this study for structural damage identification, the model 

parameters denote the element stiffness parameters vector ],...,,[ 21 Nelααα=α . Furthermore, the 

prior distribution of model parameters θ  is assumed as a uniform distribution, which means that 

their PDFs are a series of constants [20]. c  is a constant which enables the integral of )|( Dθp  to 

be 1. Supposing that the Bayesian inference is applied on natural frequencies and taking 

],...,,[ 21 sNDDDD = as observed modal data with sN  samples, and ],...,,[ ,,2,1 sisss ωωω=D  

denoting the natural frequencies in the s th observation or measurement. The likelihood functions 

of the modal data are assumed to be independent, and the principle of the maximum entropy is 

employed as a basis to assume Gaussian distributions for these modal data [20]. Based on this 

assumption, the PDF of any frequency parameter ( si,ω ) can be obtained as  
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where si,ω  represents the i th frequency in the s th measurement, c
iω  denotes the i th calculated 

frequency, and 2
iσ  represents the variance of the i th frequency and can be calculated as 
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where iϖ  represents the mean value of the ith  natural frequency. 

Since it is assumed the testing obtained modal data are independent, the likelihood in Eq. (8) 

can be calculated as 
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When the prior distribution of natural frequencies is considered as the uniform distribution, 

substituting Eq. (11) to Eq. (8) can have the final form of )|( Dθp . It can be calculated as   
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Eq. (12) represents the frequency-based Bayesian conditional probability function. The goal of 

Bayes analysis is to maximize the likelihood probability function )|( Dθp  based on the test data, 

which can be converted to minimize the exponent part in Eq. (12). Combining with the item related 

with the mode shapes in the objective function as described in Eq. (3), the third objective function, 

denoted as obj3, is given as 
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Comparing with the first objective function defined in Eq. (3), the item relevant to minimizing the 

difference in natural frequencies is modified based on Bayesian inference. It should be noted that 

when involving the Bayesian inference in the objective function, significant computational time 

may be required to obtain the variances. Since natural frequencies are scalars, their covariance 
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values are relatively straightforward to be obtained. However, for the mode shapes, obtaining the 

covariance matrices will be relatively complex and time-consuming, considering the modal shapes 

are vectors. To simplify the calculation and increase the efficiency, only the frequencies are 

considered in the objective function in Eq. (13). 

 

2.2.3 The objective function based on Bayesian inference and sparse regularization 

     By considering the Bayesian inference and sparse regularization simultaneously, a hybrid 

objective function, defined as obj4 expressed below is proposed in this study for SDI,  
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The Bayesian inference is included to improve the robustness [20], and the regularization term is 

applied to solve the underdetermined inverse problems [36]. The effectiveness and improvement of 

these objective functions will be compared in this study.  

 

3. Optimization algorithm 

3.1 Jaya algorithm 

The proposed I-Jaya algorithm in this study is developed and improved based on the standard 

Jaya algorithm. The standard Jaya algorithm is briefly reviewed here [28-29] for the completeness 

of this paper. The Jaya algorithm is a new type of heuristic algorithms, inspired by the concept that 

the feasible solution acquired for a given problem ought to move towards the best solution and 

avoid the worst solution [28-29]. Specifically, for every feasible solution, the way of generating its 

offspring is to move closer to the success (i.e. approaching the best solution) and avoid the failure 

(i.e. escaping from the worst solution). When generating the offspring, the objective function values 
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are compared to decide whether the new solution (offspring) or the previous solution would be 

selected for the next iteration. Gradually, the algorithm endeavors to become victories by 

approaching the best solution and therefore it is named after Jaya (a Sanskrit word meaning victory). 

Compared with other computational intelligence methods, such as ABC, BMO and PSO etc., the 

distinct feature of the Jaya algorithm is that there are no special controlling parameters in the 

algorithm. The procedures of operating the Jaya algorithm includes three steps, namely, the 

initialization, the local search strategy and the greedy selection mechanism, which are briefly 

described in the following. 

 

Initialization 

An initial colony is generated randomly in the search space. This colony contains CS  

individuals. Each individual in the colony is marked with jθ . Every individual ( jθ ) contains n  

variables ( ],...,,...,,[ 21 nqj θθθθ=θ ), which can be created as, 

                  )()1,0( ,,,,
l

qj
u

qj
l

qjqj rand θθθθ −⋅+=                      (15) 

where qj ,θ  denotes the qth  variable of jθ ; u
qj ,θ  and l

qj ,θ  are the upper bound and the lower 

bound of the variable qj ,θ . )1,0(rand  represents a random number in the range within 0 to 1.  

 

Local search strategy 

After creating the initial colony, the local search for these individuals will be carried out. As 

mentioned before, the core of the Jaya is to pursue success but avoid failure, therefore, the best 

solution and the worst one in each iteration would be used to formulate the local search strategy for 

every individual. It is assumed that Gqj ,,θ qth  dimension of the jth  



16 
 

individual at the Gth  generation. The offspring '
,, Gqjθ  created by this value can be calculated as 

             |)|(|)|( ,,,,,,2,,,,,,1,,
'

,, GqjGqworstGqGqjGqbestGqGqjGqj rr θθθθθθ −⋅−−⋅+=             (16) 

where Gqr ,,1  and Gqr ,,2  are two random numbers located in the ]1,0[ . Gqbest ,,θ  and Gqworst ,,θ  are 

the values of the qth  variable for the best individual and the worst one, respectively. The second 

item in Eq. (16) denotes that the trend of the process towards the best solution while the third item 

represents the tendency of the solution to avoid the worst solution. Afterwards the judgement of 

boundary condition will be conducted by using 
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Greedy selection mechanism 

Extending the above-mentioned local search strategy to all dimensions, it will acquire the new 

individual '
,Gjθ . The greedy selection mechanism [41] is applied to determine whether the new 

individual or the previous one will be selected for the next iteration. Namely, the objective function 

values of the Gj ,θ  and '
,Gjθ  will be compared. The individual with a smaller function value will 

be kept to the next generation. 
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where f  denotes the objective function that requires to be minimized. The algorithm will be 

continually conducted until the termination condition is satisfied, i.e., the maximum objective 

function evaluation number is reached. 

 



17 
 

3.2 Improved Jaya algorithm 

In the standard Jaya algorithm, it can be found that every mutation as shown in Eq. (16) is 

relevant to the best-so-far solution and the worst one. Therefore, the whole colony will centralize 

into the best-so-far solution with iterations, and the colony information may not be fully used. In 

this case, if the best-so-far solution is trapped into the local minimal, the whole iteration of the 

algorithm would cease. Besides, from observing the updated strategy as shown in Eq. (16), it is 

clear that for the best-so-far solution, the second item trying to reach the best solution would make 

the optimization lose efficiency. Aiming at overcoming these drawbacks, two modifications are 

developed to enhance the algorithm’s performance.  

 

K-means clustering 

The K-means clustering is a simple yet powerful tool that organizes a data set (pattern) into a 

number of groups or clusters. Within every group or cluster, these data or pattern are similar to each 

other. In other words, clustering technique is a useful tool to discover the inherent pattern in any 

given dataset [43]. Besides, the clustering centers can be viewed as the representations of these 

clusters, since their formulations are based on the combinations of other individuals in these clusters. 

Therefore, to make full use of the colony information, it seems a smart choice to integrate the 

K-means clustering technique into the standard Jaya algorithm, since the information of the whole 

colony can be represented through these so-called ‘clustering centers’. Furthermore, during early 

iterations, conducting the K-means clustering is straightforward and this works as a crossover 

operators that would effectively utilize the colony information, which is beneficial to improve the 

algorithm’s convergence performance [43-44]. The specific procedure of operating clustering 
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mechanism is described as follows 

 

Step 1: CSK ⋅= 1.0  initial clustering centers kCCC ,...,, 21  are produced randomly from the 

CS  individuals ].,...,,[ 21 csθθθ  

Step 2:  The remaining individuals are distributed to these clustering centers according to 

their distances to these centers. Specifically, jθ is assumed to represent a remaining 

individual in the colony. If and only if it satisfies the distance condition 

|||||||| pjmj CθCθ −≤− ( pC denotes any other clustering centers), the individual jθ  will 

belong to the cluster with the clustering center mC . Based on this rule, other individuals can 

find their clusters through the comparison with the distances generated from every clustering 

center. The distance between any two individuals (i.e., jθ and cθ ) is determined by the 

Manhattan distance, given as follows 

                 )(||||),(
1 ,,∑ =

−=−=
n

q qcqjcjcj absd θθθθθθ                 (19) 

Step 3: After assigning other individuals to these clustering centers, the new clustering centers  

 ''
2

'
1 ,...,, kCCC  are calculated by using the following equation 

                     CSj
u

mj

j
m

m ,...,2,1,1' == ∑
∈cθ
θC                      (20) 

where mu  is the number of individuals belonging to the clustering center mC . 

Step 4: Finally, another K  parents individuals from the colony will be selected and then 

combined with the newly-calculated clustering centers as a new set, marked with τ . The 

individuals’ objective function values will be calculated in the set τ , and these values are 

sorted from the smallest to the largest. The first K  individuals would be put in the colony. 
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The clustering operation is demonstrated herein. The pseudo-code of operating the K-means 

clustering is shown in Figure 1. 

 

Algorithm 1 Conducting K-means clustering before individuals’ updating 

1. Randomly select ]1.0int[ CSrndK ⋅=  individuals from the colony 

2. Calculate the distances between remaining individuals and clustering centers by Eq. (19) 

3. Assign remaining individuals to clustering centers based on the nearest distance 

4. Calculate the new clustering centers by Eq. (20) 

5. Take away K  parents individuals from the colony. Sort them together with the  

newly-calculated clustering centers in the τ  

6. Calculate individuals’ objective values in the τ  and sort them from the smallest to the largest 

7. The first K  individuals are put in the colony 

Figure 1. The pseudo-code of operating the K-means clustering. 

 

A new updating equation for the best solution 

   In the Jaya algorithm, the best solution in every iteration plays a crucial role in the whole 

optimization process, because it guides and draws other individuals to its own region. To prevent 

best solutions from trapping in the local minimal to some extents, a new updating equation that 

focuses on the global search is introduced here [45] 

                         )( ,,,,,,,,
'

,, GqbestGqjGqbestGqbestGqbest θθϕθθ −+=                   (21) 

where Gqbest ,,θ  denotes the value of the qth  dimension of the best solution at the Gth  generation 

and '
,, Gqbestθ  represents its offspring value. Gqbest ,,ϕ  is a random number locating in the ].1,0[  

Gqbest ,,θ  means the value of the qth  dimension of an arbitrary individual in the colony. From Eq. 

(21), a new candidate is generated by removing the old solution towards a randomly chosen one in 

the colony. Such randomness can enable this search strategy’s exploration ability.  
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    The above two modifications for the standard Jaya algorithm are presented. These 

improvements are easy to operate and do not bring much complexity to the standard Jaya algorithm. 

The flowchart of the proposed I-Jaya algorithm is shown in Figure 2. 

Start
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By Eq.(15)
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Satisfied?

Output Optimal 
Parameters

Operate One-
step Clustering

Updated By 
Eq.(16)

Updated By 
Eq.(21)

Parameter 
Evaluation

Parameter 
Evaluation

From Next 
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Others Best-so-far 
Solution

Yes

No

Greedy 
Selection

 

Figure 2. The flowchart of the proposed I-Jaya algorithm. 

 

4. Numerical Studies  

4.1 Benchmark tests 

To investigate the accuracy of using the developed I-Jaya algorithm for tackling optimization 

problems against the standard Jaya algorithm, classical mathematical benchmark functions with 100 

unknown variables [22] are tested here. These functions can be categorized into four types, that is, 

an uni-modal separable function (Sphere), three multi-modal and non-separable functions 

(Griewank, Schaffer and Ackley), an uni-modal and non-separable function (Rosenbrock) and a 
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100=CS  and the termination 

condition is set as when the total number of function evaluations reaches 510 . Each case is 

independently repeated 30 times and the means of objective function values are recorded. 

Figure 3 shows the convergence progresses of the mentioned six benchmark functions. It can 

be clearly observed that the proposed I-Jaya algorithm has a more competitive convergence speed, 

and a much better accuracy in the solution than the standard Jaya algorithm as shown in Table 1. 

Because of its excellent performance in dealing with optimization problems, the I-Jaya algorithm 

will be used to tackle the following SDI problem. 
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Figure 3. The convergence speed for the classical benchmarks based on Jaya and the proposed 

I-Jaya algorithm: (a) Sphere; (b) Griewank; (c) Schaffer; (d) Ackley; (e):Rosenbrock; (f) Rastrigin. 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 1 Statistic results obtained by the Jaya and I-Jaya algorithms for the six classical benchmarks. 

Algorithms 
Function name 

Sphere Griewank Schaffer Ackley Rosenbrock Rastrigin 

Jaya 
Mean 3.91E+03 2.11E+00 8.22E+01 5.97E+00 2.62E+06 9.45E+02 

std. 6.67E+02 3.36E-01 4.33E+00 4.96E-01 7.78E+05 6.67E+01 

I-Jaya 
Mean 1.07E-109 0.00E+00 1.18E-26 0.00E+00 9.86E-29 0.00E+00 

std. 2.88E-110 0.00E+00 6.12E-27 0.00E+00 8.16E-30 0.00E+00 

 

4.2 Numerical simulations  

The superiority of the proposed I-Jaya algorithm has been demonstrated in the above 

benchmark verifications. In this section, a 121-bar truss structure is employed as a numerical 

example to demonstrate the improvement by using the above-mentioned modified objective 

functions based on Bayesian inference and sparse regularization to identify the structural damage 

with a limited quantity of available measurement information. The truss model is shown in Figure 4. 

Young’s modulus, density and Poisson ratio are respectively defined as ,GPa70=E

3mkg2700=ρ  and .33.0=µ  The boundary conditions of the truss are simulated by three 

springs with a large stiffness, i.e. mN102 10
11 ×=,K ; mN102 10

21 ×=,K ; mN102 10
249 ×=,K . The 

first six natural frequencies and the relevant incomplete mode shapes are used for identification. It 

should be noted that in the numerical studies, the number of available modal data is less than the 

number of unknowns. Therefore the damage identification of this structure is an underdetermined 

inverse problem. Random measurement noises are included in the natural frequencies and mode 

shapes, respectively, by using Eq. (7). 1% variation with Gaussian distributions is introduced into 
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all the elemental stiffness parameters for simulating the uncertainties. In terms of the parameters 

setting for I-Jaya, the colony size is 100=CS  and the maximum objective function evaluation 

number is set as 49000. For each damage case, 30 runs are independently conducted to acquire 

statistical results. 

 

Figure 4. The model of the truss structure. 

 

4.2.1 Performance comparison on different objective functions 

The first damage case, denoted as Case 1, is assumed that there is a 15% stiffness reduction in 

the 10th element, which means .15.010 =α
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parameter λ  for the obj2 and obj4 are set as 4102 −⋅  and 6102 −⋅ , respectively. The proposed 

algorithm is used for identification, with different objective functions. Figure 5 shows the iteration 

processes of the identified damage index 10α  by using different objective functions. It is observed 

that using obj4 converges faster and provides more accurate damage identification results. Figure 6 

shows the final damage identification results in all the elements of the truss model by using four 

different objective functions. The mean values and the variation range with mean values plus and 

minus standard deviations are shown in Figure 6. The identified damage extents in the 10th element 

by using four objective functions are also given in Table 2. It can be observed from Figure 6 and 

Table 2 that the identification results by using obj4 is the most accurate.  

The second damage case, denoted as “Case 2”, is assumed with 15% stiffness reductions in the 

10th and the 45th element, namely, 15.04510 ==αα . The input modal data are the same as those in 

Case 1. The regularization parameters for the obj2 and obj4 are set as 4105 −⋅  and 610− , 

respectively. Figure 7 shows the identification results of Case 2, and Table 2 lists the identified 

damage extents in the damaged elements. It is clearly observed that when using the obj1, a number 

of significant false identifications are generated. With the sparse regularization term, the false 

identification by using the obj2 are greatly reduced. By including Bayesian inference in obj3, the 

identification can be improved as compared with using obj1. However, there are still a number of 

observed false identifications with considerable standard deviations. The identification accuracy by 

using obj4 is significantly improved. The identification results from these two damage cases 

demonstrate the superiority of using both the sparse regularization and Bayesian learning. Using 

only sparse regularization in obj2 or Bayesian inference in obj3 can certainly improve the accuracy 

and performance in damage identification. However, when sparse regularization and Bayesian 



25 
 

inference are used simultaneously in obj4, a much more accurate identification is achieved. The 

identified damage extents are close to the true values with minor standard deviations, and almost no 

false identification is observed. These identification results verify that the new objective function 

based on Bayesian inference and sparse regularization can greatly enhance the accuracy and 

robustness of utilizing the I-Jaya algorithm for SDI. 

 

Table 2. Damage identification results in the numerical studies. 

Damage 
case 

Damage 
location 

True  
value 

Obj1 Obj2 Obj3 Obj4 
Mean  
value std. Mean  

value std. Mean  
Value std. Mean  

value std. 

Case 1 10α  0.15 0.1098 0.0598 0.1362 0.0154 0.1556 0.0014 0.1511 0.0006 

Case 2 
10α  0.15 0.1351 0.0164 0.1388 0.0155 0.1440 0.0108 0.1486 0.0009 

45α  0.15 0.1202 0.0475 0.1381 0.0132 0.1347 0.0399 0.1507 0.0007 
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   Figure 5. The convergence processes of the identified damage index 10α with different 

objective functions. 
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   Figure 6. Damage identification results of Case 1 in the numerical study: 

 (a) using obj1; (b) using obj2; (c) using obj3; (d) using obj4. 
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Figure 7. Damage identification results of Case 2 in the numerical study:  
(a) using obj1; (b) using obj2; (c) using obj3; (d) using obj4. 
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4.2.2 Damage identification with limited modal data 

The superiority of the proposed objective function obj4 is demonstrated in the above examples. 

In this section, only the obj4 is used to investigate the influence on damage identification by using 

limited modal data. The third damage case, denoted as Case 3, is assumed with 8% stiffness 

reductions in the 10th, 45th, and 100th element respectively, which means .08.01004510 === ααα  

The first six natural frequencies and different numbers of mode shape values for these six modes are 

used for identification. Significant measurement noises are added in natural frequencies and mode 

shapes with the noise levels of 3% and 5%, respectively. Four scenarios are considered and listed in 

Table 3. It is noted that the number of available modal data used for identification in each scenario 

is always less than that of unknown system parameters to be identified. For Scenario 4, a much less 

number of modal data, that is 36, are used to identify 121 unknown elemental stiffness parameters 

in this study. The selected regularization parameters based on DP rule [33] as mentioned above are 

also listed in Table 3. Figure 8 shows the iteration processes of the damage index values on the 

damaged elements for these four scenarios with different numbers of used modal data. It can be 

found that after around 200 iterations, all the damage index values converge to the neighborhood of 

preset values. Figure 9 shows the damage identification results of these four scenarios, and Table 4 

lists the identified damage extents in the damaged elements. Accurate identification results are 

obtained for all the scenarios, indicating that the introduced damages can be well identified by using 

the proposed algorithm with the sparse regularization and Bayesian inference, even with a small 

number of available modal data.  
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Table 3. Used modal data in different scenarios and regularization parameters for Case 3. 

Scenario Number of the used  
modal data 

Quantity of 
 used 

modal data 
λ  

1 
Six frequencies, and the corresponding 
mode shapes in the vertical direction at 

the 2nd,7th,12th,...,47th nodes 
66 5102 −⋅  

2 
Six frequencies, and the corresponding 
mode shapes in the vertical direction at 

the 2nd,10th,18th,...,50th nodes 
48 510−  

3 
Six frequencies, and the corresponding 
mode shapes in the vertical direction at 

the 2nd,11th,20th,...,47th nodes 
42 510−  

4 
Six frequencies, and the corresponding 
mode shapes in the vertical direction at 

the 2nd,12th,23th,34th,45th nodes 
36 5102.1 −⋅  

  

Table 4. Identified damage extents for Case 3 in the numerical studies. 

Damage 
location 

True  
value 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 
Mean  
value std. Mean  

value std. Mean  
value std. Mean  

value std. 

10α  0.08 0.0791 0.0008 0.0795 0.0014 0.0793 0.0009 0.0782 0.0021 

45α  0.08 0.0800 0.0012 0.0795 0.0013 0.0796 0.0016 0.0786 0.0015 

100α  0.08 0.0796 0.0013 0.0788 0.0006 0.0784 0.0010 0.0787 0.0013 
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 Figure 8. The iteration processes of the damage indices in damaged elements in Case 3: 

 (a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4. 
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 Figure 9. Damage identification results in Case 3 based on different inputs: 

(a) Scenario 1; (b) Scenario 2; (c) Scenario 3; (d) Scenario 4.  
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4.3 Comparison with other optimization techniques 

In this section, other optimization techniques including GA, Nelder-Mead algorithm [46], and 

Gaussian bare-bones artificial bee colony (GBABC) algorithm [47] are employed to make 

comparisons. The fourth damage case, denoted as Case 4, is assumed with 5% stiffness reductions 

in the 10th, 45th and 100th elements, that is, .05.01004510 === ααα  This case is defined to simulate 

minor damage in structures. The used modal data are the same as those defined in Scenario 4 in 

Table 3, and the objective function obj4 is used for identification with the regularization parameter 

defined as 5108.1 −⋅ . Significant measurement noises are added in natural frequencies and mode 

shapes with the noise levels of 3% and 8%, respectively. Regarding the parameters setting, for GA, 

the colony size is set as 100. The mutation rate and crossover rate are defined as 0.1 and 0.8, 

respectively. For the Nelder-Mead algorithm, the initial values are set as 0.1 for all the damage 

indices, which are quite close to the assumed values. For GBABC, the colony size, parameter ‘limit’ 

and the search tendency ‘ST’ are set as 100, 6050 and 0.3 respectively, which are the same as those 

in a previous study [47]. The maximum objective function evaluation number is set as 49000 for all 

these optimization methods.  

Figure 10 shows the final damage identification results by using different optimization 

methods. It is clearly observed that even with the obj4, the state-of-the-art heuristic algorithm 

(GBABC) and the classical heuristic algorithm (GA) and the traditional optimization algorithm 

(Nelder-Mead) cannot provide accurate and reliable damage identification results. In contrast, the 

identified damage results from the proposed I-Jaya algorithm are accurate and reliable. The damage 

identification results on these three damaged elements are: 0469.010 =α
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0478.045 =α  with a standard deviation of 0.0011 and 0477.0100 =α  with a standard 

deviation of 0.0025, respectively. The identified damage severities are very close to the assumed 

values. Besides, the false identifications from the proposed approach are minor. The results in this 

case demonstrate the superiority of the proposed approach to conduct the minor damage 

identification in structures with the measurement data of significant noise effect, compared with the 

latest optimization methods. This lays the foundation for the following experimental verification. 
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Figure 10. Damage identification results of Case 4 with different optimization methods. 

(a) GA; (b) Nelder-Mead algorithm; (c) GBABC; (d) I-Jaya. 

 

4.4. Comparison with the standard Jaya algorithm and other methods 
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In this section, the standard Jaya algorithm and other two methods reported in the literature [48, 

49] are employed to identify a new damage case. The results are compared with that obtained by the 

proposed approach to demonstrate the proposed method. The fifth damage case, denoted as Case 5, 

is assumed having a 50% stiffness reduction in the 10th element, that is, .5.010 =α , representing a 

single large damage in the structure. 

The standard Jaya and the developed I-Jaya algorithm associated with the obj4 are used to 

identify the introduced damage in Case 5. The parameters setting for the Jaya and I-Jaya are the 

same as those in Cases 1 to 4. The regularization parameter is set as 5102 −⋅ . The used modal data 

are the same as those in Case 4. Significant measurement noises are assumed in natural frequencies 

and mode shapes with the noise levels of 3% and 8%, respectively. Figure 11(a) shows the 

evolutionary process of the mean values of the obj4 with the two methods. It can be found that the 

values acquired by the I-Jaya are significantly smaller than those obtained by the Jaya, which 

indicates the I-Jaya is able to achieve more satisfactory identification results. Figure 12 shows the 

evolutionary process of the identification damage index 10α  from the I-Jaya algorithm. After 

around 320 cycles, the algorithm converges to the neighbourhood of the assumed true damage value. 

Figure 13 shows the final identification results in all the elements by using different methods. The 

Jaya algorithm is not able to identify the damages accurately, but the proposed I-Jaya algorithm is 

capable of identifying the single large damage effectively, with the mean value of 0.5004 and the 

standard deviation of 0.0002. The results demonstrate the improvement of the proposed 

modifications on the standard Jaya algorithm. 

To further demonstrate the superiority of the proposed method, two methods for structural 

damage identification, named after the Modified Differential Evolutionary algorithm (MDE) [48] 
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100=CS  and their maximum evaluation times are 49000 . For MDE, the threshold value is 0.1; 

the mutation rate is set as 0.4; the mutation constant is a random number locating in ]9.0,4.0[ . 

These special parameters setting are the same as those in Ref. [48]. For DPSO, it touches the 

disturbance mechanism after 100 cycles, and two parameters relevant to the disturbance mechanism 

are 310−=ε and 410−=∆ , respectively. Figure 11(b) shows the evolutionary process of the 

objective values from these two methods. It can be found that their objective function values 

basically maintain at an order of 210−  after around 100 cycles, which indicates both these two 

methods would not acquire good identification results for Case 5. The final results obtained from 

MDE and DPSO are shown in Figure 13. Similar to the standard Jaya algorithm, MDE and DPSO 

cannot provide accurate damage identification results. 
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Figure 11. The evolutionary process of the objective values; 

 (a) Jaya and I-Jaya; (b) MDE and DPSO. 
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Figure 12. The evolutionary process of the identified damage index in the damaged element 

based on I-Jaya 
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Figure 13. Identification results for Case 5:  

(a) I-Jaya; (b) Jaya; (c) MDE; (d) DPSO. 

 

5. Experimental verification 

Laboratory studies on a reinforced bridge model are performed to verify the performance of 

using the developed approach for structural damage detection with experimental testing data.  

 

5.1 Experimental setup and initial model updating 

    Figure 14 shows the testing structure, which is a simply supported T-type prestressed concrete 

bridge model, used for validating the effectiveness of using the proposed algorithm and the 

objective function including sparse regularization and Bayesian inference for damage identification. 

Figure 15 shows the dimensions of the laboratory model and the placed accelerometer locations for 

(a) (b) 

(c) (d) 
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Mpa106.2 4×  and 33 mkg107.2 × . More details of the bridge model can be referred to [50]. 

Seven accelerometers are located on the top of the bridge model for acquiring the accelerations in 

the vertical direction, during the hammer impact tests for modal identification.  

An initial model updating based on modal information from the intact structure is conducted to 

generate a baseline for the subsequent damage identification. An initial finite element model of the 

bridge is built by using flat shell elements, as shown in Figure 16. The finite element model 

includes 90 elements and 114 nodes with 6 Degrees-of-Freedom (DOFs) at each node. The 

boundary constraints are simulated by the linear springs. The initial model updating is conducted to 

adjust the stiffness parameters of the built finite element model by minimizing the difference 

between the first three natural frequencies acquired from the finite element model analysis and 

measured from the test. In the initial model updating, the Young’s modulus of slab and web of the 

bridge as well as the support stiffness, that is three parameters in total, are chosen as the parameters 

to be updated. The proposed I-Jaya algorithm is used to update the initial finite element model. In 

terms of the parameters setting, CS  is set as 30 and the maximum objective function evaluation 

number is set as 5000. It runs 30 times and the mean values are selected as the final updated 

parameters. It can be observed from Figure 17 that are there are discrepancies between the 

analytical frequencies and the measured one. After updating, the calculated natural frequencies from 

the updated model match very well with the measured ones. The baseline model is used for the 

following damage identification. 
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Figure 14. The experimental testing model. 
 

 
Figure 15. Dimensions (unit: mm) of the experimental concrete bridge model and the placed sensor 

locations 
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Figure 16. The finite element model of the experimental bridge model.  
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Figure 17. The measured and updated frequencies in the experimental studies  
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5.2 Damage identification for the testing model 

The cracks are introduced by applying the two-point loads at the center of the bridge model. 

Figure 18 shows the cracks observed in the web elements, under the static loads of KN180 . This is 

considered as the damaged state, and the stiffness reductions in web elements are to be identified. 

Specifically, 24 major cracks are observed in the web elements, which are from the 4th element to 

the 15th element. Table 5 lists the information about the observed typical cracks in the testing model, 

which are mainly distributed from the 8th element to the 13th element. Modal tests are conducted to 

obtain the natural frequencies and mode shapes at the sensor locations under the damaged state, as 

shown in Figure 15. These modal data are used as the input for the damage identification. The 

damages mainly occur in the web elements of the bridge model, and thus only the web elements are 

included for the identification. Elements 1 and 18 are however not included as they are outside the 

supports.  

The proposed I-Jaya algorithm and the obj4 are used to conduct the damage identification. 

The colony size is 50=CS  and the maximum objective function evaluation number is set as 

12250. Multiple measurements are required for the obj4, when introducing Bayesian inference. 

Therefore, similar as Ref. [20], natural frequencies are assumed to vary within %3±  of their real 

values. Limited number of modal data, which is less than the total number of the web elements of 

the structure, are used to identify the damage. The input data include the first natural frequency and 

the corresponding mode shape values at the placed sensor locations. Therefore totally 8 measured 

modal data are used to conduct damage identification in web elements. The regularization 

parameter is set as 6105 −⋅=λ , based on DP rule. The damage identification will be independently 

run 30 times to obtain the statistic results. 
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Figure 19 shows the final damage identification result. Since there is no analytical formula to 

relate a number of observed cracks in a reinforced concrete bridge model with the flexural stiffness 

of elements, it is difficult if not impossible to obtain the accurate damage extents according to the 

observed cracks, which are shown in Figure 18 and Table 5. Therefore the identified damage pattern 

in Figure 19 is compared with the observed crack pattern to validate the effectiveness of the 

proposed approach for damage identification. The identification results demonstrate that the main 

damage pattern, with the main damage distributed from the 8th element to the 13th element [50], can 

be identified. Considering that only the first frequency and mode shape are used for identification 

and the main damage pattern can be identified, the results indicate that the proposed approach has 

the capacity to identify the damages in the experimental model with limited measurement data. 

 

  

Figure 18. observed cracks in the web elements of the concrete bridge model  
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Table 5. Reported typical cracks in the tested structure [50] 

Distance 
from left 

support of 
beam (mm) 

1800 1950 2125 2260 2340 2540 2680 

Web element 
number 

8 8 9 9 9 10 10 

Crack 
height(mm) 

280 248 273 286 243 244 261 

Distance 
from left 

support of 
beam (mm) 

2800 2900 3030 3130 3220 3330 3510 

Web element 
number 

11 11 12 12 12 13 13 

Crack 
height(mm) 

251 120 260 118 274 220 220 
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Figure 19. Damage identification results of the testing bridge model in the experimental study 

with limited input data. 

 

6. Conclusions 
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This paper proposes a new approach for damage identification of structures based on I-Jaya 

algorithm. Since the objective function is important in the damage identification, the sparse 

regularization and Bayesian inference are added in the traditional objective function based on modal 

data to perform the damage identification and improve the robustness. Numerical studies on a truss 

structure are conducted to investigate the accuracy and efficiency of the proposed approach and 

demonstrate the improvement by using different objective functions for damage identification. 

Experimental studies on a reinforced concrete bridge model are carried out to verify the 

performance and effectiveness of the proposed approach for damage identification with real 

experimental testing data. Some conclusions can be drawn as follows  

•The proposed I-Jaya algorithm is more efficient to deal with the classical benchmark test 

functions. The results show an improved performance and global optimization ability 

compared with the original Jaya algorithm; 

•Results in the numerical truss example demonstrate that the modified objective function  

based on the sparse regularization and Bayesian inference yields more reliable and accurate 

identification results, compared with the traditional objective functions or traditional objective 

functions with either sparse regularization or Bayesian inference only; 

• Compared with other widely used optimization techniques, such as the Nelder-Mead 

algorithm, GA and GBABC algorithm, results from the proposed approach demonstrate the 

superiority in identifying the minor damages under the significant noise effect;  

• In the experimental verifications, the proposed approach can be used to perform the initial 

model updating accurately. For the following damage identification, the developed I-Jaya 

algorithm and the modified objective function based on sparse regularization and Bayesian 
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inference can well identify the damage pattern of a reinforced concrete bridge model with few 

modal data. 

•The damage identification results in the numerical and experimental studies well demonstrate 

that the proposed approach can effectively and accurately identify the damages in the 

structures, even when the uncertainty effect is significant.  
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