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Abstract. In the context of intelligent home energy management in smart grid, the occupants’ consumption behavior has a direct 

effect on the demand and supply of the electrical energy market. Correspondingly, the policies of the utility providers affect 

consumption behavior so techniques and tools are required to analyse the occupants’ preferences, habits and lifestyles in order to 

support and facilitate their decision-making regarding the curtailing of their energy consumption and costs. The uncertainty 

about householders’ preferences increases the uncertainty of appliance prioritization and makes it difficult to determine the 

consistency of preferences in terms of energy consumption. In this complex system, the preferences and judgments of 

householders are represented by linguistic and vague patterns. This paper proposes a much better representation of this 

linguistics that can be developed and refined by using the evaluation methods of fuzzy set theory. The proposed approach will 

apply the fuzzy Technique for Order Preference by Similarity to Ideal Solution (fuzzy TOPSIS) for achieving preferences. 

Based on our detailed literature review of the multi-agent system approach in this field, it is expected that the proposal model 

will offer a robust tool for communication and decision-making between occupant agents and dynamic environmental variables. 

It is shown that the proposed fuzzy TOPSIS approach will enable and assist householders to maximize their participation in 

demand response programs. 

Keywords: Multi-agent systems, demand response, dynamic real-time pricing, fuzzy TOPSIS, intelligent decision support system, home 

energy management, smart grid, smart home, scheduling model 

 

I. INTRODUCTION  

     Much of the research conducted on home energy management affirms that the study and analysis of the 

characteristics of householders’ consumption behavior such as preferences, habits and lifestyles are crucial 

for the forecasting of energy demand in the total electricity supply chain management.  

In order to gather all information about the behavior of suppliers and consumers, the smart electrical 

grid utilizes the ubiquitous communication and automated network infrastructures and services. As a 

result, the future smart homes of smart grid are proactive with the ability to negotiate, collaborate and 

interact with their external environment. Furthermore, these smart homes will also be equipped with robust 

facilities required to utilize renewable resources such as solar and wind energy. Smart homes use a 

combination of centralized and decentralized renewable and non-renewable electricity resources as 

distributed generation for improving the efficiency, reliability and sustainability of the smart grid. 

Therefore, one of the main issues of the future grid is maintaining a balance between the demand and 
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supply of electricity in order to prevent load instabilities in the network. Consequently, a key factor that 

must be considered in order to resolve this issue is how to extend the smart grid so that it can effectively 

interact and communicate with consumers; this collaboration cannot be achieved unless the characteristics 

of  end-users’ consumption behavior are discovered. 

 For this reason, one of the main goals of the smart grid is to obtain the end-users’ collaboration in order 

to consume electricity more efficiently [1]. Demand response (DR) refers to mechanisms used to 

encourage or to induce consumers to reduce or to shift their demand in order to decrease aggregate demand 

at particular times. Dynamic DR refers to the optimization of the load profile of householders in terms of 

the grid resources in order to prevent the system from overloading and to curtail the cost of electricity [2].  

To date, significant research has been conducted on the integration of customer-demand-side 

management into smart grids for improving the system load profile and reducing peak demand. To achieve 

this, many countries are developing technologies such as smart metering and smart appliances. For 

instance, Italy and Sweden are close to one hundred percent deployment of smart meters for consumers in 

addition to having smart household appliances such as dishwashers, air-conditioning units, clothes dryers, 

washing machines and plug-in electric vehicles (PEVs) that can “talk” to the grid and “decide” how best to 

operate and automatically schedule their activities at strategic times based on the available generation [3]. 

End-user behaviors are defined as the actions and decisions taken by occupants of buildings that have 

impacts on energy consumption. These include decisions about the use of appliances within an occupant's 

personal control. Consequently, the optimization of building energy and comfort becomes a complex 

problem requiring computational support and a real-world interface [4]. Thus, one of the most important 

issues for smart and energy-efficient buildings is to balance the requirements of the occupants’ comfort 

and power consumption [5]. 

When consumers receive information from the grid such as price signals, they try to tail off their 

electricity consumption by making  real-time decisions about their use of various electrical appliances [6]. 

The uncertainty and variation in the householders’ preferences increases the uncertainty of appliance 

prioritization and makes it difficult to determine the consistency of preferences. In this complex system, 

the preferences and judgments of householders are represented by linguistic and vague patterns. A much 

better representation of this linguistics can be developed and refined by using the evaluation methods of 

fuzzy set theory. The fuzzy technique for Order Preference by Similarity to Ideal Solution (fuzzy TOPSIS) 

is an advanced analytical method developed from the traditional TOPSIS that can be used to determine 

preferences.   

The importance of the consumers’ role in energy demand is demonstrated in approaches about demand 

response, multi-agent approaches to home energy management systems (EMSs) and consumers’ 

behaviours.  

 

A. Demand Response (DR) Programs  

  Demand response (DR) refers to a mechanism by which customers participate voluntarily in reducing the 

peak by altering the consumption patterns of some of their appliances. The customers participating in DR 

may be given a monetary incentive or offered a lower tariff. The implementation of DR in smart 

distribution systems with multiple microgrids requires intelligent and reliable energy-management tools 

[4]. Responsive demand, however, refers to those changes applied by consumers to their expected load 

pattern in response to energy price signals for improving the economic efficiency of their energy [7]. 



 

One of the main goals of the smart grid is to achieve DR by increasing the end users’ participation in 

decision-making and increasing their awareness about energy usage that will help them to efficiently 

manage their energy consumption. DR programs take different forms including energy efficiency and 

conservation programmes, static time of use pricing, critical day pricing, critical peak pricing, peak time 

rebates, real-time pricing (RTP), demand-side bidding and dynamic demand [8]. 

 The underlying objective of these DR programmes is to actively engage consumers in modifying their 

consumption in response to pricing signals. In implementing dynamic energy pricing, the most difficult 

task is that of predicting people’s reaction to various dynamic pricing schemes [9].  

 

B. Building Energy Management System (EMS) and  Multiple Attribute Decision Making  

     A home energy management (HEM) system is an integral part of a smart grid that can potentially 

enable demand response applications for residential customers [10]. Several papers in the literature focus 

on controlling appliances by means of HEM during demand response and many approaches have 

developed energy consumption scheduling for householders in a real-time pricing scheme [11-21]. The 

reviewed literature indicates that the load profile, the load shifting and scheduling, demand response and 

power consumption are dependent on the consumer’s preferences and lifestyle. Householders prioritize 

their use of electrical devices according to their lifestyle, and the imposition of a demand response program 

leads to the possibility of a comfort level violation or a high load compensation after finishing the period of 

DR [10]. In this scenario, giving consideration to the householders’ preferences and priorities not only 

increases the level of customer satisfaction and comfort, but it could also produce significant benefits for 

the whole energy market. For example, in real-time pricing, the price of electricity may vary hourly and is 

tied to the real market cost of delivering electricity [22]. So, in this situation where the decision-making for 

adjusting energy demand and controlling the energy cost is difficult for end-users, Multiple Attribute 

Decision Making (MADM) is a suitable means of addressing such problems. Of the numerous MADM 

methods available, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) has 

received interest from researchers as a means of evaluating and selecting the energy system performance 

[23]. For instance, [24] developed an extended responsive load economic model based on price elasticity 

and customer benefit function and a prioritization of DR programs has been realized by means of the 

TOPSIS method; Xiaodong et al. [25] evaluated the effectiveness of the smart grid by Fuzzy TOPSIS 

methods.  

This paper proposes a Fuzzy TOPSIS decision-making approach as a means of establishing the 

preferences of end-users in using groups of appliances located in different areas of the smart home. The 

approach considers real-time pricing scheme of demand response. A Multi-agent Intelligent Decision 

Making Support System (IDMSS) will be implemented to obtain the criteria for decision-making regarding 

home electrical energy management. 

The remainder of the paper is organized as follows. Section II describes a proposed IDMSS for 

intelligent home energy management in smart grid. TOPSIS methodology is detailed in section III. Section 

IV presents detailed simulation results for a case study followed by the conclusion. 

 

II. The Proposed Multi-agent Intelligent Decision Making Support System (IDMSS) 

 

A. Multi-agent Approaches in Efficient Home Energy Management and Smart Grid 

 



 

A multi-agent system is a combination of several agents working in collaboration to perform assigned 

tasks to achieve the overall goal of the system [2]. There are many publications in utilizing agents to 

produce solutions for specific smart grid applications. Researchers are currently developing agent-based 

methods to address demand response in a dynamic pricing scheme [26]. 

Reference [27] argued that a multi-agent system is not synonymous with an EMS. Rather, it is only one 

possible control method that can be applied to an EMS. Furthermore, the authors discussed that the 

individual characteristics of inhabitants in a smart grid can be adapted by agent-based systems and thus 

have the potential to raise subjective comfort. Thus, this may create a positive evaluation of the 

technology. That is, the systems' adaptability to occupants’ needs and changes in preferences or behavior 

over time may be crucial for the success of the systems and their related technologies. In order to respond 

to the householder’s requirements while integrating new sources of energy, reference [26] proposed an 

agent-based approach for optimizing energy consumption. In their approaches, these agents are the 

generators , prosumer agents and consumer agents while the goal of each agent is to maximize its profits in 

terms of energy unit price paid per day. Three levels of agents including grid agent, control agent and 

residential agent are proposed by [2]. These agents communicate with each other in order to make 

decisions about shifting loads to off-peak hours based on the dynamic price of electricity. In their 

approach, the residential agent makes the decision to change scenarios.  

The application of multi-agent systems for studying comfort management of householder behavior in 

the context of home energy management is proposed by [4]. This approach proposed a new distributed 

comfort evaluation that, when compared with the traditional method of Predicted Mean Vote (PMV) index 

[28], reveals the need for a more robust comfort standard that allows for the input of actual occupant 

preferences when available.  

 

B. Proposed Multi-agent Intelligent Decision Support System for Home EMS in Smart Grid  

 

       Householders’ decision-making in regards to energy consumption is dependent on factors that 

influence the end-user’s energy consumption behavior; hence, several surveys have been conducted to 

investigate these factors [18, 21, 29, 30]. For instance, Stern [31] demonstrated that the contextual domain 

of this behavior comprises: attributes that an individual has at birth, the immediate situation, public policy 

and economic variables. Kowsari et al. [29] presented a conceptual framework as a basis for formulating 

the household consumption behavior strategy and they proposed an integrated approach to determine the 

economic characteristics of a household. On the other hand, in many load scheduling and planning 

approaches such as those of [16, 32, 33], the researchers have included the consumers’ preferences and 

utility function in their optimization models. For instance, in the approaches suggested by Lampropoulos et 

al. [21] and Wang et al. [33], the importance of including the behavior of householders in power system 

planning is demonstrated but there is no methodology for obtaining and ranking these preferences. 

The measurement and inclusion of these factors would be more complex when there is a conflict of 

preferences among several consumers in a home. This issue is demonstrated by [34] when there is 

“analysis talk” among  household members to identify how energy savings might be made. Therefore, in 

the proposed approach, the aggregated fuzzy rating of criteria for more than one consumer is computed. 

Following a survey of the literature [17, 21, 29, 31, 33, 35-38], we identified that the householders with 

different culture background, gender, income, education and social  status who are located in different 

geographic locations and climate change and dealing with different energy policy, subsidies and energy 



 

supply, will utilize appliances in accordance with the different criteria that are presented in Tables I and II. 

Criteria such as cost and budget are based on householders’ income [29]; and energy demand urgency and 

comfort level are associated with the consumers’ lifestyle [6, 18, 33]. 

There are three factors to consider when measuring comfort conditions and determining the occupants’ 

quality of life in a building. These factors are visual comfort, Indoor Air Quality (IAQ) and Thermal 

comfort [5, 39]. The visual comfort is calculated based on the illumination level of the building 

environment while IAQ is measureable by calculating ventilation rates and     concentration [39]. 

The two major indices for evaluating thermal comfort are Predicted Mean Vote (PMV) and Predicted 

Percentage of Dissatisfied (PPD) [40]. As people are different in sensing thermal environment, it would be 

very difficult to keep all the occupants comfortable in a specific time and space. For this reason, the 

international standard, ISO 7730, the American Society of Heating Refrigerating and Air Conditioning 

Engineers (ASHRAE) standard, ANSI/ASHRAE Standard 55-2010 [41] have provided a method of 

calculating these indices for analytical determination of desirable thermal comfort in indoor environment. 

According to our literature review, there are two categories of researches for evaluating the effects of the 

comfort factor in the energy management of a building. The first group includes approaches such as those 

of [10, 42] that have considered the occupants’ comfort factor only in terms of variables such as indoor 

temperature. However, they have not included the PMV index in their solutions. The second category is 

dealt with in studies such as [5, 39, 43, 44] who have used the PMV index to determine thermal comfort in 

addition to visual comfort and IAQ in their approaches for measuring the comfort level. In this proposal, it 

is assumed that the same methodologies as those utilized in [5, 39, 45] are used for evaluating the comfort 

level criterion. 

   Another criterion that is evaluated in this approach is occupancy level. By ‘occupancy’ we mean the 

occupancy statistics in a specific zone at any given time. This criterion can be measured by a stochastic 

agent-based approach such as the one presented in [46] while the algorithm and methodology proposed by 

[47] can be used to address the solution for tracking multiple occupants and separately identifying them.  

As the concept of smart grid aims to support “green” resources [1] and  the emission trading scheme 

and carbon tax policy are designed to impact the energy demand [48],  several criteria have been identified 

in relation to consumer’s attitudes and behaviour towards the green electricity market [49, 50] on issues 

such as green gas emission, carbon tax and energy efficiency score.  

According to the above discussion, the architecture of a multi-agent intelligent decision making support 

system for smart home is proposed in Figure 1. In this proposal, home EMS is a multi-agent system that 

consists of agents dedicated to measure the decision making criteria. The intelligent decision support agent 

will receive dynamic price signals from the utility provider by means of smart meters and it will act in 

accordance to the proposed fuzzy TOPSIS method for including the occupants’ preferences during load 

energy management under demand response program.  

 



 

 

Fig. 1. Architecture of proposed multi-agent intelligent decision making support system (IDMSS) for smart home in smart grid 

 Two types of criteria are presented in Table I and II.  The criteria with increasing values produce profit 

(positive) for consumers such as energy efficiency so more is better; and the other type is those ones that 

by increasing values produce more cost (negative) such as energy cost. Therefore, we try to decrease cost 

and increase profit when making decisions. This logic will be considered in formulating of variables in 

next section. The next section presents a methodology for decision making when occupants are considered 

as agents and they have communication with other agents shown in Figure I.  

 

 

 

TABLE I. CRITERIA FOR EVALUATION OF ENERGY 

CONSUMPTION IN HOME AREAS 

TABLE II. CRITERIA FOR  EVALUATION OF APPLIANCES 

LOCATED IN AN AREA 

 

Criterion Definition Type 

   Energy Cost Energy consumption cost of all 

electrical devices in area    in time slot 

   

- 

   Budget The amount of budget that users are 

prepared to expend on utilizing the 

appliances in area    

- 

   Urgency Energy demand urgency for each area  

in time slot    

- 

   Comfort level The comfort level for each area in time 

slot    

+ 

   GHG emission Greenhouse gas emissions that are 

produced by consumption in areas 

- 

   Energy 

efficiency score 

Energy efficiency rate provided for 

users that can be compared with data 

for neighbors and other households (in 

social network or in a region) 

+ 

   Carbon tax The amount of carbon tax allocated to 

areas by consumed energy 

- 

   Occupancy level Amount of time that a dwelling is 

occupied. 

+ 

 

 

Criterion Definition Type 

   Cost  Energy consumption cost of a electrical 

device in time slot      
- 

   Adjusting 

demand 

Flexibiklity of shifting their demand to off-

peak hours 
+ 

   Urgency Urgency of running an appliance in time 

slot    
- 

   Enjoyment The level of pleasure that will be obtained 

by usage in time slot    
+ 

 

 



 

 

III. TOPSIS: TECHNIQUE FOR ORDER  PREFERENCE BY SIMILARITY TO IDEAL SOLUTION  

A. Methodology 

     To arrive at an effective means of obtaining householders’ preferences for utilizing appliances in a real-

time pricing scheme of smart grid [51], and to better understand the energy distribution flow in a home 

EMS, this paper focuses on different areas of a home where groups of electrical devices are likely to be 

located. These areas are the alternatives in our decision-making model when householders want to decide 

how to distribute energy consumption flow. Then, we ask householders to specify their preferred 

appliances in each area. Therefore, this approach proposes two sets of criteria for decision-making: the first 

criteria for evaluating energy distribution in specific areas and the second set for appliance ranking. In this 

paper, we demonstrate this ranking only in the home environment.  

  Of the many multiple-criteria-decision-making (MCDM) methods, TOPSIS is a practical and useful 

technique for ranking and selecting a number of possible alternatives by measuring Euclidean distances. 

TOPSIS, developed by Hwang and Yoon [52], is a simple ranking method in conception and application 

[23]. The working principle of fuzzy TOPSIS is based on the fact that the selected alternative should have 

the shortest distance from the fuzzy positive ideal solution (FPIS) and the farthest from the fuzzy negative 

ideal solution (FNIS) for solving MCDM problems. As a result, the ideal solution comprises all the best 

criteria, whereas the negative ideal solution is made up of all the worst attainable criteria [53]. 

The stepwise procedure of implementing fuzzy TOPSIS is presented in Figure 2. By forming an initial 

decision matrix, the normalizing procedure of the decision matrix can begin. This is followed by building 

the weighted normalized decision matrix in Step 5, computing the fuzzy positive ideal solution (FPIS) and 

fuzzy negative ideal solution (FNIS) in Step 6, and calculating the separation measures for each alternative 

in Step 7. The procedure ends with the computation of the relative closeness coefficient in Step 8. The set 

of alternatives can be ranked according to the descending order of the closeness coefficient in Step 9. 

 

 

Fig. 2. Flow chart of the proposed Fuzzy TOPSIS method.  



 

The aim of this paper is to determine which part of a home is the area where appliances are most required 

when the price of energy unit is changed in a slot time; this is the area where users want the least load 

curtailment.   

   The steps of the fuzzy TOPSIS algorithm are as follows: 

 

Step 1: Assignment of ratings to the criteria and the alternatives 

Let us assume there are   possible home areas called                which are evaluated against    

criteria,                    The criteria weights are denoted by     (         )  The ratings of each 

consumer (family member) as a decision-maker    (         ) for each alternative or home area 

    (         ) with respect to criteria    (         ) are denoted by  ̃   ̃    with 

membership function   ̃ 
( )  

 

Step 2: Compute aggregate fuzzy ratings for the criteria and the alternatives. 

If the fuzzy rating of all consumers or family members is represented as a triangular fuzzy number 

 ̃  (        )          ,  then the aggregated fuzzy rating is given by  ̃  (     )   

        where 

                 
 

 
 ∑    

 

   

                 

If the fuzzy rating and importance weight of the  th consumer are  ̃    (                 ) and  ̃    

(                 )                              respectively, then the aggregated fuzzy ratings  ̃    

of home areas with respect to each criteria are given by  ̃   (              ) where 
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The aggregated fuzzy weights ( ̃  ) of each criterion are calculated as  ̃   (              )  where 
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Step 3: Compute the fuzzy decision matrix. 

The fuzzy decision matrix for the alternatives (home areas) ( ̃) and the criteria ( ̃) is constructed as 

follows: 

 ̃  

  

   

  

 [
 ̃    ̃  

   
 ̃    ̃  

]                                                                                             (3) 
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Step 4: Normalize the fuzzy decision matrix. 



 

     The raw data are normalized to convert the various criteria scales into a comparable scale. The 

normalized fuzzy decision matrix is  ̃ given by: 
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and   
                (cost criteria) 

 

Step 5: Compute the weighted normalized matrix. 

The weighted normalized matrix  ̃for criteria is computed by multiplying the weights ( ̃ ) of evaluation 

criteria with the normalized fuzzy decision matrix normalization of the decision matrix  ̃   

 ̃   [ ̃  ]   
                     where  ̃     ̃      ̃                                 (8) 

 

Step 6: Compute the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) 

The FPIS and FNIS of the alternatives is computed as follows: 

  =(  ̃ 
   ̃ 
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 )                                                                                                     (9) 

Where 
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Where  
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Step 7: Compute the distance of each alternative from FPIS and FNIS. 

    The distance(  
 ,  

 ) of each weighted alternative           from the FPIS and the FNIS is 

computed as follows: 

  
  ∑   

 
   ( ̃    ̃  

 )                                                                            (11) 
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 )                                                                              (12) 

Where    ( ̃  ̃) is the distance measurement between two fuzzy numbers  ̃  and  ̃ . 

 

Step 8: Compute the closeness coefficient (   ) of each 

alternative. 



 

The closeness coefficient      represents the distances to the fuzzy positive ideal solution (  ) and the 

fuzzy negative ideal solution(  ) simultaneously. The closeness coefficient of each alternative is 

calculated by: 

 

(   )   
  

 

  
    

                                                                                     (13) 

 

Step 9: Rank the alternatives or home areas. 

In Step 9, the different alternatives (home areas) are ranked according to the closeness coefficient (   ) 

in decreasing order. The best alternative is closest to the FPIS and farthest from the FNIS. 

 

IV. SIMULATION RESULTS  

 Using the above analysis, this paper describes a scenario to demonstrate the fuzzy TOPSIS methodology 

[51]. In this scenario, the conversion scale is applied to transform the linguistic terms for determining the 

rating of alternatives and criteria into fuzzy numbers as shown by the fuzzy triangular membership 

function in Figure 3. 

 

Fig. 3. Fuzzy triangular membership function. 

In this scenario, there are two occupants in a house. They are from different cultural backgrounds and 

have different incomes: user 1 does not care about cost and wants a high level of comfort through energy 

utilization; user 2 is concerned about environmental issues and is a green consumer. Both have received 

energy consumption information via a home EMS. This information includes the cost of energy, carbon tax 

and GHG emission in the home areas of     = Kitchen,    = Bedrooms,      Living room and     

Laundry and the information is used to compare the efficiency of their consumption with that of their 

neighbors. So, a decision on energy allocation should be made when the unit price of electrical energy 

increases from the slot time of     to       . The users use linguistic assessment to rate the criteria (Table 

III). For example, user 1 believes that the importance of energy cost is high but user 2 believes that it is 

very high or the importance of the carbon tax for user 1 is at medium but it is high for user 2 and so forth.  

To construct the fuzzy TOPSIS model, the first step is the linguistic assessment of criteria and alternatives 

and the computation of the aggregated fuzzy value using (1) and (2) the results of which are presented in 

Tables III, IV and V. For example, in Table III for criterion   , “budget”, user 1 is satisfied to allocate a 

medium amount of budget for energy for fuzzy triangular number that is (3, 5, 7), but user 2 likes to spend 

a high amount of budget for energy for the fuzzy triangular number of (5, 7, 9), so the aggregated fuzzy 



 

weight  is given by  ̃  (              ) where:          (   )          
 

 
 (   )           

     (   )             ̃  (      )  In Step 4, we normalize the fuzzy decision matrix of the alternative 

using (8); the result is shown in Table VI. The weighted decision matrix in Step 5 is obtained by (8). The 

result is shown in Table VII below. 

TABLE III.    LINGUISTIC ASSESSMENT FOR CRITERIA 

Criteria 

Users Aggregated 

fuzzy weight User 1 User 2 

   Energy Cost H VH (5,8,9) 

   Budget M H (3,6,9) 

   Urgency H M (3,6,9) 

   Comfort level VH M (3,7,9) 

   GHG emission VL VH (1,5,9) 

   Energy efficiency score L VH (1,6,9) 

   Carbon tax M H (3,6,9) 

   Occupancy level H H (5,7,9) 

 

TABLE IV.   LINGUISTIC ASSESSMENT FOR ALTERNATIVES 

CRITERIA 

A1 

A2 A3 A4 

 U1 U2 U1 U2 U1 

U2 U1 U2 

   H M M H M VH L H 

   L VH M L H L H L 

   M H M L M L VH M 

   VH M VH M VH H L VL 

   L H M H L VH VL VH 

   L M H H L VH VL H 

   M M M VH L VL M H 

   VH M L VL VL M L M 

TABLE V.  AGGREGATE FUZZY DECISION MATRIX 

CRITERIA A1 A2 A3 A4 

   (3,6,9) (3,6,9) (3,7,9) (1,5,9) 

   (1,6,9) (1,4,7) (1,4,7) (1,4,7) 

   (3,6,9) (1,4,7) (1,4,7) (3,7,9) 

   (3,7,9) (3,7,9) (3,7,9) (1,2,5) 

   (1,5,9) (3,6,9) (1,6,9) (1,5,9) 

   (1,4,7) (7,9,9) (1,6,9) (1,4,9) 

   (3,5,7) (3,7,9) (1,2,5) (3,6,9) 

   (3,7,9) (1,2,5) (1,3,7) (1,4,7) 



 

TABLE VI.    NORMALIZED FUZZY DECISION MATRIX FOR ALTERNATIVES 

CRITERIA A1 A2 A3 A4 

   (0.11,0.17,033) (0.11,0.17,033) (0.11,0.14,0.33) (0.11,0.2,1.00) 

   (0.11,0.17,1.00) (0.14,0.25,1.00) (0.14,0.25,1.00) (0.14,0.25,1.00) 

   (0.11,0.17,033) (0.14,0.25,1.00) (0.14,0.25,1.00) (0.11,0.14,0.33) 

   (0.33,0.78,1.00) (0.33,0.78,1.00) (0.33,0.78,1.00) (0.11,0.22,0.56) 

   (0.11,0.20,1.00) (0.11,0.17,033) (0.11,0.17,1.00) (0.11,0.20,1.00) 

   (0.11,0.44,0.78) (0.78,1.00,1.00) (0.11,0.67,1.00) (0.11,0.44,0.100) 

   (0.14,0.20,0.33) (0.11,0.14,0.33) (0.20,0.50,1.00) (0.11,0.17,033) 

   (0.33,0.78,1.00) (0.11,0.22,0.56) (0.11,0.33,0.78) (0.11,0.44,0.78) 

TABLE VII.    WEIGHTED NORMALIZED FUZZY DECISION MATRIX 

CRITERIA A1 A2 A3 A4 

   (0.56,1.33,3) (0.56,1.33,3) (0.56,1.14,3) (0.56,1.6,9.00) 

   (0.33,1.00,9.00) (0.43,1.5,9.00) (0.43,0.15,9.0) (0.43,1.6,9.00) 

   (0.33,1.00,3.00) (0.43,1.5,9.00) (0.43,0.15,9.00) (0.33,0.86,3.00) 

   (1.00,5.44,9.00) (1.00,5.44,9.00) (1.00,5.44,9.00) (0.33, 1.56, 5.00) 

   (0.11,1.00,9.00) (0.11,0.83,3.00) (0.11,0.83,9.00) (0.11,1.00,9.00) 

   (0.11,2.67,7.00) (0.78,6.00,9.00) (0.11,4.00,9.00) (0.11,2.67,9.00) 

   (0.43,1.20,3.00) (0.33,0.86,3.00) (0.60,3.00,9.00) (0.33,1.00,3.00) 

   (1.67,5.44,9.00) (0.56,1.56,5.00) (0.56,2.33,7.00) (0.56,3.11,7.00) 

 

The fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) are obtained by (9) and 

(10) and then the distances of each alternative from FPIS and FNIS are obtained by using (11) and (12) as 

shown in Table VIII. The closeness coefficient of each alternative is calculated by (13) and is represented 

in Table VIIII. The alternative with the higher value is preferred. Hence, the ranking of alternatives is 1- 

Laundry, 2-Bedrooms, 3- Kitchen, 4- Living room. This ranking shows the users’ preferences for energy 

distribution flow to the home areas or group of appliances in accordance with increases in the energy unit 

price.  

 

Table VIIII.    ranking according to the closeness coefficient Table VIII.    Distance of each alternative  from FPIS and 

FNIS   

 

A1 

Kitchen 

A2 

Bedrooms 

A3 

Living room 

A4 

Laundry  

    0.3587 0.3602 0.3539 0.3742 

Ranking 3 2 4 1 

 

   
    

  

A1 A2 A3 A4 A1 A2 A3 A4 

   1.48 1.64 1.45 4.91 7.44 7.44 7.50 6.48 

   5.01 5.04 5.04 5.04 6.81 6.57 6.57 6.57 

   1.58 5.04 5.04 1.56 7.64 6.57 6.57 7.69 

   5.82 6.00 5.82 2.78 5.05 5.04 5.05 6.98 

   5.15 1.71 5.14 5.15 6.90 7.78 6.96 6.90 

   4.24 5.98 5.60 5.34 6.40 5.05 5.88 6.30 

   1.62 1.42 5.23 1.58 7.53 7.69 5.96 7.64 

   5.67 3.04 3.86 4.00 4.70 6.89 6.31 6.05 

  30.59 29.92 37.21 30.40 52.49 53.07 50.85 54.64 

 



 

 

 

V. CONCLUSION  

   The main purpose of this paper is to present a methodology to include most of the significant variables 

effective in decision making process for building energy consumption management. This is done to 

prioritize the utilization of the groups of appliances located in a specific zone when the function of 

occupants’ utility is significant in load curtailment in demand response programs. A multi-agent based 

model is proposed for measuring economic, social, cultural and environmental factors that affect users’ 

consumption behavior. Users with different backgrounds choose different linguistic terms to evaluate their 

consumption. Hence, the fuzzy TOPSIS methodology proposed in this paper is a tool that can support a 

group of household members, considered as agents, to assess their consumption and to make decisions 

about energy flow distribution. This methodology can be applied for ranking the appliances in a home area 

by using the criteria presented in Table II. Note that in this approach, we assumed that detailed information 

such as users’ price signals and consumption profiles will be provided by the agents presented in Figure 1. 

Therefore, for future research it is recommended to implement a multi-agent based simulation for 

analyzing and predicting the users’ consumption behavior.  
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