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Abstract

Minerals represent an ever-growing component of the global economy, primarily

fuelled by the escalating need for new deposits stemming from, for example, the

ongoing energy transition to batteries. Many sought-after minerals can be found

in sedimentary basins, and exploration techniques for those valuable deposits

require a solid understanding of the movement of mineralising fluids in such envi-

ronments; this understanding is crucial for developing genetic models that explain

the origin of deposits and for more direct prospecting purposes. A quantitative

examination of subsurface fluid transport in sedimentary basins is also critical

in other areas, including conventional and unconventional energy sources, carbon

capture, geothermal energy, and nuclear waste disposal.

Iron ore is a critical commodity due to its essential role in the steel indus-

try, which sustains the world’s industrial base. While the major iron ore regions

have been identified, such as Australia’s Hamersley Basin, no agreed-upon ge-

netic model for iron ore exists. This lack of consensus complicates the predic-

tion of resource volume and mineral location, thereby impeding efforts to reduce

exploration costs and environmental impacts. In conjunction with observational

and experimental studies, quantitative modelling techniques have effectively anal-

ysed flow and transport in sedimentary basins across geological time and length

scales. These methodologies have shown that, for some minerals, regional pat-

terns of fluid flow controlled the transport of minerals from specific ore deposits.

However, for iron ore, these methodologies have yet to offer definitive evidence

regarding the nature of the fluids involved and the precise processes underlying

their formation. Iron ore deposits display hypogene and supergene characteris-

tics in different places, leaving uncertain the direction of fluid flow and the exact

mechanisms, fluid composition, and physical and chemical processes involved. Re-

gardless of the complex chemical interactions involved, it is widely acknowledged

that fluid transport plays a pivotal role in forming iron ore deposits, necessitating
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a deeper understanding of these processes. Addressing this issue involves various

challenges, including managing strong anisotropy following the rock strata, the

need for a small-scale homogenisation model, and the high permeability contrast

between Banded Iron Formation (BIF) and shale units at a larger scale.

This thesis introduces a robust computational framework to model fluid trans-

port in porous media. This work’s findings suggest that the transport alone can

explain forming Banded Iron Formation (BIF) supergene Martite-Goethite ore

deposits. A simplified flow model uses a potential function for the implicit rep-

resentation of strata, which accurately orients the permeability tensor from a

paleo reconstruction of all geological features, including topography and strata

properties. The model accounts for the permeability anisotropy of the paleo-

stratigraphy, which allows greater permeability along the strata than across it,

a unique feature that influences the supergene enrichment transport process and

the mineralisation pattern distribution.

The proposed physical model addresses two critical computational challenges:

the pure transport problem, which describes variations in concentration for the

species responsible for the formation of ore deposits, and the highly anisotropic

and heterogeneous diffusion, which shapes the transport problem’s vector field.

A novel, numerically stabilised finite element method is introduced to overcome

these challenges, developed within a variational multiscale framework. This in-

novative method achieves coarse-scale approximations by minimising the residual

on a dual discontinuous Galerkin norm and derives the fine-scale approximation

using the variational multiscale framework. The stability of solutions across each

adaptive mesh iteration is ensured through a symmetric saddle-point formulation

and a posterior error indicator that guides automatic adaptivity. The model effec-

tively handles sharp permeability changes, eliminating the need for stabilisation

terms in the variational formulation and reducing computational effort through

an optimal adaptive refinement scheme.

The powerful predictive capacity of this methodology enables more precise,

targeted drilling, thereby narrowing down prospective areas and reducing explo-

ration costs. Moreover, the broad applicability of this methodology extends to

other commodities in sedimentary basins involving supergene processes, enriching

our understanding of various genetic models.

vi



Contents

Acknowledgements iii

Abstract v

1 Introduction 1

1.1 Iron-ore genetic model . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Geological understanding . . . . . . . . . . . . . . . . . . . 1

1.1.2 Numerical approach . . . . . . . . . . . . . . . . . . . . . 4

1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Numerical framework for steady convection-diffusion-reaction

problems 13

2.1 Continuous problem and its discretisation . . . . . . . . . . . . . 14

2.1.1 Convection-diffusion-reaction equation . . . . . . . . . . . 14

2.1.2 Discontinuous Galerkin (dG) discretisation . . . . . . . . . 15

2.2 Residual minimisation formulation . . . . . . . . . . . . . . . . . 18

2.3 A variational multiscale interpretation of the residual minimisation

framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 A multiscale partition of the trial and test spaces . . . . . 19

2.3.2 Adjoint multiscale reconstruction . . . . . . . . . . . . . . 21

2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Diffusion in a domain with a re-entrant corner . . . . . . . 25

vii



2.4.2 Diffusion in a 3D domain with a Fichera corner . . . . . . 26

2.4.3 Heterogeneous Diffusion problem . . . . . . . . . . . . . . 27

2.4.4 Strongly anisotropic diffusion . . . . . . . . . . . . . . . . 28

2.4.5 3D Eriksson-Johnson problem . . . . . . . . . . . . . . . . 30

2.5 Extension to nonlinear conservation laws . . . . . . . . . . . . . . 31

2.5.1 Discontinuous Galerkin discretisation . . . . . . . . . . . . 32

2.5.2 Residual minimisation formulation . . . . . . . . . . . . . 33

2.5.3 Nonlinear variational multiscale method . . . . . . . . . . 34

2.5.4 Adjoint multiscale reconstruction . . . . . . . . . . . . . . 36

2.5.5 Burgers’ equation . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Unsteady convection-diffusion-reaction problems 41

3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Discontinuous Galerkin discretisation and time marching . . . . . 43

3.2.1 Space Semi-discretisation . . . . . . . . . . . . . . . . . . . 43

3.2.2 Backward Euler time discretisation . . . . . . . . . . . . . 45

3.2.3 Second-Order Backward Differencing Formula . . . . . . . 47

3.3 Fully Discrete Residual minimisation . . . . . . . . . . . . . . . . 47

3.4 Variational multiscale reconstruction . . . . . . . . . . . . . . . . 49

3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Heat equation (2D) . . . . . . . . . . . . . . . . . . . . . . 50

3.5.2 Advection-diffusion problem . . . . . . . . . . . . . . . . . 52

3.5.3 Rotating flow transporting a Gaussian profile . . . . . . . 54

3.6 Unsteady nonlinear systems . . . . . . . . . . . . . . . . . . . . . 57

4 A paleo stratigraphic model with anisotropic permeability for

the genesis of martite-goethite iron-ore deposits 63

4.1 Permeability anisotropy . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

viii



4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 Brockman Syncline deposit . . . . . . . . . . . . . . . . . . 70

4.4.2 Marandoo deposit . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 South Flank deposit . . . . . . . . . . . . . . . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusions and research perspectives 83

5.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Research Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Appendices 87

A Proof. Discrete coercivity and inf-sup condition for Bh,τ 89

A.1 Discrete coercivity . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2 Inf-sup condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Quantifying the fit between simulations and observations 92

Bibliography 95

ix





List of Figures

1.1 Detailed image of a banded iron formation (BIF) from Hamers-

ley Basin, Western Australia, highlighting the fine banding and

contrasting porosity between darker magnetite and lighter chert/-

carbonate/silicate bands. The ellipse at the centre sketches the

permeability tensor, indicating the longitudinal (k∥) and transverse

(k⊥) permeability components. . . . . . . . . . . . . . . . . . . . 2

1.2 Simplified version of a typical geological cross-section from the

Brockman Syncline BS4 deposit, with drill-hole traces, shown

in Sommerville et al. [2014]. Mineralised areas include hydrated

and non-hydrated domains. . . . . . . . . . . . . . . . . . . . . . 4

2.1 Notation of the element interface. . . . . . . . . . . . . . . . . . . 16

2.2 Solution for the re-entrant corner problem for different refinement

levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Vh− & L2−norm convergence for Laplace problem . . . . . . . . . 25

2.4 Vh− and L2−norm convergence for Fichera corner, q =
1

10
. . . . 27

2.5 Vh− and L2−norm convergence for Fichera corner, q =
1

3
. . . . . 27

2.6 Vh− & L2−norm convergence for heterogeneous diffusion problem 28

2.7 Coarse- & fine-scale solutions with final mesh for strongly

anisotropic diffusion problem with r = 106 & p = 1 . . . . . . . . 29

2.8 Vh− and L2−norm convergence for anisotropy ratio rκ = 104. . . 30

2.9 Vh− and L2−norm convergence for anisotropy ratio rκ = 106. . . 30

2.10 Convergence in L2 norm for the 3D Eriksson-Johnson problem . . 31

2.11 Vh− and L2−norm convergence for 3D Eriksson-Johnson problem,

p = 1, 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



2.12 Vh− and L2−norm convergence for 3D Eriksson-Johnson problem,

p = 2, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.13 Solution for Burgers’ equation for κ = 10−3 & p = 1 . . . . . . . . 36

2.14 Solution for the isotropic Burgers equation for different refinement

levels at κ = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Convergence plots for Burgers’ equation in the L2 and Vh norms,

p = 1, 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.16 Convergence plots for Burgers’ equation in the L2 and Vh norms,

p = 2, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.17 Coarse-scale solution and scale approximations for different diffu-

sivities. (top: κ = 10−2, middle: κ = 10−3 ,bottom: κ = 10−4). . . 38

2.18 Solution for the Burgers equation for different refinement levels at

κ = 10−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 BDF1 spatial convergence using fixed time step and uniform meshes. 51

3.2 BDF2 spatial convergence using fixed time step and uniform meshes 51

3.3 Time convergence for backward Euler (BDF1) and BDF2 for a

fixed mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Mesh refinement τ = 0.005, T = 0.1, p = 1. . . . . . . . . . . . . . 53

3.5 Spatial convergence for adaptive refinement (BDF1 : κ = 10−2,T =

0.1, τ = 0.005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Energy norm convergence in space (τ) for adaptive refinement

(BDF2: T = 0.1, τ = 0.005). Left: κ = 10−2 for p=1,2. Right:

κ = 10−3 for p=2. Bottom: κ = 10−4 for p=2 . . . . . . . . . . . 54

3.7 Solution convergence to the steady Eriksson–Johnson solution. . . 55

3.8 Time evolution p = 1 (T = π, τ = π/512). . . . . . . . . . . . . . 55

3.9 Computational cost [s] vs total degrees of freedom. . . . . . . . . 56

3.10 Bratu’s bifurcation diagram for T=1.0 and τ=0.1. . . . . . . . . 59

3.11 Solution’s temporal evolution for λ = 2 for the lower and upper

branches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



4.1 Simplified detail cross section of the Marra Mamba formation re-

drawn from [Knight et al., 2018], schematically represented from

the original data of [Kepert, 2018]. The mineralisation is covering

the whole layer in parts but only some sub-layers in others. . . . 65

4.2 Input potential field (top) and mesh (bottom) to the supergene

mineralisation model. We generate them from the digitised points

(red, top figure) representing the stratigraphic layers, either as

isopotential values or geometrical boundaries, using respectively

LoopStructural and gmsh programmatically. . . . . . . . . . . . . 69

4.3 Snapshots, respectively shown from (a) to (d), of cropped tracer

distribution for paleo water table altitude a = 680m at t = t1 <

t2 < t3 < t4 during a simulation, highlighting the propagation from

the paleo water table (top of the model) and following the strata. 70

4.4 Tracer distribution for paleo water table altitude a = 680m, su-

perimposed over Figure 1.2, using a single set of longitudinal and

transverse permeability values in all BIF areas. We define min-

eralisation by proxy in the area, shaded in red, where the tracer

concentration exceeds 20% of the maximal input. . . . . . . . . . 71

4.5 Decreased permeability above dolerite sill; (a) flow vectors and

final mesh after automatic refinement for hydraulic pressure com-

putation; colours display model’s arbitrary partition regions high-

lighting stratigraphy; (b) tracer concentration and mesh after au-

tomatic refinement for the final transient transport; (c) tracer con-

centration, cropped and superimposed over geological cross section

for comparison, showing the mineralised areas in orange below the

existing topography and in pink in the paleo-reconstruction. The

orange colour enhances the visual contrast between the simulation

results and the reference geological cross section. . . . . . . . . . . 72

4.6 Sensitivity analysis for water table level a, showing tracer results

for a = 650, 680, 700 and 750m. . . . . . . . . . . . . . . . . . . 73

4.7 Permeability anisotropy r sensitivity, tracer results for BIF ratios

r = 1, 20, 100, while other parameters remain unchanged, super-

imposed over the geological cross section. . . . . . . . . . . . . . . 74

xiii



4.8 Marandoo scenario from [Morris, 1982], 1.5x vertical exaggeration.

(a) Redrawn version of the original, with observed and inferred

mineralisation areas marked, and (b) new proposed model, only

altering the geometrical configuration of the Marra Mamba forma-

tion around the paleo-topography at the southern end of the cross

section to add an extra undulation, as Morris suggested elsewhere

on the same figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Simulation results from initial configuration of Figure 4.8b; min-

eralisation pattern below current topography is restricted to the

upper part of the Marra Mamba Iron Formation and matches

therefore observations (see Figure 4.8a). Note, however, the main

difference with Figure 4.8a above current topography, where min-

eralisation covers most of the unit. . . . . . . . . . . . . . . . . . 76

4.10 Model of a section of the South Flank deposit, redrawn from [Per-

ring et al., 2020], showing localized mineralisation mainly within

three geological units. The dashed line indicates the upper part of

West Angela 2, above which we do not capture the stratigraphy

since not relevant for this example. We extrapolate the strati-

graphic model above the current topography to suggest an inter-

preted configuration that could be responsible for the observations. 77

4.11 Two tracer concentrations scenarios, see Figure 4.10. (a) Geologi-

cal units from West Angela 1 downwards have the same anisotropic

permeability. (b) Thin shale layers added at interfaces between

West Angela 1, Newman 3, Newman 2 and Newman 1 sub-units. . 78

4.12 Analogy with fluid pipes to highlight the conceptual effect of paleo

water table level given a particular stratigraphic geometry and

strong permeability anisotropy. The scenario at the centre leads

to visible mineralisation (i.e., below topography) only in one part

of the model, whereas the other scenarios do not allow for it. . . 79

xiv



4.13 Schematic drawing of reconstructed strata for the scenario of Sec-

tion 4.4.1, to highlight the role of the paleo water table (horizontal

dashed line) as top boundary condition for the fluid flow (black

arrows), whose direction and intensity is strongly affected by the

strata orientation and anisotropy coefficient. . . . . . . . . . . . 80

B.1 Quantifying the fit between simulation (red) and reference (blue)

areas of mineralisation. Image processing allows to classify the

match in zones of True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN). . . . . . . . . . . . . . . 92

xv





Chapter 1

Introduction

1.1 Iron-ore genetic model

The increasing demand for minerals highlights their significant contribution to

diverse global industry sectors, contributing to economic growth and driving

the transition towards sustainable energy practices [Ramanaidou & Wells, 2014].

Iron, in particular, plays a crucial role in the steel industry as a critical compo-

nent for various industrial applications, including construction, transportation,

and manufacturing. The heightened reliance on this mineral has drawn attention

to basin-hosted iron systems, emphasising the importance of comprehending their

geological settings and ore-forming processes [USGS, 2022].

1.1.1 Geological understanding

The Hamersley Basin in Western Australia hosts some of the largest iron-ore

deposits globally [Australia, 2021; USGS, 2022]. These deposits can be classified

into three groups: 1) banded iron formation (BIF) hosted iron ores, 2) channel

iron deposits (CID), and 3) detrital iron deposits (DID) with relatively lower

abundance [Ramanaidou & Wells, 2014]. The combined CID and DID deposits

account for approximately 20 billion tonnes [Knight et al., 2018], while the BIF-

hosted or bedded iron deposits hold 50 billion tonnes, which can be further divided

into two types: martite-microplaty (roughly 5%) and martite-goethite iron ores

(about 95%). Over the past decade, martite-microplaty iron ores have been

extensively mined, leading to martite-goethite (M-G) becoming the dominant

iron ores extracted in Western Australia. Despite their critical importance, much
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2 Introduction

Figure 1.1: Detailed image of a banded iron formation (BIF) from Hamersley Basin, Western
Australia, highlighting the fine banding and contrasting porosity between darker magnetite
and lighter chert/carbonate/silicate bands. The ellipse at the centre sketches the permeability
tensor, indicating the longitudinal (k∥) and transverse (k⊥) permeability components.

remains to be discovered about these deposits, particularly regarding exploration.

Various genetic models have been proposed, yet a consensus on the formation of

these deposits is still lacking.

The mineralogy of the host rock, the Banded Iron Formation (BIF), is criti-

cal to understanding the mechanisms behind Martite-Goethite (M-G) ore gene-

sis [Morris, 1985; Ramanaidou & Wells, 2014]. BIFs are metasedimentary rocks

consisting of alternating layers of magnetite (Fe3O4) and gangue minerals, includ-

ing chert, silicates, and carbonates (see Figure 1.1). The formation of M-G ore

involves two main processes: supergene lateritic and mimetic enrichment, with

the latter further subjected to lateritic weathering [Morris, 1985; Ramanaidou &

Wells, 2014]. Most M-G ores in Australia undergo supergene mimetic enrichment

within the Banded Iron Formation (BIF). This process involves the replacement

of gangue minerals by goethite while retaining the original petrological charac-

teristics of the BIF [Morris, 1980; Ramanaidou & Morris, 2010; Perring, 2021].

Subsequent weathering affects the primary ore; nevertheless, this study focuses

on the ore genesis and disregards the subsequent steps.
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Various genetic models, such as the electrochemical cell model, seek to ex-

plain the M-G ore formation and the mimetic replacement of gangue minerals

by goethite [Morris, 1980, 1985; Ramanaidou & Morris, 2010]. These models

sparked renewed interest in understanding iron-ore genesis, with researchers sug-

gesting a supergene-modified hypogene-hydrothermal model that involves warm

basinal brines and ascending or descending heated meteoric fluids in transform-

ing iron formation into high-grade ore deposits [Barley et al., 1999; Webb et al.,

2003; Taylor et al., 2001]. An alternative model by Lascelles [2002, 2016] suggests

that certain parts of the Banded Iron Formation (BIF) undergo silica loss during

compaction and diagenesis, resulting in chert-free BIF layers. These specific BIF

layers then undergo supergene enrichment, leading to the formation of martite-

goethite ore. Expanding on this concept, Perring et al. [2020] recently proposed

a comprehensive physical process model for martite-goethite (M-G) mineralisa-

tion; a model incorporating continuous Cenozoic uplift of the BIF-rich Hamersley

Province, the generation of acidic and reducing fluids resulting from interac-

tions between meteoric water and organic matter, and the subsequent leaching of

Fe2+ from magnetite. This process produces a supergene ore-fluid that descends

into the alkaline groundwater, transforming magnetite into martite and replacing

gangue minerals with goethite.

Understanding the broad range of physical attributes within the long history

of the rocks is a substantial challenge. This complexity arises from the problem’s

multi-scale and multi-physics features, the interplay of multiple processes, and the

superposition of various enrichment events [Morris, 1985; Angerer et al., 2014].

Multiple factors, including the structural layout, stress environment, permeability

during the mineralisation period, and several phases of rock-fluid interactions and

weathering processes, interact in a complex manner.

Most iron-ore discoveries in Western Australia were made in the 1960s through

outcrop mapping. This underscores the crucial role of the Marra Mamba and

Brockman Iron Formations as host rocks [Campana, 1966]. Present geological

inquiries are shifting towards pinpointing the specific locations of high-grade iron-

ore deposits within these formations. The Brockman Syncline BS4 deposit exem-

plifies this trend [Sommerville et al., 2014], where distinct mineralisation areas

are observed within the same formation (see Figure 1.2).

This localisation question calls for a more detailed geological approach, transi-

tioning from the scale of entire formations to more localised studies. Understand-
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Figure 1.2: Simplified version of a typical geological cross-section from the Brockman Syncline
BS4 deposit, with drill-hole traces, shown in Sommerville et al. [2014]. Mineralised areas include
hydrated and non-hydrated domains.

ing the permeability contrast between formations remains critical, with shales

functioning as aquicludes that concentrate fluids [Morris, 1985], as indicated by

the mineralised areas in the cross-section (Figure 1.2). Nonetheless, the perme-

ability characteristics within the BIFs themselves also need consideration. The

first and most straightforward hypothesis to test is the stratigraphic control of

permeability within the BIFs, prioritising the study of the fluid flow path as a

preliminary step for mineralisation before delving into any chemical aspects.

1.1.2 Numerical approach

Recent decades have seen a surge in research aimed at quantitatively describing

subsurface fluid transport in sedimentary basins. This is crucial for developing

quantitative models of sediment diagenesis and efficient exploration techniques

for mineral deposits [Bethke, 1989]. When combined with observational and ex-

perimental study results, quantitative modelling techniques have proven efficient

in analysing flow and transport in sedimentary basins across geologic time and

length scales. These techniques underscore the control of fluid transport on the

formation of certain ore deposits [Tóth, 2016].

The crucial role of groundwater in subsurface transport and mineral accumu-

lation is well established, with paleochannels serving as conduits for the long-

distance transit of ore-forming components. However, questions remain about

the mechanism of fluid content and migration, source bed locations and extents,

the influence of porosity and permeability on concentration patterns, the timing

of mineralisation, and the flow rates required for significant ore body deposition

[Erőss et al., 2018].

Pioneering work by White [1971] in groundwater-type calculations was crucial
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in shaping strata-bound ore genesis modelling , and subsequent studies have

further explored the relationship between groundwater flow and ore formation

[Ortiz et al., 1980; Garven, 1985; Wood & Hewett, 1984; Baskov, 1987; Garven

et al., 1993]. Yet, despite these advancements, the understanding of supergene

Martite-Goethite iron-ore enrichment through this lens remains limited.

Groundwater flow theory provides a framework for analysing subsurface per-

meability distributions and water table configurations as boundary value prob-

lems in a continuum model. The key parameter in this theory is the hydraulic

permeability tensor, K, which encapsulates the local principal directions in a

rotated coordinate system aligned with the principal contributions in the lon-

gitudinal (k∥) and transverse (k⊥) components of the permeability with respect

to the stratigraphic orientation. Darcy’s law is fundamental in this context as

it defines the specific discharge, q, in terms of the hydraulic conductivity, K.

The relationship between them is governed by the simplified equation ∇ · q = 0,

assuming steady-state conditions and based on the hypothesis of incompressible

flow. Consequently, this equation leads to the classical diffusion problem, where

ϕ is introduced as the hydraulic head, a measure of the total energy per unit

weight of water at a specific location in the groundwater system. Groundwater

flow direction and magnitude are determined by the gradient of ϕ, denoted as

∇ϕ. The equation for this diffusion problem is expressed as:

∇ · (K∇ϕ) = 0. (1.1)

Groundwater flow theory provides a framework for analysing subsurface perme-

ability distributions and water table configurations as boundary value problems

in a continuum model. The key parameter in this theory is the hydraulic perme-

ability tensor, K, which encapsulates the local principal directions in a rotated

coordinate system aligned with the principal contributions in the longitudinal

(k∥) and transverse (k⊥) components of the permeability with respect to the

stratigraphic orientation. Darcy’s law is fundamental in this context as it de-

fines the specific discharge, q, in terms of the hydraulic conductivity, K. The

relationship between them is governed by the simplified equation ∇ · q = 0, as-

suming steady-state conditions and based on the hypothesis of incompressible

flow. Consequently, this equation leads to the classical diffusion problem, where

ϕ is introduced as the hydraulic head, a measure of the total energy per unit

weight of water at a specific location in the groundwater system. Groundwater
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flow direction and magnitude are determined by the gradient of ϕ, denoted as

∇ϕ. The equation for this diffusion problem is expressed as:

Given a near-constant water table, the timescale for ore production is on

par with the time frame over which steady-state theory models regional fluid

flow in large sedimentary basins. Accounting for the potential heterogeneity

and anisotropy in hydraulic conductivity and spatial variation in porosity, solute

transport within this groundwater system can be described by the unsteady linear

advection-diffusion-reaction equation:

∂C

∂t
= ∇ · (D∇C)−∇ · (qC) + µC, (1.2)

where C denotes an inert solute concentration, µ is the medium response rate per

fluid volume, and D represents the dispersion tensor.

Although this model problem is simple and has been widely studied during

the last few decades, obtaining reliable simulation results is still challenging for

traditional numerical methods. Standard discretisations, such as the finite ele-

ment method (FEM), suffer from unphysical oscillations for advection-dominated

regimes if the mesh’s resolution is insufficient. Specifically, there are two issues for

the proposed model in an advection-dominated regime: first, a limit case when

the equation becomes advection-dominated, showing sharp internal or bound-

ary layers (1.1) and, second, the highly anisotropic and heterogeneous diffusion

problem (1.2).

Brooks & Hughes [1982] introduced the SUPG method to overcome these

difficulties. This method adds a residual-based stabilising term to induce a nu-

merical diffusion along the streamlines. This enhances control and stability in

the convective operator while conserving consistency in the formulation. The

Galerkin/least-squares method (GLS) [Hughes et al., 1989] generalises this idea,

using a least-squares formulation into the stabilisation term to enhance control of

the whole residual. Although these methods have proven effective at stabilising

the numerical solution of convection-dominated problems, the accuracy of these

approaches highly depends on a user-stabilised parameter, which turns challeng-

ing to tune for most real-world problems.

Hughes [1995] unified these ideas in the variational multiscale method (VMS).

This method captures the sub-scales in the variational form and improves stability

properties while maintaining the consistency of the former residual-based methods
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[Hughes et al., 1998, 2000; Bazilevs et al., 2007, 2010; Chang et al., 2012; Ghaffari

Motlagh et al., 2013; Garikipati & Hughes, 2000]. The main idea of VMS is to

decompose the solution into two different scales and keep the coupled influence

among them, approximating the effect of the fine scale that a given mesh cannot

capture. The VMS paradigm led to a reinterpretation of the traditional residual-

based methods as approximate sub-grid scale models and identified the unresolved

fine scales as an essential key in the stabilisation, even for linear systems including

the advection-diffusion equation [Hughes, 1995; Masud & Khurram, 2004].

Cohen et al. [2012] extended the stabilisation ideas with least-

squares/minimum residual minimisation in GLS to encompass general dual

norms. They introduced a saddle point formulation of this residual method,

which refers to a VMS formulation. These ideas were extended in the Discontin-

uous Petrov-Galerkin method (DPG) [Demkowicz & Gopalakrishnan, 2010, 2011;

Demwkowicz & Gopalakrishnan, 2011] using different non-standard dual norms

for stabilisation [Zitelli et al., 2011; Niemi et al., 2013a, 2011, 2013b; Calo et al.,

2014]. DPG is introduced in the context of a VMS for the convection-diffusion

equation in Chan & Evans [2013], offering an alternative, well-behaved sub-grid

model to approximate the fine scale. Extensions to these ideas regarding parabolic

problems include studies by Cockburn & Shu [1998]; Borker et al. [2017]; Rivière

[2008]; Di Pietro & Ern [2011] for dG and Demkowicz & Gopalakrishnan [2010];

Demwkowicz & Gopalakrishnan [2011]; Führer et al. [2021]; Roberts & Henneking

[2020] for DPG methods.

Although these methods show stability for advection-dominated problems,

the lack of a priori localisation of the inner or boundary layers in the exact

solution leads to expensive simulations on quasi-uniform meshes. Additionally,

the lack of robust refinement strategies limits their use in unsteady problems

where the solution varies in space and time. Here, this computational cost is

reduced using adaptive methods that rely on a posteriori error estimators to

refine solution singularities. A posteriori error estimators for unsteady advection-

diffusion-reaction problems are described in studies by Ern & Vohraĺık [2010]; Zhu

& Schötzau [2010] and for unsteady dG implementations in publications by Ern

& Proft [2005]; Araya & Venegas [2014]; Cangiani et al. [2014].

The Discontinuous Galerkin Method (dG), initially proposed by Reed & Hill

[1973], has offered an alternative stabilisation technique over the last few decades

and was rapidly extended in numerous applications due to its good stability prop-
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erties [Arnold et al., 2001; Ayuso & Marini, 2009; Cockburn et al., 2012; Di Pietro

& Ern, 2011]. dG is advantageous over classical methods in providing robustness

and high-order accurate approximations, especially for advective operators asso-

ciated with hyperbolic equations [Johnson & Pitkäranta, 1986]. Its stability is

induced by the numerical fluxes imposed on internal element interfaces, leading

to discretely stable solutions with local conservation. dG is related to residual-

based stabilisation methods in Johnson & Pitkäranta [1986]; Brezzi et al. [2006]

and is used for new stabilised methods based on VMS, including the Multiscale

Discontinuous Galerkin method (MSDG) [Bochev et al., 2005; Buffa et al., 2006;

Hughes et al., 2006], the Discontinuous residual-free bubble method [Sangalli,

2004], among other recent approaches [Coley & Evans, 2018; Stoter et al., 2022].

Alternative stabilisation techniques that generalise dG ideas are the Inte-

rior Penalty methods that use continuous functions and can handle difficulties

encountered by continuous finite element methods in advection-diffusion prob-

lems [Babuška & Zlámal, 1973; Douglas & Dupont, 1976]. These methods pe-

nalise flux jumps at mesh interfaces and were applied to biharmonic operators

and second-order elliptic and parabolic problems [Douglas & Dupont, 1976]. Bur-

man and collaborators have advanced the error estimates for interior penalty

methods [Burman & Hansbo, 2004; Burman & Zunino, 2006] and generalised the

ideas to introduce the high-order Continuous Interior Penalty (CIP) finite element

method [Burman & Ern, 2007, 2005]. Effectively, Burman [2009] introduced a

formulation relating stabilised continuous and discontinuous Galerkin frameworks

with the CIP formulation.

Calo et al. [2020b] introduced a new class of adaptive stabilised conforming

finite elements via residual minimisation for steady problems. The method com-

bines residual minimisation ideas with the stability of the discontinuous Galerkin

formulations. As a result, the method delivers a stable continuous solution and

a robust error representation to perform on-the-fly adaptivity. The authors in-

troduce the framework in a series of papers for linear and nonlinear applications

(e.g., advection-diffusion problems with heterogeneous and highly anisotropic dif-

fusion [Cier et al., 2021b], its use combined with isogeometric analysis [Calo et al.,

2021], nonlinear weak constraint enforcement [Cier et al., 2021b], goal-oriented

adaptivity [Rojas et al., 2021], for incompressible flows [Kyburg et al., 2022;  Loś,

et al., 2021], and dynamic fracture propagation [Labanda et al., 2022]).

In this document, we present a novel alternative method to overcome the
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advection-dominated regime and the highly anisotropic and heterogeneous diffu-

sion presented in the transport phenomena based on groundwater theory, inter-

preting these ideas for a conforming finite element method via residual minimi-

sation on dual norms [Calo et al., 2020a] via the VMS formalism. The method

builds on the concepts from MSDG to decompose a full-discrete discontinuous

finite element space into discontinuous (fine) and continuous (coarse) compo-

nents and leverages VMS analysis to define an inter-scale operator. The strategy

begins with an arbitrary discontinuous finite element space and derives a contin-

uous representation by minimising the residual on a dual discontinuous Galerkin

norm. Using the VMS analysis and the residual representative obtained from

the dual Galerkin orthogonality, we derive an inter-scale problem to define the

stable fine-scale contribution and an error estimator to guide adaptivity. This ap-

proach results in a stable coarse- and fine-scale solution derived from a symmetric

saddle-point formulation that delivers a robust a-posteriori error indicator.

1.2 Thesis overview

This work aims to develop a novel numerical framework for understanding the

geological processes behind localised iron-ore deposits. It focuses on solving the

groundwater flow problem to illustrate that supergene M-G iron-ore enrichment

can be modelled as a non-reactive transport issue controlled by formation struc-

ture and stratigraphy. As a result of these explorations, this project aims to

enhance prospecting techniques by innovatively integrating a physics-based ap-

proach with geophysical data sets, thereby providing a comprehensive under-

standing of the formation of these deposits.

1.3 Motivation and Objectives

This project seeks to build a computational model to describe the bedded iron-ore

mineralisation process and it encompasses three main components:

1. The construction of a theoretical model to interpret the genesis of iron-ore

in banded iron formations. This model simplifies a complex and poorly

understood geochemical problem into a more manageable non-reactive flow

simulation, incorporates the permeability anisotropy following the strata

orientation, and improves current theories in iron-ore formation studies.
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2. The development of a computational framework for both steady and un-

steady problems, grounded in a variational multiscale approach.

3. The analysis of the genetic model through numerical experiments and the

validation of the proposed numerical framework using well-documented case

studies from industrial literature.

Significance

This research is a significant undertaking that may benefit the mining and steel

industries, thereby providing an advantage to the Australian economy. The exist-

ing models for predicting mineral formation are somewhat imprecise and often fail

to align with geological observations. This project seeks to supply these indus-

tries with precise predictions concerning the location of mineral deposits; thus,

mitigating the financial burden of exploration and the associated environmental

impacts.

Consequently, our model will assist in predicting the iron mineralisation pro-

cess and pinpointing the location of iron-ore deposits using geological information.

Further work may allow the model to yield precise prospecting maps displaying

anticipated iron-ore formations. These simulation results will reduce the costs as-

sociated with mineral exploration and a decrease in environmental damage, and

refine the process of target drilling.

Furthermore, the approach used in this project can also be applied to other

supergene mineralisation processes. This includes important mineral deposits

such as supergene copper [Kidder et al., 2020; Kahou et al., 2021], lead [Sergeev

et al., 2017], and zinc [Boni & Mondillo, 2015]. Each of these minerals has large

economic effects, not just in terms of their direct value, but also in support-

ing a range of industries, demonstrating the wider significance of this project’s

methodology.

Moreover, the introduced numerical framework is notably adaptable and could

be extended to tackle other physical challenges fraught with numerical instabili-

ties. This simulator will improve various simulation fields, such as fluid mechanics,

heat transfer, and structural analysis.

As such, the simulator’s promise is not confined to the mining and steel in-

dustry alone. It signifies potential advancements in multiple other sectors, con-

tributing widely to various scientific disciplines.
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1.4 Structure of the thesis

This document is divided into two main parts. The first part (ch. 2&3 ) focuses

on developing a numerical framework based on a variational multiscale approach,

while the second part (see Chapter 4) applies this framework to the specific issue

of iron-ore mineralisation. Chapter 2 outlines the numerical framework utilised

in this research, rooted in a variational multiscale approach. This framework

is designed to tackle convection-dominated diffusion equations—an important

aspect of this research due to the pronounced anisotropy and heterogeneity of the

diffusion tensor. In Chapter 3, the numerical approach is extended to unsteady

problems using the methods of lines. This chapter evaluates the reliability and

efficiency of the approach by testing it with challenging problems. Chapter 4

introduces a genetic model that explains the mechanisms behind the formation

of BIF supergene MG iron-ore deposits. The model is tested against well-known

deposits from the literature. Finally, Chapter 5 concludes the document with a

summary of the research and suggestions for future work.





Chapter 2

Numerical framework for steady

convection-diffusion-reaction

problems

This chapter introduces a numerical framework for simulating convection-

dominated diffusion problems, including highly anisotropic and heterogeneous

diffusion tensor as an important feature for this research. 1 We interpret the

stabilised finite element method via residual minimisation in Calo et al. [2020a]

as a variational multiscale method. We approximate the solution of partial differ-

ential equations using two discrete spaces that we build on a triangulation of the

domain; we denote these spaces as coarse and enriched. Building on the adaptive

stabilised FEM approach in Calo et al. [2020a], we find a coarse-scale approxi-

mation in a continuous space by minimising the residual on a dual discontinuous

Galerkin norm; this process allows us to compute a robust error estimate to con-

struct an on-the-fly adaptive method. We reinterpret the residual projection using

the variational multiscale framework to derive a fine-scale approximation. So, on

each mesh of the adaptive process, we get stable coarse- and fine-scale solutions

from a symmetric saddle-point formulation and an a-posteriori error indicator

to guide automatic adaptivity. Moreover, we introduce a heuristic dual-term

contribution in the variational form to improve the full-scale approximation for

symmetric formulations (e.g., diffusion problem). In the following sections, we

1The content of this chapter is published in: Giraldo & Calo [2023]. A variational multi-
scale method derived from an adaptive stabilized conforming finite element method via resid-
ual minimization on dual norms. Computer Methods in Applied Mechanics and Engineering
(CMAME),2023.

13
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test our framework in several challenging scenarios for linear diffusion problems

to demonstrate the framework’s performance in providing stability in the solution

with optimal convergence rates in the asymptotic regime and robust performance

in the pre-asymptotic regime.

2.1 Continuous problem and its discretisation

2.1.1 Convection-diffusion-reaction equation

Let Ω ∈ Rd, with d = 2, 3 be an open, bounded Lipschitz polygon with boundary

Γ := ∂Ω. Let κ ∈ [L∞(Ω)]d,d represent a positive definite diffusion tensor, β ∈
[L∞(Ω)]d a smooth, divergence-free velocity field (i.e., ∇ · β = 0), and µ ∈ L∞

the reaction coefficient. For a given open and bounded domain K, we represent

its L2 inner product and L2 norm as (·, ·)0,K and || · ||0,K , respectively. We set

(·, ·)0 := (·, ·)0,Ω and || · ||0 := || · ||0,Ω for convenience. We define the well-known

Hilbert space H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)} with the inner product on Ω

denoted by (·, ·)1. We define the inflow and outflow boundaries, respectively, by

Γ− := {x ∈ Γ | β · n < 0} , Γ+ := {x ∈ Γ | β · n ≥ 0} .

We denote by ΓD the Dirichlet and ΓN the Neumann boundary functions, which

are a complementary subset of Γ (i.e., Γ = ΓN ∪ ΓD). Thus, we define the inflow

and outflow parts of the Neumann boundary as follows:

Γ−
N := ΓN ∩ Γ−, Γ+

N := ΓN ∩ Γ+. (2.1)

We consider the advection-diffusion-reaction equation in strong form as follows:

−div (κ∇u) + β · ∇u + µu = f in Ω,

u = uD on ΓD,

(−βu + κ∇u) · n = hN on Γ−
N ,

κ∇u · n = hN on Γ+
N ,

(2.2)

where f ∈ L2(Ω) is the source term, and uD ∈ H1/2(ΓD) and hN ∈ H−1/2(ΓN)

are the Dirichlet and Neumann boundary conditions, respectively.
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2.1.2 Discontinuous Galerkin (dG) discretisation

Let T be a triangulation that decomposes Ω into n subdomains K, denoted as

T := Ki
n
i=1. Here, the broken space of discontinuous functions is

Vh := {v ∈ L2(T) : v|K ∈ Pp(K),∀K ∈ T} , (2.3)

where Pp is the set of functions of degree p or less. Let K1 and K2 represent

two separate elements in T sharing a common face F . The entire set of such

faces is defined as Sh :=
⋃

K∈T F . We denote the collection of interior faces by

S 0
h = Sh\Γ and boundary faces by S ∂

h = Sh∩Γ. Furthermore, we define inflow

boundary faces as S ∂−

h := S ∂
h ∩ Γ− and outflow boundary faces as S ∂+

h :=

S ∂
h ∩ Γ+. Lastly, S D

h = Sh ∩ ΓD and S N
h = Sh ∩ ΓN are defined as the sets of

Dirichlet and Neumann faces, respectively. Let hK be the diameter of the element

and hF be the diameter of the face. For the face F , we define nF as the unit

normal vector directed from K1 to K2, as illustrated in Figure 2.1. Furthermore,

the vectors nF,1 and nF,2 represent the unit normals on the face F , pointing

outwards from K1 and K2, respectively. It follows from the definitions that

nF,1 = −nF,2 and nF,1 = nF . Given a scalar field v and denoting v1,2 := v|K1,K2 ,

we define the arithmetic average {v}, weighted average {v}ω and jump [[v]] on an

internal face F ∈ S 0
h by

{v} :=
1

2
(v1 + v2), {v}ω := v1ω1 + v2ω2, [[v]] := v1nF,1 + v2nF,2

whit weights ω1 and ω2 that satisfy ω1 + ω2 = 1 and ω1, ω2 ≥ 0.

For heterogeneous diffusion we use:

ω1 =
δ1

δ1 + δ2
, ω2 =

δ2
δ1 + δ2

, (2.4)

with δ1 = nF · κ1nF and δ2 = nF · κ2n. In the homogeneous diffusion case, these

weights reduce to ω1 = ω2 = 1
2
, recovering the arithmetic average. We set on

boundary faces F ∈ S ∂
h that {v} = {v}ω = v and [[v]] = vnF . For further details

in the discrete setting, see Ern et al. [2009].
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Figure 2.1: Notation of the element interface.

We use the following dG discrete form:{
Find uh ∈ Vh, such that:

bh(vh, uh) = ℓh(vh) ∀ vh ∈ Vh,
(2.5)

where bh defines the dG discrete bilinear form considering the contribution of the

diffusive part from the Symmetric Weighted Interior Penalty form (SWIP) and

the advective part from the upwinding formulation:

bh(v, u) := bh(v, u)swip + bh(v, u)upw, (2.6)

with,

bh(v, u)swip :=
∑
K∈T

(∇v, κ∇u)K

−
∑
F∈S 0

h

(
([[v]] , {κ∇u}ω · nF )F + ({κ∇v}ω · nF , [[u]])F − neγκ([[v]], [[u]])F

)
−
∑

F∈S D
h

(
(v, κ∇u · nF )F + (κ∇v · nF , u)F − neγκ(v, u)F

)
, (2.7)

bh(v, u)upw :=
∑
K∈T

(v, β · ∇u)K +
∑
K∈T

(v, µu)K +
∑

F∈S ∂−
h

(v, (β · nF )u)F

+
∑
F∈S 0

h

( (
[[v]], na

2
|β · nF |[[u]]

)
F
− ({v}, (β · nF )[[u]])F

)
, (2.8)

where (·, ·)F and (·, ·)K represent the inner product over the discrete face and

internal element, respectively. The diffusion penalty γκ is defined for all internal

faces F ∈ S 0
h as

γκ :=
2κ1κ2

κ1 + κ2

,
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and ne and na are two positive penalty coefficients for the diffusion and advection

bilinear forms. We define ne as [Shahbazi, 2005]:

ne :=
(p + 1)(p + d)

d


1
2

(
A(∂K1)
V(K1)

+ A(∂K2)
V(K2)

)
if F = ∂K1 ∩ ∂K2,

A(∂K)
V(K)

, if F = ∂K ∩ Γ,
(2.9)

where d denotes the problem dimension, and p represents the polynomial degree

of the test space. In both 3D and 2D, V and A represent the volume and area (or

length in 2D) of an element, respectively. The parameter na adjusts the numerical

flux associated with the upwinding bilinear form. Centered fluxes correspond to

na → 0 while upwind fluxes are associated with na → 1. As the scenarios we

explore in this work are primarily advective dominant, we set na = 1; However,

this parameter can be adjustable, as seen in traditional dG methods. The right-

hand side in (2.5) accounts for weakly imposed non-homogeneous Dirichlet and

Neumann boundary conditions as:

ℓh(v) :=
∑
K∈T

(v, f) +
∑

F∈S D
h

(neγκ(v, uD)F − (κ∇v · nF , uD)F )

−
∑

F∈S D
h ∩Γ−

(v, (β · nF )uD)F +
∑

F∈S N
h

(v, uN)F . (2.10)

We endow Vh with the norm:

∥w∥2Vh
:= ∥w∥2upw + ∥w∥2swip, (2.11)

with

∥w∥2upw := ∥w∥20 +
∑
F∈Sh

(
1
2
| β · nF | [[w]], [[w]]

)
0,F

+
∑
K∈T

β−1
c hK∥ β · ∇w ∥20,K ,

(2.12)

∥w∥2swip := ∥κ∇w ∥20 +
∑
F∈Sh

(neγκ[[w]], [[w]])0,F , (2.13)

where ∥ · ∥0 represents the L2-norm on the domain Ω and ∥ · ∥0,Γ on its boundary

Γ, whilst ∥ · ∥0,K and ∥ · ∥0,F denote the L2-norm on the element K and faces

F , respectively. Additionally, we define βc as a reference velocity given by βc :=

∥β∥∞.
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Problem (2.5) is well-posed, and the inf-sup stability is established through the

norm (2.11). Refer to Ayuso & Marini [2009] for further details. The sub-index

h for the test and trial solutions (i.e., uh and vh) are dropped in the following

sections to keep the notation simple.

2.2 Residual minimisation formulation

Building upon the work of Calo et al. [2020b], we briefly recap the residual

minimisation strategy that forms the basis of this formulation. The main idea is

to deliver a stable approximation in a continuous space by minimising the residual

onto a discontinuous Galerkin norm. First, we define V̄h as the H1-conforming

subspace (i.e., V̄h = Vh∩H1). Then, from the stable formulation in (2.5), we use

the trial subspace V̄h to solve the following minimisation problem:
Find ū ∈ V̄h ⊂ Vh, such that:

ū = arg min
z∈V̄h

1

2
∥ℓh −Bh z∥2V∗

h
,

(2.14)

where the operator Bh is defined by ⟨·, Bhw⟩Vh×V∗
h

:= bh(·, w),∀w ∈ Vh. We

state (2.14) as a critical point of the minimising functional, which can be trans-

lated into the following linear problem:{
Find ū ∈ V̄h, such that:

(Bhδu, ℓh −Bhū)V∗
h

= g(R−1
Vh
Bhδu,R

−1
Vh

(ℓh −Bhū)) = 0 ∀δu ∈ V̄h,
(2.15)

where g(·, ·) represents the inner product that induces the discrete norm ∥ · ∥Vh

and RVh
denotes the Riesz operator which maps the elements in Vh to the dual

space V∗
h, such that:

⟨·, RVh
y⟩Vh×V∗

h
:= g(·, y). (2.16)

Let the residual representative be

ε := R−1
Vh

(ℓh −Bhū) ∈ Vh,

which implies

g(ε, v) = ℓh(v)− bh(ū, v), ∀v ∈ Vh;
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thus, the residual minimisation problem in (2.14) leads to a saddle point problem: Find (ε, ū) ∈ Vh × V̄h, such that:

g(v, ε) + bh(v, ū) + bh(ε, w̄) = ℓh(v), ∀(v, w̄) ∈ Vh × V̄h,
(2.17)

where the orthogonality condition between the residual representation and the

H1−conforming subspace of Vh is enforced as bh(ε, w̄) = 0. Features of the

methodology and the properties of the error estimator and continuous solution

are discussed in detail in Calo et al. [2020b]; Cier et al. [2021b]; Rojas et al. [2021]

in the context of advection-reaction-diffusion equations.

2.3 A variational multiscale interpretation of

the residual minimisation framework

2.3.1 A multiscale partition of the trial and test spaces

Following the variational multiscale arguments, we decompose Vh into coarse and

fine scales. Since we use a Petrov-Galerkin formalism, our test and trial spaces

are different. Thus, starting from the H1−conforming solution space V̄h, we

define appropriate direct-sum partitions of the entire function space Vh using the

operators from the residual minimisation framework. First, we define the space

V′
h, as the annihilator of the bilinear form bh(·, w̄) ∀w̄ ∈ V̄h (e.g., the residual

representative belongs to this set of linear functionals that map the operator’s

range to zero). Thus, given V̄h ⊂ Vh, we define V′
h as the annihilator of the

bilinear form bh acting on Vh, such that

V′
h := {v ∈ Vh | bh(v, w̄) = 0, ∀ w̄ ∈ V̄h}, (2.18)

Next, we define V̂h as the orthogonal complement of V′
h with respect to the inner

product g(·, ·), that is:

V̂h := {v ∈ Vh | g(v, v′) = 0, ∀ v′ ∈ V′
h}. (2.19)
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Last, we define the complement of the coarse-scale solution space as the kernel

of the bilinear bh when tested by V̂h. Thus, given V̂h ⊂ Vh, we define Ṽh to be

Ṽh := {u ∈ Vh | bh(v̂, u) = 0, ∀ v̂ ∈ V̂h}, (2.20)

where the (full-scale) trial space is Vh := V̄h⊕Ṽh and the (full-scale) test space is

Vh := V̂h⊕V′
h. We have a direct sum decomposition of the trial space to deliver

a solution u ∈ Vh in (2.5), such that:

u = ū + ũ, (2.21)

where we denote ū ∈ V̄h and ũ ∈ Ṽh as the coarse- and fine-scale trial functions.

Similarly, for any test function v ∈ Vh, we can write

v = v̂ + v′, (2.22)

where we denote v̂ ∈ V̂h and v′ ∈ V′
h as the coarse- and fine-scale test functions.

Thus, we have two complimentary direct sum decompositions of Vh.

Let ε ≡ ε′ ∈ V ′
h be noted. Therefore, we can reformulate the saddle point problem

in equation (2.17) as:{
Find (ε′, ū) ∈ (V′

h × V̄h), such that:

g(v, ε′) + bh(v, ū) = ℓh(v), ∀v ∈ Vh.
(2.23)

Splitting the test function using (2.22), we reformulate problem (2.23) as two

complementary but independent problems for the coarse-scale solution and the

fine-scale residual representative:

• Residual reconstruction (fine-scale problem):{
Find ε′ ∈ V′

h, such that

g(v′, ε′) = ℓh(v′), ∀v′ ∈ V′
h.

(2.24)

• H1−conforming solution (coarse-scale problem):{
Find ū ∈ V̄h, such that

bh(v̂, ū) = ℓh(v̂), ∀v̂ ∈ V̂h,
(2.25)



Chapter 2 21

which corresponds to a Petrov–Galerkin method with optimal test func-

tions [Demkowicz & Gopalakrishnan, 2011; Zitelli et al., 2011; Niemi et al.,

2013a; Calo et al., 2014].

From the definitions of the complementary direct sum decompositions (2.18)-

(2.20), we have that bh(v̂, ũ) = bh(v′, ū) = 0; thus, problem (2.5) can be split into

the following two problems:
Find (ū, ũ) ∈ V̄h × Ṽh, such that:

bh(v̂, u) := bh(v̂, ū) = ℓh(v̂), ∀v̂ ∈ V̂h,

bh(v′, u) := bh(v′, ũ) = ℓh(v′), ∀v′ ∈ V′
h.

(2.26)

Consequently, from (2.24) and (2.26)2, we can rewrite the fine-scale component

of the discrete solution in terms of the residual error estimate

bh(v′, ũ) = ℓh(v′) = g(v′, ε′), ∀v′ ∈ V′
h. (2.27)

Thus, (2.26)2 states that the fine-scale solution satisfies the following problem:{
Find ũ ∈ Ṽh, such that:

bh(v′, ũ) = g(v′, ε′), ∀v′ ∈ V′
h.

(2.28)

Lastly, since b(v̂, ũ) = g(v̂, ε′) = 0, the fine-scale problem is equivalent to:{
Find ũ ∈ Vh, such that:

bh(v, ũ) = g(v, ε′), ∀v ∈ Vh.
(2.29)

Remark 1 (Relation between VMS reconstruction & dG solution). By construc-

tion, the partitioned full-scale approximation in (2.21) is identical to the classical

dG solution. Next, we introduce an adjoint multiscale reconstruction; thus, we

denote by θ the dG solution of (2.5).

2.3.2 Adjoint multiscale reconstruction

Using the direct sum partitions of the test and trial spaces, we exploit the insight

behind the adjoint residual-based estimator proposed for goal-oriented adaptivity

in Rojas et al. [2021]; therein, the authors obtained a residual representative for

the quantity of interest by solving a well-posed ad hoc discrete problem. In the
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present context, this adjoint residual problem is driven by ε′. We introduce the

adjoint reconstruction by revisiting the multiscale partitions from the previous

section. Given ε′ that solves (2.24), this error representation ε′ is proportional to

the discrete system’s residual [Calo et al., 2020b; Rojas et al., 2021]. From the

definition of V′
h, we know that

bh(ε′, v̄) = 0, ∀v̄ ∈ V̄h.

Also, from (2.29), we have that

bh(v, ũ) = g(v, ε′), ∀v ∈ Vh; (2.30)

next we add a heuristic interaction of ε′ with the whole test space Vh to the fine-

scale driving force. Thus, we postulate the following problem, where the heuristic

fine scales ǔ ∈ Vh solve

bh(v, ǔ) = g(v, ε′) + bh(ε′, v) ∀v ∈ Vh. (2.31)

Thus, this heuristic fine-scale postprocessing of the error representative includes

two extra contributions:

bh(v̂, ǔ) = bh(ε′, v̂) ∀v̂ ∈ V̂h, (2.32)

bh(v′, ǔ) = ℓh(v′) + bh(ε′, v′) ∀v′ ∈ V′
h, (2.33)

where the first equation contributes to the coarse-scale trial space in V̄h while the

second one contributes to the fine-scale trial space Ṽh. In short, we propose the

following heuristic adjoint variational multiscale reconstruction such that:

ϕ = ū + ǔ,

where ǔ ∈ Vh is the reconstructed fine-scale solution that solves (2.31) for a given

error estimate ε′. Alternately, using equations (2.30) and (2.31), we can derive

the reconstructed fine-scale solution (ǔ) in terms of the fine scale ũ:

ǔ = ũ + ú,
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where ú represents the heuristic reconstructed fine-scale solution that satisfies:

bh(v, ú) = bh(ε′, v) ∀v ∈ Vh. (2.34)

In the next section, we evaluate the performance of ϕ in the norms L2 and Vh,

relative to the exact solution uexa . Our findings reveal a notable improvement in

the asymptotic regime, particularly for diffusion-dominated problems (i.e. ∥uexa−
ϕ∥Vh

≲ ∥uexa − u∥Vh
,)

Adaptive Mesh Refinement

The adaptive refinement procedure unfolds through several stages. Initially, the

saddle-point problem (2.23) delivers an error representation (ε ∈ Vh) within the

norm (|ε|2V). Following this, a local adaptation of the norm (2.11) is constructed,

thereby creating an error indicator for each cell (EK), defined as follows:

E2
K = ∥ε∥2V,Loc := κ∥∇ε∥20,K + β−1

c hK∥β · ∇ε∥20,K+∑
F∈Sh

(
neκ + 1

2
|β · nF |

)
([[ε]], [[ε]])0,F. (2.35)

Here, we extend the original Dörfler bulk-chasing criterion [Dörfler, 1996] to mark

the cells with the highest EK values based on an accumulative error in a cell

loop [Calo et al., 2020b; Rojas et al., 2021]. We first organise the cells in the

order of decreasing error per cell. Then, the algorithm marks the elements in two

cases: when the accumulative error in a first loop reaches a user-defined fraction of

the error ∥ε∥2V, and when the error of the remaining cells in the first loop is larger

than a chosen fraction of the last refined element. By refining all elements with

comparable errors in an iteration, we guarantee refinement in the elements close

to the cutoff, which the original strategy did not mark; this combined strategy

reduces the computational cost per iteration. Let ηref be 0.25 in 2D and 0.125

in 3D and ν = 0.2 in all cases. Then, we refine the marked cells using bisection.

Algorithm 1 summarises the marking strategy. The stopping criterion for the

refinement algorithm is as follows. Starting with a coarse mesh, we refine while

the total estimated error in the norm ∥ε∥V remains above a user-defined tolerance

Ctol. We use in this research Ctol = 1× 10−5.
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Algorithm 1 Marking strategy

Input: Th, ∥ε∥2V, ηref , N, ν

1: Compute EK for all K ∈ Th from (2.35)
2: Sort and store in sortK all K ∈ Th from highest to lowest EK values
3: Initialise cell to mark Kmarked = sortK[0]
4: Initialise the local error of the marked mesh cell EKm = EK [Kmarked]
5: Initialise sum = 0, i = 0, flag = True and Ecut = 0
6: while (sum < η2ref∥ε∥2V or EKm ≥ (1− ν)Ecut ) and i < N do
7: Mark Kmarked

8: if sum < η2ref∥ε∥2V then
9: sum ← sum +EKm

10: else
11: if flag then
12: Ecut ← EKm

13: flag ← False

14: i ← i +1
15: Kmarked ← sortK[i]
16: EKm ← EK [Kmarked]

2.4 Numerical examples

Drawing upon a series of numerical examples, we showcase the potency of our

methods in diverse linear scenarios. We then turn our focus to the decay rate

analysis for both the coarse and fully reconstructed solutions within the L2 and

energy (Vh) norms, following a comparison with the traditional dG solution.

Subsequently, convergence plots are illustrated, putting the error norm in context

with the total degrees of freedom (DoF 1/d), that is, dim(V̄h) + dim(Vh). We

validate our formulation by evaluating and comparing the performance of our

multiscale approach using some test problems described in Cier et al. [2021b].

SOLVE→ ESTIMATE→ MARK→ REFINE (2.36)

We solve the saddle point problem in (2.17) employing an iterative algorithm

described in Bank et al. [1989]; Calo et al. [2020b] and use FEniCS [Alnæs et al.,

2015] as a platform to perform all the numerical simulations.
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Level= 0 Level = 10 Level = 20

Figure 2.2: Solution for the re-entrant corner problem for different refinement levels

2.4.1 Diffusion in a domain with a re-entrant corner

We study the method’s performance with the diffusion problem in a re-entrant

corner domain [Mitchell, 2013]. The problem configuration induces a singularity

at the inward-pointing vertex of the concave polygon. Since capturing corner

singularities is challenging for uniform refinement techniques, this problem tests

the adaptive grid refinement algorithms. We solve the following Laplace equation

in an L-shape domain Ω:

∆u = 0, in Ω = (−1, 1)2\(−1, 0]2,

u = uD, on ∂Ω = ΓD,

where the Dirichlet boundary conditions (uD) satisfy the exact solution:

uexa = rα sin(αθ),

with r =
√

x2 + y2, θ = tanh−1(y/x) and α = 2/3.

(a) Vh norm (b) L2 norm

Figure 2.3: Vh− & L2−norm convergence for Laplace problem
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Figure 2.2 shows three surface plots of the full-scale solution and the corre-

sponding meshes for different adaptive refinement levels. The results show the

error estimator’s robustness and the energy norm’s effectiveness at capturing

the singularity. Convergence plots are presented in Figure 2.3 for different test-

function polynomial degrees (p = 1, 2, 3, 4) in the L2 and energy norms. Here,

we show optimal rate decay for coarse ū and full-scale ũ solutions and verify

that the fine-scale contribution ũ recovers the dG approximation θ (i.e., u ≈ θ ).

Besides, we also show in Figure 2.3 that the extended solution (ϕ) improves the

approximation compared to u and θ regardless of the polynomial degree.

2.4.2 Diffusion in a 3D domain with a Fichera corner

We extend results in Section 2.4.1 for the 3D Fichera corner problem. In this

problem, we induce the singularity in the re-entrant corner of a concave polyhedral

with domain Ω = (−1, 1)3\[0, 1)3. We consider the problem:

−∆u = f, in Ω,

u = uD, on ΓD,
(2.37)

where the source term f and Dirichlet boundary conditions (uD) are derived from

the exact solution:

uexa =
(√

x2 + y2 + z2
)q

,

with q = 1/10 and q = 1/3. Similarly to the 2D case, uniform refinement tech-

niques may struggle to accurately capture the behavior in the Fichera corner. The

high spatial gradients and the necessity for fine meshes at the singularity lead to

suboptimal convergence when no adaptive refinement techniques are used [Calo

et al., 2020b]. Figures 2.4 and 2.5 display the convergence plots in L2 and

Vh norms. Here, we test the robustness of the error estimator to provide op-

timal convergence rates for the coarse solution and to recover the dG solution

and optimality in the full-scale solution for different q values. Moreover, similar

to the example in Section 2.4.1, the extended solution (ϕ) not only provides a

better approximation compared to the full-scale solution (u) in the L2 and en-

ergy norm but also improves the pre-asymptotic convergence rates, especially for

linear polynomial trial functions (p = 1).
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(a) Vh norm (b) L2 norm

Figure 2.4: Vh− and L2−norm convergence for Fichera corner, q =
1

10

(a) L2 norm

Figure 2.5: Vh− and L2−norm convergence for Fichera corner, q =
1

3

2.4.3 Heterogeneous Diffusion problem

For this case, we solve the following advection-diffusion equation with heteroge-

neous and anisotropic diffusion:

−∇(κ · ∇u) + β · ∇u = 0, in Ω,

u = uD, on Γ,
(2.38)

where β = (0, 1)T and κ has different ϵi values in each domain:

κ|Ωi
=

(
ϵi 0

0 1.0

)
.

We partition Ω = [0, 1]2 into two domains: Ω1 = [0, 1
2
] × [0, 1] and Ω2 =

[1
2
, 1]×[0, 1], such that ϵ1 = 0.1 and ϵ2 = 1.0, and the Dirichlet boundary condition
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(uD) satisfy the exact solution for each domain [Burman & Zunino, 2006]:

uexa =


(
u1/2 − exp

(
1
2ϵ1

)
+ (1− u1/2) exp

(
x
ϵ1

))
/
(

1− exp
(

1
2ϵ1

))
if x ∈ Ω1,(

− exp
(

1
2ϵ2

)
u1/2 + u1/2 exp

(
x− 1

2

ϵ2

))
/
(

1− exp
(

1
2ϵ2

))
if x ∈ Ω2,

(2.39)

where

u1/2 =

 exp
(

1
2ϵ1

)
1− exp

(
1
2ϵ1

)
 exp

(
1
2ϵ1

)
1− exp

(
1
2ϵ1

) +
1

1− exp
(

1
2ϵ2

)
−1

.

(a) Vh norm (b) L2 norm

Figure 2.6: Vh− & L2−norm convergence for heterogeneous diffusion problem

Figure 2.6 shows the L2 and energy (Vh) norm convergence for polynomial

orders 1 to 4. As in Cier et al. [2021b], Figure 2.6b shows a loss in the convergence

rate in the L2-norm for the coarse-scale solution (ū) for even polynomial degrees.

However, we can recover dG optimality in both norms by including the fine-scale

contribution in the full-scale solution (u), regardless of the polynomial degree.

Besides, as was shown in previous examples, the extended solution (ϕ) has better

accuracy than the other discrete approximations on the same mesh.

2.4.4 Strongly anisotropic diffusion

We test the performance of our method in a highly anisotropic diffusion problem.

We solve the equation (2.38) for β = 0 and high contrast in the permeability

tensor:

κ|Ω =

(
ακ 0

0 γκ

)
. (2.40)
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The anisotropy ratio is rκ, that is, the ratio between the maximum and minimum

(a) Coarse-scale solution (b) Fine-scale solution

(c) Refined mesh

Figure 2.7: Coarse- & fine-scale solutions with final mesh for strongly anisotropic diffusion
problem with r = 106 & p = 1

values of the diffusion coefficients. Specifically, we set rκ := ακ/γκ for (2.40).

The problem is more challenging for high rκ values, corresponding to locally

small weights in the diffusion tensor, leading to advection-dominated regimes.

We study the method’s performance by solving (2.40) for different values of the

anisotropy ratio by imposing a sharp inner layer problem based on the following

Gaussian-function-type manufactured solution, as described in Pestiaux et al.

[2014]:

uexa =
exp(−[x2 + rκτy

2])

4π
√
rκτ

, (2.41)

with τ = 10−3. We use (2.41) and ακ = 1 to derive the source term (f) and

Dirichlet boundary conditions (uD) in the domain Ω = [−1, 1]× [−0.5, 0.5]. Fig-

ure 2.7 presents the coarse- and fine-scale solutions showing the discontinuity in

y = 0 and the robustness in the error estimator to effectively refine the inner

layers. Figures 2.8 and 2.9 show the convergence plots for rκ = 104 and rκ = 106,

respectively. We obtain optimal rates for different polynomial degrees in the Vh

and L2 norms for all discrete approximations on the refined-mesh sequences.
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(a) Vh norm (b) L2 norm

Figure 2.8: Vh− and L2−norm convergence for anisotropy ratio rκ = 104.

(a) Vh norm (b) L2 norm

Figure 2.9: Vh− and L2−norm convergence for anisotropy ratio rκ = 106.

2.4.5 3D Eriksson-Johnson problem

We use a 3D version of the classical Eriksson-Johnson problem [Chan & Evans,

2013; Cier et al., 2021b]. We solve the equation (2.38) in the domain Ω = [0, 1]3

with diffusion coefficient κ = 10−2, velocity field β = (1, 0, 0)T and a source term

f = 0. We impose Dirichlet boundary conditions using the analytical solution:

uexa =
exp(r1(x− 1))− exp(r2(x− 1))

exp(−r1)− exp(−r2)
sin(πy),

with r1,2 = 1±
√

1 + 4κ2π2/2κ. Figure 2.10 shows the coarse and fine scales

for linear solutions, p = 1, and how the adaptive strategy captures the regions

with sharp gradients, constructing a smooth solution. Figures 2.11 and 2.12 show

the optimal convergence plot in Vh and L2 norms for the coarse- and full-scale

approximations. Again, the adjoint multiscale reconstruction improves the Vh

norm and the pre-asymptotic convergence, especially for lower-order polynomials.



Chapter 2 31

Figure 2.10: Convergence in L2 norm for the 3D Eriksson-Johnson problem

(a) Vh norm (b) L2 norm

Figure 2.11: Vh− and L2−norm convergence for 3D Eriksson-Johnson problem, p = 1, 3

(a) Vh norm (b) L2 norm

Figure 2.12: Vh− and L2−norm convergence for 3D Eriksson-Johnson problem, p = 2, 4

2.5 Extension to nonlinear conservation laws

Next, we analyse the numerical stability of nonlinear conservation laws in the

context of variational multiscale reconstructions. First, we formulate the discrete

problem using the Lax-Friedrich flux for the nonlinear advective flux within the



32 VMS methods for steady convection-dominated diffusion problems

discontinuous Galerkin (dG) framework. Then, we outline the variational multi-

scale method for nonlinear problems following Juanes & Patzek [2005], extending

this framework to our adaptive stabilised finite element method to derive a non-

linear fine-scale approximation. We present some numerical results for Burgers’

equation to demonstrate the accuracy and efficiency of our approach.

2.5.1 Discontinuous Galerkin discretisation

We consider the following nonlinear conservation law:

∇ · (f(u)− κ∇u) = f, in Ω,

u = uD, on ΓD,
(2.42)

where f(u) is a nonlinear convective flux; thus, the dG discrete problem reads:{
Find u ∈ Vh, such that:

nh(v;u) = ℓh(v), ∀ v ∈ Vh,
(2.43)

where n(v;u) represents the nonlinear form including a SWIP contribution

in (2.7) and the Lax-Friedrichs numerical flux Φ for the nonlinear convective

flux defined as follows:

nh(v;u) = bh(v, u)swip −
∑
K∈T

(∇v, f(u))K +
∑
F∈Sh

([[v]],Φ)F , (2.44)

with,

∀F ∈ S 0
h , Φ :=

1

2
(f(u1) · nF + f(u2) · nF + ηf (u1 − u2)),

∀F ∈ S D
h , Φ :=

1

2
(f(u) · nF + ηf u) +

1

2
(f(uD) · nF − ηf uD).

(2.45)

where ηf is a local dissipation parameter parametrised by the maximum eigen-

value of the flux function Jacobian. In equation (2.62), we set

∀F ∈ S 0
h , ηf := max

w=u1,u2

|f ′(w) · nF |,

∀F ∈ S D
h , ηf := |f ′(u) · nF |.

(2.46)
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The right-hand side in (2.43) for weakly imposed non-homogeneous Dirichlet

boundary conditions reads:

ℓh(v) :=
∑
K∈T

(v, f) +
∑

F∈S D
h

(neκ(v, uD)F − (κ∇v · nF , uD)F )

−
∑

F∈S D
h ∩Γ

1
2

(v, f(uD) · nF − ηfuD)F . (2.47)

We endow Vh with the norm:

∥w∥2Vh
:= ∥w∥2swip + ∥w∥2conv, (2.48)

with ∥w∥2swip the SWIP norm contribution (2.13) and ∥w∥2conv a convective norm

defined as follows:

∥w∥2conv := ∥w∥20 +
∑
F∈Sh

∥[[w]]∥20,F +
∑
K∈T

hK∥∇w ∥20,K . (2.49)

It is important to note that, in this non-linear problem, the advective and reactive

coefficients vary with each iteration. Consequently, we enforced the energy norm

with a unit values for both the L2 and H1 contributions. This approach guaran-

tees a fixed reference for the residual convergence in the residual minimisation.

2.5.2 Residual minimisation formulation

Extending the residual minimisation formulation of Section 2.2 and the nonlinear

approach for residual minimisation problems [Cier et al., 2021a], we formulate

the following nonlinear saddle-point problem to obtain the coarse-scale solution

and an error estimate:
Find (ε, ū) ∈ Vh × V̄h, such that:

g(v, ε) + nh(v; ū) = ℓh(v), ∀v ∈ Vh,

n′
h(ε, w̄; ū) = 0, ∀w̄ ∈ V̄h.

(2.50)

Here, n′
h(v, δu;u) is the linearised form of the nonlinear operator (2.44), evaluated

at ū ∈ Vh, and defined through the discrete Gâteux derivative in the direction

δū ∈ Vh as:

n′
h(v, δū; ū) :=

d

dϵ
nh(v; ū + ϵδū)

∣∣
ϵ=0.

(2.51)
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We use the Newton-Raphson method to solve (2.50) so that, at each step of

the nonlinear iteration, we solve the following linear problem:


Given (εi, ūi), find (δε, δū) ∈ Vh × V̄h, such that:

g(v, δε) + n′
h(v, δū; ūi) = ℓh(v)− g(v, εi)− nh(v, ūi) ∀v ∈ Vh,

n′
h(δε, w̄; ūi) = −n′

h(εi, w̄; ūi) ∀w̄ ∈ V̄h.

(2.52)

We update ui and εi at every iteration i such that:

ūi+1 = ūi + kδū, εi+1 = εi + kδε (2.53)

and assume convergence when ∥ūi+1 − ūi∥Vh
< 10−6. We use a damped Newton

algorithm to solve the corresponding nonlinear saddle point problem. We denote

the relaxation parameter as k in (2.53), following Bank & Rose [1981] (see algo-

rithmic details in Cier et al. [2021a]). Regarding error estimation, we adopt a

similar approach to that used in the linear problem. Here, ε in equation (2.50) rep-

resents the residual error of the nonlinear operator, i.e., g(v, ε) = ℓh(v)−nh(v; ū).

However, we use the updated residual error (εi+1) to guide adaptivity after the

solution of (2.52) converges.

2.5.3 Nonlinear variational multiscale method

As above, a natural approach to solve (2.43) is to linearise the equation and

update the solution with a correction term at every iteration as:

ui+1 = ui + δu. (2.54)

In a multiscale context, both ui and δu in (2.54) are decomposed into fine-scale

(ũi, δũ) and coarse-scale (ūi, δū) components. We circumvent the need for de-

composing ui at each iteration by using a decoupled scale system by employing

the subsequent approximation [Juanes & Patzek, 2005]:

ui ≈ ūi,
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which assumes, at each iteration, that

ui+1 ≈ ūi+1 + δũ. (2.55)

We simplify the notation in (2.55) by dropping the sub-index i:

u ≈ ū + δũ. (2.56)

From this, we define a multiscale formulation through defining a nonlinear direct

sum decomposition for both the trial and test function spaces:

u = ū + δũ ∀u ∈ Vh, (2.57)

v = v̂ + v′ ∀v ∈ Vh, (2.58)

where ū ∈ V̄h, δũ ∈ Ṽh, v̂ ∈ V̂h, and v′ ∈ V′
h. Using (2.57) in the nonlinear

problem (2.43), and using a first-order Taylor expansion about the coarse-scale

solution ū, the nonlinear form becomes:

nh(v;u) = nh(v; ū + δũ) ≈ nh(v; ū) + n′
h(v, δũ; ū) v ∈ Vh. (2.59)

Drawing from the first equation in the nonlinear saddle-point problem in (2.50)

and employing (2.43) and (2.59), we obtain the following identity:{
Find δũ ∈ Vh, such that:

n′
h(v, δũ; ū) = g(v, ε′) ∀v ∈ Vh.

(2.60)

Here, we use ε and ū from (2.50) after the system converges. Similar to the linear

case, in the subsequent sections, we represent the reconstructed full-scale solution

(Equation (2.57)) as (u) and the dG solution in (2.43) as (θ). Unlike the linear

problem, u is not equivalent to, but rather an approximation of θ (i.e., u ≈ θ).

The decoupled multiscale formulation substantially reduces computational costs

by eliminating the need for explicit decomposition of ui into coarse- and fine-scale

components during each iteration. Instead, the decomposition is only performed

once at each iteration level. In the next section, we demonstrate that our approach

and the adaptive strategy yield an accurate and stable approximation of the

coarse-scale solution and error indicator. This approximation enables the recovery

of the full-scale solution following refinement.
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2.5.4 Adjoint multiscale reconstruction

As for the linear case, we define the adjoint multiscale reconstruction ϕ as:

ϕ = ū + δǔ,

where δǔ denotes the fine-scale adjoint reconstruction, such that:{
Find δǔ ∈ Vh, such that:

n′
h(v, δǔ; ū) = g(v, ε′) + n′

h(ε′, v; ū) ∀v ∈ Vh.
(2.61)

The next example shows the improved accuracy of the adjoint reconstruction (ϕ)

for the asymptotic regime in the energy norm (i.e., ||uexa−ϕ||Vh
≲ ||uexa−u||Vh

).

(a) Coarse-scale solution (b) Fine-scale solution

Figure 2.13: Solution for Burgers’ equation for κ = 10−3 & p = 1

2.5.5 Burgers’ equation

We evaluate the performance of the proposed variational multiscale reconstruc-

tions in a nonlinear problem. We use the steady Burgers equation, a partial

differential equation widely used in modelling physical phenomena such as fluid

dynamics, shock waves, and traffic flow. In Burgers equation, the nonlinear term

instigates the formation of shocks, while the viscous term serves to smooth the

solution. In subsequent sections, we analyse the simulation results for both the

isotropic and anisotropic versions of this equation.
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Level= 0 Level= 10 Level= 20 Level= 25

Figure 2.14: Solution for the isotropic Burgers equation for different refinement levels at
κ = 10−3

(a) Vh norm (b) L2 norm

Figure 2.15: Convergence plots for Burgers’ equation in the L2 and Vh norms, p = 1, 3

(a) Vh norm (b) L2 norm

Figure 2.16: Convergence plots for Burgers’ equation in the L2 and Vh norms, p = 2, 4

Isotropic Burgers’ equation

We first solve the isotropic case where f(u) := bu2

2
with b = [1, 1]T , which reads:

∇ ·
(

bu2

2

)
− κ∆u = f, in Ω,

u = uD, on ΓD,
(2.62)
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with Ω = [0, 1]2, κ = 10−3 and a initial condition u0 = 0.5 which induces an inner

discontinuity. We impose the source term f and Dirichlet boundary condition

(uD) from the exact solution:

uexa =
1

2

(
1− tanh

(
2x− y − 0.25√

5κ

))
.

We use f ′(w) = bw to impose the local dissipation parameter in (2.46).

(a) Coarse-scale solution (b) Mesh (c) Fine-scale solution

Figure 2.17: Coarse-scale solution and scale approximations for different diffusivities. (top:
κ = 10−2, middle: κ = 10−3 ,bottom: κ = 10−4).

Figure 2.13 shows solution plots for p = 1, illustrating the smooth approach of

the continuous solution and its correction for the fine scale along the discontinuity.

Figure 2.14 displays four refinement levels to demonstrate the effectiveness of

the refinement strategy in capturing the sharp inner layer, irrespective of the

initial mesh. Figures 2.15 and 2.16 depict optimal convergence rates for p =

1, 2, 3, 4 in the L2 and Vh norms. Moreover, we show our method recovers the

full-scale solution (i.e., u ≈ θ) after refinement, regardless of the polynomial

order. Furthermore, as in the linear case, the adjoint multiscale reconstruction

(ϕ) enhances the approximation quality in the Vh norm.
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Level= 0 Level= 5 Level= 10 Level= 20

Figure 2.18: Solution for the Burgers equation for different refinement levels at κ = 10−2

Single-component Burgers’ equation

Next, we introduce a second scenario to test the numerical performance in the

presence of a sharp shock layer. We select a problem from Moro et al. [2012] to

solve Burgers’ equation in a single component, such that f(u) :=
[
u2

2
, u
]T

. This

problem represents a challenge, especially for convection-dominated problems,

due to the shock presence at x = 0. The problem reads:

1

2

∂u2

∂x
+

∂u

∂y
= κ

(
∂2u

∂x2
+

∂2u

∂y2

)
, in Ω, (2.63)

with Ω = [0, 1]2 and initial guess u0 = 1 − 2x. We impose Dirichlet boundary

conditions uD = u0 at y = 0, x = 0 and x = 1 and zero Neumann boundary

conditions at y = 1. The local dissipation parameter in (2.46) uses f ′(w) = [u, 1].

We used a polynomial degree of p = 3 and a uniform element size of 4 × 4

for the initial mesh. Figure 2.17 illustrates the coarse and fine solutions for

κ = 10−2, κ = 10−3, and κ = 10−4. Additionally, Figure 2.18 demonstrates how

the adaptive strategy effectively reduces oscillations along the shock for coarse

meshes, regardless of the initial mesh [Moro et al., 2012].

2.6 Concluding Remarks

In summary, our method is effective and reliable in solving challenging steady lin-

ear and non-linear problems, including those with highly heterogeneous, strongly

anisotropic, and convective-dominated regimes. We demonstrate the advantage
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of our formulation compared to classical methods by providing not only a stable

coarse solution and an on-the-fly error estimator to guide adaptivity, but also

an improvement in the approximation through a variational multiscale fine-scale

reconstruction. We also show that for diffusion-dominated problems, we can use

insights behind the adjoint residual-based estimator in goal-oriented adaptivity

to formulate a heuristic dual-term contribution in the variational form, which

improves the accuracy for the asymptotic regime in the energy norm. Using

the tools provided by this framework, we can solve the highly anisotropic and

heterogeneous hydraulic problem in Equation (1.1), which arises from the varia-

tions in iron concentration through the ore deposit. In the following chapter, we

extend the problem to an unsteady case to overcome the challenging unsteady

advective-dominated transport propagation.
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Unsteady

convection-diffusion-reaction

problems

In this chapter, we introduce a numerical framework for unsteady advection-

diffusion-reaction problems.1 Here, we extend the framework of Chapter 2 to

simulate the unsteady advective-dominated transport propagation (1.2). The

method constructs a stabilised finite element method for linear equations using

the method of lines. We propose a residual minimisation strategy that uses an

ad-hoc modified discrete system that couples a time-marching scheme and a semi-

discrete discontinuous Galerkin formulation in space. Our approach offers robust

spatial refinements for a user-selected time marching method. We first approx-

imate the spatial derivatives using a space semi-discrete scheme and then solve

the resulting system using a time-marching discretisation. As particular exam-

ples, we use implicit first- and second-order time-stepping (BDF1 and BDF2)

discretisations [Bramble & Thomée, 1972; Crouzeix & Lisbona, 1984].

Compared to other techniques, the main advantage of this method relies on

the non-conformity of the starting dG formulation, which allows us to work with

stronger norms from the dG theory with a continuous trial space. Moreover, the

1The content of this chapter is published in: J.F. Giraldo & V.M. Calo [2023]. An adaptive
in space, stabilized finite element method via residual minimization for linear and nonlinear
unsteady advection–diffusion–reaction equations. Mathematical and Computational Applica-
tions; 28(1):7. Some of these results were presented in the 10th International Conference on
Adaptative Modeling and Simulation (ADMOS) available on: J.F. Giraldo, S. Rojas & V.M.
Calo [2021], An adaptive stabilized finite element method based on residual minimization for
unsteady advection-diffusion problems.

41
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refinement strategy and its efficiency in obtaining high-resolution approximations

from coarse meshes allow us to overcome the computational cost of implicit tem-

poral schemes and the extra degrees of freedom in the saddle-point formulation.

As in the steady case, this combination delivers a stable continuous solution and

an on-the-fly error estimate that robustly guides adaptivity at every discrete time.

Finally, we incorporate ideas of the multiscale variational formulation in Chap-

ter 2, to reconstruct the fine-scale solution an the adjoint multiscale approach.

We show the method’s performance in challenging advection-dominated problems

to demonstrate stability in the solution and efficiency in the adaptivity strategy.

3.1 Problem definition

Maintaining the notation of Section 2.1.1 and letting V represent a Hilbert space,

we denote by C l(V ) := C l([0, Tf ];V ). This space is spanned by V -valued func-

tions that are continuously differentiable up to l times within the interval [0, Tf ].

Consequently, C0(V ) and C1(V ) correspond to the spaces of continuous and con-

tinuously differentiable functions on [0, T ], respectively.

We consider the time evolution of the advection-diffusion-reaction solution de-

fined in the space-time cylinder Ω× (0, T ] for T > 0. The governing equations in

strong form read:

∂tu−∇ · κ∇u + β · ∇u + µu = f in Ω × (0, T ],

u = uD on ΓD × (0, T ],

(−βu + κ∇u) · n = hN on Γ−
N × (0, T ],

κ∇u · n = hN on Γ+
N × (0, T ],

u(· , t = 0) = u0(x) in Ω,

(3.1)

where f ∈ C0(L2(Ω)) the source term, and uD ∈ C0(H1/2(ΓD)) and hN ∈
C0(L2(ΓN)) the Dirichlet and Neumann boundary values. We assume that β,

κ and µ are time-independent, and that (v, β · ∇v + µv)0 ≥ 0.

Denoting Lβ, the Lipschitz modulus of β, we consider a reference velocity

βc and a reference time τc defined respectively as: βc := ∥β∥∞ and τc :=

{max (∥µ∥∞, Lβ)}−1 .
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3.2 Discontinuous Galerkin discretisation and

time marching

The approach consists of two primary components. First, we use a spatial semi-

discretisation method based on the dG description outlined in Chapter 2. Subse-

quently, we adopt the method of lines to advance the fully discrete system in time

by using either the implicit first- and second-order time-stepping discretisations.

The subsequent sections detail these strategies.

3.2.1 Space Semi-discretisation

We formulate the space semi-discretisation by combining the symmetric weighted

interior penalty (SWIP) and the upwind (UPW) dG formulations of the

steady advection-diffusion-reaction equation, see Section 2.1.2. We set hK ≤
βc min(T, τc) to avoid strong reaction regimes, to allow the mesh to resolve the

spatial variation of the velocity field, and to guarantee that a particle at speed

βc crosses at least one mesh element over the time interval (0, T ). Let the semi-

discrete dG approximation (3.1) in the space Vh (2.3) be: For t ∈ (0, T ], find θ,

such that

(v, ∂tθ)0 + bh(v, θ) = ℓh(v) ∀ v ∈ Vh, (3.2)

with θ(0) = θ0, the advection-diffusion-reaction bilinear form bh (2.6) and we

recall ℓh(v) in (2.10) for weakly non-homogeneous boundary conditions as:

ℓh(v) :=
∑
K∈T

(v, fh(t)) +
∑

F∈S D
h

(neκ(v, uD)F − (κ∇v · nF , uD)F )

−
∑

F∈S D
h ∩Γ−

(v, (β · nF )uD)F +
∑

F∈S N
h

(v, uN)F . (3.3)

We set fh(t) = πhf(t) ∀t ∈ [0, T ], where πh is the L2 projection onto Vh. Next,

we manipulate functions of the form (u(t)− v) in the space V∗h := H1(Ω) + Vh.

Thus, we can write an equivalent form of (3.2) in terms of the discrete differential

operator Bh : V∗h → Vh, such that, for all (u, v) ∈ V∗h × Vh,

(v,Bhu)0 := bh(v, u). (3.4)
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We use the discrete operator Bh to formulate the space semi-discrete problem (3.5)

in the form: for each t ∈ (0, T ], then

(v, ∂tθ(t))0 + (v,Bhθ(t))0 = ℓh(v) in ∀v ∈ Vh, (3.5)

with the initial condition θ(0) = πhu(0). We endow Vh with the norm:

∥v∥2Ṽ := ∥v∥2SWIP + ∥v∥2UPWc, (3.6)

and

∥v∥2V := ∥v∥2Ṽ +
∑
K∈T

β−1
c hK∥β · ∇v∥20, (3.7)

where the Symmetric Weighted Interior Penalty form (SWIP) from (2.13) and

coercive upwinding (UPWc) norms correspond to:

∥v∥2SWIP : = κ∥∇v∥20 +
∑
F∈Sh

neκ∥[[v]]∥0,F , (3.8)

and

∥v∥2UPWc := τ−1
c ∥v∥20 + 1

2
|β · nF |(v, v)0,Γ +

∑
F∈S 0

h

1
2
|β · nF |([[v]], [[v]])0,F .

Also, we define their corresponding extended norms (3.6) and (3.7) as follows:

∥v∥2Ṽ,∗ : = ∥v∥2Ṽ +
∑
K∈T

βc∥v∥20,Γ +
∑
K∈T

hKκ∥∇v · n∥20,Γ, (3.9)

∥v∥2V,∗ := ∥v∥2V +
∑
K∈T

βc

(
∥v∥20,Γ + h−1

K ∥v∥
2
0

)
+
∑
K∈T

hKκ∥∇v · n∥20,Γ. (3.10)

The discrete operator Bh has the following properties [Ern et al., 2009, § 3-4].

Theorem 1. (Discrete operator Bh properties)

1. Consistency: The exact solution u of (3.1) satisfies

∂tu(t) + Bhu(t) = ℓh(t) ∀t ∈ (0, T ].

2. Boundedness: A constant Cbnd <∞, independent of h & τ exists, such that:

(w,Bhv)0 ≤ Cbnd∥w∥Ṽ∥v∥Ṽ,∗ ∀(w, v) ∈ Vh × V∗
h.
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3. Discrete Coercivity: A constant Csta > 0 independent of h & τ exists, such

that:

(v,Bhv)0 ≥ Csta∥v∥2Ṽ ∀v ∈ Vh.

4. Discrete inf-sup stability: There is a constant C ′
sta > 0, such that:

C ′
sta∥v∥V ≤ sup

w∈Vh\{0}

bh(v, w)

∥w∥V
∀v ∈ Vh.

3.2.2 Backward Euler time discretisation

We first consider the Backward Euler method (BDF1) for time marching and

implement the second-order Backward differentiation formula (BDF2) in Sec-

tion 3.2.3. Herein, the ≲ symbol denotes less or equal to a mesh-independent

constant. We define τ := T/N as the time step, where T is the final time, and N

is a positive integer. We set τ ≤ min(T, τc). We use the following first-order

approximation of the time derivative:

δ
(1)
t vn+1 :=

vn+1 − vn

τ
∈ V ∀n ∈ 0, . . . N. (3.11)

Thus, the fully discrete problem becomes: for n = 0, · · · , n − 1, find θn+1 ∈ Vh,

such that

(vn+1, δ
(1)
t θn+1)0 + (vn+1, Bhθ

n+1)0 = (vn+1, ℓn+1
h )0 ∀vn+1 ∈ Vh, (3.12)

where θ0 = πhu0 and ℓn+1
h denotes the discrete linear form on V∗

h (2.10) at time

n+ 1. We define the discrete-in-time operator Bh,τ : V∗h → Vh, such that, for all

(w, u) ∈ Vh × V∗
h,

(w,Bh,τu) = bh,τ (w, u) := (w, u)0 + τbh(w, u). (3.13)

Thus, we rewrite problem (3.12) in terms of the new operator Bh,τ as:Given θn, find θn+1 ∈ Vh such that:

(v,Bh,τθ
n+1) = (v, ldGh )0 ∀v ∈ Vh,

(3.14)
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with

ldGh := θn + τℓn+1
h . (3.15)

We endow Vh with the time-step dependent norm and its extension, respectively:

∥w∥2τ̃ := ∥w∥20 + τ∥w∥2Ṽ ; ∥w∥2τ̃ ,∗ := ∥w∥20 + τ∥w∥2Ṽ,∗ (3.16)

and

∥w∥2τ := ∥w∥20 + τ∥w∥2V ; ∥w∥2τ,∗ := ∥w∥20 + τ∥w∥2V,∗. (3.17)

We establish discrete coercivity and boundedness of Bh,τ in terms of norms ∥w∥2τ̃
and ∥w∥2τ̃ ,∗ through the following lemma:

Lemma 2. The operator Bh,τ satisfies the following by discrete coercivity:

1. Discrete coercivity:

(v,Bh,τv) ≳ ∥v∥2τ̃ , ∀v ∈ Vh. (3.18)

2. Boundedness:

(v,Bh,τ (u− πhu)) ≲ ∥v∥τ̃∥u− πhu∥τ̃ ,∗, ∀(v, u) ∈ Vh × V∗h. (3.19)

Proof. Proof can be found in appendix A.1.

In a strong advection regime, we find a better constant based on inf-sup stability

in terms of norms ∥w∥2τ and ∥w∥2τ,∗ through the following lemma:

Lemma 3. The operator Bh,τ satisfies the following by the inf-sup condition:

1. Discrete inf-sup stability: There is a constant Cst > 0, such that

Cst∥v∥τ ≤ sup
w∈Vh\{0}

bh,τ (v, w)

∥w∥τ
, ∀ v ∈ Vh. (3.20)

2. Boundedness: There is a constant Cbd <∞, such that

(v,Bh,τu) ≤ Cbd∥v∥τ∥u∥τ,∗, ∀(v, u) ∈ Vh × V∗h. (3.21)

Proof. Proof can be found in appendix A.2.
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3.2.3 Second-Order Backward Differencing Formula

As above, we use the second-order backward differencing formula as a time march-

ing method to obtain a fully discrete solution,

δ
(2)
t vn+1 :=

3vn+1 − 4vn + vn−1

2τ
∈ V ∀n ∈ 1, . . . N. (3.22)

For n = 1, · · · , k − 1,find θn+1 ∈ Vh, such that

(vn+1, δ
(2)
t θn+1)0 + (vn+1, Bhθ

n+1)0 = (vn+1, ℓn+1
h )0 ∀vn+1 ∈ Vh, (3.23)

for this case, we redefine the discrete-in-time operator Bh,τ , as well as the bilinear

form bh,τ as: Bh,τ : V∗h → Vh, such that, for all (w, u) ∈ Vh × V∗
h,

(w,Bh,τu) = bh,τ (w, u) := (w, u)0 + 3
2
τbh(w, u). (3.24)

We now write problem (3.23) following the derivation of (3.14) with

ldGh := 2
3
τℓn+1

h + 4
3
θn − 1

3
θn−1 (3.25)

and a given initial condition θ0 = πhu0. We compute θ1, if necessary, with a

first-order method. This operator satisfies the stability properties described in

Section 3.2.2. Thus, updating (3.14) with the definitions (3.24) and (3.25), the op-

erator Bh,τ is well-posed.

Remark 2 (Relation with other time marching schemes.). This analysis can be

extended to encompass the one-parameter family of second-order time-marching

schemes defined by the generalised-α methods [Jansen et al., 2000; Behnoud-

far et al., 2020a] and other higher-order counterparts [Behnoudfar et al., 2020b,

2022]. In particular, BDF2 corresponds to the generalised-α method with ρ∞ = 0.

3.3 Fully Discrete Residual minimisation

We extend the method devised in Section 2.2 to address unsteady problems us-

ing the residual minimisation on dual discontinuous Galerkin norms to deliver a

stabilised discrete solution within a continuous space by minimising the residual

using a dual discontinuous norm at each time step. Thus, we choose Vh as a bro-

ken polynomial space described in (2.3) and V̄h as its H1-conforming subspace.
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Following the formulation (3.14) in Vh, we chose a trial conforming subspace

V̄h ⊂ Vh to solve the following residual minimisation problem:
Given un , find ūn+1 ∈ V̄h ⊂ Vh, such that:

ūn+1 = arg min
z∈V̄h

1

2
∥lh −Bh,τz∥2τ,∗

= arg min
z∈V̄h

1

2
∥R−1

τ (lh −Bh,τz)∥2τ ,

(3.26)

where u0 = πhu0 and lh is defined as lh := ūn + τℓn+1
h for BDF1 and lh :=

2
3
τℓn+1

h + 4
3
ūn − 1

3
ūn−1 for BDF2. R−1

τ denotes the inverse of the Riesz map:

Rτ : Vh → V∗
h

(v,Rτ ·)Vh×V∗
h

:= gτ (v, ·) ∀v ∈ Vh.
(3.27)

Problem (3.26) is equivalent to this saddle-point problem at every time step:
Given un, find (εn+1, ūn+1) ∈ Vh × V̄h, such that:

gτ (v, εn+1) + (v,Bh,τ ū
n+1) = (v, lh)0 ∀v ∈ Vh,

(z̄, Bh,τε
n+1) = 0, ∀z̄ ∈ V̄h,

(3.28)

where the residual representation function εn+1 is:

εn+1 := R−1
τ (lh −Bh,τ ) ∈ Vh. (3.29)

We write (3.28) in the dual space,
Given un, find (εn+1, ūn+1) ∈ V× V̄h, such that:

Rτε
n+1 + Bh,τ ū

n+1 = lh, in V∗
h,

Bh,τε
n+1
h = 0, in V̄∗

h.

(3.30)

Remark 3. Substituting the source term (ℓn+1
h ) from (3.14) into the first identity

in (3.30), we obtain, for BDF1, that:

Rτε
n+1 + Bh,τu

n+1 = un + Bh,τθ
n+1 − θn. (3.31)

Rearranging and defining the spatial error at time step n by ξn := θn − un;
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then, (3.31) implies that:

εn+1 = R−1
τ (Bh,τξ

n+1 − ξn). (3.32)

Or, equivalently, for the BDF2 implementation:

εn+1 = R−1
τ (Bh,τξ

n+1 − 4
3
ξn + 1

3
ξn−1).

Hence, we can alternatively define εn+1 as an error measure distance from the

continuous to discontinuous approximation at the n + 1 time step with the k

previous time-step spatial error contributions (for a k-order BDF method).

3.4 Variational multiscale reconstruction

Within the scope of discussion presented in Section 2.3, we extend the VMS

interpretation by focusing on the recovery of both the VMS fine-scale solution

and the adjoint multiscale reconstruction. We define the full-scale reconstruction

at each time step by using a direct sum decomposition, i.e., un+1 = ūn+1 + ũn+1,

where ūn+1 and ũn+1 are the coarse- and fine-scale solutions, respectively. The

fine-scale solution satisfies the following problem at each refinement level: Given εn+1, find ũn+1 ∈ Vh, such that:

bh,τ (v, ũn+1) = gτ (v, εn+1) ∀v ∈ Vh.
(3.33)

Similarly, we propose a heuristic fine-scale reconstruction, ǔ ∈ V′
h, that satisfies

the following residual-driven problem: Given εn+1, find ǔn+1 ∈ V′
h, such that:

bh,τ (v, ǔn+1) = gτ (v, εn+1) + bh,τ (εn+1, v) ∀v ∈ Vh.
(3.34)

The heuristic adjoint variational multiscale reconstruction at each time state as

ϕn+1 = ūn+1 + ǔn+1.

Remark 4. Since both the full-scale and the adjoint multiscale reconstructions

belong to the Vh space, we can use either of them as a better initial estimation

un in the saddle problem (3.28) for each iteration. This approach works as an
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improved dG-projection for the original continuous formulation.

3.5 Numerical examples

We present four numerical examples to demonstrate the performance properties

of our adaptive stabilised finite element method in handling unsteady problems.

First, we solve the heat equation, obtaining optimal space and time convergence

for uniform refinements. Next, we use the classic Eriksson-Johnson problem to

test the adaptive refinement strategy and its convergence in space for different

polynomial degrees and Péclet numbers. Besides, we show the improvement of

the post-processing VMS reconstruction. Finally, we test the stability in two

dimensions for the unsteady pure-advection problem where the mesh evolves in

time. Here, we compare the computational time of the stabilised finite element

method using adaptivity for a uniform mesh with the dG method. Since we

minimise the residual in the energy norm (τ), we focus on the spatial convergence

in this norm. We implement the iterative algorithm described in Bank et al.

[1989]; Calo et al. [2020b] to solve the resulting saddle point system (3.30).

3.5.1 Heat equation (2D)

We study the method’s performance by solving the 2D heat equation while refin-

ing the spatial domain uniformly. Although this case does not challenge classical

methods, it is a standard benchmark problem to test space and time convergences

of parabolic problems. Let the domain Ω be [0, 1]2; we consider the problem:

∂tu−∆u = f in Ω × (0, T ],

u = 0 on ΓD × (0, T ],

u(· , t = 0) = u0 in Ω,

(3.35)

with the initial condition:

u0 = sin(πx) sin(πy),

and the source term f that satisfies the exact solution:

u((x, y), t) = exp(−π2t) sin(πx) sin(πy).
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Figure 3.1: BDF1 spatial convergence using fixed time step and uniform meshes.

a) T = 0.1, τ = 0.001, p = 1 b) T = 1, τ = 0.001, p = 2

Figure 3.2: BDF2 spatial convergence using fixed time step and uniform meshes

We obtain the fully discrete problem by combining the SIP bilinear form (for

κ = 1) with the BDF1/BDF2 time marching schemes. We show the conver-

gence of linear and quadratic polynomials in space (Figures 3.1 and 3.2) and

time (Figure 3.3). We analyse the spatial convergence by computing the er-

rors ∥u − ū∥τ (in black), ∥u − θ∥τ (in blue), ∥θ − ū∥τ (in green) and ∥ε∥τ (in

red) for different mesh sizes (∆x). We denote ∆x equal to hK for uniform

meshes. We study the temporal convergence by studying how ∥u − ū∥0 varies

with the time step size τ for ∆x = 0.01. As a result, we recover space optimal-

ity for the continuous approximation (from dG formulation) and the first- and

second-order time convergence for BDF1 and BDF2, respectively. We show that
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a) T = 0.1,∆x = 0.01, p = 1 b)T = 1,∆x = 0.01, p = 2

Figure 3.3: Time convergence for backward Euler (BDF1) and BDF2 for a fixed mesh.

the saturation assumption in Calo et al. [2020b] holds in our formulation (i.e.,

∥u(T ) − θ(T )∥τ ≲ ∥u(T ) − ū(T )∥τ ) and the residual representation is efficient

until the error dominates (i.e., ∥ε∥τ ≲ ∥u(T ) − ū(T )∥τ in Calo et al. [2020b]).

Figure 3.2b shows that for p = 2 and a large number of degrees of freedom,

the temporal error is no longer negligible with respect to the spatial error; how-

ever, the error estimator continues decaying as it does not appropriately consider

the temporal error contribution.

3.5.2 Advection-diffusion problem

We complement the spatial convergence study of the previous example, us-

ing adaptive refinement for the unsteady advection-dominated Eriksson-Johnson

problem. Let the domain Ω be [0, 1]× [−0.5, 0.5]; we consider the exact solution

u((x, y), t) = exp(−lt)[exp(λ1x)− exp(λ2x)] + cos(πy) exp(s1x)−exp(r1x)
exp(−s1)−exp(−r1)

,

for f = 0 and l = 2, λ1,2 = −1±
√
1−4κl

−2κ
, r1 = 1+

√
1+4κ2π2

2κ
and s1 = 1−

√
1+4κ2π2

2κ
.

Here, we set β = [1, 0] and µ = 0 for different diffusion coefficient values. Based

on the exact solution, we apply Neumann boundary conditions at x = −1 and

t = 0; meanwhile, we impose Dirichlet boundary conditions at x = 0, y = −0.5

and y = 0.5 at time t = 0.

The problem’s main challenge is capturing the boundary layer, especially for

high Péclet numbers. Figure 3.4 shows how the error estimator drives spatial

adaptivity to smooth the regions with sharp gradients in each time step. Fig-
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Level 0 Level 3 Level 6

Figure 3.4: Mesh refinement τ = 0.005, T = 0.1, p = 1.

Figure 3.5: Spatial convergence for adaptive refinement (BDF1 : κ = 10−2,T = 0.1, τ = 0.005)

.

ures 3.5 and 3.6 present the decay rate in the energy norm (τ) for the errors

|uexa − ū|τ , |uexa − θ|τ , |uexa − u|τ , |uexa − ϕ|τ , and |εh|τ , as a function of the

square root of the total degrees of freedom (DoF 1/2). We show optimal spa-

tial convergence achieved using BDF1 and BDF2 time integrators for linear and

quadratic polynomial trial functions at T = 0.1 and τ = 0.005, even when the dif-

fusion coefficients vary. We verify that the fine-scale contribution ũ recovers the
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dG approximation θ (i.e., u ≈ θ ). Besides, we show that the adjoint multiscale

reconstruction (ϕ) improves the approximation compared to the full-scale (u) and

the dG (θ) solutions regardless of the polynomial degree and the time integrator

order (i.e BDF1 and BDF2). Figure 3.7 shows the evolution of our transient solu-

tion to the analytical steady-state Eriksson-Johnson problem. As for the uniform

refinement case, we preserve the efficiency of the residual representative and the

saturation assumptions for the adaptive steady-state case.

Figure 3.6: Energy norm convergence in space (τ) for adaptive refinement (BDF2: T = 0.1,
τ = 0.005). Left: κ = 10−2 for p=1,2. Right: κ = 10−3 for p=2. Bottom: κ = 10−4 for p=2

.

3.5.3 Rotating flow transporting a Gaussian profile

In this example, we analyse the performance of our method in a convective trans-

port problem with a localised disturbance; we test the adaptive algorithm when

the region of interest moves within the domain as time passes. Our algorithm

evolves the mesh using residual estimates without prior knowledge of the solution
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Time 0 Time 0.1 Time 0.5

Figure 3.7: Solution convergence to the steady Eriksson–Johnson solution.

evolution profile. We study the solution of a 2D convection-diffusion transport

by a rotating flow of a Gaussian profile. We set Ω = [−2, 2]2, T = π, β = [y,−x],

κ = 10−5, µ = 0 and f = 0, where the initial condition is

u0 = exp(−64(x− 0.5)2) exp(−64y2).

We impose Dirichlet boundary conditions from the exact solution:

u((x, y), t) =
1

1 + 256κt
exp

(
−64(x− 0.5 cos(t))2

1 + 256κt

)
exp

(
−64(y + 0.5 sin(t))2

1 + 256κt

)
.

Time 0 Time 0.6π Time π

Figure 3.8: Time evolution p = 1 (T = π, τ = π/512).
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Figure 3.8 shows the profiles of the solutions and the corresponding adaptively

refined meshes at different time steps, which demonstrate the continuous solution

stability and consistency with the physical phenomena, even for low diffusivities.

Moreover, the mesh refinement concentrates where the solution varies largely,

showing the robustness of the error estimator and the efficiency of the marking

strategy when adding new degrees of freedom. Regarding computational cost,

our stabilised finite element formulation using adaptivity is competitive with the

dG methodology using uniform refinement. Solving the saddle point formulation

requires an extra cost due to the additional degrees of freedom. However, adaptiv-

ity compensates for the excess due to the solution’s stability in coarse meshes and

the robustness of the error estimator. Figure 3.9 shows a comparison between the

total computational cost to solve with the adaptive stabilised method (blue line)

and the computational cost using a regular mesh in the dG method (red line).

Besides, the figure shows that the adaptivity can reduce the computational cost

by up to one order of magnitude to get a resolution of 1e-5 in the energy norm.

Figure 3.9: Computational cost [s] vs total degrees of freedom.
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3.6 Unsteady nonlinear systems

We evaluate the method’s performance by examining the solution of a nonlinear

diffusion-reaction equation. Consider the domain Ω = [0, 1]2 and let λ be a

positive real constant. We solve the unsteady Bratu problem that reads:
Find u such that, for T > 0,

∂tu = ∆u + λ exp(u) in Ω × (0, T ],

u = 0 on Γ × (0, T ],

u(·, t = 0) = u0(x) in Ω,

(3.36)

The 2D steady version of (3.36) has a branched solution for λ < λc (lower and

upper branches) and a unique solution at the critical point (λc ≈ 6.8081). The

lack of stable solutions in the upper branch and close to the critical point λc make

the problem challenging, leading to classical techniques converging only to the

stable lower branch. We test our method’s robustness, accuracy and performance

in this transient bifurcation problem; we compare the solutions obtained in (3.36)

when t→∞, with the 2D steady Bratu’s approach obtained in Cier et al. [2021b].

We formulate the space semi-discretisation of (3.36) as follows:{
Find θ ∈ Vh, such that:

(v, ∂tθ)0 + ηh(v; θ) = ℓh(v), ∀v ∈ Vh,
(3.37)

where ηh(v;u) denotes the nonlinear form, including the SWIP formulation

in (2.7) with a non-linear reactive contribution. We define it as:

ηh(v;u) :=
∑
K∈T

(∇v,∇u)K −
∑
K∈Sh

(v, λ exp(u))K

−
∑

F∈S ∂
h

(
([[v]], {∇u} · nF )F + ({∇v} · nF , [[uh]])F − neκ([[v]], [[u]])F

)
. (3.38)

For BDF1 time marching, we define the discrete-time nonlinear form as:

ηh,τ (v;u) := (v, u)K + τηh(v;u). (3.39)
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Thus, the full-discrete formulation for problem (3.36) is:Given θn, find θn+1 ∈ Vh such that:

ηh,τ (v; θn+1) = (v, ldGh )0 ∀v ∈ Vh,
(3.40)

with ldGh := θn + τℓn+1
h . We use a Newton–Raphson iteration scheme combined

with the residual minimisation strategy described in Section 3.3 to solve (3.40).

We seek a solution at every Newton step increment w for each time step n + 1

by using the linearised form:

η′h,τ (v, w;u) := (v, w)K + τ
(∑

K∈T

(∇v,∇w)K −
∑
K∈Sh

(v, λ exp(u)w)K

−
∑
F∈Sh

(
([[v]], {∇w} · nF )F + ({∇v} · nF , [[w]])F − neκ([[v]], [[w]])F

))
. (3.41)

Since (3.41) takes the form of a diffusion-reaction problem, we use a time-step

dependent norm (3.17), with the SWIP contribution to the Vh−norm, to minimise

the discrete residual of the linearised system. The norm ∥ · ∥τ is enforced with an

L2 contribution to measure the nonlinear reactive term. Starting with an initial

guess (εn+1
0 , un+1

0 ) and given (εn+1
i , ūn+1

i ), we find:
(δεn+1, δūn+1) ∈ Vh × V̄h, such that: ∀(v, z̄) ∈ Vh,×V̄h,

gτ (v, δεn+1) + η′τ (v, δūn+1; ūn+1
i ) = (v, lh)0 − gτ (v, εn+1

i )− ητ (v; ūn+1
i ),

η′τ (δεn+1, z̄; ūn+1
i ) = −η′τ (εn+1

i , z̄; ūn+1
i ).

(3.42)

ūn+1
i and εn+1

i are updated at every i-th increment as follows:

ūn+1
i+1 = ūn+1

i + kδūn+1, εn+1
i+1 = εn+1

i + kδεn+1,

where k denotes a relaxation parameter from the Damped Newton’s

method [Bank & Rose, 1981], and it is detailed to our formulation’s context

in Cier et al. [2021b]. For the time step n = 1, we set the initial guess

(εn+1
0 , ūn+1

0 ) = (0, uIG), where uIG varies depending on the solution branch we

want to capture. Here, we assume uIG equal to the initial solution (i.e., uIG = u0)

with u0 = 0 for the stable lower branch and u0 = uup for the upper branch. Since

the lower branch is stable, many different initial guesses converge to it; however,
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T

Figure 3.10: Bratu’s bifurcation diagram for T=1.0 and τ=0.1.

we only use one option. The unstable upper branch is more restrictive; therefore,

we follow Hajipour et al. [2018] and use:

uup(x, y) =
50(2 + λ)

λ
(x− x2)(y − y2).

Figures 3.10 and 3.11 display the two branch solutions we obtain with a time

step increment of τ = 0.1, an initial mesh consisting of 4x4 elements, and a final

time of T = 1.0. Figure 3.11 illustrates a time sequence for both lower and upper

solutions, ranging from t = 0 to t = T , at λ = 2. Figure 3.10 presents the classic

bifurcation diagram for Bratu’s problem by evaluating the maximum value umax
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Figure 3.11: Solution’s temporal evolution for λ = 2 for the lower and upper branches.

at time T for various λ values, ranging from 0 to λc. At this point, we ensure

a convergent solution over time to approach the problem’s steady state. Our

approach is robust and delivers an efficient refinement strategy that captures the

stable and unstable branches, even near the critical point (λc). We verify the

accuracy of the results by successfully comparing our bifurcation map at time T

with published steady-state results [Hajipour et al., 2018; Cier et al., 2021b].

Summing up, we propose an adaptive-stabilised finite element method based

on residual minimisation for unsteady advection-diffusion-reaction problems us-
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ing the method of lines. The method provides a stable solution and a robust

error representation to guide adaptivity at every discrete time. The method’s

performance for challenging linear and nonlinear problems is excellent deliver-

ing optimal spatial and temporal convergence by relying on an efficient adaptive

refinement strategy to capture sharp inner and boundary layers. The adaptive re-

finement process reduces the computational cost to solve the saddle-point problem

compared to the uniformly refined schemes on discontinuous Galerkin approxi-

mation. Next, we implement this framework to tackle the challenging unsteady

advection-dominated transport mineralisation described in (1.2).





Chapter 4

A paleo stratigraphic model with

anisotropic permeability for the

genesis of martite-goethite

iron-ore deposits

In this chapter, we present a genetic model to explain the mechanisms governing

the formation of the BIF supergene Martite-Goethite iron-ore deposits.1 Follow-

ing Ockham’s razor, the principle of parsimony that states that the preferred

explanation for a phenomenon is the one that requires the fewest elements or

assumptions. Accordingly, we reduce the supergene enrichment problem to a

transport process in a porous medium, controlled by the formation’s structure

and stratigraphy [Conliffe, 2016], with permeability as the main driving factor.

We ensure the reliability of our findings by using the numerical framework we in-

troduced in earlier chapters to solve the equation system. Our model accurately

reproduces mineralisation patterns in specific deposits, and we identify the paleo

water table level and permeability anisotropy ratio as the primary controlling pa-

rameters for mineralisation distribution. Our research raises important questions

about the volume of prospective mineralisation estimated previously and provides

insights into the physical processes and timing involved in iron enrichment.

1The content of this chapter is published in: T. Poulet, J.F. Giraldo, E. Ramanaidou, A.
Piechocka, & V.M. Calo [2023] The paleo-stratigraphic permeability anisotropy controls the
supergene mimetic martite goethite deposits. Basin Research, 35(2):572591.
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4.1 Permeability anisotropy

Addressing permeability anisotropy is a challenge that demands a thorough un-

derstanding of permeability across the entire domain of interest for accurate min-

eralisation phase modelling, which requires a detailed understanding of the spatial

variations in all elements of the permeability tensor while considering factors that

affect permeability, such as rock composition, geochemical transformations, and

stress conditions. In light of the uncertainties associated with the involved physi-

cal processes (see Chapter 1), their timing, and the spatial distribution of material

properties, we simplify the modelling approach by concentrating on strata geom-

etry, which we assume to play a critical role in the transport process. Anisotropy

within the permeability field is an intrinsic property of rocks, which exhibits a

strong correlation with bedding orientation in a basinal setting [Clavaud et al.,

2008]. The effects of anisotropy are frequently integrated into the sedimentary

basin models for petroleum [Dai et al., 2019] and geothermal [Panja et al., 2021]

applications; nevertheless, anisotropy has yet to be utilised in the formation of

iron-ore deposits, despite the evident heterogeneity of BIF strata (Figure 1.1).

The permeability tensor in sedimentary basins is usually characterised by its

horizontal and vertical components due to compaction, particularly in deeper lay-

ers. Conversely, in shallow regions, such as our supergene scenario, the principal

directions of the permeability tensor correspond to the stratigraphy in order to

capture the depositional history and, indirectly, the structural morphology. Con-

sequently, we delineate the permeability tensor through its longitudinal (parallel

to bedding) and transverse (perpendicular to bedding) components, with the ori-

entation of these components (designated as k∥ and k⊥, respectively) following

the strata throughout the domain of interest.

We assess our hypothesis in its most elementary form, assuming constant

permeability components for each geological unit and ignoring secondary vari-

ations from mechanical forces. We constrain the anisotropy ratio, r = k∥/k⊥

(see Figure 1.1), using field observations [Knight et al., 2018] and a cross sec-

tion through the Weeli Wolli anticline (Figure 4.1). We interpret the pattern of

martite-goethite mineralisation as a direct consequence of the fault displacement.

The mineralisation covers the whole thickness of the Marra Mamba iron forma-

tion above the fault of interest, but not in the lowest part of that same formation

below the fault, as the propagating fluid from above entered the shifted lower

segment. This mineralisation pattern suggests that lower fertility in the lower
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Fortescue 
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Figure 4.1: Simplified detail cross section of the Marra Mamba formation redrawn
from [Knight et al., 2018], schematically represented from the original data of [Kepert, 2018].
The mineralisation is covering the whole layer in parts but only some sub-layers in others.

Marra Mamba formation is unlikely to be responsible for the lack of enrichment

since that same zone is mineralised above the fault. Instead, the fault displace-

ment prevented fluid access in that lower zone [Perring et al., 2020, Figures 7

to 9]. We interpret the data to imply that the enrichment remained contained in

a given sublayer as evidence of high permeability anisotropy ratio r.

Following a continuum modelling approach, we describe the relevant material

properties as homogenized quantities per geological unit instead of considering

the individual contributions of all thinner layers. Since the inhomogeneity of the

layers occurs at multiple scales, depending on shale content and distribution for

instance, the spatial resolution of the model introduces a notion of length scale

threshold which is selected on a case-by-case basis. We ignore a priori the small-

scale distribution of thin sedimentary layers responsible for the strong anisotropy

as seen in Figure 1.1, until these layers become thick or important enough that

we must model them as separate units. (The determination of such a case will

be illustrated in Section 4.4.3).

4.2 Numerical simulation

Long-term ore mineralisation processes are complex and not well-understood [e.g.,

Angerer et al., 2014; Perring et al., 2020]. Many questions still exist about the

number of fluids involved and their nature, fluid-rock interactions, dissolution-
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precipitation reactions, in-situ mineral replacement, and their effects on porosity

and permeability evolution. Yet, the permeability anisotropy influences all these

aspects; thus, we naturally focus first on this aspect. We then us a single-process

model focused on fluid flow patterns’ sensitivity to permeability anisotropy.

We reduce the transport problem to its simplest form, assuming necessary

conditions for mineralisation are met. We classify rocks into two categories: (i)

BIF, allowing mineralisation through fluid contact, and (ii) the other rocks, where

fluid permeation does not cause mineralisation. We first propose a reasonable

paleo-reconstruction of a given deposit, imposing a fixed tracer concentration

in the model’s upper region and assume that fluid flow carries the tracer into

the domain based on the pressure head boundary conditions that simulate the

supergene processes by descending meteoric fluid.

Our model simulates fluid flow in fully saturated rocks, with the top repre-

senting the paleo water table level. Given the lack of reliable information on paleo

topography, unknown geological time, and hydrological data, we assume a con-

stant height for this water table (i.e., flat) for a specific deposit. We employ the

numerical framework of Chapters 2 and 3 to simulate the transport process char-

acterized by significant anisotropy and heterogeneity. The controlling factor is

permeability since we model the supergene mimetic substitution of BIF by trans-

porting of an inert fluid, which excludes any chemical reactions. Our numerical

stabilised formulation offers the advantage of handling considerable permeability

differences between the BIF and shale units, as well as permeability anisotropy

within these units. Moreover, our robust numerical formulation enables us to

initiate simulations with coarse meshes throughout the domain, allowing the so-

lution strategy to refine where needed for capturing essential solution features

without incurring the cost of using a highly detailed mesh everywhere.

In practice, we solve the numerical model in two steps using dimensionless

variables and parameters. First, we use the framework of Chapter 2 to simu-

late a steady-state, heterogeneous, and anisotropic diffusion problem to obtain

a pore pressure field (p) that drives Darcy flow transport. Next, we use the

unsteady extension in Chapter 3 to solve the transient pure advection problem

providing the concentration field (c). This concentration serves as an iron-ore

mineralisation proxy in our model. Although this approach is generic, we focus

on two-dimensional cross sections for concise insights into the physical processes

involved. We define two systems of equations as follows. Let Ω be a 2D real
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space, Γ its boundary. The hydraulic conductivity tensor, κ, includes local con-

tributions of longitudinal and transverse (scalar permeability) components κ∥ and

κ⊥ relative to the stratigraphic orientation:

κ := κ⊥(ns ⊗ ns) + κ∥(I− (ns ⊗ ns)), (4.1)

where ns is the stratigraphy’s unit normal vector and I the identity tensor. The

longitudinal and transverse components vary spatially. Following our simplifica-

tion approach, we divide the domain into regions with similar permeability values

and assume constant values per region, ideally using a single region. Thus, we

express the hydraulic problem as:

−∇ · (κ · ∇p) = 0 in Ω,

p = 0 on ΓD1,

q · n = hN on ΓN1,

(4.2)

where p denotes the pressure field and q the Darcy flux, such that q = κ∇p.

ΓD1 and ΓN1 represent the domain boundaries with constant pressure and flow

boundary conditions, respectively. We express the transient transport problem

for any instant t in (0, tF ] as:

∂tc + q · ∇c = 0 in Ω× (0, tF ],

c = gD on ΓD2 × (0, tF ],

c(· , t = 0) = 0 in Ω,

(4.3)

where ΓD2 denotes the domain boundary with constant tracer values as boundary

conditions. Our initial unstructured meshes conform to large-scale stratigraphic

features, utilizing a constant local rotated diffusion tensor, calculating ns at each

element’s centroid in the domain. We use an implicit BDF2 time marching for

the unsteady tracer transport problem, an arbitrary final time (tF ), and time

increments to match patterns across all cases.

We define hydraulic boundary conditions to represent the density-driven flow

from descending heavier meteoric fluid, in line with the supergene nature of tar-

geted deposits, without assuming fluid composition. We use a Neumann boundary

condition dependent on strata orientation: hN = (κ · ρg) · n, where ρ represents

the density of the strata, and g denotes the gravitational force. For horizontal
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stratigraphy, inflow at the top is proportional to the transverse component (κ⊥);

for vertical, it’s proportional to the longitudinal component (κ∥). We impose this

condition on all boundaries except the bottom, where we set a pressure condition

for a unique solution. Boundary conditions dictate flow patterns, and geometric

buffers may be added to prevent distortion pollution. For the transient inert

tracer problem, we apply homogeneous Dirichlet boundary conditions: zero on

all boundaries except the top, where the concentration value is one to simulate

mineralisation influx from incoming fluid.

4.3 Preprocessing

Reconstructing the geological cross section of Figure 1.2 at the time of miner-

alisation requires reconstructing various geological features such as topography

and strata properties. The height of the paleo water table is the parameter that

determines the boundary condition for pore pressure at the top. We consider

this parameter as a degree of freedom and use simulation results to determine its

value by matching observations; that is, we use a simple inversion process where

we match the pattern in a small region by setting appropriate paleo water values

and allow the flow in the remainder of the region to evolve given this match. We

simulate using a mesh that incorporates the large-scale orientation of the strata

in the paleo cross section. In this reconstruction process, we extend the top of

the model’s geometry to account for potential erosion effects and simplify it with

a flat water table profile.

We describe the existing geological cross section using isovalues of an implicit

function (potential field) that follows the strata. The gradient of the implicit

function provides directional information, which allows us to construct a local per-

meability tensor using longitudinal and transverse components (see Section 4.1).

We extrapolate this information to the upper part of the model, extending the

geometric boundaries to align with geological expectations. We utilize the Loop-

Structural [Grose et al., 2021] software for implicit modelling and generate the

implicit function using generalized radial basis interpolation. The actual values

of the potential field are arbitrary, as only the direction of the gradient matters.

As we describe in the previous chapters, the automatic refinement feature

of our numerical framework addresses permeability variations among distinct

geological units like shale and BIF. However, due to software constraints, the
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Figure 4.2: Input potential field (top) and mesh (bottom) to the supergene mineralisation
model. We generate them from the digitised points (red, top figure) representing the strati-
graphic layers, either as isopotential values or geometrical boundaries, using respectively Loop-
Structural and gmsh programmatically.

implicit function can only be exported on uniform grids. As a result, we use

the gmsh meshing package [Geuzaine & Remacle, 2009] separately to create the

initial coarse mesh Figure 4.2. We define the different regions using digitised

points that outline the geological units and contribute to the implicit function.

Using two separate tools can sometimes result in imperfect alignment between

mesh region boundaries and the implicit function, necessitating finer meshes near

stratigraphic lines to minimise the difference between the spline interpolation of

gmsh and the radial basis interpolation of SurfE.

The position of the model’s top is especially significant for boundary condi-

tions (refer to Section 4.2). As we initially solve a pore pressure equilibration

problem, the top surface symbolises the paleo water table during mineralisation.

In the absence of specific constraints, we opt for flat top surfaces in all cases. The

modelling method outlined in this section simplifies the intricate physical process

of iron-ore enrichment into a basic transport component with only two adjustable

parameters: the elevation, a, of the paleo water table and the anisotropy ratio,

r, of permeability. In short, the modelling approach we describe in this section

reduces the complex physical process of iron-ore enrichment to a simplistic trans-

port component with only two free parameters: the altitude, a, of the paleo water

table and the anisotropy ratio, r, of permeability.
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4.4 Results

We model three scenarios from published cross sections involving separate struc-

tural domains in the Hamersley Basin, using the methodology previously men-

tioned. These applications demonstrate the influence of stratigraphy on miner-

alisation, irrespective of the structure . The data we employ is accessible to the

public, derived from either deposit-scale drilling data (Section 4.4.1 and 4.4.3) or

schematic interpretation (Section 4.4.2).

Figure 4.3: Snapshots, respectively shown from (a) to (d), of cropped tracer distribution for
paleo water table altitude a = 680m at t = t1 < t2 < t3 < t4 during a simulation, highlighting
the propagation from the paleo water table (top of the model) and following the strata.

4.4.1 Brockman Syncline deposit

The anticline separating the two mineralised regions on the northern side of the

cross section of Figure 1.2 is the most interesting feature of the scenario. We

hypothesise that the interaction between this geological feature and strata per-

meability anisotropy leads to the separation of mineralised zones. We test this

hypothesis by conducting simulations with different paleo water table heights,

using constant permeability values in the BIF and shale regions. We describe
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the transport process using a dimensionless form for simplicity, and normalise

the permeability values to the longitudinal permeability value in the BIF (i.e.,

kBIF
∥ = 1, while the other values are relative factors). We set kBIF

⊥ = 1
r

= 1
10

and

kshale
∥ = kshale

⊥ = 1
3000

. The low permeability value in the shales imply that the

anisotropy parameter is irrelevant since the flow in them is negligible.

The simulations run until the southernmost mineralised area reaches a depth

similar to that portrayed in Figure 1.2, with Figure 4.3 showing an example

time sequence observed. The distribution is uneven before the tracer reaches the

current topography due to the magnitude of the top influx depending on strata

orientation. The top boundary position significantly impacts the results, with a

paleo water table level of a ≈ 680m best matches the observations with the area

covered by the simulated tracer as a mineralisation proxy. Figure 4.4 shows a qual-

itative match for three main mineralisation zones, with the largest discrepancy

in the modeled northernmost area’s depth (right-hand side of Figure 4.4). Next,

we address this discrepancy by introducing a slightly modification of the assumed

permeability values (keeping the anisotropy ratio fixed) in the stratigraphic layer

above the dolerite sill, even though it forms part of the same geological unit below

the sill. Figure 4.5 shows the corresponding plot for a run where the permeability

is reduced by a factor 2 in those upper BIF layers.

Figure 4.4: Tracer distribution for paleo water table altitude a = 680m, superimposed over
Figure 1.2, using a single set of longitudinal and transverse permeability values in all BIF areas.
We define mineralisation by proxy in the area, shaded in red, where the tracer concentration
exceeds 20% of the maximal input.

In our simplified model, only two key variables significantly influence the re-

sults: the paleo water table head a and the permeability anisotropy ratio r. We

first show the sensitivity to the paleo water table level a in Figure 4.6, comparing

Figure 4.5 with simulations run at a = 650m, 680m, 700m, and 750m. The best

visual assessment of fit quality between all models and the reference is supported
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Figure 4.5: Decreased permeability above dolerite sill; (a) flow vectors and final mesh after
automatic refinement for hydraulic pressure computation; colours display model’s arbitrary
partition regions highlighting stratigraphy; (b) tracer concentration and mesh after automatic
refinement for the final transient transport; (c) tracer concentration, cropped and superimposed
over geological cross section for comparison, showing the mineralised areas in orange below the
existing topography and in pink in the paleo-reconstruction. The orange colour enhances the
visual contrast between the simulation results and the reference geological cross section.

a value (m) Precision (-) Recall (-) F1 score (-)
650 0.609 0.896 0.725
680 0.874 0.829 0.851
700 0.870 0.790 0.828
750 0.909 0.769 0.833

Table 4.1: Quantifying simulation results fit for the parameter sensitivity analysis of the paleo
water table level a, Figure 4.6 shows. Appendix B defines Precision, Recall and F1 score.

by quantitative measures in Appendix B (table 4.1). Simulations show that if

the paleo water table level is too low (a = 650m), the two northernmost miner-
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Figure 4.6: Sensitivity analysis for water table level a, showing tracer results for a = 650,
680, 700 and 750m.

alisation areas are inaccurately connected (figure’s right hand side). In contrast,

if it is too high (a = 750m), the two mineralisation zones are separate but the

northernmost one is misplaced. These findings reveal the monotonic effect of a,

suggesting an optimal value around 680m. The simulation results for a = 680m

and 700m are almost identical in most areas, yet the minor but noticeable differ-

ences indicate a significant sensitivity of parameter a due to the differing location

and width of the northernmost mineralisation area.

r value (-) Precision (-) Recall (-) F1 score (-)
1 0.758 0.773 0.765
20 0.874 0.829 0.851
100 0.815 0.850 0.832

Table 4.2: Quantifying simulation results fit for the parameter sensitivity analysis of the
anisotropy ratio r. Appendix B defines Precision, Recall and F1 score.

Lastly, we analyse the sensitivity of the second parameter by comparing tracer

concentration distributions generated with three different permeability anisotropy
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Figure 4.7: Permeability anisotropy r sensitivity, tracer results for BIF ratios r = 1, 20, 100,
while other parameters remain unchanged, superimposed over the geological cross section.

ratio r values (Figure 4.7) at a = 680m. The corresponding quantitative fits can

be found in table 4.2. As r decreases, permeability becomes less anisotropic, re-

sulting in smoother tracer fronts, as demonstrated by the isotropic case (r = 1).

The propagation front still exhibits spatial variations due to flow boundary con-

ditions on the top surface. Patterns for higher r values deviate from observations,

as the r = 100 case indicates with less regular fronts. Despite the order of mag-

nitude difference between r = 1, 20, 100 values, the variations are not especially

pronounced, suggesting that the model is less sensitive to parameter r. Thus,

this simple model captures to first-order the mineralisation patterns; next, we

test the approach further in another scenario.

4.4.2 Marandoo deposit

Section 4.4.1 shows the influence of paleo stratigraphic control on permeability

orientation for supergene deposits and underscores the significance of geometric

arrangements of favorable geological layers like the Marra Mamba and Brockman

Iron Formations. Considering this, we reevaluate Morris [1982] interpretation of

the Marandoo ore body’s origin. Morris suggested a highly schematic model,

which we reproduce in Figure 4.8a. Since the observed mineralisation is limited

to the upper part of the Marra Mamba Iron Formation, Morris’ original interpre-
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Figure 4.8: Marandoo scenario from [Morris, 1982], 1.5x vertical exaggeration. (a) Redrawn
version of the original, with observed and inferred mineralisation areas marked, and (b) new
proposed model, only altering the geometrical configuration of the Marra Mamba formation
around the paleo-topography at the southern end of the cross section to add an extra undulation,
as Morris suggested elsewhere on the same figure.

tation extended the same configuration to the paleo reconstruction, leaving the

lower part of that unit unmineralised. While the different compositions of geo-

logical sublayers might explain this, other areas of the lowest Marra Mamba unit

are mineralised [Clout, 2006; Angerer et al., 2014]. This observation warrants re-

evaluating the Marandoo scenario from a different perspective to determine if a

combination of geometry and permeability distributions could explain the obser-

vations without needing to introduce differences in material properties within the

Marra Mamba Iron Formation itself. Consequently, we adjust the reconstruction

on the southern part of the cross section (see Figure 4.8b) by exposing the Marra

Mamba Iron Formation at the paleo-surface over a broader area with a low-angle

intersection between that formation and the top surface. We assume the en-

tire Marra Mamba unit can host mineralisation, with longitudinal and transverse

permeability values kBIF∥ = 1 and kBIF⊥ = 1
50

.

In contrast, we assume the other units behave like shale with very low perme-

ability, kshale = 1
10,000

to minimise the flow in those areas which are not of interest

(including the Brockman Iron Formation in that example). This setup leads to

the simulation results shown in Figure 4.9. These results validate our hypothesis
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Figure 4.9: Simulation results from initial configuration of Figure 4.8b; mineralisation pattern
below current topography is restricted to the upper part of the Marra Mamba Iron Formation
and matches therefore observations (see Figure 4.8a). Note, however, the main difference with
Figure 4.8a above current topography, where mineralisation covers most of the unit.

that the observed mineralisation pattern occurs without extra assumptions re-

garding the sublayer’s fertility for this particular paleo reconstruction. Moreover,

we introduce a critical conceptual difference from Morris’ interpretation in the

Marra Mamba as we conclude that fully mineralised regions may have eroded

since then. Finally, the third example extends this scenario to several layers that

can potentially host mineralisation.

4.4.3 South Flank deposit

The South Flank deposit in the Hamersley Province has a considerably more

complex structure, as described by [Perring et al., 2020]. The hydraulic proper-

ties of thrusts in that deposit make explaining the mineralisation patterns more

challenging; in fact, a three-dimensional reconstruction might be necessary to

clarify certain aspects. Nevertheless, we demonstrate that the simplified frame-

work of Section 4.2 can describe a subset of the mineralisation patterns detailed

by [Perring et al., 2020], which we replicate in Figure 4.10, in order to draw new

conclusions. The data from Perring et al. [2020] is insufficient to reconstruct the

paleo-stratigraphy of the deposit as accurately as in Section 4.4.1. Therefore, we

propose a conceptual reconstruction that explicitly highlights what we suggest to

be the primary driver of the first-order mineralisation pattern: a fold hinge to the

north causing the stratigraphy to interact with the paleo topography at a low an-

gle. Extending the bedding upwards at an approximate constant dip would lead

to mineralisation in all favourable units, including Newman1 formation where no

mineralisation is actually observed.

We test our scenario numerically to determine if this feature is adequate to

explain why the mineralisation is limited to only a subset of the potential layers.

Lacking available constraints, we assume all units from West Angela 1 downwards
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Figure 4.10: Model of a section of the South Flank deposit, redrawn from [Perring et al., 2020],
showing localized mineralisation mainly within three geological units. The dashed line indicates
the upper part of West Angela 2, above which we do not capture the stratigraphy since not
relevant for this example. We extrapolate the stratigraphic model above the current topography
to suggest an interpreted configuration that could be responsible for the observations.

have the same anisotropic permeability, characterized by constant longitudinal

and transverse components, kBIF∥ = 1 and kBIF⊥ = 1
50

. We also lower the

permeability components of the West Angela 2 unit by an order of magnitude to

reflect its higher shale content compared to the mineralised formations [Simonson

et al., 1993; Knight et al., 2018]. The geometric approximation of that layer does

not influence the results given the overprinting by other units in the current cross

section [see Perring et al., 2020, Figure 8b]. We add an artificial shale layer

above West Angela 2 with low permeability kshale = 1
3,000

to reduce that area’s

impact.

Figure 4.11a shows that a flattened stratigraphy at the paleo-topographic

surface level, combined with strong permeability anisotropy, can account for the

restricted mineralisation primarily in the Newman 2, Newman 3, and West An-

gela 1 formations. The lower permeability of West Angela 2 limits the fluid

progression, keeping the mineralisation above the current topographic level. Fur-

thermore, the low transverse permeability and the model’s top-layer geometry

constrain the mineralisation below those three layers. However, the length of

the mineralised areas along the units implies a relatively long transport time,

during which the fluid propagates deeper than the Newman 2 formation towards

the top of the model. These results also offer alternative interpretations. The

V-shaped tongue, representing the thinning of the mineralisation pattern at its

front, is due to the longitudinal and transverse permeability ratio r, which al-

lows a progressively thicker inflow of mineralising fluid at the model’s top over
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Figure 4.11: Two tracer concentrations scenarios, see Figure 4.10. (a) Geological units from
West Angela 1 downwards have the same anisotropic permeability. (b) Thin shale layers added
at interfaces between West Angela 1, Newman 3, Newman 2 and Newman 1 sub-units.

time through the non-zero transverse permeability component. This flow then

propagates faster along the stratigraphic layers, creating a V pattern where the

angle/opening of the V front depends on r.

By increasing the anisotropy ratio r, we can match the overall mineralisation

pattern in Figure 4.10. Thus, the mineralising fluids would not propagate below

the Newman 2 formation at the top of the model when they have reached their

final position laterally. However, this method requires an unreasonably large

value of r, resulting in a single tongue tip on the propagation front. Observations

reveal three tongues (see Figure 4.10), suggesting the presence of at least two

low-permeability layers directing fluid propagation parallel to the bedding (see

Newman 2 region in Figure 4.10). Therefore, we introduce a thin permeability

layer at each interface between the West Angela 1, Newman 3, Newman 2, and

Newman 1 sub-units to demonstrate the role of these channelling aquitards. We

decrease the permeability in these thin aquitards by two orders of magnitude and

arbitrarily set their thickness to 1m. The results in Figure 4.11b qualitatively

align with the observations in Figure 4.10.

4.5 Discussion

The paleo stratigraphic permeability anisotropy generates fluid flow patterns that

match mineralisation areas in the supergene mimetic iron-ore deposits. The dis-

continuous mineralisation observed in the upper and lower BIF of the Brockman

Syncline deposit scenario (Section 4.4.1), as well as within the upper BIF it-

self, suggests that a single fluid event is responsible for the concurrent supergene
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Figure 4.12: Analogy with fluid pipes to highlight the conceptual effect of paleo water table
level given a particular stratigraphic geometry and strong permeability anisotropy. The scenario
at the centre leads to visible mineralisation (i.e., below topography) only in one part of the
model, whereas the other scenarios do not allow for it.

mimetic enrichments of all BIF. These results, derived solely from non-reactive

fluid flow in a 2D cross section, emphasise the effectiveness of a simplified model

in analysing a single aspect of an otherwise highly complex physical process.

By excluding most physical processes, our modelling framework reduces the un-

knowns to two parameters—paleo water table level and permeability anisotropy

ratio. This approach captures the core aspects of supergene mimetic ore forma-

tion; these examples do not confirm our genetic model, they adequately explain

most observed features, reinforcing the supergene origin of the selected deposits.

Additionally, the framework can evaluate other deposits’ nature and allow us to

infer new constraints on the genetic model without further assumptions. Thus,

using only uncalibrated absolute permeability values for a transport problem, our

model can help interpret numerous complex real physical processes.

A schematic analogy using fluid pipes that mimic a case of infinite anisotropy

ratio, where fluid is confined within the strata, can help illustrate the impact of

paleo water level on mineralisation (Figure 4.12). This conceptual approach offers

an intuitive understanding of how strata geometry and paleo water table levels

influence the resulting mineralisation patterns (below the current water topog-

raphy), resulting in either identical mineralisation in both pipes (Figures 4.12a

and c) or distinct mineralisation (Figure 4.12b). The latter configuration is par-

ticularly fitting for the Marandoo deposit (Section 4.4.2) and demonstrates that

considering lithological differences between sub-units is not always necessary to

explain selective mineralisation. A similar schematic approach applies to the

mineralisation of the Brockman Syncline deposit (Section 4.4.1 and Figure 4.13).

A water table positioned 180-200m above its current level is necessary for

the M-G mineralisation (see Section 4.4.1) and aligns with known climatic con-

ditions featuring increased rainfall during the Paleocene/Eocene period 66-34Ma
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Figure 4.13: Schematic drawing of reconstructed strata for the scenario of Section 4.4.1, to
highlight the role of the paleo water table (horizontal dashed line) as top boundary condition
for the fluid flow (black arrows), whose direction and intensity is strongly affected by the strata
orientation and anisotropy coefficient.

[U/Th/He dating, e.g., Vasconcelos et al., 2013]. The accuracy of the modelling

results relies on the reliability of the reconstructed stratigraphy, particularly at

the model’s borders where boundary conditions are enforced. Besides the fact

that the predictive ability declines rapidly with the extrapolation distance from

the current stratigraphy, it is remarkable how non-horizontal layers supply the

necessary information to overcome approximately 200m of erosion with sufficient

precision to capture inherent mineralisation patterns. This offers considerable

potential for those interested in paleo-reconstruction and timing of supergene

deposits in general [e.g., Sanchez et al., 2017].

Our framework’s strength lies in its simplicity and flexibility. As shown pre-

viously, the geometric configuration of the prospective geological layers, such as

the Marra Mamba and Brockman iron formations, determines the mineralisation

patterns without distinguishing between the units. This prompts a shift in focus

from lithology to strata configuration and a reevaluation of dating studies involv-

ing these units with this new perspective of a single fluid flow event across all

layers. We re-examine Morris’s interpretation of the Marandoo ore body’s origin,

demonstrating that a combination of geometric configurations and strong perme-

ability anisotropy can account for the current structure while acknowledging that

mineralisation can occur in the lower part of the Marra Mamba, consistent with

other observations. By slightly adjusting Morris’s Marandoo reconstruction on

the southern portion of the cross section, we achieve similar mineralisation dis-

tributions but with a notable conceptual difference. The mineralisation pattern

could potentially arise solely from permeability anisotropy and the configuration

of the exposed area during mineralisation (Figure 4.9). While matching current
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observations, this scenario presents an alternative interpretation: we predict dou-

ble the potential mineralisation volume in the paleo reconstructed zone, a crucial

factor for any analysis focusing on prospectivity and iron-ore mass budgets. A

similar conclusion can be drawn from the Brockman syncline (Figure 4.5), where

vast mineralised areas were arguably eroded just above barren or low mineral-

isation zones. The chosen three deposit locations from different structural do-

mains in the Hamersley Basin demonstrate that permeability anisotropy controls

mineralisation, putting existing discussions about the influence of structure into

perspective, especially in the context of mineral exploration. These results show

that permeability orientation during mineralisation is more important than the

structural history responsible for that configuration.

Herein, we only consider 2D cross sections, but this does not negate the crucial

role of 3D effects in potentially controlling mineralisation. Limiting ourselves to

2D was a design choice rather than a methodological limitation, as we could illus-

trate our points without adding extra complexity. Incorporating 3D features in

the geometry might change the flow patterns but would necessitate more observa-

tions. Likewise, our emphasis on permeability anisotropy alone does not disregard

the importance of other physical processes, coupling feedbacks, or spatial vari-

ations of the paleo water table and material parameters. In particular, forward

stratigraphic modelling [e.g., Barabasch et al., 2018] or more specific analyses

involving diagenesis [Mangenot et al., 2019] could provide additional valuable

information on stratigraphy and permeability. While these refinements may en-

hance our predictions, introducing unconstrained new parameters might weaken

our approach. The most significant outcome of this study is the first-order match

of observations by our simulations without assuming ad hoc parametrisations of

those factors. Our framework’s extreme simplicity allows us to draw meaning-

ful conclusions by focusing on a single aspect of the problem: the permeability

anisotropy resulting from the paleo-stratigraphic orientation. This approach is

especially effective for gaining insights in complex situations.

Our numerical framework can readily handle 3D scenarios, even though the

computational cost increases (see Chapters 2 and 3). Similarly, the methodology

can address various complex modelling features, like discontinuities around faults.

The combined power of the modelling and simulation frameworks opens new av-

enues for investigating the relative timing of structural evolution concerning the

last fluid flow component responsible for mineralisation. Lastly, while we only
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discuss the transport component to minimise the number of parameters involved,

the methodology allows for further physical complexity to test other aspects of the

iron-ore enrichment process. Drawing upon our numerical framework’s results,

we anticipate the potential to tackle more complex supergene mineralisation pro-

cesses by incorporating explicit chemistry. This modification would introduce

non-linear terms into our framework, a challenge we have shown our capability to

manage (see sections 2.5 and 3.6). This strategy is promising for reactive systems

where non-linearity arises from chemical reactions, as observed in genetic models

such as weathering or electrochemical processes.
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Conclusions and research

perspectives

5.1 Concluding Remarks

This work studies the genetic model that explains the mechanism governing the

genesis of the (Banded Iron Formations) BIF supergene martite-goethite ore de-

posits using a robust computational framework we construct. Our research has

substantially advanced the understanding of the role of paleo-stratigraphic per-

meability anisotropy in controlling mineralisation patterns within these geological

formations. We use a simplified flow model to implicitly represent strata with a

potential function, which accurately orients the permeability tensor from a pa-

leo reconstruction of the relevant geological features, including topography and

strata properties. The model regulates the supergene enrichment transport pro-

cess and distribution patterns of mineralisation by the permeability anisotropy of

the paleo-stratigraphy. Building on the anisotropy that the strata deposition in-

duces on the sedimentary layers, our model allows for greater permeability along

the strata than across them.

The first part of this thesis presents a stabilised finite element method based

on residual minimisation on dual norms and reinterprets the method using a

variational multiscale approach to improve the solution’s accuracy. This method

obtains a coarse-scale approximation by minimising the residual on a dual discon-

tinuous Galerkin norm and derives fine-scale approximations using the variational

multiscale framework. This framework allows the model to handle sharp perme-

ability changes, avoiding ill-defined stabilisation terms in the variational formula-

83
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tion and reducing the computational effort using an optimal adaptive refinement

scheme. The work covered the steady and unsteady advection-dominated diffu-

sion equations, as well as some nonlinear extensions.

The second part of this thesis uses this robust numerical framework to con-

strain the relative timing of mineralisation within well-established BIF deposits

from existing literature and reinforce our approach’s validity. The critical out-

comes of our study are as follows:

• We developed a theoretical model to understand iron-ore genesis in BIF.

This model attributes the mineralisation patterns within these formations

predominantly to paleo-stratigraphic permeability anisotropy, enhancing

our comprehension of these processes.

• We postulate that the supergene mimetic mineralisation in various geolog-

ical members stems from a singular fluid flow event. This highlights the

pivotal role of transport processes over chemical effects in dictating miner-

alisation patterns in these formations.

• We successfully demonstrated the efficiency of a robust numerical frame-

work for studying Martite-Goethite iron-ore formation scenarios. Our ap-

proach applies to steady and unsteady problems encountered in BIF de-

posits, providing a novel perspective on these geological formations.

• By employing a numerical modelling approach, we managed to delineate the

relative timing of mineralisation, particularly to the paleo water table level

and anisotropy ratio. Comparing the predictions of our model with well-

documented BIF deposits from existing literature, we have reinforced the

validity of our methodology. This understanding broadens our knowledge of

how these variables (paleo water table level and anisotropy ratio) influence

the mineralisation process.

In numerical analysis, our study made several significant contributions:

• We developed an automated, stabilised finite element method specifically for

unsteady, diffusion-advection-reaction problems. Rooted in the principles

of residual minimisation and the method of lines, this method ensures stable

solutions and robust error representation. The versatility and robustness of

our approach have enabled its application to a broad range of challenging
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problems, including those characterised by high heterogeneity and strong

anisotropic diffusion tensors, as well as those dominated by advection.

• We utilised the variational multiscale approach as an effective post-

processing tool, which allowed us derive a fine-scale approximation from a

reinterpretation of a residual projection. This methodology delivers stable

coarse- and fine-scale solutions from a symmetric saddle-point formulation.

We also introduced a heuristic duality-inspired post-processing approach

to enhance the variational form, improving the full-scale approximation for

symmetric formulations such as the diffusion problem.

• Our adaptive-stabilised method handles different linear and nonlinear prob-

lems, reaching ideal spatial and temporal convergence. This method may

help us deal with more complex supergene mineralisation processes through

the inclusion of explicit chemistry. This approach could be useful for reac-

tive systems, where non-linearity comes from chemical reactions, as seen in

genetic models like weathering or electrochemical processes.

• The adaptive refinement process of our method can effectively reduce the

computational cost required to solve the saddle-point problem resulting

from residual minimisation. This technique demonstrated improvements

in computational cost for different localised discontinuities compared to

uniformly refined schemes based on discontinuous Galerkin approximation.

5.2 Research Outlook

The research conducted in this study lays a strong foundation for future investi-

gations. There are several directions in which this research can be extended:

• Additional experimental and field studies are needed to better understand

the permeability anisotropy in rocks at various stages of mineralisation.

Such studies will further refine our understanding of the mineralisation pro-

cesses and provide more sophisticated tools for mineral exploration.

• The generic nature of our fluid flow simulations suggests the potential for

broader application. The conceptual simplification and modelling compo-

nents could be extended to a more comprehensive range of commodities

in sedimentary basins that involve a supergene component like porphyry,
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epithermal and strata-bound deposits in general, all around the world. Be-

sides, our research could be expanded to more complex and realistic 3D

geological settings and commodities.

• The introduction of our stabilised finite element method opens up possibili-

ties for more advancements in numerical analysis. This method is applicable

to a wide variety of problems, such as those found in aerospace or environ-

mental engineering, bio-medicine, and other fields. This could make it more

useful and reliable for a broader range of applications.

Our methodology, proven effective for identifying enriched mineralisation

zones for iron ore, is a valuable tool in practical scenarios, including for mineral

exploration of other commodities globally. By precisely predicting mineral loca-

tions, it holds the potential to trim exploration costs and mitigate environmental

impacts. The possibility of applying our methodology across various sectors in the

extraction and manufacturing industries further elevates its utility. Our research

improved the community’s understanding of mineralisation processes and strati-

graphic permeability anisotropy while enhancing numerical analysis methodolo-

gies. With ongoing advancements in computational power and modelling com-

plexity, we look forward to refining our understanding and improving prediction

accuracy.
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Appendix A

Proof. Discrete coercivity and

inf-sup condition for Bh,τ

A.1 Discrete coercivity

Proof. (I) The operator Bh,τ satisfies discrete coercivity (1); then,

(v,Bh,τv) = (v, v + τBhv) ≥ ∥v∥20 + Cstaτ∥v∥2Ṽ . (A.1)

Therefore,

(v,Bh,τv) ≥ ∥v∥20 + Cstaτ∥v∥2Ṽ ≥ min(1, Csta)∥v∥2τ̃ , (A.2)

thereby proving 3.18.

(II) Using the Cauchy-Schwartz inequality for the first term, and implementing

the coercivity for the operator Bh, we obtain that, for all (v, w) ∈ Vh × V∗:

(v,Bh,τw) := (v, w + τBhw) ≤ ∥v∥0∥w∥0 + τ(v,Bhw)0, (A.3)

(v,Bh,τw) ≤ ∥v∥0∥w∥0 + τCbnd∥v∥Ṽ∥w∥Ṽ,∗ ≤ ∥v∥0∥w∥0 + Cbnd

√
τ∥v∥Ṽ

√
τ∥w∥Ṽ,∗.

(A.4)

Using ∥w∥τ̃ ,∗ ≥ ∥w∥0 and ∥v∥τ̃ ≥ ∥v∥0, and the inequalities ∥w∥τ̃ ,∗ ≥
√
τ∥w∥Ṽ,∗

and ∥v∥τ̃ ≥
√
τ∥v∥Ṽ from the norm definitions (3.16), then,

(v,Bh,τw) ≤ ∥v∥0∥w∥0 + Cbnd∥v∥τ̃∥w∥τ̃ ,∗ ≤ (1 + Cbnd)∥v∥τ̃∥w∥τ̃ ,∗. (A.5)
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A.2 Inf-sup condition

Proof. To establish the inf-sup condition property in the operator Bh,τ , we adopt

a similar approach as presented in Di Pietro & Ern [2011] and Ayuso & Marini

[2009] to demonstrate Theorem 1. The proof of the operator Bh relies on certain

assumptions made in these sources. We recall the definition of the norm ∥u∥2τ∗ in

terms of ∥u∥2β, defined as:

∥u∥2β :=
∑
K∈T

β−1
c hT∥β · ∇u∥2, (A.6)

then,

∥u∥2τ := ∥u∥2τ̃ + τ∥u∥2β. (A.7)

Using the discrete coercivity property in (3.18), and setting S :=

supw∈Vh\{0}
bh,τ (v,w)

∥w∥τ for v ∈ Vh\{0}, then:

∥v∥2τ̃ ≲ bh,τ (v, v) =
bh,τ (v, v)

∥v∥τ
∥v∥τ ≤ S∥v∥τ , (A.8)

where, we set w = β−1
c hK ⟨β⟩K ∇v for all K ∈ Th with w ∈ Vh. We define ⟨β⟩K

as the mean value of β over K. We divide the proof in five parts:

(i) Since ∥w∥β ≲ ∥v∥β (see proof of Lemma 2.35 in Di Pietro & Ern [2011]) and

the inverse inequality ∥w∥0 ≲ ∥v∥0 (see lemma 1.44 in Di Pietro & Ern [2011]),

then,

∥w∥τ ≲ ∥v∥τ .

(ii) From the definition of the norm (3.16), we infer that ∥v∥2τ̃ > τ∥v∥2Ṽ and

∥v∥τ̃ >
√
τ∥v∥Ṽ . In addition, from (3.17) we obtain that ∥v∥τ >

√
τ∥v∥V . Hence,

∥v∥τ̃∥v∥τ ≥
√
τ∥v∥Ṽ∥v∥τ ≥ τ∥v∥Ṽ∥v∥V .

(iii) Starting from definition (3.13) and recalling the section (ii) in the Lemma

2.35 in Di Pietro & Ern [2011]:∑
K∈T

β−1
c hT∥β · ∇v∥2 = bh(w, v)− I,

(A.9)



where,

I := −bh(w, v)sip −
∑
K∈T

(w, µv)K +
∑
K∈T

β−1
c hT (∇v, (β · ∇v)(β − ⟨β⟩T ))K

−
∑

F∈S ∂
h ∩Γ−

(w, (β · n) v)F +
∑
F∈S 0

h

({w} , (β · nF )[[v]])−
∑

F∈S ∂
h

(
1
2
|β · nF |[[w]], [[v]]

)
F
.

(A.10)

We can write ∥v∥2τ̃ in terms of the new bilinear operator bh,τ (·, ·), such that

τ∥v∥2τ̃ = bh,τ (w, v)− (w, v)0 − τI.
(A.11)

We can bound the first term in the rhs of (A.11) by using (A.8) and (i); the

second term through the Cauchy-Schwartz inequality; and, the last term having

an extension of the proof (ii) in Di Pietro & Ern [2011], such that

|bh,τ (w, v)| ≤ S∥w∥τ ≲ S∥v∥τ , |(w, v)0| ≲ ∥w∥0∥v∥0 ≲ ∥v∥20

and

τIa ≲ τ(∥v∥Ṽ∥v∥V + ∥v∥2V),

with τIa := τ(|I1|+ |I2|+ · · ·+ |I6|). Summarising, it holds that:

τ
∑
K∈T

β−1
c hT∥β · ∇u∥ ≲ S∥v∥τ + ∥v∥20 + τ(∥v∥Ṽ∥v∥V + ∥v∥2Ṽ) (A.12)

τ
∑
K∈T

β−1
c hT∥β · ∇u∥ ≲ S∥v∥τ + τ∥v∥Ṽ∥v∥V + ∥v∥2τ̃ (A.13)

Using (ii), we obtain:

τ
∑
K∈T

β−1
c hT∥β · ∇u∥ ≲ S∥v∥τ + ∥v∥τ̃∥v∥τ + ∥v∥2τ̃ (A.14)

(v) Combining the above result with (A.8) and using Young’s inequality, hence,

τ
∑
K∈T

β−1
c hT∥β · ∇v∥ ≲ ∥v∥2τ ≲ S∥v∥τ + ∥v∥τ̃∥v∥τ (A.15)

∥v∥2τ ≲ S∥v∥τ + ∥v∥2τ̃ ≲ S∥v∥τ ∀ v ∈ Vh, (A.16)

which yields de assertion.
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Appendix B

Quantifying the fit between

simulations and observations

The fit between simulation results and corresponding references (based on

observation) can partly be assessed using classical model evaluation techniques.

While no method exists that fully replaces expert human interpretation (e.g.

accounting for specific qualitative features of interest in particular areas), the

following metrics are particularly useful to derive quantitative values overall.

reference

TP

FP
FN

TN
simulation

topography

Figure B.1: Quantifying the fit between simulation (red) and reference (blue) areas of miner-
alisation. Image processing allows to classify the match in zones of True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN).

For a given scenario, we analyse the images representing respectively the

simulated and reference mineralisation areas below the current topography, as

illustrated on Figure B.1. We identify through image processing the respective

areas of the True Positive (TP ), False Positive (FP ), True Negative (TN) and

False Negative (FN) zones, which in turn allow the calculations of P , R, and
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F1 scores defined as:

P =
TP

TP + FP
, (B.1)

R =
TP

TP + FN
, (B.2)

F1 = 2× P ×R

P + R
. (B.3)

All scores are values between 0 and 1, with higher values indicating a better

match. The P indicates the proportion of simulated mineralisation area that falls

within the reference mineralisation area, i.e the percentage of correct prediction.

The R score measures the True Positive rate, i.e the proportion of reference

mineralisation area captured by the simulation. The F1 score encompasses both

aspects, with a value of 1 denoting a perfect match and the value of 0 signifying

that no pixel of simulated mineralisation falls within the reference mineralisation

area at all.

For the example shown in Figure B.1, the values obtained are P ≈ 0.880,

R ≈ 0.869 and F1 ≈ 0.875. (It is only incidental that those three values are so

similar in that example, as they capture different concepts.) In this study, we

use mainly the F1 score to quantify the fits when quantifying the sensitivity of

specific parameters.
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