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ABSTRACT 

Nowadays, drones are increasingly being used in industrial and environmental 

applications. In particular, there is significant demands for adapting drones for use in 

underground mining. Due to the lack of GPS signals in an underground mine, 

successful usage of a drone in such a rugged space requires accurate and reliable 

positional information to achieve safe underground navigation. The implementation of 

two modules help overcome the challenge. Firstly, a module to find global coordinate 

values of underground locations and track changes in the position and orientations of 

the drone. Secondly, a module with the ability to generate and map the area for accurate 

localisation and the collection of 3D images of the underground mine. In both modules, 

an Inertial Measurement Unit (IMU) plays a major role in collecting data location and 

sending it to the appropriate processing unit. The IMU is made of three components, 

including accelerometers, magnetometers, and gyroscopes. Its limitation is that errors 

accumulate and propagates over time, leading to drift in the position and attitude 

solutions. Various methods must be applied to mitigate this error enabling precise 

positioning and mapping. 

 

This study primarily reviews the significance and performance of IMUs for 

underground mine drone localisation and mine mapping. IMUs are one of the most 

important devices for navigation. To address attitude drift, this research has designed 

a Kalman Filter (KF) which extracts reliable information from raw data. The KF for 

INS combines different measurements while considering estimated errors to produce 

a trajectory which includes time, position and attitude. To evaluate the feasibility of 

the proposed novel method, a prototype has been designed and evaluated. 

Experimental results indicate that the designed KF estimates the internal states of a 

system (roll, pitch and yaw) in the presence of uncertain and indirect measurements 

(heading and distance).  

 

The test setup was designed to allow the application of specific algorithms and viewing 

the results of different scenarios for better understand position and orientation 

determination using the IMU MPU 9250. The purpose of all tested scenarios was to 

observe the IMU’s performance and ability in the presence of sudden acceleration and 
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deceleration of the system. All figures illustrate that the KF at the end of the timing 

period makes the presented curves more stable and smoother, providing a better 

representation of the true movement occurring in the system. Due to sudden changes 

in the system, drift increases exponentially, which causes a delay in the KF’s 

performance.  

 

Key terms: Kalman Filter (KF), Inertial Measurement Unit (IMU), Calibration, Indoor 

Navigation 
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1. INTRODUCTION 

1.1 Project Background 
 

This research project studies the use of autonomous Unmanned Aerial Vehicles 

(UAVs) or drones, specifically for the mapping and surveying underground mining 

applications. Based on the safety regulations in underground mines, localisation and 

mapping are essential requirements for mine operation. A possible solution is to utilise 

drones with self-navigation capabilities and to equip them with positional sensors, 

namely the Inertial Measurement Unit (IMU), to map the required areas. This research 

focuses on low cost IMUs to propose a cost-effective method for localisation and 

mapping. The aim of this research is to improve the accuracy of the IMU data provided 

for drone localisation and consequently for mapping. Specifically, the research looks 

at improving the raw IMU data through filtering methods to reduce the negative impact 

of IMU drift over long distances.  

 

The mining industry is currently experiencing rapid change and mineral resources play 

a significant role for developing countries as a source of income. Australia has invested 

in mining innovations that benefit from its resource sector, by achieving sustainable 

levels of output and decreased production overheads (Phillips, 2012). Many of these 

innovations have been focused on satisfying and improving the stringent health and 

safety regulations around the Australian mining industry. Health and safety plays a 

major role in the mining industry in Australia (Heber, 2013). According to these 

regulations, workers can only be sent into areas of an underground mining operation 

after ensuring that the environment is safe. This is an increasing concern as 

underground operations become deeper as more ore is extracted due to increase 

resource prices and profitability. One way of addressing these safety concerns is 

through automation, by removing individuals from potentially unsafe environment.  

 

The method of mining employed depends on the type and structure of the resources 

being mined. For example, in gold mining a typically used method is vertical mining 

where mining occurs from the bottom of the deposit, and proceeds upwards with the 
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ore being collapsed in layers downwards (Phillips, 2012). This results in open voids 

called stopes, which are hazardous environments due to a lack of ground support, 

inadequate ventilation, little accessibility, and little to no lighting. These are usually 

accessed by a near-horizontal tunnel running parallel to the strike of the ore body, 

referred to as drives. The width of a drive is typically constant and drives are 

“classified” based on their width, such as 4-metre drive, 5.5-metre drive, and 2.5-meter 

drive. The majority of the drive length is dug out at a minimum height and is usually 

measured similarly to its width. The backs (or roofs) are curved to increase strength. 

There are instances where the height of the drive needs to be increased to accommodate 

loading operations. If the drive is made of non-competent rock, it often needs 

additional support (such as shotcrete or rock bolts) before it is considered safe to 

access. Throughout these works, environmental conditions such as air flow, 

temperature and air quality are critical to ensure safe operations. In addition, heavy 

traffic and the inability to shut down drives (due to cost in loss of productivity) can 

make access an issue at times. 

 

Mapping and surveying the extents of these and other mine workings is of critical 

throughout the life cycle of a mine. It is used not only in miming development and 

resource production but also as part of the regulations. An example of these 

requirements can be found in the Resources Safety Matters publications for workplace 

safety and health in Western Australia (Mine, 2021). Resources, utilities, access, and 

dimensions need to be mapped and surveyed. As mentioned previously, access to 

underground mine tunnels can be restricted or prohibited in some instances (Anderson, 

2013). Due to their potential hazardous or restrictive nature, mapping the correct 

structure, layout, and resource location without exposing individuals to an unsafe 

environment, as well as accurate mapping to help reduce cost and increase 

productivity, is one of the most important reasons why mine are seeking autonomous 

surveying and mapping technology. 

 

Over the years, many solutions have been proposed in research to reduce or eliminate 

the need to directly access certain areas of mine sites. To address these limitations, 

autonomous or semi-autonomous methods are often utilised. One of the most 

important aspects of achieving this is ensuring that the vehicle or platform used is 
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aware of its location in relation to the surrounding environment, which makes 

localisation essential.  

 

Many approaches for achieving accurate positioning and localisation in underground 

mining tunnels are based on indoor navigation techniques. For example, systems based 

on indoor wireless positioning methods can be used. These systems rely on distance 

measurement using wireless signals and are designed for short distance wireless 

communication (Yuping et al., 2014). However, wireless positioning methods require 

significant processing time, and the equipment used is not cost-effective. Additionally, 

due to the surrounding rock absorbing and blocking signals, such methods cannot be 

deployed for use over long distances in underground mine sites.  

 

As a result, the Australian mining industry has implemented forms of remote control 

for autonomous and remote operation technologies. Machinery and mining processes 

are performed and supervised remotely from the mine shaft, with Unmanned Aerial 

Vehicles (UAVs) being a common solution across sites (He et al., 2019).  

 

Over the last two decades, there has been a significant focus on the development of 

autonomous vehicle and remote operation technology in underground mining. (J. N. 

Bakambu et al., 2004) (Cox, 1991) (Alami et al., 1998) (Roberts et al., 2000) 

(Madhavan et al., 1998). Bakumba et al (2007) specially described two modes of 

operation for autonomous platform in underground mines: navigation and surveying 

modes. These operations are used in networks of tunnels in underground mines (Joseph 

Nsasi Bakambu et al., 2007). An integrated architecture that enables a mobile robot to 

perform corresponding actions while controlling their execution in real-time and being 

reactivate to possible events. (Alami et al., 1998). This architecture includes three 

levels: functional, execution and decision making. The functional level involves 

effector control and sensor data processing, while the execution level coordinates and 

controls the execution of distributed functions. The decision level (or final level) 

produces the task plans and supervises the execution. All levels are necessary for an 

autonomous robot to perform effectively.  
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Roberts et al (2000) reviewed the navigation techniques, such as absolute and reactive 

navigation. The reactive navigation approach is based on wall following and the use 

of a primary sensor, such as a laser scanner (Roberts et al., 2000). In another study, 

Madhavan and Durrant used laser scanning sensors to develop a localisation algorithm. 

They combined an Iterative Closest Point (ICP) algorithm with an Extended Kalman 

Filter (EKF) to create the ICP–EKF method (Madhavan et al., 1998). The ICP–EKF 

uses the ICP algorithm to localise an autonomous robotic vehicle in relation to pre-

made mapping. 

 

UAVs also perform positioning using systems that determine absolute coordinates, 

such as indoor wireless positioning, which rely on WIFI (Yuping et al., 2014) or 

Global Navigation Satellite System (GNSS) which is based on GPS and other satellite 

systems. Standard UAV navigation system rely on GNSS and inertial sensors (INS).  

 

However, in the absence or weakness of GNSS signals underground, the INS alone 

would drift over time, and the state estimation provided by INS would be unreliable 

due to error accumulation. Moreover, rocks in the underground mine can interfere with 

or block radio communication, making remote piloting impossible.  

 

Therefore, in the rugged space of an underground mine, self-navigation of the drone 

requires accurate positional information. A fully autonomous, self-localisation 

solution is required due to the lack of external positioning. The utilisation of drones in 

the underground setting involves the implementation of self-navigation and finding 

global coordinate values of underground locations known to the operator, such as in 

the form of signs or located and exiting features.  

 

In summary, an autonomous system requires accurate localisation along its path by 

utilising mapped features that can be observed by the drone as it captures local 

surrounding features during operation. Consequently, this map of features plays an 

important role in piloting the autonomous system and assisting its self-positioning. The 

drone can determine its location in the underground environment utilising targets, 

naturally occurring features, and elements in the scene that have been previously 

mapped. 
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Using unique features located on mine walls such as landmarks is a suitable alternative 

technique for localisation. Scanning laser sensors are a common choice for detecting 

these natural landmarks. However, laser sensors are unreliable in dusty and other 

similar conditions due to cost factors, power and computing requirements, and weight 

limitations. These factors all contribute to the unpredictability of the sensors. More 

advanced methods such as Simultaneous Localization and Mapping (SLAM) and 

block modelling are required for this task.  

 

The SLAM method builds a map and localises the vehicle in the map at the same time 

(Bailey et al., 2006) using features that have previously been mapped and are known 

to the algorithm. SLAM operates based on two steps: 

- Using feature extraction to generate preliminary feature maps and coordinate. 

- Using feature matching, state evaluation, as well as state restoration and map 

management to recognise previously mapped features, which are then used to 

localise the drone (James et al., 2012).  

 

Another method for localisation in mining operation is the block model, where the ore 

body is represented as a stack of multiple computer generated bricks. Each brick 

corresponds to the ore grade, density, volume, and other geological or engineering 

data. The block model cells are arranged in an XYZ grid system, and can be of uniform 

or irregular size (Report, 2003). The data generated by block modelling can be used in 

various mathematical methods for estimating mapping and localisation. 

 

The discussed methods all require additional information on the orientation and 

attitude of the system, which is usually achieved using Inertial Measurement Units 

(IMU) either alone or in conjunction with other information. This research is focused 

on how to use an IMU sensor to obtain position, velocity, and attitude information 

based on the measurements taken by the IMU for an autonomous system. The IMU 

contains three sensors that are sensitive to noise and accumulate errors over time, so 

an appropriate filter must be selected to address the noise issues, such as Kalman 

(Noureldin, 2013) or Complementary (Higgins, 1975) filtering methods, in order to 
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reduce their effect. This can be further aided by integrating information from a distance 

capturing device and applying the Dead Reckoning (DR) principle.  

 

1.2 Aim and Objectives 
 

This research aims to propose a cost-effective method for localisation of drones in 

underground mine sites using low cost IMUs. While these IMUs are smaller and 

cheaper, they may generate poor quality data. However, with proper processing, the 

IMU can supply the required information for the navigation system and plays a critical 

role in drone positioning methods. It is important to note that data captured by an IMU 

is unreliable for long distances due to attitude drift, which accumulates exponentially, 

especially when using low-quality data capturing devices. Therefore, the data received 

from an IMU needs to be processed to calculate changes in the drone’s position and 

orientation, to improve the quality of the output, and reduce drift and errors introduced 

by noisy data.  

 

The aim of this research is to improve the accuracy of localisation by enhancing the 

quality of IMU data. Specifically, the research focuses on mitigating the negative 

impact of IMU drift in long-distance operations through filtering methods. The 

proposed model corrects the collected raw data to provide more accurate navigation 

information, effectively reducing the impact of environmental noise and sensor drift.  

 

To achieve the aim of this research the following steps are preformed: 

- IMU device initialisation and calibration based on the device datasheet.  

- Implementation and comparison of a filtering method (Kalman Filter-KF) with 

the use of raw data to test the device at rest, and in motion over a period of time 

as it will be described in experimental result section.  

- Data Collection to obtain reliable information and calculate the orientation and 

position after the starting point using IMU data. 

- Quantifying the reduction in drift and noise of the IMU device base on time 

and displacement. 
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The filtered IMU data can then be used for determining the location of the drone. 

Figure 1.1, illustrates the steps to produce the system’s positioning data which 

combines the outcomes from the IMU filtering data. 

 

 

Figure 1.1 Research Steps 
 

1.3 Significance 
 

The significant contribution of this research is to assist in developing a localisation 

system for hazardous mine environments by accurately positioning drones using low 

cost and small IMU sensors commonly used due to weight or cost considerations. The 

high sampling rate of IMU data makes it an ideal candidate to collect position and 

orientation data. However, the obtained information is only accurate for a short period, 

and over time, it may gain integration drift. The improved position data will contribute 

to precise mapping using drones, and combining the filtered IMU data with other 

sensors or methods such as SLAM can further improve it. This research aims to 

improve IMU data capturing and increase autonomous navigation.  

 

1.4 Chapter Summary 
 

This chapter introduced the project’s background, aims, detailed its objectives, and 

explained the research significance and the method that will be implemented. In the 

next chapter, background information will be provided based on reviewing existing 

literature and systems with respect to localisation using sensors. Chapter 3 will 

describe the essential concepts related to IMU and its components, the internal states 

of a system (roll, pitch and yaw), IMU errors, initialisation and compensation, the 

filtering principal, and explain complementary and Kalman filtering. Chapter 4 will 

evaluate the IMU significance and performance for the localisation of drones in 

underground mine sites, followed by the steps for designing the KF method. It will 

Object IMU Processing 
Unit

Filtering 
Method

Positioning 
Data
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also detail a prototype design used in this research, including an investigation of its 

advantages and disadvantages. Experimental and evaluation results are available in 

chapter 5. Finally, chapter 6 contains the conclusion that low cost IMUs provide a cost-

effective method for localisation and mapping and a discussion of further possible 

developments.  
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2 REVIEW OF LOCALISATION AND POSITIONING METHODS 

2.1 Introduction 
 

The use of Unmanned Aerial Vehicles (UAVs) are increasingly prevalent in industrial 

and environmental applications. Specifically, there is a growing demand on adapting 

drones for use in underground mining (Shahmoradi et al., 2020). Due to the need for  

drones to collect data in inaccessible areas, numerous techniques have been developed 

to overcome the positioning problem and enable safe indoors or underground 

navigation (Jinhong et al., 2011). This chapter aims to review existing research and 

practical approaches for underground mine localisation and evaluate their advantages 

and limitations. In particular, the chapter focuses on: 

 

- Reviewing existing mining operation systems that use different technologies 

for localisation and positioning in a mine, 

- Briefly describing the methods and their advantages, 

- Introducing and implementing low cost IMU for positioning and localisation; 

- Explaining how this research contributes to addressing the localisation issue.    

 

2.2 Overview of underground mining operations - Manual, Semi-Autonomous 
and Autonomous 

 

Mining operations cab be broadly classified into three main categories: Manual, Semi-

Autonomous and Autonomous. In Manual operations, all tasks are completed entirely 

by human operators. Although the system may have certain automated features such 

as collision avoidance the operator remains in control throughout the entire task. 

Equipment can either be manned or remotely controlled. For example, manually filling 

the bucket of a vehicle manually at a draw point under operator control is an example 

of the first category.  

 

In Semi-Autonomous operation, the system performs certain tasks autonomously 

within a set of defined operations and without direct human intervention or control. 

For instance, a semi-autonomous vehicle can be utilised to survey a mine shaft and 
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collect data. Initially an operator drives the vehicle between datum points to teach the 

system the required route. Then, the system can guide the vehicle on its route between 

two “markers” that define the start and end of the desired route, using the route it 

learned during the first time manual guidance.  

 

Finally, in Autonomous mode, the system is capable of sustained autonomous 

operations and has situational awareness without any operator input. For instance, a 

pre-recorded map can be loaded into the vehicle system, and the vehicle can navigate 

independently by scanning its surrounding area and comparing the captured data to the 

provided map to localise itself. Pathfinding algorithms can then be used to 

automatically determine the best path to the destination (Larsson et al.).  

 

2.3 Unmanned Autonomous Vehicles (UAVs) solutions used in underground 
mine sites 

 

The tasks that UAVs perform in mine operation include resource location, stability 

analyses, safety inspections, as well as dimension and stope mapping (Anderson, 

2013). For example, UAVs are capable of passing through locations and spaces that 

are difficult to access by people or equipment, making them ideal for exploring shaft 

entrances and passes where access is limited. Stope mapping is an example of UAV 

applications in underground mining (White et al., 1975). Stopes are inaccessible for 

human entry due to instability and a lack of roof protection and support. As previously 

mentioned, these cavities suffer from specific underground conditions such as being 

unsafe, not properly ventilated, with little accessibility, lighting, and no support and 

reinforcement of the ground, walls, and roofs. The advantages of using UAVs are that 

it allows for direct access to the stope without endangering human operators.  

 

UAVs used in the underground mine environments commonly face issues related to 

time efficiency and cost. The operation of UAVs is time-consuming and requires 

specialised platform and sensors, resulting in high cost associated with underground 

drone mapping.  In contrast, other methods such as cavity monitoring systems are 

quick to setup and capture data. However, UAVs overcome specific challenges in the 
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mining environment problems such as dust, humidity, darkness, and air ventilation, 

which can be a difficult for human operators to navigate. UAVs also have the 

advantage of accessing spaces that may not be accessible to human operators, resulting 

in more complete coverage of data capture. However, UAVs, still require some level 

of manipulation in unpredictable mining environments to improve their performance. 

UAVs belong to the Autonomous category of mining operations, but in certain 

situations, they require manual intervention.  

 

In the mining industry autonomous and remote operation technologies have evolved 

using various forms of remote control. Firstly, machinery and mining processes can be 

performed and supervised remotely from the secure mineshaft. Remote operations can 

include drilling which is performed by workers using a remote control from a distance, 

and direct tele-operations, such as controlling the mining process from a computer in 

a control room (McNab, 2012). Secondly, semi-autonomous vehicles can also be used 

for such applications. However, semi-autonomous vehicles still lack sufficient 

accuracy, can be complicated to operate, and often require long and monotonous 

working hours. Although some assigned tasks still require human interaction, resulting 

in the issues mentioned above. A semi-autonomous vehicle does not pose significant 

challenges. Switching to an autonomous system would require retrofitting existing 

equipment, which is  costly and involve a redesign of on-board systems (arcelormitta, 

2021).  

 

Semi-Autonomous operation are currently being used is vertical gold mining to map 

the area where the ore has been, or will be extracted. One technique used in Western 

Australian gold mines is the use of an Unmanned Semi-Autonomous Vehicle (USAV) 

(Larsson et al., 2006). The USAV is driven between datum points by an operator to 

teach it the required route to be captured. This route includes flying from the drive, 

through the access into the stope, and then back out again. Once the drone has learnt 

this route, it can repeat it autonomously. However, there are some restrictions and 

potential problems with using USAVs. Inaccuracy in the measurements of the drone’s 

position is a significant issue, as is the time intensive process required to provide the 

required initial map to which the drone will operate. Safety concerns arise for the 
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operator creating the map, such as poor ventilation, limited accessibility and, lack of 

support and reinforcement of the ground and roofs. 

 

To survey the stope, surveyors scan it using a tripod based laser scanner on the end of 

a boom extended into the space. However, a complete model cannot be captured due 

to the shape of stopes occluding portions of it. This means that only approximate 

measurements can be derived, raising the risk of high inaccuracies in the results. To 

ensure the USAV operates smoothly inside a drive, it requires the use of the “point-to-

point” mode where the vehicle will drive itself until it reaches its destination identified 

by a marker. The drive dimension or the opening of the mine it is travelling through 

need to be known to use this mode. Fixed survey markers such as a white painted 

triangle on the wall with a bolt drilled in the middle provides a fixed datum point in 

3D space. Alternatively other markers can be used as long as they are distinct and 

recognised by the system, such as the one depicted in Figure 2.1. 

 

 

Figure 2.1 Markers define the start and end of the desired route 
 

Bakamba et al., developed a system with similar navigation capabilities as mentioned 

above (Joseph Nsasi Bakambu et al., 2007). They proposed a system with two modes 

of operation: surveying and navigation mode. In the surveying mode two- and three-

dimensional maps are produced by utilising artificial landmarks for drone localisation 

and range measurement obtained by two orthogonal scanning laser sensors for the 

mapping. In navigation mode, maps produced during surveying mode are used to 

conduct high-level missions, including automated detection of natural landmarks for 

self-localisation and pre-planned navigation moves. The autonomous vehicle uses 
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sudden changes in the corridors, bays and intersections of the local structure to identify 

and localise natural landmarks. Bakambu uses point-to-line segment matching instead 

of point-to-point matching similar to that described by Cox (1991). (Cox, 1991), 

(Makela, 2001) Another method for localisation in underground mines using laser 

scanning sensors is described by Makela. In this method, Makela describes Load Haul 

Dump (LHD) using the wall’s profile to correct for Dead Reckoning drift by vehicles 

autonomously navigating through a mine. To measure the wall’s profile, this algorithm 

uses laser scanning. It’s compared to a pre-made model of the environment built from 

range data compiled while an operator manually drives a route. At every location it is 

assumed that the wall profile is uniquely identifiable, its measurements can be used to 

determine the vehicle location and correct it within a reasonable uncertainty using a 

filtering method. 

 

In a nutshell, the main disadvantage of the USAV approaches is the requirement to 

provide the algorithms with precise pre-made maps and the lack of such surveying 

information and existing data in mine sites. In summary, in the next subsection 

Unmanned Aerial Vehicles (UAVs/Drone) will be reviewed as well as the sensors 

required, based on the aims of this research for localisation and simultaneous 

surveying/mapping.    

2.4 Unmanned Aerial Vehicles (UAVs/Drone) and Sensor Selection 
 

Unmanned Aerial Vehicles (UAVs/Drone) are increasingly used in industrial and 

environmental applications, there are significant demands on adapting drones in 

underground mining. The increase use of drones in inaccessible areas to collect data 

has led to development of many techniques to overcome the positioning problem and 

to be able to safely navigate indoors or underground. Sensors play a major role in 

localisation and positioning in UAVs (Shahmoradi et al., 2020).  

 

Figure 2.2, illustrates the drone mine localisation and positioning systems based on 

sensor availability. To navigate a drone in an underground mine, three different types 

of sensor are used. The first type of sensor captures the external environment using 

different technologies, such as LiDAR (Light Detection and Ranging), SONAR and 
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cameras. The second type of sensor, inertial sensors such as IMUs, are used to 

recognise the drone’s movement. Finally, external sensor such as GNSS, wireless, and 

captured targets are used to provide the drone with information for localisation and 

positioning. 

 

 

Figure 2.2 Overview diagram of available sensors for UAVs/Drone systems 
 

 

Various data such as location and distance derived from these sensors can be used for 

collision avoidance, positioning, mapping, and decision making. As the research is 

based on the assumption of using drones as an autonomous system, only data collection 

using sensors enabling an autonomous system is reviewed in the following sections. 

The information provided by these sensors also enables the capability of minimising 

collisions or loss of UAVs/Drone. 

2.4.1 Data collection using capturing device of the external environment 

There are different sensors which capture information about the external environment, 

such as LiDAR, SONAR and camera. LiDAR is a technology that uses a laser to 

measure distances (Bottasso et al., 2014). The data captured by LiDAR include 
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measurements from a single beam or from multiple lines. LiDAR systems use 

ultraviolet, visible, or near-infrared light as the main medium to measure distances. 

Furthermore, LiDAR systems can be categorised as pulse or phase system, depending 

on the method used to measure the distance to an object. Pulse systems refers to the 

light impulse emitted by LiDAR systems, which is measured on its return after being 

reflected from the object. The time which the pulse takes to return to the sensor is 

measured, and the distance to the objects is calculated as the speed of light is known. 

(Donovan et al., 2009). A Phase system uses the modulation in the amplitude or 

frequency in the carrier wave. The phase difference between the emitted and detected 

signal is calculated to determine the time of flight and distance. 

 

Initially, LiDAR systems only worked with single returns of the first and last pulse 

return, but recent systems can often provide at least three returns per pulse. It is also 

possible to digitise the full wave form of the pulse returning to the scanner. Common 

methods are to measure multiple returns, which capture between three to five returns 

per pulse. There will be an increase in the amount of data as well as the ability to 

determine the three-dimensional structure of the surface (Vázquez-Arellano et al., 

2016). The data from LiDAR can be presented in different formats such as points (in 

form of point clouds), as well as lines, and surfaces derived from the point measures. 

LiDAR systems have advantages and disadvantages when it comes to autonomous 

UAV systems. Some system designs help to bridge gaps concerning feature depth 

sensing, angular resolution, and low complexity processing (Kapusta, 2020). 

However, erroneous pulses are easy to create within this system. This in turn 

influences the detection of already existing objects as either further or closer than they 

truly are (cprime, 2020). LiDAR sensors help UAVs detect the surrounding 

environment and the exact distance to an object’s position. This requires power 

consumption as they detect objects by transmitting lasers. However, LiDAR sensors 

continuously consume power inefficiently which has an effect on autonomous system 

using and requiring significant battery power (S. Lee et al., 2020). 

 

Simultaneous localisation and mapping (SLAM) with LiDAR is a common technique 

used in semi-autonomous UAVs. SLAM was developed for autonomous systems to 

locate itself in an unknown environment by simultaneously creating a map of its 
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surroundings while locating itself within the map (Durrant-Whyte & Bailey, 2006). 

Due to advantages such as reliability of accuracy, comparatively fast processing time 

and point density, LiDAR scanners are the best choice of tool for SLAM, whereas 

Sound Navigation Ranging (SONAR) being lighter in weight and having sufficient 

mapping accuracy is also considered (Azhari et al., 2017).  

 

SONAR uses sound instead of light and measures the time of the echo in return. When 

a drone emits a sound pulse, a portion of those waves bounce back of objects in its 

vicinity, and are recaptured by the SONAR device on the drone. These waves are used 

to locate distant objects. Obviously, SONAR is more capable of detecting larger items 

at longer distances better than smaller objects, which implies that the maximum 

detection distance of the SONAR is dependent on surface area of reflecting object. An 

advantage of SONAR is its ability to function in rain, snow and, dusty weather. Some 

newer models are benefiting from higher resolutions and better object recognition 

capabilities, yet they lack satisfying resolution to detect multiple fast moving or 

smaller objects. Compared to LiDAR, it has a shorter field of view and accuracy, but 

is not as expensive or requiring the same level of power usage (Jahromi, 2019). 

 

Cameras are another sensor used by UAVs, allowing for the collection of imagery 

data. The generated three dimensional digital photogrammetric models from the UAV 

are used in unsupported excavation and inaccessible areas where other methods 

requiring human access are not possible. Aguilar et al. (2017) designed a system to 

develop a method of positioning drones and the orientation with respect to the camera. 

Their system can run the computation and sensing required for SLAM, removing the 

dependence on unreliable wireless communication. They make use of visual odometry,  

loop closure and graph optimisation (Aguilar et al., 2017).  

 

2.4.2 Data collection using external sensor for drone information 

Unlike flying a UAV above ground, manoeuvring it underground comes with various 

difficulties and challenges due to unavailability of communication infrastructures and 

positioning signals like GNSS. Nevertheless, this following section will describe 

external sensors to determine the position of a drone using GNSS or Wireless methods.  
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In above ground autonomous operations, GNSS (which includes the American Global 

Position System GPS) is usually adopted to calculate absolute coordinates, however 

due to signal blockage it is impossible to use it in underground mining and other 

confined spaces. GNSS receiver require a minimum of four visible satellites to 

determine the location of the receiver using 3-D trilateration. While in theory only 

three observations are required for 3-D trilateration the fourth satellite is used to solve 

for the clock error of the satellites  (Noureldin, 2013). Other systematic influences and 

errors of GNSS signals are jamming, spoofing, multipath, or blockage (Tak Kit et al., 

2013). 

 

Replacing satellite based systems with wireless systems with known reference 

locations makes it possible to develop underground wireless positioning. Systems 

based on this method to position itself and have been adapted for underground mine 

operations. However, it is very costly (McNab, 2012). When used for the positioning 

of semi-autonomous vehicles underground, GNSS and wireless systems may result in 

imprecise measurements for the required task. The positioning accuracy can only be 

improved through intensive processing, which is time and cost intensive. None satellite 

based methods use wireless infrastructure (Mostafa et al., 2018).  

 

Furthermore, there are many indoor positioning techniques, utilising methods such as 

Infrared Data Association (IrDA), ZigBee, Bluetooth, Radio Frequency Identification 

(RFID), ultra-wideband (UWB) and optical tracking (Jinhong et al., 2011). Le et al. 

(2018) in their paper provided an overview of the sensor for indoor navigation 

application. In order to define the absolute position of a movable transmitter using  

Received Signal Strength Indication (RSSI) evaluation, or Time of Flight (ToF) 

triangulation; Radio Frequency (RF) sensors such as Wireless connection, UWB, 

Bluetooth and RFID are utilised.  Two primary technologies i.e. Bluetooth and UWB 

are taken into practice each benefiting from distinct accuracy performance and range. 

Due to its typical one nanosecond short time pulse duration and maximum 300-meter 

range, UWB provides accuracies within a centimetre whereas, Bluetooth is less 

accurate with a greater working range of up to 100 meters. Multi-path reflection and 

interference with other devices are disadvantages of this sensor family which could 
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lead to positional glitches by sending wrong positional data to device’s auto pilot. (Li 

et al., 2018).  

 

James, et al. (2012) described a method for localisation and navigation in GNSS denied 

underground environment, using RFID tags. Different areas are separated and tagged 

using RFID tags. The system can then detect the area it is localised in through the 

RFID device detecting the different tags denoting different locations (James et al., 

2012). These tags are unable to localise their exact position, however they can find 

their locality. Subdividing of the studied area by tags is one of the limitations of using 

RFID in unknown and non-safe environment. Furthermore, this partitioning can only 

be used for a limited area. 

 

IrDA is another communication system which is based on infrared light point to point 

communication (Yuping et al., 2014). Infrared light in digital format is adopted to 

generate 0-1 logic. Note that should there be any obstruction within the communicating 

devices there will be no data transfer possible. It’s limited to be used between two 

devices and cannot constitute a flexible network. The range of IrDA is one meter and 

in some situation it can be up to two meters. Networks are created with bypassing 

devices in which the IrDA takes on the role to share the position information (Yuping 

et al., 2014). 

 

Bluetooth is a low cost and low consumption power wireless communication method 

which uses frequency-hopping spread spectrum technology. It operates within short 

range radio frequency enabling devices such as mobiles and headsets to connect 

wirelessly (Yuping et al., 2014). Bluetooth devices can establish various networks and 

easily share their location to find the position of the device. As with IrDA, Bluetooth 

networks are created with bypassing devices in which the Bluetooth takes on the role 

to share the position information. Bluetooth can be used to transmit the RF signal 

which can give the distance from the transmitter to the receiver. (Rongyan et al., 2017) 

 

UWB technology is a communication technology based on sending and receiving 

extremely narrow nanosecond pulses to transmit data, which has the same magnitude 

as of the bandwidth (Yuping et al., 2014). UWB can be used for precise indoor 
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positioning, because travel time of radio waves is dependent on bandwidth, the broader 

frequency signal has a more accurate signal travel time from transmitter to receiver is 

measured. The advantages of this system is low power consuming and low complexity 

and high accurate positioning and it has already be demonstrated to work in an indoor 

environment (Marcellino, 2018). 

 

ZigBee technology is a short distance technology and designed based on low-power 

standard LAN protocol (Moridi et al., 2014). ZigBee requires very little energy to 

forward the data by radio waves from one sensor to another. ZigBee can provide RSSI 

in underground mines. ZigBee technology is used to construct a wireless sensor 

network, which will be core for positioning and communications in the system (Xuhui 

et al., 2010). However, based on working with the frequency is 2.4GHz, it is very 

vulnerable to signal blockage (penetrating rock for example) and it is not appropriate 

for underground localisation positioning system.  

 

Sensor Name Range  Speed of communication 

IrDA 1 meter 2400 bits/s to 115,200 bit/s 

RFID  Up to 20 meters 13.56 MHz 

Bluetooth 10 meters 2.4 GHz 

UWB 10 centimetre 3.1 to 10.6 GHz 

ZigBee 10-100 meters 250 kbps 

Table 2.1 Summary of the sensors and their ranges 

 
Table 2.1 shows the summary of the discussed positioning sensors. All stated methods 

and technologies used for positioning and designing a localisation system for indoor 

navigation, however one of the main drawbacks of these sensors are multi-path 

reflection and interference with other indoor devices. 

 

2.4.3 Data Collection using Inertial Navigation for drone orientation 

When collecting data using a UAV, additional flight parameters must be documented 

that can help to adjust the movement of the drone to ensure a high level of positional 
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accuracy of the drone. For instance, Inertial Navigation Sensors (INS) help to measure 

drone location, elevation and orientation. An Inertial Measurement Unit (IMU) is a 

main component of the INS used in UAVs. The IMU is an electronic device that 

measures and reports orientation, velocity, and gravitational forces through the use of 

accelerometers, gyroscopes and often magnetometers. The data collected by an IMU 

is processed by computers to track position through Dead Reckoning. It is ideal for 

tracking the state of a drone over a short period of time and for measuring changes in 

the altitude or orientation, but suffer from integration drift over longer time scales. 

Hence, IMU data for precise positioning will become unusable after just a few seconds. 

To overcome this issue, inertial sensors are typically combined with additional sensors 

and models.  

 

Therefore, a standard UAV navigation system often relies on GNSS as well as the 

inertial sensors, where the GNSS provides only the position of the drone, but not its 

orientation. If the GNSS signal becomes unavailable, the state estimation solution 

provided by the INS can estimate the position of the drone. Furthermore, INS can also 

use sensors such as pressure for calculating altitude or an odometer to record 

displacement. 

 

2.5 Examples of commercial UAVs systems 
 

To address the stated challenge of positioning with control and navigating UAVs, 

several companies are developing UAVs to enhance obstacle detection and avoidance 

capabilities of the platforms to minimise the potential for a collision. The utilisation of 

these methods in a GNSS denied environment within drone-based systems is described 

below. These systems examined are namely the Elios, M2, Batonomous and Hovermap 

systems. 

 

2.5.1 Hovermap System 

One implemented solution is provided by the CSIRO (Commonwealth Scientific and 

Industrial Research Organisation). The Hovermap system was developed by Emnest 
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in collaboration with CSIRO in 2019 (Hovermap, 2019). It allows for UAV flights 

within GPS-denied environments by using a LiDAR based SLAM for obstacle sensing 

and collision avoidance. Hovermap is based on a light weight variant of the Geo-

SLAM ZEB-REVO mobile mapping system designed to be mounted on UAV's 

(DATA61, 2020). This is provided as the Hovermap payload, and is mounted on a 

UAV as a complete unit. The payload consists of an on-board, rotating Velodyne Puck 

Lite (VLP-16) LiDAR scanner included within the Hovermap system. Because of the 

LiDAR, it is able to identify when the UAV reaches obstacles without the need for 

further lighting or cameras. A measurement of  approximately 300,000 points per 

second within a range of 100 meter and an accuracy of +/- 30.4 millimetre are 

accomplished by the VLP-16 (Velodyne LiDAR, 2019). To achieve precise 3D 

mapping GNSS denied environments, Hovermap employs SLAM algorithms rather 

than GNSS/INS hardware. LiDAR data is used to generate accurate 3D point clouds 

which lead to production of precise complex 3D imaging of underground mines. This 

also means that the system can be used to map indoor and underground opening up 

many different potential applications. Since LiDAR is used to capture the local 

environment to map obstacles, it is possible to use this information to determine the 

location of the vehicle relative to the scene. 

 

Figure 2.3 Emesent’s Hovermap Mining payload (Hovermap, 2019) 
 

At the moment Hovermap is one of the only fully autonomous system suitable for 

underground mine mapping. Although there are other systems provided by other 

companies, most are only semi-autonomous (such as Elios, M2 and Emnest). 
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2.5.2 Elios System 

Elios is a system that builds solutions for the inspection and exploration of indoor, 

inaccessible, and confined spaces (Flyability, 2014). It has the ability to fly in 

environments which are unsuitable for GNSS enabled drones, as well as in dark, 

troubled air flows and confined spaces. Cameras located on the front of the Elios 

display a live video feed to the pilot during flight, recording video for later use on an 

on-board SD memory card. No LiDAR system is integrated for obstacle avoidance, 

therefore Elios’ has a physical barrier between the moving parts of the UAV, and it 

allows for the detection of obstacles for the user through the interaction of the barrier 

with the surrounding environment. Elios generates data through the cameras located 

on the front of the Elios, transmits a live video feed to the pilot during flight and 

records video for later use on an on-board SD memory card.  

 

Figure 2.4: Flyability’s Elios (Flyability, 2014) 
 

2.5.3 M2 System 

Near Earth technology (Autonomy, 2016) created a system which is semi-autonomous 

for indoor mapping. The M2 has propeller guards and consists of a stationary Velodyne 

Puck Lite (VLP-16) LiDAR scanner which is assembled on a DJI Matrice 100. The 

M2 system is both limited in autonomy and is pilot controlled. In piloted mode, the 

UAV is flown independent from collision prevention and object detection sensors. 

This mode is useful for starting and finishing flights. The autonomous mode is used 

after take-off and when the UAV reaches an acceptable stabilisation. In autonomous 

mode, the UAV explores an environment freely without a previously collected map. 

This UAV is able to complete its mapping by flying over unmapped areas i.e. “map 

holes” of previously covered areas. It can also be used by hand without the drone to 
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capture data manually. This means that the mapping can be done autonomously 

whereas landing needs to be manually performed. 

 

 

Figure 2.5 Near Earth Autonomy’s M2 (Autonomy, 2016)  

2.5.4 Batonomous System 

Another system is Batonomous, developed by Inkonova in 2018 for semi-autonomous 

navigation systems for aerial drones to operate in unknown zones without any 

infrastructure (Inkonova, 2018). In January 2018, the company INKONOVA released 

a method called “Laser-based collision avoidance for underground mines.” These 

drones were equipped for laser scanning, LiDAR and BatonomousTM.   

 

Batonomous drone has sensors mounted on five sides of the UAV, which are ToF 

sensors, in addition it also has a front camera. Batonomous systems are also capable 

of being manually flown by a pilot in both obstacle detection mode on or off. The 

semi-autonomous mode uses Waypoint Navigation. A Waypoint is a reference point 

used to define location and navigation, this can be any coordinates (Bianco et al., 

2017). In this method LiDAR scanner on the UAV measures distances based on point 

cloud. In order to initiate a flight, the pilot manually flies the UAV until a connection 

is established between the UAV and his laptop, this is when the point-cloud is created. 

Once this connection is verified the pilot will switch to semi-autonomous mode and 

will only control UAV’s horizontal position visually by using the front camera. 
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Figure 2.6 Inkonova’s Batonomous (Inkonova, 2018) 
 

2.5.5 Summary of systems 

The four drone systems mentioned for the use within underground mine localisation 

use similar techniques and sensors, but also differ in some ways. All of the drones 

above are useable in GNSS denied environments. However, Elios, M2, and 

Batonomous are all semi-autonomous due to manual take-off and landing. Also 

Batonomous is restricted by the need of communication with an external computing 

device (specifically a laptop for data processing). Also it requires the ability to receive 

control commands from an external system (generally the case) and a pilot as input, 

while the Hovermap system is fully autonomous.  

 

Although this is the system most desired, the fully autonomous function can be 

expensive. The SLAM navigational tool combined with inertial measurement unit 

(IMU) data to improve the accuracy of the position measurements of the UAV and 

scanner during flight (Paredes et al., 2017).  

 

All the systems utilise IMU in some form. IMU helps to correct changes in the position 

of the laser from when the pulse is emitted and then received. As such, the research to 

try and improve this is important in the development of these systems. This research 

has been conducted to find a low-cost alternative approach for localisation and 

positioning within underground mines, as well as working amongst GNSS denied 

environments.  
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2.6 Chapter Summary 
 

This chapter reviews the current system for localisation and mapping, the drawbacks, 

and the comparison between manual, semi-autonomous, and autonomous systems as 

most common methods. It addresses the issues regarding current systems for mapping 

and localisation in underground mines. Certain components can be replaced or 

substituted in the system, but most focus on the use IMU and its ability to position or 

track change over time. Since this study focused on localisation and in particular IMU, 

the key component is being able to position or track change in position over time which 

will be exposed in the next chapter. Next chapter contains expanded descriptions about 

IMUs.  
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3 REVIEW OF POSITIONING AND LOCALISATION USING IMU 

3.1 Introduction 
 

This chapter provides an overview of the Inertial Measurement Unit (IMU) and 

discusses some of the problems and current solutions in utilising and processing the 

data from such devices. The chapter first examines what an IMU is and the different 

components that the system is composed of. Detail is then given on each component, 

focusing on what they measure and how. A comparison of the different methods and 

IMU types is given based on price and performance. Finally the methods for examining 

errors in IMUs are highlighted, including compensation methods and current solutions 

used to mitigate their effect. 

 

3.2 Inertial Measurement Unit (IMU) components 
 

An IMU consists of a combination of sensors, which allows it to measure and report 

an object’s specific linear acceleration, angular rotation, and magnetic field 

surrounding the object, using a combination of accelerometers, gyroscopes, and 

magnetometers. This data can be used to provide position data. An IMU can be 

attached to a drone and is an ideal device for measuring changes in the altitude or 

orientation, and to track the state of a drone over a short period of time. Each sensor 

in an IMU is used to capture different data. 

 

3.2.1 Accelerometer 

As the name implies, an accelerometer measures the rate of change in velocity. From 

a structural point of view they are mainly categorised into two designs: 1) piezoelectric 

and 2) capacitive. Piezoelectric accelerometers function are based on piezoelectric 

effect in which a material, e.g. a crystal, generates some electrical charge once 

subjected to an external force. As Figure 3.1 shows when the accelerometer shifts a 

mass is moved and exerts a force to a piezoelectric crystal, which generates voltage.  
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Figure 3.1 Piezoelectric accelerometer (Woodford, 2020) 
 

In a capacitive accelerometer a mass is attached to a variable capacitor in which 

movement of the accelerometer will cause the capacitor plates to move towards or 

away from each other, changing the capacitance, hence generating an electric voltage. 

Figure 3.2 shows capacitive accelerometer functionality in more details. 

 

 

Figure 3.2 Capacitive accelerometer (Woodford, 2020) 
 

Nevertheless, these two methods of measuring acceleration are not practical for light 

weight devices. Thus Micro Electro Mechanical Systems (MEMS) accelerometers are 

ideal for use on drones. MEMS Accelerometers are developed based on micro electric 

manufacturing methods where a microscopic sized sensor is utilised on a silicon chip 

(Fernandez, 2013) (Shawn, 2020) (Murphy, 2020). 

 

3.2.2 Gyroscope 

Gyroscopes are able to sense changes of angular velocity (∆Ω) and are conventionally 

used to maintain the orientation of a device which is moving autonomously. A 

mechanical gyroscope typically consists of a rotor which is secured in tri-ring gimbals. 
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The  gyroscope working principal is based on a physical phenomenon known as 

precession (Passaro et al., 2017).  

 

An optical gyroscope such as Fiber Optic Gyroscopes (FOGs) and Ring Laser 

Gyroscope (RLG) function based on the Sagnac Effect (Barua et al., 2018). Based on 

Einstein’s theory of relativity, if a beam of light in a rotating frame is spilt into two 

beams and each beam travels in opposite directions and then are reflected back to the 

source, they will be out of phase. The relative phase change of the two beams of light 

will lead to measurement of angular rotation of the ring (Robertson, 1949). MEMS 

gyroscopes measures the angular rate using the Coriolis Effect. The Coriolis Effect 

acting on a seismic mass can be detected between the mass and a datum frame of 

reference, which is rotating in an inertial frame of reference (Kraft et al., 2013) (M. 

Wang et al., 2018). 

 

3.2.3 Magnetometer 

A magnetometer is an instrument for measuring direction and strength of any given 

magnetic field. In this research magnetometer is used to determine earth’s magnetic 

field which is called the magnetosphere. Strength and direction of magnetosphere is 

continually changing and its strength depends on location on earth therefore an 

accurate determination of its strength is paramount. A magnetometer measures any 

magnetic field in Gauss (unit of magnetic flux) or µT (unit of magnetic field strength). 

The magnetometer, also known as a magnetic sensor, is a sensor for measuring 

magnetic induction (magnetic field intensity), which is an important sensor component 

in all types of aircraft and spacecraft (You, 2018). MEMS Magnetometer measures the 

earth magnetic field by using Hall Effect or Magneto Resistive Effect (You, 2018). In 

this method, magnetic sensors convert magnetic or magnetically encoded information 

into electrical signals for processing by electronic circuits. 

 

3.2.4 Selecting an IMU for UAV Applications 

IMUs are essential components in UAV systems due to their application within 

stabilisation, guidance, correction, as well as measurement and mapping (Dong, 2013). 
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There are many types of IMU, but the four main technological categories for UAV 

applications are: Silicon MEMS, Quartz MEMS, Fiber Optic Gyroscopes (FOG), and 

Ring Laser Gyroscopes (RLG). Among commercially available IMUs the RLG has the 

highest accuracy, yet this accuracy comes with financial burden. FOG is a cheaper 

alternative to RLG. FOGs benefit from a design using non-moving parts, which gives 

them extraordinary rotational precision. Although FOGs are cheaper than RLGs they 

are still categorised as expensive devices, and other disadvantages of FOGs are the 

high power consumption and sensitivity to vibrations. Another available option are 

Silicon MEMS and Quartz MEMS IMUs. MEMS based IMUs offer acceptable 

performance while benefiting from low power consumption and price tag. Also MEMS 

are miniature in size and durable when compared to FOGs and RLGs. These 

characteristics makes them a preferred option for navigation system in drone 

applications (Passaro et al., 2017).  

 

MEMS IMUs typically perform with higher noise, vibration sensitivity and instability 

parameters than FOG and RLG IMUs, but MEMS-based IMUs are becoming more 

precise as the technology continues to be developed (Rees, 2020). MEMS IMUs are 

ideal for smaller UAV platforms and high-volume production units, as they can 

generally be manufactured with much smaller size and weight, and at lower cost (Rees, 

2020).  Although IMUs are popular devices for navigation purposes, they accompany 

certain amount of error known as drift. Sources of drifts may be due to device physical 

properties or accumulated rounding values. This drift will lead to significant errors, 

especially over a long operational period of time. Accuracy of an IMU greatly depends 

on the quality of its gyroscope. A review of various IMU was carried out by Ahmed et 

al. They reviewed several IMUs according to various application in different situations 

(Ahmad et al., 2013).  

 

The Adafruit 9-DOF, PhigetSpatial Precision, MPU6050 and MPU9250 IMUs are 

compared in table 3.1 in terms of price, range, interface digital output, degree of 

freedom (DoF) and frequency. This shows the relative cost and capabilities of such 

systems.  
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Title Adafruit 9-DoF 
IMU 

PhigetSpatial 
Precision 

MPU 6050 MPU 9250 

Price $35 $140 $12 $15 

Range ±125 to ±2000 
(°/sec) 

±400 or ±2000 
(°/sec) 

±250 to 
±2000 
(°/sec) 

±250 to 
±2000 
(°/sec) 

Interface 
Digital 
Output 

I²C, UART USB I²C or SPI I²C or SPI 

DOF 9 9 6 9 

Frequency  12.3 mA (@100Hz) 55 mA (@ 250Hz) 2.96kHz 0.01 
dps/√Hz 

Table 3.1 MEMS IMUs Comparison 
 

3.2.5 Using IMU components to measure roll, pitch and yaw 

Before explaining how IMU components are used to measure roll, pitch and yaw, a 

brief explanation on the angular values with respect to the coordinate system (either 

the global, local, or UAV platform) is provided. In order to study kinematics of a rigid 

body, two systems of coordinates are introduced, the global coordinate system and the 

local coordinate system (Ron Harrison, 2007). The global coordinate system is a fix 

coordinate system to which absolute position to the earth and the motion of an object 

can be calculated. This is formed as a three dimensional Cartesian coordinate system. 

In contrast, a local system of coordinates is located in reference to a moving body 

according to which relative position or speed of the moving rigid body to its 

instantaneous location or speed is calculated (Thompson et al., 2017). Again, three 

dimensional Cartesian coordinates can also be used to define a local system of 

coordinates. A typical example of using Cartesian coordinates is found in the roll, 

pitch, and yaw of a UAV platform (Park et al., 2016). 
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Figure 3.3 Roll (vertical movement), Pitch (horizontal movement) and Yaw for 
heading (Thuillier, 2018) 

 

An IMU can comprise of a combination of the following: a 3-axis accelerometer that 

measures acceleration along the X, Y, Z axes define as (ax, ay, az), a 3-axis gyroscope 

that measures angular velocity about the X, Y, Z axes define as (gx, gy, gz) and a 3-axis 

magnetometer that measures the magnetic field intensity along the X, Y, Z axes define 

as (mx, my, mz) of the IMU.  

 

The number of directions for each independent motion measured with respect to each 

sensor defines the Degrees of Freedom (DoF) for the IMU. There are multiple 

combinations of DoF such as 6 DoF (3 axis accelerometer, 3 axis gyroscope), and 9 

DoF (3 axis accelerometer, 3 axis gyroscope and 3 axis magnetometer) being common 

configurations. Additionally, 10 DoF can be used in altitude sensor via the addition of 

a pressure and temperature sensor (Townsend, 2020). 

 

DoF refers to the possible movements of a rigid body within three-dimensional (3D) 

space. There are only 6-DoF in 3D space, with 3-DoF for linear translation 

(forward/back, up/down, left/right) and 3-DoF for rotations (pitch, yaw, and roll) 

(Reliant Systems, 2019). Regardless of the complexity of the movement of a rigid 

body, its motion can be shown as a combination of these 6 basic DoF. The minimum 

required DoF is related to each individual application, thus in position tracking it is 

possible to use 6-DoF in the case of having two sensors or to use 9-DoF in the case of 

having three sensors (Overholser et al., 2014).  

 



32 

 

Higher DoF generally means larger sample sizes from various sources, so it can 

provide more accurate data. Lack of any DoF eliminates relevant data to any given 

axis, consequently it may generate inaccuracies in the determination of the position of 

the rigid body. The angular speeds, linear acceleration and magnetic field data 

measured by an IMU is used to calculate roll, pitch and yaw in order to have position, 

orientation and velocity of a UAV, by feeding them into a device such as Inertial 

Navigation Systems (INS). 

 

As seen in Figure 3.3 roll, pitch, and yaw are the movements around the x-axis, y-axis, 

and z-axis respectively. From this information, position, velocity, and attitude can be 

measured. The gyroscope provides the angular velocity in three directions and cannot 

be used to calculate roll, pitch or yaw on its own. The angle can be obtained from the 

integral of the angular velocity over time and provide access to roll, pitch and yaw 

tolerances. There are different methods to calculate roll, pitch and yaw each having 

relevant accuracies which are discussed in following. 

 

Roll is the rotation about the x axis (between -180 and 180 degrees), pitch is the 

rotations about the y axis (between -90 and 90 degrees) and yaw is the rotation about 

the z axis (between -180 and 180 degrees). Forces applied to the X, Y and Z axes are 

captured by the accelerometer as acceleration (ms-2) along those axes. If an object is 

stationary, only the gravitational acceleration of the earth will be exerted on it. The 

following equations provide values for pitch and roll, and are valid if the system is not 

under acceleration, otherwise the values will be affected over the period of acceleration 

from the movement: 

 

pitch = atan (ax/�ay2 + az22 )                                                                  (3.1)                       

roll = atan (ay/√ax2 + az22 )                                                                                   (3.2) 

 

where ax, ay and az are the acceleration measured along the x, y and z axis 

respectively.  
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Heading or orientation (yaw) can be calculated from the magnetometer data 

(mx, my, mz) if it is available. It is impossible to calculate the value for yaw using the 

accelerometers only as the rotation around the horizontal plane is not captured. In order 

to measure yaw the system needs to use a gyroscope and/or magnetometer (Y. Wang 

et al., 2018). The gyroscope provides the values of angular velocities along the 3-axes. 

Using this, it can obtain the change in pitch, roll and yaw by integrating these values 

over time, but to calculate absolute values of these angles it needs reference data (or 

starting absolute value). This can be obtained from the accelerometer for roll and pitch, 

but is obtained from the magnetometer for yaw. For calculating yaw, the data from the 

IMU uses magnetometer data as reference and then integrates the gyroscope data over 

time.  

 

The magnetometer can find the orientation of an object using the earth’s magnetic 

field, similar to a compass, in terms of yaw when combined with the data from the 

accelerometer. Integrated magnetometer and accelerometer data provides yaw value 

based on the following equations (Nurhakim et al., 2019): 

 

magx = mx cos(pitch) + my sin(roll) sin(pitch) + mz cos(roll) sin(pitch)      (3.3) 

magy = my cos(roll) − mz sin(roll)  (3.4) 

yaw = atan �−magy
magx

�                                                                                                 (3.5) 

 

In this case, mx, my and mz are the magnetic field strength in x, y and z direction 

respectively. Roll and pitch are calculated from equations 3.1 and 3.2. From the above 

equations. It can be concluded that: 

• If mx, my > 0,  then orientation is (90 − atan �mx
my
� ∗ 180/π)°                                                

• If 𝑚𝑚𝑦𝑦 < 0,  then orientation is � −𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑚𝑚𝑥𝑥
𝑚𝑚𝑦𝑦
� ∗ 180/𝜋𝜋� °                                                     

• If 𝑚𝑚𝑦𝑦 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑥𝑥 < 0, then orientation is 180° 

• If 𝑚𝑚𝑦𝑦 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑥𝑥 > 0, then orientation is 0° 
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In the results the orientation/heading only depends on the accelerometer and 

magnetometer measurements. Since roll and pitch are valid if the system is not under 

acceleration (i.e. moving forward), then the values will be effected over the period of 

acceleration from the movement, thus this drawbacks leads to a limitation of the 

magnetometer performance. However the gyroscope is only able to measure relative 

values or angular velocity (O’connor et al., 1976). For measuring angles using a 

gyroscope sensor, errors accumulate resulting in insufficient data calculation. Ismail 

et al. (2018) proposed eight different methods for the integral calculation of the 

gyroscope sensor (Ismail et al., 2018).  

 

This measurement is affected by the drift of the gyroscope, which will be addressed in 

chapter 4. For measuring absolute values of angular velocity, a combination of 

accelerometer and magnetometer is required. Based on the various drawbacks in all 

the systems, all three systems need to be used in conjunction with each other to provide 

reliable solutions. 

 

3.3 IMU for positioning and orientation in UAV system 
 

IMUs are a main component of the Inertial Navigation System (INS) used in 

UAVs/Drone. The data collected by an IMU is processed by the system to track 

position through Dead Reckoning (DR) (Loewy, 2003). DR calculates current position 

according to the previously determined position and the relative changes observed 

through the IMU over time. Common applications for IMUs include control and 

stabilisation, navigation and correction, measurement and testing, unmanned systems 

control, and mobile mapping (Noureldin, 2013). If the initial pose is known, and if 

perfect models for the IMU exist, the process illustrated would lead to perfect position 

estimation. In practice, however, the inertial measurements are noisy and biased, as 

will be discussed in more detail in the following sections. Because of this, the 

integration steps from angular velocity to rotation and from acceleration to position 

will introduce the errors in the sensors. 

 



35 

 

To measure the position and orientation of a device (e.g. drone) using an IMU, first 

the sensor orientation is provided by the gyroscope integration. The subtraction of 

earth’s gravity, which is determined by the orientation of the sensor and double 

integration of the accelerometer present the sensor position (Hoflinger et al., 2013) 

(Kok et al., 2017). Figure 3.4 illustrate Dead Reckoning method which is the process 

of integrating the measurements from inertial sensors (accelerometer and the 

gyroscope) to obtain position and orientation information. 

 

Figure 3.4 Dead Reckoning method based on integrated accelerometer and the 
gyroscope to find position and orientation 

 

To calculate position and orientation from the IMU, acceleration and angular velocity 

is integrated over time. This can be done using the accelerometers to calculate the 

velocity by incorporating the measured acceleration. Then, by adding the velocity, the 

position can be measured from a reference point of 𝑥𝑥,𝑦𝑦, 𝑧𝑧. This method is beneficial 

when the estimator is for a short period of time because uncertainty accumulates or 

grows exponentially over time (Kok et al., 2017).  

 

In order to define the correct position based on time (t) and velocity (V) in an INS, the 

data generated by an IMU is processed via a computer, and these physical properties 

can implement Dead Reckoning. For example, if a drone is flying east at 10 m/s, it can 

be concluded that its new location is 10 metres east of its initial position after an 

interval 1 second. Distance is the speed travelled multiplied by the amount of time 

travelled. Given the right information and using this basic formula, it can be 

determined how far the drone has travelled. Combining this method to a system of 

maps can show where a drone is on the map similar to GNSS, but without the need to 

be connected to or in communication with any outside systems. In order to use the 
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Dead Reckoning method, basic kinematic formulas are used. t0 denotes the time at 

position X0 and velocity V0 . The new position X1  can be calculated as follows: 

 

X1 = X0 + V0(t1 −  t0)                                                                            (3.6)     
                  

In case of having acceleration, the formulas below will apply, where A0 denotes 

acceleration at t0: 

 

V1 = V0 + (t1 −  t0)A0                                                                             (3.7) 
 

X1 = 1
2

 A0 (t1 −  t0)2 + V0(t1 −  t0) +  X0                                              (3.8) 
 

(Jacky et al., 2018) proposed a solution from the estimated accelerometer and 

gyroscope calibration parameters which deliver a more accurate Dead Reckoning 

solution than the popular multi-position calibration method by recovering the 

gyroscope scale error and other systematic errors.  

 

The data received from an IMU needs to be processed in order to calculate the changes 

in the drone’s positions and orientations. In an effort to reduce the effect of noise from 

the environment and sensors and reduce drift, methods need to be employed an adapted 

to help eliminate and reduce these effects. These may include different types of 

filtering methods such as Kalman or complementary filters based on established 

methodology used in drones (Huang et al., 2015) (Yuan, Yu, Zhang, Wang, & Liu, 

2015).  

3.4 Errors, initialisation and compensation 
 

The data received from an IMU needs to be processed in order to calculate the change 

in the drone’s position and orientation. Specifically, this means that there are some 

errors which occur and accumulate, and their effects need to be propagated in 

presented data. 

 

The IMU starts collecting data through its sensors, namely, accelerometer, gyroscope 

and magnetometer, to calculate the roll, pitch, and yaw. This data assists in obtaining 
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the movement distance in each time interval. This information supports the drone in 

avoiding obstacles. A great challenge regarding utilising IMU is related to sensors’ 

noise and gyroscopic drift. It has the most adverse impact, which exponentially 

increases over long distances. IMU has an unlimited drift in the velocity, position, and 

altitude caused by a gyroscope in long distance.  

3.4.1 Initialisation and calibration of IMU 

To reduce environmental (compensation) and sensor noise, alongside drifting over 

time which will affect the IMU observed data, calibration of the IMU is important. A 

general method for IMU calibration is performed by putting it in a static and still 

position until roll, pitch, and yaw values become stabilised (D. Lee et al., 2011). Then 

each axis sensitivity has adjustment values applied by measuring the stable conditions 

over time and calculating the necessary corrections.  

 

When an IMU is configured for capturing data continuously, it needs to be calibrated 

to initialise for capturing. Accelerometer calibration only needs to be done once. 

During calibration, the hardware must be stable. Magnetometer calibration should be 

done in the final installation location with everything powered and running. Any 

changes in the magnetic or electrical environment could affect the calibration, and it 

would require performing a new magnetometer calibration if these conditions change. 

For gyroscope calibration the gyroscope biases need to be addressed. Again, the IMU 

needs to be motionless, but not necessarily level. Additionally, gyro bias is highly 

sensitive to temperature, therefore calibrating the gyros is required every time the 

sensor is used rather than storing and using a static set of gyro biases (Hemanth et al., 

2012). 

 

Regarding calibration for specific types of IMU, the MPU 9250 used in this research 

is first calibrated in the factory to acquire values for accelerometer, gyroscope and 

magnetometer in the triple axis (x, y, z), which can then be extracted. The MPU 9250 

used in this research has its own specific calibration and initialisation. Firstly, factory 

calibration values for the accelerometer, gyroscope and magnetometer in the triple axis 

(x, y, z) are extracted. Then, each axis sensitivity value is adjusted using a loop and 

wait process until the numbers stabilise. Using a sufficient delay in loop simulation is 
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essential as otherwise the sensors can never reach stabilised values. For the specific 

IMU used in this research sensor calibration takes approximately 8 seconds.  

3.4.2 Compensation and information fusion 

An essential element of the design of autonomous systems is sensor fusion. This can 

be done by integrating two or more data sources. This allows for consistent information 

with an increase in accuracy and reliability which is not seen within a single data 

source. In order for autonomous systems to be successful in interacting with their 

surroundings, four main areas are necessary. These are known as Sense, Perceive, Plan 

and Act. Sensors collect information from the system and the environment, 

representing the Sense area. The Perceive step provides information from previously 

sensed data. Planning determines what it needs to accomplish and finds a path to allow 

it to do so. Finally, Act calculates the actions needed for the system to track the path. 

This step determines the actions of the controller and the control system.  

 

The perceive step has two different responsibilities. Self-awareness, referred to 

localisation or positioning and is where sensor fusion is integrated. The localisation 

and positioning of a system, while simultaneously detecting and tracking other objects 

are actions under taken by sensor fusion. This results in the system working with data 

with less noise and uncertainty, alongside fewer deviations. For example, a single 

accelerometer placed on a table only measuring the acceleration as a result of gravity. 

A perfect sensor output would measure a constant 9.81 m/s2, however the actual 

measurement is still noisy. Noise depends on the quality of the sensor and is usually 

randomly distributed, so it cannot be removed through calibration alone. 

 

To reduce the noise an additional accelerometer can be added and by averaging these 

two readings the noise will be reduced. Fusing sensors together to reduce the combine 

noise is only affective when the noise is not correlated with the sensor. Fusing identical 

sensors will result in half of the noise of a single sensor. The averaging function is the 

core of this fusion algorithm. For example, to measure the direction of an IMU which 

is facing relative to North, the magnetometer in the system could be used to measure 

the deviation of the angle from magnetic North. However, this sensor measurement 

will be still noisy due to noise or interference.  
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To reduce noise a second magnetometer can be added. However, in this situation the 

noise is coming from the moving magnetic fields, created by the system’s electronics. 

This implies that the correlated noise source will affect every magnetometer and will 

not remove noise through the averaging. To solve this problem there are two options, 

one being to move the sensors away from the external interference, or to filter the 

measurement through some forms of filtering methods. The second option is to fuse 

the magnetometer with the angular rates measures by the gyroscope. The gyro will be 

noisy as well, however the true values should be complementary. Using two different 

sensor types may reduce the correlation between the different sensor noises, and so be 

used to correct each other. If a change is measured in the magnetic field by the 

magnetometer, the gyro can be used to determine whether the rotation is from physical 

movement of the drone or from noise (MathWorks, 2020). 

 

Compensation based on the earth rotation over time and the factors caused by the effect 

of latitude and elevation, need to be applied to the gyroscopes and accelerometers 

(Stephenson, 2003). Considering these compensations are necessary to obtain accurate 

data. Generally, observed data consists of both the real data and compensations. These 

compensations must be applied by considering them as default values. The major 

gyroscope compensation is the average of the angular velocity of the rotation of the 

earth. It can be calculated from the following formula based on earth’s rotation which 

moves approximately 360 degrees per 24 hours. Velocity (rad/s) equals movement 

caused by rotation (m) over time in second (s): 

 

V =  Δd
 Δt

=  7.26e−5rad. s−1                                                                                     (3.9) 

 

The accelerometer compensation is based on the global velocity (nominally (0, 0, 9.8) 

m/s-2). The three components are (ax, ay , az) and their direction state 9.8 ms-2 in the 

vertical direction. 

 

Generally, roll and pitch are calculated by the gyroscope and accelerometer. The 

gyroscope can respond quickly to change, however, depending on its sensitivity it will 
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create drift along these rotational axis by accumulating errors over time. Because of 

this and the dynamic sensors noise from the three components of the IMU influencing 

its output, it is therefore required that an appropriate filter is used based on the nature 

of generated data. In most cases, to address drift issues of the gyro, using a filter such 

as the KF and considering bias and compensation are recommended for data fusion, 

however high accuracy sensor fusion, and constant sampling rate must be taken into 

account (Smyth et al., 2007). That contrasts with the sampling rate for the 

synchronisation of the IMU data and capturing device, such as the low frequency 

capturing rate for an image frame by camera. 

 

3.5 Filtering 
 

To reduce the effect of noise from the environment and sensors, and to reduce drift, 

filtering methods need to be investigated and adapted. These may include different 

types of filtering methods such as the Kalman Filter (KF), the Extended Kalman filter  

(EKF), the Complementary Filter (CF), the Particle Filter (PF) and the Artificial 

Intelligence (AI) based on stablished methodology used in drones (Noureldin, 2013). 

However, while there are several filtering methods to address the stated issue of IMU, 

this research focused on implementing the KF in order to achieve a solution. It is worth 

mentioning the state of art to solve this problem is based on Artificial Intelligence 

namely deep Neural Networks (NN). Since applying NN as a deep learning method 

requires a very large data set and accurate ground truth, an insufficiency in data meant 

it was not possible to use NN within this research (Brossard et al., 2020).  

 

KF uses both measurements from the accelerometer and gyroscope to estimate the 

current pose and to reduce drifts and errors (Zhang et al., 2014). (Gui et al., 2015) 

proposed a method using the CF algorithm which uses a low-pass filter and a high-

pass filter to deal with the data from accelerometer and gyroscope, while the KF takes 

the tilting angle and gyroscope bias as system states, combining the angle derived from 

the accelerometer to estimate the tilting angle.  
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EKF is a special case of the KF that is used for nonlinear systems (Alatise et al., 2017). 

EKF is used to estimate the drone position and orientation by employing the prediction 

and correction from a nonlinear system model. EKF was designed to correct each 

sensor error by fusing the inertial and vision data together to obtain accurate 

orientation and position. 

 

KF is designed to predict the future behaviour of data based on analysing the previous 

existing values, whereas CF works based on linear computation. The recursive 

functionality of KF makes it superior when compared to CF due to its low time and 

processing power requirements.  This characteristic of KF makes it a preferred method 

as its algorithm takes less time and processing power on a drone. KF is one of the more 

common methods, and a key attribute is that a mathematical model of the system is 

already built into the filter. Another filtering method such as Particle Filter (PF) uses 

a suboptimal observer that can estimate the states of a nonlinear non-Gaussian system 

(Seong-hoon et al., 2008).  

 

Although there are several sensor fusion algorithms, at their core every one of them 

follows a similar procedure. That is, they initialise attitude either by setting the values 

manually or using the initial results of the magnetometer and accelerometer, and over 

time used the direction of the magnetometer field and gravity to slowly correct for the 

drift in the gyro. For example, Mahony orientation filter method uses a proportional 

and integral controller to correct the gyroscope bias, whereas the Madgwick filter 

method uses only a proportional controller (Ludwig et al., 2018). Both approaches use 

a quaternion representation, which is a four-dimensional complex number representing 

the orientation of an object. 

3.5.1 Principal of filtering  

The data received from an IMU needs to be processed in order to calculate the changes 

in the drone’s positions and orientations. To reduce the effect of noise from the 

environment and sensors, and to reduce drift, methods need to be employed and 

adapted to help eliminate and reduce these effects. These may include different types 

of filtering methods such as Kalman or complementary filters based on established 

methodology used in drones (Yuan, Yu, Zhang, Wang, & Liu, 2015). 
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3.5.2 Complementary filtering 

Complementary Filter is usually a low pass/high pass filter pair (Higgins, 1975). The 

purpose of using CF is to combine accelerometer and gyroscope values to estimate 

IMU orientation. Both gyroscope and accelerometer can indicate IMU angles, an 

accelerometer generates data which are reliable in low frequency signals, whereas a 

gyroscope reports data which are more accurate in higher frequency ranges. In order 

to smooth the accelerometer data, a low-pass filter is required, while a high-pass filter 

is needed to filter the gyroscope data. Complementary in this sense means that the 

system combines the two measurements in a way that complements each other. In other 

words, it takes some part of one measurement and adds the complementary part of the 

other so that the sum of the two parts is one measurement. Accelerometer measurement 

is passed through low-pass filter G(s) while the measurement passed through gyro is 

high-pass filter ([1 − G(s)]). 

 

Since adding these two filters together equals one, then they are complimentary of 

each other, so the resulting sum of the low pass and high pass filter is always equal to 

one, and this means at low frequencies the accelerometer data (acc) has a higher 

determining factor over gyroscope values, while conversely the gyroscope values 

(gryo) at high frequencies will influence the final value more than the values from the 

accelerometer. A mathematical form of this complementary filter can be written as: 

 

angle = (1 − α) ∗ (angle + gyro ∗ dt) + (α)(acc)                                           (3.10) 

0 ≤ α ≤ 1 

 

where α denotes a time constant which is between 0 and 1. It defines the boundary 

where the accelerometer readings stop and the gyroscope readings take over and vice-

versa. Influence is determined depending on the frequency of movement: 

- Lower frequency results in the angle from accelerometer having a higher 

influence. 

- High frequency results in the angle from gyroscope having a higher influence. 
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The complementary filter consists of both low and high pass filter, and due to the fact 

that it is easier to implement, it was used to obtain precise data. KF requires less 

memory by using previously existing data than compared with the complementary 

filter, and because of this advantage this study will focus on using the KF. 

 

3.5.3 Kalman Filtering 

KF are often used to optimally estimate the internal states of a system in the presence 

of uncertain and indirect measurements (Gede, 2011). KF for INS combines different 

measurements considering estimated errors to produce a trajectory including time, 

position and attitude. KF describes clearly how each state can be affected by the 

previous state and how measurements depends on each state. Figure 3.5 illustrates the 

KF estimation of the current state by calculating the predicted value of the state 

combined with the factor of measurement and predicted value.  

 

Figure 3.5 KF state estimation  
 

In order to design a KF for a system, three major definitions are needed. A KF 

combines these measurements and predicts the optimal estimate of the IMU position 

and velocity.  Generally, the three components are defined as 1) State Update, 2) Time 

Update and 3) Measurement Update: 

 

State Update: KF are used to estimate states based on linear dynamical systems in 

state space format.  

 

The process model defines the evolution of the state from time k − 1 to time k as: 

 

xk = Axk−1 + Buk−1                                                                               (3.11) 
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Where A the state transition matrix is applied to the previous state vector xk−1 and B is 

the control input matrix applied to the control vector uk−1 . 

 

In other words both A and B are coefficient values obtained by KF, where as xk and 

xk−1 respectively are the values of interest in states k and k − 1, and uk is control 

system in states (state k − 1 and k denote Kalman gain at time stamp t − 1 and t). 

 

Time update: This is simply the difference in time between one update and the next 
and is defined as: 

∆t= tk+1 − tk                                                                                          (3.12) 

 

Measurement update: The process model is paired with the measurement model that 

describes the relationship between the state and the measurement at the current time 

step k as: 

K = PkHT(HPkHT + R)−1                                                                         (3.13) 

 

The measurement update equation (3.13) calculates the Kalman gain K, which is used 

to update the state estimate xk with the measurement at time step k. The measurement 

update involves the state covariance matrix P, the observation matrix H, and the 

process covariance matrix R, which describes the noise in the system. The equation 

calculates the Kalman gain as the product of the state covariance matrix Pk and the 

transpose of the observation matrix H, divided by the sum of the product of the 

observation matrix H and the state covariance matrix Pk, multiplied by the transpose 

of H, and the process covariance matrix R. 

 

R denotes a 3x3 matrix for 3D purposes and 2x2 matrixes for 2D such as:  

Racc = �
Δax2 0
0 Δay2

�  

Rgyro = �
Δgx2 0
0 Δgy2

�  
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P represents the state covariant matrix, H is the observation Matrix, and Q is the process 

covariance matrix which describe the noise in the system and is obtained from FRvFT 

when: 

F = Δx
Δv

                                                                                                                                (3.14)  

where x is the desired output and v is device noise. Generally, Δ indicates difference 

values between stated k + 1 and state k. 

 

The KF is capable of combining multiple inputs from various sensors and not only 

generates an approximation of current state of a system, but also is able to predict 

forthcoming status of the system. Generally speaking the KF is a statistical approach 

which integrates data of statistical nature of system errors with variables of a system 

dynamics to estimate state of a system. Velocity and position are main variables in any 

navigation system. In order to obtain minimum error variance in estimation of system 

status, Kalman gain is used which a weighing function is based on optimised KF. 

 

A limitation is normally based on linear motion and non-linear motion. In the Extended 

Kalman Filter (EKF), the state transition and observation models do not need to be 

linear functions of the state, therefore it makes use of a nonlinear state space model. 

However, it may instead be differentiable functions. EKFs compute filtering estimates 

in terms of the conditional probability distribution. EKF can be interpreted as Gauss-

Newton optimisation of the filtering problem using only one iteration with a step length 

of one (Kok et al., 2017). In order to deal with nonlinear models efficiently in 

navigation systems, the EKF is introduced, due to the fact that it is computationally 

optimised comparing with other nonlinear filtering method e.g. Point-Mass Filters and 

Particle Filter (Alatise et al., 2017). 

 

3.6 Chapter Summary 
 

Microelectromechanical system (MEMS) inertial sensors have become widely 

available due to their small size and low cost. These IMUs perform at high sampling 

rates and can be integrated to obtain position and orientation information. These 

estimates are accurate on a short time scale, but suffer from integration drift over longer 



46 

 

time scales (accumulating error). To overcome this issue, inertial sensors are typically 

combined with additional sensors and models. KF is a suitable candidate for sensor 

integration.  

 

Some advantages of the KF over the Complementary filter:  

1. Increased Accuracy: The KF is a more sophisticated algorithm that 

incorporates both the measurement data and the state estimate to produce a 

more accurate result. This results in a more accurate estimation of the 

orientation and position of the IMU.  

2. Adaptability: The KF is adaptable to changing conditions, such as changes in 

the motion or environment. This allows it to be more robust and effective in 

removing gyro drift in complex environment 

3. Handling Uncertainty: The KF is capable of handling uncertainty in the 

measurement data, which is important in removing gyro drift in IMU. The 

complementary filter, on the other hand, assumes that the measurement data is 

always accurate, which is not always the case in real-world scenarios.  

4. State Estimation: The KF provides a continuous state estimation, which can be 

useful for navigation purposes. The complementary filter, on the other hand, 

provides only a filtered output, which may not be as useful for navigation 

purposes. 

 

In conclusion, the KF is a more advanced and sophisticated algorithm for removing 

gyro drift in IMU compared to the complementary filter. However, the choice of 

algorithm ultimately depends on the specific requirements and constraints of the 

application. 
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4 IMU FILTERING METHODOLOGY AND PROTOTYPE 

4.1 Introduction 
 

As discussed in the previous chapter, for this research an IMU is ideal for tracking the 

state of a drone over a short period of time, as well as measuring changes in orientation. 

Based on a previous study in (Nazemi et al., 2021), the basic position or first IMU 

measurement is realised as soon as the capturing device detects a manmade marker 

and utilises this as the starting point. Through the detection of the manmade makers, 

global coordinate values of the drone location are obtained. Based on this initial 

information, the IMU can then estimate the changes in orientation and position, and 

then be used in the drone control.  

 

The method proposed in this research focuses on calculating the orientation and 

position after this starting point using data from a low cost IMU commonly used in 

UAV systems. In calculating this information reliably, a high level of positioning 

accuracy is needed to control the drone and process the data. This means that the noise 

and exponential accumulation of errors (such as gyro drift) needs to be processed 

efficiently to convert the raw collected data to more accurate information in order to 

provide the orientation, velocity and distance. To address this problem, the IMU data 

collection and filtering will be outlined in the following sections. The prototype 

designed for testing these values will also be described. 

4.2 Filtering Implementation 
 

Various methods of filtering may be employed, as discussed in section 3.5. Since the 

drift and noise in this system are stochastic (not predictable), accumulative, and not 

deterministic, this research focused on designing a KF for this specific case. A 

deterministic system is a system in which no randomness is involved in the 

development of future states of the system. A stochastic system has a random 

probability distribution or pattern that may be analysed statistically, but cannot be 

predicted precisely. An accumulative system consist of developing data over time in 

an incremental pattern.  
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The KF is a statistical method that combines the knowledge of the statistical nature of 

system errors with a knowledge of system dynamics, as represented by a state model. 

The KF provides an estimate of the state of a system to predict the future state of the 

system. Any variable can be included in the states. In the navigation system, they are 

usually concerned with position and velocity. The state estimate is obtained by using 

a weighting function called the Kalman gain (K), which is optimised to produce a 

minimum error variance.  

 

As stated previously (equations 3.1 to 3.5), in the first implementation for this system 

and to avoid the usage of a filter, roll and pitch are obtained respectively from Anglex 

(ax) and Angley (ay) from the accelerometer. However, experimental results 

demonstrate it is impossible to calculate the value for yaw using the accelerometers 

only as the rotation around the horizontal plane is not captured. The drone heading is 

primarily provided by the magnetometer, but as highlighted in section 3.2.3, it can be 

supplemented by other sensors and it needs accurate roll and pitch data to calculate 

yaw (Baranek et al., 2012). 

 

Based on its quick response to change, the changes in roll and pitch are calculated by 

the gyroscope. The gyroscope provides the values of angular velocities along the 3-

axes. Gyro sensitivity leads to drift being generated along these rotational axes by 

accumulation of errors over time. To avoid drift in the gyroscope and to obtain an 

accurate orientation, a KF is used to integrate two vulnerable sensors, the 

accelerometer and the gyroscope. 

 

In addition, the reasons behind filtering data in this research is to overcome 

environmental (compensation) and sensor noise, alongside sensors drifting over time, 

which affect the IMU data observed. By employing a filter, it allows for the processing 

and elimination of such adverse effects. Within this research, the filter was used 

primarily for the roll and pitch data, not the yaw/magnetometer data. However, based 

on equation 3.5, the filtered roll and pitch data is still critical for the estimation of the 

orientation using the magnetometer. 
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Figure 4.1 Kalamn Filter (KF) Implementation. 
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In order to design a KF for a system, three major components need to be defined. 

Generally, the three components to be defined are 1) State Update, 2) Time Update 

and 3) Measurement Update, described in equations 3.11, 3.12, and 3.13. The KF 

combines measurements based on these equations, and uses them to predict the optimal 

estimate of IMU position and velocity/heading. 

 

Figure 4.1 is an overview block diagram for filtering implementation in this research 

which illustrate state update, measurement update and time update. Each steps are 

explained in more detailed in the remaining parts of this section. 

 

State zero: State zero in the overview block diagram is indicated by the top most 

decision box. Using the gyro measurements, the change in pitch, roll and yaw can be 

obtained by integrating these values over time. However, in order to calculate the 

absolute values of these angles, reference data is needed. This can be obtained from 

the accelerometer for roll and pitch: 

 

angleaccx = roll                                                                                             (4.1)                                                         

angleaccy = pitch                                                                                                               (4.2) 

 

For calculating yaw, the data from the IMU uses the magnetometer data as reference 

and then integrates the gyro data over time. The angleaccx and angleaccy  are the angles 

calculated from the accelerometer, and are not the accelerometer raw 

value (ax, ay, az). The state vector for this system is a 2D vector. The Figure 

description is focused on the application of defining angleaccx , but can also be 

employed for angleaccy. The angle has the following properties: 

 

−180 < angleaccx < 180                                                                            (4.3)                              

angleaccx = roll 

roll = atan (ay/√ax2 + az22 )        

                                                                         

State Update: KF are used to estimate states based on linear dynamical systems in 

state space format.  
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The process model defines the evolution of the state from time k − 1 to time k as: 

xk = Axk−1 + Buk−1     
                                                                                          
 

In other words, both A and B are coefficient values obtained by KF, where as xk and 

xk−1 respectively are the values of interest in states k and k − 1, and denote Kalman 

gain at time stamp t − 1. uk is the control system in states.  

 

Kalman gain is the most significant parameter for the filter, which is represented by a 

2D vector and is denoted by [Kt, Kt−1]. This represents for this research 

[Kanglext
, Kanglext−1

] or [Kangleyt
, Kangleyt−1

]. 

 

Matrix A  is the state transition matrix as applied to the previous state vector xk−1   and 

B is the control input matrix applied to the control vector uk−1 and 𝑢𝑢𝑘𝑘 is control system 

in states. In the overview block diagram, x in equation 3.11 translates as anglegryox  and 

anglegyroy respectively, to represent the angle of the drone around the x-axis and y-

axis (as illustrated in Figure 3.3 and section 3.2.5), which is defined as the system 

description in the Kalman design for this study. 

 

The state vector for this system is a 2D vector which contains: �
angle 

biasgyro
�  

 

The angle and bias refer to the angle 𝑥𝑥 and 𝑦𝑦 for the gyro:  

�
anglegyrox 
biasgyrox

� and �
anglegyroy 
biasgyroy

�. 

 

Bias, previously described in section 3.4, is used when the system must compensate 

for the measurement value not starting from zero. For the specific IMU used in this 

research, MPU 9250, the calibration values are as follow and were obtained after 

approximately 8 seconds.  

 
Accelerometer bias represent by (ax, ay, az) and obtained (-86.91, -37.84, -11.17). 

Gyro bias represent by (gx, gy, gz) obtained these values (1.50, -0.50, 0.70) [deg/s] 

(TDK, 2021). 
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Time update: This is simply the difference in time between one update and the next 

and is defined as: ∆t= tk+1 − tk                                                                                           

 
The IMU has three different sensors with different sampling rates. The different 

sampling frequencies need to be combined through synchronisation. To sync two 

devices with different frequencies, the data from the higher frequency device must be 

collected in a specific time interval. The rate of sampling of the higher frequency 

device to the lower frequency device defines this time interval.  

 

The IMU utilised in this research is a MPU9250, which includes a gyroscope and 

accelerometer. The accelerometer frequency is set to 260 Hz, and the gyroscope is set 

to 256 Hz. The capturing device frequency is calculated based on the timestamps and 

number of samples. Considering n is the number of samples, t = {t0, t1, … , tn} is the 

sampling period and t0 to  tn  is the time interval, then the system period or ∆𝑡𝑡 is 

calculated by:  

  ∆t=  tn – t0                                                                                                              (4.4) 

 

To calculate the frequency, which is equal to sampling rate, the number of samples 

need to be divided by the sampling period:  

Frequency =  sampling rate = n
 ∆t

                                                                           (4.5) 

 

To sync two devices with different frequency the data from high frequency device 

must be collected in the sampling interval defined by: 

sampling time interval =  high frequency device
low frequency device

                                          (4.6)                                                  

 

As mentioned in this example, the sampling time interval can be calculated by the 

accelerometer frequency divided by the magnetometer frequency, therefore for the 

magnetometer and accelerometer the sampling time interval is 4. This sampling time 

interval is calculated based on the accelerometer frequency being the high frequency 

sensor, and it in turn is used to calculate the optimised sampling time interval between 
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accelerometer and gyroscope. The frequency of the gyro in full power mode (3.2 mA) 

is 1000 Hz for Output Data Rate (ODR), however on average it operates at 256Hz.  

 

The sampling time interval between the accelerometer and gyroscope is obtained from 

dividing the gyroscope frequency by the accelerometer frequency, which is equal to 

32 for the IMU used in this research, but may vary based on the IMU specifications.  

 

Measurement update: As stated in section 3.5.3 the measurement update formula in 

the KF is given by: K = PkHT(HPkHT + R)−1                                                                          

 

In this equation, K is the Kalman Gain, Pk is the state covariance matrix, H is the 

observation matrix, and R is the measurement covariance matrix. The Kalman Gain is 

used to weigh the importance of the predicted state and the measurement, with the 

measurement being more reliable, the weighting will be higher and vice versa. The 

state covariance matrix Pk and the measurement covariance matrix R, both describe 

the uncertainty in the system. The observation matrix H describes the relationship 

between the state and measurement. 

 

In general terms 𝑥𝑥 indicates the vector of interested parameter in any system. For 

example, in an Inertial Navigation (INS) system. This vector indicates position and the 

parameters are velocity and heading per time interval, the 𝑥𝑥 vector determine by at 2x1 

matrix as �velocity 
heading�. K is Kalman gain. u is the vector of controlling factor in state. xk 

is the position in the state at time tk , xk−1  is the position in previous state and 𝑢𝑢𝑘𝑘 is 

velocity of the state. R denotes a 3x3 matrix for 3D purposes and 2x2 matrixes for 2D 

such as:  

Racc = �
Δax2 0
0 Δay2

� (4.7) 

Rgyro = �
Δgx2 0
0 Δgy2

� 

 

P represents the state covariant matrix: 

P = �P00 P01
P10 P11

�                                                                                                                       (4.8) 
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H is the observation Matrix: 
 H = [1 0] 

Q is the process covariance matrix which describe the noise in the system and is 

obtained from FRvFt.  

F =
Δx
Δv

 

where  x is desired output and 𝑣𝑣 is device noise. Generally, Δ indicates difference value 

between stated k + 1 and state k. 

 

To design a KF in this system based on the 2D purpose, the Kalman gain (which 

minimizes the estimate variance) is a 2x1 vector represent by [Kt, Kt−1] that is satisfied 

in the following equations: 

 

Anglek = Anglek−1  + (Kt−1  ∗  ∆angle )                                                                (4.9)                 

biask = biask−1 + (Kt  ∗  ∆angle )                                                                          (4.10) 

 

In addition, the error covariance matrix for state matrix 𝑥𝑥 is a 2D matrix which is 

denoted as Pt, and is calculated by: 

Pt = �
P00t P01t
P10t P11t

�                                                                                                    (4.11) 

P00t = P00t−1 + ∆t  ∗  �∆t ∗ P11t  −  P01t −  P10t +  Qangle�                         (4.12)                     

P01t = (∆t  ∗  P11t) − P01t−1                                                                                     

P10t = �∆t  ∗  P11t� − P10t−1                                                                                     

P11t = (Qbias ∗ ∆t) + P11t−1                                                                                     

 

After using the KF, the error covariance matrix can be updated as the following: 

P00t =  (Kt−1 ∗  P00t) − P00t−1                                                                      (4.13)    

P01t =  (Kt−1 ∗  P01t) − P01t−1  

P10t =  (Kt−1 ∗  P10t) − P10t−1  

P11t =  (Kt−1 ∗  P11t) − P11t−1  

 



55 

 

The process noise variance for the accelerometer (Qangle), process noise variance for 

the gyro bias (QgyroBias) and variance of the measurement noise (Rmeasure) is 

predefined in the factory. So based on this factory setting for the IMU used in this 

research, it is assumed that Qangle is set to 0.001 and Qgyrobias  is set to 0.003 with 

Rmeasure  set to 0.03 in this case. From these assumed values, here 𝑆𝑆 is the estimated 

error which is satisfied in the following equation and the Kalman gain can be obtained 

by: 

Kt−1 =
C00t
S

                                                                                                             (4.14) 

Kt  =  
C10t
S

                                                                                                                (4.15) 

S =  C00t  +  Rmeasure                                                                                          (4.16) 

angle = angle + (Kt−1 ∗ y)                                                                                          (4.17) 

bias = bias + (Kt ∗ y)                                                                                                (4.18) 

 

Here 𝑦𝑦 is angle difference (new angle – angle) and in equation 4.11 𝑦𝑦 can be translated 

as either: 

• Assuming Kalman represent by Kalman x then 𝑦𝑦 is: 

y = ∆anglegyrox=  ∆roll                                       (4.19)   

• Assuming Kalman represent by Kalman 𝑦𝑦 then 𝑦𝑦 is: 

y = ∆anglegyroy=  ∆pitch                                                                             (4.20)                                                                  

 

If the filter is for roll or pitch, as similarly shown in equation 4.10, bias can be 

translated as 4.21 and 4.22 (depending on if the value is being applied to roll or pitch). 

For roll the bias is defined as: 

bias = biasgyrox                                                                                                     (4.21) 

For pitch, the bias is defined as: 

bias = biasgyroy                                                                                                      (4.22) 

 

In equation 4.11, angle can be represented by (depending if the value is being applied 

to roll or pitch): 

angle = anglegyrox                                                                                                    (4.23) 
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For pitch, the angle is defined as: 

angle = anglegyroy                                                                                               (4.24) 

 

As the state estimate is obtained by using the Kalman gain K as a weighting function, 

this will then provide a more accurate Kalman gain calculation, resulting in access to 

more robust system vector values. 

 

4.3 System Prototype 
 

The following section briefly explains the applied designed system using this research 

for drone navigation in underground mining, as mentioned in this chapter’s 

introduction. The IMU starts to process data as soon as the capturing device detects 

the manmade marker sign at the starting point and the calibration is finalised. The IMU 

data assists the system to find the rotation around the centre of the coordinate system 

in each time stamp using the rotation matrix (D. Lee et al., 2011). This takes into 

account movement, and its rotation around the centre of the coordinate system.  

 

The initial global drone position estimation has been done according to a known global 

marker value (G), detected initially by the system. The overview of this procedure has 

been illustrated in Figure 4.2. The known global coordinate value of the marker is 

denoted by (xG. yG. zG  d∆t) represents movement distance interval d∆t according to 

IMU data where (xDt0 . yDt0 . zDt0) is the drone global coordinate value according to the 

marker distance. In state t0, (xDt1 . yDt1 . zDt1) is the drone global coordinate value 

according to movement distance to state t1. In Figure 4.2, D indicates distance 

measured by triangle similarity (Nazem et al., 2019) 
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Figure 4.2 Unknown obstacle estimation by IMU and capturing device 
 

4.4 System Implementation 
 

In a navigation application, the IMU sampling provides raw angular velocity from the 

gyroscopes, acceleration from the accelerometers, and heading processed by roll and 

pitch from the accelerometers and raw data from magnetometer. The KF is responsible 

for filtering the information in order to gain useful information. The KF performance 

and the accuracy of the results severely depend on high speed and constant sensor 

sampling rate data. The prototype proposed by this study contains the IMU connected 

to a central processor unit through a micro controller. The central processing unit is 

responsible for making decisions based on the filtered and processed IMU data, and to 

send commands to control unit to manipulate drone movement in order to avoid 

obstacles in INS. Implementation of the initial prototype proposed by this research has 

two approaches which are IMU handshakes with Raspberry Pi (RPi) through Arduino 

and IMU handshakes with RPi without any further device using General Purpose 

Input/output (GPIO) pins. For the application of such approaches, the IMU must first 

be synchronised with the various sampling sensors. 

 

4.4.1 System Synchronisation  

The IMU has three different sensors with different sampling rates. The different 

sampling frequencies need to be combined through synchronisation. To sync two 

devices with different frequencies, the data from the higher frequency device must be 

collected in a specific time interval. The rate of sampling of the higher frequency 

device to the lower frequency device defines this time interval.  
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The IMU utilised in this research includes a gyroscope and accelerometer. The 

accelerometer frequency is set to 260 Hz, and the gyroscope is set to 256 Hz. Capturing 

device frequency is calculated based on timestamps and number of samples. 

Considering n is the number of samples, t = {t0, t1, … , tn} is the sampling period and 

t0 to  tn  is the time interval, then system period or ∆t is calculated by:  

  ∆t=  tn – t0                                                                                                              (4.25) 

To calculate the frequency, which is equal to sampling rate, the number of samples 

need to be divided by the sampling period:  

Frequency =  sampling rate = n
 ∆t

                                                                           (4.26) 

 

To sync two devices with different frequency the data from high frequency device 

must be collected in the sampling interval defined by: 

sampling time interval =  high frequency device
low frequency device

                                       (4.27)    

                                             

4.4.2 Accelerometer, Gyroscope and magnetometer synchronisation 

As mentioned in this example, sampling time interval can be calculated by 

accelerometer frequency divided by magnetometer frequency, therefore for 

magnetometer and accelerometer the sampling time interval is 4. This sampling time 

interval is calculated based on the accelerometer frequency being the high frequency 

sensor, and it in turn is used to calculate the optimised sampling time interval between 

accelerometer and gyroscope. The frequency of gyro in full power mode (3.2 mA) is 

1000 Hz for Output Data Rate (ODR), however it normally operates at 256Hz by 

default. 

 

The sampling time interval between the accelerometer and gyroscope is obtained from 

dividing the gyroscope frequency by the accelerometer frequency, which is equal to 

32. Considering the common sampling interval, these three sensors can be synced for 

sample collection task. 
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• Low power accelerometer mode current: 8.4μA at 0.98Hz, 19.8μA at 31.25Hz 

• Magnetometer normal operating current: 280μA at 8Hz repetition rate 

sampling time interval =  Accelerometer frequesncy
Magnetometer frequency 

= 32
0.98

= 4                          (4.28)     

                      

• Gyro operating current: 3.2 mA (full power, gyro 1000 Hz ODR) 

sampling  time interval =  Gyroscope frequesncy
Accelerometer frequency 

= 1000
32

= 31.25                 (4.29)       

           

4.4.3 Synchronisation required for communication between IMU device and 

processing device. 

For communication between the IMU and devices such as a RPi or Arduino (also 

common for light weight drone operations), the following must be considered. As 

stated before, the prototype attempts the following: 

- IMU handshakes with RPi through Arduino  

- IMU handshakes with RPi without any further device using GPIO. 

 

In both methods the connection has been applied by either the I2C or SPI protocol with 

consistent rate (frequency). For instance, this project in prototype implementation used 

the I2C standard for communication with the processor unit (Arduino or RPi). The I2C 

time interval is 25 microseconds for synchronisation.  

- 400kHz Fast Mode I2C for communicating with all registers 

- 1MHz SPI serial interface for communicating with all registers 

- 20MHz SPI serial interface for reading sensor and interrupt registers 

- I2C time interval is 25 microseconds 

 

The communication between two devices in an embedded system are based on a set of 

defined protocols for sending and receiving data (SPI and I2C). SPI uses 4 signals: 

- Master Out, Slave In (MOSI) - which is the data going from the master to the 

slave; 
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- Master In, Slave Out (MISO) - which is the data going from the slave to the 

master; 

- Serial Clock (SCK) - when this toggles both the master and the slave to sample 

the next bit of information; 

- Slave Select (SS) - this tells a particular slave to go active.  

 

I2C uses 2 signals named SDA and SCL.  

- SDA is the data signal for the master and slave to send and receive send and 

receive data; 

- SCL is the clock signal to synchronise data communication. 

 

This research uses the I2C for communication with the processor unit (Arduino or RPi) 

and IMU. In this case, the master is the embedded controller and the slave is the IMU. 

The raw data collected by the IMU is sent to the KF. The obtained results sync with 

the capturing device data. The I2C utilised by this research uses interrupt instead of 

polling. 

 

4.4.4 First approach – Using RPi only 

In the first approach, the devices used are an IMU MPU 9250, a RPi, and a capturing 

device such as night vision camera. The IMU communicates through an I2C standard 

(VCC, GND, SDA, SCL) connection to the RPi via its GPIO. The capturing device is 

connected to the RPi through a FPC or FFC connector. The RPi, after processing data 

of these two devices and making a final decision, can then send commands to the drone 

ESC (electric speed controller) motor controller through GPIO PWM (pulse width 

modulation). 
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Figure 4.3 First approach prototype 
 

The implementation of this approach proved that the RPi processor cannot handle the 

input data from the device in terms of processing (capturing device), filtering (IMU 

data), and communicating the results of final decisions to the motor controller in a time 

efficient manner. Therefore, in the next approach this project added an Arduino as a 

micro controller to be independently responsible for the IMU data, and to send the 

filtered and ready to use information to the RPI in order to reduce the processing load 

of the RPI and to support it. Table 4.1 shows the navigation system timing by steps. 

Steps Timing (seconds) 

I2C Initialization 65miliseconds 

IMU initialization and calibration 1.6 second 

IMU data generation 0.5 second 

IMU data integration and roll and pitch 

calculation 

1958 ±0.04microseconds 

 

 Table 4.1 Navigation system timing by steps 
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4.4.5 Second approach – Using Arduino and RPi   

 

The second approach incorporated an IMU MPU 9250, Arduino MiniPRO (328 5v 

16Mhz), MiniPR, and RPi equipped with a night vision camera connected to the motor 

controller. The IMU MPU 9250 is connected to the Arduino through either the I2C or 

SPI protocol, the I2C is used by this research. The Arduino is attached to the RPi 

through USB and supplied by an external battery. In the initial prototype, the reason 

behind using an Arduino as a microcontroller was for collecting, saving, processing 

and integrating IMU data. The RPi is involved in finding a marker location by true 

matching key points between two consecutive frames captured by the night vision 

camera to find depth in two consecutive time intervals. Additionally, the RPi is 

responsible for making decisions and sending commands through GPIO PWM pins to 

the ESC to manipulate the drone. These commands are made from the final RPi 

decision making considering the data provided by the IMU, and information extracted 

from the frames captured by the camera. The integrated data by the Arduino was sent 

through USB0 with a baud rate of 4800 to the RPi. This means that the serial port is 

capable of transferring a maximum of 4800 bits per second. Figures 4.2 and 4.3 

illustrate the initial and final prototype. Using the RPi GPIO is an alternative method 

for connecting the IMU to RPi, and removes the Arduino as an extra power consumer. 

However, the Arduino is needed for parallel processing. This second approach showed 

better results compared to the first approach in regards to timing and implementation. 

Table 4.1 indicates timing for both approaches. Second approach is proposed because 

of its low power consumption whereas timing is the same as the first approach. 
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 Figure 4.4 Second approach prototype 
 

4.5 Chapter Summary 
 

This research designed a prototype for drone self-navigation in GNSS-denied 

underground mines. This prototype used a small and a very basic IMU. To address 

gyro drift, roll and pitch were obtained using the accelerometer data, and yaw was 

extracted by the integrated roll, pitch and magnetometer data. The system was 

designed for education and training purposes and still contained noise, which was 

unpredictable. The IMU provided the information to gain movement distance in each 

time interval. The second prototype experimental results proved that the KF is essential 

in filtering out noise and helping to reduce propagation of errors and ensures that it 

can be processed by the system. As mentioned before the drift and noise in this system 

are stochastic (not predictable) accumulative and not deterministic (predictable). 

Designing Kalman for this system allows opportunity to predict the next state. The 

limitation of using a KF for all aspects is the lack of a powerful processing system for 

such applications, as the RPi needs to process the IMU data and capturing device data 

in parallel. In case of using an Arduino to support the Raspberry pi in the processing 

required, the system encountered power consumption issues that requires extra power 

to the system, which leads to increase the weight of the whole drone system. 
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5 EXPERIMENTAL RESULTS 

5.1 Introduction 
 

The full process for autonomous positioning for drone in in underground mining 

consists of two modules. The first module is responsible for detecting manmade 

markers utilising an image capturing device. This data is processed to obtain the 

distance between drone and the marker which global coordinates are known. Then, the 

second module is responsible for processing the data collected from the IMU device 

to obtain the drone orientation and position while flying. This includes the IMU 

initialisation, calibration and data processing. This research focuses on the results of 

the second module. Figure 5.1 depicts an overview of the combined modules. The blue 

blocks indicate the parts attributed to the second module (this research), while the 

remaining blocks denote the steps to be implemented in another study. Nazemi et al. 

(2021) explained in detail the implementation of first module (Nazemi et al., 2021).  

 

Figure 5.1 Drone autonomous positioning system overview 
 

This chapter presents the experimental results of this study from basic to advance 

movement. Six different scenarios are defined to observe the behaviour of the IMU 

sensors before and after using the KF. This study was carried out in a laboratory 
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environment due to the lack of access to measurement sensors output data in a mining 

environment, and the ability to control the motion and environment. Roll, pitch and 

yaw were calculated as the reliable parameters for the IMU behaviour recognition. 

These results aid the research in troubleshooting the sensors and processing in terms 

of increasing accuracy in calibration, synchronisation and the filtering method. At the 

end of the implementation of these six scenarios, sample datasets for IMU were 

obtained according to the following scenarios: 

- Activity: pedometer 

- Environment: freefall, orientation 

- Gestures: tap, double tap 

- Tasks: picking up an object 

 

5.2 IMU specifications 
 

The test setup was designed to allow the application of specific algorithms and viewing 

the results of different scenarios for better understanding of position and orientation 

determination utilising IMU MPU 9250. This section studies different situations and 

the IMU behaviour, as shown in the following sections. The following are the IMU 

manufactural characteristics considered in this section (TDK, 2021): 

- Accelerometer Range = +/- 6g 

- Gyroscope Range = +/- 2000 degrees/second 

- Magnetometer Range = +/- 200uT 

This data is from real time measurements. 

 

5.3 Initialisation and Calibration 
 

The IMU sensors need to be calibrated regardless of any filter implementation. 

Initialisation must take place before utilisation. As discussed in section 3.4, prior to 

starting the measurements, the IMU initialisation (warm up) is part of the normal start-

up process. Depending on the ambient temperature when the IMU was calibrated, the 

'warm up' period can be a few seconds to several minutes. For the IMU used in this 

research, it takes roughly 8 second to initialise. Accelerometer bias is represented by 
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(ax, ay, az) and obtained (-86.91, -37.84, -11.17) [m/s2]. Gyro bias is represent by 

(gx, gy, gz) obtained these values (1.50, -0.50, 0.70) [deg/s] (TDK, 2021). 

 

5.4 IMU filtering results overview 
 

This section uses the obtained experimental data depicted in the all scenarios, the 

values from the applied KF to the system, and compares the raw data against the 

filtered results. The raw values (unfiltered) are shown coloured red and the filtered 

values are shown coloured blue in all Figures. The objective of this section focuses on 

the comparison of the raw and filtered data in relation to the roll, pitch and yaw 

measurement. 

 

Section 4.2 in the previous chapter explained the KF implementation used in this 

research. Roll, pitch and yaw were calculated using equations 3.1, 3.2 and 3.5. As 

detailed in Figure 4.1, only the accelerometer data are used in zero state for these 

equations. For states greater than zero, the gyroscope is used in order to benefit from 

its sensitivity to changes. All equations in chapter 4 are applied to the gyro components 

instead of the accelerometer components. This means where vertical movement (along 

y-axis) takes place for state zero, ay is changed and for other states gy is changed. This 

is because based on equations 3.1, 3.2 and 3.5, when ay is changed, roll also varies. 

When horizontal movement happens ax changes in the equations in state zero, and for 

other states gx is changed, hence the value for pitch is also affected and movement in 

depth means movement along z-axis. 

 

Within previous Figures, in terms of roll, pitch and yaw, a ramp is present at the 

beginning as a result of using the accelerometer in state zero. The purpose of all 

scenarios are observation of IMU performance and ability in the presence of sudden 

acceleration and deceleration of the system. All the Figures illustrate that the KF at the 

end of the timing period makes the presented curves more stable and smoother. The 

reason behind this behaviour is that based on the conditions applied in Figure 4.1, it 

uses the state at interval t − 1 to t and the value at state t based on the predicted value. 
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Due to sudden changes in the system, drift increases exponentially which causes a 

delay in the KF performance. This leads to a lag which can be observed. 

 

As observed in previous Figures, yaw is firmly dependant on roll or/and pitch. If in a 

specific scenario, when accx or movement in x is observed, the change in roll becomes 

noisy, which consequently leads to a noisy yaw. If the accy or movement in y occurs, 

pitch becomes noisy, which in turn also causes noisy yaw values. This is because, as 

previously described, yaw is a function of roll and pitch. In all figures, negative roll, 

pitch and yaw values indicate clockwise rotation and positive values denote 

anticlockwise rotation. Generally, if changes in the horizontal are more than changes 

in the vertical, then the roll will be noisier. If changes in the vertical are more than the 

changes in horizontal, then the pitch will be noisier.  

 

5.4.1 Dropping scenario 

In this scenario, the data was collected when the IMU was dropped from a table. A 

cushion was used to prevent IMU damage. The purpose of this scenario is to test the 

IMU abilities in the presence of a sudden acceleration and deceleration of the system. 

Figure 5.2 shows the comparison of the unfiltered (red) versus the filtered (blue) data 

for the roll values. The blue line represents the filtered data as described by the KF in 

chapter 4. 
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Figure 5.2 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the dropped scenario. 
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Figure 5.3 The raw measurements for the pitch data (red) plotted against the data 

processed by the KF (blue) for the dropped scenario. 
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Figure 5.4 The raw measurements for the yaw data (red) plotted against the data 

processed by the KF (blue) for the dropped scenario 

 

Figure 5.2 shows the roll measurement in the dropping situation. The raw roll values 

are noisier than pitch and yaw, because in this scenario acceleration in y is variable. 

Pitch does not have a direct relationship with the gyro components in state zero, and it 

can be calculated using just the accelerometer, thus this is drift free as observed by the 

red and blue lines being plotted approximately the same with respect to each other, as 

shown in Figure 5.3.  

 

Figure 5.4 shows the yaw measurement in the dropping situation. Yaw firmly depends 

on roll and/or pitch. In this specific scenario acceleration in x is changed so the roll 

values are noisy. This then will also lead to a noisy yaw. If the acceleration in y 

changed casing the pitch to be noisy, this will in turn cause a noisy yaw. In the dropping 

scenario there are three states as follows: 

 



71 

 

- Push state at t = 0 

- Dropping state at 0 < t < t − 1 

- Impact state at t 

 

In other words due to large changes in 𝑦𝑦 movement at the impact state (occurring 

towards the end of the Figures 5.2, 5.3 and 5.4) drift away from the true value increases 

exponentially which causes a delay in the KF performance and a lag can be observed 

at the end of the Figures 5.2, 5.3 and 5.4 as the KF cannot trace and address the drift 

quick enough. 

 

5.4.2 Double tap Scenario 

In this scenario the experiment collected data when the IMU is held in the left hand 

and tapped twice with the right index finger. Figure 5.5, 5.6 and 5.7 shows the 

comparison of the unfiltered (red) versus the filtered (blue) data. The red line illustrates 

that the roll measurement using the gyro has noticeable noise in Figure 5.5. The blue 

line represents the filtered data using the described KF.  
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Figure 5.5 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the double tap scenario 
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Figure 5.6 The raw measurements for the pitch data (red) plotted against the data 
processed by the KF (blue) for the double tap scenario 
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Figure 5.7 The raw measurements for the yaw data (red) plotted against the data 

processed by the KF (blue) for the double tap scenario 

 

Figures 5.5 and 5.6 show the roll and pitch measurement in double tap situation. In 

this scenario the roll and pitch seem to have similar signals because both are affected 

by the position in the x and y direction being changed. This also leads to a noisy yaw 

value (seen in figure 5.7), as yaw is a function of roll and pitch. The double tap can be 

seen clearly in the roll and pitch raw data in figure 5.5 and 5.6 as the two spikes in the 

data. Also shown in Figures 5.5, 5.6 and 5.7 the KF appears to be well suited to filtering 

out the large spikes and generating the near constant response that is expected since 

there was little orientation change in the system during the data capture. It can also be 

seen that it improves the filtered yaw values presented in figure 5.7 compared to the 

raw values. 
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5.4.3 Walking scenario 

In this scenario the collected experiment data is from when the IMU Sensor is in the 

left front pocket of a person walking approximately 25 meters in a straight line. 

Physical movement happens in both the vertical and horizontal axis, as seen in Figures 

5.8, 5.9 and 5.10 for this specific scenario, both roll and pitch have noticeable noise, 

and consequently yaw (being a function of roll and pitch combined) is also noticeably 

affected by the noise from both roll and pitch.  

 

Figure 5.8 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the walking scenario 
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Figure 5.9 The raw measurements for the pitch data (red) plotted against the data 

processed by the KF (blue) for the walking scenario 
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Figure 5.10 The raw measurements for the yaw data (red) plotted against the data 

processed by the KF (blue) for the walking scenario 

 

Given the nature of walking in a straight line, the orientation should be relatively 

stable, except for the peaks and dips corresponding to the walking gait of a person, 

which is periodic in nature. As can be seen in Figure 5.8 and 5.9, the raw data has 

significant noise due to this (red line). By applying the KF, these large deviations are 

filtered out leaving a more consistent orientation profile (blue line). Examining the 

yaw values in figure 5.10, the raw values are noisy to the point of being unable to 

determine a consistent heading, whereas the filter values in blue show a more constant 

heading, which is expected from walking in a straight line. The yaw is now more 

consistent to within a range of 15 degrees, and the accumulated affect from the roll 

and pitch has been significantly reduced.  
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In the walking scenario there are three states as follows: 

- Start walking state at t = 0 

- walking state at 0 < t < t − 1 

- stop walking state at t 

 

5.4.4 Horizontal nudge of IMU 

In this scenario the experiment collected data when a horizontal nudge to the IMU has 

occurred.  

 

Figure 5.11 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the horizontal nudge scenario 
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Figure 5.12 The raw measurements for the pitch data (red) plotted against the data 

processed by the KF (blue) for the horizontal nudge scenario 
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Figure 5.13 The raw measurements for the yaw data (red) plotted against the data 

processed by the KF (blue) for the horizontal nudge scenario 

 

Figures 5.11 and 5.12 show the roll and pitch measurement in horizontal nudge 

situation. The change in the x direction causes the pitch to be noisy as the nudge was 

in this direction and not the y direction, hence why there is very little noise evident in 

the roll data. The noise in pitch also leads to noisy yaw values. In the case of the applied 

horizontal nudge, the effect has been completely filtered out in all except the pitch data 

(Figure 4.12), which is the desired outcome. 

 

From the state zero until the nudge impact is applied, the drift can be ignored as slight. 

Then one big spike in pitch can be observed at the impact moment. Besides filtering 

out the noise, and the effect of the nudge in the roll and yaw, there does seem to be a 

bit of a lag in the filtering of the pitch and yaw. This is because of the lag in the filter 

to adapt to the rapid change caused by the nudge.  
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5.4.5 Fast pickup IMU 

In this scenario, the experiment was conducted to collect data when the IMU was pick 

up from a table quickly. Due to large changes in y movement at the ending state 

(occurring towards the end of the figure) drift away from the true value is increased 

exponentially which causes a delay in the KF performance and a lag can be observed 

at the end of the figures as the KF cannot trace and address the drift quick enough. As 

observed in this scenario, there is an inconsistency in roll, pitch and yaw towards the 

end of Figure 5.14, 5.15, and 5.16. The reason behind this is due to the acceleration 

from the fast movement. In this case, the only one that appears to be highly noisy is 

the roll data, because the IMU was only moved vertically. Figure 5.14 shows the 

comparison of the unfiltered (red) versus the filtered (blue) data.  

 

Figure 5.14 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the fast pickup scenario 
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Figure 5.15 The raw measurements for the pitch data (red) plotted against the data 

processed by the KF (blue) for the fast pickup scenario 
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Figure 5.16 The raw measurements for the yaw data (red) plotted against the data 

processed by the KF (blue) for the fast pickup scenario 

 

5.4.6 Slow pickup of IMU 

In this scenario the experiment collected data when the IMU slowly pick up from table 

(similar to the scenario in section 5.4.5). Similar to the previous scenario, the roll data 

exhibits the most noticeable noise. As with the fast pickup in section 5.4.5, the IMU 

was only moved vertically which causes this response. In this scenario, the rapid 

acceleration did not occur, which leads to a different result compared to the fast pickup. 

Figure 5.17 shows the comparison of the unfiltered (red) versus the filtered (blue) data. 

The red line illustrates that the roll measurement using gyro has noticeable noise, while 

the blue line represents the filtered data by described KF in chapter 4, which has the 

noise filtered from the results. At state t or end of the scenario shows that Kalman can 

address the drift at state t-1. 
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Figure 5.17 The raw measurements for the roll data (red) plotted against the data 

processed by the KF (blue) for the slow pickup scenario 
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Figure 5.18 The raw measurements for the pitch data (red) plotted against the data 

processed by the KF (blue) for the slow pickup scenario 
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Figure 5.19 The raw measurements for the yaw data (red) plotted against the data 
processed by the KF (blue) for the slow pickup scenario 

 

 

Figures 5.14 and 5.17 show the noisy roll measurement in fast pickup and slow pickup 

of IMU scenario. The roll value is noisier than pitch and yaw, because in this scenario 

acceleration in 𝑦𝑦 is variable. Figures 5.16 and 5.19 show the yaw measurement in this 

situation. Yaw firmly depends on roll and/or pitch. If in this specific scenario the 

acceleration in 𝑥𝑥 is changed, the roll values become noisy, which will then also lead to 

a noisy yaw. If the acceleration in 𝑦𝑦 changes casing the pitch to be noisy, this will in 

turn also cause a noisy yaw. For state t or the end of the scenario, a large change did 

not occur (as with the previous scenario) so the KF can address the drift without any 

delay or lag. Figure 5.18 (pitch) and figure 5.19 (yaw) show much less noise in the raw 

data, and the filtered results have a stable value since the orientation did not change 

significantly during the testing phase. 
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5.5 Chapter Summary 
 

Various conditions were tested to qualify the IMU behaviour such as shaking, walking, 

and dropping. This chapter presented six different situations and compared the filtered 

and unfiltered data. Figures of the measured roll, pitch and yaw data were presented, 

as well as the data estimated from the application of the KF presented in Chapter 4. 

All results denote that drift starting after some timestamp, depending on the events 

occurring in the scenarios, the drift may start immediately or after some timestamp. It 

was demonstrated that the KF could address these drifts. Within all figures in terms of 

roll, pitch and yaw, a ramp is present at the start as a result of using the accelerometer 

to define the zero state. The purpose of all scenarios are observation of the IMU 

performance, and the ability of the KF to cope in the presence of sudden acceleration 

and deceleration of the system. These scenarios were designed to obtain reliable 

ground truth in regard to the IMU performance under different conditions. 

 

Since the purpose of this experiment was observing IMU behaviour in different 

scenarios effort was made to simulate all unknown situations for IMU as close as 

accurate laboratory conditions which eventually will lead to IMU behaviour in real 

flight conditions. In order to achieve this and to tackle complicated scenarios with 

uncertain conditions the flight scenario was subdivided into plain and more 

controllable conditions in laboratory environment. Changes in altitude, which is one 

of the most relevant situations in real flight, was achieved by dropping and picking up 

the IMU. The results obtained from above said scenarios will help to trouble shoot, 

calibrate and initialise the IMU. 

 
This research is a part of an ongoing study to address the issues regarding INS in 

underground mine field. Further developments will be conducted to provide a mine 

tunnel 3D map using capturing device or night vision camera to aid and assist in the 

localisation information obtained from this research. Since the data obtain by IMU, 

even using KF is not sufficient for localisation, the system needs to have another sensor 

device for data integration. Further development will be conducted to integrate KF 

data obtain by IMU with another data provided by capturing device.  
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6 CONCLUSIONS  

 

This research reviewed the autonomous Unmanned Aerial Vehicle (UAV) or drone, in 

the mapping and surveying in underground mining applications. Specifically, the focus 

was on the review of the localisation and positioning methods used in such cases. One 

of the many sensors used for drone self-navigation is Inertial Measurement Unit 

(IMU). IMU as a positional sensor is used to map required areas in underground mine. 

This research focuses on low cost IMUs to propose a cost-effective method for 

localisation and mapping. The improved accuracy of the IMU data provided for 

localisation is the aim of this study. Mainly focusing on improving raw IMU data 

through filtering methods to reduce the negative impact of IMU drift in long distances. 

The collected raw data is corrected by this model to provide more accurate 

information. This is able to reduce the effect of noise from the environment and the 

drift of sensors using filters. 

 

This study reviewed localisation and positioning methods including manual, semi-

autonomous and autonomous with their advantages and drawbacks. The increase use 

of drones in inaccessible areas to collect data has led to development of many 

techniques to overcome the positioning problem and to be able to safely navigate 

indoors or underground. Sensors play a major role for localization and positioning in 

UAVs. As discussed in chapter 2, to navigate a drone in an underground mine, three 

different sensor types are used. These include sensor captures the external 

environment, inertial sensors to recognise what the drone is doing and the external 

sensor that give the drone information for localisation and positioning. There are a 

variety of sensors used within different methods, however IMU sensor is the main 

focus. 

 

Chapter 3 first examines what an IMU is and the different components that comprise 

of the system. Detail is then given on each component, focusing on what they measure 

and how. A comparison of the different methods and IMU types is given based on 

price and performance. Finally the methods for examining errors in IMUs are 

highlighted, including compensation methods and current solutions used to mitigate 
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their effect. Due to IMU data providing information for localisation and positioning it 

becomes integral and important to all methods. 

 

The four main IMU types used in UAV applications are Silicon MEMS, Quartz 

MEMS, Fiber Optic Gyroscopes (FOG), and Ring Laser Gyroscopes (RLG). The RLG 

has the highest accuracy, yet this accuracy comes with financial burden. FOG is a 

cheaper alternative to RLG. However, it is still expensive and has high power 

consumption and sensitivity to vibration. Other options are Silicon MEMS and Quartz 

MEMS IMU. MEMS based IMUs offer acceptable performance while benefiting from 

low power consumption, small size and price tag. These factors make an IMU a 

preferred option for navigation system in drone applications. MEMS IMUs are 

obtained at high sampling rates and can be integrated to obtain position and orientation 

information. These estimates are accurate on a short time scale, but suffer from 

integration drift over longer time scales.  

 

The IMU starts collecting data through its sensors, namely, accelerometer, gyroscope 

and magnetometer, to calculate the roll, pitch, and yaw. This data assists in obtaining 

the movement distance in each time interval. This information supports the drone in 

avoiding obstacles. A great challenge regarding utilising IMU is related to sensors’ 

noise and gyroscopic drift. It has the most adverse impact, which exponentially 

increases over long distances. IMU has an unlimited drift in the velocity, position, and 

altitude caused by a gyroscope in long distance.  

 

To overcome this issue, inertial sensors are typically combined with additional sensors 

and models. KF is a suitable candidate for sensor integration. Various methods of 

filtering may be employed, as discussed in Chapter 3.5. Since the drift and noise in 

this system are stochastic (not predictable), accumulative, and not deterministic 

(predictable), this research focused on designing a KF for this specific case.  

 

The reasons behind filtering data in this research is to overcome environmental 

(compensation) and sensor noise, alongside sensors drifting over time, which affect 

the IMU data observed. By employing a filter, it allows for the processing and 

elimination of such adverse effects. Within this research, the filter was used primarily 
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for the roll and pitch data, not the yaw/magnetometer data. However, based on 

equation 3.5, the filtered roll and pitch data is still critical for the estimation of the 

orientation using the magnetometer.  

 

The IMU sensors need to be calibrated regardless of any filter implementation. 

Initialisation must take place before utilisation. As discussed in Section 3.4, prior to 

starting the measurements, the IMU initialisation (warm up) is part of the normal start-

up process. Depending on the ambient temperature when the IMU was calibrated, the 

'warm up' period can be a few seconds to several minutes. For the IMU used in this 

research, it takes roughly 8 second to initialise. The IMU sampling provides raw 

angular velocity from the gyroscopes, acceleration from the accelerometers, and 

heading processed by roll and pitch from the accelerometers and raw data from the 

magnetometer. The KF is responsible for filtering the information in order to gain 

useful information. The KF performance and the accuracy of the results severely 

depend on high speed and constant sensor sampling rate data. Based on its quick 

response to change, the changes in roll and pitch are calculated by the gyroscope. The 

gyroscope provides the values of angular velocities along the 3 axes. Gyro sensitivity 

leads to drift being generated along these rotational axes by accumulation of errors 

over time. To avoid drift in the gyroscope and to obtain an accurate orientation, a KF 

is used to integrate two vulnerable sensors, the accelerometer and the gyroscope. 

 

Roll, pitch and yaw were calculated using equations 3.1, 3.2 and 3.5. As detailed in 

Figure 4.1, only the accelerometer data are used in zero state for these equations. For 

states greater than zero, the gyroscope is used in order to benefit from its sensitivity to 

changes. All equations in Chapter 4 are applied to the gyro components instead of the 

accelerometer components.  

 

Accelerometer and gyroscope are two types of sensors used in motion tracking and 

control systems. The accelerometer measures linear acceleration (i.e., changes in 

velocity), while the gyroscope measures angular velocity (i.e., changes in orientation). 

 

In systems that require precise motion tracking, the accelerometer data is used when 

the state is zero (i.e., when the device is at rest) to determine the initial orientation and 
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velocity. However, for states greater than zero (i.e., when the device is in motion), the 

gyroscope is used because of its sensitivity to changes in orientation. This allows the 

system to track changes in orientation more accurately than using the accelerometer 

alone, which can be affected by other factors such as gravity. 

 
In summary, the choice of using either the accelerometer or the gyroscope depends on 

the state of the device, with the accelerometer being used for zero state and the 

gyroscope being used for non-zero states in order to benefit from its sensitivity to 

changes in orientation. 

 

In Chapter 5, six different situations examined and compared the filtered and unfiltered 

data. Various conditions were tested to qualify the IMU behaviour such as shaking, 

walking, and dropping based on explained the KF implementation used in this 

research. Roll, pitch and yaw were calculated using equations 3.1, 3.2 and 3.5. As 

detailed in Figure 4.1, only the accelerometer data are used in zero state for these 

equations. For states greater than zero, the gyroscope is used in order to benefit from 

its sensitivity to changes. All equations in chapter 4 are applied to the gyro components 

instead of the accelerometer components. All results denote that drift starting after 

some timestamp, depending on the events occurring in the scenarios, the drift may start 

immediately or after some timestamp. It was demonstrated that the KF could address 

these drifts. Within all Figures in terms of roll, pitch and yaw, a ramp is present at the 

start as a result of using the accelerometer to define the zero state. The purpose of all 

scenarios are observation of the IMU performance, and the ability of the KF to cope 

in the presence of sudden acceleration and deceleration of the system. These scenarios 

were designed to obtain reliable ground truth in regard to the IMU performance under 

different conditions. 

 

Within Figures 5.2-5.7, 5.11, and 5.13-5.15, in terms of roll, pitch and yaw, a ramp is 

present at the beginning as a result of using the accelerometer in state zero. The 

purpose of all scenarios are observation of IMU performance and ability in the 

presence of sudden acceleration and deceleration of the system. All the Figures 

illustrate that the KF at the end of the timing period makes the presented curves more 

stable and smoother. The reason behind this behaviour is that based on the conditions 
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applied in Figure 4.1, it uses the state at interval t-1 to damp down the value at state t 

based on the predicted value. Due to sudden changes in the system, drift increases 

exponentially which causes a delay in the KF performance. This leads to a lag which 

can be observed at the end of Figures 5.2-5.7. 

 

As observed in Figures 5.4, 5.7, 5.10, 5.13, 5.16 and 5.19 yaw is firmly dependant on 

roll or/and pitch. If in a specific scenario, when accx or movement in x is observed, 

the change in roll becomes noisy, which consequently leads to a noisy yaw. If the accy 

or movement in y occurs, pitch becomes noisy, which in turn also causes noisy yaw 

values. This is because, as previously described, yaw is a function of roll and pitch. 

Generally, if changes in the horizontal are more than changes in the vertical, then the 

roll will be noisier. If changes in the vertical are more than the changes in horizontal, 

then the pitch will be noisier.  

 

The prototype proposed by this study contains the IMU connected to a central 

processor unit through a micro controller. The central processing unit is responsible 

for making decisions based on the filtered and processed IMU data, and to send 

commands to control unit to manipulate drone movement in order to avoid obstacles 

in INS. Implementation of the initial prototype proposed by this research has two 

approaches which are IMU handshakes with Raspberry Pi (RPi) through Arduino and 

IMU handshakes with RPi without any further device using General Purpose 

Input/output (GPIO) pins. For the application of such approaches, the IMU must first 

be synchronised with the various sampling sensors. 

 

This research also implements a prototype using Raspberry Pi to process data collected 

by an IMU and filtered by a KF. The prototype suggest using capturing device such as 

night vision camera to continuously capture frames of travel area to measure depth or 

distance to the obstacle. In addition synchronisation between IMU and capturing 

device will be required. Conclusively another avenue of research will be open for 

further development. The main target of future research is integrating of IMU and 

capturing device data to avoid drone collision. 
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This research is a part of an ongoing study to address the issues regarding INS in 

underground mine field. Further developments and future research will be conducted 

to provide a mine tunnel 3D map using capturing device or night vision camera to aid 

and assist in the localisation information obtained from this research. Since the data 

obtain by an IMU, even using KF is not sufficient for localisation, the system needs to 

have another sensor device for data integration. Further development will be conducted 

to integrate KF data obtain by IMU with another data provided by capturing device. 
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