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1 New Zealand pā: Additional plots

To emphasise the distinction between the Gaussian and diffusion estimates of intensity for the pā data, we
consider a one-dimensional transect across the entrance to the Kaipara Harbour. The transect location is
shown in Figure SUP-1 plotted as a line superimposed on the Gaussian and diffusion estimates from Figure 6
of the main article.

Figure SUP-2 plots the values of the two intensity estimates along this transect. It clearly highlights the
difference in behaviour between them. The Gaussian estimate resembles a smooth curve interrupted by a gap
in the middle of the graph. The diffusion estimate shows markedly different values on either side of the gap.
The diffusion estimate is much more plausible for this dataset: Figure 5 of the main article suggests that there
are many more pā locations on the southern side than on the northern side of the harbour entrance.
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Figure SUP-1: Estimates of the inhomogeneous spatial intensity of pā sites using the fixed-bandwidth Gaussian
kernel estimator (left) and the fixed-bandwidth diffusion estimator (right). Superimposed upon both images is
a coastal transect running from North-East to South-West along the outer heads of Kaipara Harbour.
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Figure SUP-2: Estimates of the inhomogeneous spatial intensity of pā sites along a coastal transect running
from North-East to South-West along the outer heads of Kaipara Harbour. Thick grey line: fixed-bandwidth
Gaussian kernel estimator. Thin black line: fixed-bandwidth diffusion smoother.
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2 United Kingdom PBC: Additional commentary

In the analysis of the PBC data presented in Section 5 of the main article, we noted that the VR adaptive
estimate closely follows the appearance of the pilot density. This tendency is clear in Figure SUP-3 below,
which shows the clipped pilot density, the bandwidth surface, and the VR estimate side-by-side. The final VR
estimate exhibits much the same features as the pilot.
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Figure SUP-3: Image (top row) and perspective (bottom row) plots of the log-scaled VR diffusion intensity
estimate of PBC cases (left); the log-scaled fixed-bandwidth clipped pilot density estimate (middle); and the
bandwidth surface (right).

While this behaviour is expected when the global bandwidth is large, according to the underlying theory,
it is more surprising that the phenomenon also occurs at the automatically-selected global bandwidth for this
dataset. This suggests that variable-rate diffusion could be problematic if our pilot estimate is biased, incorrect,
or in any other way a poor reflection of the truth.
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3 Simulation study scenario definitions

Here we provide further details on the simulation study design. In all scenarios we define the study region W
(with area |W |) as the ‘zoomed-in’ Kaipara Harbour region of the pā data analysis (see the rightmost panel of
Figure 5 in Section 5 of the main article). All scenarios are based on intensity functions that integrate to 500
over W .

3.1 Scenario S1

The intensity for scenario S1, λS1(x), is a Gaussian mixture with 20 contributing components and a small
uniform constant:

λS1(x) = 500×

{
0.1

|W |
+ p

20∑
k=1

φ (x;µk,Σk)

}
; x ∈W,

where p = 9/200; φ(·;µ,Σ) denotes the 2-dimensional normal density function with mean µ and covariance
matrix Σ;

[µ1, ..., µ20]
>

=



241.9305 614.7764
260.3712 592.1339
280.4925 550.0444
279.9034 570.8891
282.6805 541.0712
263.7468 609.5753
238.3585 578.5664
236.5934 587.9653
267.2214 579.4833
272.1905 606.1899
269.0571 603.5392
285.5144 548.6355
248.8021 597.8969
272.6467 572.9020
275.2568 613.0301
272.9760 576.7253
273.3614 560.6413
254.6338 601.3049
269.9388 546.7398
267.5639 610.0257



; and [Σ1, ...,Σ20]
>

=



12.0558490 −9.5947700
−9.5947700 37.1317627
116.2502686 −216.2645770
−216.2645770 467.1328566

9.6596418 2.9591341
2.9591341 17.3091211
8.0059818 −19.0354331
−19.0354331 61.2516597
12.0013587 17.7538105
17.7538105 33.3420977
35.5599334 0.1610234
0.1610234 4.5879939
6.4367478 5.4276568
5.4276568 21.6127810
30.4884863 −233.3580245
−233.3580245 2336.6517745

8.1630976 −2.3664032
−2.3664032 21.8025636
48.3347170 −50.7429596
−50.7429596 78.2370783

7.4581361 −0.7628775
−0.7628775 25.0896456
16.0805413 −3.6962223
−3.6962223 8.3944104
10.3860409 −2.0920954
−2.0920954 13.2106916
5.2310067 −6.0356562
−6.0356562 30.9093578
11.1050409 −22.9876265
−22.9876265 70.0167070

5.2843805 −1.2994042
−1.2994042 6.9091569
50.8747432 −16.1224983
−16.1224983 17.8903858
10.0996101 17.7627155
17.7627155 59.4067690
20.6817283 25.5827807
25.5827807 49.1060179
10.5920432 −17.3139131
−17.3139131 39.5428916



.

3.2 Scenario S2

Let bW (x) denote the shortest Euclidean distance from the coordinate x to the boundary of the window W .
Furthermore, let mW = min {−bW (x)} with respect to all locations x ∈ W . Then the intensity λS2(x) corre-
sponding to scenario S2 is given by

λS2(x) = 500
ν(x)∫

W
ν(y) dy

; x ∈W,

where
ν(x) = (−bW (x)−mW )

2
.

3.3 Scenario S3

The intensity λS3(x) representing Scenario S3 is a rescaled, fixed-bandwidth, Gaussian kernel intensity es-
timate (with uniform edge correction—equation (2) in the main article) of the n = 369 observed pā sites

X = {x1, . . . , x369} that fall in the ‘zoomed-in’ region W , denoted here by λ̂
(U)
σ (x|X). The bandwidth is set to

σ = 7 km such that
λS3(x) = 500n−1λ̂

(U)
7 (x|X); x ∈W.
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3.4 Scenario S4

Scenario S4 very similar to S3, though now the intensity λS4 is based on a fixed-bandwidth diffusion estimate
of the same 369 pā observations in X (see equation (2) in the main article), denoted here by λ̂t(x|X). The
diffusion ‘time’ t is set to provide an equivalent level of smoothing with that of S3, namely t = σ2 = 49, such
that

λS4(x) = 500n−1λ̂49(x|X); x ∈W.

3.5 Scenario S5

Finally, the intensity λS5 is obtained by rescaling a single realisation of a stationary, isotropic log-Gaussian Cox
process (see Møller et al. 1998) on the region W . We set

z(x)← exp
{
Y (x|µ, α2, β)

}
; x ∈W,

where ‘←’ should be read as ‘generated realisation of’ and Y (x|µ, α2, β) is taken to be a stationary, isotropic
Gaussian random field defined by mean µ. The covariance function of Y , ρ(·), is based on an exponential
correlation structure given by

ρ(r) = α2 exp(−r/β); r ≥ 0,

where r represents Euclidean distance and α2 and β are the variance and scale parameters respectively. In our
implementation we use µ = 1; α2 = 2; and β = 5 when generating z(x), and simply find

λS5(x) = 500
z(x)∫

W
z(y) dy

.

Once established, the realised intensity λS5 is held fixed for the duration of the simulations i.e. the function
z(x) is not generated anew at each iteration.

4 Accuracy of discrete approximation

4.1 Total variation

Tables SUP-1 and SUP-2 below show the counterparts of Tables 1 and 2 from Section 4.4 of the main article,
when discretisation is measured using the total variation distance. The total variation between two probability
distributions P and Q is the maximum value of |P (A)−Q(A)| for any event A. For probability densities, the
total variation is equal to one-half the integrated absolute difference between densities.

The conclusion from these tables corresponds to the conclusion for Tables 1 and 2 of the main article: the
total variation error in the Euler scheme converges to zero at rate O(∆x), while Richardson extrapolation
accelerates the convergence to O((∆x)2).

Table SUP-1: Maximum total variation error of discrete approximation to heat kernel. Window is the unit
square. Single source point at (0.5, 0.5). Bandwidth σ = 0.1.

Grid size
32 64 128 256 512

4-connected 0.088 0.044 0.022 0.011 0.006
8-connected 0.088 0.044 0.022 0.011 0.006

Table SUP-2: Maximum total variation error of discrete approximation to heat kernel using Richardson
extrapolation. Window is the unit square. Single source point at (0.5, 0.5). Bandwidth σ = 0.1.

Finest grid size
32 64 128 256 512

4-connected 0.0388 0.0129 0.0033 0.0008 0.0002
8-connected 0.0419 0.0110 0.0028 0.0007 0.0002
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4.2 Supremum distance between bivariate CDF’s

Additionally we have calculated the supremum distance (maximum absolute difference) between the bivariate
cumulative distribution functions. Tables SUP-3 and SUP-4 below provide the results. An upper estimate for
this quantity was proposed in Appendix D.

Table SUP-3: Maximum error (maximum absolute discrepancy in bivariate CDF) of discrete approximation to
heat kernel. Window is the unit square. Single source point at (0.5, 0.5). Bandwidth σ = 0.1.

Grid size
32 64 128 256 512

4-connected 0.077 0.038 0.019 0.010 0.005
8-connected 0.075 0.038 0.019 0.009 0.005

Table SUP-4: Maximum error (maximum absolute discrepancy in bivariate CDF) of discrete approximation to
heat kernel using Richardson extrapolation. Window is the unit square. Single source point at (0.5, 0.5).
Bandwidth σ = 0.1.

Finest grid size
32 64 128 256 512

4-connected 0.0158 0.0063 0.0016 0.0004 0.0001
8-connected 0.0181 0.0054 0.0014 0.0004 0.0001
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