
Hindawi Publishing Corporation
Advances in Multimedia
Volume 2012, Article ID 586542, 14 pages
doi:10.1155/2012/586542

Research Article

Seamless Integration of RESTful Services into the Web of Data

Markus Lanthaler1 and Christian Gütl1, 2

1 Institute for Information Systems and Computer Media, Graz University of Technology, 8010 Graz, Austria
2 School of Information Systems, Curtin University of Technology, Perth WA 6102, Australia

Correspondence should be addressed to Markus Lanthaler, markus.lanthaler@student.tugraz.at

Received 4 November 2011; Accepted 15 January 2012

Academic Editor: Nabil Tabbane

Copyright © 2012 M. Lanthaler and C. Gütl. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We live in an era of ever-increasing abundance of data. To cope with the information overload we suffer from every single day,
more sophisticated methods are required to access, manipulate, and analyze these humongous amounts of data. By embracing
the heterogeneity, which is unavoidable at such a scale, and accepting the fact that the data quality and meaning are fuzzy, more
adaptable, flexible, and extensible systems can be built. RESTful services combined with Semantic Web technologies could prove
to be a viable path to achieve that. Their combination allows data integration on an unprecedented scale and solves some of the
problems Web developers are continuously struggling with. This paper introduces a novel approach to create machine-readable
descriptions for RESTful services as a first step towards this ambitious goal. It also shows how these descriptions along with an
algorithm to translate SPARQL queries to HTTP requests can be used to integrate RESTful services into a global read-write Web
of Data.

1. Introduction

We live in an era where exabytes of data are produced
every single year; never before in human history had we
to deal with such an abundance of information. To cope
with this information overload, more sophisticated meth-
ods are required to access, manipulate, and analyze these
humongous amounts of data. Service-oriented architectures
(SOAs) built on Web services were a first attempt to
address this issue, but the utopian promise of uniform
service interface standards, metadata, and universal service
registries, in the form of SOAP, WSDL, and UDDI has
proven elusive. This and other centralized, registry-based
approaches were overwhelmed by the Web’s rate of growth
and the lack of a universally accepted classification scheme.
In consequence, the usage of SOAP-based services is mainly
limited to company-internal systems and to the integration
of legacy systems. In practice, however, such a clear and crisp
definition of data is rare. Today’s systems integrate data from
many sources. The data quality and meaning are fuzzy and
the schema, if present, are likely to vary across the different
sources. In very large and loosely coupled systems, such as the

Internet, the gained adaptability, flexibility, and extensibility,
in a transition away from strict and formal typing to simple
name/value pairs or triples, outweighs the resulting loss off
“correctness.”

Thus, it is not surprising that RESTful services, and
there especially the ones using the lightweight JavaScript
Object Notation (JSON) [1] as the serialization format, are
increasingly popular. According to ProgrammableWeb, 74%
of the Web services are now RESTful and 45% of them use
JSON as the data format [2], but, in spite of their growing
adoption, RESTful services still suffer from some serious
shortcomings.

The major problem is that, for RESTful services or
Web APIs, a recently emerged term to distinguish them
from their traditional SOAP-based counterparts, no agreed
machine-readable description format exists. All the required
information of how to invoke them and how to interpret the
various resource representations is communicated out-of-
band by human-readable documentations. Since machines
have huge problems to understand such documentations,
machine-to-machine communication is often based on static
knowledge resulting in tightly coupled system. The challenge

2 Advances in Multimedia

is thus to bring some of the human Web’s adaptivity to the
Web of machines to allow the building of loosely coupled,
reliable, and scalable systems.

Semantic annotations could prove to be a viable path to
achieve that, but, while the vision of a Semantic Web has
been around for more than fifteen years, it still has a long
way to go before mainstream adoption will be achieved. One
of the reasons for that is, in our opinion, the fear of average
Web developers to use Semantic Web technologies. They are
often overwhelmed by the (perceived) complexity or think
they have to be AI experts to make use of the Semantic Web.
Others are still waiting for a killer application making it a
classical chicken-and-egg problem. A common perception is
also that the Semantic Web is a disruptive technology which
makes it a showstopper for enterprises needing to evolve their
systems and build upon existing infrastructure investments.
Obviously, some developers are also just reluctant to use new
technologies. Nevertheless, we think most Web developers
fear to use Semantic Web technologies for some reason or
another; a phenomenon we denoted as Semaphobia [3]. To
help developers get past this fear, and to show them that
they have nothing to fear but fear itself, clear incentives
along with simple specifications and guidelines are necessary.
Wherever possible, upgrade paths for existing systems should
be provided to build upon existing investments.

That is exactly what made the Linked Data movement so
successful. It simplified the technology stack and provided
clear incentives for annotating data. In consequence, it is
not surprising that after being ignored by the majority of
the Web developers for a long time, lightweight semantic
annotations finally start to gain acceptance across the
community. Facebook’s Open Graph protocol, for example,
was implemented in over 50,000 Web sites within the first
week of its launch [4] and the current estimates are that
roughly 10% of all Web pages are annotated with it.

It would just seem consequent to combine the strengths
of both, REST and the Linked Data principles, but in practice
they still remain largely separated. Instead of providing access
to Linked Data via a RESTful service interface, current efforts
deploy centralistic SPARQL endpoints or simply upload
static dumps of RDF data. This also means that most current
Semantic Web projects just provide read-only interfaces to
the underlying data. This clearly inhibits networking effects
and engagement of the crowd.

To address these issues, we developed a novel approach
to semantically describe RESTful data services which allows
their seamless integration into a Web of Data. We put a strong
emphasis on simplicity and on not requiring any changes on
the Web service itself. This should lower the entry barrier
for future Web developers and provide a viable upgrade path
for existing infrastructure. At the same time, the approach
is extensible and flexible enough to be applicable in a wide
application domain.

The reminder of the paper is organized as follows. In
Section 2, we give an overview of related work. Then, in
Section 3, we present the requirements and the design of
SEREDASj, our approach to semantically describe RESTful
services. Section 4 shows how SEREDASj can be used to
integrate different RESTful services into the Web of Data, and

finally, Section 5 concludes the paper and gives an overview
of future work.

2. Related Work

In contrast to traditional SOAP-based services, which have
agreed standards in the form of WSDL and SAWSDL
[5] to be described, both, syntactically and semantically,
no standards exist for RESTful services. In consequence,
RESTful services are almost exclusively described by human-
readable documentations describing the URLs and the data
expected as input and output. There have been made many
proposals to solve this issue; SA-REST [6], hRESTS [7], and
WADL [8] are probably the best-known ones.

The Web Application Description Language’s approach
(WADL) [8] is closely related to WSDL in that a developer
creates a monolithic XML file containing all the informa-
tion about the service’s interface. Given that WADL was
specifically designed for describing RESTful services (or
HTTP-based Web applications as they are called in WADL’s
specification), it models the resources provided by the service
and the relationships between them. Each service resource
is described as a request containing the used HTTP method
and the required inputs as well as zero or more responses
describing the expected service response representations
and HTTP status codes. The data format of the request
and response representations are described by embedded or
referenced data format definitions. Even though WADL does
not mandate any specific data format definition language,
just the use of RelaxNG and XML Schema are described
in the specification. The main critique of WADL is that
it is complex and thus requires developers that have a
certain level of training and tool support to enable the
usage of WADL. This complexity contradicts the simplicity of
RESTful services. In addition, WADL urges the use of specific
resource hierarchies which introduce an obvious coupling
between the client and the server. Servers should have the
complete freedom to control their own namespace.

hRESTS (HTML for RESTful Services) [7] follows a quite
different approach as it tries to exploit the fact that almost
all RESTful services already have a textual documentation
in the form of Web pages. hRESTS’ idea is hence to
enrich those, mostly already existent, human-readable doc-
umentations with so-called microformats [9] to make them
machine-processable. A single HTML document enriched
with hRESTS microformats can contain multiple service
descriptions and conversely multiple HTML documents can
together be used to document a single service (it is a common
practice to split service documentations into different HTML
documents to make them more digestible). Each service is
described by a number of operations, that is, actions a client
can perform on that service, with the corresponding URI,
HTTP method, the inputs and outputs. While hRESTS offers
a relatively straightforward solution to describe the resources
and the supported operations, there is some lack of support
for describing the used data schemas. Apart from a potential
label, hRESTS does not provide any support for further
machine-readable information about the inputs and outputs.
Extensions like SA-REST [6] and MicroWSMO [10] address
this issue.

Advances in Multimedia 3

MicroWSMO is an attempt to adapt the SAWSDL
approach for the semantic description of RESTful services.
It uses, just as hRESTS, on which it relies, microformats for
adding semantic annotations to the HTML service documen-
tation. Similar to SAWSDL, MicroWSMO has three types of
annotations: (1) Model, which can be used on any hRESTS
service property to point to appropriate semantic concepts;
(2) Lifting, and (3) Lowering, which specify the mappings
between semantic data and the underlying technical format
such as XML. Therefore, MicroWSMO enables the semantic
annotation of RESTful services basically in the same way
in which SAWSDL supports the annotation of Web services
described by WSDL.

Another approach for the semantic description of REST-
ful services is the before-mentioned SA-REST [6]. It relies on
RDFa for marking service properties in an existing HTML
service description, similar to hRESTS with MicroWSMO.
As a matter of fact, it was the first approach reusing the
already existing HTML service documentation to create
machine-processable descriptions of RESTful services. The
main differences between the two approaches are indeed
not the underlying principles but rather the implementation
technique. SA-REST offers the following service elements:
(1) Input and (2) Output to facilitate data mediation;
(3) Lifting and (4) Lowering schemas to translate the data
structures that represent the inputs and outputs to the data
structure of the ontology, the grounding schema; (5) Action,
which specifies the required HTTP method to invoke the
service; (6) Operation which defines what the service does;
and (7) Fault to annotate errors.

In principle, a RESTful service could even be described by
using WSDL 2.0 [11] with SAWSDL [5] and an ontology like
OWL-S or WSMO-Lite. OWL-S (Web Ontology Language
for Web Services) [12] is an upper ontology based on
the W3C standard ontology OWL used to semantically
annotate Web services. OWL-S consists of the following main
upper ontologies: (1) the Service Profile for advertising and
discovering services; (2) the Service (Process) Model, which
gives a detailed description of a service’s operation and
describes the composition (choreography and orchestration)
of one or more services; (3) the Service Grounding, which
provides the needed details about transport protocols to
invoke the service (e.g., the binding between the logic-based
service description and the service’s WSDL description).
Generally speaking, the Service Profile provides the infor-
mation needed for an agent to discover a service, while
the Service Model and Service Grounding, taken together,
provide enough information for an agent to make use of
a service, once found [12]. The main critique of OWL-S is
its limited expressiveness of service descriptions in practice.
Since it practically corresponds to OWL-DL, it allows only
the description of static and deterministic aspects; it does
not cover any notion of time and change, nor uncertainty.
Besides that, an OWL-S process cannot contain any number
of completely unrelated operations [13, 14], in contrast to
WSDL.

WSMO-Lite [15] is another ontology to fill SAWSDL’s
annotations with concrete service semantics. SAWSDL itself
does not specify a language for representing the semantic

models but just defines how to add semantic annotations
to various parts of a WSDL document. WSMO-Lite allows
bottom-up modeling of services and adopts, as the name
suggests, the WSMO [16] model and makes its semantics
lighter. WSMO-Lite describes the following four aspects of
a Web service: (1) the Information Model, which defines the
data model for input, output, and fault messages; (2) the
Functional Semantics, which define the functionality, which
the service offers; (3) the Behavioral Semantics, which define
how a client has to talk to the service; (4) the Nonfunctional
Descriptions, which define nonfunctional properties such as
quality of service or price. A major advantage of WSMO-
Lite is that it is not bound to a particular service description
format, for example, WSDL. Consequently, it can be used
to integrate approaches like, for example, hRESTS (in
conjunction with MicroWSMO) with traditional WSDL-
based service descriptions. Therefore, tasks such as discov-
ery, composition, and data mediation could be performed
completely independent from the underlying Web service
technology.

Even though at a first glance all the above-described
ideas seem to be fundamentally different from WSDL, their
underlying model is still closely related to WSDL’s structure.
In consequence, all presented approaches heavily rely on
RPC’s (Remote Procedure Call) flawed [17] operation-based
model ignoring the fundamental architectural properties of
REST. Instead of describing the resource representations, and
thus allowing a client to understand them, they adhere to the
RPC-like model of describing the inputs and outputs as well
as the supported operations which result in tight coupling.
The obvious consequence is that these approaches do not
align well with clear RESTful service design.

One of the approaches avoiding the RPC-orientation,
and thus more suitable for RESTful services, is ReLL
[18], the Resource Linking Language. It is a language to
describe RESTful services with emphasis on the hypermedia
characteristics of the REST model. This allows, for example,
a crawler to automatically retrieve the data exposed by Web
APIs. One of the aims of ReLL is indeed to transform crawled
data to RDF in order to harvest those already existing Web
resources and to integrate them into the Semantic Web.
Nevertheless, ReLL does not support semantic annotations
but relies on XSLT for the transformation to RDF. This clearly
limits ReLL’s expressivity as it is not able to describe the
resource representations semantically.

There are many other approaches that allow, just as ReLL,
to transform data exposed by Web APIs to RDF. In fact,
large parts of the current Web of Data are generated from
non-RDF databases by tools such as D2R [19] or Triplify
[20] but one of the limitations of the current Semantic Web
is that it usually just provides read-only interfaces to the
underlying data. So, while several Semantic Web browsers,
such as Tabulator [21], Oink [22], or Disco [23], have been
developed to display RDF data, the challenge of how to edit,
extend, or annotate this data has so far been left largely
unaddressed. There exist a few single-graph editors including
RDFAuthor [24] and ISAViz [25] but, to our best knowledge,
Tabulator Redux [26] is the only editor that allows the editing
of graphs derived from multiple sources.

4 Advances in Multimedia

To mitigate this situation, the pushback project [27]
was initiated in 2009 (it is not clear whether this project
is still active) to develop a method to write data back
from RDF graphs to non-RDF data sources such as Web
APIs. The approach chosen by the pushback project was to
extend the RDF wrappers, which transform non-RDF data
from Web APIs to RDF data, to additionally support write
operations. This is achieved by a process called fusion that
automatically annotates an existing HTML form with RDFa.
The resulting RDForm then reports the changed data as
RDF back to the pushback controller which in turn relays
the changes to the RDF write wrapper that then eventually
translates them into an HTTP request understandable to
the Web API. One of the major challenges is to create the
read-write wrappers as there are, as explained before, no
agreed standards for describing RESTful services; neither
syntactically nor semantically. Exposing these Web APIs as
read-write Linked Data is, therefore, more an art than a
science.

3. Semantic Description of RESTful Services

A machine-readable documentation of a service’s interface
and the data it exposes is a first step towards their (semi-)
automatic integration. In this section, we first discuss the
requirements for a semantic description language for REST-
ful services and then present SEREDASj, a novel approach to
address this ambitious challenge.

3.1. Requirements. Analyzing the related work and taking
into account our experience in creating RESTful services
and integrating them into mashups, we derived a set of core
requirements for a semantic description language.

Since the description language is targeted towards REST-
ful services, it clearly has to adhere to REST’s architectural
constraints [28] which can be summarized as follows: (1)
stateless interaction, (2) uniform interface, (3) identification
of resources, (4) manipulation of resources through represen-
tations, (5) self-descriptive messages, and (6) hypermedia as
the engine of application state. Stateless interaction means
that all the session state is kept entirely on the client
and that each request from the client to the server has
to contain all the necessary information for the server to
understand the request; this makes interactions with the
server independent of each other and decouples the client
from the server. All the interactions in a RESTful system
are performed via a uniform interface which decouples
the implementations from the services they provide. To
obtain such a uniform interface, every resource is accessible
through a representation (whether the representation is in
the same format as the raw source, or is derived from
the source, remains hidden behind the interface) and has
to have an identifier. All resource representations should
be self-descriptive, that is, they are somehow labeled with
their type which specifies how they are to be interpreted.
Finally, the hypermedia as the engine of application state
(HATEOAS) constraint refers to the use of hyperlinks in
resource representations as a way of navigating the state
machine of an application.

To be widely accepted, the approach has to be based
on core Web standards. That means it should use Uniform
Resource Identifiers (URIs) for identifying resources, the
Hypertext Transfer Protocol (HTTP) for accessing and modi-
fying resource representations, and the Resource Description
Framework (RDF) as the unified data model for describing
resources. To ease tasks such as data integration, a uniform
interface to access heterogeneous data sources in a uniform
and intuitive way, has to be provided as well. This, in turn,
will lead to reusability and flexibility which are important
aspects for the adoption of such a new approach. By having
semantically annotated data, a developer could also be
supported in the data integration and mediation process
which is not only important in enterprise scenarios but also
for the creation of mashups. All too often the required data
mediation code is longer than the actual business logic. By
having semantically annotated data, it is possible to integrate
it (semi-) automatically with other data sources.

While all of these constraints are important when
designing a RESTful service, the most important aspects for
a semantic description language are how the resources can
be accessed, how they are represented, and how they are
interlinked. The description language should be expressive
enough to describe how resource representation can be
retrieved and manipulated, and what the meaning of those
representations is. To integrate the service into the Semantic
Web, the description language should also provide means to
transform the representations in RDF triples. In order to be
able to evolve systems and build upon existing infrastructure,
an important requirement is that no (or just minimal)
changes on the existing system are required; this implies a
requirement to support partial descriptions. Last but not
least, the approach should be as simple as possible to lower
the entry barrier for developers and to foster its adoption.

3.2. SEREDASj. Considering the requirements described in
the previous section, we designed SEREDASj a language
to describe SEmantic REstful DAta Services. The “j” at the
end should highlight that we based the approach on JSON.
JSON’s popularity in Web APIs is not the only reason for that.

The inherent impedance mismatch (the so-called O/X
impedance mismatch) between XML, which is used in
traditional SOAP-based Web services, and object-oriented
programming constructs often results in severe interop-
erability problems. The fundamental problem is that the
XML Schema language (XSD) has a number of type
system constructs which simply do not exist in commonly
used object-oriented programming languages such as, for
example, Java. This leads in consequence to interoperability
problems because each SOAP stack has its own way of
mapping the various XSD-type system constructs to objects
in the target platform’s programming language and vice
versa.

In most use cases addressed by Web services, all a
developer wants to do is to interchange data—and here we
are distinguishing between data interchange and document
interchange. JSON was specifically designed for this: it is a
lightweight, language-independent data-interchange format
which is easy to parse and easy to generate. Furthermore, it

Advances in Multimedia 5

SE
R

E
D

A
Sj

 d
es

cr
ip

ti
on

M
et

ad
at

a

P
re

fi
xe

s Prefix name

URI
Li

n
ks

Media type and SEREDASj desc.

Request SEREDASj description

Target

Semantics Predicate Object(s)

Variables

Model reference

Binding

Name

Semantics

Predicate Object(s)

E
le

m
en

t
de

sc
ri

pt
io

n

Model reference

Type

Semantics Predicate Object(s)

Items Element description

Properties
Element description

Name

Nested element
descriptions

Figure 1: The SEREDASj description model.

is much easier for developers to understand and use. JSON’s
whole specification [1] consists of ten pages (with the actual
content being a mere four pages) compared to XML where
the XML Core Working group alone [29] lists XML, XML
Namespaces, XML Inclusions, XML Information Set, xml:id,
XML Base, and Associating Stylesheets with XML as standards;
not even including XML Schema Part 1 and XML Schema
Part 2.

Summarized, JSON’s simplicity, ease of integration, and
raising adoption across the Web community [2] made it the
first choice for our description language, but we would like to
highlight that the principles of our approach are applicable to
any serialization format.

To describe a RESTful service, SEREDASj specifies,
similar to schemas, the syntactic structure of a specific JSON
representation. Additionally, it allows to reference JSON
elements to concepts in a vocabulary or ontology and to

further describe the element itself by semantic annotations.
Figure 1 depicts the structure of an SEREDASj description.

A description consists of metadata and a description
of the structure of the JSON instance data representations
it describes. The metadata contains information about the
hyperlinks related to the instance data and prefix definitions
to abbreviate long URIs in the semantic annotations to
CURIEs [30]. The link descriptions contain all the necessary
information for a client to retrieve and manipulate instance
data. Additionally to the link’s target, its media type and
the target’s SEREDASj description, link descriptions can
contain the needed SEREDASj request description to create
requests and semantic annotations to describe the link, for
example, its relation to the current representation. The link’s
target is expressed by link templates where the associated
variables can be bound to an element in the instance data
and/or linked to a conceptual model, for example, a class
or property in an ontology. The link template’s variables can
be further described by generic semantic annotations in the
form of predicate-object pairs. The links’ SEREDASj request
description allows a client to construct the request bodies
used in POST or PUT operations to create or update resources.

The description of the structure of instance representa-
tions (denoted as element description in Figure 1) defines
the JSON data type(s) as well as links to conceptual
models. Furthermore, it may contain semantic annotations
to describe an element further and, if the element repre-
sents either a JSON object or array, a description of its
properties, respectively, items in term of, again, an element
description. The structure of the JSON instance arises out
of nested element descriptions. To allow reuse, the type of
an element description can be set to the URI of another
model definition or another part within the current model
definition. To address different parts of a model, a slash-
delimited fragment resolution is used. In Listing 1, for
instance, event.json#properties/enddate refers to the
end date property defined by the SEREDASj document
event.json.

In order to better illustrate the approach, a simple
example of a JSON representation and its corresponding
SEREDASj description are given in Listing 1. The example
is a representation of an event and its performers from an
imaginary event site’s API. Without annotations, the data
cannot be understood by a machine and even for a human
it is not evident that a performer’s ID is in fact a hyperlink
to a more detailed representation of that specific performer.
SEREDASj solves those problems by describing all the
important aspects of such a representation. In consequence,
it is not only possible to extract the hyperlinks, but also to
create a human-readable documentation of the data format
(as shown in [3]) and to translate the JSON representation to
an RDF representation.

The SEREDASj description in Listing 1 contains two link
definitions. The first one specifies the link to the performers’
representations via their ID. It uses a URI template whose
variable is bound to #properties/performers/id. This
link definition also shows how further semantic annotations
can be used; this is described in detail in Section 4.1. The
second link specifies a search interface and is thus not

6 Advances in Multimedia

Instance Data
http://example.com/event/e48909

{
"id": "e48909",

"name": "Dick Clark’s New Year’s Rockin’ Eve",

"startdate": "2011-12-31",

"enddate": "2012-01-01",

"performers": [

{ "id": "p84098", "name": "Lady Gaga",

"birthdate": "1986-03-28" }
]

}
SEREDASj Description

http://example.com/models/event.json
{

"meta": {
"prefixes": {

"owl": "http://www.w3.org/2002/07/owl#",

"so": "http://schema.org/",

"ex": "http://example.com/onto#",

"iana": "http://www.iana.org/link-relations/"

},
"links": {

"/person/ { id } ": {
"mediaType": "application/json",

"seredasjDescription": "person.json",

"semantics": {
"owl:sameAs": "<#properties/performers>"

},
"variables": {

"id": {
"binding": "#properties/performers/id",

"model": "[ex:id]"

}
},
"requestDescription": "person-createupdate.json"

},
"/events/search { ?query } ": {

"mediaType": "application/json",

"seredasjDescription": "eventlist.json",

"semantics": {
"[iana:relation]": "[iana:search]" } ,

"variables": {
"query": { "model": "[so:name]" }

}
}

}
},
"type": "object",

"model": "[so:Event]",

"properties": {
"id": {

"type": "string", "model": "[ex:id]" } ,
"name": {

"type": "string", "model": "[so:name]" } ,
"startdate": {

"type": "string", "model": "[so:startDate]" } ,
"enddate": {

"type": "string", "model": "[so:endDate]" } ,

Listing 1: Continued.

Advances in Multimedia 7

"performers": {
"type": "array",

"model": "[so:performers]",

"items": {
"type": "object", "model": "[so:Person]",

"properties": {
"id": {

"type": "string", "model": "[ex:id]" } ,
"name": {

"type": "string", "model": "[so:name]" } ,
"birthdate": {

"type": "string", "model": "[so:birthDate]" }
}

}
}

}
}

Listing 1: An exemplary JSON representation and its corresponding SEREDASj description.

bound to any element in the instance data; instead, the
variable’s model reference is specified. Again, this link is
semantically annotated so that an agent will know that this
link specifies a search interface. These semantic annotations
allow developers to implement smarter clients understanding
the relationships of resources and thus following REST’s
hypermedia as the engine of application state constraint.

The following description of the representation’s struc-
ture basically maps the structure to the ontology defined by
schema.org [31]. The mapping strategy is similar to the table-
to-class, column-to-predicate strategy of current relational
database-to-RDF approaches [32]; JSON objects are mapped
to classes, all the rest to predicates. By reusing schema.org’s
ontology wherever possible, the developer is able to exploit
the already available human-readable descriptions for the
various elements and generate completely automatically a
human-readable documentation.

SEREDASj descriptions do not have to be complete,
that is, they do not need to describe every element in all
details. If an unknown element is encountered in an instance
representation, it is simply ignored. This way, SEREDASj
allows forward compatibility as well as extensibility and
diminishes the coupling. In this context, it should also be
emphasized that a SEREDASj description does not imply a
shared data model between a service and a client. It just
provides a description of the service’s representations to ease
the mapping to the client’s data model.

4. Seamless Integration of
RESTful Services into a Web of Data

Currently mashup developers have to deal with a plethora of
heterogeneous data formats and service interfaces for which
little to no tooling support is available. RDF, the preferred
data format of the Semantic Web, is one attempt to build a
universal applicable data format to ease data integration, but,

unfortunately, current Semantic Web applications mostly
provide just read-only interfaces to their underlying data. We
believe it should be feasible to standardize and streamline
the mashup development process by combining technologies
from, both, the world of Web APIs and the Semantic Web.
This would, in the first place, result in higher productivity
which could subsequently lead to a plethora of new applica-
tions. Potentially it could also foster the creation of mashup
editors at higher levels of abstraction which could, hopefully,
even allow non-technical experts to create mashups fulfilling
their situational needs.

Based on SEREDASj which we introduced in the previous
section, we would like to propose a new reference model for
integrating traditional Web service interfaces into a global
read-write graph of data. Figure 2 shows the architecture of
our approach.

We broadly distinguish between an application-specific
(at the top) and an application-independent layer (at the
bottom). The application-independent layer at the bottom is
used as a generic data access layer. It separates the application
and presentation logic from the common need to manage
and manipulate data from a plethora of different data
sources. This separation of concerns should result in better
reusability and increased development productivity.

Data from JSON-based Web services described by
SEREDASj are translated into RDF data and stored along
with data from native RDF sources such as SPARQL end-
points, static RDF dumps, or RDF embedded in HTML
documents in a local triple store. This unification of the
data format is the first step for the integration of these
heterogeneous data sources. We use RDF because it reflects
the way data is stored and interlinked on the Web, namely,
in the form of a graph. The fact that it is schema-
free and based on triples makes it the lowest common
denominator for heterogeneous data sources, flexible, and
easily evolvable. In addition to acting as a data integration
layer, this local triple store is also used for caching the

8 Advances in Multimedia

Application-specific

JSON Web APIs
described by SEREDASj

Data transformation and persistence layer

Data access, integration, and caching layer

RDF

Business logic layer

Presentation logic layer

Data access API: SPARQL + SPARQL Update

Application-independent (data layer)

SPARQL endpoints
and static RDF data

Figure 2: A reference model for integrating Web APIs into the Web
of Data.

data which is a fundamental requirement in networked
applications. Furthermore, centralized processing is much
more efficient than federated queries and the like. Just look
at, for example, Google’s centralized processing compared
to federated database queries and please keep in mind that
we are not arguing against achievable speed increases by
parallelization.

All data modifications are passed through the data access
and persistence layer and will eventually be transferred back
to the originating data source. The interface connecting the
data access layer and the business logic layer has to be aware
of which data can be changed and which cannot since some
data sources or part of the data representations might be
read-only. Depending on the scenario, a developer might
choose to include a storage service (either a triple store or
a traditional Web API) which allows storing changes even
to immutable data. It is then the responsibility of the data
integration layer to “replace” or “overwrite” this read-only
data with its superseding data. Keeping track of the data’s
provenance is thus a very important feature.

In order to decouple the application-specific layer from
the application-independent data layer, the interface between
them has to be standardized. There exist already a standard
and a working draft for that, namely, SPARQL [33] and
SPARQL Update [34]. We reuse them in order to build
our approach upon existing work. Of course, an application

developer is free to add another layer of abstraction on top
of that—similar to the common practice of using an O/R
mapper (object-relational mapper) to access SQL databases.

While this three-tier architecture is well known and
widely used in application development, to our best knowl-
edge it has not been used for integrating Web services into
the Semantic Web. Furthermore, this integration approach
has not been used to generalize the interface of Web services.
Developers are still struggling with highly diverse Web
service interfaces.

4.1. Data Format Harmonization. Translating SEREDASj
described JSON representations to RDF triples, the first
step for integrating them into the Linked Data Cloud, is a
straightforward process. The translation starts at the root of
the JSON representation and considers all model references
of JSON objects and tuple-typed arrays to be RDF classes,
while all the other elements’ model references are considered
to be RDF predicates where the value of that element will be
taken as object. If a representation contains nested objects,
just as the example in Listing 1, a slash-delimited URI
fragment is used to identify the nested object. Semantic
annotations in the form of the semantics property, as the
one shown in the performer’s link in Listing 1, contain the
predicate and the object. The object might point to a specific
element in the SEREDASj description and is eventually
translated to a link in the instance data.

The automatic translation of the example from Listing 1
to RDF is shown in Listing 3. The event and its performers
are nicely mapped to schema.org ontology. For every array
item, a new object URI is created by using a slash-delimited
URI fragment. Eventually, those URIs are mapped to the
performer’s “real” URI by the link’s semantic annotation.
Please note that the query link is not included in the RDF
representation. The reason for this is that the query variable
is not bound to any instance element and thus its value
is unknown. In consequence, the translator is unable to
construct the URI.

4.2. Integration with Other Data Sources. As explained in
the previous section, the conversion to RDF is a first step
towards integration of data from different sources. To be fully
integrated, the data from all sources eventually has to use the
same semantic annotations, that is, the same vocabulary and
the same identifiers. Traditionally, this homogenization has
been done in an imperative way by writing data mediation
code. The Semantic Web technology stack on the other
hand embraces the inevitable heterogeneity and provides
means to address this issue in a declarative way by creating
new knowledge in the form of, for example, schema or
identifier mappings. By studying the contents of data and the
relationships between different data items, it is sometimes
possible to infer (semi-) automatically that two seemingly
different items are really the same.

It is straightforward to integrate the data from our
example in Listing 3 with data about Lady Gaga stored in,
for example, DBpedia (a project aiming to extract structured
content from the information contained in Wikipedia). All
we have to do is to map some of schema.org concepts and

Advances in Multimedia 9

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

3 PREFIX dbpprop: <http://dbpedia.org/property/>

4 SELECT ?s

5 WHERE {
6 ?s foaf:name ?name;

7 dbpprop:birthDate ?dob.

8 FILTER(str(?name) = "Lady Gaga").

9 FILTER(str(?dob) = "1986-03-28") }

Listing 2: SPARQL query to find Lady Gaga’s identifier in DBpedia.

1 @base <http://example.com/event/e48909>.

2 @prefix rdf:

3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

4 @prefix owl: <http://www.w3.org/2002/07/owl#>.

5 @prefix so: <http://schema.org/>.

6 @prefix ex: <http://example.com/onto#>.

7 <#> rdf:type so:Event.

8 <#> ex:id "e48909".

9 <#> so:name "Dick Clark’s New Year’s Rockin’ Eve".

10 <#> so:startDate "2011-12-31".

11 <#> so:endDate "2012-01-01".

12 <#> so:performers <#performers/0>.

13 <#performers/0> rdf:type so:Person.

14 <#performers/0> ex:id "p84098".

15 <#performers/0> so:name "Lady Gaga".

16 <#performers/0> so:birthDate "1986-03-28".

17 <http://example.com/person/p84098> owl:sameAs

18 <#performers/0>.

Listing 3: The example in Listing 1 translated to RDF.

our local identifier to concepts and Lady Gaga’s identifier
in DBpedia. Schema mappings are already provided by
DBpedia (http://mappings.dbpedia.org/) so all we have to
do is to find DBpedia’s identifier and map it to our
local identifier. An inference engine could do this easily
by running the query shown in Listing 2 at DBpedia’s
SPARQL endpoint. The result is the URI we are looking
for: http://dbpedia.org/resource/Lady Gaga. After
mapping that URI to our local identifier by using OWL’s
sameAs concept, we can easily query all the data about Lady
Gaga from DBpedia as it would be part of our Web service;

the data layer in Figure 2 is responsible to take care of all the
necessary details.

4.3. Storing Changes Back to the Source. Just as DBpedia,
a big part of the current Semantic Web consists of data
transformed from Web APIs or relational databases to RDF
or by data extracted from Web sites. In consequence, the
vast majority of the current Semantic Web is just read-only,
that is, changes cannot be stored back to the original source.
Thus, in this section, we will show how SEREDASj allows
data to be updated and transferred back to the originating

10 Advances in Multimedia

Web service (obviously we are not able to update static Web
pages).

For the following description, we assume that all data
of interest and the resulting Web of interlinked SEREDASj
descriptions have already been retrieved (whether this means
crawled or queried specifically is irrelevant for this work).
The objective is then to update the harvested data or to add
new data by using SPARQL Update.

SPARQL Update manipulates data by either adding or
removing triples from a graph. The INSERT DATA and
DELETE DATA operations add, respectively, remove a set of
triples from a graph by using concrete data (no named
variables). In contrast, the INSERT and DELETE operations
also accept templates and patterns. SPARQL has no operation
to change an existing triple as triples are considered to be
binary: the triple either exists or it does not. This is probably
the biggest difference to SQL and Web APIs and complicates
the translation between an SPARQL query and the equivalent
HTTP requests to interact with a Web service.

4.4. Translating Insert Data and Delete Data. In regard to
a Web service, an INSERT DATA operation, for example,
can either result in the creation of a new resource or in
the manipulation of an existing one if a previously unset
attribute of an existing resource is set. The same applies
for a DELETE DATA operation which could just unset one
attribute of a resource or delete a whole resource. A resource
will only be deleted if all triples describing that resource are
deleted. This mismatch or, better, conceptual gap between
triples and resource attributes implies that constraints
imposed by the Web service’s interface are transferred to
SPARQL’s semantic layer. In consequence, some operations
which are completely valid if applied to a native triple store
are invalid when applied to a Web API. If these constraints
are documented in the interface description, that is, the
SEREDASj document, in the form of semantic annotations, a
client is able to construct valid requests, respectively, to detect
invalid requests and to give meaningful error messages. If
these constraints are not documented, a client has no choice
but to try and issue requests to the server and evaluate its
response. This is similar to HTML forms with, and without
client side form validation in the human Web.

In order to better explain the translation algorithm,
and as a proof of concept, we implemented a simple event
guide Web service based on the interface described in
Listing 1. Its only function is to store events and their
respective performers via a RESTful interface. The CRUD
operations are mapped to the HTTP verbs POST, GET,
PUT, and DELETE and no authentication mechanism is used
as we currently do not have an ontology to describe this
in an SEREDASj document (this is a limitation that will be
addressed in future work).

The event representations can be accessed by
/event/{id} URIs while the performers are accessible by
/person/{id} URIs. Both can be edited by PUTing
an updated JSON representation to the respective URI.
New events and performers/persons can be created by
POSTing a JSON representation to the collection URI. All
this information as well as the mapping to the respective

vocabularies is described machine-readable by SEREDASj
documents.

Since SPARQL differentiates between data and template
operations, we split the translation algorithm into two parts.
Algorithm 1 translates SPARQL DATA operations to HTTP
requests interacting with the Web service and Algorithm 2
deals with SPARQL’s DELETE/INSERT operations using
patterns and templates.

Listing 4 contains an exemplary INSERT DATA operation
which we will use to explain Algorithm 1. It creates a new
event and a new performer. The event is linked to the newly
created performer as well as to an existing one.

To translate the operations in Listing 4 into HTTP
requests suitable to interact with the Web service, in the
first step (line 2 in Algorithm 1), all potential requests
are retrieved. This is done by retrieving all SEREDASj
descriptions which contain model references corresponding
to classes or predicates used in the SPARQL triples; this step
also takes into consideration whether an existing resource
should be updated or a new one created. Since Listing 4 does
not reference existing resources (pers:p84098 in line 10
is just used as an object), all potential HTTP requests have
to create new resources, that is, have to be POST requests.
In our trivial example, we get two potential requests, one
for the creation of a new event resource and a second for
a new person/performer resource. These request templates
are then filled with information from the SPARQL triples
(line 6) as well as with information stored in the local triple
store (line 7). Then, provided a request is valid (line 8), that
is, it contains all the mandatory data, it will be submitted
(line 9). As shown in Listing 5, the first valid request creates
a new event (lines 1–3). Since the ID of the blank node
:bieber is not known yet (it gets created by the server), it is

simply ignored. Provided the HTTP request was successful,
in the next step the response is parsed and the new triples
exposed by the Web service are removed from the SPARQL
triples (line 11) and added to the local triple store (line
12). Furthermore, the blank nodes in the remaining SPARQL
triples are replaced with concrete terms. In our example, this
means that the triples in line 7–10 in Listing 4 are removed
and the blank node in the triple in line 11 is replaced by
the newly created/event/e51972 URI. Finally, the request
is removed from the potential requests list and a flag is set
(line 13-14, Algorithm 1) signaling that progress has been
made within the current do while iteration. If in one loop
iteration, which cycles through all potential requests, no
progress has been made, the process is stopped (line 18). In
our example, the process is repeated for request to create
a person which again results in a POST request (line 6–
8, Listing 5). Since there are no more potential requests
available, the next iteration of the do while loop begins.

The only remaining triple is the previously updated
triple in line 11 (Listing 4), thus, the only potential
request this time is a PUT request to update the newly
created/event/e51972. As before, the request template is
filled with “knowledge” from the local triple store and
the remaining SPARQL triples and eventually processed.
Since there are no more SPARQL triples to process, the do
while loop terminates and a success message is returned

Advances in Multimedia 11

1 do
2 requests ← retrievePotentialRequests(triples)

3 progress ← false

4 while requests.hasNext() = true do

5 request ← requests.next()

6 request.setData(triples)

7 request.setData(tripleStore)

8 if isValid(request) = true then

9 if request.submit() = success then

10 resp ← request.parseResponse()

11 triples.update(resp.getTriples())

12 tripleStore.update(resp.getTriples())

13 requests.remove(request)

14 progress ← true

15 end if
16 end if
17 end while
18 while progress = true

19 if triples.empty() = true then

20 success()

21 else
22 error(triples)

23 end if

Algorithm 1: SPARQL DATA operations to Web API translation algorithm.

1 PREFIX owl: <http://www.w3.org/2002/07/owl#>

2 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

3 PREFIX so: <http://schema.org/>

4 PREFIX ex: <http://example.com/onto#>

5 PREFIX pers: <http://example.com/person/>

6 INSERT DATA {
7 :greatg a so:Event;

8 so:name "Great Gig";

9 so:startDate "2012-08-03";

10 so:performers pers:p84098;

11 so:performers :bieber.

12 :bieber a so:Person;

13 so:name "Justin Bieber";

14 so:gender "male";

15 so:birthDate "1994-03-01".

16 }

Listing 4: Examplary INSERT DATA operation.

to the client (line 20, Algorithm 1) as all triples have been
successfully processed.

4.5. Translating DELETE/INSERT Operations. In contrast to
the DATA-form operations that require concrete data and do
not allow the use of named variables, the DELETE/INSERT
operations are pattern based using templates to delete or

add groups of triples. These operations are processed by first
executing the query patterns in the WHERE clause which bind
values to a set of named variables. Then, these bindings are
used to instantiate the DELETE and the INSERT templates.
Finally, the concrete deletes are performed followed by the
concrete inserts. The DELETE/INSERT operations are, thus,
in fact, transformed to concrete DELETE DATA/INSERT

12 Advances in Multimedia

1 → POST /event/

2 { "name": "Great Gig",

3 "performers": [{ "id": "p84098" }]}
4 ← 201 Created

5 Location: /event/e51972

6 → POST /person/

7 { "name": "Justin Bieber", "gender": "male",

8 "birthdate": "1994-03-01" }
9 ← 201 Created

10 Location: /person/p92167

11 → PUT /event/e51972

12 { "name": "Great Gig",

13 "performers": [{ "id": "p84098" } ,
14 { "id": "p92167" }] }
15 ← 200 OK

Listing 5: INSERT DATA operation translated to HTTP requests.

1 select ← createSelect(query)

2 bindings ← tripleStore.execute(select)

3 for each binding in bindings do
4 deleteData ← createDeleteData(query, binding)

5 operations.add(deleteData)

6 insertData ← createInsertData(query, binding)

7 operations.add(insertData)

8 end for

9 operations.sort()

10 translateDataOperations(operations)

Algorithm 2: SPARQL DELETE/INSERT operations to HTTP requests translation algorithm.

1 DELETE {
2 ?per so:gender ?gender.

3 }
4 INSERT {
5 ?per so:gender "female".

6 }
7 WHERE {
8 ?per a so:Person;

9 so:name "Lady Gaga";

10 so:birthDate "1986-03-28";

11 so:gender ?gender.

12 }

Listing 6: Examplary DELETE/INSERT operation.

DATA operations before execution. We exploit this fact in
Algorithm 2 which transforms DELETE/INSERT operations

1 DELETE DATA {
2 </person/p84098> so:gender "unknown".
3 }
4 INSERT DATA {
5 </person/p84098> so:gender "female".

6 }

Listing 7: DELETE DATA/INSERT DATA operations generated by
Algorithm 2 out of Listing 6.

to DELETE DATA/INSERT DATA operations which are then
translated by Algorithm 1 into HTTP requests.

Listing 6 contains an exemplary DELETE/INSERT oper-
ation which replaces the gender of all persons whose name
“Lady Gaga” and whose birth date is March 28, 1986, with
“female” regardless of what it was before. This operation is
first translated to a DELETE DATA/INSERT DATA operation
by Algorithm 2 and then to HTTP requests by Algorithm 1.

Advances in Multimedia 13

The first step (line 1, Algorithm 2) is to create a SELECT
query out of the WHERE clause. This query is then executed
on the local triple store returning the bindings for the
DELETE and INSERT templates (line 2). This implies that
all relevant data has to be included in the local triple store
(an assumption made earlier in this work), otherwise, the
operation might be executed just partially. For each of the
retrieved bindings (line 3), one DELETE DATA (line 4) and
one INSERT DATA (line 6) operation are created. In our
example, the result consists of a single binding, namely,
</person/p84098> for per and some unknown value for
gender. Therefore, only one DELETE DATA and one INSERT
DATA operation are created as shown in Listing 7. Finally,
these operations are sorted (line 9) as deletes have to be
executed before inserts and eventually translated into HTTP
requests (line 10) by Algorithm 1.

In many cases, just as demonstrated in the exam-
ple, a DELETE/INSERT operation will actually represent a
replacement of triples. Thus, both, the DELETE DATA and
the INSERT DATA operation are performed locally before
issuing the HTTP request. This optimization reduces the
number of HTTP requests since attributes do not have to be
reset before getting set to the desired value. In our example
this consolidates the two PUT requests to one.

5. Conclusions and Future Work

In this paper, we presented SEREDASj, a new approach
to describe RESTful data services. In contrast to previous
approaches, we put strong emphasis on simplicity to lower
the entry barrier. Web developers can use tools and knowl-
edge they are mostly already familiar with. Since SEREDASj
does not require any changes on the described Web service, it
provides a viable upgrade path for existing infrastructure. We
also introduced two algorithms to translate SPARQL Update
operations to HTTP requests interacting with an SEREDASj-
described Web API. This creates a standardized interface
which not only increases the developer’s productivity but also
improves code reusability.

A limitation of the current proposal is that it is restricted
to resources represented in JSON; no other media types are
supported at the moment. In future work, support should be
extended to other formats such as, for example, XML. Poten-
tially, this could be done by mapping XML representations to
JSON as there are already promising approaches such as the
JSON Markup Language (JsonML) [15] to do so. This would
allow to transparently support XML representations without
changing the current approach. Similarly, URI templates
could be used to support the popular application/x-www-
form-urlencoded media type.

In future work, we would also like to create a tool suite for
developers to support the creation of SEREDASj descriptions
and, if needed, the automatic creation of domain ontologies
with techniques similar to the ones used to create domain
ontologies from relational databases [32]. Moreover, we
would like to research aspects such as service discovery and
composition which includes issues like authentication that
might require the creation of a lightweight ontology to be
described.

References

[1] The application/json Media Type for JavaScript Object Nota-
tion (JSON), Request for Comments 4627, Internet Engineer-
ing Task Force (IETF), 2006.

[2] T. Vitvar and J. Musser, “ProgrammableWeb.com: statistics,
trends, and best practices,” in Proceedings of the 4th Interna-
tional Workshop on Web APIs and Services Mashups, 2010.

[3] M. Lanthaler and C. Gütl, “A semantic description language
for RESTful data services to combat Semaphobia,” in Pro-
ceedings of the 5th IEEE International Conference on Digital
Ecosystems and Technologies (DEST ’11), pp. 47–53, IEEE,
2011.

[4] S. L. Huang, “After f8—resources for building the per-
sonalized Web,” Facebook Developer Blog, 2010, http://
developers.facebook.com/blog/post/379.

[5] Semantic Annotations for WSDL and XML Schema
(SAWSDL), W3C Recommendation, 2007.

[6] J. Lathem, K. Gomadam, and A. P. Sheth, “SA-REST and
(S)mashups: adding semantics to RESTful services,” in Pro-
ceedings of the International Conference on Semantic Comput-
ing(ICSC ’07), pp. 469–476, IEEE, September 2007.

[7] J. Kopecký, K. Gomadam, and T. Vitvar, “hRESTS: an
HTML microformat for describing RESTful Web services,” in
Proceedings of the IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI ’08), pp.
619–625, 2008.

[8] M.J. Hadley, Web Application Description Language (WADL),
2009.

[9] R. Khare and T. Çelik, “Microformats: a pragmatic path to
the semantic web, 2006,” Tech. Rep. 06-01, CommerceNet
Labs, Palo Alto, CA, USA, http://wiki.commerce.net/
wikiima-ges/e/ea/CN-TR-06-01.pdf.

[10] J. Kopecký and T. Vitvar, D38v0.1 MicroWSMO: Seman-
tic Description of RESTful Services, 2008, http://wsmo.org/
TR/d38/v0.1/20080219/d38v01 20080219.pdf.

[11] Web Services Description Language (WSDL) Version 2.0,
W3C Recommendation, 2007.

[12] OWL S: Semantic Markup for Web Services, W3C Member
Submission, 2004, http://www.w3.org/Submission/OWL-S/.

[13] M. Klusch, “Semantic web service description,” in CASCOM:
Intelligent Service Coordination in the Semantic Web, M.
Schumacher, H. Schuldt, and H. Helin, Eds., pp. 31–57,
Birkhäuser, Basel, Germany, 2008.

[14] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A conceptual
comparison of WSMO and OWL-S,” in Proceedings of the
European Conference on Web Services (ECOWS ’04), vol. 3250,
pp. 254–269, Erfurt, Germany, 2004.

[15] JSON Markup Language (JsonML), 2011, http://jsonml.org/.

[16] D. Roman, U. Keller, H. Lausen, and J. D. Bruijn, “Web service
modeling ontology,” Applied Ontology, vol. 1, no. 1, pp. 77–
106, 2005.

[17] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note
on distributed computing,” Tech. Rep., Mountain View, Calif,
USA, 1994.

[18] R. Alarcón and E. Wilde, “Linking data from RESTful
services,” in Proceedings of the 3rd Workshop on Linked Data
on the Web, 2010.

[19] C. Bizer and R. Cyganiak, “D2R server—publishing relational
databases on the Semantic Web,” in proceedings of the 5th
International Semantic Web Conference (ISWC ’06), 2006.

14 Advances in Multimedia

[20] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D.
Aumueller, “Triplify—lightweight linked data publication
from relational databases,” in Proceedings of the 18th Interna-
tional Conference on World Wide Web (WWW ’09), pp. 621–
630, 2009.

[21] T. Berners-Lee, Y. Chen, L. Chilton et al., “Tabulator: exploring
and analyzing linked data on the semantic web,” in 3rd
International Semantic Web User Interaction Workshop (SWUI
’06), 2006.

[22] O. Lassila, “Browsing the Semantic Web,” in Proceedings of the
5th International Workshop on Semantic (WebS ’06), pp. 365–
369, 2006.

[23] C. Bizer and T. Gauß, Disco—Hyperdata Browser, http://
www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.

[24] D. Steer, RDFAuthor, http://rdfweb.org/people/damian/RDF-
Author/.

[25] E. Pietriga, IsaViz: a visual authoring tool for RDF, http://www
.w3.org/2001/11/IsaViz/.

[26] T. Berners-Lee, J. Hollenbach, K. Lu, J. Presbrey, E. Pru
d’ommeaux, and M.M. Schraefel, “Tabulator Redux: writing
into the semantic web,” Tech. Rep. ECSIAM-eprint14773,
University of Southampton, Southampton, UK, 2007.

[27] pushback—Write Data Back From RDF to Non-RDF Sources,
http://www.w3.org/wiki/PushBackDataToLegacySources.

[28] R.T. Fielding, Architectural styles and the design of network-
based software architectures, Ph.D. dissertation, Department of
Information and Computer Science, University of California,
Irvine, Calif, USA, 2000.

[29] XML Core Working Group Public Page—Pubblications, XML
Core Working Group, 2011, http://www.w3.org/XML/Core/
#Publications.

[30] CURIE syntax 1.0: a syntax for expressing compact URIs,
W3C Working Group note. W3C, 2010, http://www.w3
.org/TR/curie/.

[31] Google Inc., Yahoo Inc., and Microsoft Corporation., Sche-
ma.org, http://www.schema.org/.

[32] F. Cerbah, “Learning highly structured semantic repositories
from relational databases: the RDBToOnto tool,” in Proceed-
ings of the 5th European Semantic Web Conference (ESWC ’08),
pp. 777–781, Springer, 2008.

[33] SPARQL Query Language for RDF. W3C Recommendation,
2008, http://www.w3.org/TR/2008/REC-rdf-sparql-query
-20080115/.

[34] SPARQL 1.1 Update. W3C Working Draft, 2011, http://www
.w3.org/TR/2011/WD-sparql11-update-20110512/.

