
School of Civil and Mechanical Engineering

Degradation Vector Fields with Uncertainty Considerations

Marco Star

0000-0003-0547-1525

This thesis is presented for the Degree of

Doctor of Philosophy

of

Curtin University

March 2023

Declaration

To the best of my knowledge and belief this thesis contains no material previously published
by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any other degree or
diploma in any university.

Signature:

Date: 19/08/2023

ii

Abstract

Machinery prognostics is often described as the problem of estimating the remaining useful life
(RUL) of machinery or its components. Deep learning methods have become popular for RUL
estimation, given sensor signals that relate to the RUL in some unknown way. However, there
are some challenges deep learning models face in the context of machinery prognostics that are
often highlighted by the community. Some of these problems include,

• Lack of uncertainty quantification: Deep neural networks are deterministic, and many
methods utilised in machinery prognostics do not account for uncertainty in the output
RUL estimate; instead, only a point estimate is given.

• Interpretability: Deep neural networks are black box methods where the relationship
between the input and output is not clear. This can make it difficult to work with these
models or to adjust them based on real word changes in the problem setup.

• Lack of run-to-failure data: Training data is needed to train these networks, meaning the
input sensor signals and corresponding RUL target values are needed. However, to get
RUL target values, one needs to know the RUL, and this often requires running machines
until failure to get this data. This can be expensive if a lot of data is needed, which is
the case for deep learning methods.

This thesis mainly addresses the uncertainty quantification and interpretability aspects; how-
ever, some work addresses reducing the amount of failure data needed.

Neural differential equations are explored as a way of improving the interpretability of neural
networks. This was because they could either be used as sequential models and propagate latent
states forward in time or function like a neural network and propagate input data to output data
using a differential equation. Both of these applications of neural differential equations could
potentially provide improved interpretability of either the neural network results or the neural
network’s inner workings. The first attempt to apply this was made by replacing networks such
as Convolutional Neural Networks (CNNs) with a neural differential equation network that was
roughly equivalent and comparing results. Hence, instead of using a CNN to output the RUL,
a neural differential equation version of a CNN would be used and the results were compared.

Another avenue was also explored that makes up the bulk of the thesis as it manages to address
each of the challenges listed. Deep sequential generative models are explored as probabilistic
models that estimate the RUL over time. Specifically, conditional Dynamical Variational Au-
toencoders (DVAEs) are utilised, as they also define latent space dynamics related to the RUL
outputs. Through the generative model, the latent dynamics are related to the RUL (and,
therefore, the degradation of the machine), which aids interpretability as the model has effec-
tively learnt dynamics that describe degradation. Moreover, generative models are probabilistic
by design and therefore quantify the uncertainty of their outputs. Many generative models used
in machinery prognostics are used, like a preprocessing step might be used, to clean the sensor
data and reconstruct it with reduced noise or find a lower dimensional latent variable represen-
tation of the sensor data. In this thesis, the underlying theory of these sequential generative
models is explained and then multiple ways of designing a DVAE to directly estimate the RUL
is shown.

iii

Each DVAE has its pros and cons, firstly a “vanilla” DVAE is shown that largely uses standard
feedforward networks and some RNNs to estimate the RUL that acts as a baseline model for
the rest. Another DVAE uses Neural Stochastic Differential Equations (NSDEs) as a dynamic
model for the latent variables and showcases how using different models for the latent dynamics
can affect the RUL estimates and interpretability of results. Finally, Kalman-DVAEs are in-
troduced, which show how the degradation dynamics could be formulated in a linear Gaussian
latent state space. While the RUL estimation performance may be reduced, the benefit of lin-
ear dynamics that describe the degradation mechanics is gained. These models are compared
with other state-of-the-art RUL estimation models and evaluated on NASAs turbofan engine
dataset (CMAPSS).

This work’s novelty includes using neural differential equations as a type of network for RUL
estimation and involves a detailed comparison with a Residual Network. The main contribution,
however, is the exploration and use of DVAEs for RUL estimation. DVAEs are shown to require
conditional variables to have a noncausal relationship with the other variables, and this informs
the practical implementation of the model as it requires a sequence-to-sequence approach for
RUL estimation. Guided by this requirement and the DVAE framework, the DVAE, NSDE-
DVAE and Kalman-DVAE each provide some contribution to exploring this framework. The
DVAE serves as a good baseline, and semi-supervised methods are also explored using this
architecture. NSDE-DVAEs show how to incorporate NSDEs as the latent dynamics, allowing
them to be governed by a continuous model. Kalman-DVAEs show how the DVAE can be
simplified to use linear Gaussian state space systems to describe the relationship between latent
dynamics and RUL estimates and train this model using the Kalman filter. Part of this novelty
comes from the fact that the RUL estimation problem is unique compared to other problems
DVAEs may be used for in deep learning applications. For example, RUL trajectories are linear,
so the Kalman filter can be used to train the model, whereas other problems tend to have
nonlinear target values. Many problems may try to extrapolate certain values for applications
such as generating sound or music or extrapolating what will occur in a video. Here the problem
is different, and a conditional DVAE is required to output a variable that cannot be observed
(the RUL). Hence, the application of DVAEs for the RUL estimation problem was a novel
problem, and this thesis explores how one could apply the DVAE to this problem.

iv

Acknowledgements

When I was a kid I watched a movie called “Jimmy Neutron: Boy Genius”. The movie’s main
character was, believe it or not, a boy genius, who had all these cool inventions and in his lab,
he always seemed to have some cool experiments running. All the parents in his town also get
abducted by aliens, but that’s irrelevant to the point I’m trying to make. So at the age of five,
I knew what my goal in life would be... to become like Jimmy Neutron. It turns out I could
not be a boy genius because, believe it or not, becoming a genius is difficult and requires a lot
of studying and hard work, which I was sadly allergic to as a kid. But maybe as an “adult” I
can contribute a drop of knowledge to the vast pool of it we have collected over time, which is
good enough for me. All this is a convoluted way of saying my first thanks go to my parents,
who supported me through all the “studying and hard work” I have done to get to this point.
Even if I don’t think of myself as a genius, they seem to (don’t let them know the truth, dear
reader, they’ll be crushed). I would also like to thank Chen and Charlie for taking me to the
movies to see Jimmy Neutron, for giving me advice, and for generally being interesting people
to talk to.

It’s rather hard to do a PhD without supervisors, so I would first like to thank Rodney Entwistle
for being there initially to guide me through this journey. I would also like to thank Ian Howard,
who was the first to bring to my attention during my undergraduate studies that a PhD may
be something I would be interested in doing and then supervising me through a large portion
of it. Finally, a huge thanks to Kristoffer McKee for being the one to supervise me and reading
more drafts than is humanly possible.

I would like to thank the Australian Government Research Training Program (RTP) Scholarship
for supporting this research. Thereby giving me the opportunity to pursue my dreams and
achieve my goals.

I would also like to thank everyone at Jenike, not just for being flexible with my hours and
providing a pleasant work environment, but also for fuelling me with pizza and cake (the
companionship wasn’t too bad either). A special thanks go to everyone at JJA for all the
random conversations and jokes we shared.

v

Table of Contents

Declaration ii

Abstract iii

Acknowledgements v

List of Figures x

List of Tables xv

Acronyms xvii

1 Introduction 1

1.1 Goals of Machinery Prognostics . 1

1.2 Problems with Deep Learning Methods in Prognostics 2

1.3 Deep Generative Models and Latent Dynamics 3

1.4 Research Questions . 7

2 Literature Review 10

2.1 Machinery Prognostics Overview . 10

2.1.1 Physics-Based Methods . 10

2.1.2 Hybrid Methods . 11

2.1.3 Data-Driven Methods . 11

2.2 Deep Learning in Prognostics . 16

vi

2.2.1 Feature Extraction . 16

2.2.2 Recurrent Neural Network Methods for Prognostics 18

2.2.3 Convolutional Neural Network Methods for Prognostics 21

2.2.4 Attention Mechanisms . 22

2.2.5 Generative models . 24

2.2.6 Uncertainty Considerations in Deep Learning Methods for Prognostics . 25

2.3 Conclusions . 28

3 Background 30

3.1 Variational Autoencoders . 30

3.2 Dynamical Variational Autoencoders . 32

3.2.1 DVAE Structure and Implementation . 33

3.3 Bayesian Filtering . 35

3.3.1 Kalman Filter . 36

3.3.2 Particle Filters . 39

3.4 Neural Differential Equations . 42

3.4.1 Neural Ordinary Differential Equations 42

3.4.2 Neural Stochastic Differential Equations 42

4 Neural Ordinary Differential Equations for RUL Estimation 45

4.1 Data . 45

4.1.1 CMAPSS dataset . 46

4.1.2 Preparing the Data . 47

4.2 Methodology . 49

4.2.1 ResNet . 50

4.2.2 NODE-CNN . 52

4.3 Results . 52

4.4 Discussion . 55

vii

4.5 Conclusions . 57

5 Dynamical Variational Autoencoders for Remaining Useful Life Estimation 58

5.1 Methodology . 58

5.1.1 Deriving the ELBO Loss Function . 59

5.1.2 General Overview of Model Training and Testing 61

5.2 Experiments . 64

5.2.1 Data . 64

5.2.2 Preparing the Data . 64

5.2.3 Experiments using DVAEs . 64

5.2.4 Network Design . 68

5.3 Results . 69

5.3.1 Supervised . 69

5.3.2 Semi-Supervised . 72

5.4 Discussion . 74

5.5 Conclusions . 76

6 Dynamical Variational Autoencoders with Neural Stochastic Differential Equa-
tions 78

6.1 Methodology . 78

6.2 Experiments . 80

6.2.1 Data . 80

6.2.2 Preparing the Data . 80

6.2.3 Network Design . 80

6.3 Results . 83

6.4 Discussion . 86

6.5 Conclusions . 88

7 Kalman Dynamical Variational Autoencoders 90

viii

7.1 Methodology . 91

7.2 Experiments . 93

7.2.1 Data . 93

7.2.2 Preparing the Data . 93

7.2.3 Network Design . 94

7.2.4 Model Training . 95

7.3 Results . 96

7.4 Discussion . 99

7.5 Conclusions . 102

8 Conclusions and Future Work 104

8.1 Conclusions . 104

8.1.1 Research Questions . 105

8.1.2 Novelties and Key Contributions . 106

8.1.3 Limitations . 107

8.2 Future Work . 108

A NODE-CNN and ResNet Hyperparameters 111

B DVAE Experiment Hyperparameters 113

C NSDE-DVAE Hyperparameters 114

D NSDE-DVAE Network Details 115

E Kalman-DVAE Hyperparameters 117

F Authorship Statement 118

ix

List of Figures

1.1 Shows a generative model illustration in 2D space for simplicity. The circles and
ovals labelled as p(Z) and p(X|Z) are Gaussian distributions in 2D space. p(Z)
is a standard Normal distribution representing the prior latent model. p(X|Z) is
the decoder and is found by sampling Z ∼ p(Z) and using the sample as an input
to a neural network that outputs the mean and standard deviation describing the
Gaussian distribution p(X|Z). Note that X represents the space of all possible
X values and p(X) is an unknown probability distribution representing the space
of X values that make up all possible faces in the given dataset. The red dotted
lines point to images that are sampled from the generative model; the untrained
model samples random values in the input space X. The trained model samples
from a subspace within p(X). Since p(X) contains the combinations of X that
represent images of faces, the generative model manages to sample an image of
a face. Since it is unlikely to sample an image that exactly matches one of the
images in the dataset used to train the network, the sampled image is likely a
novel image of a face that is not a part of the original dataset. 4

1.2 A spring-mass system with n sensors that measure the distance between the
sensor and the mass; the sensor distances are denoted as (x1, ..., xn). The axis
labelled z denotes the dimension in which the spring-mass system oscillates.
Hence, if z is the axis chosen when analysing the system, the equations of motion
would be 1-dimensional. 5

2.1 A diagram showing the difference between a shallow neural network and a deep
neural network. The difference simply being the increase in functional stacks for
the deep neural network, i.e. the outputs of one stack become the inputs of the
next, and this is repeated more times in the deep neural network. The bottom
nodes/circles represent the inputs, and the arrows represent the function applied
to the inputs and point to the outputs of that function. The top node represents
a single final output variable. Note many “deep” neural networks work well with
only three layers, and many networks used in this thesis are only three layers deep. 17

2.2 This shows an illustration of how an RNN could be used to estimate the RUL.
It shows a relatively simple example of taking sensor data at certain time points
and using them as inputs to an RNN. The hidden variables go on to be the
input variables to an Artificial Neural Network (ANN) whose output is the RUL
estimate. 19

x

2.3 A general physics-informed RNN cell. Where xt represents the inputs to the
model, Ct are the coefficients for the physics-based model derived from the neural
network structure and input data, ht is the health indicator the physics-based
model outputs and acts as the hidden variable for the RNN. 20

2.4 The general workflow of the algorithms described in this section. First, the
time-series signals (only one shown here) are transformed into a time-frequency
spectrogram image where the x-axis is time, the y-axis represents the frequency
while the intensity of the colours represents the energy of the signal. This be-
comes the input to the CNN, which outputs the RUL estimate directly 21

3.1 The VAE during training can be used to encode to a section of the prior distri-
bution, during testing, the prior distribution can be sampled from (i.e. sample
from the entire latent space) and this approximates a local Gaussian distribu-
tion in the input space p(X) which can be sampled from. To sample from a
larger area of p(X) it can be seen that this can be done by sampling multiple
latent variables via Z ∼ p(Z) and decoding them all to form local Gaussian
approximations covering the distribution p(X). 32

3.2 An illustration of an RNN being used to represent a sequence of inputs which
can be used in a DVAE model . 34

3.3 In the example DVAE implementation, 3.3a is the generative model described
by Eqns. 3.10 & 3.11 while 3.3b is the inference model described by Eqn. 3.12.
Note the variables inside circles are stochastic variables while the rectangles are
deterministic . 35

3.4 A visual example of how NODE propagates the input variable x0 through the
network, which is described by an ODE. Each solid arrow is an evaluation of the
network dx

dt
= f(x, t) which is used to find the next step or next network hidden

layer variable, where t is the depth of the network. Since, there are 5 arrows
shown this is equivalent to a network with 5 hidden layers. The dotted path
labelled x(t) is the trajectory the variables take through the NODE and xN is
the final output of the NODE. 43

3.5 NSDE trained to reconstruct input data xt by learning latent dynamics which
represent the dynamics of xt . 44

4.1 A single time-series signal which is transformed to the time-frequency domain
using the STFT. The frequency intensities from the Fourier coefficients is shown
in the image that results from the time-frequency transform 48

4.2 An illustration of the ResNet architecture layout used in this experiment. Note
each rectangular block is a CNN, and the

⊕
is an element-wise addition operator 51

xi

4.3 An illustration of the NODE-CNN architecture used for this experiment. Note
that f(x, t) is the CNN that describes the gradient at any point (x, t) and is used
in the numerical ODE solver to propagate the trajectory forward. In this case t
is not time but the depth of the NODE network. 52

4.4 Box and whisker plot for the ResNet (4.4a) and NODE-CNN (4.4b) RUL differ-
ences (ŷ = estimated RUL and y = true RUL) over all the units for each testing
dataset . 55

4.5 Graphs showing testing performance as measured by the RMSE metric versus
the number of steps used for the numerical integration method (4th order Runge-
Kutta). Here the network was retrained using 10 steps in the ODE solver oth-
erwise the same hyperparameters were used, but 50 epochs are used for faster
training as the relative performance is of interest here. During testing, the num-
ber of steps was altered and the RMSE was recalculated for the testing dataset
as shown on the plot. The vertical dotted line indicates the number of steps the
network was trained on. 55

5.1 A graphical representation of the conditional DVAE for RUL estimation, 3.3a is
the generative model described by Eqns. 3.10 & 3.11 while 3.3b is the inference
model described by Eqn. 3.12. 63

5.2 An illustration of a sliding time window applied to the sensor signals of a single
unit in the CMAPSS dataset . 65

5.3 The overlapping time windows of sensor data each have a corresponding RUL
estimate sequence. Some of the RUL estimates from different time windows
have the same corresponding time points; in order to plot a single RUL estimate
trajectory, the RUL estimates are averaged at the same time points. This is
shown for the red and blue time windowed data. The red and blue points are
the corresponding RUL estimates (made up for illustrative purposes) and the
black circles are the average RUL estimates between the red and blue RUL
estimates. 66

5.4 The RUL estimates over the known lifetime of the testing units for a selected
subset of units in the FD001 test dataset. 71

5.5 A plot of the latent state space trajectories for the test units in each dataset.
The colour bar represents the time i.e. the darker colours represent earlier time
points, and the lighter ones show later time points. The longest trajectory is
plotted as a blue line to show how a unit may develop from a healthy to near-
failure condition. 72

5.6 The final RUL estimates for the test units in the FD001 dataset. These were
plotted as a scatter plot and compared with the true RUL values plotted as a line 72

5.7 The final RUL mean estimates and True RUL values plotted as a scatter plot
vs the unit index for each unit in the FD001 test dataset. The 95% confidence
intervals are also shown for the final RUL estimate. 73

xii

6.1 The general diagram of the NSDE-DVAE for RUL estimation, where 6.1a is the
generative model and 6.1b is the inference model. Note only times t − 1, t and
t+ 1 are shown for convenience . 79

6.2 The detailed diagram NSDE-DVAE for RUL estimation where 6.2a is the gener-
ative model and 6.2b is the inference model (note during training, the inference
models estimate for z0 is used in the SDE solver to generate the sequence z1:T) . 81

6.3 An illustration of how augmented dimensions allow for different latent variable
trajectories despite having the same initial condition in the latent space (z1, z2).
The solid line trajectories are projections of the dotted line trajectories in the
3D space (z1, z2, a) to the 2D latent space (z1, z2). Each dotted line trajectory
exists on a constant line a = constant, which is meant to represent different unit
trajectories. 82

6.4 The RUL estimates over the known lifetime of the testing units for a selected
subset of units in the FD001 test dataset. 84

6.5 A plot of the mean latent state space trajectories for the test units in each
dataset. The colour bar represents the time i.e. the darker colours are earlier
times and the lighter points represent later time points. The longest trajectory
is plotted as a blue line to show how a unit may develop from a healthy to
near-failure condition. 84

6.6 A plot of the RUL vs the True RUL for each of the testing units final time point.
A line with gradient 1 is also plotted to represent the points where RUL = Actual
RUL. Hence, the more accurate the points are, the closer they match the line. . 85

6.7 The final RUL mean estimates and True RUL values plotted as a scatter plot
vs the unit index for each of the units in the FD001 test dataset. The 95%
confidence intervals are also shown for the final RUL estimate. 85

7.1 Block diagram of the bidirectional RNN used for calculating the control variables
u1:T given a sensor sequence x1:T . 93

7.2 A block diagram showing how the sensor data is used to find the necessary
outputs for training and testing the K-DVAE. Both ut and dt represent the
entire sensor sequence x1:T . Q and R are both constants that can be optimised
during the training phase. Also note, for simplicity, the output weights from the
Artificial Neural Network (ANN) block; include the normalisation of the weights
in that step. 95

7.3 The RUL estimates over the known lifetime of the testing units for a selected
subset of units in the FD001 test dataset. 97

xiii

7.4 The latent variable state space trajectories over the known lifetime of the testing
units for all the CMAPSS datasets. The colour bar indicates the time, hence,
darker colours are early in the lifetime of the machine while lighter colours are
later periods of the machine’s lifetime. The longest-time trajectory is plotted as
a blue line, to give an indication of what a trajectory from a healthy status to a
near failure status may look like. 98

7.5 The final RUL estimates for the test units in the FD001 dataset. These were
plotted as a scatter plot and compared with the true RUL values plotted as a line 98

7.6 The final RUL mean estimates and True RUL values plotted as a scatter plot
vs the unit index for each of the units in the FD001 test dataset. The 95%
confidence intervals are also shown for the final RUL estimate. 99

7.7 The filtered RUL estimates over the known lifetime of the testing units for a
selected subset of units in the FD001 test dataset. This was partly done as a
sanity check for the Kalman filtering algorithm, but it also shows how useful
it could be if an observable metric could be used instead of the RUL. Even if
it could only be observed occasionally, the filtering algorithm would be able to
update the estimate and achieve much more accurate results compared to having
no direct observations as shown in Figure 7.3. 101

xiv

List of Tables

2.1 Traditional methods which estimate RUL uncertainty using state transition mod-
els and Bayesian filters . 27

4.1 Different datasets found in CMAPSS: states how many different engines are sim-
ulated, their operating conditions and what types of failures they can experience
(Fault Modes) . 46

4.2 Information contained in each column for the training and testing datasets . . . 46

4.3 Architecture of the ResNet . 51

4.4 Architecture of the NODE-CNN . 53

4.5 RMSE performance on each of the testing CMAPSS datasets with maximum
RUL value of 130 . 54

4.6 comparison of the scores (Eq. (4.8)) on each of the testing CMAPSS datasets
with a maximum RUL value of 130 . 54

5.1 RMSE performance on each of the testing CMAPSS datasets 70

5.2 Comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets . 70

5.3 Semi-supervised RMSE performance on each of the testing CMAPSS datasets
for different percentages of available data during RUL estimation training. . . . 73

5.4 Semi-supervised NASA score function performance on each of the testing CMAPSS
datasets for different percentages of available data during RUL estimation training. 73

6.1 RMSE performance on each of the testing CMAPSS datasets with maximum
RUL value of 130. 83

6.2 comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets . 83

6.3 Comparing RMSE performance between DVAE and NSDE-DVAE on each of the
testing CMAPSS datasets . 86

xv

6.4 Comparing scores between DVAE and NSDE-DVAE on each of the testing CMAPSS
datasets . 87

7.1 RMSE performance on each of the testing CMAPSS datasets with a maximum
RUL value of 130. 96

7.2 Comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets . 96

7.3 Comparing RMSE performance between DVAE and NSDE-DVAE on each of the
testing CMAPSS datasets . 100

7.4 Comparing scores between DVAE and NSDE-DVAE on each of the testing CMAPSS
datasets . 101

A.1 Hyperparameters used to train the ResNet and affect its architecture. Hyperpa-
rameters for each C-MAPSS dataset are listed 111

A.2 Hyperparameters used to train the NODE-CNN and affect its architecture. Hy-
perparameters for each C-MAPSS dataset are listed 112

B.1 Hyperparameters for the Kalman-DVAE for all datasets 113

C.1 Hyperparameters used for each dataset when training the neural networks 114

E.1 Hyperparameters for the Kalman-DVAE for all datasets 117

xvi

Acronyms

AI Artificial Intelligence

ANFIS Adaptive Neural Fuzzy Inference System

ANN Artificial Neural Network

CMAPSS Commercial Modular Aero-Propulsion System Simulation

CNN Convolutional Neural Network

DBN Deep Belief Network

DVAE Dynamical Variational Autoencoder

ELBO Evidence Lower BOund

EMD Empirical Mode Decomposition

GAN Generative Adversarial Network

GP Gaussian Process

GRU Gated Recurrent Unit

HI Health Indicator

HMM Hidden Markov Model

HPC High-Pressure Compressor

K-DVAE Kalman Dynamical Variational Autoencoder

LGSSM Linear Gaussian State Space Model

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

xvii

NODE Neural Ordinary Differential Equation

NSDE Neural Stochastic Differential Equation

NSGPR Non-Stationary Gaussian Process Regression

PCA Principal Component Analysis

RBM Restricted Boltzmann Machine

RCNN Recurrent Convolutional Neural Network

ResNet Residual Network

RGB Red, Green and Blue

RMS Root Mean Squared

RMSE Root Mean Squared Error

RNN Recurrent Neural Network

RSSM Recurrent State Space Model

RUL Remaining Useful Life

RVM Relevance Vector Machine

SDE Stochastic Differential Equation

SGD Stochastic Gradient Descent

SRRN Stochastic Recurrent Neural Network

STFT Short Time Fourier Transform

VAE Variational Autoencoder

xviii

Chapter 1

Introduction

1.1 Goals of Machinery Prognostics

The goal of machinery prognostics can be defined as trying to estimate the Remaining Use-
ful Life (RUL) of a machine or a machine component. For example, machinery prognostics
techniques may be used to find the RUL of a turbofan engine for an aircraft or estimate the
degradation of a lubricant used in the bearings of a wind turbine. Estimating the RUL is
useful as it allows for informed decision-making, such as when to perform maintenance and
knowing the health state of the machine. RUL estimation is generally achieved by modelling
the degradation of the equipment and finding patterns, or a relationship, between equipment
degradation and its RUL. Generally, the types of models used in machinery prognostics to
estimate the RUL can be categorised as follows (T. Xia et al., 2018),

• Physics-based models: uses mathematical models based on the system’s physics. For
example, Paris’s crack law is a differential equation that can be used to estimate the
crack length at a given point in time, given certain physical properties and the initial
crack length of the component.

• Data-driven models: use data gathered from the component to find patterns or create a
model that can estimate the RUL of the machine from the gathered data. Unlike physics-
based models, domain knowledge of the degradation characteristics for that component
is not required.

• Hybrid models: uses a mixture of data-driven and physics-based models to model the
degradation. For example, a differential equation based on the physics of the system
could model degradation. At the same time, data-driven methods estimate parameters
of that equation that normally require physical tests to estimate.

There has been an increase in available data from industrial plants that have motivated the
adoption of data-driven methods, specifically machine learning methods (Diez-Olivan et al.,
2019). Due to data availability, this thesis focuses on a specific type of machine learning
method known as deep learning, which has become popular due to the rise of available data and
its effectiveness when given a large amount of data. Deep learning methods use deep neural

1

networks to estimate the RUL using large amounts of related data. These neural network
models excel at finding and modelling a relationship between the input and output variables,
e.g. sensor data and RUL values. Due to the effectiveness of neural networks, there has been
an increase in research on using deep neural networks in the machinery prognostics domain.
However, using deep learning methods for prognostics presents some problems which will be
addressed in the next section.

1.2 Problems with Deep Learning Methods in Prognos-

tics

Using deep neural networks in machinery prognostics has shown state-of-the-art results in RUL
estimation; however, there are some drawbacks when using deep neural networks.

Firstly, a large problem with utilising deep neural networks in machinery prognostics is that
many methods do not account for uncertainty in their RUL estimates. Many deep learning
methods for prognostics perform well at estimating the RUL but only output a point estimate
of the RUL without accounting for any uncertainties (W. Peng et al., 2019). However, considera-
tion of uncertainties for any machinery prognostics application is important for decision-making
and makes the model more useful for reliability and safety applications (Z. Xu & Saleh, 2021).
Without the ability to quantify uncertainty, it is difficult to make informed decisions about
when to maintain or replace the machine or component. Hence, uncertainty quantification is a
critical component of a machinery prognostics model (Sankararaman, 2015).

Secondly, deep neural networks are black-box models, and it isn’t easy to interpret how the
network achieves its results (Kraus & Feuerriegel, 2019). It can be difficult to see how a
network has reached a decision or achieved a certain output and what contributed to its good
performance. This can also make it difficult to add expert knowledge to the model as it is not
intuitive or obvious how one would give the network expert knowledge it could incorporate into
its decision-making. Some cases use deep learning to identify the parameters of known physics-
based models for the degradation of certain machines (Nascimento & Viana, 2019; Yucesan
& Viana, 2019; Dourado & Viana, 2019). This would create a hybrid model between deep
learning and physics-based models. However, these would work as pure data-driven models if
no physics-based model was available. Some models aim to learn a Health Indicator (HI) from
the sensor data (González-Muñiz et al., 2022; Qin et al., 2021; Ping et al., 2019; She et al.,
2020). However, many of these models focus on learning a good HI by assessing metrics such
as Monotonicity, Trendability and Robustness rather than RUL estimation. While some do
have an analysis of RUL estimation performance, they are often compared only to other HI
methods and not to other deep learning methods that directly estimate the RUL. This raises
the question of whether it is possible to construct a deep learning model with an interpretable
component, such as a HI, and retain state-of-the-art performance for RUL estimation.

Finally, deep learning models require a lot of data to optimise (train); in the machinery prog-
nostics case, this means a lot of run-to-failure data. This means that multiple machines or
their components must be run until they fail so that sensor data and the RUL target data can
be acquired to train and validate the neural network. The majority of deep learning methods
used for machinery prognostics use the sensor and RUL data to train the neural network in a

2

supervised manner. In this case, the sensor signals are used as inputs to the network, which
then outputs the RUL estimate. The network’s output is then compared to the true RUL
gathered from the run-to-failure data and used to train the network. Note that some methods
use semi-supervised approaches that aim to reduce the number of target RUL data needed to
train the network (Z. Xu & Saleh, 2021). These methods are explored in section 2.2.5. Briefly,
semi-supervised methods generally train both an unsupervised model, using the input sensor
data as the targets to learn some abstract representation of this data and a supervised model
that can use information from the unsupervised model to help estimate the targets. Hence, for
machinery prognostics, this could involve training the unsupervised model on the more abun-
dant sensor signals, which outputs a latent variable representing the sensor signals. This latent
variable output from the unsupervised model could then be used as an input to the supervised
model, which outputs an RUL estimate. Usually, these are trained together, and the supervised
model is applied to the data with known corresponding RUL target values. The idea is that
the unsupervised stage helps the network get closer to an optimum solution, thereby requiring
fewer targets to train the supervised model. Hence, when training the supervised model, it
is already close to an optimum solution and requires fewer target data (RUL data) (Listou
Ellefsen et al., 2019).

1.3 Deep Generative Models and Latent Dynamics

This section introduces the concept of deep generative models that will play a large role in
the majority of the thesis. Generative models learn underlying probability distributions of the
training data and play a large role in some of the topics previously mentioned such as, semi-
supervised learning and HI construction. For this introduction, an illustrative example is given
to aid in understanding what a generative model is and what it can do.

Imagine we have some input data available (X); for example, Red, Green and Blue (RGB)
values representing images of various people’s faces. A generative model aims to learn1 how to
sample from the distribution, p(X), so that it can sample novel variables, X, that the network
did not see during training. Hence, in this example, p(X) would be the probability distribution
of all possible RGB values, and the neural network wants to increase the probability that these
values take the form of an image (such as a face). Generative models tend to sample from p(X)
indirectly by defining a latent space through the distribution, p(Z), and learning a mapping
between Z and X. Note, Z is a latent variable that relates to the input data X but doesn’t
need to have a physical meaning like RGB values do, instead the variable Z functions as an
abstract representation of the input data X. This allows one to sample Z ∼ p(Z) and “decode”
Z using some function p(X|Z) to find samples, X, in the input space. By sampling repeatedly
one could sample all over the distribution p(X). Hence, we can indirectly sample from p(X)
using p(X|Z)p(Z) = p(X,Z). p(X,Z) will be defined as a generative model due to its ability to
generate samples that come from p(X). Note, p(X,Z) is not directly described but is instead
the combination of sampling from the latent model, p(Z), and then decoding using p(X|Z). In
the case of deep generative models, the distribution p(Z) and/or p(X|Z) are modelled using
neural networks, and in this thesis, the term “generative models” will refer to deep generative

1The term “learn” in a deep learning context refers to optimising the deep neural networks parameters during
the training process; where the optimisation process depends on a loss function defining what “optimal” means
and data is used during training to optimise the network.

3

models unless otherwise stated. Figure 1.1 shows a simplified illustration of a generative model
sampling images before and after training; the generative model aims to generate images of
“faces”.

Untrained

Trained

Figure 1.1. Shows a generative model illustration in 2D space for simplicity. The circles and ovals
labelled as p(Z) and p(X|Z) are Gaussian distributions in 2D space. p(Z) is a standard Normal
distribution representing the prior latent model. p(X|Z) is the decoder and is found by sampling
Z ∼ p(Z) and using the sample as an input to a neural network that outputs the mean and standard
deviation describing the Gaussian distribution p(X|Z). Note that X represents the space of all possible
X values and p(X) is an unknown probability distribution representing the space of X values that make
up all possible faces in the given dataset. The red dotted lines point to images that are sampled from
the generative model; the untrained model samples random values in the input space X. The trained
model samples from a subspace within p(X). Since p(X) contains the combinations of X that represent
images of faces, the generative model manages to sample an image of a face. Since it is unlikely to
sample an image that exactly matches one of the images in the dataset used to train the network, the
sampled image is likely a novel image of a face that is not a part of the original dataset.

Generative models learn probability distributions p(X|Z) and p(Z) and can therefore account
for the uncertainties in the variables X and Z; they also find some latent space p(Z) whose
variables are related to X through p(X,Z). Hence, they are probabilistic models that effectively
learn the probability distribution p(X); usually by sampling from it indirectly as described
above. They also have a latent variable related to the inputs X and can therefore be seen
as a lower dimensional representation of the input variables. Both of these facts show that
generative models can potentially be used to address the “uncertainty quantification” and
“black-box method” problems mentioned in the previous section. They can also be trained in
an unsupervised manner, making them well-suited to act as the unsupervised model in semi-
supervised learning applications. These semi-supervised learning techniques can help pre-train
a network using only the input data (such as sensor signals), which can reduce the amount
of target data needed to train the RUL estimation network. Another application of semi-
supervised learning is to train a network, again using only the input data, and find a latent
representation of those input values that essentially acts as a pre-processing data stage before

4

the RUL estimation stage. Hence, generative models address many of the problems mentioned
in Section 1.2. The uncertainty quantification is addressed through the probabilistic formulation
of the deep generative model; the latent variables address the interpretability of the network
outputs, and semi-supervised learning can reduce the amount of run-to-failure data needed to
train the model.

To give a concrete example, a simple case of how a generative model may be used to uncover
the probabilistic hidden dynamics of a system will be illustrated. Looking at Figure 1.2, the

Figure 1.2. A spring-mass system with n sensors that measure the distance between the sensor and
the mass; the sensor distances are denoted as (x1, ..., xn). The axis labelled z denotes the dimension
in which the spring-mass system oscillates. Hence, if z is the axis chosen when analysing the system,
the equations of motion would be 1-dimensional.

setup is a simple spring-mass system, and the aim in this example is to discover the equations
of motion as it oscillates along the z-axis. One might easily discover the equations of motion
about the z-axis (e.g. by using Newton’s second law), but what if this was a system we knew
nothing about? In this case, measurements are taken that are assumed to be related to the
motion of the system; here, they are labelled using xi, where i is the sensor number and there
are n sensors in total. It is easy to imagine, based on the restrictions on the system, that certain
positions described using coordinates X = [x1, ..., xn] are more likely than others. This would
lead to some distribution p(X), which could be sampled to find the most likely coordinates of the
spring-mass system. Since p(X) is usually unknown in the complex systems we are interested in,
if we want to sample likely coordinates from p(X), the distribution has to be approximated. As
previously mentioned, generative models are a way of accomplishing this task. The generative
model does this by finding a mapping from some lower dimensional latent space, p(Z), to the
input space using a mapping function or likelihood p(X|Z), which is usually a neural network

5

called a decoder. This example is useful because it shows an obvious physical representation
of a lower dimensional space that would serve to encode all the input variables. The z-axis
may not be what the neural network finds, but this example illustrates the concept. Hence,
p(Z) would be the probability of the positions, Z, the spring-mass system could have along the
z-axis. A function can then be used to convert the z-axis positions to equivalent X = [x1, ..., xn]
coordinates, making p(X|Z) a function that transforms Z coordinates to X coordinates. Hence,
a generative model aims to come up with a representation for the joint distribution p(Z,X);
this is often done in deep learning by defining two neural networks p(X|Z) and p(Z) and using
them to sample X that ultimately belongs to the distribution p(X). However, through this
example, it can be seen that it may also be possible for one to define probabilistic dynamics
of the spring-mass system oscillating latent dynamics describing how Z changes through time.
Note this is not strictly true in this example, as we did not consider a temporal component
where X and Z are changing through time. There are more details on how to formally construct
these dynamical generative models by replacing X with a sequence x1:T and Z with z1:T , where
T is some arbitrary time point, T > 1. These can be found in Section 3.2 in the background
chapter; this example was kept simple to introduce the key concepts without getting stuck
in formalism. This example shows how generative models create interesting opportunities for
machinery prognostics applications. These can be stated as follows,

1. Deep generative models are probabilistic models; therefore, they are deep learning models
that quantify uncertainty. Also, note that generative models learn to sample from p(X)
which can be any arbitrary distribution; hence, these models can be flexible in their
expression of the uncertainties of the input variables X. Expressing the uncertainty of
the RUL estimates was one of the main problems identified for deep learning models used
in machinery prognostics applications. Using a deep learning model that is probabilistic
can therefore potentially help solve this issue if it can be used for RUL estimation.

2. Deep generative models can have encoded latent dynamics with a much lower dimen-
sionality than the input variables X. This could potentially help interpret the network’s
results by visually showing the latent dynamics which correspond to the degradation of
the machine.

These points help deal with two large problems with deep learning applied to machinery prog-
nostics. Generative models could therefore be a potentially useful subsection of deep learning
to explore when dealing with machinery prognostics problems.

Generative models have been used successfully in other fields to model dynamic systems using
latent dynamics. Many of these methods use the Variational Autoencoder (VAE) (Kingma &
Welling, 2014), a generative model trained using variational Bayesian techniques, but extend it
to deal with sequential inputs and outputs. A popular application of these sequential generative
models is the planning and control of an object using video footage as the input data. In this
case, the generative model learns the system’s latent dynamics by analysing the video footage
and how the images change over time. For example, this could be useful in autonomous vehicles
that have cameras and need to use the images they capture to make actions in the world.
Another example of these types of models is in speech or music generation; in this case, the
network is trained on sound signals and after training, can generate new sound signals. The
Recurrent State Space Model (RSSM) and Stochastic Recurrent Neural Network (SRRN) are
popular examples of these types of generative models used for these applications (Hafner et al.,

6

2019; Fraccaro et al., 2016). Both use neural networks to describe the dynamics and the decoder
from the latent domain, Z, to the input domain, X. However, assumptions and alterations to
these types of models can be made, e.g. latent dynamics can be made to be Markovian, i.e.
p(Z) = p(zt|zt−1). An interesting practical example of these types of alterations are models
which use a network to transform the observations X into augmented observations A. Now in
this augmented domain, the generative model could be assumed to be linear and so p(A|Z) and
p(Z) could both be linear and if these are Gaussian distributions, this could be solved using
the Kalman filter (Fraccaro et al., 2017; Karl et al., 2017; Becker-Ehmck et al., 2019). Since,
during training, these models are performing a sequential version of Bayes’ theorem to train
the model; some works use filtering methods which are algorithms to solve for this sequential
Bayes’ theorem, such as the particle filter, to optimise these models. Normally the criterion for
optimising these models is the Evidence Lower BOund (ELBO). However, this is an indirect
way of maximising the likelihood of sampling from p(X). Using filtering algorithms, such as the
particle filter, a direct approximation of p(X) can be made and improve the model’s performance
(Maddison et al., 2017; Naesseth et al., 2018). Differential particle filters can also be found in
the literature, where the aim is to learn a particle filter through deep learning that can then be
applied to problems such as object tracking and robot localisation (Jonschkowski et al., 2018;
Corenflos et al., 2021; Kloss et al., 2021). Using filtering algorithms to train generative models
is expanded on further in the background section 3.3.2 and explored in Chapter 7.

1.4 Research Questions

This thesis focuses on both quantifying the uncertainty of the RUL estimates and trying to
find some latent dynamics that aid in reducing the black-box nature of deep learning models.
Hence, the research questions largely focus on neural network models that use sensor signals
as inputs to construct latent dynamics that model degradation and probabilistically model the
RUL estimates they output.

1. How could a neural network incorporate dynamic systems to help reduce its black-box
nature; specifically for RUL estimation?

2. What would these degradation dynamics look like, i.e. how would they be constructed,
and what form would they take? What constraints would need to be placed on them (if
any)?

3. How would uncertainty be incorporated into this framework?

4. Can this all be incorporated into one framework? If so, how would it be trained and
evaluated?

Throughout the thesis, there is an attempt to answer these questions or at least make enough
progress to allow for more specific research question to be asked. The outline of the thesis
(after this section) is as follows,

• Chapter 2: The literature review starts to go over general machinery prognostics literature
to get an understanding of how RUL estimation problems have been solved. It then

7

specifically looks at deep learning models for RUL estimation found in the literature and
any work done on latent dynamic systems or uncertainty quantification.

• Chapter 3: The background goes over many of the more advanced deep learning archi-
tectures used in the thesis. It also goes over auxiliary topics such as Bayesian filtering,
which helps to understand some of the advanced network architectures used in the thesis.

• Chapter 4: This is the first contribution of the thesis. It uses Neural Ordinary Differential
Equations (NODEs) to describe the dynamics of a neural network itself. It does not
construct latent dynamics but uses a dynamic system to help understand how a neural
network could process information.

• Chapter 5: Shows a relatively simple case of how sequential generative models can be
used to address the research questions. The rest of the chapters build on this and look
at specific changes that can be made when applying the model while still using the same
underlying theory behind deep generative models. Specifically, the sequential generative
models are known as Dynamical Variational Autoencoders (DVAEs).

• Chapter 6: Shows another case of using Neural Differential Equations, but here it is
used to describe the latent dynamics of the DVAE. Hence, this builds upon the content
presented in the previous two chapters.

• Chapter 7: Focuses on DVAEs as the last two chapters did. This chapter simplifies
the model and showcases the connections between training deep generative models and
state estimation (specifically Kalman Filters). It shows how Linear Gaussian State Space
Models (LGSSMs) can be utilised in machinery prognostics to estimate the RUL and
model the degradation mechanics through latent dynamics described using LGSSMs.

The main contribution from this thesis can ultimately be described as a framework on how to
train and specify neural network models for RUL estimation, which can account for uncertainty
in their estimates and have latent dynamics. This is largely done through conditional generative
models that deal with sequential data. It should be noted that sequential generative models are
nothing new (a good review can be found in Girin et al., 2021); however, they are often not used
for direct RUL estimation. Although a handful of works have used generative models for RUL
estimation, they are more focused on the HI construction rather than competing with state-of-
the-art RUL estimation models Wei et al., 2021. The work in this thesis also makes theoretical
justifications for what inputs should be used for each neural network in the generative model
and how to construct these models for machinery prognostics tasks specifically. For example,
consider the distribution p(z1:T |x1:T), this could be factored into a product of distributions∏T

t=1 p(zt|z1:t−1, x1:T). If this model is a neural network its inputs would be z1:t−1 and x1:T
and it would output zt. The model could potentially be simplified further by making certain
assumptions e.g. the Markov assumption so the dependence of the previous z1:t−1 becomes
a dependence on only the previous variable zt−1. Or the system could be assumed to be
causal so future values are not taken into account such that the dependence on x1:T becomes a
dependence on x1:t. If these assumptions are made then the network inputs become zt−1 and x1:t
instead of z1:t−1 and x1:T . The causality assumption is the main assumption that is explored in
this thesis as many models in machinery prognostics use this assumption. Hence, these model
simplifications are explored as the structure of a lot of these models is assumed, which may lead
to models that do not perform to their full potential. An example of how the exploration of these
assumptions aids in constructing useful models for machinery prognostics is the model described

8

in Chapter 7. In Chapter 7 deep generative models to state space models and Kalman filtering
in an attempt to relate these black box neural network models to theories well-established in
other fields (such as control theory). This relation between filtering algorithms and sequential
generative models is not new, but the specific setup of the RUL estimation problem in machinery
prognostics allows for a novel construction of these types of deep state space models and Kalman
filter-based neural networks. Hence, the main contributions in this thesis are how these models
are applied to RUL estimation and the simplifications and alterations one can or should make
to this model, specifically because it is being applied to the RUL estimation task.

9

Chapter 2

Literature Review

2.1 Machinery Prognostics Overview

As mentioned in the introduction chapter, there are three broad categories that RUL estimation
models can be classified as,

• Physics-based models

• Data-driven models

• Hybrid-models

Data-driven models are the main focus of this thesis, but the physics and hybrid will briefly
be looked at so that they may be contrasted and discussed relative to the data-driven models.
Each of the model’s advantages and disadvantages will be discussed in the following sections.

2.1.1 Physics-Based Methods

As mentioned in the introduction, physics-based models use an understanding of the underly-
ing physics-based principles that govern the degradation mechanism of interest. For example,
the crack length could be mathematically modelled through the Paris-Erdogan model (Paris &
Erdogan, 1963), and the machine could be said to have reached its RUL at a certain threshold
crack length. One of the benefits of a physics-based approach to prognostics is the interpretabil-
ity of the model, meaning they include variables that have a clear physical interpretation (e.g.
crack length). The parameters that a physical model relies on can usually be determined
through physical testing or experiments on the equipment or material (Lei et al., 2018). This
can be seen as a downside due to the expense of performing experiments on components similar
to the original component being analysed for prognostics. However, they do not require the
large run-to-failure data sets a machine learning based model would require (Cubillo et al.,
2016). Another benefit is that physics-based approaches can be accurate for components with
well-known mathematical models. For example, in (Lei et al., 2016), the Paris-Erdogan model

10

is used to model the health of bearings and its parameters are updated using a Particle filer.
However, it can become increasingly difficult to understand the physics of degradation for more
complex equipment and the addition of noise through environmental variables. Hence, data-
driven or hybrid methods must be considered when the physics of degradation becomes too
complicated to model.

2.1.2 Hybrid Methods

Hybrid methods can help mitigate some of the downsides of physics-based models. For ex-
ample, expensive physical testing or experiments may be required to estimate the parameters
of a physics-based model. Hybrid models can use gathered data and data-driven methods to
estimate these parameters, potentially reducing the labour and expenses involved with phys-
ical testing. They can also be used to help improve the overall performance of a prognostics
algorithm performance. For example, (Liao & Köttig, 2016) proposed a framework using a
physics-based degradation model to estimate the degradation states of lithium-ion batteries
while using a data-driven model as a measurement model to convert estimated states from
state space to measurement space. Both models were used in a particle filter for state estima-
tion. This resulted in more accurate degradation state estimates and predictions through the
use of hybrid methods. (H. Liu et al., 2019) use a similar method where an Adaptive Neural
Fuzzy Inference System (ANFIS) is the data-driven model used as a measurement model for a
proton exchange membrane fuel cell. A physics-based model was used to model the degradation
of the fuel cell, and this state transition model was used along with the ANFIS measurement
model in an adaptive unscented Kalman filter. The Kalman filter provided greater accuracy in
the degradation state values through its state estimates and predictions.

In (Hagmeyer & Zeiler, 2023), they outline some ways physics-based and data-driven models
can be combined to create hybrid models. For example, one could use physics-based models
passively or actively. In the passive case, the physics-based model could augment or generate
synthetic data to be used in the data-driven prognostics model. In the active case, the outputs
of the physics-based model could be used as additional input features for the data-driven
prognostics model. Alternatively, in the active case, one can use the physics-based model
within the data-driven model as an intermediate step when applying the data-driven model.
For example, in (Nascimento & Viana, 2019; Yucesan & Viana, 2019; Dourado & Viana, 2019),
physics-based models are used within a Recurrent Neural Network (RNN) cell for computing
the degradation of the machine.

However, if the physics of the system is completely unknown due to its complexity, or varying
environmental conditions make it difficult to have a consistent physical model, fully data-driven
models may be considered.

2.1.3 Data-Driven Methods

Data-driven methods allow for the estimation of RUL using data gathered from the equipment
as an input to the model. Estimating the RUL this way requires little to no knowledge of
the degradation mechanics, that determine equipment failure. Hence, data-driven methods are
considered black-box or grey-box methods, which leads to the downside that they can lack

11

human interpretability when considering how the output was achieved given the inputs (Lei
et al., 2018; Baptista et al., 2019). They can make up for this downside through some of the
following advantages (Baptista et al., 2019),

• Little to no expert knowledge is required as one does not need to know the details of the
degradation process.

• They can be applied more generally to datasets relating to different machinery compo-
nents.

Unlike physics-based models, understanding the underlying degradation mechanics for specific
components is not required. This allows data-driven methods to be used instead of physics-
based models if the degradation mechanics have no known physics-based model. Data-driven
models generally work by finding patterns between the RUL and the raw input data, assuming
the data is dependent on or correlated to the RUL. Hence, they also have the advantage that
they can be applied to different machinery components so long as there is enough relevant data
available, while a physics-based model might need to find the unknown model parameters for
specific machines. This generality makes data-driven models a powerful tool for machinery
prognostics applications, especially when considering the wide array of machines and compo-
nents without detailed mathematical models describing all their possible degradation profiles.

The motivation to use data-driven methods for machinery prognostics has increased as more
industrial data is gathered (Diez-Olivan et al., 2019). Data-driven methods can be further
categorised as statistical or Artificial Intelligence (AI) methods. This thesis mainly focuses on
artificial intelligence methods that use machine learning models to estimate the RUL. Hence,
any examples in this review will focus more on AI methods than statistical methods. Tradi-
tionally these methods use the following steps to estimate the RUL (Lei et al., 2018).

• Data acquisition

• HI construction

• Health state division

• RUL prediction

This review focuses on the models themselves and how they are applied. Hence, the data
acquisition step will not be discussed.

Health Indicators

HIs are variables that give information on the degradation state of the system through a repre-
sentative variable. The RUL value depends on the system’s degradation state; hence, selecting
a HI that represents the degradation is an important step when calculating the RUL. For ex-
ample, when estimating the RUL of lithium-ion batteries, it is common to use battery capacity
as a HI with some threshold capacity value determining the point when the battery needs to

12

be replaced. This can allow data-driven methods to fit curves to the data points gathered and
extrapolate to the threshold value to estimate the RUL (H. Liu et al., 2019; H. Zhang et al.,
2018; G. Zhao et al., 2017; X. Hu et al., 2016). Some HIs do not directly represent a physical
or measured quantity, and so no obvious threshold values exist which can define the point of
failure and help estimate the RUL. Instead, the HI is used for its correlation to the RUL, and
the data-driven method is used to find the RUL by learning the relationship between HIs and
the RUL. In this case, multiple HIs can be used as inputs in a data-driven model which finds
their relationship to the RUL. These HIs could be the raw sensor data signals acquired from the
equipment or derived from them, e.g. Root Mean Squared (RMS), kurtosis, Fourier coefficients,
etc.

In traditional machine learning methods, HI construction involves finding hand-crafted features
from raw data signals. For example, statistical features such as RMS or kurtosis values are
calculated from the signals to indicate the equipment’s health. To determine what features are
useful for RUL estimation, the features go through a selection process where they are assessed
using a selection criteria or metric. Commonly used metrics such as the Pearson correlation
coefficient, monotonicity, robustness trendability and autocorrelation are used to determine
which features are used as HIs and are unsuitable. (J. Wu et al., 2018) used a threshold
Pearson correlation coefficient value to determine what features to keep as HIs depending on
their correlation to the machining tool wear. Thresholds for monotonicity and autocorrelation
were also used in the study to decide which features would be kept as HIs. (X. Li, Yang, et al.,
2019) used a weighted combination of correlation, robustness, trendability and monotonicity
metrics for feature selection. (Son et al., 2013) used Principal Component Analysis (PCA) to
reduce the multivariate sensor signals to two dimensions. They created a failure zone based
on the PCAs coordinates at the machines failure region and constructed a HI based on the
Euclidean distance between the current PCA coordinates and the failure points coordinate.
The HI represents the distance between the machine’s current state and the failure state; once
it equals zero, the machine can be said to have failed. Hence, they could then fit a Wiener
process to model the HIs progression and extrapolate to this failure threshold to calculate the
RUL.

Deep learning generally uses the raw data as inputs, and the neural network learns the features
automatically through the operations in each layer of the network. However, deep learning
can also create latent variables that can be used as health indicators for other RUL prediction
methods. For example, (L. Guo et al., 2017) used a RNN to take raw input data as well as
statistical features from the raw data signals as inputs and outputs a one-dimensional HI. An
exponential model is fit to the HI and extrapolated to a known threshold to estimate the RUL.
(X. Liu et al., 2022) uses a CNN on healthy bearing vibration data to construct a HI, and its
trend is fit with an exponential model whose parameters are optimised using the Particle filter.
(F. Xu et al., 2020) used a moving window-based stacked autoencoder with an exponential
function to create degradation trends with improved monotonicity compared to the input data.
There are also cases where networks such as Convolutional Neural Networks (CNNs) are used
to learn custom features that are then used as the input to the RUL estimation model. These
custom features learnt from the CNN help improve the accuracy of the RUL estimate when
compared to statistical features (Mao et al., 2018). Unsupervised methods that use the sensors
as input data as well as the targets may also be employed to construct health indicators.
Generally, these networks are trained to reconstruct sensor signals from the machine operating
in a healthy state. Afterwards, one may use the reconstruction error between the network
outputs and the real sensor values to act as a health indicator. This is explored in more detail

13

in section 2.2.5.

The HIs may indicate the state of degradation of the equipment; however, if the machine is
healthy, it is difficult to estimate the RUL from near-constant HI values. Hence, the next step
in the machinery prognostics process is to split the data into “Health stages”.

Health Stage Division

Health stage division would then help breakdown the stages of degradation, for example, a
basic breakdown of stages would be,

• Healthy: prognostics algorithm not needed yet as the machine is not degrading

• Degrading: a fault or anomaly occurred, and the equipment’s health is now degrading,
the prognostic algorithm can now make predictions on the degradation trajectory’s trend
and RUL

• Failure: the point where the equipment can no longer be used

Some machinery prognostic models use the transition between health stages as a way of mod-
elling the machine’s health and estimating the RUL. For example, when using Hidden Markov
Models (HMMs), the degradation stages are often separated into the three stages mentioned
above. The transition probability to the failure stage helps estimate the RUL (Du et al., 2017;
Kim et al., 2011). (Kumar et al., 2019) noticed that for their application involving finding
the RUL of drill bits from cutting tools, two health stages gave the best overall performance
for the HMM. This result was achieved by testing the performance of different HMMs with
varying health stages (2-8). Deep learning methods can also utilise health stages to improve
the performance or interpretability of the method. (M. Xia et al., 2018) used a neural network
to classify the monitored data into different health stages by outputting the probability of being
in each health stage. Another network could then be used to output the RUL value for each
stage resulting in a probability distribution of RUL values. In this case, health stages helped
improve the interpretability of the RUL outputs by providing a probabilistic output, while the
stages themselves can give an intuitive idea of how close a component is to failing.

Identifying the Health Stages can aid when training the model for RUL prediction. This is
because the model can struggle to make predictions when the machine is operating in a healthy
mode if the chosen algorithm assumes the machine starts degrading from the start of its life. An
example of this is the popular practice for the Commercial Modular Aero-Propulsion System
Simulation (CMAPSS) dataset to clip the RUL so that its maximum value is 130 (Heimes, 2008).
This was done because it was found that while the true RUL values were greater than 130,
the neural network RUL estimation outputted estimates of steadily around 130. After the true
RUL decreased past 130, the estimated RUL also decreased. This is because, during the healthy
stage, the sensor data does not change much as everything is operating steadily, so inputting
these values in the deterministic neural network will always output the same results. Hence, to
account for this, the RUL value of 130 indicates the machine is healthy and effectively acts as a
“Healthy” health stage. Once the sensor data starts to deviate from its healthy operating mode,
the RUL estimations deviate from 130 and the machine starts to degrade. Another example

14

is using a health indicator to determine when the machine deviates from a normal operating
mode and, therefore, when degradation starts. For example, statistical HIs, such as RMS or
kurtosis, can be calculated using the bearing vibration data, and the degradation process can
be identified once those HIs deviate from a normal value or cross some predetermined threshold
(Cao et al., 2023; J. Guo et al., 2023). Similarly, in (X. Liu et al., 2022), a CNN based HI is
used instead of vibration statistics to determine the healthy and degrading health stages. This
process is often applied to bearing prognostics in the literature. Like with CMAPSS, any point
before the degradation start point is treated as a constant maximum RUL, and afterwards, the
RUL linearly degrades.

RUL prediction

Finally, RUL predictions can be made using a chosen data-driven algorithm. RUL prediction
will generally utilise the HI variables when the equipment is in the degradation stage. This can
be done by learning the degradation trend of the machine or directly estimating the RUL using
the correlation between the HI and RUL. When learning the HI trend during degradation,
the RUL can be found by extrapolating this trend to some threshold value and calculating
the time difference between the current time and the time the trend hits the threshold. For
example, (Saha et al., 2009; Saha & Goebel, 2008) used a Relevance Vector Machine (RVM) as
a regression model that is fit to battery capacity health indicator data and then extrapolated
to a threshold. The time between the current time point and the time when the threshold is
crossed is the RUL of the battery. (H. Liu et al., 2019) also use a threshold-based approach for
RUL estimation but uses a semi-empirical model for voltage degradation of a proton exchange
membrane fuel cell. They use an Adaptive Unscented Kalman Filter to update the states and
the RUL estimates as more data is gathered. Another example involves using a hidden Markov
Model to determine the hidden degradation states based on the sensor signals from the machine.
Then the probability of transitioning to the final failure state can help determine the estimated
RUL (Q. Liu et al., 2015; Cannarile et al., 2017). Most deep learning methods will instead use
the data as inputs to the model, which directly outputs the RUL value of the component.

Taking the example of Machine Learning (ML) methods, the following process can be used to
estimate the RUL,

• Features can be extracted from the raw data, e.g. wavelet coefficients, statistical features,
etc., which act as HIs

• Health stages can be found, and the degradation stage can be isolated, e.g. using some
anomaly detection method to find the point where degradation starts

• The ML algorithm uses HIs in the degradation stage as inputs to the model. It then learns
a trend which helps estimate the RUL either by directly outputting the RUL or fitting a
curve to the degradation trend and extrapolating it until the HI reaches a threshold value

These steps involve calculating hand-crafted features and splitting the data into health stages.
This can require expert knowledge of what features help the ML model learn the system’s
degradation trend and how to split the data into health stages properly. This is one of the
downsides of traditional ML data-driven methods, as they require experience and expertise

15

to utilise them due to these “hand crafted” features (W. Zhang et al., 2019). However, deep
learning methods utilise deep neural networks (networks with multiple stacked layers), which
automatically learn feature representations of the input data. This property allows the network
to automatically learn HIs and health stages needed for RUL estimation as the layers of the
network extract the required features from the data. This allows for the prediction of the RUL
using only the raw input data without requiring expert knowledge regarding the equipment or
process. Deep learning methods will be the focus here due to their generality and ability to
automate processes that normally require expert knowledge, such as HI construction. Hence,
the following sections will focus on presenting some popular deep-learning models used in
machinery prognostics.

2.2 Deep Learning in Prognostics

As more data is gathered, the effectiveness of deep learning techniques increases making them
a popular choice for applications where there is abundant sensor data. This section provides an
overview of the different techniques used to estimate the RUL of equipment using deep learning.

2.2.1 Feature Extraction

Often with conventional machine learning techniques, domain expertise is required to take
the raw data and construct suitable features for the algorithm to detect patterns between the
inputs and desired outputs (Lecun et al., 2015). Deep learning techniques automatically extract
features from the raw input data through the use of neural networks, negating the need for
careful construction of features that require domain expertise. Neural networks allow for the
representation of more complicated nonlinear functions through stacks of more basic nonlinear
functions. A deep neural network can be seen as using many network layers or increasing the
number of function stacks relative to a shallow neural network to better approximate nonlinear
operations. As the inputs go through the network, these stacks can be thought of as extracting
features from the data, which eventually gets combined in the end to produce an output.
When enough of these operations are stacked together, complicated nonlinear operations can
be represented by the network (Hornik et al., 1989), allowing for better approximations of any
combination of features needed to produce the desired output. An illustration of a shallow
versus deep neural network can be seen in Figure 2.1. Note these simple feedforward networks
are often referred to as Multilayer Perceptron (MLP) networks or Artificial Neural Networks
(ANNs). Some prognostic procedures mentioned here still use separate feature extraction before
inputting the data into the neural network. This can be the case if the raw data alone is
insufficient to learn the pattern between the data and the RUL (Y. Wu et al., 2018).

In some simple cases, much like other data-driven methods that do not involve deep neural
networks, statistical indicators are extracted and used as inputs to the deep neural network
(F. Xu et al., 2020; F. Wang et al., 2019). Sensitivity features that describe the degradation
of the component are often extracted for condition monitoring in machinery components. For
example, multiple cases can be found where frequency information is extracted using Fourier
or Wavelet transforms for condition monitoring applications. In one case (Y. Huang et al.,
2010) used the wavelet transform along with further dimensional reduction techniques and a

16

(a) Shallow Neural Network

(b) Deep Neural Network

Figure 2.1. A diagram showing the difference between a shallow neural network and a deep neural
network. The difference simply being the increase in functional stacks for the deep neural network,
i.e. the outputs of one stack become the inputs of the next, and this is repeated more times in the
deep neural network. The bottom nodes/circles represent the inputs, and the arrows represent the
function applied to the inputs and point to the outputs of that function. The top node represents a
single final output variable. Note many “deep” neural networks work well with only three layers, and
many networks used in this thesis are only three layers deep.

fuzzy c-means clustering method to assess the performance and classify the working conditions
of the machinery component. (McKee et al., 2015) used octave band analysis on the frequency
information and PCA to determine the most informative components or octave bands in this
case. PCA was used to extract features from each chosen octave band and compared with
features extracted from healthy pumps using the Mahalanobis distance as a sensitivity param-
eter to monitor the pump condition. (Lei et al., 2010) used a wavelet transform and empirical
mode decomposition on gear vibration signals to extract the fault characteristic information
and other general statistical indicators. A gear fault diagnostics algorithm used these parame-
ters as the condition monitoring data. After extracting sensitivity features they can be used to
aid in tasks such as diagnostics and prognostics. For example, (Z. Q. Chen et al., 2015) used
different statistical and condition monitoring features as input parameters to a convolutional
neural network that was then used to identify faults in a gearbox. Wavelet transforms can also
compress the signal by representing the signal using wavelet coefficients, which signify the sig-
nal’s energy. This allows for filtering or denoising the signal by reconstructing the signal using
only the high energy coefficients, while the low energy coefficients are assumed to represent
the white noise of the original signal (Z. K. Peng & Chu, 2004). Using the resulting filtered
signal instead of the noisy raw data as inputs can help improve the overall performance of the
deep neural network (Kanarachos et al., 2017). Extracted features can also be used to improve
interpretability or lower the dimensionality of the data. An example of this is encoding input
values to latent spaces using Restricted Boltzmann Machines (RBMs) through unsupervised
learning techniques. (Listou Ellefsen et al., 2019; Ren et al., 2019) both used the RBM to
extract features from the input data and then used those latent features in another network

17

to output the RUL. Autoencoders are also used to encode input data and use these latent
variables as features for the RUL prediction network (C. Chen et al., 2020). (M. Xia et al.,
2018) used an autoencoder to classify the inputs into a discrete number of health stages, deter-
mining the probability of being in that stage. Another network could then find the RUL given
each of those health stages/features from the autoencoder. The classification into health stages
helped with the interpretability of the features as it was directly related to degradation, and
probabilities were associated with each health state. (W. Yu et al., 2019) used a bidirectional
Long Short-Term Memory (LSTM) network to create a one-dimensional health indicator and
curves are fit to this indicator for smoothing. To estimate the RUL, similarity-based techniques
are used to compare the current curves to the training curves, and a weighted average of their
corresponding RUL values was used as the RUL estimate. (L. Guo et al., 2017) used an RNN
on both raw data and extracted statistical features to output a one-dimensional HI, which
represented the degradation of the machine. The HI had a range from zero to one, and the
RNN was trained so that a HI value of 1 indicated machinery failure. Hence, the HI had an
inbuilt threshold value, and in the paper, a simple exponential model was fit to the HI with
uncertainty bounds on its parameters. The exponential model could extrapolate the HI to find
the time it took for the HI to reach the failure threshold. This model used deep learning to
extract a HI, which allowed for a simple model to be used and the incorporation of uncertainty
analysis.

2.2.2 Recurrent Neural Network Methods for Prognostics

The data used in machinery prognostics is generally gathered from sensors taking measurements
from the equipment at certain time intervals. These sensor signals are time-dependent and are
classified as time-series signals. Since these signals are the inputs to the model used for RUL
estimation, the RUL output is also dependent on time. Hence, many studies utilise the RNN
for RUL estimation due to its feedback architecture being well-suited for analysing time-series
signals. A simplified diagram of how the RNN might be used for RUL estimation given sensor
data is shown in Figure 2.2.

There are different ways the RNN can be utilised in machinery prognostics, either directly
or indirectly estimating the RUL. As mentioned in the feature extraction section, in some
cases, statistical features, frequency or time-frequency components may be extracted and used
as the inputs to the deep neural network to improve performance. The signals may also be
filtered using Fourier, or Wavelet transforms to reconstruct the signal using only the high-
energy components found in the frequency or time-frequency transforms (L. Yang et al., 2019).
Statistical, frequency and time-frequency features have been used as inputs to the RNN to
aid with training the RNN and improving RUL estimation (F. Wang et al., 2019). In some
cases, new features are proposed to improve the RNNs performance, (B. Zhang et al., 2019) for
example, proposed a waveform entropy feature which helped improve the network performance
when used as an input variable to the network. However, deep learning aims to extract features
automatically from the raw data and directly output the desired variables. Hence, it was more
common to find cases where RNNs were used either on raw data to find the RUL or used as
feature extractors themselves while another network or separate technique estimates the RUL.
The following paragraph mentions these cases and how they utilise the RNN to estimate the
RUL.

18

RNN CellRNN CellRNN Cell RNN Cell

ANN ANN ANN ANN ANN

Figure 2.2. This shows an illustration of how an RNN could be used to estimate the RUL. It shows
a relatively simple example of taking sensor data at certain time points and using them as inputs to
an RNN. The hidden variables go on to be the input variables to an Artificial Neural Network (ANN)
whose output is the RUL estimate.

LSTMs are one of the most popular variants of the RNN. Hence, multiple studies use them to
estimate the RUL of machinery components using raw sensor data as an input. While many
studies use the LSTM on raw data to estimate the RUL, they often differentiate themselves
through their methodology or by altering the network to better suit a machinery prognostics
context. For example, (W. Peng et al., 2019) used a Bayesian bidirectional LSTM whose param-
eters are described using Gaussian distributions. This incorporates uncertainty into the LSTM
and, therefore, the final RUL output due to being able to sample different parameters from
their corresponding distributions and simulate different RUL estimates. Hence, the novelty is
not from the network architecture but from how it is used, in this case, to incorporate uncer-
tainty into the RUL estimates. (Aggarwal et al., 2019) also quantifies the uncertainty in their
RUL estimates; however, it is done by letting the LSTM output the parameters of a Weibull
distribution. The Weibull distribution describes possible RUL values, while the likelihood of
the Weibull distribution is used to train the network by evaluating the expression at the target
RUL values. (Y. Zhang et al., 2018) inputs multiple possible initial conditions for the battery
capacity values into an LSTM and uses Monte Carlo simulation to incorporate uncertainty into
the RUL estimation. (Zhou et al., 2019) utilised the LSTM to model the battery capacity trend
of a lithium-ion battery; the LSTM can then be used to extrapolate to a threshold value for
RUL estimation. (Elsheikh et al., 2019) used a bidirectional handshaking LSTM, which uses
the final output of the cell and hidden state for the forward LSTM to initialise the backward
LSTM. This improves RUL estimation accuracy when given short observations/sensor data
sequences. (J. Wu et al., 2019) also focused on improved RUL estimation accuracy by utilising
multiple stacked LSTM networks and optimising the hyperparameters using the grid search
method. (C. G. Huang et al., 2019) first used the raw sensor data in a bidirectional LSTM to
extract features from the data. These features were then combined with operational condition

19

signals, and the combined signal is the input to another bidirectional LSTM, which produces
the RUL output. This method incorporated operating conditions that do not have a natural
numeric representation into the network and, therefore, the RUL estimates. (Radaideh et al.,
2020) used the LSTM to model different variables monitored for the coolant in a nuclear power
plant. This model was used to extrapolate the variables and act as a warning system if any
potential accidents could occur due to loss of coolant. While all these studies use the LSTM
architecture, they all find novel ways to utilise the architecture to solve another problem in
machinery prognostics, e.g. RUL estimation accuracy or uncertainty quantification of the RUL
estimates.

An interesting application of RNNs for prognostics is using the data-driven RNN model in
conjunction with a physics-based model. (Nascimento & Viana, 2019) used a custom RNN cell
that can either work as a standard RNN to model the cumulative degradation of a component
or incorporate physics-based differential equation parameters that are optimised during RNN
training. Hence, known differential equations that model degradation can have their parame-
ters estimated during RNN training using gathered sensor data. In this case, it was used to
model crack length using Paris’s law as the physics-based model and the RNN outputs param-
eters which are normally difficult to estimate accurately. The RNN cell outputs a change in
crack length and adds it to the current crack length to model how it changes over time and
estimates the RUL life is based on a threshold crack length value. A general diagram of this
modified physics-informed RNN cell is shown in Figure 2.3. (Yucesan & Viana, 2019) used a
physics-based RNN cell to model the degradation of grease/lubricant in wind turbine bearings.
(Dourado & Viana, 2019) modelled corrosion fatigue using a physics-based RNN to estimate
the RUL.

ANN Layer Physics Model
Layer

Figure 2.3. A general physics-informed RNN cell. Where xt represents the inputs to the model, Ct are
the coefficients for the physics-based model derived from the neural network structure and input data,
ht is the health indicator the physics-based model outputs and acts as the hidden variable for the RNN.

While RNNs are well suited for tasks involving time-series data, such as sensor signals used in
machinery prognostics, they are not the only network used in machinery prognostics. The next
section looks at how another popular type of network, CNNs, have been used in machinery
prognostics.

20

2.2.3 Convolutional Neural Network Methods for Prognostics

By themselves, Convolutional Neural Networks are not as common for prognostics compared
to the RNN. This is because the RNNs feedback architecture is well suited for analysing time-
series data, while the CNNs architecture is more suited for analysing spatial patterns in the
data. The CNNs strength in finding spatial patterns makes them widely used in machine vision
applications and for analysing image data. Some researchers in prognostics have leveraged
this strength by reformatting the sensor signal data to suit the CNN architecture better. The
following paragraphs review the CNNs used for prognostics and examples of how data may be
reformatted to improve CNN performance when used for RUL estimation.

Many early works using CNN methods for RUL estimation first transform the sensor signals
in a grid format using some transform, e.g. Fourier transform. This is comparable to image
data which are represented by a grid/s of intensity values, e.g. one grid of grey scale intensities
or three grids of red, green and blue intensity values for each corresponding coordinate in the
grid. Since CNNs perform well on image data, it is beneficial to restructure the data in a two-
dimensional grid format with intensity values at each coordinate, similar to the way image data
are formatted. One way of doing this is to extract the time-frequency data from the raw data
to create an intensity map from the resulting time-frequency plot. For each time-frequency
coordinate, there is an intensity or energy value given by the coefficients from the chosen
time-frequency transformation method. This is comparable to image data, where there is a
corresponding intensity value for every spacial coordinate. A diagram illustrating the general
steps involved in CNN prognostics is shown in Figure 2.4.

Time-Frequency
 Transform

CNN RUL Estimate

Figure 2.4. The general workflow of the algorithms described in this section. First, the time-series
signals (only one shown here) are transformed into a time-frequency spectrogram image where the x-
axis is time, the y-axis represents the frequency while the intensity of the colours represents the energy
of the signal. This becomes the input to the CNN, which outputs the RUL estimate directly

For example, (Zhu et al., 2019) used the wavelet transform on the input sensor data to transform
it into this time-frequency format, and then a CNN was used to estimate the RUL. (X. Li,
Zhang, et al., 2019) used a similar method but instead utilised the short-time Fourier transform
as the time-frequency transform method. (W. Yang et al., 2020) did not use time-frequency
transforms but still applied a transform on the input data to turn it into this “image-like”
format by using Empirical Mode Decomposition (EMD). Similarly, (Q. Wang et al., 2019) did
not use a time-frequency transform, but instead, a regular Fourier transform to take data into
the frequency domain and sectioned the data into bands to construct an M × M 2D data
format. These became the inputs to the CNN used to estimate the RUL. CNNs have also been
used without extracting features from the raw data. Instead, time windows are used to create
a 2D data format where the data has the dimensions (window length × feature dimension),

21

which becomes the input to the CNN (X. Li et al., 2018; H. Yang et al., 2019). Hence, to use a
CNN effectively, some data augmentation is required, i.e. the input data is transformed into a
2D input which is similar to how image data is structured. This helps improve the performance
of the CNN as the data is structured in a way the CNN can handle due to the nature of its
architecture. Feature extraction may also be needed, as was the case when wavelet or Fourier
transforms were used, depending on how deep the CNN is (which could be limited due to the
computing power available) and how much data is available.

Multiple CNNs can be used to split the tasks required for an effective overall prognostics
method. (B. Yang et al., 2019) used one CNN on the data to identify if the equipment was
degrading. Once the first classifier CNN identifies degradation is occurring, another is used
to estimate the RUL. This helps improve performance as the network is more effective at
determining the RUL and the degradation trend of equipment when the input data corresponds
to the degrading stage of the equipment. So far, all the methods relied on the fact that CNNs
are good at identifying spatial patterns in the 2-dimensional grid input data. In the case of
prognostics, the grid dimensions are generally a time dimension and a feature dimension, such
as the frequency or the raw data dimension, which indicates the component’s health. (B. Wang,
Lei, Li, et al., 2019) used two 1-dimensional convolution operators acting in each dimension
(one in the time dimension and the other in the feature dimension). This enables the CNN to
learn the temporal and spatial features separately and improve the RUL estimates.

Combining the CNN and RNN can help provide benefits from both of the networks, i.e. the
RNNs ability to deal with time-series data and the CNNs ability to extract spatial features.
Some works have used CNNs to extract features and then used those features as an input to
an RNN for RUL estimation (Jiang et al., 2019; Kong et al., 2019; R. Zhao et al., 2017; An
et al., 2020). The RNN and CNN can also be combined into one network known as Recurrent
Convolutional Neural Network (RCNN) which can be used to model the RUL and extract
features all in one network (B. Wang, Lei, Yan, et al., 2019).

2.2.4 Attention Mechanisms

Recently Attention mechanisms have become more popular for extracting features from raw
data and using these to aid in RUL estimation. Self-Attention is what will be focused on here,
as that is what all these methods have been using. Self-Attention takes the input data X and
uses linear projections to map them to attention weight matrices Q, K and V . These are then
used to calculate the self-attention matrix WA and the output known as a “head”. i.e.

Q = XWQ, K = XWK , V = XWV (2.1)

WA =
exp (QK

T
√
d

)∑
exp (QK

T
√
d

)
(2.2)

head = WAV (2.3)

where WQ, WK and WV are parameters that can be optimised during training, and d is the
dimension size of X that helps normalise the attention mechanism for numerical stability. A
multi-head attention mechanism calculates multiple heads using different weight matrices WQ,
WK and WV , and then concatenates the heads to output multiple extracted features from the
input sequence X. This is similar to how CNNs may use multiple filters to scan the input image

22

and therefore output multiple features that have been extracted from that image. The attention
matrix is used as a weight matrix to weigh certain variables in a sequence that contribute most
to the output. When training the network, WQ, WK and WV are optimised in such a way to
achieve this.

Generally, many methods tend to employ a network that can extract temporal information
first before applying the attention mechanism. The attention mechanism itself doesn’t have a
way to understand the importance of the input data ordering, and so to capture the temporal
relationships of the input signal a network such as an RNN is used first. (Ragab et al., 2021)
incorporated the attention mechanism after an LSTM to weigh the important hidden variables
in the sequence and focus on the important time points for decoding sensor sequences which
forecast the future sensor signals. (Z. Chen et al., 2021) also used an attention mechanism after
an LSTM to extract features from the sensor signals that complemented other handcrafted
features, which were concatenated to the features extracted from the attention mechanism.
(J. Zhang et al., 2022) applied a bidirectional Gated Recurrent Unit (GRU) and then used
an attention mechanism to find the weighted outputs of the hidden variable outputs, which
are used to estimate the RUL. Similarly, (Nie et al., 2022) applied a CNN and a bidirectional
LSTM followed by an attention mechanism to extract features from the sensor signals gathered
from cutting tools. (Qin et al., 2022) uses a temporal CNN to extract the temporal features
and an attention mechanism afterwards to determine the important features. (Remadna et al.,
2022) applied a CNN on time windowed data and an attention mechanism on its outputs to
select important features extracted by the CNN to construct a latent space that acts as a
HI. In contrast to these methods, (H. Liu et al., 2021) used the attention mechanism on the
sensor signals to identify important features and create a weighted input for the network that
estimates the RUL. While in (Cao et al., 2023), attention mechanisms were used on the sensor
signals before a GRU was applied and then another attention mechanism was used afterwards.
Finally, (D. Xu et al., 2022) proposed a dual-stream attention mechanism that uses as inputs
both the sensor data and the difference between the sensor signal and the initial value of the
signal. This difference between the signal and its initial value indicates how the machine has
deviated from its initial healthy state. The features extracted from the multi-headed attention
mechanism are fed into a MLP network to estimate the RUL. Here no network was used to
capture the temporal nature of the time-windowed data; instead, the attention mechanisms
were simply applied to the time-windowed signals in a noncausal fashion.

It can be seen that many attention-based prognostic methods utilise attention to help extract
more useful features from the input sensor signals. This often aids in RUL estimation or HI
construction. The most common way these methods utilise attention mechanisms is to find
a weighted time-series sequence where the weights highlight the data at important points for
estimating the RUL. However, some methods use attention mechanisms to find weighted input
features that can then be the input to a network that will extract further features or estimate
the RUL. Either way, it can be seen that these methods use attention mechanisms to find
weighted features, which can be used to find a weighted average that can act as a feature for
RUL estimation. Intuitively the effectiveness of this makes sense as more traditional prognostic
methods might use extracted statistical features to calculate a RUL estimate. Many statistical
methods rely on calculating some average of the signal e.g. RMS calculates a mean of the
squared input values, the variance is the mean of the difference between the signal and the
signal’s mean. Hence, the attention mechanism acts like a custom weighted average that is
optimised for RUL estimation purposes, and so perhaps it is not surprising that it is effective
at extracting features for RUL estimation.

23

2.2.5 Generative models

As mentioned in Section 1.3 a generative model learns to generate samples similar to the input
data it was trained on. Sampling from the input data space is done indirectly by sampling from a
latent space first and then decoding this latent variable to the input domain. Generative models
in prognostics do not generally function in the same way that many of the models described in
the previous sections do. In the previous sections, many of the models output the RUL estimate
conditioned on the sensor variable inputs. Training the generative model with sensor signal
inputs would result in a model that learns how to sample novel sensor signals. Hence, many
generative models used in machinery prognostics are utilised for sensor reconstruction and the
ability to acquire a latent variable representation of those sensors. This section covers two
major areas in which generative models are in machinery prognostics. These two categories use
generative models to construct HIs or train in a semi-supervised fashion to reduce the amount
of target data needed.

Health Indicators

To construct health indicators using generative models, some works trained a generative model
on data from a healthy machine, this meant the model could reconstruct the sensor data from
a healthy machine. If the sensor data were from a degrading machine instead of a healthy one,
the reconstruction loss would increase. Hence, this reconstruction error could be used as a HI.
(Zhai et al., 2021) trained a Variational Autoencoder (VAE) to reconstruct sensor values and
used multiple reconstruction loss metrics to construct health indicators for the system. They
also conditioned the VAE on the operating condition information; this allowed different future
sensor trajectories to be simulated under different planned operating conditions. (González-
Muñiz et al., 2022) also used an error value as a HI, but instead of the reconstruction error,
they used the error between the latent variables describing a healthy machine and the latent
variable from the machine’s current status. A Generative Adversarial Network (GAN) can also
be employed for HI construction through training on data from healthy machines and then
using its discriminator network. The discriminator of the GAN outputs a value from 0 to 1
and represents the probability the data is from the dataset the GAN is trained on. Hence,
values close to 1 indicate the data is from the healthy operating region of the machine and as it
deviates due to the machine degrading, the values from the discriminator network move from
1 to 0. Therefore, the discriminator output variable can be used as a HI where 1 represents a
healthy machine and 0 is close to failure (Que et al., 2019).

Another way of constructing a HI using generative models is through the latent variables
constructed during the training of the VAE. This latent variable can be constructed to give
it desirable properties for HIs. (Wei et al., 2021) uses a conditional dynamical VAE, which is
conditioned on the sensor values and outputs the RUL. The RUL is dependent on the latent
variable, and this allows the latent variable to act as a HI due to its relationship with the RUL.
Ping et al., 2019 uses a log-Normal distribution instead of the normal distribution, which is
commonly used to describe the latent space of a VAE. Compared to the normal distribution, a
latent variable which is log-Normally distributed, is better suited to model the asymmetry of
the degradation mechanics. (T. Yang et al., 2020) used an LSTM network as the encoder in the
VAE framework. This allowed the VAE to capture temporal dependencies and patterns using
the LSTM, which is well suited to that task. (Remadna et al., 2022) also uses the latent space

24

of a VAE as the HI. However, instead of an LSTM, they use a CNN along with an attention
mechanism as the network used to construct the VAE. Helped extract features from the sensor
data while the attention mechanism weights certain parts of the time sequence more than others
making it well suited to handle time series data.

Semi-supervised models

Obtaining enough failure data is one of the important challenges to overcome when considering
deep learning methods for machinery prognostics (Eker et al., 2012). One way to reduce the
amount of failure data required is to use semi-supervised learning. Semi-supervised learning
uses unsupervised learning to learn patterns from the input data, such as sensor signals, then
utilises this knowledge in various ways to assist a supervised learning stage that uses the target
data (RUL data in this case). For example, a VAE could be trained on the sensor signals,
and the latent variables from the encoder could be used as the inputs of another network that
estimates the RUL. The idea is that the unsupervised portion of the learning can be done on
just the sensor signals, which can be easily gathered compared to the RUL target data that
requires a machine to be run until failure. Then when training the network for RUL estimation,
part of the work was already done during the unsupervised stage, so less RUL data is required
to optimise the network.

(Su et al., 2020) uses a VAE to find a latent variable representation of the input sensor data.
They apply an LSTM on those latent variables during the supervised stage to estimate the
RUL. (K. Yu et al., 2021) has a similar technique but uses a temporal-CNN to estimate the
RUL from the latent variables during the supervised stage. Other methods continue to train the
encoder during the supervised stage. (T. Wang et al., 2021) trains a VAE in an unsupervised
manner as the previous methods did. However, the previous methods used the latent variable
outputs from the VAE’s encoder and did not train the VAE further during the supervised stage.
Here, the encoder of the VAE was further trained during the supervised stage; the unsupervised
stage acts as a pretraining stage, while the supervised stage further tweaks the encoder network
for the RUL estimation task.

Some methods involve VAEs which account for the data’s temporal nature and are specifically
designed to deal with sequential data. (Martin & Droguett, 2022) creates a temporal VAE
(tVAE), which can be trained to find latent space dynamics and sequences of latent variables.
These latent variables can be used as inputs for the supervised portion of the training to train a
network to estimate the RUL. (Verstraete et al., 2019) also constructs a VAE method designed
to learn latent dynamics and is better suited to deal with sequential data than the standard
VAE. They train the VAE using adversarial techniques and, like the other methods, use the
latent variables to train the RUL estimation network during the supervised training phase.

2.2.6 Uncertainty Considerations in Deep Learning Methods for
Prognostics

One of the major pitfalls of using deep learning methods for prognostics is the lack of a natural
way of incorporating and quantifying the uncertainty of RUL estimates. Generally, deep learn-
ing methods used in prognostics usually rely on some extra step or modification that enables

25

uncertainty to be incorporated into the estimated RUL. This can be contrasted to statisti-
cal methods, which incorporate uncertainty representation and quantification as a part of the
model itself. Uncertainty quantification is often neglected in deep learning methods for ma-
chinery prognostics (W. Peng et al., 2019) hence, estimating uncertainties for RUL prediction
is generally seen as a challenge and a research focus for machinery prognostics (Lei et al., 2018).
This section of the review aims to first briefly look at the different methods used for uncer-
tainty quantification in more traditional machinery prognostics techniques and then review how
different deep learning methods have quantified the uncertainty in their RUL estimates.

Uncertainty in Traditional Data-Driven Methods

Bayesian methods are popular for uncertainty quantification in more traditional data-driven
methods used in machinery prognostics. Due to the lack of multiple test cases, the frequentist
interpretation is generally unsuitable for machinery prognostics. Instead, data-driven condition-
based monitoring techniques focus on analysing the states or sensor values at any point in time
for a single piece of equipment. Hence, the uncertainty of the RUL estimate depends on the
health indicator’s uncertainties. As more measurements arrive, the uncertainty of RUL esti-
mates would therefore change and need to be updated. Bayesian approaches can be used for
these uncertainty updates and therefore are well suited for machinery prognostics (Sankarara-
man, 2015). There are many cases where Bayesian techniques are used for state estimation and
uncertainty quantification in machinery prognostics methods (such as the Kalman or Particle
filter). These methods may use some mathematical model (e.g. a machine learning model) to
model the dynamics (state transition model) of a HI and a particle filter for state estimation
when new data is gathered. The particle filter can then be used along with the model to ex-
trapolate and propagate the uncertainties forward in time to a threshold value that will define
the RUL. Table 2.1 summarises different ways Bayesian filters, such as the particle and Kalman
filter, have been used to estimate the RUL uncertainty.

Uncertainty in Deep Learning Methods

Deep learning methods that quantify uncertainty do not tend to model a HI trajectory and
then represent uncertainty through forecasting uncertainty as the methods mentioned in the
previous section did. Many methods stick to the strength of the deep learning model, being
able to estimate the RUL from the network’s output directly. Hence, these methods tend to try
techniques such as having the network output parameters for a distribution that describes the
current RUL, or accounting for uncertainty in the neural network model parameters. However,
there are cases, such as in (L. Guo et al., 2017; Z. Xu et al., 2021), where the neural network
does output a HI and then applies a probabilistic curve fitting technique to the HIs to quantify
uncertainty.

One method of incorporating uncertainty could be through the sensor or measurement un-
certainties. If measurement uncertainties are known through a probability distribution, this
distribution can be sampled, and multiple RUL estimates can be found using Monte Carlo sim-
ulation. (Y. Zhang et al., 2018) used Monte Carlo simulation along with an RNN to simulate
battery capacity trajectories for a Li-ion battery. These trajectories can be used to extrapolate
to some threshold battery capacity value, and the RUL is estimated from that. In many cases,

26

Table 2.1: Traditional methods which estimate RUL uncertainty using state transition models and
Bayesian filters

Author Reference State Transition Model Filter Description
(Saha & Goebel, 2008) RVM Particle Filter Used the model to propagate the PF weights

to a threshold and find the RUL distribution

(Saha et al., 2009) RVM Particle Filter Compared different PFs used with the state
transition model to estimate RUL distributions

(Y. Hu & Luo, 2012) RVM Particle Filter RVM is used when the dynamics of the machinery
degradation is unknown, and the state is updated
with a PF

(Cheng et al., 2018) ANFIS Particle Filter Used ANFIS as the model and PF to estimate the
RUL distribution

(Cheng et al., 2019) ANFIS Particle Filter Used a novel particle resampling method to improve
PF state estimation and extrapolate particles
to the threshold

(Bai & Wang, 2016) Neural Network Particle Filter Updates the weights of the network model
instead of the HI states. Different weights
can be sampled, and the models extrapolate
the HI trajectory to find the RUL distribution

(Tse et al., 2019) Linear State Space model Kalman Filter The normal distribution of the Kalman filter
is sampled from, and the model propagates the
states to the threshold value

however, the uncertainty of the sensor inputs is not known, and we do not have a physical
health indicator with a known threshold, like the battery capacity. Some methods train the
neural networks to act as state transition and measurement likelihood models to get around
this. The state transition can describe the dynamics for some latent HI, and the likelihood
model describes the relationship between the RUL and this latent HI. (Deutsch et al., 2017),
used a Deep Belief Network (DBN) as a state transition and measurement function for a parti-
cle filter which updates the probability distribution for the RUL estimate as new measurements
are gathered. Similarly to Monte Carlo methods, ensembles of neural networks can be trained
with different criteria in mind. Bagging or weighted RUL estimates can be made, representing
the uncertainties of the RUL prediction (M. Xu et al., 2020). Generative models can also sim-
ulate possible outcomes and ultimately estimate the uncertainty of the RUL. Many generative
models designed to output a HI were discussed in Section 2.2.5. Each of these would output a
probability distribution of the latent variable and sample different possible outcomes from the
distribution. After sampling, these could be decoded, synthetic sensor values could be created,
and various HI values could be calculated by comparing the generated sensor values to the
current ones. Such as in (Zhai et al., 2021) where the HI trajectories for different operating
conditions could be simulated based on a VAE trained on healthy sensor data.

A popular sampling-based method for quantifying uncertainty in deep learning models is the
Monte Carlo Dropout method (Gal & Ghahramani, 2016). This method has been used in
many instances within the prognostics literature and is relatively simple to implement as it
incorporates uncertainty through the dropout mechanism in a neural network. When train-
ing a neural network, dropout can be used to prevent overfitting; after training, dropout is
normally switched off, making the network fully deterministic. Monte Carlo dropout leaves
the dropout mechanism in place even after training, allowing multiple output samples to be

27

generated by evaluating the network multiple times. This has been used in different prognostic
applications such as quantifying the RUL uncertainty of bearings (Cao et al., 2023). It is also
useful in predictive maintenance if the goal is to ultimately construct a policy for when to
maintain machines. The models that estimate the RUL play an important role in designing
a maintenance policy as these rely on the uncertainties of the RUL estimates. Hence, Monte
Carlo dropout has been used to allow powerful deep learning models such as CNNs to express
uncertainty and improve the RUL prediction accuracy and, therefore, the overall performance
of the maintenance policy itself (Mitici et al., 2023; Lee & Mitici, 2023).

There are non-sampling-based methods that instead let the network output a known distribu-
tion type, e.g. Gaussian, and use that distribution to approximate the RUL distribution. This
can be applied to deep learning methods by letting the network output the parameters of a
distribution describing the RUL uncertainty. The distribution can be used to find the likelihood
that the target RUL value falls in this distribution which becomes the loss function for training
the network. Variational inference methods might restrict the model by only being able to
represent a specific simplified distribution when compared to Monte Carlo methods. However,
they have reduced computational costs as they only need to output a small number of param-
eters instead of doing computations on a large number of samples. While generative models
may use variational inference (such as the VAE), not all methods use a generative model to
estimate a probability distribution. The models discussed here are discriminative models that
describe a conditional distribution p(RUL|sensors) as opposed to the generative model, which
models a joint distribution p(Z,X). (Rigamonti et al., 2018) trained a type of RNN known as
the Echo State Network to output the mean and variance of a Gaussian distribution which is
used to describe the uncertainty of the RUL estimate. Similarly, (B. Wang, Lei, Yan, et al.,
2019) let the output of their Recurrent Convolutional neural network be the mean and variance
of a Gaussian distribution to describe the RUL. Instead of using a latent Gaussian distribution
approach, (Aggarwal et al., 2019) used a more expressive distribution which is better suited
for the prognostics task to directly describe the RUL uncertainty. They used an RNN which
outputs the parameters for a Weibull distribution whose likelihood is the loss function.

Bayesian neural networks are another model type that can represent uncertainty in the RUL
estimate. Instead of outputting a known distribution, Bayesian neural networks represent their
parameters (weights and biases) using Gaussian distributions. During training, the parameters
can be updated using Bayes’ rule as they are represented by distributions and are updated
due to new measurements. (W. Peng et al., 2019) focused on altering popular networks used
in machinery prognostics (e.g. LSTM and CNNs), turning them into Bayesian networks to
incorporate uncertainty into their estimates.

2.3 Conclusions

This literature review section has focused on the different deep learning methods used for ma-
chinery prognostics as well as how deep learning methods have incorporated uncertainty into
their RUL estimates. This review focused on deep learning models used in machinery prog-
nostics. To that end, some network architectures were explored due to their use in machinery
prognostics, namely the RNN and CNN. However, most of the methods described in those
sections tended to estimate a point RUL estimate instead of accounting for the uncertainty

28

in those estimates. Many of the models described were discriminative models that focused
on neural networks that described a conditional relationship between the RUL and sensor in-
puts. Generative models differ in the sense they describe a conditional distribution between
the network inputs and a latent variable defined during training. As a result, the generative
models discussed could often not directly estimate the RUL. Instead, they would be used to
construct HIs either through their latent variables or by reconstructing the input sensor data
and comparing it to the available sensor data. Another use of generative models was in semi-
supervised learning. Here, the generative model was often used as the unsupervised model in
semi-supervised training to aid the training of the supervised model that estimated the RUL.
However, while generative models are probabilistic by design, many methods did not directly
look at probabilistic RUL estimation that could compete with the current state-of-the-art meth-
ods. Hence, the review also focused on uncertainty analysis in deep learning methods. It first
stated that in traditional data-driven methods that do not use deep neural networks, many
methods use Bayesian filters such as the Kalman or Particle filter to quantify the uncertainty
of the RUL. Some deep learning methods use this strategy where a deep neural network learns
the dynamics of a known HI and simulates many HI trajectories to a threshold to estimate
the RUL distribution. However, this HI is not always known, and various options are available
if this is true. Bayesian neural networks were an option that made the neural network itself
probabilistic by defining the parameters of the network using probability distributions instead
of point values. One could also construct a neural network that could define a HI determin-
istically but use a probabilistic curve fitting technique to extrapolate to a known threshold.
Similarly, HI could be constructed using generative models, and various HI trajectories could
be simulated to a threshold. Finally, neural networks that output the parameters to describe a
distribution, such as a Weibull distribution, were also identified as a way deep learning methods
in machinery prognostics have quantified the uncertainty of the RUL. However, few methods
combine state-of-the-art performance on RUL estimation tasks while providing interpretable
results, e.g. by constructing HIs.

This thesis will focus on exploring deep learning methods whose primary purpose is to estimate
the uncertainty of the RUL estimates and improve the neural network’s interpretability. Both
uncertainty and reducing the black-box nature of these deep neural networks are identified
as areas where deep learning models for machinery prognostics could improve. Unlike the HI
models presented in this review, this thesis does not specifically focus on the HI aspect of the
networks. Instead, the primary focus is on the RUL estimation while making the network more
interpretable or the theory more accessible so that the practitioner can adjust and utilise the
model, knowing how the outputs may be affected. However, first, it is important to give the
necessary technical background for introducing these methods in this thesis.

29

Chapter 3

Background

This section will introduce the theory required for the main portion of the thesis. Some of
the more basic aspects of deep learning are assumed to be known and won’t be covered. For
example, standard feedforward or MLP networks and optimising deep neural networks with
methods such as Stochastic Gradient Descent (SGD) or ADAM won’t be covered. It is as-
sumed the reader is familiar with the basics of what neural networks are and the training
procedure required to optimise and use that network for inference. Hence, in this background,
the Variational Autoencoder will be covered simply as a way of covering generative models
through a concrete example and because the theory is expanded to the sequential case in the
Dynamic Variational Autoencoder section. Neural Differential Equations are a more advanced
type of network architecture that is used throughout the thesis and hence will be covered here.
Finally, some Bayesian filtering theory will be covered due to its similarity to the variational
autoencoder models previously mentioned and it’s use in some of the later sections. Bayesian
filters also allow us to work with a principled way to develop the framework used to construct
these variational autoencoder models and expose some of the logic behind the design decisions
made during their construction.

3.1 Variational Autoencoders

Variational Autoencoders (VAEs) are a generative deep learning method that aims to sample
from the original data distribution p(X), where X is the input data. However, p(X) is generally
unknown. To get around this, generative models represent the probability distribution p(X,Z)
where Z is a latent variable. This works by separating the generative model into its component
parts, p(X,Z) = p(X|Z)p(Z), hence, sampling the latent variable Z(i) ∼ p(Z) then “decoding”
using X ∼ p(X|Z(i)) would indirectly sample from the original data distribution p(X). The
VAE uses an auto-encoding architecture to find a valid decoding distribution p(X|Z) by training
a probabilistic auto-encoder. This means an encoder, p(Z|X), is utilised in the training of the
VAE to learn an encoding that connects the latent variable Z to the input domain X. A
problem arises when using Bayes’ theorem, it can be shown that,

30

p(Z|X) =
p(X|Z)p(Z)

p(X)
. (3.1)

Using the total law of probability and noticing p(X) is a normalising constant it can be shown,

p(X) =

∫
p(X|Z)p(Z)dZ. (3.2)

As originally stated, p(X) is unknown and now it can be seen via Bayes Theorem that it can
be found through an integral, however, it is often intractable (too difficult to solve directly),
hence, p(Z|X) cannot found directly. This creates a “Catch-22” where we need p(Z|X) to find
p(X) and sample from it, but p(X) is needed to find p(Z|X). The VAE deals with this problem
by using variational methods to approximate p(Z|X) with a simpler distribution q(Z|X) (e.g.
a Gaussian distribution) and trains a neural network to find q(Z|X). The KL-divergence
between q(Z|X) and p(Z|X) is used as a criterion to encourage the distributions to match each
other. This criterion cannot directly be solved and an estimate known as the Evidence Lower
BOund (ELBO) (also known as the Variational Objective) is used which indirectly optimises
the criterion (Kingma & Welling, 2014) and is stated as,

L(θX , θZ , φ,X) = −Eqφ(Z|X) [log pθX (X|Z)] +DKL (qφ(Z|X)||pθZ (Z)) . (3.3)

Where DKL is the KL-divergence operator that provides a metric of how “close” the distri-
butions qφ(Z|X) and pθZ (Z) are. Mathematically the KL-divergence operator can be stated
as,

DKL (q(X)||p(X)) =

∫
q(X)log

q(X)

p(X)
dX. (3.4)

The ELBO loss can alternatively be derived by minimising, −log p(X), as we previously es-
tablished p(X) and p(Z|X) are connected and both optimisation criteria lead to the above
approximation (Eqn. 3.3). Note minimising −log p(X) was the main objective of the genera-
tive model, as it is effectively the same as maximising the likelihood that a sample X belongs
to the data distribution p(X). Hence, minimising the ELBO is an indirect way of solving the
integral in Eqn. 3.2. A VAE that is trained by minimising the ELBO is therefore ultimately
trying to maximise the probability that X is sampled from the distribution p(X).

From the theory so far it can be seen that there are three main components to the ELBO,

1. Decoder network: pθX (X|Z)

2. Prior: pθZ (Z), for a VAE this is usually defined as a standard normal distribution N (0, I)

3. Encoder network: qφ(Z|X)

The first part of the ELBO loss function involving the expectation on pθZ (X|Z) helps optimise
the network parameters to improve reconstruction accuracy; this allows latent variables to be
mapped back to the input space accurately. The second part involving the KL-divergence
optimises the network parameters so that the inference distribution qφ(Z|X) closely matches
the prior distribution describing the latent space pθZ (Z). When training a generative model, the

31

goal is generally to generate new inputs, X, not seen during training. Hence, by constraining
the latent space to the prior (pθZ (Z)) during training, at test time, the prior can be sampled
from and decoded to generate new inputs, i.e. sample latent variable Z ∼ pθZ (Z) then decode
using X ∼ pθZ (X|Z). This second loss term also helps generalise the model by forcing the
latent variables to follow a specific structure defined by the prior. Note, prior and decoder
represent a joint distribution pθZ (Z,X) = pθZ (Z)pθZ (X|Z). Since they are used for generating
new data this joint distribution is referred to as the generative model, while qφ(Z|X) is known
as the inference model. Hence, the aim of the VAE can be seen as attempting to learn a joint
distribution pθZ (Z,X) to act as a generative model that can sample from p(X). The workings
of the VAE training and generative model are shown more intuitively using the sketch shown
in Figure 3.1.

Figure 3.1. The VAE during training can be used to encode to a section of the prior distribution,
during testing, the prior distribution can be sampled from (i.e. sample from the entire latent space)
and this approximates a local Gaussian distribution in the input space p(X) which can be sampled
from. To sample from a larger area of p(X) it can be seen that this can be done by sampling multiple
latent variables via Z ∼ p(Z) and decoding them all to form local Gaussian approximations covering
the distribution p(X).

3.2 Dynamical Variational Autoencoders

The VAE is generally used to generate static data X, e.g. generating new images similar to the
input images used to train the VAE. To generate sequential data that involve some underlying
dynamics, Dynamical Variational Autoencoders (DVAEs) can be used instead to capture the
underlying dynamic structure and is better suited to generate sequential data. An in-depth
review of DVAEs from which this section borrows a lot of the terminology can be found in
(Girin et al., 2021). DVAEs essentially replace the static input and latent variables (X and Z)
of the VAE and replace them with sequences X = x1:T and Z = z1:T . Hence, using the same
structure as the VAE, the generative and inference models would be,

Generative model: pθ(X,Z) = pθ(x1:T , z1:T) (3.5)

Inference model: qφ(Z|X) = qφ(z1:T |x1:T). (3.6)

32

This isn’t helpful as we may not always want to generate sequences of length T . To gain more
flexibility the transition distribution describing the dynamics of the sequence would be helpful
to generate custom length sequences. Hence, Eqns. 3.5 and 3.6 can be broken down as,

Generative model: pθ(x1:T , z1:T) =
T∏
t=1

pθx(xt|x1:t−1, z1:t)pθz(zt|x1:t−1, z1:t−1) (3.7)

Inference model: qφ(z1:T |x1:T) =
T∏
t=1

qφ(zt|x1:T , z1:t−1). (3.8)

Notice, from the generative model, the decoder and prior are found in the product (decoder:
pθx(xt|x1:t−1, z1:t), prior: pθz(zt|x1:t−1, z1:t−1)). Analogous to the VAE, where the inference model
is optimised to encode to a prior latent space p(Z), for the DVAE case, the inference model
encodes to match some prior transition dynamics pθz(zt|x1:t−1, z1:t−1). An important note is
that the inference model is dependent on x1:T for all previous times t, as the model can not
be factorised further to remove this dependency. Hence, even if the generative model is causal
(current time values are only dependent on previous time values), the inference model is non-
causal, (future values are needed to estimate the current time values). Since the inference
model is only used during training, this is not a problem as the entire training data is available,
therefore, the future values are available.

To train the DVAE, the new generative and inference models can be substituted into Eqn 3.3,
which results in the new loss,

L(θx, θz, φ, x1:T) = −
T∑
t=1

Eqφ(z1:t|x1:T) [log pθx(xt|x1:t−1, z1:t)]

+
T∑
t=1

Eqφ(z1:t−1|x1:T) [DKL (qφ(zt|z1:t−1, x1:T)||pθz(zt|x1:t−1, z1:t−1))] . (3.9)

Note a full derivation for a DVAE which estimates the RUL can be found later in Chapter 5 in
Eqn. 5.12.

3.2.1 DVAE Structure and Implementation

This section will cover some common assumptions and implementations that can be utilised
to construct a DVAE in practice. The first practical challenge is dealing with sequential de-
pendencies such as x1:T , i.e. how can a sequence of variables such as x1:T be represented as
an input to a neural network. Most DVAEs use RNNs to achieve this, bypassing the sequence
into an RNN, where the internal state is a representation of the sequence so far. Basically if xt
is the input to the RNN cell and ht is the internal state generated, then ht represents x1:t as
illustrated in Figure 3.2. Note, here t denotes the current time point which is arbitrary in these
examples and can be any value between 1 and T , as the total sequence is denoted as x1:T .

Another consideration when implementing DVAEs in a practical setting is that simplifying
assumptions can be applied. This is because the full general form of the DVAE stated in Eqns

33

RNN Cell RNN Cell RNN Cell

Figure 3.2. An illustration of an RNN being used to represent a sequence of inputs which can be used
in a DVAE model

3.7 and 3.8 are not always necessary. For example, the Markov assumption can be made, which
means the current variable will only depend on the previous time variable (instead of the entire
previous sequence) e.g. p(zt|z1:t−1, x1:t) = p(zt|zt−1).

It is helpful to show a quick example that illustrates how to design and implement a DVAE
given certain assumptions. Consider the following generative and inference model,

Decoder: pθx(xt|x1:t−1, z1:t) = pθx(xt|x1:t−1, zt) (3.10)

Prior: pθz(zt|x1:t−1, z1:t−1) = pθz(zt|x1:t−1, zt−1) (3.11)

Encoder: qφ(zt|x1:T , z1:t−1) = qφ(zt|x1:T , zt−1) (3.12)

Recall the encoder is noncausal and therefore requires the entire sequence x1:T as an input,
while the other models only require variables related to the current or previous time points.

Figure 3.3 is a diagram showing the variables in the models and their dependencies. The
stochastic variables in the DVAE (such as zt) are achieved by making the neural network
output a mean and log-variance, which describe a Gaussian distribution. Hence, the generative
and inference models can be represented by neural networks as follows,

pθx(xt|x1:t−1, zt) := fθx(ht, zt) = [µxt , log σ2
xt] (3.13)

pθz(zt|x1:t−1, zt−1) := fθz(ht, zt−1) = [µzt , log σ2
zt] (3.14)

qφ(zt|x1:T , zt−1) := fφ(
←−
h t, zt−1) = [µ(zt)inf , log σ2

(zt)inf
] (3.15)

where, fθx , fθz and fφ are all neural networks and the RNN hidden variables, ht := x1:t−1 and
←−
h t := x1:T as shown in Figure 3.3. The neural networks all output a mean and log-variance (µ
and log σ2) which describe a Gaussian distribution. For example, [µzt , σ

2
zt] describes a Gaussian

distribution that is associated with the latent variable zt; hence, that variable could be sampled
from its distribution, i.e. zt ∼ N (µzt , σ

2
zt). Note that log variance is used, as the variance or

standard deviation would need to be a positive value; hence, the network output would need to
be restricted to achieve this. By using log variance the network’s output does not need to be
restricted but the standard deviation and variance can easily be retrieved from the log-variance
output if needed. Along with these networks describing the stochastic variables, a RNN is used
to represent x1:t−1 as previously discussed,

x1:t−1 := RNNCell(xt−1, ht−1) = ht (3.16)

where, RNNCell could be any kind of RNN cell, for example, a LSTM or Gated Recurrent Unit
(GRU) cell. Note that unlike in Figure 3.2 where x1:t := ht here the variables are shifted down
a single time point as shown in Figure 3.3 so that x1:t−1 := ht.

34

(a) Generative model

(b) Inference model

Figure 3.3. In the example DVAE implementation, 3.3a is the generative model described by Eqns.
3.10 & 3.11 while 3.3b is the inference model described by Eqn. 3.12. Note the variables inside circles
are stochastic variables while the rectangles are deterministic

3.3 Bayesian Filtering

Bayesian filtering is a technique used to find the conditional distribution p(x1:t|y1:t), where
xt and yt represent the states and measurements of a system modelled using a set of related
Stochastic Differential Equations (SDEs). In practice, the dynamic process and measurement
models are often described using discrete-time representations. Regardless of the representa-
tion, Bayesian filtering requires a model that describes the dynamics of the state (xt) and a
measurement model that relates the state to the observation (yt). In the case of a continuous-
time representation, an example of a system that could be filtered using filtering theory is
described by the following SDEs,

dXt = f(Xt)dt+ g(Xt)dWt (3.17)

dYt = h(Xt)dt+ k(Xt)dBt. (3.18)

A filter in this context is an algorithm that outputs the conditional distribution p(X1:t|Y1:t) or
p(Xt|Y1:t) for any time point t in the sequence. For the discrete case which is more common in
practice as measurements are sampled at discrete points, an example of a model would be,

xt = f(xt−1) + wt (3.19)

yt = g(xt) + vt. (3.20)

Where, wt ∼ N (0, Qt) and vt ∼ N (0, Rt) are discrete noise samples. Here a filtering algorithm
would find p(x1:t|y1:t) or p(xt|y1:t) for any given time point t in the sequence. An example of
a Bayesian filter that works on a discrete system is the Kalman filter (if the dynamics and
measurement model are linear and the states are described with Gaussian distributions) or the
Particle filter (works in nonlinear, non-Gaussian cases).

More generally Bayesian filters apply Bayes’ theorem to sequential random variables i.e.

p(x1:t|y1:t) =
p(y1:t, x1:t)

p(x1:t)
. (3.21)

Note that p(y1:t, x1:t) is a generative model and given enough training data, a DVAE can be
trained to learn this generative model if it is unknown. Also, note the denominator p(x1:t) is

35

the marginal likelihood; the negative marginal log-likelihood is the variational objective when
optimising DVAEs and is indirectly optimised using the ELBO (Eqn. 3.9). Hence, filters and
DVAEs are related and are made up of the same components, however, in the DVAE case the
generative model is unknown and is being learnt through the use of training data.

3.3.1 Kalman Filter

The Kalman Filter is a linear filtering technique that uses a dynamic and measurement model
that can update the states of a system based on new measurements. The mathematical form
of the state space model that a Kalman filter can be applied to generally takes the following
form (Simon, 2006),

zk = Fkzk−1 +Bkuk + wk (3.22a)

xk = Hkzk + vk (3.22b)

where wk and vk are noise processes that are modelled as white, zero mean Gaussian dis-
tributions with covariance matrices Qk and Rk respectively. Hence, wk ∼ N (0, Qk) and
vk ∼ N (0, Rk). The dynamic model described using matrix Fk can propagate the previous
state zk−1 to zk, and if there are control inputs uk, such as external forces acting on the system,
these can be included using matrix Bk. However, propagating the state zk−1 to zk is not perfect
due to noise in the system, modelled using wk in this case, which can add up as the state is
propagated throughout time. Kalman filters reduce the uncertainty of the states zk by using
observations to update zk based on the observation and its uncertainty. To do this effectively,
a measurement model is used Hk which brings the state zk to the observation domain (e.g. if
the states are the temperature of a chemical process but the sensor uses volts, the matrix Hk

would convert temperature to equivalent sensor voltage). There are some important points to
be aware of when using a Kalman filter,

1. A linear system is assumed because if zk and xk are described by Gaussian distributions,
then linear transformations would ensure they remain Gaussian distributions after the
transformation.

2. Gaussian distributions are fully described by their mean and covariance (or variance in
the 1D case) so the Kalman filter works by updating these statistics which fully describe
an updated Gaussian distribution.

3. Markov assumption is used, meaning the current variable is dependent on the previous
variable, e.g. p(zt|z1:t−1) = p(zt|zt−1)

4. Measurements have conditional independence meaning current measurements do not de-
pend on the previous ones, e.g. p(xt|x1:t−1) = p(xt)

The Kalman filter equations can be stated as,

36

• Update Mean and Covariance using Dynamics

z−k = Fkz
+
k−1 +Bkuk (3.23a)

P−k = FkP
+
k−1F

T
k +Qk (3.23b)

Sk = HkP
−
k H

T
k +Rk (3.23c)

µk = Hkz
−
k (3.23d)

• Measurement Update

Kk = P−k H
T
k S
−1
k (3.24a)

z+
k = z−k +Kk(xk − µk) (3.24b)

P+
k = (I −KkHk)P

−
k (3.24c)

where the + exponent was used to define the posterior estimate (after measurement update)
and − denoted the prior variables (after dynamics) e.g. z−k was the mean of the prior after
z+
k−1 was put through the dynamics and z+

k was the mean of the posterior distribution after
the measurement update. There are many ways to derive the Kalman filter; a useful derivation
involves using Bayes rule, which shows the Kalman filter equations effectively apply Bayes rule
to update the prior distribution p(zt−1|x1:t−1) to the posterior distribution p(zt−1|x1:t) given a
new measurement xt. This Bayesian probabilistic framework will be useful in a deep learning
context, where certain architectures, such as VAEs and DVAEs model probability distributions
using neural networks. Writing the Kalman filter in probabilistic notation using Bayes’ rule
(Särkkä, 2013) would give,

p(zt|x1:t) =
p(x1:t|zt)p(zt)

p(x1:t)
(3.25)

p(zt|x1:t) =
1

ηt
p(xt|zt,x1:t−1)p(zt|x1:t−1) (3.26)

=
1

ηt
p(xt|zt)p(zt|x1:t−1) (3.27)

Where, ηt =
∫
p(xt|zt)p(zt|x1:t−1)dzt is a normalisation constant. Note that conditional in-

dependence of measurements was assumed in Eqn. 3.27 so that the current measurement xt
does not depend on the state and measurement histories, and hence, p(xt|zt,x1:t−1) = p(xt|zt).
Hence, using this Bayesian framework, it can be seen that two distributions are prominent in
the formulation,

• p(xt|zt): measurement model which takes the state zt to the measurement domain.

• p(zt|x1:t−1): transition model which propagates the state zt−1 to the current time variable
zt.

37

The transition model can be expanded further to show how zt−1 is transitioned to zt.

p(zt|x1:t−1) =

∫
p(zt|zt−1x1:t−1)p(zt−1|x1:t−1)dzt−1 (3.28)

p(zt|x1:t−1) =

∫
p(zt|zt−1)p(zt−1|x1:t−1)dzt−1 (3.29)

Where the Markov assumption is used in Eq. 3.29 so that p(zt|zt−1,x1:t−1) = p(zt|zt−1). Again
two distributions are prominent in the expanded transition model,

• p(zt|zt−1): the dynamics that takes the previous state zt−1 to the current state zt.

• p(zt−1|x1:t−1): the previous filtered distribution for state zt−1.

If the probability distributions described in this Bayesian formulation are all Gaussian distri-
butions, then the Kalman filtering equations perform the Bayesian update described in Eq.
3.27.

A note on Kalman Filters and DVAEs

One way of deriving the ELBO for the DVAE is by minimising the negative log-likelihood
of the marginalised distribution p(x1:T). This is the equivalent of maximising the likelihood
that any sampled input data x1:t comes from the original data distribution p(x1:T). With the
VAE and DVAE, equations 3.3 and 3.9 were used respectively as an indirect way of achieving
this objective. In those cases, the data distribution was not known and could not be directly
solved due to an intractable integral. Hence, p(Z|X) was not known, and qφ(Z|X) was used
to approximate it. The state space model can also act as a generative model by using the
transition and measurement model (prior and decoder), resulting in the generative model,

p(xt, zt) = p(xt|zt)p(zt|x1:t−1) (3.30)

However, to train this generative model, the negative marginal log-likelihood, −logp(x1:T), can
directly be minimised as the Kalman filter has an analytical solution for it.

p(xt) = N (Htz
−
t , HtP

−
t H

T
t +Rt) (3.31)

So the negative log-likelihood becomes,

−log p(x1:T) = −log
T∏
t=1

p(xt|xt−1)

L = −
T∑
t=1

log p(xt) (3.32)

38

Recall that the Kalman filter assumes independent measurements; hence, p(xt|xt−1) became
p(xt). Hence, optimising any parameters by minimising Eqn. 3.32 would result in a generative
model which could be used as a filter, given new measurements.

This fact is used in some works, such as creating an Extended Kalman Filter using neural
networks to model the transfer and measurement functions (A. H. Li et al., 2021). Another
example is Kalman filters which work on pseudo-observations in a latent space where the linear
Kalman filter can be used but then applying Normalizing Flows to the marginal likelihood to
allow more complex distributions to be modelled (de Bézenac et al., 2020). These examples
could use the Kalman filter to analytically solve for p(xt) and directly optimise the neural
networks using Eqn. 3.32. This can lead to more accurate estimates, and tighter uncertainty
bounds as the encoder is no longer being approximated like it is by q(Z|X) in the VAE. Since the
Kalman filter deals with linear Gaussian models, some works use the Particle filter algorithm to
estimate the marginal likelihood p(xt|xt−1) and use this in a negative log-likelihood objective
function (Maddison et al., 2017; Naesseth et al., 2018). This way nonlinear models, such as
neural networks, can be used to define the state dynamics and measurement functions and the
output is not restricted to a Gaussian distribution.

3.3.2 Particle Filters

This background section mainly shows the similarity between Sequential Monte Carlo tech-
niques (otherwise known as particle filters) and DVAEs. Note, in section 5.1.1, a derivation
of the ELBO loss function for a conditional DVAE uses importance sampling techniques1, and
while filtering itself is not used in the thesis, the generative models used for particle filtering are.
Particle Filters (PF) use Monte Carlo techniques to estimate p(z1:t|x1:t) as often in the general
nonlinear, non-Gaussian case since this posterior is difficult or impossible to find analytically.
Monte Carlo methods are numerical methods that allow one to calculate integrals such as,

Ep(z|x1:T)[f(z)|x1:T] =

∫
f(z)p(z|x1:T)dz. (3.33)

This is done by sampling N samples from p(z|x1:T) and estimating the integral using a sum,

Ep(z|x1:T)[f(z)|x1:T] ≈ 1

N

N∑
i=1

f(z(i)). (3.34)

However, it is often difficult to sample from the posterior distribution or even the marginal
distribution, p(x1:T) if training the generative model is the ultimate goal. To solve this problem,
importance sampling is often used.

Importance Sampling

Importance sampling (IS) uses a distribution that is easy to sample from to generate samples
from a more complex distribution. This distribution is usually of the same form as the complex

1The inference model qφ in the DVAE can be thought of as an importance distribution and this theory is
used in research to improve VAE training (Maddison et al., 2017; Naesseth et al., 2018)

39

distribution, i.e. has the same variables and conditional variables, e.g. q(z|x1:T) which is defined
as a Gaussian distribution to sample from p(z|x1:T), which may not be Gaussian. This can be
implemented using,

Ep(z|x1:T)[f(z)p(z|x1:T)] =

∫
f(z)p(z|x1:T)

q(z|x1:T)

q(z|x1:T)
dz (3.35a)

=

∫
f(z)

p(z|x1:T)

q(z|x1:T)
q(z|x1:T)dz (3.35b)

= Eq(z|x1:T)
[
f(z)

p(z|x1:T)

q(z|x1:T)

]
(3.35c)

≈ 1

N

N∑
i=1

f(z(i))
p(z(i)|x1:T)

q(z(i)|x1:T)
(3.35d)

≈
N∑
i=1

w(i)f(z(i)) (3.35e)

where now z(i) ∼ q(z|x1:T), instead of sampling from p(z|x1:T) and w(i) := 1
N
p(z(i)|x1:T)
q(z(i)|x1:T)

. By using

Bayes’ Theorem, we can also get rid of the dependence on knowing p(z|x1:T) and instead let
the weights be equal to (Särkkä, 2013),

ŵ(i) =
p(x1:T |z(i))p(z(i))

q(z(i)|x1:T)
(3.36)

w(i) =
ŵ(i)∑N
j=1 ŵ

(j)
. (3.37)

Where ŵ(i) is the unnormalised weight and w(i) is the normalised weights. Hence, the marginal
likelihood can be estimated using the normalisation constant p(x1:T) ≈

∑N
j=1 ŵ

(j).

Particle Filtering Algorithm

To find the filtering distribution for sequential variables, i.e. p(z1:T |x1:t), Sequential Importance
Sampling (SIS) can be used. Hence, in the sequential case, the variable z can be replaced with
z1:T and use a similar argument as with Eqns. 3.35, the weights in the sequential case can be
stated as,

ŵ
(i)
T =

p(x1:T |z(i)1:T)p(z
(i)
1:T)

q(z
(i)
1:T |x1:T)

=
p(x1:T , z

(i)
1:T)

q(z
(i)
1:T |x1:T)

(3.38)

ŵ
(i)
T =

p(xT |x1:T−1, z(i)1:T)p(z
(i)
T |z

(i)
1:T−1, x1:T−1)

q(z
(i)
T |z

(i)
1:T−1, x1:T)

p(x1:T−1, z
(i)
1:T−1)

q(z
(i)
1:T−1|x1:T)

(3.39)

ŵ
(i)
T =

p(xT |x1:T−1, z(i)1:T)p(z
(i)
T |z

(i)
1:T−1, x1:T−1)

q(z
(i)
T |z

(i)
1:T−1, x1:T)

ŵ
(i)
T−1 (3.40)

Using this result, the following recursion can be applied,

ŵ
(i)
t =

p(xt|x1:t−1, z(i)1:t)p(z
(i)
t |z

(i)
1:t−1, x1:t−1)

q(z
(i)
t |z

(i)
1:t−1, x1:T)

ŵ
(i)
t−1 (3.41)

40

The normalised weights can then be found,

w
(i)
t =

ŵ
(i)
t∑N

i=1 ŵ
(i)
t

(3.42)

Hence, the marginal log-likelihood can be found through the normalised weights,

p(x1:T) =
T∏
t=1

p(xt|x1:t−1) (3.43)

=
T∏
t=1

N∑
j=1

ŵ
(j)
t (3.44)

log p(x1:T) =
T∑
t=1

log p(xt|x1:t−1) (3.45)

=
T∑
t=1

log
N∑
j=1

ŵ
(j)
t (3.46)

The particle filter algorithm is, therefore,

1. Initialise the prior p(z0) and set the initial weights (usually chosen to all be uniform, i.e.

w
(i)
0 = 1

N
, ∀i ∈ [1, N]

2. Draw samples z
(i)
t from q(z

(i)
t |z

(i)
1:t−1, x1:T) i.e. z

(i)
t ∼ q(z

(i)
t |z

(i)
1:t−1, x1:T), ∀i ∈ [1, N]

3. Calculate new weights according to Eqn. 3.41 and normalise using Eqn. 3.42

To apply these equations in practice, notice that the following distributions/models are neces-
sary.

• Measurement model (decoder): p(xt|x1:t−1, z(i)1:t)

• Transition/Dynamic model (prior): p(z
(i)
t |z

(i)
1:t−1, x1:t−1)

• Proposal/Inference model (encoder): q(z
(i)
t |z

(i)
1:t−1, x1:T)

Notice, in brackets, the terminology for the equivalent network in a VAE/DVAE context is
stated. IS, and in the sequential case SIS, has been applied as an alternate way of estimating
the marginal log-likelihood directly, instead of indirectly through the ELBO (Maddison et al.,
2017; Burda et al., 2016; Ishizone et al., 2020). These applications show how Bayesian filters
and DVAEs are related; they use the same components but have different end goals. Filters
attempt to find p(z1:T |x1:T) to estimate z1:T in light of new data, while DVAEs want to sample
from p(x1:T) to generate novel samples and do this by learning the generative model p(z1:T , x1:T)
and require the importance distribution (inference model) qφ to indirectly sample from p(x1:T).

41

3.4 Neural Differential Equations

3.4.1 Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (NODEs) (R. T. Q. Chen et al., 2018) essentially use a
neural network to describe a first order differential equation (or a series of first order differential
equations). The equation describing NODEs is given by equation 3.47,

dx(t)

dt
= fθ(x(t), t). (3.47)

where xt is the input data at index t and θ are the parameters of the neural network fθ. The
following integral would need to be solved for the trajectory of states over the index variable t,

x(T) = x(0) +

∫ T

0

fθ(x(t), t)dt (3.48)

This can be solved numerically with a number of ODE solver algorithms, for example Euler’s
method,

xT = x0 + ∆t · fθ(xt, t) (3.49)

The inputs are transformed to the output variables using a numerical differential equation solver
and the network fθ acts as the function describing the first order ODE dx

dt
. An application of

this is that the network fθ could describe another larger network and t would be the index
of the layers of the network. In this case the variables are propagating through the network
“layers” using the smaller network fθ that describes an ODE. By choosing the number of steps
in the ODE solver or the tolerance for an adaptive ODE solver the amount of “layers” or
functional evaluations are controlled. t could also be time itself and the NODE could try model
a time-series signal and output trajectories much like a regular ODE might be used.

Figure 3.4 shows a simple illustrated example of how NODEs take input variables and transform
them to an output variable to describe a larger neural network.

3.4.2 Neural Stochastic Differential Equations

The latent dynamics used in the DVAE method highlighted in this work will utilise Neural
Stochastic Differential Equations (NSDEs); hence, this section will give a brief background on
them. A general stochastic differential equation takes the following form,

dXt = f(Xt, t)dt+ g(Xt, t)dWt (3.50)

where f is the drift function describing the transition dynamics, g is the diffusion governing the
amount of noise in the process, and dWt is the Brownian motion term commonly used in SDEs.
NSDEs (X. Li et al., 2020) essentially use neural networks to describe the drift and diffusion

42

Figure 3.4. A visual example of how NODE propagates the input variable x0 through the network,
which is described by an ODE. Each solid arrow is an evaluation of the network dx

dt = f(x, t) which is
used to find the next step or next network hidden layer variable, where t is the depth of the network.
Since, there are 5 arrows shown this is equivalent to a network with 5 hidden layers. The dotted path
labelled x(t) is the trajectory the variables take through the NODE and xN is the final output of the
NODE.

functions, which can then be used in a numerical SDE solver to propagate the desired variable
(Xt) through time. Hence, the neural networks describe a vector field in which trajectories pass
through instead of directly outputting the variables Xt at each time point like an RNN would.

A common way of implementing a NSDE for time series analysis is using an RNN encoder to
find the initial latent condition (Z0) needed for the SDE solver, then propagating through time
to find the sequence Z0:T . Figure 3.5 shows an example of a NSDE being used to forecast an
input time series sequence xt0:T to the time T + s. By using the RNN to “scan” the input data,
an initial condition Z0 can be found, and the NSDE can extrapolate by simply using the time
period [t0, T + s] in the numerical SDE solver. The networks f(Zt, t) and g(Zt, t) are trained
to give good reconstructions when Zt is put through a decoder to give the reconstruction x̂t,
while the RNN is trained to give a different initial condition Z0 based on different sequences of
xt0:T given.

A problem with both the NSDE and NODE is that the implementation for time series data
involves using this RNN encoder to output some unique latent initial condition z0 given the
input data sequence x0:T . Hence, if we get xT+1 then we have to scan the entire sequence
again and include this new value (x0:T+1) and then use the neural differential equation and
a differential equation solver to find the new sequence of latent variables. This can make an
online implementation difficult if we require a quick way to update our latent states based on
an incoming stream of observations. In the next section, we will look at the Kalman filter
which is a state estimation or Bayesian filtering technique that can update states based on new
observations or data given.

43

RNN Cell RNN Cell RNN Cell ANN

Figure 3.5. NSDE trained to reconstruct input data xt by learning latent dynamics which represent
the dynamics of xt

44

Chapter 4

Neural Ordinary Differential Equations
for RUL Estimation

This chapter focuses on showing how neural networks can be represented as dynamic systems to
try to reduce some of the mystery behind their inner workings. The majority of the content in
this chapter is a slightly modified version of “Remaining Useful Life Estimation Using Neural
Ordinary Differential Equations” published in the International Journal of Prognostics and
Health Management and has been used here with the permission of the copyright holder (Star
& McKee, 2021). As such, the model was compared to state-of-the-art models at the time of
writing that paper, and future chapters offer more current state-of-the-art results. However,
this chapter’s focus is on the validity of using NODEs in machinery prognostics and hence,
helps build the foundation for future work within the thesis. Hence, it focuses less on state-of-
the-art performance and is more of an exploration of how NODEs can be utilised in machinery
prognostics and compares them to similar networks that do not use the differential equation
framework.

The NODE and ResNet are compared by constructing both neural networks and assessing their
performance for RUL estimation on a turbofan engine dataset. In the original paper (R. T. Q.
Chen et al., 2018), NODE was introduced by first considering the Residual Network (ResNet)
(He et al., 2016) as an Euler discretization of an ODE. NODE can be considered a continuous
and generalised version of ResNet. ResNet was first introduced as an architecture that improved
image recognition results. Hence, for the first application of NODE to machinery prognostics, it
is fitting that the prognostics method chosen focuses on using CNNs for time-frequency spectral
images. This will allow for the comparison between the ResNet CNN architecture and a NODE
version of the CNN, which will be referred to as NODE-CNN. Note that for this method, the
NODE does not model the dynamics of degradation but instead describes how the input data
propagates through the neural network to produce an output (the RUL estimate in this case).

4.1 Data

To compare the ResNet and NODEs, they will both be trained on a prognostics dataset to
estimate the RUL of machinery. This section will explain the contents of the dataset. Addi-

45

tionally, it covers how the data was prepared to become the inputs of the neural networks and
how the RUL targets were prepared for the supervised learning task.

4.1.1 CMAPSS dataset

The data used here is NASA’s Commercial Modular Aero-Propulsion System Simulation (CMAPSS)
dataset (Saxena et al., 2008). This dataset was produced through simulations of sensor readings
for aircraft gas turbine engines. The RUL values and, therefore, the time of failure is known for
each simulated engine and was found when the simulated variables reached a threshold deter-
mined by a failure criteria. There are four separate datasets that vary in difficulty concerning
RUL estimation; a summary of each dataset is given in Table 4.1. The possible failure modes
that could occur in this dataset set are either the High-Pressure Compressor (HPC) or fan
degrading below a certain threshold. Note that the HI and threshold are unknown and must be
inferred through the sensor data; this is the challenge presented by the CMAPSS dataset. Each
dataset includes training and testing trajectories (time-series data) which contain the sensor
values and operating conditions of different units/engines. The training set is simulated until
failure; hence, the final time point is the time of failure (i.e. RUL = 0 at the final time). The
testing dataset contains trajectories until a random time point, and the RUL at that time point
is supplied for each trajectory. The trained network can be evaluated on this testing set, and
the estimated RUL can be compared with the true RUL value given in the testing dataset.

Table 4.1: Different datasets found in CMAPSS: states how many different engines are simulated,
their operating conditions and what types of failures they can experience (Fault Modes)

Dataset Train Trajectories Test Trajectories Conditions Fault Modes
FD001 100 100 1 (sea level) 1 (HPC Degradation)
FD002 260 259 6 1 (HPC Degradation)
FD003 100 100 1 (sea level) 2 (HPC Degradation, Fan Degradation)
FD004 248 249 6 2 (HPC Degradation, Fan Degradation)

Each dataset consists of multiple time series for both the training and testing datasets. There
are 26 columns of data for each unit. The contents of each column are specified in Table 4.2.

Table 4.2: Information contained in each column for the training and testing datasets

columns
1 unit number
2 time (cycles)
3 operational setting 1
4 operational setting 2
5 operational setting 3
6-26 sensor measurements (1-21)

Using this dataset, the two networks specified in this section will be trained on this data and
compared based on how they perform on the test data. Specifics on evaluating the performance
of the network on the test data will be mentioned in the Results section.

46

4.1.2 Preparing the Data

The first step in many prognostics methods is normalising the time series data. This is often
done by taking the means and standard deviations of the sensor signals for each sensor in the
training dataset and applying equation 4.1,

x̂
(n)
d =

x
(n)
d − µd
σd

. (4.1)

Where x̂
(n)
d are the normalised sensor values for unit number n and sensor d over the lifetime

of the unit. Similarly, µd denotes the means of each sensor, σd denotes the standard deviations
and x

(n)
d are the raw sensor values.

Normalisation is often carried out this way, where the mean and standard deviation are calcu-
lated based on a particular sensor signal. However, with multiple operating conditions, such as
in the datasets FD002 and FD004 (see Table 4.1), it is often more useful to normalise the sensor
data based on a particular operating condition (Pasa et al., 2019). Hence, for these datasets,
the normalisation of the data can be done by applying equation 4.2,

x̂
(n)
d =

Nc∑
c=0

δc �
x
(n)
d − µ

(c)
d

σ
(c)
d

. (4.2)

In this case, µ
(c)
d and σ

(c)
d are the mean and standard deviation of sensor d data found in

operating condition c, Nc denotes the total number of operating conditions (six for FD002 and
FD004) and δc = 1 when the data at that time point is in the operating condition c otherwise
δc = 0. A clustering algorithm can be used to find which operating condition the data belongs
to, and this will allow for the calculation of the means and standard deviation of each sensor for
each operating condition. In this case, the K-means clustering algorithm was used for simplicity.

Some studies take time-series signals and use time-frequency methods such as wavelet trans-
forms or short-time Fourier transforms to convert to a 2D time-frequency spectral plot (Zhu
et al., 2019; X. Li et al., 2018). For this experiment, a similar process to (Zhu et al., 2019) was
used, which involved the following general steps,

1. Relevant sensor signals are taken from the machinery sensor data.

2. A short-time Fourier transform is applied to each time-series sensor signal (i.e. output
tensor size = [amount of sensors, time, frequency]).

3. Bilinear interpolation is used to change the size of each time-frequency signal to a 30×30
format (i.e. output tensor size = [amount of sensors, 30, 30]).

For this specific experiment, the details of these steps are given are described in the following
paragraphs and a general diagram of the data are shown in Figure 4.1. Firstly the relevant
sensor signals refer to the fact that not all the sensor values change over time. Some of the

47

data given are not sensor values but only numerical representations of the machine’s condition,
such as operating mode. Therefore, some of the data stays constant throughout time and
can cause problems for any time-series analysis. To avoid these types of problems, any sensor
that remained constant throughout the lifetime of the machine was removed from the analysis.
Secondly, once these signals are chosen, a short-time Fourier transform is performed on them
to produce time-frequency representations of the signals. Short-time Fourier transforms use
a time window to split the data into different sections. The Fourier transform is applied to
each section to find the frequency information for each time section, giving the signal a time-
frequency representation. Lastly, these time-frequency representations have a size based on the
time window size chosen. To batch the input data and have consistent output sizes for the
CNN, the inputs should be the same size; however, each sensor signal has a varying length.
To achieve same-size inputs, bilinear interpolation will be used to convert the time-frequency
signals to a 30× 30 size “image-like” format.

Time-Frequency
 Transform

Time Window

Figure 4.1. A single time-series signal which is transformed to the time-frequency domain using the
STFT. The frequency intensities from the Fourier coefficients is shown in the image that results from
the time-frequency transform

The testing and training datasets were prepared similarly but had one notable difference. For
the training data preparation, the sensor signals were broken up into a certain amount of
smaller signals (the specific amount depended on a chosen hyperparameter that will be called
split here). The percentage of the signal used is calculated using equation 4.3,

%spliti =
i

split+ 1
, for i = 1, ..., split (4.3)

Hence, if split = a and let L be the total length of the signal and Li = L×%spliti, then the sig-
nals of a certain unit used for training the network would be x0:Li where x0:Li = [x0:L1 , ..., x0:La].
If, like with the test dataset, the entire training signals were used, then the RUL would always
equal zero as the entire training signal represents the entire life of the engine. This would not
robustly train the network, and hence the signals were split to give the network different cases
exposing it to multiple RUL values. Also note the denominator of equation 4.3 is split + 1,
hence, 100% of the signal is not used when training meaning the network does not train on
RUL = 0 cases, as this is not useful. The testing dataset has multiple signal lengths and RUL
values based on those signals meaning this process was not necessary.

48

4.2 Methodology

This section states the details of the experiments performed on the data using the different
network architectures. The general process used to estimate the RUL will be stated as well as
the specifics of what hyperparameters were used to construct the network. Both the ResNet
and NODE-CNNs have similar processes for estimating the RUL; therefore, a general overview
is given below, which is relevant to both architectures. Note that this is expected considering
ResNets are utilised here as a discrete version of the NODE.

1. A separate CNN is used to downsample (reduce the dimensions of) the prepared input
data described in the previous section.

2. The ResNet or NODE is applied to extract features from the downsampled input data.

3. The final output from the ResNet/NODE is flattened to a vector and the input to a
standard feedforward MLP network. The output of this MLP is the RUL estimate of the
machinery.

Bayesian optimisation tools were used to optimise the hyperparameters. The software package
Ax which uses the package BoTorch as a backend (Balandat et al., 2019) was used to tune
the hyperparameters using Bayesian optimisation. Bayesian optimisation uses a curve-fitting
method known as Gaussian process regression to optimise the hyperparameters based on some
criterion (Frazier, 2018). It takes a vector of hyperparameters as inputs and outputs some
criterion or loss. In the deep learning case, a set of hyperparameters is used to train the neural
network; after training, the criterion can be calculated on a validation dataset. Hence, the
input hyperparameters and output criterion represent a point and Gaussian Process Regression
can be used to fit a curve given these points. The goal of Bayesian optimisation is to find the
vector of input hyperparameters that minimises the criterion which is the equivalent of finding
the minimum of the curve. Each new criterion calculated for a set of input hyperparameters
is treated as a data point describing the curve and Bayesian methods are used to update the
curve based on this new data.

The criterion used here for hyperparameter optimisation is the normalised score function (Eq.
4.4). The score function was designed to result in higher loss values for RUL estimates that are
larger than the actual RUL (Saxena et al., 2008). This is done to encourage more conservative
estimates so that failures do not occur before the prediction from the estimated RUL.

s =

1
N

N∑
i=1

exp
[
−(ŷi−yi)

13

]
− 1, if ŷi ≤ yi

1
N

N∑
i=1

exp
[
(ŷi−yi)

10

]
− 1, if ŷi > yi

(4.4)

Where ŷi is the estimated RUL of unit i from the network, yi is the actual RUL of unit i and
N is the total amount of units in the dataset. Notice here an average score is used (referred
to as normalised score); hence this involves calculating the score found in (Saxena et al., 2008)
and then dividing by the total amount of units N .

49

The criterion is evaluated on a validation set, separate from the dataset the network is trained
on when tuning the hyperparameters. Here the validation set was acquired from the origi-
nal training data, which is further split into a training dataset and a validation dataset. An
80%/20% (training/validation) split was used on the original training data in this particular
case. The new training set is used to optimise the network during the hyperparameter opti-
misation. In contrast, the validation set acts as a testing dataset that the network did not
see during training. Therefore, the validation loss represents a testing loss that can be used
to optimise the hyperparameters. Note that the testing dataset is left alone and untouched by
any optimisation process to avoid overfitting.

This hyperparameter optimisation method was chosen as it is more computationally efficient
than other optimisation methods such as random search, which randomly tests different hyper-
parameter combinations. Bayesian optimisation reduces the amount of time required to find
well-performing hyperparameters compared to other methods, which may find more optimal
hyperparameters but require a longer time to search for them. The hyperparameters which are
being tuned are,

• Learning rate

• Batch size

• Time window for STFT

• split (see Eq. (4.3))

• Weight decay (L2 regularisation on the network parameters)

• Training epochs

Once the hyperparameters are chosen, the networks could be trained on the full training dataset.
The chosen hyperparameters for the networks in each dataset are stated in Appendix A. The
hyperparameters table in the Appendix also states other hyperparameters such as convolution
kernel size and the number of channels the CNN has. Both NODE and ResNet have a convo-
lution kernel size of 3 and a channel size of 64. Further research could fine-tune the kernel and
channel size for this application; as it is, the values here are chosen as they are common values
for these variables to take in other image-based tasks.

The network itself was trained using the Mean Squared Error (MSE) loss function (Eq. (4.5)).

MSE =
1

N

N∑
i=1

(ŷi − yi)2. (4.5)

4.2.1 ResNet

For the ResNet experiment, the time-frequency data was the input to an initial set of downsam-
pling layers to give the data a certain amount of channels that will be used in the ResNet. The
output of the downsampling layers became the inputs to the ResNet blocks. Several ResNet

50

blocks were stacked, so the outputs of one block were the inputs of the other. Finally, the out-
put of the final ResNet block was flattened and passed through a feedforward network which
would output the RUL estimate. Table 4.3 shows the basic layout of the ResNet architecture
used as well as the size of the output tensors of each layer.

Table 4.3: Architecture of the ResNet

Layers Layer Output Size
Downsampling Layers
Conv2D (bs,channels,28,28)
ResNet block (bs,channels,14,14)
ResNet block (bs,channels,7,7)
ResNet Layers
ResNet block ×n (bs,channels,7,7)
Feedforward Layers
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
AvgPooling (bs, channels, 1, 1)
Flatten (bs, channels)
Linear (bs, 816)
ReLU (bs, 816)
Linear (bs, 200)
ReLU (bs, 200)
Linear (bs, 1)

Figure 4.2 is a diagram showing the layout of the ResNet used to estimate the RUL using the
turbofan engine data.

RUL

Downsampling
CNN ResNet Blocks Feedforward

Network

Inputs

Figure 4.2. An illustration of the ResNet architecture layout used in this experiment. Note each
rectangular block is a CNN, and the

⊕
is an element-wise addition operator

Note the formula describing the operation of each ResNet block can be stated as,

xk+1 = xk + Fk(xk). (4.6)

Where xk is the input to the kth network or the output of the (k−1)th ResNet block and Fk(xk)
is the output of the kth network and is added to xk to become the output of the ResNet block.
The addition of the network output and input shown in Equation 4.6 is what the

⊕
symbolises

in Figure 4.2.

51

4.2.2 NODE-CNN

Much like the ResNet described previously, the NODE-CNN layout involves a downsampling
layer that reduces the dimensions of the input data and extract features. Figure 4.3, illustrates
the NODE-CNN layout. The main difference between the ResNet and the NODE-CNN network
layout is that the ResNet Blocks described in the previous section are replaced with NODE-CNN
blocks. These blocks are effectively CNN networks whose output is used in a numerical ODE
solver and which propagates the hidden state forward. Finally, like the ResNet, a feedforward
network is used to transform the output of the previous CNN network into a single value which
will be the RUL estimate. The NODE-CNN layout is shown in Table 4.4.

RUL

Downsampling
CNN

Feedforward
Network

Inputs

NODE

Figure 4.3. An illustration of the NODE-CNN architecture used for this experiment. Note that f(x, t)
is the CNN that describes the gradient at any point (x, t) and is used in the numerical ODE solver to
propagate the trajectory forward. In this case t is not time but the depth of the NODE network.

The NODE-CNN is similar to the ResNet, however, the ResNet blocks can be seen as using
Euler’s method to solve for the layer output. For this NODE-CNN the Runge-Kutta method
is used instead which will improve how the trajectory of the differential equation is propagated
through the network layer space. The reason for using Runge-Kutta instead of an adaptive
solver is due to the more reliable performance of using a fixed amount of steps (the solver will
not stop halfway through due to the stiffness of the ODE). It is also used because of the size
of the problem and the networks involved which caused large computation times when using
adaptive solvers. Hence, to train the network reliably and in a reasonable amount of time the
Runge-Kutta (RK) solver was used.

4.3 Results

To compare the performance of the models the Root Mean Squared Error (RMSE) between the
RUL estimates for the testing dataset and the actual RUL values are used as a performance
indicator. The RMSE can be calculated as shown in Eqn. 4.7,

RMSE =

√√√√ 1

N

N∑
i=1

(ˆRULi −RULi)2. (4.7)

52

Table 4.4: Architecture of the NODE-CNN

Layers Layer Output Size
Downsampling Layers
Conv2D (bs, channels, 28, 28)
BatchNorm (bs, channels, 28, 28)
ReLU (bs, channels, 28, 28)
Conv2D (bs, channels, 14, 14)
BatchNorm (bs, channels, 14, 14)
ReLU (bs, channels, 14, 14)
Conv2D (bs, channels, 7, 7)
CNN-NODE
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
Conv2D (bs, channels, 7, 7)
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
Conv2D (bs, channels, 7, 7)
BatchNorm (bs, channels, 7, 7)
Feedforward Layers
BatchNorm (bs, channels, 7, 7)
ReLU (bs, channels, 7, 7)
AvgPooling (bs, channels, 1, 1)
Flatten (bs, channels)
Linear (bs, 816)
ReLU (bs, 816)
Linear (bs, 200)
ReLU (bs, 200)
Linear (bs, 1)

Where ˆRULi is the RUL estimate for unit i, RULi is the actual RUL for unit i and N is the
total number of units. The RMSE is commonly used in many similar works when dealing with
the CMAPSS dataset allowing for direct comparison between different methods. RMSE values
acquired for each of the CMAPSS testing datasets were calculated using Eq. 4.7 (Table 4.5).
Table 4.5 shows the RMSE scores, which are calculated using equation 4.7 acquired for each
of the CMAPSS datasets. Each unit in the testing dataset underwent the same data-cleaning
process as the training set. Note that the means and standard deviations of the training set
were used for normalising the testing dataset. As the full sensor trajectories are not available for
the testing dataset, the mean and standard deviation of an entire trajectory wouldn’t normalise
the data the same way it was for the training sensor signals. The signals resulting from that
process were inputs to the neural network, and the estimated RUL output was compared with
the actual RUL that was given as a part of the dataset.

The other testing performance criterion used was the score originally introduced in (Saxena
et al., 2008). A normalised version of this score is shown in Eqn. 4.4 which was used for
hyperparameter tuning, however, other prognostics methods use the non-normalised version

53

Table 4.5: RMSE performance on each of the testing CMAPSS datasets with maximum RUL value of
130

Method FD001 FD002 FD003 FD004
ResNet (This work) 12.81 16.92 14.68 18.25
NODE-CNN (This work) 13.65 14.30 12.65 15.06
CNN (Pasa et al., 2019) 15.00 17.50 14.80 17.40
LSTM (Pasa et al., 2019) 16.50 18.10 15.90 17.20
MLP (Pasa et al., 2019) 15.10 18.00 14.30 16.60
CNN (X. Li et al., 2018) 12.61 22.36 12.64 23.31
LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66

(Eqn. 4.8) and it will therefore be used for comparison here.

s =

N∑
i=1

exp
[
−(ŷi−yi)

13

]
− 1, if ŷi ≤ yi

N∑
i=1

exp
[
(ŷi−yi)

10

]
− 1, if ŷi > yi

(4.8)

Table 4.6 shows the (non-normalised) scores compared with the other prognostic methods.

Table 4.6: comparison of the scores (Eq. (4.8)) on each of the testing CMAPSS datasets with a
maximum RUL value of 130

Method FD001 FD002 FD003 FD004
ResNet (This work) 250 2250 428 1842
NODE-CNN (This work) 235 886 270 947
CNN (Pasa et al., 2019) 369 1757 332 1678
LSTM (Pasa et al., 2019) 444 942 718 1487
MLP (Pasa et al., 2019) 411 1113 1091 2755
CNN (X. Li et al., 2018) 273 10412 284 12466
LSTM (Listou Ellefsen et al., 2019) 231 3366 251 2840

Figure 4.4 shows the box and whisker plots that were generated using the difference between
estimated and target RUL values for each unit in the testing datasets. The figure shows the
errors spread between the estimated RUL and the true RUL values over all the units in each
testing dataset. Note that the negative values correspond to an estimate less than the true
RUL, while positive values indicate a larger RUL estimate.

Finally, the effect of the ODE solver step size was tested for the NODE-CNN. Figure 4.5
shows how the RMSE on each testing dataset alters by adjusting the number of steps in the
numerical ODE solver. In this case, the variable associated with “time”, describes the depth
of the NODE network. The network depth is controlled by choosing an interval (t ∈ [0, 1])
and splitting the interval into an even number of steps. Hence, increasing the number of steps
increases the resolution, which in standard ODEs would increase the accuracy at the expense
of computational time. For this test, the NODE-CNN was retrained with 10 steps using 50
epochs, so there were more step options to test before reaching zero steps when reducing the
number of steps. Note the newly trained networks do not have optimal RMSE values, but this
experiment is only concerned with the relative differences in RMSE as the number of steps
changes.

54

(a) ResNet (b) NODE-CNN

Figure 4.4. Box and whisker plot for the ResNet (4.4a) and NODE-CNN (4.4b) RUL differences (ŷ =
estimated RUL and y = true RUL) over all the units for each testing dataset

(a) FD001 (b) FD002

(c) FD003 (d) FD004

Figure 4.5. Graphs showing testing performance as measured by the RMSE metric versus the number
of steps used for the numerical integration method (4th order Runge-Kutta). Here the network was
retrained using 10 steps in the ODE solver otherwise the same hyperparameters were used, but 50
epochs are used for faster training as the relative performance is of interest here. During testing, the
number of steps was altered and the RMSE was recalculated for the testing dataset as shown on the
plot. The vertical dotted line indicates the number of steps the network was trained on.

4.4 Discussion

The ResNet and NODE-CNN showed good performance when compared to the other methods
in Tables 4.5 and 4.6. In particular, ResNet and NODE-CNN performed especially well on the
FD002 and FD004 datasets. This is most likely because these datasets have multiple operating
conditions, and it was shown in (Pasa et al., 2019) that performing operating condition-based
normalisation (Eq. (4.2)) improves performance in this case. Hence, ResNet and NODE-
CNN outperformed the other methods on the FD002 and FD004 datasets which did not use

55

operating condition-based normalisation. (only the methods from (Pasa et al., 2019) used
this normalisation technique). When comparing the performance of NODE-CNN on datasets
FD002 and FD004 to (Pasa et al., 2019), it can be seen that the NODE-CNN outperformed their
regular (non-ResNet) CNN. The improved performance could be because ResNet and NODE
outperform regular CNNs in image recognition tasks (R. T. Q. Chen et al., 2018; He et al.,
2016), hence, the architecture of NODE-CNN may be due to an improvement to the simpler
CNN architecture used in (Pasa et al., 2019). The datasets with only one operating condition
(FD001 and FD003) also performed relatively well compared to state-of-the-art techniques.
However, the best results for these datasets were achieved by (Listou Ellefsen et al., 2019),
who used a Restricted Boltzmann Machine to extract degradation features and input them
into an LSTM, which estimated the RUL. It should also be noted that (Listou Ellefsen et al.,
2019) did not employ the same operating condition-based normalisation as was done in this
study. Hence, it may retain state-of-the-art performance for the FD002 and FD004 datasets
if the sensor signals are normalised this way. The multi-scale CNN (X. Li et al., 2018) also
outperformed the NODE-CNN and ResNet in terms of the RMSE measure for FD001 and
FD003, but NODE-CNN and ResNet had better scores. This could be because both ResNet
and NODE-CNN had their hyperparameters tuned to minimise the normalised score criterion
and hence would produce more conservative RUL estimates but not necessarily better RMSEs.
However, a more detailed analysis would be required to state this as fact. While not completely
outperforming all these techniques, the aim of showing that NODEs and ResNets could compete
with state-of-the-art techniques has been achieved.

Using the intuition of an ODE modelling a dynamic system, it may be expected that chang-
ing the time step size used in the numerical ODE solver would affect the accuracy of the
NODE-CNN. Altering this step size would normally provide a trade-off between accuracy and
computation time. (Queiruga et al., 2020) mentioned that the solution accuracy of NODEs
does not change with step size as a standard ODE would. For their tests, they used NODEs
to model the dynamics of a mechanical system; while here, NODE-CNN was used to model
some unknown and more abstract dynamics of the hidden variables in a neural network. Hence,
their accuracy refers to the error between the “true” trajectory and the NODEs trajectory at
each time-point. In contrast, the error discussed here is between the network’s final estimates
and some known RUL values. Their results showed that NODEs using 4th order Runge-Kutta
did achieve some increased accuracy with increased resolution (decreasing time step) but not
significant compared to what is expected by a numerical integrator ODE solver. Figure 4.5
shows the number of steps did not affect the testing loss on the final outputs except in extreme
cases (number of steps altered by a factor of 10 from the original training value) before the error
increased. This could be because the number of steps corresponds to the depth of the NODE-
CNN and not necessarily an increase in resolution (and therefore accuracy). This suggests
one must be careful when designing the network and specifying the problem if a relationship
between step size and solution accuracy is to be achieved. Here the network was used as a
standard black-box, feedforward network, so it did not benefit from the accuracy-time trade-
off. (Queiruga et al., 2020) also mention how NODEs can be altered to achieve this property
by describing multiple networks for portions of the trajectory. Hence, suppose one wants to
reduce the number of steps in the ODE solver. In that case, a certain number of networks are
removed, and the leftover networks are used to describe the dynamics during those periods in
the trajectories propagation. This reduces the accuracy of the results but also reduces the time
required to compute those results.

56

4.5 Conclusions

In this chapter, we have shown that NODEs can be used to construct neural networks and
therefore describe the inner workings of the network using ODEs. It can be seen through
the results that the NODE-CNN had comparable performance to the other RUL estimation
models shown in the results. The score values for the NODE beat the ResNet performance
and had better scores than the other models for FD002 and FD004, while it was relatively
close to the best result for FD001 and FD003. As mentioned in the discussion, its good
performance on the FD002 and FD004 datasets could be due to the lack of operating condition
normalisation for some of the other models. The chapter aimed to show that NODEs could
be a potential avenue to explore in the field of machinery prognostics. This could potentially
be used to leverage the knowledge of differential equations to alter these inner workings. For
example, instead of describing the network using a NODE, a neural stochastic differential
equation (SDE) can be used instead, thereby accounting for uncertainty in the network (X. Li
et al., 2020). These types of extensions mean knowledge of differential equations becomes a key
factor in developing these types of networks. Knowledge in these areas already exists within
the machinery prognostics community, as statistical methods are a popular methodology in
data-driven machinery prognostics (Si et al., 2011). SDEs themselves can be found throughout
these statistical methods. Hence, showing that NODE can perform just as well as other network
types could explore ways to use or augment differential equations to apply deep learning for
machinery prognostics.

57

Chapter 5

Dynamical Variational Autoencoders
for Remaining Useful Life Estimation

Much of the background section focused on generative models and how they can be extended to
deal with sequential data. This chapter aims to show how this theory can be used to construct a
Dynamical Variational Autoencoder (DVAE) for RUL estimation. In later chapters, DVAE will
be further explored using different architectures and training methods to alter the generative
models and how they are applied. This chapter walks through the construction of what will
be referred to as a “standard-DVAE” for RUL estimation. It is called a standard-DVAE as
the neural network architectures do not differ much from what is seen in other literature for
applications other than machinery prognostics (Hafner et al., 2019; Fraccaro et al., 2016; Girin
et al., 2021). Many of those models use RNNs to encode sequential information and Multilayered
Perceptron (MLP) networks as encoders, decoders and prior networks. The main difference in
this work is that a conditional DVAE is necessary when applying DVAEs for RUL estimation.
This is because we train the network in a supervised manner, unlike many generative modelling
applications that use unsupervised learning. For example, in (Hafner et al., 2019), the DVAE
is trained to create a latent representation of the pixel dynamics of videos. Hence, the input
pixels of the videos are also the target outputs, and during training, one wants to reconstruct
them. During testing, the network might want to extrapolate how the video may play out; this
is done through the learnt latent dynamics that can be used to extrapolate the latent variables
and then decode to find the pixels of the possible future video. Here, the DVAE for RUL
estimation is not being applied in this unsupervised manner. Instead, the DVAE will attempt
to directly estimate the RUL using the sensor data and latent variables the model learns to
construct during training. Hence, the latent variables here are more like auxiliary variables
whose dynamics the model learns during training, and these variables aid the model in its RUL
estimation. Hence, unlike the other DVAE models, the input training data is not also the target
data.

5.1 Methodology

Ultimately the goal of a data-driven probabilistic RUL estimation model is to find p(r1:T |x1:T),
i.e. the probability of the RUL sequence r1:T given the sensor data x1:T . Taking the deep

58

generative model approach, we want to maximise the probability that the DVAE generates
any sample, r1:T , that comes from the distribution, p(r1:T |x1:T). This is similar to how in the
background section, the goal of a VAE was to sample X that is from the unknown distribution
p(X) and for the DVAE, the goal was adjusted for sequential variables, where the sample x1:T
should come from the unknown distribution p(x1:T). Minimising the ELBO loss function (Eqn.
3.9 in the DVAE case) was the criteria used to train three separate models, the inference,
prior and decoder, which ultimately resulted in a generative model that outputs samples x1:T
that are very likely to belong to p(x1:T). In this chapter, instead of deriving the ELBO to
maximise the likelihood that the generative model output belongs to the distribution p(x1:T)
instead we want to increase the likelihood a sample r1:T comes from the conditional distribution
p(r1:T |x1:T). This will create a conditional DVAE that can be used for RUL estimation much
like other neural network models such as in Chapter 4, however, unlike those models, this is a
probabilistic model, which includes latent variables that aid the model in RUL estimation.

5.1.1 Deriving the ELBO Loss Function

To derive an ELBO loss for the conditional DVAE, we can start with the negative log-likelihood
of the distribution p(r1:T |x1:T). If this criterion is minimised, then it would be the same as
maximising the likelihood samples r1:T belong to p(r1:T |x1:T).

L = −log p(r1:T |x1:T) (5.1)

= −log

∫
p(r1:T , z1:T |x1:T)dz1:T (5.2)

Note, z1:T is an arbitrary latent sequence we introduced to construct the generative model. One
way to derive the ELBO is to use an importance distribution qφ(z1:T |r1:T , x1:T) =

∏T
t=1 qφ(zt|z1:t−1, r1:T , x1:T)

and use the same techniques found in importance sampling to approximate the more com-
plicated distribution p(r1:T |x1:T) (see section 3.3.2 in the Background chapter). Normally
qφ(zt|z1:t−1, r1:T , x1:T) would be a simple distribution such as a Gaussian distribution. Note
any subscripts, such as φ used here, represent the parameters of a neural network; hence, qφ is
a neural network.

L = −log

∫
p(r1:T , z1:T |x1:T)

qφ(z1:T |r1:T , x1:T)

qφ(z1:T |r1:T , x1:T)
dz1:T (5.3)

= −log

∫
p(r1:T , z1:T |x1:T)

qφ(z1:T |r1:T , x1:T)
qφ(z1:T |r1:T , x1:T)dz1:T (5.4)

= −log Eqφ(z1:T |r1:T ,x1:T)
[
p(r1:T , z1:T |x1:T)

qφ(z1:T |r1:T , x1:T)

]
. (5.5)

At this point, the expression is still too difficult to evaluate; normally, when deriving the ELBO
for a VAE at this step, Jensen’s inequality is used, f(E[X]) ≤ E[f(X)], where f is a convex

59

function. Hence, this results in,

L ≤ −Eqφ(z1:T |r1:T ,x1:T)
[
log

p(r1:T , z1:T |x1:T)

qφ(z1:T |r1:T , x1:T)

]
(5.6)

L = −Eqφ(z1:T |r1:T ,x1:T)

[
log

T∏
t=1

pθr(rt|r1:t−1, z1:t, x1:T)pθz(zt|z1:t−1, r1:t−1, x1:T)

qφ(zt|z1:t−1, r1:T , x1:T)

]
(5.7)

= −Eqφ(z1:T |r1:T ,x1:T)

[
T∑
t=1

log
pθr(rt|r1:t−1, z1:t, x1:T)pθz(zt|z1:t−1, r1:t−1, x1:T)

qφ(zt|z1:t−1, r1:T , x1:T)

]
(5.8)

= −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T)
[
log

pθr(rt|r1:t−1, z1:t, x1:T)pθz(zt|z1:t−1, r1:t−1, x1:T)

qφ(zt|z1:t−1, r1:T , x1:T)

]
. (5.9)

Note, the last line uses the fact that expectations are a linear operator, i.e. E[f(x) + g(x)] =
E[f(x)] + E[g(x)], and that expectations can cascade (Girin et al., 2021) i.e.,

Eqφ(z1:T |r1:T ,x1:T)[f(z)] = Eqφ(z1|r1:T ,x1:T)
[
Eqφ(z2|z1,r1:T ,x1:T)

[
. . .Eqφ(zT |zT−1,r1:T ,x1:T)[f(z)] . . .

]]
.

Expanding the expression further yields,

L = −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T) [log pθr(rt|r1:t−1, z1:t, x1:T)]

−
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T)
[
log

pθz(zt|z1:t−1, r1:t−1, x1:T)

qφ(zt|z1:t−1, r1:T , x1:T)

]
(5.10)

= −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T) [log pθr(rt|r1:t−1, z1:t, x1:T)]

+
T∑
t=1

Eqφ(z1:t−1|r1:T ,x1:T)

[
Eqφ(zt|z1:t−1,r1:T ,x1:T)

[
log

qφ(zt|z1:t−1, r1:T , x1:T)

pθz(zt|z1:t−1, r1:t−1, x1:T)

]]
. (5.11)

Note,

Eqφ(zt|z1:t−1,r1:T ,x1:T)

[
log

qφ(zt|z1:t−1, r1:T , x1:T)

pθz(zt|z1:t−1, r1:t−1, x1:T)

]
= DKL (qφ(zt|z1:t−1, r1:T , x1:T)||pθz(zt|z1:t−1, r1:t−1, x1:T)) ,

which therefore gives the final expression for the DVAE ELBO loss function,

L = −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T) [log pθr(rt|r1:t−1, z1:t, x1:T)]

+
T∑
t=1

Eqφ(z1:t−1|r1:T ,x1:T) [DKL (qφ(zt|z1:t−1, r1:T , x1:T)||pθz(zt|z1:t−1, r1:t−1, x1:T))] . (5.12)

Intuitively this is the same as the ELBO for the non-conditional DVAE (Eqn. 3.9); however,
here, it is conditioned on the conditional variable x1:T . Note, x1:T could not be simplified

60

any further (unless causality is assumed); this conditional DVAE for RUL estimation should
therefore be a noncausal model if no further assumptions are made. This noncausal model is
implemented in practice through sequence-to-sequence models, e.g. inputting a time-windowed
sequence into a bi-directional RNN which outputs another sequence of the same size. Hence,
the entire available sequence isn’t processed in one go; instead, the model uses all the variables
within a certain time window of size T , this way the model is not trained to require an entire
run-to-failure sequence to estimate the RUL (as that would be pointless). For reference later in
the text, note that the ELBO can be broken down into two terms, the negative log-likelihood
term (Eqn. 5.13) and the KL-divergence term (Eqn. 5.14),

NLL = −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T) [log pθr(rt|r1:t−1, z1:t, x1:T)] (5.13)

KLD =
T∑
t=1

Eqφ(z1:t−1|r1:T ,x1:T) [DKL (qφ(zt|z1:t−1, r1:T , x1:T)||pθz(zt|z1:t−1, r1:t−1, x1:T))] . (5.14)

It may not be clear from these terms how one should train and implement a DVAE. Hence,
the next sections will go over the practical steps to implement the DVAEs for RUL estimation.
However, it is important to realise that a benefit of deriving this loss is that we started with
the basic goal of a machinery prognostics model, i.e. minimise −log p(r1:T |x1:T), and ended up
knowing what form the different models must take to achieve that goal (qφ, pθr and pθz). This
derivation process has been vital in identifying how to construct the neural network models for
estimating the RUL. For example, the noncausal nature of the models was made clear from
the derivation of the ELBO. Any assumptions made that simplify the model can be explicitly
made and compared to the models presented in this derivation. The rest of this thesis continues
presenting different realisations of DVAE models; keep in mind this derivation has presented a
general framework that is used for constructing each of them.

5.1.2 General Overview of Model Training and Testing

From the ELBO criterion derived and shown in Eqn. 5.12, it can be seen the three networks
needed to construct the generative model are,

• Inference model: qφ(zt−1|z1:t−2, r1:T , x1:T)

• Prior/Transition model: pθz(zt|z1:t−1, r1:t−1, x1:T)

• Decoder/Measurement model: pθr(rt|r1:t−1, z1:t, x1:T)

Note, from now on, the Prior and Decoder models will be known as the Transition and Measure-
ment models respectively. This change is partly because of their relation to state space models
and Bayesian filtering, as stated in the Background section 3.3.1 and also to be more consistent
with the terminology used in later chapters, such as chapter 7, where this relation is explored in
more depth. For the work in this chapter, it was found empirically that the best performance
came from assuming the previous RUL does not impact the transition or measurement model
outputs. Each of the model’s outputs describes a Gaussian distribution as is common in deep
generative models. Note that generative models use sampling to represent the distribution they

61

are describing, p(r1:T |x1:T) in this case; hence, the generative model can represent non-Gaussian
distributions through repeated sampling even if the transition and measurement models output
a local Gaussian distribution (Figure 1.1 in the Introduction showed an illustration of this con-
cept). To make the models represent Gaussian distributions the neural networks output a mean
and log-variance (that was converted to a standard deviation); these statistics fully describe
a Gaussian distribution. Another assumption used was the Markov assumption for the prior
model latent variables, so instead of being dependent on z1:t−1, it was only dependent on the
previous latent variable zt−1. This also means the decoder was dependent on zt instead of z1:t.
The Markov assumption was mainly used for simplicity when implementing the model in code.
Hence, the models for the DVAE used in this chapter can be described using,

• Inference model: qφ(zt|z1:t−1, r1:T , x1:T) = N (µ
(ẑ)
t , σ

(ẑ)
t)

• Transition model: pθz(zt|zt−1, x1:T) = N (µ
(z)
t , σ

(z)
t)

• Measurement model: pθr(rt|zt, x1:T) = N (µ
(r)
t , σ

(r)
t)

where (µẑ, logσ2
ẑ), (µz, logσ2

z) and (µr, logσ2
r) were the outputs of the inference, transition and

measurement networks respectively. Note the other models not explicitly stated here are the
encoder models, which encode and represent x1:T and r1:T . Here bi-directional RNNs Gated
Recurrent Unit (GRU) RNNs are used; the forward pass captures ht := x1:t−1 and the backwards

pass captures
←−
h t := x1:T . Using these models and the ELBO loss in Eqn. 5.12, the conditional

DVAE can be trained for RUL estimation. To apply the model and calculate the ELBO during
training, the following steps are applied,

1. Encode the data, r1:T and x1:T , with two separate bidirectional RNNs.

2. Initialise a latent variable (z0) and use the encoded variables
←−
h

(x)
t := x1:T and

←−
h

(r)
t := r1:T

as inputs in the inference model (qφ) to recursively generate latent variable distributions

which ultimately gives N (µ
(ẑ)
1:T , σ

(ẑ)
1:T).

3. Sample z1:T from this distribution and using the previous initial latent variable construct
a sequence z0:T−1.

4. Use the transition model on each of these to predict the next time point, i.e. zt−1 →
pθz(zt|zt−1, x1:T) = N (µ

(z)
t , σ

(z)
t). Doing this for each time point results in the transition

latent variable distribution N (µ
(z)
1:T , σ

(z)
1:T)

5. Using the transition and inference distributions, pθz = N (µ
(z)
1:T , σ

(z)
1:T) and qφ = N (µ

(ẑ)
1:T , σ

(ẑ)
1:T),

the KL-divergence term in the ELBO can be calculated, Eqn. 5.14

6. The sampled latent sequence from the inference distribution, z1:T , and the encoded se-

quence
←−
h

(x)
t := x1:T , ∀ t, can then be decoded using pθr(rt|zt, x1:T) = N (µ

(r)
t , σ

(r)
t) at

each time point to find N (µ
(r)
1:T , σ

(r)
1:T).

7. The negative log-likelihood term from the ELBO, Eqn. 5.13, can be calculated using the
measurement model outputs.

62

8. With both the negative log-likelihood and KL-divergence terms calculated, the ELBO
loss can be found and used to optimise the neural network during training.

Note, since z0 is a dummy variable (only time points 1 to T are relevant), it can be initialised
as zero, or a simple MLP network could be used to output an initial variable z0. Here an MLP
was used to initialise z0 using the sensor values at the first time-point, i.e. fθz0 (x1) = z0, where
θz0 are the parameters of the neural network that can be optimised during training. A graphical
representation of the inference and generate models is shown in Figure 5.1 as an aid.

(a) Generative model

(b) Inference model

Figure 5.1. A graphical representation of the conditional DVAE for RUL estimation, 3.3a is the
generative model described by Eqns. 3.10 & 3.11 while 3.3b is the inference model described by Eqn.
3.12.

The steps for applying the model after training are more simple as it essentially involves applying
the generative model,

1. Encode the sensors, x1:T , with the bidirectional RNN.

2. Initialise a latent variable z0

3. Use the transition model to generate the next latent variable, pθz(zt|zt−1, x1:T) = N (µ
(z)
t , σ

(z)
t).

i.e. starting from z0 generate the distribution for z1, sample z1 from that distribution and
use that to generate z2 and so on.

4. From the last step, we end up with a sequence of sampled latent variables z1:T ; use the
samples at each time point in the measurement model, pθr(rt|zt, x1:T) = N (µ

(r)
t , σ

(r)
t) to

generate the distributions of the RUL estimates.

5. RUL estimates can sampled from the distribution, rt ∼ pθr(rt|zt, x1:T)

63

6. Monte Carlo simulation can be done by repeating steps 3-5, N times, for some “large”
value N (although all N calculations are done in parallel in this work).

In this work N = 100 when testing the DVAE1.

5.2 Experiments

5.2.1 Data

The data used to test this conditional DVAE for RUL estimation is the CMAPSS dataset
described in section 4.1.1.

5.2.2 Preparing the Data

The sensors are normalised using operating-condition-based normalisation as mentioned in sec-
tion 4.1.2, Eqn 4.2. Sensors that are constant values throughout the lifetime of the units are
also dropped. Normalising and dropping sensors that do not aid RUL estimation are common
practices employed for the experiments throughout the thesis. The maximum RUL was also
set to 130 as before to represent the healthy portion of the unit’s life.

The model must utilise the inputs x1:T and r1:T in a noncausal manner. To do this, a sequence-
to-sequence approach was taken where the data was broken down into time-windowed portions
using a sliding time window of size T . This sliding time window applied to the sensor data is
illustrated in Figure 5.2. The different time-windowed data slices were combined into batches
when training the model. Hence the size of the input tensors was, (batch size, T, number of
sensors). Therefore, the model required a time window of data points, x1:T , before estimating a
time window of RUL estimates r1:T . During the testing phase, the model is required to evaluate
the entire sequence of sensors for each testing unit, each of which may have a variable sequence
length. To apply this sequence-to-sequence model in this setting, a sliding time window goes
over the test units sensor sequence and uses the generative model on each time window to
find a sequence of RUL estimates for each time window. These estimates are then put back
together into a single sequence, where the average RUL value is taken for the time points with
overlapping time windows. An illustration of this is shown in Figure 5.3.

5.2.3 Experiments using DVAEs

Supervised Learning

In this experiment, the generative model is trained in a supervised manner. The inference,
transition and measurement models are trained using the time windowed RUL sequences (r1:T)

1The code implementing the DVAE and for the experiments mentioned in this chapter can be found at
https://github.com/StarMarco/DVAE torch or contact the author for more information

64

https://github.com/StarMarco/DVAE_torch

Figure 5.2. An illustration of a sliding time window applied to the sensor signals of a single unit in
the CMAPSS dataset

as target values and the sensor sequences (x1:T) as the input data. After training, the generative
model estimates the RUL sequences from the sensor sequences for each unit in the testing
dataset. Note that the generative model refers to the use of the transition and measurement
model to propagate states zt through time and convert to the measurement space rt to find
RUL estimates. Figure 5.1a illustrates this graphically in the previous section. Similarly to the
previous chapter 4, the purpose of this experiment is to test the performance of this model for
RUL prediction so that it can be compared to other state-of-the-art models. Section 5.1.2 in
the methodology portion of this chapter explained the steps of training and testing the DVAE.
Hence, this experiment applies those principles to train and test the DVAE using all the data
available in the training and testing datasets. In contrast, the next section introduces the semi-
supervised experiments which will artificially remove some of the target RUL data to simulate
a lack of run-to-failure training data available for the practitioner.

Semi-Supervised Learning

The aim of this experiment is simply to see how DVAEs could potentially be used for semi-
supervised learning to reduce the amount of target data needed to train the supervised DVAE.
Hence, the results are mainly compared with the supervised DVAE from the previous experi-
ment as a baseline. Although the results from this experiment may encourage further exper-
imentation using DVAEs for semi-supervised learning in machinery prognostics applications.
However, here it can be seen as a supplementary experiment to the supervised experiment,
and the results do aid some of the arguments made in the supervised experiment’s discussion.
Namely, one of the competing methods uses semi-supervised learning techniques to improve
their performance, and the results here help for a fair analysis of the results Listou Ellefsen

65

RUL

time

Figure 5.3. The overlapping time windows of sensor data each have a corresponding RUL estimate
sequence. Some of the RUL estimates from different time windows have the same corresponding time
points; in order to plot a single RUL estimate trajectory, the RUL estimates are averaged at the same
time points. This is shown for the red and blue time windowed data. The red and blue points are the
corresponding RUL estimates (made up for illustrative purposes) and the black circles are the average
RUL estimates between the red and blue RUL estimates.

et al., 2019.

In this experiment, another DVAE is utilised as an unsupervised model which is trained to
reconstruct the input sensor values. Typically many semi-supervised methods train a generative
model in an unsupervised manner using the sensor data while a supervised model uses the
outputs of that unsupervised model to estimate the RUL. For example, a VAE could be used to
process the data, and then the latent variable output of the VAEs encoder could be used as an
input to an MLP network that estimates the RUL. However, this still means the RUL estimate
is a point estimate without consideration for its uncertainty. An interesting aspect of the DVAE
is that it is a generative model; hence, a DVAE can be used to reconstruct the sensors and find
the latent variable trajectories in an unsupervised manner, and then another DVAE could be
constructed for probabilistic RUL estimation. The benefit of this is that, unlike the VAE, the
DVAE is well-suited for sequential data. Hence, the DVAE should be better at the unsupervised
processing of the sensor signals. During the supervised stage, the DVAE provides the benefit
of capturing the uncertainties of the RUL estimates it produces by repeatedly sampling from
the generative model. As the point of semi-supervised learning is for the unsupervised model
to capture information from the input data to aid the supervised model in learning the targets,
the DVAEs ability to handle sequential data should aid in this application.

66

Generally, semi-supervised methods in machinery prognostics define an unsupervised network
and a supervised network (both DVAEs in this case) and train both simultaneously. Hence,
here a DVAE is defined to reconstruct the sensor data, and the ELBO loss (Eqn. 3.9) is
the unsupervised loss, while a conditional DVAE is used as the supervised network and the
conditional ELBO (5.12) is the supervised loss. The total loss is taken as the addition of the
supervised and unsupervised loss i.e.

LTotal = Lunsupervised + Lsupervised (5.15)

Where Lunsupervised is defined by Eqn. 3.9 and Lsupervised is defined by Eqn. 5.12. However, to
find a supervised and unsupervised loss, we must split the training data into sensor data with
labelled RUL target pairs and sensors without target RUL data. Note that the training data
has all the RUL target values available, so this experiment needs to manually discard some
of these to test the semi-supervised method. The specifics of this data preparation for the
semi-supervised experiment are as follows,

• The training data can be described as, ({x(n)t }Tt=1, {r
(n)
t }Tt=1)

N
n=1, where T is the time

window, and N are the amount of time windowed batches for all the units in the dataset,
e.g. FD001.

• Some of the targets will be “deleted” by replacing them with −1 so that the algorithm
knows to ignore these values when calculating the supervised loss.

• Hence, this results in the following dataset, ({x(k)t }Tt=1, {r
(k)
t }Tt=1)

K
k=1, ({x(m)∗

t }Tt=1)
M
m=1,

where M +K = N and K is the amount of input-target pairs left and M is the amount
of time windowed sensor batches without targets (practically the targets were replaced
with −1).

• During training, all the sensor data can be used in the unsupervised phase. However,
the sensor data batches with corresponding batches of −1 targets are dropped during the
supervised phase, so only ({x(k)t }Tt=1, {r

(k)
t }Tt=1)

K
k=1, are used as inputs to the supervised

network, while all ({x(n)∗t }Tt=1)
N
n=1 is used in the unsupervised stage.

Note that the targets chosen to be dropped are randomly chosen over all the data points in the
dataset regardless of the unit it belongs to or its corresponding time point. This was mainly
done to stay consistent with other works in the literature that test semi-supervised methods.
The different percentages of input-target pairs kept for training the semi-supervised model are
1%, 5%, 10%, 50% and 100% (i.e. the percentage of supervised data = K

N
× 100). Hence,

this gives us a variety of tests that can assess the model’s performance on various amounts of
run-to-failure data availability.

An unsupervised model is used in the semi-supervised experiment to learn information from the
unlabelled data and assist the supervised model. In this case, the unsupervised model will be a
DVAE (but not conditional like the RUL estimation supervised DVAE), and it can reconstruct
the sensor values and generate latent variables z1:T to aid the supervised model. The latent
variable outputs from the unsupervised DVAEs inference model will be used along with the
original sensor values as inputs to the supervised DVAE that estimates the RUL. This supervised
DVAE is essentially the same type of model described in the supervised experiment; however,
instead of only having the sensor sequences x1:T as conditional inputs, both the unsupervised
model latent variables and sensors are used as conditional inputs, [x1:T , z1:T].

67

5.2.4 Network Design

Supervised Experiment

A bi-directional GRU encodes the sensors for each time window, x1:T . This means each hidden

variable represents the past, current and future variables,
←−
h

(x)
t := x1:T , which makes this a

noncausal model. For the inference model that is used during the training of the DVAE, the
measurements/known RUL target values are also encoded by a separate bi-directional GRU to
capture the time windowed target values r1:T . A GRU RNN is used for the inference model
where each hidden variable represents the latent variable ht = z1:t and the inputs to the RNN
are the encoded values for x1:T . Note all the hidden variables of these RNNs are initialised
as zero, i.e. h0 = 0. Both the transition and measurement models are modelled using MLP
networks. Hence, as a summary, the models are listed below,

• Encoder for x1:T : BiDirectionalGRU(xt, h
(x)
t ,
←−
h

(x)
t) =

←−
h

(x)
t−1

• Encoder for r1:T : BiDirectionalGRU(rt, h
(r)
t ,
←−
h

(r)
t) =

←−
h

(r)
t−1

• Inference model, qφ(zt|z1:t−1, r1:T , x1:T): MLP
(
GRU(ht−1,

←−
h

(r)
t ,
←−
h

(x)
t)
)

= MLP (ht) =
[
µ(zt)inf , log σ2

(zt)inf

]
• Transition model, pθz(zt|zt−1, x1:T): MLP (zt−1,

←−
h

(x)
t) =

[
µzt , log σ2

zt

]
• Measurement model, pθr(rt|zt, x1:T): MLP (zt−1,

←−
h

(x)
t) =

[
µrt , log σ2

rt

]
The background section 3.2.1 notation is used here for the mean and standard deviation. Note
the networks with multiple inputs concatenate these inputs, so the network has a single input
variable comprising multiple concatenated variables. This was all implemented using PyTorch
as the deep learning software (Paszke et al., 2017).

Semi-Supervised Experiment

In the semi-supervised experiment, a DVAE is used to learn the sensor signal trajectories in an
unsupervised manner. This unsupervised DVAE has the following model forms,

• Encoder for x1:T : BiDirectionalGRU(xt, h
(x)
t ,
←−
h

(x)
t) =

←−
h

(x)
t−1, Note, the forward pass of

the RNN produces h
(x)
t := x1:t−1

• Inference model: qφ(zt|z1:t−1, x1:T): MLP
(
GRU(ht−1,

←−
h

(x)
t)
)

= MLP (ht) =
[
µ(zt)inf , log σ2

(zt)inf

]
• Transition model: pθz(zt|zt−1, x1:t−1): MLP (zt−1, h

(x)
t) =

[
µzt , log σ2

zt

]
• Measurement model: pθx(xt|zt, x1:t−1): MLP (zt−1, h

(x)
t) =

[
µrt , log σ2

rt

]
68

Hence, this unsupervised generative model is a causal model like the DVAEs mentioned in the
background section 3.2. Note, as this DVAE is a generative model, it aims to learn how to
sample from the distribution p(x1:T), i.e. distribution of possible sensor values.

The supervised DVAE has the same form as the conditional DVAE used in the supervised
experiment. The only difference is that the conditional inputs to this supervised model are the
sensor variables and latent variables from the unsupervised inference model. This matches the
methodology of other semi-supervised models that train a VAE and use the encoder output
(inference model output in this context) as the input to the supervised RUL estimation model
(Martin & Droguett, 2022; Costa & Sánchez, 2021).

5.3 Results

5.3.1 Supervised

This section compares the supervised DVAE with other state-of-the-art RUL estimation meth-
ods. Many of the best-performing RUL estimation methods in the machinery prognostics
literature are not probabilistic. An exception here is another model that performs well on the
dataset, known as Deep Learning Non-stationary Gaussian Process Regression (DL-NSGPR)
(Z. Xu et al., 2021). It uses Non-Stationary Gaussian Process Regression (NSGPR) after a
stage where a deep neural network estimates point RUL estimates. The NSGPR helps smooth
the estimates, deal with noise in the point estimates, and quantify uncertainty. The rest of the
models use various neural networks such as CNNs on spectrogram images of the sensor data,
created using time-frequency transforms (X. Li et al., 2018), A semi-supervised method that
preprocesses the data using a Restricted Boltzmann Machine (RBM) and then uses an LSTM to
predict the RUL (Listou Ellefsen et al., 2019), a Temporal Deep Degradation Network (TDDN),
which uses CNNs and Attention mechanisms and finally, a Dual-Stream Self-Attention Neural
Network (DS-SANN), which uses Attention mechanisms to estimate the RUL from the sensor
signals. Table 5.1 compares the performance of the different models using the RMSE metric
found in equation 5.16.

RMSE =

√√√√ 1

N

N∑
n=1

(ŷn − yn)2 (5.16)

where N is the total amount of RUL targets in the testing dataset, ŷn is the RUL estimate (or
the mean estimate in the case of probabilistic models) and yn is the corresponding true RUL
value.

Table 5.2 shows the comparison between the DVAE and other selected model’s score values.
The expression for calculating the score can be stated as (Saxena et al., 2008),

s =

N∑
i=1

exp
[
−(r̂i−ri)

13

]
− 1, if r̂i ≤ ri

N∑
i=1

exp
[
(r̂i−ri)

10

]
− 1, if r̂i > ri

(5.17)

69

Table 5.1: RMSE performance on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE (This work) 8.63 10.29 7.28 9.61
DL-NSGPR (Z. Xu et al., 2021) 7.4 11.8 7.5 8.3
CNN (X. Li et al., 2018) 12.61 22.36 12.64 23.31
RBM-LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66
TDDN (Qin et al., 2022) 9.47 10.93 9.17 11.16
DS-SANN (D. Xu et al., 2022) 11.64 13.34 12.28 14.98

Note, to be consistent with other models reporting scores only the final RUL estimate is used
to calculate the score of each testing unit. Hence, N in the context of the score is equal to the
number of units in each dataset. The score function is used to penalise RUL estimates larger
than the true value so that conservative results would result in a lower value. Note not all the
methods from the RMSE performance table (Table 5.1) are in this table as not all of those
methods listed the scores of their model.

Table 5.2: Comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE (This work) 376 1791 533 1403
CNN (X. Li et al., 2018) 273 10412 284 12466
LSTM (Listou Ellefsen et al., 2019) 231 3366 251 2840
TDDN (Qin et al., 2022) 214 562 217 998
DS-SANN (D. Xu et al., 2022) 210 867 286 1150

Figure 5.4 shows the RUL plots over the available operating time for certain testing units in
FD001. Units 12 and 41 are chosen as they represent the longest and the shortest amount of
time a unit is healthy respectively (a RUL value of 130 is taken as “healthy”). Units 35 and
100 were randomly chosen to showcase some results that aren’t extreme cases, like units 12 and
41.

Note that the RUL estimation trends for units 12 and 41 shown in Figures 5.4a and 5.4c deviate
from the true RUL trend at certain points. Unit 12’s RUL estimate trend starts to deviate
after cycle 100, while unit 41’s trend stays constant until around cycle 40 despite the true RUL
beginning to degrade near the start. This could be due to the fact not all the units begin to
degrade when RUL equals 130. Hence, unit 12 may actually start to degrade after cycle 100,
which is reflected in the estimated RUL trend. Unit 41 could transition from a healthy state to
a degrading one at around cycle 40, and this could be why the DVAE keeps estimating a RUL
of 130 until cycle 40. While this is not explored in this thesis, a way of testing this is to find
out when the unit transitions from a healthy state to a degrading one and begin the linearly
decaying RUL trend at that point instead of setting it as 130 for every unit. This is similar
to certain methods in bearing prognostics that use calculated vibration statistics such as RMS
or kurtosis to determine when a fault occurs and the degradation process begins (Cao et al.,
2023; J. Guo et al., 2023).

The dimensionality of the latent variables was chosen as 2. Hence, this creates an opportunity
to plot latent phase-space plots with each latent variable represented by an axis. In Figure

70

(a) RUL estimates vs lifetime of unit 12 (b) RUL estimates vs lifetime of unit 35

(c) RUL estimates vs lifetime of unit 41 (d) RUL estimates vs lifetime of unit 100

Figure 5.4. The RUL estimates over the known lifetime of the testing units for a selected subset of
units in the FD001 test dataset.

5.5, the latent phase-space trajectories for each unit are plotted as a scatter plot with a colour
gradient showing their evolution in time. All the unit’s latent trajectories are plotted for each
dataset in CMAPSS to show a general trend in the latent space as the machines degrade. Note
not all the units in the testing datasets get close to degrading; some units, like unit 12 in FD001,
stay healthy for the majority of the time and barely degrade at all during the time captured in
the test. Hence, there will be more points closer to the healthy regions where the trajectories
start from, and fewer points as the trajectories evolve from the machine degradation.

The final RUL estimates can give a useful visual indicator of the model’s overall performance.
For example, Figure 5.6 shows the final RUL estimates versus the True RUL for that unit in
the FD001 dataset as a scatter plot. This helps visualise how well the model performs as the
machine approaches the failure point. For example, from the figure, it is easy to see as the
machine gets closer to the failure point of RUL = 0, the model performs better as the points
are less scattered from the line that denotes the accurate values.

Finally, another use for the final RUL values is that it indicates how well the uncertainty
captures the true RUL for each unit. Figure 5.7 shows the RUL estimates along with 95%
confidence intervals as error bars. Hence, at a glance, it can be seen if the true RUL values
are captured within the error bars that denote the model’s confidence. It can also be seen that
for larger final RUL values, the confidence intervals also seem to be large, while for the smaller
RUL values the error bars are smaller. This helps confirm the statement from the last plot
(Figure 5.6) that as the machine approaches failure, the model becomes more confident in its
RUL estimates.

71

(a) Latent state space trajectories for FD001 (b) Latent state space trajectories for FD002

(c) Latent state space trajectories for FD003 (d) Latent state space trajectories for FD004

Figure 5.5. A plot of the latent state space trajectories for the test units in each dataset. The colour
bar represents the time i.e. the darker colours represent earlier time points, and the lighter ones show
later time points. The longest trajectory is plotted as a blue line to show how a unit may develop from
a healthy to near-failure condition.

0 20 40 60 80 100 120
RUL Estimates (cycles)

0

20

40

60

80

100

120

Tr
ue

 R
U

L
(c

yc
le

s)

true
estimates

Figure 5.6. The final RUL estimates for the test units in the FD001 dataset. These were plotted as a
scatter plot and compared with the true RUL values plotted as a line

5.3.2 Semi-Supervised

Comparing different approaches for semi-supervised learning is difficult due to the different
evaluation setups used within the field (Krokotsch et al., 2022). In Table 5.3, we have listed

72

0 20 40 60 80 100
Unit Number

0

20

40

60

80

100

120

140
R

U
L

(c
yc

le
s)

true
estimates

Figure 5.7. The final RUL mean estimates and True RUL values plotted as a scatter plot vs the unit
index for each unit in the FD001 test dataset. The 95% confidence intervals are also shown for the
final RUL estimate.

some of the RMSE results for the different percentages of labelled data points randomly chosen
in each of the CMAPSS datasets.

Table 5.3: Semi-supervised RMSE performance on each of the testing CMAPSS datasets for different
percentages of available data during RUL estimation training.

Dataset 1% 5% 10% 20% 50% 100%
FD001 14.88 9.13 9.35 8.68 8.78 8.53
FD002 10.86 10.29 10.20 10.01 9.96 10.15
FD003 12.99 9.47 8.52 8.43 7.88 7.33
FD004 15.73 9.72 9.69 9.53 9.96 9.77

Similarly, the scores are presented in Table 5.4 and show how the score metric changes with a
given percentage of RUL labels.

Table 5.4: Semi-supervised NASA score function performance on each of the testing CMAPSS datasets
for different percentages of available data during RUL estimation training.

Dataset 1% 5% 10% 20% 50% 100%
FD001 842 265 256 349 245 234
FD002 1853 1057 783 788 800 839
FD003 880 671 291 467 270 314
FD004 2505 1203 1032 1183 1113 1060

While semi-supervised learning is not the focus of the thesis, these results may go show the
potential effectiveness of using DVAE methods for semi-supervised RUL estimation. Semi-
supervised methods improve the performance of the RUL estimation models if there is little

73

run-to-failure data available. Hence, the DVAEs capability of dealing with sequential data could
aid in reducing the expense of requiring a lot of run-to-failure data to train these deep-learning
models.

5.4 Discussion

Regarding RMSE performance, the DVAE performs better than all the models that do not
account for uncertainty. The only model whose performance is better for some of the datasets
is DL-NSGPR, which is also a relatively recent model that also accounts for uncertainties
in the RUL estimate. However, DVAE also has a latent space that can potentially act as
a HI and give some intuition behind the RUL estimates. DVAEs are also not restricted to
Gaussian distributions to represent the RUL estimates like DL-NSGPR is. Using the DVAEs
generative model and sampling multiple r1:T estimates can represent any arbitrary probability
distribution using those samples. Another strength of this DVAE model is that it provides an
underlying theoretical framework. Looking at the theory behind DVAEs, others can use the
same theory while finding different ways to achieve the underlying mathematical structure of
the model. For example, instead of using a bidirectional RNN to encode x1:T into a hidden
variable, perhaps another network architecture could be used, such as a Transformer (Vaswani
et al., 2017). Or perhaps use different assumptions than the one used here, e.g. use transition
model pθz(zt|z1:t−1, x1:T) instead of pθz(zt|zt−1, x1:T). A useful aspect of using these sequential
conditional generative modelling techniques, such as DVAEs, is that there can be some flexibility
in how each model is constructed (e.g. what network architectures are used) while still guided
by the overarching framework. Hence, the main benefit of this work is the DVAE framework
and understanding that noncausal models are required for the generative model to learn how
to sample from the underlying distribution p(r1:T |x1:T). The network architectures stated here
are less important and were only chosen to test the model’s effectiveness using relatively simple
network architectures used in other DVAE models (Girin et al., 2021).

The structure of the DVAE can be compared to the other methods listed in Table 5.1. The
TDDN Qin et al., 2022 used 1D convolutional layers and an attention mechanism to extract
features and uses them as inputs to an MLP network that estimates the RUL. Similarly, DS-
SANN D. Xu et al., 2022 uses attention mechanisms and an MLP network to estimate the
RUL. The CNN method X. Li et al., 2018 uses the short-time Fourier transform on the sensors
to construct a spectrogram image and applies the CNN to estimate the RUL based on the
image inputs. In these cases, time windows were used on the input sensors, but instead of a
sequence-to-sequence model, the RUL of the final time point was estimated given a sequence
of sensor inputs. The DVAE manages to outperform these methods in terms of the RMSE and
captures the uncertainty of the RUL. Part of this may be due to the noncausal assumption.
Note that the method with comparable performance is the DL-NSGPR Z. Xu et al., 2021,
which uses NSGPR on the MLP network outputs to account for uncertainty. An MLP network
would not achieve relatively accurate RUL estimates on its own, e.g. Pasa et al., 2019 report
the RUL estimation results of MLP applied in a sequence-to-sequence fashion and achieve an
RMSE of 15.1 on FD001, 18.0 on FD002, 14.3 on FD003 and 16.6 on FD004 (with operating
condition normalisation hence, their FD002 and FD004 results may be better than some of the
methods listed in Table 5.1). However, applying NSGPR on top of that seems to improve the
results. Note that one could look at Gaussian Process as a Stochastic Differential Equation,

74

and Gaussian Process Regression applies a Kalman filter and smoother based on observed data
Sarkka et al., 2013. Note Bayesian smoothing is a noncausal operation and relies on future
values to estimate current ones and also estimates its parameters using the likelihood of the
data like the DVAE does through minimising Eqn. 5.1 (although it is done indirectly through
the ELBO in the DVAE case). There appear to be some similarities between these methods
as they both use noncausal models to estimate the RUL and optimise their parameters using
a marginal likelihood. Hence, this may be why they give similar RMSE results, as they have a
similar noncausal structure and are optimised on the same underlying loss function.

However, the model’s final RUL estimate scores in each dataset does not produce state-of-the-
art score results in the supervised case. Note that one of the methods used for comparison,
(Listou Ellefsen et al., 2019), uses semi-supervised learning as a part of their model. Hence,
when looking at the semi-supervised scores, one can see that they become more comparable.
However, for the rest of the score results it can be seen that the DVAE does not perform as
well as the others. While the supervised DVAE may lack accuracy for the final mean RUL
estimates, it does account for uncertainty in its estimates and can therefore give confidence
bounds. The score is a measure that rewards more conservative models; the DVAE however
gives uncertainty for its estimates which the better scoring models do not. Hence, this can help
with the interpretability of the RUL estimates and also allow for more conservative estimates if
need be. Figure 5.7 shows that many of the actual testing RUL values were captured within the
confidence bounds. Therefore, while the model may lack the same capabilities as other models
in terms of score it does gain a confidence interval that can effectively capture the actual RUL
value of the machine.

In (Wei et al., 2021), a conditional DVAE is also used to estimate the RUL, but the model
does not use a noncausal model to represent the sensor sequences, instead it assumes a causal
model. They also assume the decoder or measurement model, pθr , is only dependent on the
current latent variable, pθr(rt|zt), whereas we assumed the model to be pθr(rt|zt, x1:T). It
should be noted that if we also assume the decoder to be pθr(rt|zt), while keeping the rest of
the models the same, the RMSE values suffer slightly but the latent variables follow a more
obvious degradation trend. Hence, since (Wei et al., 2021) was focused on creating a health
indicator, this was a good assumption to make. However, this paper showcases that by starting
with the underlying theory and being aware of the assumptions, one can know the trade-offs
made during the model’s construction.

With regards to the semi-supervised experiment, the results showcase how, even with little
labelled data available, the trained DVAE was still able to obtain accurate probabilistic RUL
estimates. Although note, the experiment done here was more a proof of concept than a more
detailed investigation as was done with the supervised methods throughout the thesis. It can
also be noted that even at around 5% available labels, the semi-supervised model’s performance
has already started to plateau. Although, further work could be done to reduce the variability
of results as some of the results get slightly worse after more labels are added and then get
better again after adding more labels e.g. see FD001 in Table 5.3 as the results oscillate from
better to worse as more labels are added. Perhaps a less random test could be done where
instead of randomly choosing the targets to drop each time, a set list of targets is consistently
dropped for each experiment or a few units are chosen and all target data from those units
are dropped. It should be noted that the results in the tables are averages over ten different
training runs to attempt to avoid the impacts of randomness. However, the results indicate
that more may need to be done to effectively eliminate randomness from this experiment. As

75

previously mentioned, comparison of semi-supervised models throughout the literature can be
difficult due to the different evaluation setups they can have (Krokotsch et al., 2022). Hence,
the supervised DVAE model can serve as a baseline here, where it is easy to see that the
semi-supervised models benefited from the unsupervised stage in the 100% case. It can also be
seen that the RMSE performances of the semi-supervised model at the other label percentage
cases were similar to the supervised models except at 1% where they had a noticeable drop in
performance (if not in RMSE then in score).

5.5 Conclusions

This chapter has shown the effectiveness of using a conditional sequential generative model,
specifically the DVAE, for estimating the RUL sequences given the sensor signals. Conditional
sequential generative models train neural networks to sample from some underlying distribution
p(r1:T |x1:T). Hence, by constructing a DVAE and choosing the RUL as our input variables,
r1:T , and the sensor signals as the conditional variable x1:T , we were able to train the DVAE to
sample from the underlying distribution of RUL estimate sequences given the sensor signals.
Most deep learning machinery prognostics methods aim to estimate the RUL given the sensor
signals; however, by using a generative model the neural networks were trained to learn how to
sample from a probability distribution instead of giving point estimates. The effectiveness of
using this generative model approach is shown in the results, where the DVAE was capable of
outperforming most of the state-of-the-art methods except on the FD001 and FD004 datasets,
where DL-NSGPR did better.

The other benefit of using DVAEs was to learn the latent sequences that could act as trajectories
that indicate the degradation of the machine. This gives it an advantage over many of the state-
of-the-art methods presented as they do not also produce a HI trajectory. Although the HIs
produced by the DVAE were not the main focus here and could potentially be improved beyond
simply giving a visual intuition of the machinery degradation. Further work could be done to
improve these latent dynamics, such as making the trajectories smoother or perhaps having
linear dynamics in the latent space. Improving these latent dynamics may be a potential way
to improve the performance of the DVAE model or maybe a way of opening up possibilities of
understanding the mechanisms behind the machinery’s degradation. Another research avenue
to explore is improving the semi-supervised method presented here. Note both the inference
model from the unsupervised model and the transition model from the supervised model could
potentially have the same structure i.e. q(zt|z1:t−1, x1:T) and p(zt|z1:t−1, x1:T). Hence, if these are
both modelled by the same network, the parameters of the network can be optimised during
the unsupervised phase which could pre-train the network so that it is closer to an optimal
model when targets are available and supervised learning is done. This sort of pretraining of
model parameters is a known method in the semi-supervised literature known as unsupervised
preprocessing (van Engelen & Hoos, 2020). Because both the unsupervised and supervised
models are DVAEs and have a similar structure it allows for this type of pretraining to be
implemented relatively easily.

Since the DVAE can capture the uncertainty behind our RUL estimates, the next chapters
can look at improving these latent dynamics. This could be done by having latent dynamics
that aren’t expressed only by a latent 1-step transition function as was done here by using an

76

MLP network pθz(zt|zt−1, x1:T) to transition from zt−1 to zt by some fixed time interval. Hence,
the next chapter will use Neural Differential Equations to describe continuous latent dynamics.
Using differential equations may also aid in understanding the dynamics through the lens of
differential equations that are relatively well understood and are often used to describe dynamic
systems.

77

Chapter 6

Dynamical Variational Autoencoders
with Neural Stochastic Differential
Equations

In this section, a conditional DVAE is used to estimate the RUL, conditioned on the sensor
input data much like in Chapter 5. However, in this chapter, a different implementation of the
DVAE is explored. This chapter uses NSDEs as the transition model to express continuous
dynamics instead of the discrete ones used in the standard DVAE for RUL estimation. Hence,
here the transition works by using a neural network to represent, dzt

dt
, and using the differential

equation to propagate the latent states forward in time. Many statistical methods in machinery
prognostics use SDEs to model the degradation of the machine (Si et al., 2011). Using NSDEs
to model the latent dynamics, which in a DVAEs case represent the degradation of the ma-
chine, could complement the statistical approach to machinery prognostics. The fundamentals
however remain the same; a DVAE is trained to sample from some underlying distribution,
which in the machinery prognostics case, is p(r1:T |x1:T). This chapter explores how changing
the transition models dynamics to these NSDE dynamics can alter the DVAEs latent dynamics
and performance.

6.1 Methodology

The model used for estimating the RUL is based on the DVAE. Much like the DVAE, noncausal
transition, measurement and inference models are required. Hence, this will be a sequence-to-
sequence model that uses a sliding time window as the DVAE did in Chapter 5. The difference
here is that the transition model will be an NSDE and so it needs an initial condition to generate
a sequence of latent variables using the Neural Differential Equation. This will be done by
encoding the sequences in a noncausal manner as with the DVAE’s inference model but the
output will be a single initial latent variable z0, i.e. qφ(z0|x1:T , r1:T). Additionally instead of a
transition model, pθz(zt|zt−1, x1:T), we will use a initial condition model pθz0 (z0|x1:T) along with
a transition model described by the NSDE, p(zt|zt−1). Hence, the noncausal conditions are
captured in the initial latent variables. Figure 6.1 shows the generative and inference models
for the NSDE-DVAE. The diagrams show the variable dependencies and how to generate the

78

variables needed to estimate the RUL.

(a) Generative model

(b) Inference model

Figure 6.1. The general diagram of the NSDE-DVAE for RUL estimation, where 6.1a is the generative
model and 6.1b is the inference model. Note only times t− 1, t and t + 1 are shown for convenience

From Figure 6.1 the following forms can be inferred for the generative and inference models,

Generative: pθ(r1:T , z1:T |x1:T) =
T∏
t=2

pθr(rt|zt, x1:T)pθz(zt|zt−1)pθz1 (z1|x1:T) (6.1)

Inference: qφ(z1:T |r1:T , x1:T) =
T∏
t=2

pθz(zt|zt−1)qφ(z1|r1:T , x1:T). (6.2)

The generative model comprises the decoder and the prior (as is the case with the general
DVAE model described in the background section). Notice that the noncausal sequences are
accounted for through the model that defines the initial latent variable, z1. Both the inference
and transition model use the same transition dynamics pθz(zt|zt−1), but use different networks
to define the initial condition. Hence, the ELBO formula for this DVAE would be,

L(θr, θz1 , φ, x1:T , r1:T) = −
T∑
t=1

Eqφ(z1:t|r1:T ,x1:T) [log pθr(rt|zt, x1:T)]

+ β
T∑
t=1

Eqφ(z1:t−1|r1:T ,x1:T)
[
DKL

(
qφ(z1|r1:T , x1:T)||pθz1 (z1|x1:T)

)]
. (6.3)

Note here the hyperparameter β is used to help regularise the loss function as is done in β-VAEs
(Higgins et al., 2017). Setting this value for some of the datasets helped improve the overall
performance.

79

As before we aim to define a conditional DVAE that is trained to sample from the underlying
conditional distribution p(r1:T |x1:T).1.

6.2 Experiments

The supervised experiment will be performed where the network is given all the training sensors
and targets and aims to estimate the RUL of the testing datasets given the sensors. Hence, like
the DVAE chapter the supervised experiment is performed but no semi-supervised experiments
are done here.

6.2.1 Data

The data used to test the DVAE method which will be described in this section is the CMAPSS
dataset previously mentioned in section 4.1.

6.2.2 Preparing the Data

The data is also normalised using operating condition-based normalisation as shown in Eqn.
4.2. Like the DVAE from the previous chapter, the sensor signals from each unit are split into
time windows of size T through the use of a sliding time window. Given a batch size N ; each
batch of training data, therefore, contains N signals of size T . Like the previous methods, the
maximum RUL value is 130. The model is tested like the DVAE where a sliding time window
goes over the testing unit sensor values and the corresponding RUL sequences are generated.
As was shown in Figure 5.3 the overlapping RUL estimates for each time window are averaged
for each of the RUL estimates with the same corresponding time point.

6.2.3 Network Design

The specific implementation details of the NSDE-DVAE for RUL estimation used in this paper
are addressed in this section. Looking at the dependencies for the generative and inference
models in Eqns 6.1 and 6.2, it can be seen the following problems must be addressed.

• The variable x1:T needs to be expressed as a variable for the decoder, prior and inference
models.

• The transition pθz(zt|zt−1) needs to be modelled.

• r1:T needs to be expressed for the inference model.

1The code implementing the NSDE-DVAE can be found at https://github.com/StarMarco/NSDE DVAE or
contact the author for more information

80

https://github.com/StarMarco/NSDE_DVAE

Figure 6.2 showcases a more detailed version of the NSDE-DVAE. From the figure, the following
can be seen in regard to the implementation details,

• Expressing x1:T is achieved the same way as in the DVAE. A Bidirectional GRU is used
to capture the entire sequence within the time window.

• As mentioned previously, the NSDE is used to model the transition pθz(zt|zt−1).

• For the inference model, r1:T is needed. This is done by using a single forward RNN and
using the last hidden variable of that RNN (as it would represent r1:T). Since r1:T is
only needed as an input to generate z1 in the inference model, there was no need to use
a bidirectional GRU to find a representation of r1:T at each time point, t. Hence, this
(along with x1:T) is then used to infer the initial value of the NSDE z1.

(a) Generative model

(b) Inference model

Figure 6.2. The detailed diagram NSDE-DVAE for RUL estimation where 6.2a is the generative model
and 6.2b is the inference model (note during training, the inference models estimate for z0 is used in
the SDE solver to generate the sequence z1:T)

The NSDE drift function uses a state-space model formulation to create a 2nd order drift
function i.e.

(ż1)t =(z2)t (6.4)

(ż2)t =fθz ((z1)t, (z2)t) (6.5)

where fθz is a standard feed-forward neural network. This allows for the variables z1 and z2 to
be related to each other. For example, if z1 indicated the machinery’s degradation z2 would be
the velocity at which it degrades, which would be useful information when trying to estimate
the RUL. The diffusion is modelled as being proportional to the current state and optimises
the constant variable (θd) during training. This can be expressed as,

g ((z1)t, (z2)t) = θdzt (6.6)

where, zt = [(z1)t, (z2)t] and θd is the trainable parameter.

Another important note about the NSDE used for the dynamics is that an augmented variable
is used to make the dynamics more expressive (Dupont et al., 2019). Augmented Neural

81

Differential equations use an extra augmented dimension concatenated to the latent variables.
This essentially gives the latent dynamics another dimension they could use if needed, allowing
the latent variables to have trajectories they wouldn’t normally be able to have if restricted to
their dimensions. In this work, the augmented dimension at is kept constant with respect to
time by setting dat/dt = 0 in the drift function. Figure 6.3 illustrates the idea behind using
an augmented neural differential equation with a constant augmented variable. Normally,
the trajectory of a differential equation depends on the initial condition, and, the augmented
dimension allows for trajectories to start with the same initial latent condition ((z1)0, (z2)0) but
have different trajectories as time goes on due to different initial conditions when considering
the entire space (z1, z2, a). The intuition behind the idea was that if the latent trajectories
represent degradation, then when the machine is healthy the model should allow the latent
variables to be similar or the same (to represent a healthy machine). However, as time goes on,
different machines may degrade differently or start degrading at different times. The augmented
dimension helps capture this difference between the machines and the different possible future
trajectories the degradation may take.

Figure 6.3. An illustration of how augmented dimensions allow for different latent variable trajectories
despite having the same initial condition in the latent space (z1, z2). The solid line trajectories are
projections of the dotted line trajectories in the 3D space (z1, z2, a) to the 2D latent space (z1, z2). Each
dotted line trajectory exists on a constant line a = constant, which is meant to represent different unit
trajectories.

Hyperparameters such as the time window size and the value of β in the ELBO loss shown
in Eqn 6.3 were found using Bayesian optimisation. Bayesian optimisation was implemented
using the PyTorch package Ax, which utilises the BoTorch library (Balandat et al., 2019) to
implement Bayesian optimisation for hyperparameter tuning. The resulting hyperparameters
can be found in Appendix C. Specific architecture details (such as sizes of the network hidden
layers) are given in Appendix D.

82

6.3 Results

In this section, the performance of the NSDE-DVAE is evaluated on each of the four CMAPSS
datasets and compared to other existing methods. The NSDE-DVAE is compared to various
other data-driven methods, as shown in Table 6.1, which reports the RMSE for each dataset in
CMAPSS. The RMSE is calculated using equation 5.16 from section 5.3.1. Another common
metric used for the CMAPSS dataset is the score function (Saxena et al., 2008). The scores of
the NSDE-DVAE and other works are shown in Table 6.2.

The NSDE-DVAE was compared with the same models the DVAE was compared with in Table
5.1 and the same applies to the score results. As a reminder, not all models reported score
values and are therefore missing in Table 6.2

Table 6.1: RMSE performance on each of the testing CMAPSS datasets with maximum RUL value of
130.

Method FD001 FD002 FD003 FD004
NSDE-DVAE (This work) 8.75 10.20 8.30 8.92
DL-NSGPR (Z. Xu et al., 2021) 7.4 11.80 7.5 8.3
CNN (X. Li et al., 2018) 12.61 22.36 12.64 23.31
RBM-LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66
TDDN (Qin et al., 2022) 9.47 10.93 9.17 11.16
DS-SANN (D. Xu et al., 2022) 11.64 13.34 12.28 14.98

Table 6.2: comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
NSDE-DVAE (This work) 468 1165 420 1025
CNN (X. Li et al., 2018) 273 10412 284 12466
LSTM (Listou Ellefsen et al., 2019) 231 3366 251 2840
TDDN (Qin et al., 2022) 214 562 217 998
DS-SANN (D. Xu et al., 2022) 210 867 286 1150

As with chapter 5, plots of the RUL over the testing unit lifetime are given. Again for com-
parison the results for units 12, 35, 41 and 100 are plotted in Figure 6.4. As with the results
from the DVAE shown in Figure 5.4, it can be seen that the RUL estimates for units 12 and
41 deviate from the true RUL. The same reasoning for this phenomenon can be used here;
however, note that the DVAE did a better job capturing the uncertainty when the estimates
deviate from the true RUL trajectory, which will be discussed further in section 6.4.

Similarly, the latent state space plots for each of the testing units are plotted for each of the
datasets in CMAPSS as shown in Figure 6.5. These are plotted as scatter plots and the colour
of the points indicates the time point as indicated on the colour bar.

Like the DVAE chapter, the plot of the final RUL estimates versus the True final RULs for each
testing unit are plotted in Figure 6.6. It can be seen the closer the testing unit is to failure,
the less scattered the points are, indicating that the model becomes more accurate the closer
the machine gets to failure. This is to be expected and is a good sanity check for the model’s
performance.

83

(a) RUL estimates vs lifetime of unit 12 (b) RUL estimates vs lifetime of unit 35

(c) RUL estimates vs lifetime of unit 41 (d) RUL estimates vs lifetime of unit 100

Figure 6.4. The RUL estimates over the known lifetime of the testing units for a selected subset of
units in the FD001 test dataset.

(a) Latent state space trajectories for FD001 (b) Latent state space trajectories for FD002

(c) Latent state space trajectories for FD003 (d) Latent state space trajectories for FD004

Figure 6.5. A plot of the mean latent state space trajectories for the test units in each dataset. The
colour bar represents the time i.e. the darker colours are earlier times and the lighter points represent
later time points. The longest trajectory is plotted as a blue line to show how a unit may develop from
a healthy to near-failure condition.

The plot of the final RUL estimates, along with an error bar showing the 95% confidence
interval (assuming the output is a Gaussian), is shown here for each of the units in FD001
dataset (Figure 6.7.

84

0 20 40 60 80 100 120
RUL Estimates (cycles)

0

20

40

60

80

100

120

Tr
ue

 R
U

L
(c

yc
le

s)
estimates
True

Figure 6.6. A plot of the RUL vs the True RUL for each of the testing units final time point. A line
with gradient 1 is also plotted to represent the points where RUL = Actual RUL. Hence, the more
accurate the points are, the closer they match the line.

0 20 40 60 80 100
Unit Number

0

20

40

60

80

100

120

140

R
U

L

true
estimates

Figure 6.7. The final RUL mean estimates and True RUL values plotted as a scatter plot vs the unit
index for each of the units in the FD001 test dataset. The 95% confidence intervals are also shown
for the final RUL estimate.

It can be seen from Tables 6.1 and 6.2 that the NSDE-DVAE can be comparable to the state-of-
the-art methods and performs exceptionally well on the CMAPSS dataset. Given the theory and
the effectiveness of DVAEs on sequential data, it is not too surprising that it performs well when
analysing a sequential stream of sensor data. However, another recent method, Deep Learning
Non-Stationary Gaussian Process Regression (DL-NSGPR) (Z. Xu et al., 2021) achieves state-
of-the-art performance on most of the datasets (except FD002). It has the advantage of using

85

a relatively simple feed-forward deep neural network, it then fits a non-stationary Gaussian
Process on top of the network outputs (estimated RUL). A benefit of the DVAE methodology
is the theory behind how the model is structured, which makes it relatively simple to expand or
change the model while retaining the structure described in Eqns 3.7 and 3.8, i.e. it functions
as a framework instead of a single specific architecture giving it flexibility in its potential uses.
For example, the DVAEs found in the literature generally use RNNs for the dynamics model.
However, other models (such as NSDEs) can be used while still retaining the general structure
of the DVAE (or changing the structure slightly using simplifying assumptions).

6.4 Discussion

The NSDE-DVAE performs well on the CMAPSS dataset, as might be expected due to its
similarity to the DVAE presented in Chapter 5. However, DVAE outperforms NSDE-DVAE
on all the datasets. Since the biggest difference between these models is the latent transition
model used, this would probably be the reason for the change in results. The difference between
the NSDE transition model and the MLP model used in DVAE is that the NSDE largely relies
on its initial condition z0 and in this implementation, its form was restricted. Here we tried to
create a more interpretable model by constructing a 2nd order drift function shown in Eqns. 6.4
and 6.5. However, using these different latent dynamics caused a drop in performance compared
to the DVAE used in Chapter 5. Table 6.3 shows the RMSE results for the DVAE and NSDE-
DVAE for ease of comparison. Note that both perform similarly except for the FD003 and

Table 6.3: Comparing RMSE performance between DVAE and NSDE-DVAE on each of the testing
CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE 8.63 10.29 7.28 9.61
NSDE-DVAE 8.75 10.20 8.30 8.92

FD004 datasets. This drop in performance in the FD003 dataset meant the NSDE-DVAE
model no longer had state-of-the-art results for that dataset. However, it still outperformed
most of the models regarding RMSE performance and remained state-of-the-art for FD002 (not
counting the previous DVAE method from Chapter 5). The DVAE also seems to have captured
uncertainties better than NSDE-DVAE. From Figure 6.7, it can be seen that multiple units
are outside of the 95% confidence interval. Because of the model’s accuracy, plenty of the true
RUL values are within the bounds; however, on the more inaccurate estimates, NSDE-DVAE
does not seem to capture the uncertainties well. Consider Figure 6.7 where most units have the
final true RUL captured by the model’s confidence bounds. A specific example of this can be
seen in Figures 5.4a and 6.4a, where both mean RUL estimate trajectories for unit 12 diverge
from the true RUL as the model thinks the machine has started to degrade (RUL estimates
deviate from the healthy RUL value that is set to 130). However, the DVAEs uncertainty
manages to capture this increase in uncertainty and the bounds show that the machine could
still be in the healthy operating region while NSDE-DVAEs uncertainty bounds do not. Since
the only major difference between the two DVAEs are the latent dynamic models, this suggests
that the type of model used can significantly affect how the uncertainties are quantified. The
scores between DVAE and NSDE-DVAE are stated in Table 6.4 for ease of comparison, Note
that NSDE-DVAE manages to obtain better scores than DVAE. Hence, it was able to obtain

86

Table 6.4: Comparing scores between DVAE and NSDE-DVAE on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE 376 1791 533 1403
NSDE-DVAE 468 1165 420 1025

more conservative final RUL estimates for the majority of the datasets. However, the DVAE
had better uncertainty quantification which may be more beneficial for a practitioner when
implementing a machinery prognostics method. Hence, the DVAE may be the better model
overall in terms of performance. A useful aspect of the NSDE-DVAE is that it has continuous
dynamics and can account for different time steps. Hence, one could apply the NSDE-DVAE
to time series data whose data is not evenly spaced. Although the RNNs used as encoders
would also need to be replaced with an architecture that could account for different time steps
between the data points (e.g. attention mechanisms could be used in this way). This means
for specific scenarios where the data is not evenly spaced in time, it may be worth using the
NSDE-DVAE instead of the standard DVAE presented in Chapter 5.

A downside of the model is that it overfits the time window it was trained on. If the time window
increased or decreased when testing the model, i.e. T = 39 or T = 41, the performance was
slightly worse (depending on how much the window changed). Hence, the sequence-to-sequence
model was the best choice when considering the time windows impact on the performance and
the noncausal requirements of the DVAE models.

• It is slower than an RNN method. However, this could be due to the implementation of
neural differential equations that are not as optimised as some of the larger deep learning
packages available.

• Sensitive to hyperparameter selection. It was found when testing different hyperparame-
ters that the model’s performance could change drastically with the change of hyperpa-
rameters.

• The noncausal model requires a whole time window of input data before RUL can be
estimated. The model overfits this time window. The NSDE-DVAE also has to be
operated in a sequence-to-sequence fashion which may not be suitable for traditional
online settings where the RUL needs to be updated for each new data point as it is
sampled in real-time.

However, these initial results in terms of performance seem promising, and future work will
aim to fix or reduce the impact of these problems. Again it is worth mentioning that the
(DL-NSGPR) (Z. Xu et al., 2021), which also achieved similar performance, has the benefit of
employing only a simple feedforward network to output the RUL and fits a Gaussian Process
(GP) to the outputs of the trained network. This allowed for uncertainty quantification of the
RUL through the GP, however, note that DVAEs can represent arbitrary distributions through
Monte Carlo sampling. By repeatedly sampling latent sequences and ultimately sampling
multiple RUL trajectories using the generative model, one can represent the RUL distribution
through those samples. However, as previously mentioned this particular NSDE-DVAE model
was not able to capture uncertainties like the standard DVAE was able to. Perhaps by altering
the form of the latent dynamics, this could be improved.

87

Another interesting component of the DVAE is the latent dynamics it uses to generate the
data (RUL in this case). Because of the connection between the RUL and the latent dynamics,
in a sense, the latent dynamics capture the degradation of the machine as the RUL, and
latent variables are connected through the generative model p(r1:T , z1:T |x1:T). From the latent
dynamics seen in 6.5, it can be seen the NSDE latent dynamics were capable of learning
dynamics that could start at a “healthy point” and head towards a failure point as they degrade.
However, the dynamics look complex as an auxiliary latent dimension was used hence, the
latent dynamics are 3-dimensional; however, the third dimension was kept constant, and the
plots are projected into 2-dimensional space (as illustrated by 6.3). It was hypothesised that
this would allow the NSDE to have a common starting point for the latent trajectories and
allow for more flexible dynamics where trajectories could cross in the 2D space. This seems
to have worked, as is best seen in the FD002 plot, which has a common starting cluster but
different trajectories diverge over time. However, the form of the latent dynamics is important
as well. The initial reason why neural differential equations were used here was to attempt
to learn an underlying differential equation that could describe the latent dynamics of the
system’s degradation. If a valid differential equation describing the degradation of the machine
could be found, other potential avenues for research could be explored such as analysing these
dynamics to learn more about the machinery’s degradation. For example, the stability of the
dynamic system could be analysed, or perhaps a control law could be derived that reduces
the chance of the machine quickly degrading. Many physics-based or statistical methods in
machinery prognostics either use an ODE or SDE to model the degradation of a machine.
Hence, the NSDE-DVAE could be used to connect these methodologies with deep learning
methods by using those differential equations in the NSDE-DVAE latent dynamic models and
testing its performance. Another possible benefit of using NSDEs or NODEs relies on the
fact that multiple works mention how to regularise the dynamics and cite the large literature
available for understanding and analysing the properties of ODEs and SDEs. For example,
in this chapter, augmented dimensions were used based on the works of, Dupont et al., 2019,
who use the augmented dimensions to get around the fact ODE trajectories can’t cross. Other
works from, Finlay et al., 2020, use properties of the ODE to stabilise the dynamics and they do
this by adding a simple regularising term in the loss function. Hence, deep learning techniques
often suffer from their black-box nature and can be difficult to work with as a result; NSDE-
DVAEs attempt to clarify the inner workings of the network while also providing a method
that quantifies the uncertainty of the RUL estimates.

6.5 Conclusions

This chapter explored the DVAE methodology further by exploring a different model describing
its latent dynamics. NSDEs allowed the latent dynamics to be described using a continuous
SDE formulation instead of the discrete MLP formulation used for the DVAE in the previous
chapter. This has the benefit of using a well-known model in the dynamics setting, namely
differential equations. The chapter did show that simply applying the NSDE as a latent model
does not improve the performance of the DVAE. While overall performance was not poor and
still did well against many state-of-the-art models; the extra complication required to model
the NSDE latent dynamics did not significantly improve the results when compared with the
standard DVAE. However, there are still some potential benefits of this model.

88

The NSDE-DVAE (or one could even construct a NODE-DVAE) has latent dynamics described
by differential equations. Differential equations are well-studied mathematical objects, and fu-
ture avenues for improving this model’s latent dynamics may be clearer than the previous
DVAE. As mentioned in the previous section, various works use the properties of differential
equations to find ways to stabilise or improve the trajectories from these neural differential
equations. While in this particular case, the latent dynamics don’t seem to be an improve-
ment over the DVAE in terms of how they impact performance, the NSDE formulation of the
dynamics is flexible and can be altered and experimented with further as a result.

An interesting extension to this work would be to look at existing SDEs or ODEs that describe
physics or statistics-based degradation models and apply those as the latent dynamic model
in the DVAE like NSDEs were here. Some of the unknown parameters of the SDEs or ODEs
could be learnt through the deep learning framework, but this would give principled latent
dynamics that could more closely match a physical HI. If the model is an ODE that is not
normally probabilistic, the DVAE formulation would turn it into one and allow for various MC
simulations to be done and predict various possible outcomes for the machine’s degradation.
Hence, it may be useful to use the DVAE framework along with physics-informed networks such
as the ones found in (Nascimento & Viana, 2019; Yucesan & Viana, 2019; Dourado & Viana,
2019).

89

Chapter 7

Kalman Dynamical Variational
Autoencoders

When training deep generative models such as the VAE, sampling from the marginal distribu-
tion (see Eqn. 3.2) is often the objective. The generative models presented thus far use the
ELBO as an objective function to indirectly maximise the likelihood that sampled input values
from the generative model come from this marginal distribution. When adding conditional
variables the marginal likelihood becomes a conditional distribution as shown in the DVAE
chapter (from Eqn. 5.1 onwards derives a conditional DVAE). Hence, when constructing the
DVAE model, the RULs were chosen to be the generative model inputs, or observed variables,
and the DVAE was conditioned on the sensor signals. By choosing the RULs as inputs and
sensors as conditional variables it resulted in the model optimising the DVAE to sample from
the marginal likelihood, p(r1:T |x1:T), (the likelihood of sampling the correct RULs given a se-
quence of sensor values). Hence, the trained model is a probabilistic model that estimates
the RUL given the sensors and this could be trained using the theory from VAEs/DVAEs as
was done in Chapters 5 and 6. The models so far have used neural networks to describe the
transition dynamics for the latent variables, pθz , as well as the likelihood, pθr and an inference
model qφ was used to help optimise these models during network training. However, we don’t
know if the latent space requires nonlinear functions to describe the transition between latent
states or the relationship between latent states z1:T and the RUL x1:T , i.e. it is not known if
pθz and pθr need to be nonlinear. We do know that the relationship between sensors and the
RUL is unknown and probably nonlinear, but the rest could potentially be linear, this linearity
between the latent states and RUL values are tested in this chapter.

One way of expressing transition and measurement models is by using a Linear Gaussian State
Space Model (LGSSM),

zt = Ftzt−1 + ut + wt (7.1)

xt = Htzt + dt + vt (7.2)

where, ut and dt are control variables, wt and vt are noise samples generated from N (0, Qt)
and N (0, Rt) respectively and the other variables follow the Kalman filter notation from section
3.3.1. If we use deep learning methods to optimise the parameters of this generative model we
would not need to use an inference model and the ELBO loss function. Recall from section
3.3.1, specifically Eqns. 3.31 and 3.32, to find the marginal likelihood we can use the Kalman

90

filter algorithm. Note, in that section, the control variables were not considered and hence
the marginal likelihood is stated as p(x1:T) but here we have control variables so it would be
p(x1:T |u1:T) which becomes p(r1:T |u1:T) in the prognostics case.

Hence, this chapter explores the simplification of the DVAE model in the prognostics case by
modelling the generative model as a LGSSM and using the Kalman filter to train the model.
The latent variables do not necessarily need to have nonlinear relationships between the RUL
and themselves and so this chapter tests the validity of that assumption. The Kalman filter
also allows for a direct calculation of the marginal likelihood instead of indirectly optimising it
using the ELBO loss function as is normally done in VAE and DVAE applications. This also
means an inference model, qφ is not needed to optimise the model during training, as Kalman
filtering only requires a transition and measurement model in the form of an LGSSM.

7.1 Methodology

From the background section, we know that a generative model is a model whose goal is to
sample from the data distribution p(X). In the sequential case, one can simply substitute
X = x1:T and the distribution becomes p(x1:T). Generative models generally end up using the
negative log-likelihood as a criterion for optimisation, −log p(x1:T). The question remains, how
does one create a RUL estimation model using these types of generative models? A relatively
simple way is to use the Kalman filter and state space model framework. As mentioned in
section 3.3.1, the Kalman filter also uses the same marginal negative log-likelihood loss function
to optimise any unknown parameters in the state space model, specifically, this is shown in Eqns
3.31 and 3.32. Hence, the Kalman filter could be used to optimise the state space model used
for the latent dynamics (z1:T) and the inputs (x1:T) instead of using the ELBO to indirectly
optimise the neural networks. Another benefit of viewing the DVAE like this is that we view it
from a state space modelling and filtering framework which are both well-known concepts with
a rich literature.

To create a DVAE that estimates the RUL it is useful to start from the loss function we desire
and then work up to a model. Hence, the loss function should maximise the probability of
estimating the RUL sequence (r1:T) given the sensor values x1:T ,

− log p(r1:T |x1:T) = −log

∫
pθ(r1:T , z1:T |x1:T)dz1:T , (7.3)

where p(r1:T , z1:T |x1:T) would be a conditional generative model. For this conditional generative
model, the RUL sequence (r1:T) are the input variables that are related to the latent sequence
z1:T , however unlike the DVAE in the background section, this one is conditioned on the sensor
sequence x1:T . The generative model can be broken down into a prior and decoder network or
using the state space model terminology, the state dynamics and the observation likelihood,

pθ(r1:T , z1:T |x1:T) =
T∏
t=1

pθr(rt|r1:t−1, z1:t,x1:T)pθz(zt|z1:t−1, r1:t−1,x1:T). (7.4)

Where the decoder/observation likelihood and the prior/state dynamics are,

• Prior/State Dynamics: pθz(zt|z1:t−1, r1:t−1,x1:T).

91

• Decoder/Observation likelihood: pθr(rt|r1:t−1, z1:t,x1:T).

Notice that the conditional variable, x1:T , cannot be broken down further and so the model is
a noncausal model as future values impact the current one. In the Kalman filter framework,
these distributions are modelled as Gaussian distributions and the dynamics and measurement
transitions are linear. The framework also makes some assumptions such as the Markov as-
sumption for the state dynamics and the observations are independent of each other (Särkkä,
2013). Hence, the models can be updated by applying these assumptions,

• Prior/State Dynamics: pθz(zt|zt−1,ut).

• Decoder/Observation likelihood: pθr(rt|zt, dt).

Where here we have included control variables ut and dt in the state space models and so the
transition and measurement models are dependent on them as well. However the DVAEs used
so far do not have “control” variables, however, one can see by the above formulation of pθz
and pθr that they can also act as conditional variables, hence, one could make both ut and dt
represent x1:T . Hence, it is proposed that a neural network encodes x1:T to represent the control
variable ut and dt. This would result in the same DVAE structure used in Chapter 5 but with
linear Gaussian assumptions for the transition and measurement models. This linearity is valid
as the RUL trajectory is a linear degrading trajectory and the latent space is arbitrarily created
by the generative model to sample from that space and relate it to the input space. Here it
is hypothesised that the only potentially nonlinear relationship in the machinery prognostics
problem is the relationship between the sensors and the RUL or the sensors and the degradation
HI (such as zt). Hence, this is dealt with by using a neural network to bring x1:T into the linear
state space in the form of control variables ut and dt that can then be used in the LGSSM
model.

For this paper, the formulation of the state space model used for Kalman filtering will be in
the following form (Särkkä & Garcia-Fernandez, 2021),

zt = Ftzt−1 + ut + wt, (7.5a)

rt = Htzt + dt + vt. (7.5b)

This differs from Eqn. 3.22 as it adds another known control variable dt in the observation
model (Eqn. 7.5b) and replaces Btut with ut. Note that replacing Btut means that the neural
network that outputs ut will already account for any transform a matrix such as Bt would apply
to ut so there is no need to add Bt for this application. To be clear one can use the formulation,
Btut, if the application requires Bt to be known. To encode the entire sensor signal x1:T into
ut and dt a bidirectional RNN can be used (a diagram is shown in Figure 7.1); specifically a
bidirectional Gated Recurrent Unit (GRU) network is used in the experiments. The matrices
describing the dynamics such as Ft, Ht, Qt and Rt, can be optimised during the neural network
training.

A benefit of this formulation is the indirect optimisation of the model using the ELBO as
shown in Eqn. 3.9 is not required. Instead, the model can be optimised by directly finding
the observation’s negative log-likelihood, −log p(r1:T |x1:T), as discussed in Section 3.3.1. When
applying the model after training, one no longer has known input RUL values (rt) available and

92

Figure 7.1. Block diagram of the bidirectional RNN used for calculating the control variables u1:T given
a sensor sequence x1:T

so the Kalman filter cannot be applied. If the RUL values are not known, the learnt generative
model is used to propagate the state values (z) through time and find likely observations which
have been defined as the RUL (r) in this generative model. In this case, the generative model
has a convenient state-space form allowing one to forecast the state and RUL values using
Eqn. 3.23. Since the RUL values are unknown the measurement update step, shown in Eqn.
3.24, is simply ignored and Eqn. 3.23 is applied repeatedly to forecast the variables throughout
time. Due to the combination of the DVAE generative modelling framework and the Kalman
filter used for training, this model will be referred to as the Kalman Dynamical Variational
Autoencoder (K-DVAE) throughout the text1.

7.2 Experiments

7.2.1 Data

The data used to test the DVAE method which will be described in this section is the CMAPSS
dataset previously mentioned in section 4.1.

7.2.2 Preparing the Data

Operating-condition-based normalisation is used on the sensor signals and the maximum RUL
was set to 130 as was done in the previous experiments. As with the DVAE and NSDE-DVAE,
the data is prepared as it was in section 6.2.2 by splitting the training trajectories into time
windows so it is easy to do the calculations in parallel during training. The time window size

1The code for the K-DVAE and the experiments in this section can be found at https://github.com/
StarMarco/Kalman DVAE or contact the author

93

https://github.com/StarMarco/Kalman_DVAE
https://github.com/StarMarco/Kalman_DVAE

was set to 40 cycles (T = 40). The training dataset was further split into a training and
validation dataset. This was done by splitting the original training dataset, where 80% of
the dataset became the new training dataset and the remaining 20% of the data became the
validation dataset (an 80/20 split).

7.2.3 Network Design

There are a number of decisions that can be made when designing the K-DVAE model to
tackle a machinery prognostics problem. Firstly, the sequence of sensor values x1:T needs to
be represented or encoded into a value ut. As mentioned previously this will be done via.
a bidirectional RNN; in this specific case a bidirectional GRU is used. This stays consistent
with the way DVAEs handle these non-causal types of models where future values can impact
current and past values. Note that a bidirectional RNN is not strictly necessary and future
works may want to look at other ways of representing x1:T through different types of neural
network architectures.

Another design decision required for the K-DVAE implementation is how the state-space model
parameters will be constructed and optimised. For example, one can simply randomly initialise
each of the matrices as constants F , H, Q and R, and let them be optimised during the neural
networks training phase through backpropagation. However, in this problem, the RUL has been
split into a healthy and degrading phase; in the healthy phase the RUL remains at a maximum
value of 130 and after that it degrades until it reaches zero. Hence, one linear model would
not capture this behaviour well, so weighted or interpolated matrices are found Fraccaro et al.,
2017. This works by having K constant global matrices and then having a neural network
output weights which sum to one to create a weighted average of the K global matrices. For
example for the state transition matrix,

Ft =
K∑
k=1

α(k)(ut)F
(k), (7.6)

where α(ut) is a neural network that outputs a vector of normalised weights [α1, ..., αK] and
α(k)(ut) is shorthand for selecting the kth element of that vector. The weight neural network
is implemented using a standard feedforward network and using ut := x1:T as an input. The
weights must be positive and hence we assume the network outputs the log weights; an expo-
nential function can then be used to turn them into positive weight values. These values are
then normalised and that is considered the output of α(ut). Hence, the function α(·) applies,

α(ut) :=
exp (fθ(ut))∑K

k=1 exp (fθ(ut))
(k)
, (7.7)

where exp (fθ(ut))
(k) is the kth element in the unnormalised weight vector and fθ is the neural

network. The weighted average matrices are used for both the state transition and measurement
matrices F and H. The noise matrices (Q and R) however, are kept constant throughout
time but are also optimised during training. Using these weighted average transition and
measurement matrices allows for the model dynamics to change over time as the machine
transitions from a healthy to a degrading operating mode. A simplified diagram is shown in
Figure 7.2, the diagram shows how the input time windowed sensor signals are used to train
and evaluate the K-DVAE.

94

Evaluate

Training

Figure 7.2. A block diagram showing how the sensor data is used to find the necessary outputs for
training and testing the K-DVAE. Both ut and dt represent the entire sensor sequence x1:T . Q and R
are both constants that can be optimised during the training phase. Also note, for simplicity, the output
weights from the Artificial Neural Network (ANN) block; include the normalisation of the weights in
that step.

7.2.4 Model Training

To train the model the Kalman filter algorithm is applied to find the conditional data negative
log-likelihood,

Lnll = −log p(r1:T |x1:T). (7.8)

The details on this are mentioned in the background section 3.3.1, specifically Eqns. 3.31
and 3.32. However, some additional terms are added to this to help regularise the model
and improve its forecasting ability when no measurements are given to the filter. The latent
dynamics have a chance to become unstable during training causing numerical errors as the
values become too large. Hence, to help keep the dynamics stable the model is regularised using
the eigenvalues of the latent dynamics matrix Ft. For the dynamics to be stable, the real values
of the eigenvalues for Ft should be between 0 and 1. It was found that simply adding the sum
of the real parts of these eigenvalues, and multiplying by a constant (β) to scale the impact of
this regularisation term, helped with stability during training. This regularisation term will be
denoted Lreg. When testing the model, there are no RUL values available and so the Kalman
filter cannot be used. Instead, the model performance relies on the accuracy of the state space
model dynamics learnt during training to forecast RUL estimates. During training, the loss
function derived from the Kalman filter does not incorporate long-term predictions due to the
constant updates from RUL measurements. Hence, a method known as “replay overshooting”

95

is used to add another term to the loss function that aids in training a model for long-term
predictions (A. H. Li et al., 2021). This is done by applying a smoother after the filter step and

finding new latent mean and covariance initial conditions, z
(s)
0 , P

(s)
0 . These initial conditions

can be used, along with the state space model, to propagate the variables forward in time and
estimate the RUL distributions, N (rt, St). This distribution and the target RUL can be used
to find the likelihood term that can be added to the total loss, along with a constant scaling
term (α) to determine how much this forecasting step should impact the model training. The
forecasting loss term derived from replay overshooting will be denoted as LRO. The total loss
can be stated as,

L = (1− α) · Lnll + α · LRO + β · Lreg (7.9)

7.3 Results

The Kalman-DVAE is compared with various other methods that perform well on the CMAPSS
dataset. These include the Temporal Deep Degradation Net (TDDN) (Qin et al., 2022), Re-
stricted Boltzmann Machine (RBM) and LSTM combination (Listou Ellefsen et al., 2019), CNN
applied to spectrograms of the data using Short Time Fourier Transform (STFT) (X. Li et al.,
2018) and the Dual-Stream Self-Attention Neural Network (D. Xu et al., 2022). To compare
these models the Root Mean Squared Error (RMSE) metric was used as shown in equation 5.16
from section 5.3.1.

Table 7.1: RMSE performance on each of the testing CMAPSS datasets with a maximum RUL value
of 130.

Method FD001 FD002 FD003 FD004
Kalman-DVAE (This work) 10.67 11.39 10.13 10.18
DL-NSGPR (Z. Xu et al., 2021) 7.4 11.80 7.5 8.3
CNN (X. Li et al., 2018) 12.61 22.36 12.64 23.31
RBM-LSTM (Listou Ellefsen et al., 2019) 12.56 22.73 12.10 22.66
TDDN (Qin et al., 2022) 9.47 10.93 9.17 11.16
DS-SANN (D. Xu et al., 2022) 11.64 13.34 12.28 14.98

The scores are reported in Table 7.2. Note that some methods do not report an score in their
work and therefore have no score stated in this table.

Table 7.2: Comparison of the scores (Eq. (5.17)) on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
Kalman-DVAE (This work) 388 983 470 1328
CNN (X. Li et al., 2018) 273 10412 284 12466
LSTM (Listou Ellefsen et al., 2019) 231 3366 251 2840
TDDN (Qin et al., 2022) 214 562 217 998
DS-SANN (D. Xu et al., 2022) 210 867 286 1150

To visualise some of the K-DVAE results, a selection of units from the FD001 dataset was

96

chosen as examples. Figure 7.3 shows the RUL estimate trajectories plotted over the known
lifetime of the test units (the time when the sensor values are known).

(a) RUL estimates vs lifetime of unit 12 (b) RUL estimates vs lifetime of unit 35

(c) RUL estimates vs lifetime of unit 41 (d) RUL estimates vs lifetime of unit 100

Figure 7.3. The RUL estimates over the known lifetime of the testing units for a selected subset of
units in the FD001 test dataset.

The latent variables were made two-dimensional; this means they can be plotted in state space,
where the x-axis is the first latent variable and the y-axis is the second one. Figure 7.4 shows
the plot of all the latent state space trajectories for every unit in each test dataset in CMAPSS
(FD00X, where X = 1, 2, 3 and 4). They are plotted as scatter plots to show the general
trajectory of all the units to see if all of them follow a particular trajectory that could be
considered indicative of the machinery’s degradation.

Figure 7.5, is a scatter plot that shows the final true RUL value along with the output RUL
estimate from the K-DVAE model for each of the units in the FD001 test dataset. Ideally, they
should all fall on a line with slope 1 if the estimates were 100% accurate, as the estimate RUL
would equal the actual RUL. This line of slope 1 is plotted as well for convenience. Notice that
the RUL estimates are more accurate as the machine reaches the failure point, which is what
one may intuitively expect, as it becomes more obvious when a machine will fail the closer it
is to the failure point. This can be seen from the plot as the estimates become less scattered
and follow the line closer as the true RUL values become smaller.

Figure 7.6, shows the final RUL estimates and actual RUL values as a scatter plot over all
the unit indexes for the test units in the FD001 dataset. It also plots the uncertainty bounds
showing the 95% confidence interval of the Gaussian distribution. This plot gives an idea of
how well the model performed for each unit. We can also see that the confidence bounds are
generally larger for the units that have larger RUL values and so the machine is further from
the failure point. For the test units that are closer to failure, the confidence bounds are smaller
and the estimates are more accurate as the machine is closer to failure.

97

(a) latent state space plot of all units for FD001 (b) latent state space plot of all units for FD002

(c) latent state space plot of all units for FD003 (d) latent state space plot of all units for FD004

Figure 7.4. The latent variable state space trajectories over the known lifetime of the testing units for
all the CMAPSS datasets. The colour bar indicates the time, hence, darker colours are early in the
lifetime of the machine while lighter colours are later periods of the machine’s lifetime. The longest-
time trajectory is plotted as a blue line, to give an indication of what a trajectory from a healthy status
to a near failure status may look like.

0 20 40 60 80 100 120 140
RUL Estimates (cycles)

0

20

40

60

80

100

120

Tr
ue

 R
U

L
(c

yc
le

s)

true
estimates

Figure 7.5. The final RUL estimates for the test units in the FD001 dataset. These were plotted as a
scatter plot and compared with the true RUL values plotted as a line

98

0 20 40 60 80 100
Unit Number

0

25

50

75

100

125

150

175
R

U
L

(c
yc

le
s)

true
estimates

Figure 7.6. The final RUL mean estimates and True RUL values plotted as a scatter plot vs the unit
index for each of the units in the FD001 test dataset. The 95% confidence intervals are also shown
for the final RUL estimate.

7.4 Discussion

In terms of RMSE, the K-DVAE still manages to perform well when compared with some of
the other models. While the state-of-the-art models manage to outperform it the K-DVAE
does have some benefits that may be considered worth the trade-off. One benefit is that
some of these models have no uncertainty quantification while the K-DVAE does. The way
it quantifies uncertainty is also relatively simple compared to the other DVAE models that
were introduced in this thesis. In this model, the contribution deep neural networks make is
encoding the sensors using the bidirectional RNN. After encoding those variables are used as
“control variables” (to use control theory terminology) in an LGSSM whose measurement space
describes the RUL of the machine. Hence, the model shows that the main contribution that deep
neural networks give in these DVAE methods to achieve good RUL predictions is by capturing
the information from the sensor signals in a noncausal manner. But there are methods that
outperform the K-DVAE and do quantify uncertainty. In terms of RMSE performance (Z. Xu
et al., 2021) remains state-of-the-art for most of the results. Unlike the other DVAE methods
presented the K-DVAE does not hold the advantage of being able to represent distributions
other than Gaussian distributions. Because of the restrictions made by setting the transition
and measurement models as LGSSMs, the outputs are restricted as Gaussian distributions.
Hence, both (Z. Xu et al., 2021) and the K-DVAE models are restricted to Gaussian distribution
representations of the RUL estimate distributions. However, the K-DVAE has the potential
advantage of having latent linear dynamics that are related to the RUL estimates. Hence, there
is an interpretable latent space that could potentially be used to simulate various possible RUL
trajectories given different possible sensor values. Another possibility due to its simple LGSSM
dynamics is that one could find a control law that could reduce the rate of degradation of the
machine. The latent space provides a type of HI that can be used to interpret the behaviour
of the machine’s degradation and mathematically model it. Note that, unlike other HIs in

99

the machinery prognostics literature, these HIs do not necessarily find a HI that could be
extrapolated to a threshold or perform well in metrics such as monotonicity and trendability.
However, they are HIs in the sense that they are related to the RUL by a known model (the
measurement model), and unlike other HI methods that need to fit a curve to the HI outputs to
model their dynamics, the DVAE has HI dynamics that are trainable during the optimisation
process. This is leveraged in this work by making the dynamics conform to an LGSSM. Hence,
the DVAE formulation allows for one to achieve some level of customisation in the model by
setting restrictions to the transition model; although as this chapter shows that can come at
the cost of RUL estimation performance.

In section 5.4, the structure of the DVAE was compared to the models presented in Table 5.1,
which are the same models presented in the results here in Table 7.1. Notably, the DVAE
and DL-NSGPR were said to be similar as they are both noncausal models that are optimised
using the marginal likelihood as a loss function. This can be further expanded upon here
as it was mentioned NSGPR uses the same likelihood as a loss function and that it can be
viewed as a formulation of Kalman filtering and smoothing Sarkka et al., 2013. Here we do
use a Kalman filter and smoother to train the model, and an LGSSM is used as the transition
and measurement models, further increasing the similarities between the DL-NSGPR method.
However, from this, the differences between the two models also become more clear. The main
difference is that in the K-DVAE the sensors are encoded using a neural network and then
function as “control variables” in the LGSSM. For DL-NSGPR a neural network also processes
the sensor signals; however, these then act as the observations for NSGPR, not the control
variables. The K-DVAE cannot use the Kalman filter after training because it uses the true
RUL values as observations; hence, when evaluating the model, the LGSSM is applied over the
time period of interest without any filtering. DL-NSGPR uses NSGPR even on test cases to
smooth the RUL predictions of the neural network that act as observations for NSGPR. The
benefit of the K-DVAE approach is that it has latent variables that could be utilised to aid in
understanding the degradation behaviour. Furthermore, while not true of the K-DVAE, the
more general DVAE and NSDE-DVAE are able to model non-Gaussian distributions as they
use Monte Carlo sampling to represent arbitrary distributions, while NSGPR cannot. Although
note, DL-NSGPR has the benefit of being relatively simple to implement as it trains an MLP
network to estimate the RUL which is easier to train and computationally less expensive.

The results of the K-DVAE are compared with the other DVAE models in terms of the RMSE
in Table 7.3 and score in Table 7.4. These are shown for a quick reference for convenience. Note,
the other DVAEs largely outperform the K-DVAE as one might expect given the restrictions
on the K-DVAE. However, the K-DVAE does manage to achieve a better score on the FD002
dataset.

Table 7.3: Comparing RMSE performance between DVAE and NSDE-DVAE on each of the testing
CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE 8.63 10.29 7.28 9.61
NSDE-DVAE 8.75 10.20 8.30 8.92
Kalman-DVAE 10.67 11.39 10.13 10.18

Note that the K-DVAE performance is improved if we could observe the RUL as the filtering step
could be applied to update the estimate based on the observation. If the practitioner has other

100

Table 7.4: Comparing scores between DVAE and NSDE-DVAE on each of the testing CMAPSS datasets

Method FD001 FD002 FD003 FD004
DVAE 376 1791 533 1403
NSDE-DVAE 468 1165 420 1025
Kalman-DVAE 388 983 470 1328

variables that could be observed, for example, by inspecting the machine, and was related to the
RUL or served the same purpose as the RUL (e.g. a physical health indicator), then this model’s
performance could easily be improved. Since this K-DVAE framework already incorporates a
filtering step during training, if we had a variable related to the RUL that the model was
trained on, then it could naturally incorporate that observation in its estimates by applying
the Kalman filtering step. A similar concept was explored in (Que et al., 2019), where they
used a generative model to construct a HI. The HI could be observed through inspections, and
its trend was estimated by fitting an exponential curve to it and the states updated with each
observation using a particle filter. Given a similar set-up where a HI can be observed through
inspection, the K-DVAE model’s performance could be drastically improved. Figure 7.7 shows
how the RUL trajectories for the selected testing units in Section 7.3 would look like if the RUL
values were known and the Kalman filtering algorithm could be applied. While the actual RUL
cannot be known, if there is a case, such as in Que et al., where the RUL can be estimated
periodically by inspection of the machine, we can see how the RUL estimate trajectories could
be updated to achieve better RUL estimates. Hence, this could be an interesting research

(a) Filtered RUL estimates vs lifetime of unit 12 (b) Filtered RUL estimates vs lifetime of unit 35

(c) Filtered RUL estimates vs lifetime of unit 41 (d) Filtered RUL estimates vs lifetime of unit 100

Figure 7.7. The filtered RUL estimates over the known lifetime of the testing units for a selected subset
of units in the FD001 test dataset. This was partly done as a sanity check for the Kalman filtering
algorithm, but it also shows how useful it could be if an observable metric could be used instead of the
RUL. Even if it could only be observed occasionally, the filtering algorithm would be able to update the
estimate and achieve much more accurate results compared to having no direct observations as shown
in Figure 7.3.

direction focusing on a combination of estimating RUL from sensor signals and less frequent

101

inspections that allow for this RUL estimate to be updated. Alternatively, if the practitioner is
aware of another metric or HI that can replace the RUL in a specific case, then this model could
still be used. If that HI is easily observable or could be observed through regular inspection,
then the K-DVAE would be an ideal model for this scenario, as the HI could be estimated from
sensor values when an inspection cannot be performed, and an updated estimate can be found
after the inspection.

Further work could be done to explore the different types of encoder networks that could rep-
resent the sensor sequences x1:T . Here the bidirectional GRU was used; however, different
noncausal networks could be tested to find different ways of representing the sensor sequences.
In this work, we have focused on giving a simple example of how these sequential generative
models could be used to estimate the RUL. However, more complicated generative models could
be used instead, and assumptions could be relaxed. For example, the Kalman filter was used
here as it is relatively simple to deal with, and it was assumed due to the linearity of the RUL
targets, it would be suitable for the RUL estimation task. This could be further explored, and
different models could be tested, such as models whose variables are not Normally distributed
and/or nonlinear models. If this is done, note that the Kalman filter training method would
no longer be appropriate. However, one could still use a particle filter, although training the
neural networks can be complicated due to the resampling step not being differentiable (Jon-
schkowski et al., 2018). Works have tried to remedy this by finding ways to create differentiable
resampling (Corenflos et al., 2021; Lai et al., 2021). Note that technically, we do not need a
filtering method to train the generative model. Instead, the variational objective is shown in
Eqn. 3.9 could be used. However, there have been works showing it can be more effective to
train using the marginal likelihood achieved from filtering as the variational objective is indi-
rectly optimising the marginal likelihood while filtering algorithms directly return a marginal
likelihood (Maddison et al., 2017; Naesseth et al., 2018; A. H. Li et al., 2021). Hence, there
are many different ways generative models can be constructed and trained; the effectiveness of
these different model constructions could be tested in future works, and it may give an idea of
what assumptions can be made for constructing generative models for machinery prognostics
tasks.

7.5 Conclusions

This work’s aim was to create a probabilistic model for RUL estimation using deep sequen-
tial generative models which was accomplished using the Kalman-DVAE. The Kalman-DVAE
framework takes the RUL estimation problem from machinery prognostics and formulates it
as an LGSSM whose behaviour and mechanics are relatively well understood. By using this
LGSSM framework the deep learning part of the framework became a parameter estimation
problem which is common in these types of LGSSM problems.

The model performance is in line with the state-of-the-art models found in the literature, but it
can also quantify uncertainty in its RUL estimates which is vital for machinery prognostics tasks.
This work also provides a framework for constructing and training these types of generative
models and highlights the different ways one may construct and train DVAEs. The background
section attempts to make the theory behind DVAEs and generative models clear which will
hopefully aid further research in this area as there are not many works that are using sequential

102

generative models for machinery prognostics. If generative models are used, it is usually the
VAE used in a static case as described in Section 3.1 and not adjusted for sequential variables
as seen in Section 3.2.

Note that, the Kalman filter framework is not strictly necessary, however, it is useful if one
wants to develop relatively easy latent dynamics. However, other training procedures can be
used to allow for more complex nonlinear models, such as the ELBO loss for the DVAE shown
in Eqn. 3.9. Another option is to use particle filters to train the nonlinear model, which would
be analogous to training with the Kalman filter but applied to a nonlinear setting. Using
particle filters to train DVAE models has been explored previously in the literature, however,
one of the reasons they were avoided here was because the resampling step is not differentiable
and hence cannot be optimised by backpropagation (Maddison et al., 2017; Naesseth et al.,
2018). Some works try to get around this and have even created fully differentiable particle
filters (Corenflos et al., 2021; Lai et al., 2021), but all this adds an extra complication to the
model. This was one of the reasons why this work started by introducing this concept through
a relatively simple Kalman filter training scheme. These nonlinear models and particle filter
training schemes could therefore be a potential research direction and future work that builds
on this K-DVAE model.

103

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis aimed to find ways in which deep learning methods for machinery prognostics could
quantify the uncertainty of their RUL estimates and improve the interpretability of the results.
We looked at various methods to achieve these aims, such as Neural Differential Equations and
VAEs. When applying Neural DEs, the idea was to help either improve the interpretability of
the neural network by implementing the structure of the network itself as a Neural DE (such as
in Chapter 4) or by using Neural DEs to construct latent dynamics (such as in Chapter 6). The
idea in Chapter 4 was to show that neural networks such as ResNets could be replaced with
NODEs that could be easier to customise. If an ODE describes the underlying computations
of the neural network, the ODEs properties could be analysed, and during training, desirable
properties could be encouraged. For example, this is done in works where the performance of
the network is regularised to have smoother trajectories by using the properties of ODEs (Finlay
et al., 2020). By replacing the NODE with an NSDE, uncertainty could be accounted for in
the network itself, similar to how Bayesian Neural Networks can be made by adding dropout
mechanisms to a network. However, ultimately DVAEs ended up performing quite well, and
this caused a shift in the thesis towards the variational framework for machinery prognostics
applications. Part of the exploration of DVAEs for machinery prognostics reintroduced Neural
DEs into the picture. This time Neural DEs were utilised to construct latent dynamics instead
of defining the neural network structure itself. The DVAE sections of the thesis explored
how DVAEs could be used to estimate the RUL. DVAEs are generative models that aim to
train neural network models to sample from an unknown underlying distribution. The key for
using DVAEs in machinery prognostics was to find a way to make this underlying distribution
represent, p(r1:T |x1:T) (the probability of the RUL sequence given a sensor sequence). Hence,
Chapter 5 showed how this could be done, while the next chapters showed how altering the
architecture could affect the outputs of the DVAE.

104

8.1.1 Research Questions

DVAEs became a key component in answering the research questions presented in this thesis.
These questions can now be looked at, and the answers for each can be summarised here.

1. How could a neural network incorporate dynamic systems to help reduce its black-box nature?

A part of the DVAE framework involved learning a transition model, pθz , that described the
transition of the latent state, zt. This transition model could be defined using different mod-
els; the standard DVAE used an MLP network, NSDE-DVAEs used NSDEs to describe the
latent dynamics, and Kalman-DVAEs used an LGSSM. This could aid the user to visualise
the degradation of the machine or even potentially give some control over the degradation due
to an understanding of the dynamics, although this point was not explored in this thesis but
could be potential future work. DVAEs are trained to generate trajectories from an underlying
probability distribution p(r1:T |x1:T). Hence, p(r1:T |x1:T) can be expressed by simulating mul-
tiple trajectories, and the uncertainty can be quantified. By combining the transition model
(pθz) and measurement model (pθr), the DVAE captures this underlying probability distribution
while also producing latent dynamics that relate to the RUL. Many state estimation problems,
such as the ones that utilise Kalman or Particle filters, also have a similar setup in terms of
mathematical underpinnings and dynamic models. By using these underpinnings, deep gener-
ative models such as DVAEs could be understood from that perspective. The Kalman-DVAE
method was created because of this understanding, and this reduces some of the complexity
or black-box nature of deep learning models for machinery prognostics. In the Kalman-DVAE
approach, the parameters of an LGSSM system are optimised using the Kalman Filtering al-
gorithm, which is not strictly a deep learning approach. The main use of deep learning in that
method is to encode the sensors into a lower dimensional variable, ut, that acts as a “control”
variable in the LGSSM. Hence, the machinery prognostics problem was reduced to identifying
the parameters of an LGSSM using Kalman Filtering (the network parameters of the sen-
sor encoder are also optimised this way). This method is hopefully a step towards reducing
the black-box nature of deep learning methods in machinery prognostics applications by using
methods such as system identification of an LGSSM using a Kalman filtering algorithm.

2. What would these degradation dynamics look like?

Using the different DVAE methods presented in this thesis, the properties of the degradation
dynamics could be altered based on the architecture. The standard DVAE used in Chapter 5,
the latent dynamics that indicate degradation of the machine are discrete nonlinear dynamics.
In Chapter 6, continuous nonlinear latent dynamics are applied using NSDEs. While in Chapter
7, discrete linear dynamics and measurement models are used through the identification of an
LGSSM model. The dynamics are somewhat customisable depending on the transition and
measurement models chosen. Although trade-offs were noted depending on the models used,
e.g. the standard DVAE, which is fully nonlinear, performed better than the LGSSM model
that was linear but had simpler latent dynamics.

3. How could uncertainty be incorporated into this framework?

The DVAE incorporates uncertainty naturally due to the fact it is a generative model, and the
primary goal of a generative model is to learn how to sample from some underlying probability
distribution. By defining a DVAE that, when trained, has an underlying probability distribution

105

of p(r1:T |x1:T), this helps quantify the uncertainty of RUL estimates. The DVAE can now
generate multiple RUL estimate trajectories that can help represent p(r1:T |x1:T) through Monte
Carlo simulation. Hence, if the machinery’s RUL distribution, p(r1:T |x1:T), is complicated, the
DVAE can represent it by sampling multiple trajectories. The exception to this is the Kalman-
DVAE, as it uses an LGSSM model to represent the RUL and therefore, p(r1:T |x1:T), would be
represented as a Gaussian distribution.

4. Can this all be incorporated into one framework? If so, how would it be trained and evalu-
ated?

This could all be incorporated into the DVAE framework. Stepping back and looking at the
bigger picture, this was done by utilising deep generative models that aim to learn an underlying
probability distribution. The DVAE is a generative model that could be utilised to learn this
desired underlying distribution, however, note that theoretically, it is not strictly necessary to
use the DVAE framework. Future work could explore other generative models, such as GANs or
Normalizing Flows. However, in this thesis, the DVAE was used as its underlying mathematics
is connected to concepts such as Bayesian filters (e.g. Particle and Kalman Filtering) and they
use latent dynamics in their architecture that could represent the degradation of the machine.
The DVAE models are generally trained using the ELBO loss function, as shown in Eqn. 3.9,
however, in special cases such as the Kalman-DVAE where an LGSSM is used, Kalman filtering
can also train the model. Particle filters could also train the DVAE model as p(r1:T |x1:T), which
can be found using this algorithm for nonlinear and non-Gaussian distributed models, however,
that was not explored in this thesis. However, note that the sensor signals, x1:T , had to be
noncausal inputs for the models. This was handled using sliding time windows, where T was the
time window size, and the sensors were noncausal inputs for the model within each time window.
Hence, the sequence-to-sequence model could output a sequence of RUL estimates, r1:T , given
a sequence of sensor variables, x1:T . During testing, the DVAE no longer required the inference
model. Instead, the generative model, which includes the transition and measurement models,
was applied using the time window of sensor signal inputs to generate the RUL estimate and
latent variable sequences for each time window. The Kalman-DVAE didn’t require an inference
model at all, instead using the Kalman filter algorithm during training. It was also evaluated
using the generative model, like the standard DVAE, therefore not using the Kalman filtering
algorithm during this phase.

8.1.2 Novelties and Key Contributions

In Chapter 4, the main novelty was using the NODE for RUL estimation and comparing it
to the ResNet. The comparison showed how NODE could be used to estimate the RUL while
remaining competitive with other network architectures. The potential benefits of using NODE
were also listed, such as using SDEs instead of ODEs to propagate the variables and account
for uncertainty. However, the main contributions from the thesis came from the subsequent
chapters that focus on the various DVAE implementations.

In Chapter 5, it was shown that the construction of a conditional DVAE required noncausal
conditional variable inputs. This led to a sequence-to-sequence model implementation of the
DVAE when used to estimate the RUL conditioned on sensor signals. RUL uncertainty quan-
tification in deep learning methods generally utilises Monte Carlo techniques as seen in section

106

2.2.6. However, many use Monte Carlo Dropout or Bayesian neural networks to alter the net-
work itself to make it probabilistic instead of deterministic. Here we showed how variational
methods may be used to learn how to sample from an underlying probability distribution and
quantify the RUL uncertainty. Note the DVAE is still a Monte Carlo method as we require mul-
tiple samples to express the marginal distribution p(r1:T |x1:T) by repeatedly sampling from the
distributions outputted from the transition and measurement neural network models. While
these methods exist in the deep learning literature showing how they can be applied to ma-
chinery prognostics was not previously done. It also showed it could achieve state-of-the-art
performance while still accounting for uncertainty in the RUL estimates.

Chapter 6 showed how NSDEs could be applied to model the latent dynamics of the DVAE. It
utilised augmented variables to allow the latent dynamics to have the same initial condition to
represent a healthy unit while being able to deviate its trajectory as different machines exhibit
different degradation behaviour at different times. The NSDE-DVAE utilised continuous latent
dynamics instead of discrete dynamics that assume a constant time step between data points.
Although to utilise this fully, one must also change the encoder’s architecture to also work with
non-constant time steps.

Finally, Chapter 7 showed how to create a DVAE with linear Gaussian State Space latent
dynamics and use the Kalman filter to find the marginal likelihood loss. The main novelty in
this chapter was to realise that the RUL trajectories are linear and so a Kalman filter could
be used to find the marginal likelihood loss instead of indirectly estimating it using the ELBO
loss. This also meant the latent dynamics could be relatively simple and easier to work with
compared to the neural networks used in the DVAE and NSDE-DVAE latent dynamic models.

In summary, the key contributions were constructing a model that could perform well on the
RUL estimation task while accounting for uncertainty. The noncausal nature of the model was
also mathematically justified when deriving the DVAEs ELBO loss in section 5.1.1 and this
led to the sequence-to-sequence implementation of the model. Finally, various latent dynamic
models were tested for the DVAE such as the NSDE and linear state space models which have
the potential to be expanded upon in future work. For example, the Kalman-DVAE’s latent
dynamics are in the form of a linear state-space model which is easier to interpret and work
with. In that chapter, this was used to stabilise the dynamics during training. This could be
expanded upon by perhaps finding a control law that minimises the degradation of the machine
based on the linear state space model degradation dynamics.

8.1.3 Limitations

A potential limitation of this work is the computational complexity. Unlike Monte Carlo
dropout, where a dropout mechanism is added to the network and this accounts for uncertainty,
the DVAE implements multiple networks to achieve uncertainty quantification (inference, tran-
sition and measurement models as well as the bidirectional RNNs that encoded the sensors).
The Kalman-DVAE helps alleviate this as it technically only requires networks to encode the
sensors, but practically, it performs better if the matrices in the linear state space model are
also modelled using neural networks, as outlined in Chapter 7. However, this also gives the
DVAE the ability to create latent dynamics that can aid in describing the machine’s degrada-
tion; hence, the user is presented with a trade-off. Note that this was a downside of NODEs

107

when compared to ResNets in Chapter 4, as evaluating the ODE can be more computationally
expensive than ResNet when using solvers such as Runge-Kutta.

Like all deep learning models, a practical limitation of these models is that data is required to
train these models for effective RUL estimation. Semi-supervised learning could aid with that
problem, but some failure data is still needed. This model could not take cases outside of the
domain it was trained on and learn how to predict the RUL of other machines based on what
it was trained on. Unlike general laws of physics that could model certain types of degradation
processes for a variety of components and machines (e.g. crack length given certain properties
of a material) the latent dynamics are not general laws that apply to the same degradation
process in other machines. This may be explored in future work by trying to match the latent
dynamics of different machines with the same degradation process, but this would require more
data and was not the scope of this thesis.

A limitation of the Kalman-DVAE is that it assumes the variables are all described using
Gaussian distributions. This may not be a valid assumption for the RUL in many cases, and
this may need to be altered to enable the use of non-Gaussian distributions. However, this
would mean the primary benefit of using the Kalman filter to calculate the marginal likelihood
loss would not be possible. One could use a nonlinear filter such as an Unscented Kalman
filter or Particle filter to aid with this limitation, but this would increase the computational
complexity. Note that using nonlinear filters such as the Extended Kalman filter for estimating
the marginal likelihood loss has been successfully used in other applications (A. H. Li et al.,
2021).

Some of these may be overcome with more research, e.g., one could find a way to apply the
latent dynamics to different types of machines with the same degradation process to estimate
their RUL. But many are also limitations that must be worked around, such as the increased
computational complexity compared to Monte Carlo dropout or the fact the Kalman filtering
algorithm requires Gaussian distributed variables. With the benefits and limitations stated,
we can now go on to discuss potential future work that can expand the work presented in the
thesis.

8.2 Future Work

Many different avenues could be explored as future work when considering the content intro-
duced in this thesis. Both theoretical and practical extensions can be made to the methods
presented here.

• Neural Differential Equations describing larger neural networks

– Neural SDEs as networks: In Chapter 4, a NODE is used to describe the com-
putations of a larger neural network. Instead of a NODE, an NSDE could be used.
This could be analogous to using a Bayesian Neural Network over an MLP network,
as the computations within the network itself incorporate randomness and allow for
multiple possible outputs. Using this as a network for machinery prognostics that
uses sensor signals as inputs and outputs the RUL estimate, much like the NODE

108

and ResNet was used in Chapter 4, but it would be probabilistic and could therefore
quantify uncertainty.

• DVAE Structure

– Trying different encoders for sensors: In this thesis, different models were used
for the DVAEs transition, measurement and inference models; while more exper-
iments could try different network architectures for these models, one could also
change the encoder network architecture. In each DVAE method presented, the
encoder used to find a noncausal sequence representation has been a bidirectional
RNN, as is common in the DVAE literature (Girin et al., 2021). However, other
architectures could be used to find a noncausal representation of the sensors, such as
the Transformer (Vaswani et al., 2017). As noted in the Kalman-DVAE method, the
encoding of the sensors is an important aspect of these DVAEs. The Kalman-DVAE
could still get acceptable performance with the simpler LGSSM used to describe
the transition and measurement models, with the only nonlinear component coming
from the nonlinear sensor encoding. Hence, looking at better network architectures
for encoding the sensors may be a more practical avenue to explore for improving
these DVAE models for machinery prognostics applications.

– Altering DVAE dynamics to incorporate physics-based methods: Physics-
inspired networks are used to perform RUL estimation in works such as (Nascimento
& Viana, 2019; Yucesan & Viana, 2019; Dourado & Viana, 2019). Future work
could look at incorporating these types of physics-inspired networks in the DVAEs
transition and measurement models. This could help the DVAE incorporate expert
knowledge into the model and potentially reduce the amount of data needed to train
the model.

– Altering DVAE dynamics to incorporate statistical methods: Many statis-
tical methods in machinery prognostics involve modelling an SDE to describe the
degradation behaviour of the machine. The DVAE or, more specifically, the NSDE-
DVAE, could be altered to incorporate the structure of these SDEs and model the
degradation with SDEs that are well suited for the task. This could be another way
of incorporating expert knowledge or bridging the gap between Deep Learning and
statistical methods in machinery prognostics.

– Improving the dynamics properties: The latent dynamics of the DVAE could
be improved by utilising the properties of the dynamic system. For example, the
LGSSM dynamics were regularised during training using the eigenvalues of the tran-
sition matrices. By understanding how eigenvalues can alter the stability of the
dynamic system, this knowledge could be used to improve the latent dynamics of
the model in the Kalman-DVAE case. The same approach could be made for any dy-
namic system used in the DVAE. Similar approaches were made for NODEs; through
the understanding of ODEs, NODEs could be altered, and their performance could
be improved, such as in (Dupont et al., 2019; Finlay et al., 2020). Hence, by using
existing knowledge of the properties of dynamic systems, the DVAE framework used
here for RUL estimation could potentially be improved.

• DVAE Methods

– Semi-supervised methods: Semi-supervised methods can be expanded in more
detail. Generative models are already utilised in machinery prognostics for semi-

109

supervised learning and reducing the amount of training data needed for deep learn-
ing methods. Many of these methods do not utilise DVAEs but instead use generative
models more suited to non-sequential data, e.g. VAEs. One potential avenue to ex-
plore is that if a DVAE is trained to generate sensor signals, our inference model
would have the structure qφ(zt|zt−1, x1:T). The DVAE we used for RUL estimation
has this same structure, i.e. pθz(zt|zt−1, x1:T). Hence, perhaps we could pre-train
the transition model pθz by training a DVAE in an unsupervised manner on the
sensor signals, then use that inference model as pθz for training a DVAE to estimate
the RUL. This way, the parameters of the network were already partially optimised
during the unsupervised training, meaning it may require less run-to-failure data to
train the DVAE for RUL estimation.

– Identifying troublesome sensors: The model could potentially be altered to
identify exactly what sensor variables are capturing the primary cause of the ma-
chinery degradation. For example, if attention mechanisms are used instead of a
bi-directional RNN for sensor encoding, perhaps the attention weights along the
sensor dimension could help identify which sensors most contribute to the machine’s
degradation. This could reduce the black-box nature of Deep Learning methods and
keep the benefits of the DVAE presented in the thesis (uncertainty quantification
and interpretable latent dynamics).

• Control Theory and Machinery Prognostics

– Kalman-DVAE control laws: The Kalman-DVAE defines an LGSSM that models
the RUL and degradation (latent) trajectories. LGSSMs are often used in control
theory and a relatively easy to work with. Perhaps one could design a control law
that considers the machine’s degradation and can alter its operation to reduce the
degradation experienced by the machine to an extent.

– Nonlinear control with DVAE: One could take a network like the NSDE-DVAE
or DVAE, which have nonlinear latent dynamics and design control laws using these
dynamics. Hence, the Kalman-DVAE may offer a simpler method to test out various
control laws, but ultimately, the DVAE and NSDE-DVAE have superior performance
when it comes to RUL estimation. DVAEs have already been used in control theory
applications such as in (Hafner et al., 2019), where reinforcement learning is used
to plan motion from motion captured in a video dataset. This would need to be
extended to the noncausal, conditional DVAE case for the models presented in this
thesis.

These are some of the major areas which could be explored further to expand upon the work
done in this thesis.

110

Appendix A

NODE-CNN and ResNet
Hyperparameters

ResNet Hyperparameters

This appendix contains the hyperparameters used for training the ResNet on different datasets.
Table A.1 states the values of these hyperparameters.

Table A.1: Hyperparameters used to train the ResNet and affect its architecture. Hyperparameters for
each C-MAPSS dataset are listed

Hyperparameter FD001 FD002 FD003 FD004
Batch size (bs) 586 213 538 348
Learning rate 3.39× 10−5 6.97× 10−3 9.79× 10−3 2.21× 10−5

Weight Decay (L2) 2.10× 10−4 7.54× 10−4 4.31× 10−4 2.17× 10−4

Time Window 28 10 12 15
Data split (split in Eq. (4.3)) 184 197 64 123
Training epochs 99 57 59 62
Convolution Kernel size 3 3 3 3
Convolution channel size 64 64 64 64
Amount of ResNet blocks (n) 6 6 6 6

111

NODE-CNN Hyperparameters

This appendix contains the hyperparameters used for training the NODE-CNN on different
datasets. Table A.2 states the values of these hyperparameters.

Table A.2: Hyperparameters used to train the NODE-CNN and affect its architecture. Hyperparameters
for each C-MAPSS dataset are listed

Hyperparameter FD001 FD002 FD003 FD004
Batch size (bs) 206 580 207 482
Learning rate 9.22× 10−3 5.52× 10−4 1.11× 10−3 5.46× 10−3

Weight Decay (L2) 1.14× 10−4 1.08× 10−9 3.26× 10−9 2.75× 10−8

Time Window 30 10 38 15
Data split (split in Eq. (4.3)) 103 70 96 75
Training epochs 136 149 65 148
Convolution Kernel size 3 3 3 3
Convolution channel size 64 64 64 64
steps for RK solver 5 5 5 5

112

Appendix B

DVAE Experiment Hyperparameters

Table B.1 shows the hyperparameters used both in the supervised and semi-supervised DVAE
experiments for all the CMAPSS datasets.

Table B.1: Hyperparameters for the Kalman-DVAE for all datasets

Hyperparameters Values
Training epochs 200
Batch size (bs) 250
Learning rate 1× 10−3

L2 regularisation constant (weight decay) 1× 10−5

Time Window 40
Training/Valid split 80/20

113

Appendix C

NSDE-DVAE Hyperparameters

Table C.1 states the hyperparameters used when training the neural networks (the time window
is also used when evaluating the dataset). They were all trained for 100 epochs and with a
weight decay of 1× 10−5.

Table C.1: Hyperparameters used for each dataset when training the neural networks

Dataset learning rate time window (T) batch size β
FD001 0.001 40 150 1
FD002 0.001 40 150 1
FD003 0.001 44 200 0.48
FD004 0.00041 47 167 0.76

114

Appendix D

NSDE-DVAE Network Details

The DVAE consisted of multiple networks including Multi-Layered Perceptron (MLP) networks
and Gated Recurrent Networks (GRU).

The RNNs capturing sensor signals (x1:t) and RUL (r1:t) time series:

Both are GRUs with sizes,

• Input size: RUL GRU = 1, sensor GRU = amount of sensor signals chosen

• Hidden/GRU output size: 50

The backwards GRU for the inference model to represent x1:T has sizes,

• Input size: output of the sensor GRU + amount of sensors: 50 + number of sensors

• Hidden/GRU output size: 50

Encoder:

A MLP with sizes,

• Input size: includes both hidden dimension sizes of 50 + 50 = 100

• Hidden size: 150

• Output size: number of latent dimension + number of augmented dimensions (times 2 as
mean and log-variance is the output): 2 × (2 + 1) = 6

115

Decoder:

A MLP with sizes,

• Input size: number of latent dimension + number of augmented dimensions (times 2 as
mean and log-variance is the output): 2 × (2 + 1) = 6

• Hidden size: 150

• Output size: 1 × 2 (as both mean and log-variance are the outputs)

NSDE:

Drift function is a MLP with sizes,

• Input size: number of latent dimension + number of augmented dimensions: 2 + 1 = 3

• Hidden size: 150

• Output size: 1 (state space hence this network is the output for only ż2 in the 2-
dimensional latent space case)

Diffusion is a constant parameter (θd) that can be optimised during training.

116

Appendix E

Kalman-DVAE Hyperparameters

Table E.1 shows the hyperparameters for the Kalman DVAE training on all the CMAPSS
datasets.

Table E.1: Hyperparameters for the Kalman-DVAE for all datasets

Hyperparameters Values
Training epochs 100
Batch size (bs) 150
Learning rate 1× 10−3

Time Window 40
Replay Overshoot (α) 0.6
Regularisation Constant (β) 1× 10−4

Amount of Global Matrices (K see Eqn. 7.6) 2 (FD001/2) or 3 (FD003/4)
Training/Valid split 80/20

Note that “Amount of Global Matrices” K changes values from 2 to 3 based on whether the
dataset needs 2 or 3 different “mathematical models”. In FD001 and FD002, there is a healthy
and degrading stage; hence, the two global matrices mean both dynamics of the healthy and
degradation stage can be captured. For FD003 and FD004, there is also a healthy stage, but
it has two potential failure modes. Hence, K = 3 is used, so one matrix describes the healthy
dynamics as before, and the other two describe each failure mode.

117

Appendix F

Authorship Statement

118

Bibliography

Xia, T., Dong, Y., Xiao, L., Du, S., Pan, E., & Xi, L. (2018). Recent advances in prognostics and
health management for advanced manufacturing paradigms. Reliability Engineering &
System Safety, 178, 255–268. https://doi.org/https://doi.org/10.1016/j.ress.2018.06.021

Diez-Olivan, A., Del Ser, J., Galar, D., & Sierra, B. (2019). Data fusion and machine learning for
industrial prognosis: Trends and perspectives towards Industry 4.0. Information Fusion,
50, 92–111. https://doi.org/10.1016/j.inffus.2018.10.005

Peng, W., Ye, Z.-S., & Chen, N. (2019). Bayesian Deep Learning based Health Prognostics
Towards Prognostics Uncertainty. IEEE Transactions on Industrial Electronics, 1–1.
https://doi.org/10.1109/TIE.2019.2907440

Xu, Z., & Saleh, J. H. (2021). Machine learning for reliability engineering and safety appli-
cations: Review of current status and future opportunities. Reliability Engineering and
System Safety, 211, 107530. https://doi.org/10.1016/j.ress.2021.107530

Sankararaman, S. (2015). Significance, interpretation, and quantification of uncertainty in prog-
nostics and remaining useful life prediction. Mechanical Systems and Signal Processing,
52-53 (1), 228–247. https://doi.org/10.1016/j.ymssp.2014.05.029

Kraus, M., & Feuerriegel, S. (2019). Forecasting remaining useful life: Interpretable deep learn-
ing approach via variational Bayesian inferences. Decision Support Systems, 125 (July),
113100. https://doi.org/10.1016/j.dss.2019.113100

Nascimento, R. G., & Viana, F. A. C. (2019). Fleet Prognosis with Physics-informed Recurrent
Neural Networks. http://arxiv.org/abs/1901.05512

Yucesan, Y. A., & Viana, F. A. C. (2019). Wind Turbine Main Bearing Fatigue Life Estimation
with Physics-informed Neural Networks. Phm 2019, 11 (1), 1–14. https://doi.org/10.
36001/PHMCONF.2019.V11I1.807

Dourado, A., & Viana, F. A. C. (2019). Physics-Informed Neural Networks for Corrosion-Fatigue
Prognosis. Phm 2019, 11 (1), 1–12.

González-Muñiz, A., Dı́az, I., Cuadrado, A. A., & Garćıa-Pérez, D. (2022). Health indicator for
machine condition monitoring built in the latent space of a deep autoencoder. Reliability
Engineering & System Safety, 224, 108482. https://doi .org/10.1016/J.RESS.2022.
108482

Qin, Y., Zhou, J., & Chen, D. (2021). Unsupervised health indicator construction by a novel
degradation-trend-constrained variational autoencoder and its applications. IEEE/ASME
Transactions on Mechatronics. https://doi.org/10.1109/TMECH.2021.3098737

Ping, G., Chen, J., Pan, T., & Pan, J. (2019). Degradation feature extraction using multi-source
monitoring data via logarithmic normal distribution based variational auto-encoder.
Computers in Industry, 109, 72–82. https://doi.org/10.1016/j.compind.2019.04.013

She, D., Jia, M., & Pecht, M. G. (2020). Sparse auto-encoder with regularization method for
health indicator construction and remaining useful life prediction of rolling bearing.

119

https://doi.org/https://doi.org/10.1016/j.ress.2018.06.021
https://doi.org/10.1016/j.inffus.2018.10.005
https://doi.org/10.1109/TIE.2019.2907440
https://doi.org/10.1016/j.ress.2021.107530
https://doi.org/10.1016/j.ymssp.2014.05.029
https://doi.org/10.1016/j.dss.2019.113100
http://arxiv.org/abs/1901.05512
https://doi.org/10.36001/PHMCONF.2019.V11I1.807
https://doi.org/10.36001/PHMCONF.2019.V11I1.807
https://doi.org/10.1016/J.RESS.2022.108482
https://doi.org/10.1016/J.RESS.2022.108482
https://doi.org/10.1109/TMECH.2021.3098737
https://doi.org/10.1016/j.compind.2019.04.013

Measurement Science and Technology, 31, 105005. https : / / doi . org / 10 . 1088 / 1361 -
6501/ab8c0f

Listou Ellefsen, A., Bjørlykhaug, E., Æsøy, V., Ushakov, S., & Zhang, H. (2019). Remaining
useful life predictions for turbofan engine degradation using semi-supervised deep archi-
tecture. Reliability Engineering and System Safety, 183, 240–251. https://doi.org/10.
1016/j.ress.2018.11.027

Kingma, D. P., & Welling, M. (2014). Auto-encoding variational bayes. CoRR, abs/1312.6114.
Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., & Davidson, J. (2019).

Learning latent dynamics for planning from pixels. In K. Chaudhuri & R. Salakhutdinov
(Eds.), Proceedings of the 36th international conference on machine learning (pp. 2555–
2565). PMLR. https://proceedings.mlr.press/v97/hafner19a.html

Fraccaro, M., Sønderby, S. K., Paquet, U., & Winther, O. (2016). Sequential neural models with
stochastic layers. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.),
Advances in neural information processing systems. Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf

Fraccaro, M., Kamronn, S., Paquet, U., & Winther, O. (2017). A disentangled recognition and
nonlinear dynamics model for unsupervised learning. Advances in Neural Information
Processing Systems, 2017-December, 3602–3611. http://arxiv.org/abs/1710.05741

Karl, M., Soelch, M., Bayer, J., Smagt, P. V. D., & Group, V. (2017). Deep Variational Bayes
Filters : Unsupervised Learning of State Space Models from Raw Data. (2), 1–13.

Becker-Ehmck, P., Peters, J., & Van Der Smagt, P. (2019). Switching linear dynamics for
variational bayes filtering. In K. Chaudhuri & R. Salakhutdinov (Eds.), Proceedings of
the 36th international conference on machine learning (pp. 553–562). PMLR. https :
//proceedings.mlr.press/v97/becker-ehmck19a.html

Maddison, C. J., Lawson, D., Tucker, G., Heess, N., Norouzi, M., Mnih, A., Doucet, A., & Teh,
Y. W. (2017). Filtering variational objectives. https://doi.org/10.48550/arxiv.1705.
09279

Naesseth, C., Linderman, S., Ranganath, R., & Blei, D. (2018). Variational sequential monte
carlo. In A. Storkey & F. Perez-Cruz (Eds.), Proceedings of the twenty-first interna-
tional conference on artificial intelligence and statistics (pp. 968–977). PMLR. https:
//proceedings.mlr.press/v84/naesseth18a.html

Jonschkowski, R., Rastogi, D., & Brock, O. (2018). Differentiable particle filters: End-to-end
learning with algorithmic priors. Robotics: Science and Systems XIV. https://doi.org/
10.15607/RSS.2018.XIV.001

Corenflos, A., Thornton, J., Deligiannidis, G., & Doucet, A. (2021). Differentiable particle
filtering via entropy-regularized optimal transport. In M. Meila & T. Zhang (Eds.),
Proceedings of the 38th international conference on machine learning (pp. 2100–2111).
PMLR. https://proceedings.mlr.press/v139/corenflos21a.html

Kloss, A., Martius, G., & Bohg, J. (2021). How to train your differentiable filter. Autonomous
Robots, 45, 561–578. https://doi.org/10.1007/s10514-021-09990-9

Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2021). Dynami-
cal Variational Autoencoders: A Comprehensive Review. Foundations and Trends® in
Machine Learning, 15 (1-2), 1–175. https://doi.org/10.1561/2200000089

Wei, Y., Wu, D., & Terpenny, J. (2021). Learning the health index of complex systems using
dynamic conditional variational autoencoders. Reliability Engineering & System Safety,
216, 108004. https://doi.org/10.1016/J.RESS.2021.108004

Paris, P. C., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of
Basic Engineering, 85 (4), 528–533. https://doi.org/10.1115/1.3656900

120

https://doi.org/10.1088/1361-6501/ab8c0f
https://doi.org/10.1088/1361-6501/ab8c0f
https://doi.org/10.1016/j.ress.2018.11.027
https://doi.org/10.1016/j.ress.2018.11.027
https://proceedings.mlr.press/v97/hafner19a.html
https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
http://arxiv.org/abs/1710.05741
https://proceedings.mlr.press/v97/becker-ehmck19a.html
https://proceedings.mlr.press/v97/becker-ehmck19a.html
https://doi.org/10.48550/arxiv.1705.09279
https://doi.org/10.48550/arxiv.1705.09279
https://proceedings.mlr.press/v84/naesseth18a.html
https://proceedings.mlr.press/v84/naesseth18a.html
https://doi.org/10.15607/RSS.2018.XIV.001
https://doi.org/10.15607/RSS.2018.XIV.001
https://proceedings.mlr.press/v139/corenflos21a.html
https://doi.org/10.1007/s10514-021-09990-9
https://doi.org/10.1561/2200000089
https://doi.org/10.1016/J.RESS.2021.108004
https://doi.org/10.1115/1.3656900

Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A
systematic review from data acquisition to RUL prediction. https://doi.org/10.1016/j.
ymssp.2017.11.016

Cubillo, A., Perinpanayagam, S., & Esperon-Miguez, M. (2016). A review of physics-based
models in prognostics: Application to gears and bearings of rotating machinery. Advances
in Mechanical Engineering, 8. https://doi.org/10.1177/1687814016664660/ASSET/
IMAGES/LARGE/10.1177 1687814016664660-FIG9.JPEG

Lei, Y., Li, N., Gontarz, S., Lin, J., Radkowski, S., & Dybala, J. (2016). A model-based method
for remaining useful life prediction of machinery. IEEE Transactions on Reliability, 65,
1314–1326. https://doi.org/10.1109/TR.2016.2570568

Liao, L., & Köttig, F. (2016). A hybrid framework combining data-driven and model-based
methods for system remaining useful life prediction. Applied Soft Computing Journal,
44, 191–199. https://doi.org/10.1016/j.asoc.2016.03.013

Liu, H., Chen, J., Hissel, D., & Su, H. (2019). Remaining useful life estimation for proton
exchange membrane fuel cells using a hybrid method. Applied Energy, 237 (January),
910–919. https://doi.org/10.1016/j.apenergy.2019.01.023

Hagmeyer, S., & Zeiler, P. (2023). A comparative study on methods for fusing data-driven
and physics-based models for hybrid remaining useful life prediction of air filters. IEEE
Access. https://doi.org/10.1109/ACCESS.2023.3265722

Baptista, M., Henriques, E. M. P., de Medeiros, I. P. P., Malere, J. P. P., Nascimento, C. L. L., &
Prendinger, H. (2019). Remaining useful life estimation in aeronautics: Combining data-
driven and Kalman filtering. Reliability Engineering and System Safety, 184 (February
2018), 228–239. https://doi.org/10.1016/j.ress.2018.01.017

Zhang, H., Miao, Q., Zhang, X., & Liu, Z. (2018). An improved unscented particle filter ap-
proach for lithium-ion battery remaining useful life prediction. Microelectronics Relia-
bility, 81 (24), 288–298. https://doi.org/10.1016/j.microrel.2017.12.036

Zhao, G., Zhang, G., Liu, Y., Zhang, B., & Hu, C. (2017). Lithium-ion battery remaining
useful life prediction with Deep Belief Network and Relevance Vector Machine. 2017
IEEE International Conference on Prognostics and Health Management, ICPHM 2017,
7–13. https://doi.org/10.1109/ICPHM.2017.7998298

Hu, X., Jiang, J., Cao, D., & Egardt, B. (2016). Battery health prognosis for electric vehicles
using sample entropy and sparse Bayesian predictive modeling. IEEE Transactions on
Industrial Electronics, 63 (4), 2645–2656. https://doi.org/10.1109/TIE.2015.2461523

Wu, J., Su, Y., Cheng, Y., Shao, X., Deng, C., & Liu, C. (2018). Multi-sensor information
fusion for remaining useful life prediction of machining tools by adaptive network based
fuzzy inference system. Applied Soft Computing Journal, 68, 13–23. https://doi.org/10.
1016/j.asoc.2018.03.043

Li, X., Yang, X., Yang, Y., Bennett, I., & Mba, D. (2019). An intelligent diagnostic and prog-
nostic framework for large-scale rotating machinery in the presence of scarce failure data.
Structural Health Monitoring. https://doi.org/10.1177/1475921719884019

Son, K. L., Fouladirad, M., Barros, A., Levrat, E., & Iung, B. (2013). Remaining useful life
estimation based on stochastic deterioration models: A comparative study. Reliability
Engineering and System Safety, 112, 165–175. https://doi.org/10.1016/j.ress.2012.11.
022

Guo, L., Li, N., Jia, F., Lei, Y., & Lin, J. (2017). A recurrent neural network based health
indicator for remaining useful life prediction of bearings. Neurocomputing, 240, 98–109.
https://doi.org/10.1016/j.neucom.2017.02.045

121

https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1016/j.ymssp.2017.11.016
https://doi.org/10.1177/1687814016664660/ASSET/IMAGES/LARGE/10.1177_1687814016664660-FIG9.JPEG
https://doi.org/10.1177/1687814016664660/ASSET/IMAGES/LARGE/10.1177_1687814016664660-FIG9.JPEG
https://doi.org/10.1109/TR.2016.2570568
https://doi.org/10.1016/j.asoc.2016.03.013
https://doi.org/10.1016/j.apenergy.2019.01.023
https://doi.org/10.1109/ACCESS.2023.3265722
https://doi.org/10.1016/j.ress.2018.01.017
https://doi.org/10.1016/j.microrel.2017.12.036
https://doi.org/10.1109/ICPHM.2017.7998298
https://doi.org/10.1109/TIE.2015.2461523
https://doi.org/10.1016/j.asoc.2018.03.043
https://doi.org/10.1016/j.asoc.2018.03.043
https://doi.org/10.1177/1475921719884019
https://doi.org/10.1016/j.ress.2012.11.022
https://doi.org/10.1016/j.ress.2012.11.022
https://doi.org/10.1016/j.neucom.2017.02.045

Liu, X., Chen, G., Cheng, Z., Wei, X., & Wang, H. (2022). Convolution neural network based
particle filtering for remaining useful life prediction of rolling bearing. Advances in Me-
chanical Engineering, 14, 168781322211006. https://doi.org/10.1177/16878132221100631

Xu, F., Yang, F., Fan, X., Huang, Z., & Tsui, K. L. (2020). Extracting degradation trends for
roller bearings by using a moving-average stacked auto-encoder and a novel exponential
function. Measurement: Journal of the International Measurement Confederation, 152.
https://doi.org/10.1016/j.measurement.2019.107371

Mao, W., He, J., Tang, J., & Li, Y. (2018). Predicting remaining useful life of rolling bearings
based on deep feature representation and long short-term memory neural network. Ad-
vances in Mechanical Engineering, 10 (12), 168781401881718. https://doi.org/10.1177/
1687814018817184

Du, Y., Wu, T., & Makis, V. (2017). Parameter estimation and remaining useful life prediction
of lubricating oil with HMM. Wear, 376-377, 1227–1233. https://doi.org/10.1016/j.
wear.2016.11.047

Kim, M. J., Jiang, R., Makis, V., & Lee, C. G. (2011). Optimal Bayesian fault prediction
scheme for a partially observable system subject to random failure. European Journal
of Operational Research, 214 (2), 331–339. https://doi.org/10.1016/j.ejor.2011.04.023

Kumar, A., Chinnam, R. B., & Tseng, F. (2019). An HMM and polynomial regression based
approach for remaining useful life and health state estimation of cutting tools. Computers
and Industrial Engineering, 128 (May 2018), 1008–1014. https://doi.org/10.1016/j.cie.
2018.05.017

Xia, M., Li, T., Shu, T., Wan, J., De silva, C. W., & Wang, Z. (2018). A Two-Stage Approach
for the Remaining Useful Life Prediction of Bearings using Deep Neural Networks. IEEE
Transactions on Industrial Informatics, PP(100), 1. https://doi.org/10.1109/TII.2018.
2868687

Heimes, F. O. (2008). Recurrent neural networks for remaining useful life estimation. 2008
International Conference on Prognostics and Health Management, 1–6. https://doi.org/
10.1109/PHM.2008.4711422

Cao, L., Zhang, H., Meng, Z., & Wang, X. (2023). A parallel gru with dual-stage attention
mechanism model integrating uncertainty quantification for probabilistic rul prediction
of wind turbine bearings. Reliability Engineering & System Safety, 235, 109197. https:
//doi.org/https://doi.org/10.1016/j.ress.2023.109197

Guo, J., Wang, J., Wang, Z., Gong, Y., Qi, J., Wang, G., & Tang, C. (2023). A cnn-bilstm-
bootstrap integrated method for remaining useful life prediction of rolling bearings.
Quality and Reliability Engineering International. https://doi.org/10.1002/QRE.3314

Saha, B., Goebel, K., Poll, S., & Christophersen, J. (2009). Prognostics methods for battery
health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation
and Measurement, 58 (2), 291–296. https://doi.org/10.1109/TIM.2008.2005965

Saha, B., & Goebel, K. (2008). Uncertainty management for diagnostics and prognostics of
batteries using Bayesian techniques. IEEE Aerospace Conference Proceedings, 1–8. https:
//doi.org/10.1109/AERO.2008.4526631

Liu, Q., Dong, M., Lv, W., Geng, X., & Li, Y. (2015). A novel method using adaptive hidden
semi-Markov model for multi-sensor monitoring equipment health prognosis. Mechanical
Systems and Signal Processing, 64-65, 217–232. https://doi.org/10.1016/j.ymssp.2015.
03.029

Cannarile, F., Compare, M., Rossi, E., & Zio, E. (2017). A fuzzy expectation maximization
based method for estimating the parameters of a multi-state degradation model from

122

https://doi.org/10.1177/16878132221100631
https://doi.org/10.1016/j.measurement.2019.107371
https://doi.org/10.1177/1687814018817184
https://doi.org/10.1177/1687814018817184
https://doi.org/10.1016/j.wear.2016.11.047
https://doi.org/10.1016/j.wear.2016.11.047
https://doi.org/10.1016/j.ejor.2011.04.023
https://doi.org/10.1016/j.cie.2018.05.017
https://doi.org/10.1016/j.cie.2018.05.017
https://doi.org/10.1109/TII.2018.2868687
https://doi.org/10.1109/TII.2018.2868687
https://doi.org/10.1109/PHM.2008.4711422
https://doi.org/10.1109/PHM.2008.4711422
https://doi.org/https://doi.org/10.1016/j.ress.2023.109197
https://doi.org/https://doi.org/10.1016/j.ress.2023.109197
https://doi.org/10.1002/QRE.3314
https://doi.org/10.1109/TIM.2008.2005965
https://doi.org/10.1109/AERO.2008.4526631
https://doi.org/10.1109/AERO.2008.4526631
https://doi.org/10.1016/j.ymssp.2015.03.029
https://doi.org/10.1016/j.ymssp.2015.03.029

imprecise maintenance outcomes. Annals of Nuclear Energy, 110, 739–752. https://doi.
org/10.1016/j.anucene.2017.07.017

Zhang, W., Yang, D., & Wang, H. (2019). Data-Driven Methods for Predictive Maintenance
of Industrial Equipment: A Survey. IEEE Systems Journal, 13 (3), 2213–2227. https:
//doi.org/10.1109/JSYST.2019.2905565

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521 (7553), 436–444. https:
//doi.org/10.1038/nature14539

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
approximators. Neural Networks. https://doi.org/10.1016/0893-6080(89)90020-8

Wu, Y., Yuan, M., Dong, S., Lin, L., & Liu, Y. (2018). Remaining useful life estimation of
engineered systems using vanilla LSTM neural networks. Neurocomputing, 275, 167–
179. https://doi.org/10.1016/j.neucom.2017.05.063

Wang, F., Han, Q., Liu, X., Deng, G., Yu, X., & Li, H. (2019). Remaining Life Prediction
Method for Rolling Bearing Based on the Long Short-Term Memory Network. Neural
Processing Letters, 50 (3), 2437–2454. https://doi.org/10.1007/s11063-019-10016-w

Huang, Y., Liu, C., Zha, X. F., & Li, Y. (2010). A lean model for performance assessment of
machinery using second generation wavelet packet transform and Fisher criterion. Expert
Systems with Applications, 37 (5), 3815–3822. https://doi.org/10.1016/j.eswa.2009.11.
038

McKee, K. K., Forbes, G. L., Mazhar, I., Entwistle, R., Hodkiewicz, M., & Howard, I. (2015).
A vibration cavitation sensitivity parameter based on spectral and statistical methods.
Expert Systems with Applications, 42 (1), 67–78. https://doi.org/10.1016/j.eswa.2014.
07.029

Lei, Y., Zuo, M. J., He, Z., & Zi, Y. (2010). A multidimensional hybrid intelligent method
for gear fault diagnosis. Expert Systems with Applications, 37 (2), 1419–1430. https :
//doi.org/10.1016/j.eswa.2009.06.060

Chen, Z. Q., Li, C., & Sanchez, R. V. (2015). Gearbox Fault Identification and Classification
with Convolutional Neural Networks. Shock and Vibration, 2015. https://doi.org/10.
1155/2015/390134

Peng, Z. K., & Chu, F. L. (2004). Application of the wavelet transform in machine condition
monitoring and fault diagnostics: A review with bibliography. Mechanical Systems and
Signal Processing, 18 (2), 199–221. https://doi.org/10.1016/S0888-3270(03)00075-X

Kanarachos, S., Christopoulos, S. R. G., Chroneos, A., & Fitzpatrick, M. E. (2017). Detecting
anomalies in time series data via a deep learning algorithm combining wavelets, neural
networks and Hilbert transform. Expert Systems with Applications, 85, 292–304. https:
//doi.org/10.1016/j.eswa.2017.04.028

Ren, L., Cheng, X., Wang, X., Cui, J., & Zhang, L. (2019). Multi-scale Dense Gate Recurrent
Unit Networks for bearing remaining useful life prediction. Future Generation Computer
Systems, 94, 601–609. https://doi.org/10.1016/j.future.2018.12.009

Chen, C., Liu, Y., Wang, S., Sun, X., Di Cairano-Gilfedder, C., Titmus, S., & Syntetos, A. A.
(2020). Predictive maintenance using cox proportional hazard deep learning. Advanced
Engineering Informatics, 44 (December 2019), 101054. https://doi.org/10.1016/j.aei.
2020.101054

Yu, W., Kim, I. Y., & Mechefske, C. (2019). Remaining useful life estimation using a bidi-
rectional recurrent neural network based autoencoder scheme. Mechanical Systems and
Signal Processing, 129, 764–780. https://doi.org/10.1016/J.YMSSP.2019.05.005

Yang, L., Wang, F., Zhang, J., & Ren, W. (2019). Remaining useful life prediction of ultrasonic
motor based on Elman neural network with improved particle swarm optimization. Mea-

123

https://doi.org/10.1016/j.anucene.2017.07.017
https://doi.org/10.1016/j.anucene.2017.07.017
https://doi.org/10.1109/JSYST.2019.2905565
https://doi.org/10.1109/JSYST.2019.2905565
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.neucom.2017.05.063
https://doi.org/10.1007/s11063-019-10016-w
https://doi.org/10.1016/j.eswa.2009.11.038
https://doi.org/10.1016/j.eswa.2009.11.038
https://doi.org/10.1016/j.eswa.2014.07.029
https://doi.org/10.1016/j.eswa.2014.07.029
https://doi.org/10.1016/j.eswa.2009.06.060
https://doi.org/10.1016/j.eswa.2009.06.060
https://doi.org/10.1155/2015/390134
https://doi.org/10.1155/2015/390134
https://doi.org/10.1016/S0888-3270(03)00075-X
https://doi.org/10.1016/j.eswa.2017.04.028
https://doi.org/10.1016/j.eswa.2017.04.028
https://doi.org/10.1016/j.future.2018.12.009
https://doi.org/10.1016/j.aei.2020.101054
https://doi.org/10.1016/j.aei.2020.101054
https://doi.org/10.1016/J.YMSSP.2019.05.005

surement: Journal of the International Measurement Confederation, 143, 27–38. https:
//doi.org/10.1016/j.measurement.2019.05.013

Zhang, B., Zhang, S., & Li, W. (2019). Bearing performance degradation assessment using
long short-term memory recurrent network. Computers in Industry, 106, 14–29. https:
//doi.org/10.1016/j.compind.2018.12.016

Aggarwal, K., Atan, O., Farahat, A. K., Zhang, C., Ristovski, K., & Gupta, C. (2019). Two
birds with one network: Unifying failure event prediction and time-to-failure modeling.
Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 1308–
1317. https://doi.org/10.1109/BigData.2018.8622431

Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). Long short-term memory recurrent neural
network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions
on Vehicular Technology, 67 (7), 5695–5705. https://doi.org/10.1109/TVT.2018.2805189

Zhou, Y., Huang, Y., Pang, J., & Wang, K. (2019). Remaining useful life prediction for super-
capacitor based on long short-term memory neural network. Journal of Power Sources,
440 (March), 227149. https://doi.org/10.1016/j.jpowsour.2019.227149

Elsheikh, A., Yacout, S., & Ouali, M. S. (2019). Bidirectional handshaking LSTM for remaining
useful life prediction. Neurocomputing, 323, 148–156. https://doi.org/10.1016/j.neucom.
2018.09.076

Wu, J., Hu, K., Cheng, Y., Zhu, H., Shao, X., & Wang, Y. (2019). Data-driven remaining
useful life prediction via multiple sensor signals and deep long short-term memory neural
network. ISA Transactions, 97, 241–250. https://doi.org/10.1016/j.isatra.2019.07.004

Huang, C. G., Huang, H. Z., & Li, Y. F. (2019). A Bidirectional LSTM Prognostics Method
Under Multiple Operational Conditions. https://doi.org/10.1109/TIE.2019.2891463

Radaideh, M. I., Pigg, C., Kozlowski, T., Deng, Y., & Qu, A. (2020). Neural-based time series
forecasting of loss of coolant accidents in nuclear power plants. Expert Systems with
Applications, 160, 113699. https://doi.org/10.1016/j.eswa.2020.113699

Zhu, J., Chen, N., & Peng, W. (2019). Estimation of Bearing Remaining Useful Life Based on
Multiscale Convolutional Neural Network. IEEE Transactions on Industrial Electronics,
66 (4), 3208–3216. https://doi.org/10.1109/TIE.2018.2844856

Li, X., Zhang, W., & Ding, Q. (2019). Deep learning-based remaining useful life estimation of
bearings using multi-scale feature extraction. Reliability Engineering and System Safety,
182, 208–218. https://doi.org/10.1016/j.ress.2018.11.011

Yang, W., Yao, Q., Ye, K., & Xu, C. Z. (2020). Empirical Mode Decomposition and Temporal
Convolutional Networks for Remaining Useful Life Estimation. International Journal of
Parallel Programming, 48 (1), 61–79. https://doi.org/10.1007/s10766-019-00650-1

Wang, Q., Zhao, B., Ma, H., Chang, J., & Mao, G. (2019). A method for rapidly evaluating re-
liability and predicting remaining useful life using two-dimensional convolutional neural
network with signal conversion. Journal of Mechanical Science and Technology, 33 (6),
2561–2571. https://doi.org/10.1007/s12206-019-0504-x

Li, X., Ding, Q., & Sun, J. Q. (2018). Remaining useful life estimation in prognostics using deep
convolution neural networks. Reliability Engineering and System Safety, 172 (December
2017), 1–11. https://doi.org/10.1016/j.ress.2017.11.021

Yang, H., Zhao, F., Jiang, G., Sun, Z., & Mei, X. (2019). A Novel Deep Learning Approach
for Machinery Prognostics Based on Time Windows. Applied Sciences, 9 (22), 4813.
https://doi.org/10.3390/app9224813

Yang, B., Liu, R., & Zio, E. (2019). Remaining useful life prediction based on a double-
convolutional neural network architecture. IEEE Transactions on Industrial Electronics,
66 (12), 9521–9530. https://doi.org/10.1109/TIE.2019.2924605

124

https://doi.org/10.1016/j.measurement.2019.05.013
https://doi.org/10.1016/j.measurement.2019.05.013
https://doi.org/10.1016/j.compind.2018.12.016
https://doi.org/10.1016/j.compind.2018.12.016
https://doi.org/10.1109/BigData.2018.8622431
https://doi.org/10.1109/TVT.2018.2805189
https://doi.org/10.1016/j.jpowsour.2019.227149
https://doi.org/10.1016/j.neucom.2018.09.076
https://doi.org/10.1016/j.neucom.2018.09.076
https://doi.org/10.1016/j.isatra.2019.07.004
https://doi.org/10.1109/TIE.2019.2891463
https://doi.org/10.1016/j.eswa.2020.113699
https://doi.org/10.1109/TIE.2018.2844856
https://doi.org/10.1016/j.ress.2018.11.011
https://doi.org/10.1007/s10766-019-00650-1
https://doi.org/10.1007/s12206-019-0504-x
https://doi.org/10.1016/j.ress.2017.11.021
https://doi.org/10.3390/app9224813
https://doi.org/10.1109/TIE.2019.2924605

Wang, B., Lei, Y., Li, N., & Yan, T. (2019). Deep separable convolutional network for remain-
ing useful life prediction of machinery. Mechanical Systems and Signal Processing, 134,
106330. https://doi.org/10.1016/j.ymssp.2019.106330

Jiang, J.-R., Lee, J.-E., & Zeng, Y.-M. (2019). Time Series Multiple Channel Convolutional
Neural Network with Attention-Based Long Short-Term Memory for Predicting Bearing
Remaining Useful Life. Sensors, 20 (1), 166. https://doi.org/10.3390/s20010166

Kong, Z., Cui, Y., Xia, Z., & Lv, H. (2019). Convolution and Long Short-Term Memory Hybrid
Deep Neural Networks for Remaining Useful Life Prognostics. Applied Sciences, 9 (19),
4156. https://doi.org/10.3390/app9194156

Zhao, R., Yan, R., Wang, J., & Mao, K. (2017). Learning to monitor machine health with
convolutional Bi-directional LSTM networks. Sensors (Switzerland), 17 (2). https://doi.
org/10.3390/s17020273

An, Q., Tao, Z., Xu, X., El Mansori, M., & Chen, M. (2020). A data-driven model for milling
tool remaining useful life prediction with convolutional and stacked LSTM network.
Measurement: Journal of the International Measurement Confederation, 154, 107461.
https://doi.org/10.1016/j.measurement.2019.107461

Wang, B., Lei, Y., Yan, T., Li, N., & Guo, L. (2019). Recurrent convolutional neural network
: A new framework for remaining useful life prediction of machinery. Neurocomputing,
379 (40), 117–129. https://doi.org/10.1016/j.neucom.2019.10.064

Ragab, M., Chen, Z., Wu, M., Kwoh, C.-K., Yan, R., & Li, X. (2021). Attention-based sequence
to sequence model for machine remaining useful life prediction. Neurocomputing, 466,
58–68. https://doi.org/10.1016/j.neucom.2021.09.022

Chen, Z., Wu, M., Zhao, R., Guretno, F., Yan, R., & Li, X. (2021). Machine remaining useful
life prediction via an attention-based deep learning approach. IEEE Transactions on
Industrial Electronics, 68, 2521–2531. https://doi.org/10.1109/TIE.2020.2972443

Zhang, J., Jiang, Y., Wu, S., Li, X., Luo, H., & Yin, S. (2022). Prediction of remaining useful
life based on bidirectional gated recurrent unit with temporal self-attention mechanism.
Reliability Engineering & System Safety, 221, 108297. https://doi.org/10.1016/j.ress.
2021.108297

Nie, L., Zhang, L., Xu, S., Cai, W., & Yang, H. (2022). Remaining useful life prediction of
milling cutters based on cnn-bilstm and attention mechanism. Symmetry 2022, Vol. 14,
Page 2243, 14, 2243. https://doi.org/10.3390/SYM14112243

Qin, Y., Cai, N., Gao, C., Zhang, Y., Cheng, Y., & Chen, X. (2022). Remaining useful life pre-
diction using temporal deep degradation network for complex machinery with attention-
based feature extraction. ArXiv. https://doi.org/10.48550/arxiv.2202.10916

Remadna, I., Terrissa, L. S., Masry, Z. A., & Zerhouni, N. (2022). Rul prediction using a
fusion of attention-based convolutional variational autoencoder and ensemble learning
classifier. IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2022.3190639

Liu, H., Liu, Z., Jia, W., & Lin, X. (2021). Remaining useful life prediction using a novel feature-
attention-based end-to-end approach. IEEE Transactions on Industrial Informatics, 17,
1197–1207. https://doi.org/10.1109/TII.2020.2983760

Xu, D., Qiu, H., Gao, L., Yang, Z., & Wang, D. (2022). A novel dual-stream self-attention
neural network for remaining useful life estimation of mechanical systems. Reliability
Engineering & System Safety, 222, 108444. https://doi.org/10.1016/j.ress.2022.108444

Zhai, S., Gehring, B., & Reinhart, G. (2021). Enabling predictive maintenance integrated pro-
duction scheduling by operation-specific health prognostics with generative deep learn-
ing. Journal of Manufacturing Systems. https://doi.org/10.1016/J.JMSY.2021.02.006

125

https://doi.org/10.1016/j.ymssp.2019.106330
https://doi.org/10.3390/s20010166
https://doi.org/10.3390/app9194156
https://doi.org/10.3390/s17020273
https://doi.org/10.3390/s17020273
https://doi.org/10.1016/j.measurement.2019.107461
https://doi.org/10.1016/j.neucom.2019.10.064
https://doi.org/10.1016/j.neucom.2021.09.022
https://doi.org/10.1109/TIE.2020.2972443
https://doi.org/10.1016/j.ress.2021.108297
https://doi.org/10.1016/j.ress.2021.108297
https://doi.org/10.3390/SYM14112243
https://doi.org/10.48550/arxiv.2202.10916
https://doi.org/10.1109/TR.2022.3190639
https://doi.org/10.1109/TII.2020.2983760
https://doi.org/10.1016/j.ress.2022.108444
https://doi.org/10.1016/J.JMSY.2021.02.006

Que, Z. J., Xiong, Y., & Xu, Z. G. (2019). A semi-supervised approach for steam turbine health
prognostics based on gan and pf. IEEE International Conference on Industrial Engineer-
ing and Engineering Management, 1476–1480. https://doi.org/10.1109/IEEM44572.
2019.8978717

Yang, T., Wang, J., Chen, L., Cui, Z., Qi, J., & Wang, R. (2020). Machinery health prognostics
of dust removal fan data through deep neural networks. In H. Ning & F. Shi (Eds.),
Cyberspace data and intelligence, and cyber-living, syndrome, and health (pp. 27–37).
Springer Singapore. https://doi.org/10.1007/978-981-33-4336-8 3

Eker, O. F., Camci, F., & Jennions, I. K. (2012). Major Challenges in Prognostics: Study
on Benchmarking Prognostics Datasets (tech. rep.). PHM Society. http://dspace.lib.
cranfield.ac.uk/handle/1826/9994

Su, C., Li, L., & Wen, Z. (2020). Remaining useful life prediction via a variational autoencoder
and a time-window-based sequence neural network. Quality and Reliability Engineering
International, 36, 1639–1656. https://doi.org/10.1002/QRE.2651

Yu, K., Wang, D., & Li, H. (2021). A prediction model for remaining useful life of turbofan
engines by fusing broad learning system and temporal convolutional network. 2021 In-
ternational Conference on Information, Cybernetics, and Computational Social Systems,
ICCSS 2021, 137–142. https://doi.org/10.1109/ICCSS53909.2021.9722026

Wang, T., Guo, D., & Sun, X. (2021). A new paralleled semi-supervised deep learning method
for remaining useful life prediction. In F. Sun, H. Liu, & B. Fang (Eds.), Cognitive
systems and signal processing (pp. 219–226). Springer Singapore.

Martin, G. S., & Droguett, E. L. (2022). Temporal variational auto-encoders for semi-supervised
remaining useful life and fault diagnosis. IEEE Access, 10, 55112–55125. https://doi.
org/10.1109/ACCESS.2022.3174860

Verstraete, D., Droguett, E., & Modarres, M. (2019). A Deep Adversarial Approach Based on
Multi-Sensor Fusion for Semi-Supervised Remaining Useful Life Prognostics. Sensors,
20 (1), 176. https://doi.org/10.3390/s20010176

Hu, Y., & Luo, P. (2012). Performance Data Prognostics Based on Relevance Vector Machine
and Particle Filter. Ephm, 33, 349–354. https://doi.org/10.3303/CET1333059

Cheng, F., Qu, L., & Qiao, W. (2018). Fault prognosis and remaining useful life prediction of
wind turbine gearboxes using current signal analysis. IEEE Transactions on Sustainable
Energy, 9 (1), 157–167. https://doi.org/10.1109/TSTE.2017.2719626

Cheng, F., Qu, L., Qiao, W., & Hao, L. (2019). Enhanced Particle Filtering for Bearing Remain-
ing Useful Life Prediction of Wind Turbine Drivetrain Gearboxes. IEEE Transactions
on Industrial Electronics, 66 (6), 4738–4748. https://doi.org/10.1109/TIE.2018.2866057

Bai, G., & Wang, P. (2016). Prognostics Using an Adaptive Self-Cognizant Dynamic System
Approach. IEEE Transactions on Reliability, 65 (3), 1427–1437. https://doi .org/10.
1109/TR.2016.2570542

Tse, Y. L., Cholette, M. E., & Tse, P. W. (2019). A multi-sensor approach to remaining useful
life estimation for a slurry pump. Measurement: Journal of the International Measure-
ment Confederation, 139, 140–151. https://doi.org/10.1016/j.measurement.2019.02.079

Xu, Z., Guo, Y., & Saleh, J. (2021). Accurate Remaining Useful Life Prediction With Uncer-
tainty Quantification: A Deep Learning and Nonstationary Gaussian Process Approach.
IEEE Transactions on Reliability. https://doi.org/10.1109/TR.2021.3124944

Deutsch, J., He, M., & He, D. (2017). Remaining Useful Life Prediction of Hybrid Ceramic Bear-
ings Using an Integrated Deep Learning and Particle Filter Approach. Applied Sciences,
7 (7), 649. https://doi.org/10.3390/app7070649

126

https://doi.org/10.1109/IEEM44572.2019.8978717
https://doi.org/10.1109/IEEM44572.2019.8978717
https://doi.org/10.1007/978-981-33-4336-8_3
http://dspace.lib.cranfield.ac.uk/handle/1826/9994
http://dspace.lib.cranfield.ac.uk/handle/1826/9994
https://doi.org/10.1002/QRE.2651
https://doi.org/10.1109/ICCSS53909.2021.9722026
https://doi.org/10.1109/ACCESS.2022.3174860
https://doi.org/10.1109/ACCESS.2022.3174860
https://doi.org/10.3390/s20010176
https://doi.org/10.3303/CET1333059
https://doi.org/10.1109/TSTE.2017.2719626
https://doi.org/10.1109/TIE.2018.2866057
https://doi.org/10.1109/TR.2016.2570542
https://doi.org/10.1109/TR.2016.2570542
https://doi.org/10.1016/j.measurement.2019.02.079
https://doi.org/10.1109/TR.2021.3124944
https://doi.org/10.3390/app7070649

Xu, M., Baraldi, P., Al-Dahidi, S., & Zio, E. (2020). Fault prognostics by an ensemble of Echo
State Networks in presence of event based measurements. Engineering Applications of
Artificial Intelligence, 87 (October 2019), 103346. https://doi.org/10.1016/j.engappai.
2019.103346

Gal, Y., & Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In M. F. Balcan & K. Q. Weinberger (Eds.), Proceedings of
the 33rd international conference on machine learning (pp. 1050–1059). PMLR. https:
//proceedings.mlr.press/v48/gal16.html

Mitici, M., de Pater, I., Barros, A., & Zeng, Z. (2023). Dynamic predictive maintenance for mul-
tiple components using data-driven probabilistic rul prognostics: The case of turbofan
engines. Reliability Engineering & System Safety, 234, 109199. https://doi.org/https:
//doi.org/10.1016/j.ress.2023.109199

Lee, J., & Mitici, M. (2023). Deep reinforcement learning for predictive aircraft maintenance
using probabilistic remaining-useful-life prognostics. Reliability Engineering & System
Safety, 230, 108908. https://doi.org/https://doi.org/10.1016/j.ress.2022.108908

Rigamonti, M., Baraldi, P., Zio, E., Roychoudhury, I., Goebel, K., & Poll, S. (2018). Ensemble
of optimized echo state networks for remaining useful life prediction. Neurocomputing.
https://doi.org/10.1016/j.neucom.2017.11.062

Simon, D. (2006). Optimal state estimation: Kalman, h infinity, and nonlinear approaches.
Wiley. https://books.google.com.au/books?id=UiMVoP%5C 7TZkC

Särkkä, S. (2013). Bayesian filtering and smoothing. Cambridge University Press. https://doi.
org/10.1017/CBO9781139344203

Li, A. H., Wu, P., & Kennedy, M. (2021). Replay overshooting: Learning stochastic latent dy-
namics with the extended kalman filter. 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021-May, 852–858. https://doi.org/10.1109/ICRA48506.
2021.9560811

de Bézenac, E., Rangapuram, S. S., Benidis, K., Bohlke-Schneider, M., Kurle, R., Stella, L.,
Hasson, H., Gallinari, P., & Januschowski, T. (2020). Normalizing kalman filters for
multivariate time series analysis. In H. Larochelle, M. Ranzato, R. Hadsell, M. Bal-
can, & H. Lin (Eds.), Advances in neural information processing systems (pp. 2995–
3007). Curran Associates, Inc. https : / / proceedings . neurips . cc / paper / 2020 / file /
1f47cef5e38c952f94c5d61726027439-Paper.pdf

Burda, Y., Grosse, R. B., & Salakhutdinov, R. (2016). Importance weighted autoencoders.
CoRR, abs/1509.00519.

Ishizone, T., Higuchi, T., & Nakamura, K. (2020). Ensemble kalman variational objectives:
Nonlinear latent trajectory inference with a hybrid of variational inference and ensemble
kalman filter. https://doi.org/10.48550/arxiv.2010.08729

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. (2018). Neural Ordinary
Differential Equations. (NeurIPS). http://arxiv.org/abs/1806.07366

Li, X., Wong, T.-K. L., Chen, R. T. Q., & Duvenaud, D. (2020). Scalable gradients for stochastic
differential equations. In S. Chiappa & R. Calandra (Eds.), Proceedings of the twenty
third international conference on artificial intelligence and statistics (pp. 3870–3882).
PMLR. https://proceedings.mlr.press/v108/li20i.html

Star, M., & McKee, K. (2021). Remaining useful life estimation using neural ordinary differential
equations. International Journal of Prognostics and Health Management, 12, 1–15. https:
//doi.org/10.36001/IJPHM.2021.V12I2.2938

127

https://doi.org/10.1016/j.engappai.2019.103346
https://doi.org/10.1016/j.engappai.2019.103346
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://doi.org/https://doi.org/10.1016/j.ress.2023.109199
https://doi.org/https://doi.org/10.1016/j.ress.2023.109199
https://doi.org/https://doi.org/10.1016/j.ress.2022.108908
https://doi.org/10.1016/j.neucom.2017.11.062
https://books.google.com.au/books?id=UiMVoP%5C_7TZkC
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1017/CBO9781139344203
https://doi.org/10.1109/ICRA48506.2021.9560811
https://doi.org/10.1109/ICRA48506.2021.9560811
https://proceedings.neurips.cc/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f47cef5e38c952f94c5d61726027439-Paper.pdf
https://doi.org/10.48550/arxiv.2010.08729
http://arxiv.org/abs/1806.07366
https://proceedings.mlr.press/v108/li20i.html
https://doi.org/10.36001/IJPHM.2021.V12I2.2938
https://doi.org/10.36001/IJPHM.2021.V12I2.2938

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016-Decem, 770–778. https://doi.org/10.1109/CVPR.2016.90

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for
aircraft engine run-to-failure simulation. 2008 International Conference on Prognostics
and Health Management, 41, 1–9. https://doi.org/10.1109/PHM.2008.4711414

Pasa, G., Medeiros, I., & Yoneyama, T. (2019). Operating Condition-Invariant Neural Network-
based Prognostics Methods applied on Turbofan Aircraft Engines. Annual Conference
of the PHM Society, 11 (1). https://doi.org/https://doi.org/10.36001/phmconf.2019.
v11i1.786

Balandat, M., Karrer, B., Jiang, D. R., Daulton, S., Letham, B., Wilson, A. G., & Bakshy, E.
(2019). BoTorch: Programmable Bayesian Optimization in PyTorch. http://arxiv.org/
abs/1910.06403

Frazier, P. I. (2018). A tutorial on bayesian optimization.
Queiruga, A. F., Erichson, N. B., Taylor, D., & Mahoney, M. W. (2020). Continuous-in-depth

neural networks. http://arxiv.org/abs/2008.02389
Si, X. S., Wang, W., Hu, C. H., & Zhou, D. H. (2011). Remaining useful life estimation -

A review on the statistical data driven approaches. European Journal of Operational
Research, 213 (1), 1–14. https://doi.org/10.1016/j.ejor.2010.11.018

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., Facebook, Z. D., Research, A. I.,
Lin, Z., Desmaison, A., Antiga, L., Srl, O., & Lerer, A. (2017). Automatic differentiation
in PyTorch (tech. rep.).

Costa, N., & Sánchez, L. (2021). Remaining useful life estimation using a recurrent variational
autoencoder. In H. Sanjurjo González, I. Pastor López, P. Garćıa Bringas, H. Quintián,
& E. Corchado (Eds.), Hybrid artificial intelligent systems (pp. 53–64). Springer Inter-
national Publishing.

Krokotsch, T., Knaak, M., & Gühmann, C. (2022). Improving semi-supervised learning for
remaining useful lifetime estimation through self-supervision. International Journal of
Prognostics and Health Management, 13. https://doi.org/10.36001/IJPHM.2022.V13I1.
3096

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &
Polosukhin, I. (2017). Attention is all you need. Proceedings of the 31st International
Conference on Neural Information Processing Systems, 6000–6010.

Sarkka, S., Solin, A., & Hartikainen, J. (2013). Spatiotemporal learning via infinite-dimensional
bayesian filtering and smoothing: A look at gaussian process regression through kalman
filtering. IEEE Signal Processing Magazine, 30, 51–61. https://doi.org/10.1109/MSP.
2013.2246292

van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine
Learning, 109, 373–440. https://doi.org/10.1007/S10994-019-05855-6/FIGURES/5

Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot, X., Botvinick, M. M., Mohamed,
S., & Lerchner, A. (2017). Beta-vae: Learning basic visual concepts with a constrained
variational framework. ICLR, 1–22.

Dupont, E., Doucet, A., & Teh, Y. W. (2019). Augmented neural odes. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances
in neural information processing systems (pp. 1–20). Curran Associates, Inc. https://
proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf

128

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/PHM.2008.4711414
https://doi.org/https://doi.org/10.36001/phmconf.2019.v11i1.786
https://doi.org/https://doi.org/10.36001/phmconf.2019.v11i1.786
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/2008.02389
https://doi.org/10.1016/j.ejor.2010.11.018
https://doi.org/10.36001/IJPHM.2022.V13I1.3096
https://doi.org/10.36001/IJPHM.2022.V13I1.3096
https://doi.org/10.1109/MSP.2013.2246292
https://doi.org/10.1109/MSP.2013.2246292
https://doi.org/10.1007/S10994-019-05855-6/FIGURES/5
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/21be9a4bd4f81549a9d1d241981cec3c-Paper.pdf

Finlay, C., Jacobsen, J., Nurbekyan, L., & Oberman, A. M. (2020). How to train your neural
ODE: The world of Jacobian and Kinetic regularization. CoRR, abs/2002.02798. https:
//arxiv.org/abs/2002.02798

Särkkä, S., & Garcia-Fernandez, A. F. (2021). Temporal parallelization of bayesian smoothers.
IEEE Transactions on Automatic Control, 66 (1), 299–306. https://doi.org/10.1109/
TAC.2020.2976316

Lai, J., Domke, J., & Sheldon, D. (2021). Variational marginal particle filters. Proceedings
of The International Conference on Artificial Intelligence and Statistics (AISTATS).
https://par.nsf.gov/biblio/10359646

Every reasonable effort has been made to acknowledge the owners of copyright material. I would
be pleased to hear from any copyright owner who has been omitted or incorrectly acknowledged

129

https://arxiv.org/abs/2002.02798
https://arxiv.org/abs/2002.02798
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/10.1109/TAC.2020.2976316
https://par.nsf.gov/biblio/10359646

	Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Goals of Machinery Prognostics
	Problems with Deep Learning Methods in Prognostics
	Deep Generative Models and Latent Dynamics
	Research Questions

	Literature Review
	Machinery Prognostics Overview
	Physics-Based Methods
	Hybrid Methods
	Data-Driven Methods

	Deep Learning in Prognostics
	Feature Extraction
	Recurrent Neural Network Methods for Prognostics
	Convolutional Neural Network Methods for Prognostics
	Attention Mechanisms
	Generative models
	Uncertainty Considerations in Deep Learning Methods for Prognostics

	Conclusions

	Background
	Variational Autoencoders
	Dynamical Variational Autoencoders
	DVAE Structure and Implementation

	Bayesian Filtering
	Kalman Filter
	Particle Filters

	Neural Differential Equations
	Neural Ordinary Differential Equations
	Neural Stochastic Differential Equations

	Neural Ordinary Differential Equations for RUL Estimation
	Data
	CMAPSS dataset
	Preparing the Data

	Methodology
	ResNet
	NODE-CNN

	Results
	Discussion
	Conclusions

	Dynamical Variational Autoencoders for Remaining Useful Life Estimation
	Methodology
	Deriving the ELBO Loss Function
	General Overview of Model Training and Testing

	Experiments
	Data
	Preparing the Data
	Experiments using DVAEs
	Network Design

	Results
	Supervised
	Semi-Supervised

	Discussion
	Conclusions

	Dynamical Variational Autoencoders with Neural Stochastic Differential Equations
	Methodology
	Experiments
	Data
	Preparing the Data
	Network Design

	Results
	Discussion
	Conclusions

	Kalman Dynamical Variational Autoencoders
	Methodology
	Experiments
	Data
	Preparing the Data
	Network Design
	Model Training

	Results
	Discussion
	Conclusions

	Conclusions and Future Work
	Conclusions
	Research Questions
	Novelties and Key Contributions
	Limitations

	Future Work

	NODE-CNN and ResNet Hyperparameters
	DVAE Experiment Hyperparameters
	NSDE-DVAE Hyperparameters
	NSDE-DVAE Network Details
	Kalman-DVAE Hyperparameters
	Authorship Statement

