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Abstract 

Static lattice energy calculations (SLEC), based on empirical interatomic potentials have been performed for a 

set of 800 different structures in 2x2x4 supercell of C2/c diopside with compositions between diopside and jadeite, 

and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these 

structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been 

used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273–2023 K and to 

calculate a temperature-composition phase diagram. 
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Introduction 

The solid solution between augite, Ca(MgFe)Si2O6 and jadeite, NaAlSi2O6, plays an important 

role in petrology of crustal metamorphic rocks that have experienced high pressures and medium-

high temperatures, such as blue schists and eclogies. The minimum pressure of crystallization can 

be estimated from the mole fraction of the jadeite component in clinopyroxene coexisting with 

quartz and feldspar (Wood et al., 1980). Besides its practical importance, the solid solution 

attracts much interest of theoreticians as a typical example of coupled substitution. Ca2+ and 

Mg2+, which occupy M1 and M2 sites in C2/c diopside, are substituted with Na+ and Al3+, 

respectively, in jadeite. The peculiar property of the system is a combination of the effects of 

ordering and exsolution. At temperatures above 600 °C diopside and jadeite are fully miscible 

within the disordered C2/c phase. At lower temperatures two miscibility gaps develop at Ca- and 

Na-rich compositions due to the stabilization of the ordered intermediate P2/n phase, omphacite 

(Carpenter, 1981). The mixing between diopside, CaMgSi2O6, and jadeite, NaAlSi2O6, within the 

disordered C2/c phase has been studied both by calorimetry (Wood et al., 1980) and phase-

equilibrium method (Kushiro, 1969; Holland, 1983; Gasparick, 1985). The measured enthalpies 

of mixing and the activities of the jadeite component have been used as constraints in various 

phenomenological models, which have permitted extrapolating the mixing properties to a wide 

temperature interval (Ganguly, 1973; Gasparik, 1985; Cohen and Burnham, 1986; Davidson and 

Burton, 1987; Carpenter et al., 1990; Holland and Powell, 1996, Nakamura and Banno, 1997, 

Vinograd, 2002). The cation ordering, which is responsible for the stabilization of the 

intermediate compound, has been studied extensively as functions of both the temperature and 

composition (Rossi et al. 1983; Carpenter et al. 1990; Boffa Ballaran et al., 1998). It has been 



shown that Mg and Al in the M2 site are ordered stronger than Ca and Na in the M1 site. In the 

most ordered samples the fractions of Mg in M22 and M21 sub-sites approach zero and one, 

respectively, while the fractions of Ca in M12 and M11 sub-sites approach 0.75 and 0.25. Nearly 

all studied samples closely follow the linear relationship 1M2M 2QQ =  between the order 

parameters. The order parameters are related to the site fractions of Ca or Mg in the sub-sites as 

follows 
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The observed relationship between the order parameters has opened an ongoing speculation on 

the ground state structure of omphacite. Rossi et al (1983) suggested that the ground state 

corresponds to 5.0and1 1M2M == QQ . The “half-ordering” of Ca and Na in the M1 site was 

argued to give the best local charge balance for the oxygen atoms adjacent to M1. However, this 

peculiar ordering scheme has not been yet reproduced in simulation studies. Statistical-

thermodynamic models of Burton and Davidson (1988) and Vinograd (2002) predicted a fully 

ordered ground state with 12M2M == QQ . 

Although the mixing and ordering effects in the system are well understood on a macroscopic 

level, there remains a need for a model, which could relate the macroscopic effects to specific 

atomic interactions within the structure of clinopyroxene. Such a model should be robust enough 

to reproduce the experimentally observed relationship between QM1 and QM2 parameters. 

Particularly instructive would be the understanding of the relationship between the ordering, 

exsolution and the substitution mechanism. Here we show that static lattice energy calculations 

(SLEC) constrained with unit-cell parameters, atomic coordinates and elastic stiffness constants 

of diopside, jadeite and some other pure phases in the Ca-Na-Mg-Al-Si-O system and Monte 

Carlo simulations based on the SLEC results permit a near quantitative description of the 



experimental facts.  

The simulation procedure 

Recent developments in solid solution theory and in methods of computer simulations of 

crystalline compounds make it possible to predict mixing properties and phase diagrams of binary 

solid solutions as functions of interatomic potentials (e.g. Becker et al. 2000; Bosenick et al. 

2001a;  Warren et al. 2001; Lavrentiev et al., 2006; Vinograd et al., 2007a). The interatomic 

potentials for oxides and silicates are usually obtained by fitting to structure and elasticity data on 

minerals of fixed composition using the software such as GULP (Gale, 1996, 1997; Gale and 

Rohl, 2003). The modeling of solid solutions requires being able to simulate properties of phases 

characterized with fractional occupancies. In principle, it is possible to describe such phases 

using the concept of “virtual atoms” and “mixed potentials” (e.g. Winkler et al. 1991; Bosenick et 

al., 2001b). Many macroscopic properties of solid solutions such as lattice parameters and bulk 

moduli can be accurately predicted. However, the mixing properties, such as the excess enthalpy, 

cannot be modeled well with the “virtual atom model”. The problem is that this model places the 

virtual atom in the average position of the crystal structure and, thus, the substitution effect 

corresponds to homogeneous deformations of the lattices of the end-members. The model, thus, 

has no means to take structural relaxations into account. On the contrary, real atoms have 

numerous possibilities to accommodate to the host lattice via local changes in bond distances and 

angles. The only possibility to take relaxation effects into account is to work with supercells, 

where the exchangeable atoms are allowed to shift from the ideal (average) positions. The solid 

solution can thus be visualized as an immense number of different arrangements of the 

exchangeable atoms within the supercell. The main breakthrough in the solid solution theory was 

the understanding that the average thermodynamic properties of the supercell can be well 

modeled by calculating the energies of a small subset of the possible configurations. The energies 



of the other possible arrangements can be accurately predicted with the procedure known as the 

cluster expansion (Connolly and Williams, 1983; Sanchez et al., 1984). The possibility of an easy 

and fast evaluation of the energy of any possible configuration within the supercell allows one to 

apply Monte Carlo method for the calculation of mixing properties. 

  

The empirical potentials 

Empirical interatomic potentials allow establishing a link between the structure, elasticity and the 

static lattice energy of a compound (e.g. Dove, 1993). The force field model of Sanders et al. 

(1984), which assumes formal charges on cations and anions and involves two-parameter Metal-

Oxygen (M-O) Buckingham potentials, three-body O-M-O angle-bending terms and the shell 

model for the oxygen polarizability, is found to be the most successful for the description of 

ordering in aluminosilicates (Winkler et al., 1991; Patel et al., 1991; Sainz-Diaz et al., 2001; 

Bosenick et al., 2001a). Vinograd et al. (2004, 2006) have argued that an even better 

transferability of the potentials within oxide and silicate structures of variable density can be 

achieved by multiplying the formal cation and anion charges by the common factor 0.85. The set 

of potentials for Mg, Al, Si and O, which is used here, has been already tested in the recent 

simulation study of Vinograd et al. (2007b). This set gives a reasonably good fit to the structure 

and elasticity data on α-quartz, coesite, stishovite, corundum, the three Al2SiO5 polymorphs and 

Mg-cordierite. The Buckingham Ca-O and Na-O potentials have been developed here using the 

relax-fitting procedure (Gale 1996) as implemented in the GULP program (Gale 1997; Gale and 

Rohl, 2003).  The Ca-O potential was fitted to structural parameters and elastic stiffness 

coefficients of diopside, anorthite, grossular and gehlenite. The Na-O potential was fitted to the 

unit-cell parameters, atomic coordinates and elastic stiffness coefficients of low albite and 

jadeite. The structural parameters of anorthite and grossular have been taken from Angel et al. 



(1990) (sample from Somma) and Rodehorst et al. (2002) (synthetic sample, T = 156 K), 

respectively. The structural parameters of diopside and jadeite were taken from Cameron et al. 

(1973), while those of gehlenite and low albite were taken from Swainson et al. (1992) and 

Harlow and Brown (1980), respectively. The elastic stiffness constants of all these phases were 

taken from the compilation of Bass (1995). In Table 1 and 2 we compare the predicted structural 

parameters and elastic stiffness coefficients of diopside and jadeite with the available 

experimental data.  

 

The static lattice energy calculations  

The fully relaxed SLEC calculations have been performed at zero K and zero pressure with 

GULP in the 2x2x4 supercell of C2/c diopside containing 128 exchangeable atoms on a set of 

randomly modified structures (configurations) with x=0 (1), x =0.125 (100), x =0.25 (100) x 

=0.375 (100), x =0.5 (200), x =0.625 (100), x =0.75 (100), x =0.875 (100), and x =1 (1) 

compositions. The numbers of the sampled structures with the same composition are given in 

parentheses. The initial structures were prepared from the structure of fully ordered omphacite by 

substituting appropriate numbers of Ca, Mg with Na, Al or vise verse.  The excess energies were 

calculated by subtracting the weighted sum of the energies of diopside and jadeite (Figure 1).  

 

Cluster expansion of the SLEC results 

The cluster expansion procedure permits finding a simple equation, which fits the energies of all 

simulated configurations and, hopefully, predicts the energy of any other possible configuration. 

Connolly and Williams (1982) and Sanchez (1984) have shown that the excess energy of a 

configuration can be expanded in terms of energies a hierarchy of clusters, where a cluster is a 

structurally distinct group of lattice points. A convenient form for such an expansion is known as 



the Js formalism (e.g., Bosenick et al., 2001) 
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where zn, 
)(

AB
nP , and Jn are the coordination numbers, fractions of AB-type pairs and effective 

cluster interactions for pairs of the order n. Jn corresponds to the energy of the exchange reaction 

AA + BB = 2AB between atoms A (Ca or Mg) and B (Na or Al) located at the n-th distance. E0 is 

a composition-dependent term, which absorbs contributions to the excess energy not included in 

the Js sum. Vinograd and Sluiter (2006) have argued that in systems with size mismatch, such as 

pyrope-grossular garnets, E0 absorbs the effect of strain related to deformation of the end-

members in the process of mixing. Ferreira et al. (1988) have shown that this strain achieves 

maximum at an intermediate composition, while the variation of the strain energy with the 

composition can be closely described with the equation 
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where x1 and x2 are the mole fractions of the components. Vinograd (2002) have shown that in 

the case when the strain energies of the end-members can be approximated with quadratic 

functions of the volume change, the values of A12 and A21 are determined by the square of the 

volume difference and the bulk modules of the end-members. Since the volumes of diopside and 

jadeite differ significantly, we retain this term in the model. In contrast to the pyrope-grossular 

system, the mixing in the diopside-jadeite solid solutions occurs on two sites, therefore, the 

interactions split in the three types: the intra-site (M1-M1) Ca-Na interactions, the intra-site (M2-

M2) Mg-Al interactions and the inter-site M1-M2 interactions.  These interactions correspond to 

the three ordering reactions: 

Ca-Ca + Na-Na = Ca-Na + Na-Ca., 

Mg-Mg + Al-Al = Mg-Al + Al-Mg,  



and 

Ca-Mg + Na-Al = Ca-Al + Na-Mg. 

To determine the set of the Js and Aij we have calculated for each of the 800 structures the 

fractions (frequencies of occurrence) of pairs of dissimilar atoms for the 37 structurally different 

pairs. In the case of the inter-site interaction we calculated the sum of the frequencies of Ca-Al 

and Na-Mg pairs. The distances and the types of interactions of the pairs are specified in Table 3. 

The whole set of configurations was thus characterized by the 800 × 38 frequency-composition 

matrix P and with the 800-element vector E. With each dissimilar pair we associate a constant Jn 

and with the composition parameter xi we associate E0. The 37-element vector J was found by 

solving the matrix equation J=P
–1

E using a least squares method. In these calculations we have at 

first fixed A12 and A21 (and the E0 term) at some arbitrary values and subtracted E0 from each Ei 

value. The least squares procedure was then repeated for different values of A12 and A21. Their 

optimal values were found using a steepest dissent algorithm.  

 

The ground state analysis 

In order to improve the accuracy of the cluster expansion and to ensure that it predicts correct 

ground states, we have used a feed-back algorithm, which was described in detail by Vinograd et 

al. (2006). This algorithm consists of alternating Monte Carlo annealing simulations (see the next 

paragraph) and GULP energy minimization calculations. The cation distribution is annealed 

within the small 2x2x4 supercell at a low temperature consistently with the current values of (n)J  

constants and A12 and A21 parameters. The simulated low-temperature configuration is used as an 

input for a new GULP calculation. The energy of this structure and the frequency numbers are 

added to the set of previously simulated structures. A new least-squares solution is obtained and 

the Monte Carlo annealing is repeated with the new values of Jn, A12 and A21 parameters. The 



algorithm allows an effective search for the lowest energy structure consistent with the chosen 

type of the cluster expansion. The energies of the found low energy states are interpolated with 

the solid lines (Fig. 1). The ground states are indicated with the dashed line. The (n)J , values 

calculated with this algorithm are listed in Table 5 and plotted in Fig. 2. These values are 

consistent with A12 = 2.6715 and A21 =2.2193 kJ/mol. The accuracy of the fit is illustrated in Fig. 

3. We assume that the energy of any other possible configuration not included in the fit will be 

also accurately approximated with Equation 2. This allows us to efficiently simulate the 

Boltzmann probability distribution of the exchangeable atoms with the Monte Carlo algorithm. 

 

The enthalpy of mixing 

Monte Carlo simulations have been performed using 8 × 8 × 12 supercell with periodic boundary 

conditions (6144 exchangeable sites). The swapping of sites has been performed according to the 

Metropolis algorithm (Metropolis et al. 1953). The energy differences between the subsequent 

steps have been calculated using Equation 2. The temperature dependent properties have been 

calculated on a grid of 65 different compositions across the diopside-jadeite binary in the interval 

of 273–2023 K with a step of 50 K. Each point in T-X space was equilibrated for 4*107 Monte 

Carlo steps and additional 4*107 steps were used for the calculation of the averages. The 

averaging over the Monte Carlo results gives the isotherms of the excess static lattice energy. 

These isotherms are compared with the experimentally measured enthalpies in Figure 4. The 

rapid decrease in the excess energy at the intermediate composition is interpreted as the effect of 

LRO. 

 

Long-range order 

The LRO variation across the transition was investigated only at the 50/50 composition (Fig. 5). 



The order parameters have been defined using the Equation 1. The probabilities of Ca in the sub-

sites M11 and M12 and Mg in M21 and M22 become structurally distinct only in the P2/n phase, 

thus both the LRO parameters are zero in the C2/c phase.  The occupancies of the sub-sites and 

the LRO parameters have been calculated indirectly from the probabilities (frequencies) of AA 

pairs at the maximum separation (19.5565 Å) permitted by the size of the supercell using the 

equation  
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where PA is the probability of  finding an A atom in the whole lattice (PA = 1/2 at the 

intermediate composition). This method was preferred over the direct summation over the Monte 

Carlo simulated configurations to avoid the effect of spontaneous reversals in the orientation of 

LRO. When the reversal of ordering occurs, the site which was Na-rich becomes Ca-rich. Thus, 

the average (over the simulation time) site occupancies approach the average mole fractions over 

the lattice. Similar reversals are responsible for the development of anti-phase domains in natural 

samples (Carpenter, Muller). The rapid drop of the both LRO parameters at about 1150+20 K 

corresponds to the SRO/LRO transition. The nonzero values of the LRO parameter at the higher 

temperatures are due to the finite size of the simulation cell.  

 

The free energy of mixing and the configurational entropy 

It has been shown (Myers et al., 1998; Warren et al., 2001) that the configurational free energy 

can be calculated from Monte Carlo averaged excess energies using the method of 

thermodynamic integration: 
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In this equation, G0 corresponds to the free energy of mixing of the solid solution with zero 

ordering energy, which can be calculated theoretically: 
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To calculate 
λ

H  for a state with an intermediate degree of order defined by certain value of λ, 

0< λ <1, one performs additional Monte Carlo simulations with scaled values of the Js:  

n

λ

n JJ λ=        (7) 

In our simulations, λ was gradually increased from 0 to 1 with a step of 0.04. The integral was 

calculated using Simpson’s method. Figure 6 shows the free energy of mixing. These free 

energies include the effect of the configurational entropy which can be calculated with the 

equation. 

  THGS /)( −=       (8) 

This function is plotted in Fig. 7. The configurational entropy reflects the effects of SRO and 

LRO. The development of LRO is manifested by the rapid decrease in the entropy at the 

intermediate composition. 

  

The phase diagram 

The free energies of mixing were converted to a T-X phase diagram by comparing the free 

energy, G(xi), at each composition xi along an isotherm is to the free energy of a mechanical 

mixture G(xj) + G(xk). If there is a pair of compositions xj and xk, which satisfy the conditions xj < 

xi < xk and [G(xj)( xk − xi)  + G(xk)( xi − xj)] < F(xi), the solution with composition xi is unstable. 

The miscibility gaps are shown as smoothed curves, which encircle the clusters of the unstable 

points (Fig. 8). 



 

The activity-composition relations 

The calculation of activities requires the isotherms of the free energy to be expressed as analytical 

functions of composition. The excess free energies calculated by subtracting the −TSideal term 

from the Monte Carlo free energies are plotted in Figure 9. At temperatures above 800 °C, the 

excess free energies behave smoothly. These functions can be made perfectly symmetric with 

respect to x1=0.5 by subtracting the E0 term. Therefore, an accurate fit to Gexcess − E0 can be 

achieved with the polynomial, which contains only even powers of (x2 − x1): 
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where x1 and x2 are mole fractions of diopside and jadeite, respectively. The coefficients of this 

polynomial are given in Table 5. At lower temperatures the excess functions become affected by 

omphacite-type ordering. In the temperature range of 300 - 800 °C a good fit can be achieved 

with a more complex function: 

 

 (10) 

The coefficients of this polynomial are given in Table 5. In Figures 10 and 11 the activities at 600 

and 1200 °C, calculated using the Eqns. 10 and 9, respectively, are plotted as dashed lines 

together with the experimental data of Holland (1983) and Gasparik (1985).  Note, that in Fig. 10 

we plot the square root of activity. This is done to make the comparison with the original data of 

Holland (1983) easier.  Apparently, the experimental data suggest a much stronger deviation from 

the ideal mixing than the calculated activities imply. This result suggests that the model misses a 

negative contribution to the excess free energy.  
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The excess vibrational enropy 

The missing negative contribution to the excess free energy could come from the excess 

vibrational entropy, the effect, which has not been included in our model yet. The recent 

simulation study of mixing in pyrope-grossular garnets (Vinograd and Sluiter, 2006) suggested 

that measurable positive excess vibrational entropy is to be expected in solid solutions with large 

volume mismatch between the end-members. This should be also the case for the diopside-jadeite 

solid solution. The model of Vinograd and Sluiter (2006) suggests that the excess effect appears 

due to the deformation of the lattices of end-members in the process of mixing when they 

accommodate to certain intermediate volume within the solid solution. The lattice of the end-

member with the smaller volume (jadeite) extends, while the lattice of the end-member with the 

larger volume (diopside) contracts. The increase in the vibrational entropy of the smaller end-

member on the extension outweighs the corresponding decrease in the entropy of the larger end-

member on the contraction. Consequently, the total effect, calculated as the weighted average of 

the excess vibrational entropies of the end-members, is positive. Fig. 12 illustrates this effect for 

the strained mixture of diopside and jadeite at 1073 K. The total effect is positive with the 

maximum shifted prominently in the direction of the larger end-member. The excess entropy 

achieves about 0.9 J/K per one mole of exchangeable cations at 40 mole % of the jadeite 

component. Similar calculations performed between 873 and 1473 K suggested that the 

magnitude of the excess effect remains essentially the same within this temperature range. The 

shape of the function can be closely described with a superquadratic Margules equation  

)( 2112121 Sx+Sxxx=S 2
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with the parameters S12 = 2.5 and S21 = 4.5 J/mol/K.  The activity-composition functions modeled 

with the excess entropy effect, vib

excessTS− , (solid lines in Figures 10 and 11) agree much better with 

the experimental activities both at 873 and 1283 K. The activity-composition relations in the 



range of 300-800 °C are plotted in Fig. 13. 

 

Discussion and Conclusions 

The present model reproduces several experimental constraints with a remarkable accuracy. The 

predicted magnitude of the high-temperature enthalpy of mixing in the diopside – jadeite system 

is consistent with the calorimetric data of Wood et al. (1980). The calculated activity-composition 

relations at 600 and 1200 °C can be brought into an agreement with the experimental data of 

Holland (1983) and Gasparik (1985) by assuming the existence of a reasonably large excess 

vibrational entropy term. The magnitude of this term (0.9 J/mol/K) agrees well with the 

calculated effect for the strained mixture of diopside and jadeite. The excess entropy of similar 

magnitude has been experimentally measured in pyrope – grossular system (Haselton and 

Westrum, 1980; Dachs and Geiger, 2006). The difference in the standard volumes between 

diopside and jadeite is comparable to that between pyrope and grossular, and, therefore, this 

effect is not unexpected.  We observe that the activities, modified by including the excess 

vibrational entropy, agree better with the experiments of Gasparik (1985) at 1200 °C than with 

the experiments of Holland (1983) at 600 °C. We should note that the present treatment of the 

excess entropy does not include effects of structural relaxation. These effects are likely to 

decrease the excess entropy at intermediate compositions and low temperatures as it was 

predicted for pyrope-grossular garnets (Vinograd and Sluiter, 2006).  The effect of relaxation has 

not been included here because its evaluation would require free energy minimization of a large 

number of possible configurations within the supercell containing 640 atoms. These calculations 

would require too much time. We think that such an effort will be justified when the effect of the 

excess vibrational entropy is detected experimentally.  

The onset of LRO at the omphacite composition is predicted at 1150 +20 K in close 



agreement with the experimental value (1123 +20 K) of Carpenter (1981). Moreover, the 

simulations confirm the experimental finding of Rossi et al. (1983), Carpenter et al. (1990) and 

Boffa Ballaran et al. (1998) that the M2 site is ordered significantly stronger than the M1 site. 

The approximate relationship QM2=2Q M1 in closely reproduced in our simulations (Fig. 14). The 

simulations not only reproduce the experimental facts, but also suggest their atomistic 

interpretation. Apparently, the stronger ordering within the M2 site is consistent with to the first-

neighbour M2-M2 distance being significantly shorter than the M1-M1 distance.  Figure 2 shows 

that the strength of ordering interactions increases at shorter distances. This is consistent with the 

earlier result of Cohen and Burnham (1986) who obtained -36 kJ/mol and -10 kJ/mol for the 

nearest-neighbour M2-M2 and M1-M1 interactions, respectively, using an approach similar to 

that used here.  Therefore, the QM2=2Q M1 relationship can be understood on energy grounds and 

there is no need in postulating the existence of a rigid crystal-chemical rule, which restricts the 

M1 site to be half-ordered. The simulations suggest, however, that the true ground state with 

QM2=Q M1=1 is never achieved in nature. The slowing down of the kinetics of ordering with the 

decrease in the temperature seems to be the most likely explanation. The simulations permit to 

map the spread of the experimental ordering states onto the temperature scale (Fig. 14). The plot 

suggests that the closing temperature of the cation ordering in omphacite is about 600 °C.  

Many previous studies have noted the coexistence of the ordering and exsolution tendencies 

in the system. The model of Vinograd (2002) attributed the exsolution tendency to the non-

configurational effect related to volume difference between diopside and jadeite. It has been 

argued that the size-mismatch implies investment of a significant energy needed to overcome the 

misfit between the lattices. (The magnitude of this effect is comparable to the excess enthalpy 

measured by Wood et al., 1980). Our model contains the special term, E0, which is supposed to 

model this non-configurational effect. Surprisingly, the best-fit Aij values, which are responsible 



for the magnitude and asymmetry of this term, appeared to be very small. This result suggests 

that the volume deformation energy is absorbed by the values of Js. The elastic effect has 

probably contributed to the cross-site (M1-M2) terms which correspond to the long-distance 

pairs.  The long distance pairs are nearly insensitive to order and contribute to the enthalpy of 

mixing as x1x2J*, where J* is an effective long-distance interaction. Since the asymmetry of the 

data is very small, the elastic term, which has the same shape, can be easily shadowed with the 

x1x2J* term. The present results suggest also that the positive high-temperature enthalpy of 

mixing appears not only due to the size-mismatch, but also due to the charge mismatch effect. 

The positive cross-site Js evidently have a strong electrostatic component. It is easy to see that 

the charge difference contributes to the enthalpy effect of the reciprocal reaction, Ca2+Mg2+ + 

Na+Al3+ = Ca2+Al3+ + Na+Mg2+. For a given interatomic distance the total electrostatic energy of 

the pairs Ca-Al and Na-Mg is higher than the sum of the energies of Ca-Mg and Na-Al pairs. 

(After subtracting the average charge of 2+ from the formal cation charges, the reciprocal 

reaction can be written as Ca0+Mg0+ + Na1-Al1+ = Ca0+Al1+ + Na1-Mg0+. The electrostatic energy 

of Na-Al pair is negative, while the energies of all the other pairs are zero. Thus the total 

electrostatic effect of the reaction is positive.)  This implies that the formation of a two-site solid 

solution with mixed-valent substitution proceeds against the electrostatic force and, therefore, the 

charge difference additionally contributes to the strain produced by the size mismatch. At 

intermediate compositions this effect appears to be counterbalanced with the effect of ordering. 

The ordering is apparently driven by the electrostatic advantage of charge alternation along the 

chains of M1 and M2 sites. Two mixed-charged Ca2+-Na+ pairs have lower Coulomb energy than 

the sum of energies of Na+-Na+ and Ca2+-Ca2+ pairs. Likewise, two Mg2+-Al3+ pairs have lower 

energy than the sum of energies of Mg2+-Mg2+ and Al3+-Al3+ pairs. (This can be clearly seen 

when the average charge of +2 is subtracted from the formal cation charges.) This observation 



explains the negative sign of the Js related to the reactions NaNa + CaCa = 2NaCa and MgMg + 

AlAl = 2 MgAl. Thus, both the positive enthalpy of mixing (the tendency to exsolution) and the 

long-range ordering appear to be the consequences of the charge difference between the cations 

occupying M1 and M2 sites. Since the charge difference itself is the consequence of the coupled 

substitution, the positive enthalpy at high temperatures and the ordering at low temperatures and 

intermediate compositions should be expected in any two-site solid solution build along the same 

mechanism.  

The present study shows that the approach based of the application of the static lattice 

energy minimization, cluster expansion and Monte Carlo simulations reproduces known 

experimental data on the effects of ordering and mixing in the diopside-jadeite system with good 

accuracy. This implies that the same approach can be applied to other binary clinopyroxene solid 

solutions for which these effects are not yet known.  
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Figure captions 

Figure 1. The excess energies of the sampled structures (circles). Solid line connects the low-energy structures 

predicted using the Monte Carlo annealing algorithm. The dashed line connects the ground states. All values are 

per mole of M1 cations. 

Figure 2. The cluster expansion of the pair-wise effective interactions for the diopside-jadeite system as functions of 

the interatomic separation. The distances have been calculated for the diopside composition (a = 9.750 Å, b = 

8.928 Å, c = 5.277 Å, β =106.13°).  

Figure 3. Correlation between the energies calculated within the static energy calculation approach and those 

predicted with the cluster expansion. 

Figure 4. Isotherms of the enthalpy of mixing (solid lines) predicted with Monte Carlo simulations. Squares with 

error bars are the calorimetric measurements of Wood et al. (1980). 

Figure 5.. The temperature dependence of the LRO parameters QM1 (open circles) and QM2 (filled circles) as 

calculated for omphacite composition from Monte Carlo simulations. 

Figure 6. Gibbs free energy of mixing derived from the thermodynamic integration analysis of the Monte Carlo 

results.  

Figure 7. The configurational entropy calculated using the method of thermodynamic integration.The dashed line 

shows the entropy of ideal mixing. 

Figure 8. The temperature-composition phase diagram calculated from the results of Monte Carlo simulations (solid 

lines). The dotted lines show the shift of the miscibility gaps due to the effect of the excess vibrational entropy. 

The dashed line shows the approximate location of the order/disorder transition. 

Figure 9. The excess free energy of mixing as calculated from the Monte Carlo simulations. The effect of the excess 

vibrational entropy is non included. 

Figure 10. The square root activity of jadeite and diopside at 600 °C. The solid lines and dashed lines correspond to 

the calculation with and without the vibrational entropy term, respectively. The symbols correspond to the 

experimental phase equilibrium measurements of Holland (1983). The filled and open squares correspond to 

pyroxene compositions partially equilibrated from NaAlSi2O6-oversaturated and undersaturated starting 

materials, respectively. 

Figure 11. The activities of jadeite and diopside at 1200 °C. The solid lines and dashed lines correspond to the 



calculation with and without the vibrational entropy term, respectively. The circles correspond to the activities 

calculated using the equation of Gasparik (1985), that was used to fit his experimental data.    

Figure 12. The entropic equations of state (entropy vs. volume) of diopside and jadeite and the total excess entropy 

plotted vs. the mole fraction of jadeite. The vibrational entropy is calculated at 1073 K. It is assumed that 

volume changes linearly with composition. 

Figure 13. The activity-composition relations in the diopside-jadeite solid solution in the range of 300-800 °C 

calculated using Eqns. 10 and 11. 

Figure 14. Correlation between the order parameters QM1 and QM2 as calculated from Monte Carlo simulations 

results and compared to the experimental data (crosses) of Boffa Ballaran et al. 1998.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. The empirical interatomic potentials used in the present study. The notation [4], [6] and [8] refers to the 

coordination number of the associated species 

 
Buckingham 

Interaction A (eV) ρ (Å) C (eV Å6) 
Al[4-6](core)-O(shell) 1115.6866 0.291905 0.0 
Mg[6](core)-O(shell) 1190.5254 0.284037 0.0 
Ca[6-8](core)-O(shell) 10050.3750 0.238457 0.0 
Na[6-8](core)-O(shell) 9956.9835 0.218298 0.0 
Si[4-6](core)-O(shell) 995.92238 0.304057 0.0 
O(shell)-O(shell) 593.05553 0.321826 29.61488 

 

Spring  

Interaction K (eV/Å2) 
O(core)-O(shell) 56.66397 

 

Three-body 

Interaction kθ (eV/rad2) θ ( degree) 
O(shell)-Si[4]-O(shell) 2.5171 109.47 
O(shell)-Al[6]-O(shell) 1.4693 90.0 
O(shell)-Mg[6]-O(shell) 1.0514 90.0 

 

Note: The charges on the oxygen core and shell are 0.751575 and –2.451575, respectively. Cutoff distance for the 
Buckingham potentials is 12 Å. 
 
 
Table 2. Structural parameters of diopside and jadeite as calculated with the SLEC  in comparison with experimental 

data. 

 

Diopside Jadeite 
Parameter 

XRD
 a
 SLEC XRD

 a
 SLEC 

a (Å) 9.745  9.750 9.423 9.386 
b (Å) 8.899 8.928 8.564 8.532 
c (Å) 5.251 5.277 5.223 5.266 

β (degree) 105.63 106.13 107.56 107.76 
Volume (Å3) 438.532  441.303 401.848 401.615 

 

References: aCameron et al., 1973.  
    
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Elastic stiffness coefficients for diopside and jadeite as calculated with the SLEC in comparison with 

experimental data. 

Observed
a
  SLEC  Observed

b
  SLEC  Stiffness 

coefficient Diopside Jadeite 

C11 223.0 202.2 274.0 238.2 
C22 171.0 182.4 253.0 261.2 
C33 235.0 285.9 282.0 313.4 
C44 74.0 75.9 88.0 92.1 
C55 67.0 56.7 65.0 66.5 
C66 66.0 61.5 94.0 69.9 
C12 77.0 65.0 94.0 72.9 
C13 81.0 61.3 71.0 82.7 
C23 57.0 68.3 82.0 110.4 
C15 17.0 29.22 4.0 31.1 
C25 7.0 15.9 14.0 22.1 
C35 43.0 27.5 28.0 -0.2 
C46 7.3 12.9 13.0 19.8 

Bulk modulus 113.0 104.5 143.0 139.0 
 
References: aLevien et al.1979; bKandelin & Weidner 1988 
  
 

 

Table 4. The parameters of the fitted cluster expansion.  
 

M1-M2 M1-M1 M2-M2 
d (Å) J d (Å) J d (Å) J 

3.191 17.116 4.555 –8.886 3.132 –19.864 
4.455 14.324 4.908 –6.734 5.295 –5.433 
4.494 7.266 5.295 –6.982 5.598 –4.508 
5.488 5.482 5.868 –6.664 6.625 –7.122 
5.544 6.756 6.237 –5.033 6.794 –3.159 
6.177 5.072 6.625 –3.687 7.557 0.232 
6.322 6.255 7.557 –3.042 7.737 0.198 
6.749 2.083 8.083 –1.938 7.826 –0.561 
7.626 1.449 8.764 –1.083 8.116 –2.406 
7.634 2.330 8.943 –1.631 8.520 0.193 
7.912 1.911   8.723 –0.190 
8.140 1.906   8.943 –0.577 
8.233 1.803     
8.485 1.304     
7.799 1.786     

 
Note: the J values are in kJ per mole of M1 cations.  
 

 

 

 

 

 

 

 



Table 5. Coefficients of the polynomials for the excess free energy in the diopside-jadeite solid solution  

An (J/mol) Bn (J/mol·K) An (J/mol) Bn (J/mol·K) 
N 

300-800°C 800-1400°C 
1 -3516.5 7.044 9878.1 5.19 
2 18555.1 –8.831 11229 -3.092 
3 7436.8 3.204 -496.2 2.359 
4 -1654.3 1.433   
5 -130.7 0.0955   
6 3751.8 7.3267   
7 -4.4122 0.00313   

 
Note: The polynomials describe only the symmetric part of the excess free energy. To get full excess free energy, 
one has to add Margules equations for the elastic energy and the excess vibrational entropy.  

 
Table 6. Coefficients of the Margules polynomials for the excess elastic energy and the excess vibrational entropy 

ij Aij (kJ/mol) Sij (J/mol·K) 
12 2.6715 2.5 
21 2.2193 4.5 
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