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Abstract Motivated by the study of traffic accidents on a
road network, we discuss the estimation of the relative risk,
the ratio of rates of occurrence of different types of events
occurring on a network of lines. Methods developed for two-
dimensional spatial point patterns can be adapted to a linear
network, but their requirements and performance are very
different on a network. Computation is slow and we intro-
duce new techniques to accelerate it. Intensities (occurrence
rates) are estimated by kernel smoothing using the heat ker-
nel on the network. The main methodological problem is
bandwidth selection. Binary regression methods, such as like-
lihood cross-validation and least squares cross-validation,
perform tolerably well in our simulation experiments, but
the Kelsall-Diggle density-ratio cross-validation method does
not. We find a theoretical explanation, and propose a modi-
fication of the Kelsall-Diggle method which has better per-
formance. The methods are applied to traffic accidents in a
regional city, and to protrusions on the dendritic tree of a
neuron.
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1 Introduction

Statistical methodology for analysing a spatial pattern of
events on a network of lines, such as traffic accidents on
a road network, has recently become the focus of intensive
research (Okabe and Sugihara, 2012, Baddeley et al, 2015,
Chap. 17). Figure 1 shows one of our motivating datasets,
which records the spatial locations of serious accidents on
state-declared roads in the Australian regional city of Gee-
long over a three-year period. The analysis of such data presents
many methodological and technical challenges.

Fig. 1 High severity traffic accidents (circles) on state-declared roads
(lines) in Geelong, Australia, 2009–2011. Downloaded from Crash-
Stats interactive statistics database at www.vicroads.vic.gov.au.
Figure is approximately 46 by 29 km across.

Previous research has focused on kernel estimation of
the spatially-varying accident rate, expressed as the expected
count of accidents per unit length of network in a fixed pe-
riod, without adjusting for traffic volume or other explana-
tory variables. Kernel estimation on a network was devel-
oped by Borruso (2003, 2005, 2008); Downs and Horner
(2007a,b, 2008); Xie and Yan (2008); Okabe et al (2009);
Sugihara et al (2010) and summarised in Okabe and Sugi-
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hara (2012, Chap. 9). We have proposed new kernel tech-
niques in McSwiggan et al (2016); Rakshit et al (2019) and
applied kernel smoothing to Figure 1 in McSwiggan et al
(2016).

This paper aims to estimate the relative risk, the spatially-
varying ratio of the intensities of two different types of events.
Examples include the relative proportions of single-vehicle
and multi-vehicle accidents; daytime and night-time acci-
dents; high-speed and low-speed accidents; and those in-
volving private and commercial vehicles. Figure 2 shows the
Geelong crash data classified into “day” and “night” acci-
dents (numbering 144 and 98 accidents, respectively). An-
other example, from neuroscience, is shown in Section 7.2.

Estimation of relative risk is different from estimation
of the absolute accident rate, particularly with regard to the
choice of smoothing bandwidth. For example, if the band-
width is chosen to be infinite, the resulting smoothed func-
tion is constant with respect to spatial location; a constant
accident rate is implausible, but a constant relative risk be-
tween two types of accidents is a reasonable null hypothesis
in many applications.

Relative risk estimates are also less susceptible to Simp-
son’s Paradox (Yule, 1903). For example, the traffic acci-
dent rate is influenced by the weather, but if we assume
that weather has the same multiplicative effect on day and
night accident rates, then the relative risk of day and night
accidents can be estimated without needing to adjust for
weather.

Relative risk estimation for spatial point patterns in two-
dimensional space is well developed (Kelsall and Diggle,
1995a,b, 1998; Duong and Hazelton, 2003, 2005; Clark and
Lawson, 2004; Diggle et al, 2005; Hazelton and Davies,
2009; Davies et al, 2016). In this paper we adapt and ex-
tend the two-dimensional techniques to point patterns on a
linear network. Kernel estimates of relative risk can be ob-
tained simply by taking the ratio of kernel estimates of the
intensity functions (accident rates) of the two types of event.
The main problem is to choose the smoothing bandwidth for
kernel estimation, and to decide whether the numerator and
denominator should be estimated using the same bandwidth
(a “symmetric regimen”, Davies et al, 2016) or whether dif-
ferent bandwidths may be permitted (Kelsall and Diggle,
1995a,b). Estimation on a linear network presents new chal-
lenges and exigencies: computation is much slower than in
Euclidean space because the Fast Fourier Transform cannot
be used; the leave-one-out kernel estimate is very costly.

In this paper, several standard methods for bandwidth
selection for relative risk in two dimensions are adapted and
extended to linear networks. These include the normal refer-
ence rule (Scott, 1992, p. 152), density-ratio cross-validation
(Kelsall and Diggle, 1995a,b), and binary likelihood and
binary least squares cross-validation (Kelsall and Diggle,
1998). Asymptotic performance and optimal bandwidths are
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Fig. 2 Geelong data split into daytime (Top) and night-time (Bottom)
accidents.

derived; small-sample performance is evaluated in simula-
tion experiments.

Kelsall and Diggle (1995a,b) reported that their density-
ratio cross-validation method suffered sporadic “breakdowns”
in which the selected bandwidths and resulting risk esti-
mates were very unsatisfactory. On linear networks, these
breakdowns occur even more frequently. We have found a
theoretical explanation for breakdown, in any spatial do-
main, and propose a modification of the Kelsall-Diggle method
to improve its performance. Our simulation experiments demon-
strate this improvement.

Throughout this paper the smoothing kernel is chosen to
be the classical heat kernel, the analogue for linear networks
of the Gaussian kernel (McSwiggan et al, 2016). This is the
Gaussian extension of the popular “equal-split continuous”
rule (Okabe et al, 2009, Okabe and Sugihara, 2012, Chap.
9). However, the methods of this paper could be applied to
any of the competing kernel estimators discussed in the lit-
erature.

Section 2 states necessary background. Section 3 de-
scribes the estimation of relative risk using direct adapta-
tions of standard methods for two-dimensional data. Sec-
tion 4 analyses the weaknesses of these methods and pro-
poses our modified version. Section 5 proposes a fast ap-
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proximation to the leave-one-out estimate which is needed
for practical applications. Section 6 reports the results of a
simulation experiment to measure performance of the meth-
ods. Section 7 reports our analysis of two datasets: the Gee-
long road accidents, and the spatial pattern of protrusions on
the dendritic tree of a neuron. We end with a discussion in
Section 8.

2 Background

2.1 Linear networks and point patterns

Following Ang et al (2012, Section 2) we define a linear
network as the union L = ∪N

i=1li of finitely many line seg-
ments li = [ui,vi] = {w : w = tui+(1− t)vi,0≤ t ≤ 1} in the
two-dimensional plane, where ui,vi ∈ R2 are the endpoints
of li. We assume that the intersection of any two segments li
and l j, with i 6= j, is either empty or is an endpoint of both
segments.

Let x = {x1, . . . ,xn} denote an observed point pattern on
a linear network L, where each point xi represents a location
on L, and the number of points n is not fixed in advance. We
assume that x is a realisation of a finite, simple point process
X on L such that the total number of points has finite second
moment.

2.2 Intensity

In this paper we work with the intensity or rate function λ (u)
of the point process of accidents, rather than the probability
density f (u) of the location of a typical accident. The inten-
sity and probability density are very closely related, and our
main results can easily be rephrased in terms of probability
densities (Diggle and Marron, 1988).

Formally the point process X on L is defined to have
intensity function λ (u), u ∈ L, if

E[N(X∩B)] =
∫

B
λ (u)du, (1)

for all intervals B ⊂ L, where du denotes integration with
respect to arc length along the network.

The intensity can be interpreted as the spatially-varying
expected number of random points per unit length of net-
work. If X is a Poisson process with intensity function λ (u),
then conditional on the number of points n(X) = n, the lo-
cations of the points are independent and identically dis-
tributed with probability density f (u)= λ (u)/Λ , where Λ =∫

L λ (u)du. Using intensity rather than probability density
simplifies some technical statements and makes it easier to
allow dependence between points.

Measure-theoretic details will mostly be omitted, but we
note that if (1) holds for intervals B in L, then it holds when-
ever B is a Borel subset of L, i.e. the intersection of L with a

Borel subset of R2. Campbell’s theorem on a network states
that

E

[
∑

xi∈X
h(xi)

]
=
∫

L
h(u)λ (u)du, (2)

where h is any Borel-measurable function (on L) such that∫
L |h(u)|λ (u)du < ∞.

2.3 Kernel estimation of intensity

A kernel estimator of intensity takes the general form

λ̂ (u) =
n

∑
i=1

K(u | xi), u ∈ L, (3)

where K(u | v) is the kernel function. Numerous kernel es-
timators have been proposed (Borruso, 2003, 2005, 2008;
Downs and Horner, 2007a,b, 2008; Xie and Yan, 2008; Ok-
abe et al, 2009; Sugihara et al, 2010; Okabe and Sugihara,
2012, Chap. 9; McSwiggan et al, 2016; Rakshit et al, 2019),
but there is no consensus on the choice of the kernel K, and
indeed some of the proposals do not satisfy basic require-
ments. Recently we showed (McSwiggan et al, 2016) that
the popular, but computationally very expensive, “equal-split
continuous” estimator (Okabe and Sugihara, 2012, Chap. 9)
is formally equivalent, in a special case, to a diffusion esti-
mator (Chaudhuri and Marron, 2000; Botev et al, 2010) ob-
tained by taking K to be the classical heat kernel on the net-
work. Consequently, this estimator enjoys many desirable
statistical properties including unbiasedness and conserva-
tion of mass, and it can be calculated quickly by solving the
classical time-dependent heat equation on the network. Ac-
cordingly we use the diffusion estimator in this study. How-
ever, the methods of this paper apply to any kernel estimator.

The diffusion estimator (McSwiggan et al, 2016) can be
expressed (but is not computed) as

λ̂h(u) = λ̂ (u | x,h) = ∑
xi∈x

κt(u | xi), u ∈ L, (4)

where h > 0 is the smoothing bandwidth and t = h2. Here
κt(u | v) denotes the heat kernel, the analogue of the Gaus-
sian density. In brief, κt(u | v) is the probability density at u
of the location, at time t, of a particle which executes Brow-
nian diffusion on the network and which started at time t = 0
at location v. Elapsed time equals variance, so that the band-
width is h =

√
t. The estimator ft(u) = λ̂√t(u) satisfies the

classical time-dependent heat equation

∂ f
∂ t

=
1
2

∂ 2 f
∂u2 . (5)

The estimator (4) can be computed by solving the partial
differential equation (5) numerically as a finite difference
equation on a grid of locations along the network and a grid
of time steps 0, t1, t2, . . . , tm, where tm = h2. Details were pre-
sented in McSwiggan et al (2016).
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2.4 Asymptotics for intensity estimation

Standard asymptotic results for kernel density estimation on
the real line also hold for linear networks, because the con-
nectivity of the network can be ignored for very small band-
widths (McSwiggan et al, 2016, Section 7.2). Suppose there
are N i.i.d. observations from the probability density f (u),
assumed to be twice continuously differentiable. Let N→∞

and consider the heat kernel density estimator f̂ with band-
width h = hN → 0 such that NhN →∞. Adapting Botev et al
(2010, Theorem 1), for any location u that is not a vertex, the
behavior of λ̂ (u) is asymptotically equivalent to that of the
Gaussian kernel density estimator on the infinite real line, so
that λ̂ (u) is asymptotically normal with asymptotic bias and
variance

E[ f̂ (u)− f (u)] =
h2

2
∂ 2 f (u)

∂u2 +O(h4), (6)

var[ f̂ (u)] =
f (u)

2
√

πNh
+o(1). (7)

If h=O(N−1/5), the mean square error is of order O(N−4/5)

and the estimator is pointwise consistent.

2.5 Bandwidth selection for intensity estimation

Techniques for selecting the smoothing bandwidth h for real-
valued data (Silverman, 1986; Wand and Jones, 1995; Jones
et al, 1996; Loader, 1999b) can also be adapted to linear
networks (McSwiggan et al, 2016, Section 9). Asymptotic
performance for large samples and small bandwidths is the
same on a linear network as on the real line. However, com-
putational complexity and cost will generally be much greater
on a linear network, and could be prohibitive for some tech-
niques.

2.5.1 Theoretically optimal bandwidth

Using (6)–(7), the asymptotically optimal bandwidth (mini-
mizing asymptotic integrated MSE) is h∗A =

(
2
√

πN I( f )
)−1/5

,

where I( f ) =
∫

L(∂
2 f (u)/∂u2)2 du. Given a pilot estimate

of f , it could be feasible to estimate I( f ) and calculate h∗A,
but in our experience this method is highly sensitive to the
choice of pilot estimate.

2.5.2 Cross-validation for intensity estimation

Data-based bandwidth selection is computationally prohibitive
for the popular “equal-split continuous” and “equal-split dis-
continuous” methods using standard algorithms (Okabe and
Sugihara, 2012, Chapter 9), but is feasible using the finite
difference method described above. Not only is the finite

difference method much faster for computing the kernel es-
timate at a given bandwidth, but it also computes the kernel
estimates at intermediate bandwidths h j =

√
t j at no addi-

tional cost (McSwiggan et al, 2016).
Leave-one-out cross-validation (Silverman, 1986; Loader,

1999b, Sec. 5.3, pp. 87–95) selects the bandwidth h∗ which
maximises

A(h) = ∑
i

log λ̂
−i
h (xi), (8)

where λ̂
−i
h (xi) is the estimate of λ (xi) based on all the data

except xi:

λ̂
−i
h (xi)= λ̂ (xi | x\{xi},h)=∑

j 6=i
κt(xi | x j)= λ̂h(xi)−κt(xi | xi).

(9)

While evaluation of A(h) for a sequence of values h is fea-
sible on a linear network, it is much more computationally
intensive than on the real line, where for a fixed-bandwith
kernel estimator with kernel k, the leave-one-out estimate
λ̂−i(xi) = λ̂ (xi)− k(0) can be calculated easily. Calculation
of (8) on a network effectively requires us to run the finite
difference algorithm separately for each data point.

For the pooled Geelong data in Figure 1, cross-validation
using (8) selected a bandwidth of 2.55 km (McSwiggan et al,
2016, Section 9). Computation time was 200 seconds when
the maximum bandwidth is 5 km, but only 75 seconds when
the maximum bandwidth is 3 km. A fast version using an ap-
proximation described in Section 5 takes less than 1 second
and yields an almost identical bandwidth of 2.50 km.

Alternative cross-validation methods are discussed in Bow-
man (1984); Cao et al (1994); Hu et al (2012); Zhang et al
(2006). Weaknesses of data-based cross-validation methods
are well known. Terrell (1990) argues that they “have often
failed to be useful” because they choose an under-estimate
of the best bandwidth and consequently produce too many
artefacts. In the context of linear networks, the computa-
tional cost of cross-validation is especially high.

2.5.3 Rules of thumb

An alternative to cross-validation would be to adapt one of
the popular rules of thumb for bandwidth selection. For d-
dimensional data, Scott’s rule of thumb (Scott, 1992, p. 152)
is that the smoothing bandwidth for the ith Cartesian coor-
dinate should be hi = n−1/(d+4) si, where si is the sample
standard deviation of the ith coordinate values. Silverman’s
rule of thumb (Silverman, 1986, eq. (3.31), p. 48) is hi =

(4/(d+2))1/(d+4) n−1/(d+4)si. These are equivalent for d =

2. For the Geelong data, treated as a two-dimensional point
pattern, this rule of thumb gives bandwidths of 2.56 and 2.24
km in the east-west and north-south directions, respectively.
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These are quite close to the cross-validated choice of 2.55
km.

An alternative would be to apply Scott’s or Silverman’s
rule for one-dimensional coordinate data to an orthogonal
projection of the spatial points onto a one-dimensional axis
chosen to maximise the sample standard deviation of the
projected coordinates. The maximised standard deviation is
s =
√

a, where a is the largest eigenvalue of the sample
variance-covariance matrix of the spatial coordinates. Scott’s
rule would give

h = n−1/5√a. (10)

For the Geelong data this yields h = 2.36 km. Silverman’s
rule is inflated by the factor (4/3)1/5 = 1.059 and in the case
of the Geelong data gives h = 2.50 km.

Terrell (1990) proposed slightly oversmoothed kernel es-
timates. On a linear network, while the general principle of
oversmoothing is surely applicable, we have found it diffi-
cult to adapt Terrell’s theoretical results to this setting.

3 Estimation of relative risk

3.1 Relative risk function

Turning to the main goal of this paper, we now suppose there
are two point patterns x = {x1, . . . ,xm} and y = {y1, . . . ,yn}
observed on the same linear network L. Treating x and y
as realisations of point processes X and Y, respectively, our
goal is to estimate the logarithmic relative risk

ρ(u) = log
λX(u)
λY(u)

, u ∈ L, (11)

where λX(u),λY(u) are the intensities of X,Y, respectively.
The plug-in estimator is

ρ̂(u) = ρ̂h1,h2(u) = log
λ̂X(u)

λ̂Y(u)
, u ∈ L, (12)

where λ̂X(u) = λ̂ (u | x,h1) and λ̂Y(u) = λ̂ (u | y,h2) are dif-
fusion kernel estimates (4) of λX(u) and λY(u), computed
from x and y, using bandwidths h1 and h2, respectively. We
note the warning by Loader (1999a) that plug-in estimators
may perform poorly.

3.2 Bandwidth selection for relative risk

Three possible methods for selecting the bandwidths h1,h2
in (12), discussed in Kelsall and Diggle (1995a), are (M1)
separate selection of h1 based only on x and of h2 based
only on y; (M2) joint selection of the pair (h1,h2) based on
x and y; (M3) symmetric selection of a common bandwidth
h = h1 = h2 based on x and y. Method M1 could use any of

the criteria described in Section 2.5, while methods M2 and
M3 require the introduction of new techniques.

As mentioned in the Introduction, bandwidth selection
for relative risk is different in principle from bandwidth se-
lection for intensity. For example, if the true intensities are
proportional, say λX(u) = cλY(u) for some constant c, then
ρ(u) = logc is constant, and an infinite bandwidth h = ∞

is typically optimal for estimating ρ , while estimation of
λX(u) requires smaller bandwidths. Consequently, method
M1 is unlikely to perform well when the relative risk is al-
most constant.

Assuming X and Y are independent Poisson processes,
the estimator (12) is asymptotically normal with asymptotic
pointwise bias and variance of the same form as given in
Kelsall and Diggle (1995a, Sec. 2) for the two-dimensional
case:

E[ρ̂h1,h2(u)−ρ(u)] ∼ 1
2

h2
1

λ ′′X(u)
λX(u)

− 1
2

h2
2

λ ′′Y(u)
λY(u)

(13)

var[ρ̂h1,h2(u)] ∼
1

2
√

π

(
1

h1λX(u)
+

1
h2λY(u)

)
(14)

so that the asymptotic mean integrated squared error is

MISE[ρ̂h1,h2(u)] ∼
1

2
√

π

(
A1

h1
+

A2

h2

)
+

1
4
(
h4

1B11−2h2
1h2

2B12 +h4
2B22

)
(15)

where A1 = A(λX) and A2 = A(λY) are defined by A( f ) =∫
L f (u)−1 du, and B11 = B(λX,λX), B12 = B(λX,λY), B22 =

B(λY,λY) are defined by B( f ,g)=
∫

L( f ′′(u)/ f (u)(g′′(u)/g(u))du.
These approximations determine the asymptotically optimal
bandwidths for methods M1, M2 and M3, and these have
the same form as those given by Kelsall and Diggle (1995a,
Sec. 2) for the two-dimensional case.

The literature is not unanimous on the relative merits of
the three methods, but generally favours method M3, which
constrains the two bandwidths to be equal. Kelsall and Dig-
gle (1995b, p. 10) conclude that method M3 has some the-
oretical justification when λX ∝ λY, and report simulation
experiments in which method M3 achieved the best perfor-
mance. Davies et al (2016) demonstrate that halo-like arte-
facts can occur when relative risk is estimated using differ-
ent smoothing bandwidths for the numerator and denomina-
tor. Support for method M3 is also given in Davies and Law-
son (2018) and Diggle (2014, §9.3, p. 179ff.) with examples
and technique described in Davies et al (2018, 2011). In this
paper we explore using either M2 or M3.

3.3 Kelsall-Diggle cross-validation on linear networks

For two-dimensional point pattern data, Kelsall and Dig-
gle (1995b) proposed a method for selecting the bandwidths
(h1,h2) in (12), with or without the constraint h1 = h2, by



6 Greg McSwiggan1 et al.

cross-validation based on integrated squared error. Adapted
to a linear network, and re-expressed in terms of the inten-
sity rather than the probability density, the criterion becomes

C̃KD(h1,h2) =−
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
m

∑
i=1

1

λ̂
−i
X (xi)

log
λ̂
−i
X (xi)

λ̂Y(xi)

−2
n

∑
j=1

1

λ̂
− j
Y (y j)

log
λ̂
− j
Y (y j)

λ̂X(y j)
,

(16)

where λ̂X(u) = λ̂ (u | x,h1) is the estimate (4) of λX(u) using
bandwidth h1, while λ̂Y(u) = λ̂ (u | y,h2) is the estimate of
λY(u) using bandwidth h2, and λ̂

−i
X (xi), λ̂

− j
Y (y j) denote the

corresponding leave-one-out estimates. The bandwidth pair
(h1,h2) or (h,h) should be chosen to minimise the criterion
(16).

3.4 Likelihood and least-squares cross-validation

A later paper by Kelsall and Diggle (1998) proposed a dif-
ferent approach to relative risk, using a connection with bi-
nary regression, which they argued is more flexible than the
density-ratio approach. If X and Y are independent Poisson
processes in R2 with intensity functions λX(u),λY(u), re-
spectively, then the superimposition Z = X∪Y is Poisson
with intensity λZ(u) = λX(u)+λY(u), and a random point
of Z at location u has probability p(u) = λX(u)/λZ(u) of
having originated from the process X rather than Y.

Given data patterns x, y, define for each point xi ∈ x for
i = 1, . . . ,m

p̂i =
λ̂
−i
X (xi)

λ̂
−i
X (xi)+ λ̂Y(xi)

, (17)

the estimated probability (estimated from all data other than
xi) that a point of X∪Y at location xi would belong to X
rather than Y. Similarly, for all points y j ∈ y, j = 1, . . . ,n
define

q̂ j =
λ̂
− j
Y (y j)

λ̂X(y j)+ λ̂
− j
Y (y j)

,

the estimated probability that a point of X∪Y at y j would
belong to Y rather than X.

Then the likelihood cross-validation criterion (Kelsall
and Diggle, 1998) is the negative log-likelihood

C̃LIK(h1,h2) =−

[
m

∑
i=1

log(p̂i)+
n

∑
j=1

log(q̂ j)

]
. (18)

Minimisation of (18) has also been suggested by Azzalini
et al (1989). The least-squares cross-validation criterion is

C̃LSQ(h1,h2) =
m

∑
i=1

(1− p̂i)
2 +

n

∑
j=1

(1− q̂ j)
2. (19)

This is the loss criterion for least squares prediction of the
status of each point given the locations of all points. It is
known to work well in many contexts (Haerdle, 1990).

We shall use all of the cross-validation criteria listed
above in our experiments.

4 Improved cross-validation method

Kelsall and Diggle (1995a,b) reported that, in two dimen-
sions, their cross-validation criterion (16) suffered occasional
“breakdowns” in which the selected bandwidth values were
extreme and the resulting estimates very unsatisfactory. Sim-
ilar breakdowns occurred in our experiments with the ana-
logue of the Kelsall-Diggle criterion on a linear network (re-
ported in Section 6 and the supplementary material).

This motivates us to re-visit the original derivation of the
Kelsall-Diggle method. Define the integrated squared error
of estimation of ρ

ISE(ρ̂) =
∫

L
(ρ̂(u)−ρ(u))2 du. (20)

We now discuss approximation of the ISE from data, along
the same lines as Kelsall and Diggle (1995b), but expressed
in terms of point process intensity rather than probability
density. We use a slightly more general formulation so that
we may revisit it.

4.1 General derivation

If the plug-in estimator (12) is used, expanding the square in
(20) gives

ISE(ρ̂) =
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
∫

L
log

λ̂X(u)

λ̂Y(u)
log

λX(u)
λY(u)

du

+
∫

L

[
log

λX(u)
λY(u)

]2

du.

(21)

The last term on the right hand side of (21) is constant in any
given application, and may be omitted for optimisation pur-
poses. The middle term on the right hand side involves the
unknown true intensities. Following the approach of Kelsall
and Diggle (1995a,b) we would replace the true intensities
by approximations, based on a Taylor expansion of the log-
arithm:

logλX(u)≈ logλ
0
X(u)+

1
λ 0

X(u)

[
λX(u)−λ

0
X(u)

]
= logλ

0
X(u)+

λX(u)
λ 0

X(u)
−1 (22)

logλY(u)≈ logλ
0
Y(u)+

λY(u)
λ 0

Y(u)
−1, (23)
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where λ 0
X(u),λ

0
Y(u) are some chosen “reference estimates”

to be discussed below. Note that the Taylor expansions are
performed about the reference estimates. The approxima-
tions (22)–(23) give

log
λX(u)
λY(u)

≈ log
λ 0

X(u)
λ 0

Y(u)
+

λX(u)
λ 0

X(u)
− λY(u)

λ 0
Y(u)

(24)

and hence

log
λX(u)
λY(u)

log
λ̂X(u)

λ̂Y(u)
≈ log

λ 0
X(u)

λ 0
Y(u)

log
λ̂X(u)

λ̂Y(u)

+
λX(u)
λ 0

X(u)
log

λ̂X(u)

λ̂Y(u)

+
λY(u)
λ 0

Y(u)
log

λ̂X(u)

λ̂Y(u)
.

(25)

Collecting terms we obtain the cross-validation criterion

C(h1,h2) =
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
∫

L
log

λ 0
X(u)

λ 0
Y(u)

log
λ̂X(u)

λ̂Y(u)
du

−2
∫

L

λX(u)
λ 0

X(u)
log

λ̂X(u)

λ̂Y(u)
du+2

∫
L

λY(u)
λ 0

Y(u)
log

λ̂X(u)

λ̂Y(u)
du.

(26)

The last two terms on the right hand side of (26) still contain
the unknown true intensity functions λX,λY. Following Kel-
sall and Diggle (1995a,b) these terms can be estimated from
data by “leave-one-out averaging” (Hall and Marron, 1991),
or equivalently the Campbell-Mecke formula (Mecke, 1967):∫

L

λX(u)
λ 0

X(u)
log

λ̂X(u)

λ̂Y(u)
du≈ E

[
m

∑
i=1

1

λ̂ 0
X(xi)

log
λ̂
−i
X (xi)

λ̂Y(xi)

]
, (27)

where

λ̂
−i
X (xi) = λ̂ (xi | x\{xi},h) = ∑

j 6=i
κh1(x j | xi)

= λ̂X(xi)−κh1(xi | xi) (28)

is the leave-one-out estimate of intensity of X based on all
points of x except the query point xi. The approximation
(27) would be exact, by the Campbell-Mecke formula, if
the leave-one-out estimator was non-random, so heuristi-
cally we expect the right-hand side of (27) to be a consistent
estimator of the left-hand side. Similarly we approximate∫

L

λY(u)
λ 0

Y(u)
log

λ̂X(u)

λ̂Y(u)
du≈ E

[
n

∑
j=1

1
λ 0

Y(y j)
log

λ̂X(y j)

λ̂
− j
Y (y j)

]
, (29)

yielding the empirical cross-validation criterion

C̃(h1,h2) =
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
∫

L
log

λ 0
X(u)

λ 0
Y(u)

log
λ̂X(u)

λ̂Y(u)
du

−2
m

∑
i=1

1
λ 0

X(xi)
log

λ̂
−i
X (xi)

λ̂Y(xi)
−2

n

∑
j=1

1
λ 0

Y(y j)
log

λ̂
− j
Y (y j)

λ̂X(y j)
.

(30)

4.2 Derivation of Kelsall–Diggle criterion

Kelsall and Diggle (1995b) choose the reference estimates
λ 0

X(u) and λ 0
Y(u) in (26) and (30) to be the current estimates

λ̂X(u) = λ̂ (u | x,h1) and λ̂Y(u) = λ̂ (u | y,h2), respectively.
This allows some algebraic simplification of (26) yielding

CKD(h1,h2) =−
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
∫

L

λX(u)

λ̂X(u)
log

λ̂X(u)

λ̂Y(u)
du

+2
∫

L

λY(u)

λ̂Y(u)
log

λ̂X(u)

λ̂Y(u)
du.

(31)

Similarly taking the reference intensities at the data points
to be the current empirical estimates, λ 0

X(xi) = λ̂
−i
X (xi) and

λ 0
Y(y j) = λ̂

− j
Y (y j), the empirical cross-validation criterion

(30) becomes

C̃KD(h1,h2) =−
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du−2
m

∑
i=1

1

λ̂
−i
X (xi)

log
λ̂
−i
X (xi)

λ̂Y(xi)

−2
n

∑
j=1

1

λ̂
− j
Y (y j)

log
λ̂
− j
Y (y j)

λ̂X(y j)
.

(32)

A possible explanation for the breakdown of C̃KD is now
clear. The general form of the cross-validation criterion (26)
is derived by replacing the true intensities λX(u) and λY(u)
by Taylor approximations (22) and (23) about the “refer-
ence” estimates λ 0

X(u) and λ 0
Y(u), respectively. In the case

of the Kelsall-Diggle cross-validation criterion (32) the ref-
erence estimates are taken to be the current kernel estimates
λ̂X,h1(u) and λ̂Y,h2(u). For small bandwidths, these estimates
could be highly biased because of undersmoothing, and Tay-
lor expansions about these estimates could yield poor ap-
proximations to the true intensities.

4.3 Our proposed alternative

We propose taking the “reference” estimates λ 0
X(u),λ

0
Y(u)

in (26) and (30) to be oversmoothed kernel estimates ob-
tained by setting h1,h2 to the maximum values under consid-
eration, say H1,H2. The Kelsall-Diggle argument then leads
to our proposed “modified Kelsall-Diggle” cross-validation
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criterion,

C̃OVER(h1,h2) =
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du

−2
∫

L
log

λ̂X(u)

λ̂Y(u)
log

λ̂ (u | x,H1)

λ̂ (u | y,H2)
du

−2
m

∑
i=1

1

λ̂−i(xi | x,H1)
log

λ̂
−i
X (xi)

λ̂Y(xi)

−2
n

∑
j=1

1

λ̂− j(y j | y,H2)
log

λ̂
− j
Y (y j)

λ̂X(y j)
.

(33)

This has marginally greater computational cost than the Kelsall-
Diggle criterion (32) due to the addition of the second term
on the right hand side of (33).

Our proposal, to use an over-smoothed estimate as the
reference for the Taylor expansion, could be compared to
the use of “pre-smoothed” estimates by Hall et al (1992).

An even simpler alternative could be to take the refer-
ence intensities to be constant, λ 0

X(u) = m/|L| and λ 0
Y(u) =

n/|L|, where m = n(x) and n = n(y) are the observed num-
bers of points in the patterns x and y. This would yield the
cross-validation criterion

C̃UNIF(h1,h2) =
∫

L

[
log

λ̂X(u)

λ̂Y(u)

]2

du

−2(log
m
n
)
∫

L
log

λ̂X(u)

λ̂Y(u)
du

−2
|L|
m

m

∑
i=1

log
λ̂
−i
X (xi)

λ̂Y(xi)

−2
|L|
n

n

∑
j=1

log
λ̂
− j
Y (y j)

λ̂X(y j)
.

(34)

This criterion is computationally cheaper than the other cross-
validation criteria, but may lead to suboptimal choices.

Other strategies include numerically stabilising the cross-
validation by adding a small constant value to the reference
intensities (Hazelton and Davies, 2009; Bowman and Az-
zalini, 1997). Instead of constraining h1 = h2 it would be
possible to use the constraint h1/h2 = (n1/n2)

−1/5, or to al-
low h1 6= h2 and introduce a penalty for discrepancy between
them e.g. (h1−h2)

2, or simply to constrain the bandwidths
to be greater than a certain realistic minimum value. The lat-
ter option is discussed in Section 7.1.

5 Approximation to leave-one-out estimate

As noted in Section 2.5.2, computation of the leave-one-
out estimates of intensity λ̂

−i
X (xi), λ̂

− j
Y (y j) is more compli-

cated on a linear network than in two-dimensional space.
Exact calculation of λ̂

−i
X (xi) (say) would require us to run

the heat equation solver for the point pattern x−i = x\{xi}.
The solver would have to be executed n times to obtain all
the values λ̂

−i
X (xi) for i = 1, . . . ,n.

An alternative is to use the relation λ̂
−i
X (xi) = λ̂ (xi)−

κ(xi | xi) from (9), and to find an approximation for κ(xi | xi).
Invoking McSwiggan et al (2016, equ. (23)) or Kostrykin
et al (2007, Corollary 3.4) we can write κ(u | u) as an infinite
sum

κt(u | u) = ∑
Π

a(Π)φ√t(`(Π)) (35)

over all possible cycles Π = (v0, . . . ,vm+1) in the network,
with m ≥ 0, where v0 = u, vm+1 = u and v1, . . . ,vm are ver-
tices. Here `(Π) is the total length of the path Π , and a(Π)

is a combinatorial coefficient, while φσ is the Gaussian den-
sity with mean 0 and standard deviation σ .

A simple approximation is obtained by truncating the
sum in (35), retaining only the terms with m = 0 or m = 1
steps. This could be portrayed as the analogue of a first or-
der Taylor approximation. If u lies on a segment of length
s = s(u) and is a distance x = x(u) from the left endpoint,
and if the left and right endpoints have degree d and d′, re-
spectively, the proposed approximation to κ(u | u) is

κt(u | u) ≈ κ
∗
σ (u) = φσ (0)+

(
2
d
−1
)

φσ (2x(u))

+

(
2
d′
−1
)

φσ (2(s(u)− x(u))), (36)

where σ =
√

t. This approximation has the advantage that
it can be computed rapidly from the spatial coordinates and
network geometry.

The approximation (36) is likely to be very accurate when
σ � s(u), and is likely to become progressively less accu-
rate as σ increases. To improve the performance for large
t, we constrain the approximation (36) to be greater than or
equal to 1/|L|, which is the limiting value of κt(u | u) as
t→ ∞.

Results in the online supplement demonstrate that the
approximation (36) is highly satisfactory for this purpose.

6 Simulation Experiments

Kelsall and Diggle (1995b) compared the performance of
their proposed bandwidth selection method with that of other
methods, using a suite of simulations on the one-dimensional
unit interval. We have run analogous experiments on a linear
network, using all of the bandwidth selection criteria men-
tioned above.

6.1 Description of experiments

Kelsall and Diggle (1995b) considered nine different scenar-
ios by combining three possible choices for the relative risk
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function r(u) = λX(u)/λY(u) with three possible choices for
the denominator intensity d(u) = λY(u). The numerator in-
tensity is then λX(u) = r(u)d(u). The three possible risk
functions r(u) were a constant function and two Gaussian
densities. The three possible denominator intensities d(u)
were a constant function and two linear transformations of
the sine function.

Figure 3 shows the linear network used in our experi-
ments. It has a total length of 4.1 units and a diameter of
1.25 units (sc. the maximum path distance between any two
points) and is inscribed in the unit square.

Fig. 3 Linear network used in the experiments.

Three risk functions r(u) were used in our experiments.
Risk function 1 is constant; risk functions 2 and 3 have a sin-
gle peak, obtained by evaluating the heat kernel (bandwidths
0.4 and 0.12, respectively) for a single data point placed
at the centre of the network. Similarly we used three func-
tions for the denominator intensity d(u), namely d1(x,y) ≡
1, d2(x,y)= 1+(1/2)sin(2πx) and d3(x,y)= 1+(3/4)sin(4πx),
where (x,y) are the Cartesian coordinates. These six func-
tions are plotted in the Supplementary Material.

6.2 Representative results

Here we present detailed results for one case, with risk func-
tion 2 and denominator function 3, shown in Figure 4. Sim-
ulated realisations were generated with fixed numbers of
points, n(x) = 50 and n(y) = 200.

Figure 5 shows boxplots of the ISE values attained by
each of the bandwidth selection methods. Here sco indi-
cates Scott’s rule of thumb as adapted in (10); KD is Kelsall–
Diggle cross-validation (16); mod is our modification (33);
lik is likelihood cross-validation (18); and lsq is least squares
cross-validation (19). Each bandwidth selection method was
applied to the same set of 100 simulated realisations. For
each simulated dataset the bandwidth, or pair of bandwidths,
selected by each method was used to smooth the data, yield-
ing an estimate of ρ , and the ISE for this estimate was com-
puted from (20) using the true value of ρ(u) which is known
exactly in the simulation experiment. The upper panel of
Figure 5 shows boxplots of the ISE values obtained when the
bandwidths are constrained to be equal according to method

M3, and the lower panel when they are not constrained (method
M2).

Table 1 reports the fraction of outcomes in which the
bandwidth selected by each method is equal to the minimum
or maximum bandwidth value considered. For the Kelsall-
Diggle method in the symmetric case, 41% of the selected
bandwidths equal the maximum permitted bandwidth. While
large bandwidths may be quite satisfactory in some cases,
selecting the minimum available bandwidth will almost al-
ways produce a poor estimate of relative risk, and this hap-
pens frequently in the asymmetric case (h1 6= h2).

Figure 6 shows a scatterplot matrix for the values of
bandwidth h obtained by each of the methods in the con-
strained case h1 = h2 = h, method M3. Interestingly, our
modified version of the Kelsall-Diggle method yields band-
widths which are highly correlated with the likelihood cross-
validation and least squares cross-validation methods, and

0.15

0.2

0.25

0.3

0.35

0.4

0.5

1

1.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 4 Simulation experiment reported in this section. Top: relative risk
r(u). Middle: denominator intensity λY(u) = d(u). Bottom: numera-
tor intensity λX(u) = r(u)d(u). Plots are in the style of Xie and Yan
(2008), with line thickness proportional to function value.



10 Greg McSwiggan1 et al.

are only weakly correlated with the original Kelsall-Diggle
method. Scott’s rule of thumb has low correlation with all
other methods, suggesting that it would be unwise to use the
rule-of-thumb bandwidth estimate as an initial guess at the
cross-validated bandwidth estimate.

Analogous figures for the bandwidths h1 and h2 respec-
tively, in the case where the bandwidths are permitted to be
different, are given in the online supplement. They show that
the bandwidth h2, which serves to smooth the denominator,
is frequently chosen to be an extremely small or extremely
large value. This appears to be the main cause of breakdown
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Fig. 5 Boxplots of ISE values achieved by different methods for band-
width selection in a simulation experiment (case i = 2, j = 3). Top:
bandwidths h1,h2 are constrained to be equal (method M3). Bottom:
bandwidths unconstrained (method M2). Note logarithmic scale for
ISE.

Minimal Maximal
METHOD h1 h2 h h1 h2 h

sco 0 0.00 0 0.00 0.00 0.00
KD 0.01 0.10 0 0.25 0.83 0.41

mod 0 0.80 0 0.02 0.08 0.24
lik 0 0.27 0 0.02 0.48 0.23
lsq 0 0.13 0 0.02 0.58 0.23

Table 1 Fraction of outcomes of each bandwidth-selection method in
which the selected bandwidth is equal to the minimum permitted band-
width (Minimal) or the maximum permitted bandwidth (Maximal).
Here h1,h2 are the bandwidths selected jointly without any constraint
(method M2), and h is the symmetric bandwidth (method M3). Simu-
lation experiment case i = 2, j = 3.
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Fig. 6 Scatterplot matrix for the bandwidth values selected by each
method under the constraint h1 = h2 = h, method M3. Simulation ex-
periment case i = 2, j = 3.

in bandwidth selection when the bandwidths are not con-
strained to be equal.

6.3 Summary of performance

The online supplement to this paper gives detailed results
from the suite of nine simulation experiments. Following is
a summary of the main findings.

Bandwidth values selected using the fast approximation
(36) to the leave-one-out estimate agreed very closely with
those selected using the exact leave-one-out estimate, giving
us confidence that the approximation is reliable.

The most significant finding is that estimates of relative
risk were often much less accurate if we allowed h1 6= h2
than when we constrained h1 = h2. This applied to all of
the cross-validation methods. This may appear paradoxical
unless we remember that the cross-validation criterion is
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only a data-based estimate of true performance, so that un-
constrained minimisation of the cross-validation criterion is
not guaranteed to produce better true performance than con-
strained minimisation. In our experiments, method M3 con-
sistently outperformed method M2.

Investigation showed that when h1 6= h2, the selected
value of h1 was usually appropriate, but that the selected
value of h2 was frequently much too small. Plots of the
cross-validation criteria in individual examples often showed
a steep decline in C(h1,h2) as h2→ 0. Since the expressions
for the cross-validation criteria are symmetric in x and y, this
one-sided behaviour is probably attributable to the different
numbers of points in the two patterns.

Each method exhibits occasional “breakdown” in which
the estimate is quite poor. Cross-validation methods have
better performance than Scott’s rule-of-thumb overall. How-
ever, the Scott rule of thumb is computationally cheaper,
and is less susceptible to breakdown – it is “consistently
mediocre”.

The Kelsall-Diggle method often has higher ISE and higher
frequency of breakdown than other cross-validation meth-
ods. In some cases the K-D method was unusable, with an
infinite median ISE. The K-D method and our modified method
often gave quite different results, lending support to the ar-
gument about the Taylor expansion.

Somewhat surprisingly, our modified method, the likeli-
hood cross-validation and the least square cross validation
method often selected quite similar bandwidths and gave
similar results. Our modified method typically has the low-
est frequency of breakdowns and the lowest median ISE, al-
though its performance is mediocre in some cases.

6.4 General comments on experiments

Statistical performance will depend on the maximum band-
width specified when running the bandwidth selection algo-
rithm, because several of the methods have a high probabil-
ity of selecting the maximum bandwidth.

In their experiments, Kelsall and Diggle (1995a,b) mea-
sured the performance of estimators by the median ISE. Our
figures suggest that summaries such as the median and mean
of ISE could be hard to interpret because of the very differ-
ent shapes of the distributions of ISE values obtained from
each method.

The theoretical analysis presented by Kelsall and Dig-
gle (1995a,b) assumed that λX,λY are bounded away from
zero. Their (and our) experiments include scenarios where
the minimum density is very small, so this could explain the
poor performance.

7 Examples

Two real data examples are studied here. Evidence for spatially-
varying relative risk is weak in the first example, and very
strong in the second example.

7.1 Geelong road accidents

An important question for road safety management is whether
some specific locations have high accident risk at night, af-
ter allowing for the inherently greater baseline risk of night-
time driving. For the Geelong data classified into day and
night accidents in Figure 2, we considered estimation of
the relative rate of night versus day accidents. The modified
Scott rule of thumb gave bandwidths of about 2.7 km for
each pattern. We computed the Kelsall-Diggle (32), modi-
fied Kelsall-Diggle (33), likelihood (18) and least squares
(19) cross-validation criteria for relative risk. We nominated
a maximum bandwidth of hmax = 5 km, and searched over a
grid of N = 400 candidate values of bandwidth h=(k/N)1/2hmax

for k = 1, . . . ,N. The maximum bandwidth was also used to
compute the reference intensities for our modified criterion.
The selected bandwidths are shown in Table 2. Total time to
compute all four criteria was about 3 minutes if leave-one-
out estimates were calculated exactly, and about 5 seconds
if the fast approximation (36) was used.

SYMMETRIC ASYMMETRIC

METHOD h h1 h2
Scott 2.76 2.76 2.68

KD 5.00 (∞) 5.00 5.00
mod 5.00 (∞) 5.00 3.42
lik 5.00 (∞) 2.92 0.25
lsq 5.00 (∞) 2.60 0.25

Table 2 Automatically-selected bandwidths for the Geelong accidents
separated into night and day accidents. Symmetric bandwidths selected
by method M3; asymmetric bandwidth pairs by method M2; exact cal-
culation. The symbol ∞ indicates that infinite bandwidth achieved a
better cross-validation score than the selected bandwidth, C(∞,∞) <
C(h,h).

Optimal bandwidths selected using the Kelsall-Diggle
criterion (32) and our modification (33) are acceptable val-
ues. The likelihood and least squares criteria produce ac-
ceptable bandwidths in the symmetric case, but in the asym-
metric case the bandwidth h2 for the denominator is too
small: the corresponding estimates of relative risk have val-
ues as high as 1015. Figure 7 shows the estimate of the ratio
of night to day intensities using symmetric bandwidth 5 km.
For reference, the overall ratio of night to day accidents is
98/144 = 0.68. The figure suggests that the relative risk of
night time to day time accidents is up to 4 times higher on
some of the more remote roads. This is plausible for reasons
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including the higher speed limits and the absence of street
lighting along the remote roads. However, the calculation
does not include adjustment for diurnal differences in traffic
volume.

0.5

1

1.5

2

2.5

3

Fig. 7 Relative risk of night versus day accidents using bandwidth 5
km. Line width proportional to relative risk.

Figure 8 shows contours of the cross-validation crite-
ria (33) and (18) as functions of (h1,h2), for the Geelong
data split into day and night accidents. Our modified crite-
rion (33) has convex contours and a clearly defined mini-
mum in this case. The likelihood criterion (18) is quite regu-
lar for large bandwidth values, but has a steep slope when
h2 is small, which explains the incorrect choice of h2 in
the unconstrained case. Contour plots for the other cross-
validation criteria are given in an online supplement.

Figure 8 suggests that a practical remedy for the selec-
tion of incorrect bandwidths might be simply to restrict at-
tention to bandwidths larger than a data-dependent thresh-
old. Consideration of (17) suggests using the mean nearest-
neighbour distance between each type of accident. For the
Geelong data, the mean distance from a daytime accident
location to the nearest nighttime accident location is 0.98
km.

The Geelong data also include information on the num-
ber of vehicles involved in the accident. Single-vehicle acci-
dents include accidents occuring when a driver loses control
of the vehicle, and accidents involving a pedestrian. There
were 100 single-vehicle accidents, 115 two-vehicle accidents,
21 three-vehicle and 6 four-vehicle accidents. Figure 9 shows
the estimated ratio of accident rates of single- and multiple-
vehicle accidents, again using the bandwidth 5 km selected
by the symmetric method M3. For reference, the ratio of
numbers of single-vehicle to multiple-vehicle accidents is
100/142 = 0.70.

7.2 Dendritic spines data

Figure 10 shows the dendritic spines data studied in Jam-
malamadaka et al (2013); Baddeley et al (2014). The net-
work represents one branch of the dendritic tree of a neu-
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Fig. 8 Contours of cross-validation criterion as a function of the
smoothing bandwidths h1,h2, for the Geelong data separated into night
and day accidents. Top: modified Kelsall-Diggle criterion (33). Bot-
tom: negative likelihood cross-validation criterion (18). Geelong data,
relative risk, night versus day. Symbol ⊕ indicates optimal symmetric
bandwidth h; symbol ∗ indicates optimal joint bandwidths (h1,h2).

ron. The points are the locations of small protrusions called
spines, which are classified into three types: mushroom, stubby
and thin. Key research questions concern the spatial distribu-
tion of spines on the network, and differences in spatial dis-
tribution between different types of spines (Jammalamadaka
et al, 2013). Analysis in Baddeley et al (2014) suggested that
the mushroom and stubby types are uniformly distributed
while the thin types are found more frequently near the ends
of the dendritic tree, at the left side of the Figure.
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Fig. 9 Relative risk of single-vehicle versus multiple-vehicle accidents
in the Geelong data, using bandwidth 5 km. Line width proportional to
relative risk.

Fig. 10 Dendritic spine data. One branch of the dendritic tree of a neu-
ron, showing the positions of dendritic spines, of “stubby” or “mush-
room” type (Top) and “thin” type (Bottom).

Bandwidth selection was performed using the fast ap-
proximation (36) to the leave-one-out estimates. Mean and
median nearest neighbour distances were less than 7 mi-
crons and the Scott rule gave bandwidths of 12 to 18 mi-
crons. Bandwidths from 15 to 300 microns were considered,
incurring a total computation time of 81 seconds (whereas
the exact computation would have taken 147 minutes). Con-
tour plots for the cross-validation criteria are given in an on-

line supplement. The bandwidths selected by each method
are shown in Table 3.

SYMMETRIC ASYMMETRIC

METHOD h h1 h2
Scott 17.6 17.6 12.5

KD 82.2 84.9 300
mod 83.5 93.7 15
lik 79.4 84.9 300
lsq 77.9 68.7 300

Table 3 Automatically-selected bandwidths (fast method) for the den-
dritic spines, relative risk of ‘thin’ type against ‘other’ types.
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Fig. 11 Contours of likelihood cross-validation criterion (18) for den-
drite data, relative risk of ‘thin’ type against ‘other’ types. Symbol ⊕
indicates optimal symmetric bandwidth h; symbol ∗ indicates optimal
joint bandwidths (h1,h2).

Figure 11 shows the contours of the likelihood cross-
validation criterion for the dendrite data, indicating strong
support for a value of h1 around 80 microns, but support-
ing a range of h2 values. Other contour plots are given in
the online supplements. Figure 12 shows the estimated rel-
ative risk using the bandwidths selected by our modified
method. The ratio of counts of thin spines to other spines
is 115/451 = 0.26.

This dataset contains strong evidence for spatially-varying
relative risk and, perhaps as a consequence, there is broad
agreement between the different cross-validation methods
for bandwidth selection.
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Fig. 12 Estimated relative risk of “thin” type against other types for
the dendritic spine data. Line width proportional to relative risk. Band-
width 83.5 microns, selected by our modified cross-validation method.

8 Discussion

This paper has demonstrated that existing methodology for
estimating relative risk in spatial point patterns in two di-
mensions can be adapted to point patterns on a linear net-
work, with broadly similar results. However, the known weak-
nesses of cross-validation methods seem to be amplified on
a linear network. We identified at least one explanation for
these problems and proposed a solution which may also be
applicable to the two-dimensional case. Additionally the com-
putational challenges of data analysis are much greater on a
network; kernel estimates take much longer to compute, and
leave-one-out estimates cannot easily be calculated. We pro-
posed a workable approximation to the leave-one-out calcu-
lation.

Our proposed techniques could be applied to any of the
kernel estimators that have been proposed in the literature
on linear networks. However, the diffusion (heat) kernel es-
timator has many practical advantages. The finite-element
algorithm for solving the heat equation is fast, and it auto-
matically provides kernel estimates for a sequence of inter-
mediate values of bandwidth as well as for the desired band-
width. Total computation time increases quadratically with
the bandwidth, so it becomes important to choose a sharp
upper bound on the maximum bandwidth to be considered.

In a suite of experiments, we found that suboptimal (and
sometimes unusable) estimates were obtained if the smooth-
ing bandwidths of numerator and denominator were permit-
ted to be different. Simple rules of thumb performed reason-
ably well, and were the least susceptible to “breakdown”.
Overall best performance was achieved by our modification
of the Kelsall-Diggle density ratio cross-validation method.

We recommend using the diffusion (heat) kernel estima-
tor, and to select the bandwidth using cross-validation with
a symmetric bandwidth, using our one-step approximation
to the leave-one-out estimator. An infinite bandwidth may
be valid and can easily be included in the calculations. Two-

dimensional convolution smoothing (Rakshit et al, 2019) could
be used as a first approximation.

Adaptive smoothing in the style of Abramson (1982) can
be implemented using the slicing algorithm of Davies and
Baddeley (2018). Bandwidth selection can be performed us-
ing the same cross-validation criteria as above (applied to
the global bandwidth parameter).

There are many avenues for future research. Extension to
more than two types of points is straightforward. For faster
computation in very large networks, convolution kernels should
be considered (Rakshit et al, 2019). It would be useful to ex-
tend the methods of Hazelton and Davies (2009), for identi-
fying regions of (statistically) significantly elevated relative
risk, to linear networks. It remains a challenge to adapt the
oversmoothing principle of Terrell (1990) to a linear net-
work.

We believe our modification to the Kelsall-Diggle cross-
validation criterion would also perform well for two-dimensional
spatial and spatio-temporal point patterns.

Acknowledgements We thank Dr Tilman Davies and the referees for
insightful comments.
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