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ABSTRACT 

Unplanned dilution and ore-loss due to underground stope production may be the 

greatest negative cost factor for the viability of mining operations and can also 

threaten the safety of both the workforce and the machinery. These phenomena 

are inevitable when underground stopes are being excavated via drilling and 

blasting methods. Many studies have been conducted on unplanned dilution and 

ore-loss, but their precise mechanisms have yet to be clarified. The set of empirical 

approaches currently used to predict and manage unplanned dilution and ore-loss 

are unsatisfactory in their predictive performance. Furthermore, these methods 

offer a qualitative analysis and are limited to predicting unplanned dilution. Thus, 

the demand for a proper countermeasure to minimise unplanned dilution and ore-

loss has arisen. 

The aim of this study is to establish a proper unplanned dilution and ore-loss 

management system. To achieve this, unplanned dilution prediction and 

consultation systems are proposed and a total management system is established 

by unifying the prediction and consultation systems. Unplanned dilution and ore-

loss prediction models are established using two approaches. Initially, multiple 

linear and nonlinear regression analyses (MLRA and MNRA) are employed as 

conventional statistical approaches. Then, a conjugate gradient artificial neural 

network (CG-ANN) is utilised as an innovative soft computing approach. These 

unplanned dilution and ore-loss prediction models are established based on 1,067 

datasets with ten causative factors via a thorough review of approximately over 

30,000 historical documents from three underground stoping mines in Western 

Australia. Evaluation of the prediction performances of the MLRA, MNRA, and CG-

ANN models returned correlation coefficients (R) of 0.419, 0.438, and 0.719, 

respectively. Given that the unplanned dilution and ore-loss prediction performance 

for the investigated mines had an R of 0.088, the CG-ANN model result is 

remarkable. 

Attempts have also been made to illuminate the mechanisms behind unplanned 

dilution and ore-loss. The contributions of potential influence factors are scrutinised 
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using the connection weight algorithm (CWA) and profile method (PM). It was 

found that the adjusted Q-value (AQ) and the average horizontal-to-vertical stress 

ratio (K) are significant contributors compared with other factors. Furthermore, 

some essential trends of unplanned dilution and ore-loss were discovered during 

the investigation, information that will be helpful not only in underground stope 

planning but also in the management of stope production. 

In succession, a fuzzy expert system (FES) is proposed as an unplanned dilution and 

ore-loss consultation system based on a survey of 15 mining experts. This system 

uses adjusted Q-value and the percentage of predicted unplanned dilution and ore-

loss as inputs, and the new terminologies of the powder factor (Pf) and ground 

support (GS) control rates (PFCR and GSCR) are set as outputs. Ultimately, an 

integrated uneven break and ore-loss management system was achieved by 

establishing a cooperative neuro fuzzy system via combining the proposed 

prediction and consultation systems. 
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CHAPTER 1 
INTRODUCTION 

 INTRODUCTION CHAPTER 1.

Mining is one of the primitive industries of human civilisation (Hartman, 2007). The 

significance of the mining industry has always been emphasised due to its 

enormous ripple effects on other industries. In comparison with past centuries, 

contemporary mining productivity has improved significantly along with the 

remarkable evolution of mining-related technologies. Through the constant efforts 

of engineers and scholars, numerous advanced theories and innovative mining 

methods have been introduced and adopted in various mining industries. Recently, 

automated machinery has begun to take on dangerous, labour-intensive tasks, 

drilling has become much faster and more accurate, explosives have become more 

powerful, and planning has become more systematic and effective through the use 

of numerous innovative mine design software packages. In fact, the overall 

processes of mining that are used today are better optimised than ever before.  

Nevertheless, there are still many issues to be overcome in actual mining activities. 

In the field, mining engineers frequently encounter situations requiring them to 

make decisions without adequate and detailed information. Because an improper 

decision can directly cause irretrievable damage to not only the mine economy but 

also to the miners themselves, proper countermeasure systems are indispensable.  

Limiting the scope of recurring mining issues to the production of underground 

stope mining, one of the most complex conundrums is unplanned dilution and ore-

loss, a pair of notoriously inevitable and unpredictable phenomena that occur when 

drilling and blasting methods are used to excavate the ore. In spite of the significant 

efforts of previous engineers, the majority of underground stoping mines continue 

to suffer from unplanned dilution and ore-loss. Some of the extent empirical 

approaches to predicting unplanned dilution have been employed in mines, but 

existing prediction performance is both unsatisfactory and unable to predict ore-

loss. Therefore, the necessity of creating a proper management system to minimise 

potential unplanned dilution and ore-loss has arisen. 

Considering the complexity of the problem, the proposed system must take into 

account the geological condition of the mine, the mine’s blasting scheme and 
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geometry, factors related to stope design, and human error. This information can 

be obtained by a thorough review of the planning and reconciliation processes in 

underground stoping mines. Figure 1-1 demonstrates an example of the stope 

production process.  

 

Figure 1-1 Overview of typical underground stope production and reconciliation 
using a cavity monitoring system (CMS) 

As shown in Figures 1-1a and 1-1b, a stope is first planned out in a production stage. 

To determine the shape and production sequence of the stope, numerous 

conditions such as the grade of ore, geology, and stress must be considered. After 

Production drilling plan 

 

Designed stope Profile 
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(c) 

a 

a
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determining the shape of the stope, the production basting pattern will be planned 

to fit as the shape of the stope, as shown in Figure 1-1c. After the production 

blasting, the excavated space will be monitored by a cavity monitoring system (CMS) 

(Miller & Jacob, 1993) which is a three dimensional laser scanning apparatus 

specialised for surveying of underground cavities. Figures 1-1d and 1-1e 

demonstrate a reconciliation process comparing a designed stope profile with an 

actual stope profile after the production process captured by CMS.  

 PROBLEM STATEMENT 1.1

In addition to the longstanding awareness of the significance of unplanned dilution 

and ore-loss, they have further been recognised as highly unpredictable due to their 

complex occurrence mechanisms. The complexity of unplanned dilution and ore-

loss mechanisms, i.e., the over- and under-break, can be explained by features of 

the object material, the rock mass and dynamic breaking forces, i.e., the shock wave 

and gas pressure from explosions. The rock mass is one of the complex materials in 

the earth. The inherent features of the rock mass are that it is anisotropic and 

inhomogeneous and consists of a group of randomly distributed geological 

discontinuities. Furthermore, it is stressed by both gravitational and tectonic forces. 

Thus, the elastic-plastic fracture mechanism of the rock mass itself is complex. The 

fracture mechanism of the rock mass becomes more complex when it is placed 

under force by dynamic shockwaves and gas pressure via an explosion, and the 

complexity increases further when considering the different conditions and designs 

of underground stopes.  

In fact, the majority of underground stoping mines suffer from severe unplanned 

dilution and ore-loss, which may lead to mine closures. Thus, an appropriate 

management system for unplanned dilution and ore-loss is desperately needed. The 

proposed management system must be capable of predicting unplanned dilution 

and ore-loss and providing appropriate recommendations to mining engineers.   
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 OBJECTIVES 1.2

As a remedy for the difficulties and problems described in the problem statement 

section, the main objectives of this study are the following: 

• Review the existing methodologies for managing unplanned dilution and 

ore-loss. 

• Establish a practical unplanned dilution and ore-loss prediction and 

consultation systems. 

• Implement and validate the proposed system.  

• Analyse the contribution of causative factors on the unplanned dilution and 

ore-loss phenomena to illuminate the occurring mechanism.  

 SCOPE 1.3

Dilution can be classified in four domains: planned dilution, unplanned dilution, 

planned ore-loss, and unplanned ore-loss. Planned dilution, also referred as primary 

or internal dilution, is the low grade material contaminated within the ore reserve 

block. Planned ore-loss is the ore outside of ore reserve block. These planned 

dilution and ore-loss are part of stope planning but does not relate to actual 

production activities. Unplanned dilution, also referred as external or secondary 

dilution, and unplanned ore-loss can be referred to as over- and under-breaks in 

underground stope production. These phenomena can be classified into dynamic 

and quasi-static types (Mandal & Singh, 2009). The quasi-static type occurs at a 

distance of time after blasting, while the dynamic type occurs immediately. This 

study focuses on dynamic unplanned dilution and ore-loss, identified by the new 

term, ‘uneven break’ (UB). An uneven break (UB) can be defined as the tonnes of 

mined unplanned dilution (over-break) or unmined ore-loss (under-break) per 

tonnes of planned stope to be mined and can be calculated as a percentage as 

follows:  

 

𝑈𝑈 𝑟𝑟𝑟𝑟 = (𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜 
÷ 𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠) × 100 Eq. 1-1 
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 SIGNIFICANCE AND RELEVANCE  1.4

The study proposes a new unplanned dilution and ore-loss management system 

that will play a significant role in both the planning and production processes of 

stope mining. Uneven break (UB) can be the main cause of a mine closure, and thus, 

their proper management with the proposed system can greatly enhance not only 

mining profits but also the safety of the human workforce and mining machinery. 

The significance of this research can be summarised as:  

• The proposed uneven break (UB) prediction system is the first practical 

model that can provide a quantitative percentage of potential over- and 

under-break prior to actual production.  

• It is the first successful application of artificial neural networks (ANNs) to 

predict uneven break (UB) in underground stope production.  

• In contrast with previous empirical models that are limited to unplanned 

dilution, the proposed system covers both unplanned dilution (over-break) 

and ore-loss (under-break).  

• It is the first practical UB control system that provides quantitative values for 

UB controlling criteria, the powder factor and the ground support control 

rate (PFCR and GSCR).  

• It also attempts to illuminate the mechanism behind UB. 

This system gives mining engineers the ability to intuitively recognise the magnitude 

of unfavourable over and under-breaks in planned stopes. Moreover, the proposed 

UB consultation system will be performing as a great guide system to minimise the 

potential UB. Furthermore, some essential trends in the causative factors of UB 

were revealed through the investigation. These important findings will allow us to 

gain better understanding of the complex UB phenomenon. 

 THESIS OVERVIEW 1.5

This thesis is organised into eight chapters. In chapter 1, the representation of the 

critical conundrum in underground stoping mines, unplanned dilution and ore-loss, 

is stated. This chapter also includes the objectives and the scope of the research 
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and demonstrates the significant contributions of the research to the mining 

industry. 

Chapter 2 provides an overview of unplanned dilution and ore-loss in underground 

stoping mines. In this chapter, the definition, significance, and limitations of current 

unplanned dilution and ore-loss management systems are critically reviewed.  

Chapter 3 comprises a comprehensive review of previous applications of artificial 

neural networks (ANNs) and fuzzy expert systems (FES) to several mining 

conundrums.  

In chapter 4, the processes of data collection and management of unplanned 

dilution and ore-loss prediction and consultation models are described. 

In chapter 5, UB prediction models are established via two approaches. As a 

conventional statistical approach, multiple linear and nonlinear regression analyses 

are employed, and the ANN model is utilised as an innovative soft computing 

approach.  

To illuminate the unplanned dilution and ore-loss mechanism, parameter 

contributions are investigated in Chapter 6. The investigation was conducted based 

on the UB prediction systems and provides not only the intensity of potential UB 

causative factors but also the influential directions.  

Chapter 7 presents the concept of a UB consultation system using the fuzzy expert 

system (FES). Moreover, the details of the integrated UB management system are 

provided.  

Chapter 8 concludes the research by representing the essential findings, limitations 

and future research directions.  
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 OVERVIEW OF UNPLANNED DILUTION AND CHAPTER 2.
ORE-LOSS IN UNDERGROUND STOPING 

 INTRODUCTION 2.1

Stoping methods have recently been recognised as the most prevalent method of 

underground hard rock mining. According to Pakalnis et al. (1996), 51% of 

underground metal mines in Canada utilise open stoping methods, and 

approximately 70% of underground metalliferous mines in Australia operate by 

various stoping methods, i.e., open-stoping, sublevel-stoping, narrow-stoping, and 

other types of stoping  (Austrade, 2013). A survey of eight major underground 

mines in Australia revealed that seven of those eight mines were operating using 

the sublevel, long-hole, and open stoping methods. In fact, stoping methods have 

been acknowledged as one of the most efficient and stabilised mining methods for 

underground metalliferous mining.  

Despite the advantages of stoping methods, many mines suffer from severe 

unplanned dilution and ore-loss, which are often the main cause of mine closures. 

Furthermore, many mines have reported both direct and indirect damage from 

unplanned dilution and ore-loss. For instance, Pakalnis (1986) stated that 47% of 

the open stoping mines in Canada suffered from more than 20% dilution. Moreover, 

Henning and Mitri (2007) reported that approximately 40% of open stoping 

operations continue to suffer from 10 to 20 % of dilution. In spite of expeditiously 

advanced mining technologies, unplanned dilution and ore-loss remain the most 

critical issue. 

This chapter provides an overview of unplanned dilution and ore-loss in 

underground stoping. The importance of properly managing unplanned dilution and 

ore-loss is discussed through a review of the features of influential factors in 

dilution according to previous studies. In addition, several current unplanned 

dilution and ore-loss management systems are reviewed.  
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 DEFINITION OF DILUTION  2.2

Dilution in mining refers to the contamination of ore with inferior grade ore and/or 

waste and backfill material. Generally, dilution is categorised in three subgroups: 

planned, unplanned and ore-loss. Figure 2-1 shows a graphical overview of dilution 

and ore-loss in an underground stoping operation. 

 
Figure 2-1 Overview of dilution and ore-loss in a stope 

As shown in Figure 2-1a, the performance of a stope mine can be assessed by 

comparing the planned void model to the actual three-dimensional excavated void 

 

 

    

 

     
 

  

Ore stream 

CMS outline 

Planned stope outline 

Planned 
dilution 

Unplanned dilution 

Ore-loss 

(b) Section view of the stope 

(a) Planned stope & CMS model 
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model, which can be obtained using a CMS. Figure 2-1b illustrates a sectional view 

of a monitored stope that clearly shows the formulation of dilutions and ore-loss.  

Planned dilution, also called primary or internal dilution, occurs when lower grade 

material, below cut-off grade, is present within an ore reserve block that 

contaminates its overall grade. From a different perspective, unplanned dilution, 

also referred as secondary or external dilution, occurs when a lower grade ore or 

waste material on the exterior of the ore reserve block intrudes into the produced 

pure ore stream. Ore-loss can be defined as a missed ore block that remains in the 

stope after the conclusion of production.  

 SIGNIFICANCE OF UNPLANNED DILUTION AND ORE-LOSS 2.3

Mining projects always pose inherent uncertainties such as commodity prices and 

resource models including mining factors. To enhance revenue of mine, dilution and 

ore-loss are roughly predicted and their global factors are normally included in 

geostatistical block model and cut-off grade calculation on the feasibility stage of a 

mining project. These factors have critical importance because they can directly 

increase operating and opportunity costs that impact on a short term plan as well as 

the global mine economy. Although a mine has an optimised plan, the mentioned 

inherent uncertainties make a discrepancy in reconciliation between planned and 

actual operation. Furthermore, the discrepancy becomes higher in production 

stages because of inevitable unplanned dilution and ore-loss. In fact, unplanned 

dilution and ore-loss are the most critical issues for underground stoping mines, 

directly influencing the productivity of underground stopes and the profitability of 

entire mining operations.  

The significance of unplanned dilution and ore-loss management has been 

emphasised in numerous studies. Indeed, minimising unplanned dilution is the most 

effective method of increasing mine profits (Tatman, 2001). The influence of 

unplanned dilution on the productivity of mining operations has also been 

emphasised by Henning and Mitri (2008), whose study showed the severe negative 

economic impact of unplanned dilution and the opportunity costs incurred from 

additional mucking, haulage, crushing, hoisting, milling and process of waste 



10 

 

CHAPTER 2.  
OVERVIEW OF UNPLANNED DILUTION AND ORE-LOSS IN UNDERGROUND STOPING 

required. Unplanned dilution and ore-loss also severely affect profitability of a mine. 

According to a report on typical narrow vein mines from Stewart and Trueman 

(2008), unplanned dilution costs 25 AUD/tonne, which is much higher than the 

typical mucking and haulage cost of 7 AUD/tonne and milling costs of 18 AUD/tonne. 

Furthermore, the ore-loss also incurs extra opportunity costs which would decrease 

the net present value of current cash flow of mine. An analysis of financial loss due 

to unplanned dilution at Kazansi mine in South Africa was conducted by Suglo and 

Opoku (2012). The study concluded that the economic loss from unplanned dilution 

from 1997 to 2006 was as high as 45.95 million USD. Likewise, Konkola Mine in 

Zambia spent 11.30 million USD to manage unplanned dilution in 2002 alone 

(Mubita, 2005).  

Evaluating the productivity of underground stoping methods can be achieved by 

comparing the amount of unplanned dilution and ore-loss to the amount of planned 

stopes (Cepuritis et al., 2010), which implies that the inevitable and unpredictable 

unplanned dilution and ore-loss can not only threaten the safety of the workforce 

and machinery but also severely impact the productivity of overall mining processes.   

Indeed, unplanned dilution and ore-loss are the most critical and negative 

phenomena associated with the stoping method, and the most effectual way to 

enhance a mine’s productivity is to minimise the amount of unplanned dilution and 

ore-loss (Tatman, 2001). 

 FACTORS INFLUENCE TO UNPLANNED DILUTION AND ORE-LOSS 2.4

Unplanned dilution and ore-loss are one of the most complex phenomena in 

underground stoping operations, and accordingly, numerous known and unknown 

factors as well as their mutual interactions contribute their occurrence. Thus, the 

mechanisms underlying unplanned dilution and ore-loss cannot be properly 

analysed based on a single causative factor or a group of factors; rather, it is 

imperative to consider the entire range of possible contributing factors together. As 

shown in Figure 2-2, the causative factors of unplanned dilution and ore-loss can be 

divided into three core groups with one subsidiary group: stope design factors, 

blasting factors, geological factors, and human error and other factors. 
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Figure 2-2 Categories of causative factors of unplanned dilution and ore-loss 

 Geological factors 2.4.1

Many researchers have contributed to defining the contributing geological factors 

to unplanned dilution and ore-loss. However, the anisotropic and heterogeneous 

features of the rock mass are inherently complex, and defining the geological 

factors and their effect weights is a difficult task. Figure 2-3 demonstrates the 

several geological factors behind unplanned dilution and ore-loss in underground 

stopes. 

Planned stope 
outline

Excavated 
stope outline

Ore-loss

Unplanned 
dilution

Several geological influential factors to unplanned dilution and ore-loss  

In situ & 
induced stresses

   Joint conditions

   Rock types & qualities

   Underground water condition

   Block sizes

   Other geological factors
   e.g., thermal , chemical, and biological effects 

Figure 2-3 Geological factors influencing unplanned dilution and ore-loss 

Causative Factor of unplanned dilution and 
ore-loss 

Stope design factors 
Stope geometry, sequencing, 
undercut, etc. 

Geological factors 
Rock quality, stresses, discontinuities, 
water condition, etc. 

Human error and others 
Drilling, management errors, etc. 

Blasting factors 
Powder factor, blasthole geometry, 
explosive type, etc. 
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As shown in Figure 2-3, many geological factors influence unplanned dilution and 

ore-loss, but a group of studies has indicated several essential geological factors in 

unplanned dilution and ore-loss; these are summarised in Table 2-1 with a 

comparison to the factors employed in this study.  

Table 2-1 Summary of representative geological factors for unplanned dilution and 
ore-loss and factors employed in this study  

Researcher Geological factors Employed factors in this study 

Potvin (1988) 

• Block size, stress, joint orientation & gravity 
• Support 

I. Adjusted Q rate 
 

II. Average horizontal to 
vertical stress ratio (K) 

Villaescusa (1998) 

• Poor geological control 
• Inappropriate support schemes 

Clark (1998) 

• Rock quality & major structures 
• Stress 

Tatman (2001) • Less-than-ideal wall condition 

Mubita (2005) • Inadequate ground condition 

Stewart (2005) 

• Stress damage 
• Pillars 

As seen in Table 2-1, the majority of the geological circumstances surrounding 

stopes and their variations have a significant influence on unplanned dilution and 

ore-loss phenomena. Accordingly, many studies seeking to define the relationship 

between geological conditions and unplanned dilution and ore-loss have been 

conducted. 

Germain and Hadjigeorgiou (1997) studied the influential factors in stope over-

break at the Louvicourt mine in Canada. The excavated stope void was obtained 

using a CMS and compared with the initial planned stope model. The stope 

production performances were analysed via linear regression to examine the 

relationships of the stope geometries and blasting patterns with stope over-break. 

The correlation coefficients (R) of the powder factor and Q-value compared to the 

stope performance were found to be -0.083 and 0.282, respectively. The study 

concluded by reconfirming the complex mechanism of stope over-break. 

Suorineni et al. (1999a) conducted a study on the influence of faults in open stopes 

using numerical analysis. Faults increase the relaxation zone around open stopes, 

which increases the chance of slough. This study showed the significance of 

geological factors in dilution phenomena and stope stability. 
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The influence of stress effects on stope dilution was studied at Bousquet mine in 

Quebec, Canada by (Henning et al., 2001). The authors investigated the relationship 

between the profile of sequentially excavated stopes and the attenuation of 

blasting vibrations with hanging wall deformations. In addition, the rock mass 

damage extensions on primary and secondary excavated stopes were evaluated via 

Hook-Brown brittle parameters. The study discovered the important role played by 

redistributed stress in the extension of the dilution.  

As the stress distribution attracted attention as an important contributor to dilution, 

a case study was conducted in the Kundana gold mines in Western Australia 

(Stewart et al., 2005). In this study, the authors observed the magnitude of over-

break on 410 stopes considering their stress conditions. They found that more than 

50% of over-break was observed on the stope wall where stress had exceeded the 

damage criterion.  

Henning and Mitri (2007) conducted a study to examine the influence of stopes’ 

depth, in situ stress, and geometry on the over-break of stope walls. An elastic-

plastic numerical analysis program (Map3D) was employed to simulate the 

behaviour of stope walls under different circumstances, and various aspects of 

dilution were observed by a comprehensive range of parametric studies. The study 

found that the stope aspect ratio and major principal stresses have a significant 

influence on the over-break.  

Consecutively, Henning and Mitri (2008) studied the influence of the sequence of 

stope production on stope dilution. After investigating 172 differently sequenced 

long-hole stopes, the authors found an increasing magnitude of over-break as the 

number of backfilled walls escalated. 

 Blasting factors 2.4.2

Drilling and blasting are two of the core activities in both the development and 

production stages of metalliferous underground mines, and both are still recognised 

as the most cost effective methods. On the flip side of their cost effectiveness, 

however, is that rock breakage by blasting is often highly unpredictable. One of the 

reasons behind this difficulty is in the intrinsic attribute of the dynamic explosion. 
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Dynamic shock waves and gas pressure will be generated within several 

milliseconds after the exothermic chemical reaction of the explosion.  

The generated dynamic shock waves will promptly propagate into the surrounding 

material at a rate of several thousand meters per second, and extraordinarily high 

gas pressures, in the approximate range 20 GPa or more, will directly follow. These 

energies will easily melt, pulverise, crush, and fracture the surrounding rock mass 

highly. Furthermore, the dynamic fracture behaviour of the rock mass is influenced 

by numerous parameters, such as the type and magnitude of the explosives used, 

the blasting geometries, the geological and geotechnical characteristics of rock 

masses, the regional climate, and so on. Considering the intersections of the 

aforementioned parameters, the dynamic rock mass fracture mechanism is 

extremely complex. 

To define the blasting factors that contribute to unplanned dilution and ore-loss, 

blasting-induced damage must be investigated. Numerous studies have been 

conducted to define a blast induced damage model; however, the exact rock 

breakage mechanism has not yet been clearly identified. In fact, the dominant 

mechanisms for blasting-induced damage (BID), i.e., the effect of blasting-induced 

shock waves and gas pressures, has been debated for the last 40 years. Some of 

representative studies of BID are listed in Table 2-2.  

Table 2-2 Summary of representative studies of blasting-induced damage 

Blasting-induced damage (BID) research priorities concerning shock waves  

Taylor et al. (1986) 

• Uses the continuum damage mechanism (Krajcinovic, 1983) to develop a 
computational constitutive model that simulates stress wave induced rock 
failure.  

Yang et al. (1996) 

• Demonstrates a constitutive BID model is demonstrated based on the 
impulsive loading from stress waves. 

Liu and Katsabanis (1997) 

• Introduces a constitutive BID model based on continuum mechanics and 
statistical fracture mechanics. 

Zhang et al. (2003) 

• Introduces a BID model for predicting dynamic anisotropic damage and 
fragmentation  

Wei et al. (2009) 

• Proposes a new BID criterion of peak particle velocity (PPV) damage 
considering RMR and charge loading density. 
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Blasting-induced damage (BID) research priorities concerning gas pressure 

McHugh (1983) 

• Models the act of internal gas and tensile pressures by  GASLEAK code 
(Cagliostro & Romander, 1975) and  NAG-FRAG (Seaman, 1980) respectively. 

Paine and Please (1994) • Introduces a fracture propagation model by gas. 

Ning et al. (2011) 

• Simulates the explosion gas pressure loading on a jointed rock mass by 
discontinuous deformation analysis 

García Bastante et al. (2012) 

• Introduces a BID model based on Langefors’ theory incorporating the energy 
load in borehole, coupling factor, and the mean gas isentropic expansion 
factor 

As demonstrated in Table 2-2, the precise mechanism of blasting-induced damage 

(BID) has yet to be clarified, and these ongoing studies demonstrate the complexity 

of over- and under-break mechanisms.  

Although rock breakage caused by dynamic explosion forces is exceedingly complex 

and the influential factors and their intensities are difficult to define, several 

noticeable blasting factors have been described in existing studies. Table 2-3 

demonstrates some of the representative blasting factors in unplanned dilution and 

ore-loss, as well as the blasting factors employed in this study.  

Table 2-3 Summary of representative blasting factors for unplanned dilution and 
ore-loss and employed factors in this study  

Researcher blasting factors Employed factors in this study 

Potvin (1988) • Blasting practice 

III. Length of blasthole 
IV. Powder factor 
V. Angle difference between 

hole & wall 
VI. Blasthole diameter 

VII. Space & burden ratio 

(continuous numbering from table 2-1) 

Villaescusa (1998) 

• Poor initial blast geometry 
• Incorrect blast patterns 
• Sequences of explosive types 

Clark (1998) 

• Blasthole geometry 
• Up- & down-holes 
• Breakthroughs 
• Parallel & fanned holes 
• Explosive types 
• Blast sequences 

Tatman (2001) • High powder factor 

Mubita (2005) • Poor blasting results 

Stewart (2005) • Blasting damage 
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As shown in Table 2-3, different expressions have been used in different studies, 

but the fundamental ideas concerning the relationship of blasting factors and 

unplanned dilution and ore-loss phenomena are the same. To sum up, the 

geometry of blasting plans and the powder factor appear to be the dominant 

blasting factors. Regarding suggestions from previous studies, five factors, i.e., the 

diameter and length of the blasthole, the powder factor, the angle difference 

between the blasthole and the wall, and the space-to-burden ratio were selected as 

the blasting factors to be examined here.  

 Stope design factors 2.4.3

Inappropriate stope design, i.e., the shape, size, and sequence of excavation, can 

cause extreme unplanned dilution and ore-loss. Thus, the geological, geotechnical, 

and rock-mechanical analyses that are preliminary to stope design should be 

undertaken with extreme care. 

Many studies have examined the relationship between stope design and unplanned 

dilution. Pakalnis et al. (1995) reported the dilution relationship between the 

average depth of the slough and the width of the stope after surveying Detour Lake 

mine in Canada. Figure 2-4 shows a particular tendency: the narrower the stope, 

the higher the dilution.  

 
Figure 2-4 Percent of dilution as a function of stope width after Pakalnis et al. (1995) 

Hughes et al. (2010) conducted a case study to define the influence of stope strike 

length on unplanned dilution at Lapa Mine in Canada.  The tendency of dilution 
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subject to different stope strike lengths was evaluated through 2D finite element 

numerical analysis. The study concluded that unplanned dilution can be significantly 

reduced by decreasing stope strike length.  

The undercutting and/or overcutting of stopes can significantly decrease the 

stability of the stope hanging wall. The volume of the stress relaxation zone will 

increase with the undercut (Diederichs & Kaiser, 1999), which can cause massive 

dilution. Figure 2-5 shows three examples of increasing the relaxation zone by 

undercutting. 

.  

Figure 2-5 Influence of geometry on the stress relaxation zone after Hutchinson and 
Diederichs (1996) 

Wang (2004) conducted a study examining the influence of undercutting on the 

stability of the stope hanging walls based on historical data from HBMS’s mines in 

Canada. The undercut factor (UF), which compared the degree of undercut with 

actual dilution, was introduced to qualify the scale of undercutting. The author 

sought to propose a relationship between unpredicted dilution and UF; however, a 

typical trend was not found due to limitations in the datasets.   

Many published studies have warned of the significant influence of stope height and 

dip on unplanned dilution. Perron (1999) emphasised the sensitivity of unplanned 

dilution to the stope height in a field study of Langlois mine in Canada. The 

instability of the stope wall was perceived in an initial stope design of 60 m high and 

20 m wide. The stope was redesigned to increase stability and reduce dilution by 

developing an additional sub-level that reduced the stope height to 30 m, taking a 

lower production rate.  

Stress relaxation zone (𝝈𝟑 ≤ 𝟎 𝑴𝑴𝑴) 
 

(a) (c) (b) 
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The dip of a stope can significantly influence unplanned dilution. As the dip of the 

stope decreases, a larger relaxation zone will develop around the stope, which can 

increase the dilution on the stope wall. The relationship between hanging wall dip 

and unplanned dilution was studied by Yao et al. (1999), who demonstrated that 

the stope over-break tends to decrease when the dip in the hanging wall is higher. 

Several suggestions concerning possible stope design factors influencing unplanned 

dilution and ore-loss are tabulated and compared with the list of factors employed 

in this study in Table 2-4.  

Table 2-4 Summary of representative stope design factors influencing unplanned 
dilution and ore-loss and employed factors in this study  

Researcher Stope design factors Employed factors in this study 

Potvin (1988) • Stope geometry and Inclination 

VIII. Planned tonnes of stope 

IX. Aspect ratio 

X. Stope either breakthrough 

to a nearby drift and/or 

stope or not 

 

 (continuous numbering from table 2-3) 

Villaescusa (1998) 

• Poor stope design 

• Lack of proper stope sequencing 

Clark (1998) 

• Stoping sequence, supports, & geometry 

• Hydraulic radius and slot raise location 

Tatman (2001) • Improperly aligned drill holes 

Mubita (2005) 

• Stope boundary inconsistencies 

• Inappropriate mining methods 

Stewart (2005) • Undercutting and extraction sequences 

 Human error and other factors 2.4.4

All of the procedures of stope production should be executed as closely as possible 

to the planned design, but of course, mistakes can occur at any stage of production. 

For example, mining engineers are often forced to make ad-hoc decisions 

concerning the dimensions of the stope, sequencing of stope developments, and 

the timing of backfill. To carry out prompt and precise determinations, the engineer 

should have sufficient experience in the field coupled with a broad understanding of 

geological and geotechnical ideas. 

Human error is also a regular occurrence in field exercises. Although contemporary 

mining machinery, for instance, drilling machines, are far more advanced than their 
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older counterparts, drilling precisely as planned remains nearly impossible. In fact, 

the complex geological features of natural rock impedes many drilling activities, 

including posing precise collaring location, straight line drilling without any 

deviations, and reaching exact depths. 

The influence of human error on unplanned dilution and ore-loss can be magnified 

when it is accompanied by other unfavourable geological conditions. Many 

researchers have noted the importance of human error and other factors, and Table 

2-5 provides a summary of several representative comments.  

Table 2-5 Summary of representative human errors and other factors in unplanned 
dilution and ore-loss  

Researcher Stope design factors Employed factors in this study 

Potvin (1988) 

• Backfill & adjacent stope 

• Timing 

Indirectly implied blasthole 

deviation through the average 

blasthole length 

Villaescusa (1998) 

• Deviation of blastholes 

• Lack of supervision & communication 

• Hushed stope planning & lack of stope 

performance review 

Clark (1998) 

• Realistic collar location 

• Blasthole deviation 

• Communication between engineers 

Tatman (2001) • Excessive equipment limitations 

Mubita (2005) • Poor mining discipline 

Stewart (2005) 

• Backfill abutment 

• Damage to cemented fill 

Although the expressions differ, the underlying considerations are similar. As the 

data collection for the present study relied on historical documents, data on the 

human error and other factors were impossible to obtain. To include human error 

factors in the proposed models, the average blasthole length was collected because 

the accuracy of drilling is generally expressed as a percentage of the blasthole depth 

(Stiehr & Dean, 2011).  
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 CURRENT MANAGEMENT OF UNPLANNED DILUTION AND ORE-LOSS 2.5

Unplanned dilution and ore-loss are the most critical problem in underground hard 

rock mines and are considered to be inevitable during the process of stope 

excavation. Thus, the goal in creating a management system for unplanned dilution 

and ore-loss is not absolute prevention but minimisation. In spite of the 

contributions of many researchers, the majority of unplanned dilution and ore-loss 

management still relies on historical stope reconciliation information and experts’ 

knowledge.  Some of these methods are demonstrated in the following sections.  

 Stability graph method 2.5.1

Notwithstanding efforts by numerous researchers, a model for unplanned dilution 

and ore-loss that considers the overall range of causative factors has not been 

introduced. The majority of existing unplanned dilution and ore-loss studies have 

attempted to discover the relationship of dilution and ore-loss with a few particular 

causative factors. 

Recently, the stability graph method (Mathews et al., 1981; Potvin, 1988) has 

become the most frequently used approach for managing unplanned dilution and 

stope stability. This method has distinguished itself as adequate to estimate stope 

dilution and has been promoted by both industry and academia accordingly 

(Diederichs & Kaiser, 1996; Pakalnis et al., 1996).  The stability graph method charts 

a stability number (N) against a hydraulic radius (HR: area/perimeter of the stope 

wall) of the stope wall. The stability number (N) was modified by Potvin (1988) and 

is defined as: 

 𝑁′ = 𝑄′ × 𝐴 × 𝐵 × 𝐶 Eq. 2-1 

Where N’ is the modified stability number, Q’ is the modified Q ratio (Barton, 1974), 

A is the stress factor, B is the joint orientation factor, and C is the gravity factor. 

Figure 2-6, Figure 2-7, and Figure 2-8 demonstrate the graphical determination of 

the A, B, and C factors. 
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Figure 2-6 Graphical determination of stress factor (A) after Potvin (1988) from 

Wang (2004) 

 

 

 

 
Figure 2-7 Graphical determination of joint orientation factor (B) after Potvin (1988) 

from Wang (2004) 
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Figure 2-8 Graphical determination of gravity adjustment factor (C) after Potvin 

(1988) from Wang (2004) 

Since Mathews first introduced the stability graph method in 1981, it has been 

modified and improved upon by various authors. Significant modifications include: 

• Nickson (1992) – Introduced and incorporated cable bolt effects on the 

stability of the stope wall. 

• Scoble and Moss (1994) – Proposed dilution lines. 

• Clark (1998) - Proposed an empirical stope design approach with new 

terminology, ELOS (equivalent to linear over-break/slough).  

• Hadjigeorgiou et al. (1995) and Clark and Pakalnis (1997) - Modified the 

gravity factor.  

•  Suorineni et al. (1999b) - Introduced a new factor for faults.  

In the stability graph method, the delineation of a stable or caved zone is 

determined using logistic regression. Figure 2-9 demonstrates the stability graph 

method as suggested by Mathews et al. (1981) and Nickson (1992).  
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Figure 2-9 Stability graph proposed by Mathews et al. (1981) and Nickson (1992) 

In spite of the reputation of the stability graph method, certain limitations have 

been noted by several researchers, including:  

• The method does not consider the far field stress relative to the stope 

orientation.  (Martin et al., 1999) 

• It is not applicable to rock-busting conditions (Potvin & Hadjigeorgiou, 2001) 

• Because the stability graph method was developed based on ranges from a 

particular database, its application can be limited within those original ranges.   

• It does not account for the exposure period of the stope wall.  

• It does not consider the alteration of induced stress via stope sequencing.  

• It does not consider blasting factors.  

Concerning the limitations of stability graph method, predicting unplanned dilution 

and ore-loss appears to be a rather difficult task. Indeed, the complex occurrence 

mechanism of unplanned dilution and ore-loss is a significant impediment to its 

predictability.  
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 Other empirical approaches 2.5.2

Other empirical methods have been adopted to evaluate stope design. The critical 

span curve method was first introduced in 1994 for back stability analysis in cut and 

fill mines (Lang, 1994). The initial method has been improved upon by researchers 

at the University of British Colombia by expanding the datasets up to 292 case 

studies (Wang et al., 2000). The definition of the ‘critical span’ is the diameter of the 

largest circle of unsupported back in the stope, and the stability of the stope back is 

related to the designed unsupported span. The method comprises three domains, 

i.e., stable, potentially unstable, and unstable. The span design coves formulated by 

the 292 datasets are shown in Figure 2-10.  

 

Figure 2-10 Span curve method after Brady et al. (2005) 

A quantitative dilution estimation model was introduced by Pakalnis (1986) based 

on historical data from the HBMS Ruttan mine. Stopes were categorised in three 

groups: isolated, adjacent rib, and echelon. The hydraulic radius and rock mass 

rating (RMR) were used as parameters to determine the percentage of dilution.  For 

example, the dilution estimation model for an isolated stope is shown in Figure 2-11.  
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Figure 2-11 A quantitative dilution estimation approach for an isolated stope after 

Pakalnis (1986) 

 Numerical analysis  2.5.3

Recently, numerical analysis has become prevalent in the mining industry to analyse 

stope stability. Indeed, numerical methods have become an essential procedure in 

analysis and a fundamental process in rock engineering design (Jing, 2003). Figure 

2-12 shows some of the representative numerical analysis methods used in mines. 

 

Figure 2-12 Schematic view of representative numerical analysis methods 

Many methods have been developed to create simulations that are as close as 

possible to natural rock conditions. Figures 2-12a and 2-12b show the FLAC3D (3D 

(d) Phase
2 (c) RS

3 

(a) FLAC3D (b) PFC3D 
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continuum modelling analysis) and PFC3D (3D dis-continuum particle flow analysis) 

models from Itasca Consulting Group (2013), and Figures 2-12c and 2-12d show the 

RS3 (3D finite element stress analysis) and Phase2 (Elastic-plastic finite element 

stress analysis) models from Rocscience inc (2014). These numerical analysis models 

have continued to evolve with the rapid technological advances in computer 

science.  

Many mines today use these numerical analysis methods to verify stopes’ stability 

and attempt to predict the occurrence of an over-break on the stope wall. However, 

the dynamic fracture and failure mechanisms of over- and under-breaks on the 

anisotropic and heterogeneous features of rock mass remain a herculean task.  

 SUMMARY AND DISCUSSION 2.6

This chapter concentrates on three topics. First, the significance of unplanned 

dilution and ore-loss in underground stoping mine was examined through a 

comprehensive review of previous publications. Second, potential causative factors 

of unplanned dilution and ore-loss were reviewed and ultimately categorised as 

being due to geological factors, blasting factors, stope design factors, and human 

error and other factors. Finally, several unplanned dilution and ore-loss 

management models were reviewed. 

Current management systems for unplanned dilution, ore-loss and stope stability 

have been improved by various statistical, empirical, and numerical modelling 

methods. However, no extant model specifically considers the geological, blasting, 

stope design and human error factors simultaneously.  

In general, it appears to be impractical to consider all of these factors 

simultaneously due to the complexity of the mechanisms behind unplanned dilution 

and ore-loss. Additionally, although numerical analysis has further potential as 

computer technology continues to advance, anticipating all possible causative 

factors remain beyond its capacity. 

A novel innovation in unplanned dilution and ore-loss prediction and consultation 

models is established in this study by the use of artificial neural network and fuzzy 
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algorithms. The proposed models include ten causative factors that cover the 

majority of the possible roots of unplanned dilution and ore-loss. 
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 OVERVIEW OF ARTIFICIAL NEURAL CHAPTER 3.
NETWORK AND FUZZY ALGORITHM AND APPLICATIONS 

IN MINING 

 INTRODUCTION 3.1

As mentioned in earlier chapters, the uneven break (UB) is one of the most complex 

phenomena in underground stope production and has severe negative effects on 

both the productivity and profitability of entire mining processes. Furthermore, due 

to its complexity, it is impossible to create a straightforward prediction model via 

conventional statistic and stochastic models.  

To overcome these difficulties, advanced soft computing technologies have been 

employed to establish uneven break (UB) prediction and consultation models. Soft 

computing is distinct concept from hard computing, which operates on the basis of 

binary values. Soft computing can be defined as ‘a collection of methodologies that 

aim to exploit tolerance for imprecision and uncertainty to achieve tractability, 

robustness, and low solution cost’ (Zadeh, 1994), and fuzzy algorithms, artificial 

neural networks, supporting vector machines, evolutionary communication, 

machine learning, and probabilistic reasoning are its core principles. Soft computing 

technologies have been successfully employed in a broad range of industries and 

have attracted attention from mining engineers and scholars. Consequently, SC has 

been applied to many of mining’s most challenging problems since the 1980s. 

Among various SC principles, this study employs artificial neural networks (ANNs) 

and fuzzy algorithms (FAs) to establish an uneven break (UB) prediction and 

consultation program. ANN has been recognised as a powerful tool in nonlinear 

approximation, which is suitable for modelling the uneven break (UB) prediction 

system. Moreover, fuzzy algorithms (FAs) have the advantage of treating 

imprecision and uncertainty data, which is appropriate for modelling the uneven 

break (UB) consultation system. This chapter contains a brief overview of ANNs and 

FAs. In addition, previous ANN and FA applications in mining-related subjects are 

reviewed.  
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 ARTIFICIAL NEURAL NETWORK 3.2

The artificial neural network (ANN) is a parallel computational inference model 

whose functionality is a simple imitation of a biological neuron. As demonstrated in 

Figure 3-1, the ANN model is comprised of input, hidden, and output layers, with 

each layer consisting of a number of artificial neurons, a simple mathematical 

element (referred to as a neuron).  

 

Figure 3-1 Architecture of the multilayer feed-forward ANN 

As shown in Figure 3-1, the neurons are completely interconnected to nearby layers 

and the connection intensity is expressed by the numerical weight. The ANN has 

three processes: training, validation, and testing. In the training stage, the optimum 

weights of all connections can be achieved via forward and backward calculations. 

The forward process computes a predicted output and compares it with an actual 

target value to calculate the error of the iteration; the forward process then 

updates all prior connection weights based on the error. Indeed, the ANN is 

optimised by discovering the optimum weight values of the model connections.  

 How ANN works as a human brain 3.2.1

In spite of the advancement of technology, the human brain, which has more than 

10 billion neurons and 6 trillion synapse combinations, is a better processor than a 

digital computer. Neurons use biochemical reactions to receive, process, and 

Artificial neuron 

Target value 

Connection weight    

Input layer Hidden layer(s) Output layer 

 Backward pass 

 

Error  
calculation 

Forward pass 
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transmit information through synapses, and this complex network allows us to 

handle perceptual and cognitive matters, as well as providing us with the capacity 

to process imprecise information. In fact, the most fascinating aspect of the brain is 

that it can learn. The artificial neuron network (ANN) is a mathematical model of 

the biological nervous system. Like a biological brain, neurons receives signals from 

other neurons, which can be intensified and weakened by proper activation 

functions, and the connection weights modulate the input signals just as synapsis 

does in the brain. An ANN’s learning ability can be activated by adjusting the 

weights with the applied learning algorithm. 

 Types of ANN learning algorithms  3.2.2

ANN learning can be generally classified as supervised, unsupervised, and 

reinforcement learning. This study focuses on supervised learning, which must 

occur through paired input and output data. 

 Initial ANN learning algorithm 3.2.2.1

The first authorised ANN study was presented by McCulloch and Pitts (1943). In 

their model, each neuron was assumed to be in a binary state. Later, Rosenblatt 

(1958) introduced the perceptron (a procedure-type training algorithm), which is 

the simplest form of the current ANN model. Figure 3-2 shows a single layer 

perceptron with multiple input nodes.  

 
Figure 3-2 Structure of a single layer perceptron 
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The purpose of the perceptron is to classify inputs. Figure 3-2 shows a basic 

perceptron that will classify 𝑛 dimensional spaces into two classes using a hyper-

plane, which can be determined as a linearly separable function as below: 

 𝑌𝑝 = � 𝑥𝑖
𝑝𝑤𝑖

𝑝 −  𝜃
𝑛

𝑖=1
= 0 Eq. 3-1 

where 𝑌𝑝 is the outputs, 𝑥𝑖
𝑝 and 𝑤𝑖

𝑝 are the 𝑖th input and connection weight, and 𝜃 

is a threshold of the neuron of 𝑝  step. The learning process of perceptrons 

minimises the errors between the target (𝑌𝑑
𝑝) and actual output (𝑌𝑝), which can be 

defined as: 

 𝑒𝑝 =  𝑌𝑑
𝑝 −  𝑌𝑝 Eq. 3-2 

If the error 𝑒𝑝 is positive, then the output 𝑌𝑝 needs to be increased, and vice versa. 

This process of output adjustment is activated by updating weights during the 

training process, as below: 

 𝑤𝑖
𝑝+1 =  𝑤𝑖

𝑝 + ∆𝑤𝑖
𝑝 Eq. 3-3 

 ∆𝑤𝑖
𝑝 =  𝛼 × 𝑥𝑖

𝑝 × 𝑒𝑝 Eq. 3-4 

where ∆𝑤𝑖
𝑝 represents the weight adjustment in 𝑝 step using the delta rule (Eq. 3-4),   

𝑤𝑖
𝑝+1 is the updated weight for 𝑝 + 1 step, and 𝛼 is the learning rate, which is a 

positive constant less than one.  

  Back-propagation and higher order learning algorithms 3.2.2.2

The perceptron can only perform linear separation and cannot solve any nonlinear 

problems, limitations that were overcome by the innovative back-propagation 

algorithm (Bryson & Ho, 1969). Certainly, the back-propagation algorithm in the 

multilayer feed-forward ANN facilitates any nonlinear approximation. In the 

forward process of the back-propagation algorithm, all of the input vectors (𝑥1,2⋯𝑛) 

will be multiplied by randomly assigned corresponding connection weights, and the 

algorithm will be activated by the appointed transfer function as follows: 

   𝑌𝑝 = 𝑓�∑ 𝑥𝑖
𝑝𝑤𝑖

𝑝𝑛
𝑖=1 − 𝜃�  Eq. 3-5 
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where 𝑝 is the number of steps, 𝑌𝑝 is the output from the 𝑝 step, 𝑤𝑖
𝑝 is the weight 

of the 𝑝 step of the 𝑖th input, 𝜃 is the bias (initial threshold), and 𝑓 is the allocated 

transfer function. The calculated  𝑌𝑝 will be compared to the target, 𝑌𝑑
𝑝, and the 

error 𝑒𝑝 will be back-propagated to update the connection weights for the next 

iteration.  

The steepest descent algorithm is frequently used to adjust the weights in a basic 

back-propagation ANN, which searches for the global minima in the error space that 

directs the negative of the error gradient. The steepest descent is known as a stable 

algorithm, but its slow convergence is less than ideal.  

As a countermeasure to the slow convergence of the steepest decent algorithm, the 

Gauss-Newton algorithm (Osborne, 1992), which performs a more rapid 

convergence, can be applied. However, the algorithm will only accelerate when the 

error function is appropriate for generating a quadratic approximation (Yu & 

Wilamowski, 2011). Furthermore, the convergence is very unstable.  

These problems may be surmounted by the Levenberg-Marquardt (LM) algorithm. 

In fact, the LM algorithm is a unified algorithm comprising the steepest descent and 

Gauss-Newton algorithms. The algorithm activates with the steepest decent 

algorithm and converts to the Gauss-Newton algorithm when the error function 

curvature becomes quadratic (Levenberg, 1944; Marquardt, 1963). Nevertheless, 

the LM algorithm often grows comparatively slow and struggles to reach the global 

minima, which may be caused by the built-in steepest decent algorithm.  

Another innovative algorithm, the conjugate gradient algorithm (CGA) (Hestenes & 

Stiefel, 1952), can serve as an alternative to the LM algorithm. In the CGA, the 

direction of the search for the global minima in error space is resolved with a 

conjugate direction that normally yields a more rapid convergence than that of the 

steepest descent algorithm (Møller, 1993). Various combination coefficients (𝛽) 

were introduced, and a well-known Fletcher and Reeves (1964) algorithm was 

selected to model the UB prediction ANN. The 𝛽 for 𝑝+1 step in the model can be 

calculated as follows:  
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  𝛽𝑝+1 = (𝑔𝑝+1,𝑇𝑔𝑝+1) (𝑔𝑝,𝑇𝑔𝑝)⁄  Eq. 3-6 

where, 𝛽𝑝+1 is the conjugate gradient algorithm constant at 𝑝 + 1step, 𝑔𝑝 and 𝑔𝑝,𝑇 

are the error gradient (𝑔 = 𝜕𝜕(𝑥,𝑤) 𝜕𝜕⁄ ) and its transposed matrix at 𝑝 step, and 

𝑔𝑝+1  and 𝑔𝑝+1,𝑇  are the error gradient (𝑔 = 𝜕𝜕(𝑥,𝑤) 𝜕𝜕⁄ ) and its transposed 

matrix at 𝑝 + 1 step. 

The weight update rules for the steepest descent, Gauss-Newton, Levenberg- 

Marquardt and conjugate gradient algorithms are tabulated in Table 3-1. 

Table 3-1 Weight update rules for representative ANN learning algorithms, modified 
from Yu and Wilamowski (2011) 

Algorithm Weight update rules Convergence 

Steepest descent 𝑤𝑝+1 = 𝑤𝑝 − 𝛼𝑔𝑝 Stable, slow 

Gauss-Newton 𝑤𝑝+1 = 𝑤𝑝 − (𝐽𝑝,𝑇𝐽𝑝)−1𝐽𝑝𝑒𝑝 Unstable, fast 

Levenberg-Marquardt 𝑤𝑝+1 = 𝑤𝑝 − (𝐽𝑝,𝑇𝐽𝑝 + 𝜇𝜇)−1𝐽𝑝𝑒𝑝 Stable, fast 

Conjugate Gradient 𝑤𝑝+1 = −𝑔𝑤𝑝+1 + 𝛽𝑝+1𝑒𝑝 Stable, fast 

 𝑤𝑝+1 is the updated weight for p+1 step, 𝛼 is the learning rate, 𝑔 is the error gradient (𝑔 =
𝜕𝜕(𝑥,𝑤) 𝜕𝜕⁄ ), 𝐽𝑝 is the Jacobian matrix for the P step, 𝜇 is the combination coefficient, and 𝛽𝑝+1 is 
the conjugate gradient algorithm constant.  

 Types of ANN transfer function 3.2.3

The transfer function influences the performance of ANN, and thus, an appropriate 

function should be used for the goal of a model. Selected representative transfer 

functions are illustrated in Figure 3-3. 

 
Figure 3-3 Various transfer functions of ANN 
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The hard limit functions (Figure 3-3a and b) are usually used for classification and 

pattern recognition, and the linear activation function (Figure 3-3c) performs well in 

linear approach problems. The sigmoid (Figure 3-3d) and hyperbolic tangent (Figure 

3-3e) functions transfer an input from 0 to 1 and 1 to -1, respectively, and are 

typically used for nonlinear approximations. The equations for activation functions 

are listed from Eq. 3-7 to Eq. 3-10.    

 𝑌𝑠𝑠𝑠𝑠 =  �1,   𝑖𝑖 𝑋 ≥ 0
0,   𝑖𝑖 𝑋 < 0 Eq. 3-7 

 𝑌𝑙𝑙𝑙𝑙𝑙𝑙 =  𝑋 Eq. 3-8 

 𝑌𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  
1

1 +  𝑒−𝑋
 Eq. 3-9 

 𝑌𝑡𝑡𝑡ℎ =  
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
 Eq. 3-10 

 

 ANN applications in several mining conundrums 3.2.4

The ANN model has been applied to various mining-related problems over the last 

25 years. Moreover, with the help of advanced computer technologies, much of the 

ANN and mining-related research has been converted to practical applications. 

Numerous ANN applications can be found in the field of rock mechanics and 

blasting-related subjects.  

 ANN applications in rock mechanics 3.2.4.1

Rock mechanics are of essential importance in mining because all mining plans and 

activities are processed based on rock masses. This subject is fundamental to 

generating an appropriate mine design and planning for a certain mineral deposit, 

but the complex formation of the natural rock mass can be rather difficult to 

investigate.  

Uniaxial compressive stress (UCS) and the deformation modulus are vital 

parameters for rock mechanics, and while they can be obtained through in situ tests, 
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such testing necessitates substantial costs. Thus, laboratory rock sample tests and 

various empirical equations have been introduced to achieve these parameters 

(Bieniawski, 1978; Hoek & Brown, 1997; Nicholson & Bieniawski, 1990). Laboratory 

tests, however, represent only a tiny portion of the investigated rock mass. 

Additionally, the test results are hypersensitive to the condition of the specimens, 

and the test processes (Hoek, 2000) and empirical equations are problematic due to 

uncertainties surrounding the heterogeneous nature of the rock, the variability of 

rock types, and limited data availability (Kayabasi et al., 2003).  

As countermeasures to these difficulties, various rock classification methods such as 

the rock mass rating (RMR) system (Bieniawski, 1973, 1974), Q-system (Barton et al., 

1974), and Geological Strength Index (GSI) (Hoek, 1994), have been introduced to 

offer appropriate guidelines for rock engineering. With the aid of these rock 

classification methods, mine design and planning has grown more systematic. 

Empirical rock classification methods are not without their problems, however. 

While these methods are certainly suitable for the original rock conditions from 

which samples were taken, they cannot be generally applied without adjustments. 

Furthermore, the qualitative analysis of rock conditions is rather subjective.  

Certainly, the complexity and uncertainty of the rock mass is an enormous 

impediment to the advancement of mining, and several studies have sought to use 

ANNs to overcome the difficulties previously described.  

An ANN was applied to predict UCS by Meulenkamp and Grima (1999). The ANN 

was formulated with two hidden layers, and the Levenberg-Marquardt algorithm 

was employed as a training function. The authors allocated Equotip-determined 

hardness, density, porosity, grain size, and rock types as the input parameters to 

predict UCS based on thirty-four rock samples. As a result, the UCS prediction ANN 

demonstrates a more accurate performance than conventional multi-regression 

analysis predictions. 

ANN is also employed to predict the stability states of an underground opening by 

Yang and Zhang (1997). The authors obtained data from a coal mine roadway from  

Sheorey (1991). In this study, the span and depth of the roadway, USC, RQD, Jn, Jr, Ja, 
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Jw, SRF, dry density, rock type, and joint orientation were set as the inputs and the 

stability states as the output. The goal of the study was to examine the contribution 

of inputs to outputs. To achieve this goal, the Relative Sensitivity of Effect (RSE) was 

defined for inputs on output, which can demonstrate the relative importance of the 

effect of input parameters on output units. The authors concluded the study by 

indicating the RQD and rock type as the most sensitive parameters for the stability 

of the roadway. 

Darabi et al. (2012) attempted to predict convergence and subsidence in a tunnel in 

the Tehran No. 3 subway line using various approaches, including, empirical models, 

numerical analysis, regression analysis, and ANN. Among these approaches, ANN 

showed better prediction performance than other methods.  

Analytical solutions for tunnel convergence prediction have been proposed by many 

researchers, e.g., Morgan (1961), Wood (1975), and Einstein and Schwartz (1979). 

Rafiai and Moosavi (2012) demonstrated the limitations of these analytical solutions 

due to the assumptions of elastic behaviour and isotropic in situ fields and  

employed ANN to surmount those defects. Data were initially generated through 

numerical simulations by FLAC (Itasca, 2002) and were reproduced using the design 

of experiments (DOE) technique (Antony, 2003).  

ANN was also employed to predict tunnel convergence by Mahdevari and Torabi 

(2012). The authors indicated the difficulty of TBM jamming during the excavation 

of a weak rock area and accentuated the importance of predicting tunnel 

convergence. The authors established tunnel convergence prediction models by 

regression analysis, back-propagated ANN, and a radial-based ANN system, and the 

ANN models demonstrated results superior to those of regression analysis. The ANN 

model also performed better than conventional analytical and numerical analyses. 

Several representative ANN applications in rock mechanics and related subjects are 

tabulated in Table 3-2.  
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Table 3-2 ANN applications in rock mechanics and related subjects 

Field of study Author Objects 
SC methods 

Auxiliary 
methods 

ANN FA GA 

Rock mechanics 

  

(Identifying the 
strengths and the 

deformation modulus 
of rock masses) 

Lee and Sterling (1992) 
FM ●     

Meulenkamp and Grima (1999) 
UCS ●   EHT RA 

Singh et al. (2001) 
Is, UCS, 𝝈𝒕 ●   VIDSⅢ  

Gokceoglu et al. (2004) 
Ed ● ●    

Sonmez et al. (2006) 
Eel ●     

Majdi and Beiki (2010) Ed ●  ● PCA  

Beiki et al. (2010) 
Ed ●   SA  

Rafiai et al. (2013) 
FC ●     

Rock mechanics 

 

(predicting rock mass 
performance and 

estimating stability) 

Yang and Zhang (1997) 
ES ●   RSE  

Deng and Lee (2001) 
DG ●  ● FEM  

Kim et al. (2001a) 
DG ●   RSE SA 

Li et al. (2006) 
DG ● ●    

Alimoradi et al. (2008) RMR ●   TSP230  

Darabi et al. (2012) 
TC, SS ●   FDM RA 

Rafiai and Moosavi (2012) 
TC ●   FDM DOE 

Mahdevari and Torabi (2012) 
TC ●   SA RA 

SC: Soft computing, ANN: Artificial neural network, FA: Fuzzy algorithm, GA: Genetic algorithm (Holland, 1975), 
FM: Failure modes, UCS: Unconfined compressive strength, Is: Point load strength, 𝝈𝒕: Tensile strength, Ed: 
Modulus of deformation Eel: Modulus of elasticity, FC: Failure criteria, ES: Engineering state (either stable or 
unstable), DG: Displacements and/or ground settlement, RMR: Rock mass rating, TC: Tunnel convergence, SS: 
Subsidence, EHT: Equotip hardness Tester, VIDSⅢ: A high resolution semi-automatic image analysis system, 
PCA: Principal component analysis, SA: Sensitivity analysis, RSE: Relative strength of effects, TSP230: Tunnel 
seismic prediction, FDM: Finite difference method, RA: Simple and/or multiple regression analyses, DOE: Design 
of experiments technique 
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 ANN applications in blasting-related subjects 3.2.4.2

Drilling and blasting methods are acknowledged as the most cost-effective methods 

to excavate ore and are broadly employed in both surface and underground mining 

activities. In spite of the economic advantage, rock blasting is always accompanied 

by risk due to the inherent dynamic energy exposure behaviour. Thus, such 

methods should only be used after implementing safety measures and estimating 

the potential reactions of object materials and latent influences on the surrounding 

environment. The mechanism of rock blasting is very complex, and in fact, precise 

geological and geotechnical data are very difficult to obtain, meaning that rock 

blasting activities are generally planned on the basis of insufficient information. 

Furthermore, the rock blasting mechanism itself has yet to be clarified.  

Many methods of statistical analysis have been used to predict potential hazards 

from rock blasting. Likewise, numerical analyses have often been used to simulate 

rock fracture behaviour. Now, because the aforementioned methods contain 

several engineering limitations; attempts have been made to adopt the artificial 

neural network (ANN) to this problem.  

Traditionally, blasting-induced vibration, especially the peak particle velocity (PPV), 

has been predicted by regression analysis. To achieve better PPV predictability, 

Chakraborty et al. (2004) adopted an online feature selection net (FSMLP) (Pal & 

Chintalapudi, 1997) and a fusion ANN network. The structure of fusion networks is 

similar to that of a conventional multi-layer perceptron (MLP), but hidden neurons 

are substituted by MLP models. The designed fusion network showed consistently 

better PPV prediction performance than empirical statistical PPV prediction models 

and the conventional MLP.  

Many other studies seeking to predict PPV by ANN have been conducted.  Singh et 

al. (2004) applied two separate ANNs to predict the PPV and its corresponding 

frequencies. Moreover, attempts have been made to simultaneously predict PPV 

and frequencies in one ANN model by Lu (2005), Manoj and Singh (2009), Álvarez-

Vigil et al. (2012), and Monjezi et al. (2012). ANN has been applied to numerous 

other blasting-related topics, and several representative studies are tabulated in 

Table 3-3. 
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Table 3-3 ANN applications in blasting-related subjects 

Field of study Author Objects 

SC methods 
Auxiliary 
methods ANN FA GA 

Blasting 

 

(Identifying blasting 
design parameters 

and hazards) 

Chakraborty et al. (2004) 
PPV ●   FSMLP RA 

Singh (2004) 
PPV ●   RA  

Singh et al. (2004) 
PPV, BFQ ●   RA  

Manoj and Singh (2005) 
BAO ●   RA  

Lu (2005) 
PPV, PPA, BFQ ●   NH-A  

Monjezi et al. (2006) 
BFR, MPL, TEX ●   RA  

Remennikov and Rose (2007) 
AFp, AFi ●     

Monjezi and Dehghani (2008) 
BBB ●    SA 

Manoj and Singh (2009) PPV, BFQ ●   RA SA 

Monjezi et al. (2010) 
PPV ●   RA SA 

Kulatilake et al. (2010) 
BRF ●   RA  

Monjezi et al. (2011a) 
BP, BFQ, BBB ●  ● RA  

Dehghani and Ataee-Pour (2011) 
PPV ●    SA 

Bahrami et al. (2011) 
BRF ●   RA SA 

Monjezi et al. (2011b) 
PPV ●   RA SA 

Álvarez-Vigil et al. (2012) 
PPV, BFQ ●   RA  

Monjezi et al. (2012) 
BFQ, BBB ●  ●  SA 

Esmaeili et al. (2012) 
BBB ● ●  RA  

Ataei and Kamali (2012) 
PPV ● ●  ANFIS  

Verma and Singh (2013) PWV ● ●  ANFIS  

Sun et al. (2013) 
BOB ●     

Jang and Topal (2013) 
BOB ●   RA  

SC: Soft computing, ANN: Artificial neural network, FA: Fuzzy algorithm, GA: Genetic algorithm, PPV: Peak 
particle velocity, BFQ: Blasting-induced frequency, BAO: Blasting-induced air overpressure, PPA: Peak particle 
acceleration, BFR: Blasting-induced flyrock, MPL: Muck pile ratio, TEX: Total explosive required, AFp: Air 
pressure pulse AFi: Air pressure impulse, BBB: Blasting-induced backbreak, BRF: Blasting-induced rock 
fragmentation,  BP: Blasting parameters, PWV: P-wave velocity, BOB: Blasting-induced overbreak, FSMLP: On-
line feature selection net, RA: Simple and/or multiple regression analyses, SA: Sensitivity analysis, NH-A: 
Nonlinear hydrocodone – Autodyn, ANFIS: Adoptive network based fuzzy inference system (Jang, 1993) 
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 FUZZY ALGORITHMS 3.3

Unlike the classical two-valued Boolean logic that only accepts values of 0 (false) or 

1 (true), fuzzy logic is a set of mathematical principles that is multi-valued and 

incorporates degrees of membership and degrees of truth. Multi-valued logic was 

originally introduced by Lukasiewicz (1920), who in this study extended the range of 

truth between zero and one. This work triggered the study of ‘possibility theory’. In 

succession, Black (1937) defined the first fuzzy sets, and Zadeh (1965) extended the 

work into a formal system of mathematical logic and introduced fuzzy logic to 

calibrate the vagueness of natural linguistic terms. An example of crisp and fuzzy 

sets with a five membership function of rock mass ratings (RMR) (Bieniawski, 1974) 

is shown in Figure 3-4.  

 
Figure 3-4  Example of crisp (a) and fuzzy (b) sets of a RMR system 

As shown in Figure 3-4a, which displays classical Boolean logic, a rock with an RMR 

of 65 is only a member of the ‘good rock’ set with degree of membership of 1.0. In 

fuzzy logic (Figure 3-4b), however, a rock with an RMR of 65 is a member of the ‘fair 

rock’ set with a degree of membership of 0.25 and simultaneously a member of the 

‘good rock’ set with a degree of 0.75. This mathematical feature of the fuzzy set 

theory (also called fuzzification) can incorporate expert knowledge into a 

mathematical model. 
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 Configurations of Fuzzy expert systems 3.3.1

Determining membership functions and fuzzy ‘IF-THEN’ rules are the prerequisite 

conditions for developing a fuzzy expert system (FES). Fuzzy membership functions 

are the main component of FESs, and the formation and ranges of each 

membership function should be cautiously selected considering the idea of FES. 

Commonly, inputs and outputs of membership functions and rational fuzzy rules are 

left to subject experts.  

 Fuzzy inference systems 3.3.2

Fuzzy inference is a process of matching inputs to output space considering the 

predetermined fuzzy membership functions and fuzzy rules. The Mamdani and 

Assilian (1975) (referred to as Mamdani style) and Sugeno (1985a) styles are the 

most representative fuzzy inference systems. One large difference between these 

two fuzzy inference systems is that Sugeno model uses a bar-type singleton to 

represent the membership function, while Mamdani uses a two-dimensional 

membership function. In this study, a Mamdani-style fuzzy inference system was 

adopted to build the UB consultation system, which consists of four steps: 

fuzzification, rule evaluation, aggregation of the rule outputs, and defuzzification 

(Negnevitsky, 2005). The details of modelling fuzzy inference systems are described 

in detail in Chapter 6.  

 Applications of fuzzy algorithms in mining conundrums 3.3.3

Considering the complexities of various mining subjects, the ability to control 

vagueness and uncertainties offered by fuzzy algorithm has attracted mining 

engineers and scholars since the mid-1980s. Fuzzy algorithms have been employed 

in various difficult mining subjects, and many advanced theories have consequently 

been developed.  

Among the numerous fuzzy algorithm applications in many mining conundrums, 

mining method selection (MMS), the equipment selection problem (ESP), several 

subjects related to rock mechanics, and certain subjects related to blasting are 

reviewed in the following sections.  
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 Fuzzy algorithm applications in mining method selection  3.3.3.1

Mining Method Selection (MMS) is a vital process in the early stages of the mine 

planning process, the goal being to select the most appropriate mining method for a 

given mineral deposit. This process significantly influences the economics, safety, 

and productivity of a mine. However, MMS is a typical multiple-attribute decision-

making (MADM) problem that encompasses numerous conditions and parameters, 

i.e., technical and industrial problems, financial concerns, mining-related policies, 

and environmental and social issues. A conceptual framework of MMS is illustrated 

in Figure 3-5. 

 

Figure 3-5  Conceptual frame work of MMS 

As demonstrated in Figure 3-5, numerous criteria and their sub-criteria must be 

accounted for in order to select the optimal mining method among many 

alternatives. To aid the MMS, Nicholas (1992) introduced a quantitative ranking 

method that categorised vital factors in the MMS process. This method includes the 

3D features of the deposit, geological and geotechnical surroundings, 

environmental and economic considerations, and other industrial factors. Moreover, 
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political and social limitations, machinery, and workforce supply conditions are also 

included as significant factors. In fact, the MMS was generally managed by 

artificially delimiting criteria, and its implementation was often left to mining 

experts. To achieve optimum MMS, many attempts have been made to employ 

fuzzy algorithms combined with certain MADM approaches.  

Yun and Huang (1987) adopted a fuzzy algorithm for MMS, formulating a three 

stage system. In the first stage, fuzzy relation equations, which calculate the 

hamming distance from the geological requirements of candidate mining methods 

to the geological conditions where a mine can be planned, were formulated. The 

technical and economical values of each candidate mining method were evaluated 

in the second stage, and in the third stage, the decision was made based on the 

values from prior stages.  

An expert system for underground MMS was developed by Guray et al. (2003) 

based on Nicholas’s (1992) quantitative ranking method. The system developed 13 

virtual experts for 13 different underground mining methods. One merit of the 

proposed system is its inclusion of an MMS tutorial that can be invaluable for 

inexperienced mining engineers. In addition, the system included criteria that were 

not listed in Nicholas’s method, i.e., capital cost, operating cost, productivity, 

subsidence, spontaneous combustion, and the lake presence factor.  

A method for assigning weights to MMS criteria was introduced by Bitarafan and 

Ataei (2004). The developed system was built based on Yagar’s method (1978) and 

a fuzzy dominance method proposed by Hipel (1982). The proposed system 

modelled using exponential scalars to express the significance of given criteria. 

Therefore, the significance of a criterion was dramatically increased if its conditions 

were matched with the target deposit. Otherwise, the significance would be 

seriously decreased. The method was successfully applied to one of the anomalies 

at the Gol-e-Gohar iron mine in Iran, where the block caving method was chosen as 

the most appropriate mining method.  

Azadeh et al. (2010) introduced an MMS system that modified Nicholas’s (1992) 

quantitative ranking method using fuzzy logic and the Analytical Hierarchy Process 

(AHP) (Saaty, 1980). In the system, the imprecision of the decision maker’s 
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judgements were expressed by trapezoidal fuzzy numbers; it was applied to the 

northern anomaly of the Choghart iron mine in Iran to validate the developed 

system.  

Selected representative references to fuzzy algorithm applications in MMS problem 

are tabulated in Table 3-4. 

Table 3-4 Representative applications of fuzzy algorithms in mining method 
selection 

Field of 
study Author 

SC methods 
Auxiliary 
methods 

FA EXS ANN YAM 

Mining 
method 

selection 

Yun and Huang (1987) ●      

Bandopadhyay and Venkatasubramanian (1988)   ●     

Gershon et al. (1993)   ●     

Yiming et al. (1995)   ● ●    

Guray et al. (2003)   ●     

Bitarafan and Ataei (2004)  ●   ●   

Ataei et al. (2008)  ●    AHP  

Azadeh et al. (2010) ●    AHP  

Namin et al. (2011) ●    AHP TOPSIS 

SC: Soft computing, FA: Fuzzy algorithm, EXS: Expert system, ANN: Artificial neural network, YAM: Yagar’s 
method, AHP: Analytic hierarchy process, TOPSIS: Technique for order performance by similarity to ideal 
solution (Hwang & Yoon, 1981) 

 Fuzzy algorithm application in equipment selection problems 3.3.3.2

Excavation, loading and hauling are essential activities in mining. Because the cost 

of the necessary equipment easily exceeds several million dollars and its 

maintenance costs take up a large portion of a mine’s budget, selecting the proper 

size, type, and number of machines has significant effects on mine profitability. 

According to a study by Blackwell (1999), haul trucks’ operating costs may eat up 

one-third to one-half of total mining operation costs.  
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The goal of this problem is to optimise the material transfer system from a set of 

origins to certain destinations considering numerous factors, i.e., budget conditions, 

hauling distance, possible configuration of equipment, and alternative transfer 

systems. Due to its complexity, the equipment selection problem (ESP) is often left 

to equipment selection experts, although one practical solution that has been used 

is cutting back the dimensions of the problem by delimiting influential parameters 

and alternatives. 

Because the ESP requires accounting for numerous factors with alternative transfer 

systems, attempts have been made to adopt soft computing technology, especially 

fuzzy algorithms, with MCDM methods, which have shown better solution than 

conventional ESP approaches. Figure 3-6 demonstrates concise processes of ESP 

through soft computing technologies with MCDM methods versus the conventional 

approach of using mining experts. Moreover, selected representative fuzzy 

algorithm applications concerning the ESP are reviewed.  

 
Figure 3-6 Demonstration of ESP solutions through mining experts and soft 

computing approach 
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Amirkhanian and Baker (1992) introduced VP-Expert, which is a rule-based ESP 

expert system. Several ESP experts’ knowledge of and specifications for equipment 

were incorporated into the VP-Expert, which consists of 930 rules that cover ground 

conditions, operational performances, and the prerequisite operations of a given 

mining project. The VP-Expert was applied to three actual ESPs and demonstrated 

results that were fairly well matched to the selections made by companies.  

Bascetin and Kesimal (1999) applied fuzzy algorithms to select optimum coal-

hauling systems to transport coal from an open-cast coal mine to a power plant. 

The authors set twenty-one operational attributes as the criteria and suggested 

three alternative transfer systems. The membership values of each criterion were 

defined by the decision makers, and the reciprocal matrices of the criteria were 

formulated to present the significance of each criterion. 

A fuzzy expert system was built for a surface mining ESP by Ganguli and 

Bandopadhyay (2002). The proposed system consists of seven tasks, where the 

relative significance of each factor on each tasks is specified by the user and the 

significance of the listed equipment is evaluated based on the conditions provided 

by user. To validate the proposed system, a case study was conducted at the 

Malanjkhand Copper Mine in India, and the expert system recommended 

equipment fleets that were similar to the actual equipment fleets used at the mine. 

The system does contain certain limitations, however, in that it does not account for 

production requirements; additionally, the criteria weights assignation process can 

be highly subjective, which may decrease the creditability of the system.   

Fuzzy algorithms (FAs) have been successfully and practically applied to many actual 

ESPs in mining, and selected representative ESP studies adopting FAs are listed in 

Table 3-5. 
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Table 3-5 Representative studies of fuzzy algorithm applications in the mining 
equipment selection problem 

Field of 
study Author 

SC methods 
Auxiliary 
methods 

FA EXS ANN YAM 

Mining 
equipment 
selection 
problem 

Bandopadhyay (1987) ●     

Bandopadhyay and Venkatasubramanian (1987)  ●    

Denby and Schofield (1990) ● ●    

Clarke et al. (1990)  ●    

Amirkhanian and Baker (1992)  ●    

Bascetin and Kesimal (1999) ●   ● AHP 

Ganguli and Bandopadhyay (2002)  ●    

Bascetin (2004) ●    AHP 

Iphar and Goktan (2006) ●     

Aghajani Bazzazi et al. (2011) ● ●   AHP 

SC: Soft computing, FA: Fuzzy algorithm, EXS: Expert system, ANN: Artificial neural network, YAM: Yagar’s 
method, AHP: Analytic hierarchy process 

 Fuzzy algorithm applications in rock mechanics and rock blasting 3.3.3.3

Natural rock is typically anisotropic and heterogeneous, and uncertainties, 

imprecision and data limitations are thus irremovable inherent obstacles in research 

related to rock mechanics and rock blasting. For this reason, beginning in the mid-

1980s, many engineers and scholars have adopted FAs to manage the difficulties. 

Several representative studies concerning FA applications in rock mechanics and 

breakage are reviewed below. 

Alvarez Grima and Babuška (1999) used the Takagi-Sugeno (TS)-type (Takagi & 

Sugeno, 1985) fuzzy inference system to predict the unconfined compressive 

strength (UCS) of rock samples. The proposed system was faster and more 

economical than the laboratory test and showed better predictability than multiple 

regression analysis. 
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A rule-based fuzzy system was employed to predict the deformation modulus by 

Kayabasi et al. (2003). The proposed system was evaluated by comparing the results 

with five empirical equations and actual laboratory test results. The proposed 

system showed superior a predictive performance to empirical approaches, 

although one limitation of the proposed system is that it can only apply to the rock 

types in the inputs database.  

The fuzzy algorithm was applied to rock classification by Hamidi et al. (2010), whose 

proposed system was configured by the Mamdani fuzzy inference system (FIS) with 

seven inputs based on the rock mass excavability (RME) (Bieniawski & Grandori, 

2007) system. The proposed system was applied to two water-transfer tunnels in 

Iran, which verified the applicability of fuzzy algorithm to rock mass classification.  

Moreover, fuzzy algorithms were employed to establish a flyrock prediction system 

at the Gol-e-Gohar iron mine in Iran by Rezaei et al. (2011). The proposed model 

consisted of 390 fuzzy rules with eight inputs, i.e., burden, spacing, hole depth, 

specific drilling, stemming, charge per delay, rock density, and powder factor, and 

one output, the ranges of flyrock. The fuzzy model demonstrated better flyrock 

prediction performances than conventional statistical models.  

As described, the fuzzy algorithm has also been effectively applied to numerous 

subjects related to rock mechanics and rock blasting, and selected representative 

studies are tabulated in Table 3-6. 
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Table 3-6 Representative studies of fuzzy algorithm applications in rock mechanics 
and breakage-related subjects 

Field of study Author Objects 
SC methods Auxiliary 

methods FA EXS ANN YAM 

Rock mechanics 

(identifying the 
strengths & the 

deformation 
modulus) 

Alvarez Grima and Babuška 
(1999) 

Ed
 ●    EHT RA 

Kayabasi et al. (2003) 
Ed

 ●    RA  

Sonmez et al. (2004) 
UCS, Eel ●    RA  

Rock mechanics 

(predicting rock 
mass performance  
& stability study) 

Li et al. (2007) 
DG ●  ●    

Li et al. (2007) 
DG ●    GA GEP 

Li et al. (2013) 
DG ●    MWC RAC 

Rock mechanics 

 

(rock mass 
classification) 

Nguyen (1985) 
 ●    RMR  

ShengFeng et al. (1988) 
 ●    -  

Zhang et al. (1988) 
  ●   GU  

Juang and Lee (1989)  ● ●   RMR  

Butler and Franklin (1990) 
  ●   RMR Q 

Juang and Lee (1990) 
 ●    FWA RMR 

Habibagahi and Katebi (1996) 
 ●    RMR  

Aydin (2004)  ●    RMR  

Liu and Chen (2007) 
 ●    FDAHP LDA 

Hamidi et al. (2010) 
 ●    RME  

Blasting 

(Identifying design 
parameters & 

hazards) 

Azimi et al. (2010) 
BD ●      

Rezaei et al. (2011) 
BFR ●    RA SA 

Fişne et al. (2011)  
PPV ●    RA  

SC: Soft computing, FA: Fuzzy algorithm, EXS: Expert system, ANN: Artificial neural network, YAM: Yagar’s 
method, Ed: Modulus of deformation, UCS: Unconfined compressive strength, Eel: Modulus of elasticity, DG: 
Displacements and/or ground settlement, BD: Blastability designation, BFR: Blasting-induced flyrock, PPV: Peak 
particle velocity, EHT: Equotip hardness Tester, RA: Simple and/or multiple regression analyses, GA: Genetic 
algorithm, MWC: Modified Wiebols-Cook criterion, RMR: Rock mass rating, GU: Gu’s rock classification, FWA: 
Fuzzy weighted average, FDAHP: Fuzzy delphi analytic hierarchy process, RME: Rock mass excavability, GEP: 
Genetic programming, RAC: Rafiai criterion, Q: Q-system,  LDA: Linear discriminant analysis, SA: Sensitivity 
analysis 
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 SUMMARY AND DISCUSSION 3.4

The fundamental ideas behind ANN and FA and their applications in several mining-

related subjects are reviewed in this chapter. As mining is a melting pot of various 

engineering subjects and manages complex rock and rock masses, establishing 

reliable mining systems such as planning, scheduling, developing, producing, and 

conciliating is highly complex and cannot be efficiently modelled by conventional 

mathematical and statistical methods. For this reason, ANNs and FAs have been 

adopted in various mining-related subjects to positive results.  

In fact, the rapid advancement of computer technology has created many synergy 

effects on soft computing (SC), and different types of advanced SC technologies 

have been employed in various industries. However, the history of the application 

of ANNs, FAs, and other soft computing technologies in mining engineering is 

somewhat shorter than in other industries. Furthermore, there is no proper system 

for controlling unplanned dilution and ore-loss in underground stoping.  In fact, this 

study is a first attempt to establish an unplanned dilution and ore-loss management 

system through the use of ANN and FA. 
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 DATA COLLECTION AND MANAGEMENT CHAPTER 4.

 INTRODUCTION 4.1

Data collection and management are a herculean task but an essential stage for 

rational analysis. Moreover, the performance of the proposed model fully relies on 

the quantity and quality of the data. This chapter describes the data collection and 

management procedures used to obtain qualified datasets for establishing a UB-

predicting ANN model. In addition, to build a dependable UB consultation model 

with a fuzzy expert system, 15 underground mining experts shared their knowledge 

via personal surveys. Data were collected from three underground mines in 

Western Australia. As unplanned dilution and ore loss are one of the major 

concerns in a mining company, the locations, specific geological information, and 

mine details cannot be noted in this thesis for security reasons. Thus, the three 

mines are labelled mines A, B, and C.  

 DATA COLLECTION FOR UB PREDICTING ANN SYSTEM 4.2

In this study, extensive ranges of historical stope design, blasting, geological, 

geotechnical data, and reconciliation documents were scrutinised to establish 

reliable uneven break (UB) prediction models without any bias.  

As mentioned in Chapter 2, ten essential parameters which comprise blasting, 

geological, stope design, and human error categories, were collected via a thorough 

review of approximately over 30,000 historical documents from three underground 

long-hole and open stoping mines in Western Australia. Ultimately, 1,354 sets data 

points were collected and the details of ten uneven break (UB) causative factors 

were tabulated in Table 4-1.  

Five parameters were collected as the representative blasting factors, i.e., average 

length of blasthole (Blen), powder factor (Pf), angle difference between the hole 

and wall (AHW), blasthole diameter (Bdia) and space and burden ratio (SbR). The 

adjusted Q rate (AQ) and average horizontal to vertical stress ratio (K) were 

considered as the representative geological factors. The planned tonnes of stope 

(Pt), aspect ratio (AsR), and stope either breakthrough to a nearby drift and/or 

stope or not (BTBL) were collected as the stope design factors. These ten uneven 
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break (UB) causative factors were allocated as independent variables. As a 

dependent variable, the percentage of uneven break (UB) was also collected.  

Table 4-1 Details of the ten UB causative factors 

Category Abbr. Unit Range Note 

In
pu

t 
(in

de
pe

nd
en

t v
ar

ia
bl

es
) 

Co
nt

ro
lla

bl
e 

Bl
as

tin
g 

Blen m 0.70 ~ 25.80 Average length of blasthole 

Pf Kg/t 0.15~ 3.00 Powder factor 

AHW ° 0.00 ~ 170.20 
Angle difference between hole and 
wall 

Bdia mm 76 ~ 89 Blasthole diameter 

SbR (S/B)1 0.57 ~ 1.50 Space and burden ratio 

St
op

e 
de

sig
n 

 Pt T 130 ~ 51,450 Tonnes of stope planned 

AsR (W/H)3 0.07 ~ 4.17 Aspect ratio 

BTBL - 
Breakthrough (0) 

~ Blind (1) 
Stope either breakthrough to a nearby 
drift and/or stope or not 

U
nc

on
tr

ol
la

bl
e 

Ge
ol

og
y AQ - 6.30 ~ 93.30 Adjusted Q rate 

K (H/V)2 1.74 ~ 14.38 
Average horizontal to vertical stress 
ratio 

Output  

(dependent variable) 
UB % -65.40 ~ 92.00 

Percentage of uneven stope break 
(over and under breaks) 

1S/B: ratio between toe space (S) and ring burden (B); 2H/V: ratio between average horizontal (H) and vertical (V) 
stress; 3W/H: ratio between width (W) and height (H) of stope 

 Blasting factors 4.2.1

Uneven break (UB) is an inevitable phenomenon if a stope is excavated by drilling 

and blasting method. Even with a well-established blasting design, the massive 

dynamic explosion energy will break not only the planned stope but also waste rock 

in exterior of planned stope. Thus, the blasting factors have a vital importance to 

understand uneven break (UB) phenomenon. In this study, all data were collected 

from production ring blasting but not slotting processes. Figure 4-1 shows a 

schematic view of one example of blasting data collection.  
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Figure 4-1 Schematic view of data collection for blasting factors; Blen: average 
length of blasthole, Pf: powder factor, AHW: angle difference between hole and 

wall, Bdia: blasthole diameter, SbR: space and burden ratio 

Figure 4-1 shows a data collection in a foot wall of a stope and hanging wall also 

collected via the same strategy.  

 Geological factors 4.2.2

Geological factors are unalterable, and they have significance influences on uneven 

break (UB). Indeed, no blasting method can minimise unfavourable over and 

underbreaks, if the rock is not sustainable by itself. In this study, the modified Q 

rate (Q’) (Mathews et al., 1981) and average horizontal to vertical stress ratio (K) 

were collected as representative geological factors.  

The first geological factor in this study, the modified rock mass quality index (Q’), 

was introduced by Mathews et al. (1981). Q’ has been applied for open stoping 

design and is defined as: 

     𝑄′ =
𝑅𝑅𝑅

𝐽𝑛
×
𝐽𝑟
𝐽𝑎

  Eq. 4-1 

where 𝑅𝑅𝑅 is the rock quality designation (Deere, 1964), 𝐽𝑛 is the number of joint 

set,  𝐽𝑟  is the joint roughness number, and 𝐽𝑎 is the joint alteration number from 

the rock mass rating system (Hoek & Brown, 1997).  

Drift A Drift A 

Hanging wall 

Foot wall 

Development drift 

Spacing 

HW 
FW 

Ring burden 

SbR 
Pf AHW 

Blen 

Bdia 
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The average horizontal to vertical stress ratio (K: 𝝈𝒗/𝝈𝒉) was also collected as a 

geological factor for this study. The in-site stress of mine-A was measured by the 

acoustic emission  method (AE) (Villaescusa et al., 2002; Yoshikawa & Mogi, 1989) 

while the Hollow Inclusion cell over-coring  method (HI) (Hooker & Bickel, 1974) was 

adopted in mine-B. These two methods (AE and HI) are both used in mine-C.  

 Stope design factors 4.2.3

Tonnes of stope planned (Pt), aspect ratio (AsR), and stope either breakthrough to a 

nearby drift and/or stope or not (BTBL) were collected as stope design factors. The 

BTBL value of a stope was 0 for a blind stope and 1 for a breakthrough stope. Figure 

3-1 shows examples of blind and breakthrough stopes. 

(a)

(b)

(c)

(d)

 
Figure 4-2 Schematic view of blind (a, b) and breakthrough (c, d) stope 

The width (W) versus height (H) ratio was calculated as the AsR for each stope, and 

the planned tonnes (Pt) of each stope was collected to represent the influence of 

size effect on uneven break (UB) phenomenon.  
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 Uneven break  4.2.4

The percentage of uneven break (UB; over- and underbreak) was collected as a 

dependent variable for UB prediction models. The three investigated mines used 

the CMS for stope reconciliation, and the overbreak and underbreak volumes were 

calculated not only from the hanging wall but also the foot wall of the stope. 

Ultimately, the percentage of uneven break (UB) was determined by calculating the 

percentage of over- and underbreak volume per the planned stope volume. For 

further rational computing, overbreak and underbreak values were multiplied by 

one and minus one, respectively. The collected data revealed that the UB range is 

between -65.40 and 92.00. Figure 4-3 demonstrates an example of typical stope 

reconciliation with CMS model.  

a

a’

CMS void model

Development drift

Ore-loss

Planned stope model

Unplanned dilution

 

Figure 4-3 Typical stope reconciliation with the CMS model 

As shown in Figure 4-3, the planned stope model was compared with the actual 

stope model obtained by CMS.  

 Data filtering 4.2.5

To conduct a coherent analysis, dirty data, mis-typed or mis-measured data, should 

be eliminated and outliers, abnormal data, are needed to be checked. Dirty and 

abnormal data influence an analysis in various respects. Because they can reduce 
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the reliability of proposed models, they should be checked and eliminated before 

proceeding further analysis. Their detection process should be carried out very 

carefully because it may also eliminate important data points. In this study, dirty 

data are referred as extreme outliers. 

Outlier can be defined as data points that are far away from other data points, and 

their detection is a prerequisite to a coherent analysis. Univariate and bivariate 

outliers can be straightforwardly detected by monitoring the shape of the data 

distribution for flat and/or spatial spaces, e.g., the standard z-score test, box-plot, 

scatter-plot, and Euclidean distance. Contrastively, a multivariate outlier cannot be 

directly detected through visual inspection. For example, even if an observation 

point is a suspected outlier in one or two dimensional spaces, it could be an 

important observation point in other dimensions. These phenomena are called the 

masking and swamping effects (Hawkins, 1980; Iglewicz & Martinez, 1982).  

In this study, one dependent and ten independent variables which compose ten 

dimensional matrixes, are employed. To rationally detect outliers from the ten 

dimensional matrixes, two separate data filtering stages were applied.  

 First filtering stage 4.2.5.1

In the first stage, potential outliers were identified by examining their z-score. As 

the number of datasets is 1,354, each parameter was assumed to follow normal 

distribution under the central limit theorem (Rosenblatt, 1956). The z-score results 

were crosschecked using the chi-square (𝜒2)  plot method (Garrett, 1989) to 

minimise errors in the outlier detection process.  

The z-score signifies distance from a data point to the mean in units of the standard 

deviation, and it is defined as: 

 "𝑧 − 𝑠𝑠𝑠𝑠𝑠" =  (𝑥 − 𝜇 𝜎⁄ ) Eq. 4-2 

where 𝑥 is the raw data point,  𝜇 is the mean of the sample, and 𝜎 is the standard 

deviation of the sample. As in normal statistical heuristics, in this study, a data point 

is classified as an extreme value if the z-score is greater than four, and it is 

categorised as a possible outlier when the z-score is greater than three.  
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In succession, Garrett’s  𝜒2 plot method was utilised to detect multivariate outliers. 

The basic convention of Garrett’s method is a statistical axiom that normally 

distributed multivariate datasets approximately comply with a 𝜒2 distribution with  

𝑝 degree of freedom (𝜒𝑝2). Garrett’s method is recognised as a reliable multivariate 

outlier detection method, and it requires calculation of the Mahalanobis distance 

(MD), which is a distance measurement method for multivariate conditions. In 

contrast with Euclidean distance, MD considers the covariance matrix of a given 

dataset, and the distance between the centroid (multidimensional mean) and 

covariance (multidimensional variance) of a distribution is measured (Mahalanobis, 

1936). For a  𝑝-dimensional multivariate sample 𝑥𝑖  (𝑖 = 1, 2, 3, … ,𝑛), the MD is 

defined as: 

 𝑀𝑀𝑖 = �(𝑥𝑖 − 𝑡)𝑇𝐶−1(𝑥𝑖 − 𝑡)�
1/2

  Eq. 4-3 

where 𝑡  and 𝐶  are the estimated multivariate location (multivariate arithmetic 

mean) and estimated covariance matrix (sample covariance matrix), respectively. In 

this study, the MD was calculated using SPSS (Statistical Product and Service 

Solutions). Ultimately, the  𝜒102   plot for the 1,354 datasets is depicted in Figure 4-4.  

 

Figure 4-4 Plot of MD2 against 𝝌𝟏𝟏𝟐  for the 1,354 datasets 

As shown in Figure 4-4, two extreme values were distinguished, and 66 datasets 

were considered as potential outliers falling within the 95% quantiles. A comparison 
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of the Garrett’s  𝜒2 plot method result with the z-score result revealed that 83.33% 

of the candidate extreme values (z-score > 4) were in the 𝜒10; 0.950
2 . Thus, 68 

datasets were removed as outliers during the first filtering stage.  

 Second filtering stage 4.2.5.2

The majority of extreme outliers were eliminated by the thorough first filtering 

stage. However, a second filtering was carried out to increase the reliability of 

proposed models by removing certain abnormal data points. The second filtering 

stage was composed of two sub-stages. In the first sub-stage, abnormal data points 

were identified and scanned out using scatter plots of the dependent variables 

against each independent variable. Figure 4-5 shows examples of abnormal data 

points in a scatter plot matrix with 1,286 datasets after the first filtering.  

BTBL

Blen

Pf

AHW

Bdia

SbR

AQ

Pt

AsR

K

UB

BTBL       Blen        Pf          AHW       Bdia       SbR         AQ          Pt          AsR           K           UB

Abnormal data point
 

Figure 4-5 Scatter plot matrix of 1,286 datasets after the first filtering stage 
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As a result of the first sub-stage, four datasets were removed from each of the 

mine-B and mine-C datasets.  

In the second sub-stage of the second filtering, 211 data points from mine-C were 

removed because they had improper K values. In 2004, mine-C conducted in-situ 

stress measurements by using the over-coring method at depths of 245 m and 577 

m (BFP Consultants Pty Ltd, 2004). However, the in-situ stress from ground level to 

245 m could not be correctly estimated with the method because stress was already 

distributed from earlier productions. Thus, 211 data points from above the 245 m 

level in mine-C were eliminated.  The vertical stress and K values from mines A, B, 

and C are depicted in Figure 4-6 and Figure 4-7, respectively.  

 

 
Figure 4-6 Vertical stress of mines A, B, and C. Modified after Brown and Hoek 

(1978). AE: acoustic emission method, HI: Hollow Inclusion cell over-coring method. 
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Figure 4-7 Average horizontal stress of mines A, B, and C. Modified after Brown and 

Hoek (1978).  

As shown in Figure 4-6, the estimated vertical stress (𝝈𝒗) of mine-C reaches zero at 

the depth of 245 m. Thus, the data collected above 245 m are not variable.  

 Result of data filtering 4.2.5.3

Through outlier filtering stages, 219 out of 1,354 datasets were removed to improve 

the quality of the datasets, and the results are summarised in Table 4-2.  

Table 4-2 Summary of first and second filtering stages 

DATA FILTERING Mine-A Mine -B Mine -C Overall datasets Filtered datasets 

Initial dataset 150 259 945 1,354 0 

First filtering 126 235 925 1,286 68 

Second filtering 126 231 710 1,067 219 
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As shown in Table 4-2, 68 and 219 datasets were removed from the first and second 

outlier filtering stages respectively. In the second filtering stage, 4 datasets from 

mine-B and mine-C were eliminated from the scatter plot scan and 211 invalid 

datasets were excluded. The quality improvements from each data filtering stage 

were monitored by multiple linear regression analysis (MLRA), and the results are 

demonstrated in Figure 4-8.  

 
Figure 4-8 Multiple linear regression analysis results for each filtering stage 

The MLRAs were conducted using an entered method that inputs ten independent 

variables simultaneously. The correlation coefficient (R) of the initial dataset was 

0.364, and it increased modestly to 0.372 after the first filtering stage. Then, after 

the second filtering stage, R increased dramatically up to 0.423, which indicates the 

strong influence of invalid datasets on the reliability of the analysis. Scatter plots of 

the ten collected UB causative factors against the actual uneven break (UB) 

percentage are presented in Appendix A.  

In addition, the Spearman’s correlation between the dependent variable (UB) and 

each independent variable improved with each step. The independent variables are 

statistically significant (P-values < 0.05) except Bdia. The reason may be the low 

resolution of the data. A proper blasthole diameter for underground stoping is 

empirically adjusted to 76 and 89 mm, and the two values were the only options 
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during the data collection stage. However, Bdia was not rejected on further analysis 

because it functioned as a critical variable for predicting UB. Indeed, in statistics, 

insignificance (P-values > 0.05) is not synonymous with unimportance, and 

insignificance can be ignored when a variable with a poor P-value is indispensable 

for the meaningful interpretation of a study (Carver, 1978). The variations in 

Spearman’s correlation due to each filtering stage are shown in Figure 4-9. 

 
Figure 4-9 Variations of the Spearman’s correlation due to data filtering stages 

 SURVEY FOR UB CONSULTATION FUZZY EXPERT SYSTEM 4.3

Membership functions and fuzzy ‘IF-THEN’ rules must be determined to develop a 

fuzzy expert system (FES). To develop an UB consultation FES, a survey was 

conducted that was intended for underground mining experts. Fifteen experts with 

10 to 30 years of underground mining experience participated in this survey. Three 

experts were currently working in an underground stoping mine in Western 

Australia and twelve experts are members of the International Society of Explosive 

Engineers (ISEE) in the U.S. and Canada.  

To prepare the survey, the overall feature of the FES was specified. The quality of 

the rock mass and the degree of uneven break were allocated as input factors, and 

the ratio of powder the factor and ground support were allocated as output values 
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of the proposed FES. The details of the fuzzy membership functions and the ‘IF-

THEN’ rules were formulated based on the survey results, which are tabulated 

inTable 4-3.  

Table 4-3 Summary of survey results from fifteen underground mining experts 

Rock quality 
Dilution 

type 

Powder factor Ground support 

Dec ReT Inc Dec ReT Inc 

Poor 

Rock 

MovB 90% 0% 10% 0% 40% 60% 

ovB 70% 20% 10% 0% 90% 10% 

Act 0% 100% 0% 0% 100% 0% 

unB 10% 60% 30% 30% 70% 0% 

MunB 10% 0% 90% 20% 70% 10% 

Fair 

Rock 

MovB 80% 10% 10% 0% 40% 60% 

ovB 50% 40% 10% 0% 90% 10% 

Act 0% 100% 0% 0% 100% 0% 

unB 10% 60% 30% 20% 80% 0% 

MunB 10% 0% 90% 40% 60% 0% 

Good 

Rock 

MovB 100% 0% 0% 10% 30% 60% 

ovB 50% 40% 10% 0% 90% 10% 

Act 0% 100% 0% 0% 100% 0% 

unB 10% 40% 50% 0% 100% 0% 

MunB 10% 0% 90% 50% 50% 0% 

MunB: massive-underbreak; unB: underbreak; AcT: acceptable; ovB: overbreak; MovB: massive-overbreak; 
Dec: decrease; ReT: retain; Inc: increase 

The modified rock mass quality (Q’) values collected from the mines vary from 6.30 

to 93.30, and the rock quality was classified as poor, fair, and good. The survey was 

conducted to discover the strength of the optimal dilution via verifying powder 

factor degree and the ground support. For example, as highlighted with blue in 

Table 4-3, if massive overbreak (MovB) is expected in poor rock, 90% of the experts 

decided to decrease the powder factor, 60% of the experts intended to increase 

ground support, while 40% decided to retain the ground support to optimise 

potential UB. The membership functions and the fuzzy rules of the proposed fuzzy 

expert system (FES) were determined based on the survey results, and detailed 

information will be provided in Chapter 6.  
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 SUMMARY AND DISCUSSION 4.4

Data collection for an uneven break (UB) prediction model and a survey for a UB 

consultation model have been discussed in this chapter. As the reliability of the 

proposed models significantly relies on the quality and the quantity of the datasets, 

ten UB causative factors were cautiously selected to cover all three UB causative 

categories. Comprehensive field data were collected from three underground 

stoping mines in Western Australia. To improve the quality of the datasets, two 

separate data filtering stages were conducted and 219 out of 1,354 datasets were 

eliminated as possible outliers. As a result of the data filtering stages, the linear 

regression analysis correlation coefficient (R) improved from 0.364 to 0.432.  

To build a reliable UB consultation fuzzy expert system (FES), a survey was 

conducted of fifteen underground mining experts. The collected experts’ knowledge 

was used to formulate membership functions and fuzzy rules for a UB consultation 

system.  

 



64 

CHAPTER 5. 
 UB PREDICTION SYSTEM MODELLING 

 UB PREDICTION SYSTEM MODELLING CHAPTER 5.

 INTRODUCTION 5.1

Uneven break (UB) is the most critical conundrum in underground mining. Certainly, 

the UB phenomenon is inevitable if an underground stope is excavated by the 

drilling and blasting method. Although the drilling and blasting method guarantees 

some financial flexibility through low production cost, the mine is always exposed to 

the unexpected danger of uneven break. Hence, UB management is an essential 

task not only for underground stoping but also for other mining methods employing 

drilling and blasting.  

To effectively manage uneven break (UB), a UB prediction system must be 

established. By doing so, UB can be optimised. In this study, UB prediction systems 

were modelled using both the conventional statistical manner and an advanced soft 

computing approach. In the statistic manner, multiple linear and nonlinear 

regression analyses (MLRA and MNRA) were employed. Moreover, an artificial 

neural network (ANN) was utilised to establish a more reliable UB prediction model 

as a soft computing approach. This chapter initially reviews the current UB 

management results in the three investigated mines. Then, the UB prediction 

models established by MLRA, MNRA, and ANN are introduced. 

 CURRENT UB PREDICTION METHODS IN THE INVESTIGATED MINES 5.2

The three investigated mines employed the stability graph method to predict 

unplanned dilution and to assist in stope design. Because there is no method to 

predict ore loss, the prediction performance evaluation was limited to unplanned 

dilution. The actual unplanned dilution and ore loss were obtained by comparing a 

stereoscopic stope design model with the CMS model captured after production. 

The performance of the predictions was evaluated by computing the correlation 

coefficient (R) between the engineers’ prediction and the actual stope uneven break 

(UB). Table 5-1 shows the prediction performance of the three mines, and the 

overall results were integrated into a general model (GM).  
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Table 5-1 Results of unplanned dilution and UB predictions in mines A, B, and C, and 
the GM 

Correlation coefficient (R) Mine-A Mine-B Mine-C GM 

Unplanned dilution and ore-loss (uneven break) 0.0734 -0.0518 0.0583 0.0884 

Unplanned dilution (overbreak only) 0.0971 -0.2159 0.2557 0.3101 

As shown in Table 5-1, the uneven break (UB) predictions were very unsatisfactory. 

None of the three mines had a competent correlation coefficient (R) for either 

uneven break (UB) or unplanned dilution solely. Figure 5-1 shows the low 

correlation results of the general model (GM), and it includes unplanned dilution 

only (a) and unplanned dilution with ore-loss (b).   

  

Figure 5-1 Correlation results of the general model (GM) (a) Unplanned dilution 
comparison (B) UB comparison 

The results imply the difficulties of predicting uneven breaks. In other words, mines 

are severely suffering from unexcitable over and under breaks. Despite endeavours 

by many researchers, no uneven break (UB) prediction system yet provides a 

satisfactory solution. 

 MULTIPLE REGRESSION MODELS 5.3

As a conventional statistical method, multiple linear and nonlinear regression 

analyses (MLRA and MNRA) were employed to build an applicable uneven break 

(UB) estimation model by using a software package for statistical analysis: Statistical 

Product and Service Solutions (SPSS) (IBM, 2012). MLRA and MNRA were used to 

model each mine site and for a general model (GM) based on all of the datasets.  
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 Multiple linear regression analysis 5.3.1

Primarily, an MLRA model was built for each dataset with all independent variables, 

and this is referred to as the MLRA-enter model. Subsequently, insignificant 

variables were removed in a stepwise manner to obtain the optimised MLRA-

stepwise model using statistical significance levels for F and t. Details of Multiple 

regression models are provided in Appendix D and the MLRA-enter and stepwise 

models for mines A, B, and C and the General Model (GM) are tabulated inTable 5-2. 

Table 5-2 Multiple linear regression analysis (MLRA) results for mine A, B, C, and GM 
DATA 
SETS 

MODEL EQUATION R R2
adj. 

Mine-A 

En2 
𝑈𝑈 = .969 − .018𝐵𝐵𝐵𝐵 − .009𝐵𝐵𝐵𝐵 + .375𝑃𝑃 − .067𝐴𝐴𝐴 + .024𝐻𝐻𝐻𝐻

+ .017𝑆𝑆𝑆 − .091𝐴𝐴 + .048𝑃𝑃 + .042𝐴𝐴𝐴 + .104𝐾 .581 .280 

St3 𝑈𝑈 = 1.088 + .377𝑃𝑃 − .048𝐴𝐴𝐴 − .093𝐴𝐴 + .039𝑃𝑃 + .044𝐴𝐴𝐴 .567 .293 

 K, Blen, Hdia, BTBL, and SbR are removed in stepwise-MLRA   

Mine-B1 

En 
𝑈𝑈 = −.651 + .005𝐵𝐵𝐵𝐵 − .162𝐵𝐵𝐵𝐵 + .123𝑃𝑃 − .137𝐴𝐴𝐴 − .052𝑆𝑆𝑆

− .756𝐴𝐴 + .018𝑃𝑃 − .037𝐴𝐴𝐴 + 3.229𝐾 .590 .322 

St 𝑈𝑈 = .114 − .158𝐵𝐵𝐵𝐵 − .144𝐴𝐴𝐴 − .156𝐴𝐴 + 2.528𝐾 .584 .330 

 BTBL, SbR, Pt, Pf, and AsR are removed in stepwise-MLRA   

Mine-C 

En 
𝑈𝑈 = 1.129 + .034𝐵𝐵𝐵𝐵 − .125𝐵𝐵𝐵𝐵 + .140𝑃𝑃 − .138𝐴𝐴𝐴 − .026𝐻𝐻𝐻𝐻

+ .123𝑆𝑆𝑆 − .133𝐴𝐴 + .135𝑃𝑃 + .203𝐴𝐴𝐴 + .021𝐾 .422 .166 

St 
𝑈𝑈 = 1.489 + .033𝐵𝐵𝐵𝐵 − .127𝐵𝐵𝐵𝐵 + .134𝑃𝑃 − .143𝐴𝐴𝐴 − .125𝐴𝐴

+ .190𝐴𝐴𝐴 .412 .163 

 K, Hdia, SbR, and Pt are removed in stepwise-MLRA   

GM 

En 
𝑈𝑈 = 1.521 + .029𝐵𝐵𝐵𝐵 − .119𝐵𝐵𝐵𝐵 + .123𝑃𝑃 − .152𝐴𝐴𝐴 + .013𝐻𝐻𝐻𝐻

+ .015𝑆𝑆𝑆 − .113𝐴𝐴 + .023𝑃𝑃 + .069𝐴𝐴𝐴 + .039𝐾 .423 .171 

St 
𝑈𝑈 = 1.595 + .031𝐵𝐵𝐵𝐵 − .105𝐵𝐵𝐵𝐵 + .122𝑃𝑃 − .149𝐴𝐴𝐴 − .106𝐴𝐴

+ .073𝐴𝐴𝐴 .419 .171 

 K, Hdia, SbR, and Pt are removed in stepwise-MLRA   
1Hdia was removed from the MLRA and MNRA because the Mine-B dataset had only one value for this variable. 
2En (enter model): All independent variables were considered in a single model.3St (stepwise model): A proposed 
model only includes independent variables that are satisfied with the criteria (F<=.050).  
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As observed from Table 5-2, the adjusted coefficients of the determinant (R2
adj) for 

the MLRA-enter and stepwise models for the mine-A dataset were 0.280 and 0.293, 

respectively. In the optimised MLRA-stepwise model, the variables K, Blen, Hdia, 

BTBL, and SbR were removed because of their insufficient t-values. The mine-B 

dataset MLRA models yielded the highest R2
adj values among the MLRA models with 

MLRA-enter and stepwise R2
adj values of 0.322 and 0.330, respectively. Hdia was not 

included in the models because only one value for Hdia is in the mine-B dataset. In 

the MLRA-stepwise model, BTBL, SbR, Pt, Pf, and AsR were removed due to 

inadequate t-values. The mine-C model shows the lowest R2
adj for both the MLRA-

enter and stepwise models with 0.166 and 0.163, respectively. The F and t values 

for K, Hdia, SbR, and Pt were unacceptable and were removed from the MLRA 

stepwise model. All of the data from the three mines were integrated for the 

general model (GM), and the R2
adj was calculated as 0.171 for both the MLRA-enter 

and stepwise models. The MLRA-stepwise model was established without K, Hdia, 

SbR, and Pt because of their improper F and t values.  

 Multiple nonlinear regression analysis 5.3.2

As shown by the previous MLRA modelling, the complexity of uneven break (UB) 

cannot be adequately interpreted using a linear model. Hence, multiple nonlinear 

regression analysis was conducted to build a proper UB prediction model. Among 

several nonlinear approaches, the twin-logarithmic model was adopted, assuming 

the following nonlinear relation:  

   𝑌 =  𝛽0�𝑋1𝛽1��𝑋2𝛽2�⋯ �𝑋𝑛𝛽𝑛� Eq. 5-1 

where 𝑌 represents the predicted value corresponding to the dependent variables 

(𝑋1,𝑋2,⋯ ,𝑋𝑛) and 𝛽0 to 𝛽𝑛 are the parameters for the nonlinear relationship. The 

formula (Eq. 5-1) can be converted into a linear domain through log transformation, 

as shown in Eq. 5-2. Therefore, the 𝛽 values can be determined based on a multiple 

linear regression of 𝑙𝑙𝑙(𝑌) on 𝑙𝑙𝑙(𝑋1), 𝑙𝑙𝑙(𝑋2)⋯𝑙𝑙𝑙(𝑋𝑛) (Cankaya, 2009).    

 𝑙𝑙𝑙(𝑌) = log(𝛽0) + 𝛽1𝑙𝑙𝑙(𝑋1) + 𝛽2𝑙𝑙𝑙(𝑋2) + ⋯+ 𝛽𝑛𝑙𝑙𝑙(𝑋𝑛) Eq. 5-2 
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Logarithmic functions cannot compute negative or zero values. Because the ore loss 

rate is expressed as a negative value of the dependent variable (UB) and two 

independent variables (BTBL and AHW) contain zero values, an additional 

transformation process was employed to transform the zero and negative values 

into positive real values in an unbiased manner. To do so, the value of one was 

added after the datasets were normalised to between zero and one. After this 

transformation process, the datasets yielded values between one and two.  

The Levenberg-Marquardt iterative estimation algorithm (Marquardt, 1963) was 

used to generate the proposed MNRA models. Consequently, optimal MNRA 

models for mines A, B, and C and the GM were obtained after eight, twelve, six, and 

six iterations, respectively, when the residual sum of squares reached 1.0E-008. The 

MNRA model results are tabulated in Table 5-3. 

Table 5-3 Multiple nonlinear regression analysis (MNRA) results for mines A, B, and 
C, and the GM 

DATA 
SETS 

EQUATION R R2
adj. 

Mine-A 
𝑈𝑈 = 1.407(𝑃𝑃 .306)(𝐴𝐴𝐴−.040)(𝐴𝐴−.090)(𝑃𝑃 .035)(𝐴𝐴𝐴 .042) .563 .317 

K, Blen, Hdia, BTBL, and SbR was removed in MNRA   

Mine-B1 
𝑈𝑈 = 1.669(𝐵𝐵𝐵𝐵−.164)(𝐴𝐴𝐴−.163)(𝐴𝐴−.652)(𝐾1.359) .607 .368 

BTBL, SbR, Pt, Pf, and AsR was removed in MNRA   

Mine-C 
𝑈𝑈 = 1.455(𝐵𝐵𝐵𝐵.033)(𝐵𝐵𝐵𝐵−.129)(𝑃𝑃 .129)(𝐴𝐴𝐴−.126)(𝐴𝐴−.127)(𝐴𝐴𝐴 .167) .425 .181 

K, Hdia, SbR, and Pt was removed in MNRA   

GM 
𝑈𝑈 = 1.473(𝐵𝐵𝐵𝐵.031)(𝐵𝐵𝐵𝐵−.116)(𝑃𝑃 .107)(𝐴𝐴𝐴−.144)(𝐴𝐴−.112)(𝐴𝐴𝐴 .079) .438 .192 

K, Hdia, SbR, and Pt was removed in MNRA   

The adjusted coefficients of determinant (R2
adj) for mines-A, B, and C and the GM 

were 0.317, 0.368, 0.181, and 0.192, respectively, which are slightly higher than the 

MLRA-stepwise models. The contributions of the independent variables were 

similar to those in the MLRA models. Indeed, the MNRA models were also 

insufficient for expounding the relationship between UBs and the given 

independent variables. 



69 

CHAPTER 5. 
 UB PREDICTION SYSTEM MODELLING 

When building the MLRA and MNRA models, heteroskedasticity, multicollinearity, 

and autocorrelation problems were checked through residual plots, the variance 

Inflation Factor (VIF), and the Durbin-Watson value (Durbin & Watson, 1950) 

because these phenomena may lead to an invalid conclusion. No suspicious 

circumstances were found in the proposed multiple regression models.  

 ARTIFICIAL NEURAL NETWORK MODEL 5.4

Unfortunately, the proposed multiple regression methods were not adequate to 

reveal the relationship between uneven break (UB) and the ten causative 

parameters. Thus, attempts were made with an artificial neural network (ANN), 

which is well recognised as an advanced nonlinear approximation approach. 

Special caution must be taken when preparing ANN applications because the 

performance of ANN is prominently affected by the learning algorithm, the transfer 

function, and ANN architecture. As described in Chapter 3, the innovative conjugate 

gradient algorithm (CGA) (Hestenes & Stiefel, 1952) was adopted as the learning 

algorithm.  

Among several transfer functions, the hyperbolic tangent (tansig) and log sigmoid 

(logsig) functions are extensively employed as nonlinear activation functions. In this 

study, tansig was chosen as the transfer function because it showed better 

performance than logsig in an earlier over and under breaks prediction study 

accomplished by Jang and Topal (2013). The tansig output varies from minus one to 

one. Thus, all datasets were scaled into the same range by using Eq. 5-3. After the 

trained ANN model estimates the output, which is also scaled into the minus one to 

one range, the scaled output is standardised using Eq. 5-4.   

 𝑥𝑠 = [2(𝑥 − 𝑥𝑚𝑚𝑚 ) (𝑥𝑚𝑚𝑚 − 𝑥𝑚𝑚𝑚 )⁄ ] − 1  Eq. 5-3 

   𝑥 = �0.5(𝑥𝑠 + 1)(𝑥𝑚𝑚𝑚 − 𝑥𝑚𝑚𝑚 )�+ 𝑥𝑚𝑚𝑚 Eq. 5-4 

The structure of the proposed UB prediction ANN is composed of three layers: input, 

hidden, and output. As the collected datasets are made up of one dependent and 

ten corresponding independent variables, the output and input layers are 

composed of one and ten nodes. The last key component of the appropriate ANN is 
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the optimum number of hidden neurons. Empirical suggestions have been reported, 

such as by Hecht-Nielsen (1987) and Kaastra and Boyd (1996). However, the optimal 

number of hidden neurons may differ in simulations even for the same problem. 

Hence, in this study, the appropriate number of hidden neurons for each model was 

determined by an iterative loop operation algorithm coded by MATLAB. Figure 5-2 

shows a schematic view of the proposed ANN.  
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Figure 5-2 Architecture of the proposed ANN model 

Another difficulty in programming ANNs is the over-fitting problem. The sign of an 

over-fitting problem is that the model demonstrates excellent fitting during the 

training stage, but it cannot correctly predict the output for an untrained sample. In 

other words, the model is not generalised. Over-fitting problems can happen if an 

ANN model contains too many parameters or has excessively complex architecture 

(Hawkins, 2004). Various algorithms have been introduced to remedy the over-

fitting problem in ANN models, e.g., pruning (Karnin, 1990; Reed, 1993), early-

stopping (Morgan & Bourlard, 1989), and cross-validation (Hansen & Salamon, 

1990). In this study, the most prevalent cross-validation algorithm was adopted to 

prevent over-fitting. For the validation process, some portion of untrained datasets 

is assigned as validation datasets that are not involved in the training process. 
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During the training process, the generalisation for each training step is cross-

checked using untrained validation datasets.  

In this study, the datasets were randomly apportioned into three subsets: training, 

validation and test. A total of 70% of the datasets were used for training, 15% were 

assigned to the validation stage, and 15% were assigned to the test stage. The 

proposed artificial neural network (ANN) was programmed using MATLAB code 

(MathWorks, 2013), and ANN training and forward pass codes are given in Appendix 

B. Ultimately, optimum UB prediction models for mines A, B, and C and the GM 

were obtained. The details of the generated UB prediction models are tabulated in 

Table 5-4, and the test performance of each model is demonstrated in Figure 5-3.  

Table 5-4 Details of the UB prediction models for mines A, B, and C and the GM 

Model 

Number of datasets Structure of ANN RMSE4 R5 

TR1 VA2 TE3 Total Input-Hidden-Output TR1 VA2 TR1 TE3 

Mine-A 88 19 19 126 10 – 7 – 1 1.04E-2 6.75E-2 0.92 0.94 

Mine-B 161 35 35 231 10 – 16 – 1 2.15E-2 8.04E-2 0.86 0.80 

Mine-C 496 107 107 710 10 – 16 – 1 2.36E-2 3.19E-2 0.74 0.70 

GM 747 160 160 1,067 10 – 40 – 1 1.90E-2 2.80E-2 0.66 0.72 

1 TR: Training;  2 VA: Validation; 3 TE: Test; 4RMSE: Root Mean Square Error; 5R: Correlation coefficient  

As demonstrated in Table 5-4, the ideal number of hidden neurons for mines A, B, 

and C and the GM were 7, 16, 16, and 40, respectively. In each iteration, the root 

mean square error (RMSE) was calculated to check the performance of the model. 

While training, the RMSEs of the training and validation stages were considerably 

lower after 30 iterations, and they decreased progressively through 100 iterations. 

As a result of the training stage, the RMSEs for mines A, B, and C and the GM 

reached 1.04E-2, 2.15E-2, 2.36E-2, and 1.90E-2, respectively. The four proposed 

ANN models were tested with the 15% untrained datasets, and the correlation 

coefficient (R) was calculated between the actual UB rate and the UB rate predicted 

by the ANN model. A graphical view of the test results for mines A, B and C and the 

GM model is shown in Figure 5-3.  
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Figure 5-3 Test performance of UB prediction ANN models for mines A, B, and C and 
the GM 
 
As shown in Figure 5-3, strong positive correlations (R > 0.7) were observed in all 

models. Because the GM model consisted of the mines A, B, and C investigations 

and yielded a correlation coefficient (R) of 0.72, the possibility exists of establishing 

a general uneven break prediction model.  
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 SUMMARY AND DISCUSSION 5.5

In this chapter, multiple linear and nonlinear regression analyses (MLRA and MNRA) 

and a conjugate gradient artificial neural network (CG-ANN) were used to generate 

uneven break (UB) prediction models from 1,067 datasets with ten uneven break 

(UB) causative factors collected from three underground stoping mines in Western 

Australia. The performance of each established model is compared with actual 

uneven break (UB) predictions in the investigated mines in Figure 5-4. 

 
Figure 5-4 Comparison of uneven break (UB) predictions between the investigated 
mines and the MLRA, MNRA, and CG-ANN models for mines A, B, and C and the GM.  

As shown in Figure 5-4, the MLRA and MNRA models show poor to moderate 

prediction performance, as the correlation coefficient (R) ranges between 0.412 and 

0.607. In each dataset except mine-A, the R of the MNRA model was slightly higher 

than that of the MLRA model. These irregular phenomena imply the difficulties of 

uneven break (UB) prediction by such statistical methods.    

In contrast with the MLRA and MNRA results, the CG-ANN models provided reliable 

UB prediction performance. As demonstrated in Figure 5-4, the highest correlation 

coefficient (R) of 0.944 occurred in the mine-A dataset, while those in the mine B, C, 

and GM models were 0.801, 0.704, and 0.719. The advanced uneven break (UB) 
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prediction performance of the CG-ANN model is highlighted by comparing it to the 

current UB prediction performance in the investigated mines, as shown in Figure 

5-5.  

  

Figure 5-5 Comparison of current UB prediction in the mines with the test 
performance of the ANN model 

As shown in Figure 5-5a, currently, uneven break (UB) prediction by the investigated 

mine sites is highly unsatisfactory and is limited to unplanned dilution without 

including ore-loss. In contrast to the poor performance of current UB prediction, the 

optimised CG-ANN (Figure 5-5b) provides reliable UB prediction performance.  

Uneven break (UB) prediction has been recognised as one of the challenging tasks in 

underground stoping mines, and it has been neglected as an unpredictable 

phenomenon. However, the proposed CG-ANN model provides an optimistic 

perspective on uneven break (UB) prediction.  
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 PARAMETERS CONTRIBUTION TO UB CHAPTER 6.
PHENOMENON 

 INTRODUCTION 6.1

Despite numerous studies on unplanned dilution and ore-loss (uneven break: UB), 

the exact mechanisms occurring have yet to be investigated clearly. As 

demonstrated in Chapter 2, the UB phenomenon is affected by numerous known 

and unknown factors, and their mutual interactions exacerbate the complexity of 

UB. The basis of the complexity of UB mechanisms derives from both the object 

material, the rock mass, and the subject of explosion, the dynamic shock wave and 

gas pressure. The inherent features of the rock are anisotropic and inhomogeneous. 

Furthermore, the elastic-plastic behaviour of rock with randomly distributed 

discontinuities of different weights makes it difficult to estimate its fracture 

behaviour. The fracture behaviour of rock becomes more complex when the 

rockmass is forced by the dynamic power of an explosion, and it becomes even 

more complicated when considering the design of an underground stope.  

The exact UB causative factors are yet to be clearly defined. Thus, surveying all 

potential UB causative parameters is impractical although it possibly guarantees 

more accurate determination of UB mechanism. As described in Section 2.4, after 

careful consideration, ten major UB causative factors were selected through a 

rigorous inspection of previous studies which can cover most of possible influences.  

In this study, ten UB causative factors, i.e., average blasthole length (Blen), powder 

factor (Pf), angle difference between the hole and wall (AHW), blasthole diameter 

(Bdia), space and burden ratio (SbR), adjusted Q-value (AQ), average horizontal to 

vertical stress ratio (K), planned tonnes of stope (Pt), aspect ratio (AsR), and stope 

either breakthrough to a nearby drift and/or stope or not (BTBL), were collected as 

independent variables for the one dependent variable, uneven break (UB). Thus, 

the relationship between uneven break (UB) and the selected independent 

variables can be written as: 

 
𝑈𝑈 =  𝑓(𝐵𝐵𝐵𝐵,𝑃𝑃,𝐴𝐴𝐴,𝐵𝐵𝐵𝐵, 𝑆𝑆𝑆,𝐴𝐴,𝐾,𝑃𝑃,𝐴𝐴𝐴,𝐵𝐵𝐵𝐵)  Eq. 6-1 
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In this chapter, attempts have been made to enlighten the parameter contributions 

to UB phenomenon. Parameter contribution analyses were conducted based on 

multiple linear and nonlinear regression analyses (MLRA and MNRA) and artificial 

neural network (ANN) UB prediction models of GM datasets.  

 PARAMETER CONTRIBUTION OF MULTIPLE REGRESSION ANALYSIS 6.2

Multiple regression analysis is an expanded bivariate regression that incorporates 

more than one independent variable into regression analyses. In this study, both 

multiple linear and multiple nonlinear regression analyses (MLRA and MNRA) were 

employed to examine the linear and nonlinear relationships between the one 

dependent variable, UB, and the ten independent variables. Thus, the basic format 

of the equation for multiple regression analysis can be defined as: 

 
𝑈𝑈 = 𝛽0 + 𝛽1𝐵𝐵𝐵𝐵 + 𝛽2𝐵𝐵𝐵𝐵 + 𝛽3𝑃𝑃 + 𝛽4𝐴𝐴𝐴 + 𝛽5𝐻𝐻𝐻𝐻

+ 𝛽6𝑆𝑆𝑆 + 𝛽7𝐴𝐴 + 𝛽8𝑃𝑃 + 𝛽9𝐴𝐴𝐴 + 𝛽10𝐾 Eq. 6-2 

As stated in Chapter 5, the twin-logarithmic model was employed to build the 

multiple nonlinear regression models, and they were also converted into the linear 

domain (Eq. 5-2) through log transformation. In Eq. 6-2, the regression coefficients 

(𝛽0, 𝛽1, 𝛽2 … , 𝛽10 ) represent the effects of the corresponding variables on the 

dependent variable while the effects of the other variables are held constant. The 

contribution of the ten independent variables to the dependent variable (UB) in the 

MLRA-enter & stepwise and MNRA are computed based on the general model (GM) 

in Table 5-2 and Table 5-3. Ultimately, the results are demonstrated in Figure 6-1. 

 
Figure 6-1 Contribution of the ten inputs to the output (UB) of multiple regression 

analyses of the general model (GM) 
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As shown in Figure 6-1, four variables, i.e., Hdia, SbR, Pt, and K, were excluded from 

the MLRA-stepwise and MLRA models because of insufficient t-values. As assessed 

in Chapter 5, the MLRA and MNRA models present poor and moderate relationships 

with the dependent variable, but certain essential engineering aspects can be 

clarified. In all three models, the AHW, AQ, and Blen variables displayed a negative 

relationship with uneven break (UB), while the others are positively related. Overall, 

AHW appeared to be the most influential parameter for UB, as it shows a 

percentage contribution of 21.87%, 25.43%, and 24.45% in the MLRA-enter, MLRA-

stepwise, and MNRA-selected models, respectively. The variables Pf, AQ, Blen, AsR, 

and BTBL appeared as relevant contributors to UB in descending order. 

 PARAMETER CONTRIBUTIONS TO THE UB ON ANN MODEL 6.3

As the UB prediction ANN model has shown good performance with the GM dataset, 

the reliability of the parameter contribution analysis is higher for the ANN model 

than for the multiple regression analysis. However, ANN is often called a ‘black box’ 

due to its lack of descriptive insight into the prediction process (Olden & Jackson, 

2002) even though it is recognised as an intelligent statistical modelling method. 

Various methods for elucidating the contribution of the input to the output of ANNs 

have been introduced, and these can be categorised into two groups as shown in 

Table 6-1.  

Table 6-1 Representative methods for examining the contribution of input to output 
in ANN 

Category Representative methods 

Weight based 
algorithm 

o Garson’s algorithm (Garson, 1991) 

o Connection weight approach (CWA) (Olden & Jackson, 2002) 

Sensitivity based 
algorithm 

o Partial derivatives (PaD) method (Dimopoulos et al., 1995) 

o Relative Strength of Effect (RSE) (Yang & Zhang, 1998) 

o Profile method (PM) (Lek et al., 1996) (referred to as the ‘Profile method’ 
by Gevrey et al. (2003))  

Weight-based algorithms compute the input’s contribution to the output based on 

the connection weights of the ANN model. The advantages of this algorithm are 

that the computation process is simpler than in sensitivity-based algorithms, and 

the direction of each variable’s contribution can be easily monitored. Sensitivity-
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based algorithms investigate the variance of the output subject to the entire range 

of inputs. Although the computation process is more burdensome for sensitivity-

based algorithms than for weight-based algorithms, it can demonstrate the 

contribution of the entire range of each parameter. In this study, the connection 

weight approach (CWA) and the profile method (PM) were employed as 

representative weight- and sensitivity-based algorithms to scrutinise the parameter 

contributions of the GM dataset.   

 Application of a weight-based algorithm 6.3.1

The original weight-based algorithm was introduced by Garson (1991) to examine 

input parameters’ contributions to output in ANN. Garson’s algorithm calculates the 

sum of the product of input-hidden and hidden-output connection weights across 

all hidden neurons (Olden et al., 2004). Garson’s algorithm was widely used in many 

fields of studies however, Olden and Jackson (2002) noted that the algorithm does 

not consider the counteracting connection weight, which could result in incorrect 

variable importance. Thus, by modifying Garson’s algorithm, they introduced a new 

algorithm, the connection weight approach (CWA). The CWA computes the 

contribution of input i1 to output k1 as: 

 𝐼𝑖1,𝑘1 =  ∑ 𝑤𝑗,𝑖1𝑤𝑘1,𝑗
𝑚
𝑗=1   Eq. 6-3 

where 𝑖, 𝑗,𝑘, and m represent input, hidden, output neuron, and the number of 

hidden neurons, respectively. In this study, the CWA was used to calculate the input 

parameters’ contributions to the output in the GM datasets and the results are 

demonstrated in Figure 6-2. 

  

Figure 6-2 Contribution of the ten input parameters to UB for the general model 
(GM) dataset by the connection weight algorithm (CWA) 
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As shown in Figure 6-2, AQ is ascertained as the most influential contributor to UB 

with a 22.40% contribution. K and Blen also exposed relatively high contributions at 

19.49% and 11.40%, while the other variables contributed less than 10%.  

Through CWA application, the direction of the input parameters’ influence was also 

identified. As shown in Figure 6-2, AQ, Blen, Pt, and AHW revealed to have a 

negative relationship with UB. These results correspond to the multiple regression 

analysis results with the exception of Pt. Pt had a positive influence in the MLRA-

enter model, but it was removed from the MLRA-stepwise and MNRA models due 

to insufficient t-values. Thus, it is appropriate to consider Pt as a negative influence 

parameter. 

 Application of a sensitivity-based algorithm  6.3.2

Another group of parameter contribution investigation methods can be categorised 

as ‘sensitivity-based algorithms’, which include PaD, RSE, and the profile method 

(PM). The primary idea of the three methods is that they examine the sensitivity of 

output variances for given inputs. The fundamentals of PaD and RSE are similar 

because they compute the output’s derivative with respect to inputs to investigate 

the variances. The PaD and RSE processes are faster and simpler than the profile 

method (PM). Thus, they have been employed by many researchers and modified. 

Details and practical applications of the Pad and RSE methods can be found in the 

cited references (Beiki et al., 2010; Dimopoulos et al., 1999; Dimopoulos et al., 1995; 

Kim et al., 2001b; Nourani & Sayyah Fard, 2012; Yang & Zhang, 1998).  The profile 

method (PM) (Lek et al., 1995) is relatively cumbersome compared with PaD and 

RSE; however, it was applied in this study because it can thoroughly investigate the 

entire range of input sensitivity with respect to the output. The parameter 

sensitivity assessment process of AQ by the profile method (PM) can be described 

as: 

 

𝑈𝑈(𝐴𝐴,𝑝) =  𝐴𝐴𝐴(𝐴𝐴𝑛,𝐾𝑝,𝐴𝐴𝐴𝑝,𝑆𝑆𝑆𝑝,𝑃𝑃𝑝, 
 𝑃𝑃𝑝,𝐵𝐵𝐵𝐵𝑝,𝐵𝐵𝐵𝐵𝑝,𝐵𝐵𝐵𝐵𝑝,𝐴𝐴𝐴𝑝) Eq. 6-4 

where 𝑛 represent the overall range of the investigated input parameter, and 𝑝 is 

the 20th, 40th, 60th, and 80th of the other input variables. The minimum and 



80 

 

CHAPTER 6. 
PARAMETERS CONTRIBUTION TO UB PHENOMENON 

maximum values were not considered in this application because the extreme 

values seldom occur in actual mining activities.  

 Contribution of AQ to the uneven break phenomenon 6.3.2.1

An example of profile method (PM) application to the input parameter AQ, which is 

the most effective contributor to UB is demonstrated in Figure 6-3.  

 
Figure 6-3 Representative application of the profile method (PM) to the input 

parameter AQ 

In Figure 6-3, the output, i.e., uneven break (UB), of the ANN was computed for the 

full range of AQ while the other parameters were set as the 20th, 40th, 60th, and 80th. 

Then, the UB variance was graphically displayed, which can facilitate examination of 

the sensitivity of uneven break (UB) to AQ.  

As graphically demonstrated in the right-hand side of Figure 6-3, UB generally 

decreases when the quality of the rock gets better. This trend is clear when the 

remaining parameters are delimited to the 60th and 80th of their ranges. In this 

example, the contribution of each of the delimited ranges of the parameter AQ to 

the output were obtained by comparing the output variable breadths. Ultimately, 

the contribution percentage of each delimited AQ range was determined by 
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comparing the output sensitivity magnitude of each parameter in each 

corresponding delimited range, which is graphically shown in Figure 6-4.  

 
Figure 6-4 AQ Percentage contribution of AQ to output (UB) in each delimited range 

As shown in Figure 6-4, the AQ shows a 17.62% contribution to uneven break (UB) 

when the other nine parameters are held at 20th of their value. Then, AQ shows a 

relatively low contribution to UB at 40th, and it increases to 23.03% and 30.14% at 

60th and 80th, respectively. These results clearly indicate that rock quality is a 

dominant parameter for uneven break (UB) when other parameters are delimited at 

relatively high values. Finally, the sensitivity and contribution plots of the remaining 

nine input parameters on the output were investigated using the identical approach, 

as demonstrated from Figure 6-5 to Figure 6-13.  

 Contribution of K to uneven break phenomenon 6.3.2.2

The overall contribution of input K was achieved and demonstrated in Figure 6-5 

based on the sensitivity magnitude with respect to each delimited remaining 

parameter range. K appears as the second highest contributor to UB phenomenon 

among the ten parameters. The relatively high contribution of K was observed 

overall ranges. Especially, K shows a proportional relationship to UB overall ranges, 

which indicates that dynamic overbreak will likely decrease with stope depth. This 

trend conspicuously appears when the remaining parameters are delimited in 40th 

of their ranges. As the percentage contribution gradually decreases at 60th and 80th, 
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the influence of K to uneven break (UB) becomes less when the rock quality is 

better. 

  

(a) sensitivity plot (b) contribution plot 
Figure 6-5 Sensitivity and contribution plots of average horizontal to vertical stress 

ratio (K) 

 Contribution of AsR to uneven break phenomenon 6.3.2.3

The stope aspect ratio (AsR) was the third highest contributor to UB (uneven break) 

phenomenon. The result of the profile method (PM) approach to AsR is 

demonstrated in Figure 6-6.  

  

(a) sensitivity plot (b) contribution plot 
Figure 6-6 Sensitivity and contribution plots of aspect ratio (AsR)  
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As shown in Figure 6-6a, AsR also shows a proportional relationship to UB overall 

ranges, which indicates that the overbreak occurrence is somewhat proportional to 

the stope width. As presented in Figure 6-6b, a relatively high contribution of aspect 

ratio (AsR) was observed over all ranges except the 40th delimiting range of the 

other parameters. These results show that the influence of aspect ratio on uneven 

break (UB) is higher when the surrounding rock is either poor or good.  In other 

words, if the rock is either poor or good enough to support by itself, the occurrence 

of over and under breaks is dominated by the aspect ratio. However, if the rock is 

moderate, the influence of aspect ratio of uneven break (UB) is less and the 

occurrence of over and under breaks is more affected by factors other than the 

aspect ratio of the stope.   

 Contribution of SbR to uneven break phenomenon 6.3.2.4

The fourth contributor to UB is the space and burden ratio (SbR). As demonstrated 

in Figure 6-7, the contribution of SbR was achieved by the profile method (PM) 

based on sensitivity magnitudes with respect to each delimited remaining 

parameter range. 

  

(a) sensitivity plot (b) contribution plot 
Figure 6-7 Sensitivity and contribution plots of space and burden ratio (SbR)  
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the magnitude of overbreak increases. The SbR shows moderate contributions of 

9.31% and 9.88% in the 20th and 40th delimited range of the remaining factors, 

respectively. Moreover, a relatively high contribution was observed in the 80th, 

which implies that the SbR ratio is a comparatively major contributor when the 

quality of the rock is good.  

 Contribution of Pt to uneven break phenomenon 6.3.2.5

The fifth influential contributor to uneven break (UB) is tonnes of planned stope (Pt), 

and the sensitivity and contribution plots are schematically demonstrated in Figure 

6-8. 

  

(a) sensitivity plot (b) contribution plot 
Figure 6-8 Sensitivity and contribution plots of tonnes of stope planned (Pt)  

The results of the sensitivity plot of Pt (Figure 6-8a) are somewhat analogous to the 

sensitivity plot of SbR (Figure 6-7a), but contrasting results were observed in the 

contribution plots. As observed in Figure 6-8b, Pt can be regarded as a minor 

contributor among the ten investigated parameters in the 20th, 60th, and 80th 

parameter delimiting ranges due to the low contribution percentage. Thus, these 

three delimiting ranges are negligible in the sensitivity plots of Pt (Figure 6-8a). In 

this view, the overbreak percentage shows an inverse relationship with stope size, 

i.e., Pt. In other words, increasing the size of the stope is one alternative for 

decreasing the overbreak percentage. 
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 Contribution of Pf to uneven break phenomenon 6.3.2.6

The profile method computed the powder factor (Pf) as the sixth most influential 

contributor to uneven break (UB). Figure 6-9 demonstrates the sensitivity and 

contribution plots of the powder factor (Pf) on uneven break (UB). 

  

(a) sensitivity plot (b) contribution plot 
Figure 6-9 Sensitivity and contribution plots of powder factor (Pt)  

The contribution of Pf to UB is relatively high in the lower delimited range of the 

remaining parameters, i.e., the 20th, but negligibly low contributions were found at 

the other ranges. Considering the 20th delimited range in the powder factor 

sensitivity plot (Figure 6-9a), the overbreak magnitude is exponentially higher. 

Furthermore, this tendency governs in poor rock as shown in the contribution plots 

(Figure 6-9b). Considering that the highest contributor is AQ, uneven break (UB) is 

sensitive to Pf when the rock quality is ‘poor’ but is less sensitive when the rock 

quality is ‘moderate’ or ‘good’. In other words, in ‘moderate’ and ‘good’ rock, UB is 

likely affected by a combination of factors other than Pf itself. 

 Contribution of Bdia to uneven break phenomenon 6.3.2.7

The blasthole diameter (Bdia) was found to be the seventh most influential 

contributor to uneven break (UB), and the sensitivity and contribution plots are 

demonstrated in Figure 6-10.  
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(a) sensitivity plot (b) contribution plot 
Figure 6-10 Sensitivity and contribution plots of blasthole diameter (Bdia)  

As shown in Figure 6-10b, Bdia shows a negligibly low contribution at the 20th 

remaining parameter range, but moderate contributions were observed at the 40th, 

60th, and 80th. After excluding the 20th of the sensitivity plot on discussion, the 

overbreak magnitude shows a proportional relationship with blasthole diameter.  

 Contribution of Blen to uneven break phenomenon 6.3.2.8

The average length of blasthole (Blen) was found to be the eighth most influential 

contributor to uneven break (UB) and the results of PM are shown in Figure 6-11.  

  

(a) sensitivity plot (b) contribution plot 
Figure 6-11 Sensitivity and contribution plots of average length of blasthole (Blen)  
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Relatively low contributions were observed over all delimited ranges of the 

remaining parameters. In particular, the 60th (3.28%) and 80th (4.41%) showed 

highly insignificant values; thus, these ranges can be neglected on further 

consideration. Considering only the 20th and 40th on the sensitivity plot (Figure 

6-11a), the scale of overbreak gradually decreases while the length of the blasthole 

increases. However, it is not a primary tendency in UB phenomenon considering the 

low contribution percentage.   

 Contribution of BTBL to uneven break phenomenon 6.3.2.9

The stope either breakthrough to a nearby drift and/or stope or not (BTBL) was 

found to be the ninth most influential contribution to uneven break (UB). The 

results of profile method (PM) application to BTBL are demonstrated in Figure 6-12.  

  

(a) sensitivity plot (b) contribution plot 
Figure 6-12 Sensitivity and contribution plots of stope either breakthrough to a 

nearby drift and/or stope or not (BTBL)  

Generally, low contributions were observed over all ranges without typical trends. 

As observed in Figure 6-12a, the overbreak magnitude is generally higher when the 

stope is blind, except in the 20th remaining parameter range. This tendency was 

obtained in low contribution ranges; thus, it could not be exploited in actual mining 

production.  
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 Contribution of AHW to uneven break phenomenon 6.3.2.10

The angle difference between hole and wall (AHW) was computed as the least 

influential contributor to uneven break (UB) phenomenon. The contribution and 

sensitivity plots of AHW were generated using the profile method (PM) and are 

demonstrated in Figure 6-13 based on sensitivity magnitudes with respect to each 

delimited remaining parameter range. 

  

(a) sensitivity plot (b) contribution plot 
Figure 6-13 Sensitivity plots of angle difference between hole and wall (AHW)  

Even though the AHW was found to be the weakest contributor to UB, the 

contribution displays a tendency. As shown in Figure 6-13b, the percentage 

contribution of AHW is 5.43% in the 20th remaining parameter range. It increases to 

6.55% at the 40th but gradually decreases to 4.63% and 2.47% at the 60th and 80th, 

respectively. Concerning the most influential contributor, i.e., AQ, the tendency of 

the AHW contribution implies that the influence of the angle between the blasthole 

and stope wall (AHW) on uneven break (UB) phenomenon becomes minor when the 

quality of the rock is better. The 80th delimitation on the sensitivity plot (Figure 

6-13a) can be neglected due to its low contribution percentage. Considering the 

20th, 40th, and 60th sensitivity plots, overbreak is likely higher with a parallel 

blasthole pattern than a fanned pattern.  
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  Overall contribution of the ten inputs 6.3.2.11

Ultimately, the overall contribution of the ten inputs based on the sensitivity 

magnitude of each input with respect to each delimited remaining parameter range 

was calculated and are presented in Figure 6-14.  

 
Figure 6-14 Overall contribution of the ten inputs to output in the UB predicting 

ANN model of the GM dataset by the profile method (PM) 

As shown in Figure 6-14, AQ was the most relevant parameter for uneven break (UB) 

phenomena with a contribution of 20.48%. K was the second most relevant 

contributor to UB with an 18.12% contribution. AsR and SbR show moderately high 

contributions at 12.40% and 10.41%. The remaining parameters Pt, Pf, Bdia, Blen, 

BTBL, and AHW yielded low contributions of 8.20%, 7.26%, 6.99%, 6.13%, 5.25%, 

and 4.77%, respectively. 

To sum up the parameter contribution analysis using the profile method (PM), the 

strength and the direction of contributions change not only with the parameter 

values but also with the value of the remaining parameters. These sensitivity and 

contribution plots are useful not only for stope design and management but also for 

elucidating uneven break (UB) mechanisms.  
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 Parameter contribution based on overall causative categories 6.3.3

The contribution analyses for this study rely on the ten given parameters, but 

general trends for the UB mechanism were clarified in the previous section. In this 

section, the contributions of each causative category are calculated.  

The overall contribution percentages of Blen, Pf, AHW, Bida, and SbR are 

aggregated as the blasting parameter contribution to the uneven break (UB) 

phenomenon. Along the same line, the contribution of geology is obtained by 

aggregating the overall contribution percentages of AQ and K. Moreover, the overall 

contribution percentages of Pt, AsR, and BTBL are aggregated as the contribution of 

stope design to the uneven break (UB) phenomenon. The outer circle of Figure 6-15 

shows the geology, blasting, and stope design categories with their contributions to 

UB of 38.79%, 37.17%, and 24.04%, respectively.  

 
Figure 6-15 UB contribution of the three core categories 

Even though the geology category is formulated with only two parameters, it has 

the greatest influence at 38.79%. This result highlights the significant influence of 

geological conditions on uneven break (UB) phenomenon. The blasting category 

consists of five parameters, and its overall contribution was computed at 37.17%, 

making it the second most influential UB category. In this category, if the average 
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length of the blasthole (Blen), with a contribution of 8.56%, is respected as the 

human error category, the contribution of blasting is reduced to 28.61%, as shown 

in the inner circle in Figure 6-15. Finally, the stope design category makes a 24.04% 

contribution to UB.   

 SUMMARY AND DISCUSSION 6.4

In this chapter, the contributions of the ten selected uneven break (UB) causative 

factors were investigated to illuminate the complex UB accrual mechanism. 

Parameter contribution analyses were performed based on the general dataset (GM) 

UB prediction models, i.e., the multiple regression analysis (MLRA and MNRA) and 

artificial neural network (ANN) models. The investigation of the parameters’ 

contributions in the multiple regression analysis was performed in reference to the 

regression coefficients of the UB prediction models. As a result, AHW was found to 

be the most influential parameter for uneven break phenomenon with a 

contribution of 21.87%. In addition, AHW, AQ, and Blen all have a negative 

relationship with uneven break (UB), while K, AsR, SbR, Pt, Pf, Bdia, and BTBL all 

have a positive relationship.   

For the ANN UB prediction model, the connection weight approach (CWA) and 

profile method (PM) were utilised to examine the parameter contributions in the 

GM dataset. As a result of CWA application, AQ was determined to be the most 

influential contributor to UB with 22.40%, while K and Blen show relatively high 

contributions at 19.49% and 11.40%. Furthermore, AQ, Blen, Pt, and AHW were 

found to have a negative relationship with uneven break (UB) phenomenon, which 

is similar to the parameter contribution investigation of the MNRA model.  

The profile method (PM) is a sensitivity-based algorithm for analysing the 

contribution of inputs to outputs in an ANN model. This method is more 

cumbersome than other methods because it requires running the ANN model over 

the full ranges of all of the inputs. However, one of the merits of this method is that 

it can thoroughly investigate the entire range of input sensitivities with respect to 

the output. Through application of the profile method (PM), sensitivity and 

contribution plots of the ten contributors were generated. As a result, AQ was 
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verified as the most influential contributor to uneven break (UB) phenomenon with 

a contribution of 20.48%, followed by K (18.12%), AsR (12.40%), and SbR (10.41%). 

The remaining parameters, i.e., Pt, Pf, Bdia, Blen, BTBL, and AHW, all make less than 

a 10% contribution. Some of the key findings from the parameter contribution 

analysis by the profile method are tabulated in Table 6-2. 

Table 6-2 Several key findings from the parameter contribution analysis by the 
profile method 

Parameter Per. contribution 
per. contribution/AQ 

 

Essential notes 

AQ 20.48% 
          

 

• The better the rock quality, the less the overbreak 

K 18.12% 
          

 

• The deeper the stope, the less the overbreak. 

AsR 12.40% 
          

 

• The wider the stope, the more the overbreak. 

SbR 10.41% 
          

 

• The longer the ring burden, the more the overbreak. 

Pt 8.20% 
          

 

• The bigger the stope, the less the overbreak.  

Pf 7.26% 
          

 

• The overbreak magnitude increases exponentially when 
the powder factor is increased.  

Bdia 6.99% 
          

 

• The bigger the blasthole diameter, the more the 
magnitude of overbreak. 

Blen 6.13% 
          

 

• The longer the length of blasthole, the less the 
percentage of overbreak. 

BTBL 5.25% 
          

 

• The magnitude of overbreak is generally increased when 
the stope is blinded. 

AHW 4.77% 
          

 

• The overbreak is more likely increased on the parallel 
blasthole pattern than the fanned pattern. 

Furthermore, the contribution of the three core categories, i.e., geology, blasting, 

stope design, on the uneven break (UB) was calculated based on the profile method 

(PM). As a result, the geological parameter turned out to be the most influential 

contributor category as it showed 38.79% contribution, while blasting and stope 

design category calculated as 37.17% and 24.04%, respectively. 
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 UB CONSULTATION SYSTEM CHAPTER 7.

 INTRODUCTION 7.1

In Chapter 5, a reliable prediction system for an uneven break (UB) was developed 

using a conjugate gradient artificial neural network (CG-ANN). Thus, a potential UB 

can be predicted quantitatively prior to stope production. However, there is 

another difficult decision-making problem that engineers will encounter. For 

instance, if the UB prediction system predicts +25% of an uneven break (UB; i.e., 25% 

of an overbreak) on a hanging wall, how can the predicted potential overbreak be 

reduced? In practice, the senior engineer may have to make a decision without any 

engineering guarantees.  

In this chapter, a fuzzy expert system (FES) is developed to minimise a potential UB 

in a stope wall as a countermeasure for mining experts. To achieve the aim of the 

developed FES, new engineering recommendation criteria, a powder factor control 

rate (PFCR) and a ground support control rate (GSCR) are introduced and allocated 

to the FES outputs. The powder factor and the ground support are critical 

parameters in stope production planning that can be managed by mining engineers. 

Those two recommendation criteria provide an intuitive means of minimising the 

unwanted UB phenomenon by changing the powder factor and the ground support 

plan for the stope.   

Ultimately, the developed UB consultation FES will be combined with an UB 

prediction ANN to serve as an integrated UB management cooperative neuro-fuzzy 

system that is entitled as an ‘uneven break optimiser’. Figure 7-1 demonstrates the 

stope optimisation process using the developed ‘uneven break optimiser’. The 

figure shows that a potential UB for an initial stope design and the remedies for the 

predicted UB that can be quantitatively achieved using the uneven break optimiser. 

Mining engineers can modify the initial stope design until the predicted potential 

UB reaches a certain recognition range by checking the output of the uneven break 

optimiser, i.e., the PFCR and the GSCR.  
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Figure 7-1 Demonstration of stope planning optimisation with ‘uneven break 

optimiser’ 

 FUZZY EXPERT SYSTEM 7.2

To construct an uneven break (UB) consultation fuzzy expert system (FES), an 

appropriate FES configuration must be selected. Figure 7-2 is a schematic of the 

developed UB consultation FES.  
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PUB

AQ

Pf

GS

Inputs OutputsOutputsFuzzy Inference system

 
Figure 7-2 Configuration of developed fuzzy expert system 

In constructing a configuration for a fuzzy expert system, the antecedents (inputs) 

and consequents (outputs) must be very carefully chosen. In this study, the 

objective of the FES is to minimise the potential UB by providing an appropriate UB 

consultation criteria; thus, the predicted uneven break (PUB) and the adjusted Q 

value (AQ) are chosen as input variables. The aim of the developed FES is to 

minimise the predicted uneven break (PUB), where the PUB is a standard input 

parameter of the FES. Moreover, by adopting the predicted uneven break (PUB) as 

one of the antecedents, the developed FES spontaneously connects to the UB 

prediction ANN model. Another important parameter that must be considered in 

the UB consultation system is the geological condition of the region, which is 

represented by adopting an AQ as one of the antecedents.   

 The consequents of the developed FES should be subjected to variables that 

significantly affect the UB phenomenon and are controllable. Thus, two new 

parameters, the powder factor and the ground support control rate (PFCR and 

GSCR), are introduced and allocated to the outputs of the developed FES. The 

computed PFCR and GSCR enable engineers to intuitively understand how to modify 

the blasting geometry and the ground support system of the initial stope design to 

minimise the predicted potential UB.  
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 Configuration of fuzzy expert system 7.2.1

The membership functions and the fuzzy ‘IF-THEN’ rules are essential components 

of a FES upon which all of the calculation processes in the fuzzy inference system 

are based. As mentioned in Chapter 4.3, the membership functions of the inputs 

and outputs and the fuzzy rules are obtained from surveying fifteen underground 

mining experts. The detailed survey results are presented in Appendix C.   

 Fuzzy membership functions 7.2.1.1

To effectively represent the experts’ knowledge, triangular and trapezoidal shapes 

are employed to develop the membership functions of the inputs and outputs. 

Figure 7-3 shows the developed membership functions for the inputs and outputs.  

MunB MovBunB AcT ovB
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(a) input-PUB; (b) input-AQ; (c) output – PFCR; (d) output – GSCR. P: poor; F: fair; G: good; MunB: massive-
underbreak; unB: underbreak; AcT: acceptable; ovB: overbreak; MovB: massive-overbreak; Dec: decrease; ReT: 
retain; Inc: increase; 𝜇𝑥: degree of membership function 

Figure 7-3 Schematic showing membership functions of  input and output of an 
uneven break (UB) consultation fuzzy expert system (FES) 

Figure 7-3a shows that the first input, the predicted uneven break (PUB), is 

composed of five sub-membership functions: massive-underbreak (MunB), 

underbreak (unB), acceptable (AcT), overbreak (ovB), and massive-overbreak 

(MovB). The PUB is obtained using the UB prediction ANN model and ranges from -

1.0 (100% of the underbreak) to 1 (100% of the overbreak).  
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The second input AQ is shown in Figure 7-3a. The AQ is composed of three sub-

membership functions: poor (P), fair (F), and good (G) because the collected AQ 

varies from 6.30 to 93.30. Figures 7-3c and d show the powder factor (Pf) and the 

ground support (GS) control rates (PFCR and GSCR) as outputs. The PFCR and GSCR 

vary from -1 to 1 and are composed of three sub-membership functions: decrease 

(Dec), retain (ReT), and increase (Inc). The linguistic values and the numerical ranges 

of the input and output fuzzy membership functions are tabulated in Table 7-1.  

Table 7-1 Details of fuzzy input and output membership functions 

category Linguistic value Notation Numerical range 

Input:  

Adjusted Q-value (AQ) fuzzy 
sets 

Poor P [1, 1, 10] 

Fair F [1, 7, 40] 

Good G [4, 40, 100, 100] 

Input: 

Predicted uneven break (PUB) 
fuzzy sets 

Massive-underbreak MunB [-1, -1, -0.8, -0.2] 

Underbreak unB [-0.4, -0.2, 0] 

Acceptable Act [-0.2, 0, 0.2] 

Overbreak ovB [0, 0.2, 0.4] 

Massive-overbreak MovB [0.2, 0.8, 1, 1] 

Outputs: 

Powder factor (Pf) & Ground 
support (GS) fuzzy sets 

Decrease Dec [-1, -1, -0.8, 0] 

Retain ReT [-0.6, 0, 0.6] 

Increase Inc [0, 0.8, 1, 1] 

 Development of fuzzy rules for UB consultation fuzzy expert system 7.2.1.2

Fuzzy rules (IF-THEN rules) are the implication function of the fuzzy inference 

system that is based on the linguistic variables specified in the fuzzy membership 

functions. Arithmetically, one hundred and thirty-five fuzzy rules can be produced 

because the developed UB consultation fuzzy expert system consists of dual non-

interactive antecedents (inputs) with three and five subclasses and dual non-

interactive consequents (outputs) with three subclasses each. Among the 135 fuzzy 

rules, only 37 essential rules are employed to increase the reliability of the fuzzy 
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system. The rest of the 98 rules are eliminated based on expert knowledge that is 

obtained from the questionnaire survey and fundamental engineering 

considerations. The selected thirty-seven linguistic IF-THEN propositions are 

described as  

 
𝐼𝐼 𝐴𝐴 𝑖𝑖 𝐴1𝑘  𝑎𝑎𝑎 𝑃𝑃𝑃 𝑖𝑖 𝐴2𝑘  𝑇𝑇𝑇𝑇 𝑃𝑃 𝑖𝑖 𝐶1𝑘  𝑎𝑎𝑎 𝐺𝐺 𝑖𝑖 𝐶2𝑘 ,     

 𝑓𝑓𝑓 𝑘 = 1, 2, 3, … , 37 
Eq. 7-1, 

where 𝐴1𝑘 and 𝐴2𝑘 are the fuzzy sets of the 𝑘th antecedent pairs, and 𝐶1𝑘  and 𝐶2𝑘  are 

the fuzzy sets of the 𝑘th consequent pairs. The 37 fuzzy rules are tabulated in Table 

7-2. 

Table 7-2 Thirty-seven derived fuzzy rules 

No. 
IF THEN 

No. 
IF THEN 

No. 
IF THEN 

No. 
IF THEN 

AQ PUB Pf GS AQ PUB Pf GS AQ PUB Pf GS AQ PUB Pf GS 

1 P MovB Dec Inc 11 F MovB Dec ReT 21 F MunB Inc ReT 31 G Act ReT ReT 

2 P MovB Dec ReT 12 F MovB Dec ReT 22 F MunB Inc ReT 32 G unB Inc ReT 

3 P MovB Dec ReT 13 F MovB Dec Inc 23 F MunB Inc Dec 33 G unB ReT ReT 

4 P MovB Dec Inc 14 F ovB Dec ReT 24 F MunB Inc Dec 34 G MunB Inc ReT 

5 P ovB Dec ReT 15 F ovB ReT ReT 25 G MovB Dec Inc 35 G MunB Inc Dec 

6 P Act ReT ReT 16 F Act ReT ReT 26 G MovB Dec ReT 36 G MunB Inc ReT 

7 P unB ReT ReT 17 F unB ReT ReT 27 G MovB Dec ReT 37 G MunB Inc Dec 

8 P unB Inc ReT 18 F unB ReT ReT 28 G MovB Dec Inc      

9 P MunB Inc ReT 19 F unB Inc ReT 29 G ovB Dec ReT      

10 F MovB Dec Inc 20 F unB Inc ReT 30 G ovB ReT ReT      

UB: uneven break; MunB: massive-underbreak; unB: underbreak; AcT: acceptable; ovB: overbreak; MovB: 
massive-overbreak; PF: powder factor; GS: ground support; Dec: decrease; ReT: retain; Inc: increase 

 Fuzzy inference system 7.2.2

The fuzzy inference system (FIS) is a process of mapping the inputs to the output 

space. In this study, the Mamdani-style fuzzy inference system (Mamdani & Assilian, 

1975) was used to formulate the UB consultation fuzzy expert system. Figure 7-4 
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shows an example of four sequential steps of the UB-consultation Mamdani-type 

fuzzy inference system. 

 
Figure 7-4 Sample of an UB-consultation Mamdani-style fuzzy inference system 

(taken from Negnevitsky (2005)) 

The first step in FIS is fuzzification (Figure 7-4a). The crisp inputs, the predicted 

uneven break (PUB) and the adjusted Q value (AQ) are converted to the 

corresponding degree of fuzzy membership functions, which is the truth value (T) of 

the fuzzy input propositions. In this example, the crisp inputs of 30 and 0.15 are 
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inserted into the AQ and PUB fuzzy membership functions, respectively, and the 

truth value (T) of the corresponding sub-membership functions is tabulated in Table 

7-3. 

Table 7-3 Truth value of sub-membership functions after fuzzification 
AQ = 30 PUB = 0.15 

Sub-membership function value Sub-membership function value 

𝜇𝑥=𝑝𝑝𝑝𝑝  0.00 𝜇𝑥=𝑀𝑀𝑀𝑀 0.00 

𝜇𝑥=𝑓𝑓𝑓𝑓 0.30 𝜇𝑥=𝑢𝑢𝑢 0.00 

𝜇𝑥=𝑔𝑔𝑔𝑔 0.72 𝜇𝑥=𝐴𝐴𝐴 0.25 

  𝜇𝑥=𝑜𝑜𝑜 0.75 

  𝜇𝑥=𝑀𝑀𝑀𝑀 0.00 

Then, the fuzzified membership functions are evaluated according to the fuzzy rules 

in the antecedent and directed according to the evaluation results to the 

consequent membership function. This process is called fuzzy rule evaluation and is 

shown in Figure 7-4b. Similar to classical logic, the logical connectives such as 

negative, disjunction, conjunction, and implication are also defined in fuzzy logic. 

For example, the conjunction (the logical product AND) and disjunction (the logical 

sum OR) are determined as follows (Ross, 2009): 

Disjunction 
𝐴𝐴 ∨ 𝑃𝑃𝑃: 𝑥 𝑖𝑖 𝐹 𝑜𝑜 𝑦 𝑖𝑖 𝐴𝐴𝐴,𝑇(𝐴𝐴 ∨ 𝑃𝑃𝑃)

= max �𝑇(𝐴𝐴),𝑇(𝑃𝑃𝑃)�. Eq. 7-2 

Conjunction 
𝐴𝐴 ∧ 𝑃𝑃𝑃: 𝑥 𝑖𝑖 𝐹 𝑎𝑎𝑎 𝑦 𝑖𝑖 𝐴𝐴𝐴,𝑇(𝐴𝐴 ∧ 𝑃𝑃𝑃)

= min �𝑇(𝐴𝐴),𝑇(𝑃𝑃𝑃)�. Eq. 7-3 

In this example, rules 14, 15, 16, 29, 30, and 31 are activated subject to the fuzzified 

sub-membership functions. Moreover, the activated sub-membership functions are 

evaluated by conjunction fuzzy logic because, as shown in 7.2.1.2, the fuzzy rules of 

the developed UB consultation FES are only formulated by conjunction. The third 

step is the aggregation of the fuzzy rule consequents (Figure 7-4c). The results of all 

of the fuzzy subsets are unified in a new single fuzzy set for each consequent.   

The final stage of the Mamdani fuzzy inference system is defuzzification, which is a 

process of converting each aggregated fuzzy set of consequents into crisp values 



101 

 

CHAPTER 7. 
UB CONSULTATION SYSTEM 

(Figure 7-4d). Several defuzzification methods have been introduced, e.g., the 

centre of gravity (COG, which is also called the centre of area (COA) or centroid 

method), the max membership principle, the weight average method, the mean 

max membership, and the centre of sum. Among the defuzzification methods, the 

centre of gravity (COG) is used in this study because it has been is recognised as the 

most common and logical method (Grima, 2000; Sugeno, 1985b). In the COG 

method, the centre of gravity of the accumulated fuzzy consequent subsets is 

computed. For instance, a consequent 𝛼 can be defuzzified as shown below: 

 𝑍𝛼: 𝐶𝐶𝐶
∗ =  ��𝜇𝛼(𝑍)𝑍 𝑑𝑑� ��𝜇𝛼(𝑍) 𝑑𝑑��  Eq. 7-4, 

where  𝑍𝛼: 𝐶𝐶𝐶
∗  is the defuzzified value of 𝛼, 𝑍 is the interval of 𝛼, and 𝜇𝛼 is the 

aggregated fuzzy subset 𝛼. The fuzzy expert system (FES) will be finalised after 

retrieving the crisp outputs of 𝛼 (PFCR and GSCR). In this example, the Pf and GS 

control rate (PFCR and GSCR) are calculated as 0.307 and 0.000, respectively. Figure 

7-5 shows the 3D map of the outputs versus the input sets of the developed UB 

consultation fuzzy expert system. 
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Figure 7-5 3D-mapping of predicted uneven break (PUB) and adjusted Q-value (AQ) 

to powder factor (Pf) and ground support (GS) 

Figure 7-5 shows that the outputs of fuzzy expert system, the PFCR and GSCR, are 

more affected by PUB than AQ. The 3D-mapping of the Pf control rate (PFCR) is 
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shown in Figure 7-5a. For a PUB domain range from -1 to 1, the PFCR varies 

between -0.6 and 0.6. The PFCR increases or decreases significantly over the PUB 

range of -0.4 to 0.4, and the PFCR promptly converges to either -0.6 or 0.6 when the 

PUB is over -0.4 and 0.4. The results shows that if the predicted uneven break (PUB) 

is over 40% of the underbreak (PFCR < -0.4) or the overbreak (PFCR > 0.4), the 

uneven break (UB) cannot be effectively controlled by the Pf itself, but a redesign 

should be considered by reviewing the overall design parameters for the stope.  

The 3D map of the GS control rate (GSCR) is shown in Figure 7-5b and exhibits quite 

similar trends to the PFCR. However, the GSCR shows a rather short range of 

variances compared to that of the PFCR. The GSCR only varies from -0.3 to 0.3 over 

the full PUB range (from -1 to 1). Furthermore, the GSCR remains at 0.00 over the 

PUB range of -0.2 to 0.2. The GSCR then precipitously increases and decreases over 

the PUB range of 0.2 to 0.4 and -0.2 to -0.4, respectively. The GSCR then converges 

at approximately -0.35 and 0.35. These short ranges converge, and the initial flat 

level of the GSCR values indicates that mining experts are more cautious in altering 

the ground support than the powder factor when a potential uneven break (UB) is 

expected in a planned stope. That is, mining experts believe that the powder factor 

is a more effective way to control the uneven break in stope wall than altering the 

ground support system.  

 UB CONSULTATION MAP 7.3

The developed UB consultation fuzzy expert system (FES) facilitates control of the 

potential uneven break (UB) by retrieving the Pf and GS control rate (PFCR and 

GSCR). However, it is less clear how the numerical values of PFCR and GSCR can be 

used to determine the implications of the potential UB. Thus, uneven break (UB) 

consultation maps are recommended to provide an intuitive understanding of the 

PFCR and GSCR results.  

As the PFCR and GSCR are governed by the predicted uneven break (PUB), the UB 

consultation maps are modelled using the relationship among the PUB and the 

PFCR and GSCR. Figure 7-6 is a schematic of the UB consultation map.  
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Figure 7-6 Derived UB consultation map for (a) powder factor control rate and (b) 

ground support control rate  

The recommended UB consultation maps for the PFCR and the GSCR are composed 

of six control categories: ‘retain’, ‘slightly increase’, ’slightly decrease’, ‘increase, 

‘decrease’, and ‘consider redesign’, which are shown in the right hand side of 

Figures 7-6a and b. These control categories are determined by the predicted 

uneven break (PUB) map that is derived from the UB consultation fuzzy expert 

system. 

Figure 7-6a shows that the PFCR range of -0.1 to 0.1 is considered to be in the 

‘retain’ category because the corresponding PUB ranges from -0.05 to 0.05 (i.e., 5% 

of an underbreak or an overbreak). Thus, the PFCR ranges of 0.1 to 0.3 and -0.1 to -

0.3 are categorised as ‘slightly decrease’ and ‘slightly increase’, respectively, 
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because the PUB ranges from -0.05 to -0.20 and 0.05 to 0.20 (i.e., from 5% to 20% 

of the overbreak (positive) and the underbreak (negative)). Similarly, the PFCR is 

categorised as ‘increase’ and ‘decrease’ when it ranges from 0.3 to 0.5 and -0.3 to -

0.5 because the corresponding potential overbreak and underbreak percentages 

vary from 20% to 40%. Finally, when the PUB is exceeded by under -0.4 or over 0.4 

(i.e., 40% of an underbreak or an overbreak), the PFCR is categorised as ‘consider 

redesign’. 

The GSCR can similarly also be categorised into six categories, as shown in Figure 

7-6b. The detailed UB consultation map for the PFCR and the GSCR are tabulated in 

Tables 7-4 and  7-5, respectively. 

Table 7-4 Uneven break (UB) consultation map for powder factor control rate 
(PFCR) 

Condition PUB PFCR UB consultation category 

U
nd

er
 b

re
ak

 

Over 40% < -0.40 > 0.50 Consider redesign 

20% ~ 40% -0.40 ~ -0.20 0.30 ~ 0.50 Increase 

5% ~ 20% -0.20 ~-0.05 0.30 ~ 0.10 Slightly increase 

5% over & underbreak -0.05 ~ 0.05 -0.10 ~ 0.10 Retain 

O
ve

r b
re

ak
 5% ~ 20% 0.05 ~ 0.20 -0.30 ~ -0.10 Slightly decrease 

20% ~ 40% 0.20 ~ 0.40 -0.50 ~ -0.30 Decrease 

Over 40% > 0.40 < -0.50 Consider redesign 

 
Table 7-5 Uneven break (UB) consultation map for ground support control rate 
(GSCR) 

Condition PUB GSCR UB consultation category 

U
nd

er
 b

re
ak

 

Over 40% > 0.40 > 0.25 Consider redesign 

20% ~ 40% 0.30 ~ 0.40 0.10 ~ 0.25 Increase 

5% ~ 20% 0.20 ~ 0.30 0.00 ~ 0.10 Slightly increase 

20% over & underbreak -0.20 ~ 0.20 0.00 Retain 

O
ve

r b
re

ak
 20% ~ 30% -0.20 ~ -0.30 0.00 ~ -0.10 Slightly decrease 

30% ~ 40% -0.30 ~ -0.40 -0.10 ~ -0.25 Decrease 

Over 40% < -0.40 < -0.25 Consider redesign 
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 INTEGRATED UB MANAGEMENT NEURO-FUZZY SYSTEM 7.4

To build an integrated UB management system, the developed uneven break (UB) 

prediction ANN and the UB consultation FES were combined into a single 

concurrent neuro-fuzzy system (CNFS) using a graphic user interface (GUI) building 

software GUIDE in MATLAB. A standalone application was also created using the 

MATLAB compiler. Hence, the developed UB management neuro-fuzzy system can 

be run on any computer system without installing MATLAB. Figure 7-7 

demonstrates the GUI of the UB management neuro-fuzzy system. 

 

Figure 7-7 Graphical user interface (GUI) of integrated UB management cooperative 
neuro-fuzzy system (called an ‘uneven break optimiser’) 

 Instruction of uneven break optimiser 7.4.1

The purpose of an ‘uneven break optimiser’ is to help mining engineers minimise 

unplanned dilution and ore-loss (i.e., an uneven break, UB) in stope production. The 

integral UB prediction artificial neural network (ANN) system allows for the 

prediction of a potential uneven break (UB) before actual production blasting. 

Furthermore, the connected UB consultation fuzzy expert system (FES) shows the 

direction and intensity of the approach that would minimise an unfavourable 

potential uneven break (UB) based on the powder factor (Pf) and the ground 

   

(a) 

(b) 

(c) 
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support (GS) control rate (PFCR and GSCR). To aid the user, simplified sequential 

instructions for an uneven break optimiser are listed below. 

1) Prepare the requisite ten input parameters by referring to the planned stope 

design.  

2) Type the ten input parameters into the boxes in area (a) in Figure 7-7.  

3) Click the ‘Run-ANN’ button to activate the UB prediction ANN. 

4) Check the computed potential uneven break (PUB) percentage in the upper box 

in area (b) in Figure 7-7. (The inputted AQ value will simultaneously appear in 

the lower box in area (b).) 

5) Click the ‘Run FES’ button to activate the UB consultation FES. 

6) Check the computed Pf and GS control rates (PFCR and GSCR) in area (c) in 

Figure 7-7. 

7) Make a decision that minimises the predicted potential UB by referring to the 

UB consultation map (Figure 7-6, Table 7-4, and Table 7-5). 

 SUMMARY AND DISCUSSION 7.5

In this chapter, an uneven break (UB) consultation system was developed using a 

fuzzy expert system (FES). The predicted uneven break (PUB) from the UB 

prediction ANN and adjusted Q-value (AQ) were set as inputs, and two new 

parameters, the powder factor and the ground support control rate (PFCR and 

GSCR), were introduced and allocated to the outputs of the developed FES. The 

developed UB consultation FES was formulated using the Mamdani fuzzy inference 

system (FIS), and the membership functions and the fuzzy rules were formulated 

based on a survey of fifteen underground mining experts. Furthermore, uneven 

break (UB) consultation maps were developed to provide an intuitive understanding 

of the PFCR and GSCR.  

The developed UB consultation FES was combined with the UB prediction ANN 

system using a graphic user interface (GUI) to build an integrated UB management 

system. Thus, an integrated UB management cooperative neuro-fuzzy system, 

which is known as an ‘uneven break optimiser’, was developed. 
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The uneven break optimiser will help mining engineers to predict unfavourable 

unplanned dilution and ore-loss (i.e., uneven break, UB) prior to actual excavation 

and make optimised recommendations to minimise the predicted potential uneven 

break (UB).  
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 CONCLUSIONS AND FUTURE WORK CHAPTER 8.

Unplanned dilution and ore-loss (which is referred to as an uneven break, UB) are 

critically important to mine management because these core cost factors are often 

cited as the primary reasons for mine closure. Recently, an underground mine 

management system was improved using various statistical, empirical, and 

numerical modelling methods. However, most mines still suffer from severe uneven 

break (UB), and experienced mining engineers must largely use their own intuition 

to minimise uneven break (UB). Notwithstanding the numerous efforts of engineers 

and researchers, the exact mechanism of unplanned dilution and ore-loss remains 

unclear, and there is no operational practical quantitative UB prediction and 

consultation system. 

The aim of this study is to develop a dynamic unplanned dilution and ore loss (UB) 

management system using uneven break (UB) prediction and consultation models. 

Attempts have also been made to elucidate the uneven break (UB) mechanism by 

investigating trends in the contributions of influential parameters to uneven break 

(UB). To formulate accurate UB prediction models, a total of 1,067 datasets were 

collected via thorough review of over 30,000 documents from three underground 

stoping mines in Western Australia, which consisted of ten potential UB causative 

factors. The following blasting-related parameters were investigated: the average 

length of the blasthole (Blen), the powder factor (Pf), the angle difference between 

the hole and the wall (AHW), the blasthole diameter (Bdia) and the space and 

burden ratio (SbR). The adjusted Q rate (AQ) and the average horizontal to vertical 

stress ratio (K) were examined consecutively, and the representative geological 

factors, the planned tonnes of stope (Pt), the aspect ratio (AsR), and stope either 

breakthrough to a nearby drift and/or stope or not (BTBL) were investigated as 

representative stope design parameters. 

The UB prediction models were developed using conventional statistical methods 

and an advanced soft computing approach. The UB prediction performances were 

then evaluated in terms of the correlation coefficient (R) between the actual stope 

UB and the predicted UB from developed models. First, multiple linear and 
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nonlinear regression analyses (MLRA and MNRA) were used as statistical tools and 

were found to be inadequate for UB prediction. For instance, the NLRA and MNRA 

models of the general dataset (GM) for UB prediction yielded correlation 

coefficients (R) of 0.419 and 0.438, respectively. Then, a conjugate gradient type 

artificial neural network (CG-ANN) was applied as a soft computing approach. The 

optimised CG-ANN exhibited a reliable UB prediction performance because the 

correlation coefficient (R) was 0.719, which was superior to that of the multiple 

regression models. The current UB prediction performance for the investigated 

three mines only exhibited a correlation coefficient (R) of 0.088: the prediction 

performance of the developed CG-ANN model was outstanding, showing that this 

method could be used in actual mines. 

In fact, the uneven break (UB) is an inevitable phenomenon when ore is extracted 

using a drilling and blasting method. Despite the efforts of numerous engineers and 

scholars, the exact mechanism remains unclear. Thus, attempts were made to 

elucidate the contributions of different parameters to the UB phenomenon based 

on UB prediction models of the general model (GM). Although the multiple linear 

and nonlinear regression analyses (MLRA and MNRA) demonstrated poor and 

moderate validities, trends in the effects of the parameters could be determined. 

The AHW, AQ, and Blen were negatively correlated with the uneven break (UB), 

whereas the other parameters were positively correlated with the UB. The 

parameter contributions for the optimised CG-ANN model were analysed using 

weight- and sensitivity-based algorithms. First, the connection weight algorithm 

(CWA) was applied as a weight-based algorithm, where the AQ was the most 

influential parameter with a contribution of 22.40%. K also exhibited a relatively 

high contribution of 19.49%, and the remaining eight parameters had contributions 

of less than 10%. As for the MNRA results, the AQ, Blen, Pt, and AHW were 

negatively correlated with the UB phenomenon. The profile method (PM) was also 

applied as a sensitivity-based algorithm. As in the CWA analysis, the AQ and K 

exhibited strong influences on the UB phenomenon with contributions of 20.48% 

and 18.12%. Applying the PM revealed the following essential trends: the 

magnitude of the overbreak decreases for a higher rock quality, a deeper, narrower 
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or larger stope, a shorter ring burden, a lower powder factor, a smaller blasthole 

diameter, a longer blasthole, a stope breakthrough to another space, and a fanned 

drilling pattern. In addition, the contributions of the three core categories, i.e., the 

geology, the blasting, and the stope design, to the uneven break (UB) were 

calculated using the profile method (PM) application. The geology was found to be 

the most significant contributor with a contribution of 38.79%, whereas the blasting 

and stope design categories contributed 37.17% and 24.04%, respectively. 

To develop an integral UB management system, an UB consultation system was 

built using a fuzzy expert system (FES). The FES was connected to the UB prediction 

CG-ANN model by importing the predicted-UB (PUB) and the adjusted Q-value (AQ) 

as inputs to the system. Two new parameters, the powder factor and the ground 

support control rate (PFCR and GSCR), were introduced to support the engineers’ 

decision-making processes and were allocated to the FES outputs. The developed 

FES was established using a Mamdani fuzzy inference system (FIS), and membership 

functions and fuzzy rules were formulated based on a survey of fifteen underground 

mining experts. Uneven break (UB) consultation maps were also developed to 

provide engineers with an intuitive understanding of the concepts of the PFCR and 

the GSCR. Finally, a graphic user interface (GUI) was used to combine the UB 

consultation FES and the UB prediction CG-ANN system into a single integrated UB 

management cooperative neuro-fuzzy system, which was called an ‘uneven break 

optimiser’. The developed uneven break optimiser will play a significant role in 

increasing the productivity of stope production as well as in enhancing the 

profitability of the entire mining processes by minimising the potential uneven 

break (UB) phenomenon. 

In this study, a reliable UB management system was formulated but the developed 

system also has some limitations because of the complexity of the UB phenomenon. 

Mining activities always pose inherent uncertainties. The employed ten major UB 

causative factors also have inherent variability that may drop the accuracy of the 

proposed UB prediction model. The influences of input variables variability can be 

assessed by formulating a new hybrid stochastic model combining with ANN. The 

reliability of the UB prediction system hinges on the degree of coverage of the 
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collected dataset relative to the actual overall UB occurrence factors. Although the 

proposed UB management system showed outstanding performance, it cannot be 

used to predict the UB beyond the range of the training dataset. For instance, the 

system was developed for a rock quality (AQ: adjusted Q-value) range between 6.30 

and 93.30. Thus, the system cannot be applied if the quality of the rock mass on the 

site is above or below this range. Fortunately, this limitation can be improved 

straightforwardly by re-training the CG-ANN with additional dataset ranges. 

Another limitation of the developed UB management system is that it was 

developed using only historical information. Thus, the human error factor cannot be 

directly included in the system. Possible remedies for these limitations will be left 

for future work on updating the UB management system. For instance, the 

reliability of the proposed system can be improved by composing a real-time data 

collection system in mines which will improve the quality and quantity of the 

datasets. In this way, the coverage of the UB management system will be broader 

and the human error factor can also be directly included as a UB causative factor.  
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APPENDIX A: SCATTER PLOTS OF COLLECTED TEN UB CAUSATIVE 

FACTORS AGAINST PERCENTAGE OF ACTUAL UNEVEN BREAK (UB) 

(1,067 datasets after the second filtering stage) 
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APPENDIX B: SOME OF MATLAB CODES OF PROPOSED ARTIFICIAL 

NEURAL NETWORK 

Definition of code: 

 

Xdim: dimention of Xnorm_train 

Xnorm_train: normalised dataset for training 

k: iteration 

traansfunc: transfer function 

tanh-tanh: hyperbolic tangent function 

Wij: weights matrix from j layer to i layer 

Wjk: weights matrix from k layer to j layer 

Wij_best: trained weights matrix from j layer to i layer 

Wjk_best: trained weights matrix from k layer to j layer 

J_record: Jacobian matrix 

 

ANN Training function 

function [Wij_best,Wjk_best,k,corref_train,corref_valid,corref_test] = 
train_neural_network_with_SCPG(Xnorm_train,Ynorm_train,...    
Xnorm_valid,Ynorm_valid,Xnorm_test,Ynorm_test,N_hidden_neuron,N_output_neuron, 
regLambda, reps, maxiter ) 

%TRAIN_NEURAL_NETWORK_WITH_CPG      

  

%% parameter setup 

  

Xdim = size(Xnorm_train,1);   % dimention of Xnorm_train 

  

k = 1; 

  

transfunc = 'tanh-tanh'; 

  

sigma0 = 1e-6; 

lambda = 1; 

lambda_bar = 0; 

  

Wij = (rand(N_hidden_neuron, Xdim+1)-0.5); 

Wjk = (rand(N_output_neuron, N_hidden_neuron+1 )-0.5); 

Wij_best = Wij; 

Wjk_best = Wjk; 

  

J_record = zeros(1,maxiter); 
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Jvalid_record =  zeros(1,maxiter); 

  

%%  

 J_record(1) = evaluate_objective_function(Xnorm_train, Ynorm_train, Wij, Wjk, 
transfunc, regLambda); 

Jvalid_record(1) = evaluate_objective_function(Xnorm_valid, Ynorm_valid, Wij, Wjk, 
transfunc, regLambda); 

  

w = reshape_weight_matrix_to_vector(Wij, Wjk); 

  

p = -1 * evaluate_gradient_of_objective_function(Xnorm_train, Ynorm_train, Wij, 
Wjk, transfunc, regLambda); 

  

N = size(p,1); 

  

r = p; 

[Pij, Pjk] = reshape_weight_vector_to_matrix(p, Xdim, N_hidden_neuron); 

  

success = true; 

  

while k < maxiter 

     

     

    if success == true 

        sigma = sigma0/norm(p); 

         

        s =( evaluate_gradient_of_objective_function(Xnorm_train, Ynorm_train, Wij 
+ sigma *Pij, Wjk +sigma * Pjk, transfunc, regLambda) ... 

               - evaluate_gradient_of_objective_function(Xnorm_train, Ynorm_train, 
Wij, Wjk, transfunc, regLambda))/sigma;            

        delta = p' * s; 

    end 

     

    delta 

    lambda 

    lambda_bar 

    

    norm(p) 

     

     

    s = s + (lambda - lambda_bar) * p; 

    delta = delta + (lambda - lambda_bar) * (p'*p); 

     

     

     

    if delta <= 0 

        s = s + (lambda - 2 * delta / (p'*p) ) * p; 

        lambda_bar = 2 * (lambda - delta / (p'*p) ); 
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        delta = - delta + lambda *  (p'*p); 

        lambda = lambda_bar; 

    end 

     

    mu = p' * r; 

    alpha = mu / delta; 

     

    Delta = 2 * delta * (evaluate_objective_function(Xnorm_train, Ynorm_train, Wij, 
Wjk, transfunc, regLambda) ... 

                        - evaluate_objective_function(Xnorm_train, Ynorm_train, Wij 
+ alpha *Pij, Wjk +alpha * Pjk, transfunc, regLambda) ) / (mu^2); 

     

    if Delta >= 0  

        disp('update'); 

        w = w + alpha * p; 

        [Wij, Wjk] = reshape_weight_vector_to_matrix(w, Xdim, N_hidden_neuron); 

        r_prev = r; 

        r = -1 * evaluate_gradient_of_objective_function(Xnorm_train, Ynorm_train, 
Wij, Wjk, transfunc, regLambda); 

        lambda_bar = 0; 

        success = true; 

         

        if mod(k,N) == 0 

            p = r; 

        else 

            beta = (r'*r - r'*r_prev) / mu; 

            p = r + beta * p; 

            [Pij, Pjk] = reshape_weight_vector_to_matrix(p, Xdim, N_hidden_neuron); 

        end 

         

        if Delta >= 0.75  

                lambda = lambda/2; 

        end 

    

    else 

        lambda_bar = lambda; 

        success = false; 

    end 

     

     

    if Delta < 0.25 

        lambda = 4 * lambda; 

    end 

      

    if norm(r) < reps 

        disp(' norm(r) is less than reps'); 

        break; 
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    end 

    

    [Wij, Wjk] = reshape_weight_vector_to_matrix(w, Xdim, N_hidden_neuron); 

     

    figure (1); 

  

    subplot(2,2,1); title('Training Error'); 

    J_record(k) = evaluate_objective_function(Xnorm_train, Ynorm_train, Wij, Wjk, 
transfunc, regLambda);      

    plot(1:(k-1), J_record(1:(k-1))/size(Xnorm_train,2)); 

     

    subplot(2,2,2); title('Validation Error');  

    Jvalid_record(k) = evaluate_objective_function(Xnorm_valid, Ynorm_valid, Wij, 
Wjk, transfunc, regLambda);         

    plot(Jvalid_record(1:(k-1))/size(Xnorm_valid,2));     

  

    subplot(2,2,3); title('Trainining'); 

      corref_train = plot_performance_of_neural_network(Xnorm_train, Ynorm_train, 
Wij, Wjk, transfunc); 

            

    subplot(2,2,4);title('Validation'); 

      corref_valid = plot_performance_of_neural_network(Xnorm_valid, Ynorm_valid, 
Wij, Wjk, transfunc); 

     

   

  

drawnow; 

  

    k = k + 1 

     

end 

  

[Wij_best, Wjk_best] = reshape_weight_vector_to_matrix(w, Xdim, N_hidden_neuron); 

  

  

% % performance index figure 

%   

% figure (2); 

% plot (Ynn, 'linewidth',2, 'color', [0,0,1]) 

% hold on 

% plot (Yss, 'linewidth',2, 'color', [0,1,0], 'linestyle', ':') 

% title('Comparison between measured & predicted uneven break', 'fontsize', 12, 
'fontweight','bold'); 

% xlabel('PATTERNS','fontsize',11); 

% ylabel('UNEVEN BREAK','fontsize',11); 

%  

% figure(4); 

% plotregression(Yn, Yk) 
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APPENDIX B 

ANN forward process(Run ANN) function 

function [z_out, h_out, x_out] = run_neural_network(x_in,Wij,Wjk, ~) 

  

  

 transfunc = 'tanh-tanh';   % changing code part 

  

N_datasets = size(x_in,2); 

  

x_out = [x_in;ones(1,N_datasets)]; 

  

h_in = Wij*x_out; 

h_out = [tanh(h_in);ones(1,N_datasets)]; 

  

z_in = Wjk*h_out; 

  

  

if strcmp(transfunc, 'tanh-tanh') 

    z_out = tanh(z_in);    

elseif strcmp(transfunc, 'tanh-x') 

    z_out = (z_in); 

                

end 
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APPENDIX C: GRAPHICAL VIEW OF SURVEY RESULTS FOR UB 

CONSULTATION FUZZY EXPERT SYSTEM 

 

MO, O, A, U, and MU represent massive overbreak, overbreak, acceptable range, 
underbreak, massive underbreak. 

 
Appendix C-1 Survey results in condition of poor rock subject to powder factor  

R, RET, and I.PF represent reduce, retain, and increase powder factor 
 

 
Appendix C-2 Survey results in condition of poor rock subject to ground support  

R, RET, and I.GS represent reduce, retain, and increase ground support  
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Appendix C-3 Survey results in condition of fair rock subject to powder factor  

R, RET, and I.PF represent reduce, retain, and increase powder factor 

 

 
Appendix C-4 Survey results of in condition fair rock subject to ground support  

R, RET, and I.GS represent reduce, retain, and increase ground support  
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Appendix C-5 Survey results in condition of good rock subject to powder factor  

R, RET, and I.PF represent reduce, retain, and increase powder factor 

 

 
Appendix C-6 Survey results in condition of good rock subject to ground support  

R, RET, and I.GS represent reduce, retain, and increase ground support  
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APPENDIX D 

APPENDIX D: INFORMATION OF MULTIPLE LINIER AND NONLINEAR 

REGRESSION MODELS OF MINE-A, MINE-B, MINE-C, AND GM MODEL 

 

Table-appendix D 
Details of ten UB causative factors employed in multiple linear and nonlinear 
regression models 

Category Abbr. Unit Range Note 

In
pu

t 
(in

de
pe

nd
en

t v
ar

ia
bl

es
) 

Co
nt

ro
lla

bl
e 

Bl
as

tin
g 

Blen m 0.70 ~ 25.80 Average length of blasthole 

Pf Kg/t 0.15~ 3.00 Powder factor 

AHW ° 0.00 ~ 170.20 
Angle difference between hole and 
wall 

Bdia mm 76 ~ 89 Blasthole diameter 

SbR (S/B)1 0.57 ~ 1.50 Space and burden ratio 

St
op

e 
de

sig
n 

 Pt T 130 ~ 51,450 Tonnes of stope planned 

AsR (W/H)3 0.07 ~ 4.17 Aspect ratio 

BTBL - 
Breakthrough 
(0) ~ Blind (1) 

Stope either breakthrough to a 
nearby drift and/or stope or not 

un
co

nt
ro

lla
bl

e 

Ge
ol

og
y 

AQ - 6.30 ~ 93.30 Adjusted Q rate 

K (H/V)2 1.74 ~ 14.38 
Average horizontal to vertical stress 
ratio 

Output  

(dependent 
variable) 

UB % -65.40 ~ 92.00 
Percentage of uneven stope break 
(over and under breaks) 

1S/B: ratio between toe space (S) and ring burden (B); 2H/V: ratio between average horizontal (H) and vertical 
(V) stress; 3W/H: ratio between width (W) and height (H) of stope 
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APPENDIX D 

Mine-A (Multiple linear regression - Enter model) 

 

Variables Entered 

Variables Entered Variables Removed Method 

K, AHW, AQ, SBR, BTBL, PF, ASR, PT, BLEN, BDIA . Enter 

Dependent Variable: UB 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.581 .338 .280 .04219633 .338 5.863 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) .969 .636  1.523 .130 

BTBL -.018 .019 -.108 -.932 .353 

BLEN -.009 .022 -.045 -.422 .674 

PF .375 .060 .555 6.240 .000 

AHW -.067 .030 -.214 -2.212 .029 

BDIA .024 .027 .125 .898 .371 

SBR .017 .020 .081 .830 .408 

AQ -.091 .049 -.163 -1.874 .063 

PT .048 .025 .179 1.926 .057 

ASR .042 .024 .170 1.767 .080 

K .104 .622 .019 .168 .867 
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APPENDIX D 

Mine-A (Multiple linear regression - Stepwise model) 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.567 .322 .293 .04180247 -.010 1.728 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.088 .095  11.464 .000 

PF .377 .055 .559 6.901 .000 

AHW -.048 .026 -.153 -1.826 .070 

AQ -.093 .046 -.166 -2.032 .044 

PT .039 .021 .144 1.849 .067 

ASR .044 .021 .180 2.074 .040 

 

Excluded Variables 

Variables Beta In t Sig. Partial Correlation 

Collinearity 

Statistics 

Tolerance 

K .013f .136 .892 .012 .614 

BLEN -.009f -.097 .923 -.009 .659 

BDIA .055f .683 .496 .062 .885 

BTBL -.025f -.313 .755 -.029 .881 

SBR .111f 1.314 .191 .120 .783 

Dependent Variable: UB 
Predictors in the Model: (Constant), AHW, AQ, PF, ASR, PT 
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APPENDIX D 

Mine-A (Multiple nonlinear regression model) 

 

MODEL PROGRAM: a=1.088 b=0.377 c=-.048 d=-.093 e=.039 f=.044. 

COMPUTE_ PRED= a *(PF ** (b))*(AHW ** (c))*(AQ ** (d))*(PT ** (e))*(ASR ** (f)). 

 

Iteration History 

Iteration Number Residual Sum of 

Squares 

Parameter 

a b c d e 

1.0 12.914 1.088 .377 -.048 -.093 .039 

1.1 .213 1.407 .288 -.038 -.091 .035 

2.0 .213 1.407 .288 -.038 -.091 .035 

2.1 .211 1.407 .306 -.040 -.090 .036 

3.0 .211 1.407 .306 -.040 -.090 .036 

3.1 .211 1.407 .306 -.040 -.090 .035 

4.0 .211 1.407 .306 -.040 -.090 .035 

4.1 .211 1.407 .306 -.040 -.090 .035 

- Derivatives are calculated numerically. 
- Major iteration number is displayed to the left of the decimal, and minor iteration number is to the 

right of the decimal. 
- Run stopped after 12 model evaluations and 6 derivative evaluations because the relative 

reduction between successive residual sums of squares is at most SSCON = 1.00E-008. 

 

ANOVA 

Source Sum of Squares df Mean Squares 

Regression 260.274 6 43.379 

Residual .211 120 .002 

Uncorrected Total 260.485 126  

Corrected Total .309 125  

- Dependent variable: UB 
- R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .317. 

 

 



143 

 

APPENDIX D 

Mine-B (Multiple linear regression - Enter model) 

 

Variables Entered 

Variables Entered Variables Removed Method 

K, AHW, BLEN, PF, BTBL, SBR, ASR, PT, AQ . Enter 

Dependent Variable: UB 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.590 .348 .322 .10683669 .348 13.127 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) -.651 1.509  -.432 .666 

BTBL .005 .016 .019 .333 .740 

BLEN -.162 .044 -.211 -3.718 .000 

PF .123 .154 .047 .802 .424 

AHW -.137 .033 -.237 -4.110 .000 

SBR -.052 .080 -.037 -.644 .520 

AQ -.756 .105 -.436 -7.224 .000 

PT .018 .057 .019 .318 .751 

ASR -.037 .036 -.059 -1.030 .304 

K 3.229 1.460 .137 2.212 .028 
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APPENDIX D 

Mine-B (Multiple linear regression - Stepwise model) 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.584 .341 .330 .10622956 -.004 1.460 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) .114 1.391  .082 .935 

BLEN -.158 .042 -.206 -3.777 .000 

AHW -.144 .032 -.250 -4.476 .000 

AQ -.756 .104 -.436 -7.304 .000 

K 2.528 1.366 .107 1.850 .066 

 

Excluded Variables 

Variables Beta In t Sig. Partial Correlation 

Collinearity 

Statistics 

Tolerance 

PT -.007f -.130 .897 -.009 .941 

BTBL .020f .360 .719 .024 .946 

SBR -.037f -.663 .508 -.044 .945 

PF .043f .778 .438 .052 .978 

ASR -.068f -1.208 .228 -.080 .929 

Dependent Variable: UB 
Predictors in the Model: (Constant), K, AHW, BLEN, AQ 
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APPENDIX D 

Mine-B (Multiple nonlinear regression model) 

 

MODEL PROGRAM: a=0.114 b=-.158 c=-.144 d=-.756 e=2.528. 

COMPUTE_ PRED=a * (BLEN ** (b))*(AHW ** (c))*(AQ ** (d))*(K ** (e)). 

Iteration History 

Iteration Number Residual Sum of 

Squares 

Parameter 

a b c d e 

1.0 394.482 .114 -.158 -.144 -.756 2.528 

1.1 50.420 1.669 -.245 -.405 .714 -14.250 

2.0 50.420 1.669 -.245 -.405 .714 -14.250 

2.1 7.981 1.472 -.133 -.056 -1.405 10.145 

3.0 7.981 1.472 -.133 -.056 -1.405 10.145 

3.1 2.464 1.637 -.163 -.149 -.746 2.264 

4.0 2.464 1.637 -.163 -.149 -.746 2.264 

4.1 2.446 1.669 -.164 -.162 -.652 1.348 

5.0 2.446 1.669 -.164 -.162 -.652 1.348 

5.1 2.446 1.669 -.164 -.163 -.652 1.359 

6.0 2.446 1.669 -.164 -.163 -.652 1.359 

6.1 2.446 1.669 -.164 -.163 -.652 1.359 

- Derivatives are calculated numerically. 
- a. Major iteration number is displayed to the left of the decimal, and minor iteration number is to 

the right of the decimal. 
- b. Run stopped after 12 model evaluations and 6 derivative evaluations because the relative 

reduction between successive residual sums of squares is at most SSCON = 1.00E-008. 

 

ANOVA 

Source Sum of Squares df Mean Squares 

Regression 453.593 5 90.719 

Residual 2.446 226 .011 

Uncorrected Total 456.040 231  

Corrected Total 3.871 230  

- Dependent variable: UB 
- R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .368. 
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Mine-C (Multiple linear regression - Enter model) 

 

Variables Entered 

Variables Entered Variables Removed Method 

K, PF, BLEN, SBR, BDIA, BTBL, AQ, AHW, ASR, PT . Enter 

Dependent Variable: UB 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.422 .178 .166 .11684428 .178 15.126 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.129 .195  5.791 .000 

BTBL .034 .009 .132 3.655 .000 

BLEN -.125 .033 -.155 -3.823 .000 

PF .140 .031 .170 4.532 .000 

AHW -.138 .027 -.211 -5.146 .000 

BDIA -.026 .013 -.079 -1.924 .055 

SBR .123 .090 .048 1.369 .171 

AQ -.133 .019 -.267 -6.876 .000 

PT .135 .111 .052 1.213 .226 

ASR .203 .035 .241 5.740 .000 

K .021 .035 .022 .600 .549 
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Mine-C (Multiple linear regression - Stepwise model) 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.412 .170 .163 .11706927 -.003 2.501 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.489 .087  17.043 .000 

BTBL .033 .009 .127 3.565 .000 

BLEN -.127 .030 -.157 -4.177 .000 

PF .134 .030 .163 4.499 .000 

AHW -.143 .026 -.218 -5.408 .000 

AQ -.125 .019 -.252 -6.575 .000 

ASR .190 .034 .226 5.544 .000 

 

Excluded Variables 

 Beta In t Sig. 
Partial 

Correlation 

Collinearity Statistics 

Tolerance 

K .031e .888 .375 .033 .941 

PT .020e .501 .616 .019 .759 

SBR .053e 1.545 .123 .058 .986 

BDIA -.059e -1.581 .114 -.060 .833 

Dependent Variable: UB 
Predictors in the Model: (Constant), PF, BLEN, BTBL, AQ, AHW, ASR 
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APPENDIX D 

Mine-C (Multiple nonlinear regression model) 

 

MODEL PROGRAM: a=1.489 b=.033 c=-.127 d=.134 e=-.143 f=-.125 g=.190. 

COMPUTE_ PRED= a * (BTBL ** (b))*(BLEN ** (c))*(PF ** (d))*(AHW ** (e))*(AQ ** (f))*(ASR ** (g)). 

 

Iteration History 

Iteration Number Residual Sum of 

Squares 

Parameter 

a b c d e 

1.0 10.561 1.489 .033 -.127 .134 -.143 

1.1 9.513 1.455 .033 -.129 .129 -.126 

2.0 9.513 1.455 .033 -.129 .129 -.126 

2.1 9.513 1.455 .033 -.129 .129 -.126 

3.0 9.513 1.455 .033 -.129 .129 -.126 

3.1 9.513 1.455 .033 -.129 .129 -.126 

- Derivatives are calculated numerically. 
- Major iteration number is displayed to the left of the decimal, and minor iteration number is to the 

right of the decimal. 
- Run stopped after 6 model evaluations and 3 derivative evaluations because the relative reduction 

between successive residual sums of squares is at most SSCON = 1.00E-008. 

 

ANOVA 

Source Sum of Squares df Mean Squares 

Regression 1501.466 7 214.495 

Residual 9.513 703 .014 

Uncorrected Total 1510.979 710  

Corrected Total 11.608 709  

- Dependent variable: UB 
- R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .181. 
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APPENDIX D 

GM (Multiple linear regression - Enter model) 

 

Variables Entered 

Variables Entered Variables Removed Method 

K, SBR, AHW, BDIA, AQ, BTBL, PT, ASR, BLEN, PF . Enter 

Dependent Variable: UB 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.423 .179 .171 .1125870 .179 22.989 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.521 .099  15.297 .000 

BTBL .029 .008 .117 3.783 .000 

BLEN -.119 .022 -.188 -5.374 .000 

PF .123 .026 .168 4.715 .000 

AHW -.152 .019 -.262 -7.923 .000 

BDIA .013 .009 .046 1.430 .153 

SBR .015 .034 .013 .445 .657 

AQ -.113 .017 -.198 -6.592 .000 

PT .023 .036 .022 .635 .526 

ASR .069 .021 .117 3.291 .001 

K .039 .032 .037 1.220 .223 
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GM (Multiple linear regression - Stepwise model) 

 

Model Summary 

R 
R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Change Statistics 

R Square Change F Change 

.419 .175 .171 .1126026 -.002 2.362 

 

Coefficients 

Variables 
Unstandardized Coefficients 

Standardized 

Coefficients t Sig. 

B Std. Error Beta 

(Constant) 1.595 .069  23.263 .000 

BTBL .031 .007 .125 4.165 .000 

BLEN -.105 .020 -.166 -5.281 .000 

PF .122 .024 .166 4.973 .000 

AHW -.149 .019 -.258 -7.815 .000 

AQ -.106 .017 -.187 -6.346 .000 

ASR .073 .020 .124 3.629 .000 

 

Excluded Variables 

Variables Beta In t Sig. Partial Correlation 

Collinearity 

Statistics 

Tolerance 

SBR .015e .518 .605 .016 .969 

PT .022e .640 .522 .020 .647 

K .035e 1.163 .245 .036 .873 

BDIA .049e 1.537 .125 .047 .756 

Dependent Variable: UB 
Predictors in the Model: (Constant), AHW, AQ, PF, ASR, PT 
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APPENDIX D 

GM (Multiple nonlinear regression model) 

 

MODEL PROGRAM: a=1.595 b=.031 c=-.105 d=.122 e=-.149 f=-.106 g=.073. 

COMPUTE_ PRED= a * (BTBL ** (b))*(BLEN ** (c))*(PF ** (d))*(AHW ** (e))*(AQ ** (f))*(ASR ** (g)). 

 

Iteration History 

Iteration Number Residual Sum of 

Squares 

Parameter 

a b c d e 

1.0 30.571 1.595 .031 -.105 .122 -.149 

1.1 13.176 1.473 .031 -.115 .108 -.145 

2.0 13.176 1.473 .031 -.115 .108 -.145 

2.1 13.176 1.473 .031 -.116 .107 -.144 

3.0 13.176 1.473 .031 -.116 .107 -.144 

3.1 13.176 1.473 .031 -.116 .107 -.144 

- Derivatives are calculated numerically. 
- Major iteration number is displayed to the left of the decimal, and minor iteration number is to the 

right of the decimal. 
- Run stopped after 6 model evaluations and 3 derivative evaluations because the relative reduction 

between successive residual sums of squares is at most SSCON = 1.00E-008. 

 

ANOVA 

Source Sum of Squares df Mean Squares 

Regression 2214.328 7 316.333 

Residual 13.176 1060 .012 

Uncorrected Total 2227.504 1067  

Corrected Total 16.300 1066  

- Dependent variable: UB 
- R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .192 
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