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ABSTRACT

As the popularity of CubeSats as a means of conducting space research in universi-

ties continues to rise, a concerning trend has emerged. The small satellite missions these

groups produce exhibit a high mission failure rate of approximately 51%. Coupled

with an approximate failure rate of 32% from industry-led CubeSat missions, it high-

lights the lack of reliability in this class of spacecraft. A significant contributor to these

failures is software error, accounting for approximately 35% of total failures, where

university and industry groups fail to implement the complex software used in modern

spacecraft safely. Moreover, the capabilities of the flight computers on CubeSats are

often underestimated, resulting in inadequate fault prevention logic.

This research focuses on mitigating the risk of failure in space missions, with a

particular emphasis on CubeSat missions. The issues arising from CubeSat missions

provide an accessible database that quantifies critical areas that require attention to

mitigate the risk of mission failure. These focus areas are equally applicable to larger-

scale spacecraft, thus forming the central thesis of this work. A Learning From Incidents

approach is used to identify recurrent and underlying factors contributing to software

failures within historic space missions. Reliable software design principles are applied

to satellite software development to prevent the reoccurrence of similar failures. Using

Western Australia’s first satellite, Binar-1, as a case study, the thesis demonstrates the

efficacy of these principles in creating safe, reliable, and reusable software for the Binar

platform. These principles can be applied to any mission, significantly increasing the

probability of success.

Despite reliable programming efforts, operational failures during a space mission

are still possible. The current approach to failure prevention is to transition the satellite

into safe mode and await instructions from ground control. However, as spacecraft

venture deeper into space, relying on ground communication to recover from a failure

will become increasingly difficult to support, given overextended deep space network
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facilities and a rapidly increasing number of missions. To address this issue, a digital

twin of the Binar-1 CubeSat, capable of running onboard the memory-constrained flight

computer, is developed in the thesis. The digital twin platform has fault prediction

capabilities, as demonstrated by a thermal model of the CubeSat battery heating system.

Tasking the digital twin platform with identifying and preventing a power fault in

advance shows that the digital twin can autonomously predict and prevent low-power

faults without input from ground control.

The research presented in this thesis holds significant implications for satellite

systems engineering by offering a solution to the high failure rate of spacecraft software.

Software is critical in ensuring satellite mission success, regardless of size or class. By

pushing the boundaries of satellite resilience and autonomy through software, this

research paves the way for improved efficiency and effectiveness of mission operations,

facilitating discoveries and advancements in satellite systems engineering. Following

the successful deployment of the software framework on the Binar-1 mission, it is now

being integrated into the Binar-2, 3, and 4 satellites, along with the novel onboard

digital twin to undergo testing on orbit.
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Though I’m past one hundred thousand miles

I’m feeling very still

And I think my spaceship knows which way to go...

- David Bowie
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CHAPTER 1

INTRODUCTION

1.1. THE CUBESAT

1.1.1. HISTORY OF THE PLATFORM

Since the launch of the first satellite by the Soviet Union in the late 1950s, the high

cost associated with space research has made it a challenging endeavour for small

organisations. The Cube Satellite, or CubeSat as it is more commonly known, provides

a solution to this by drastically lowering the cost required for a space mission through

miniaturisation and standardisation. The original purpose of the platform was to open

up the space sector to education and research, and it has been achieving this goal for

over twenty years. According to the global database for nano-satellites, as of January

2023, nearly two-thousand CubeSats have been launched into Earth orbit, with a further

two-thousand expected to be launched in the next six years [1].

The modern-day CubeSat stems from a heritage of spacecraft design at Stanford

University. Launched in 1994, the Space Systems Development Laboratory (SSDL) at

Stanford University intended to provide project-based learning experiences in space

systems engineering for engineering students [2]. The first satellite out of this program

was named SAPPHIRE, the Stanford Audio Phonic Photographic Infrared Experiment.

With a total budget of $50,000 USD and a resource pool of commercial off the shelf
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(COTS) components, SAPPHIRE was a student-run project demonstrating that it was

possible to conduct inexpensive space research in a small form factor [3]. As a successor

to SAPPHIRE, SSDL began work on their second satellite, OPAL [2]. The Orbiting

Automated Picosat Launcher (OPAL) was designed as a proof of concept mission to

demonstrate remote deployment of many satellites from a mothership [2]. The payload

satellites, dubbed ’picosatellites’, were proposed to be roughly 80mm x 80mm x 50mm

in dimension, possess independent onboard power and a means to collect and transmit

data [4]. These picosatellites can be viewed as the original CubeSats.

Following the success of SAPPHIRE and OPAL, SSDL determined that picosatellites

could aid in achieving the program’s initial goal of opening up the space sector to

education and research. An assessment of the picosatellite power requirements deter-

mined that a cube shape would be optimal for including body-mounted solar panels.

Furthermore, from an analysis of the OPAL launch system, to provide room for rails

and solar panels, it was decided that the optimal satellite width was to be 100 mm to

store three satellites [2]. With these preliminary design requirements set, a collaboration

between SSDL and California Polytechnic State University was constructed in 1999,

which remains the foundation for every CubeSat launched today [5].

1.1.2. THE CUBESAT DESIGN SPECIFICATION

The CubeSat Design Specification is a document created by the California Polytechnic

State University (Cal Poly) which dictates the constraints placed on satellites that intend

to use the standardised launch system [5]. The document also stands to formalise

the optimal design decisions mentioned in Section 1.1.1 to provide the standardised

CubeSat measurement system of the Unit. For the remainder of this thesis, CubeSats

will be referred to in multiples of ’U’, which are cubes with side lengths of 100 mm.

P-POD

The Poly Picosatellite Orbital Deployer is the standardised successor to OPAL for

CubeSat deployment [5]. One of the primary motivations for its development was to
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FIGURE 1.1: Side view of a P-POD system with an open exit hatch. Adapted from [7].

increase access to space for small satellites [6]. Unlike OPAL, the P-POD is designed to

interface three 1U CubeSats with a launch vehicle rather than being a standalone orbital

deployment system [7]. Consisting of an aluminium box with a spring for ejection, the

P-POD allows for easy, safe deployment of satellites with the added benefit of reducing

launch costs by sharing payload space [6].

Figure 1.1 depicts the current P-POD system used for CubeSat deployment. Before

launch, an engineer will arm the satellites inside the container via the three access panels

on the front-facing side of Figure 1.1. When ready for deployment, the front access

panel will open, and the loaded spring will eject the CubeSat payloads. Integrating

P-PODs into many of NASA’s launch vehicles has directly contributed to CubeSat build

teams’ easy access to ridesharing capabilities, reaching space at a much lower cost [8].

The success of the P-POD has led to the development of the JEM Small Satellite

Orbital Deployer (J-SSOD) as part of the commercialisation of the Japanese section

of the International Space Station (ISS). The specifications for the launcher design are

similar to the P-POD, with the added change of extending the container size to support

up to 6U launches [9].
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SATELLITE CONSTRAINTS

The CubeSat Design Specification specifies four main categories of requirements for safe

integration with a P-POD: General, mechanical, electric, and operational requirements.

Each will be addressed in this section, highlighting the requirements necessary for the

reader to understand the CubeSat design process.

General requirements govern aspects of the satellite interacting with the environ-

ment, causing danger to other spacecraft. As space debris is becoming a serious issue

with operation in the space sector [10], it is specified that all parts shall remain attached

to the CubeSat during its lifecycle.

Mechanical requirements govern the size and mass of the spacecraft and the hard-

ware it uses. All sizes of CubeSat shall be 100 mm in the X plane to fit in the launcher.

For the P-POD, all sizes of CubeSat shall also be 100 mm in the Y plane. This restriction

is reflected in the 1U, 2U and 3U spacecraft launched from the J-SSOD. However, the

permitted size is extended to 226.3 mm for the 6U spacecraft that this launcher also

accommodates. The Z plane for a 1U CubeSat shall be 113.5 mm long, and the satellite’s

total mass can be at most 1.33 kg. CubeSat mass limits are dictated for sizes larger than

a 1U; however, as this thesis is concerned with Binar-1, a 1U CubeSat, they will not be

included here. The centre of gravity for a 1U spacecraft is to lie within 20 mm of its

geometric centre in both the XY and Z directions.

Electrical requirements dictate when power can be used on board the spacecraft.

The power system must be deactivated at launch and only enabled once ejected from

the launcher. Operational requirements describe how a CubeSat is to operate safely

during its lifetime. Once ejected from the P-POD, the design specification states that

the CubeSat is prohibited from actuating deployables and radio communications for

up to 45 minutes post-ejection.

1.1.3. POPULARITY

A major factor that has led to recent considerable growth in small satellite missions

is the increasing capability of electronics coupled with their size reduction. This
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combination allows payloads to be developed that fit within the CubeSat form factor

and achieve the same calibre of research as traditional large-scale spacecraft. Alongside

this, the advent of rideshare companies changing the paradigm of reaching orbit

has made accessing space progressively cheaper. According to [11], at the time of

publication in 2015, the only rideshare provider that publicly released launch prices

was SpaceFlight Services, who quoted a 3U LEO launch cost of $295,000 USD. The

same provider also quoted a 150kg LEO launch at $4.95 million USD. According to the

CubeSat Standard, a 3U satellite has a maximum mass of 4kg [5]. This mass places the

cost of a CubeSat rideshare launch during 2015 at roughly $74,000 USD per kilogram,

whereas the small spacecraft launch would cost $33,000 USD per kilogram. Whilst

more expensive per kilogram, the overall mission cost is significantly less than that of a

full-scale mission and hence tended to be a platform mostly explored by universities.

The high adoption by university groups aided in the perception that CubeSats were

originally just a ’toy’ platform in which students could learn about space systems

engineering. However, with recent launch costs lowering substantially with rideshare

options growing, coupled with the previously mentioned increasing capability of

electronics, the CubeSat platform is being explored by non-university bodies at an

increasing rate.

1.1.4. BEYOND LEO: THE NEXT STEP

The first CubeSats were launched in 2003, three years after the concept was created

[12]. With now more than 1900 CubeSats launched, the platform has thoroughly

demonstrated its applicability to research in a near-Earth environment and, as such, has

recently been adapted to deep space missions. As a CubeSat technology demonstration,

in 2018, NASA launched two CubeSats as part of the InSight Mars mission. These two

6U CubeSats, named MarCO-A and MarCO-B, were designed to relay data from the

main lander as it descended to the Martian surface. The mission was successful, making

the CubeSats the first of their satellite class to complete an interplanetary mission [13].

Following completing their primary objective, the CubeSat pair lost contact with Earth

as their trajectory strayed further from the Sun. Failing to regain communication after

their orbit reestablished line-of-sight, the mission was concluded [14].
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The maiden launch of NASAs Artemis-1 in 2022 carried ten CubeSat secondary

payloads beyond LEO. Of the ten launched, only four successfully established commu-

nications with Earth. The remaining six CubeSats failing to establish contact include

the Near-Earth Asteroid Scout (NEA Scout) [15] and the CubeSat for Solar Particles

(CuSP) [16] missions. The operational state of these CubeSats is still being determined.

With the assumption that the spacecraft is still functional without communications, the

NEA Scout development team have sent emergency communication requests to the

spacecraft to prematurely deploy its solar sail in the hopes of optically sighting the

satellite from Earth [17]. Similarly, the CuSP team is actively working to blindly regain

contact with the spacecraft, assuming it is still functioning following a battery anomaly

[18].

Whilst interplanetary CubeSats show promise in revolutionising space exploration,

the commonality of mission termination and failure due to loss of communications

is a major barrier to their ongoing success. The CubeSat platform relies heavily on

communications with ground operators, an acceptable drawback for satellites operating

in LEO. As the distance between the CubeSat and Earth increases, however, factors such

as weak signals, communication delays, and ground control outages begin to have more

of an impact on the mission. To address these challenges, the next boundary of CubeSat

development is to incorporate onboard autonomy that can reduce the frequency of

communications required with the ground. Heightened autonomy on CubeSats could

enable the mission to continue to achieve objectives in a communications-denied

environment, extending the mission’s lifetime. By focusing on onboard autonomy,

CubeSats will continue to push the boundaries of space exploration and pave the way

for new scientific discoveries.

1.2. BINAR-1

The Binar Space Program began in 2018 as an undergraduate engineering honours

project. In a small team of students, the project’s initial scope was to purchase COTS

systems from small satellite manufacturers and use them to assemble the ’Curtin

University CubeSat’, a common approach followed in the space sector. However, it
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TABLE 1.1: Price in USD for the minimum required components for a functional
satellite.

Part Pumpkin Endurosat Tensor Tech

Flight Computer [19] $1,575 - -
Electrical Power System [20] $10,500 - -
Solar Panels [21] - $10,000 -
Location System [22] $10,485 - -
Communications System [23] [24] - $10,100 -
Structure [25] - $1,700 -
Attitude Control System (magnetorquers) [26] - - $20.000
Total $22,560 $21,800 $20,000

TABLE 1.2: Height and mass of the minimum internal components seen in Table 1.1.

Part Height [mm] Mass [g]

Flight Computer [27] 17.6 88
Electrical Power System [28] 48.4 710
Location System [29] 18.1 109
Communications System [30] 17.6 94
Attitude Control System (magnetorquers) [31] 13.5 140
Total 115.2 1,141

was evident from an early stage that this would result in three main problems: cost,

size, and incompatibility.

The reasons for these issues can be seen when the spacecraft is broken down into

its main components. For a spacecraft to operate at a minimum, it will require a flight

computer, an electrical power system, a location system, a telecommunications system

and a structure. Most small satellite component manufacturers operate on a quote-only

basis, so getting a price estimate can be difficult. Some well-established small satellite

component manufacturers, Pumpkin, Endurosat, and Tensor Tech, offer online pricing

for some components that can be viewed as an average for the small satellite market.

The cost of these components can be seen in Table 1.1.

Summing the total cost of the components seen in Table 1.1 gives a price of $64,360

USD, or approximately $100,000 AUD, to assemble the bare minimum for a spacecraft.

This cost does not include a payload, meaning the spacecraft will have no scientific use-

fulness. This price does not include launch costs dependent on spacecraft dimensions.

The size and mass of the selected internal components can be seen in Table 1.2.
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As discussed in Section 1.1.2, the maximum height for a 1U CubeSat is 113.5 mm,

with the maximum mass being 1.33 kg. It is evident from the summation of the size and

mass of the bare minimum components in Table 1.2 that both of these thresholds have

been exceeded even before the inclusion of a payload. This would require the satellite

container to need to be increased to a 2U to handle the overflow. If scientific usefulness

is desired, adding a payload could bring the size and mass of the satellite beyond the

2U limit, meaning that a further extension to a 3U satellite would be required to house a

payload. While SpaceX advertises a relatively affordable rate of USD 280,000 for a 50kg

spacecraft to reach LEO [32], it is important to acknowledge that this pricing model is

not directly translatable to an extrapolation of USD 5,600 per kilogram. A 50kg payload

represents the minimum mass a customer can send into orbit with SpaceX. Moreover,

the advertised cost does not encompass the expenses associated with integration and

testing, which can constitute a substantial portion of the overall expense. Drawing upon

the Binar Space Program’s experience launching Binar-1, the true cost of launching a

1U to 3U CubeSat into LEO is often within the range of USD 50,000 to USD 100,000 per

kilogram.

Whilst the CubeSat standard does not impose restrictions on subsystem integration,

commercial manufacturers tend to use the PC/104 standard connector, along with an

inter-integrated circuit (I2C) data bus. Conformity to this unofficial standard allows

subsystems from different suppliers to be integrated [33]. It is evident, however, that

different suppliers may implement the PC/104 connector and data transmission bus

inconsistently, which can lead to potential failures [34]. Due to the elusive and some-

what unobtainable goal of building small, low-cost spacecraft using COTS components

and the possibility of incompatibility of doing so from manufacturers, the scope of the

Binar Space Program was shifted from an early point to focus on in-house development.

Commencing February 2019, the Binar Space Program began development on Binar-1:

the maiden mission of the Space Science and Technology Centre at Curtin University.
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1.2.1. MISSION DESCRIPTION

The scope shift towards creating custom satellite circuitry meant that the risk involved

with including an expensive payload on the first spacecraft was deemed too high.

Therefore, from an early point in the program, the objective for Binar-1 was to be a

product demonstrator for custom-developed spacecraft technology. Second to this, two

inexpensive camera payloads were flown. The proof of concept hardware produced

from the undergraduate engineering honours project mentioned in Section 1.2 was

assembled into the first Binar CubeSat Motherboard (BCM) at the commencement of the

Binar Space Program in 2019. This hardware included power, attitude determination

and control, communication and flight computer systems. The BCM, along with all the

other components required for the satellite, can be seen in the exploded view of Binar-1

in Figure 1.2.

Due to the highly integrated size, two BCMs were installed in Binar-1 to effectively

collect the data of two missions without the extra launch costs. The primary BCM can

be seen highlighted in teal in Figure 1.2, and the secondary in orange. Figure 1.3 shows

a higher detail render of the BCM.

1.2.2. HARDWARE

This section will provide an overview of the key subsystems of Binar-1. While the

information discussed in this section is not a contribution to this PhD thesis, it is

included to provide the reader with a comprehensive understanding of the developed

CubeSat platform. The developed platform serves as a foundation on which the

contributions this thesis aims to make to the field of small satellites can be explored.

ELECTRICAL POWER SYSTEM

The spacecraft’s electrical power system generates, stores, and distributes power. It

features redundant battery pairs, as illustrated in Figure 1.4. Each redundant battery

system is equipped with independent maximum peak power tracking circuitry, which
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FIGURE 1.2: A colour coded exploded view of Binar-1. The base of the satellite with
portholes for the payload cameras and the payload carrier board are shown in green.
Pink identifies the COTS transceiver, connected to the primary BCM (Teal) through the
red adaptor board. Orange shows the secondary BCM. Communications are facilitated
through the purple antenna. The solar panels (yellow) are mounted on the outside of
the structural frame (Black).
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FIGURE 1.3: Render of the BCM that flew on Binar-1. Key sections have been high-
lighted; pink for storage, green for flight computers, orange for IMU, blue for GPS
and red for the ADCS.
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FIGURE 1.4: Render of the EPS on Binar-1. The four Lithium-Ion batteries are con-
nected in a two-series, two-parallel configuration. They are charged through the solar
panels using maximum peak power tracking circuitry.

can be seen adjacent to the batteries in Figure 1.4. This circuitry utilises four solar

panels mounted outside the spacecraft, with an ideal maximum charging voltage of

5 V, to optimise power generation and storage in the batteries. The four Lithium-Ion

batteries are connected in a two-series, two-parallel configuration. When fully charged,

these batteries provide 8.3 V to the motherboard. The distribution network handles

the necessary power adjustments for the onboard subsystems, regulating the battery

voltage to 3.3 V and 5 V rails.

A battery management system is in place to protect both the subsystems and the

batteries. This system offers protection against overvoltage, undervoltage, overcurrent,

and short-circuit current. In parallel, the complete battery pack can store 25 Wh of

energy, or 50 Wh when combined.

GPS

The GPS system, denoted in blue in Figure 1.3, is a high-performance, high-sensitivity,

low-power receiver with an external antenna. It is used to determine the spacecraft’s
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location over the Earth. The GPS communicates with the spacecraft flight computer

using National Marine Electronics Association (NMEA) strings over universal asyn-

chronous receiver/transmitter (UART) serial, which are decoded and parsed to receive

the information.

STORAGE

The onboard storage, highlighted in pink in Figure 1.3, provides 32 gigabytes of solid-

state memory for saving system logs and payload data. It can also be used to store

backup copies of the spacecraft’s flight software for restoration of the program memory

in the event of a fault.

ATTITUDE DETERMINATION CONTROL SYSTEM

The ADCS is split into two core subsystems; Determination and control. The IMU

highlighted in orange in Figure 1.3 encompasses the determination subsystem. With

high accuracy and refresh rate, it measures the angular velocity of the spacecraft and

the intensity of the magnetic field surrounding it. As seen from Figure 1.5, a metal

frame is fitted around the batteries, housing three wire coils. These coils, known as

magnetorquers, rely on electromagnetism to form the control subsystem.

To perform an attitude manoeuvre, the intensity of the Earth’s magnetic field at a

point in orbit is measured using the IMU. The magnetorquer drivers (highlighted red

in Figure 1.3) control the current in the wire coils around the circuit board and in the

two internal perpendicular rods (seen in Figure 1.5) to create independent magnetic

dipoles. These dipoles move the satellite by pushing against the Earth’s magnetic field

with a configurable amount of counter-force. If the X or Y-axis magnetorquer fails,

two redundant magnetorquers embedded into the solar panel PCBs can be enabled.

Monitoring the change in angular velocity with the IMU completes a feedback loop and

aids in tuning the current required through the magnetorquers to reach the orientation

goal.
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FIGURE 1.5: Render of the magnetorquers on Binar-1. The Z-axis coil surrounds the
BCM. The X and Y-axis coils slot between and in front of the batteries.

COMMUNICATIONS SYSTEM

The communications system used on Binar-1 was a COTS solution developed by

Endurosat. It is a UHF system comprised of three parts, shown in Figure 1.2. The

communications adaptor board connecting the BCM and the transceiver is highlighted

in red. The transceiver, highlighted in pink, processes the radio signal received from the

antenna and generates signals to be sent from the antenna. The antenna, highlighted in

purple, facilitates communications with the ground station. In conformance with the

standardised launcher requirements, the antenna default state is stowed, meaning the

elements are coiled and stored inside the antenna package. After deployment from the

launcher, the module uses burn resistors to heat up and melt the nylon wire that holds

the antenna doors closed, allowing the coiled elements to unravel. These burn wires

can be seen highlighted in red in Figure 1.6.

FLIGHT COMPUTERS

As can be seen from the green highlighted sections of Figure 1.3, the BCM used on

Binar-1 has two flight computers. The main flight computer, the larger of the two, is a
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FIGURE 1.6: Stowed antenna configuration (left) and deployed antenna configuration
(right).

dual-core microcontroller comprising a Cortex-M7 and Cortex-M4 core. The secondary

flight computer, the smaller of the two, is a single-core Cortex-M4 microcontroller.

Figure 1.7 provides an overview of the flight computers system on the BCM used on

Binar-1.

The primary flight computer is purposed with controlling the spacecraft operations.

With general purpose input output (GPIO), analog to digital converter (ADC), universal

synchronous/asynchronous receiver/transmitter (USART), serial peripheral interface

(SPI) and I2C support, it can seamlessly integrate with the communications, attitude

control, electrical power, onboard memory and payload subsystems to achieve mission

goals. I2C is used to interface with the communications system to action telecommands

from the ground. The IMU and magnetorquer drivers are interfaced with the main flight

computer over SPI, and the GPS is connected over UART. The primary flight computer

integrates the data received from these components with the operational software

for attitude control. GPIO and ADC inputs are used extensively with the electrical

power system to monitor system health continuously. GPIO lines are implemented

to turn subsystems on and off and to watch for system failures through interrupts

asynchronously. Voltages, currents and temperatures are read using the ADC. SPI is

used to interface with a payload and to store data in the onboard memory for downlink

where possible.
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FIGURE 1.7: A system block diagram of the flight computers on the BCM used on
Binar-1. The primary flight computer (H7) has access to the main system peripher-
als: Payload, ADCS, communications, and onboard storage. The secondary flight
computer (L4) has access to the communications peripheral and the secondary BCM.
It also has access to the enable line of the IMU and GPS devices to disable them if
they prevent the primary flight computer from operating correctly. The H7 and L4
can communicate over a UART connection. The L4 has the added ability to reset the
H7 in an emergency. Both computers can configure the EPS supplying 3.3 V to select
between the primary and redundant converter.

The secondary flight computer takes up little room on the BCM yet is powerful

enough to aid in regaining control of the spacecraft if an error occurs with the main

flight computer. Communication between the two flight computers is continuously

implemented by UART, in which the state of the primary flight computer is monitored

by the secondary. A GPIO line is connected from the secondary to the primary flight

computer, allowing the secondary computer to trigger a reboot in the event of a

recoverable failure, in which case the primary flight computer will resume control.

In the event of an unrecoverable primary computer failure, however, the secondary

computer can interface with the communications module over I2C to remain in contact

with the ground and commence survival operations. As the computer’s main goal is

loss prevention, it has the authority to disable the payload using its GPIO connection.

Moreover, similar to the primary flight computer, it can disable the redundant power

system with the added capacity to also power down the IMU and GPS subsystems

if an error with one of these systems causes the primary flight computer to fail. The

secondary flight computer is capable of both programming the primary flight computer

and being programmed by it in turn.

Both flight computers onboard the BCM used on Binar-1 were programmed using



Chapter 1 STUART ROBERT GIBSON BUCHAN 17

the Binar Software Framework (BSF), a custom in-house software framework developed

by the candidate to maximise system reliability.

1.3. THE NEED FOR RELIABLE SOFTWARE IN SPACE MISSIONS

The success of space missions, regardless of their scale and complexity, hinges signif-

icantly on the reliability of their software systems. However, determining the exact

impact of software on mission failures remains challenging due to the scarcity of pub-

licly available data. Fortunately, due to their presence in the civil sector, recent data on

CubeSat failure has shed some light on the impact of software flaws on their mission

success rates. In this section, the pivotal role that reliable software systems play in the

success of space missions will be discussed, with a particular emphasis on CubeSat

missions, drawing insights from the impact of software on such missions.

As the prevalence of CubeSats in the space industry rockets higher, it is becoming

increasingly apparent that a high rate of failure plagues these small satellite systems.

This highlights the need to address the reliability issues that CubeSats face in the

pursuit of developing more robust satellite systems that can operate safely in the harsh

conditions of space.

Figure 1.8 demonstrates that educational university-built CubeSats have a failure

rate of nearly 51%, while industry-built CubeSats have a failure rate of roughly 32%.

This statistic has been substantiated through an independent analysis conducted by

Dubos et al., revealing that approximately 50% of CubeSats launched were unable to

fulfil their intended mission [35]. Furthermore, the National Academies of Sciences,

Engineering, and Medicine have reported a failure rate of 55% for education-only

CubeSats [36]. It is worth noting that NASA-funded CubeSats exhibit a considerably

lower failure rate of 17%; however, they do not constitute the majority of CubeSats

launched. This high failure rate among CubeSats is a cause for concern, as it not only

results in a significant loss of time, money, and resources but also undermines the

credibility of CubeSats as a viable, cost-effective solution for performing space research.

A comparison can be drawn between the high failure rates observed within CubeSat
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FIGURE 1.8: A comparison of mission success rates for first-time CubeSat launches
between universities and industry. Educational CubeSats developed from university
groups are likelier to fail than their industry counterparts. Adapted from [37].

missions and the success rates of NASA-built missions, considering NASA’s reputation

as a reputable organisation with extensive flight heritage. Internally to NASA, mission

development closely references mission assurance guidelines. These guidelines cat-

egorise missions into four distinct risk classes: A, B, C, and D, each tailored to fulfil

programmatic requirements [38]. Class A missions are highly critical, costly, complex,

and long-lasting with strict launch constraints. They tend to be the most expensive

missions developed by NASA. They require strict mission assurance processes to en-

sure success over a long lifespan, typically over ten years. Class B missions are critical

with moderate risk tolerance, allowing minor compromises in risk in exchange for cost

savings. They have high to medium complexity, long mission duration, and moderate

launch constraints. Class C missions have a moderate risk acceptance. These missions

are lower in cost and complexity and have a shorter lifespan than Class A and B. Class

D missions are of low importance and have a high tolerance for risk. They are low-cost,

simple, short-lived, and flexible. Failures in Classes C and D impact NASA’s research

objectives less than those in Classes A and B. Hence, unsurprisingly, these categories

have the highest mission failure rate of roughly 20% [39]. When comparing the failure

rate of the most risk-averse NASA missions to the previously discussed high mission

failure rate of CubeSats, it becomes evident that CubeSat missions, despite their typi-

cally lower complexity and less critical objectives compared to NASA’s more significant

endeavours, still struggle to meet even the lower reliability expectations for Class C/D

missions. This underscores the inherent challenges and difficulties associated with
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space projects.

Whilst the rate of failure remains high, the importance of the CubeSat form factor as

an entry into the space industry needs to be stressed. The cost-effective access to space

enabled by the CubeSat platform allows university groups to conduct research that

would otherwise be unfeasible. Building and flying CubeSats provides students with

hands-on experience in all aspects of space technology, from design to operations. This

experience is valuable for students who aspire to work in the space industry and can

help to bridge the gap between academia and industry. Therefore, the high failure rate

must be addressed to ensure the success and longevity of the missions produced by

university groups.

Although the high failure rate can be attributed to many complex systems across the

platform, the scope of this thesis will explicitly address software faults, one of the major

challenges faced in space missions. Spacecraft flight software is considered high risk

as it directly controls all onboard systems with some level of automation [40]. These

faults can originate both during software development and operations, often leading to

mission failures. In a 2016 survey asking the small satellite community why CubeSats

fail, a subset of respondents who identify as experts in the field identified software

design error as the leading cause of failure within the first six months of operation [41].

The results from this subset are summarised in Figure 1.9.

The limited resources and harsh operating environments of space missions pose

significant challenges for software development. Spacecraft often have limited com-

putational power, storage, and communication capabilities and are subject to extreme

temperatures, radiation, and vacuum conditions. These factors make it difficult to

ensure the reliability and fault-tolerance of software systems in space missions. A

single software fault in a mission can directly contribute to failure. For example, a soft-

ware fault in the power management system can cause a power outage, rendering the

entire system inoperable. A software fault in the communication system can prevent

a spacecraft from sending or receiving data, compromising the mission’s objectives.

In addition to the potential for mission failure, software faults can lead to unexpected

behaviour and data corruption, compromising the integrity and accuracy of collected

data. This can significantly affect research throughput when using the platform. There-
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FIGURE 1.9: The result of a survey asking experts in the small satellite industry their
suspected reasons for CubeSat failure [42]. The largest expected reason for failure is
due to software design errors, highlighting the importance of robust software design
to the success of a mission.

fore, it is essential to establish the reliability and fault-tolerance of software systems

in space missions to ensure mission success. Pursuing this requires a comprehensive

approach to software development, testing, and validation that considers the unique

challenges and constraints of space mission systems.

Whilst the CubeSat form factor offers a platform to reduce the hardware complexity

of a conventional large-scale space mission, the same reduction is not reflected in the

complexity of the flight software. This complexity can create a barrier to entry for new

entrants to the space field [43]. Hence, these entrants may seek literature to aid in the

development process. Whilst software remains a significant factor in the success of a

mission, published literature overlooks this importance. The NASA CubeSat Launch

Initiative (CSLI) provides a document to first-time CubeSat Developers identifying

key aspects of the importance of the mission. The document seldom mentions flight

software design, lacking guidance for new entrants on how to approach this challenge

[44]. Grubb proposes that CubeSat developers using this document may discover that

flight software is a considerably more difficult component of a CubeSat than alluded

to in the document, contributing to the high mission failure rate [45]. External to this

document, the lack of specialised literature for flight software design further increases

the magnitude of this challenge [46]. Moreover, specific CubeSat mission failure reasons
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are seldom published, perhaps due to a lack of telemetry preventing analysis from

being conducted [47]. This scarcity of publications removes the possibility for flight

software developers to learn from the mistakes of previous missions. While not directly

replacing this lack of literature, coding standards can offer assistance in addressing this

knowledge gap.

Software coding standards provide a time-tested approach to software development

and serve as an invaluable reference that encapsulates the collective knowledge of

experienced engineers. Following a coding standard determines how the software is

designed, written, and maintained. As such, these standards play a pivotal role in

minimising errors and enhancing code quality, ultimately contributing to a successful

project. Software development in C and C++, a popular approach for embedded

applications such as spacecraft, has many coding standards to choose from tailored for

various domains. These standards address specific industry needs and ensure code

quality, reliability, and safety. One prominent example used for these languages is the

MISRA (Motor Industry Software Reliability Association) C and C++ coding standards.

Initially targeting the automotive industry, these documents are now broadly used

for safety-critical applications using these languages. However, These widely used

standards do not address the risks related to multi-threading, a significant factor

in space system software. Hence, the MISRA-C standard was adopted into the Jet

Propulsion Laboratory (JPL) Institutional Coding Standard for the C Programming

Language to mitigate these concerns [48]. Being developed and maintained by JPL,

an institution renowned for its pioneering contributions to space exploration, this

coding standard embodies decades of experience in the space industry. Missions such

as the Ingenuity Mars Helicopter, where the JPL C coding standard was diligently

followed, have exemplified its efficacy in safeguarding against software-related failures.

The coding standard highlights six levels of compliance (LOC), ranging from general

language compliance to specific MISRA-based should rules (Table 1.3), aligning with

the exacting demands of space missions where a software fault could lead to mission

failure.

Each LOC establishes progressively stricter rules for using the C programming

language. At the base level, Language Compliance mandates fundamental practices to
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TABLE 1.3: Levels of compliance for the JPL C coding standard. Adapted from [48].

Level of Compliance Rules Defined at Level
Cumulative Number of Rules
Required for Full Compliance

LOC-1 Language Compliance 2 2
LOC-2 Predictable Execution 10 12
LOC-3 Defensive Coding 7 19
LOC-4 Code Clarity 12 31
LOC-5 MISRA-shall rules 73 104
LOC-6 MISRA-should rules 16 120

ensure code safety, such as compiling software with all warning flags enabled. LOC-2

emphasises predictability in software execution, enforcing practices such as refraining

from dynamic memory allocation. LOC-3, Defensive Coding, focuses on developing

software capable of handling unexpected errors or inputs, enhancing overall reliability.

An example of adherence to this level is using specific signed integer types instead

of architecture-dependent ones for clarity and safety. LOC-4, Code Clarity, aims to

improve code comprehensibility for future maintenance, employing techniques such

as restricting the use of the language pre-processor. The final two levels, LOC-5 and

LOC-6, reference the MISRA-C standard, which served as the basis for the JPL C

standard. LOC-5’s ”Shall” rules are mandatory and cover essential standards, such as

those prohibiting illogical variable type casting. In contrast, while optional, LOC-6’s

”Should” rules are crucial for full standard compliance, emphasising practices like

minimising the use of the increment and decrement operators to enhance code clarity.

It is evident that ascending levels of compliance whilst following the JPL C coding

standard require adhesion to an increasing number of rules. The benefit of this is that

through compliance checking software, the resulting code base will have a quantifiable

metric of standard compliance that provides insight to the software developers into the

quality of the software being developed for their mission. When new software is being

developed with adhesion to the coding standard, JPL proposes that there should not

be any measurable impact on schedule or cost. This is not the case for application to

code written without adhesion to the standard, with the amount of effort needed to

achieve compliance increasing with each level depicted in Table 1.3 [48]. This adhesion

complexity can become problematic for university-based CubeSat software developers,
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as it is common to see university-built CubeSats neglecting to follow well-established

development methods, including project-wide adhesion to standards [49]. Hence, even

if a decision is made in development teams to adopt a standard, the amount of work

required to implement it retroactively may be too great, further limiting the literature

applicable to university-based CubeSat software development teams.

Alongside a lack of software development experience, Alanazi et al. proposes

some university groups may neglect a full requirements analysis of the CubeSat to be

built, instead jumping straight to system and component level design [49]. Skipping

past important design stages can result in the software failing to meet basic mission

requirements. Software is often rushed through development with insufficient testing

to support the rapid mission timeline [45]. Swartwout suggests that the resulting lack

of time and resources allocated for systems-level testing contributes to the commonality

of failure [50]. These factors make it difficult to ensure the reliability and fault-tolerance

of CubeSat software systems.

One such area that may be overlooked is the consideration of radiation tolerance on

satellite systems. Radiative particles originating from deep space and the Sun impose a

significant challenge for satellites operating in space due to the sensitive electronics that

power them [51]. Spacecraft in Earth’s orbit are exposed to various radiative particles

captured by the planet’s magnetic field, including electrons, protons, and heavy ions

[52]. As spacecraft venture beyond the Earth’s magnetosphere, however, the intensity

of radiation exposure increases. Exposing the sensitive electronics inside satellites to

space radiation can result in long-lasting effects and immediate impacts. Long-lasting

effects include those from Total Ionising Dose (TID), while immediate impacts are seen

in Single Event Effects (SEE) [52]. TID refers to the cumulative damage that spacecraft

components incur during prolonged exposure to a radioactive environment. This

extended exposure detrimentally impacts the functionality of the integrated circuits

(IC) that enable the spacecraft, degrading device voltage thresholds and increasing the

probability of a component leakage current, potentially leading to irreparable faults.

SEE’s relate to the transient damage experienced by ICs due to localised radiation

events. In these situations, an impinging SEE-inducing particle can deposit enough

energy at the storage node of some memory through ionisation to cause a change of
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charge state. This state change is commonly referred to as a bit-flip error, which can

disrupt the normal operation of software [51]. When occurring in memory external

to a flight computer, this can affect the correctness of data retrieval. When occurring

internally, however, this can introduce program memory corruption, potentially result-

ing in processors executing erroneous instructions, posing a significant risk to overall

system stability [53]. A common unit of measurement for predicting the occurrence

of SEEs is the average number of SEEs that occur per bit of memory over a day. Data

obtained from three NASA missions, Solar Anomalous Magnetospheric Particle Ex-

plorer (SAMPEX), Total Ozone Mapping Spectrometer (TOMS), and Cosmic Ray Upset

Experiment (CRUX), provide perspective on the frequency of SEEs in various orbital

altitudes close to Earth. At an orbital altitude of 580 km x 640 km, SAMPEX had an

average of 4.21E-6 upsets per bit-day. In a circular orbit of 1200km, TOMS encountered

an average of 3.12E-6 upsets per bit-day. Across all six independent memory units on

CRUX, the mission encountered an average of 18.38E-6 upsets per bit-day at an altitude

of 362 km x 2544 km [54].

In comparison, in low Earth orbit, the COTS components that usually power Cube-

Sats generally encounter 10´3 to 10´7 upsets per bit-day [55]. The variance in average

upsets per bit-day can be attributed to factors such as the size of transistors in various

memory types [55], space weather events [56], as well as orbital time spent in areas

of higher radiation density [54]. Despite variations, it is evident that the continuous

exposure of satellite components to space radiation emphasises the necessity of taking

proactive steps to avoid potentially mission-critical repercussions.

Considering the potential impact of radiation on spacecraft missions, it is common to

implement design strategies focused on protecting sensitive electronics from radiation

and incorporating recovery mechanisms in the event of exposure. Radiation shielding

is commonly used in spacecraft structures and around sensitive components to reduce

the impinging particle intensity [52]. Component selection can also alleviate radiation-

induced issues through components that do not have physical bits adjacent to one

another in memory to prevent multiple bit-flips per byte [54], and also through the

selection of radiation-hardened devices [57]. These devices exhibit a SEE performance

from 10´8 to 10´11 errors per bit-day [55].
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While hardware solutions such as radiation shielding and radiation-hardened com-

ponents play a crucial role in protecting space missions from radiation-induced errors,

the importance of software in ensuring mission reliability cannot be overstated. Whilst

significantly reducing the risk of SEE’s, protective hardware measures may not elimi-

nate them due to the high energy of the particles causing the event [55]. As a result,

software mitigation techniques become indispensable for space missions. To address

single-bit in-byte errors, memory scrubbing techniques employing error correction

codes have recovered erroneous bit-flips [55]. In addressing multiple-bit errors within

a single byte, Reed-Solomon coding techniques have been effectively employed [58].

These software-driven approaches supplement the hardware solutions to increase

the overall mission reliability, mitigating the risks associated with radiation in the

challenging space environment.

Although university-built CubeSats have been shown to have a failure rate of nearly

51%, it is perhaps even more crucial to note that 32% of industry-built CubeSats fail,

highlighting the substantial risk for these groups. Whilst university-built CubeSats

may have a high-risk appetite, this is often not reflected in industry applications that

may be housing commercial payloads on board. In these situations, mission failure

may bring a large monetary loss. It is difficult to quantify software’s contribution to

industry-built CubeSat failures as the survey results shown in Figure 1.9 are estimations

regarding university-built missions. However, as the survey respondents comprised

industry professionals, it could give insight into these individuals’ prior experience.

The high propensity for failure in CubeSats, in general, prompts the question: How

much of the failures of large-scale space missions can also be attributed to software

issues? Whilst CubeSats have been shown to have an astonishingly high failure rate, it

is important to acknowledge that they operate under distinct constraints and conditions

compared to larger, more extensively funded spacecraft. Larger spacecraft typically

benefit from larger budgets, more rigorous engineering standards, and established

technology and software with proven flight heritage. As a result, they tend to exhibit

higher reliability when compared to CubeSats. Therefore, it is not accurate to directly

extrapolate CubeSat failure rates to all types of spacecraft. However, it is crucial

to recognize that rigorous software development and testing principles can benefit
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spacecraft of all sizes and classes. Regardless of their form factor, spacecraft require

robust software systems to ensure mission success. With their quantifiable failure

rates due to software, CubeSat missions serve as a valuable case study highlighting

the significance of software reliability. Investing in developing reliable software can

enhance the chances of success for all spacecraft, large and small. This approach can

contribute to a more cost-effective, reliable future for space research and innovation,

ultimately benefiting the space industry as a whole.

1.4. THE ROLE OF AUTONOMOUS FAULT PREVENTION IN SPACE

MISSION RELIABILITY

1.4.1. STATE-OF-THE-ART

Despite extensive efforts in programming and design, the unfortunate reality is that

failures will inevitably occur during the operational phase of a space mission. By

leveraging onboard autonomy for advanced fault prevention, space missions can better

detect and recover from these failures, increasing their overall reliability and chance

of mission success. This capability will become crucial for missions in which the time

delay introduced due to the significant distance between a spacecraft and Earth can

impede the recovery from safe mode, potentially leading to further complications or

loss of the mission. Moreover, as the number of satellites being launched increases

exponentially, mission operations for ground-in-the-loop spacecraft will become in-

creasingly overburdened [59]. For satellites requiring assistance from an operations

team when encountering a fault, this could increase the chances of faults propagating

to a mission-critical failure.

The Deep Space One mission pioneered giving spacecraft more responsibility in

operations. It was the first to use an onboard mission planner, which allowed the

spacecraft to react quickly in suggesting an alternative operations solution if the original

scheduled plan could not be carried out. The mission’s success demonstrates that

spacecraft operations can be autonomously reconfigurable without human intervention
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[60]. A general-purpose onboard autonomy agent on the EO-1 spacecraft was partly

responsible for ensuring the spacecraft’s safety. An anomaly during the mission caused

the spacecraft to think the camera payload cover was not closed. In response, the

autonomous software prevented a hardware fault by reissuing a command to close

the payload cover [61]. In the event of a major fault preventing commands from

being received on the New Horizons spacecraft, engineers extensively developed an

autonomy subsystem to de-spin the spacecraft. After achieving a favourable spin rate,

the autonomy subsystem would orient the spacecraft into an Earth-pointing state and

begin transmission of system health information [62]. However, these missions are part

of a very small subset of missions that leverage onboard autonomy in this manner.

Where autonomy applications are discussed in the literature, it is commonly re-

stricted to specific elements of mission operations, such as navigation and payload

usage. Speretta et al. discuss the autonomous navigation capabilities of the LUMIO

CubeSat and the autonomous methods of handling payload data [63]. Payload optimi-

sation is leveraged on the IPEX CubeSat for data volume reduction and image analysis

[64]. Beyond Earth’s orbit, JAXA’s Hayabusa spacecraft demonstrated successful au-

tonomous guidance and navigation capabilities en route to the asteroid Itokawa [65].

Kohout et al. assess the feasibility of achieving a similar outcome on a CubeSat platform

[66]. In the microsatellite scale, the Air Force Research Laboratory’s XSS-10 mission was

designed to demonstrate autonomous technologies for space situational awareness and

proximity operations [67]. The literature is abundant with studies regarding autonomy

used for mission operations, yet scarcely provides applications for fault prevention.

More commonly, fault preventative techniques in the literature are mainly restricted

to basic Fault Detection, Isolation, and Recovery (FDIR) routines that transition the

satellite into safe mode, waiting for intervention from a ground operator. Whilst being a

common approach in the CubeSat industry [68][69][70][71], this pattern is also reflected

in space missions in general. Often in these missions, the thresholds for entry into an

FDIR routine that transitions into safe mode are set too conservatively. This can lead to

high mission outage times due to unnecessary safe mode entries [72]. An example of

this can be observed in missions such as ESA’s Mars Express, having suffered 23 safe

mode entries within the first three years of operations [73], during which the spacecraft
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could not complete its scientific objectives. Further continuous safe mode entries later

in the mission lifecycle saw the ground team suspending science operations to conserve

fuel [74]. Using an example from the Venus Express mission, Shaw et al. discuss that

seeking alternative fault-preventative solutions to safe mode entries could assist in

spacecraft uptime. Venus Express had 56 thermal monitoring parameters, each able

to cause a safe mode entry if triggered. Instead, it was proposed that the sequence

of operations with the ground following a safe mode entry could be replaced by an

autonomous sequence preventing a fault occurring on the spacecraft without the risk

of a safe mode transition [73].

In some situations, the overreliance on safe mode as a fault-preventative measure

can sometimes introduce risk. It was discovered on the Mars Express mission that

as the spacecraft reached its furthest point from the sun, the hard-coded safe mode

would require more power than could be provided. Repairing this oversight was time-

consuming for the mission operations team [73]. Similarly, safe mode functionality

on NASA’s CloudSat mission did not account for the degradation of the spacecraft’s

batteries, leading to more power being used than could be generated [75]. This situation

was also reflected in ESA’s Cluster mission [76].

Are the capabilities of autonomy in spacecraft being underestimated for fault pre-

vention? It is apparent from the few missions that have implemented it that autonomy

can improve both a spacecraft’s resilience to failure and its overall uptime. It allows for

the prediction and diagnosis of system failures and the ability to make decisions and

take action in the event of a failure without relying on a communications link with the

ground. However, many space missions minimise the scope of autonomy to mission

operations, rather electing for a ground-in-the-loop approach to fault handling through

safe mode transitions. The apprehension toward greater adoption of autonomy in

the space industry could be motivated by the desire to minimise the costs and risks

associated with development. Nevertheless, further advancements in space mission

autonomy, transitioning the current ground-in-the-loop spacecraft design to a more

self-sustainable system, will be paramount in overcoming the challenges imposed by

deep-space missions [59]. With a relatively low mission cost and a high appetite for risk,

CubeSats offer a medium to explore further development in this area, with scalable
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applications for larger missions.

By leveraging onboard autonomy for fault prevention, satellites can identify and

address faults in real time, reducing the frequency of safe mode entries and removing

the risks associated with distance-induced latency. This capability can increase the

likelihood of success for the mission and extend the spacecraft’s operational life. In

pursuit of this, it is necessary to develop accurate models of the satellite system to

implement effective algorithms for autonomous fault prevention and decision-making.

Satellite developers need to refrain from settling for reactive measures when the power

of autonomy can be harnessed to predict and prevent faults without interaction with

the ground.

1.4.2. MODELLING

In the context of an engineering system, the term ’modelling’ has historically taken

on many meanings. From a physical scaled replica of a product to the development

of governing equations that describe the interoperations of a system, all forms have

existed to achieve the same goal - to attempt to understand the operation of a system

and predict what it will do before it happens [77]. Dynamic modelling refers to the

collection of equations that govern the operation of a system. The application of these

equations and the subsequent analysis of their outcomes is known as a simulation

[78]. As systems being developed increase in complexity, computers are often used to

implement the developed models. Computational simulations allow for rapid testing

of complex non-linear systems that would otherwise be tedious to complete by hand

[79]. Furthermore, they allow parameters to be altered easily and have their results fed

back into further development of the system [80], as seen in Figure 1.10.

A conceptual model is first developed using qualitative modelling based on the data

gathered from a system being analysed. This conceptual model provides an abstract

description of how the system functions on a subsystem level, focusing less on physical

operation in favour of understanding and communication [81]. These subsystems

can then be characterised by their governing equations to provide a quantitative

representation to be fed into a computational model. However, as the real world
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FIGURE 1.10: An overview of the modelling and simulation cycle in system develop-
ment [77].

operates in a continuous-time system that cannot be truly replicated on a digital

platform, the computational models are approximated as a discrete-time system that

can be tested via a computer simulation with numerical integration methods. The

output of these simulations offers verification of models, which can lead to predictions

of the system’s behaviour [77].

Traditionally, modelling and simulation were used during the research and devel-

opment phases of the product lifecycle. As engineering systems continue to advance

with additional functions, increased parts, and heightened interconnectivity, modelling

and simulation are expanding beyond their traditional role as development tools and

becoming an essential part of a system’s functionality [82].

An example of this can be seen in the application of model predictive control (MPC).

MPC leverages subsystem modelling in a feedback controller to address challenges

concerned with nonlinear systems with multiple constraints. The control approach

involves predicting future system behaviour, optimising control inputs, and introduc-

ing feedback over a finite time horizon [83]. After solving for the optimal sequence

over the time horizon, only the initial control segment is applied, after which the

process is repeated until a goal state is reached [59]. The utilisation of MPC onboard
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engineering systems with constrained system resources, such as spacecraft, introduces

some limitations on the complexity of the optimisation model. Applications requiring

fast resolvability are often restricted to convex optimisation routines with only one

global minimum. In the spacecraft domain, Mixed-Integer Linear Programming is

commonly used to handle optimisation problems with simple logical constraints [59].

Park et al. present an MPC-based approach for autonomous spacecraft rendezvous and

docking with a tumbling platform [84]. In their approach, thrust, approach velocity, and

spacecraft positioning within the line-of-sight cone from the docking port are treated

as constraints. Whilst simulating approach trajectories, time-to-dock and fuel con-

sumption are evaluated as cost function parameters within the MPC framework. Their

simulation results demonstrate that MPC is a promising approach for spacecraft auton-

omy in rendezvous and docking scenarios. They also demonstrate their MPC-based

approach to debris avoidance with similar success. Açikmeşe et al. introduce a robust

approach to MPC in uncertain and nonlinear systems by including feedforward and

feedback components in their control [85]. Their work is influenced by prior research

into the autonomous guidance and control of spacecraft near small celestial bodies.

The ability of the produced algorithm to handle uncertain and nonlinear systems with

constraints makes it highly suitable for real-time autonomous control applications.

Moving forward, it is evident that modelling and simulation techniques are no

longer confined to the developmental phase of an engineering project but have rather

firmly integrated themselves into the operational core of a system driven by the increas-

ing complexity of systems and the demand for improved performance. This evolution

shapes the future of spacecraft autonomy by providing the means for operations in

an environment where uncertainty and complexity are the norm. As the demands

placed on engineering systems grow in complexity, however, conventional modelling

and simulation methods may deviate from practical applicability. This divergence

necessitates innovative approaches to bridge the gap between conceptual models and

real-world systems.
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1.4.3. DIGITAL TWIN

As the requirements for engineering systems become increasingly more complex, tradi-

tional modelling and simulation methods can begin to stray in similitude. Historically,

this has been compensated with hardware approaches. An example of this can be seen

in space systems engineering, where during NASA’s Apollo program, ground-based

replicas of space vehicles were built to allow for testing on the ground before launch.

During the mission operation, the same ground-based spacecraft were also used to aid

astronauts in orbit by simulating manoeuvres using real data from the orbiting craft.

Prior testing of manoeuvres in a safe environment ensured the safety of the astronauts

on orbit by analysing the outcomes of these simulations. The ground-based spacecraft

was referred to as a twin [82]. As an extension of the twin concept, a virtual system

model can be developed to support operations using a direct linkage to operational

data to predict how a system will behave. [86]. This concept is known as a ’Digital

Twin’.

The Digital Twin concept aims to address the shortcomings of the conventional

simulation approach to create a virtual replica of an engineering system unparalleled

in exactitude [87]. It extends the conventional modelling and simulation of an engi-

neering system to include all interdependent systems; for a spacecraft, this includes

everything from the mechanical structure through each subsystem [87]. At this scale,

the spacecraft subsystems can understand their role in the operation of the spacecraft.

Moving towards a large, heterogeneous, decentralised simulation model, a digital twin

approaches the state of becoming ”self-aware” in which subsystems possess knowledge

about their state, the environment they operate in, and how they integrate with other

submodules in the system [88].

Some examples in the literature regarding the application of digital twin technology

to the aerospace industry demonstrate its capability in fault identification. Ye et al.

demonstrate the advantages of using a digital twin approach to assess the structural

health of a reusable spacecraft between flights [89]. Similarly, Tuegel et al. discuss the

benefits of adopting a digital twin approach in reengineering aircraft’s structural life

validation process in the United States Air Force [90]. The proposed implementation
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would assist in identifying potential faults before they can occur, allowing for remedia-

tion before occurrence. On a smaller scale, Li et al. describe developing a digital twin

model of an aircraft wing for crack growth prediction [91]. A digital twin-driven fault

diagnosis and health monitoring approach for spacecraft, which tracks the on-orbit

operation of a satellite by taking input from telemetry data, has been proposed by

Shangguan et al. The developed prototype is designed to assist ground operators in

diagnosing faults present in telemetry data [92]. Constraining their research to a single

spacecraft subsystem, Peng et al. describe their approach to developing a digital twin

model of spacecraft battery degradation to predict the lifetime of the cells used in a

theoretical mission [93].

Whilst the digital twin examples showcase diverse uses, they all share one common

trait: they operate on the ground. Currently, onboard digital twin applications are

seldom mentioned in the literature. This may be attributed to the fact that high-

fidelity, complex model inferencing may be incompatible with the system resources

available. So, whilst deploying a digital twin onboard grants the advantage of faster

data actionability, it necessitates working within the computational constraints of the

device, leading to the necessity of making trade-offs in the twin’s complexity. However,

the latency introduced by offline inferencing may not be suitable for applications

that require real-time feedback from a digital twin. Narrowing the scope of a digital

twin to specific components can help alleviate the issue of computational resources.

Recent work published by Qahmash et al. demonstrates the advantages of applying

an onboard digital twin to solve the gripper-payload interaction challenge in an aerial

robotics problem [94]. The developed onboard digital twin predicts the interactional

forces between the gripper and the payload. If the measured forces during gripping

deviate from the prediction from the digital twin, the system will pass to a fault handler.

The onboard digital twin can immediately detect a problem as it occurs and take action

on it, as opposed to requiring a ground communication loop. Digital twin systems

can also be segregated into onboard and off-board modules. Huang et al. provide an

innovative solution by combining onboard and off-board digital twinning for real-time

health monitoring and anomaly detection in industrial systems [95]. Acknowledging

that cloud platforms provide the necessary computing and storage capabilities for
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digital twins, ensuring accurate anomaly detection, they are leveraged for off-board

digital twin tasks that require heavier computing resources, leaving edge computing

onboard to focus on real-time data processing and executing anomaly detection models

for real-time response. Onboard digital twins excel in real-time applications where

low latency is essential. However, they fall short compared to the system resource

availability of off-board digital twins. In the context of devices operating in extremely

remote environments, such as deep space spacecraft, having the ability to process

data locally and act swiftly without relying on external communication has enormous

potential. As the desire for deep space missions continues to grow, the necessity for

self-sustainable spacecraft is emphasised by requiring onboard models that mirror

system modules with extreme accuracy to be integrated with physical sensors [87].

This capability onboard would allow for fault prediction and recovery, recommending

changes to the mission plan whilst operating in a communications-denied environment

[90].

Onboard software that can modify mission parameters and analyse their outcomes

in real-time can be invaluable for deep space missions [87]; however, it can introduce

risk. Whilst autonomous task generation and intelligent control are extensively used in

the automotive [96], aeronautical [97], and manufacturing industries [98], the adoption

of these algorithms in spacecraft is not at a similar level of maturity. With the high

cost of a traditional spacecraft discussed in Section 1.1.3, the added risk of failure in

implementing an onboard digital twin in a previously unexplored context has stagnated

its development. The larger risk appetite of a CubeSat mission highlights the platform

as the perfect test bed to develop onboard digital twin software and explore its potential

for larger, more expensive missions. Demonstrating the ability to adapt, heal, and

respond to changing mission tasks in an agile way onboard the CubeSat platform paves

the path for all spacecraft to take advantage of fault handling, machine learning and

in-orbit testing with a reduction in development risk.

Although there are similarities between an onboard digital twin and a conventional

modelling approach like MPC, the two can also complement each other effectively.

While both rely on a model-based approach to the decision-making process and require

real-time updates to operate effectively, they target different aspects of a control strategy.
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An onboard digital twin serves as a real-time, high-fidelity model of the spacecraft

itself, as opposed to MPC, which is primarily a control strategy for optimising control

inputs to achieve predefined objectives. The digital twin, a dynamic model that mimics

a real spacecraft with continuous updates on the spacecraft’s state, could be integrated

into an MPC control strategy. Integrating the two approaches to autonomy could allow

an MPC solution to leverage a digital twin to optimise control actions based on mission

objectives and constraints.

Using onboard digital twin technology can be crucial in enabling heightened auton-

omy in space missions. Despite current programming and design efforts, failures will

likely occur during satellite operations. The common approach for fault handling on

a spacecraft is to transition into a safe mode from an FDIR routine, which introduces

risk when operating in a communications-denied environment. The benefits of using

autonomy for advanced fault prevention have previously been observed. However,

some apprehension exists regarding a more ubiquitous adoption. The capabilities

of autonomy on space missions are being underestimated. A digital twin modelling

approach can revolutionise autonomous onboard fault prevention by breaking down

the spacecraft systems into smaller components and thoroughly characterising each

section to predict and prevent faults. This concept highlights the partial motivation

for the research in this thesis: By leveraging digital twin technology for advanced

fault prevention, satellite missions can better detect and recover from on-orbit failures,

increasing reliability and the chances of mission success.

1.5. OVERVIEW OF THIS THESIS

1.5.1. RELIABLE SOFTWARE DEVELOPMENT FOR SMALL SATELLITE MISSIONS: A

BINAR-1 CASE STUDY

Over the past two decades, the CubeSat platform has enabled access to research in

space by driving down the costs associated with reaching orbit. As a cost-effective

alternative to a traditional spacecraft, the platform has led to an influx of satellites built

by universities populating LEO. The increased access to space for university groups is
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not without risk, however, as the skills available in the educational branch of the space

industry may struggle to implement the complex software that enables spacecraft. This

risk is demonstrated by the commonality of failures presented in missions developed

by university groups, some of which are due to software.

Although the importance of robust software design in space missions is apparent,

little published work exists regarding how to develop software for spacecraft reliably.

Due to this, new entrants into the space industry may elect to use an established

software solution. To fully benefit from an established software solution, the developed

code base must conform to the existing structure, tightly coupling the code base to

the solution used. This tight coupling can result in difficulty in breaking from the

established solution if it no longer meets mission requirements or where ongoing

licensing costs are undesirable.

In Chapter 2, an article under peer review in the Journal of Small Satellites, common

pitfalls of software design leading to the failures of historical space missions are high-

lighted. The reoccurrence of these failures can endanger space mission success. Several

software design methods and practices are demonstrated to address these pitfalls, using

the Binar Software Framework written by the candidate for Binar-1 as a case study.

Following these methods has aided in developing safe, reliable and reusable software

for future Binar satellites. These same concepts can be applied to any spacecraft to

increase the likelihood of mission success. The intended contribution of this paper is to

aid in reducing common software-related failures presented in space missions.

1.5.2. BINAR-1 SOFTWARE DEVELOPMENT

An overview of the software developed for the BSF is presented in Chapter 3. This

software framework was used onboard the flight computers on Binar-1 to meet mission

objectives and is being integrated into Binar-2, 3 and 4. The chapter is broken into

several areas that comprise the software framework; The hardware abstraction layer,

general utilities, boot application modules, application modules, communications

modules and operation modes. The chapter provides extensive detail on each of these

libraries and, where applicable, describes the hardware implementations for the flight
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computers on the Binar-1 CubeSat.

The developed BSF aids in meeting regular satellite launches and provides a plat-

form to support the development of the onboard digital twin. The framework has

been developed with a core focus on preventing software faults from propagating from

development through to mission operations.

1.5.3. EXPERIMENTAL RESULTS AND MODELLING OF THE BINAR-1 CUBESAT ON-

BOARD POWER MANAGEMENT IN THERMAL VACUUM CONDITIONS

The health of the Lithium-Ion battery technology frequently used in satellite electrical

power systems is known to degrade when exposed to the sub-zero environment of

space. Due to this, battery heating circuitry is crucial for the longevity of a mission.

On Binar-1, control over the battery heaters was implemented in analog circuitry to

ensure the heaters could be enabled as soon as required without relying on software.

However, this presents a challenge. As the technology responsible for heating the

batteries constitutes one of the most significant demands on the CubeSat’s electrical

power system, its automation may result in a low-power state occurring if a high-power

task is being performed simultaneously. The possibility of this highlights the necessity

for a method of predicting in advance when these low power states are to occur.

In Chapter 4, an article in preparation for journal submission, computationally

inexpensive models able to run onboard a CubeSat are created to predict when low-

power states are to occur without requiring input from a ground operator. These models

are created from data recorded whilst testing the Binar-1 CubeSat in simulated Low

Earth Orbit conditions using a thermal vacuum chamber. The produced models are

further verified against an additional thermal vacuum experiment and Ansys thermal

model. The paper discusses the applications of this work for autonomous operations

in a communications-limited environment.
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1.5.4. ONBOARD CUBESAT DIGITAL TWIN

A digital twin is a virtual representation of a system used for simulations. Using a

digital twin is a common practice during the development phase of a system, yet it is

frequently discarded upon completion of the system’s development. However, having

a high-fidelity model of a system offers a unique insight into the operations of that

system during use. The developed digital twin platform extends this idea to provide a

novel automation method for space missions. By deploying the digital twin onboard

the spacecraft itself, information regarding the satellite’s environment can be injected

directly into high-fidelity simulations from the sensors on the satellite. The immediate

simulation feedback allows for a heightened sense of autonomy on a spacecraft without

relying on a communications link with the ground.

Chapter 5 proposes that this novel technology is crucial for spacecraft operating

in a communications-limited environment that may not be able to rely on regular

ground communications. It details the development of a digital twin platform capable

of predicting a fault in advance and autonomously taking steps to avoid the fault from

happening. It further explores the feasibility of using machine learning inferencing

onboard the spacecraft as a novel approach to predicting faults in advance.

1.6. CONCLUSIONS

CubeSats have transformed the field of space research by providing a cost-effective

approach to accessing space, opening up previously unavailable opportunities. In

the past two decades, the platform has been observed to extend beyond the original

goal of SSDL to now appeal to larger organisations interested in low-cost spacecraft.

The increasing global adoption of the platform has led to the recent launch of deep-

space CubeSats. As CubeSats continue to revolutionise space exploration, however,

one question remains: How do we ensure their software systems are reliable and

fault-tolerant? The primary focus of this thesis is to leverage the high failure rate

of CubeSats to develop novel software-based techniques that enhance the reliability

of spacecraft, irrespective of class. The Binar-1 platform was introduced, offering a
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medium to explore the contributions this research makes toward spacecraft software

design.

One of the leading causes of CubeSat mission failure is software faults, result-

ing from a lack of development experience and neglect of established development

methods. This thesis aims to address this issue by guiding spacecraft developers in

implementing reliable software development practices. Onboard autonomy was in-

troduced as a means for advanced prediction of system failures to compensate for

faults occurring during mission operations. Through the development of a novel

onboard spacecraft digital twin, a satellite can make decisions and take action in the

event of a failure without relying on a ground link. The thesis will explore modelling

to describe the behaviour of CubeSat systems to predict faults before they occur on

the memory-constrained flight computer. By addressing these key challenges facing

CubeSat missions, the thesis aims to contribute significantly to the field of satellite

software to ensure the success and longevity of missions. With the development of a

custom software framework and onboard digital twin, the boundaries of space mission

autonomy and resilience can be expanded, paving the way for a new era of reliable and

fault-tolerant satellite missions.
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ABSTRACT

As the computers enabling small spacecraft increase in capability and decrease in cost,

the role that flight software plays in mission potential is becoming increasingly impor-

tant. Consequently, common pitfalls that are inherent in software design can endanger

small spacecraft mission success. A review of space mission mishaps of the past two

decades reveals that code reuse, software testing and poor code base maintenance were

frequently responsible. This paper provides recommendations for software design for

small spacecraft to increase the likelihood of success for small satellite missions, using

Binar-1, Western Australia’s first locally developed spacecraft, as a case study. In the

first application of the SOLID principles of object-oriented programming (a set of princi-

ples intended to increase the maintainability and flexibility of a code base) to spacecraft

software development, we demonstrate safe code portability between missions, and

an increase in test coverage of the code base through test-driven development. Good

code base maintenance is discussed with a focus on creating a development pipeline

involving continuous integration and continuous deployment of spacecraft software.

Implementing the recommendations for small spacecraft software design on the Binar

platform has resulted in the development of safe, reliable and reusable software.

2.1. INTRODUCTION

In a 2005 study of 156 on-orbit spacecraft failures, Tafazoli found that six percent were

attributed to incorrect software commands and flaws, demonstrating the importance of

a robust software design methodology to a successful mission [99]. Seventeen years

later, as more functionality is implemented in, or enabled by software running on

smaller, cheaper, and more powerful computing equipment, this is becoming more

true than ever [100]. However, the CubeSat form factor and onset of electronics minia-

turisation has dramatically reduced the cost required to conduct research in space,

enabling universities to explore this field with teams of students. This is not without

risk, however, as the skills available in the educational branch of the space industry

may struggle to safely implement the complex software powering future spacecraft.



Chapter 2 STUART ROBERT GIBSON BUCHAN 59

This is reflected in the commonality of mission-critical risks presenting in the spacecraft

being produced from these groups [69].

There is little published work documenting the role software plays in CubeSat

failures [69]. Due to this, new developers may potentially suffer the same pitfalls as

developers before them. As reliable software design is critical in risk mitigation [69], it

is common to see university CubeSat groups seek out mature software frameworks for

implementation into their projects. Open source software frameworks such as NASAs

Core Flight Software aim to aid in cost and schedule savings for mission development,

whilst improving the reusability and quality of a code base. The framework has proven

flight heritage on missions such as the Lunar Reconnaissance Orbiter and the Lunar

Atmosphere and Dust Environment Explorer, demonstrating its suitability in a space

mission [101]. JPLs open source F Prime framework aims to achieve similar benefits

for small satellites. Having been used on missions such as ASTERIA, Lunar Flashlight

and NEA Scout, it has proven flight heritage in CubeSat applications [102]. If CubeSat

developers are willing to select their on-board computer OBC for compatibility with

a framework, KubOS provides a software stack that can aid in rapid development by

supplying the API for interfacing with hardware [103]. It is also common for university

CubeSat groups to purchase and use a commercial Software Development Kit (SDK)

for their launches, attracted to the appeal of flight heritage with in-orbit validation

and guaranteed long term support [104]. Whilst using a mature framework or an SDK

can be useful for university groups to achieve the short term goal of a launch, it can

become a detriment to a space program with the intention of flying multiple spacecraft.

To fully benefit from the use of existing software solutions, the software written for

the CubeSat needs to conform to the existing structure. This can couple the code base

to the specific software solution being used, making it difficult to break from it in the

future if it no longer meets mission requirements. In the instance of solutions with

proprietary software, use on subsequent missions may carry with it extra licensing

costs. Using an SDK for the development of EIRSAT-1, Doyle et al. mention that the

knowledge base of the software development team regarding mission software design

is encompassed within the confines of using the licensed SDK, further stressing the

potential difficulty in breaking from the use of a kit. It was recommended that teams
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with the intention of flying multiple missions seek out full in-house development [104].

This recommendation is often heeded in the case where a University group wishes to

produce reliable software that can be reused on future missions [105][106].

From an independent analysis however, Latachi et al. identified custom CubeSat

flight software as a highly critical system in the success of a mission due to the lack

of flight heritage. To decrease the risk of mission failure, four areas were identified

to promote the development of a safe, generic software architecture for spacecraft:

modularity, reliability, re-usability and extensibility [69]. These sentiments are seen to

be reflected in other University groups that have written their own custom CubeSat

software [49]. Modularity was mentioned to be a key driver for the development of

ITASAT, where Carrara et al. mention that a major objective of their CubeSat project is

to develop a multi-mission platform [107]. Coupled with modularity, extensibility is

demonstrated in the software architecture for the Masat-1 and Kysat CubeSat missions,

where a distinctive layered approach has been adopted. Each loosely-coupled layer

consists of various modules, each encapsulating their own set of functionalities that

do not interfere with one another [69][106]. Developing the code base in such a

manner allows for hardware to be changed with only minor modifications to the

software, as only the module encapsulating the driver for the hardware needs to

be changed. Moreover, extra modules can be added to layers without breaking the

software structure, permitting extensibility of the code base. Whitney et al. propose that

a key element in the extensible software design of OpenOrbiter is the componentisation

of modules, allowing for scalability [108]. Supplementary to extensibility, Hishmeh et al.

discuss the importance of ensuring the modules developed have a simple interface. This

increases readability of the code base, and therefore the likelihood of maintainability

and reusability [106]. Both the Masat-1 and the Galassia CubeSat teams stress the

importance of separating the functionality of the payload software from the flight logic.

This was mentioned to enable reusability by allowing the majority of the code base to be

reused between missions [69]. For Askari et al., implementing this level of modularity

was key in achieving a program requirement of only needing to develop software for

the new payloads being flown between missions [105]. De Souza et al. were able to

achieve reusability through a layered software approach, where only the lower layers
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close to the hardware need to be changed for deployment on future hardware [109].

Whilst commonly recommending the development of in-house modular, reusable

CubeSat software, it is often seen in published work that CubeSat software developers

seldom offer advice to new developers on how to achieve this goal. The concepts

of modularity, abstraction and layered software design may seem overwhelming to

University teams embarking on the development of their first CubeSat, which in turn

may increase the likelihood of the team electing to use a mature software framework or

an SDK. As previously mentioned, whilst using an existing software solution decreases

the time-to-orbit for an initial mission, the ongoing costs and tight coupling of the code

base to the solution being used can make further development difficult. Furthermore,

the University team may miss out on the potential learning experience of developing

their own software framework.

Fortunately, independent bodies exist in an attempt to standardise the development

of spacecraft systems, including software development. The European Cooperation

for Space Standardisation (ECSS) is one such body. The design practices previously

mentioned by the CubeSat software developers are in line with the topics discussed in

publications for software engineering and software product assurance, ECSS-E-ST-40C

[110] and ECSS-Q-ST-80C [111]. The software engineering and software product assur-

ance documents are grounded in the creation of unambiguous, verifiable and traceable

system requirements. The clauses therein encourage the developer to satisfy the pro-

duced requirements throughout the mission life cycle. Adherence to the standards

promotes the creation of safe, reliable, maintainable code, increasing the likelihood of

mission success. Whilst offering a high level overview of the necessary elements for

reliable spacecraft software design, the documents however still do not offer in depth

advice on how to implement modularity, reliability, re-usability and extensibility in

space systems.

From the works discussed, software developed for CubeSats is often based around

requirements, or in the case of Masat-1, influenced by FDIR routines [69]. Learning

from incidents (LFI), in particular accident analysis, is a common technique used by

the aviation industry to learn and prevent recurrence of mishaps [112]. However, it

does not seem to be a common driver for CubeSat software development, perhaps
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as previously mentioned due to little published work on CubeSat failures existing.

Yet, often described as a test-bed for larger spacecraft platforms, the development of

CubeSat software can be influenced by the accidents that occur in larger spacecraft

missions. Therefore, with the proven ability to aid in sustainable developments in

system safety, the LFI concept was applied in the development of software for the Binar

platform.

Binar-1 (named after the Noongar word for fireball) is Western Australia’s first

satellite, designed and built by the Space Science and Technology Centre at Curtin

University in Perth. At its core, the 1U CubeSat is controlled by a motherboard that

is designed entirely in-house, with a focus on subsystem design and integration. The

completed core occupies just 0.25U, consisting of primary and redundant flight com-

puters, a GPS, attitude determination and control system (ADCS), electrical power

system (EPS) and memory storage, leaving significantly more room for payload than

most similar platforms. Having this capability in-house enables prototype testing to

destruction to stress the limits of the spacecraft, and facilitates hardware design reuse

between missions. In addition to the hardware development, the author has developed

the software stack powering Binar-1.

The custom software consists of flight application code, a hardware abstraction

layer, operating system abstraction layer, utilities, system resource manager, and board

support layer for low-level drivers for on-board peripherals. Writing custom software

for the motherboard meant that on-board peripherals could be leveraged in the most

optimal and efficient manner to function as expected. Being developed in parallel to the

iterative hardware design process, software development saw adhesion to abstracted

software design that enabled hardware to be changed without requiring much modi-

fication to the software. This ubiquitous abstraction has become a core feature of the

Binar spacecraft that will allow software to be reused on future missions with minimal

changes.

This paper analyses historical space mission failures due to inadequate software,

using the findings to create recommendations for CubeSat software developers on

writing reliable software for small spacecraft. As a case study, these recommendations

are applied to the development of the Binar Software Framework, developed by the
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author, with the perceived benefits discussed. Unfortunately, a hardware fault on

the adaptor board connecting the Binar CubeSat core to the transceiver on Binar-1

prevented communications between the motherboard and the transceiver. This meant

that ground control was only able to communicate directly with the transceiver. Due

to this, the on-orbit benefits of adopting the recommendations could not be validated.

However, we have seen some benefits of adherence to the methods used in the paper

as we are currently using the code base for development of our next three spacecraft.

As the program progresses and the spacecraft produced become more complex, it is

expected further benefits will become apparent.

Section 2.2 analyses the missions, finding that the areas of code reuse, software test-

ing and poor code base maintenance are seen to be frequently responsible in mission

failures. Following this, Section 2.3 then discusses how software can be written for

small spacecraft to prevent these failure reasons from reoccurring, using Binar-1 as a

case study. Where applicable, it mentions how the software aligns with the clauses

specified in the ECSS documents. Finally, the benefits of adopting the proposed recom-

mendations are discussed in Section 2.4 with a focus on safety, reliability and reusability,

increasing the likelihood of small spacecraft mission success.

2.2. SPACECRAFT SOFTWARE FAILURES

Whilst the importance of software on spacecraft is well understood [113], failures

are still common in the space industry specifically resulting from mishaps related to

software, often due to insufficient testing prior to launch and poor coding practices

[114] [100]. This trend is also observed in the small spacecraft community [41]. In a 2017

study, Venturini et al. [115] conducted 23 interviews of organisations with CubeSat

industry experience. Respondents to the interviews identified flight software as a

high-risk area, repeatedly stressing the importance of robust software design in the

reduction of risk. Ideally, this paper would analyse small spacecraft mission failures

due to software, however with a lack of definitive publications on this topic it will use

examples from larger spacecraft missions instead. The scope of the missions selected for

this paper was limited to only those that publicly disclose software to be a critical point
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of failure from the result of an accident investigation review. The spacecraft failures

that met this criterion were the on-orbit collision involving DART in 2005, the potential

atmospheric destruction of the Mars Climate Orbiter in 1998, and the self-destruction

of Ariane-5 and Zenit-3SL shortly after lift-off in 1996 and 2000, respectively. Code

reuse, software testing and code base maintenance were frequently mentioned in the

investigation reports for these missions. The overlap of software failures in the missions

selected can be seen in Table 2.1. It is hoped that this paper will serve to raise awareness

of common spacecraft software failure issues, and showcase methods to prevent similar

failures in the future. This section of this paper will examine the selected missions and

discuss the reasoning behind their software failures. Following this, Section 2.3 will

discuss how the Binar Software Framework addresses these common failure areas to

produce safe, reusable spacecraft software to promote small satellite mission success.

TABLE 2.1: A summary of the cause of spacecraft software failures.

Failure Reason

Mission Testing Documentation Code Review Code Reuse
DART * *
MCO * * *
Ariane-5 * * *
Zenit-3SL * *

2.2.1. DART

The Demonstration for Autonomous Rendezvous Technology (DART) project was a

2005 NASA mission to demonstrate the hardware and software required to perform

an automated docking with another spacecraft in orbit [116]. The target spacecraft

for docking, MUBLCOM (Multiple Paths, Beyond Line of Sight Communications),

remained operational in orbit after having satisfied its primary goal. Eleven hours into

the mission, DART collided with MUBLCOM and proceeded to its end of life sequence,

failing to achieve any of the fourteen on-orbit mission objectives [117].

The Mishap Investigation Board (MIB) identified significant software faults that led

to mission failure [118]. The first point of failure occurred as a result of an attempt at

program error correcting logic. The spacecraft used a standard Kalman filter approach
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to estimate position and velocity vectors using GPS and inertial data. However, the

spacecraft also introduced a software reset when the error between the estimated and

measured data became too great. After the reset, the flight computer sampled the

GPS and used those readings as its new estimate. This initial reading however was

consistently 0.6 m/s inaccurate which would again cause the readings to drift and

trigger a software reset, repeating every three minutes. The MIB discovered that the

design requirements dictated an algorithm that should have been able to correct a

discrepancy up to 2 m/s, well above the error range that forced the spacecraft into

a software reset loop. The MIB proposed that the failure to detect the inadequate

control algorithm stemmed from lack of testing across the full range as specified by

the design requirements. Furthermore, in the calculation of its position and velocity

vectors, DART weighted the estimated value far higher than it should have. This was

caused by a late change of a gain constant in software that did not undergo sufficient

testing. The new gain factor, attributed to changing mission requirements, meant that

the algorithm could never actually converge. Ultimately, this caused excessive course

correction manoeuvres during the short mission length, leading to the early mission

retirement and contributing to the mishap with MUBLCOM. The failed docking and

subsequent collision can also be attributed to an overly strict control sequence to

initiate the docking manoeuvre. The waypoint that DART was to enter to begin the

first on-orbit mission objective was too small, and as a result the spacecraft continued

to drift toward MUBLCOM. The algorithm for the docking sequence did not account

for the possibility of navigational errors, and hence there was no ability to recover after

this waypoint was missed. An algorithm for collision avoidance was built into the

spacecraft, however it depended on the same navigational data source that led to the

early retirement fault and hence was ineffective at preventing the failure.

2.2.2. MARS CLIMATE ORBITER

The Mars Climate Orbiter (MCO) was a 1998 NASA mission intended to study the

Martian climate from a low circular orbit. The intention was to use an initial elliptical

orbit through the upper Martian atmosphere to lower the orbital apses to achieve a low

circular orbit [100]. However, after beginning its orbital insertion burn, communication
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with the spacecraft was lost. The MIB determined that MCOs initial elliptical trajectory

passed too deep into Mars’s atmosphere, either destroying the spacecraft or causing it to

skip out of the atmosphere and into a heliocentric orbit [119]. During the investigation,

the failure was traced back to code reused from Mars Global Surveyor (MGS) (launched

in 1996). The code in question assisted with the calculation of the small forces required

to prevent saturation of the spacecraft’s reaction wheels due to the build up of angular

momentum. The MGS code required imperial units in its calculation of the impulse

bit, which then was to be converted to metric units to be used by the propulsion

control routines. However, the reaction control system thruster size on MCO was

increased from MGS, requiring changes to the control algorithms. Whilst the equations

used for MGS did take into consideration the conversion between pounds per second

to Newtons per second, this value was buried in the code with a lack of sufficient

documentation. Coupled with a failure to meet interface specification requirements

through testing [120], when the new thruster equation was substituted into the reused

software this conversion factor was missed and hence was mistakenly removed. As

a result, the software interface specification for MCO received thruster parameters in

imperial units rather than the required SI units, which ultimately led to the spacecraft

dropping its periapsis to an estimated 57 km [120].

2.2.3. ARIANE 5

As a successor to Ariane 4, much of the already flight-proven software was reused to

accelerate the development of Ariane 5. Unfortunately the first flight in 1996 resulted

in a catastrophic failure 37 seconds after lift off when the self-destruct system triggered

the destruction of the launch vehicle. The post incident investigation into the failure

tracked the cause back to the inertial reference system failing after having encountered

a software exception [121]. Incorrect data coming from the inertial reference system

instructed the on-board computer to fully deflect the solid booster engines, causing the

vehicle to veer off course. The flight computer could not swap to the redundant inertial

reference system as it too had suffered the same failure. The software exception on both

inertial reference systems was found to have been caused by an integer overflow in the

attempt to convert a 64-bit float to a 16-bit signed integer. The conversion software did



Chapter 2 STUART ROBERT GIBSON BUCHAN 67

not handle the case where the float would be too large to fit into the integer. This error

was located in the software that aligned the inertial reference system on the launch pad.

After lift off, the function, which was designed for Ariane 4, continued for 40 seconds

into flight. However, the designers had overlooked the need to update the flight logic

to account for the higher acceleration from Ariane 5’s more powerful Vulcain engines.

The velocity that the vehicle reached early into flight resulted in a larger value than

could be converted to the smaller integer. The Ariane 501 Inquiry Board mentioned

that had the inertial reference system and complete flight control system been tested

extensively, the software errors leading to the failure could have been detected [121].

2.2.4. ZENIT-3SL

Zenit-3SL was a Ukrainian expendable launch vehicle primarily used to deliver com-

munications satellites into geosynchronous orbits. It was a multinational collaboration

through the Sea Launch project that used a mobile equatorial sea-based launch pad

for easier access to equatorial orbits [122]. The third mission of the program in 2000

failed shortly after launch when the rocket self-destructed after a significant course

deviation [123]. The failure analysis panel determined that the launch failure could

be attributed to a software error prematurely disabling the second stage engine. The

root cause was traced to software failing to close a pressurisation system valve, leading

to an excess loss in produced thrust and early engine termination [122]. The error

was traced to a late change in mission requirements resulting in a software engineer

modifying control software. During this modification, the code concerned with valve

operation was accidentally deleted [123]. Pre-launch checks of the software following

this modification unfortunately failed to identify the missing command to close the

valve [122].

2.2.5. SUMMARY OF FAILURE REASONS

The key areas leading to software failure shown from the missions discussed are insuf-

ficient software testing, inadequate documentation, lack of code review and code reuse.

A summary of how these areas contributed to the failure of the discussed missions
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can be seen in Table 2.1, highlighting the overlap that is present. It is evident that

the largest contribution can be attributed to lack of software testing, with inadequate

documentation, insufficient code review, and unsafe code also causing failures. The

remainder of this paper will discuss possible preventative measures for these failures

in the development of reliable small spacecraft software using the development for

Binar-1 as a case study.

2.3. RECOMMENDATIONS FOR SMALL SPACECRAFT

2.3.1. SAFE CODE REUSE

As the goal of the Binar platform is to facilitate rapid mission concept-to-orbit, hardware

and software reusability is of high priority to reduce the development time of future

spacecraft. Yet, as can be seen from the failures of Ariane 5 and MCO, code reuse

is not without risk. The Binar Software Framework was designed to maximise code

reusability whilst minimising risk by focusing more on platform portability rather than

direct reusability. Software reusability refers to the development and maintenance

of software modules that can be reused between compiled binaries. With a focus on

meeting the needs of a broad range of software requirements, code developed with

reusability in mind can be large, complex and difficult to maintain [124]. In the cross-

platform context, source portability refers to adapting existing source code to a wide

range of environments. With a reduction in generalisation, software developed this way

can be easier to produce and maintain in future implementations whilst also benefiting

from increased reliability [124].

Developing software in this manner can be achieved by following time-tested

software principles, designed to streamline the process of writing good code. Two

common collections of principles that are frequently used are GRASP and SOLID.

GRASP (General Responsibility Assignment Software Patterns) is a collection of nine

software principles, namely controller, creator, indirection, information expert, low

coupling, high cohesion, polymorphism, protected variations, and pure fabrication

[125]. The collection of principles aim to guide the developer into writing robust object
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TABLE 2.2: The UML class diagram arrows used in this paper with their meanings.

Arrow Meaning Description

Association Child object exists within and is used by the parent
Dependency Changes to the parent object will affect those that

depend on it
Inheritance Child object inherits (and can extend) the

functionality of a parent
Implementation Child object implements the methods defined in the

abstract parent
Aggregation Objects are associated, but the child can exist

without the parent object

oriented software through module responsibility assignment. Similarly, the SOLID

principles of object-oriented programming, namely Single Responsibility, Open-Closed,

Liskov Substitution, Interface Segregation and Dependency Inversion, aim to increase

the maintainability and flexibility of a code base by resolving improper dependencies

between software modules [126]. Whilst these collections of principles may differ in

some aspects, the general ideology is that software written adhering to established

principles should be of a higher standard than software written without. In this section,

Unified Modelling Language (UML) is used to show applications of each of the SOLID

principles to the development of the Binar Software Framework in the first use of

SOLID for spacecraft software development. Whilst the GRASP principles do provide a

beneficial reference on robust software design, the scope of this section is constrained to

only the methodologies used during the development of the Binar Software Framework.

For reference, the UML class diagram arrows used in this paper are defined in Table

2.2. The observed benefits are discussed in Section 2.4.

SINGLE RESPONSIBILITY PRINCIPLE

The Single Responsibility principle is concerned with the division of program logic

amongst multiple objects encapsulating a single small responsibility each [127]. The

concept promotes using multiple objects with well-defined interfaces over using a

singular object to control multiple aspects of an application. As a general rule, an object

conforming to this specification is said to have a single responsibility if the object only
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<<Interface>>

Analog

+ GetRaw()

+ GetVoltage()

AnalogCurrent

+ GetCurrent()

AnalogTemperature

+ GetTemperature()

Analog

+ GetRaw()
+ GetVoltage()

FIGURE 2.1: The application of the Single Responsibility Principle to the ADC mod-
ule in the Binar Software Framework. The AnalogCurrent and AnalogTemperature
modules are decoupled from each other by implementing their required functionality
within the scope of their respective objects. A change to either of the AnalogCurrent
or AnalogTemperature objects will not result in a change in the other.

has a singular reason to change. An example of this in the Binar Software Framework

can be seen in the analog to digital conversion software module (Figure 2.1) where the

current and temperature measuring objects are implemented as independent classes

instead of being amalgamated into one complex monolithic object responsible with

measuring both.

In our approach, a base class accounting all features required by the analog objects

was implemented from an interface, and then separate specific analog classes inherited

and extended this functionality. This prevented the non-cohesive current and tempera-

ture objects from being coupled together causing unnecessary rigidity in the module

design. This is important in the context of code reuse as the prevention of coupling

means that changes to subtypes of the Analog module will not invoke a change in other

modules.

OPEN-CLOSED PRINCIPLE

The Open-Closed principle [127] refers to the development of software modules that

are open for extension, but closed for modification. The functionality of modules under
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GpsBase

+ Parse()

+ CalculateChecksum()

- ReadGps()

GPS

- ReadGps()

FIGURE 2.2: The application of the Open-Closed Principle to the GPS module in
the Binar Software Framework. The functionality of the GpsBase class is extended
through the addition of new code in the inheriting GPS object, without the need for
modification of the original base class.

this principle can be extended upon when the requirements of an application change,

but the functionality that has already been implemented cannot be modified. The

principle recommends that changing project requirements should be addressed by

adding new code rather than by rewriting code that already works. This is commonly

implemented through the use of abstract objects in object-oriented programming design

[127]. An example of the Open-Closed principle in the Binar Software Framework can

be seen in the GPS library (Figure 2.2), where the design of the GPS module includes

a base class with a set of concrete public methods which describe functionality in

terms of the abstract method ReadGps. The abstract object GpsBase gets implemented in

the inheriting module, GPS, thus extending the functionality of the module without

modifying the source code.

The Open-Closed principle is helpful in this context because it explicitly highlights

that not all code can be safely reused, favouring the development of modules that

separate generic functionality from the detailed implementation. As GPS devices

output data through a series of strings with a checksum, this functionality can be

developed independent of the GPS, decoupling the module from the specific hardware

chosen.

LISKOV SUBSTITUTION PRINCIPLE

The Liskov Substitution principle proposes that subtypes of modules must be sub-

stitutable for their base types in application code [128]. Analogous with run-time

polymorphism, it is one of the enabling factors that makes the Open-Closed principle
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Magnetorquer

- xx: MagnetorquerDriverInterface*

- yy: MagnetorquerDriverInterface*

- zz: MagnetorquerDriverInterface*

+ SetDipole()

+ GetDipole()

+ GetStatus()
MagnetorquerDriver

+ SetPwm()

+ GetDipole()

+ GetStatus()

T: TorquerAxis

<<Interface>>

MagnetorquerDriver

+ SetPwm()

+ GetDipole()

+ GetStatus()

FIGURE 2.3: The application of the Liskov Substitution Principle to the magnetorquer
module in the Binar Software Framework. The Magnetorquer object has three private
pointers to axes that implement the MagnetorquerDriver interface object. Any of the
template concretions of the MagnetorquerDriver class are eligible for substitution into
these private pointers as they inherit from the MagnetorquerDriver interface object

discussed in Section 2.3.1 possible. The principle relates to code reusability through

increasing portability by decoupling generic module software from the detailed im-

plementation. Furthermore, this aids in future maintainability by providing a clear

contract with the application code on how to use a specific module, rather than being

concerned with how it is actually implemented. An application of the Liskov Substi-

tution principle in the Binar Software Framework can be seen in the magnetorquers

software module (Figure 2.3), where a templated MagnetorquerDriver object can be

used by the Magnetorquer class as it inherits from the MagnetorquerDriver interface

object.

In this module, the publicly visible magnetorquer object controls the Magnetor-

querDriver objects through references to their abstract base class. The concrete Magne-

torquerDriver subtype is templated on all available magnetorquer axes, making the

addition of redundant axes compatible with the public module without modification.

This is important as it reduces the coupling between objects in a module. Implementing

functionality through pointers to abstract interfaces allows the higher level software to

use the lower level objects without having to be concerned how they operate, thus per-

mitting changes to interactions with spacecraft hardware without forcing a recompile
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of the full module.

INTERFACE SEGREGATION PRINCIPLE

Check Power

System


Check Temperature

System


<<Interface>>

CheckCriticalSystems

+ CheckCriticalSystems()

<<Interface>>

CheckNonCriticalSystems

+ CheckNonCriticalSystem()

<<Interface>>

SelfCheck

+ CheckCriticalSystems()
+ CheckNonCriticalSystems()

Check Attitude

System

Check Location

System

<<Interface>>

CheckPowerSystem

<<Interface>>

CheckTemperatureSystem

<<Interface>>

CheckAttitudeSystem

<<Interface>>

CheckLocationSystem

<<Interface>>

SystemCheck

+ CheckSystem()

Check Critical

Systems


Check Non-Critical

Systems


FIGURE 2.4: An application of the Interface Segregation Principle to the self check
module in the Binar Software Framework. In this module, each subsystem that
can be checked on-board the spacecraft implements a unique, decoupled interface.
The critical and non-critical system check implementation objects then associate the
implementations of the unique interfaces. This prevents a check done with the critical
system object from becoming coupled to a non-critical system, allowing the systems
being checked to be extended upon without forcing a recompile of unrelated modules.

The Interface Segregation principle states that software module subtypes should not

be forced to depend on modules they do not use [127]. To achieve this, it recommends

avoiding monolithic interfaces that contain many unrelated methods. Rather, the

principle favours multiple smaller interfaces that get implemented where needed. This

principle is closely related with the maintainability aspect of code reuse by removing

code duplication as much as possible, whilst avoiding the pitfalls of non-cohesive

software interfaces. An example of this principle implemented in the Binar Software

Framework can be seen in Figure 2.4, where subsystems that are checked in the self test

module are isolated from one another, and are implemented where required.
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The alternative, more rigid approach to implementing the self check module would

have been to have a singular self check interface that the subtypes of SystemCheck

interface all depended on. Whilst simple to implement, this pattern would result

in methods being added in the standard self check interface that would have only

been used exclusively by specific subtypes. This would then couple all the clients

of this interface together, and open up the possibility for a module to be affected by

changes that other clients force upon the class. The resulting pollution of the interface

could potentially lead to errors when code is reused. Due to the likelihood of on-

board systems expanding as mission requirements become more complex, the Interface

Segregation principle allows for these potential changes by decoupling objects from

non-cohesive interfaces and therefore allows subtypes to not be forced to depend

on methods they don’t need to. Moreover, implementing this principle aids in high

testability of software modules due to the granularity achieved in the responsibilities of

the interfaces. In the example seen in Figure 2.4, rather than having the system classes

that inherit from the abstract interface depend directly on one monolithic SelfCheck

interface object, each subclass of the abstract class is given its own interface to depend

on. Self check objects can then implement the individual interfaces that they will

actually make use of for checking, rather than all systems on board. For testing the self

check module on the host, the interfaces responsible for interacting with the hardware

are able to be mocked and substituted into the module under test through polymorphic

dependency injection.

DEPENDENCY INVERSION PRINCIPLE

Rather than the traditional application architecture approach of a direct dependency

chain between high-level software and low-level implementations, the Dependency

Inversion principle states that high-level software and low-level software are to both

depend on abstractions [127]. An example of this can be seen in Figure 2.5, where the

high-level public facing IMU object and the lower level private ImuImpl objects both

depend on the abstracted IMU interface.

If the application code is interested in interacting with the IMU, it does so through a



Chapter 2 STUART ROBERT GIBSON BUCHAN 75

«Interface»

ImuImu

ImuImpl 

(Primary)

ImuImpl 

(Redundant)

FIGURE 2.5: An example of the Dependency Inversion principle in the IMU software
module. Application code wanting to access the IMU hardware will use the high-level
object that depends on the same abstraction as the lower level implementations. This
decouples the high-level IMU object from the hardware it is interacting with, allowing
the IMU object to be reused even if hardware requirements change.

high-level object that implements the same IMU interface used by the implementation

objects, rather than depending on the implementations directly. The software using

the peripheral has then become abstracted from specifically how it receives the IMU

data and instead focuses on relevant details that are independent of the platform.

This principle is important for code reusability as it creates a modular interface where

low-level implementations can be changed without affecting high-level code that

interacts with them. As Binar-1 has a primary and a redundant flight computer with

different architectures on board, they will need different software binaries to operate.

Moreover, considering the redundant flight computer is to take over from the primary

flight computer in the event of an emergency, it will need to be able to operate with

the same peripherals. It would be time-consuming and error-prone to rewrite the

software concerned with peripheral interaction simply because it is to be run on a

different microcontroller. The application of the Dependency Inversion principle means

that the high-level flight software can be reused between the computers, with the

implementation simply swapped out.

The Binar Software Framework further leverages the Dependency Inversion Princi-

ple by making use of compile-time configurable implementation linking. Using custom

command-line arguments, the compiler will link generalised high-level objects with

their computer specific implementation to build binaries for the two flight computers
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on-board the Binar bus. As the hardware for Binar develops in the future, the applica-

tion of this principle means that new drivers can be implemented without any risk of

breaking high-level flight logic.

FAILURE PREVENTION

The usage of SOLID principles can help reduce the likelihood of errors appearing

through the reuse of code. In the case of the Mars Climate Orbiter discussed in Section

2.2.2, when the small forces software from the Mars Global Surveyor mission was

reused, it was tightly coupled to the thruster control equation being used. This was

demonstrated by the fact that the software had to be modified, and also that the

modification of the software broke its functionality. If it were possible to separate

and encapsulate the section of the software concerned with calculating the thruster

parameters, leaving the genuinely transferable code agnostic of the thruster being used

to interact with a well-defined interface, then the design team could have possibly

written a plugin for the new thruster to conform to the interface specification. Inserted

into the small forces software in a modular approach, this could ensure successful

implementation portability by removing the ambiguity between units by providing a

documented interface specifying the inputs and outputs of the object.

Similarly, with the Ariane 5 rocket discussed in Section 2.2.3 care was not taken

when reusing code from Ariane 4 to ensure that a narrowing conversion from a large

data type would fit within the bounds of a smaller one used in application code. If the

module concerned with using the inertial reference data was decoupled from reading it,

instead interacting with an interface, then the remaining portable high-level code could

have been transferred without the application-specific data conversion. Engineers

could then write a new module for the low-level software to interact with the different

hardware whilst conforming to the interface for it and have the high-level software

interact with it seamlessly.

Being able to reuse code safely involves designing software to be understandable,

flexible and maintainable. Adhering to the SOLID principles of object-oriented program

design, the modules written for the Binar Software Framework ensure that a developer
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can safely reuse code on future missions. Modules having only a single responsibility

mean they are decoupled from each other and won’t be effected by changes to other

modules. Changes are expected, mostly due to changing hardware on the spacecraft,

and so high-level libraries controlling low-level drivers polymorphically allow for

new drivers to be written that use the same interface. If the hardware requires a more

feature-rich driver, the interface can be extended whilst still satisfying the polymorphic

requirements of the high-level controlling object. When these drivers are added to

support new hardware, new targets can be added to build files in the code base to

selectively link the software framework against revisions at compile time. Moreover,

drivers that do not rely on hardware can also be linked at compile time for testing the

software independent of a spacecraft engineering model.

The usage of the SOLID programming principles contributes greatly in adherence to

the clauses outlined in ECSS-Q-ST-80C. The standard mentions that the development

of software should apply design methods that have performed successfully in a similar

application to ensure dependability and safety [111]. The large volume of published

work regarding SOLID proves the successfulness of the time-tested guidelines, and

has even been observed in the scientific community to increase maintainability of a

code base, whilst decreasing dependencies and complexities [129]. The ECSS-Q-ST-

80C document also specifies that the development of software with the intention of

future reuse is to be implemented with a minimum dependency on hardware. The

modularity achieved from adherence to the SOLID principles aids in meeting this

standard, promoting safe reuse on future missions.

2.3.2. SOFTWARE TESTING

DECOUPLING AS A TOOL FOR TESTING

A commonly reported reason for spacecraft failures in the missions discussed in Sec-

tion 2.2 was the failure to adequately test modules of the software, to the extent that

the Ariane-5 investigation board mentioned explicitly that testing could have identi-

fied fatal errors during development [121]. From a CubeSat perspective, the survey
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FIGURE 2.6: Testability of the Binar Software Framework is increased through ab-
stracting away low-level hardware dependencies.

conducted by Venturini et al. [115] saw an emphasis on the importance of software

testing in the success of a mission. The failure to test is a common challenge faced in

embedded software development due to hardware dependency. In these situations, the

lack of ability to test is due to the tight coupling between high-level software and the

low-level software that is concerned with interactions between embedded subsystems.

Furthermore, barriers to testing that arise are related to commonly only having a single

spacecraft engineering model to test on and the commonality for hardware revision.

This scarcity of testing hardware can introduce issues during the testing process where

software may cease to work on future hardware revisions [130].

Decoupling flight application software from the embedded hardware on the space-

craft allows testing on various satellite models, both physical and virtual. Tipaldi et

al. [131] discuss the benefits of using black box testing verification in a high-level test

procedure language to verify the flight software over the lifetime of Meteosat Third

Generation. Taking advantage of the module decoupling that is achieved through the

implementation of the SOLID principles discussed in Section 2.3.1 however, the white

box testability of the Binar code base can be increased. In the Binar Software Frame-

work, testing of libraries that interact with low-level hardware through an interface

layer is done by polymorphically substituting mocked objects in place of the modules

that require a hardware dependency, leveraging the Liskov Substitution Principle.

Favouring many small interfaces over one monolithic interface, as recommended by

the Interface Segregation Principle, adds granularity to the code base and hence only

those objects concerned with hardware interaction need to be mocked when testing
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on the host. Tests can then be written based on how the libraries are to be used in

application code, enabling testing of the software framework without a hardware de-

pendency as can be seen in Figure 2.6. Having fine granularity in system interfaces also

allows for fault injection into the module under test through faked implementations of

interfaces, adhering to the software testing standards outlined in ECSS-E-ST-40C [110].

This allowed the software to be written in parallel with the hardware development of

Binar-1, prior to performing integration testing. Furthermore, this module decoupling

opens the possibility for extending upon the functionality of the software for future

missions without breaking old tests. Moreover, polymorphically substituting mocked

objects in place of hardware dependencies enabled libraries developed for the Binar

Software Framework to adhere to test-driven development to meet the desired test

coverage.

TEST-DRIVEN DEVELOPMENT

Test-driven development refers to a method of developing software in which require-

ments of software are converted to test cases as a precursor to the actual development

of the software itself. The process involves firstly writing a test that won’t succeed,

followed by writing just enough code to make the test pass, and then lastly refactoring

to remove duplication in the software written to pass the tests [132]. Adhesion to

this method of development aids in meeting the software testing standards outlined

in ECSS-E-ST-40C, which highlights that traceability between requirements and all

software units is essential in order to produce meaningful test results [110]. Aside from

having 100% test coverage, software developed through this method will be as lean

and simple as possible. According to ECSS-Q-ST-80C, software can be assured to be

dependable and safe through 100% code coverage at the unit testing level. Moreover,

it is mentioned that this metric is critical during the feasibility review of reusing the

software in the future [111]. The creation of the Binar Software Framework saw strict

adherence to this design method during development. The benefits of using the TDD

approach in the development of the software framework include the ease of performing

positive and negative testing. These types of testing, enabled through the conversion

of software requirements directly into test cases, ensure that the libraries developed
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will safely handle both correct and erroneous data to guarantee conformity of on-board

software to system requirements. Positive testing ensures that the software is able to

meet the requirements specified, and negative testing ensures stability through proving

the software will behave as expected under the worst case scenarios, as recommended

in ECSS-E-ST-40C [110]. High testability of libraries was assisted through propagation

of errors from the low-level software to higher level code, providing transparency of

the inner workings of a software module. This is important as the calling code generally

has more information on how the error should be handled than what may be available

in the scope of the library. This increases overall code portability and facilitates library

reuse for future spacecraft.

An example of this in the Binar Software Framework can be seen from the develop-

ment of the communications library. The operational requirements were determined

prior to writing the library, outlining how the spacecraft should handle telecommands.

Converting these operational requirements into test cases, negative testing was heavily

employed to ensure safe execution pathways when receiving telecommands that either

can’t be decoded or were received in the wrong operational mode. Likewise, positive

testing asserted that responses to correct telecommands were as expected. The test

cases that enabled the development of libraries in the Binar Software Framework are

executed frequently, ensuring that system requirements are always met.

FAILURE PREVENTION

One of the failure points for the DART mission discussed in Section 2.2.1 was an inade-

quate control algorithm that failed to correct for a velocity error of up to 2 m/s, even

though this was specified as a design requirement. Considering the TDD methodology

starts with the translation of software requirements into test cases, mission-critical

requirements are factored into the software early, and any further development that

could break this requirement would be highlighted when the test for the requirement

begins to fail. Learning from this mishap, all requirements for the libraries written

for the Binar Software Framework were defined and translated to test cases before

the libraries themselves were written to prevent software requirements being missed.



Chapter 2 STUART ROBERT GIBSON BUCHAN 81

Another area of failure for the DART mission occurred when an engineer changed

a gain constant that resulted in an iterated calculation never converging. This error

demonstrates the importance of continuous testing not just during library development,

but consistently during the implementation of the library to ensure changes made to

the software do not go out of sync with the tests written for it. From the adoption of

TDD for the software framework enabling Binar-1, a change such as this would cause

test cases to begin to fail, highlighting that the library is not safe for release.

It was evident through writing test cases for the Binar Software Framework that

it became easy to test how the libraries would handle erroneous inputs, rather than

relying on the assumption that libraries would always perform as expected. This

was critical as the MIB mentioned during the DART mishap investigation that during

pre-flight testing a software model assumed the GPS measured velocity perfectly

[118]. Having the ability to stress-test all libraries used on Binar-1 provides further

reassurance in the reliability of the Binar Software Framework.

Software testing also aids in the adherence to ECSS-E-ST-40C regarding the reuse of

code. It is mentioned that for code to be reused, it needs to adhere to the functional

requirement baseline of the project [110]. As TDD involves the conversion of software

requirements to test cases, the reused software will need to verifiably adhere to the

functional requirements to be included in the code base.

During the mishap investigation for Ariane 5 discussed in Section 2.2.3, the report

mentioned that had the software for the inertial reference system and flight control

system been tested extensively, the software errors leading to the failure could have

been detected. By developing the libraries through the TDD approach, 100% test

coverage is possible, potentially allowing for the identification of this error in the

development stage of the mission.
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2.3.3. OPTIMAL CODE BASE MAINTENANCE

DOCUMENTATION

In a 2012 review of the involvement of software in spacecraft accidents, Leveson [100]

acknowledges that inadequate documentation is a factor in spacecraft mission failures.

In the missions discussed, this is particularly relevant to the MCO and Ariane 5 mission

failures which recommend improvements to code base documentation in their failure

analysis reports. However, from a survey of 48 candidates with experience in the

software engineering industry, Forward et al. [133] found that whilst participants

thought positively of the usefulness of software documentation, it was seen to be

seldom updated. To prevent issues arising as a result of poor software documentation,

whilst acknowledging the difficulties of documentation maintenance, documentation

generation is employed on the Binar platform to maintain up-to-date documentation.

Having access to generated documentation pages can be very useful for future devel-

opers and maintainers to understand how to maintain and use the numerous libraries

that comprise the Binar Software Framework. To fully utilise this tool, Binar developers

are encouraged to use increased verbosity in variable and function names. Non-cryptic

names are desired over their shorthand counterparts to reduce ambiguity and promote

self-documenting code. To ensure that code generation is invoked often, it has been

integrated into the Binar software development pipeline to automatically build when a

new commit is pushed.

FROM LOCAL MACHINE TO SPACECRAFT

The code base for the Binar Software Framework is hosted on a remote version control

repository that is always guaranteed to have the latest stable release of the software.

This is done through the implementation of Continuous Integration and Continuous

Deployment (CI/CD) online. The author introduced a development process where each

developer in the Binar Space Program maintains their own private fork of the upstream

repository, allowing for isolated development environments. When a developer pushes

software changes to their fork and creates a merge request into the upstream repository,
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it executes the CI/CD platform remotely. It then notifies an assigned team member

to start the code review process. The CI/CD platform automates the building and

testing of all software libraries written in the repository. If any library fails to build

or complete its tests, the merge request will be automatically blocked from merging

into the upstream branch until these issues are resolved. This prevents potentially

buggy or broken software from merging into the upstream repository, which is used

for code deployment onto the spacecraft. The results of the test execution include the

code coverage report, which is generated into an access-controlled web page providing

a line-by-line breakdown of the coverage within the source code. This provides a

quantifiable metric of test coverage, and assists the developer on adding tests to

increase the coverage.

During pipeline execution, a team member is assigned to the merge request to

conduct a code review by visually inspecting and assessing all changes in accordance

with the design rules imposed by the team, and to identify any accidental incorrect

program logic. Using an online version control platform for this, discussion threads can

be added to specific sections of the software changes to clarify decisions made during

development, to recommend further changes be made, and also provide a history of

important software changes. Complementary to this, the CI/CD platform also runs

a static analysis on all libraries in the code base, generating an access-controlled web

page containing the analysis report to be referenced during code review.

Upon completion of the review process, the team member assigned to review the

merge request is given the option to merge the changes into the upstream repository

only if the CI/CD pipeline succeeds. This prevents any software that is written by a

singular engineer from getting deployed to the spacecraft without explicit approval

from at least one other team member. Once successfully merged, the last stage of

the pipeline is executed to generate a third access-controlled web page containing the

documentation scraped from the source code. A summary of the process from code

development to deployment on the spacecraft can be seen in Figure 2.7.
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FIGURE 2.7: The Binar Software Framework development pipeline.

FAILURE PREVENTION

The importance of documentation being stressed early in the development of the Binar

Software Framework was partly influenced by the mishap discussed in Section 2.2.2,

where the Mars Climate Orbiter was lost during its orbital insertion manoeuvre. The

mishap investigation report mentions that the equation used to calculate the small

forces lacked sufficient documentation of the built-in conversion factor, hence being

accidentally deleted by the developers reusing the software from MGS. Thorough

documentation practices could potentially have identified the equation used in the

software to have included the conversion factor, notifying the design team to adjust it

accordingly. Also contributing to the mishap leading to the loss of Ariane 5, software

documentation could be a solution to the investigation board’s recommendation to

verify the range of values taken by a variable in software. This has been achieved in

the Binar Software Framework through extensive documentation of variables which

are scrutinised during the code review process. The necessity of software documenta-

tion is stressed in ECSS-E-ST-40C, which insists that software documentation is to be

constantly updated throughout the mission lifecycle [110]. Having software documen-

tation automatically generated with every commit aids in meeting this standard, and
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ensures that errors related to insufficient documentation will not propagate into the

spacecraft applications.

The push for implementing a pipeline getting software written on a local machine

to the spacecraft stemmed from the mishap seen on the DART and Zenit-3SL missions

discussed in Section 2.2, where a late change to control software led to the failure of

the spacecraft. The ECSS-Q-ST-80C document mentions that software that is modified

is to undergo regression testing [111]. If this standard was adhered to, it is expected

that a change to the gain constant on these missions would trigger old tests to fail.

Incorporating a CI/CD platform that runs tests online prior to allowing an update to be

merged could potentially have identified these changes as faulty software, rejecting the

commit and hence preventing the change propagating to release code. In the situation

where tests seem to be passing on a surface level but in actuality lack sufficient depth,

the generation of a code coverage report would notify the reviewer that the module is

insufficient for inclusion into the upstream repository, and to hence reject the merge.

One of the recommendations by the investigation board following the failure of

Ariane-5 mentions the importance of reviewing all software [121]. This was a strong

influence for the code review and static analysis stage of the development pipeline

imposed by the Binar software team, in which merges are rejected by a reviewer if the

documentation is deemed insufficient, or software bugs are identified. The ECSS-Q-ST-

80C document recommends that the evaluation of code is to be performed in parallel

with the development process, aiding in the conformity to good coding standards and

the reduction of software errors [111]. The code review stage of the pipeline aids in

meeting this standard, preventing ambiguous and potentially buggy software from

reaching release. Moreover, it is recommended that software is to be placed under

configuration control after passing all unit tests successfully. Requiring the software

being merged into the main repository to pass all unit tests aligns the developed

software with this standard, providing assurance that the software propagating onto

the spacecraft is dependable and safe.

Adopting a strict approach to code base maintenance can ensure code clarity, main-

tainability, portability and safety. A strong documentation standard can ensure a lack

of ambiguity on how to implement software modules in application code, especially
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when internal software is reused, increasing the possible longevity of the framework for

future Binar spacecraft. These attitudes toward software design can prevent mishaps

associated with individual engineers altering software from occurring.

2.4. BENEFITS ON BINAR-1

Implementing the recommendations for small spacecraft software design on the Binar

Software Framework has aided in the development of safe, reliable and reusable

software.

Leveraging the SOLID principles of object-oriented program design, the software

developed for the BSF is strongly positioned to be portable between hardware revisions.

The example given for the application of the Single Responsibility principle on the

Binar Software Framework was in regard to the ADC module. For future development

on Binar spacecraft in the context of this module, this principle supports the intention

of using a higher precision ADC reading on certain channels, requiring external ADC

hardware. Interfacing with the external hardware will require a dependency on a library

that will only be used for the higher precision subset of ADC measurements. Having a

separate module concerned with the subset of ADC measurements prevents linking

against unnecessary libraries that won’t be needed for other ADC measurements.

The effectiveness of the Open-Closed principle for code reuse has already been

demonstrated in the development of the Binar-2, 3 and 4 satellites. Due to the manufac-

turer deprecating the GPS used on Binar-1, the hardware needed to be swapped out in

favour of their new module with a different pinout. If the GPS software module had

been developed with a tight coupling to the hardware, any dependencies of this module

would suffer from a cascading need to change the GPS object to a new implementation.

Aside from slowing down development time and making code reuse difficult, this

could also introduce unforeseen errors into the code base. The implementation of the

Open-Closed principle supports code reuse by simply extending the already working

GPS base object by implementing a new subtype for it.

The Binar-1 motherboard had circuitry for redundant magnetorquers on the x and
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y axes. However, the corresponding coils were not installed on the satellite. For the

development of Binar-2, 3 and 4, these redundant drivers are intended to be used.

From the adoption of the Liskov Substitution principle, support for these drivers can

be added to the software module by adding extra axes to the templated magnetorquer

driver object discussed in Section 2.3.1. The Binar Software Framework runs system

checks on all peripherals during the spacecraft boot sequence. If the check determines

a magnetorquer driver is faulty, the constructor for the publicly visible magnetorquer

object can automatically switch to the redundant templated driver on-orbit, passing

in a pointer to the driver polymorphically. This means the high-level magnetorquer

module in application code can actuate agnostic of the actual magnetorquers being

used as this is not necessary information to couple to the driver. This enables code

reusability as it allows for any number of redundant coils to be controlled without

modification to the high-level magnetorquer module, which can therefore be fearlessly

depended on in application code.

As the primary purpose of Binar-1 was to be a technical demonstration of the

hardware and software produced by the Binar Space Program, the software developed

for system checking was constrained to systems embedded on the Binar bus. For

future Binar missions, as the payloads flown become more complex, extending the

self check module to support payload integrity checking is of high priority. From the

adoption of the Interface Segregation principle, a corresponding base class for checking

payloads simply needs to be added similarly to the systems shown in Figure 2.4. This

payload system can then be implemented in a new systems interface class that will

also implement checking the power system. This demonstrates the creation of cohesive

groups of system checking objects within the module, showing how the library can be

extended with future systems that don’t depend on modules they won’t use.

Through the application of the Dependency Inversion principle (Section 2.3.1), it was

seen that much of the software developed for the Binar Software Framework has gone

towards high-level libraries to be depended on in application code that are decoupled

from the low-level hardware implementations. This currently allows application code

to be cross-compiled between the differing architectures of the flight computers on

board. As the Binar Space Program develops, a need has been highlighted for flight
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application code to be run natively on a desktop computer. This could allow for

development of payload software without needing a Binar bus, and enable highly

accurate simulations of on-orbit operations.

From strict adherence to the test-driven development methodology, the software

running on board Binar-1 can be guaranteed to meet mission requirements. Moreover,

due to the simplicity of setting up test cases, the libraries can be stress tested for the

worst case scenario to increase reliability. As an extension to the portability achieved

through the application of the SOLID principles, a large part of the software developed

is decoupled from hardware and is hence easily testable. This aligns with the section

regarding code reuse in ECSS-Q-ST-80C, which specifies that code to be reused should

be assessed against requirements traceability, testing, and coverage [111]. The hardware

decoupling achieved also allowed for software to be developed in parallel to the

hardware revisions. Whilst this aided in preventing some bugs from occurring, it

should be noted that testing on the hardware is also encouraged when possible. Testing

on the host enables the behaviour of the modules to be verified, however issues

may arise when running a hardware-in-the-loop test due to the disparities that exist

between the platforms the software is running on. The biggest issues encountered

during hardware integration for Binar-1 were related to data structure alignment,

power domain access from microcontroller internal peripherals, and timing issues.

These issues were not identified during unit testing as they were specifically hardware

related. Coupling unit testing on the host with continuous deployment onto hardware

can help with bug prevention internal to software modules, and identify any runtime

issues that may occur.

Adopting good code base maintenance skills from the beginning of the Binar Space

Program has led to a code base which is well documented, readable and maintainable.

The benefits of this have been seen from the Binar Space Program team growing

since its conception. As new team members begin to contribute to the code base,

the plentiful documentation provides clarity on how to implement the many custom

libraries developed for the framework. This decreases the time required to train new

team members, and gets them contributing to the code base quicker. Clarity of software

already in the code base has allowed for easy maintenance as hardware revisions are
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released and capabilities grow.

Enforcing a local machine to spacecraft cycle consisting of continuous integration

and continuous deployment using cloud-based test running and code review means

that no unexpected software will make it to space. Enforcing the use of testing over the

full life cycle of the mission means that late changes made to the spacecraft libraries

can be guaranteed not to break functionality.

2.5. CONCLUSION

With the complexity of software increasing in spacecraft missions, reliable software

development is critical in the prevention of mission failure. The main contribution

of this paper is demonstrating techniques for writing safe, reliable and maintainable

software for small satellites through showcasing methods to prevent recurrence of

common spacecraft software faults. As such, it is intended for small spacecraft devel-

opers planning on writing their own software who may not have prior experience.

Where applicable, adherence to ECSS standards has been demonstrated. The mis-

sions showcasing common software failures were selected due to their transparency

in disclosing software faults as reasons for mission failure. Being directed at small

spacecraft software developers, this paper would have benefited from a discussion

of CubeSat software faults. However, due to the lack of publications in this area, this

could not be included. As software is shown in this paper to be a contributing factor in

spacecraft mission mishaps, it is the hope that publications are more prevalent in the

future relating to this topic. Although the benefits from recommendations requiring

on-orbit validation were not able to be demonstrated in this paper due to a hardware

fault on Binar-1, The Binar Space Program has already noticed benefits specifically

regarding code base reuse as we progress into building our next satellites. As the pro-

gram matures and we continue to develop the framework using the recommendations

discussed in this paper, we expect further benefits to become more apparent.

Learning from the overlapping mishaps of previous mission failures, the Binar

Software Framework has been developed to maximise mission success. The areas of
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code reuse, software testing and code base maintenance were addressed with examples

of each from the core functionality of the Binar Software Framework. Safe code reuse

was highlighted to be more complex than simple reimplementation, but was rather

discussed in the context of developing software from the ground up with portability

in mind. This was achieved in the Binar Software Framework through adherence to

the SOLID design principles. Through these principles, the program goal of rapid

mission concept-to-orbit can be achieved by reusing the platform independent hard-

ware abstraction layer of the Binar Software Framework between missions. Although

the SOLID principles were adhered to during development of the Binar Software

Framework, other similar principle collections exist, such as GRASP. Regardless of the

principles chosen for development, software written in accordance with time-tested

principles will be of a higher standard than software written without.

Lack of software testing was seen to be the most common reason for failure in the

missions discussed. It was demonstrated that developing software with decoupled

interfaces aids with mocking modules to be substituted polymorphically for hardware

implementations to break hardware dependencies and open up the possibility for test-

driven development. To alleviate failures discussed in late changes to control software

causing mission failures, the importance of tests written during the TDD process are

stressed not only for use during development, but also during the full life cycle of

the mission to highlight when software begins to break. Through the use of a CI/CD

platform, when a developer made changes to software, all unit tests would be run

remotely before software would be given the option for a merge request. Leveraging

the pipeline to generate code coverage and static analysis reports assists the developer

assigned to review the merge request, ensuring that software authorised to merge into

the master branch has accountability. This was partly for the prevention of poorly

designed code being added to the code base.

Code review also enforced strict adherence to writing documentation. This docu-

mentation, both through meaningful, clear and consistent variable names along with

commenting, was done to ensure that future developers would be able to easily read,

understand and maintain the code base. After giving approval to merge software

upstream, the only software that could be deployed onto Binar-1 was pulled from the



Chapter 2 STUART ROBERT GIBSON BUCHAN 91

upstream master repository. This was to ensure that the software to be deployed onto

the spacecraft was free of any errors, and gave a clear version history of software that

was released.

Binar-1 was chosen as the case study for this paper as the software framework was

being developed for the Binar Space Program. However, the concepts discussed in this

paper hold broader implications for larger spacecraft, with the potential to improve the

likelihood of mission success and promote code reusability for future missions.

2.6. FUTURE WORK

The mishaps discussed in this paper are a small subset of a large body of reference.

It was observed from the majority of published failures that a common theme was

lack of understanding how the mission would respond under the worst case scenarios.

From the missions discussed, the Binar Software Framework has been built in a robust

manner to prevent critical system errors from jeopardising the mission. However, it

still does not allow for in-depth testing of the relationships between the spacecraft

subsystems during large-scale failures. Taking advantage of the code base modularity

achieved through the application of the SOLID principles, driver backends can be

written in the Binar Software Framework to break dependency on hardware. This

means that both offline spacecraft simulations and hardware-in-the-loop simulations

are possible with minimal development effort to increase the quality of the software

design and in-depth testability. This enables adherence to elements of software testing

specified in ECSS-E-ST-40C, which describes the importance of demonstrating that the

developed software can perform in a representative operational environment [110].

Therefore, moving forward the Binar team will build a low-level bounded simulation

implementation of spacecraft subsystems for offline simulations. The backends for

peripherals that give the spacecraft knowledge about its environment, such as the GPS,

can be substituted with software that communicates with a simulation running on a

host machine. This will allow the high level flight logic to remain unchanged, yet gain

a deeper insight on how it would respond to a simulated space environment. A. da

Silva et al. discuss the benefits of using fault injection into simulations of software
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developed for the Solar Orbiter mission, showing a strong improvement in software

fault tolerance [134]. Applying a similar method to future Binar spacecraft will allow

the satellite software to be tested on a much deeper level, providing earlier flight

software verification. Developing the capability to replay researched failure scenarios

into the spacecraft flight software will provide a deeper understanding of the causes

for failure, and more importantly how to recover from them.
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CHAPTER 3

BINAR-1 SOFTWARE DEVELOPMENT

3.1. INTRODUCTION

The quality of CubeSat software design directly impacts the resilience of a mission. A

literature review in the previous chapter identified the benefits of developing CubeSat

software in-house instead of implementing an established solution. Mature software

frameworks and proprietary software development kits (SDKs) were discussed as

being of interest to CubeSat software developers. Whilst benefitting from the flight

heritage accelerating mission-concept-to-orbit in the short term, software written using

this approach tightly couples the code base to the solution used. This tight coupling

can make it difficult to break from the solution used if it no longer meets mission

requirements or where it becomes difficult from a budgetary concern when proprietary

software brings with it continuing licensing costs. With experience developing software

for CubeSat missions, Doyle et al. recommend that space programs intending to launch

multiple spacecraft should seek out full in-house development [104]. Reliable software

design was highlighted as a critical element in risk mitigation for CubeSat missions

[69]. The hardware decoupling achieved during the development of the custom BSF

allowed for a significant effort to be put into testing. Extending on this, integration

into the CI/CD pipeline enabled frequent automated builds, automated testing and

static analysis, quantifying the reliability of the codebase. Moreover, in-house software
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framework development enables the software written to be modular, reusable, and

extendable, reducing mission-concept-to-orbit time for subsequent missions. With a

strong education goal, developing custom in-house software allows the Binar Space

Program to offer staff and student engineers the opportunity to explore writing reliable

software for a space system. Using established frameworks and proprietary SDKs

can obfuscate solutions to unique problems inside a black box, such as how data is

prepared for transmission to a spacecraft. The documentation available for the existing

BSF, as well as the full availability of the source code, helps achieve the educational

goal of the program by aiding in the training of new engineers progressing into the

field of space engineering.

This chapter details the core elements of the Binar Software Framework (BSF). Due

to the volume of information, the technical implementation of the BSF is provided in

Appendix A. The primary focus of this chapter is to provide an overview of the design

decisions behind the elements of the framework and their vital role in enhancing the

reliability of Binar spacecraft. The BSF embodies a unique research-oriented approach to

CubeSat software engineering, prioritising innovative design and practical functionality.

The development is motivated by the need to surpass traditional software approaches

to CubeSat software design and create innovative solutions to the unique challenges of

CubeSat development.

Some of the unique challenges faced by software development for CubeSats include

limited system resources, the operational environment, communication constraints,

development speed and lack of standardisation. The specific challenges encountered

and the innovative solutions devised are discussed, demonstrating the research contri-

butions to CubeSat software engineering. This chapter is organised into sections that

address the Hardware Abstraction Layer, Utilities, Boot Application Modules, Applica-

tion Modules, Communications Modules, and Operation Modes, each of which plays a

pivotal role in the BSF’s capabilities. The Hardware Abstraction Layer section covers li-

braries designed for hardware interaction, while Utilities discusses libraries for general

use within the BSF. Boot Application Modules offers insights into libraries used during

the CubeSat’s boot process, and Application Modules delves into libraries utilised in

the application code. The Communications Modules section explores libraries facil-
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TABLE 3.1: The UML class diagram arrows used in this chapter with their meanings.

Arrow Meaning Description

Inheritance Child object inherits (and can extend) the
functionality of a parent

Template
instantiation

Object implements a class through templating

Aggregation Objects are associated, but the child can exist
without the parent object

itating communication between the ground station and the spacecraft. Finally, the

Operation Modes section sheds light on how these libraries are implemented in the

satellite’s firmware. The candidate wrote the BSF to enable regular satellite launches

and reduce the risk of mission failure by promoting extensibility, adaptability, and

enhanced performance in CubeSat missions. The framework’s relevance extends to

both current and future missions.

The previous chapter demonstrates the first application of SOLID principles in Cube-

Sat software development. In addition to presenting innovative software solutions for

addressing specific challenges in CubeSat missions, this chapter contributes to CubeSat

software development by providing practical examples of how SOLID principles can

be applied in the space domain. To illustrate the benefits achieved from adhering to

SOLID principles in library development, the candidate presents examples of what

library development would resemble without their application. This comparative

analysis underscores the contribution that the application of the SOLID principles has

in enhancing mission reliability within the CubeSat software domain.

Unified Modelling Language is used in this chapter to describe the structure of

libraries. Table 3.1 summarises the arrows used and their corresponding meanings.

3.2. HARDWARE ABSTRACTION LAYER

A unique challenge of CubeSat missions is the rapid development cycle. CubeSat mis-

sions have shorter development cycles and lower budgets than larger space missions.

Whilst larger missions may benefit from longer mission timeframes, which allow for the
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development of bespoke mission software, the timeframe available to CubeSat devel-

opment may be short such that it precludes the mission from writing software tailored

for a mission that safely satisfies the exact mission requirements. It therefore follows

that software development faces the seemingly contradictory challenge of developing

safe software at a rapid pace. Developing a CubeSat hardware abstraction layer (HAL)

is a solution to this challenge, enabling agile, cost-effective software development for

short mission lifecycles. A HAL is a software layer that serves as an intermediary

between the system hardware and the high-level software that runs on it. It provides a

standardised interface to use system peripherals consistently while abstracting away

hardware-specific details. Abstraction of these details enables software to be written

independently of the hardware it is intended to run on.

Development of the BSF HAL saw strict adherence to the SOLID principles of

object-oriented design. Whilst the concept of a HAL itself is not novel, constructing a

CubeSat HAL following the SOLID principles to address the dual challenge of ensuring

software safety while meeting tight development schedules represents an innovative

approach. The absence of prior published work in the literature on the construction of

a SOLID-compliant HAL for expediting CubeSat missions accentuates the novelty of

this approach. This section will provide an overview of the libraries written to abstract

the hardware on Binar-1.

The hardware abstraction provided by the libraries in the BSF is essential in support-

ing the software to be developed in parallel to the spacecraft hardware. It enables the

hardware to be changed without impacting the flight software. As the flight software

interfaces with the peripheral through the HAL, a new implementation for the hard-

ware to be supported can be added. Aside from external physical peripherals such as

the GPS, IMU, and magnetorquers, this also includes peripherals internal to the flight

computer, such as GPIO, ADC, and communications. Developing a HAL enables the

Binar Space Program to overcome the challenges of a rapid development cycle.
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3.2.1. FLIGHT COMPUTER BOARD SUPPORT

GPIO

The Binar CubeSat Motherboard is an example of an embedded system: a computer

system designed to perform specific tasks within a larger system. It typically consists of

a processor, memory and peripherals integrated to achieve specific tasks. In the context

of the Binar-1 satellite, the BCM was designed to control the spacecraft and monitor its

environment. It achieves this goal by controlling the onboard peripherals physically

connected to it through a hardware trace on the PCB that houses them. The traces

connecting to the microcontroller can be grouped into either inputs or outputs. The

microcontroller and peripheral devices can then communicate by fluctuating the voltage

on the IO lines between an off state and an on state, normally zero volts for the former

and the internal reference voltage of the microcontroller for the latter. Controlling

peripherals via IO pins can become more complex to support the transmission of

messages. However, at the most fundamental level, simple state assertion is used.

Using IO pins for interaction with a peripheral is not dependent on the peripheral.

Hence, the pins are named general purpose input/output pins.

However, using software to instruct a computer to assert or read from these GPIO

pins varies from computer to computer. It normally requires hardware register manip-

ulation specific to the hardware architecture used by the chosen processor. Having to

rewrite application code controlling spacecraft peripherals due to a change of flight

computer contradicts the recommendation made in the previous chapter regarding

code reuse. The BSF provides a solution to this through the GPIO library. The GPI

and GPO objects in the library (Figures 3.1 and 3.2) are a crucial component of the

flight computer system that simplifies interacting with hardware digital signals. This

simplification makes it easier for developers to write reliable and efficient code for the

flight computer. Table 3.2 summarises the GPIO pins assigned to the flight computer

on Binar-1.

The manufacturer of the chosen microcontroller for the Binar-1 flight computer

provides a custom abstraction layer over the register manipulation for controlling the
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bsp::GPIInterface

+ IsHigh()

bsp::GPI< pin >

+ IsHigh()

FIGURE 3.1: A UML representation of the GPI object on Binar-1. The GPI object
inherits the GPIInterface and is further templated on all input pins. These templated
objects are used to read digital signals.

bsp::GPOInterface

+ SetHigh()
+ SetLow()
+ Toggle()

+ SetHigh()
+ SetLow()
+ Toggle()

bsp::GPO< pin >

FIGURE 3.2: A UML representation of the GPO object on Binar-1. The GPO object
inherits the GPOInterface and is further templated on all output pins. These templated
objects are used to control digital output signals.
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TABLE 3.2: A summary of the GPIO pins available on the Binar-1 flight computer.

Pin Mode Pin Mode

Gyro/accelerometer chip select Output Z-axis torquer enable Output
Magnetometer chip select Output Z-axis torquer fault Input
Magnetometer data ready Input Redundant BCM disable Output
Redundant X-axis torquer phase Output Supervisory computer disable Output
Redundant X-axis torquer enable Output IMU enable Output
Redundant X-axis torquer fault Input Payload chip select Output
Redundant Y-axis torquer phase Output Battery voltage okay Input
Redundant Y-axis torquer enable Output X-axis solar panel okay Input
Redundant Y-axis torquer fault Input Y-axis solar panel okay Input
X-axis torquer phase Output Payload enable Output
X-axis torquer enable Output Burn wire 1 Output
X-axis torquer fault Input Burn wire 2 Output
Y-axis torquer phase Output GPS enable Output
Y-axis torquer enable Output GPS low power mode Output
Y-axis torquer fault Input Primary 5V enable line Output
Z-axis torquer phase Output Secondary 5V enable line Output

GPIO pins. However, wrapping this abstraction layer with the GPIO library allows

the flight computer to be easily swapped out without impacting the application code.

Appendix A.1 provides a detailed overview of the library.

The GPI and GPO objects responsible for interacting with hardware peripherals

adhere to the Single Responsibility principle, as discussed in the previous chapter. Both

objects are templated using an enumerated class that exhaustively lists all possible

peripheral connections, ensuring that each template implementation controls only one

peripheral. The alternative approach would be to have a singular class responsible for

controlling every GPIO line on the flight computer. This approach would be difficult to

maintain, as a change to any GPIO implementations would require the entire object to

change. Moreover, it would not be scalable as the complexity of the object would grow

with every new GPIO device support added. Adhering to the Single Responsibility

principle promotes maintainability and flexibility, allowing for easier modifications

and updates to the codebase without impacting application code.
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ANALOG

Alongside digital signals in an embedded system, some peripheral devices also rep-

resent their state through analog signals. In the context of the BCM, this comprises

fluctuating voltages sampled against the microcontroller’s internal reference voltage.

Like the GPIO library, sampling these fluctuating voltages varies from computer to

computer. The ADC peripheral requires architecture-specific register access, and the

internal reference voltage the ADC uses for comparison may also be hardware specific.

Moreover, the resolution of the ADC will determine the precision by which it can

sample the input voltage. Embedded systems may also favour external ADCs due to

their higher resolution.

Contributing to the HAL’s focus on addressing the demands of rapid mission

timelines, the Analog library within the BSF effectively handles interactions with the

ADC while promoting code reusability. The library samples voltages from all system

sensors, including voltages, currents and temperatures. Figure 3.3 provides a high-

level UML diagram demonstrating how analog voltages are read onboard the satellite.

Appendix A.2 provides a detailed overview of the library.

The library follows the Single Responsibility principle through its use of templating.

The Analog module within the library is templated using an enumerated class that

exhaustively lists all available connections. This results in multiple objects that are

each responsible for monitoring a single analog channel. Conversely, if the Single

Responsibility principle were not followed, a single large class would be responsible for

monitoring every available analog line. This approach would be difficult to maintain,

as changes to any analog sampling method would reflect a change in the entire class.

Moreover, this is not scalable, as adding further responsibilities to the large class would

increase its complexity.

Following the Single Responsibility principle supports reusability by allowing up-

dates to the analog sampling methods as new hardware revisions are introduced

without impacting application code. It supports extensibility by allowing extra sam-

pling channels to be added by appending to the enumerated class and supplying the

required implementation. Moreover, as each templated object is responsible for its own
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FIGURE 3.3: A UML representation of the AnalogVoltageReader object on Binar-1.
The temperature and current reader libraries follow the same structure.
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analog device, each device can use a different post-processing method. Encapsulating

this within the appropriate templated object provides a straightforward interface for

developers to access analog data without worrying about the underlying hardware

implementation. This design choice means that the library can adapt to the system’s

changing needs without requiring significant changes to the application code.

The Interface Segregation principle is adhered to in this library to increase modular-

ity and promote reusability. Each analog reading object, comprising voltages, currents

and temperatures, extends its own interface instead of using a common one. Following

this approach, the library’s clients and the analog signals’ implementation details are

decoupled. This aids in making the library more flexible and easy to maintain. More-

over, having a single interface responsible for a specific type of analog signal aids in

clarifying the operation of the library. Lastly, this approach aids in testing. Tests can be

written specific to each interface, allowing the behaviour of each analog reader to be

verified independently of the other types.

The library uses the Open-Closed principle by having upstream classes closed for

modification but open for extension. The AnalogInterface class is a common class that

all types of Analog inputs extend to provide sampling functionality. This common

class promotes reusability as it requires application-specific hardware details to be

implemented by extending the class. The objects concerned with reading currents and

temperatures on the spacecraft extend the analog object to add additional functionality

for scaling the voltage value read into appropriate units.

The Liskov Substitution principle is leveraged in the library to remove code du-

plication and support scalability. The ”GetScaledVoltage” method interacts with the

analog device under examination through an abstracted pointer to the Analog class it

derives. Hence, implementing this method only needs to be written once, reducing the

likelihood of failure-inducing bugs being introduced into the codebase. Moreover, as

the library is extended to add support for different analog devices in the future, this

section of the library can remain unchanged, removing the need for regression testing.
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INTERRUPT

During application runtime, the embedded processor may need to interact with a pe-

ripheral which may not be able to operate instantly. In these situations, the application

code may continuously poll the peripheral, checking for information. However, this is

a waste of clock cycles that could be used to process other instructions. The solution

is to offload the peripheral monitoring to a dedicated internal controller, which can

request the processor to stop executing code and action on information when it is ready.

This controller process is referred to as an interrupt. The application code can register

an interrupt handler which contains custom code to be executed on some defined event.

When the processor receives the interrupt request, it can save its current stack pointer,

execute the registered interrupt handler, and then return to the application code. Events

that trigger interrupt service routines (ISR) in the Binar-1 flight computer comprise GPI

and UART communications.

The interrupt library in the BSF is built according to the Liskov Substitution principle

by heavily leveraging polymorphism. Application code creates an interrupt handler

by inheriting and implementing the ExternalInterruptInterface object in the library,

which contains the single abstract virtual method, ”Handler”. Any interrupt object

that extends this interface can be used in place of the interface from which it is derived.

This approach was used as the contents of the interrupt handler to be executed in the

ISR may be application specific.

This section of the library adheres to the Open Closed principle. By closing the

ExternalInterruptInterface object for modification, application-specific interrupt details

must be provided by extending the interface. This approach promotes reusability as

the ExternalInterruptInterface object is not coupled to any application specifics.

A custom static global interrupt vector table (IVT) exists within the library, providing

a lookup between interrupt-enabled peripherals and the registered handler. The size

of this IVT is determined at compile time using a custom enumerated class type. This

enumerated class provides a list of interrupt-enabled peripherals. This enumerated

type implicitly assigns unique integers, indexed from zero, to the entries in the type.

Aside from offering clarity in accessing the desired interrupt entry through meaningful
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variable names, this enumerated list provides the number of interrupts required by

the system. This allows the size of the IVT to be statically allocated at compile time.

The data contained within the IVT is an array of pointers to ExternalInterruptInterface

objects. Per the Liskov Substitution principle, the application-specific object derived

from the ExternalInterruptInterface can be polymorphically substituted into the IVT

for use during the ISR. Each interrupt-enabled peripheral on the BCM can have only

one interrupt handler associated with it at any given time.

Technical details demonstrating the flow of operations during an interrupt trigger

are provided in Appendix A.3.

SERIAL

In embedded systems, interacting with some peripherals requires transferring infor-

mation that a simple state change cannot represent. For example, suppose the GPS

peripheral wants to inform the flight computer of the satellite’s location in orbit. In

that case, it must communicate a series of values representing geodetic coordinates,

substantially more complex than an on or off state available by GPIO or a variable

voltage offered by the ADC. These situations require the use of serial communications.

Serial communications refer to transmitting information one bit at a time as part of a

structured packet. There are many types of serial communications. The serial library in

the BSF provides support for the following:

• USART: Universal Synchronous/Asynchronous Receive/Transmit

• I2C: Inter-Integrated Circuit

• SPI: Serial Peripheral Interface

Configuration and usage of serial communication methods vary depending on

the chosen processor. Hence, the manufacturer of the processor chosen as the flight

computer provides an abstraction layer to make using these peripherals straightforward.

The serial library, as part of the HAL, provides another abstraction layer on top of this,

contributing to the solution to the challenges imposed by rapid mission timelines. The
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bsp::USART< channel >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

bsp::SerialInterface

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

bsp::I2C< channel >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

FIGURE 3.4: The USART and I2C communications objects in the BSF share a common
interface for serial communications.

serial library is developed adhering to the Open Closed principle, in which the basic

functionality for a serial device is defined in an interface class, which is then closed for

modification. By extending the interface, support for the specific serial method used

can be added. Of the three serial communications methods required for Binar-1, two

communicate similarly. The peripherals using the USART and I2C communications

methods only support half-duplex, meaning information can only flow in one direction.

Hence, the UART and I2C objects extend a common interface, demonstrated in Figure

3.4.

Coupled with the Dependency Inversion principle, this library’s Open Closed

principle design approach promotes code reusability as high-level code that requires

a serial implementation can interact with the serial device polymorphically through

the abstracted interface. This approach means that the high-level code is not coupled

to the specific communication method. Moreover, deriving from a common interface

reduces the possibility of introducing failure-inducing bugs through code duplication.

Lastly, the SerialInterface class can be extended to provide a mocked implementation

to be used during integration testing to break the dependency on hardware.

Conversely, peripherals on the BCM requiring the SPI method use full-duplex

communication, meaning data is transferred to and received from peripherals simul-

taneously. Hence, the SPI module in the Serial library inherits and implements its
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own interface class supporting full-duplex communications. This approach further

supports reusability by allowing future full-duplex communication methods to extend

this interface and provide the required implementations. This approach would see the

same benefits as the half-duplex implementation.

The library uses the Single Responsibility principle by deriving a communication

method-specific class from the appropriate interface class. These derived objects further

follow the Single Responsibility principle through templating. The derived classes

are templated using an enumerated class that lists all connected communications

peripherals on Binar-1. Support for a new serial channel is added by extending the

enumerated type with a new channel entry, demonstrating the scalability of the library.

3.2.2. OWNERSHIP

Using physical peripherals onboard a spacecraft can be problematic as hardware is a

finite resource, unlike software. Considering Binar-1 used asynchronous execution, it

was apparent that the conventional approach of constructing and using a peripheral

when needed could cause the software to suffer from issues associated with concurrent

programming, such as race conditions and deadlocks. The BSF, therefore, reverses the

approach of user code constructing and owning peripherals to having a single global

manager control access to all peripherals existing in a higher scope, allowing access to

them when available.

The Manager object (Figure 3.5) follows the Single Responsibility and Dependency

Inversion principles to interact with the spacecraft hardware. Although the global

manager controls access to the peripherals, the memory for the peripheral objects does

not exist within the scope of the manager class. The peripheral objects are constructed

in a higher scope, not accessible by user code. These peripherals are then supplied

to the Manager object through dependency injection. The result of this design choice

is that the Manager object is not coupled to the specific peripherals it controls. The

alternative approach would be a large God Object with all peripherals within it, thus

having many dependencies and responsibilities for their operation. This antipattern

reduces reusability as future missions may not have the same peripherals. Moreover,
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FIGURE 3.5: A UML representation of the Manager class from the Ownership library.
The Manager object aggregates pointers to all system peripheral interfaces and controls
access through the ”Claim” and ”Take” methods.
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changing the functionality of a peripheral would require the whole Manager class and

every other peripheral within it to also change, potentially introducing failure-inducing

bugs.

Every system peripheral object in the BSF follows the Liskov Substitution principle

for usage in the Ownership library, in which the derived peripheral implementation

classes can be substituted in place of their abstract parent class. The Manager ag-

gregates pointers to these interfaces of the system hardware peripherals to leverage

polymorphism and control the peripheral implementation through an abstraction. Poly-

morphism in this application aids flight software to be tested and run on a host machine

independent of the hardware by providing new implementations of peripherals that

inherit from the same base class. Moreover, it supports the reusability of the library by

allowing the implementation of the peripherals used to be application-specific without

impacting the high-level code that uses the library. Lastly, it allows peripheral fakes

to be dynamically substituted instead of faulty peripherals in the Manager at runtime

without impacting the application code. This approach provides an innovative solution

to tackle the challenge imposed on satellites of operations in a harsh environment.

Exposure to radiation, extreme temperatures and vacuum conditions can damage sys-

tem peripherals beyond repair. In this scenario, the system can continue functioning

even when a hardware peripheral is faulty or unavailable by using fake peripherals.

Leveraging polymorphism to seamlessly switch between real and fake peripherals to

ensure the satellites’s continued operation in the presence of hardware issues enhances

the spacecraft’s resilience and robustness. This level of flexibility and adaptability is

valuable in space systems as it allows for fault tolerance and graceful degradation.

Before a peripheral is used through the Ownership object, a fail flag for that resource

is set in the spacecraft error registers before the peripheral is powered. This flag is

only reset by the ”Disable” method, called either after the device has been used or the

taken PeripheralHandler destructs. Suppose the spacecraft experiences an unexpected

reset when the peripheral is used. In that case, the application code constructing the

peripheral manager will identify the fail flag, shown in Figure 3.6.

The faked objects used in the manager’s construction allow the flight logic to

execute without requiring a firmware update to prevent a faulty peripheral from



Chapter 3 STUART ROBERT GIBSON BUCHAN 115

Initialise hardware manager

Read GPS fail register

GPS failed?

Construct fake GPS

 True 

Construct functional GPS

 False 

Read IMU fail register

IMU failed?

Construct fake IMU

 True 

Construct functional IMU

 False 

Read torquer fail register

Torquer failed?

Construct fake torquer

 True 

Construct functional torquer

 False 

Read storage fail register

Storage failed?

Construct fake storage

 True 

Construct functional storage

 False 

Construct manager 
with provided peripherals

FIGURE 3.6: Constructing the ownership manager. As peripherals are stored within
the manager as pointers to objects that derive the peripheral’s interface, fakes can be
substituted polymorphically to not impact application code if a peripheral device fails.
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being used. Only a ground operator can reset these error flags as a failure prevention

method. Technical details regarding how application code interacts with the underlying

peripherals are provided in Appendix A.4.

3.2.3. IMU

An inertial measurement unit (IMU) is a common device used on spacecraft to discern

information regarding the spacecraft’s movement. As they are often external devices to

the main processor, they employ serial communications to supply the flight computer

with this information. IMUs vastly differ regarding the serial method used and the

device configuration. Hence, the IMU library in the BSF is used to abstract the applica-

tion code from IMU interactions to support the ability to change the selected hardware.

The IMU peripheral chosen for Binar-1 also contains a magnetometer on the same die.

The public-facing IMU object (Figure 3.7) provides access to the hardware peripheral

through the private magnetometer and accel gyro members. These are used with the

driver supplied by the manufacturer to interact with the hardware.

The IMU library was developed adhering to the Open Closed principle. The IMUIn-

terface is extended into the IMUBase class, where implementation-generic functionality

is provided in the ”ReadIMU” method. The hardware-specific implementation through

the various getter methods, however, is not. The base class, being closed for modifi-

cation, needs to be extended to provide this functionality. This approach promotes

reusability by decoupling the IMU object from the hardware that it controls. Moreover,

this design choice allows the behaviour of the ”ReadIMU” method to be unit tested by

extending on this base class to provide a testing implementation with mocked getter

methods. Technical details of the functionality of the IMU hardware implementation

on Binar-1 are provided in Appendix A.5.

3.2.4. MAGNETORQUER

To achieve on-orbit objectives and facilitate communications, spacecraft need to be able

to adjust their attitude. Binar-1 used a magnetorquer-based attitude control method.
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bsp::IMU

- magnetometer_
- accel_gyro_

+ IMU()
+ Enable()
+ Disable()
+ GetStatus()
- GetMagnetometer()
- GetGyroscope()
- GetAccelerometer()

hal::IMUBase

+ IMUBase()
+ ReadIMU()
- GetMagnetometer()
- GetGyroscope()
- GetAccelerometer()

hal::IMUInterface

+ Enable()
+ Disable()
+ ReadIMU()
+ GetStatus()

FIGURE 3.7: A UML representation of the IMU object on Binar-1.
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hal::Magnetorquer

+ Magnetorquer()
+ Enable()
+ Disable()
+ SetDipole()
+ GetStatus()

hal::MagnetorquerInterface

+ Enable()
+ Disable()
+ SetDipole()
+ GetStatus()

hal::MagnetorquerDriverInterface

+ Enable()
+ Disable()
+ SetPWM()
+ GetStatus()

-zz_
-yy_
-xx_

FIGURE 3.8: A UML representation of the magnetorquer object on Binar-1.

The magnetorquer library in the BSF facilitated interactions between the flight computer

and the onboard attitude control device. The library provides an easy-to-use module

called Magnetorquer (Figure 3.8) that enables the application code to control the three

independent axes of the magnetorquer device.

The library uses the Dependency Inversion principle by having the high-level

Magnetorquer object depend on abstractions of the MagnetorquerDriver (Figure 3.9)

implementation objects. Moreover, it adheres to the Liskov Substitution principle by

allowing the magnetorquer drivers under control to be substituted at runtime by any

subclasses extending the interface. This innovative approach to magnetorquer control

supports seamless switching to redundant onboard magnetorquers if required, which

ensures the spacecraft’s robustness to failure. Moreover, fake magnetorquers can be

substituted at runtime to allow the code to disable an axis for safety. The alternative of

having the high-level Magnetorquer object tightly coupled to the three axes it controls

would mean that switching to redundant axes at run time would not be possible.

To add support for them, the Magnetorquer class would need to be modified. This

approach does not promote reusability, as not every mission will have the same number
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bsp::MagnetorquerDriver
< magnetorquer_axis >

+ MagnetorquerDriver()
+ Enable()
+ Disable()
+ ~MagnetorquerDriver()
+ SetPWM()
+ GetStatus()

hal::MagnetorquerDriverInterface

+ Enable()
+ Disable()
+ SetPWM()

hb2001_t

+ write_reg
+ read_reg
+ control_mode_forward
+ control_mode_backward

-hbridge_

FIGURE 3.9: A UML representation of the magnetorquer driver object on Binar-1.

of redundant axes available.

The Magnetorquer library’s design follows good software development principles,

promoting reusability and decoupling from hardware. The Open Closed principle

is leveraged to promote reusability by extending the MangetorquerDriverInterface

to provide the hardware-specific implementations required for Binar-1 rather than

coupling them directly to the interface. The hardware implementation of the magnetor-

quer axis object is templated, resulting in multiple axis-specific drivers being created.

Templating this object instead of implementing unique classes for each axis forces

all hardware-implemented axes to use the same API. This approach aims to prevent

runtime bugs as changes to the API of the templated object must be reflected in the

template definitions for the axes for compilation to succeed. Moreover, this allows for

the support of extra axes by adding entries to the enumerated class.

The flight implementation of the MagnetorquerDriver object aggregates the custom

driver for the H-bridge integrated circuit (IC) for interaction with the hardware. The
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write reg and read reg function pointers of the private hb2001 t aggregated driver,

hbridge , are assigned at compile time to provide the device-specific input/output.

Assigning this at compile time allows the driver library to be decoupled from the

hardware. Similarly, the control mode forward and control mode backward function

pointers decouple how the driver configures the hardware device to adjust polarity.

This approach promotes the reusability of the low-level driver on other platforms.

The design choices used during the development of this library facilitate extensive

testing. The MagnetorquerDriverInterface can be extended to provide a mocked imple-

mentation of the magnetorquer drivers, which can be controlled polymorphically by

the high-level Magnetorquer object. Examining how the high-level software interacts

with the mocked methods can aid in verifying that the library functions as intended.

Technical details of the Magnetorquer library are provided in Appendix A.6.

3.2.5. STORAGE

Persistent storage is required in space missions to retain data too large to fit into pro-

cessor RAM and ensure its preservation during power cycling of the flight computer.

Depending on mission requirements, many different types of storage technology can

be used for a space mission. Hence, the storage object in the BSF is responsible for ab-

stracting how the flight software interacts with the selected onboard storage peripheral.

Abstracting interactions with the storage peripheral enables future hardware revisions

without impacting application code. The UML representation of the library is given in

Figure 3.10.

The Storage library follows the Open Closed principle by extending the StorageIn-

terface object to provide the functionality required for interacting with the hardware

storage peripheral on Binar-1. Following this principle promotes the reusability of the

library by decoupling the interface from the application-specific implementation. On

Binar-1, the storage implementation created a filesystem using an open-source library.

If, conversely, the interface was modified to support using this filesystem, it would

mean every future implementation of the Storage library would need to depend on the

specific filesystem library used. This approach would make breaking from this file sys-
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hal::Storage

+ Storage()
+ Enable()
+ Disable()
+ Write()
+ Read()
+ Delete()

hal::StorageInterface

+ Enable()
+ Disable()
+ Write()
+ Read()
+ Delete()

storage_impl::StorageImpl

- lfs_
- file_
- dir_
- config_

+ StorageImpl()
+ Enable()
+ Disable()
+ Write()
+ Read()
+ Delete()

-impl_

w25m02gw_t

+ write
+ write_read
+ program
+ read

-memory_ctx_

FIGURE 3.10: A UML depiction of the Storage object from the storage library. The
Storage object aggregates an implementation object derived from the same interface.
This object is concerned with persistent data storage external to the flight computer’s
flash memory.
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tem difficult if it is no longer needed or fails to meet mission requirements. Following

the Dependency Inversion principle, the high-level Storage object controls this interface

extension through the abstracted member variable impl . This approach allows for

increased flexibility and maintainability, as the high-level storage object can interact

with any object that extends the StorageInterface without requiring modification to

the application code. The benefits of this approach have already been seen through

reusing the library on Binar-2, 3 and 4. A new storage device was used on the newly

revised BCM. A driver was written to support this storage device by extending the

StorageInterface. As the high-level Storage object interacts with the implementation

through an abstraction, the existing flight logic remains unaffected.

Alongside the design decision for the Storage library to facilitate the replacement of

the storage IC used, the custom low-level device driver was also created to allow for a

change in the flight computer. The custom driver implements most of the necessary

functionality for device interaction but requires the application code to supply the

features for serial interactions. The library provides these features via the public

function pointer members in the w25m02gw t object. This approach enhances library

reusability by enabling developers to create serial interactions for a new flight computer

while reusing most of the library code. Moreover, it removes the requirement for

regression testing as the library remains unchanged.

Adherence to good software design practices in this library aids with software

testing. The StorageInterface can be extended to provide a mocked storage device

implementation during integration testing. Controlled through the same abstraction

by the high-level Storage object, software storing data with the object can be verified

to operate correctly by examining interactions with the mocked implementation. The

low-level driver is unit tested by supplying fake implementations for serial interactions.

The features of the driver can be verified by examining the interactions with the mocked

serial device. Technical details of the operation of the Storage library are provided in

Appendix A.7.
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3.2.6. GPS

An onboard GPS is a crucial component of a space mission for orbit determination

and time synchronisation. Like other external peripherals, however, the GPS modules

integrated into a spacecraft design vary depending on the manufacturer. The GPS

library in the BSF was written to abstract this interaction, adding support for the com-

mon challenge of rapid timelines faced in CubeSat design, allowing for the possibility

of changing GPS hardware on future Binar missions without impacting the timeline.

Figure 3.11 provides a UML representation of the module.

Although inheriting from the GPSInterface class, the GPSBase class does not over-

ride the methods specific to a hardware implementation. Instead, it follows the Open-

Closed principle by extending the interface class with the methods required for in-

teraction with a GPS that communicates using NMEA sentences. This design choice

decouples the interface object from depending on an NMEA device, supporting mod-

ule reusability by being more generic. The technical information regarding how the

GPSBase object extracts the location and time information is provided in Appendix

A.8. The GPS subclass then further exemplifies the Open Closed principle by deriving

from the GPSBase and extending its functionality by implementing the virtual methods

defined in the GPSInterface object to interact with hardware. This approach promotes

reusability with new GPS hardware by extending the GPSBase superclass to provide an

implementation for reading from the updated hardware. Secondly, this design choice

aids in testability. The GPS library can be tested by extending the base class with a

mocked hardware implementation. Keeping the GPSBase class closed for modification

contributes to robust software design. It removes the possibility of introducing bugs

when modifying existing working code and prevents breaking the existing functionality

of modules that depend on it.

3.2.7. I2C TO UART

During Binar-1 development, the intention for communications with the transceiver

was to use the USART serial. Two transceiver versions were purchased; one for the
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bsp::GPS

- buffer_one_copy_
- buffer_two_copy_

+ GPS()
+ Enable()
+ Disable()
+ ReadGPS()

hal::GPSBase

+ Parse()
+ CalculateChecksum()

hal::GPSInterface

+ Enable()
+ Disable()
+ ReadGPS()

bsp::P1PPS

+ Handler()

-p1pps_

bsp::ExternalInterrupt
_interface

+ Handler()

bsp::GPSReceiveComplete

- gps_transmission_status

+ GPSReceiveComplete()
+ GetGpsTransmissionStatus()
+ Handler()

bsp::DmaReceiving

+ buffer_one
+ buffer_two
+ buffer_1_2

+ DmaReceiving()

bsp::Serial< bsp::Serial
Channel_t::GPS >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

+dma_recieving +gps

< bsp::SerialChannel
_t::GPS >

-gps_dma

venus838_t

+ write_command
+ read_command
+ active_nmea_strings

-gps_

bsp::Serial< channel >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

bsp::SerialInterface

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

FIGURE 3.11: A UML representation of the GPS implementation in the Binar-1 flight
software.
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flight model and another for the engineering model. The flight model transceiver

was reserved while assembly and testing of the engineering model took place. When

the flight model transceiver was eventually opened, it became evident that whilst the

engineering model transceiver spoke using UART, the flight model transceiver spoke

using I2C. Because of this, a last-minute communication protocol adaptor board was

assembled featuring an I2C to UART conversion IC. In support of this, the I2C to UART

library (Figure 3.12) was created to facilitate communications with the transceiver.

The I2CToUART object follows the Open Closed principle by extending on the

I2CToUARTInterface object through inheritance. Following the Dependency Inversion

principle, the public-facing I2CToUART object interacts with the Binar-1 hardware

through an implementation abstraction. Calls to the public-facing methods delegate to

the implementation object, I2CToUARTImpl, using the private methods that extend the

interface. The I2CToUARTImpl object likewise follows the Open Closed principle by

extending the shared interface class, overriding the pure virtual methods and adding

the required implementation-specific functionality.

Adherence to the Open Closed principle promotes reusability by decoupling the

high-level application code from the hardware specifics. The extended implementation

object adds device-specific implementations for configuring the selected I2C to UART

hardware, for example, through the ”SetBaudRate” method. Moreover, similar to

other external hardware peripherals, a custom low-level driver was written to support

the functionality of the IC. This driver, developed following the device datasheet, is

aggregated into the I2CToUARTImpl object through the private member driver . As the

high-level I2CToUART class depends on an abstraction, it is not coupled to this specific

driver and hence supports substitution with new hardware if necessary. Moreover, it

allows a mocked device to be substituted during software testing without impacting

the high-level code.

Whilst the public-facing I2CToUART module was designed to support changing

the specific IC used, the IC driver was also developed to support a change of flight

computer. The custom driver provides most of the functionality required for interaction

with the device but leaves features for serial interactions to be implemented in the

application code and provided to the library through the public function pointer
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binar::I2CToUART

+ I2CToUART()
+ Enable()
+ Disable()
+ Write()
+ Read()

binar::I2CToUARTInterface

+ Enable()
+ Disable()
+ Write()
+ Read()

i2c_to_uart_impl::I2CToUARTImpl

+ I2CToUARTImpl()
+ Enable()
+ Disable()
+ Write()
+ Read()

- Reset()
- SetBaudRate()
- FIFO_Enable()
- SetLineCtrl()

-impl_

sc16is750_t

+ write_reg
+ read_reg
+ async_read_reg

-driver_

FIGURE 3.12: A UML representation of the I2C to UART converter object on Binar-1.
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members in the sc16is750 t object. This approach promotes library reusability by

allowing for serial interactions to be developed for a new flight computer whilst still

porting most of the library code across to the new project with the relevant tests.

Technical details of the I2C to UART library are provided in Appendix A.9.

3.2.8. REAL TIME OPERATING SYSTEM

Whilst offering a significant reduction in power, cost and complexity over conventional

processors, microcontrollers often only have a single execution thread for applications.

The lack of multiple threads can introduce complexity when multiple concurrent

processes are required, such as listening for radio transmissions from a ground station

whilst executing tasks, or when periodic functionality is required, such as a regular

beacon transmission from the satellite. A common solution for these requirements is

implementing a Real-Time Operating System (RTOS) kernel on the microcontroller to

leverage the scheduler.

Implementing an RTOS in the BSF is developed according to the Open Closed

principle, as seen in the UML diagram in Figure 3.13. The RTOS object extends the

RTOSInterface class to provide implementations for the abstract methods in the inter-

face. Moreover, it adds another public method, ”Initialise”, to benefit the application

code.

The RTOSImpl implementation object further exemplifies the Open Closed principle,

extending the interface class to support a hardware implementation. If the RTOSIn-

terface was modified to add the implementation-specific features, it would couple the

public-facing RTOS module to the FreeRTOS framework used on Binar-1. This approach

would make it difficult to break from it if it no longer met mission requirements.

Adherence to the Dependency Inversion principle also provides support for chang-

ing the RTOS used. As the public-facing RTOS object interacts with the underlying

RTOS implementation through the abstracted RTOSImpl object, the application code

will be unaffected by a change in the RTOS used.

Therefore, for this module, adherence to the Open Closed principle means the
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rtos::RTOS

+ RTOS()
+ Initialise()
+ StartKernel()
# GetKernelState()
# KernelInitialise()

rtos::RTOSInterface

+ GetKernelState()
+ KernelInitialise()
+ StartKernel()

rtos_impl::RTOSImpl

+ StartKernel()
+ GetKernelState()
+ KernelInitialise()

#impl_

FIGURE 3.13: A UML representation of the RTOS class in the RTOS library. The RTOS
object aggregates an implementation object derived from the same interface.
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rtos::ThreadBase< buffer
_size, priority >

- thread_buffer_

+ ThreadBase()

rtos::ThreadInterface

+ Run()

rtos_impl::ThreadImpl

+ ThreadImpl()

-impl_

-thread_attributes_

-thread_control_block_

FIGURE 3.14: A UML depiction of the ThreadBase object in the RTOS library. The
ThreadBase object obfuscates the FreeRTOS implementation, providing all the config-
uration required to initialise a thread with the RTOS. To use in application code, the
user must derive a class from the ThreadBase, providing an implementation for the
pure virtual ”Run” method inherited from the ThreadInterface.

RTOSInterface can be extended to support any RTOS required. The Dependency

Inversion principle then allows the public-facing RTOS object to interact with any

supported subclass of RTOSInterface through an abstraction.

Threads can be created with their own runtime scope for the RTOS kernel to schedule

when it is initialised. Threads are created using the ThreadBase object shown in Figure

3.14. This object follows the Open Closed principle by extending the ThreadInterface

object to add generic functionality required by threads. With this generic functionality

implemented, the module is closed for further modification. However, it does not

override the ”Run” method and is hence open for extension. In application code, the

ThreadBase object must be extended by a thread implementation overriding the ”Run”

method. This approach promotes reusability by forcing thread implementations to be

application specific, removing the possibility of coupling unnecessary dependencies

into the Thread object. Moreover, being a critical component of application code

runtime, removing the need to modify the existing well-tested code prevents failure-

inducing bugs from being introduced into the code base.

The threads used in the Binar-1 application code were for communications with

the ground, running scheduled tasks, and transmitting a periodic beacon. Technical

information providing an overview of how threads are created and managed in the
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rtos::EventFlags

+ Set()
+ Wait()

rtos::EventFlagsInterface

+ Set()
+ Wait()

rtos_impl::EventFlagsImpl

- flag_id_
- flag_
- next_flag_

+ EventFlagsImpl()
+ Set()
+ Wait()

-impl_

FIGURE 3.15: A UML depiction of the EventFlags object from the RTOS library.
The EventFlags object aggregates an implementation object derived from the same
interface. This object is used for synchronising threads.

library is provided in Appendix A.10.

The final main component of the RTOS library is the EventFlags object. Event

flags are a method of controlling a thread’s execution from a separate thread. The

implementation of the EventFlag object in the BSF can be seen in Figure 3.15.

This library section also leverages the Open Closed and Dependency Inversion

principles. The EventFlagsImpl object extends the EventFlagsInterface object to provide

RTOS-specific event flags implementations. In the case of the software written for

Binar-1, this decouples the EventFlags module from the underlying FreeRTOS. The

public-facing EventFlags object then interacts with the underlying RTOS through the

EventFlagsImpl abstraction, supporting changing the RTOS used by allowing for an

alternative implementation of EventFlagsImpl to be controlled without affecting high-

level code.

A further benefit of the extensive use of the Open Closed principle and the Depen-
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bsp::SystemContext

+ Reboot()
+ ConfigureNonVolatileMemory()
+ EnterDFUMode()

hal::SystemContextInterface

+ Reboot()
+ ConfigureNonVolatileMemory()
+ EnterDFUMode()

FIGURE 3.16: A UML diagram of the SystemContext object from the system context li-
brary. This object abstracts processor-specific functionality required by the application
code.

dency Inversion principle in this library is in software testing. The interface objects

can be extended to create fake RTOS backends controlled through the same abstraction

without impacting the application code. This approach allows for granular control

over the functionality of the RTOS fake to verify that the software interacts with it as

expected, increasing reliability.

3.2.9. SYSTEM CONTEXT

Regardless of the processor used for a spacecraft flight computer, certain generic

features, such as a system reboot, are always required. However, whilst these features

are common across processors, the implementation is not. Hence, the System Context

library is used in the BSF to abstract these features from the high-level software that

requires its use. A UML depiction of the SystemContext object from this library is

shown in Figure 3.16.

This module is built according to the Open Closed principle, requiring the specific

implementation of the SystemContext module to extend the SystemContextInterface.

Enforcing the module to be closed for modification but open for extension supports code

reusability. Alongside the extending class providing device-specific implementations

of the generic functionality, extending the interface also allows for adding processor-
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specific functionality if required. This means the library can be ported to a new

processor without requiring unsupported features to be carried across.

Furthermore, this level of abstraction aids testing by allowing mock extensions of

the library to be substituted in place of the hardware implementations when they are

used polymorphically in the BSF. Technical specifications of the library’s functionality

are provided in Appendix A.11.

3.2.10. SYSTEM LOGGER

In orbit, the best-case scenario pass length over the Curtin University ground station

for Binar-1 was less than ten minutes. This meant requesting housekeeping data

from the spacecraft was limited to a small subset of the orbital period. Collecting

housekeeping data over multiple orbits, however, was desired for the Binar Space

Program to understand how the developed custom CubeSat platform operated in

space. This data would directly influence the decisions made during the design of

future spacecraft. Hence, data had to be collected autonomously when not in range of

a ground station and saved in the onboard storage to be downlinked when the satellite

passed overhead. The Logger object from the system logger library (Figure 3.17) is

responsible for collecting this data and preparing its return.

The library follows the Single Responsibility principle by requiring a single object

per system to be logged. This approach supports modularity, as changes to one system

will not affect how another is logged. This design choice makes the library easily

extensible as new system logger objects can be created, responsible for their own

specific logging, and aggregated into the public-facing Logger object.

In the BSF, these logging implementation objects provide a means of abstraction

over the system that is being logged. The Logger object follows the Dependency

Inversion principle by interacting with the hardware systems logged through the

aggregated abstractions. This approach supports the reusability of the library on other

flight computers as the Logger object is decoupled from how information is collected

and logged. Moreover, it enables testing by allowing mocked implementations to be
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binar::Logger

+ Write()
+ PrepareLog()
+ GetLogChunk()

system_logger_impl
::CurrentLoggerImpl

+ Write()
+ PrepareLog()

#current_logger_

binar::SystemLoggerInterface

+ Write()
+ PrepareLog()

system_logger_impl
::VoltageLoggerImpl

+ Write()
+ PrepareLog()

system_logger_impl
::TemperatureLoggerImpl

+ Write()
+ PrepareLog()

#voltage_logger_ #temperature_logger_

FIGURE 3.17: A UML diagram of the Logger object from the system logger library.
This object periodically logs housekeeping data from the aggregated members to the
onboard storage.

substituted in place of a hardware dependency without affecting high-level code.

Furthermore, the library adheres to the Open Closed principle by requiring the

system logging objects to extend a closed common interface class for modification. The

opposite approach of adding the support of new logging systems by modifying the

SystemsLoggerInterface class could introduce failure-inducing bugs into all subclasses

inherited from it. Furthermore, it would reduce the reusability of the library as the

superclass would then be coupled to specific systems by which to log. These systems

may not be required in future software that intends to reuse the library. Technical

details of the System Logger library are provided in Appendix A.12.

3.2.11. MANIPULATOR

As part of the Binar Space Program’s goal of collaborating with local industry, a

simulated robotic manipulator payload was included on Binar-1. The payload aimed

to provide a test bed for Fugro SpAARC to develop remote operation capabilities. The

case study created for the robotic arm payload was to fix a simulated faulty solar panel

deployment. With the simulated panel failing at a random deployment angle, the

robotic arm simulation was to be controlled from Fugro SpAARC to correct it.
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binar::Manipulator

+ Move()

binar::ManipulatorInterface

+ Move()

manipulator_impl::ManipulatorImpl

+ Move()

-impl_

FIGURE 3.18: A UML representation of the Manipulator object on Binar-1.

The Manipulator library (Figure 3.18) provides access to controlling the emulated

payload. The library was developed in adherence to the Open Closed principle and

the Dependency Inversion principle. The public-facing Manipulator object interacts

with the payload through an abstraction that extends the ManipulatorInterface object.

Having the ManipulatorInterface closed for modification but open for extension encour-

ages implementations of the manipulator payload to provide the application-specific

features without polluting the interface. This approach was made in preparation for the

library to be reused on a future mission where physical hardware is to be controlled by

the library. The interface class can be extended to support features specific to hardware.

If the Open Closed principle were not adhered to in this library, these extra features

would become coupled to the emulated implementation that would not require them.

This approach would make the library more difficult to maintain and error-prone. As

adherence to the Dependency Inversion principle abstracts the high-level manipulator

object from the implementation it controls, the library can be reused to control the

future hardware implementation of the manipulator without impacting application

code.

For the implementation on Binar-1, tasks scheduled to use the manipulator payload

provide a joint angle by which to move the manipulator. The ManipulatorImpl object
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binar::ManipulatorLogger

+ PrepareLog()
+ GetLogChunk()

binar::ManipulatorLogger
Interface

+ PrepareLog()
+ GetLogChunk()

manipulator_impl::Manipulator
LoggerImpl

+ PrepareLog()
+ GetLogChunk()

- Write()

-manipulator_logger_

FIGURE 3.19: A UML representation of the ManipulatorLogger object on Binar-1.

then stores this angle for later retrieval by a ground operator through the Manipulator-

Logger object (Figure 3.19). Appendix A.13 provides information regarding how the

log is retrieved. This section of the library follows the Single Responsibility principle

by decoupling the emulator implementation of the manipulator from how the angle

information is logged. This means that the logging implementation can be updated

without changing the emulator.

The ManipulatorLogger is also designed following the Open Closed principle and

the Dependency Inversion principle. The ManipulatorLogger object interacts with

the application-specific logging implementation through an abstraction that extends

the ManipulatorLoggerInterface object. This approach provides similar benefits to

the design of the Manipulator object, allowing for abstracted control over a logging

implementation that is free of interface pollution. This approach enables the Manipula-

torLogger to be reused with an alternative logging solution by extending the interface

to provide the required functionality while allowing the high-level ManipulatorLogger
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object to control it through an abstraction.

Adherence to this library’s various object-oriented design principles aids in software

testing. During integration testing, the emulator implementation of Manipulator

can be tested to work correctly with the ManipulatorLogger class. By extending

the ManipulatorLoggerInterface to provide a mocked implementation of the logger

and having the high-level ManipulatorLogger control it through an abstraction, the

module’s behaviour can be easily examined.

3.3. UTILITIES

Utility libraries are an essential component of any software framework, as they provide

generic functionality that can be used across multiple modules in the codebase. Given

the unique challenges and constraints of systems operating on orbit, ensuring that

these modules were built on a foundation of robust and reliable software practices was

crucial. This section details two of the most important utility libraries developed and

how they improve the overall functionality and performance of the BSF.

3.3.1. RESULT AND VISIT

A good approach for writing software is acknowledging that errors can happen during

runtime and providing a safe path for application code to progress down when they

do. The Result and Visit library in the BSF represents an innovative solution to this in a

reliable and safe manner. As a preventative measure to reduce runtime bugs as much

as possible, the burden of enforcing safe error handling was shifted from the user’s to

the compiler’s responsibility. This is implemented by having the return types to most

methods and functions take the form of a variant from the standard C++ library. A

variant is a class template representing a type-safe union, meaning the variant can only

explicitly be one of the types of the template parameters. Creating a custom type Result

object that masks an underlying variant of either a success or a fail type deduced from

template parameters allows for a return type of either one of two custom values. This

deduction is made statically as the variant requires the memory allocation of the largest
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of the two options. This approach enforces the application code to exhaustively extract

the return type from the variant result type before it can be used. The type safety of C++

will prevent this step from being skipped in application code by causing compilation

errors. This type safety enforces the return type to be either the type expected from

a function call or a custom failure object that needs to be explicitly handled before

the software can compile. Moving this error handling to compile time decreases the

chance that software running on the satellite can encounter an unexpected event during

runtime. C++ variants are a relatively recent addition to the C++ standard library. At

the time of writing, there is no literature detailing their use for enforcing compile-time

error handling. Hence, this approach represents a unique solution to error handling in

space missions.

Extracting the result object from the custom Result variant is done through the

non-member functor ”Visit” associated with the C++ variant library. A custom wrapper

over the ”Visit” functor increases readability by accepting a template parameter for

the variant type and then a parameter pack of lambdas that match individual variant

types. The visit then behaves similarly to a switch statement and executes the code

inside the lambda corresponding to the type encoded in the result variant. An added

benefit of this approach is controlling scope. To use variables from a higher scope in a

lambda, they must explicitly be captured into the lambda. Otherwise, the compiler will

throw errors, preventing accidental reassignment of variables. An example is provided

in Listing 3.1 attempting to read from the GPS peripheral.

LISTING 3.1: The visit syntax used throughout BSF applied to reading the GPS.

util::visit(

gps.ReadGPS(), // Call the method

[](hal::GPSReadings gps_readings) {

// Use GPS readings object in this scope

},

[&error_logger](util::Fail) {

// Handle fail in this scope

});
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In Listing 3.1, it can be seen that when the ”ReadGPS” method is called on the GPS

object (not shown constructed in the example), the return type is either a GPSReadings

object in the HAL namespace or the Fail object in the util namespace. Furthermore,

in this example’s secondary lambda for the Fail variant, it can be seen that an object

named error logger is being captured by reference and thus will be accessible within

the failure scope. This approach requires an exhaustive list of all the types encoded

within the variant to be addressed. Otherwise, an error will be thrown at compile time.

This approach is especially useful when combined with creating custom libraries. It

allows all libraries running on the spacecraft to propagate errors up to user code rather

than being obfuscated and handled within the library. Handling errors this way is

important as the calling code generally has more information on how the error should

be handled than what may be available in the scope of the library. This increases code

portability and facilitates library reuse for future spacecraft.

3.3.2. STATIC LINKED LIST

In application code, situations arise where elements need to be grouped as a linear

sequence. A common way to implement this is using a container type such as an array.

Whilst efficient for accessing data elements with contiguous memory, a challenge arises

when attempting to sort the elements in the data sequence. Attempting to insert data is

a slow operation that requires the elements at each memory address to be shifted along

in the series to create space for the new element, as shown in Figure 3.20.

This operation requires free memory in the container to shift existing entries into

to make space for the new addition. When developing for an architecture with no

restrictions on heap memory usage, new memory can be created at application run

time to resize the container to fit the new element. However, on an embedded system

where memory is a finite resource, abstaining from using dynamic memory where

possible can aid in preventing runtime bugs. Hence, this container can be alternatively

implemented by preallocating memory at compile time for a maximum required size,

allowing software interaction that simulates dynamic behaviour. The routine can

gracefully handle errors if memory usage exceeds the predefined allocation. For
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4

0 1 2 3 x

FIGURE 3.20: To insert the fourth element into an array at the first data entry, each ele-
ment must be moved along to the subsequent memory address, giving this operation
a complexity of O(n). For this operation to work, free space is required in the array
to shift into, denoted by an X. In an application with plentiful heap memory, new
memory can be created at run time to resize the container. However, on an embedded
system, static memory allocation is preferred.

middle insertion, as all elements in the container need to be moved, the complexity for

this operation is O(n), where n refers to the number of elements that need to be shifted.

Hence, with a small array, the complexity is minimal. However, it is not a scalable

solution as larger arrays can start to introduce significant complexity in operations.

When random element access is less of a priority than sorting, a linked list structure

provides an alternative to containers. A linked list is a method of storing a series of data

elements, the order of which is not defined by the location of the element in memory.

Instead, a pointer to the next node in the list is included alongside each entry in the

structure. Due to this, the structure simplifies adding and removing elements at any

point in the data series, as demonstrated in Figure 3.21.

The simplicity of sorting the entries in the structure highlights its applicability

for a list of tasks to execute on the spacecraft, arranged in order of task execution

time. When the ground station requests to schedule a task, the link between two

tasks can be broken and the new task inserted. Whilst offering the advantage of

simplified data restructuring, linked lists suffer from traditionally requiring the use

of heap memory for runtime memory allocation to create new nodes to add to the

list. A static memory linked list library was created for the BSF to access the benefits

of element sorting in a linked list without the requirement of dynamic memory. This

library demonstrates an innovative solution to the challenge of limited resources on
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4

0 1 2 3

4

0 1 2 3

FIGURE 3.21: To insert the fourth element into a linked list at the first data entry, the
pointer between the zero element and the first element must be updated to point to
the fourth element and the fourth element to the first. This operation does not require
any other entries to be updated and hence has a complexity of O(1).

CubeSat platforms. Due to the memory constraints and processing capability of the

microprocessors powering the small spacecraft, efficient software design maximising

resource utilisation is paramount. In this library, all the memory available to the

linked list is allocated at runtime and is a private member aggregated by the StaticList

object (Figure 3.22). The BSF implements this using C++ templating. When the user

constructs an empty static list in application code, the datatype to be stored in the

list and the maximum list size must be provided as template parameters. In this

application, templating achieves compile-time polymorphism. Rather than hard-coding

the datatype and list size, it is kept generic. This approach supports library reuse in the

future.

Implementing the static list provides application code with an API reflective of

interfacing with a traditional linked list without the requirement for dynamic memory

allocation. The template parameters used during construction are shared with the

private aggregated memory pool array, memory pool node pointer, and linked list

objects. The memory pool array, memory pool , contains the memory addresses for

each node in the list. The memory pool node pointer is used internally to the StaticList

object for traversing the list. The linked list object, linked list , is used for pointing to

the head and tail of the linked list. It aggregates two public memory pool node pointers,
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util::StaticList< T,
nmax_elements >

- memory_pool_
- node_

+ StaticList()
+ Insert()
+ Erase()
+ Pop()
+ Begin()
+ End()
+ PushFront()
+ PushBack()
+ Next()
- Allocate()
- FindInPool()

util::StaticListInterface
< T, nmax_elements >

+ Insert()
+ Erase()
+ Pop()
+ Begin()
+ End()
+ PushFront()
+ PushBack()
+ Next()

util::StaticList< scheduler
::TimeSeriesTaskNode, 10 >

- memory_pool_

- node_

+ StaticList()
+ Insert()
+ Erase()
+ Pop()
+ Begin()
+ End()
+ PushFront()
+ PushBack()
+ Next()
- Allocate()
- FindInPool()

- linked_list_

util::LinkedList< util
::MemoryPoolNode< T, nmax

_elements > >

+ start
+ end

+ LinkedList()

-linked_list_

util::LinkedList< T >

+ start
+ end

+ LinkedList()

< util::MemoryPoolNode
< T, nmax_elements > >

< scheduler::TimeSeriesTaskNode, 10 >

FIGURE 3.22: A UML representation of the StaticList object. The object provides the
API of a traditional linked list without the dynamic memory requirements. Construct-
ing the StaticList object requires storing the datatype in the list and the maximum
number of elements as template parameters. These parameters are shared with the ag-
gregated members. The memory for the list exists as a private member, memory pool ,
aggregated from an array of MemoryPoolNodes.
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start and end, to provide list boundaries during traversal.

The StaticList object follows the Open-Closed principle by having an interface

class closed for modification. An implementation of the interface class is provided by

extending the interface object. The extended object adds specific functionality for the

required linked list implementation, adding private methods such as ”Allocate” and

”FindInPool”, as well as required internal variables. The benefit of this approach is that

it makes the static list library extensible and maintainable over time. For code reuse in

the future, a new implementation object that extends the same interface class can be

added to support a new list implementation without having to modify the existing code.

The alternative approach in this situation would see the StaticListInterface modified

to supply the functionality required for the linked list, coupling the library to this

implementation and making it less reusable. Furthermore, if future code reusing this

library had to modify existing code to add implementation-specific details, it would

affect everything that depended on it, potentially breaking code that had worked

previously. By keeping the interface class stable and separating the implementation

details into a separate object, the codebase can easily be extended as requirements

change.

The LinkedList object used by the StaticList is instantiated from a generic LinkedList

template, denoted by the yellow arrow in Figure 3.22. For the StaticList object, it is

instantiated with the MemoryPoolNode object, represented in UML in Figure 3.23.

The MemoryPoolNode object follows the Open-Closed principle through inheri-

tance. The MemoryPoolNodeInterface object provides an abstract interface that must

be extended to provide an implementation. The MemoryPoolNodeBase class adds

the generic functionality of tracking the usage of the node. This base class is then fur-

ther extended into the MemoryPoolNode object, which adds the specific functionality

for interfacing with underlying data without modifying the base object. Developing

this library section in adherence to the Open-Closed principle increases its reusability.

Although developed in this case for a linked list, the MemoryPoolNode should be

able to be used with any other data structure. Hence, the MemoryPoolNodeBase is

extended to provide the implementations for the linked list structure. The alternative,

more rigid approach would be to modify the MemoryPoolNodeBase class to provide
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util::MemoryPoolNode
< T, nmax_elements >

- data

+ MemoryPoolNode()
+ GetData()
- Next()
- Previous()

-next_node
-previous_node

util::MemoryPoolNodeBase

- used_

+ MemoryPoolNodeBase()
+ GetUsed()
+ SetUsed()
+ ClearUsed()

util::MemoryPoolNodeInterface

+ GetUsed()
+ SetUsed()
+ ClearUsed()

FIGURE 3.23: A UML depiction of the MemoryPoolNode object. This object derives
and extends the MemoryPoolNodeBase object, adding template parameters for the
datatype and the maximum number of elements.
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the implementation-specific features, such as the next and previous pointers. However,

this approach is not generic and would couple the MemoryPoolNode object to specific

implementations.

The static list library follows the Single Responsibility principle by having the Stati-

cList object not coupled to handling the datatype that is stored within the list. Instead,

the responsibility for this is offloaded to the MemoryPoolNode object. Offloading the

responsibility of handling the datatype stored within the list to the MemoryPoolNode

object increases the maintainability and flexibility of the static list library by mak-

ing it more modular and hence easy to modify. If the library was to be reused, the

datatype stored within the list or how it is handled can be modified through the Mem-

oryPoolNode object without needing to modify the entire static list library, reducing

the likelihood of introducing software flaws. Moreover, the MemoryPoolNode object

can be reused in other areas of the code base where a memory pool may be required.

Technical details of the static list library are provided in Appendix A.14.

3.4. BOOT APPLICATION MODULES

The boot application modules are a collection of libraries used during the Start-

Up/Bootloader application, entered during spacecraft boot. The Start-Up/Bootloader

application is a critical component of a space mission, responsible for initialising the

onboard systems during the boot process. Due to the importance of the success of this

process, it is essential to ensure that the boot application modules are designed to be

reliable. As such, the modules discussed in this section were custom-developed to

address specific needs related to booting up the spacecraft in a reliable manner.

3.4.1. BOOTLOADER

A bootloader is a piece of firmware executed upon system boot or restart. The pri-

mary purpose of a bootloader is to load the application software to be executed into

memory. In an embedded system, this application code commonly exists internally in

the processor in a reserved flash region. As Binar-1 required dual-booting for robust
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hal::Bootloader

+ Bootloader()
+ Boot()
- ConfigureFlashProtection()
- InitialiseMicrocontrollerFlash()
- EraseApplicationFlash()
- WriteFirmwareToFlash()

hal::BootloaderBase

+ ProgramFirmware()
+ PrepareForProgramming()
+ Program()
+ FinaliseProgramming()
+ ConfigureFlashProtection()
+ InitialiseMicrocontrollerFlash()
+ EraseApplicationFlash()
+ WriteFirmwareToFlash()

hal::BootloaderInterface

+ ProgramFirmware()
+ Boot()
+ PrepareForProgramming()
+ Program()
+ FinaliseProgramming()

bootloader_impl::BootloaderImpl

+ flash_app_start_address_
+ flash_app_end_address_

+ BootloaderImpl()
+ Boot()
+ ConfigureFlashProtection()
+ InitialiseMicrocontrollerFlash()
+ EraseApplicationFlash()
+ WriteFirmwareToFlash()

-impl_

hal::FirmwareReaderInterface

+ GetNextSegment()
+ SetNextSegment()
+ Finish()
+ ReceivedAllBytes()
+ CheckForMissingSegment()

+firmware_reader_

FIGURE 3.24: A UML representation of the bootloader object in the Binar-1 flight
software.

firmware upgrades, the bootloader was purposed with selecting which application to

boot. Alongside loading application software into memory, a bootloader is commonly

used for upgrading system firmware by loading it from an external source. These

features are implemented in the Binar-1 flight software using the Bootloader object

(Figure 3.24).

The bootloader library adheres to the Open-Closed principle by requiring mod-

ules to be extended to provide the required functionality. The BootloaderBase class,

extending the interface, provides a blueprint of the generic functionality any boot-

loader would share, refraining from any implementation specifics. Implementations
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are provided for ”PrepareForProgramming”, ”ProgramFirmware”, ”Program”, and ”Fi-

naliseProgramming”. The device-specific ”Boot” method is left as pure virtual from the

interface. Moreover, the BootloaderBase class extends the BootloaderInterface to add

four virtual methods; ”ConfigureFlashProtection”, ”InitialiseMicrocontrollerFlash”,

”EraseApplicationFlash”, and ”WriteFirmwareToFlash”. The implementation of these

methods is left to the deriving class. This base is closed for modification. The class is

extended into the Bootloader object to provide the implementation-specific features

required for Binar-1.

This approach increases reusability by making the bootloader library extensible

and maintainable. Keeping the base class closed for modification, requiring objects to

extend the base class to provide bootloader implementation specifics, ensures that any

changes to the library will not break existing code that depends on it. This approach

allows the same base class to be reused for different bootloader implementations while

still providing the specific features required by each implementation. By identifying

the generic bootloader functionality and implementing it in the base class, any module

extending this class will also inherit the implementation. This helps limit redundant

code, which could introduce fault-inducing bugs, increasing the reliability of the code

base.

The public-facing Bootloader object adheres to the Dependency Inversion prin-

ciple by interacting with the hardware-specific bootloader implementation through

the abstracted object BootloaderImpl. This approach decouples the library from the

low-level hardware it interacts with, supporting library reuse with changing mission

requirements. This decoupling allows a new hardware-specific implementation to be

controlled through the public-facing Bootloader object without requiring a change to

the object itself. This capability will be useful if the flight computer is changed in the

future or if the firmware is moved to an external location. Moreover, this approach

aids with unit testing, as a mocked hardware backend can be substituted in place of

the BootloaderImpl, allowing for behavioural testing of the Bootloader object.

The BootloaderImpl object also demonstrates the Dependency Inversion principle by

aggregating a pointer to a derived class of the FirmwareReaderImpl from the firmware

reader library (Section 3.4.2) for receiving the firmware to write to flash. This pointer is
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supplied a memory address through dependency injection during object construction.

By interacting with the firmware reader implementation through an abstraction, the

BootloaderImpl object becomes decoupled from how the firmware is received. This sup-

ports reusability as any object extending the FirmwareReaderInterface can be injected

into the BootloaderImpl object and controlled without requiring the BootloaderImpl to

change. Moreover, this approach enabled unit testing of the library. By extending the

FirmwareReaderInterface into a mocked object, the behaviour of the Bootloader object

could be tested with fine granularity, leading to a more robust library.

As performing a firmware update can be risky for a spacecraft, robust error han-

dling is built into the library to prevent the spacecraft from trying to boot corrupted

firmware. Before starting the firmware writing process, the failed firmware update flag

in non-volatile memory (Section 3.2.9) is set. The flag is only reset upon successfully

reprogramming the application’s flash memory. This flag is checked on boot, meaning

the spacecraft will enter Safe Mode if a firmware update previously failed and the

failed firmware update flag is not reset.

If the firmware update process is successful, the spacecraft will attempt to boot into

the updated firmware using the ”Boot” method on the Bootloader object. However, as

a preventative measure against booting into corrupt firmware, the bad app check flag

in non-volatile memory is set before booting. An assembly jump instruction is then

performed to the base address of the application bank. The bad app check flag is reset

in the application before continuing with the application execution. If the application

has corrupted during the writing process, the flag remains set, and the watchdog timer

triggers. On start-up, this boot bank will then be marked as unsafe to boot, requiring

assistance from a ground operator to reprogram.

The bootloader library follows the Single Responsibility principle by separating

the concern of the Bootloader object from how firmware is read into the application.

The responsibility for reading firmware is delegated to the FirmwareReader object.

This approach increases the maintainability, flexibility and reusability of the library.

As the Bootloader object is not coupled to how the firmware to program is read into

the module, changes to how the firmware is read will not reflect a change for the

bootloader library. Moreover, by delegating the responsibility of reading firmware
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to the FirmwareReader object, this functionality can be reused in other areas of the

code base where firmware needs to be read, removing the need for code duplication.

This reduces code redundancy and makes the codebase more maintainable. Technical

details of the Bootloader library are provided in Appendix A.15.

3.4.2. FIRMWARE READER

The firmware reader library abstracts how firmware binaries are read by the spacecraft.

In Binar-1, this library was a core part of the firmware update process. A high-level

UML diagram of the FirmwareReader object is provided in Figure 3.25. For the Binar-

1 implementation, the FirmwareReader object within the library was used with the

Bootloader module to receive firmware to be programmed into memory. This was

implemented by receiving the firmware in sections from the ground station. Appendix

A.16 provides a detailed overview of this process.

The firmware reader library benefits from modularity, ease of testing, and maintain-

ability by adhering to the Single Responsibility principle. The FirmwareReaderImpl

object, the hardware implementation for Binar-1, delegates the responsibilities of storing

and reading the firmware segment to individual modules. Moreover, as the hardware

implementation on Binar-1 required interaction with the ground station via the RPC

network, this responsibility was implemented through the StartUpModeServer. The

modular aspect of the firmware reader makes it easy to add support for a new imple-

mentation. Rather than requiring the whole firmware reader library to change, updates

can be made specifically to how the firmware segment is stored, how it is read, and

how it is communicated with the ground. This increases the reusability of the library.

By isolating features of the library into various modules, each part can be unit tested

independently, increasing the overall robustness of the library. This can make it easier

to locate any software bugs that may exist. Coupled with the Dependency Inversion

principle, this allows for granular control over testing by mocking some parts of the

firmware reader library and substituting them in place of the hardware implementation

through dependency injection. This approach improves the library’s maintainability by

increasing organisation and readability. Each module is responsible for a specific task,
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hal::FirmwareReader

+ FirmwareReader()
+ GetNextSegment()
+ SetNextSegment()
+ Finish()
+ ReceivedAllBytes()
+ CheckForMissingSegment()

hal::FirmwareReaderInterface

+ GetNextSegment()
+ SetNextSegment()
+ Finish()
+ ReceivedAllBytes()
+ CheckForMissingSegment()

firmware_reader_impl
::FirmwareReaderImpl

- segment_tracker_
- done_
- number_of_segments_

+ FirmwareReaderImpl()
+ GetNextSegment()
+ SetNextSegment()
+ Finish()
+ ReceivedAllBytes()
+ CheckForMissingSegment()
- GetSegment()

rpc::StartupModeServer

+ StartupModeServer()
+ Run()
+ GetVoltages()
+ GetCurrents()
+ GetTemperatures()
+ Ping()
+ FirmwareUpdate()
+ GetErrorRegisters()

-firmware_reader_

-impl_

-server_

rpc::SendInterface

+ Send()
+ SendBuffer()

-sender_

-sender_

rpc::ReceiveInterface

+ Receive()
+ GetDecodedBuffer()
+ GetEncodedBuffer()
+ SetEncodedBuffer()

-receiver_

-receiver_

hal::FirmwareSegment_t

+ firmware_segment
+ segment_index

+ FirmwareSegment_t()

-firmware_segment_

bsp::SerialInterface

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

-serial_

FIGURE 3.25: A UML depiction of the FirmwareReader object in the Firmware Reader
library. The FirmwareReader object aggregates an implementation derived from the
same interface object. This object is concerned with how firmware chunks are read
into application code.
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which makes it easier to understand the library’s structure, and reduces the likelihood

of confusion which could lead to errors being introduced.

The firmware reader library was further built adhering to the Open-Closed principle.

The public-facing FirmwareReader object implements the same FirmwareReaderIn-

terface as the privately aggregated FirmwareReaderImpl implementation object. This

interface is closed for modification but is open for extension into the deriving objects

to provide the implementation-specific functionality of the firmware reader library.

Having a stable interface class allows this module to be reused without impacting any

existing code that depends on it. Moreover, by decoupling the interface from a specific

firmware reading implementation, the new implementations that are added will not

be forced to depend on features that are not required. Benefits of this approach have

already been seen in the development of Binar 2, 3 and 4. On Binar-1, the firmware

reader object reads firmware directly from the ground. However, on the next Binar

satellites, the firmware is being read from the onboard storage. By decoupling how

the firmware is read from the high-level FirmwareReader module, the majority of the

library could be safely reused.

Both interface extensions, FirmwareReader and FirmwareReaderImpl, demonstrate

adherence to the Dependency Inversion principle by depending heavily on abstrac-

tions. The FirmwareReader interacts with the Binar-1 specific implementation object,

FirmwareReaderImpl, through an abstraction set at compile time through the Firmwar-

eReader object’s constructor. This approach increases library portability by enabling

the FirmwareReader to control any implementation object that extends the common

interface. This capability, coupled with the library’s adherence to the Open Closed

principle, has enabled the reuse of the firmware reader library on the Binar-2, 3 and 4

satellites. The FirmwareReaderImplementation object abstracts how information enters

and exits the module by aggregating pointers to the SerialInterface, SendInterface and

ReceiveInterface objects. This modularity increases the testability of the module. By

deriving mocked objects from the interfaces the FirmwareReaderImpl depends on

and substituting them during construction of the FirmwareReaderImpl, it enables the

module to be exhaustively tested, increasing the reliability of the firmware reading

process.
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As memory on the spacecraft flight computer is scarce, the FirmwareReaderImpl

object providing the functionality for Binar-1 was set to read the firmware in segments

of length up to one kilobyte at a time using the ”GetNextSegment” method. This

maximum length is communicated with the ground to ensure the appropriate segment

size is sent. The ground station notifies the spacecraft how many segments to expect

using the requested segment size. As each segment is received by the spacecraft, the

corresponding segment index is marked off in an internal boolean array. This approach

is used so the spacecraft can ascertain if any firmware packets have been dropped

when the ground station requests to finish the firmware update sequence. Missing

segments are then requested individually by the spacecraft. This approach increases

the robustness of the firmware update process, reducing the chance of the spacecraft

attempting to boot into corrupt firmware.

3.4.3. START-UP

Depending on the launch provider used to get to orbit, a CubeSat may have require-

ments imposed on its initial operations. For example, in the case of Binar-1, the

CubeSat was being deployed from the ISS. During an ISS release, a CubeSat must

wait 30 minutes until deployments can occur and nominal operations can be assumed.

The Start-up/Bootloader application allows for start-up requirements to be satisfied

through the BSF’s Start-up module.

The StartUp module (Figure 3.26) was developed to decouple the start-up func-

tionality for the spacecraft from the Start-Up/Bootloader firmware. It achieves this

through adherence to the Single Responsibility and Dependency Inversion principles,

promoting the customisability of the Start-up functionality. This approach was decided

as missions may have varying requirements during start-up. Hence, the library is

designed to be extended to implement start-up requirements for future missions.

Rather than internally containing all the functionality required for satellite initialisa-

tion on Binar-1, adherence to the Single Responsibility principle delegates the concerns

to several objects, namely the aggregated BootTimer and BootCount implementations

for determining when to run the separation timer and a SelfCheck implementation
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binar::Startup

+ Startup()

binar::BootTimerInterface

+ StartTimer()

-boot_timer_

hal::selftest::SelfCheck
Interface

+ CheckCritical()
+ CheckNonCritical()

-self_check_

binar::BootCountInterface

+ GetBootCount()
+ IncrementBootCount()

-boot_count_

FIGURE 3.26: A UML depiction of the Start-up object from the Start-Up library. The
Start-up object is designed to be extensible, aggregating any object required during
system start-up.

(Section 3.5.3) to check the satellite’s critical systems. This approach gives the library

modularity. The benefit of this is that each responsibility can be developed, tested and

maintained independently of the other modules required by the StartUp object. As

the start-up software is the first section of code executed upon satellite deployment,

the increased testability of the module is crucial to verify that the system can boot

successfully. Furthermore, changes can be made to any responsibility encapsulating

modules without requiring a change in the StartUp object that uses them.

The aggregated modules by the StartUp object are interacted with via pointers to

their respective interfaces, demonstrating the Dependency Inversion principle. This

approach promotes code reuse, as new mission-specific implementations of the boot

count, boot timer and self-check objects can be derived from the respective interface

and substituted in the StartUp object without impacting the application code that uses

it. Moreover, this helps with integration testing, as hardware dependencies can be

broken by substituting a mocked object that extends one of the aggregated interfaces.

This allows the behaviour of the high-level StartUp module to be verified, leading to

increased reliability of the software. The logic of the start-up software is provided in

detail in Appendix A.17.
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3.5. APPLICATION MODULES

The application modules are a collection of libraries used during the main Application

Mode. This mode is the primary operational state of the spacecraft, responsible for

carrying out the mission objectives. Due to this, the software libraries used during this

mode must be designed to be reliable. This section provides an overview of the most

important application modules developed and how they contribute to the reliability of

a space mission.

3.5.1. DETUMBLE

When a satellite is released into orbit, the deployer may induce a spin on the spacecraft.

This spin can introduce operational challenges, making establishing communications

and using the payload difficult. Hence, the satellite must negate this spin or detumble

at the mission’s start. The detumble module in the BSF is used by the flight logic to slow

the processional rate of the spacecraft on orbit. The implementation for the detumble

object in the BSF is represented in UML in Figure 3.27. The Detumble object extends

the DetumbleInterface class by adding a private member, stop condition dps , which

represents the normalised scalar rotational velocity in degrees per second below which

the spacecraft precession is deemed satisfactory.

Having the implementation of detumbling provided by extending the interface

class supports decoupling the flight logic from the specific detumble method used. On

Binar-1, detumbling was performed by applying the common b-dot control algorithm

with the onboard magnetorquers. However, future Binar missions may see more

advanced algorithms or alternative attitude control devices. Future functionality can

be implemented by extending the interface into a new implementation object without

requiring modification to the application code that uses it. Technical details on using

the Detumble library on Binar-1 are provided in Appendix A.18.
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hal::Detumble

- stop_condition_dps_

+ Detumble()
+ Run()

hal::DetumbleInterface

+ Run()

FIGURE 3.27: A UML depiction of the Detumble object in the detumble library. The
Detumble object is used by the detumble task to slow the angular precession of the
CubeSat.

3.5.2. SCHEDULING SERVICE

As Binar-1 could only be commanded during short pass windows within the line of

sight of the Curtin University ground station, the scheduling service library was created

to schedule time-based tasks for execution at a later stage on orbit. Figure 3.28 provides

a high-level UML representation of the library.

The TimeSeriesTaskScheduler class was developed adhering to the Single Responsi-

bility, Open-Closed and Dependency Inversion principles. During library development,

the generic functionality of persistent storage was isolated from the task scheduler.

This functionality is instead outlined in the CrudInterface class. CRUD, an acronym

for Create, Read, Update, and Delete, provides the minimum functionality required

for storing information [135]. The library exemplifies the Open-Closed principle by

locking this interface for modification, instead requiring implementations to be pro-

vided through extending the class. The extending class passes template parameters

through to the interface to determine the datatype stored and a key for data retrieval.

This approach allows the interface to remain independent of specific datatypes and

their implementations. For the Binar-1 implementation, the TimeSeriesTaskScheduler

class inherits and implements the CrudInterface class using the TimeSeriesTaskNode
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scheduler::TimeSeriesTask
Scheduler

+ TimeSeriesTaskScheduler()
+ Create()
+ Read()
+ Update()
+ Delete()

hal::CrudInterface
< TimeSeriesTaskNode,

uint64_t >

+ Create()
+ Read()
+ Update()
+ Delete()

hal::CrudInterface
< T, K >

+ Create()
+ Read()
+ Update()
+ Delete()

< TimeSeriesTaskNode,
uint64_t >

util::StaticList< scheduler
::TimeSeriesTaskNode, 10 >

- memory_pool_

+ StaticList()
+ Insert()
+ Erase()
+ Pop()
+ Begin()
+ End()
+ PushFront()
+ PushBack()
+ Next()
- Allocate()
- FindInPool()

-time_series_tasks_

util::LinkedList< util
::MemoryPoolNode< scheduler
::TimeSeriesTaskNode, nmax

_elements > >

+ LinkedList()

-linked_list_

util::MemoryPoolNode
< scheduler::TimeSeriesTask

Node, nmax_elements >

+ MemoryPoolNode()
+ GetData()
- Next()
- Previous()

-node_

+start
+end

util::MemoryPoolNodeBase

- used_

+ MemoryPoolNodeBase()
+ GetUsed()
+ SetUsed()
+ ClearUsed()

util::MemoryPoolNode
< T, nmax_elements >

- data

+ MemoryPoolNode()
+ GetData()
- Next()
- Previous()

util::MemoryPoolNodeInterface

+ GetUsed()
+ SetUsed()
+ ClearUsed()

scheduler::TimeSeriesTaskNode

- id_
- start_time_
- end_time_
- task_

+ GetID()
+ GetStartTime()
+ GetEndTime()
+ GetTask()
+ TimeSeriesTaskNode()

-data
-next_node

-previous_node
< scheduler::TimeSeriesTask

Node, nmax_elements >

-next_node
-previous_node

util::LinkedList< T >

+ start
+ end

+ LinkedList()

< util::MemoryPoolNode
< scheduler::TimeSeriesTaskNode,

nmax_elements > >

util::LinkedList< util
::MemoryPoolNode< T, nmax

_elements > >

+ start
+ end

+ LinkedList()

< util::MemoryPoolNode
< T, nmax_elements > >

util::StaticList< T,
nmax_elements >

- memory_pool_
- node_

+ StaticList()
+ Insert()
+ Erase()
+ Pop()
+ Begin()
+ End()
+ PushFront()
+ PushBack()
+ Next()
- Allocate()
- FindInPool()

< scheduler::TimeSeriesTask
Node, 10 >

-linked_list_

scheduler::AtSpecifiedTime
Interface

+ Execute()

-at_specified_time_

FIGURE 3.28: A UML depiction of the TimeSeriesTaskScheduler object from the
Scheduling Service library. This object uses the Static List library to create a linked list
of TimeSeriesTaskNodes, sorted by task start time. It is used in application code to
store the time-based tasks executed on orbit.
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and unsigned 16-bit integer types as template parameters. The first template parameter,

TimeSeriesTaskNode, is the datatype to be handled by the interface. The second, the

unsigned 16-bit integer, is the datatype used as a key to differentiate between the objects

in the storage. The TimeSeriesTaskScheduler object aggregates two private members; a

StaticList object, time series tasks , templated with a TimeSeriesTaskNode type, and a

pointer to an implementation of an AtSpecifiedTimeInterface, at specified time. As the

structure of the static list library was discussed in Section 3.3.2, the design approach

will not be replicated here. The private aggregated StaticList object holds the tasks a

ground operator schedules for execution at the specified time. The implementation of

the CRUD methods for Binar-1 is provided in Appendix A.19.

The Single Responsibility principle is demonstrated by separating concerns about

managing and executing tasks. The library delegates the responsibility of task execu-

tion to the AtSpecifiedTime object. This approach promotes library reuse by offering

flexibility and extensibility. When a task is read from the list, it is provided to the

AtSpecifiedTime object to execute when appropriate. Calling ”Execute” on the At-

SpecifiedTime object used on Binar-1 traps the execution in a loop, waiting for the

set start time for the provided task. As the application code uses the scheduler in an

RTOS thread (Section 3.2.8), the thread is yielded until the start time is met. Once

met, the ”GetTask” method on the TimeSeriesTaskNode object is called to return the

task, which is then executed through the ”Run” method. However, this approach may

not continue to be suitable as requirements change for future missions. For example,

future requirements may prefer task execution on an independent processor or the

flight computer executing the task in an independent thread. Adopting the Single

Responsibility principle allows these implementations to be made in the future without

changing the well-tested TimeSeriesTaskScheduler module.

Adherence to the Dependency Inversion principle further increases the reusability

of the library. The TimeSeriesTaskScheduler aggregates a pointer to an implementation

of an AtSpecifiedTimeInterface object and hence interacts with the implementation via

an abstraction to its interface. When the library is reused on future missions that require

alternate methods to execute tasks, any derivations of the AtSpecifiedTimeInterface

object can be substituted into the TimeSeriesTaskScheduler and controlled polymor-



Chapter 3 STUART ROBERT GIBSON BUCHAN 157

phically. Adherence to this principle also aids in library testing. Fake AtSpecifiedTime

implementations are provided to the TimeSeriesTaskScheduler object during testing to

verify the task scheduler’s behaviour, increasing the module’s reliability.

To refrain from using dynamic memory, the possible tasks to schedule on Binar-

1 must be known during compile time. To statically allocate the memory required

for any task the ground operator wanted to schedule in any order, the TimeSeries-

TaskNode object used in the templated instantiation of the MemoryPoolNode object

stores the scheduled task in a type-safe union of all available tasks. This union in-

forms the compiler to allocate enough memory for the largest task to fit within the

TimeSeriesTaskNode object. The tasks that were available for scheduling on Binar-1

were:

• Take Picture

• Get Image Names

• Generate Thumbnail

• Compress Image

• Split Image

• Get Image

• Self-Check

• Use Star Tracker

• Move Manipulator

• Detumble

A detailed description of the usage of these tasks is provided in Appendix A.19. This

library benefits from extensibility by abstracting the tasks with a union, decoupling

code that uses them from the specific task to be run. As no part of the task scheduler

is coupled to the specific set of tasks available, the tasks can be altered and set at

compile time without changing the TimeSeriesTaskScheduler that uses them. Each task
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hal::selftest::SelfCheck

+ SelfCheck()
+ CheckCritical()
+ CheckNonCritical()

hal::selftest::SelfCheck
Interface

+ CheckCritical()
+ CheckNonCritical()

hal::selftest::SystemsCheck
Interface

+ CheckSystems()

-critical_systems_
-non_critical_systems_

FIGURE 3.29: A UML depiction of the SelfCheck object from the Self Check library. The
object aggregates pointers to objects derived from a SystemsCheckInterface, giving
access to critical and non-critical systems.

in the variant list extends and overrides a TimeSeriesTaskInterface specifying a ”Run”

method. When the AtSpecifiedTime implementation determines the task start time is

met, the ”Run” method is executed on the task without the object requiring knowledge

of what the underlying task is. The ease of reuse of this library has been observed in

developing the task set for the Binar-2, 3 and 4 satellites, where only the tasks needed

to be developed - the existing scheduling service and all the existing tests could be

brought forward to the new project.

3.5.3. SELF CHECK

In pursuing CubeSat resilience and autonomy, the Self Check library was created for

the spacecraft to perform checks of onboard systems to identify faults. The application

software using the BSF achieves this by using the SelfCheck object (Figure 3.29).

The self-check library adheres to the Single Responsibility principle by delegating

the responsibilities of system checks to individual modules. Instead of having one

object concerned with checking all systems, it collates objects responsible for checking

critical and non-critical systems. This separation of concerns supports reusability as

the critical and non-critical systems on board a spacecraft are mission specific. If, for

example, several non-critical systems are added in a future mission reusing the library,
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it will not also require a change in the critical systems module. Moreover, it aids in

understandability as systems are segregated as critical or non-critical.

The collated objects responsible for checking the critical and non-critical systems

are implemented following the Open-Closed principle by extending the SystemsCheck-

Interface object to provide systems-specific implementations. This approach allows

objects to depend on a stable interface not coupled to any particular systems on the

spacecraft, promoting the reusability of the library.

The implementations are provided to the SelfCheck object through dependency

injection, which interacts with them through an abstracted pointer to the interface

they extend. Using interface pointers to abstract the implementation of which systems

are being checked conforms to the Dependency Inversion principle. This approach

aids in the extensibility of this library as the support for new systems to check can be

developed and substituted into the public-facing SelfCheck object without requiring

a change to the library. Moreover, it assists with breaking hardware dependencies,

making the library easier to test and more reliable. The hardware implementation of

the critical and non-critical systems check objects are represented by the UML diagrams

in Figures 3.30 and 3.31.

The CheckCriticalSystems and CheckNonCriticalSystems further exemplify the

Single Responsibility principle by delegating the responsibility of performing a check to

classes responsible for their own system. The CheckCriticalSystems object aggregates

the most important systems on the satellite, all of which are essential for nominal

operations. The object also aggregates a pointer to a derived class of a system context

interface, providing implementations for rebooting the spacecraft and reading and

writing to non-volatile memory. All aggregated SystemCheckInterface derivations

provide the implementations for checking critical systems. The critical systems on

Binar-1 comprised the power, temperature, and error logging systems.

The CheckNonCriticalSystems object aggregates the systems that are not essential for

the operation of the satellite. The three aggregated SystemCheckInterface derivations

provide methods for checking the magnetorquers, GPS, and IMU systems. All the

non-critical systems on Binar-1 were peripherals, so checking was done subject to the
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hal::selftest::CheckCritical
Systems

+ CheckCriticalSystems()
+ CheckSystems()

hal::selftest::SystemsCheck
Interface

+ CheckSystems()

hal::selftest::SystemCheck
Interface

+ CheckSystem()

-error_logging_system_
-temperature_system_

-power_system_

hal::SystemContextInterface

+ Reboot()
+ ConfigureNonVolatileMemory()

-system_ctx_

FIGURE 3.30: A UML diagram of the CheckCriticalSystems object in the Self Check
library. This object aggregates pointers to critical systems derived from the System-
CheckInterface object for checking.

hal::selftest::CheckNonCritical
Systems

+ CheckNonCriticalSystems()
+ CheckSystems()

hal::selftest::SystemsCheck
Interface

+ CheckSystems()

hal::selftest::SystemCheck
Interface

+ CheckSystem()

-magnetorquers_system_
-gps_system_
-imu_system_

FIGURE 3.31: A UML diagram of the CheckNonCriticalSystems object in the Self
Check library. This object aggregates pointers to non-critical systems derived from the
SystemCheckInterface object for checking.
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peripheral availability through the ownership manager. Failing to access the peripheral

would conservatively return a fail for the system check. Technical details on performing

crtical and non-critical system checks are provided in Appendix A.20.

Both the CheckCriticalSystems and CheckNonCriticalSystems also adhere to the

Open-Closed and Dependency Inversion principles. They both extend the same in-

terface but provide alternative implementations. If the SystemsCheckInterface was

rather open for modification, the critical and non-critical systems to test would be

coupled together. This would remove granularity in system checks. In this application,

adherence to the Open-Closed principle aids in achieving the separation of concerns.

The implementation objects heavily leverage the Dependency Inversion principle, as

each system is checked through an abstraction. This approach assists with reusing

the library, as it allows for new implementations of systems to be controlled without

requiring library modification.

These systems are controlled through an abstraction to the SystemCheck interface

object. For implementing the library in the Binar-1 flight software, the Interface Segre-

gation principle was followed by further deriving this common interface into multiple

device-specific interfaces. This approach benefits from being loosely coupled. Objects

can selectively depend on relevant interfaces rather than a bloated object implemen-

tation. This approach can make the library easier to maintain and reuse. Moreover,

the library can be tested with high granularity, as mocked modules can be substituted

for any interface allowing the behaviour of the module that interacts with them to be

closely examined.

3.5.4. BEACON

As Binar-1 communicated in the amateur frequency spectrum, it was required to

periodically output non-encrypted beacons that radio amateurs could receive and

deserialise. For this purpose, the Beacon library was created. As a further benefit,

regular beacons enable tracking when the satellite is not over the Curtin University

ground station using the SatNOGS network.
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TABLE 3.3: The serialised structure of the Binar-1 beacon.

Byte Index Data Byte Index Data

[0, 1] 3.3 line voltage [24, 25] z axis magnetorquer current
[2, 3] Battery voltage [26, 27] Redundant X axis magnetorquer current
[4, 5] X axis solar panel voltage [28, 29] Redundant Y axis magnetorquer current
[6, 7] Y axis solar panel voltage [30, 31] X- axis solar panel temperature
[8, 9] 3.3 line current [32, 33] X+ axis solar panel temperature
[10, 11] Battery current [34, 35] Y- axis solar panel temperature
[12, 13] X axis solar panel output current [36, 37] Y+ axis solar panel temperature
[14, 15] X axis solar panel input current [38, 39] Battery heater 1 & 2 temperature
[16, 17] Y axis solar panel output current [40, 41] Battery heater 3 & 4 temperature
[18, 19] Y axis solar panel input current [42, 45] Latitude
[20, 21] X axis magnetorquer current [46, 49] Longitude
[22, 23] y axis magnetorquer current [50, 85] Custom message

The beacon object has one public-facing method, MakeBeacon, used by a dedicated

RTOS thread (Section 3.2.8) to beacon to the ground. A restriction imposed on the

beacon functionality by the COTS transceiver on Binar-1 limited the message to 85

bytes. The information contained in the beacon is summarised in Table 3.3.

When called, the ”MakeBeacon” method collects the voltages, currents and tem-

perature objects using the Analog object discussed in Section 3.2.1. The latitude and

longitude are collected from the GPS object, discussed in Section 3.2.6. Using the byte

boundaries specified in Table 3.3, the raw bytes from the collected readings are copied

into the beacon buffer, following the specific contiguous order. Finally, the custom

message is appended to the serialised beacon. On Binar-1, this message was ”VK6BUS

BINAR1-Contact binarspace.com”.

3.6. COMMUNICATIONS MODULES

Effective communication between a spacecraft and its ground station has an essential

role in the success of a space mission. The communications libraries detailed in this

section are designed to facilitate this, providing a reliable and efficient process for

transmitting and receiving data. By detailing the development of these modules, this

section aims to provide insight into the operation of the communications system in

Binar spacecraft, highlighting its crucial role in mission success.



Chapter 3 STUART ROBERT GIBSON BUCHAN 163

3.6.1. REMOTE PROCEDURE CALL

From a high-level perspective, a standard software application consists of a collection

of procedures or functions, which get called by higher-level software to complete its

purpose. One of the purposes of using functions in an application is that they allow

for the abstraction of implementation. Calling code understands how to interact with

a procedure regarding its parameters and returns but does not need to understand

how they are correlated. When a procedure is called in a singly threaded application,

it assumes control of the main program thread to execute the containing code. This

synchronous implementation may be satisfactory for a simple application but may

be an inefficient method of execution when the requirements of the software become

more complicated. Moreover, depending on the module’s complexity, the function may

benefit from execution on a different computer entirely. Because function implementa-

tions are abstracted from calling code, parameters can be sent to a remote machine for

execution rather than executing on the host machine. Variables can be returned to the

calling code with the same syntax as if the procedure were executed locally. Unlike local

execution, however, this frees up the CPU on a single-threaded application to execute

other instructions. This approach is called a remote procedure call. As the software

execution in an RPC network happens remotely, there is no requirement for the architec-

tures of the processors or the language used to be the same. This introduces a challenge,

however, in developing a standardised interface allowing for communications between

the execution machines. One possible method of communication could be serialising

a data structure for transmission. Sharing the same header file between the local and

the remote machines would allow the received raw byte stream to be cast back into the

initial data structure. However, implementing this method needs both computers to

use the same memory alignment and hence does not provide portability. Moreover,

this method requires the datatype being transferred to be known in advance to cor-

rectly cast back to a data structure, reducing the extensibility of the communications

library. A common approach is to use ASCII-based communications to compensate for

problems introduced by alignment. As ASCII characters can be represented using one

byte, either computer on the RPC network can unambiguously know what is being

transferred as it is received byte-by-byte. However, this method suffers from a severe
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overhead. For example, if the ground station were to request the current up-time of

the spacecraft, it may return a value such as 259,200, signifying the number of seconds

since the last reboot. Representing this number using ASCII characters would require

six bytes. However, if the number were directly serialised, it could be represented

using only four bytes as it fits within the scope of a 32-bit integer. In spacecraft commu-

nications, where the ground station pass-over time may be limited, reducing the time

required to complete communications is essential. Therefore, the optimal serialising

approach must be architecture and programming language-agnostic, enabling platform

portability and offering minimal overhead. These key areas are addressed through

Google’s Protocol buffers. Traditionally, protocol buffers require dynamic memory for

serialising and deserialising and hence did not apply to memory-constrained platforms.

However, in early 2020, Google released the Pigweed project, an open-source collection

of C++ libraries targetting memory-constrained embedded devices [136]. As part of

this collection, a port of protocol buffers was created for embedded devices. Hence, the

RPC library was created on top of the protocol buffers implementation to provide a

minimal overhead, easily extensible means of communicating with Binar-1. Moreover,

it supports backward compatibility, meaning future development for a ground station

client can control older satellite server versions.

This library demonstrates a novel approach to spacecraft communications. Con-

ventional approaches to data serialisation in satellite communications often rely on

industry standards such as CCSDS, AX.25, and ECSS protocols [137]. While these

standards provide reliability, they can be platform and language-specific, limiting

flexibility and portability. Moreover, there is a lack of standardisation between the

various serialisation techniques in the literature. This lack of standardisation can limit

the reusability of ground station software between missions, further intensifying the

challenges CubeSat teams face regarding rapid development cycles. The approach to

spacecraft communications implemented by the candidate offers many benefits over the

conventional approach to spacecraft communications. The architecture and language

agnosticism achieved through an RPC approach offers flexibility for communication

integration between satellites and ground stations. Satellite missions may involve a

variety of platforms and hardware. Ensuring platform portability enables the same
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communication protocols to be used across different satellite systems, reducing the

need to develop custom communication protocols for each mission, hence reducing

development and integration efforts. This contributes an innovative solution to the

challenge of short time frames for CubeSat missions. The ability to maintain compati-

bility with legacy systems is a valuable feature, especially in space programs that have

multiple spacecraft in orbit at once. A space program iteratively building upon its RPC

command suite from the most common telemetry requests through mission-specific

requests as their technology evolves can use the same ground software to speak to all

assets on orbit. This approach demonstrates an innovative approach to the solution of

the lack of standardisation seen in satellite communications in the CubeSat domain.

Moreover, this approach provides a solution to the challenge of limited resources on

CubeSat platforms, as an RPC/protobuf approach allows for data serialisation with

minimal overhead.

The Binar-1 flight software could communicate on three RPC networks; Application,

Safe, and Start-Up Mode. The library applies the Open-Closed principle by having

each mode extend the same interface class, ServerInterface, exhaustively containing the

methods possible for the spacecraft to execute. When inherited, the deriving classes

override each method in the abstract virtual interface and implement mode-specific

features. Table 3.4 lists the various methods available in the ServerInterface, and the

modes that use them.

In the Binar-1 implementation of the three RPC networks, the responsibility of

performing the functionality of the procedure call was delegated from the main server

module to multiple aggregated objects per the Single Responsibility principle. This

improves the reusability of the library by increasing modularity. It decreases coupling

between irrelevant procedure calls, meaning a change to the implementation of one

call will not also reflect a change in another. Moreover, being a complex library in

the framework, a clear separation of concerns makes the code easier to understand

and maintain. The alternative approach to having the RPC server objects directly

responsible for implementing all the procedure calls would result in a large, monolithic

object that could be very difficult to maintain. This would increase the likelihood of

bugs being introduced into flight software.
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TABLE 3.4: The three RPC servers available in the various operation modes on Binar-1
and the supported procedures.

RPC Method Application Mode Safe Mode Startup Mode
GetVoltages * *
GetCurrents * *
GetTemperatures * *
Ping * *
FirmwareUpdate * * *
ScheduleTask *
GetErrorRegisters * *
DeleteImages *
GetImuData * *
DownloadLog *
DownloadManipulatorLog *
DownloadImage *
DisableBeacon *
ChangeFlashBank * *
ClearErrorRegisters * *

Application mode is the nominal operation mode for the spacecraft, hence has

the full suite of methods available for execution. The ApplicationModeServer object

(Figure 3.32) aggregates eight private members during construction, responsible for

implementing procedure calls: scheduler , a TimeSeriesTaskScheduler object (Section

3.5.2), sender , a pointer to a SendInterface, receiver , a pointer to a ReceiveInterface,

temperature reader , voltage reader , and current reader , pointers to analog reader

interfaces (Section 3.2.1), router , a pointer to a router interface, and system ctx , a

pointer to a derivation of a SystemContextInterface (Section 3.2.9).

Safe mode is a feature-limited operational mode with a stripped-back set of avail-

able methods. The SafeModeServer (Figure 3.33) aggregates six private members

responsible for implementing procedure calls; voltage reader , current reader , temper-

ature reader , sender , receiver and system ctx .

The Start-Up mode RPC network (Figure 3.34) is only used during the firmware

update process. Hence, the StartUpModeServer only aggregates three private members

for implementing the procedure call: firmware reader , sender and receiver .

All three RPC servers implement the Dependency Inversion principle by interacting

with the objects responsible for the procedure calls through abstractions. This facili-
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FIGURE 3.32: A UML depiction of the RPC Application Mode server in the Binar-1
flight software.
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FIGURE 3.33: A UML depiction of the RPC Safe Mode server in the Binar-1 flight
software.
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rpc::StartupModeServer

+ StartupModeServer()
+ Run()
+ GetVoltages()
+ GetCurrents()
+ GetTemperatures()
+ Ping()
+ FirmwareUpdate()
+ ScheduleTask()
+ GetErrorRegisters()
+ DeleteImages()
+ GetImuData()

rpc::ServerInterface

+ Run()
+ GetVoltages()
+ GetCurrents()
+ GetTemperatures()
+ Ping()
+ FirmwareUpdate()
+ ScheduleTask()
+ GetErrorRegisters()
+ DeleteImages()
+ GetImuData()

rpc::SendInterface

+ Send()
+ SendBuffer()

-sender_

hal::FirmwareReaderInterface

+ GetNextSegment()
+ SetNextSegment()
+ Finish()
+ ReceivedAllBytes()
+ CheckForMissingSegment()

-firmware_reader_

rpc::ReceiveInterface

+ Receive()
+ GetDecodedBuffer()
+ GetEncodedBuffer()
+ SetEncodedBuffer()

-receiver_

FIGURE 3.34: A UML depiction of the RPC Start-Up Mode server in the Binar-1 flight
software.

tates library reuse by allowing new implementations of the modules to be developed

and substituted into the RPC server if mission requirements dictate. It also enables

testing of the RPC networks through mocked substitution. The mocked modules can

be monitored to ensure the RPC network is interacting with the procedure implementa-

tion objects as expected, verifying the behaviour of the communications library and

increasing reliability.

All three networks share the common trait of requiring data to enter and exit

their respective modules. This is achieved through extending the SendInterface and

ReceiveInterface objects, injected into the constructor for the modules to be used during

operations, aligning with the Dependency Inversion principle. Decoupling the RPC

networks from how data is received and sent is extremely useful for reusability and

testing. It means that the RPC library can be reused with a different communications

method, allowing the communications hardware to be changed. The benefit of this has

been observed moving from Binar-1, which used a COTS communications solution,

to Binar-2, 3 and 4, which use a custom-developed transceiver. It also allows the
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rpc::SenderReceiver

- receieve_proto
- decoded_buffer
- id_

+ SenderReceiver()
+ Send()
+ SendBuffer()
+ Receive()
+ GetDecodedBuffer()
+ GetEncodedBuffer()
+ SetEncodedBuffer()

rpc::ReceiveInterface

+ Receive()
+ GetDecodedBuffer()
+ GetEncodedBuffer()
+ SetEncodedBuffer()

rpc::SendInterface

+ Send()
+ SendBuffer()

bsp::SerialInterface

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

-serial_

FIGURE 3.35: A UML depiction of the SenderReceiver object in the Binar-1 flight
software.

communications network to be tested entirely on the host machine by providing faked

implementations for sending and receiving. In the hardware implementation for Binar-

1, the SendInterface and ReceiveInterface objects were extended into a SenderReceiver

object, shown in Figure 3.35.

The sender and receiver members point to the same object in memory as it is

derived from both SenderInterface and ReceiverInterface. However, as the members

are pointers to their respective interface classes, they only have access to relevant

methods; receiver can only receive, and sender can only send. This implementation

made it easy to tag messages with a transaction ID without having to duplicate code

whilst maintaining encapsulation.

The ”Run” method on the RPC server first dereferences the receiver member and

calls the ”Receive” method. This method calls the ”GetDecodedBuffer” method to

decode a received buffer. The decoded buffer is then passed to the protobuf library to

deserialise. The Pigweed protobuf library decoder returns the type of request contained

within the serialised byte stream but does not provide means of extracting the data.

Hence, each request type has a custom corresponding decoder handler object to extract

the information contained within the request to use in the RPC method.
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After decoding the message, the intended address is checked against the unique

flight computer ID. Suppose the message is intended for a different computer. In that

case, the encoded message is retrieved using the ”GetEncodedBuffer” method on the

receiver object. It is forwarded to the secondary flight computer using the ”Forward”

method on the privately aggregated router object (Figure 3.36) for a further check.

This process repeats to the secondary bus until the intended recipient is found.

The Router object aggregates two private members: supervisor computer and

primary computer . These members are template instantiations of the Serial class. The

benefits achieved from the design decisions of the Serial library were discussed in

Section 3.2.1, and so will not be replicated here. Using templates in this application

benefits from compile time polymorphism, supporting library reuse. Further template

concretions can be added to the serial library to support routing data to other endpoints

and can be used with the Router library. Following the Single Responsibility principle

and having the router object separate from the main RPC network allows other libraries

that require data routing to reuse the module without needing to depend on the entire

RPC library. Technical details of the implementation of the RPC library on Binar-1 are

provided in Appendix A.21.

3.6.2. CONSISTENT OVERHEAD BYTE STUFFING

Data transmission in a non-master/slave configuration introduces issues regarding

receiving full packets. This impacts the spacecraft’s communications between the

primary and secondary flight computers and the ground station. When variable-length

packets are required, the receiving device must know when to start listening to a packet

and when to stop. A commonly used method for solving this issue is reserving bytes to

denote a transmission frame’s start and end. This method, however, requires data to be

scaled to not naturally include these reserved bytes so they can be used for delimiting.

Consistent Overhead Byte Stuffing (COBS) is a packet framing algorithm for encod-

ing serialised data with minimal overhead [138]. It is a computationally inexpensive

means of converting bytes from [0, 255] to [1, 225]. The encoding (Figure 3.37) is imple-

mented by pushing an offset to the front of the serialised array indicating the position
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rpc::Router

+ Router()
+ Forward()

rpc::RouterInterface

+ Forward()

bsp::Serial< bsp::Serial
Channel_t::SUPERVISOR

_COMM >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

-serial_

bsp::SerialInterface

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

bsp::Serial< channel >

+ SynchronousWrite()
+ AsynchronousWrite()
+ SynchronousRead()
+ AsynchronousRead()

bsp::Serial< bsp::Serial
Channel_t::PRIMARY_COMM >

< bsp::SerialChannel
_t::SUPERVISOR_COMM >

< bsp::SerialChannel
_t::PRIMARY_COMM >

-primary_computer_

FIGURE 3.36: A UML depiction of the RPC router in the Binar-1 flight software.
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TABLE 3.5: An example array of bytes encoded using the COBS algorithm. The
differences with the source array are highlighted in red. The algorithm adds one byte
of overhead at the start of the byte array and a delimiter at the end.

Raw Byte Array Encoded Byte Array

29 00 12 19 00 95 02 29 03 12 19 02 95 00

of the first occurrence of a zero byte. This zero byte is then replaced by the offset to

the next occurrence of a zero byte. This process is repeated until the last zero byte

occurrence. The final zero byte is replaced by the offset to the end of the serialised array.

If no zero bytes exist in a serialised message, one more than the size of the serialised

buffer is pushed to the start of the array to denote the location of the delimiter. A zero

byte can then be pushed to the end of the array, acting as a delimiter between messages.

The algorithm adds one byte of overhead per 254 bytes. An example conversion can be

seen in Table 3.5.

Using a COBS communication approach provides an efficient means of transferring

serialised data reliably. The simplicity refrains from complex methods of data framing,

which could introduce errors. Moreover, the simple encoding/decoding algorithm is

optimal for use on an embedded system with limited memory.

3.7. OPERATION MODES

A series of operation modes had to be defined for the spacecraft to operate effectively

on orbit. For Binar-1, these operation modes comprised the Start-Up/Bootloader, Safe

Mode, and Application Mode. A high-level diagram describing the transitions between

these modes can be seen in Figure 3.38. Red lines indicate automated transitions, and

green lines indicate manual telecommand transitions. The roles of each mode will

be examined, and how they were implemented on the Binar-1 spacecraft using the

libraries discussed in the previous sections.
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Call Encode

Initialise last zero index tracker 
to the start of the input array

End of input buffer?

Grab element

 False 

Return encoded array

 True 

Element is 0?

Insert offset to element at the 
location of the last zero index

 True 

Has been 255 elements 
since the last 0 byte?

 False 

Update last zero index 
to current offset

Iterate to next 
element of input

Insert 255 byte

 True 

Insert byte into 
output stream

 False 

Reset tracker

FIGURE 3.37: The high-level logic for performing a COBS encode.
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Switches

Close

Off

TC

Start Up 

Fail

 Start Up

 Success

Start Up/Bootloader

TC

TC

Application Mode

Regular
comms

Payload
operational

Safe Mode

Low Power

Basic Survival
Comms

FIGURE 3.38: The operation modes on Binar-1 and how they are related. Red lines
indicate automatic transitions, and green lines manual telecommand transitions.
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FIGURE 3.39: A high-level overview of the logic flow for the Start-Up/Bootloader
operation mode. This mode is entered during Binar-1 boot. It is concerned with
executing any required start-up software, handling firmware updates, and booting to
the application flash or Safe Mode.
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3.7.1. START UP/BOOTLOADER

The start-up/bootloader software is the first operation mode the spacecraft enters

when booting. Figure 3.39 provides a high-level overview of the operation mode.

After initialising the hardware, the bootloader reads from the firmware update register

(Section 3.2.9) to discern if the entry was due to a firmware update request. If a begin

firmware update request is received, the application logic will write this register with

the number of firmware segments to be received. The spacecraft will also read the

target flash bank register to determine the flash bank targeted for boot by the ground

station.

Control passes to the Firmware Update function if the firmware update register

contains a non-zero value. This function reads the failed firmware update register to

check if the currently serviced firmware update request had previously failed, causing

a reboot. If this register is set, the firmware update register is cleared before passing

control to the SafeMode object (Section 3.7.2). If the failed firmware update register

is reset, the target bank to flash to is read from non-volatile memory to progress into

programming firmware. The failed firmware update register is set, and control passes

to the ”ProgramFirmware” method of the bootloader object (Section 3.4.1). Failed

attempts to program firmware will cause a system reboot. After programming is

complete, the firmware update register and the failed firmware update register are

cleared. Control is passed to the ”Boot” method on the Bootloader object to jump to

Application Mode.

If the firmware update register was empty from the initial check, control passes to

the StartUp object (Section 3.4.3) to perform the boot count, boot timer and self-check.

If the start-up process fails, control is passed to the SafeMode object to await input from

the ground. If the start-up succeeds, however, control is passed to the ”Boot” method

of the Bootloader object to jump to the application code.
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3.7.2. SAFE MODE

When the Start-Up/Bootloader firmware logic discerns that it is unsafe for the space-

craft to boot into Application Mode, it will transition into safe mode instead of booting

to application code. Safe mode is a common state in space missions that aims to prevent

damage to the satellite. It disables non-essential subsystems on the spacecraft and

conserves power until regular operations can be resumed. The functionality of the safe

mode state is provided in the BSF through the safe mode library. Figure 3.40 describes

a high-level overview of the Safe Mode logic.

Upon entering Safe Mode, the SafeMode object constructs the Safe Mode RPC server,

which has a stripped-back set of commands available from the ground station. The

beacon object (Section 3.5.4) is initialised with a message indicating the spacecraft is

operating in Safe Mode. Identifying this in advance enables operations to be planned

for when communications are established above Curtin University. In this situation,

operators can provide commands to discern the reason for entering Safe Mode and

instruct an exit if safe to do so. For this reason, the beacon cannot be disabled when the

CubeSat is operating in Safe Mode.

After entering safe mode, an asynchronous receive from the transceiver is initiated,

and execution enters an infinite loop waiting for instruction from the ground. When a

packet is received, it is passed to the safe-mode RPC server for processing. In between

receipt of packets from the ground station, the logic checks to see if a beacon packet

should be transmitted.

3.7.3. APPLICATION MODE

The Application Mode (Figure 3.41) is the main section of the spacecraft operation.

It comprises three RTOS threads (Section 3.2.8); the beacon thread for transmitting

periodic beacons, the communications thread for communicating with the ground

station, and the application thread for executing scheduled tasks. After booting into

the application space, the application first initialises the hardware. The initialisation

stage involves configuring the redundant power lines (detailed in Appendix A.11) and
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Call Safe Mode

Initialise safe
mode RPC server

Register receive 
complete interrupt

Asynchronous read 
from transceiver

Message received?

Reset interrupt

 True 

15 seconds since last
beacon transmission?

 False Run RPC server

Asynchronous read 
from transceiver

MakeBeacon

 True 

Refresh watchdog

 False  Transmit beacon

Send alive message 
to secondary flight 

computer

  Actions a received request
  and returns the response to

  the ground

  Method on Beacon object

  Prevents the
  secondary computer
  from taking control

FIGURE 3.40: A high-level overview of the logic for the SafeMode functor in the Safe
Mode library. Control is passed to this mode when an error occurs on the spacecraft.
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the redundant motherboard. If the boot process fails and the command to disable the

redundant motherboard is not executed, the redundant motherboard will be permitted

to boot and take control of the spacecraft. After system configuration, the ownership

manager is initialised with the onboard peripherals, namely the GPS, IMU, magne-

torquers, and external memory. As mentioned in Section 3.2.2, when peripherals are

used during Application Mode, the ownership manager takes out a mutex stored in

non-volatile memory. When the bootloader initialises the peripherals, it will first check

the mutex section of the non-volatile memory to determine if a reboot was caused

when using a certain peripheral. Suppose any mutexes are seen to be still claimed. In

that case, the ownership manager will polymorphically construct faked objects instead

of the potential faulty peripherals using an object derived from the same interface

class. This approach allows the application code to progress as normal and, through

polymorphism, gives the developer control over what the faked object should do. In

the case of Binar-1, these faulty peripherals would return a failure response to notify

the ground and log in the error registers of a faulty peripheral. After initialisation, the

application clears the corrupt flash flag in the non-volatile error registers (Section 3.2.9)

set prior to the boot instruction during the start-up/bootloader software. The RTOS is

initialised, and the three threads are created. A detumble task is scheduled before the

kernel is started.

During the thread creation process, the communications thread is given a high

priority, and both the beacon and application are given the same normal priority. This

higher priority means the communications thread is the first thread to be moved into

the running state after starting the kernel. The communications thread initialises the

Application Mode RPC server (Section 3.6.1) and registers a callback transaction receive

complete interrupt with an event flag. An asynchronous receive is started using the

direct memory access (DMA) peripheral, and the thread is then instructed to move to

the blocked state whilst waiting for the event flag to be set in the callback interrupt.

The thread will yield into the blocked state, and another thread can run. When the

DMA receive completes, and the registered interrupt sets the event flag, the thread will

be moved from blocked to ready. As it has the highest priority, the scheduler will shift

it into running as soon as another thread yields.
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FIGURE 3.41: A high-level overview of the logic flow for the Application operation
mode. This mode employs RTOS threads to handle communications with the ground,
execute time-series tasks, and emit periodic beacons.
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When the communications thread is blocked during the waiting process, either the

beacon or RPC thread will run with equal priority. The beacon thread begins with a

wait instruction for fifteen seconds. This is to limit the period in which beacons are

transmitted. During these fifteen seconds, the thread is moved to the blocked state.

When the timer elapses, the scheduler moves it into the ready state. When running, the

first instruction is for the thread to write to the system logs using the SystemLogger

library (Section 3.2.10). Following this, a check is performed to see if a disable beacon

request has been sent from the ground station. If the beacons are not muted, a beacon

is assembled using the ”MakeBeacon” method on the Beacon object from the beacon

library (Section 3.5.4). This beacon is then transmitted to the ground. As the BCM

contains a primary and supervisory computer, the beacon thread is also responsible

for communicating with the supervisory flight computer. A message is sent to the

supervisory computer at the end of the beacon thread. If the supervisory computer

does not receive this message for one hour, it deduces that a problem exists with the

primary flight computer and assumes control of the spacecraft. Finally, the thread

refreshes the system watchdog before looping to the wait at the top of the thread,

yielding for another fifteen seconds.

The application thread starts with a one-millisecond wait instruction. This instruc-

tion yields the thread, checking to see if the communications thread or the beacon

thread is in the ready state. If not, the application thread continues by calling the

”Read” method on the TimeSeriesTaskScheduler object to get the task at the head of the

list. Re-entrant yielding is supported within tasks to efficiently use clock cycles if a task

needs to wait for information. After executing a task, the thread refreshes the system

watchdog timer and loops to the wait at the top of the thread, yielding for another

millisecond.

3.8. DISCUSSION AND CONCLUSIONS

Binar-1 was deployed from the International Space Station at 17:20 AWST on the 6th of

October, 2021. The first opportunity for communications with the ground station at

Curtin University was at 23:00 AWST. However, communications and beacons were
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not established from the CubeSat during this pass. After conducting a failure analysis,

the COTS transceiver on Binar-1 was instructed to transmit its beacon separately to

the BCM. This request was successful, and secondary beacons were received from the

spacecraft. The ability to communicate with only the COTS transceiver rather than the

BCM has led the team to believe that a hardware fault occurred on the adaptor board

required to convert the UART communication from the flight computer into I2C for

the transceiver. This idea is compounded by the fact that the flight logic configures

the transceiver to communicate at a bit rate that differs from the transceiver default

during boot. However, power cycling was observed from Binar-1 whilst on orbit, and

when it occurred, the transceiver would revert to the default communications bit rate.

For the transceiver to receive power, it can be discerned that the start-up/bootloader

application executed and placed the spacecraft into Safe Mode or Application Mode.

Moreover, as the transceiver power enable line and the antenna deployment burn

wires operated through a GPO, the HAL for the GPO peripheral is known to have

functioned correctly. However, due to the partial success of the mission, other areas

of the BSF could not be verified on orbit. Nevertheless, benefits have been observed

regarding the code base reusability as the BSP progresses with the development of the

Binar-2, 3 and 4 CubeSats, requiring significantly less development time than Binar-1.

This chapter provided an overview of a collection of libraries, the development

of which comprised significant effort over the course of the PhD project. Context is

provided through operation modes, showing where the custom-written libraries have

been used in the software that enabled Binar-1. The extensive effort put into the HAL

libraries decouples the application code from the hardware peripherals. Aside from

assisting in the testability of the code base, this effort means that hardware can be

changed without affecting application code, assisting in reusability. This benefit has

been observed through required hardware changes for the Binar-2, 3 and 4 satellites,

such as changing the microcontroller core the flight logic executes on and supporting a

change of hardware for the GPS, IMU, magnetometer, and onboard storage peripherals.

Controlling the peripherals available onboard was discussed using the Ownership

library, providing safe peripheral access during threading to prevent race condition

issues.
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The utility modules provided reusable tools for other libraries in the BSF. The

ubiquitous Result and Visit library provides a way for functions and methods to return

varying custom types, statically allocating the required memory and enforcing all

possible returns to be handled at compile time. The Static List library provides a

templated static implementation of a linked list customisable with length and datatype

at compile time.

The boot application modules provided the libraries used by the Start-Up/Bootloader

operational mode. The Start-Up library provides an easily extensible interface to imple-

ment the functionality required on spacecraft boot. On Binar-1, this was used for the

boot timer, boot counter and initial critical system self-check. The bootloader library

controls the application bank the bootloader boots into and facilitates firmware updat-

ing using the firmware reader library. Where a boot is deemed unsafe, the Safe Mode

library provides a safe execution space for the CubeSat until ground intervention is

possible.

The application module libraries are used for firmware in the application code

space. When initially deployed into orbit, the detumble library is used to slow the

angular precession of the CubeSat. The Scheduling Service library, using the Static

List utility library, provides a linked-list style approach to schedule time-specific tasks

without dynamic memory. Binar-1 used the Self Check library to identify any faults

that may exist onboard the spacecraft, checked during the boot process, and through

task scheduling. Alongside Safe Mode, the application firmware beacon thread used

the Beacon library to assemble unencrypted messages for transmission to the ground.

Communications with the ground were made possible using the communication

module libraries. Extensive effort was made toward developing an extensible, platform-

agnostic communications protocol by building an RPC framework on top of Pigweed

protocol buffers. The serialised messages were transacted with minimal overhead using

COBS encoding, adding a single overhead byte per every 254 bytes.

This chapter showcased an innovative approach to CubeSat software engineering

to address the unique challenges associated with CubeSat missions. The benefits of

enhanced mission reliability are showcased from the first application of the SOLID
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principles of object-oriented programming to CubeSat software development. By

comparing library development with and without adherence to the principles, the

contributions to CubeSat software development are clear. Specifically demonstrated

through the development of the BSF HAL, adherence to the SOLID principles provides

an innovative solution to address the dual challenge of ensuring software safety while

meeting the tight development schedules common to CubeSat missions. As a solution to

the challenge of operations in a harsh environment, the Ownership library demonstrates

fault tolerance and graceful degradation by leveraging polymorphism in a manner

that allows for the seamless switching between real and fake peripherals to ensure the

satellite’s continued operation in the presence of hardware failure. The Result and Visit

library represents a unique solution to error handling in space missions by leveraging

a relatively recent addition to the C++ standard library to enforce compile-time error

handling with library interaction, eliminating the possibility of run-time errors related

to error handling. Ensuring mission reliability for CubeSats hinges on efficiently using

their limited resources. One innovative solution discussed to tackle this challenge is

using a statically allocated linked list for task scheduling. A novel approach to satellite

communications using a Protobuf-based RPC service was discussed. The innovative

solution proposed provides some advantages over a conventional approach to satellite

communications, including portability, standardisation, backward compatibility, and

efficient resource usage. The approach was demonstrated to contribute a solution to the

challenge of rapid development cycles inherent in CubeSat missions by enabling the

same communication protocols to be used across different satellite systems, reducing

the need to develop custom communication protocols for each mission. This approach

contributes to CubeSat communication standardisation by allowing the same ground

station software to control multiple generations of satellites by iteratively building on

the RPC command suite and leveraging backward compatibility. Building the RPC

library on top of protobuf enables efficient data serialisation with minimal overhead,

showing promise for application on resource-constrained computers enabling small

spacecraft. While certain individual components of this chapter may not have exhibited

significant novelty in isolation, it is the cumulative effort invested in the creation of the

fault-tolerant software framework that collectively represents a novel and impactful

approach towards enhancing the reliability of CubeSat platforms.
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The BSF was written by the candidate to facilitate rapid mission-concept-to-orbit

and maximise code reliability. The developed framework provides an alternative to

using existing software solutions or proprietary SDKs for the BSP. The development

approach means that the framework can be easily adapted to support changing mission

requirements without compromising its reliability or introducing bugs, the benefits of

which have been seen during the development of the Binar-2, 3 and 4 satellites. The BSF

can be used in subsequent missions without incurring ongoing licensing costs, and its

modular design allows for easy updates and improvements. Moreover, the availability

of documentation and source code means that new developers can easily learn how to

develop software for space systems using the BSF, which promotes knowledge transfer

and skills development within the BSP. Overall, the BSF exemplifies the advantages

of developing software in-house while adhering to industry best practices in software

design.
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ABSTRACT

The electrical power system on-board a spacecraft has a crucial role in the success of a

mission. Central to this however, the health of the lithium-ion cells frequently used

in CubeSat applications degrades when exposed to sub-zero temperatures. With the

external faces of a spacecraft in the Low Earth Orbit environment expected to reach

-40˝C, the necessity of battery heating in the success of a mission is clear when using this

battery technology. It therefore became a key element in the design choices for Binar-1,

Western Australia’s first locally made satellite. The decision was made for Binar-1 that

this functionality be delegated from the flight computer to analog circuitry. This is

not without risk as the battery heating circuitry composes one of the largest loads on

the electrical power system, increasing the possibility of a low-power state occurring

on the spacecraft. Thermal simulation can offer insight into battery heater usage,

but is a computationally expensive process reserved for high-end desktop computers.

This highlights a gap for computationally inexpensive models able to run on-board a

spacecraft, predicting in advance when these low power states are to occur. Coupled

with software capable of suggesting alterations to a mission operations plan, CubeSats

can demonstrate a proof-of-concept approach for safe operations in a communications

limited environment when encountered with an emergency state that cannot wait for

input from a ground operator. Using data collected from a thermal vacuum experiment

in the National Space Test Facility at the Australian National University, the response of

the electrical power system and battery heaters in Binar-1 was characterised from being

subject to the conditions of Low Earth Orbit. This information is used in the creation

of two predictive models of when the battery heaters are to be enabled, influenced

by the thermal state inside and external to the spacecraft. From a simulated orbital

analysis and a further vacuum chamber test, a model is selected to be used on the next

Binar spacecraft to allow the satellite to optimally postpone tasks when the usage of

the battery heaters are to be prioritised.
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4.1. INTRODUCTION

Operating from the Space Science and Technology Centre at Curtin University, the Binar

Space Program is enabling a new Western Australian space capability. The primary

output from the program, the BCM, is a highly integrated custom CubeSat motherboard

that comprises a primary and redundant flight computer, a Global Positioning System

(GPS), ADCS, on-board storage and EPS. The BCM gained flight heritage for the first

time onboard Binar-1 in 2021, and is now being integrated into the next missions from

the program.

FIGURE 4.1: The top side of the Binar CubeSat Motherboard, detailing the EPS. The
four batteries that power the EPS are wrapped by flexible printed circuit board (PCB)
battery heaters, triggered by analog circuitry to enable when the battery temperature
drops below 5˝C.

As the maiden flight of the custom BCM was on Binar-1, the mission was intended

to be a technology demonstrator to show the suitability of the Binar Space Program’s

hardware in a Low Earth Orbit (LEO) environment. Downey et al. [139] provides an

overview of the Binar-1 mission and its objectives. The EPS powering the BCM com-

prises four lithium-ion batteries, seen in Figure 4.1. Each of the batteries has a dedicated

flexible PCB heater wrapped over the external casing for thermal maintenance. This

is a requirement as the number of discharge cycles and capacity of lithium-ion cells,

frequently used in CubeSat applications, have been shown to be dramatically reduced
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FIGURE 4.2: A high level block diagram of the EPS on Binar-1. Highlighted in blue
is the electrical connections between the parallel heating circuits, represented by the
dashed boxes around the power sources. Each circuit has an independent analog
battery heater integrated circuit for operation. The temperature feedback into the
flight computer from the solar cells and the battery heating circuitry is shown in red.

from exposure to conditions below 0˝C [140][141]. Rather than activating the thermal

maintenance circuitry at 0˝C, a safety factor was added on the BCM for the two groups

of two heaters to be enabled when the temperature in the battery compartment drops

below 5˝C. The resistor-programmable temperature switches are set to disable when

the temperature set point reaches 10˝C to conserve energy. Figure 4.2 provides a high

level block diagram of the EPS on the BCM installed in Binar-1. The battery heating

system is separated from the flight logic, being instead implemented through analog

circuitry. This was done to ensure the heaters can be enabled as soon as required. As the

circuitry warms the batteries through power dissipation, the battery heating circuitry

composes one of the largest loads on the EPS. This poses a risk as without control over

this load the spacecraft could potentially encounter an electrical low-power state if the

heaters are enabled during a period of high current draw on-orbit. This highlights the

necessity for on-board autonomy for the spacecraft to predict in advance when these

low power states are to occur, without relying on input from an operator.
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4.2. ON-BOARD AUTONOMY

On-board autonomy for spacecraft has aided in the success of numerous historical

space missions [142]. It has been successfully demonstrated to be an invaluable resource

in a communications denied or limited environment. Straub et al. summarise that in

these situations, missions may need to hand control over to autonomous software to

handle an emergency response that cannot wait for input from ground operators [143].

The Curiosity Mars rover relied extensively on autonomy during the EDL due to a

communications link delay that extended beyond the predicted entry time [144]. Even

with a consistent bent pipe link with Earth during EDL, the subsequent Perseverance

rover likewise had to rely on autonomy due to the extensive link delay [145]. Both

spacecraft autonomously responding to inputs from on-board sensors allowed the

rovers to land safely in a situation where ground operators could not provide the

real-time input that was needed.

Even without the extensive time delay induced by deep space missions, the im-

portance of autonomy is paramount in a mission in the case where communications

are lost. During the landing phase of the Beresheet Lunar mission, a hardware fault

requiring a component reset occurred. However, a loss of communications with the

ground station prevented reset requests from reaching the spacecraft. By the time

communications were restored, the altitude of the lander was too low to slow the

descent, and the spacecraft was lost [146][147].

On-board autonomy has also been shown historically to successfully suggest changes

to an operations plan. The first Mars rover, Sojourner, relied on this capability as com-

munication could only be made with ground operators twice per Sol. Using on-board

autonomy, the spacecraft could infer which commands from the previously sent op-

erations plan could safely be executed when encountering terrain difficult to traverse

[148]. Extending on the responsibilities for autonomy on spacecraft, the Deep Space

One mission became the first spacecraft to fly an on-board mission planner. The suc-

cessful mission was able to demonstrate that if the pre-set operations plan is not able to

be executed, the spacecraft could respond by autonomously suggesting an alternate
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solution in an agile manner [60].

Although historical missions have demonstrated that autonomous capabilities on

spacecraft can provide a higher level of return than those requiring a ground-based

link [142], its extensive use has been met with some scepticism. A 2013 survey of the

planetary science community found that there is apprehension toward the acceptance

of autonomous control of spacecraft [143]. This is understandable, yet necessary in

the context of expensive planetary missions. This highlights a possible application for

CubeSats. CubeSats have demonstrated operation in environments extending beyond

LEO, whilst maintaining a fast development cycle and low cost [149]. Prior to more

widespread adoption on future interplanetary missions however, Feruglio et al. stress

that CubeSat mission autonomy needs to be improved [150]. Often described as a ’test

bed’ for larger missions, the CubeSat form factor can also be leveraged to trial mission

autonomy techniques with a significant reduction in risk over larger missions. As the

computers powering small spacecraft become smaller, cheaper and more powerful,

applications requiring significant processing power are becoming possible in a small

spacecraft form factor [143].

To this aim, the author used data obtained from a space environment experiment to

develop a model to be used for on-orbit power management predictions. Featuring as

a software payload on the upcoming Binar 2, 3 and 4 missions, the inference from the

model will allow the spacecraft to autonomously suggest changes to the operations

plan if the possibility of a low power state is deemed to occur. This paper details the

creation of the model, and the results of preliminary testing.

4.3. TESTING PROCEDURE

The Binar-1 engineering model was placed in the centre of the Wombat XL thermal

vacuum chamber at the National Space Test Facility (NSTF) located at the Mount

Stromlo campus of the Australian National University. The Wombat XL is a 5.76 cubic

meter thermal vacuum chamber used for the testing of space-based instruments and

small satellites. It features a liquid nitrogen fed platen and shroud system for thermal
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FIGURE 4.3: The Binar-1 engineering model placed in the Wombat XL vacuum cham-
ber with thermal probes attached.

cycling from -170˝C to +150˝C at a rate of 3˝C per minute. The support stand for the

satellite was made of 3D printed Ultem to limit thermal conduction as much as possible

from the platen shown in Figure 4.3. Seven chamber supplied thermal sensors were

placed on the exposed faces; one on each of the solar panels in the bottom right corner

(next to the surface mounted thermal sensors on the panels), and three on the top face

of the satellite (shown circled in Figure 4.4). These sensors were logging with a one

second period, coinciding with the internal logging frequency of the sensors inside

Binar-1. Internal to the satellite, battery and regulated voltage and current, X and Y

axes solar panel voltage and current, individual solar panel temperature, and battery

compartment temperature were recorded.

One of the primary objectives for testing Binar-1 at the NSTF was to understand and

characterise the functionality of the analog battery heating circuitry in LEO conditions.

From calculations done prior to the experiment, Binar-1 was expected to undergo a

worst-case temperature swing between -40˝C and +65˝C on the external faces during

an orbit. Initially it was decided to adopt a schedule for the Wombat XL to dwell at

-40˝C and +90˝C in the attempt to have the surface of the solar panels reach -30˝C and

+80˝C respectively to stress test the satellite. The inner chamber temperature set points

were set to be -50˝C and +100˝C with a thermal gradient of 3˝C/min, before stepping

to the desired dwell temperature as the platen and shroud approached the set points, as
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FIGURE 4.4: A render of Binar-1 showing the location of the thermal sensors during
the experiment. Three sensors were placed on the bottom face of the satellite facing
the platen (shown on the top of the satellite in this figure), and one was placed in the
corners of all four sides of the solar panels next to the surface mounted panel thermal
sensors (only two shown in this figure).

seen in Figure 4.5(a). Figure 4.5(b) shows the experimentally recorded average platen

and shroud temperature during the experiment.

The chamber pressure was brought to 6E-7 Torr after an initial overnight pump-

down. During the first cold swing, the platen and shroud temperatures were varied,

using the feedback from the thermal sensors on the spacecraft to achieve the desired

temperature of -30˝C on the surface of the panels. Following the first cold dwell,

reaching the desired +80˝C set point on the surface of the cells took longer than

anticipated. This caused the batteries in the spacecraft to reach the temperature limit.

To maintain optimal battery health, the maximum internal temperature was intended

not to exceed +65˝C. However, the maximum recorded temperature of the batteries

reached +70˝C during the first hot swing, exceeding this range. After completing the

first thermal cycle, it was decided to amend the temperature profile to change over

-55˝C to +65˝C, with the intention of having the surface of the cells reach -45˝C to

+55˝C respectively. The battery heating circuitry could then be stress tested further by

allowing a colder external temperature to be reached, whilst protecting the integrity of

the battery health on the hot swings. The remainder of the testing schedule continued

with these updated values, as seen from the profile in Figure 4.5.
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(A) The proposed temperature profile for the experiment, comprising six thermal cycles
segmented into three days. The platen and shroud temperatures were varied to achieve
a thermal gradient of 3˝C/min, before stepping to the desired dwell temperature as the
platen and shroud approached the set points. The proposed temperature profile remains
at each set point for 30 minutes.

(B) The experimentally recorded average platen and shroud temperature during the
experiment.

FIGURE 4.5: The proposed temperature profile for the experiment and the experimen-
tally recorded average platen and shroud temperatures. Initially the set points for the
vacuum chamber were to change over -40˝C to +90˝C, attempting to get the surface
of the panels to -30˝C and +80˝C respectively. On the first hot swing however, the
batteries reached +70˝C, far exceeding the safe battery temperature of +65˝C. Due to
this, the thermal profile was amended to change over -55˝C to +65˝C, allowing for
stress testing the battery heating circuitry whilst maintaining safe battery temperatures.
Between test days, the chamber was brought to an ambient temperature.
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4.4. RESULTS

4.4.1. BATTERY HEATING SYSTEM

The recorded temperature of the batteries internal to the spacecraft is plotted against the

solar panel surface temperature in Figure 4.6(a), showing that the battery temperature

did not drop below 6˝C during the six thermal cycles performed in the chamber. This

demonstrates that the analog battery heating circuitry functioned successfully. Figure

4.6(b) shows a magnified view of the first two cold swings, showing the response of the

spacecraft internal battery temperature to the temperature at the surface of the solar

cells over a roughly ten hour period. The spacecraft internal battery temperature lags

the solar panel surface temperature, dropping until it reaches 6˝C. At this point the

battery heaters activate, warming the batteries until they disable at 12˝C. The enable

and disable temperature differing slightly from the desired set points can be attributed

to inaccuracies in the resistors used in the analog logic, the temperature sensors, and

the analog to digital converter on-board the flight computer. As the inaccuracy has

caused the usage of the heaters to shift in a more conservative direction however, this

is deemed acceptable. As the chamber is dwelling at -50˝C, the spacecraft eventually

cools down enough to re-enable the battery heaters. The heating process again disables

at the cut-off temperature, coinciding with the chamber temperature increasing to the

hot dwell. After the temperature lag ceases, it is observed that the temperature begins

to increase again just after the 20 hour mark. The operation of the battery heaters

is shown (Figure 4.6(a)) to consistently repeat during the remaining thermal cycles

in the vacuum chamber. This invokes high confidence in the heaters to operate as

expected in a LEO environment, keeping the batteries in the optimal temperature range

and extending the on-orbit lifetime. As the heaters maintain the battery temperature

through power dissipation, their frequent usage, though required, poses a significant

load on the EPS.
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(A) The temperature of the batteries on Binar-1 plotted against the temper-
ature of the solar panel surface over the experiment duration.

(B) Magnified view of the temperature profile during the first two cold
swings, detailing the temperature maintenance of the batteries from the
operation of the heaters.

FIGURE 4.6: The temperatures of the batteries on-board Binar-1 during the experiment
plotted against the temperature of the solar panel surface. The battery heating circuitry
prevents the temperature of the batteries from dropping below 6˝C. The heaters are
enabled twice in the first cold swing as the chamber was held at the cold set point for
a longer duration than the second swing.
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4.4.2. ELECTRICAL POWER SYSTEM

The electrical power system on Binar-1 consisted of four 18650 lithium-ion batteries in

a two series and two parallel (2S2P) configuration providing approximately 50 Wh of

power with a nominal voltage of 7.4 V. Fully charged, the batteries supply 8.3 V to the

motherboard. During the initial overnight pump-down in the Wombat XL, the battery

voltage was brought to full charge via a power harness to start the experiment. Binar-1

remained connected to the power harness until the third day of testing.

Figure 4.7 depicts the battery voltage sharply decreasing each time the battery

heaters are enabled. The connected power harness brought the batteries back to full

charge for the first two days.

FIGURE 4.7: The change in spacecraft battery voltage during the experimentation
in the Wombat XL. Initially plugged into the power harness, the batteries charged
completely. During sections of high power usage, the voltage profile is seen to drop
before charging again. Roughly 50 hours into the experiment, the power harness was
removed, allowing the batteries to discharge.

The batteries are shown to have a consistent current draw at approximately 60 mA

in Figure 8(a) prior to the battery heating circuitry being enabled. During usage, the

current spikes to over 600 mA, explaining the drop in battery voltage seen in Figure

4.7. The total current draw from the batteries is seen to slope downward during heater

usage, attributed to the generated heat increasing the resistivity of the circuit. It should
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(A) The change in battery current over the experiment duration. The current draw is
shown to be consistent for all instances of heater usage.

(B) Magnified view of the battery current profile during the first two cold swings, detailing
the magnitude of the power increase during battery heater operation. When enabled,
the current spikes roughly ten times higher than the regular operation. Two plateaus
are present in the current response, one at roughly 600 mA, and one at roughly 300 mA.
This can be attributed to the two groups of battery heaters being enabled and disabled
independently. The battery heaters previously mentioned being enabled twice during the
first cold swing is further shown here with two corresponding current peaks.

FIGURE 4.8: The change in the battery current over the experiment duration. A rolling
average has been displayed in red over the data to reduce the noise.
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be noted that the current drop is minimal as the battery voltage is also dropping during

heater usage. Figure 4.8(a) shows that the first thermal cycle involves three current

peaks, as opposed to the two peaks seen during the remaining thermal cycles. Figure

4.8(b) shows a magnified view of the current draw during this thermal cycle. The

extra peak can be attributed to the first cold dwell lasting for a longer duration than

the remaining dwells, resulting in the battery heating circuitry being used twice. As

the thermal management of the EPS is done through two groups of two heaters, it is

possible for the heaters to be enabled independently. This is clear in Figure 4.8(b) where

a plateau at approximately 300 mA is present on multiple occasions. The variance in

the time the current draw remains at these plateaus shows that the heat generated from

one of the independent battery heating circuits has an influence on the operation of

the other. From the data collected in the chamber however, it is apparent that a single

battery heating circuit is not sufficient to keep the entire battery compartment at an

optimal temperature. It has been observed that the operation of the heaters imposes a

significant power draw on the EPS, and as such limits the power available for other

systems. On average, the budget for the power storage system estimates a power usage

of 0.370 Whr/orbit. With the satellite estimated to use a total of 1.493 Whr/orbit, this

equates to roughly 25% of the power used by the satellite per orbit. Whilst in the

Wombat XL, Binar-1 was running low power tasks. In conjunction with the increased

power draw, it is expected that a power intensive task such as payload operation could

potentially cause a low power state on-orbit. Therefore, it is of crucial importance that

usage of the battery heaters can be predicted so that power utilisation can be managed.

4.5. THERMAL MODELLING

Alongside physical testing, characterising the stresses induced on a spacecraft from

the thermal environment of LEO is possible through the use of thermal simulation

software. This is often an integral part of the design phase of a satellite as information

obtained regarding the thermal properties of the spacecraft can help influence decisions

made when finalising the design. A thermal model of Binar-1 was implemented in

Ansys 2021 Thermal Analysis Software to assess the applicability of the Binar CubeSat
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TABLE 4.1: A summary of the values of emissivity used in the Binar-1 thermal mod-
elling, adapted from [151].

Emissivity

Material Infrared Visible Total Hemispheric

Wombat XL Shroud 0.85
Wombat XL Platen 0.15

Aluminium 0.86 0.86
Solar Panels 0.8 0.86

PCBs 0.6 Not Exposed
PV Cell 0.85 0.8

Polyimide 0.84 Not Exposed

TABLE 4.2: The simplifications made in the creation of the Binar-1 thermal model.

Simplification Impact Justification

No energy is lost to free

space; Radiation transfer for

exposed faces in the simula-

tion is limited to surface-to-

surface.

Minor Reduces simulation time.

Specific heat capacity of alu-

minium material was reduced

by 10% to account for the

holes in the frame of the space-

craft not being modelled.

Moderate Reduces nodes in the

mesh.

As the thermal properties of

all structural materials are

similar to aluminium alloy,

they are all given the proper-

ties of the Ansys defined ma-

terial ’Aluminium Alloy’.

Minor Reduces setup time

between thermal simula-

tions.
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TABLE 4.2: The simplifications made in the creation of the Binar-1 thermal model
(Continued).

Simplification Impact Justification

As the radiative properties

of the external non-structural

materials are similar to black

anodised aluminium, they are

all given the properties of

black anodised aluminium as

measured by [151].

Minor Reduces setup time

between thermal simula-

tions.

Battery cells assumed to be

thermal properties of lithium-

ion as measured by [152].

Moderate Compensating for inho-

mogeneity in cells signif-

icantly increases simula-

tion complexity, and was

deemed beyond the scope

of this model.

Battery heaters are given

the thermal properties of

the most abundant material,

Polyamide.

Minor Compensating for copper

traces in the heaters sig-

nificantly increases simula-

tion complexity, and was

deemed beyond the scope

of this model.

PCBs given the thermal prop-

erties of the most abundant

material, FR4 as measured by

[153].

Moderate Compensating for copper

traces and integrated cir-

cuits on the PCBs signif-

icantly increases simula-

tion complexity, and was

deemed beyond the scope

of this model.
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TABLE 4.2: The simplifications made in the creation of the Binar-1 thermal model
(Continued).

Simplification Impact Justification

Solar cells are given the ther-

mal properties of the most

abundant material, gallium ar-

senide as measured by [154].

Minor Compensating for cover

glass and metal tabs on

solar cells significantly in-

creases simulation com-

plexity, and was deemed

beyond the scope of this

model.

General approximate value

for contact thermal conduc-

tance found through trial and

error and set for all surface-to-

surface contacts.

Significant

localised

errors

Getting true values for all

surface-to-surface contacts

involves disassembly of

the satellite, followed by

significant testing of each

material. Deemed beyond

the scope of this model.

bus in a LEO-like environment. Ansys 2021 was selected due to its prevalence in

thermal modelling for spacecraft design and its availability to the Binar Space Program.

The thermal model was generated after the launch of Binar-1 to enable improvement

of future launches reusing the majority of the bus design. The thermal profile used

during the testing at the NSTF is useful for the verification of the Binar-1 thermal model.

A summary of the values of emissivity used for the thermal radiative properties of

the Binar-1 thermal model is outlined in Table 4.1. Furthermore, Table 4.2 shows a

summary of the assumptions made in the creation of the Binar-1 thermal model. The

third and fourth cold swings (second day) of the experimentation done at the NSTF

were simulated to verify the accuracy of the Binar-1 thermal model. These swings were

selected as the input conditions were identical to the fifth and sixth swings.

The thermal response of the battery temperature of the Binar-1 thermal model to the

simulated Wombat XL chamber temperature is plotted in Figure 4.9 against the recorded
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(A) The recorded temperature of the third cold swing plotted against the output of the
Binar-1 thermal model. The initial thermal condition for the simulation was an ambient
steady state. The thermal simulation closely matches the data recorded in the Wombat XL.

(B) The recorded temperature of the fourth cold swing plotted against the output of the
Binar-1 thermal model. The thermal simulation of Binar-1 leads the trend recorded in the
Wombat XL, attributed to the initial thermal condition for the simulation starting at the
coldest point of the preceding cold dwell.

FIGURE 4.9: A comparison between the experimental recordings of the third and
fourth cold swings in the Wombat XL and the thermal response from simulating the
Binar-1 thermal model. The discrepancy in accuracy can be attributed to the initial
thermal conditions. The simulation of the third cold swing used an ambient steady
state starting condition, whereas the simulation of the fourth cold swing used the
coldest point of the preceding cold swing. This was done to achieve a realistic initial
thermal gradient for the hot-to-cold swing.
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values from the experiment in the chamber. Figure 4.9(a) shows that the temperature of

the batteries in the Binar-1 thermal model closely match the experimental data when

entering a cold swing from ambient conditions. The response seen in Figure 4.9(b)

shows less accuracy in the thermal modelling when entering a cold swing from a hot

environment, however shows a similar gradient to the recorded data. This inaccuracy

can partly be attributed to the assumptions outlined in Table 4.2, introducing errors in

the simulated satellite. Furthermore, the temperature condition preceding the response

seen in Figure 4.9(a) was at a steady state, as this corresponded to the first cold swing

after an overnight lull between testing days. The initial temperature condition for

the response shown in Figure 4.9(b) however was the coldest point of the preceding

cold dwell. This was done to achieve a realistic initial thermal gradient for the hot-

to-cold swing, but resulted in a discrepancy between the simulated and experimental

cold swing starting temperatures. Showing a simulated thermal response with high

similitude to the experimental data, the Binar-1 thermal model can be subject to varying

thermal inputs with confidence that the response seen will be similar to that of the

physical satellite. This can aid in characterising the spacecraft in potential mission

orbits, and will influence the design decisions for subsequent Binar spacecraft.

4.6. POWER MANAGEMENT MODELLING

As the battery heating system is hardware controlled, the BCM is not able to control its

operation through software. This can be problematic as the total battery power draw

during heating is approximately ten times higher than regular operation (Figure 4.8),

capable of rapidly depleting the batteries. With limited power available on-board, this

stresses the need for a prediction of when the heaters are to be operational. Thermal

simulation, however, is a computationally expensive process, even when performed

on a desktop computer. The drastically reduced capabilities of the primary flight

computer on the BCM would prove infeasible to effectively utilise the simulation on

orbit. Hence, simplified linear modelling is employed in the prediction of battery

heater usage instead. This section details the creation of this a model, and discusses

its applicability for autonomously suggesting changes to the mission plan on-orbit
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FIGURE 4.10: Isolated view of the temperature response of the spacecraft to entering a
cold swing in the Wombat XL. In each of the six groups of trends, the right (pink) trend
shows the thermal response inside the battery compartment at the core of the satellite.
The left (green) trend shows the thermal response of the surface of the solar cells. The
segments have been taken from when the surface of the cells begin to respond to a
cold cycle and stop when the battery heaters are enabled.

without needing to communicate with the ground.

From the data collected on the internal and external spacecraft temperature sensors

during testing at the NSTF, the sections leading into a cold swing can be isolated

to assess the relationship between the readings prior to the battery heaters being

enabled. Figure 4.10 shows the temperature on the surface of the solar panels and at the

spacecraft batteries for each of the experiment cold swings. As the temperature inside

of the spacecraft is influenced by the temperature measured at the surface of the solar

cells, a model can be generated that relates the difference in the internal and external

temperatures to the rate of change of temperature internal to the spacecraft at the

batteries. The internal temperature is taken to be the average between the two thermal

sensors in the spacecraft battery compartment. Likewise, the external temperature

from the average of the four solar panel thermal sensors. A ten minute rolling average

of these readings was used for smoothing and a linear approximation was trialled due

to its low complexity to assess the fit (Figure 4.11):
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FIGURE 4.11: The relationship between the difference in the internal and external
temperatures of the spacecraft and the rate of change of the temperature internal to
the spacecraft at the batteries for each of the cold swings. A linear fit has been applied
to the data. All six series shown in Figure 4.10 are superimposed here, showing a
consistent trend.

T
1

i “ ´3 ˚ 10´4pTi ´ Toq ` 6 ˚ 10´4 [˝C s−1] (4.1)

Where Ti and T
1

i refer to the spacecraft battery temperature and the corresponding

rate of change, and To refers to the temperature at the surface of the solar cells. The

model given in Equation 4.1 has a coefficient of determination of 0.8833. This shows a

relatively strong linear fit in the region between entering a cold swing and enabling

the battery heaters. The present error can be partially attributed to noise in the sensors

recording the temperature, and from the data processing to obtain the relationship.

Moreover, the lower right of Figure 4.11 shows a particularly noisy region of the data

present in all of the superimposed series. This can be attributed to the difference

between the internal and external temperatures starting to re-converge after they

separate, showing that the relationship is not bijective. However, the corresponding

rate of change to the points that re-converge seem to fit with the linear approximation

with minor error. Knowing that the analog battery heaters are programmed to turn on

at 6˝C, Equation 4.1 can be used to give a reasonable prediction of the time until the

battery heaters are enabled.
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Tenable ´ Ti “ T
1

i ˚ theaters on [˝C] (4.2)

6 theaters on “
Tenable ´ Ti

´3 ˚ 10´4pTi ´ Toq ` 6 ˚ 10´4 [s] (4.3)

Where Tenable refers to the battery heaters enable condition, 6˝C. The model given

in Equation 4.3 is propagating the instantaneous rate of change to predict when the

battery heaters will be enabled. Due to this, at the start of the cold swing when the

delta between the internal and external temperatures is the smallest, the model will

be unstable when the corresponding rate of change of the internal temperature is

minimal. This is evident in Figure 4.12, where the time taken between the surface of

the cells responding to a cold cycle and the battery heaters enabling for the fifth cold

swing is plotted against the predictive model. As the delta between the internal and

external temperatures increases and the rate of change becomes more constant, the

accuracy begins to increase. Below a 20˝C temperature difference between the battery

temperature and the heater enable temperature, the model can reliably predict the time

remaining before the heaters were enabled in the Wombat XL chamber.

In an attempt to compensate for the inaccuracies introduced from propagation

of small rates of change, a second linear approximation was produced relating the

difference between the temperature at the surface of the solar cells and the internal

batteries, and the second derivative of the internal temperature response with respect

to time (Figure 4.13):

T ”
i “ 2 ˚ 10´7pTi ´ Toq ´ 7 ˚ 10´6 [˝C s−2] (4.4)

Where Ti” refers to the second derivative of the temperature of the batteries. The

model given in Equation 4.4 has a coefficient of determination of 0.3988 showing a

poor linear fit in comparison to the first model. Approximating the second derivative

of the internal temperature to be constant with respect to time (due to only a very

minor change), an estimation for the time required to reach the battery heater enable
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FIGURE 4.12: The predicted amount of time in seconds until the spacecraft battery
heaters are enabled plotted against the difference between the battery temperature
and the battery heater enable temperature. The actual recorded time remaining is
also plotted for reference. The model is unstable above a 20˝C separation between
the internal temperature and the battery heater enable temperature as it relies on
propagating the instantaneous rate of change of the battery temperature. When the
difference between the internal and external temperatures is minimal, the model tends
towards an infinite amount of time required. As the temperature gradient stabilises,
the prediction increases in accuracy.

FIGURE 4.13: The relationship between the difference in the internal and external
temperatures of the spacecraft and the second derivative of the temperature internal
to the spacecraft at the batteries for each of the cold swings. All six series shown in
Figure 4.10 are superimposed here. A linear fit has been applied to the data.
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temperature can be given by:

Tenable ´ Ti “ T
1

i theaters on `
1
2T ”

i ˚ t2
heaters on [˝C] (4.5)

6 theaters on “
´T

1

i ˘

b

T
1

i
2
` 2T ”

i pTenable ´ Tiq

T ”
i

[s] (4.6)

Plotting the predicted time for the battery heaters to be enabled using the second

model against the recorded data and the first model (Figure 4.14(a)) shows that the

inaccuracies due to propagation of the instantaneous rate of change have been ad-

dressed. Figure 4.14(b) provides a magnified view of the stable range of the first model,

showing the predictions based on the second model seem to track the recorded data

with higher accuracy. The first model, whilst maintaining a similar gradient to the

recorded data, consistently predicts a longer time till enable than the recorded data.

Applying both predictive models to the sixth cold swing (Figure 4.15) however shows

a higher accuracy with the first model, with both predictive models under-predicting

the time remaining until the battery heaters are enabled. The prediction inaccuracy

between different cold swings can be attributed to the errors present in fitting the

experimental data to a linear approximation. As these models were produced from

limited data collected during one experiment with a single spacecraft, the authors

acknowledge the possibility of over-fitting the models to the data. The next section

therefore applies the generated models on-board the Binar-1 engineering model in the

Curtin University vacuum chamber, and to the Binar-1 thermal model in a simulated

LEO environment to assess their efficacy in heater usage prediction.

4.7. MODEL VERIFICATION

4.7.1. THERMAL VACUUM

The engineering model of Binar-1 was placed in the thermal vacuum chamber at Curtin

University to test the derived models on-board the satellite during thermal cooling. A

summary of the differences to the Wombat XL can be seen in Table 4.3. After pumping



Chapter 4 STUART ROBERT GIBSON BUCHAN 215

(A) The predicted amount of time in seconds until the spacecraft battery heaters are en-
abled plotted against the difference in the battery temperature and the enable temperature
(6˝C). Both predictive models and the recorded data from the fifth cold swing are shown.
The second model compensates for the inaccuracies introduced due to the non linearity
seen in the first model, giving a higher prediction accuracy in the higher temperature
difference ranges.

(B) Magnified view of the predictive models. The first model produced consistently
predicts a higher time estimation than the recorded data until the heaters are enabled.
The second model is seen to more accurately track the recorded data.

FIGURE 4.14: Predictions from both derived models of the time remaining until the
spacecraft battery heaters are enabled, plotted against the recorded data from the fifth
cold swing in the Wombat XL.
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FIGURE 4.15: Magnified view of both predictive models of the time remaining until
the spacecraft battery heaters are enabled, plotted against the recorded data from the
sixth cold swing in the Wombat XL.

TABLE 4.3: Thermal vacuum chamber differences

Curtin University Wombat XL

Volume (m3) 0.034 5.76
Vacuum Capabilities (Torr) 7.5e-4 1e-5

Temperature Range (˝C) -100 to +100 -170 to +150
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down to an average chamber pressure of 7.5E-4 Torr, ten hours of thermal vacuum

testing was performed (Figure 4.16(a)) before the chamber was permitted to return

to ambient conditions. During this period, the battery heating circuitry was enabled

twice. The subsets of the solar panel surface and battery temperatures pertaining to the

regions preceding the battery heaters are shown isolated in Figure 4.16(b).

Applying the predictive models to the first and second instances preceding heater

usage (Figures 4.17 and 4.18 respectively), the first predictive model is seen to more

closely track the time remaining until the heating circuitry is enabled than the second.

Both predictive models in this instance consistently under-predict the remaining time

until the heaters are enabled. The predictions are seen to converge with the actual time

remaining as the enable temperature set point is neared.

4.7.2. LEO SIMULATION

With the Binar-1 thermal model showing high similitude to the engineering model

tested at the NSTF, the thermal input to the simulation was updated to emulate the

temperatures expected over the course of an orbit.

The on-orbit thermal simulation of the Binar-1 thermal model used an incident

radiation on the satellite from direct sunlight of 1400 W/m2, an Earth albedo of 150

W/m2, and IR radiation from Earth of 200 W/m2 [155]. The spacecraft was assumed

to be nadir pointing, with the exposure time of thermal radiation from the sun being

distributed across the exposed faces evenly. An excerpt of the thermal response of the

internal spacecraft temperature is plotted against the two prediction models in Figure

4.19, focusing on the section of the orbit where Binar-1 is eclipsed by Earth and the

internal battery temperatures are starting to drop.

It is evident that the predictive models closely match the simulated response of

the battery temperatures of the Binar-1 thermal model, giving high confidence of the

efficacy of the model in LEO-like environments.
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(A) The change in the battery temperature and solar panel surface temperature during the
thermal vacuum test at Curtin University.

(B) Isolated view of the temperature response of the spacecraft to entering a cold swing in
the Curtin University vacuum chamber. These segments have been taken from when the
surface of the cells begin to respond to a cold cycle and stop when the battery heaters are
enabled.

FIGURE 4.16: The change in the battery temperature and solar panel surface tem-
perature during the thermal vacuum test at Curtin University. The heating circuitry
was enabled twice during the test. Completion of the first usage of the models saw
only one heater activate. As such, the battery warming portion following the first
usage of the heating circuitry takes longer than the second as the chamber shroud was
continued to be cooled in an attempt to trigger the second heater. The completion of
the second use of the predictive models features both heaters activated.
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FIGURE 4.17: The predicted amount of time in seconds until the spacecraft battery
heaters are enabled plotted against the difference in the battery temperature and the
enable temperature during the experiment in the Curtin University vacuum chamber.
Also present is the actual recorded time until the heaters were enabled. This section
is taken from the temperature profile preceding the first usage of the battery heating
circuitry in Figure 4.16(b). The first predictive model tracks the actual remaining time
more accurately than the second model.

FIGURE 4.18: The predicted amount of time in seconds until the spacecraft battery
heaters are enabled plotted against the difference in the battery temperature and the
enable temperature. Also present is the actual recorded time until the heaters were
enabled. This section is taken from the temperature profile preceding the second usage
of the battery heating circuitry in Figure 4.16(b). The first predictive model tracks the
actual remaining time slightly more accurately than the second model
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FIGURE 4.19: The predicted amount of time in seconds until the simulated spacecraft
battery heaters are enabled plotted against the two produced models. The simulated
spacecraft temperature was started at the thermal equilibrium (6˝C). The data range is
focused on the section of the orbit where Binar-1 is eclipsed by Earth, and the internal
battery temperatures are starting to drop. The first model has a higher accuracy than
the second in the prediction of the recorded data.

4.8. DISCUSSION

The relative low complexity of the models allows them to be included in the spacecraft

flight logic to predict the usage of the heaters. The application mode of the Binar

software framework contains a thread that executes scheduled tasks from a queue.

Each task in the queue contains the software to execute and the start and end times

of the task. In the software developed for Binar-1, when a task start time arrives,

the task would be executed regardless of the status of the system vitals. From the

experimentation done with the battery heaters, this is shown to be problematic as a

high power task coupled with battery heater usage could potentially see the spacecraft

encounter a low-power state. Therefore, the modelling derived in Section 4.6 can be

used prior to task execution to assess if the spacecraft can safely progress with doing so.

Figure 4.20 provides a proposed integration into the flight logic. After a task is popped

from the queue, the battery capacity is to be checked to determine if the predictive

modelling is required. If a sufficient charge is present, the flight logic can progress

with regular task execution. However, if the spacecraft has insufficient charge, the
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FIGURE 4.20: The proposed implementation of the predictive modelling in the Binar
flight logic. If there is insufficient battery capacity to execute a task and run the battery
heaters, a series of checks are employed before calculating the expected time remaining
before the heating circuitry is operational. This can be used to cancel the execution of
a task that could otherwise cause the spacecraft to enter a low-power state.
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predictive modelling is to be used to determine if the spacecraft is safe to progress with

task execution. The average solar panel voltage is to be checked to determine if the

Earth eclipses the sun from the spacecraft. Following this, a further check is employed

to verify that the internal battery temperature is less than the heater enable temperature

summed with the maximum usable range of the model as discussed in Section 4.6,

26˝C. In the case which this check succeeds, a prediction of the time remaining until the

heaters are enabled will be calculated. Summed with the current time, this predictive

value can be referenced against the task end time to estimate if the heaters are to be

operational during the task. This condition will see the task cancelled, and an error

logged on board to be communicated to the ground station.

The responses seen from applying the predictive models to further thermal vacuum

testing at Curtin University and the Binar-1 thermal model show a higher predictive

accuracy in the time remaining until heater usage using the first model over the second.

This relationship is also present in the application of the predictive models to the sixth

cold swing recorded at the Wombat XL. Moving forward therefore, the first model is

to be implemented in the spacecraft flight logic for the prediction of the usage of the

battery heating circuity. The error in the prediction of the battery heater usage varies

between the application to the data collected at the Wombat XL, the data collected at

Curtin University, and a simulation of the Binar-1 thermal model in a LEO environment.

This is likely due to unmodelled factors being present in the model, as it simplifies a

relationship that is inherently non-linear. However, this is expected as the intention of

the model is to provide a simplified computationally inexpensive means of prediction

which by nature will deviate from a high accuracy model. Due to this, it is deemed

sufficient to progress to an on-orbit test of the predictive model as a precursor to further

development.

4.9. CONCLUSIONS AND FUTURE WORK

Being the first spacecraft built by the Binar Space Program, Binar-1 comprised many

custom components that lacked flight heritage. Due to this, testing in a simulated

space environment prior to launch was crucial in understanding the performance of
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the spacecraft in LEO conditions. With this objective in mind, verification of the battery

heating system electrical characteristics was of high priority.

The testing procedure in the Wombat XL thermal vacuum chamber demonstrated

that the battery heating system functioned as expected, keeping the internal tempera-

ture of the spacecraft from dropping below 6˝C, demonstrating its reliability in LEO

like environments. It was seen however that when the battery heaters were enabled,

the power requirement from the electrical power system increased dramatically. As

the battery heating system cannot be controlled by the flight logic, it stressed the ne-

cessity for on-board autonomy to predict when the heaters are to be used. With this,

the spacecraft can make changes to the operations plan to prevent power intensive

tasks running on the spacecraft during periods of high current draw from the heaters,

possibly resulting in a low-power state.

From the data recorded during the testing in the thermal vacuum chamber, two

models were generated relating the difference between the internal and external tem-

peratures of the spacecraft to the first and second derivatives of the internal battery

temperature with respect to time. These models were shown to predict the enabling of

the battery heaters when the spacecraft entered a cold swing in the thermal vacuum

chamber with sufficient accuracy. The engineering model of Binar-1 underwent further

thermal vacuum testing at Curtin University with the two predictive models derived

in Section 4.6 running on-board. Both models were found to track the estimated time

until the battery heaters were enabled. To simulate the efficacy of the models on-orbit,

a thermal model of Binar-1 was used. Verified against the recorded data in the Wombat

XL, the Binar-1 thermal model was subject to a thermal simulation of a LEO environ-

ment. Applying the predictive models on the thermal data produced by the simulation

of the Binar-1 thermal model showed that the first predictive model estimated the time

remaining for the usage of the battery heaters with a higher accuracy than the second

predictive model. This was likewise demonstrated from the results of the thermal

vacuum testing at Curtin University, and the sixth cold swing in the Wombat XL. Due

to this, moving forward the first model will be tested in the flight logic on future Binar

spacecraft.

It was evident from the application of the models that the presence of unmodelled
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factors caused an inconsistent error during experimental predictions. Further testing

on-orbit will contribute to refinement of the predictive model, potentially compensating

for unmodelled factors and increasing the accuracy of the prediction of battery heater

usage. Feruglio et al. demonstrate the benefits of using artificial neural networks

on a CubeSat to improve mission autonomy when applied to a payload optimisation

problem. Having been proven feasible, they propose that their research may be ex-

tended to encompass autonomous failure detection and isolation [150]. Acknowledging

the predictive modelling proposed in this paper simplifies an inherently non-linear

relationship, the predictive modelling may also be improved by using orbital data in

training of a machine learning model of battery heater usage, with on-board inference.

Some apprehension exists in the community for relinquishing control over the

mission operations plan to autonomous software. On-board autonomy on spacecraft

however is crucial for safe operations in a communications limited environment to

handle emergencies that cannot wait for input from ground operators. CubeSats offer

a platform to trial on-board autonomy with a significant reduction in risk over larger,

more expensive missions. The derived model will thus be used on Binar-2, 3 and 4 to

infer when a task is not safe to execute due to power usage concerns without requiring

input from a ground operator.
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CHAPTER 5

ON-BOARD CUBESAT DIGITAL TWIN

5.1. INTRODUCTION

When spacecraft operate in environments with limited communication, it is essential

to have onboard systems capable of preventing failures without human intervention.

Onboard simulation inference is one way to achieve this capability autonomously.

To this aim, the previous chapter detailed the development of a linear model to be

implemented in the flight logic for the Binar 2, 3, and 4 satellites. The inferences from

this model were proposed to autonomously cancel a scheduled task on orbit when

the battery heaters are simultaneously required and insufficient power is available.

This chapter details the development of an onboard digital twin platform and, as an

extension of the previous chapter, implements the onboard failure prevention method

proposed in the future work section. The onboard digital twin platform detailed

in this chapter has the capability to prevent failures not only in the battery heating

system, but also in other critical systems onboard the spacecraft. This approach enables

autonomous identification and mitigation of a wide range of potential failure scenarios.

As seen from the subset of mission failures analysed in Chapter 2, unfortunately,

failures occur on spacecraft while in orbit. In the interest of mission success, safe code

execution pathways should exist to handle faults when they occur. A common method

of implementing this in spacecraft design is through FDIR routines. The elements that



230 STUART ROBERT GIBSON BUCHAN Section 5.1

make up these routines can be broken down as follows:

• Fault Detection - Identify a fault.

• Isolation - Determine the location of the fault in the system.

• Recovery - Provide a way to remedy the fault.

FDIR routines are implemented following an investigation of all possible faults

on board, using tools such as fault tree analysis [156]. These routines can encompass

straightforward errors, such as erroneous voltages coming from a sensor, to more

complex problems, such as boot looping. After detecting a fault, a lookup table is

often consulted to execute a process to remedy the situation. As the highest priority is

maintaining the mission [157], often the result of the recovery procedure transitions

the spacecraft into a safe mode that requires intervention from a ground operator to

exit [158]. An exception to this is when hardware redundancy is available onboard.

When a faulty sensor is detected, the FDIR routine can swap to a redundant sensor

without requiring an operating mode transition. However, on a low-budget, resource-

constrained platform such as a CubeSat, this may not be a viable option [72]. Aside

from this, traditionally, more complex FDIR routines often involve processing on the

ground using satellite telemetry [157].

A limited subset of operations is possible for system safety when the spacecraft

is transitioned into safe mode. The limited operations may mean that the spacecraft

cannot perform mission objectives. Concerningly, false positives from sensors often

transition the spacecraft into safe mode due to conservative thresholds on sensor

nominal readings triggering FDIR routines [72]. The latency added from relying on

a ground operator to transition the spacecraft back into nominal operation mode can

result in significant scientific loss over the full mission duration. Furthermore, the

latency introduced requiring interaction with a ground operator for the processing of

complex FDIR routines may be detrimental for a deep space mission [72].

With increasing system complexity, the volume of sensor datasets obtained from

spacecraft is enormous. Expecting a ground operations team to identify faults in
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the data throughput, especially with potentially incomplete or erroneous data, is not

possible [72]. On-board the spacecraft, high data throughput volumes have resulted

in conventional FDIR methods sometimes failing to isolate faults [157]. Due to this,

research into advanced FDIR concepts utilising machine learning (ML) techniques

for fault detection is being pursued. Kato et al. propose the computational analysis

of mined data on a spacecraft to narrow down the scope of the data presented to

an operator during a failure in an attempt to reduce human error [159]. Holsti et al.

extend the conventional fault detection approach by using a Bayesian Network in fault

identification to automate fault analysis. However, these methods still do not address

the latency issue when spacecraft operate in a communications-denied environment.

Moreover, spacecraft failures do not always happen immediately. The root cause

analysis of critical mission failures may present a chain of contributing faults [159].

However, the current conventional FDIR approach in the literature is largely a reactive

process for detecting instantaneous faults. This approach may not be able to identify

contributory faults higher up the fault tree, and offer recovery methods for them [158].

An approach in the literature for addressing the negative impact of relying on

ground operators as part of the FDIR loop is exploring the feasibility of performing

advanced FDIR routines entirely onboard the spacecraft. Shifting the FDIR functionality

closer to the edge has been made possible by advances in computational technologies,

reducing the frequency of intervention required by ground operators [72]. Adapting

advanced FDIR concepts to run onboard a spacecraft also introduces the possibility

of dealing with uncertain dynamic system evolution, allowing for identification and

actioning on potential failures rather than relying on reaction alone [158].

Significant effort has been made in the literature to develop the robustness and

reliability of FDIR routines to increase spacecraft operational time by reducing the

required amount of safe mode entries. However, little work has been done in the

literature towards using the same advanced FDIR routines to identify faults in advance.

As advanced as FDIR routines can be, some fault routines cannot avoid entering a

safe mode. Detection of potential failures in advance in the system should be a key

component for failure prevention on spacecraft [159], increasing the operational time on

orbit. To this end, in a feasibility demonstration Portinale et al. apply Dynamic Bayesian
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TABLE 5.1: Mission execution autonomy levels. Taken from [160].

Level Description Functions

E1 Mission execution under ground
control; limited onboard capability
for safety issues.

Real-time control from ground for
nominal operations. Execution of
time-tagged commands for safety
issues.

E2 Execution of pre-planned, ground-
defined, mission operations on-
board.

Capability to store time-based com-
mands in an onboard scheduler.

E3 Execution of adaptive mission op-
erations onboard.

Event-based autonomous opera-
tions. Execution of onboard opera-
tions control procedures.

E4 Execution of goal-oriented mission
operations onboard.

Goal-oriented mission re-
planning.

Networks (DBN) to identify an anomaly in advance when applied to a simulation of

the power supply system of a Mars rover [158]. The network identified the anomaly

and recommended preventative measures at an early depth in the fault tree.

Techniques such as this are crucial for high mission autonomy. The ECSS has

provided a qualitative means of describing mission autonomy on spacecraft, replicated

in Table 5.1. According to Olive [157], most spacecraft operate at autonomy level E2,

executing pre-planned ground-defined mission operations onboard. Advanced FDIR

routines capable of detecting potential faults before they happen are required onboard

to progress towards autonomy level E4.

However, the DBN approach by Portinale et al., as well as most other studies of

advanced onboard FDIR in the literature, are simulation-based. Implementation on

spacecraft hardware is still a novel topic that needs exploring [72]. CubeSats are viewed

as not an option for trialling advanced onboard autonomy due to their relatively low

system complexity [72]. On the contrary, it is the judgement of the candidate that the

low-cost aspect of CubeSat missions provides a higher accommodation for risk than

larger-scale expensive missions, and they, therefore, can provide an ideal platform for

testing novel approaches to FDIR. The effort put into developing the Binar CubeSat

platform and the Binar Software Framework (BSF) that powers it enables the capability
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to trial advanced FDIR concepts on orbit to address the gap in the literature using

onboard intelligence for preventative fault detection in advance. This chapter, therefore,

leverages the existing framework to develop an onboard digital twin platform capable

of performing preventative fault detection at the edge without relying on ground

operations. The specific fault detection capabilities useful to a spacecraft are hugely

scalable and customisable to the specific platform. Hence, the scope of the onboard

digital twin platform covered in this chapter will be limited to two examples, both

generic areas that most on-orbit spacecraft can benefit from - a prediction of the usage of

battery heaters and an estimation of future power usage. The inferences performed by

the flight logic are used to detect a future power fault issue and recover by preemptively

removing unnecessary power usage that would cause the future fault.

The chapter first documents the development of the digital twin platform abstracted

from the spacecraft to speed up the development process and increase the testability of

the platform. The platform is then ported onto the BCM, and a hardware-in-the-loop

test (HITL) is performed to assess the efficacy of the flight software using the onboard

digital twin to suggest changes to the mission plan in respect of safety. The HITL testing

is then repeated, swapping out the inferencing implementation in favour of a trained

ML model, demonstrating the modularity of the developed platform.

5.2. DIGITAL TWIN DEVELOPMENT

5.2.1. HARDWARE DECOUPLING

The development approach desired for the digital twin library was to break hard-

ware dependency for development, support portability across various platforms, and

maximise the testability. From the benefits seen from the implementation of the RPC

platform implemented for ground-to-satellite communications, a digital twin RPC ap-

proach was investigated. Breaking hardware dependencies was raised as a requirement

as developing software libraries for embedded targets is a slow process. Compared to

the development cycle of software developed on a host machine that can be compiled

and executed quickly, software developed for an embedded target needs to be cross-
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<<Interface>>

ChannelIO

+ Send()

+ Receive()

HostChannelIO

+ Send()

+ Receive()

FakeChannelIO

+ Send()

+ Receive()

HardwareChannelIO

+ Send()

+ Receive()

ChannelIO

+ Send()

+ Receive()

FIGURE 5.1: The digital twin client and server objects wanting to access the input and
output channel for the network will use the high-level ChannelIO object that depends
on the same abstraction as the lower-level implementations. A variety of IO backends
can be provided as an implementation, abstracting the client and server objects from
the channel they communicate over.

compiled and then deployed onto the target for execution. This process of deploying

onto a target for execution can take a few seconds, eventually accumulating to a signifi-

cant portion of time over a complex development process. More impactful, however, is

that as software is developed parallel to the spacecraft hardware, new board revisions

require new board support packages to be developed to interface with the hardware.

Even with a complete board support package, hardware faults that may exist on the

spacecraft motherboard could hinder the correct operation of the library. This can cause

lengthy debugging cycles hindering the speed of development.

Furthermore, hardware interaction time becomes a resource for a team of engineers

with a finite amount of hardware targets to develop on. Fortunately, most software

development can be done independently of the hardware by abstracting the logic

from hardware dependencies, as discussed in Chapters 3 and 4. This is especially true

for the digital twin development, the majority of which does not require a hardware

dependency to operate. The only aspect of the digital twin library that requires a

hardware dependency is how the client and server communicate. This was abstracted

by requiring the client and server objects to communicate through a ChannelIO module

built following the Dependency Inversion Principle discussed in Chapter 3. A UML

depiction of the module is provided in Figure 5.1.

In the module, the high-level public-facing ChannelIO object and the lower-level
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private application-specific implementations depend on the abstracted ChannelIO

interface. When the digital twin client and server attempt to send or receive serialised

messages, they must go through the high-level object that implements the same inter-

face used by the implementation objects rather than depending on the implementation

objects directly. This allows the IO backend to be swapped without impacting the

digital twin client and server application code. Coupled with the language-neutral and

platform-neutral aspects of the RPC approach, the digital twin can be developed to

support operation on various hardware using various programming languages. To this

aim, the digital twin framework could be developed independently from the spacecraft

on a host machine before porting to spacecraft hardware.

The RPC library used for ground-to-satellite communications on Binar-1 was cus-

tom written as no suitable open-source alternatives were available. Since the Binar-1

software development, however, Google has released an open-source RPC module as

part of the Pigweed project, a collection of libraries for use on embedded systems [136].

The decision was made to adopt this library instead of using the original Binar RPC

framework as it has open-source community support, providing frequent bug fixes

and feature additions. With the scope of the digital twin implementation narrowed

to a demonstration of the prediction of the usage of battery heaters and an estimation

of future power usage, the digital twin service could be written using the high-level

protocol buffers description language.

LISTING 5.1: High level description of the digital twin service.

service DigitalTwinService {

rpc BatteryHeatersUsagePrediction(

ãÑ BatteryHeatersUsagePredictionRequest) returns

ãÑ (BatteryHeatersUsagePredictionResponse);

rpc FutureBatteryCapacityPrediction(

ãÑ FutureBatteryCapacityRequest) returns(

ãÑ FutureBatteryCapacityResponse);

}

The service described in Listing 5.1 informs the protocol buffers compiler of the
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expected request and response messages for the RPC communication, which can be

specified independently of the RPC service. The implementation of the request and

response messages is provided in Listing 5.2.

LISTING 5.2: Message types available for the digital twin client and server.

message Temperature {

float internal_average = 1;

float external_average = 2;

}

message BatteryHeatersUsagePredictionRequest {

Temperature current_temperature = 1;

}

message BatteryHeatersUsagePredictionResponse {

uint64 seconds_till_enable = 1;

}

message FutureBatteryCapacityPredictionRequest {

float battery_voltage = 1;

float battery_current = 2;

uint64_t time_delta = 3;

}

message FutureBatteryCapacityPredictionResponse {

float battery_capacity = 1;

}

The benefit of segmenting request and response messages is the modularity and ex-

tensibility achieved in the RPC service. The contents of the messages being transferred

by the RPC service can be modified easily in the future as the simulation requirements

become more complex. Moreover, the unique identifiers given to each field within
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PWDigitalTwinClient

+ BatteryHeatersUsagePrediction()

+ FutureBatteryCapacityPrediction()

ChannelIO

+ Send()

+ Receive()

DigitalTwinClient

+ BatteryHeatersUsagePrediction()

+ FutureBatteryCapacityPrediction()

FIGURE 5.2: The high-level DigitalTwinClient module associates both the Pigweed
generated client, PWDigitalTwinClient, and the ChannelIO object. The PWDigi-
talTwinClient is responsible for transmitting messages, and the DigitalTwinClient is
responsible for receiving the responses.

the message allow for backward compatibility between the digital twin client and the

server communicated with. Converting the high-level RPC descriptions into software

provides independent client and server libraries to be compiled into their respective

applications.

Following the drive for reusability in the BSF, the client and server libraries were

wrapped with high-level objects to be used in application code. This allows the entire

RPC framework implementation to be exchanged in the future without impacting the

application code. The final digital twin client object (Figure 5.2) is used by the flight

logic and the server object (Figure 5.3) by the digital twin processor.

The DigitalTwinClient and DigitalTwinServer objects associate the ChannelIO object,

meaning the module exists within and is used by the digital twin. The DigitalTwin-

Client object also associates the Pigweed-generated client, PWDigitalTwinClient. When

the client application calls a method on the DigitalTwinClient object, it will access

the member PWDigitalTwinClient object to perform the RPC call. This is why the

PWDigitalTwinClient also needs to associate the ChannelIO object - The high-level

DigitalTwinClient object is responsible for receiving messages, and the PWDigitalTwin-

Client object is responsible for transmission. Conversely, the high-level DigitalTwin-

Server object inherits and overrides the methods provided in the Pigweed-generated
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PWDigitalTwinServer

+ BatteryHeatersUsagePrediction()

+ FutureBatteryCapacityPrediction()

ChannelIO

+ Send()

+ Receive()

DigitalTwinServer

+ BatteryHeatersUsagePrediction()

+ FutureBatteryCapacityPrediction()

FIGURE 5.3: The high-level DigitalTwinServer object associates the ChannelIO object
and inherits the PWDigitalTwinServer. It is responsible for both receiving messages
from the client and transmitting responses.

server, PWDigitalTwinServer. This is because the protocol buffers generated descrip-

tion only generates method stubs that need to be implemented. Due to this, only the

high-level module must associate the ChannelIO object, handling both receiving and

transmitting messages. Figure 5.4 provides an overview of how the client and server

libraries integrate to perform an RPC cycle.

A further benefit of decoupling the I/O communications channel from the RPC im-

plementation is that it enables the server and client logic to be developed in adherence

to Test-Driven Development (TDD). Unit testing the client and server independently

is achieved by creating a fake input channel for the ChannelIO object that gives full

control over the communications within each test case. This is especially useful for the

DigitalTwinServer object, which provides the implementation of the remote procedure

call. The contents of the buffer that will get returned when the module invokes the

Receive method on ChannelIO can be set to return undecodable messages, valid decod-

able messages, and error-inducing decodable messages containing erroneous values.

This aids in ensuring robustness and safety in the procedure implementations, which is

crucial when the result of the digital twin inferencing will be used to influence mission

outcomes without consultation from the ground. With automated unit testing achieved,

the digital twin client and server objects can be incorporated into the automated CI/CD

pipeline, demonstrating safety on each commit. After providing an implementation



Chapter 5 STUART ROBERT GIBSON BUCHAN 239

Define system I/O channel

Digital Twin Client

Construct digital twin client 
with pointer to I/O channel

Construct request 
message with required 

fields

Call RPC method on client 
object with the request 

message

Client object serialises 
instruction for method call 

with request message

System I/O channel 
outputs call to server

System I/O channel 
listens for response

Process response and 
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System I/O channel 
outputs response to 

server

Digital Twin Server

FIGURE 5.4: A depiction of how the digital twin client and server operate together in
the RPC implementation.
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for the digital twin client and server using a TDD approach, integration testing of the

libraries was performed on the host machine. A transmission control protocol (TCP)

ChannelIO backend was implemented to enable the client and server applications to

communicate on the host, verifying compatibility prior to attempting execution on the

target. Leveraging the portability of the codebase achieved with the BSF, the client and

server applications could then be ported onto the microcontroller cores to demonstrate

the feasibility of simulations on a computationally constrained platform.

5.2.2. PORTING TO A CONSTRAINED PLATFORM

To minimise the potential performance impact on flight logic runtime, a requirement

was made for the onboard implementation of the digital twin server to run indepen-

dently of the flight logic processor. The original flight computer selected for Binar-1

was the STM32H743, offering a single high-performance Cortex-M7 core. Due to the

impact of the global semiconductor chip shortage from the COVID-19 pandemic, the

flight computer was swapped to the pin-compatible dual-core STM32H747xi during the

final board revision before launch. Although the global semiconductor chip shortage

eventually impacted the procurement of this new flight computer, it was decided it

would remain unchanged to support the digital twin on the Binar 2, 3, and 4 satellites.

The STM32H747xi offers a high-performance Cortex-M7 core and a power-efficient

Cortex-M4 core, with 1 megabyte of Flash memory each. During Binar-1 development,

it was realised that the features of the Cortex-M7 core exceeded what was required for

the flight logic. A lower-performance core would be satisfactory to meet the mission

requirements whilst reducing the overall power usage. Thus, leveraging the software

portability achieved from the development of the BSF, the flight logic was ported to the

Cortex-M4 core on the STM32H747xi flight computer, allowing the higher-performance

Cortex-M7 core to be reserved for the onboard digital twin server.

A key challenge with software execution on a multiprocessor system is the synchro-

nisation of the cores. The approach for the communications channel for the onboard

digital twin employs the use of Open Asymmetric Multiprocessing (OpenAMP) [161].

OpenAMP is a software framework that facilitates asynchronous core-to-core communi-
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cation through a shared read/write memory region with cross-core interrupt triggering.

For the digital twin implementation, the client and server cores are set up in a mas-

ter/slave configuration to reduce power consumption when the digital twin server

core is not required. The master flight logic core permits the slave server core to boot,

waiting for an acknowledgement. The server core completes the endpoint connection

and signals the flight logic core that it is ready to receive RPC requests. Either core

writing to the shared memory region will trigger an interrupt for the recipient core,

notifying there is a message to process. A sequence diagram of the communications is

shown in Figure 5.5.

5.3. HARDWARE-IN-THE-LOOP DIGITAL TWIN TEST

5.3.1. METHODOLOGY

Performing inferencing onboard a spacecraft allows for information from the envi-

ronmental state to be read directly from the sensors as input parameters, bringing

data computation closer to the edge. Hence, the onboard simulations will operate

regardless of the source of the sensor data. Therefore, rather than requiring a thermal

vacuum experimental setup to demonstrate the power management predictions from

the onboard digital twin, HITL testing can instead be conducted using pre-recorded

data. Leveraging the modularity of the developed BSF, the hardware backend for the

onboard temperature sensors is replaced with a replay of recorded temperature values

to provide fault injection to the target under test. The data used in the demonstration

was taken from the sixth cold swing done in the Wombat thermal vacuum chamber at

the Australian National University (ANU), as discussed in Chapter 4. The replayed

data is the 2400 seconds before enabling the battery heating circuitry (Figure 5.6).

The timestamp, internal and external temperature data collected was converted into

a lookup table compiled into the application code. When the respective temperature

sensor objects call to read the temperature data, the onboard time is used as an input

to the lookup table to retrieve the corresponding temperature data. As proposed in

the future work section from Chapter 4, the model derived to predict the usage of the
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Digital Twin 
Client

Digital Twin 
Server

1.) Initialise endpoint 

2.) Boot request

3.) Boot acknowledgement

4.) Digital twin request

5.) Digital twin response

6.) Shutdown request

7.) Shutdown acknowledgement

8.) Destroy endpoint

FIGURE 5.5: Sequence diagram showing the synchronisation of the dual-core digital
twin implementation. The flight logic core (using the digital twin client library)
operates as the master and the digital twin server core as the slave device.
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FIGURE 5.6: An excerpt of the change in the battery and solar panel surface temper-
ature during a thermal vacuum test of the Binar-1 engineering model at ANU. The
battery heaters drop below the enable temperature 40 minutes into the dataset.
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battery heaters can be used onboard the spacecraft to optimally postpone tasks if the

spacecraft is in danger of encountering a low power state. The successful demonstration

will show the digital twin logic able to prevent a low power state from occurring by

cancelling a scheduled task. As an improvement to the logic flow proposed to be

implemented in the flight software from the future work section of Chapter 4, the

logic will now also account for the future predicted battery capacity in the decision to

postpone a task, as shown in Figure 5.7.

This change was made to the proposed logic implementation as the previous sug-

gestion required the battery capacity to drop below 50% charge before the digital twin

would be used. The previously proposed implementation would be satisfactory for

tasks being executed in the near future when the spacecraft is still occulted from the

Sun by the Earth. However, with an orbital period of roughly 90 minutes, tasks sched-

uled for execution a few orbits in the future could gain a sufficient charge that would

remove the spacecraft from the danger of a low power state occurring. The proposed

improvement, therefore, after identifying that the battery heaters are to be enabled

during task execution, will predict what the battery capacity will be at the start of the

task time and will only postpone a task if the future capacity is less than 50%.

Prediction of the future battery capacity is implemented by assuming constant

battery current usage between the moment the digital twin is enabled and the start

time of the task under the decision of postponing. This estimated capacity usage is

then subtracted from the battery capacity when the digital twin was enabled. Battery

capacity is not measurable, however, and needs to be inferred from the battery voltage

reading at the ADC. The spacecraft batteries were drained from full charge at a 1 A

constant current rate to characterise the relationship between the battery voltage and

the battery capacity. The batteries in the EPS are arranged in a two-series and two

parallel configuration. The configuration can nominally supply 6.7 Ah according to

the battery’s rated capacity from the datasheet. The battery capacity could be inferred

at each voltage step using the time taken to drain the batteries during the applied

load. The relationship between the battery voltage and the battery capacity for the four

lithium-ion cells powering the spacecraft is shown in Figure 5.8.

As the proposed digital twin logic only postpones a task when the battery capacity is
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FIGURE 5.7: The proposed flight logic to demonstrate the capability for the onboard
digital twin to optimally postpone tasks without intervention from the ground if
executing them would result in a low power state.



246 STUART ROBERT GIBSON BUCHAN Section 5.3

6:06:26:46:66:87:07:27:47:67:88:0

Voltage [V]

0

1

2

3

4

5

6

C
ap

ac
it
y

[A
h
]

FIGURE 5.8: The relationship between battery capacity and battery voltage for the four
lithium-ion cells powering the spacecraft. The profile was collected by discharging
the spacecraft batteries from full at a 1 A constant current rate.
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FIGURE 5.9: A line of best fit on the battery characterisation data within the 50% to
80% capacity range.

less than 50%, the region of interest for the model could be constrained above this value.

Furthermore, it was deemed that if the battery capacity is above 80%, the spacecraft

would not be in danger of encountering a low power state. Figure 5.9 shows the region

of interest for battery capacity inference with a linear approximation applied.

From this, the battery capacity could be inferred from the battery voltage within the

50% to 80% capacity range using Equation 5.1:

capacity “ 4.088568 ˚ voltage´ 26.616879 [A h] (5.1)

Knowing when the heaters are to be enabled from the pre-recorded temperature

sensor data, the experimental set-up consists of scheduling a task for the spacecraft to

operate during the usage of the heaters. Noticing that the battery temperature sensor

objects are reporting the internal temperature below 26˝C, the digital twin client will
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TABLE 5.2: A summary of the three trials proposed to test the reliability of the onboard
digital twin in failure prevention. In all three trials, the replayed data will have the
heaters enabled 2400 seconds after the program is executed.

Trial
Time Until

Task Start (s)
Time Until

Task End (s)
Battery Capacity
at Task Start (%)

1 2350 2500 45
2 1000 1200 90
3 2350 2500 80

start to communicate over the RPC network to the digital twin server. With this input

condition, the digital twin server identifies that the battery heaters will be enabled

during the task execution. The flight logic will then request the digital twin server to

perform a further inference to predict the battery capacity at the task start time. Again

leveraging the modularity of the BSF, the hardware backend for reading the battery

voltage and instantaneous current usage onboard can be faked to provide low-capacity

readings. By providing these values to the digital twin to predict the future battery

capacity to be less than 50%, the server should recommend the flight logic cancel the

task execution and log an error.

Two more trials will be executed to ensure the reliability of the digital twin server’s

decision to cancel a task. Firstly, using a task start time before the battery heaters enable

according to the recorded data. This should see the digital twin server allow the task

to execute at the original time. Secondly, a task will be scheduled to execute when the

heaters are to be used, but ensuring that the future battery capacity at the task start

time is greater than 50%. This should see the digital twin server acknowledge sufficient

charge to execute the task. Table 5.2 summarises the experimental trials.

The task to be scheduled for all three trials is to emit a beacon at a five-second period.

This task provides a visual element to the task execution, as the output channel from

the spacecraft hardware can be monitored for incoming messages. A further check of

the onboard system logs will show an entry signifying that the task was not executed.
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FIGURE 5.10: The predicted time remaining until the battery heaters are enabled is
plotted against the actual time from the dataset used for the onboard inference. The
onboard digital twin will predict the battery heaters to be used during the scheduled
task roughly 23 minutes into the dataset, depicted by the black separator.

5.3.2. RESULTS AND DISCUSSION

With the task in the first trial scheduled 2350 seconds after the start of the application,

the digital twin starts to predict the battery heaters to be used during the task execution

roughly 23 minutes into the dataset, depicted by the black separator in Figure 5.10.

The runtime error logs were checked 10 minutes into the trial, carrying no entry

regarding task cancellation. However, 25 minutes into the trial, after the point in

which the digital twin starts to predict the heaters to be used during the upcoming task

execution, an entry in the error logs denotes that the digital twin cancelled the task.

The cancellation was further verified when the flight computer failed to emit beacons

when the task start time arrived.

The second trial saw a task executed before the battery heaters were used, shown in

Figure 5.11 bounded by black separators. Checking the runtime error logs 10 minutes
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FIGURE 5.11: The predicted time remaining until the battery heaters are enabled is
plotted against the actual time from the dataset used for the onboard inference. The
scheduled task executes in the region bounded by the black separators well before the
heaters are activated at the end of the dataset.

into the trial returned no entry regarding task execution. As expected, when the task

start time arrived, it was verified to have been successfully executed by sighting the

beacons emitted from the flight computer.

The same task execution time used for the first trial was repeated with the third

trial, with an alteration to the battery capacity remaining. The runtime error logs were

checked 10 minutes into the trial, showing no entry regarding task cancellation. Similar

to trial one, the error logs were again checked 25 minutes into the trial. Unlike trial one,

the error logs still contained no entry regarding task cancellation. When the task start

time arrived, it was verified to have been successfully executed by sighting the beacons

emitted from the flight computer.

From the three trials performed, the onboard digital twin successfully identified

when limited power resources required prioritisation of the mission-critical battery
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heaters. As expected, the first trial showed a cancelled task when the heaters were to be

enabled during task execution and the battery capacity was lower than 50%. Trials two

and three allowed the task to be run, in the former due to the heaters not being required

simultaneously and the latter when the digital twin was informed there was sufficient

battery capacity to handle the increased load. Having demonstrated robustness in

autonomous operations on the spacecraft hardware, the developed digital twin will be

deployed on the Binar-2, 3 and 4 satellites to demonstrate on-orbit operations.

This experiment also demonstrated the portability of the developed digital twin

platform. The host-verified platform was successfully ported to hardware by develop-

ing an OpenAMP backend for the abstracted ChannelIO object, allowing the onboard

digital twin client and server to run on independent cores within the flight computer

package. A platform to facilitate data replay from a lookup table was developed to

simplify the onboard digital twin demonstration. The immediate observed benefit of

this platform is the granular control over what system peripherals are reading at any

given time. While allowing repeatable constrained testing of the digital twin logic

under varying scenarios, it also highlights the ability to inject faults into the flight logic

to test the response. During the experimental set-up, the proposed implementation of

the battery heaters usage prediction in the flight logic was amended from the future

work section in Chapter 4. The amendment added a requirement for the onboard

digital twin to check the future battery capacity when the task is to be started. The extra

check refines the suggestions proposed by the onboard digital twin concerning task

cancellation and demonstrated the extensibility of the developed digital twin platform.

New inferences can be added with minimal effort and collated in custom inference

chains. As the server and client are decoupled, procedure implementations on the

server can be changed independently of the client. This means that the digital twin

server can be updated without affecting the digital twin client as long as the server

implementation accepts the same inputs and returns the same outputs. Consequently,

the application software hosting the digital twin client can interact with the updated

digital twin server, regardless of the server’s version. When the digital twin server

and client exist in separate firmware, the client firmware can interact with the updated

server firmware without also requiring a firmware update. This provides flexibility
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in updating and using the digital twin system. In the context of a spacecraft on orbit,

the digital twin server firmware can be upgraded and interacted with without risky

firmware upgrades to the flight software that hosts the digital twin client.

5.4. MACHINE LEARNING ON A CONSTRAINED PLATFORM

5.4.1. METHODOLOGY

As the RPC network implemented for communication with the digital twin abstracts

the actual implementation of a procedure from the calling code, the backend can be

modularly swapped out without impacting the rest of the software. This enables the

fidelity of simulations to be updated easily. An ML approach can offer higher accuracy

in predictions over the conventional modelling used in Section 5.3.1. This is due to ML

excelling in detecting hidden insights in large amounts of data, learning from them,

and performing reliable predictions on unseen data [162]. However, an area where

the ML approach falls short of conventional modelling is commonly due to its large

computational footprint and, as an extension, ability to run closer to the sensor at the

edge. Computational requirements for trained model inference conflict with the limited

resources available on edge devices, primarily power, CPU cycles and storage space

[163]. Due to this, traditionally, data from edge devices would need to be transmitted

from the device to be processed elsewhere where computational constraints are not

an issue [163]. The requirement for remote processing severely worsens latency on

performing inference [164]. When operating in a communications-limited environment,

such as in a space application, the latency introduced by processing being done remotely

from the spacecraft may be detrimental to a mission. The exponentially increasing

global adoption of the Internet of Things (IoT) has led to huge amounts of data being

collected that could benefit from computation close to the sensor when performing

inference [165][164][163]. This is because IoT devices, while capable of generating huge

amounts of data, typically have small memory banks and limited computing power

[165]. As more data-generating devices are added to the IoT, requiring offloading of

inference can worsen latency and cost issues [164], impacting the device’s functionality.
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Hence, efforts have been made in recent years to bring ML to the edge to perform

inferencing closer to the sensor [164]. The ability to perform onboard inference close to

the data sources on edge devices can remove the latency issues traditionally associated

with data transmission for remote ML inference. However, it is important to note that

the microprocessors often enabling edge devices are limited by a severely reduced clock

speed compared to desktop computers and servers that traditionally perform model

inferencing. Hence, with the ML at the edge approach, the model’s complexity and the

dataset’s size can noticeably impact performance due to the instruction throughput of

the edge device. Therefore, it is essential to evaluate the applicability of the edge device

for applications with real-time requirements that may need to process data quickly. A

simplified ML or standard computational model may be more appropriate in these

situations.

TensorFlow, a popular open-source software library for training ML models, recently

added support to run ML models on highly memory-constrained platforms. Tensor-

Flow Lite for Microcontrollers (TFLM) does not require operating system support,

standard libraries, or dynamic memory allocation [166], showing high applicability

for inclusion on the spacecraft flight computer. With this technology, the digital twin

backend for predicting the time remaining until the battery heaters are enabled was

swapped out in favour of an ML approach. This enables a demonstration of the digi-

tal twin modularity and explores if the computationally constrained spacecraft flight

computer can perform onboard ML inference.

The first stage in developing an ML model is procuring a training dataset. The

same dataset used in Section 5.3 from the thermal vacuum experimentation at ANU

was again used. The temperature data internal and external to the spacecraft during

the six cold swings were divided into training, validation and testing groups. The

training and validation dataset was shuffled, and a random selection of 15% of the

data points contributing to the first five cold swings was reserved to verify the model.

The remaining 75% were used for training. The data points from the sixth cold swing

were reserved for testing the trained model. A correlation table (Figure 5.12) shows the

relationships between features in the training dataset.

The candidate acknowledges the potential limitations in the validation dataset’s
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FIGURE 5.12: A correlation matrix showing relationships between all sensor recordings
in the training dataset.
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robustness. The thermal cycles observed in this dataset may exhibit similar behaviours

to the calibration dataset, which could result in the validation dataset not being entirely

independent of the calibration dataset. It is important to stress, however, that the

primary objective of this experiment is not to achieve the highest possible accuracy

in training the machine learning model using this dataset. Instead, the main goal is

to demonstrate a proof of concept of performing machine learning model inference

on memory-constrained computers under challenging conditions. It is worth noting

that more reliable and diverse data will be collected during the Binar 2, 3, and 4

missions. This future data will provide an opportunity to train a model with a more

extensive and representative dataset, enhancing the model’s accuracy and performance.

Therefore, the results obtained from this initial experiment, while not perfect, serve as

a valuable starting point and a proof of concept for the broader mission to improve

model performance in the future.

The four external solar panel surface temperatures are highly correlated, as expected,

as they received the same thermal input. The correlation between all solar panel surface

temperatures and the temperature of the heaters for batteries one and two are consis-

tently 90%. However, the correlation between all solar panel surface temperatures and

the temperature of the heaters for batteries three and four have the lowest correlation,

fluctuating between 86% and 87%. Identifying this lower correlation shows strength

in the ML approach, where conventional modelling may fail to appropriately adjust

the weighting assigned to the data being contributed from these sensors. The reduced

correlation between the external temperatures on the solar cells and the temperatures

recorded at the third and fourth batteries could be due to the thermal insulation not

being consistent in the battery compartment of the spacecraft. Thus, an ML approach

can help compensate for inhomogeneity in the spacecraft’s construction. As mentioned

in Section 5.2.1, the contents of the messages being transferred by the RPC service can

be modified easily to support increased complexity. To make use of variable weightings

for all sensor axes, the temperature message transferred to the digital twin server as

part of the battery heaters usage prediction request was updated from internal and

external averages to all six onboard temperature sensors.

To design TFLM to be lightweight enough to run on memory-constrained devices,
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only a subset of the full Tensorflow framework is supported. This limitation is a trade-

off between model complexity and runtime efficiency. Whilst a variety of common

model types are supported, such as Neural Networks (NN), features required by more

specialised models may not be supported. If the original model to be converted for

TFLM support requires features that are not available, model rework will be required

to find equivalent operations that are supported. In some situations, this may require

replacing one non-supported operation with a combination of supported operations.

These substitutions may add complexity to the model, increasing the time required to

perform an inference, and increasing the overall size, limiting the remaining space on

the memory-constrained device for other models. Hence, the supported operations

currently limit this approach to ML inferencing at the edge.

With the limitations of both the computational power of the edge device and the

operation support of the TFLM framework, simplifications were made for model

development to reduce complexity and increase the likelihood of performing useful

inferencing at the edge. Hence, a relatively simple feedforward neural network with

four dense layers was chosen for the ML application. The input layer is a normalisation

layer, which takes in the six temperature sensor features and preprocesses them before

they enter the NN. This layer was added to the model to standardise the input features

for stable and efficient training. The first hidden layer takes in six normalised values.

The layer comprises 16 neurons and uses the Rectified Linear Unit (ReLU) activation

function. This activation function was chosen due to its commonality in NN, support in

TFLM, and ability to learn complex non-linear patterns in the data. It outputs 16 values.

The second hidden layer also comprises 16 neurons and uses the ReLU activation

function. This layer accepts 16 values from the previous layer and also outputs 16. The

second layer was added to better account for the non-linearity of the relationship being

modelled. The output layer consists of a single neuron and no activation function. The

layer accepts the 16 values from the second hidden layer and uses them to produce a

single output value representing the estimated time remaining until the battery heaters

are enabled. An Adam optimiser with a mean squared error loss function was used

for model training. Each additional layer and the number of neurons added to the

model increases the model’s complexity, correlating to increased inference time and
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resource usage on the edge device. The chosen simplified model architecture allows

for some compensation for the non-linearity of the relationship being modelled whilst

remaining modest with system resource usage. The model’s accuracy would benefit

from increased model depth or using more neurons on each layer. However, the

corresponding model complexity may have resulted in the model being unfeasible

to run onboard a memory-constrained platform. Training the resulting model using

TensorFlow with a batch size of 64 over 500 epochs, the model reached a loss error of

roughly 41 seconds on both the training and validation datasets, as shown in Figure

5.13.

5.4.2. RESULTS AND DISCUSSION

The trained model was tasked with making predictions of the time remaining until

the battery heaters are enabled using the reserved testing dataset from the sixth cold

swing recorded in the Wombat thermal vacuum chamber. Figure 5.14 shows the

accuracy of the model inference plotted with the actual time remaining until heaters

were enabled, where theaters on refers to the time until the heaters are enabled, Tenable

refers to the enable temperature of the battery heaters, and Ti refers to the average

internal temperature of the spacecraft measured at the batteries. The linear model

produced from Chapter 4 is also included for comparison.

The trained model has a much higher prediction accuracy than the developed linear

model. With the TensorFlow model showing a big improvement in accuracy over the

initially developed linear model, it was converted to a TFLM model for validation on

the flight computer. X-CUBE-AI, a software package developed by STMicroelectronics,

was used to convert the TFLM model into C code to be integrated into the BSF. The

microcontroller-ready library requires 17.46 KiB of Flash memory, equating to roughly

1.7% of the available 1024 KiB reserved for the digital twin. This is a significant

increase over the 0.71 KiB required for the previous conventional modelling approach.

During runtime, the library requires 2.59 KiB of RAM, equating to roughly 0.37% of the

available 704 KiB reserved for the digital twin. The modest requirements for system

resources demonstrate that the learned model can be deployed on the computationally
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(A) A comparison between the training and validation loss during model learning.
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(B) A zoom of the loss function, showing the rate of change of loss decreasing with increasing
epochs. The loss curve does not show clear signs of a plateau, meaning a slight decrease in loss
may be achieved with more epochs.

FIGURE 5.13: A comparison between the training and validation loss during model
learning. The loss from the training and validation sets is shown to initially be
consistent before beginning to diverge as the epochs increase. A slight decrease in
loss may be achieved with more training time; however, the achieved sub-one-minute
prediction error is deemed acceptable for this demonstration.
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FIGURE 5.14: Inference from the trained ML model of the time remaining until the
spacecraft battery heaters are enabled plotted against the recorded data from the sixth
cold swing in the Wombat XL. The linear predictive model developed in Chapter 4 is
included to compare accuracy.

constrained platform without encroaching on the system peripherals required for

flight logic operation. The testing dataset comprising the sixth cold swing done at the

Wombat thermal vacuum chamber was again used for validation on the spacecraft

flight computer. The average time required to perform an inference using the trained

model was 0.012 ms in comparison to 0.00535 ms for the linear model. The conversion

process introduces negligible discrepancy in inference compared to the TensorFlow

model, shown in Figure 5.15.

During the conversion stage, trained models can be compressed to reduce Flash

usage. Compressed, the generated library requires 16.38 KiB, reducing 1.08 KiB in Flash

usage. RAM requirements and average inference time are unaffected. Compressing the

model, however, introduces a higher error margin, shown in Figure 5.16. Inferences

on the dataset using the desktop TensorFlow model and both compressed and un-

compressed onboard models are plotted together in Figure 5.17 as a comparison. The

error between the uncompressed onboard model inference and the desktop TensorFlow

inference is negligible. In contrast, the compressed model adds a noticeable error
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FIGURE 5.15: Percentage error discrepancy between inferences performed on desktop
and the spacecraft hardware. The error is negligible throughout the useful range of
the model, with an increase in error as the enable temperature is approached.

margin, underpredicting the time remaining till the heaters enable for the majority of

the test dataset. Table 5.3 provides a comparison of the system resource requirements

for the linear, compressed, and uncompressed ML models.

The developed onboard digital twin platform has been shown to support modular

inference upgrades by implementing an ML backend for the battery heaters usage

prediction without requiring any modifications to the flight software hosting the digital

twin client. Using TensorFlow, training the regression model using the same dataset

TABLE 5.3: A comparison of the system resource requirements for performing battery
heater usage prediction onboard the spacecraft against the reserved testing dataset.

Model
Flash
Size
(KiB)

Average
Inference
Time (ms)

Average
RMS

Error (s)

Linear 0.71 0.00535 70.15
ML Uncompressed 17.46 0.012 21.39

ML Compressed 16.38 0.012 56.96
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FIGURE 5.16: Percentage error discrepancy between inferences performed on desktop
and the spacecraft hardware with the compressed model. The error is significantly
higher than Figure 5.15.
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FIGURE 5.17: A comparison between inference accuracy made on the desktop, onboard
using the uncompressed model, and onboard using the compressed model. The
inferences from the uncompressed model have negligible error in comparison to the
desktop model. Noticeable errors are present in the compressed model.
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used for developing the conventional linear model from Chapter 4 offers a direct

comparison in accuracy, resource usage and inference speed. It was observed through

the correlation matrix data analysis that the two internal battery heaters had differing

correlations with the temperature on the external faces of the spacecraft. The correlation

between all solar panel surface temperatures and the temperature of the heaters for

batteries three and four showed an average 86.5% correlation, as opposed to a 90%

correlation for batteries one and two. The reduced correlation could be caused by

inhomogeneity in the thermal conduction of the spacecraft structure. This highlights

an advantage of using an ML approach. Training an ML model with knowledge

of this correlation can allow it to adjust the weights applied to data on that sensor

axis, compensating for the nonlinearity in the system. Comparing the inferences

performed by the TensorFlow model and the linear model on the host machine showed

a higher accuracy in the prediction of the usage of the battery heaters using the trained

TensorFlow model, achieving an average error of roughly 41 seconds. From the plot

of training and validation loss, it is expected that a higher accuracy could be achieved

by allowing the training to run over more epochs. However, the scope of this section

was to demonstrate the feasibility of performing inference of a trained ML model on

the spacecraft hardware; hence, the achieved error is deemed satisfactory. In preparing

the trained model for inference on a microcontroller using TFLM, only 1.7% of the

Flash space reserved for the onboard digital twin was required. Whilst requiring

more system resources than the conventional modelling approach, the still-modest

requirements show that the flight computer can support multiple trained models for

onboard inference using the digital twin platform. Performing an inference was found

to take over twice the time required for an inference using the linear model. However,

it is important to note that the trained model offers significant benefits over the linear

model in terms of accuracy, making the increase in inference time a reasonable trade-

off. When the digital twin platform is extended to add further onboard inferences,

including from ML, model compression is available to reduce Flash usage at the expense

of accuracy. It is acknowledged that the model may be overfitting the trained data

due to the small scope of the dataset used. The model is expected to predict the time

remaining until the battery heaters enable with high accuracy when used in the Wombat

thermal vacuum chamber but may have less accuracy in a general environment. The
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achieved accuracy is deemed acceptable for this demonstration however, as this section

aimed to discover if the computationally constrained computer used on the BCM can

perform onboard ML inference. Moreover, from an analysis of an open source dataset

comprising four 1U CubeSats in an International Space Station deployed orbit, the

thermal fluctuation is seen to be predictably consistent [167]. Thus, an ML model

trained from on-orbit data is expected to accurately perform useful inferences when

exposed to similar orbital environments in future missions.

5.5. CONCLUSIONS AND FUTURE WORK

With the continually increasing complexity of spacecraft systems, the data collected by

onboard sensors is growing exponentially. The burden on communications, and as a

result, the EPS, to downlink this data can have negative consequences on spacecraft

operations. Moreover, expecting ground operators to identify faults in the large data

volumes collected can lead to undetected faults. Compensating for this, FDIR routines

are adapting to advanced approaches that extend beyond a reactionary dump into

safe mode toward attempting to verify faults through model-based inferences. In

recent years, work in this field has been brought closer to the edge, accelerated by

the requirements of the growing IoT industry. However, more work needs to be done

in the literature on developing FDIR routines capable of predicting and preventing

faults in advance. Where this topic has been researched, it has only been trialled

on offline simulations. This chapter aimed to address the gap in the literature for

developing intelligent predictive algorithms to be used by FDIR routines for fault

prediction capable of running onboard spacecraft hardware. It demonstrated through

experimentation that the resource-constrained flight computer enabling the BCM could

perform onboard inference with the digital twin platform. This capability onboard

a spacecraft is essential for achieving higher levels of autonomy and is necessary for

spacecraft operating in a communications-limited environment.

Development of the digital twin platform saw a strong focus on breaking depen-

dency on hardware. This was achieved by implementing an RPC approach, adopting a

separate server and client for performing remote inferences. An application-specific



Chapter 5 STUART ROBERT GIBSON BUCHAN 265

ChannelIO object implemented the communication between the server and the client.

As this is the only area that requires knowledge of the platform the digital twin is

running on, the developed library supports portability across various system archi-

tectures. Moreover, this implementation made it possible to develop the digital twin

under TDD principles by making fake ChannelIO implementations that allow for direct

manipulation of transferred buffers. The granular testability proved the platform’s

robustness, which was necessary as the intention is for the flight computer to use it

for autonomous fault prediction. After the digital twin platform was developed, it

was ported to the spacecraft hardware by providing a communication implementation

between the two cores on the flight computer.

The design decision to adopt a client/server model for the digital twin platform

provides flexibility in upgrading the inference backend. As the digital twin client and

server run in separate firmware onboard the flight computer, the digital twin server

firmware can be updated without necessitating the same for the digital twin client. This

allows the inference models running on the digital twin server to be updated using

on orbit data collected for a mission without the risk of breaking flight application

software. The robustness of the novel design will assist in iteratively developing the

digital twin platform on the Binar-2, 3 and 4 satellites on orbit with low risk.

A data replay backend for the objects abstracting the hardware from the applica-

tion code was created to test the reliability of the onboard digital twin platform. This

backend offered a repeatable way to perform HITL testing of the digital twin imple-

mentation with varying starting conditions. The data selected for the HITL testing was

taken from the sixth cold swing of the thermal vacuum experiment done at ANU. The

conditions for the flight logic to preventatively cancel a task were required to be having

the battery heaters used during task execution, as well as the future battery capacity

prediction to drop below 50%. From the three trials performed, the onboard digital

twin platform was shown to reliably detect a potential future fault and recover from

it when required. The developed platform contributes to the research field concerned

with implementing and using intelligent predictive algorithms able to run onboard

spacecraft hardware to prevent faults on orbit.

The modularity of the developed digital twin platform was shown to support
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upgrades to the inference engine without impacting the flight logic core. This was

demonstrated by updating the conventional linear model used for the battery heaters

usage prediction to an NN trained on the same dataset collected at ANU. Using the

same dataset as the conventional linear model enabled a direct comparison of the

accuracy of the inferences. Transferring the trained NN onto the flight computer

showed it only required a modest amount of resources. Performing inferencing using

the reserved testing set (the sixth cold swing recorded at ANU) showed that the trained

model had a higher prediction accuracy than the conventional modelling. This shows

the improvements that could be achieved for spacecraft autonomy by combining the

digital twin platform with onboard inferencing of training machine learning models.

From converting pre-trained machine learning models to software compiled into

program memory, it was evident that a significant increase in system resources was

required over a conventional modelling approach. Whilst the model trained for demon-

stration in this chapter only used 1.7% of the Flash memory allocated for the onboard

digital twin implementation, a more complex model is expected to require more system

resources. With the digital twin platform anticipated to grow to support multiple

onboard trained model inferencing, Flash space may become constrained. The use of

model compression was explored at the expense of inference accuracy. The possibility

of storing trained models in the onboard storage (OBS) will be explored to circumvent

this issue. Whilst the microcontroller core hosting the digital twin client is limited to

1024 KiB, the OBS implemented on the BCM has 1 Gbit of Flash storage, with footprint

compatible support for a 2 Gbit replacement. The larger storage potential will signifi-

cantly increase the number of trained model inferences possible onboard the spacecraft

without sacrificing accuracy.

With the extensibility of the developed digital twin platform demonstrated, the

scope of onboard inferences can grow with minimal effort to support mission require-

ments. One such application to be explored in future work is the development of

a digital twin module that uses Deep Reinforcement Learning (DRL). The machine

learning case study explored in this chapter is inherently a regression problem. Specifi-

cally, the input data from the onboard temperature sensors can be consistently mapped

to the output, representing the time remaining until the battery heaters are enabled,
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and this relationship is unlikely to change. However, in the harsh environment of

space, often spacecraft systems are dynamically changing, along with the faults that

plague them. The ability to update policies for handling dynamically changing faults

requires a model to explore the problem space and learn from successes and failures.

Deep Reinforcement Learning (DRL) merges deep neural networks and reinforcement

learning to enable automatic feature learning and end-to-end problem-solving. DRL

empowers models to explore and learn from successes and failures, reducing the need

for extensive domain knowledge. This results in more flexible and adaptable models

[168].

Recent literature has shown increasing interest in the potential application of DRL

to the space domain, often used for mission planning and resource utilisation. Furfaro

et al. explore the application of DRL in the context of spacecraft guidance [169]. Their

study investigated the development of an adaptive guidance algorithm for spacecraft

performing soft landings autonomously. The contribution of their work demonstrates

the potential of DRL techniques in enhancing spacecraft autonomy. More specifically,

the adaptive guidance algorithm developed in their study demonstrates the capacity

of DRL to enhance spacecraft operations by accommodating dynamic constraints and

optimising fuel consumption during the descent phase of missions. Through DRL,

their approach finds that spacecraft can better adapt to changing conditions and envi-

ronmental variables, making them more self-sufficient in achieving successful landings.

Harris et al. present an innovative approach to addressing complex spacecraft decision-

making problems using DRL techniques by formulating them as Partially Observable

Markov Decision Processes (POMDPs) [170]. The study investigates autonomous or-

bital insertion and station keeping in offline simulations, demonstrating the versatility

of the proposed DRL framework in addressing different aspects of spacecraft control.

The research shows that the DRL-based agent outperformed expert-designed poli-

cies in both scenarios, demonstrating promise for the potential of DRL for spacecraft

autonomy.

Similarly, DRL algorithms have been used to optimise scheduling and task assign-

ment for multiple simulated satellites in LEO [171]. Notably, DRL approaches have led

to the development of spacecraft attitude controllers that surpass industry-standard
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pointing accuracy in simulation environments [172]. Furthermore, the applicability of

DRL-based methods to the complex task of mapping and navigation around small, un-

known celestial bodies has been discussed, offering potential solutions for future space

exploration challenges [173]. Whilst shown to be feasibly deployed on flight-suitable

hardware [174], it is extremely common to see the application of DRL in the literature

to be limited to offline simulations, in part due to the computational constraints of

spacecraft hardware [173]. Whereas the NN discussed in this chapter has fixed weights,

DRL models require ongoing learning and complex policies that may be beyond the

limits of modern embedded hardware to be used effectively.

Moreover, whilst mission planning and resource utilisation are common topics in the

literature for DRL applications, their applicability to FDIR routines is seldom mentioned.

It is the opinion of the candidate that this area holds the greatest potential for enhancing

a space mission. An entry into an FDIR routine due to a communications system fault,

such as a transceiver malfunction or signal interference, can be challenging to recover

from due to the dynamic nature of the failure. In such a failure, recovery options

are often context-dependent. They will vary greatly depending on the specific fault

scenario, be it adjusting transmission power, changing data compression, or attempting

data error correction. The dynamic nature of these faults would require exploration

strategies to identify the best solution. A NN, such as the one demonstrated in this

chapter, would be a poor choice for this problem as it does not inherently incorporate

exploration methods and rather is typically trained offline on a static dataset with

the learned weights and biases being fixed. In contrast, the exploration-exploitation

approach taken by a DRL agent would allow the agent to attempt different recovery

actions and learn from their outcomes. The agent will learn from past communication

fault incidents and will adapt the chosen recovery procedures to address similar issues

if they occur again in the future.

The concept of a digital twin, as discussed in this thesis, entails a virtual replica of

an engineering system unparalleled in exactitude. At the beginning of the mission,

the developed digital twin modules will meet that concept. However, throughout a

mission in a dynamic space environment, the digital twin and the physical spacecraft

can likely diverge in similitude. The result will be more akin to an ’ideal’ digital
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twin platform that is unable to provide useful feedback to the physical spacecraft,

especially during FDIR routines, as the models statically assume perfect spacecraft

health. A digital twin module running a DRL agent can adapt its policy based on

real-time data and unpredictable situations as the spacecraft ages on orbit, allowing

for a twin with exacting similitude for the full mission lifecycle. As the technology

for utilising machine learning at the edge continues to develop rapidly, it is expected

that the modest hardware powering small spacecraft will become capable of using

embedded DRL models. Future work will deploy DRL-based FDIR routines on small

spacecraft using the candidate’s digital twin framework.

Alongside inferences that prevent faults on orbit, the digital twin platform can

also be extended to provide lost value estimation. Part of the inference chain used

in this chapter provided predictions on the usage of spacecraft battery heaters using

thermal sensor data. However, in the hostile space environment, spacecraft sensors

can fail. Whilst redundancy is an option, it may only be possible on some sensors

due to the small form factor of the CubeSat. Guo et al. proposed a solution to this

problem using the Space Shuttle Main Engine. As a novel approach, system data was

used to train an NN to understand the relationships between onboard sensors. These

relationships formed an influence sensor map to show how other measurements can

directly influence a measurement. The produced network was then used to check the

validity of sensor readings and to provide an estimated value for an identified faulty

sensor [175]. The positive results showing the approach’s feasibility were collected

from execution on the Digital Transient Model of the Space Shuttle Main Engine [175],

rather than deploying onto target hardware.

Similarly, the feasibility of lost value estimation was again demonstrated by the

recovery of a joint angle from a simulation of a robotic manipulator on-orbit [176]. Lost

value estimation, however, has yet to be demonstrated on orbit for mission recovery.

The real-time capabilities of the flight computer selected for the BCM provide a platform

to extend this research. An interrupt-driven failure detection approach can be used

to identify faulty sensor readings, simplifying the process implemented by Guo et

al. by removing the need to perform onboard inference at this stage. Using sensor

readings from Binar 2, 3 and 4 on orbit, nominal operation ranges for sensor readings
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can be understood from statistical analysis to invoke a recovery interrupt when the

readings stray from this range. The interrupts triggered from a faulty reading can

polymorphically substitute a replacement object for the backend of a sensor at runtime

to instead invoke the digital twin client to estimate a correct value for the sensor on

orbit for recovery.

Extending on this concept, virtual sensors can be included onboard the spacecraft,

’sampled’ using the onboard digital twin platform. This appeals to small form factors

that may not have enough peripheral resources to include extra sensors or where sensor

placement is deemed too difficult. An application on the Binar CubeSat platform is

temperature estimation at the magnetorquer coils. As the torque produced by the

magnetorquer coils is proportional to the current flowing through the windings, the

torque produced is inversely proportional to the resistance of the winding. This means

that the torque produced will not be constant with fluctuating temperatures on-orbit.

Including temperature sensors to compensate for this is difficult due to the placement

of the magnetorquer coils and insufficient remaining ADC channels on board. Using

an external temperature probe, an NN can be trained to understand the relationship

between the temperature at the coils and other sensors onboard the satellite. The

digital twin platform can then be extended to encompass this inference to estimate the

temperature of the coils on orbit, allowing attitude control algorithms to compensate

for it.

An onboard digital twin also shows an application for mission planning without

intervention from the ground. Two features currently in development by the candidate

for the digital twin platform are an embedded implementation of the simplified general

perturbations (SGP) model for orbital propagation and the international geomagnetic

reference field (IGRF) magnetic field prediction. These inferences allow the spacecraft

to forward propagate on-orbit and estimate the magnetic field intensity at the new

position. Chaining these inferences could aid in autonomously preparing attitude

control commands without requiring planning from the ground.

The high-performance Cortex-M7 core’s capabilities are sufficient for the current

implementation of the onboard digital twin. However, as the scale of the digital twin

platform grows, the microcontroller core’s processing throughput may start to lag with
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high-frequency complex digital twin requests. In these situations, if the frequency

of queries to the digital twin server is higher than the speed of returning a result

to the client, it could potentially result in a backlog of digital twin queries, causing

operational problems. Such a backlog could threaten a mission if the digital twin

query is part of an FDIR routine. In anticipation of these potential problems, the

digital twin RPC server was developed to be decoupled from the hardware it runs on.

Decoupling the communications channel from the RPC server allows the server to move

to multiple separate onboard microprocessors instead of the secondary flight computer

core without impacting the RPC logic. Moving toward a distributed computing system

can prevent latency issues from high-frequency complex queries. Moreover, the RPC

framework’s cross-language compatibility allows the server to be written in a different

language than the client to leverage other programming languages’ speed and efficiency

for future onboard inferences, further alleviating potential latency issues.

Accelerated by the growing global interest in IoT devices, machine learning inferenc-

ing at the edge has become possible. In the coming years, the field of edge computing

is expected to develop capabilities for on-device learning [163]. This could provide

unprecedented benefits to spacecraft autonomy, giving a satellite the tools required

to learn how it interacts with the environment it operates in whilst on orbit. When

this technology is developed, the digital twin platform can be adapted to support

self-upgrades of existing inference procedures when more data about the environment

becomes available.

A sensor data replay method was developed to provide a repeatable method for

testing the reliability of the digital twin to suggest task cancellations. Using on-orbit

sensor data collected by Binar 2, 3 and 4, the HITL simulation replays can be extended.

As flight logic continues to undergo development, on-orbit data can be replayed into

the application to verify the response. Moreover, where a failure may have occurred on

orbit, the data leading up to the failure point can be replayed on the ground engineering

model to understand the chain of events that led to system failure. This can aid in

developing robust firmware and a better understanding of how to recover from failure

when it occurs.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

The primary purpose of the work described in this thesis is to improve the reliability

of satellite missions by reducing the contribution of software to their high failure rate.

A major challenge impeding mission success, software faults were identified to exist

across the full mission lifecycle, from development to operations.

The Binar Software Framework was designed by the candidate to improve mission

success by addressing the shortcomings of previous failed space missions. An anal-

ysis of the missions identified a common failure overlap due to inadequate testing,

documentation, code review and code reuse. The reliability of the BSF was ensured

by maintaining a strict focus on these areas during development. Chapter 2 details

this development cycle, incorporating examples from the BSF. Safe code reuse was

emphasised, which involved designing software with portability through adherence to

the SOLID design principles. These principles allow for the rapid mission-concept-to-

orbit goal of the BSP to be achieved by enabling the reuse of the platform-independent

hardware abstraction layer between missions. As demonstrated in other industries,

adhering to time-tested principles leads to higher-quality software. The most frequent

cause of mission failure, however, was found to be insufficient software testing. The

BSF addresses this by promoting decoupled interfaces, enabling mocked modules to

be substituted for hardware implementations. Breaking the dependency on hardware

enabled the use of TDD principles. The importance of tests written during the TDD
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process was stressed to prevent late changes to software from causing mission failures.

Using a CI/CD platform automates the execution of unit tests before the software

is permitted to merge into the master branch, providing accountability for software

quality. Code review also ensures strict documentation standards, helping future de-

velopers understand and maintain the code base. Only approved software from the

upstream master repository was deployed onto Binar-1 to ensure error-free releases

and clear version history. The concepts explored in this work can be applied to any

small spacecraft to increase mission success and promote code reusability.

The capability of autonomy in satellites is currently being underestimated when it

comes to fault prevention. The currently adopted approach is to identify an occurring

fault, transition into a safe mode and await instructions from a ground operator. How-

ever, as missions push past LEO, the challenges associated with deep space can make

this an unacceptable risk. Moreover, the growing complexity of spacecraft systems has

led to vast amounts of data being collected by onboard sensors, making it challenging

for ground operators to identify faults. Onboard autonomy needs to adapt to advanced

approaches beyond simply reacting and dumping into safe mode, instead aiming to

predict faults through model-based inferences. The developed digital twin platform

aimed to address this gap in the literature by developing a platform in which intelligent

predictive algorithms could be used onboard the satellite for fault prediction. The

onboard digital twin platform was demonstrated using a computationally inexpensive

thermal model of the Binar-1 Cubesat and a pre-trained ML model to predict a future

fault. The results showed that the resource-constrained flight computer on the BCM

could perform onboard inferencing with the digital twin platform, successfully pre-

venting a low-power state from occurring on the satellite. This technology will become

crucial for spacecraft operating in communication-limited environments.

6.1. CONTRIBUTIONS

This work has made a significant original contribution to the field of spacecraft software

development by formulating software development recommendations based on past

mission failures, designing and implementing a CubeSat software framework (the BSF)
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that incorporates these recommendations, which has been deployed on Binar-1 and

will be deployed on the Binar-2, Binar-3 and Binar-4 spacecraft, developing and testing

new types of onboard decision-making capabilities, and leveraging machine learning

techniques on devices with limited resources.

Adopting a learning-from-incident approach to applying reliable software develop-

ment practices to satellites represents a pioneering improvement to spacecraft software

reliability. This approach generated recommendations to prevent the reoccurrence of

common mission failures due to software:

• Reuse code safely through development with attention to portability.

• Ensure software reliability through test-driven development.

• Increase code base robustness and accountability by enforcing optimal code base

maintenance.

The recommendations can be utilised to reduce software faults and increase the chances

of mission success.

According to the developed software recommendations, a custom in-house software

framework was developed for the BSP, allowing for the successful adoption of a rapid

mission-concept-to-orbit model. By developing the software libraries comprising the

framework in adherence to the SOLID principles of object-oriented programming, the

safe reusability of the codebase is guaranteed through portability and extensibility.

This approach has facilitated the BSP to quickly progress with the development of the

Binar-2, 3 and 4 satellites. The modularity achieved from decoupling software modules

from hardware has enabled the BSF to be developed using test-driven development

ideology, increasing the reliability of the codebase. Moreover, the custom CI/CD

pipeline automates building, testing, documentation and review on every commit,

ensuring that the code which programs the Binar spacecraft has accountability.

The thesis advances spacecraft autonomy by exploring its benefits beyond nav-

igation and payload optimisation, representing a significant advancement in small

satellite software development. The developed novel onboard digital twin platform
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demonstrates the feasibility of using onboard autonomy for fault prevention. Through

a unique modelling approach, the battery heating system usage on Binar-1 was simu-

lated on the memory-constrained flight computer to predict critical low-power failures

in advance. Other CubeSat groups can follow this approach to produce models capable

of running on the memory-constrained flight computers enabling their missions to

prevent faults during operations through onboard prediction. Furthermore, the digital

twin platform was expanded to pioneer trained machine learning inferencing onboard

the spacecraft for fault prevention. The results showing that the flight logic could

autonomously use the digital twin platform to chain available inferences to predict an

upcoming fault provides the groundwork for future research in this area, significantly

improving the reliability and success of satellite missions.

6.2. FUTURE WORK

The contributions of this thesis lay the foundation for expanding the boundaries of

satellite autonomy and resilience, paving the way for a new era of reliable and fault-

tolerant space missions. Further work can be done to improve the effectiveness of the

onboard digital twin and refine the software framework.

The findings from this research are partially limited due to the on-orbit performance

of Binar-1. A hardware fault on the CubeSat prevented some of the on-orbit benefits of

adopting the proposed software recommendations from being validated. The software

framework will be deployed on Binar-2, 3 and 4, and the findings from adopting reliable

software development practices will be disseminated to the community.

Future work on the BSF will see the codebase maintained to support future missions

from the Binar Space Program. The strong modularity achieved from adherence to

SOLID design principles enables the flight software to be decoupled from the hardware

it runs on. Together with the data replay system developed for feeding recorded data

into peripheral objects, a functional simulator of the Binar CubeSat platform will be

developed. Platform simulation on a host machine will give ground operations a

deeper insight into how the Binar CubeSat will respond to failures encountered on
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orbit. Host simulation will also provide a medium to verify the developed digital twin

platform for fault prediction without requiring hardware.

Some apprehension still exists in the community about relinquishing control over

the mission operations plan to autonomous software. CubeSats have been identified as

a risk-accessible platform to trial advanced autonomy concepts before deployment on

larger missions. The onboard digital twin platform, verified in a lab-based environment,

will be tested on-orbit onboard Binar-2, 3 and 4. The efficacy of having a digital twin

platform running onboard a memory-constrained CubeSat flight computer capable

of predicting faults and suggesting changes to the mission operations plan will be

disseminated to the community. The propositions for the application of autonomy

presented in this thesis aim to increase community acceptance of relinquishing control

over spacecraft operations to onboard autonomy.

Unmodelled factors in the computationally inexpensive models created were found

to have caused an inconsistent error during experimental inferencing. Whilst these er-

rors were addressed through implementing onboard machine learning inferencing, the

increased accuracy comes with using more system resources. Further on-orbit testing,

therefore, will contribute to the refinement of using computationally inexpensive mod-

elling, potentially compensating for unmodelled factors without requiring increased

system resources. Alongside this, on-orbit data will be collected for further testing

of the capabilities of the CubeSat platform for onboard machine learning inferencing.

With growing demand from the IoT industry, memory-constrained machine learning

has gained traction and is being brought closer to the edge. However, further research

is still needed to use this technology to develop FDIR routines that can predict and

prevent faults in advance.

The digital twin platform was developed with a focus on extensibility. The scope of

onboard inferences can grow with minimal effort to support future mission require-

ments. Short-term additions to the digital twin platform will see orbit propagation

and magnetic field estimation available onboard. These tools will assist with the au-

tonomous preparation of attitude control commands to meet mission goals without

requiring planning from the ground. Further future work will see available inferences

extend beyond this to satisfy the requirements of interplanetary missions.
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This thesis applied the digital twin platform as a tool for fault prevention. Beyond

this, however, other capabilities are apparent for having a virtual model of the space-

craft available onboard. One such application could be for lost value estimation. In

the harsh conditions of space, onboard sensors can fail. The conventional approach to

compensate for this is hardware redundancy. However, the small CubeSat form factor

may make this unfeasible for every sensor onboard. The digital twin platform can

be extended to create an ’influence sensor map’ detailing how sensor measurements

onboard the spacecraft are correlated. Using an interrupt-driven failure detection

approach for identifying faulty sensor readings, the digital twin ’influence sensor map’

can substitute approximate sensor values. This technology can aid in extending a

mission’s lifetime when components start to degrade. As an extension, virtual sensors

can be included onboard the spacecraft, ’sampled’ using the digital twin platform.

Through experimentation on the ground, sensors onboard the spacecraft can be corre-

lated with external sensors placed at desired locations around the spacecraft. Models

created from the correlations can then be integrated into the digital twin platform. This

application immensely benefits small satellite form factors that may not be able to

include a physical sensor due to sampling constraints or difficulty in placement.

Alongside flexibility in upgrading the inference backend, the design decision to

implement the digital twin platform using a client/server approach decouples the

client and server from needing to run on the same computer. As the digital twin

server’s requirements grow in complexity, the server can be ported to other processors

to leverage their speed and efficiency for future Binar missions. A successful port of this

would be a precursor to adopting the digital twin platform on larger-scale spacecraft.

In a demonstration of the application of the digital twin platform, this thesis exper-

imented with onboard ML inferencing. The next barrier for this technology will be

performing ML training onboard the spacecraft without intervention from the ground.

The separation between the digital twin client and the digital twin server aids in tri-

alling this technology without the risk of impacting flight logic. Having this capability

onboard a spacecraft is paramount for fault prevention. It would allow the spacecraft to

adapt to changing environmental conditions. In Earth’s orbit, solar weather increases

atmospheric drag, resulting in an accelerated orbital decay [177]. A spacecraft flying
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an orbital propagator might start to stray in similitude to propagation simulations if it

does not account for the influence of solar weather. Onboard ML training capabilities

can help compensate for changes in the orbital environment. As a secondary payload

on a mission, the injected orbit of a CubeSat may often have some deviation from

what was expected. In the coming years, CubeSats will more commonly be placed

into lunar orbit. Lunar mascons are known to degrade satellite orbits. Suppose a

secondary payload CubeSat is injected into an unstable orbit. In that case, onboard ML

training can be leveraged to learn more about the orbit, contributing to autonomous

mission planning to meet mission objectives effectively. The digital twin platform can

be extended to support self-upgrades of existing inference procedures when more data

about the spacecraft’s environment becomes available.

6.3. FINAL REMARKS

In conclusion, the thesis offers a solution to the high failure rate of spacecraft software

by introducing reliable software development practices to flight software demonstrated

on a CubeSat and proposing the development of an onboard digital twin capable of

predicting and preventing faults during mission operations. These contributions aim

to ensure the success and longevity of space missions and contribute to the field of

space systems engineering. The results of this study demonstrate the viability of a

cutting-edge approach to satellite autonomy and resilience, with practical applications

that can revolutionise the space industry. As this field continues to evolve, the insights

and innovations presented in this thesis will undoubtedly play a pivotal role in shaping

its future trajectory.
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APPENDIX A

TECHNICAL SOFTWARE DETAILS

This appendix contains the technical details of a selection of software libraries devel-

oped for the Binar Software Framework. The modules outlined in the subsequent

sections are entirely original works and constitute a significant portion of the overall

efforts undertaken as part of this PhD.

A.1. TECHNICAL DETAILS OF THE GPIO LIBRARY

The GPIO library in the BSF abstracts the interaction between the flight computer

and hardware digital signals. It provides two main objects for controlling inputs and

outputs: GPI and GPO.

The GPI object provides the ”IsHigh” method to poll the pin the templated deriva-

tion observes, checking for a voltage above the internal reference threshold. The GPO

object provides three methods for controlling the hardware output pin:

• ”SetLow”: sinks the pin to ground

• ”Toggle”: inverts the existing state of the object

• ”SetHigh”: pulls the pin to 3.3V
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bsp::PWMInterface

+ SetDutyCycle()
+ Stop()

bsp::PWM< pin >

+ SetDutyCycle()
+ Stop()

FIGURE A.1.1: A UML representation of the PWM object from the GPIO library. The
PWM object is templated on the magnetorquer control pins.

GPOs can also provide controlling signals when configured in pulse width modula-

tion (PWM) mode. The PWM object in the GPIO library (Figure A.1.1) provides this

functionality. Through the ”SetDutyCycle” method, the application code can configure

the duration for which the output PWM signal is high. This signal will constantly

output until the ”Stop” method is called, or the PWM object goes out of scope. On

Binar-1, PWM outputs were used for controlling the magnetorquers.

A.2. TECHNICAL DETAILS OF THE ANALOG LIBRARY

The Analog library abstracts how the flight computer samples voltages using its ADC.

It provides the high-level Analog module for achieving this. The Analog module

uses three internal objects to collate the relevant information: AnalogVoltageReader,

AnalogCurrentReader, and AnalogTemperatureReader.

The public-facing AnalogVoltageReader object inherits and implements the same

interface as the implementation object that it privately aggregates. The implementa-

tion object privately aggregates the four system voltages to be read; battery voltage

(power vbat ), X-axis solar panel voltage (power solar panel xx ), Y-axis solar panel

voltage (power solar panel yy ), and 3V3 regulated voltage (power 3v3 ). Each object

implements the templated Analog object, providing the abstraction over their analog
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R
1

R
2

Vin

Analog Input

FIGURE A.2.1: A resistor divider circuit, ubiquitous on the BCM. It scales the voltage
to be sampled into an accessible range by the flight computer.

inputs. Calling GetVoltage on these objects calls the internal ”GetRaw” method to

perform the hardware sampling, returning a 16-bit integer.

As voltages on the flight computer can only be sampled under the reference voltage

of 3.3 V, most analog inputs must first be scaled using a resistor divider network shown

in Figure A.2.1.

The voltage read at the analog input pin is scaled from the input voltage, Vin, by

Equation A.2.1:

Vanalog input “ Vin ˚
R2

R1 `R2
(A.2.1)

The analog voltage at the input pin is then compared against the reference voltage

of 3.3 V. With a resolution of 16 bits, the resultant raw integer value from the ADC

will then be within the range of 0 to 65,534, mapping to 0 V to 3.3 V. As the various

templated Analog objects possess different resistor values for their respective divider

networks, the objects encapsulate the values of the resistors required to convert the

raw reading into a floating point voltage to be used in application code. Encapsulating

the resistor values within the implementation objects enables conversion methods to

be easily updated with developing hardware. Calling ”GetVoltages” on the Analog-
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VoltageReader implementation object will call the ”GetVoltage” method on all private

templated objects, constructing the returns into a data structure for application code.

The AnalogCurrentReader and AnalogTemperatureReader objects follow the same

structure as the AnalogVoltageReader object, adding a further conversion step to

convert the read voltage value into the expected units. This extra step is done by the

respective templated implementations using equations from the sensor data sheets.

Abstracting this conversion within the templated implementations allows the sensors

that sample the inputs to be updated without impacting the application code.

A.3. TECHNICAL DETAILS OF THE INTERRUPT LIBRARY

The Interrupt library is used in the BSF to provide custom ISRs abstracted from the

processor-specific interrupt system. Interrupt inputs are enabled during the hardware

configuration stage of the software development. When enabled for an input channel,

the generated hardware abstraction layer for the STMicroelectronics microcontroller

creates grouped callback functions tagged with a weak attribute symbol. This sym-

bol informs the compiler that the function implementation can be discarded during

compilation if a strong symbol is found with the same signature, effectively allow-

ing free functions to be overridden. In the context of the Binar-1 flight software, this

allows strong overriding symbols to exist within the C++ environment to allow the

implementation to take advantage of the language features.

The implementation of GPI interrupts in the BSF is shown in Figure A.3.1. When

these types of interrupts are detected, the STMicroelectronics HAL software will call

the GPI callback handler. With a strong symbol provided in the BSF for this function,

the interrupt results in the execution of the custom handler code. The ISR checks to see

what GPI triggered the interrupt. In the BSF, this can be either from the power system,

GPS, or transceiver. Discerning the input, the ISR checks to see if the application code

has registered a handler for the request in the IVT. If an entry is found, the interface

pointer is polymorphically dereferenced, and the handler is executed. The UART

communications-related interrupts on the BSF are implemented similarly. Interrupts
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GPI callback handler

3V3 power fault pin?

GPS PPS pin?

 False 

Entry exists in IVT?

 True 

Dereference entry and 
call Handler method

Return from 
handler

Tranceiver data 
ready pin?

 False 

 True 

 False 

 True 

 True  False 

GPIO 
interrupt 
detected

GPI callback handler

End interrupt

FIGURE A.3.1: The logic flow during application runtime when a GPI interrupt is
detected.

are used during an asynchronous receive operation to notify the flight computer when

a complete message can be actioned. The strong override in the BSF for these types of

interrupts filters the interrupt request device based on the UART channel, similar to

the GPI channel in Figure A.3.1.

Firing interrupts when using asynchronous communications introduces challenges

when the data length being transferred is unknown. Unique delimiters are an option

if present in the message being transmitted. In this case, a character match interrupt

is enabled before initiating an asynchronous receive. As characters are received by

the DMA peripheral, they are checked against the character to match. When found,

the peripheral notifies the main processor to trigger a UART interrupt which will

eventually flow through to the user-registered handler for the channel. However, a

different approach is required when the messages do not contain a delimiting character

or have a predefined length. The flight computer’s DMA peripheral can trigger an

interrupt when the data line being read falls idle. Depending on the baud rate used,

this is defined as the length of the transmission time for one character. When detected,
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the STMicroelectronics HAL software will call the UART interrupt handler to discern

which callback type to execute. Before being filtered through to the DMA idle line

callback, this is captured and redirected to the receive complete interrupt handler to be

grouped with the rest of the transmission interrupts.

A.4. TECHNICAL DETAILS OF THE OWNERSHIP LIBRARY

The Ownership library in the BSF provides controlled access to system peripherals

to avoid common issues with concurrent programming. It does this by requiring

application code to interact with a peripheral through two methods; ”Claim” and

”Take”.

The ownership manager supports asynchronous operations by requiring peripheral

access to take out a mutex. This approach ensures that only one execution thread

can access a peripheral at a given time. This approach means that an application will

continue execution with a failed access error that can be handled immediately if a

peripheral is unavailable. The ”Claim” and ”Take” methods allow application code

to access a peripheral. Claim allows for immediate usage of a peripheral, whereas

”Take” allows for sustained use of a peripheral, keeping it enabled during the scope

of the ”Take”. Both methods extensively use the lambda expression feature of C++. A

lambda describes anonymous functors, which can be used as a parameter in a method

call. Using lambdas as parameters to the ”Claim” and ”Take” methods allows the

conventional approach of using an object to be inverted; the application code provides

a function to the singleton ownership manager to use an already existing peripheral

object in. Through this implementation, access to peripherals is controlled, the usage of

peripheral objects can be application specific, and the memory requirements for using

the peripheral are known statically at compile time.

The PeripheralHandler object is a thin wrapper encapsulating the aggregated pe-

ripheral pointers within its private scope to prevent application code from having direct

access to the memory. Application code wanting to use the resource taken must do so

through the ”Use” method, taking a lambda specifying how the peripheral intends to
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Call Claim

Is the peripheral 
attempting to be
used available?

Mark the peripheral as in use

 True 

return fail

 False 

Get a pointer to the resource

Call Enable

Call user lambda with resource
as a parameter

Call Disable

return result of 
lambda call

  Method on the peripheral
  object

  The Claim method is called
  with enumerated resource
  value and a lambda to use

  the resource with

  Method on the peripheral
  object

FIGURE A.4.1: A high-level depiction of the logic of the ”Claim” method in the
Ownership library. A call to ”Claim” will temporarily get ownership of a peripheral.

be used and injecting the encapsulated resource into it. This approach prevents the

memory address of the peripheral from leaking into application code, a preventative

measure for potential failure through a race fault.

In the case of a ”Claim”, shown in Figure A.4.1, the ownership manager, upon

finding the peripheral unused, will call the ”Enable” method for the object and then

temporarily move the pointer for the peripheral into the lambda provided as a parame-

ter to the ”Claim” method. The peripheral can then be freely used within the lambda

scope. After lambda execution, the peripheral manager will call the ”Disable” method

on the object and propagate the return to the highest-level application code. If the

object is seen to be already in use, the call to ”Claim” will ignore the lambda parameter

and return a fail instead.

When the application code attempts to take a resource from the manager, the ”Take”
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method follows a similar execution flow as ”Claim”, differing in what the peripheral is

used for when it is found to be available. As shown in Figure A.4.2, a PeripheralHandler

object is constructed with the pointer to the resource acquired by the manager. This

constructed object is then moved from the ”Take” method to the application code to

prevent it from dropping out of scope when the ”Take” method completes.

A.5. TECHNICAL DETAILS OF THE IMU LIBRARY

The BSF uses the IMU library to abstract how the flight computer interacts with the

IMU peripheral. During initialisation, the constructor attempts to communicate with

the peripheral to access the identification register. Suppose the device fails to return

the correct register identification. In that case, the spacecraft reboots using the System

Context library (Section 3.2.9) to construct the ownership manager (Section 3.2.2)

with a faked implementation. If the correct identification is returned, the constructor

initialises the peripheral before putting it in a low-power state. The ”Enable” and

”Disable” methods, used by the ownership manager when accessing the peripheral,

bring the device out of and return it to the lower power state.

Performing a read on either the magnetometer or IMU die is done using the ”Get-

Magnetometer”, ”GetGyroscope”, and ”GetAccelerometer” methods. These methods

encapsulate how the data returned to the processor from the IMU peripheral is con-

verted into meaningful information. It is then returned to the application code through

a simple data structure. This further supports code reuse by abstracting how the raw

values are scaled. Moreover, it allows for easy module testing by providing faked

implementations for these methods.

The Self Check library uses the ”GetStatus” method to verify the integrity of the

device during a non-critical system check.
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Is the peripheral 
attempting to be
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Mark the peripheral as in use

 True 

return fail

 False 

Get a pointer to the resource
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Move the PeripheralHandler 
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  PeripheralHandler
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FIGURE A.4.2: A high-level depiction of the logic of the ”Take” method in the Own-
ership library. A call to ”Take” will assume ownership of the peripheral until the
returned PeripheralHandler is yielded or goes out of scope.
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A.6. TECHNICAL DETAILS OF THE MAGNETORQUER LIBRARY

The BSF uses the Magnetorquer library to interact with the attitude control peripheral.

The magnetorquer attitude control device consists of three independent axes, xx , yy ,

and zz , derived from the MagnetorquerDriverInterface object. The hardware imple-

mentation of the MagnetorquerDriver object in the Binar-1 flight software templates on

the MagnetorquerAxis t enumerated class.

The library’s MagnetorquerDriver object provides methods to enable/disable the

axis drivers and pass requested dipole moments from the application code to the

lower-level drivers. The ”SetDipole” method sets the magnetic torque produced by the

magnetorquers by adjusting the average voltage applied to each axis. This is achieved

by using a PWM signal (Section A.1) set using the ”SetPWM” method (Figure A.6.1)

on the MagnetorquerDriver object. As the voltage applied to the magnetorquers is

scaled from the battery voltage, this method starts by reading the battery voltage to

compensate for changes due to battery capacity in the duty cycle calculation. The

polarity of the signal is set depending on the sign attributed to the requested dipole

moment; if the polarity is high, the H-bridge phase pin is set high, and the produced

waveform will be applied forwards over the coil. Inversely, with a low phase, the

produced waveform will be applied backwards over the coil. Finally, the status is read

from the device using the ”GetStatus” method to return to the application code. The self

check library also uses this method to determine if either the X or Y-axis magnetorquer

driver has failed and needs to be replaced with a redundant driver.

A.7. TECHNICAL DETAILS OF THE STORAGE LIBRARY

The Storage library in the BSF is responsible for abstracting how the application code

interacts with the storage peripheral. The public-facing Storage object aggregates a

private StorageImpl object derived from the same interface as the public-facing object.

Calls to the public methods delegate through to the private implementation. The

StorageImpl object aggregates the private member of type w25m02gw t, memory ctx ,
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Call SetPWM

Read battery voltage

Calculate required duty cycle 
from supplied dipole moment

Positive polarity?

Set axis phase pin high

 True 

Set axis phase pin low

 False 

Update PWM with new duty cycle

Read status from device

Return status

FIGURE A.6.1: A high-level overview of the ”SetPWM” method in the magnetorquer
library. The torque produced by the attitude control device is controlled by changing
the average voltage felt on the axis.



296 STUART ROBERT GIBSON BUCHAN

83 0 1 0 1 0 0 1 1
82 0 1 0 1 0 0 1 0
71 0 1 0 0 0 1 1 1
66 0 1 0 0 0 0 1 0
4 0 0 0 0 0 1 0 0

FIGURE A.8.1: Demonstration of the exclusive OR operation. The binary representa-
tion of each integer on the left is compared for an isolated high bit. In this example,
only one-bit location in the bytes has an exclusive high bit, and hence the resulting
calculated checksum would have the decimal value 4.

a custom low-level driver created for interacting with the hardware on the satellite.

The low-level driver provides function pointers to be implemented in application code

to communicate with the peripheral. In the context of the Binar hardware, commu-

nications are implemented with the device using SPI. When constructed during the

peripheral initialisation stage of the flight software, the StorageImpl mounts a file

system on the peripheral, storing the filesystem information in its private member vari-

ables. The directories used in the file system are for voltage, current, and temperature

logs. The ”Write”, ”Read”, and ”Delete” methods invoke the file system to manipulate

the data as requested.

A.8. TECHNICAL DETAILS OF THE GPS LIBRARY

The application code uses the GPS library to retrieve location and timing information

from the GPS peripheral. The GPS transmits a collection of NMEA strings containing

the information. These ASCII strings contain a start delimiter, $, a stop delimiter, *,

data and a checksum. The checksum for NMEA strings is calculated by performing an

exclusive OR (XOR) operation on each character. For a bit in the checksum byte to be

high, only one other bit in the same place across all characters comprising the string

can also be high (Figure A.8.1).

The implementation in the GPSBase object for calculating the checksum is shown

in Figure A.8.4. The method first iterates over the starting delimiter character, as this

is not included in checksum calculations. Each character in the string is iterated over

and examined, performing an XOR operation with the running checksum variable and

the character. The checksum at the end of the data string is then compared with the
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calculated checksum. The result is propagated to the calling code.

The GPS object inherits the GPSBase to add interaction with the hardware. The con-

structor for the GPS object allows the hardware to be configured through the aggregated

custom venus838 t driver. This driver implements the required functionality from the

device datasheet, giving the constructor scope access to changing the device baud rate,

transmission frequency, and enabled NMEA strings. Of the six NMEA strings trans-

mitted from the GPS on Binar-1, only two are required; Global Positioning System Fix

Data (GPGGA) and Recommended Minimum Specific GNSS Data (GPRMC). GPGGA

provides spacecraft altitude, while GPRMC provides time, latitude, longitude, velocity

and coordinated universal time (UTC) date. When strings are received from the GPS

peripheral, they are given to the ”Parse” method inherited from the GPSBase to extract

and convert the required information. The ”Parse” method is summarised in Figure

A.8.2.

If called with a char pointer to a valid memory location, the ”Parse” method will

attempt to break the received block of strings into multiple individual strings by

splitting the string block on the starting $ delimiter. The resulting substrings are further

split on the comma delimiter to isolate each string element. Whilst the pointer to the

isolated string element, or token, has a valid memory address, the ”Parse” method

will check to see if data can be extracted. It first checks if the token under examination

is the name of the GPGGA string. If found, the checksum of the isolated GPGGA

string is calculated to verify that the data contained within is correct. If the checksum

matches, the method attempts to parse the altitude from the string. While incrementing

through the delimited substrings, the ”Parse” method will also check to see if the token

under examination contains the name of the GPRMC string. The information extraction

process from the GPRMC string is similar to the GPGGA string. As the GPRMC string

comes after the GPGGA string in the NMEA outputs of the GPS, a check for the success

of both extractions follows parsing the GPRMC string. If string parsing is successful,

the parsed values are assembled into a GPSReadings struct and are returned to the

application code. All other execution pathways in the method will eventually return a

fail object.

When the hardware GPS peripheral receives a fix on a GPS satellite, the device will
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FIGURE A.8.2: The logic for parsing latitude, longitude, altitude, velocity, time and
date from the GPS NMEA strings.
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FIGURE A.8.3: Asynchronously reading into a double buffer implementation triggered
by an external GPI interrupt from the GPS.

emit a 1 Hz pulse per second (PPS) synchronised with the top of the current second.

By inheriting the ExternalInterruptInterface object from the Interrupt library (Section

3.2.1), the flight computer is instructed to execute the handler of the PPS monitoring

object when the GPI interrupt is received. This interrupt signifies that data is about to

be emitted from the device. When the ISR is triggered, the logic shown in Figure A.8.3

is executed.

As the GPS outputs up to 800 bytes of data every second, attempting to parse re-

ceived messages without missing new messages introduces a challenge. If information

is not parsed quickly enough, it may be overwritten by an incoming message. A solu-

tion to this was implemented by using a double buffer approach; the strings from the

previous second can be stored and parsed in one buffer whilst receiving the new strings

in the other. The ISR scope has access to this through the aggregated DmaReceiving

object. In the ISR, the interrupt checks which of the two buffers was the last read into

to not overwrite the data being parsed. The buffer not currently being operated on is

cleared, and an asynchronous transaction is started from the peripheral into the buffer

memory using the aggregated GPS channel instantiation of the templated Serial library.
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Call calculate checksum

Iterate past the $ character if it is present

Initialise checksum as 0

 

Reached the end of 
the data section of string?

XOR character with checksum

 False 

Iterate into checksum section of string

 True 

iterate position in string Convert string checksum to bytes

Calcuated checksum 
matches read checksum?

return true

 True 

return false

 False 

  Whilst in NMEA strings, not
  part of checksum

  String has data section
  and checksum section

FIGURE A.8.4: The logic for calculating the checksum of a received NMEA string.
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The asynchronous transactions are set to cancel when the receiving line falls idle. After

initiating the asynchronous transaction, the internal boolean, buffer 1 2 , is inverted to

keep track of which buffer to use for the next transaction.

Another interrupt, GPSReceiveComplete, is used to signify the first time an asyn-

chronous transaction has been completed. This interrupt allows the implemented

”ReadGPS” method (Figure A.8.5) in the GPS object to return fail unless the hardware

has started transmitting. The handler for the ISR flips the internal private boolean

variable gps transmission status to high, accessible through the public ”GetGPSTrans-

missionStatus” method. When the application code attempts to read the GPS, it first

checks to see if the GPS has started transmission by querying this method. Once

strings have started to be emitted, the GPS module will check what the active buffer

is to know which data will not be mutated during parsing. This data is then copied

to the appropriate private internal buffer within the GPS object (buffer one copy or

buffer two copy ) before attempting to parse the strings using the ”Parse” method

inherited from the GPSBase to return to the application code.

A.9. TECHNICAL DETAILS OF THE I2C TO UART LIBRARY

The I2C to UART Library translates the serial communications between the flight

computer and the transceiver. After assigning means to communicate with the IC, a

reset command is issued using the ”Reset” method. The device is then initialised in

first-in-first-out mode by calling the ”FIFOEnable” method. The communications speed

is configured by calling the ”SetBaudRate” method with the baud rate provided to the

constructor. A write instruction informs the device to output a GPO interrupt when

converted data is ready. Finally, the line control mode is set using the ”SetLineCtrl”

method, configuring communications to use 8-bit mode, with no parity bits and a

single stop bit.

Using the Interrupt library (Section 3.2.1), an object was created to handle when

the data-ready GPO interrupt was received from the device. When triggered, this

handler would claim the I2CToUART object from the ownership manager and call the
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GPS transmitting?

Transmitting into 
buffer 2?

 True 

Return fail

 False 

Copy data out of buffer 1

 True 

Copy data out of buffer 2

 False 

Try parse the copied buffer

Parse successful?

Return GPS readings

 True   False 

FIGURE A.8.5: Copying out non-mutating buffers for parsing by the public-facing
GPS object.
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bsp::TransceiverReceiveComplete

- done

+ TransceiverReceiveComplete()
+ ~TransceiverReceiveComplete()
+ Handler()
+ Reset()
+ GetStatus()
+ GetData()

bsp::DataReceiveComplete
Interface

+ Reset()
+ GetStatus()

bsp::ExternalInterrupt
_interface

+ Handler()

rtos::EventFlagsInterface

+ Set()
+ Wait()

-event_flags_

FIGURE A.9.1: A UML representation of the transceiver receive complete interrupt
object on Binar-1.

”Read” method to append the available bytes into a static file-scoped buffer within

the interrupt library. Another interrupt, TransceiverReceiveComplete (Figure A.9.1),

monitors the transaction and is triggered upon completion.

The TransceiverReceiveComplete interrupt is constructed with an event flag. There-

fore, it is used in the ground station communications RTOS thread (Section 3.2.8) to

yield the thread while waiting for the event flag to be set. As messages transmitted

from the ground station are COBS encoded (Section 3.6.2) to be delimited on a zero

byte, the handler loops over the newly received sequence of bytes, searching for the

zero. When the zero byte is found, the private done boolean (Accessible through the

”GetStatus” method) and the aggregated event flags member are set.

Finally, the communications thread copies the transferred data from the file-scoped

buffer into the thread via the ”GetData” method to be processed by the remote proce-

dure call (RPC) server. It resets the interrupt using the ”Reset” method, clearing the

file-scoped buffer and inverting the done boolean.
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A.10. TECHNICAL DETAILS OF THE RTOS LIBRARY

The BSF uses the RTOS library to emulate multi-threading capabilities on the single

execution core available to the flight logic. Constructing a thread requires two template

parameters to be passed through to the constructor for the ThreadBase object; the

thread stack size in bytes and the thread priority. The thread stack size is used during

compilation to allocate the ThreadBase private member, thread buffer , which serves

as the memory stack for the thread. This member allows the memory resource required

for the thread to be known statically at compile time, as opposed to the standard

practice of the FreeRTOS kernel requesting heap memory for threads. The thread

priority determines which thread is to be executed when multiple threads are in the

ready state. The initialised thread buffer and priority are passed to the constructor

of the privately aggregated ThreadImpl object for use by the underlying FreeRTOS

kernel. These are then stored in the thread attributes private member variable. The

thread control block private member is used to store the execution context of the

thread when runtime switches to another thread. This ensures the thread can be

resumed where it was yielded. After initialising these variables, the new thread is

registered with the kernel, providing the thread’s ”Run” method as the entry point.

When some threads have been created, the constructor for the public-facing RTOS

object calls the ”Initialise” method, which reads the kernel state using the protected

”GetKernelState” method. If the thread returns an inactive state, the protected method

KernelInitialize is called. These method calls delegate to the methods of the same name

within the aggregated implementation object. Finally, the RTOS kernel is started using

the ”StartKernel” method, which begins thread execution.

In the FreeRTOS implementation in the BSF, a thread can be in one of four states:

running, blocked, suspended and ready. Figure A.10.1 shows the relationship between

the states. When a thread is first created in application code by inheriting the Thread-

Base and instantiating the derived thread class, it is put into the ready state by the

RTOS. When the RTOS kernel is started by executing the ”StartKernel” method on the

RTOS object, the thread constructed with the highest priority will be moved into the

running state. Using cooperative mode scheduling, the kernel will not immediately
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Ready Running

Suspended

Blocked

Thread
Created

FIGURE A.10.1: Adapted from [178].

switch tasks if a higher priority task than the one currently executing becomes available.

Instead, it will wait until the current task yields its kernel time and moves into the

blocked state. In the BSF, threads are moved into the blocked state during calls to delay

execution and while waiting for event flags to be triggered.

Threads are synchronised in the RTOS library through the EventFlags object. The

private member variable next flag is a static member of the EventFlagsImpl class.

This attribute means it is accessible by all instances of the EventFlags object. It is used

during the object’s constructor to assign the next available unique identifier into the

event flag, stored as a 32-bit unsigned integer in flag . The private member flag id is

used internally by the FreeRTOS library to store a pointer to the created event flag. In

the flight software, an event flag is used in the ground communications thread to signal

when the spacecraft has received a message to process. The communications thread

is given the highest priority among the other threads. Hence, when the RTOS kernel

is started, the communications thread runs first. It sets up an asynchronous serial

DMA transaction, providing a callback interrupt extended from the Interrupt library
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(Section 3.2.1) to set the event flag using the ”Set” method on the EventFlags object.

The communications thread can then yield processing time using the ”Wait” method,

moving into the blocked state until the event flag is set. This way, the spacecraft can

always listen for incoming transmissions while switching between the task scheduler

and beacon threads.

A.11. TECHNICAL DETAILS OF THE SYSTEM CONTEXT LIBRARY

The system context library abstracts how the application code performs processor-

specific functionality. The ”Reboot” method performs a soft restart of the satellite

without cutting power to the flight computer. ”ConfigureNonVolatileMemory” ab-

stracts read and write access to internal non-volatile memory. On Binar-1, registers

inside the real-time clock (RTC) were used for storing information regarding:

• IMU, GPS, transceiver, and independent magnetorquer axis usage

• State of system voltages

• State of system currents

• State of system temperatures

• Redundant power line usage

• Failed firmware update

• Corrupted application code

• Target flash bank

• Boot count

The peripheral device usage registers are set and cleared when the ownership

manager enables and disables the corresponding peripheral. The system voltage,

current, and temperature states are updated accordingly whenever the channel’s analog

hardware abstraction object is read. Each channel is compared against hardcoded
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ranges set from systems testing, notifying if the reading has crossed a lower warning,

upper warning, lower fail or upper fail.

The satellite has a redundant regulator from battery voltage to 3.3 V to power the

flight computer. The redundant power usage register contains information on which

regulator is being used. Both regulators are enabled at system startup, consuming

unnecessary power. If the register is reset, the flight computer will set the register and

attempt to disable the redundant regulator. If the primary regulator had failed and the

flight computer was being powered from the redundant regulator, this would cause the

flight computer to power cycle. Upon re-entering this section of the boot process, the

flight computer will identify the set flag in the register, discerning that the redundant

regulator is required and will progress with the remainder of the boot process.

Performing a firmware update on Binar-1 wrote directly from telecommand into

flash memory. Whilst being the simplest approach, if the spacecraft failed to receive all

firmware packets, the application space being written to would not be safe to boot. The

failed firmware update flag would signify this having occurred, used during the boot

process to determine if a Safe Mode entry was required.

Before leaving the bootloader, the flight software checks if the application space it

is about to jump to has been corrupted by checking the corrupted application flag. If

reset, the bootloader sets this register. After jumping to the application space, the first

instruction is to reset this register. If, however, the flash memory the application code

resides in became corrupt, this instruction would not be executed. Stuck at an address

with no progression, the watchdog timer will eventually lapse, and the flight computer

will reboot into its bootloader. The corrupted application code register would still be

set, and the spacecraft would boot into Safe Mode instead.

The 2048 KiB flash memory space on the flight computer used on Binar-1 included

two programmable application spaces. Dual booting was supported on the satellite by

setting the target flash bank register before issuing a reboot command. The bootloader

checks this register to identify which application space to boot into.

Lastly, the boot count register increments each time a reboot is performed, keeping

track of the total number of system resets.
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A.12. TECHNICAL DETAILS OF THE SYSTEM LOGGER LIBRARY

The System Logger library abstracts how the flight logic writes and retrieves systems

logs. The SystemLogger object aggregates various subsystem logs to achieve this task.

The ”Write” method implementation for each protected member is similar, differing

only in how the information to log is collected and the name of the file to log. A

high-level flow chart of the ”Write” method logic for these members is given in Figure

A.12.1.

The ”Write” method on the system log implementations first constructs the appro-

priate analog object to collect data from using the hardware-abstracted analog object

discussed in Section 3.2.1. If the read on the ADC object is successful, the sampled

data is assembled into a data structure with the current timestamp to be serialised

for storage. The serialised byte stream is then COBS encoded to provide a method

of delimiting stored messages with minimal overhead. This encoded, serialised byte

stream is then passed to the helper function WriteLogToDisk, depicted in Figure A.12.2.

WriteLogToDisk first attempts to access the storage peripheral through the owner-

ship manager, detailed in Section 3.2.2. With the storage device claimed temporarily, a

file name is assembled using the analog channel type with the current hour through

the day. For example, if the voltage logger object called the WriteLogToDisk function at

05:00 UTC, the filename would take the form /voltage/5.log.

As only 24 hours’ logs were stored on Binar-1, the function checked if the previous

day’s log needed to be deleted. It does this by checking the last edited file in the OBS

metadata. If the last edited file is not the same as the current time, then the existing file

is deleted to be replaced. Finally, the file metadata is updated to note the time the file

was last edited, and the byte stream is appended to the end of the file.

An accumulated log file over 24 hours is too large to downlink in a single telecom-

mand from the spacecraft. Hence, the ”PrepareLog” method (Figure A.12.3) on the

protected members is used to break up the serialised logs for transmission.

When the ”PrepareLog” method is called on each SystemLoggerInterface implemen-
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Call Write

Construct appropriate 
analog reader object

Attempt to read 
analog input

Read 
successful?

Assemble data structure 
to serialise with timestamp

 True 

Return fail

 False 

Serialise message 
for storage

COBS encode serialised
byte stream for delimiting

Write Log to Disk

FIGURE A.12.1: A high-level depiction of the ”Write” method on an object derived
from the SystemLoggerInterface object. Data to log is given a timestamp and serialised
using COBS encoding to delimit previously logged messages with a 0 character.
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Call Write log to disk

Get pointer to 
hardware manager

Able to claim 
storage?

Get current hour

 True 

Return fail

 False 

Assemble file name with 
analog channel type and hour

Read last edited file 
from storage metadata

Last edited file 
same as current hour?

Delete the existing file 
corresponding to current hour

 False 

Update last edited file 
in storage metadata
with current file

 True 

Append the byte
stream to the file

Return success

  Logs only keep track
  of one day at a time

FIGURE A.12.2: A high-level overview of the WriteLogToDisk function in the system
logger library. This function uses the Ownership library (Section 3.2.2) to access the
Storage peripheral (Section 3.2.5) to write the serialised logs to storage.
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Call prepare log

Get pointer to 
hardware manager

Able to claim
storage?

Empty log buffer

 True 

Return fail

 False 

Read the requested 
log from storage 
into log buffer

Return number 
of bytes read

  Log buffer is a static
  global vector accessible
  only within the logger
  implementation file

FIGURE A.12.3: A high-level overview of the ”PrepareLog” method on an object
derived from the SystemLoggerInterface object. This method moves the requested
stored log from the OBS to RAM in preparation for downlinking.
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tation, the storage device is temporarily claimed from the ownership manager. The

file-scoped static vector in the implementation file is cleared to fill with new logs to

download. This vector is large enough to contain the entire log file in RAM to only

need to read from the storage device once per log request. Using the analog channel’s

type and the requested hour, the log is read from the storage device into the file-scoped

buffer, and the number of bytes in the log is returned to be transmitted to the ground.

The final stage to retrieve logs is to call the ”GetLogChunk” method on the Logger

object. Using the index parameter with a fixed log segment size of 1024 bytes, the

function returns a sub-span of the static file-scoped vector to be returned to the ground.

A.13. TECHNICAL DETAILS OF THE MANIPULATOR LIBRARY

The Manipulator library abstracts how the application code interacts with the manip-

ulator payload. The emulator implementation logs the angle sent to the spacecraft

for later retrieval by a ground operator. Retrieving the log is done first by calling the

”PrepareLog” method, which copies the log from the OBS to a static file-scoped logger

buffer in the implementation file. Subsequent calls to GetLogChunk will return a span

over the requested segment of up to 1024 bytes to be downlinked.

A.14. TECHNICAL DETAILS OF THE STATIC LIST LIBRARY

The Static List library is used in the BSF to provide a sortable data structure to hold

tasks to be executed at certain times without requiring the use of dynamic memory.

The static list is a linked list that chains objects of type MemoryPoolNode together.

The MemoryPoolNode base class aggregates a private member, used , that keeps

track of the usage state of the node. It is used in the private MemoryPoolNode array

object in StaticList to discern if the node can store data through the publicly accessible

”GetUsed” and ”SetUsed” methods. ”ClearUsed” marks a node as free to use. The

MemoryPoolNode object derived from the base adds the datatype and maximum



Appendix A STUART ROBERT GIBSON BUCHAN 313

Call Insert

Space available for new node?

Requested position is in the list?

 True 

Return error

 False 

Insert node into list 
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 True  False 

Return inserted data

  Fails if the static memory
  pool is full

  Insert function is called
  with a desired insert

  position

FIGURE A.14.1: A flowchart depicting the logic of the ”Insert” method in the StaticList
class.

length template parameters. It also adds private ”Next” and ”Previous” methods,

which are used internally by the object to return pointers to the next and previous

elements in a linked list comprising multiple nodes.

Application code attempting to insert data into the StaticList object does so through

the ”Insert” method, detailed in Figure A.14.1. Application code calls the ”Insert”

method with a pointer to where the new data is to be inserted and the data to insert.

The ”Insert” method starts by attempting to allocate space for the node in the

memory pool array, iterating through the pool and using the ”GetUsed” method in

the MemoryPoolNode object. If the memory pool is full, an error is returned to the

application code, signifying that a node must first be cleared. With space available

for insertion, the location to insert the new node is searched for by calling the ”Next”

method to update the private aggregated MemoryPoolNode pointer member and

comparing the memory address with the provided node pointer parameter. Failing

to find the location to insert at, the method will propagate an error to the application

code. The new node is inserted if the location is found, and the data is returned to

the application code. The ”PushFront” and ”PushBack” methods are used to insert
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a node at the head and tail of the linked list if middle insertion is not required. The

”Erase” method is used to erase an existing node. The method will check whether the

requested node exists in the list using the ”FindInPool” method, which iterates over

the internal private memory pool array. If the node to erase is found, the surrounding

nodes connecting it to the list will be updated to skip over the erasing node, pointing

to each other instead. The node will then be marked as free to use again in the memory

pool by calling the ”ClearUsed” method on the MemoryPoolNode object. The logic of

the ”Erase” method is shown in Figure A.14.2. In the implementation of task scheduling

in flight software, this method is used when the ground station wishes to cancel a

previously scheduled task. When executing a task, the application code calls the ”Pop”

method, depicted in Figure A.14.3.

The ”Pop” method removes the node from the head of the list and returns it to the

calling code. It does this by getting a pointer to the first node in the list through the

”Begin” method, using the aggregated private LinkedList object in the StaticList. If

the list is not empty, the node to be popped is queried to see if anything connects to

it, signifying that it is part of a larger list. This check is required because the private

aggregated LinkedList object needs to track the head of the list. If the node to be

popped is removed from the list incorrectly, it could leave a dangling chain of nodes

with no entry. Hence, the head of the list is updated to point to the second node if one

exists, else it is updated to point to nothing. Finally, the node being popped is marked

as free to use in the memory pool, and the data is returned to the calling code. In the

Binar flight software case, the nodes contain a task object executed when returned

through ”Pop”.

The private ”Allocate” method (Figure A.14.4), used internally by the StaticList

object, is used to query the statically allocated memory pool for empty nodes for data

insertion. It achieves this by iterating over the memory pool array, examining each

node using the private aggregated MemoryPoolNode pointer. It calls the ”GetUsed”

method to check if the node is in use. If an empty node is found, the method will copy

the user-provided data into it and mark it as in use, returning a pointer to its location

in the memory pool to be inserted into the list.
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Call Erase
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Remove node from connected list

 True 

return error

 False 

Connect severed list together

Mark node as free to use in memory pool

return erased data

FIGURE A.14.2: A flowchart depicting the logic of the ”Erase” method in the StaticList
class.



316 STUART ROBERT GIBSON BUCHAN

Call Pop

Get pointer to first node in the list

Does the list have 
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Does the node have 
anything connected to it?

 True 

Return error

 False 

Update head to point to second node in list

 True 

Update head to point to nothing

 False 

Mark the node as free to use in memory pool

Return the data

FIGURE A.14.3: A flowchart depicting the logic of the ”Pop” method in the StaticList
class.
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Call Allocate

Get pointer to the node at the 
start of the memory pool array

 

Examined node is at the 
end of the memory pool?

Examined node in use?

 False 

return error
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Iterate to next node in memory pool

 True 

return pointer to 
location in memory pool

  Node data is passed into
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FIGURE A.14.4: A flowchart depicting the logic of the private ”Allocate” method in
the StaticList class.
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A.15. TECHNICAL DETAILS OF THE BOOTLOADER LIBRARY

The flight software uses the bootloader library to configure the microcontroller’s flash

memory and decide which application bank to boot into. Generic portable functionality

is provided in the BootloaderBase object, and hardware-specific features are provided

in the BootloaderImpl object. The BootloaderBase object provides implementations

for four methods; ”PrepareForProgramming”, ”ProgramFirmware”, ”Program”, and

”FinaliseProgramming”.

The ”ProgramFirmware” method (Figure A.15.1) acts as an entry point to the

firmware programming process. It provides the behaviour of the firmware writing

process without requiring the implementation of the methods that perform it.

The ”PrepareForProgramming” method calls the ”ConfigureFlashProtection” method

to disable the flash protection in preparation for writing to the memory. A successful re-

turn will permit the function to progress into calling the ”InitialiseMicrocontrollerFlash”

method.

The ”Program” method provides the function calls that perform the write instruction

to the hardware. The method first erases the existing flash memory targetted for a

write using the ”EraseApplicationFlash” method. A successful return progresses to

calling the ”WriteFirmwareToFlash” method. After writing to the flash memory, the

”FinaliseProgramming” method is called to re-enable the flash protection, making it

immutable until the next firmware update.

For the Binar-1 hardware implementation, the implementation object, Bootloader-

Impl, uses the flash app start address and flash app end address private variables for

determining which bank to target for programming. As there are two application banks

to program to, flash app start address is set during the constructor for the Bootloader-

Impl object to be the start address of one of these banks. The flash app end address is

then updated as the targeted bank’s end. Once set, these values are immutable until

the next construction at boot. The flash memory is organised into two banks with eight

sectors each. Table A.15.1 details how the two megabytes of available internal flash

memory were segmented into two boot and two application banks. The boot banks are
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FIGURE A.15.1: A flowchart showing the behaviour provided for programming
firmware using the BootloaderBase.
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TABLE A.15.1: The flash memory allocation in the primary flight computer on Binar-1.
The first megabyte of flash was used to hold the Start-Up/Bootloader firmware in the
boot bank, and the second megabyte was for the two application binaries.

Address Usage Address Usage

0x08000000 0x08100000
0x08020000 0x08120000
0x08040000 0x08140000
0x08060000

Boot
Bank
One

0x08160000

App
Bank
One

0x08080000 0x08180000
0x080A0000 0x081A0000
0x080C0000 0x081C0000
0x080E0000

Boot
Bank
Two

0x081E0000

App
Bank
Two

immutable, but both application spaces can be programmed.

Each 128 KiB sector has independent flash protection. The hardware implementa-

tion of the ”ConfigureFlashProtection” method updates the protection at the provided

application bank address (Either 0x08100000 or 0x08180000) with the requested modi-

fier.

The ”InitialiseMicrocontrollerFlash” method provides an optional method before

writing to flash, where device-specific instructions can be executed. In the Binar-1

hardware, this clears any flash flags that may be present that hinder write access to

flash memory - End of program, flash operation error, write protection error, and

program sequence error.

As the available flash memory is segmented into two boot banks and two application

banks, the ”EraseApplicationFlash” method can only erase the flash memory of the

target memory location to avoid corrupting other memory. The method first gets the

starting sector to erase, 0x08100000 or 0x08180000, depending on the target application

bank being prepared for programming. The boot banks cannot be erased. The four

contiguous sectors following the provided base address are erased.

The ”WriteFirmwareToFlash” method (Figure A.15.2) uses the aggregated object

firmware reader to receive firmware segments and write them to flash memory. The

method loops on the ”ReceivedAllBytes” method on the firmware reader member ob-
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Call Write Firmware
to Flash

 

Received all bytes?

Try read next firmware segment

 False 

Return success

 True 

Able to get 
next segment?

 False 

Initialise and align 
buffer in RAM to 32 bit

 True 

Copy pointer to received
segment into RAM

Get Flash location 
using segment index

Program firmware segment
to Flash memory

  Variable inside firmware
  reader object tracks this

  Microcontroller architecture
  is 32 bit

  Flash base + index * 1024

FIGURE A.15.2: A high-level overview of the logic for the ”WriteFirmwareToFlash”
method on the BootloaderImpl object. This method is concerned with programming a
received segment of firmware into program memory.
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ject. It attempts to receive a firmware segment by calling the ”GetNextSegment” method

on the provided FirmwareReaderInterface implementation, returning a firmware seg-

ment up to 1024 bytes in length with the corresponding index through the binary. The

received raw byte stream is 8-bit aligned, and hence in preparation to be written to

flash memory, is copied into a 32-bit aligned temporary buffer in RAM. Using the

segment-accompanied index, the location to program to is calculated by multiplying

the index by the fixed firmware segment length and summing it with the application

bank base address. The firmware segment is then written to the location.

A.16. TECHNICAL DETAILS OF THE FIRMWARE READER LIBRARY

The firmware reader library in the BSF is used to abstract how firmware is received by

the spacecraft. It forms a central part of the firmware update process. The Firmware

reader object contains several private member variables that aid the firmware receiving

process. The segment tracker member is a boolean vector with a maximum length

equating to the quotient of the application flash space size and the maximum segment

size of 1024 bytes. It keeps track of which segments have been received. The done

variable is a boolean used to denote when the spacecraft receives the final packet of

the firmware binary. When the satellite receives a request for a firmware update, the

request packet contains the total number of segments calculated on the ground that

will be transmitted. This number is stored in non-volatile memory (Section 3.2.9) before

the satellite reboots into the Start-Up/Bootloader firmware. When the FirmwareReader

object is constructed in the Start-Up/Bootloader firmware, this value is copied from

the non-volatile memory into the number of segments private member variable to

be used during the firmware upload process. It is also used to construct the Firmwar-

eReaderImpl object to resize the segment tracker vector to be the same length as the

number of segments to receive.

Alongside the private member variables, the FirmwareReaderImpl object aggregates

four private member objects; firmware segment , serial , server . sender , and receiver .

The firmware segment member is a data structure that stores a firmware segment along

with its corresponding index. It is updated by the ”SetNextSegment” method. Once
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the firmware segment has been copied into the object’s memory, the index is used as an

accessor for the segment tracker vector, marking the segment as successfully received.

Application code that needs to access the segment does so through the ”GetSegment”

method. The serial member, a pointer to a SerialInterface (Section 3.2.1) implementa-

tion, abstracts how the firmware segments are received. The pointer is dereferenced

within the ”GetNextSegment” method to call the ”AsynchronousRead” method on the

serial object to receive the encoded byte stream containing the next firmware segment.

As the StartupMode server object, server , is decoupled from how data is transmitted

to the spacecraft, the same pointer to the ReceiveInterface implementation, receiver , is

shared between the FirmwareReaderImpl and the StartupModeServer objects. When

an encoded byte stream is received through the SerialInterface implementation, the

receiver private member pointer is dereferenced, and the ”SetEncodedBuffer” method

is called with the encoded packet. The server member is then used to invoke the

underlying RPC decoder to extract the next firmware segment stored within the Re-

ceiveInterface implementation. The sender pointer to a SendInterface object is used by

the ”GetNextSegment” method to transmit a response to the ground requesting the

next firmware segment to be transmitted.

The ”GetNextSegment” method (Figure A.16.1) is used to read a firmware segment

from the firmware source. When called, an asynchronous receive begins on the serial

input object provided to the FirmwareReader constructor. The method checks if it has

been previously called to determine what response message to send to the ground. If it

is the first time the method is called, the spacecraft received a ”BeginFirmwareUpdate”

request and performed a reboot. In this situation, the method will transmit a ”Begin-

FirmwareUpdate” response to signify to the ground station that it is ready to receive

firmware packets. Every other call to the method transmits a regular ”FirmwareUpdate”

response.

After transmitting the response to the ground, an interrupt handler is registered to

be triggered upon receiving a message. The execution then enters a loop, waiting for a

received byte stream or a timeout. On Binar-1, this timeout was set to 4 seconds. When

the spacecraft receives a byte stream, the ReceiveInterface implementation shared with

the Start-Up Mode RPC server is dereferenced to insert the received bytes into its
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FIGURE A.16.1: A high-level overview of the ”GetNextSegment” method for the
Binar-1 FirmwareReaderImpl object. On the satellite, firmware segments are received
through the Start-up Mode RPC server.
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internal encoded buffer. The Safe Mode RPC server is then run to extract the firmware

segment from the byte stream, which is returned to the calling code.

When a ”FinishFirmwareUpdate” request is received, the Start-Up Mode RPC server

calls the ”CheckForMissingSegment” method on the FirmwareReader object. This

method will iterate through the private member vector segment tracker vector, check-

ing for any false elements, signifying the FirmwareReader failed to receive a firmware

segment. If found, the segment index is returned to the ”FinishFirmwareUpdate”

request handler, in which case a ”MissedFirmwareSegment” response is transmitted to

the ground. The ground station will resend the failed segment before issuing a ”Finish-

FirmwareUpdate” request again. Once all segments have been received, the RPC server

calls the ”Finish” method on the FirwmareReader object. This method updates the

private member variable done to a true state. The Start-Up/Bootloader firmware using

the FirmwareReader object loops on the ”ReceivedAllBytes” method, which returns

the status of the done variable. Hence, using this method, the Start-Up/Bootloader

firmware knows when it is safe to progress with the execution.

A.17. TECHNICAL DETAILS OF THE STARTUP LIBRARY

The start-up library in the BSF abstracts the start-up functionality required by the

satellite. For Binar-1, this functionality included tracking the boot count, implementing

the ISS separation timer, and running system self-checks.

When the StartUp module (Figure A.17.1) is executed, the aggregated BootCount

object stores a counter in non-volatile memory that keeps track of the number of

spacecraft boots. If the boot count is zero, indicating the satellite has just been released

from the ISS, the ”StartTimer” method on the BootTimer object is executed. In the

Binar-1 implementation for this method, the execution was trapped in a thirty-minute

loop. Inside this loop, the only logic executed by the flight computer is a watchdog

reset. When elapsed, the antenna module is instructed to deploy by enabling the burn

wire GPO (Section 3.2.1) to release the antenna doors. The ”IncrementBootCount”

method of the BootCount object is then used to indicate that the spacecraft has satisfied
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Call Start-Up

Read boot count

Boot count is 0?

Start boot timer

 True 

Attempt to deploy antennas

 False 

Increment boot count

Antenna deployment
successful?

Run self check

 True 

Return fail

 False 

Self check successful?

Return success

 True  False 

  Constructed with pointer to
  boot count object

  Constructed with pointer to
  boot timer object.

  Synchronously blocks until
  done

  Constructed with pointer to
  self check object

FIGURE A.17.1: A high-level overview of the logic for the StartUp functor in the
Start-Up library. This object is used during the boot of the spacecraft. It is designed to
be configurable to run any tasks required at start-up for the mission.
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its deployment requirements, so subsequent reboots do not invoke the boot timer.

Execution progresses into examining if the antenna doors are deployed correctly. If

not, a fail is returned to the calling code. Likewise, a failed self-check will return fail to

the calling code. The Start-Up/Bootloader firmware uses the propagated failures to

determine if a Safe Mode entry (Section 3.7.2) is required.

A.18. TECHNICAL DETAILS OF THE DETUMBLE LIBRARY

The Detumble library is used to slow the angular precession of the spacecraft when

it is ejected into orbit. Detumbling is performed by executing the public method

”Run”. This method is intended to be used within a loop to attempt to stop the angular

procession of the spacecraft repeatedly. Figure A.18.1 provides a high-level depiction

of the method logic. The method starts by attempting to read the onboard IMU

(Section 3.2.3). If the reading is successful, the method will calculate the normalised

scalar rotational velocity. Comparing this value against the stop condition dps value

initialised in the constructor for the module, a success condition will be returned if

spacecraft tumbling has been slowed sufficiently. If further detumbling actuation is

required, however, the method will use the magnetometry data read from the IMU

to calculate the rate of change of the magnetic field measurements. The maximum

magnetorquer dipole is then applied to each magnetorquer axis with the polarity set

depending on the axial rate of change. The method returns fail as the stop condition

has not yet been met, instructing the calling code that the ”Run” method needs to be

called again.

A.19. TECHNICAL DETAILS OF THE SCHEDULING SERVICE LI-

BRARY

Flight application software uses the scheduling service library in the BSF to manage

tasks to be executed on orbit. The publicly available methods are ”Create”, ”Read”,

”Update”, and ”Delete”. Adding a new task to the task scheduler is done through the
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Call Run

Attempt to read the IMU

reading sucessful?

Calculate normalised scalar 
rotational velocity

 True 

return fail

 False 

Is tumbling greater 
than allowable value?

Calculate rate of change
of magnetic field

 True 

return success

 False 

Initialise axial torque to positive
maximum magnetorquer dipole

Flip axial torque polarity 
if rate of change of magnetic 
field on axis is less than 0

Set axial torque on magnetorquers

FIGURE A.18.1: A flowchart depicting the logic of the ”Run” method of the Detumble
class. The method is intended to be run in a loop until the desired stop condition is
met, signified by returning success.
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FIGURE A.19.1: A high-level overview of the ”Create” method on the TimeSeries-
TaskScheduler object. This method takes a task to schedule and inserts it into the list
at the correct location if the task queue is not full.

”Create” method (Figure A.19.1). This method, called with a task to execute and a start

and end time, iterates through the private member StaticList object, identifying where

an insertion is possible. The ”Create” method will fail if another task exists in the list

with the same start time as the new task attempting to be inserted. Furthermore, the

method will fail if the inserting task’s end time overlaps with the existing task’s start

time already in the list. In the situation where these conditions do not exist, however,

the method will insert the requested task in the list, sorted according to task start times.

As the tasks are sorted by task start time, reading from the list (Figure A.19.2) needs

to pop the task at the head of the list using the ”Pop” method on the StaticList object.

Once removed from the list, the pointer to the AtSpecifiedTimeInterface implementation
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Call Read

 

At end of list?

Pop task off list

 False 

Return success

 True 

Execute task at specified time

FIGURE A.19.2: A high-level overview of the ”Read” method on the TimeSeries-
TaskScheduler. This method is used by application code to read tasks from the queue
for execution.

is dereferenced and provided the task to execute. This approach abstracts how the task

is run in the software.

Support for changing the task scheduled in the StaticList object is achieved through

the ”Update” method (Figure A.19.3). This method, called with the task to update,

iterates through the StaticList object to find the requested task. Once found, it tem-

porarily creates a backup of the task and then proceeds to erase the old task using the

”Delete” method on the StaticList object. The ”Create” method is then called with the

new replacement task. If creating a new task fails, the temporary backup is restored.

If a previously scheduled task is no longer required, it can be removed from the list

using the ”Delete” method (Figure A.19.4). This method iterates through the StaticList

object, checking for the task to remove. When found, the task is removed using the

”Erase” method on the StaticList object.
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Call Update

Grab pointer to the 
start of the task list

List is empty?

Return fail

 True 

 
 False 

At end of list?

 True 

Found task to update?

 False 

Backup task

 True 

Move to next task node in the list

 False 

Call Erase 
with old task

Call Create 
with new task

Created task 
successfully?

Return success

 True 

Reinsert task backup

 False 

FIGURE A.19.3: A high-level overview of the ”Update” method on the TimeSeries-
TaskScheduler object. This method is used to update an existing task in the queue.
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Call Delete

Grab pointer to the 
start of the task list

List is empty?

Return fail

 True 

 
 False 

At end of list?

 True 

Found task to delete?

 False 

Call Erase 
with task

 True 

Move to next task
node in the list

 False 

Deleted task 
successfully?

 False 

Return success

 True 

FIGURE A.19.4: A high-level overview of the ”Delete” method on the TimeSeries-
TaskScheduler object. This method is used to remove an existing task from the queue.
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The tasks available on Binar-1 comprised payload usage and system checks. The

”Take Picture” task enables the camera payload on Binar-1 to take a photo. The config-

urable parameters for the task allowed for the white balance, exposure, red gain and

blue gain to be adjusted. The captured image is stored on the payload computer and

requires further command from the ground station to retrieve. After taking images, the

”Get Image Names” task can be scheduled to return a comma-delimited string of the

names of all the images on the storage. These are saved with a date and time stamp.

The returned image names from the task execution are stored on the onboard storage

(Section 3.2.5) to retrieve during a pass over the Curtin University ground station. As

the images taken by the payload require multiple passes to downlink in full resolution,

the ”Generate Thumbnail” task can be scheduled to create thumbnail versions of all

images on the payload. The task has the configurable parameter of the thumbnail

width in pixels to use for generation. One option supported for downlinking images

was compressing the image to reduce the file size. This task had two configurable

parameters, the image name to compress retrieved from the ”Get Image Names” task

and a percentage by which to compress the image. Another option for downlinking

images was to segment them into several tiles using the ”Split Image” task. This task

takes two configurable parameters; the file name retrieved from the ”Get Image Names”

task and the number of sub-images to segment into. Each image segment could then

be downlinked separately and reassembled on the ground. To downlink an image,

the image data first needs to be transferred from the payload computer storage to the

onboard storage to reduce the time required for the payload to be enabled for power

conservation.

Transferring the image is done using the ”Get Image” task. The task would be

scheduled when the spacecraft was out of range of the Curtin University ground

station to prepare the image for downlink when it became visible. The configurable

parameter was the name of the image to downlink. Alongside the Earth observation

camera, Binar-1 also had a star tracker camera. This payload was used through the

”Use Star Tracker” task. This task powers on the payload camera, waits for the payload

to take an image, and then because the image size is significantly smaller than the Earth

observation camera, immediately reads the image data into RAM to be transferred into
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the onboard storage. The image can then be downlinked over the ground station.

The ”Self-Check” task uses the Self Check library (Section 3.5.3) to identify faults on

the spacecraft. Scheduling the task requires the check level; critical systems, non-critical

systems, or both.

The ”Move Manipulator” task is used to actuate the emulated robotic manipulator

using the Manipulator library (Section 3.2.11). The configurable parameter for the task

is the angle by which to actuate the manipulator.

The ”Detumble” task uses the Detumble library (Section 3.5.1) to slow the angular

procession of the spacecraft. On boot into the application code, the detumble task

is automatically scheduled. The ground station can also schedule the task if further

detumbling is required on orbit.

A.20. TECHNICAL DETAILS OF THE SELF CHECK LIBRARY

The flight software uses the self-check library to examine critical and non-critical

systems onboard the spacecraft for faults.

The critical systems on Binar-1 comprised the power, temperature, and error logging

systems. The power system check iterates over every voltage and current analog

channel using the Analog library (Section 3.2.1) and compares the sampled reading

against hardcoded nominal bounds set when characterising the satellite. The same

process also applies to the temperature system. The error logging system checks the

error logs in the non-volatile registers detailed in Section 3.2.9 for entries made during

system runtime.

The non-critical systems on Binar-1 comprised the magnetorquer, GPS, and IMU

systems. The magnetorquer system check and IMU system check objects invoke the

”GetStatus” method of their hardware abstracted objects, discussed in Sections 3.2.3

and 3.2.4. The GPS system check object attempts to take the device from the ownership

manager and perform a GPS reading, as seen in Figure A.20.1. As the GPS is held

in a low power state, it should be able to hot-start per the device datasheet in one
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Call GPS self check

Get pointer to hardware manager

Take the GPS peripheral

Has been less 
than 40 seconds?

Try read GPS

 True 

Return fail

 False 

Have GPS readings?

 False 

Return success

 True 

FIGURE A.20.1: A high-level overview of the ”CheckSystem” method of the aggre-
gated non-critical GPS system derived from the SystemCheckInterface.

second. However, it is given 40 seconds to start up, one second more than is required

to procure a satellite fix from a cold start. For a 40-second duration, the GPS is queried

for readings. If readings are received, the device is successfully verified. The system

check fails if the 40 seconds lapse with no valid readings.

A.21. TECHNICAL DETAILS OF THE RPC LIBRARY

The BSF uses the RPC library to facilitate communications between the ground station

and the spacecraft. Table 3.4 exhaustively lists the available procedure calls in the

various operation modes. This section describes each of the modes.
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The ”GetVoltages”, ”GetCurrents”, and ”GetTemperatures” methods use their cor-

responding private member analog reader to collect raw analog readings to return to

the ground.

Ping is used to receive a quick acknowledgement response from the spacecraft to

verify that the flight computer is online.

The ”FirmwareUpdate” method takes three request types as parameters; begin

firmware update, firmware update, and finish firmware update. As firmware cannot

be updated in Application Mode, the firmware update and finish firmware update

requests are ignored. If a firmware update request is received in Application Mode, the

system ctx pointer is used to write the target flash bank and the number of segments

to non-volatile memory. Following this, it reboots into Start-Up Mode to complete the

firmware update process. When rebooted, the flight software sends a begin firmware

update response to the ground, signalling it is ready to start receiving firmware seg-

ments. The Start-Up Mode RPC server handles receiving firmware using the privately

aggregated firmware reader object, an implementation of the FirmwareReaderInter-

face from the firmware reader library (Section 3.4.2). When a firmware update request

is received with a firmware segment and corresponding index, it is passed to the

firmware reader object to be handled through the ”SetNextSegment” method. When

a finish firmware update request is received, the RPC server will check for missing

segments using the ”CheckForMissingSegment” method before finally transmitting a

finish firmware update response.

The ”ScheduleTask” method determines what task the ground operator has re-

quested and calls the ”Create” method on the private scheduler member to insert it

into the task list. The application thread has access to the same scheduler, using it to

execute the tasks requested from the ground.

”GetErrorRegisters” uses the private SystemContextInterface pointer to read and

return the error registers from non-volatile memory to the ground operator.

The ”DeleteImages” request uses the private payload member to enable the payload

camera, send a request to the payload computer to delete all stored images, and then

power it down.
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”GetImuData” requests access to the IMU (Section 3.2.3) from the ownership man-

ager (Section 3.2.2) to perform a reading of the gyroscope, accelerometer and magne-

tometer by using the ”ReadIMU” method.

The ”DownloadLog” RPC method accepts two request types; begin system log

download and system log download. Receiving the begin system log download request,

the ”PrepareLog” method of the system logger library (Section 3.2.10) is called with the

log type and requested hour to retrieve from memory. The log is stored temporarily

in RAM to release the storage peripheral, and the response contains the number

of segments in the log to transmit. The response message can contain a maximum

segment of 1024 bytes. After the ground receives the response, it transmits a system

log download request to the CubeSat to start receiving segments. The ”DownloadLog”

method handles these by taking the next available sequence of 1024 bytes using the

GetLogChunk on the system logger object, serialising them to be returned to the

ground.

The ”DownloadManipulatorLog” RPC method operates similarly. It also has two

request types; begin manipulator log download request and manipulator log download

request. The retrieval of bytes, however, differs in accessing; the manipulator logs

are not part of the system logger object. Hence, the ManipulatorLogger type (Section

3.2.11) is used to prepare the logs for download from RAM and segment them into

transmittable segments.

The ”DownloadImage” RPC method accepts three request types; begin image

download, image download request, and image names download request. The image

download process is the same as the ”DownloadLog” and ”DownloadManipulatorLog”

request types; the image to download is moved from onboard storage into RAM using

the ”PrepareImageForDownload” method and is segmented for download using the

”GetImageChunk” method. The image names download request retrieves the string of

available images from the onboard storage through the ”GetImageNames” method to

aid in selecting an image to download.

The beacon thread in the application code checks against an externally-linked file-

scoped reference disable time to determine if beacons are to be muted from the CubeSat.
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Ninety minutes must have elapsed for beacons to be transmitted again. When the

”DisableBeacon” request is received, this reference time is updated to the current time

on the spacecraft, starting another ninety minutes of silence from the satellite.

As the flash memory for the flight computer on Binar-1 was configured to sup-

port multiple application binaries, the ChangeFlashBank RPC method was added to

swap between them. This method writes the requested target flash bank register into

non-volatile memory and then performs a system reboot. Before booting, the Start-

Up/Bootloader firmware will query this bank to determine which application will be

booted.

The error registers in non-volatile memory store the state of errors that occurred

on the satellite and instruct the CubeSat to boot into Safe Mode. To escape Safe Mode,

ground operators can erase the status of specific error registers using the ”Clear Error

Registers” request.

The Binar-1 satellite had a redundant BCM onboard to assume spacecraft control

in case of a major fault. The redundant BCM supported all of the RPC methods

discussed in this section. However, this BCM was not connected to the transceiver,

so transmissions intended for it first had to pass through the primary BCM. Only the

supervisory computers on the BCM could communicate with each other. The Router

object was used to route the transmission to the intended target. When the ”Forward”

method is called to pass a message down the computer chain, the unique hardware

identifier for the computer is consulted against a lookup table to determine if the

computer belongs to the primary or redundant BCM. Discerning the location would

determine which private member to use for forwarding the message. After forwarding

the message, the Router object waits for a response with a ten-second timeout before the

RPC transaction is cancelled. If a response is received, it is sent back up the computer

chain using the ”SendBuffer” method on the sender object. When the correct computer

receives the message, the request object is run through a switch statement to find the

appropriate method to handle the request. For all of these methods, after performing

the request and collecting the required information, the response object is serialised

using the protobuf library and transmitted to the ground by dereferencing the serial

pointer and calling the ”Send” method with the resulting byte stream.
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ABSTRACT

As the computers enabling small spacecraft increase in capability and decrease in cost, the role that flight software plays in mission

potential is becoming increasingly important. Consequently, common pitfalls that are inherent in software design can endanger small

spacecraft mission success. A review of space mission mishaps of the past two decades reveals that code reuse, software testing and

poor code base maintenance were frequently responsible. This paper provides recommendations for software design for small

spacecraft to increase the likelihood of success for small satellite missions, using Binar-1, Western Australia’s first locally developed

spacecraft, as a case study. In the first application of the SOLID principles of object-oriented programming (a set of principles

intended to increase the maintainability and flexibility of a code base) to spacecraft software development, we demonstrate safe code

portability between missions, and an increase in test coverage of the code base through test-driven development. Good code base

maintenance is discussed with a focus on creating a development pipeline involving continuous integration and continuous

deployment of spacecraft software. Implementing the recommendations for small spacecraft software design on the Binar platform

has resulted in the development of safe, reliable and reusable software.

1. Introduction

In a 2005 study of 156 on-orbit spacecraft failures, Tafazoli found that six percent were attributed to incorrect software

commands and flaws, demonstrating the importance of a robust software design methodology to a successful mission

(Tafazoli, 2009). Seventeen years later, as more functionality is implemented in, or enabled by software running on

smaller, cheaper, and more powerful computing equipment, this is becoming more true than ever (Leveson, 2012).

However, the CubeSat form factor and onset of electronics miniaturisation has dramatically reduced the cost required to

conduct research in space, enabling universities to explore this field with teams of students. This is not without risk,

however, as the skills available in the educational branch of the space industry may struggle to safely implement the

complex software powering future spacecraft. This is reflected in the commonality of mission-critical risks presenting in

the spacecraft being produced from these groups (Latachi et al., 2020).

There is little published work documenting the role software plays in CubeSat failures (Latachi et al., 2020). Due to this,

new developers may potentially suffer the same pitfalls as developers before them. As reliable software design is critical

in risk mitigation (Latachi et al., 2020), it is common to see university CubeSat groups seek out mature software
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frameworks for implementation into their projects. Open source software frameworks such as NASAs Core Flight

Software aim to aid in cost and schedule savings for mission development, whilst improving the reusability and quality

of a code base. The framework has proven flight heritage on missions such as the Lunar Reconnaissance Orbiter and the

Lunar Atmosphere and Dust Environment Explorer, demonstrating its suitability in a space mission (McComas et al.,

2016). JPLs open source F Prime framework aims to achieve similar benefits for small satellites. Having been used on

missions such as ASTERIA, Lunar Flashlight and NEA Scout, it has proven flight heritage in CubeSat applications

(Bocchino et al., 2018). If CubeSat developers are willing to select their OBC for compatibility with a framework,

KubOS provides a software stack that can aid in rapid development by supplying the API for interfacing with hardware

(Plauche, 2017). It is also common for university CubeSat groups to purchase and use a commercial Software

Development Kit (SDK) for their launches, attracted to the appeal of flight heritage with in-orbit validation and

guaranteed long term support (Doyle et al., 2020). Whilst using a mature framework or an SDK can be useful for

university groups to achieve the short term goal of a launch, it can become a detriment to a space program with the

intention of flying multiple spacecraft. To fully benefit from the use of existing software solutions, the software written

for the CubeSat needs to conform to the existing structure. This can couple the code base to the specific software

solution being used, making it difficult to break from it in the future if it no longer meets mission requirements. In the

instance of solutions with proprietary software, use on subsequent missions may carry with it extra licensing costs.

Using an SDK for the development of EIRSAT-1, Doyle et al. mention that the knowledge base of the software

development team regarding mission software design is encompassed within the confines of using the licensed SDK,

further stressing the potential difficulty in breaking from the use of a kit. It was recommended that teams with the

intention of flying multiple missions seek out full in-house development (Doyle et al., 2020). This recommendation is

often heeded in the case where a University group wishes to produce reliable software that can be reused on future

missions (Askari et al., 2017)(Hishmeh et al., 2009).

From an independent analysis however, Latachi et al. identified custom CubeSat flight software as a highly critical

system in the success of a mission due to the lack of flight heritage. To decrease the risk of mission failure, four areas

were identified to promote the development of a safe, generic software architecture for spacecraft: modularity, reliability,

re-usability and extensibility (Latachi et al., 2020). These sentiments are seen to be reflected in other University groups

that have written their own custom CubeSat software (Alanazi and Straub, 2019). Modularity was mentioned to be a key

driver for the development of ITASAT, where Carrara et al. mention that a major objective of their CubeSat project is to

develop a multi-mission platform (Carrara et al., 2017). Coupled with modularity, extensibility is demonstrated in the

software architecture for the Masat-1 and Kysat CubeSat missions, where a distinctive layered approach has been

adopted. Each loosely-coupled layer consists of various modules, each encapsulating their own set of functionalities that

do not interfere with one another (Latachi et al., 2020)(Hishmeh et al., 2009). Developing the code base in such a
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manner allows for hardware to be changed with only minor modifications to the software, as only the module

encapsulating the driver for the hardware needs to be changed. Moreover, extra modules can be added to layers without

breaking the software structure, permitting extensibility of the code base. Whitney et al. propose that a key element in

the extensible software design of OpenOrbiter is the componentization of modules, allowing for scalability (Whitney

et al., 2015). Supplementary to extensibility, Hishmeh et al. discuss the importance of ensuring the modules developed

have a simple interface. This increases readability of the code base, and therefore the likelihood of maintainability and

reusability (Hishmeh et al., 2009). Both the Masat-1 and the Galassia CubeSat teams stress the importance of separating

the functionality of the payload software from the flight logic. This was mentioned to enable reusability by allowing the

majority of the code base to be reused between missions (Latachi et al., 2020). For Askari et al., implementing this level

of modularity was key in achieving a program requirement of only needing to develop software for the new payloads

being flown between missions (Askari et al., 2017). De Souza et al. were able to achieve reusability through a layered

software approach, where only the lower layers close to the hardware need to be changed for deployment on future

hardware (de Souza et al., 2022).

Whilst commonly recommending the development of in-house modular, reusable CubeSat software, it is often seen in

published work that CubeSat software developers seldom offer advice to new developers on how to achieve this goal.

The concepts of modularity, abstraction and layered software design may seem overwhelming to University teams

embarking on the development of their first CubeSat, which in turn may increase the likelihood of the team electing to

use a mature software framework or an SDK. As previously mentioned, whilst using an existing software solution

decreases the time-to-orbit for an initial mission, the ongoing costs and tight coupling of the code base to the solution

being used can make further development difficult. Furthermore, the University team may miss out on the potential

learning experience of developing their own software framework.

Fortunately, independent bodies exist in an attempt to standardise the development of spacecraft systems, including

software development. The European Cooperation for Space Standardisation (ECSS) is one such body. The design

practices previously mentioned by the CubeSat software developers are in line with the topics discussed in publications

for software engineering and software product assurance, ECSS-E-ST-40C (Space Engineering Software, 2009) and

ECSS-Q-ST-80C (Space Product Assurance, 2017). The software engineering and software product assurance

documents are grounded in the creation of unambiguous, verifiable and traceable system requirements. The clauses

therein encourage the developer to satisfy the produced requirements throughout the mission life cycle. Adherence to the

standards promotes the creation of safe, reliable, maintainable code, increasing the likelihood of mission success. Whilst

offering a high level overview of the necessary elements for reliable spacecraft software design, the documents however

still do not offer in depth advice on how to implement modularity, reliability, re-usability and extensibility in space

systems.
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From the works discussed, software developed for CubeSats is often based around requirements, or in the case of

Masat-1, influenced by fault detection, isolation and recovery (FDIR) routines (Latachi et al., 2020). Learning from

incidents (LFI), in particular accident analysis, is a common technique used by the aviation industry to learn and prevent

recurrence of mishaps (Clare and Kourousis, 2021). However, it does not seem to be a common driver for CubeSat

software development, perhaps as previously mentioned due to little published work on CubeSat failures existing. Yet,

often described as a test-bed for larger spacecraft platforms, the development of CubeSat software can be influenced by

the accidents that occur in larger spacecraft missions. Therefore, with the proven ability to aid in sustainable

developments in system safety, the LFI concept was applied in the development of software for the Binar platform.

Binar-1 (named after the Noongar word for fireball) is Western Australia’s first satellite, designed and built by the Space

Science and Technology Centre at Curtin University in Perth. At its core, the 1U CubeSat is controlled by a motherboard

that is designed entirely in-house, with a focus on subsystem design and integration. The completed core occupies just

0.25U, consisting of primary and redundant flight computers, a GPS, attitude determination and control system (ADCS),

electrical power system (EPS) and memory storage, leaving significantly more room for payload than most similar

platforms. Having this capability in-house enables prototype testing to destruction to stress the limits of the spacecraft,

and facilitates hardware design reuse between missions. In addition to the hardware development, the Binar Space

Program has developed the software stack powering Binar-1.

The custom software consists of flight application code, a hardware abstraction layer, operating system abstraction layer,

utilities, system resource manager, and board support layer for low-level drivers for on-board peripherals. Writing

custom software for the motherboard meant that on-board peripherals could be leveraged in the most optimal and

efficient manner to function as expected. Being developed in parallel to the iterative hardware design process, software

development saw adhesion to abstracted software design that enabled hardware to be changed without requiring much

modification to the software. This ubiquitous abstraction has become a core feature of the Binar spacecraft that will

allow software to be reused on future missions with minimal changes.

This paper provides an analysis of historical space mission failures due to inadequate software, using the findings to

create recommendations for CubeSat software developers on writing reliable software for small spacecraft. As a case

study, these recommendations are applied to the development of the Binar Software Framework, with the perceived

benefits discussed. Unfortunately, a hardware fault on the adaptor board connecting the Binar CubeSat core to the

transceiver on Binar-1 prevented communications between the motherboard and the transceiver. This meant that ground

control was only able to communicate directly with the transceiver. Due to this, the on-orbit benefits of adopting the

recommendations could not be validated. However, we have seen some benefits of adherence to the methods used in the

paper as we are currently using the code base for development of our next three spacecraft. As the program progresses

and the spacecraft produced become more complex, it is expected further benefits will become apparent.
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Section 2 analyses the missions, finding that the areas of code reuse, software testing and poor code base maintenance

are seen to be frequently responsible in mission failures. Following this, Section 3 then discusses how software can be

written for small spacecraft to prevent these failure reasons from reoccurring, using Binar-1 as a case study. Where

applicable, it mentions how the software aligns with the clauses specified in the ECSS documents. Finally, the benefits of

adopting the proposed recommendations are discussed in Section 4 with a focus on safety, reliability and reusability,

increasing the likelihood of small spacecraft mission success.

2. Spacecraft Software Failures

Whilst the importance of software on spacecraft is well understood (Nilchiani, 2009), failures are still common in the

space industry specifically resulting from mishaps related to software, often due to insufficient testing prior to launch and

poor coding practices (Ji et al., 2019) (Leveson, 2012). This trend is also observed in the small spacecraft community

(Langer and Bouwmeester, 2016). In a 2017 study, Venturini et al. (Venturini et al., 2018) conducted 23 interviews of

organisations with CubeSat industry experience. Respondents to the interviews identified flight software as a high-risk

area, repeatedly stressing the importance of robust software design in the reduction of risk. Ideally, this paper would

analyse small spacecraft mission failures due to software, however with a lack of definitive publications on this topic it

will use examples from larger spacecraft missions instead. The scope of the missions selected for this paper was limited

to only those that publicly disclose software to be a critical point of failure from the result of an accident investigation

review. The spacecraft failures that met this criterion were the on-orbit collision involving DART in 2005, the potential

atmospheric destruction of the Mars Climate Orbiter in 1998, and the self-destruction of Ariane-5 and Zenit-3SL shortly

after lift-off in 1996 and 2000, respectively. Code reuse, software testing and code base maintenance were frequently

mentioned in the investigation reports for these missions. The overlap of software failures in the missions selected can be

seen in Table 1. It is hoped that this paper will serve to raise awareness of common spacecraft software failure issues,

and showcase methods to prevent similar failures in the future. This section of this paper will examine the selected

missions and discuss the reasoning behind their software failures. Following this, Section 3 will discuss how the Binar

Software Framework addresses these common failure areas to produce safe, reusable spacecraft software to promote

small satellite mission success.

Table 1: A summary of the cause of spacecraft software failures.

Failure Reason

Mission Testing Documentation Code Review Code Reuse
DART * *
MCO * * *
Ariane-5 * * *
Zenit-3SL * *
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2.1. DART

The Demonstration for Autonomous Rendezvous Technology (DART) project was a 2005 NASA mission to demonstrate

the hardware and software required to perform an automated docking with another spacecraft in orbit (Rumford, 2003).

The target spacecraft for docking, MUBLCOM (Multiple Paths, Beyond Line of Sight Communications), remained

operational in orbit after having satisfied its primary goal. Eleven hours into the mission, DART collided with

MUBLCOM and proceeded to its end of life sequence, failing to achieve any of the fourteen on-orbit mission objectives

(Lilley, 2012).

The Mishap Investigation Board (MIB) identified significant software faults that led to mission failure (Croomes, 2006).

The first point of failure occurred as a result of an attempt at program error correcting logic. The spacecraft used a

standard Kalman filter approach to estimate position and velocity vectors using GPS and inertial data. However, the

spacecraft also introduced a software reset when the error between the estimated and measured data became too great.

After the reset, the flight computer sampled the GPS and used those readings as its new estimate. This initial reading

however was consistently 0.6 m/s inaccurate which would again cause the readings to drift and trigger a software reset,

repeating every three minutes. The MIB discovered that the design requirements dictated an algorithm that should have

been able to correct a discrepancy up to 2 m/s, well above the error range that forced the spacecraft into a software reset

loop. The MIB proposed that the failure to detect the inadequate control algorithm stemmed from lack of testing across

the full range as specified by the design requirements. Furthermore, in the calculation of its position and velocity vectors,

DART weighted the estimated value far higher than it should have. This was caused by a late change of a gain constant

in software that did not undergo sufficient testing. The new gain factor, attributed to changing mission requirements,

meant that the algorithm could never actually converge. Ultimately, this caused excessive course correction manoeuvres

during the short mission length, leading to the early mission retirement and contributing to the mishap with MUBLCOM.

The failed docking and subsequent collision can also be attributed to an overly strict control sequence to initiate the

docking manoeuvre. The waypoint that DART was to enter to begin the first on-orbit mission objective was too small,

and as a result the spacecraft continued to drift toward MUBLCOM. The algorithm for the docking sequence did not

account for the possibility of navigational errors, and hence there was no ability to recover after this waypoint was

missed. An algorithm for collision avoidance was built into the spacecraft, however it depended on the same navigational

data source that led to the early retirement fault and hence was ineffective at preventing the failure.

2.2. Mars Climate Orbiter

The Mars Climate Orbiter (MCO) was a 1998 NASA mission intended to study the Martian climate from a low circular

orbit. The intention was to use an initial elliptical orbit through the upper Martian atmosphere to lower the orbital apses

to achieve a low circular orbit (Leveson, 2012). However, after beginning its orbital insertion burn, communication with
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the spacecraft was lost. The MIB determined that MCOs initial elliptical trajectory passed too deep into Mars’s

atmosphere, either destroying the spacecraft or causing it to skip out of the atmosphere and into a heliocentric orbit

(Stephenson et al., 1999). During the investigation, the failure was traced back to code reused from Mars Global

Surveyor (MGS) (launched in 1996). The code in question assisted with the calculation of the small forces required to

prevent saturation of the spacecraft’s reaction wheels due to the build up of angular momentum. The MGS code required

imperial units in its calculation of the impulse bit, which then was to be converted to metric units to be used by the

propulsion control routines. However, the reaction control system thruster size on MCO was increased from MGS,

requiring changes to the control algorithms. Whilst the equations used for MGS did take into consideration the

conversion between pounds per second to Newtons per second, this value was buried in the code with a lack of sufficient

documentation. Coupled with a failure to meet interface specification requirements through testing (Edward A. Euler

et al., 2001), when the new thruster equation was substituted into the reused software this conversion factor was missed

and hence was mistakenly removed. As a result, the software interface specification for MCO received thruster

parameters in imperial units rather than the required SI units, which ultimately led to the spacecraft dropping its periapsis

to an estimated 57 km (Edward A. Euler et al., 2001).

2.3. Ariane 5

As a successor to Ariane 4, much of the already flight-proven software was reused to accelerate the development of

Ariane 5. Unfortunately the first flight in 1996 resulted in a catastrophic failure 37 seconds after lift off when the

self-destruct system triggered the destruction of the launch vehicle. The post incident investigation into the failure

tracked the cause back to the inertial reference system failing after having encountered a software exception (J. L. Lions,

1996). Incorrect data coming from the inertial reference system instructed the on-board computer to fully deflect the

solid booster engines, causing the vehicle to veer off course. The flight computer could not swap to the redundant inertial

reference system as it too had suffered the same failure. The software exception on both inertial reference systems was

found to have been caused by an integer overflow in the attempt to convert a 64-bit float to a 16-bit signed integer. The

conversion software did not handle the case where the float would be too large to fit into the integer. This error was

located in the software that aligned the inertial reference system on the launch pad. After lift off, the function, which was

designed for Ariane 4, continued for 40 seconds into flight. However, the designers had overlooked the need to update

the flight logic to account for the higher acceleration from Ariane 5’s more powerful Vulcain engines. The velocity that

the vehicle reached early into flight resulted in a larger value than could be converted to the smaller integer. The Ariane

501 Inquiry Board mentioned that had the inertial reference system and complete flight control system been tested

extensively, the software errors leading to the failure could have been detected (J. L. Lions, 1996).

348 STUART ROBERT GIBSON BUCHAN



2.4. Zenit-3SL

Zenit-3SL was a Ukrainian expendable launch vehicle primarily used to deliver communications satellites into

geosynchronous orbits. It was a multinational collaboration through the Sea Launch project that used a mobile equatorial

sea-based launch pad for easier access to equatorial orbits (Harvey, 2007). The third mission of the program in 2000

failed shortly after launch when the rocket self-destructed after a significant course deviation (Gorbenko et al., 2012).

The failure analysis panel determined that the launch failure could be attributed to a software error prematurely disabling

the second stage engine. The root cause was traced to software failing to close a pressurisation system valve, leading to

an excess loss in produced thrust and early engine termination (Harvey, 2007). The error was traced to a late change in

mission requirements resulting in a software engineer modifying control software. During this modification, the code

concerned with valve operation was accidentally deleted (Gorbenko et al., 2012). Pre-launch checks of the software

following this modification unfortunately failed to identify the missing command to close the valve (Harvey, 2007).

2.5. Summary of Failure Reasons

The key areas leading to software failure shown from the missions discussed are insufficient software testing, inadequate

documentation, lack of code review and code reuse. A summary of how these areas contributed to the failure of the

discussed missions can be seen in Table 1, highlighting the overlap that is present. It is evident that the largest

contribution can be attributed to lack of software testing, with inadequate documentation, insufficient code review, and

unsafe code also causing failures. The remainder of this paper will discuss possible preventative measures for these

failures in the development of reliable small spacecraft software using the development for Binar-1 as a case study.

3. Recommendations For Small Spacecraft

3.1. Safe Code Reuse

As the goal of the Binar platform is to facilitate rapid mission concept-to-orbit, hardware and software reusability is of

high priority to reduce the development time of future spacecraft. Yet, as can be seen from the failures of Ariane 5 and

MCO, code reuse is not without risk. The Binar Software Framework was designed to maximise code reusability whilst

minimising risk by focusing more on platform portability rather than direct reusability. Software reusability refers to the

development and maintenance of software modules that can be reused between compiled binaries. With a focus on

meeting the needs of a broad range of software requirements, code developed with reusability in mind can be large,

complex and difficult to maintain (Mooney, 1995). In the cross-platform context, source portability refers to adapting

existing source code to a wide range of environments. With a reduction in generalisation, software developed this way

can be easier to produce and maintain in future implementations whilst also benefiting from increased reliability

(Mooney, 1995).
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Developing software in this manner can be achieved by following time-tested software principles, designed to streamline

the process of writing good code. Two common collections of principles that are frequently used are GRASP and

SOLID. GRASP (General Responsibility Assignment Software Patterns) is a collection of nine software principles,

namely controller, creator, indirection, information expert, low coupling, high cohesion, polymorphism, protected

variations, and pure fabrication (Larman and Kruchten, 2005). The collection of principles aim to guide the developer

into writing robust object oriented software through module responsibility assignment. Similarly, the SOLID principles

of object-oriented programming, namely Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation

and Dependency Inversion, aim to increase the maintainability and flexibility of a code base by resolving improper

dependencies between software modules (Martin, 2000). Whilst these collections of principles may differ in some

aspects, the general ideology is that software written adhering to established principles should be of a higher standard

than software written without. In this section, Unified Modelling Language (UML) is used to show applications of each

of the SOLID principles to the development of the Binar Software Framework in the first use of SOLID for spacecraft

software development. Whilst the GRASP principles do provide a beneficial reference on robust software design, the

scope of this section is constrained to only the methodologies used during the development of the Binar Software

Framework. For reference, the UML class diagram arrows used in this paper are defined in Table 2. The observed

benefits are discussed in Section 4.

Table 2: The UML class diagram arrows used in this paper with their meanings.

Arrow Meaning Description

Association Child object exists within and is used by the parent
Dependency Changes to the parent object will affect those that depend on it
Inheritance Child object inherits (and can extend) the functionality of a parent

Implementation Child object implements the methods defined in the abstract parent
Aggregation Objects are associated, but the child can exist without the parent object

3.1.1. Single Responsibility Principle

The single responsibility principle is concerned with the division of program logic amongst multiple objects

encapsulating a single small responsibility each (Martin, 2014). The concept promotes using multiple objects with

well-defined interfaces over using a singular object to control multiple aspects of an application. As a general rule, an

object conforming to this specification is said to have a single responsibility if the object only has a singular reason to

change. An example of this in the Binar Software Framework can be seen in the analogue to digital conversion software

module (Figure 1) where the current and temperature measuring objects are implemented as independent classes instead

of being amalgamated into one complex monolithic object responsible with measuring both.

In our approach, a base class accounting all features required by the analogue objects was implemented from an

interface, and then separate specific analog classes inherited and extended this functionality. This prevented the
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<<Interface>>

Analog

+ GetRaw()

+ GetVoltage()

AnalogCurrent

+ GetCurrent()

AnalogTemperature

+ GetTemperature()

Analog

+ GetRaw()
+ GetVoltage()

Figure 1: The application of the Single Responsibility Principle to the ADC module in the Binar Software Framework. The AnalogCur-
rent and AnalogTemperature modules are decoupled from each other by implementing their required functionality within the scope of
their respective objects. A change to either of the AnalogCurrent or AnalogTemperature objects will not result in a change in the other.

non-cohesive current and temperature objects from being coupled together causing unnecessary rigidity in the module

design. This is important in the context of code reuse as the prevention of coupling means that changes to subtypes of the

Analog module will not invoke a change in other modules.

3.1.2. Open-Closed Principle

The Open-Closed principle (Martin, 2014) refers to the development of software modules that are open for extension, but

closed for modification. The functionality of modules under this principle can be extended upon when the requirements

of an application change, but the functionality that has already been implemented cannot be modified. The principle

recommends that changing project requirements should be addressed by adding new code rather than by rewriting code

that already works. This is commonly implemented through the use of abstract objects in object-oriented programming

design (Martin, 2014). An example of the Open-Closed principle in the Binar Software Framework can be seen in the

GPS library (Figure 2), where the design of the GPS module includes a base class with a set of concrete public methods

which describe functionality in terms of the abstract method ReadGps. The abstract object GpsBase gets implemented in

the inheriting module, GPS, thus extending the functionality of the module without modifying the source code.

The Open-Closed principle is helpful in this context because it explicitly highlights that not all code can be safely reused,

favouring the development of modules that separate generic functionality from the detailed implementation. As GPS

devices output data through a series of strings with a checksum, this functionality can be developed independent of the

GPS, decoupling the module from the specific hardware chosen.
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GpsBase

+ Parse()

+ CalculateChecksum()

- ReadGps()

GPS

- ReadGps()

Figure 2: The application of the Open-Closed Principle to the GPS module in the Binar Software Framework. The functionality of
the GpsBase class is extended through the addition of new code in the inheriting GPS object, without the need for modification of the
original base class.

3.1.3. Liskov Substitution Principle

Magnetorquer

- xx: MagnetorquerDriverInterface*

- yy: MagnetorquerDriverInterface*

- zz: MagnetorquerDriverInterface*

+ SetDipole()

+ GetDipole()

+ GetStatus()
MagnetorquerDriver

+ SetPwm()

+ GetDipole()

+ GetStatus()

T: TorquerAxis

<<Interface>>

MagnetorquerDriver

+ SetPwm()

+ GetDipole()

+ GetStatus()

Figure 3: The application of the Liskov Substitution Principle to the magnetorquer module in the Binar Software Framework. The
Magnetorquer object has three private pointers to axes that implement the MagnetorquerDriver interface object. Any of the template
concretions of the MagnetorquerDriver class are eligible for substitution into these private pointers as they inherit from the Magnetor-
querDriver interface object

The Liskov Substitution principle proposes that subtypes of modules must be substitutable for their base types in

application code (Liskov, 1987). Analogous with run-time polymorphism, it is one of the enabling factors that makes the

Open-Closed principle discussed in Section 3.1.2 possible. The principle relates to code reusability through increasing

portability by decoupling generic module software from the detailed implementation. Furthermore, this aids in future

maintainability by providing a clear contract with the application code on how to use a specific module, rather than being

concerned with how it is actually implemented. An application of the Liskov Substitution principle in the Binar Software

Framework can be seen in the magnetorquers software module (Figure 3), where a templated MagnetorquerDriver object

can be used by the Magnetorquer class as it inherits from the MagnetorquerDriver interface object.

In this module, the publicly visible magnetorquer object controls the MagnetorquerDriver objects through references to

their abstract base class. The concrete MagnetorquerDriver subtype is templated on all available magnetorquer axes,
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making the addition of redundant axes compatible with the public module without modification. This is important as it

reduces the coupling between objects in a module. Implementing functionality through pointers to abstract interfaces

allows the higher level software to use the lower level objects without having to be concerned how they operate, thus

permitting changes to interactions with spacecraft hardware without forcing a recompile of the full module.

3.1.4. Interface Segregation Principle

Check Power

System


Check Temperature

System


<<Interface>>

CheckCriticalSystems

+ CheckCriticalSystems()

<<Interface>>

CheckNonCriticalSystems

+ CheckNonCriticalSystem()

<<Interface>>

SelfCheck

+ CheckCriticalSystems()
+ CheckNonCriticalSystems()

Check Attitude

System

Check Location

System

<<Interface>>

CheckPowerSystem

<<Interface>>

CheckTemperatureSystem

<<Interface>>

CheckAttitudeSystem

<<Interface>>

CheckLocationSystem

<<Interface>>

SystemCheck

+ CheckSystem()

Check Critical

Systems


Check Non-Critical

Systems


Figure 4: An application of the Interface Segregation Principle to the self check module in the Binar Software Framework. In this
module, each subsystem that can be checked on-board the spacecraft implements a unique, decoupled interface. The critical and non-
critical system check implementation objects then associate the implementations of the unique interfaces. This prevents a check done
with the critical system object from becoming coupled to a non-critical system, allowing the systems being checked to be extended
upon without forcing a recompile of unrelated modules.

The interface segregation principle states that software module subtypes should not be forced to depend on modules they

do not use (Martin, 2014). To achieve this, it recommends avoiding monolithic interfaces that contain many unrelated

methods. Rather, the principle favours multiple smaller interfaces that get implemented where needed. This principle is

closely related with the maintainability aspect of code reuse by removing code duplication as much as possible, whilst

avoiding the pitfalls of non-cohesive software interfaces. An example of this principle implemented in the Binar

Software Framework can be seen in Figure 4, where subsystems that are checked in the self test module are isolated from

one another, and are implemented where required.

The alternative, more rigid approach to implementing the self check module would have been to have a singular self
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check interface that the subtypes of SystemCheck interface all depended on. Whilst simple to implement, this pattern

would result in methods being added in the standard self check interface that would have only been used exclusively by

specific subtypes. This would then couple all the clients of this interface together, and open up the possibility for a

module to be affected by changes that other clients force upon the class. The resulting pollution of the interface could

potentially lead to errors when code is reused. Due to the likelihood of on-board systems expanding as mission

requirements become more complex, the interface segregation principle allows for these potential changes by decoupling

objects from non-cohesive interfaces and therefore allows subtypes to not be forced to depend on methods they don’t

need to. Moreover, implementing this principle aids in high testability of software modules due to the granularity

achieved in the responsibilities of the interfaces. In the example seen in Figure 4, rather than having the system classes

that inherit from the abstract interface depend directly on one monolithic SelfCheck interface object, each subclass of the

abstract class is given its own interface to depend on. Self check objects can then implement the individual interfaces

that they will actually make use of for checking, rather than all systems on board. For testing the self check module on

the host, the interfaces responsible for interacting with the hardware are able to be mocked and substituted into the

module under test through polymorphic dependency injection.

3.1.5. Dependency Inversion Principle

«Interface»

ImuImu

ImuImpl 

(Primary)

ImuImpl 

(Redundant)

Figure 5: An example of dependency inversion in the IMU software module. Application code wanting to access the IMU hardware
will use the high-level object that depends on the same abstraction as the lower level implementations. This decouples the high-level
IMU object from the hardware it is interacting with, allowing the IMU object to be reused even if hardware requirements change.

Rather than the traditional application architecture approach of a direct dependency chain between high-level software

and low-level implementations, the dependency inversion principle states that high-level software and low-level software

are to both depend on abstractions (Martin, 2014). An example of this can be seen in Figure 5, where the high-level

public facing IMU object and the lower level private ImuImpl objects both depend on the abstracted IMU interface.

If the application code is interested in interacting with the IMU, it does so through a high-level object that implements

the same IMU interface used by the implementation objects, rather than depending on the implementations directly. The
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software using the peripheral has then become abstracted from specifically how it receives the IMU data and instead

focuses on relevant details that are independent of the platform. This principle is important for code reusability as it

creates a modular interface where low-level implementations can be changed without affecting high-level code that

interacts with them. As Binar-1 has a primary and a redundant flight computer with different architectures on board, they

will need different software binaries to operate. Moreover, considering the redundant flight computer is to take over from

the primary flight computer in the event of an emergency, it will need to be able to operate with the same peripherals. It

would be time-consuming and error-prone to rewrite the software concerned with peripheral interaction simply because

it is to be run on a different microcontroller. The application of the dependency inversion principle means that the

high-level flight software can be reused between the computers, with the implementation simply swapped out.

The Binar Software Framework further leverages the Dependency Inversion Principle by making use of compile-time

configurable implementation linking. Using custom command-line arguments, the compiler will link generalised

high-level objects with their computer specific implementation to build binaries for the two flight computers on-board

the Binar bus. As the hardware for Binar develops in the future, the application of this principle means that new drivers

can be implemented without any risk of breaking high-level flight logic.

3.1.6. Failure Prevention

The usage of SOLID principles can help reduce the likelihood of errors appearing through the reuse of code. In the case

of the Mars Climate Orbiter discussed in Section 2.2, when the small forces software from the Mars Global Surveyor

mission was reused, it was tightly coupled to the thruster control equation being used. This was demonstrated by the fact

that the software had to be modified, and also that the modification of the software broke its functionality. If it were

possible to separate and encapsulate the section of the software concerned with calculating the thruster parameters,

leaving the genuinely transferable code agnostic of the thruster being used to interact with a well-defined interface, then

the design team could have possibly written a plugin for the new thruster to conform to the interface specification.

Inserted into the small forces software in a modular approach, this could ensure successful implementation portability by

removing the ambiguity between units by providing a documented interface specifying the inputs and outputs of the

object.

Similarly, with the Ariane 5 rocket discussed in Section 2.3 care was not taken when reusing code from Ariane 4 to

ensure that a narrowing conversion from a large data type would fit within the bounds of a smaller one used in

application code. If the module concerned with using the inertial reference data was decoupled from reading it, instead

interacting with an interface, then the remaining portable high-level code could have been transferred without the

application-specific data conversion. Engineers could then write a new module for the low-level software to interact with

the different hardware whilst conforming to the interface for it and have the high-level software interact with it
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seamlessly.

Being able to reuse code safely involves designing software to be understandable, flexible and maintainable. Adhering to

the SOLID principles of object-oriented program design, the modules written for the Binar Software Framework ensure

that a developer can safely reuse code on future missions. Modules having only a single responsibility mean they are

decoupled from each other and won’t be effected by changes to other modules. Changes are expected, mostly due to

changing hardware on the spacecraft, and so high-level libraries controlling low-level drivers polymorphically allow for

new drivers to be written that use the same interface. If the hardware requires a more feature-rich driver, the interface can

be extended whilst still satisfying the polymorphic requirements of the high-level controlling object. When these drivers

are added to support new hardware, new targets can be added to build files in the code base to selectively link the

software framework against revisions at compile time. Moreover, drivers that do not rely on hardware can also be linked

at compile time for testing the software independent of a spacecraft engineering model.

The usage of the SOLID programming principles contributes greatly in adherence to the clauses outlined in

ECSS-Q-ST-80C. The standard mentions that the development of software should apply design methods that have

performed successfully in a similar application to ensure dependability and safety (Space Product Assurance, 2017). The

large volume of published work regarding SOLID proves the successfulness of the time-tested guidelines, and has even

been observed in the scientific community to increase maintainability of a code base, whilst decreasing dependencies and

complexities (Källén et al., 2014). The ECSS-Q-ST-80C document also specifies that the development of software with

the intention of future reuse is to be implemented with a minimum dependency on hardware. The modularity achieved

from adherence to the SOLID principles aids in meeting this standard, promoting safe reuse on future missions.

3.2. Software Testing

3.2.1. Decoupling as a Tool for Testing

A commonly reported reason for spacecraft failures in the missions discussed in Section 2 was the failure to adequately

test modules of the software, to the extent that the Ariane-5 investigation board mentioned explicitly that testing could

have identified fatal errors during development (J. L. Lions, 1996). From a CubeSat perspective, the survey conducted by

Venturini et al. (Venturini et al., 2018) saw an emphasis on the importance of software testing in the success of a

mission. The failure to test is a common challenge faced in embedded software development due to hardware

dependency. In these situations, the lack of ability to test is due to the tight coupling between high-level software and the

low-level software that is concerned with interactions between embedded subsystems. Furthermore, barriers to testing

that arise are related to commonly only having a single spacecraft engineering model to test on and the commonality for

hardware revision. This scarcity of testing hardware can introduce issues during the testing process where software may

cease to work on future hardware revisions (Garousi et al., 2018).
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Figure 6: Testability of the Binar Software Framework is increased through abstracting away low-level hardware dependencies.

Decoupling flight application software from the embedded hardware on the spacecraft allows testing on various satellite

models, both physical and virtual. Tipaldi et al. (Tipaldi et al., 2018) discuss the benefits of using black box testing

verification in a high-level test procedure language to verify the flight software over the lifetime of Meteosat Third

Generation. Taking advantage of the module decoupling that is achieved through the implementation of the SOLID

principles discussed in Section 3.1 however, the white box testability of the Binar code base can be increased. In the

Binar Software Framework, testing of libraries that interact with low-level hardware through an interface layer is done

by polymorphically substituting mocked objects in place of the modules that require a hardware dependency, leveraging

the Liskov Substitution Principle. Favouring many small interfaces over one monolithic interface, as recommended by

the Interface Segregation Principle, adds granularity to the code base and hence only those objects concerned with

hardware interaction need to be mocked when testing on the host. Tests can then be written based on how the libraries

are to be used in application code, enabling testing of the software framework without a hardware dependency as can be

seen in Figure 6. Having fine granularity in system interfaces also allows for fault injection into the module under test

through faked implementations of interfaces, adhering to the software testing standards outlined in ECSS-E-ST-40C

(Space Engineering Software, 2009). This allowed the software to be written in parallel with the hardware development

of Binar-1, prior to performing integration testing. Furthermore, this module decoupling opens the possibility for

extending upon the functionality of the software for future missions without breaking old tests. Moreover,

polymorphically substituting mocked objects in place of hardware dependencies enabled libraries developed for the

Binar Software Framework to adhere to test-driven development to meet the desired test coverage.

3.2.2. Test-Driven Development

Test-driven development refers to a method of developing software in which requirements of software are converted to

test cases as a precursor to the actual development of the software itself. The process involves firstly writing a test that

won’t succeed, followed by writing just enough code to make the test pass, and then lastly refactoring to remove

duplication in the software written to pass the tests (Beck, 2003). Adhesion to this method of development aids in
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meeting the software testing standards outlined in ECSS-E-ST-40C, which highlights that traceability between

requirements and all software units is essential in order to produce meaningful test results (Space Engineering Software,

2009). Aside from having 100% test coverage, software developed through this method will be as lean and simple as

possible. According to ECSS-Q-ST-80C, software can be assured to be dependable and safe through 100% code

coverage at the unit testing level. Moreover, it is mentioned that this metric is critical during the feasibility review of

reusing the software in the future (Space Product Assurance, 2017). The creation of the Binar Software Framework saw

strict adherence to this design method during development. The benefits of using the TDD approach in the development

of the software framework include the ease of performing positive and negative testing. These types of testing, enabled

through the conversion of software requirements directly into test cases, ensure that the libraries developed will safely

handle both correct and erroneous data to guarantee conformity of on-board software to system requirements. Positive

testing ensures that the software is able to meet the requirements specified, and negative testing ensures stability through

proving the software will behave as expected under the worst case scenarios, as recommended in ECSS-E-ST-40C (Space

Engineering Software, 2009). High testability of libraries was assisted through propagation of errors from the low-level

software to higher level code, providing transparency of the inner workings of a software module. This is important as

the calling code generally has more information on how the error should be handled than what may be available in the

scope of the library. This increases overall code portability and facilitates library reuse for future spacecraft.

An example of this in the Binar Software Framework can be seen from the development of the communications library.

The operational requirements were determined prior to writing the library, outlining how the spacecraft should handle

telecommands. Converting these operational requirements into test cases, negative testing was heavily employed to

ensure safe execution pathways when receiving telecommands that either can’t be decoded or were received in the wrong

operational mode. Likewise, positive testing asserted that responses to correct telecommands were as expected. The test

cases that enabled the development of libraries in the Binar Software Framework are executed frequently, ensuring that

system requirements are always met.

3.2.3. Failure Prevention

One of the failure points for the DART mission discussed in Section 2.1 was an inadequate control algorithm that failed

to correct for a velocity error of up to 2 m/s, even though this was specified as a design requirement. Considering the

TDD methodology starts with the translation of software requirements into test cases, mission-critical requirements are

factored into the software early, and any further development that could break this requirement would be highlighted

when the test for the requirement begins to fail. Learning from this mishap, all requirements for the libraries written for

the Binar Software Framework were defined and translated to test cases before the libraries themselves were written to

prevent software requirements being missed. Another area of failure for the DART mission occurred when an engineer
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changed a gain constant that resulted in an iterated calculation never converging. This error demonstrates the importance

of continuous testing not just during library development, but consistently during the implementation of the library to

ensure changes made to the software do not go out of sync with the tests written for it. From the adoption of TDD for the

software framework enabling Binar-1, a change such as this would cause test cases to begin to fail, highlighting that the

library is not safe for release.

It was evident through writing test cases for the Binar Software Framework that it became easy to test how the libraries

would handle erroneous inputs, rather than relying on the assumption that libraries would always perform as expected.

This was critical as the MIB mentioned during the DART mishap investigation that during pre-flight testing a software

model assumed the GPS measured velocity perfectly (Croomes, 2006). Having the ability to stress-test all libraries used

on Binar-1 provides further reassurance in the success of the mission.

Software testing also aids in the adherence to ECSS-E-ST-40C regarding the reuse of code. It is mentioned that for code

to be reused, it needs to adhere to the functional requirement baseline of the project (Space Engineering Software, 2009).

As TDD involves the conversion of software requirements to test cases, the reused software will need to verifiably adhere

to the functional requirements to be included in the code base.

During the mishap investigation for Ariane 5 discussed in Section 2.3, the report mentioned that had the software for the

inertial reference system and flight control system been tested extensively, the software errors leading to the failure could

have been detected. By developing the libraries through the TDD approach, 100% test coverage is possible.

3.3. Optimal Code Base Maintenance

3.3.1. Documentation

In a 2012 review of the involvement of software in spacecraft accidents, Leveson (Leveson, 2012) acknowledges that

inadequate documentation is a factor in spacecraft mission failures. In the missions discussed, this is particularly relevant

to the MCO and Ariane 5 mission failures which recommend improvements to code base documentation in their failure

analysis reports. However, from a survey of 48 candidates with experience in the software engineering industry, Forward

et al. (Forward and Lethbridge, 2002) found that whilst participants thought positively of the usefulness of software

documentation, it was seen to be seldom updated. To prevent issues arising as a result of poor software documentation,

whilst acknowledging the difficulties of documentation maintenance, documentation generation is employed on the

Binar platform to maintain up-to-date documentation. Having access to generated documentation pages can be very

useful for future developers and maintainers to understand how to maintain and use the numerous libraries that comprise

the Binar Software Framework. To fully utilise this tool, Binar developers are encouraged to use increased verbosity in

variable and function names. Non-cryptic names are desired over their shorthand counterparts to reduce ambiguity and

promote self-documenting code. To ensure that code generation is invoked often, it has been integrated into the Binar
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software development pipeline to automatically build when a new commit is pushed.

3.3.2. From Local Machine To Spacecraft

The code base for the Binar Software Framework is hosted on a remote version control repository that is always

guaranteed to have the latest stable release of the software. This is done through the implementation of Continuous

Integration and Continuous Deployment (CI/CD) online. Each developer has their own private fork of the upstream

repository to continue development in an isolated environment from other developers doing the same. When a developer

pushes software changes to their fork and creates a merge request into the upstream repository, it executes the CI/CD

platform remotely. It then notifies an assigned team member to start the code review process. The CI/CD platform

automates the building and testing of all software libraries written in the repository. If any library fails to build or

complete its tests, the merge request will be automatically blocked from merging into the upstream branch until these

issues are resolved. This prevents potentially buggy or broken software from merging into the upstream repository,

which is used for code deployment onto the spacecraft. The results of the test execution include the code coverage

report, which is generated into an access-controlled web page providing a line-by-line breakdown of the coverage within

the source code. This provides a quantifiable metric of test coverage, and assists the developer on adding tests to increase

the coverage.

During pipeline execution, a team member is assigned to the merge request to conduct a code review by visually

inspecting and assessing all changes in accordance with the design rules imposed by the team, and to identify any

accidental incorrect program logic. Using an online version control platform for this, discussion threads can be added to

specific sections of the software changes to clarify decisions made during development, to recommend further changes

be made, and also provide a history of important software changes. Complementary to this, the CI/CD platform also runs

a static analysis on all libraries in the code base, generating an access-controlled web page containing the analysis report

to be referenced during code review.

Upon completion of the review process, the team member assigned to review the merge request is given the option to

merge the changes into the upstream repository only if the CI/CD pipeline succeeds. This prevents any software that is

written by a singular engineer from getting deployed to the spacecraft without explicit approval from at least one other

team member. Once successfully merged, the last stage of the pipeline is executed to generate a third access-controlled

web page containing the documentation scraped from the source code. A summary of the process from code

development to deployment on the spacecraft can be seen in Figure 7.
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Figure 7: The Binar Software Framework development pipeline.

3.3.3. Failure Prevention

The importance of documentation being stressed early in the development of the Binar Software Framework was partly

influenced by the mishap discussed in Section 2.2, where the Mars Climate Orbiter was lost during its orbital insertion

manoeuvre. The mishap investigation report mentions that the equation used to calculate the small forces lacked

sufficient documentation of the built-in conversion factor, hence being accidentally deleted by the developers reusing the

software from MGS. Thorough documentation practices could potentially have identified the equation used in the

software to have included the conversion factor, notifying the design team to adjust it accordingly. Also contributing to

the mishap leading to the loss of Ariane 5, software documentation could be a solution to the investigation board’s

recommendation to verify the range of values taken by a variable in software. This has been achieved in the Binar

Software Framework through extensive documentation of variables which are scrutinised during the code review

process. The necessity of software documentation is stressed in ECSS-E-ST-40C, which insists that software

documentation is to be constantly updated throughout the mission lifecycle (Space Engineering Software, 2009). Having

software documentation automatically generated with every commit aids in meeting this standard, and ensures that errors

related to insufficient documentation will not propagate into the spacecraft applications.

The push for implementing a pipeline getting software written on a local machine to the spacecraft stemmed from the

mishap seen on the DART and Zenit-3SL missions discussed in Section 2, where a late change to control software led to

the failure of the spacecraft. The ECSS-Q-ST-80C document mentions that software that is modified is to undergo

regression testing (Space Product Assurance, 2017). If this standard was adhered to, it is expected that a change to the
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gain constant on these missions would trigger old tests to fail. Incorporating a CI/CD platform that runs tests online prior

to allowing an update to be merged could potentially have identified these changes as faulty software, rejecting the

commit and hence preventing the change propagating to release code. In the situation where tests seem to be passing on

a surface level but in actuality lack sufficient depth, the generation of a code coverage report would notify the reviewer

that the module is insufficient for inclusion into the upstream repository, and to hence reject the merge.

One of the recommendations by the investigation board following the failure of Ariane-5 mentions the importance of

reviewing all software (J. L. Lions, 1996). This was a strong influence for the code review and static analysis stage of the

development pipeline imposed by the Binar software team, in which merges are rejected by a reviewer if the

documentation is deemed insufficient, or software bugs are identified. The ECSS-Q-ST-80C document recommends that

the evaluation of code is to be performed in parallel with the development process, aiding in the conformity to good

coding standards and the reduction of software errors (Space Product Assurance, 2017). The code review stage of the

pipeline aids in meeting this standard, preventing ambiguous and potentially buggy software from reaching release.

Moreover, it is recommended that software is to be placed under configuration control after passing all unit tests

successfully. Requiring the software being merged into the main repository to pass all unit tests aligns the developed

software with this standard, providing assurance that the software propagating onto the spacecraft is dependable and safe.

Adopting a strict approach to code base maintenance can ensure code clarity, maintainability, portability and safety. A

strong documentation standard can ensure a lack of ambiguity on how to implement software modules in application

code, especially when internal software is reused, increasing the possible longevity of the framework for future Binar

spacecraft. These attitudes toward software design can prevent mishaps associated with individual engineers altering

software from occurring.

4. Benefits on Binar-1

Implementing the recommendations for small spacecraft software design on the Binar Software Framework has aided in

the development of safe, reliable and reusable software.

Leveraging the SOLID principles of object-oriented program design, the software developed for the Binar bus is strongly

positioned to be portable between hardware revisions. The example given for the application of the Single Responsibility

principle on the Binar Software Framework was in regard to the ADC module. For future development on Binar

spacecraft in the context of this module, this principle supports the intention of using a higher precision ADC reading on

certain channels, requiring external ADC hardware. Interfacing with the external hardware will require a dependency on

a library that will only be used for the higher precision subset of ADC measurements. Having a separate module

concerned with the subset of ADC measurements prevents linking against unnecessary libraries that won’t be needed for

other ADC measurements.
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The effectiveness of the Open-Closed principle for code reuse has already been demonstrated in the development of

Binar-2. Due to the manufacturer deprecating the GPS used on Binar-1, the hardware needed to be swapped out in favour

of their new module with a different pinout. If the GPS software module had been developed with a tight coupling to the

hardware, any dependencies of this module would suffer from a cascading need to change the GPS object to a new

implementation. Aside from slowing down development time and making code reuse difficult, this could also introduce

unforeseen errors into the code base. The implementation of the Open-Closed principle supports code reuse by simply

extending the already working GPS base object by implementing a new subtype for it.

The current version of the Binar hardware on-orbit has drivers for redundant magnetorquers on the x and y axes.

However, the corresponding coils were not implemented in Binar-1. For the development of Binar-2, these redundant

drivers are intended to be used. From the adoption of the Liskov Substitution principle, support for these drivers can be

added to the software module by adding extra axes to the templated magnetorquer driver object discussed in Section

3.1.3. The Binar Software Framework runs system checks on all peripherals during the spacecraft boot sequence. If the

check determines a magnetorquer driver is faulty, the constructor for the publicly visible magnetorquer object can

automatically switch to the redundant templated driver on-orbit, passing in a pointer to the driver polymorphically. This

means the high-level magnetorquer module in application code can actuate agnostic of the actual magnetorquers being

used as this is not necessary information to couple to the driver. This enables code reusability as it allows for any number

of redundant coils to be controlled without modification to the high-level magnetorquer module, which can therefore be

fearlessly depended on in application code.

As the primary purpose of Binar-1 was to be a technical demonstration of the hardware and software produced by the

Binar Space Program, the software developed for system checking was constrained to systems embedded on the Binar

bus. For future Binar missions, as the payloads flown become more complex, extending the self check module to support

payload integrity checking is of high priority. From the adoption of the Interface Segregation principle, a corresponding

base class for checking payloads simply needs to be added similarly to the systems shown in Figure 4. This payload

system can then be implemented in a new systems interface class that will also implement checking the power system.

This demonstrates the creation of cohesive groups of system checking objects within the module, showing how the

library can be extended with future systems that don’t depend on modules they won’t use.

Through the application of the Dependency Inversion principle (Section 3.1.5), it was seen that much of the software

developed for the Binar Software Framework has gone towards high-level libraries to be depended on in application code

that are decoupled from the low-level hardware implementations. This currently allows application code to be

cross-compiled between the differing architectures of the flight computers on board. As the Binar Space Program

develops, a need has been highlighted for flight application code to be run natively on a desktop computer. This could

allow for development of payload software without needing a Binar bus, and enable highly accurate simulations of
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on-orbit operations.

From strict adherence to the test-driven development methodology, the software running on board Binar-1 can be

guaranteed to meet mission requirements. Moreover, due to the simplicity of setting up test cases, the libraries can be

stress tested for the worst case scenario to increase reliability. As an extension to the portability achieved through the

application of the SOLID principles, a large part of the software developed is decoupled from hardware and is hence

easily testable. This aligns with the section regarding code reuse in ECSS-Q-ST-80C, which specifies that code to be

reused should be assessed against requirements traceability, testing, and coverage (Space Product Assurance, 2017). The

hardware decoupling achieved also allowed for software to be developed in parallel to the hardware revisions. Whilst

this aided in preventing some bugs from occurring, it should be noted that testing on the hardware is also encouraged

when possible. Testing on the host enables the behaviour of the modules to be verified, however issues may arise when

running a hardware-in-the-loop test due to the disparities that exist between the platforms the software is running on.

The biggest issues encountered during hardware integration for Binar-1 were related to data structure alignment, power

domain access from microcontroller internal peripherals, and timing issues. These issues were not identified during unit

testing as they were specifically hardware related. Coupling unit testing on the host with continuous deployment onto

hardware can help with bug prevention internal to software modules, and identify any runtime issues that may occur.

Adopting good code base maintenance skills from the beginning of the Binar Space Program has led to a code base which

is well documented, readable and maintainable. The benefits of this have been seen from the Binar Space Program team

growing since its conception. As new team members begin to contribute to the code base, the plentiful documentation

provides clarity on how to implement the many custom libraries developed for the framework. This decreases the time

required to train new team members, and gets them contributing to the code base quicker. Clarity of software already in

the code base has allowed for easy maintenance as hardware revisions are released and capabilities grow.

Enforcing a local machine to spacecraft cycle consisting of continuous integration and continuous deployment using

cloud-based test running and code review means that no unexpected software will make it to space. Enforcing the use of

testing over the full life cycle of the mission means that late changes made to the spacecraft libraries can be guaranteed

not to break functionality.

5. Conclusion

With the complexity of software increasing in spacecraft missions, reliable software development is critical in the

prevention of mission failure. The main contribution of this paper is demonstrating techniques for writing safe, reliable

and maintainable software for small satellites through showcasing methods to prevent recurrence of common spacecraft

software faults. As such, it is intended for small spacecraft developers planning on writing their own software who may

not have prior experience. Where applicable, adherence to ECSS standards has been demonstrated. The missions
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showcasing common software failures were selected due to their transparency in disclosing software faults as reasons for

mission failure. Being directed at small spacecraft software developers, this paper would have benefited from a

discussion of CubeSat software faults. However, due to the lack of publications in this area, this could not be included.

As software is shown in this paper to be a contributing factor in spacecraft mission mishaps, it is the hope that

publications are more prevalent in the future relating to this topic. Although the benefits from recommendations

requiring on-orbit validation were not able to be demonstrated in this paper due to a hardware fault on Binar-1, The

Binar Space Program has already noticed benefits specifically regarding code base reuse as we progress into building our

next satellites. As the program matures and we continue to develop the framework using the recommendations discussed

in this paper, we expect further benefits to become more apparent.

Learning from the overlapping mishaps of previous mission failures, the Binar Software Framework has been developed

to maximise mission success. The areas of code reuse, software testing and code base maintenance were addressed with

examples of each from the core functionality of the Binar Software Framework. Safe code reuse was highlighted to be

more complex than simple reimplementation, but was rather discussed in the context of developing software from the

ground up with portability in mind. This was achieved in the Binar Software Framework through adherence to the

SOLID design principles. Through these principles, the program goal of rapid mission concept-to-orbit can be achieved

by reusing the platform independent hardware abstraction layer of the Binar Software Framework between missions.

Although the SOLID principles were adhered to during development of the Binar Software Framework, other similar

principle collections exist, such as GRASP. Regardless of the principles chosen for development, software written in

accordance with time-tested principles will be of a higher standard than software written without.

Lack of software testing was seen to be the most common reason for failure in the missions discussed. It was

demonstrated that developing software with decoupled interfaces aids with mocking modules to be substituted

polymorphically for hardware implementations to break hardware dependencies and open up the possibility for

test-driven development. To alleviate failures discussed in late changes to control software causing mission failures, the

importance of tests written during the TDD process are stressed not only for use during development, but also during the

full life cycle of the mission to highlight when software begins to break. Through the use of a CI/CD platform, when a

developer made changes to software, all unit tests would be run remotely before software would be given the option for a

merge request. Leveraging the pipeline to generate code coverage and static analysis reports assists the developer

assigned to review the merge request, ensuring that software authorised to merge into the master branch has

accountability. This was partly for the prevention of poorly designed code being added to the code base.

Code review also enforced strict adherence to writing documentation. This documentation, both through meaningful,

clear and consistent variable names along with commenting, was done to ensure that future developers would be able to

easily read, understand and maintain the code base. After giving approval to merge software upstream, the only software
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that was could be deployed onto Binar-1 was pulled from the upstream master repository. This was to ensure that the

software to be deployed onto the spacecraft was free of any errors, and gave a clear version history of software that was

released. Binar-1 was selected as a case study for this paper as the software framework was being written for the Binar

Space Program. However, the same concepts can be applied to any small spacecraft to increase the likelihood of mission

success, and promote the reusability of the code base for future missions.

6. Future Work

The mishaps discussed in this paper are a small subset of a large body of reference. It was observed from the majority of

published failures that a common theme was lack of understanding how the mission would respond under the worst case

scenarios. From the missions discussed, the Binar Software Framework has been built in a robust manner to prevent

critical system errors from jeopardising the mission. However, it still does not allow for in-depth testing of the

relationships between the spacecraft subsystems during large-scale failures. Taking advantage of the code base

modularity achieved through the application of the SOLID principles, driver backends can be written in the Binar

Software Framework to break dependency on hardware. This means that both offline spacecraft simulations and

hardware-in-the-loop simulations are possible with minimal development effort to increase the quality of the software

design and in-depth testability. This enables adherence to elements of software testing specified in ECSS-E-ST-40C,

which describes the importance of demonstrating that the developed software can perform in a representative operational

environment (Space Engineering Software, 2009). Therefore, moving forward the Binar team will build a low-level

bounded simulation implementation of spacecraft subsystems for offline simulations. The backends for peripherals that

give the spacecraft knowledge about its environment, such as the GPS, can be substituted with software that

communicates with a simulation running on a host machine. This will allow the high level flight logic to remain

unchanged, yet gain a deeper insight on how it would respond to a simulated space environment. A. da Silva et al.

discuss the benefits of using fault injection into simulations of software developed for the Solar Orbiter mission, showing

a strong improvement in software fault tolerance (da Silva et al., 2014). Applying a similar method to future Binar

spacecraft will allow the satellite software to be tested on a much deeper level, providing earlier flight software

verification. Developing the capability to replay researched failure scenarios into the spacecraft flight software will

provide a deeper understanding of the causes for failure, and more importantly how to recover from them.
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Abstract

The electrical power system on-board a spacecraft has a crucial role in the success of a mission. Central to this
however, the health of the lithium-ion cells frequently used in CubeSat applications degrades when exposed to sub-zero
temperatures. With the external faces of a spacecraft in the Low Earth Orbit environment expected to reach -40◦C, the
necessity of battery heating in the success of a mission is clear when using this battery technology. It therefore became
a key element in the design choices for Binar-1, Western Australia’s first locally made satellite. The decision was made
for Binar-1 that this functionality be delegated from the flight computer to analog circuitry. This is not without risk as
the battery heating circuitry composes one of the largest loads on the electrical power system, increasing the possibility
of a low-power state occurring on the spacecraft. Thermal simulation can offer insight into battery heater usage, but is a
computationally expensive process reserved for high-end desktop computers. This highlights a gap for computationally
inexpensive models able to run on-board a spacecraft, predicting in advance when these low power states are to occur.
Coupled with software capable of suggesting alterations to a mission operations plan, CubeSats can demonstrate a proof-
of-concept approach for safe operations in a communications limited environment when encountered with an emergency
state that cannot wait for input from a ground operator. Using data collected from a thermal vacuum experiment in
the National Space Test Facility at the Australian National University, the response of the electrical power system and
battery heaters in Binar-1 was characterised from being subject to the conditions of Low Earth Orbit. This information
is used in the creation of two predictive models of when the battery heaters are to be enabled, influenced by the thermal
state inside and external to the spacecraft. From a simulated orbital analysis and a further vacuum chamber test, a
model is selected to be used on the next Binar spacecraft to allow the satellite to optimally postpone tasks when the
usage of the battery heaters are to be prioritised.

Keywords: Binar Space Program, National Space Test Facility, Thermal Vacuum, Small Satellite, CubeSat, Agile
mission planning, Mission Autonomy

1. Introduction

Operating from the Space Science and Technology Cen-
tre at Curtin University, the Binar Space Program is en-
abling a new Western Australian space capability. The
primary output from the program, the Binar CubeSat
Motherboard (BCM), is a highly integrated custom Cube-
Sat motherboard that comprises a primary and redundant
flight computer, a Global Positioning System (GPS), At-
titude Determination and Control System (ADCS), on-
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board storage and Electric Power System (EPS). The BCC
was flight-proven for the first time onboard Binar-1 in
2021, and is now being integrated into the next missions
from the program.

As the maiden flight of the custom BCM was on Binar-
1, the mission was intended to be a technology demon-
strator to show the suitability of the Binar Space Pro-
gram’s hardware in a Low Earth Orbit (LEO) environ-
ment. Downey et al. [1] provides an overview of the
Binar-1 mission and its objectives. The EPS powering the
BCM comprises four lithium-ion batteries, seen in Figure
1. Each of the batteries has a dedicated flexible printed
circuit board (PCB) heater wrapped over the external cas-
ing for thermal maintenance. This is a requirement as
the number of discharge cycles and capacity of lithium-ion
cells, frequently used in CubeSat applications, have been
shown to be dramatically reduced from exposure to condi-
tions below 0◦C [2][3]. Rather than activating the thermal
maintenance circuitry at 0◦C, a safety factor was added
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Figure 1: The top side of the Binar CubeSat Motherboard, detailing
the EPS. The four batteries that power the EPS are wrapped by
flexible printed circuit board (PCB) battery heaters, triggered by
analog circuitry to enable when the battery temperature drops below
5◦C.

Figure 2: A high level block diagram of the EPS on Binar-1. High-
lighted in blue is the electrical connections between the parallel
heating circuits, represented by the dashed boxes around the power
sources. Each circuit has an independent analog battery heater in-
tegrated circuit for operation. The temperature feedback into the
flight computer from the solar cells and the battery heating circuitry
is shown in red.

on the BCM for the two groups of two heaters to be en-
abled when the temperature in the battery compartment
drops below 5◦C. The resistor-programmable temperature
switches are set to disable when the temperature set point
reaches 10◦C to conserve energy. Figure 2 provides a high
level block diagram of the EPS on the BCM installed in
Binar-1. The battery heating system is separated from the
flight logic, being instead implemented through analog cir-
cuitry. This was done to ensure the heaters can be enabled
as soon as required. As the circuitry warms the batteries
through power dissipation, the battery heating circuitry
composes one of the largest loads on the EPS. This poses
a risk as without control over this load the spacecraft could
potentially encounter an electrical low-power state if the
heaters are enabled during a period of high current draw
on-orbit. This highlights the necessity for on-board auton-
omy for the spacecraft to predict in advance when these
low power states are to occur, without relying on input
from an operator.

2. On-board Autonomy

On-board autonomy for spacecraft has aided in the suc-
cess of numerous historical space missions [4]. It has been
successfully demonstrated to be an invaluable resource in
a communications denied or limited environment. Straub
et al. summarise that in these situations, missions may
need to hand control over to autonomous software to han-
dle an emergency response that cannot wait for input from
ground operators [5].

The Curiosity Mars rover relied extensively on auton-
omy during the EDL due to a communications link delay
that extended beyond the predicted entry time [6]. Even
with a consistent bent pipe link with Earth during EDL,
the subsequent Perseverance rover likewise had to rely on
autonomy due to the extensive link delay [7]. Both space-
craft autonomously responding to inputs from on-board
sensors allowed the rovers to land safely in a situation
where ground operators could not provide the real-time
input that was needed.

Even without the extensive time delay induced by deep
space missions, the importance of autonomy is paramount
in a mission in the case where communications are lost.
During the landing phase of the Beresheet Lunar mission,
a hardware fault requiring a component reset occurred.
However, a loss of communications with the ground station
prevented reset requests from reaching the spacecraft. By
the time communications were restored, the altitude of the
lander was too low to slow the descent, and the spacecraft
was lost [8][9].

On-board autonomy has also been shown historically
to successfully suggest changes to an operations plan. The
first Mars rover, Sojourner, relied on this capability as
communication could only be made with ground operators
twice per Sol. Using on-board autonomy, the spacecraft
could infer which commands from the previously sent op-
erations plan could safely be executed when encountering

2
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terrain difficult to traverse [10]. Extending on the respon-
sibilities for autonomy on spacecraft, the Deep Space One
mission became the first spacecraft to fly an on-board mis-
sion planner. The successful mission was able to demon-
strate that if the pre-set operations plan is not able to be
executed, the spacecraft could respond by autonomously
suggesting an alternate solution in an agile manner [11].

Although historical missions have demonstrated that
autonomous capabilities on spacecraft can provide a higher
level of return than those requiring a ground-based link
[4], its extensive use has been met with some scepticism.
A 2013 survey of the planetary science community found
that there is apprehension toward the acceptance of au-
tonomous control of spacecraft [5]. This is understand-
able, yet necessary in the context of expensive flagship
planetary missions. This highlights a possible applica-
tion for CubeSats. CubeSats have demonstrated operation
in environments extending beyond LEO, whilst maintain-
ing a fast development cycle and low cost [12]. Prior to
more widespread adoption on future interplanetary mis-
sions however, Feruglio et al. stress that CubeSat mission
autonomy needs to be improved [13]. Often described as
a ’test bed’ for larger missions, the CubeSat form factor
can also be leveraged to trial mission autonomy techniques
with a significant reduction in risk over larger missions. As
the computers powering small spacecraft become smaller,
cheaper and more powerful, applications requiring signif-
icant processing power are becoming possible in a small
spacecraft form factor [5].

To this aim, the Binar Space Program used data ob-
tained from a space environment experiment to develop a
model to be used for on-orbit power management predic-
tions. Featuring as a software payload on the upcoming
Binar 2, 3 and 4 missions, the inference from the model
will allow the spacecraft to autonomously suggest changes
to the operations plan if the possibility of a low power
state is deemed to occur. This paper details the creation
of the model, and the results of preliminary testing.

3. Testing Procedure

The Binar-1 engineering model was placed in the cen-
tre of the Wombat XL thermal vacuum chamber at the
Advanced Instrumentation and Technology Centre in Can-
berra, Australia. Situated at the National Space Test Fa-
cility (NSTF) at the Mount Stromlo Observatory of the
Australia National University, the Wombat XL is a 5.76
cubic meter thermal vacuum chamber used for the test-
ing of space-based instruments and small satellites. It
features a liquid nitrogen fed platen and shroud system
for thermal cycling from -170◦C to +150◦C at a rate of
3◦C per minute. The support stand for the satellite was
made of 3D printed Ultem to limit thermal conduction as
much as possible from the platen shown in Figure 3. Seven
chamber supplied thermal sensors were placed on the ex-
posed faces; one on each of the solar panels in the bottom
right corner (next to the surface mounted thermal sensors

Figure 3: The Binar-1 engineering model placed in the Wombat XL
vacuum chamber with thermal probes attached.

Figure 4: A render of Binar-1 showing the location of the thermal
sensors during the experiment. Three sensors were placed on the
bottom face of the satellite facing the platen (shown on the top of
the satellite in this figure), and one was placed in the corners of
all four sides of the solar panels next to the surface mounted panel
thermal sensors (only two shown in this figure).

on the panels), and three on the top face of the satellite
(shown circled in Figure 4). These sensors were logging
with a one second period, coinciding with the internal log-
ging frequency of the sensors inside Binar-1. Internal to
the satellite, battery and regulated voltage and current,
X and Y axes solar panel voltage and current, individual
solar panel temperature, and battery compartment tem-
perature were recorded.

One of the primary objectives for testing Binar-1 at the
NSTF was to understand and characterise the functional-
ity of the analog battery heating circuitry in LEO con-
ditions. From calculations done prior to the experiment,
Binar-1 was expected to undergo a worst-case temperature
swing between -40◦C and +65◦C on the external faces dur-
ing an orbit. Initially it was decided to adopt a schedule
for the Wombat XL to dwell at -40◦C and +90◦C in the at-
tempt to have the surface of the solar panels reach -30◦C
and +80◦C respectively to stress test the satellite. The
chamber temperature set points were set to be -50◦C and
+100◦C to achieve a thermal gradient of 3◦C/min, before

3
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stepping to the desired dwell temperature as the platen
and shroud approached the set points, as seen in Figure
5(a). Figure 5(b) shows the experimentally recorded aver-
age platen and shroud temperature during the experiment.

The chamber pressure was brought to 6E-7 Torr after
an initial overnight pump-down. The platen and shroud
temperatures were varied, using the feedback from the
thermal sensors on the spacecraft to achieve the desired
temperature of -30◦C on the surface of the panels. Fol-
lowing the initial cold swing, reaching the desired +80◦C
set point on the surface of the cells took longer than an-
ticipated. This caused the batteries in the spacecraft to
reach the temperature limit. To maintain optimal battery
health, the maximum internal temperature was intended
not to exceed +65◦C. However, the maximum recorded
temperature of the batteries reached +75◦C during the
first hot swing, far exceeding this range. After completing
the first thermal cycle, it was decided to amend the tem-
perature profile to change over -55◦C to +65◦C, with the
intention of having the surface of the cells reach -45◦C to
+55◦C respectively. The battery heating circuitry could
then be stress tested further by allowing a colder external
temperature to be reached, whilst protecting the integrity
of the battery health on the hot swings. The remainder of
the testing schedule continued with these updated values,
as seen from the profile in Figure 5.

4. Results

4.1. Battery Heating System

The recorded temperature of the batteries internal to
the spacecraft is plotted against the solar panel surface
temperature in Figure 6(a), showing that the battery tem-
perature did not drop below 6◦C during the six thermal
cycles performed in the chamber. This demonstrates that
the analog battery heating circuitry functioned success-
fully. Figure 6(b) shows a magnified view of the first two
cold swings, showing the response of the spacecraft inter-
nal battery temperature to the temperature at the surface
of the solar cells over a roughly ten hour period. The space-
craft internal battery temperature lags the solar panel sur-
face temperature, dropping until it reaches 6◦C. At this
point the battery heaters activate, warming the batteries
until they disable at 12◦C. The enable and disable temper-
ature differing slightly from the desired set points can be
attributed to inaccuracies in the resistors used in the ana-
log logic, the temperature sensors, and the analog to digi-
tal converter on-board the flight computer. As the inaccu-
racy has caused the usage of the heaters to shift in a more
conservative direction however, this is deemed acceptable.
As the chamber is dwelling at -50◦C, the spacecraft even-
tually cools down enough to re-enable the battery heaters.
The heating process again disables at the cut-off tempera-
ture, coinciding with the chamber temperature increasing
to the hot dwell. After the temperature lag ceases, it is
observed that the temperature begins to increase again

(a) The proposed temperature profile for the experiment, comprising
six thermal cycles segmented into three days.

(b) The experimentally recorded average platen and shroud temper-
ature during the experiment.

Figure 5: The proposed temperature profile for the experiment and
the experimentally recorded average platen and shroud tempera-
tures. Initially the set points for the vacuum chamber were to change
over -40◦C to +90◦C, attempting to get the surface of the panels to
-30◦C and +80◦C respectively. On the hot swing however, the bat-
teries reached +75◦C, far exceeding the safe battery temperature
of +65◦C. Due to this, the thermal profile was amended to change
over -55◦C to +65◦C, allowing for stress testing the battery heat-
ing circuitry whilst maintaining safe battery temperatures. Between
thermal cycles, the chamber was brought to an ambient temperature.
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just after the 20 hour mark. The operation of the battery
heaters is shown (Figure 6(a)) to consistently repeat dur-
ing the remaining thermal cycles in the vacuum chamber.
This invokes high confidence in the heaters to operate as
expected in a LEO environment, keeping the batteries in
the optimal temperature range and extending the on-orbit
lifetime. As the heaters maintain the battery temperature
through power dissipation, their frequent usage, though
required, poses a significant load on the EPS.

4.2. Electrical Power System

The electrical power system on Binar-1 consisted of
four 18650 lithium-ion batteries in a two series and two
parallel (2S2P) configuration providing approximately 50
Wh of power with a nominal voltage of 7.4 V. Fully charged,
the batteries supply 8.3 V to the motherboard. During
the initial overnight pump-down in the Wombat XL, the
battery voltage was brought to full charge via a power har-
ness to start the experiment. Binar-1 remained connected
to the power harness until the third day of testing.

Figure 7 depicts the battery voltage sharply decreasing
each time the battery heaters are enabled. The connected
power harness brought the batteries back to full charge for
the first two days.

The batteries are shown to have a consistent current
draw at approximately 60 mA in Figure 8(a) prior to the
battery heating circuitry being enabled. During usage,
the current spikes to over 600 mA, explaining the drop in
battery voltage seen in Figure 7. The total current draw
from the batteries is seen to slope downward during heater
usage, attributed to the generated heat increasing the re-
sistivity of the circuit. It should be noted that the current
drop is minimal as the battery voltage is also dropping dur-
ing heater usage. Figure 8(a) shows that the first thermal
cycle involves three current peaks, as opposed to the two
peaks seen during the remaining thermal cycles. Figure
8(b) shows a magnified view of the current draw during
this thermal cycle. The extra peak can be attributed to
the first cold dwell lasting for a longer duration than the
remaining dwells, resulting in the battery heating circuitry
being used twice. As the thermal management of the EPS
is done through two groups of two heaters, it is possible
for the heaters to be enabled independently. This is clear
in Figure 8(b) where a plateau at approximately 300 mA
is present on multiple occasions. The variance in the time
the current draw remains at these plateaus shows that the
heat generated from one of the independent battery heat-
ing circuits has an influence on the operation of the other.
From the data collected in the chamber however, it is ap-
parent that a single battery heating circuit is not sufficient
to keep the entire battery compartment at an optimal tem-
perature. It has been observed that the operation of the
heaters imposes a significant power draw on the EPS, and
as such limits the power available for other systems. On
average, the budget for the power storage system estimates
a power usage of 0.370 Whr/orbit. With the satellite es-
timated to use a total of 1.493 Whr/orbit, this equates to

(a) The temperature of the batteries on Binar-1 plotted against the
temperature of the solar panel surface over the experiment duration.

(b) Magnified view of the temperature profile during the first two cold
swings, detailing the temperature maintenance of the batteries from
the operation of the heaters.

Figure 6: The temperatures of the batteries on-board Binar-1 during
the experiment plotted against the temperature of the space simu-
lation chamber. The battery heating circuitry prevents the temper-
ature of the batteries from dropping below 6◦C. The heaters are
enabled twice in the first cold swing as the chamber was held at the
cold set point for a longer duration than the second swing.
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Figure 7: The change in spacecraft battery voltage during the ex-
perimentation in the Wombat XL. Initially plugged into the power
harness, the batteries charged completely. During sections of high
power usage, the voltage profile is seen to drop before charging again.
Roughly 50 hours into the experiment, the power harness was re-
moved, allowing the batteries to discharge.

roughly 25% of the power used by the satellite per orbit.
Whilst in the Wombat XL, Binar-1 was running low power
tasks. In conjunction with the increased power draw, it is
expected that a power intensive task such as payload op-
eration could potentially cause a low power state on-orbit.
Therefore, it is of crucial importance that usage of the bat-
tery heaters can be predicted so that power utilisation can
be managed.

5. Thermal Modelling

Alongside physical testing, characterising the stresses
induced on a spacecraft from the thermal environment of
LEO is possible through the use of thermal simulation soft-
ware. This is often an integral part of the design phase
of a satellite as information obtained regarding the ther-
mal properties of the spacecraft can help influence deci-
sions made when finalising the design. A thermal model
of Binar-1 was implemented in Ansys 2021 Thermal Anal-
ysis Software to assess the applicability of the Binar Cube-
Sat bus in a LEO-like environment. The thermal model
was generated after the launch of Binar-1 to enable im-
provement of future launches reusing the majority of the
bus design. The thermal profile used during the testing at
the NSTF is useful for the verification of the Binar-1 ther-
mal model. A summary of the values of emissivity used
for the thermal radiative properties of the Binar-1 ther-
mal model is outlined in Table 1. Furthermore, Table 2
shows a summary of the assumptions made in the creation
of the Binar-1 thermal model. The third and fourth cold
swings (second day) of the experimentation done at the
NSTF were simulated to verify the accuracy of the Binar-
1 thermal model. These swings were selected as the input

(a) The change in battery current over the experiment duration. The
current draw is shown to be consistent for all instances of heater usage.

(b) Magnified view of the battery current profile during the first two
cold swings, detailing the magnitude of the power increase during bat-
tery heater operation. When enabled, the current spikes roughly ten
times higher than the regular operation. Two plateaus are present in
the current response, one at roughly 600 mA, and one at roughly 300
mA. This can be attributed to the two groups of battery heaters being
enabled and disabled independently. The battery heaters previously
mentioned being enabled twice during the first cold swing is further
shown here with two corresponding current peaks.

Figure 8: The change in the battery current over the experiment
duration. A rolling average has been displayed in red over the data
to reduce the noise.
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Table 1: A summary of the values of emissivity used in the Binar-1
thermal modelling, adapted from [14].

Emissivity

Material Infrared Visible Total Hemispheric

Wombat XL Shroud 0.85
Wombat XL Platen 0.15

Aluminium 0.86 0.86
Solar Panels 0.8 0.86

PCBs 0.6 Not Exposed
PV Cell 0.85 0.8

Polyimide 0.84 Not Exposed

conditions were identical to the fifth and sixth swings.
The thermal response of the battery temperature of

the Binar-1 thermal model to the simulated Wombat XL
chamber temperature is plotted in Figure 9 against the
recorded values from the experiment in the chamber. Fig-
ure 9(a) shows that the temperature of the batteries in
the Binar-1 thermal model closely match the experimental
data when entering a cold swing from ambient conditions.
The response seen in Figure 9(b) shows less accuracy in
the thermal modelling when entering a cold swing from a
hot environment, however shows a similar gradient to the
recorded data. This inaccuracy can partly be attributed
to the assumptions outlined in Table 2, introducing errors
in the simulated satellite. Furthermore, the temperature
condition preceding the response seen in Figure 9(a) was
at a steady state, as this corresponded to the first cold
swing after an overnight lull between testing days. The
initial temperature condition for the response shown in
Figure 9(b) however was the coldest point of the preced-
ing cold dwell. This was done to achieve a realistic initial
thermal gradient for the hot-to-cold swing, but resulted
in a discrepancy between the simulated and experimental
cold swing starting temperatures. Showing a simulated
thermal response with high similitude to the experimental
data, the Binar-1 thermal model can be subject to vary-
ing thermal inputs with confidence that the response seen
will be similar to that of the physical satellite. This can
aid in characterising the spacecraft in potential mission or-
bits, and will influence the design decisions for subsequent
Binar spacecraft.

6. Power Management Modelling

As the battery heating system is hardware controlled,
the BCM is not able to control its operation through soft-
ware. This can be problematic as the total battery power
draw during heating is approximately ten times higher
than regular operation (Figure 8), capable of rapidly de-
pleting the batteries. With limited power available on-
board, this stresses the need for a prediction of when the
heaters are to be operational. Thermal simulation, how-
ever, is a computationally expensive process, even when
performed on a desktop computer. The drastically reduced
capabilities of the primary flight computer on the BCM

(a) The recorded temperature of the third cold swing plotted against
the output of the Binar-1 thermal model. The initial thermal con-
dition for the simulation was an ambient steady state. The thermal
simulation closely matches the data recorded in the Wombat XL.

(b) The recorded temperature of the fourth cold swing plotted against
the output of the Binar-1 thermal model. The thermal simulation of
Binar-1 leads the trend recorded in the Wombat XL, attributed to
the initial thermal condition for the simulation starting at the coldest
point of the preceding cold dwell.

Figure 9: A comparison between the experimental recordings of the
third and fourth cold swings in the Wombat XL and the thermal
response from simulating the Binar-1 thermal model. The discrep-
ancy in accuracy can be attributed to the initial thermal conditions.
The simulation of the third cold swing used an ambient steady state
starting condition, whereas the simulation of the fourth cold swing
used the coldest point of the preceding cold swing. This was done to
achieve a realistic initial thermal gradient for the hot-to-cold swing.
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Table 2: The simplifications made in the creation of the Binar-1 thermal model.

Simplification Impact Justification

No energy is lost to free space; Radiation
transfer for exposed faces in the simulation
is limited to surface-to-surface.

Minor Reduces simulation time.

Specific heat capacity of aluminium ma-
terial was reduced by 10% to account for
the holes in the frame of the spacecraft not
being modelled.

Moderate Reduces nodes in the mesh.

As the thermal properties of all structural
materials are similar to aluminium alloy,
they are all given the properties of the An-
sys defined material ’Aluminium Alloy’.

Minor Reduces setup time between thermal sim-
ulations.

As the radiative properties of the exter-
nal non-structural materials are similar to
black anodised aluminium, they are all
given the properties of black anodised alu-
minium as measured by [14].

Minor Reduces setup time between thermal sim-
ulations.

Battery cells assumed to be thermal prop-
erties of lithium-ion as measured by [15].

Moderate Compensating for inhomogeneity in cells
significantly increases simulation complex-
ity, and was deemed beyond the scope of
this model.

Battery heaters are given the thermal
properties of the most abundant material,
Polyamide.

Minor Compensating for copper traces in the
heaters significantly increases simulation
complexity, and was deemed beyond the
scope of this model.

PCBs given the thermal properties of the
most abundant material, FR4 as measured
by [16].

Moderate Compensating for copper traces and inte-
grated circuits on the PCBs significantly
increases simulation complexity, and was
deemed beyond the scope of this model.

Solar cells are given the thermal properties
of the most abundant material, gallium ar-
senide as measured by [17].

Minor Compensating for cover glass and metal
tabs on solar cells significantly increases
simulation complexity, and was deemed
beyond the scope of this model.

General approximate value for contact
thermal conductance found through trial
and error and set for all surface-to-surface
contacts.

Significant localised errors Getting true values for all surface-to-
surface contacts involves disassembly of
the satellite, followed by significant test-
ing of each material. Deemed beyond the
scope of this model.
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Figure 10: Isolated view of the temperature response of the space-
craft to entering a cold swing in the Wombat XL. In each of the six
groups of trends, the right (pink) trend shows the thermal response
inside the battery compartment at the core of the satellite. The left
(green) trend shows the thermal response of the surface of the solar
cells. The segments have been taken from when the surface of the
cells begin to respond to a cold cycle and stop when the battery
heaters are enabled.

would prove infeasible to effectively utilise the simulation
on orbit. Hence, simplified linear modelling is employed
in the prediction of battery heater usage instead. This
section details the creation of this a model, and discusses
its applicability for autonomously suggesting changes to
the mission plan on-orbit without needing to communi-
cate with the ground.

From the data collected on the internal and external
spacecraft temperature sensors during testing at the NSTF
facility, the sections leading into a cold swing can be iso-
lated to assess the relationship between the readings prior
to the battery heaters being enabled. Figure 10 shows the
temperature on the surface of the solar panels and at the
spacecraft batteries for each of the experiment cold swings.
As the temperature inside of the spacecraft is influenced
by the temperature measured at the surface of the solar
cells, a model can be generated that relates the difference
in the internal and external temperatures to the rate of
change of temperature internal to the spacecraft at the
batteries. The internal temperature is taken to be the av-
erage between the two thermal sensors in the spacecraft
battery compartment. Likewise, the external temperature
from the average of the four solar panel thermal sensors.
A ten minute rolling average of these readings was used
for smoothing and a linear approximation was trialled due
to its low complexity to assess the fit (Figure 11):

T
′
i = −3 ∗ 10−4(Ti − To) − 6 ∗ 10−4 (1)

Where Ti and T
′
i refer to the spacecraft battery tem-

perature and the corresponding rate of change, and To

refers to the temperature at the surface of the solar cells.

Figure 11: The relationship between the difference in the internal
and external temperatures of the spacecraft and the rate of change
of the temperature internal to the spacecraft at the batteries for
each of the cold swings. A linear fit has been applied to the data.
All six series shown in Figure 10 are superimposed here, showing a
consistent trend.

The model given in Equation 1 has a coefficient of determi-
nation of 0.8833. This shows a relatively strong linear fit
in the region between entering a cold swing and enabling
the battery heaters. The present error can be partially at-
tributed to noise in the sensors recording the temperature,
and from the data processing to obtain the relationship.
Moreover, the lower right of Figure 11 shows a particularly
noisy region of the data present in all of the superimposed
series. This can be attributed to the difference between the
internal and external temperatures starting to re-converge
after they separate, showing that the relationship is not
bijective. However, the corresponding rate of change to
the points that re-converge seem to fit with the linear ap-
proximation with minor error. Knowing that the analog
battery heaters are programmed to turn on at 6◦C, Equa-
tion 1 can be used to give a reasonable prediction of the
time until the battery heaters are enabled.

Tenable − Ti = T
′
i ∗ theaters on (2)

∴ theaters on =
Tenable − Ti

−3 ∗ 10−4(Ti − To) + 6 ∗ 10−4
(3)

Where Tenable refers to the battery heaters enable con-
dition, 6◦C. The model given in Equation 3 is propagating
the instantaneous rate of change to predict when the bat-
tery heaters will be enabled. Due to this, at the start of
the cold swing when the delta between the internal and
external temperatures is the smallest, the model will be
unstable when the corresponding rate of change of the in-
ternal temperature is minimal. This is evident in Figure
12, where the time taken between the surface of the cells re-
sponding to a cold cycle and the battery heaters enabling
for the fifth cold swing is plotted against the predictive
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Figure 12: The predicted amount of time in seconds until the space-
craft battery heaters are enabled plotted against the difference be-
tween the battery temperature and the battery heater enable tem-
perature. The actual recorded time remaining is also plotted for
reference. The model is unstable above a 20◦C separation between
the internal temperature and the battery heater enable temperature
as it relies on propagating the instantaneous rate of change of the
battery temperature. When the difference between the internal and
external temperatures is minimal, the model tends towards an infi-
nite amount of time required. As the temperature gradient stabilises,
the prediction increases in accuracy.

model. As the delta between the internal and external
temperatures increases and the rate of change becomes
more constant, the accuracy begins to increase. Below a
20◦C temperature difference between the battery temper-
ature and the heater enable temperature, the model can
reliably predict the time remaining before the heaters were
enabled in the Wombat XL chamber.

In an attempt to compensate for the inaccuracies intro-
duced from propagation of small rates of change, a second
linear approximation was produced relating the difference
between the temperature at the surface of the solar cells
and the internal batteries, and the second derivative of the
internal temperature response with respect to time (Figure
13):

T ”
i = 2 ∗ 10−7(Ti − To) − 7 ∗ 10−6 (4)

Where Ti” refers to the second derivative of the tem-
perature of the batteries. The model given in Equation 4
has a coefficient of determination of 0.3988 showing a poor
linear fit in comparison to the first model. Approximat-
ing the second derivative of the internal temperature to be
constant with respect to time (due to only a very minor
change), an estimation for the time required to reach the
battery heater enable temperature can be given by:

Tenable − Ti = T
′
i theaters on +

1

2
T ”
i ∗ t2heaters on (5)

∴ theaters on =
−T

′
i ±

√
T

′
i
2

+ 2T ”
i (Tenable − Ti)

T ”
i

(6)

Figure 13: The relationship between the difference in the internal and
external temperatures of the spacecraft and the second derivative of
the temperature internal to the spacecraft at the batteries for each of
the cold swings. All six series shown in Figure 10 are superimposed
here. A linear fit has been applied to the data.

Plotting the predicted time for the battery heaters to
be enabled using the second model against the recorded
data and the first model (Figure 14(a)) shows that the in-
accuracies due to propagation of the instantaneous rate
of change have been addressed. Figure 14(b) provides
a magnified view of the stable range of the first model,
showing the predictions based on the second model seem
to track the recorded data with higher accuracy. The
first model, whilst maintaining a similar gradient to the
recorded data, consistently predicts a longer time till en-
able than the recorded data. Applying both predictive
models to the sixth cold swing (Figure 15) however shows
a higher accuracy with the first model, with both pre-
dictive models under-predicting the time remaining until
the battery heaters are enabled. The prediction inaccu-
racy between different cold swings can be attributed to
the errors present in fitting the experimental data to a lin-
ear approximation. As these models were produced from
limited data collected during one experiment with a single
spacecraft, the authors acknowledge the possibility of over-
fitting the models to the data. The next section therefore
applies the generated models on-board the Binar-1 engi-
neering model in the Curtin University vacuum chamber,
and to the Binar-1 thermal model in a simulated LEO envi-
ronment to assess their efficacy in heater usage prediction.

7. Model Verification

7.1. Thermal Vacuum

The engineering model of Binar-1 was placed in the
thermal vacuum chamber at Curtin University to test the
derived models on-board the satellite during thermal cool-
ing. A summary of the differences to the Wombat XL
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(a) The predicted amount of time in seconds until the spacecraft bat-
tery heaters are enabled plotted against the difference in the battery
temperature and the enable temperature (6◦C). Both predictive mod-
els and the recorded data from the fifth cold swing are shown. The
second model compensates for the inaccuracies introduced due to the
non linearity seen in the first model, giving a higher prediction accu-
racy in the higher temperature difference ranges.

(b) Magnified view of the predictive models. The first model produced
consistently predicts a higher time estimation than the recorded data
until the heaters are enabled. The second model is seen to more
accurately track the recorded data.

Figure 14: Predictions from both derived models of the time remain-
ing until the spacecraft battery heaters are enabled, plotted against
the recorded data from the fifth cold swing in the Wombat XL.

Table 3: Chamber differences

Curtin University Wombat XL

Volume (m3) 0.034 5.76
Temperature Range (◦C) -100 to +100 -170 to +180

Figure 15: Magnified view of both predictive models of the time
remaining until the spacecraft battery heaters are enabled, plotted
against the recorded data from the sixth cold swing in the Wombat
XL.

can be seen in Table 3. After pumping down to an av-
erage chamber pressure of 7.5E-4 Torr, ten hours of ther-
mal vacuum testing was performed (Figure 16) before the
chamber was permitted to return to ambient conditions.
During this period, the battery heating circuitry was en-
abled twice. The subsets of the solar panel surface and
battery temperatures pertaining to the regions preceding
the battery heaters being enabled are highlighted in black
and orange.

Applying the predictive models to the first and sec-
ond instances preceding heater usage (Figures 17 and 18
respectively), the first predictive model is seen to more
closely track the time remaining until the heating circuitry
is enabled than the second. Both predictive models in this
instance consistently under-predict the remaining time un-
til the heaters are enabled. The predictions are seen to
converge with the actual time remaining as the enable tem-
perature set point is neared.

7.2. LEO Simulation

With the Binar-1 thermal model showing high simil-
itude to the engineering model tested at the NSTF, the
thermal input to the simulation was updated to emulate
the temperatures expected over the course of an orbit.

The on-orbit thermal simulation of the Binar-1 ther-
mal model used an incident radiation on the satellite from
direct sunlight of 1400 W/m2, an Earth albedo of 150
W/m2, and IR radiation from Earth of 200 W/m2 [18].
The spacecraft was assumed to be nadir pointing, with
the exposure time of thermal radiation from the sun being
distributed across the exposed faces evenly. An excerpt of
the thermal response of the internal spacecraft tempera-
ture is plotted against the two prediction models in Figure
19, focusing on the section of the orbit where Binar-1 is
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Figure 16: The change in the battery temperature and solar panel
surface temperature during the thermal vacuum test at Curtin Uni-
versity. The heating circuitry was enabled twice during the test.
The regions applicable to model usage are highlighted in black and
orange. Completion of the first usage of the models saw only one
heater activate. As such, the battery warming portion following the
first usage of the heating circuitry takes longer than the second as
the chamber shroud was continued to be cooled in an attempt to
trigger the second heater. The completion of the second use of the
predictive models features both heaters activated.

Figure 17: The predicted amount of time in seconds until the space-
craft battery heaters are enabled plotted against the difference in the
battery temperature and the enable temperature during the experi-
ment in the Curtin University vacuum chamber. Also present is the
actual recorded time until the heaters were enabled. This section is
taken from the temperature profile preceding the first usage of the
battery heating circuitry, highlighted in black in Figure 16. The first
predictive model tracks the actual remaining time more accurately
than the second model.

Figure 18: The predicted amount of time in seconds until the space-
craft battery heaters are enabled plotted against the difference in
the battery temperature and the enable temperature. Also present
is the actual recorded time until the heaters were enabled. This sec-
tion is taken from the temperature profile preceding the second usage
of the battery heating circuitry, highlighted in orange in Figure 16.
The first predictive model tracks the actual remaining time slightly
more accurately than the second model

Figure 19: The predicted amount of time in seconds until the simu-
lated spacecraft battery heaters are enabled plotted against the two
produced models. The simulated spacecraft temperature was started
at the thermal equilibrium (6◦C). The data range is focused on the
section of the orbit where Binar-1 is eclipsed by Earth, and the inter-
nal battery temperatures are starting to drop. The first model has
a higher accuracy than the second in the prediction of the recorded
data.
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Figure 20: The proposed implementation of the predictive modelling
in the Binar flight logic. If there is insufficient battery capacity
to execute a task and run the battery heaters, a series of checks
are employed before calculating the expected time remaining before
the heating circuitry is operational. This can be used to cancel the
execution of a task that could otherwise cause the spacecraft to enter
a low-power state.

eclipsed by Earth and the internal battery temperatures
are starting to drop.

It is evident that the predictive models closely match
the simulated response of the battery temperatures of the
Binar-1 thermal model, giving high confidence of the effi-
cacy of the model in LEO-like environments.

8. Discussion

The relative low complexity of the models allows them
to be included in the spacecraft flight logic to predict the
usage of the heaters. The application mode of the Bi-
nar software framework contains a thread that executes
scheduled tasks from a queue. Each task in the queue
contains the software to execute and the start and end
times of the task. In the software developed for Binar-1,
when a task start time arrives, the task would be exe-
cuted regardless of the status of the system vitals. From
the experimentation done with the battery heaters, this is
shown to be problematic as a high power task coupled with
battery heater usage could potentially see the spacecraft

encounter a low-power state. Therefore, the modelling de-
rived in Section 6 can be used prior to task execution to
assess if the spacecraft can safely progress with doing so.
Figure 20 provides a proposed integration into the flight
logic. After a task is popped from the queue, the battery
capacity is to be checked to determine if the predictive
modelling is required. If a sufficient charge is present, the
flight logic can progress with regular task execution. How-
ever, if the spacecraft has insufficient charge, the predictive
modelling is to be used to determine if the spacecraft is safe
to progress with task execution. The average solar panel
voltage is to be checked to determine if the Earth eclipses
the sun from the spacecraft. Following this, a further check
is employed to verify that the internal battery temperature
is less than the heater enable temperature summed with
the maximum usable range of the model as discussed in
Section 6, 26◦C. In the case which this check succeeds, a
prediction of the time remaining until the heaters are en-
abled will be calculated. Summed with the current time,
this predictive value can be referenced against the task
end time to estimate if the heaters are to be operational
during the task. This condition will see the task cancelled,
and an error logged on board to be communicated to the
ground station.

The responses seen from applying the predictive mod-
els to further thermal vacuum testing at Curtin University
and the Binar-1 thermal model show a higher predictive
accuracy in the time remaining until heater usage using
the first model over the second. This relationship is also
present in the application of the predictive models to the
sixth cold swing recorded at the Wombat XL. Moving for-
ward therefore, the first model is to be implemented in
the spacecraft flight logic for the prediction of the usage of
the battery heating circuity. The error in the prediction of
the battery heater usage varies between the application to
the data collected at the Wombat XL, the data collected at
Curtin University, and a simulation of the Binar-1 thermal
model in a LEO environment. This is likely due to unmod-
elled factors being present in the model, as it simplifies a
relationship that is inherently non-linear. However, this
is expected as the intention of the model is to provide a
simplified computationally inexpensive means of predic-
tion which by nature will deviate from a high accuracy
model. Due to this, it is deemed sufficient to progress to
an on-orbit test of the predictive model as a precursor to
further development.

9. Conclusions and Future Work

Being the first spacecraft built by the Binar Space Pro-
gram, Binar-1 comprised many custom components that
lacked flight heritage. Due to this, testing in a simulated
space environment prior to launch was crucial in under-
standing the performance of the spacecraft in LEO condi-
tions. With this objective in mind, verification of the bat-
tery heating system electrical characteristics was of high
priority.

13
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The testing procedure in the Wombat XL thermal vac-
uum chamber demonstrated that the battery heating sys-
tem functioned as expected, keeping the internal temper-
ature of the spacecraft from dropping below 6◦C, demon-
strating its reliability in LEO like environments. It was
seen however that when the battery heaters were enabled,
the power requirement from the electrical power system in-
creased dramatically. As the battery heating system can-
not be controlled by the flight logic, it stressed the neces-
sity for on-board autonomy to predict when the heaters are
to be used. With this, the spacecraft can make changes to
the operations plan to prevent power intensive tasks run-
ning on the spacecraft during periods of high current draw
from the heaters, possibly resulting in a low-power state.

From the data recorded during the testing in the ther-
mal vacuum chamber, two models were generated relating
the difference between the internal and external tempera-
tures of the spacecraft to the first and second derivatives
of the internal battery temperature with respect to time.
These models were shown to predict the enabling of the
battery heaters when the spacecraft entered a cold swing in
the thermal vacuum chamber with sufficient accuracy. The
engineering model of Binar-1 underwent further thermal
vacuum testing at Curtin University with the two predic-
tive models derived in Section 6 running on-board. Both
models were found to track the estimated time until the
battery heaters were enabled. To simulate the efficacy of
the models on-orbit, a thermal model of Binar-1 was used.
Verified against the recorded data in the Wombat XL, the
Binar-1 thermal model was subject to a thermal simulation
of a LEO environment. Applying the predictive models on
the thermal data produced by the simulation of the Binar-
1 thermal model showed that the first predictive model
estimated the time remaining for the usage of the battery
heaters with a higher accuracy than the second predictive
model. This was likewise demonstrated from the results of
the thermal vacuum testing at Curtin University, and the
sixth cold swing in the Wombat XL. Due to this, moving
forward the first model will be tested in the flight logic on
future Binar spacecraft.

It was evident from the application of the models that
the presence of unmodelled factors caused an inconsistent
error during experimental predictions. Further testing on-
orbit will contribute to refinement of the predictive model,
potentially compensating for unmodelled factors and in-
creasing the accuracy of the prediction of battery heater
usage. Feruglio et al. demonstrate the benefits of using
artificial neural networks on a CubeSat to improve mission
autonomy when applied to a payload optimisation prob-
lem. Having been proven feasible, they propose that their
research may be extended to encompass autonomous fail-
ure detection and isolation [13]. Acknowledging the pre-
dictive modelling proposed in this paper simplifies an in-
herently non-linear relationship, the predictive modelling
may also be improved by using orbital data in training of
a machine learning model of battery heater usage, with
on-board inference.

Some apprehension exists in the community for relin-
quishing control over the mission operations plan to au-
tonomous software. On-board autonomy on spacecraft
however is crucial for safe operations in a communications
limited environment to handle emergencies that cannot
wait for input from ground operators. CubeSats offer a
platform to trial on-board autonomy with a significant re-
duction in risk over larger, more expensive missions. The
derived model will thus be used on Binar-2, 3 and 4 to in-
fer when a task is not safe to execute due to power usage
concerns without requiring input from a ground operator.
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Unlike Earth constrained engineering development, the design of spacecraft poses a significant problem - due
to the cost of launch, testing in the operative environment becomes difficult. This therefore shows the advantage
of simulation software to emulate the environment the satellite is to operate in. Writing separate code for on-
board and simulation purposes introduces the possibility of deviation from the modelled environment, lowering
mission confidence. Through the use of abstraction layers the Binar CubeSat Program leverages the simulation
environment further in the production of a “Digital Twin” - tailor made software that runs simultaneously in a
simulated environment, as well as the hardware environment. Breaking the barrier between simulation code
and implementation code allows us to accurately portray how the spacecraft will respond to its environment,
increasing confidence in our mission.
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ABSTRACT

The second mission of Western Australia’s Binar Space Program consists of three 1U CubeSats targeting
a 2023 launch. Aiming to improve the platform for future missions, the primary purpose of Binar 2, 3 and
4 is on-orbit testing of radiation shielding alloys developed by CSIRO. In this first-of-its-kind experiment,
all three simultaneously deployed Binar spacecraft will contain radiation sensing payloads to assess the
efficacy of various compositions of Australian made radiation shielding alloys. Alongside this, hardware
changes to the Binar platform are discussed, including deployable solar arrays, additional communications
solutions, and a removable payload bay. The Iridium network will be leveraged to test its suitability for
CubeSat targeted re-entry. Several software-based payloads are implemented, including on-board hardware
emulation, enabling an industry partner to control the spacecraft in a demonstration of remote operations
capability. An undergraduate student lead project will continue on from Binar-1 to see a star tracker flown
for testing alternative methods of attitude determination. From a community perspective, strengthening the
engagement between amateur radio operators and the Binar Space Program will be explored by expanding
on what amateurs can do with on-orbit satellites. Lastly, autonomous agile mission planning will be tested
through an on-board multipurpose simulation running on the dual-core flight computer.

Introduction

The Binar Space Program was conceived as
an engineering undergraduate honours project at
Curtin University in 2018. The initial scope of
the project was to purchase COTS subsystems from
satellite manufacturers to assemble Western Aus-
tralia’s first spacecraft. It became evident however
that this could hinder the Program in three areas:
cost, size and subsystem limitations. Due to this, the
scope of the Binar Space Program shifted towards in-
house development of spacecraft subsystems. Three
years later in 2021, Binar-1 was launched into Low
Earth Orbit in what was the first flagship mission of
the Space Science and Technology Centre at Curtin
University. Leveraging the high reusability of the
Binar platform, the Binar Space Program is already
developing the next iteration of CubeSats: Binar-2,
3 and 4. Deployed simultaneously from the Inter-
national Space Station, the three 1U satellites will
be carrying various payloads for experimentation in
Low Earth Orbit.

The design of the mission two satellites and the
payloads flown are heavily biased towards platform
development of the Binar CubeSat, supporting fu-
ture missions from the Space Science and Technol-
ogy Centre. This paper will provide an overview of

the mission two satellites, detailing the areas that
differ from the Binar-1 CubeSat design, namely the
development of deployable solar panels; a custom
communications solution comprising UHF, Iridium
and S-band; and a removable payload bay. It will
then discuss the hardware and software payloads be-
ing flown; the former comprising an undergraduate
student built star tracker and an in-house designed
radiation sensor, and the latter a robotic arm em-
ulator and an autonomous agile mission planning
software tool. Alongside its usage as a form of com-
munication with the CubeSat, the Iridium module is
also discussed as a tool for tracking the satellite as it
re-enters the atmosphere at the end of life. Finally,
a brief concept of operations is given for the three
satellites, detailing the mission timeline.

CubeSat Overview

Binar-2, 3 and 4 are three 1U CubeSats planned
for a 2023 launch through the JAXA launch bro-
ker SpaceBD. Deploying simultaneously from the In-
ternational Space Station, the three spacecraft will
be inserted into a 400 km altitude, 51 degree in-
clined mission orbit. The spring assisted deploy-
ment method will see the three spacecraft slowly
separate over the mission lifetime. Continuing with
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a strong focus on platform development for future
reuse, Binar-2, 3 and 4 will extend upon Binar-1 to
feature deployable solar panels, a custom communi-
cations system, and a removable payload bay, seen
in Figure 1.

At the centre of the satellite (3) is the Bi-
nar CubeSat Core, a highly integrated custom cir-
cuit board that comprises a primary and redun-
dant flight computer, a Global Positioning System
(GPS), Attitude Determination and Control System
(ADCS) (Magnetorquer based, 1), on-board storage
and Electric Power System (EPS) in a 0.25U stack.
The 1U frame is surrounded by solar cells, both face
mounted (4), and deployable (2). Finally, at the
base of the satellite is the removable payload bay
(6), housing the radiation sensing primary payload
(5).

Figure 1: Exploded render of the mission two
satellite design with key sections detailed.

Deployable Solar Panels

To satisfy the power budget for Binar 2, 3 and 4,
additional solar cells need to be added to the existing
1U form factor. A deployable solar array system is
implemented for the mission to meet current power
requirements and to develop the in-house capabil-
ity for supporting future missions with deployable
arrays. The deployable solar array will have a chas-
sis mounted panel that is attached to the mission
two spacecraft in the same manner as the surface
mounted cells on Binar-1, with the addition of two
panels attached in series via rigid-flex PCBs on ei-
ther side of the spacecraft, shown in Figure 2.

The deployable arrays will be held in a stowed
configuration by burn wires, which when severed will
allow for unfolding to occur. The primary actuation
method for unfolding the solar panels will be nickel-
titanium shape memory alloy. Compliant actuation

was chosen due to its size, mass, and power effi-
ciency, and also due to a reduced part count over
classical actuation methods.

Figure 2: Render of the mission two space-
craft design with solar panels deployed.

Custom Communications Solution

Due to time restrictions and a lack of commu-
nications experience in the Binar Space Program, a
COTS communications system was used on Binar-
1. However, the solution purchased was very large,
lacked redundancy, a repeatable deployment system,
and had a black box software package and hard-
ware design that was not easily modified to meet
launch requirements. The integration issues that
followed hindered some functionality of the space-
craft. Based on experiences from Binar-1, a custom
communications solution has been developed for the
mission two satellites that integrates three commu-
nication methods. The integrated system will con-
tain a UHF, Iridium, and S-Band based communica-
tions system. The primary communications method
will be the planar monopole deployable UHF. Based
off of the OpenLST design, components used in the
UHF solution have flight heritage. The UHF com-
munications solution will operate in the amateur fre-
quency band, satisfying our requirement for com-
munity engagement. The Iridium solution offers a
much higher communications availability in compar-
ison, not requiring the spacecraft to be over a ground
station for communications. S-Band will be trialled
for the mission as a test platform for future mis-
sions with higher data throughput requirements. A
custom communications solution guarantees meet-
ing requirements, and facilitates testing during the
full mission life cycle. Moreover, a custom commu-
nications solution can be developed to efficiently use
the space inside the spacecraft frame, increasing the
space reserved for payloads.

Passionate about generating excitement for the
space industry, the Binar Space Program plans to
leverage the amateur radio platform on the mission
two satellites to expand on what amateurs can do
with spacecraft on-orbit. Conforming to the ba-
sic requirements of using the amateur radio band,
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the spacecraft will frequently generate data on a fre-
quency accessible to radio amateurs, allowing them
to design and build their own ground stations to lis-
ten to Binar-2, 3, and 4 as they pass overhead. For
amateurs that have a license to transmit, the Cube-
Sats will also allow amateurs to send packets of data
for temporary storage to be recalled later. Due to
the importance of the SatNOGS network in locat-
ing Binar-1, these amateurs are encouraged to link
their ground stations into the SatNOGS network to
listen to other satellites, and to recall their stored
data packets from other ground stations around the
world.

Removable Payload Bay

The payload bay is designed to provide a sepa-
ration between the core spacecraft systems and the
experiments being flown, adding abstraction and re-
moving hardware-enforced links between the core
bus and payloads. This removes the need for the
Binar CubeSat Core to be modified for each launch.
This will ensure the Binar bus can be tested, verified
and locked into a working design that can be reused
for future launches. The addition of the payload bay
enables payloads to be assembled and tested sepa-
rately to the main CubeSat to ensure functionality
before being integrated into the core system. This
design choice was influenced by the BinarX program,
which will see Western Australian school students
developing payloads to be flown on Binar spacecraft.

Figure 3: Render of the payload bay in the
stowed and removed configuration.

The payload bay is designed to be a rigid unit
that is inserted into the CubeSat from below. It in-
terfaces with the spacecraft motherboard through a
custom designed payload adaptor PCB that mates
with the motherboard when inserted into the Cube-
Sat frame. Each individual payload will connect to
the payload adaptor board using a locking cable con-
nector. The following section provides details about

the payloads that will be flown in the payload bay
on the Binar-2, 3 and 4 missions.

Payload Design

Radiation Detection

The primary objective of the Binar-2, 3 and 4
satellites is on-orbit testing of radiation shielding al-
loys developed by the Commonwealth Scientific and
Industrial Research Organisation (CSIRO). It is well
understood that spacecraft in orbit around Earth
are subject to radiation originating from the Sun.
The Earth’s magnetic field traps electrons, protons
and heavy ions in common spacecraft orbits, and ra-
diative particles are also known to traverse through
these orbits.1 As spacecraft move further away from
the protection Earth provides from ionisation radia-
tion, the dosage increases.

The electronics that enable spacecraft are sus-
ceptible to the detrimental effects of the radiation
present in space. Total radiant exposure and time-
dependent radiant flux are two major areas space-
craft electronics are susceptible to.1 In high risk
components such as commercially available off the
shelf integrated circuits (ICs), these areas manifest
in single event effects (SEE) and total ionising dose
(TID) radiation events. TID refers to the damage
components face from long-term exposure to a ra-
dioactive environment. This impacts areas such as
device voltage threshold levels and component leak-
age currents, leading to irreparable faults. Con-
versely, SEEs refer to the short term damage ICs
can suffer from transient events. In these situations,
energy deposition from a radiative particle can cause
bit-flip errors that effect software runtime.2 These
faults often present through degraded integrity of
non-volatile flash memory, impacting data storage
recall, and also through program memory corrup-
tion, potentially resulting in a processor executing
erroneous instructions that can lead to system fail-
ure.3

To combat the detrimental effects radiation has
on sensitive electronic components, shielding is of-
ten employed externally to a spacecraft, or some-
times internally directly around specific compo-
nents.1 Traditionally, aluminium is used in space-
craft shielding due to its density properties. How-
ever, recent advancements into the usage of compos-
ite materials in radiation shielding have shown an in-
crease of shielding efficacy and a reduction in mass,
whilst still providing high mechanical strength4.5

Due to this, composite materials are being viewed as
a viable alternative for spacecraft radiation shield-
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ing. Device sensitivity to radiation events vary
largely depending on the component used. In the
same orbit, the SEE rate can increase by several
orders of magnitude in technologies more suscepti-
ble to radiation.6 With compositions of alloys and
epoxy showing promise in the future of spacecraft
radiation shielding, the primary science experiment
on mission two will determine the efficacy of newly
developed compositions both for radiation protec-
tion close to home, and as the Binar Space Program
explores deeper into the solar system.

The purpose of the radiation detection payload
is to test the efficacy of the shielding material devel-
oped by CSIRO. All three of the CubeSats will con-
tain a radiation sensor developed in-house, but will
have varying compositions of the structure surround-
ing the payload. The payload is expected to provide
input into the decisions regarding the structural de-
sign of Binar CubeSats as the program targets mis-
sions beyond Low Earth Orbit. The payload consists
of three independent radiation detection methods,
and the varying shielding compositions. Figure 4
highlights the detection methods of the payload, as
well as the supporting circuitry.

Figure 4: Cross sectional view detailing the
radiation detector payload.

Shielding

Whilst the radiation sensors will be identical be-
tween the launch two spacecraft, the shielding sur-
rounding the payload will vary. Binar-2 will operate
as a control, with Binar-3 and Binar-4 offering vary-
ing compositions to assess the efficacy of the radia-
tion shielding methods in LEO.

The control shielding will comprise of 3mm alu-
minium plates, being the same grade aluminium
used for the spacecraft frame. As the payload is to
influence the decisions made for the composition of
future spacecraft frames, this is to represent a space-
craft structure with no radiation shielding. The im-
pinging radiation data collected from this will be
compared against a shielding composition of doped

aluminium, and against dual layer aluminium and
epoxy plates. Whilst the doped aluminium may pro-
vide better total radiation shielding protection, the
dual layer shielding is being investigated to ascertain
shielding to mass ratio performance.

Figure 5: A render of the shielding surround-
ing the radiation detection payload.

Scintillation Detector

The scintillation detector is the primary method
of measuring impinging radiation on the payload.
It comprises a sodium-doped caesium iodide crys-
tal fixed to the top of four silicon photomultipliers
(SiPM). When ionising radiation passes through the
crystal, it re-emits the absorbed energy in the form
of light to be detected by the SiPMs. When struck
with the emitted photons, the SiPMs will generate
a voltage to be measured by the payload microcon-
troller. This voltage is directly proportional to the
energy of the ionising radiation. Due to this, the
voltage recorded by the payload microcontroller can
be matched to the energy range of the expected ra-
diating particles, and hence discern what particle
produced the scintillation. This can provide insight
into if the radiation received is due to pass-throughs
of the radiation shielding, or if the shielding itself is
producing secondary ions.

Floating Gate Dosimeter

The floating gate dosimeter is a digital radiation
sensor located on the secondary sensor board of the
payload seen in Figure 4. Unlike the scintillation de-
tector, this sensor cannot determine the particular
impinging particle. The detection method sees the
implementation of a floating gate capacitor. The
floating gate normally exists in a charged state, of
which it can hold indefinitely until a dose of ionis-
ing radiation is received. The impinging radiation
causes the floating gate to discharge at a propor-
tional rate to the dose received. After reaching a
discharge threshold, the floating gate is recharged
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to its nominal state. Using the discharge rate cou-
pled with the charge cycle count, the instantaneous
dosage intensity can be inferred.

RadFET

The radiation-sensitive metal-oxide-silicon field-
effect transistor (radFET) payload is used to deter-
mine the total amount of radiation received over the
lifetime of the mission. A reverse bias current is
forced into the radFET and the voltage is read at
the source. The amount of gate leakage current is
permanently changed as radiation impinges the sen-
sor,7 allowing the computer sampling the voltage to
infer the total amount of radiation that has been
received.

Targeted Re-entry

Alongside offering redundancy in communica-
tions, flying an Iridium module on the mission two
spacecraft enables the exploration of small satellite
re-entry systems. Leveraged through a dedicated
operational mode, Binar-2, 3 and 4 will de-activate
unnecessary systems and focus power towards trans-
mitting Iridium beacons at high frequencies. These
re-entry beacons comprise power, temperature and
location information which the ground station will
use to monitor the satellite entering the atmosphere.
Testing of the Iridium based tracking system on the
mission two spacecraft will be a precursor to creating
a future targetable re-entry system, with the even-
tual goal of re-entering a Binar spacecraft above the
Western Australian Desert Fireball Network.8 Early
re-entries over the network will see optical tracking
of the satellite as it ablates in the atmosphere. Fu-
ture stretch goals involve the implementation of heat
shielding and a landing system to attempt to land a
CubeSat in the Australian desert.

Robotic Arm Emulation

Aiding in the bridging of industry and research,
the Binar Space Program has an ongoing col-
laboration with the Fugro Space Automation AI
and Robotics Control Complex (SpAARC). The
SpAARC is developing unique remote operation ca-
pabilities to support space robotics projects both
within Australia and internationally. On the mission
two satellites, the collaboration with the Binar Space
Program will see Fugro SpAARC remotely operat-
ing an emulation of a robotic arm from their ground
station in Perth, Western Australia. As a case study,
a solar panel is to have failed to deploy correctly, re-

quiring the use of an on-board robotic manipulator
to aid the deployer in completing its full actuation.

Requesting the solar panel deployment angle
from Fugro SpAARC, the spacecraft will generate,
log, and return a random angle to the ground sta-
tion. A task can then be scheduled to actuate the
virtual payload, involving interpolation of the three
degrees of freedom simulation. The updated virtual
manipulator state and the solar panel angle will be
logged on the spacecraft before being returned to
Fugro SpAARC when queried and displayed in real-
time on their remote operations front-end software.

Figure 6: Screenshot from the Fugro
SpAARC remote operations tool, showing a
manipulator and a deployable panel on-orbit.

The simple experiment aims to demonstrate the
capabilities being developed in Western Australia,
supporting the growth of local space industries.

Star Tracker

Passionate about lowering the barrier to entry of
working on space missions in Australia, the Binar
Space Program will be flying a star tracker payload
built by undergraduate students at Curtin Univer-
sity. The aim of the payload is to test the hardware
the could be used on future Binar missions that ex-
tend beyond LEO. The hardware will consist of a
lens, image sensor, microcontroller, supporting elec-
tronics and a mechanical structure. The microcon-
troller will be running star tracking algorithms writ-
ten by the students to perform attitude determina-
tion. The payload is expected to produce lessons
learned, and some information about the suitability
of COTS lenses, CMOS sensors and microcontrollers
for star tracking applications.

Digital Twin

The digital twin payload aims to create a vir-
tual replica of the Binar spacecraft that can be used
for on-board simulations. The goal is to develop a

Buchan 5 36th Annual Small Satellite Conference

396 STUART ROBERT GIBSON BUCHAN



multipurpose simulation in which subsystems pos-
sess knowledge about their own state, the environ-
ment they operate in, and how they integrate with
other submodules in the system. On the mission
two satellites, the payload will recommend changes
to the mission plan based on on-board power con-
sumption. Figure 7 shows a high level flowchart of
the digital twin implementation.

Figure 7: Digital twin virtual payload pro-
posed functionality diagram.

One core of the flight computer will be dedicated

to running the simulation to ensure that possible in-
tense loads from interpolations will not impact the
flight logic of the spacecraft. When the ground sta-
tion schedules a task for the spacecraft to complete,
the flight logic will power the second core of the flight
computer on, passing a snapshot of the satellite into
the simulation. This snapshot will contain current
readings of all spacecraft systems, inclusive of on-
board power usage and thermal information. Whilst
the main core continues executing the flight logic,
the second core will propagate forward on-orbit until
the start time of the scheduled task. The spacecraft
will then estimate the total power usage, including
the battery heaters, and the expected continued us-
age of on-board peripherals. The flight logic is then
notified of the outcome of the simulation, and is able
to determine if it is safe to progress with task exe-
cution, or recommend another time slot in an agile
manner.

The models used by the digital twin payload dur-
ing simulation were derived from testing in lab-based
environments. A future goal of the digital twin pay-
load is to facilitate on-orbit inference of pre-trained
machine learning models using data obtained from
the Binar satellites on-orbit.

Concept of Operations

A high level overview of the operation modes
and corresponding state transitions for the mission
two spacecraft can be seen in Figure 8. The red
arrows represent automated transitions, whilst the
green show manual transitions.

Post-deployment from the ISS, the three space-
craft will enter a separation sequence where the EPS
will power the spacecraft and begin a 30 minute
timer. This is to satisfy the ISS deployment re-
quirement of refraining from deployment actuation
until a safe distance has been achieved. After this
timer has lapsed, the planar monopole UHF antenna
will deploy followed by the solar arrays. Following a
successful deployment, the spacecraft will transition
into the bootloader to run a system health check.
Verifying nominal system operations, the spacecraft
will transition into a low power mode with high fre-
quency, long duration communications to aid in lo-
cating the spacecraft from the ground station. A
telecommand received from the ground station will
permit the spacecraft to transition into the nadir
pointed application mode where the spacecraft sys-
tems will be brought online. Two weeks post de-
ployment from the international space station, the
spacecraft will begin to achieve it’s on-orbit objec-
tives, as shown in Figure 9.
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Figure 8: Binar-2,3 and 4 Operation Modes.
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Figure 9: Proposed timeline of the Binar-2, 3 and 4 CubeSats.
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To maximise the chance of satisfying the industry
collaboration requirements, the Fugro SpAARC re-
mote operations experiment will be the first on-orbit
objective. During an overhead pass, the Binar Space
Program will hand over control of the satellites to
the SpAARC ground station facility in Perth, West-
ern Australia. This experiment will be completed
multiple times with the three satellites to demon-
strate the robustness of their remote operations ca-
pability. Following completion of the demonstration,
the three Binar spacecraft will be tasked with using
the star tracker payloads to capture images of the
visible stars. These images will be used on-board
the spacecraft in attitude determination to be ref-
erenced against location information from the GPS.
As the three CubeSats are expected to slowly drift
over the course of the mission, the images captured
will provide a comprehensive view of stars visible
from LEO and hence will be also downlinked for use
in future testing. After having sampled a sufficient
catalogue of stars, the satellites will begin the ag-
ile planning stage of the mission using the on-board
digital twin. The digital twin payload is to suggest
changes to scheduled task times if the on-board sim-
ulations predict insufficient available power to safely
complete a task. To force this situation to occur,
high power tasks will be scheduled for periods of the
orbit where the CubeSats are in Earth’s shade, not
charging, and using battery heating. To verify the
reasonableness of the simulations recommendations,
an override will be granted to allow a task to run
regardless of the agile recommendations. Observing
the spacecraft booting into safe mode will demon-
strate the recommendation was sound, showing the
plausibility of using on-orbit agile mission planning
in more complex cases.

The nominal operations stage of the mission
timeline is expected to last for at least one year.
Whilst sequentially operating the previously men-
tioned payloads, the primary radiation sensing pay-
load will be constantly operational, downlinking
measured radiation data that leaks through the
shielding flown. This information will be periodi-
cally transmitted along with general housekeeping
data. When green time exists within the nominal
operations schedule, the Binar Space Program will
work with the amateur radio community to listen
and transmit to Binar-2, 3 and 4.

Two weeks prior to the end of life, the Cube-
Sats will be transitioned into the re-entry mode via
a telecommand from the ground station. This mode
will orient the spacecraft such that the deployable
cells create sufficient drag to aid in orbit degrada-
tion. This mode will see the spacecraft enter a low

power mode, conserving energy to support high fre-
quency communications over the Iridium network to
track re-entry in the atmosphere.

Conclusion

Binar-2, 3 and 4 comprise the second launch of
the Binar Space Program, with a strong focus on
platform development for the future. The three 1U
CubeSats will be primarily testing radiation shield-
ing compositions created by the CSIRO. The vary-
ing compositions used will be assessed based on the
three radiation detection methods flown, showing
types of radiation received, dosage intensity, and to-
tal ionising dose received. The data collected from
this experiment will aid in determining the efficacy
of shielding on CubeSats, enabling future Binar mis-
sions that extend beyond LEO.

Platform development will also be explored on
mission two through the testing of deployable cells,
redundant communications, and the unique remov-
able payload bay. The deployable cells on the
spacecraft will provide an extra power margin over
the surface-mounted only cells on Binar-1, sup-
porting growing payload needs as the platform is
reused in the future. Flying multiple communica-
tions solutions allow for a backup communication
method through the Iridium network, with S-band
also supporting testing of higher bandwidths as data
throughput requirements increase in the future. The
Iridium communications solution will also be flown,
with a focus on transmitting telemessages from the
spacecraft during spacecraft re-entry to aid in track-
ing. Second to this are software and hardware pay-
loads that will help the Binar Space Program de-
velop necessary systems for future missions planned
from the Space Science and Technology Centre at
Curtin University.

As the main goal of the platform is to mature to-
wards a static design where only the payload changes
between launches, the removable payload bay will be
tested on the mission two satellites carrying an in-
house developed radiation sensor, and a star tracker
camera. The radiation sensor will provide infor-
mation on the radiation that passes through the
payload-surrounded shielding, whilst the undergrad-
uate star tracker payload will provide preliminary
data for the development of future deep-space atti-
tude determination as Binar spacecraft strive further
from Earth.

Software payloads are used on the mission two
satellites for facilitating industry engagement, and
for agile mission planning. The ongoing collabora-
tion with Fugro SpAARC will see the inclusion of
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a robotic arm emulator to be controlled by Fugro
ground station operators, demonstrating the use of
their remote operation facility. When commanded
to schedule a task for completion, the spacecraft will
use the digital twin software to propagate on-orbit
and assess the power state of the spacecraft for safe
task execution.

Finally, the mission two spacecraft will expand
on what amateur radio operators can do with a
spacecraft on-orbit. Whilst supporting unencrypted
access to beacons transmitted from the spacecraft,
the satellites will also allow radio amateurs with
a transmission license to store small data packets
on the spacecraft that can be downlinked using the
SatNOGS network.

The Binar Space Program intends to launch
satellites frequently to support the program goal
of space systems education at Curtin University.
Binar-2, 3 and 4 provide a test platform in the con-
stant development of the Binar CubeSat bus. The
data collected from the operations of the satellites
and the payloads they are flying will influence the
decisions made for the next Binar CubeSats, and
aid in the eventual development of satellites that
venture beyond LEO.
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ABSTRACT 
The Binar Space Program is a recently formed space research and education group part of the Space Science and 
Technology Center at Curtin University in Western Australia. Recently launching the first CubeSat from the state, 
Binar-1, the team is making steps towards creating a sustainable mission schedule for research and education. The 
Binar-1 mission primary objective was to demonstrate the custom designed systems made by PhD students and 
engineers at the university. The main technology being demonstrated was the integrated Binar CubeSat Core, which 
compacted the Electrical Power System, Attitude Determination and Control System, and flight computer system 
into 0.25U. Alongside this, the team also aimed to learn about end-to-end spacecraft mission design and engage with 
the public to build an understanding of the importance of space industry and research in the country. Binar-1 was 
deployed from the International Space Station on the 6th of October 2021, and initially was silent for 15 days until 
the Binar team was able to make contact by enabling a secondary beacon. This paper will present the Binar-1 
mission including the custom design, operations, failure analysis, and results before finally summarizing the lessons 
learned by the team while flying Western Australia’s first space capability. 

INTRODUCTION 
With the foundation of the Australian Space Agency 
(ASA), a new wave of space industry and research has 
begun in the country. One of the research groups is the 
Space Science and Technology Center (SSTC) located 
at Curtin University in Western Australia. With a 
history in global fireball entry tracking and space 
situational awareness technologies1, the research center 
formed a new branch in the Binar Space Program. This 
program aims to help develop the skills necessary for 
working in the space industry by performing valuable 
space research at the university with frequent CubeSat 
missions. The first mission performed by the Program, 
Binar-1, was a technology demonstrator mission that 
tested the custom designed systems put together by a 
team of PhD students and engineers. 

The design of Binar-1 took inspiration from the first 
CubeSats developed and launched by universities, 
focusing on using custom design systems rather than 
purchasing Commercial Off the Shelf (COTS) 
solutions. This design decision was made for many 
reasons; however, the main purpose was to reduce the 
cost of future missions and build capabilities which can 
be upscaled to more complex space missions. This 
technology skill growth has been vital for the team as it 
now works towards its future missions in Binar-2, 
Binar-3, and Binar-4.  

Having first been conceptualized in the middle of 2018, 
this paper will present the complete lifecycle of Binar-
1. First, the Binar-1 mission goals and design will be 
detailed. Next, it will discuss the operations, recovery 
process, and results of the mission. Finally, it will 
provide a summary of the lessons learned and how 
these lessons will be implemented into future Binar 
missions.  

BINAR-1 MISSION 
Binar-1 was launched from cape Canaveral on the 29th 
of August 2021 onboard a SpaceX Falcon 9 rocket as a 
ride share on the International Space Station (ISS) 
commercial resupply mission CRS-23. The CubeSat 
was then deployed along with 2 others (Maya-3 and 
Maya-4) on the 5th of October from the Kibo module 
and JEM Small Satellite Orbital Deployer (J-SSOD). 
The launch was coordinated with the Japanese 
Aerospace Exploration Agency (JAXA) through 
SpaceBD, a commercial space company in Japan. 
Figure 1 is a photo taken from on-board the ISS of the 
CubeSat deployment. Binar-1 can be seen in the top 
right of the image with the Earth and ISS solar panels 
seen in the background. 
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Figure 1: Binar-1, Maya-3, and Maya-4 just after 
deployment from the J-SSOD with the ISS solar 
arrays and Earth pictured in the background. 

The main objectives of the Binar-1 mission were to: 

• Demonstrate the custom designed systems 
created by the Binar Space Program,  

• Educate staff and students about end-to-end 
spacecraft mission design, and  

• Spread awareness about the importance of a 
space sector in Western Australia.  

Alongside these objectives, the CubeSat was also flown 
with two secondary payloads: an undergraduate student 
led star tracker, and a high-resolution Earth imagery 
camera.  

Of the custom designed systems being tested, the 
primary novel system is the integrated Binar CubeSat 
Core (BCC). Contained inside the 0.25U package is an 
Electrical Power System (EPS), Attitude Determination 
and Control System (ADCS), and flight computer 
system. Also, custom designed by the team was the 
Binar structure, the Binar Software Framework, and 
integration method for the communications system and 
payload cameras. 

BINAR-1 DESIGN 

The design, testing and integration of Binar-1 took 
place over the course of 3 years at Curtin University. 
The initial concept for the design was to make up the 
satellite from CubeSat COTS systems to meet the 
mission objectives. This process educated the team on 
what was typical for CubeSat missions and how to start 
its own design process. The decision to move to a 
custom design was made from observations of the 
COTS solutions architectures and the benefits that 
could be achieved from a custom designed system. 
While the systems were modular and made to work 
together across suppliers, the team noticed that the 

systems available were not able to achieve the team 
goals. The system solutions are larger than needed and 
limited to the design, making it hard for modification to 
be made without major intervention. Also, the cost of 
purchasing the systems is greater than if the hardware is 
custom designed. Moreover, this benefit of custom 
designing the systems will help the Binar team to 
reduce future cost and build skills for designing more 
complex systems in future missions. As such, the team 
decided to go forward with a custom design due to the 
many benefits it had alongside the ability to modify and 
compact the design. 

As a result, the custom design of Binar-1 included the 
BCC, Binar structure, Binar Software Framework, and 
the payloads. Alongside these systems was a COTS 
communication system. The system block diagrams for 
Binar-1 are presented in Figure 2, separated into its 
power and signal connections. 

 

Figure 2: Simplified Binar-1 system block diagrams. 

Binar CubeSat Core 
The integrated BCC is the primary technology 
demonstrator objective of Binar-1. Containing the 
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integrated EPS, ADCS, and flight computer system, the 
goal of the design was to compact these systems to 
make more space for payloads. Learning from the 
initial Binar-1 design which used COTS systems, the 
primary requirements for the BCC were based around 
compactness, safety, reusability, reliability, and 
testability. The complete design was achieved using 
computer aided design software, allowing for optimal 
placement of electronic parts and mechanical structures. 

The EPS found on the BCC contains the typical 
subsystems of an EPS including a power generation 
subsystem, power storage subsystem, and power 
distribution subsystem. The power generation 
subsystem consisted of two Maximum Peak Power 
Controllers (MPPC) which are supplied from solar 
panels on the X and Y faces of the CubeSat. The solar 
panels were assembled by the Binar Space Program, 
making modifications to existing assembly methods to 
optimize and simplify the process for 1U panels2. 
Connected to the power generation subsystem, the 
power storage subsystem consisted of four lithium-ion 
18650 battery cells in a 2S2P configuration. To meet 
the mission and launch safety requirements, the power 
storage subsystem also included battery heating and an 
ISS launch qualified battery protection system. Finally, 
the distribution subsystem consisted of a dual redundant 
3.3V converter to power the remaining systems on the 
BCC. The distribution subsystems for the payloads and 
communications system were found on the adapter 
board which connected the BCC to the PC104 
connectors used by the COTS communication system. 

The ADCS contained on the BCC consisted of an 
Inertial Measurement Unit (IMU), Magnetometer, 
Global Positioning System (GPS), and a 3-axes 
magnetorquer. Combining the complete system into the 
BCC, the EPS and flight computer system were able to 
integrate with the ADCS from the beginning of 
development. This process helped to remove integration 
issues and increase confidence in the design. The IMU 
and magnetometer were used for feedback in the 
attitude control system and operation of the 
magnetorquers. Integrated with the batteries inside the 
0.25U BCC, the magnetorquers consisted of two X and 
Y axes iron core magnetorquers and one large Z axis 
vacuum core magnetorquer. These coils are all operated 
by driver circuits located on the BCC. 

The flight computer system consists of two flight 
computers, one primary and one secondary, as well as 
an external memory device. The system uses the 
primary flight computer for all flight operations and 
control, relying on the secondary flight computer only 
if the primary flight computer fails. The external 
memory device provides 4GB of on-board payload and 

system log storage for the primary flight computer 
which can be requested from the ground via 
telecommand. Housed around the BCC is part of the 
Binar structure including the RBF bracket, 
magnetorquer mount and top cap. These all fit inside 
the rest of the Binar structure detailed in the following 
section. A BCC that was used for lab testing is 
presented in Figure 3. Due to the reduced hardware cost 
of the BCC, the team was able to assemble multiple 
versions of the core for integration testing and 
verification. 

 

Figure 3: A flight model equivalent of the Binar 
CubeSat Core (BCC) that was used for lab testing. 

By combining three of the main systems of a CubeSat 
into a single core, the Binar team was able to meet its 
design requirements. The compact design compared to 
the original COTS Binar design has allowed the team to 
increase its payload space, which in turn will benefit the 
team in future missions when reused. Safety has been 
implemented, protecting the batteries from accidental 
shorts or over charge and over discharge conditions. 
Reliability was implemented with extensive integration 
testing during design iterations, and simple additions of 
redundancy were possible. The testability of the design 
is also made easier through the combination of the 
Binar Software Framework which was designed to 
work with the BCC. This direct access to BCC is what 
will enable the Binar Space Program to fly more 
complex payloads on future missions. 

Binar Structure 
The Binar structure was designed by the Binar team to 
meet the launch requirements of the JEM Payload 
Accommodation Handbook Vol 8. Rev D3. The 
structural design consisted of two rail halves which 
were connected to the BCC in the center. The antenna 
and payload were then used to constrain the satellite at 
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the top and bottom. This design was able to meet the 
launch requirements due to the tight tolerancing of the 
BCC holding the satellite together. Other parts of the 
structure included those found in the BCC and the 
payload mounting plate. The mounting plate was 
designed to also act as a counter mass for the BCC to 
move the center of gravity as close to the geometric 
center of the satellite as possible, assisting with the 
attitude control system. The exploded view (Figure 4) 
presents the structural design of Binar-1. The exploded 
BCC seen in the center connects to the adapter board 
and transceiver forming the stack. This was then 
fastened to the two main rail halves which form the 
structure. The antenna, payload and solar panels were 
then fastened to the six sides of the CubeSat. 

 

Figure 4: Exploded view of Binar-1 

Binar Software Framework 

Matching the hardware design goals of creating a safe, 
reusable, reliable, and testable platform, the Binar 
Software Framework was written to enable rapid 
mission concept-to-orbit. Specifically structured around 
areas that commonly contribute to software related 
mission failures, namely insufficient software testing, 
lack of documentation, unsafe code reuse and cursory 
code review, the Binar Software Framework has 
provided the Program with a reliable code base that can 
be reused on future Binar missions. 

Comprising of flight application code, a hardware 
abstraction layer, utilities, resource manager, and board 
support layer, the codebase adheres to an abstracted 
software design that enables hardware to be changed 
with only minor modifications to the software. 
Moreover, the loose module coupling within the 
abstracted design allows hardware dependencies to be 

broken during unit testing to increase the testability of 
the code base. 

Communications System 
The communications system on Binar-1 was the only 
system that was supplied by a COTS provider. The 
decision to use COTS for this part of the satellite was 
based on the team size and amount of experience. At 
the time of decision, the small team was only made up 
of PhD students and part-time engineers. With 
significant focus on developing the BCC, Binar 
structure, and Binar Software Framework, the team was 
unable to commit the time to learn about 
communications design. As such it was decided that the 
best course of action for the success of Binar-1 was to 
purchase a COTS communications system.  

The data requirements for transmitting the flight logs 
and payload images were achievable with a UHF 
communications system. The team decided to use the 
COTS system recommended in the initial COTS design 
of Binar-1 to meet this requirement. The deployed 
antenna can be observed in Figure 5. As the BCC was 
not based on the PC104 standard to optimize its space 
efficiency the team used an adapter board to connect 
the two together. This board was also used to adapt the 
BCC to the payloads. 

 

Figure 5: The Binar-1 engineering model with the 
antennas deployed. 

Payloads 
Two payloads were flown on Binar-1 including a high-
resolution camera for Earth imagery of Western 
Australia and a student led star tracker camera for 
developing more precise attitude determination 
capabilities at the Binar Space Program. Both payloads 
were originally planned as primary mission objectives, 
however, after the change to a custom design, the 
purpose of the payloads shifted to demonstrating the 
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functionality of the BCC and its ability to operate 
payloads. The payloads were integrated together with a 
custom PCB that connected to the same adapter board 
used by the communications system. The two cameras 
were both COTS cameras, the first being selected by 
the Binar team to give the best resolution for Earth 
imagery in the available payload space (80m/pixel), and 
the other being a low-resolution camera that was 
selected from a range of cameras tested by the team of 
undergraduate students. The final payload system was 
mounted to the bottom of the satellite.  

Ground Segment 
As part of the mission plan for Binar-1, the team also 
needed to develop its own ground station (Figure 6) and 
operation software for the Binar-1 mission. Made from 
a combination of custom and COTS components the 
Binar ground station was built and placed on top of the 
engineering building on the Curtin University Bentley 
campus. The operating software was designed as part of 
a collaboration with Fugro Space Automation, AI, and 
Robotics Control Complex (SpAARC). The complete 
design was tested on existing satellites in LEO in 
preparation for the deployment of Binar-1.  

 

Figure 6: The Binar ground station located at the 
Curtin University Bentley campus in Western 

Australia. 

INTEGRATION AND TESTING 
Integration and testing of the Binar-1 flight model was 
conducted using the facilities available at Curtin 
University. Testing was separated into two parts, being 
the integration and testing performed on the custom 
designed systems and the testing performed to meet the 
launch requirements. The regulatory requirements 
necessary for launch are documented in the JEM 
Payload Accommodation Handbook Vol 8. Rev D. 
which included battery safety testing, vibration testing, 
and interface verification testing. 

Binar Testing Procedures 
To verify the functionality of the custom Binar-1 
platform the team developed testing processes 
throughout the course of the design. One of the main 
testing processes that was developed was the 
integration testing process of the BCC. A benefit of the 
integrated design was the straightforward process of 
verifying the connections and operation software for 
each system on the integrated core. This helped to build 
confidence in the hardware and software design as 
faults were identified and removed early in the custom 
design process.  

Typical to CubeSat testing programs, the team 
performed thermal vacuum testing using a modified 
vacuum chamber at Curtin University (Figure 7). The 
modification included a liquid nitrogen shroud and 
electric heater which can reach surface temperatures of 
-100°C to +150°C. Testing in this chamber was also 
verified with a test using the Wombat XL located at the 
National Space Test Facility (NSTF), Australian 
National University (ANU), in Canberra. The 
verification test was done before the assembly of the 
flight model using the Binar-1 engineering model. 
Results from this testing was important to verify the 
modified vacuum chamber due to the COVID-19 
pandemic restricting the ability of West Australians to 
travel without quarantine. This meant the team could 
not return to Canberra to perform the vacuum testing 
again with the flight model.  

 

Figure 7: Vacuum testing performed at Curtin 
University. 

Although the team would have liked to have performed 
more testing on the BCC and Binar-1, challenges with 
the communication system and a misunderstanding of 
changes in the regulatory requirements led to delays in 
the design and integration process, reducing the 
available testing time of Binar-1. Changes in the launch 
regulations meant that the antenna needed to be 
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modified and re-tested to include two burn wires. This 
change was necessary due to the requirement for 
inadvertent antenna deployment inside the J-SSOD 
having its maximum allowable force reduced to below 
the force exerted by the COTS antenna. The schedule 
was also affected by a difference in the engineering 
model COTS UHF transceiver and the flight model 
COTS UHF transceiver. To reduce cost the team 
purchased a 1W variant of the transceiver for the 
engineering model and a 2W variant for the flight 
model. Due to a misunderstanding of documentation, it 
was unknown to the team until the beginning of testing 
the flight model transceiver that I2C was not usable on 
the 2W variant. This added to the delays as a new 
adapter board had to be made to change the connection 
to the transceiver.  

As a result, only the very basic system level verification 
was performed on Binar-1 between the BCC and the 
transceiver alongside the necessary regulatory testing 
requirements. This means that only the beacon, 
detumble, and basic telecommands of Binar-1 was 
tested before launch, and no full Day-In-The-Life (DIL) 
testing could be completed as planned. One observation 
that was noted in the basic system testing was another 
challenge involving the UHF transceiver. A difference 
in receiving power usage from the datasheet was 
noticed which effected the power budget. The team 
decided that it was still in the best interest of the 
program to continue with the launch and perform a 
system update early in the mission to reduce the power 
usage of some of the other systems. 

Regulatory Testing Requirements 
The main regulatory testing requirements necessary for 
Binar-1 to meet were included in the safety review 
process. This included testing all the systems of Binar-1 
that could cause damage to the launch vehicle, ISS, or 
astronauts on-board. The most significant of these tests 
was the battery verification testing, safety inhibit 
testing, and the vibration testing. 

The battery verification and safety inhibit testing was 
the critical path of the Binar-1 assembly and testing 
process. Requiring a batch qualification of the lithium-
ion cells on Binar-1, the process was time consuming 
due to the lack of resources able to perform the tests. 
After qualification, with flight model cells approved, 
the battery safety inhibits required testing as well. This 
included a short-circuit test, over-charge test, over-
discharge test, switch inhibit test, and insulation test. 
These tests were performed at various stages of the 
assembly and integration procedure. After the complete 
assembly, a final battery cycle test was required before 
and after the vibration testing to finally verify the 

structural integrity of the battery cells and qualify for 
launch. 

Vibration testing was performed at Curtin University 
using the available facilities. Similar to other CubeSat 
launches to the ISS, Binar-1 was qualified to all 
possible ISS resupply mission launch vehicles. The 
final testing before delivery was important to ensure 
that the satellite had been assembled correctly and that 
the antenna modification would not inadvertently 
deploy inside the J-SSOD. 

MISSION OPERATIONS AND RESULTS 
Deployed from the ISS at approximately 5:20pm 
(AWST) on the 6th of October, Binar-1 was required to 
wait 30 minutes before deploying its antennas and 
starting to beacon. The first possible attempt at 
receiving from the ground station in Western Australia 
was expected at approximately 11:00pm (AWST) 
however, the team also planned to use the SatNOGS4 
service to look for signals earlier. The beacon string 
contained the satellite name, GPS data, critical power 
and temperature information, and a unique message 
from the Binar team. Unfortunately, no 
communications were received on the first pass, or on 
any of the SatNOGS passes. This prompted the team to 
start attempting to communicate with the satellite and 
search the sky for its location. However, these attempts 
soon ended as the other two CubeSats launched along 
with Binar-1, Maya-3 and Maya-4, successfully 
established contact within the first day of operations, 
successfully confirming the expected location of Binar-
1. As such, this prompted the team to start a failure 
mode analysis to determine if a recovery could be 
made. 

Failure Mode Analysis 
A benefit of the Binar-1 custom design was the 
knowledge of the system available to the team. By 
stepping through how the satellite would behave after 
deployment, the team was able to closely analyze the 
possible operation paths and determine if any possible 
software bugs or hardware failures could have caused 
the communication silence. 

The first step of the failure analysis and the starting 
point for operation was the EPS. Being one of the most 
common reasons to failure5, and necessary for powering 
the rest of the Binar systems, the EPS had been heavily 
tested throughout the design process. One possible 
failure point was found involving an interaction 
between the power distribution subsystem and the flight 
computer system. When the flight computer booted, 
one of the first actions it performs was to disable the 
secondary distribution subsystem. Before performing 
the task, the flight computer sets a system flag into 
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memory and then resets it after the task is complete. If 
the system power cycles after disabling the redundant 
distribution subsystem, then at re-boot the system flag 
should still be set, and the flight computer will know 
that the redundant distribution subsystem is being used. 
However, a flaw was found in that the flag was being 
set in volatile memory causing it to reset if power was 
lost to the flight computer. This would have resulted in 
a flight computer power cycling event where it would 
continuously disable the redundant distribution 
subsystem. This flaw was found to not be the reason for 
failure due to the next attempts made by the team, 
however it was still an error that needed to be corrected 
in future implementations of the BCC. 

 

Figure 8: Binar bootloader software flow chart. 

To continue the failure analysis process, the team 
assumed the flight computer system still had power. 
From here the team analyzed the flight software to 
determine if any logic errors or bugs had gone 
unnoticed since delivery. First the 30-minute wait must 
occur after deployment where the communications 
system is powered off. After the 30-minutes, the 
communications system is powered on, and the 
antennas deployment circuit will activate if the satellite 
has over 50% battery. The deployment burn wires will 
be switched on until the successful deployment 
condition is met, or until the 10-minute timeout is 
reached. If the battery is less than 50% then the satellite 
will wait for 24 hours before attempting the 
deployment. After this, the bootloader makes two 
system checks before deciding to boot into application 
code or safe mode. The first check is the system critical 

checks. This check will scan the system flags for any 
reported faults. These flags are only set in the system 
critical check application in application mode or in safe 
mode. This means that during the first boot, this check 
will always pass. The other check that is performed is a 
check on the antenna deployment condition. If the 
antennas did not deploy correctly then the CubeSat 
would be put into safe mode, were a beacon would be 
broadcast at reduced frequency to conserve power. The 
flow chart for this process is summarized in Figure 8. 

During testing, safe mode was tested by disabling the 
30-minute wait time, disabling the 10-minute time out 
of the antenna deployment system, and holding down 
the deployment sensor switch. This was done to 
conserve time in the Binar testing program due to the 
schedule losses mentioned previously. As a result, 
when testing the satellite would boot directly into safe 
mode so that the functionality could be tested. In 
testing, these beacons were received correctly however, 
this was only observed when the delay timers were not 
enabled. In this state the software would enable and 
configure the communications system before jumping 
straight into safe mode. However, if the 
communications system doesn’t receive any signals for 
255 seconds, the configuration is reset to its default 
mode. This is where a software logic error was found as 
when the timers are enabled, and if the antennas didn’t 
deploy within 255 seconds, then the communications 
system would not be configured properly. To test that 
the error existed, the team performed a test with the 
engineering model and verified that this was a 
possibility for failure on Binar-1. 

Another theorized possibility is that the antenna did 
deploy correctly and boot into the flash application 
software operation mode. In the application mode, the 
communications system would have been configured 
again however, the theory was put forward that the 
poorly tested adapter board, that had a last-minute 
modification, had failed. Due to the nature of the last-
minute modification, the board was not thermal vacuum 
tested or vibration tested correctly which could have 
caused a solder joint to break meaning that the flight 
computer was potentially not able to communicate with 
the communications system or power it. 

Fortunately for the Binar team, if the COTS 
communications system was powered and in its default 
mode, it could be configured from the ground. As a 
result, the team concluded that the best action would be 
to attempt to send the configuration commands to the 
satellite and see if the beacon could be received. After 
first confirming with the engineering model that this 
was possible, the team attempted to communicate with 
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the communications system hoping that the adapter 
board was operating correctly. 

Partial Recovery 
To attempt the recovery, first the team attempted to 
configure the communications system in the required 
mode for the safe mode beacon to be received. These 
attempts were made over multiple passes to no success. 
It is still unclear as to the team on whether commands 
were received by the satellite or not as it depended on 
how many of the antennas were deployed, the attitude 
of the satellite during the passes, and if the adapter 
board was operating properly.  

With these attempts not being successful, the team 
decided to attempt to put the COTS communication 
system into its own beacon mode. This beacon mode 
was built into the system and could be configured in a 
similar way to the desired configuration. The attempts 
to enable this mode were successful on the first attempt, 
partially recovering the location and status of Binar-1. 
The first beacon was received at approximately 5:21pm 
(AWST) on the 21st of October (Figure 9), almost 
exactly 15 days after the deployment from the ISS. The 
beacons enabled were operating with a shorter period 
and lower bit rate to try and help the team to locate the 
satellite on more ground station waterfall plots using 
the SatNOGS network. 

One of the risks of enabling the shorter period beacon 
was that the power balance of Binar-1 would not be 
stable from the increased frequency of the beacon. As a 
result, the team needed to turn off the beacon as soon as 
possible. Unfortunately, the team was unable to turn off 
the beacon on the first attempt and was only able to 
switch the beacon into a shorter period mode 23 hours 
after the first signal had been heard. During this time, 
the beacon was seen around the world on the SatNOGS 
website before the beacons started to appear with a 
longer period. The longer period beacons were seen for 
another 11 and a half days until Binar-1 made its final 
recorded transmission at approximately 7:03am 
(AWST) on the 2nd of November. Although the team 
made many attempts to recover the satellite again after 
this date, it is suspected that the satellite ran out of 
charge at this point due to a combination of the 
compromised power budget and constant power cycling 
causing start-up applications to run regularly. The 
power cycling could be observed as the message 
contained in the beacon would revert to the default 
message. Another observation that was made was the 
bit rate of the beacons not being re-configured when the 
power cycle occurred. This led the team to believe that 
the cause of failure was likely due to the adapter board. 

 

Figure 9: SatNOGS plot from the first observed 
communications with Binar-1. The wider signals are 

the transmissions from the ground station. 

Results 
From the failure analysis, the team believes that the 
last-minute adapter board modification was the cause of 
the lost communications with the flight computer. This 
belief comes from the beacon bit rate not being reset 
when the communications system was being power 
cycled, suggesting that the connection between the 
flight computer and the transceiver were not made 
correctly and likely broke during vibration testing, 
launch, or when exposed to the environment of space. 
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Although only a partial recovery was made, the Binar 
team was still able to infer some of the operations of the 
BCC from the beacon mode activated on the 
transceiver. It was clear to the team that the EPS was 
able to power the BCC until the final communication 
was made. Knowing the power budget problem before 
launch it is clear to the team that the solar panels, 
MPPTs, batteries, battery heaters, and the distribution 
subsystems were operational to some extent. The flight 
computer was also operating as expected as it was 
turning the communications system on. Alongside these 
two systems there was also valuable knowledge gained 
about the deployment switches and the performance of 
the structure during launch and in space. All of this 
could only be learnt by the team by delivering the 
mission. 

LESSONS LEARNED 
Although the mission was only considered a partial 
success in terms of the technology demonstration 
objective, the goal of educating staff and students was 
considered a success in terms of the many lessons that 
have been learned in the design process. Being a team 
starting with no knowledge about spacecraft design, the 
mission was always going to be challenging. The value 
of the lessons learned will help the team to overcome 
these challenges on the next launches from the Binar 
Space Program and be passed down to new students 
and staff beginning to work on the project. Although 
some of the lessons learned may not be new to more 
developed CubeSat design teams, the team believes that 
sharing the lessons learned will continue to build the 
literature around CubeSat design and hopes to help 
those who are yet to start the design process. 

The first lesson learned by the team was the importance 
of locking down high-level mission objectives at the 
beginning of the design process. Although this is 
challenging when first starting the design, if possible, 
settle early on the budget and mission objectives. With 
these refined, defining requirements to meet the 
objectives is made easier. If the mission objectives are 
changed, start the process again and perform design 
reviews again if the objective changes are significant. 
One advantage of the decision to perform a custom 
design was the ability to easily adapt the design to some 
of these changing requirements, however this still 
meant that work needed to be repeated every time a 
change was made, significantly impacting the launch 
schedule. 

Although power budgeting was performed in detail, the 
budget was only tested with the engineering model, and 
not to a suitable level of detail due to the missed DIL 
testing with the flight model. To improve its practices 
in the future the Binar team has learned to perform tests 

as you fly and not alter the engineering model to save 
costs. This costly operation may have been detrimental 
to the Binar-1 mission as the unbalanced power budget 
caused by the communication system was likely one of 
the reasons for communications loss. 

Due to unexpected delays in the assembly process some 
testing was cut short. The team learned that it could be 
far better prepared for unexpected delays and prioritize 
its test program better if delays occur. Implementing 
this into the program will help to assess launch risk, and 
better manage the decision to either delay launch or 
remove some testing processes and assess the risks. 
Being able to present this plan to the mission leaders 
prior to the assembly can also help to better prepare the 
leadership team for delays and risk acceptance. 

Although parts of the assembly and testing were 
shortened to make the launch, the team learnt important 
lessons about operation planning at the deployment of 
Binar-1. It was overlooked by the team the importance 
of putting in place an operations plan and setting up 
times for observations. This is something the team 
hopes to integrate into its DIL testing in the future to 
improve the performance of the operations plan and 
ready the team to operate the next set of Binar 
CubeSats. 

The final lesson learnt relates to the goals of the Binar 
Space Program and the achievements observed by 
designing and assembling the satellite as a Program. 
Through the custom design, the Binar Space Program 
has learned and benefitted during the design and will 
continue to benefit in its future designs in different 
ways to how COTS comprised CubeSats benefit. This 
lesson will continue to be implemented by the Binar 
Space Program as it progresses into the future, aiming 
to work on its own payloads and platforms to continue 
building design experience at the university so that it 
will be able to deliver more complex space missions in 
the future. 

CONCLUSION 
Binar-1 was the first CubeSat launched by the 
Australian state of Western Australia. The custom 
designed CubeSat primary objective was to demonstrate 
the functionality of the integrated Binar CubeSat Core 
(BCC) which consisted of three of the satellites main 
systems including the Electrical Power System (EPS), 
Attitude Determination and Control System (ADCS), 
and flight computer system. The other objectives of the 
mission were to provide education to staff and students 
about end-to-end spacecraft design, and to spread 
awareness about the importance of space research and 
industry in the state.  
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After being deployed from the International Space 
Station (ISS) on the 5th of October 2021, Binar-1 was 
radio silent for almost exactly 15 days until a secondary 
beacon was enabled by the team. The secondary beacon 
was observed around the world by the SatNOGS 
network, until it stopped 11 and a half days later on the 
2nd of November. This result has partially achieved the 
primary mission objective of the Binar-1 satellite 
demonstrating that the EPS and flight computer system 
on the BCC were operating in space, however no flight 
data could be collected to verify the systems 
completely. 

Binar-1 has been successful at educating staff and 
students about end-to-end spacecraft design and 
provided a range of lessons learned which will be used 
in future Binar launches. These lessons include locking 
down mission requirements early, performing power 
budget testing with flight model systems, preparing for 
testing delays, planning for satellite operation, and the 
importance of using custom designed systems when 
aiming to perform consistent CubeSat missions. 

Having learned these lessons and partially 
demonstrating the BCC, the team is now moving 
forward with implementing the lessons learned on its 
future missions. This will continue to grow the 
awareness of space in Western Australia as the team 
aims to deliver three 1U CubeSats, Binar-2, Binar-3, 
and Binar-4, in its next launch planned for 2023. 
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