Evolution and emplacement of high fluorine rhyolites in the Mesoproterozoic Gawler silicic large igneous province, South Australia

Authors: Agangi, Andrea*, Kamenetsky, Vadim S., McPhie, Jocelyn

ARC Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Private bag 79, Hobart, Tasmania 7001, Australia

*Corresponding author. Present address Paleoproterozoic Mineralisation Group, Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa. Tel.: +27 (0)11 559 4701; fax: +27 (0)11 559 4702; email: aagangi@uj.ac.za (A. Agangi)

Abstract

The Gawler Range Volcanics (GRV) and the Hiltaba Suite (HS) of South Australia form a silicic-dominated large igneous province (the Gawler SLIP) emplaced in an intracontinental setting during the Mesoproterozoic. Emplacement of the GRV lasted for a short period of time (~2 Ma), and can be separated into two main phases. The first phase (lower GRV) is composed of thick (≤3 km) sequences erupted from distinct centres, and includes small to moderate volume (up to >150 km3) felsic lavas, ignimbrites, and minor mafic and intermediate lavas. The upper GRV include extensive felsic lavas that are up to >1000 of km3 in volume and >200 km across. Using well preserved, quartz-hosted melt inclusions, we investigated the composition of the lower GRV, including major, trace, and volatile elements. The results indicate high concentrations of K$_2$O (≤7 – 8 wt.%), rare earth and high field strength elements, and low concentrations of Ca, Mg, Ni, Cr, Sr and Ba in comparison with felsic continental crust. Overall, melt inclusion compositions match whole-rock geochemical characteristics. We demonstrate that the GRV magma was F-rich (≤1.3 wt.%), and had high temperature for a silicic magma. High F concentrations and high temperature would have resulted in lower-than-usual polymerisation of the melt and relatively low viscosity. These characteristics help explain how very voluminous felsic magma was erupted effusively and emplaced as lavas. Other intracontinental SLIP contain extensive felsic lavas and ignimbrites which appear to share similar geochemical characteristics. We also show that selective alteration caused depletion of whole-rock compositions in some trace elements, namely Pb, U, and Sn.

1. Introduction

Large igneous provinces (LIP) are vast amounts of magma erupted onto the Earth's surface or injected into the crust in pulses of relatively short duration and at high emplacement rates (Bryan and Ernst, 2008; Coffin and Eldholm, 1994; Ernst et al., 2005). Emplacement of LIP has occurred throughout geological time in both intraplate and plate margin settings, and is distinct from seafloor spreading and subduction-related magmatism.
Most LIP are mainly mafic, and include flood basalts, giant dolerite dyke swarms, and layered intrusions (Head and Coffin, 1997), but in some, felsic units can be conspicuous (e.g. felsic rocks associated with the Paraná-Etendeka continental flood basalt province, Ewart et al., 1998a; Milner et al., 1992; Peate, 1997).

Silicic-dominated large igneous provinces (SLIP) of similar dimensions to the mafic provinces (≥10^5 km³) are less common. Known examples are mostly Phanerozoic, and include the Sierra Madre Occidental of Mexico (Bryan et al., 2008; Cameron et al., 1980; Ferrari et al., 2002), the Trans-Pecos volcanic field of the USA (Henry et al., 1988; Parker and White, 2008), the Chon-Aike Province of South America and Antarctica (Pankhurst et al., 1998; 2000; Pankhurst and Rapela, 1995; Riley et al., 2001), the Snake River Plain of the western USA, Branney et al., 2008), the Whitsunday Volcanic Province of eastern Australia (Bryan, 2002; 2007; Bryan et al., 2000), and the Gawler Range Volcanics of South Australia (McPhie et al., 2008) (Table 1). Some of these provinces include extensive felsic lavas the dimensions of which are comparable with flood basalts (e.g. Star Mountain Rhyolite, Trans-Pecos, Henry et al., 1988; Yardea Dacite, Gawler Range Volcanics, Allen and McPhie, 2002; Allen et al., 2003; Keweenawan Midcontinent Rift plateau volcanic units, Green and Fitz, 1993), whereas others are dominated by extensive ignimbrites (e.g. Bryan et al., 2000). Some key questions for SLIP research are related to the eruption and emplacement mechanisms: how are these large volumes of felsic magma emplaced over short time spans? Are SLIP erupted explosively or effusively? If extensive felsic units are emplaced effusively (flood rhyolites), how can felsic lava flow for very long distances?

In this contribution, we describe the volcanic facies of the 1.6 Ga Gawler Range Volcanics (GRV)-Hiltaba Suite (HS) silicic-dominated LIP (the Gawler SLIP) of South Australia to evaluate its emplacement mechanisms (explosive versus effusive). We also present analyses of well preserved quartz-hosted melt inclusions to reconstruct the composition of source magmas. Melt inclusions are droplets of silicate melt trapped within crystals growing in a magma. If preserved, they represent samples of pristine silicate liquid (melt) unaffected by modifications occurring as the magma approaches the Earth’s surface. Melt inclusions can be studied as a powerful tool to assess the pre-emplacement volatile content of a magma (Métrich and Clocchiatti, 1989; Lowenstern and Mahood, 1991; Lowenstern, 1995) and to reconstruct the magma composition in altered or mineralised rocks (Chabiron et al., 2001). Melt inclusions also give the opportunity to study the influence of crystal fractionation on melt evolution, without the effects of crystal accumulation encountered when using whole-rock analyses.

2. The Gawler SLIP
The GRV and co-magmatic HS granite represent a silicic-dominated LIP (the Gawler SLIP) with a preserved (minimum) volume of ~100 000 km3, of which ~25 000 km3 are represented by the volcanic sequence (Blissett et al., 1993; McPhie et al., 2008; Fig. 1). To the east, the province is partially concealed underneath younger Proterozoic and Phanerozoic sediments of the Stuart Shelf (Blissett et al., 1993). The province includes several voluminous (tens of km3 to >1000 km3) and extensive (tens to >200 km across) felsic lavas and ignimbrites (Allen et al., 2008; Blissett et al., 1993) and minor mafic to intermediate units. The Gawler SLIP was emplaced in a subaerial intracontinental setting, and lies on Archean and Paleoproterozoic units of the Gawler Craton (Allen and McPhie, 2002; Allen et al., 2008; Betts and Giles, 2006; Blissett et al., 1993; Creaser, 1995). U-Pb zircon dating of the volcanic units has yielded a narrow age range of 1591-1592 Ma (Creaser, 1995; Creaser and Cooper, 1993; Fanning et al., 1988), whereas ages of the HS granites range from 1583 ±7 to 1598 ±2 Ma (Flint, 1993).

Emplacement of the Gawler SLIP is temporally related with high temperature low pressure metamorphism in the region (the Hiltaba event; Betts and Giles, 2006; Betts et al., 2002), and coeval with the 1.6-1.3 Ga intraplate magmatic event that occurred throughout Laurentia and Baltica (Anderson and Morrison, 2005). It has been hypothesised that the GRV were emplaced as part of a hotspot-related igneous activity affecting the central part of Australia (Betts et al., 2009). The Gawler SLIP is associated with a major metallogenic event that affected most of the Gawler Craton (Budd and Fraser, 2004; Fraser et al., 2007; Skirrow, 2002; Skirrow et al., 2007). The Au-U Olympic Dam deposit was formed during this event.

The GRV have been subdivided into lower and upper sequences based on the discordance between small to moderate volume, gently to moderately dipping older units and extensive, nearly flat-lying younger units (Blissett et al., 1993). The lower GRV consist of thick (up to 3 km) successions, erupted from several discrete volcanic centres. Evenly porphyritic dacite and rhyolite are interbedded with ignimbrites and volumetrically minor mafic lavas (basalt and basaltic andesite). The Chitanilga Volcanic Complex at Kokatha (Blissett, 1975; 1977b; Branch, 1978; Stewart, 1994) and the Glyde Hill Volcanic Complex at Lake Everard (Blissett, 1975; 1977a; 1977b; Ferris, 2003; Giles, 1977) are the two best exposed parts of the lower GRV (Fig. 1b, c) and are the subject of this study. The upper GRV are composed of at least three large-volume (>1000 km3), extensive (<200 km), evenly porphyritic and compositionally homogeneous felsic (dacite and rhyolite) massive lavas (Allen and McPhie, 2002; Allen et al., 2008; Creaser and White, 1991; McPhie et al., 2008). Units in the upper GRV are up to 300 m thick, and as a whole, crop out for 12 000 km2. Mineral assemblages in the upper GRV are essentially anhydrous and include phenocrysts of plagioclase (oligoclase-andesine), K-feldspar, orthopyroxene (pigeonite Mg# 24-43, augite
Mg#30-53), Fe-Ti oxide, ±quartz in a quartz-feldspar groundmass (Creaser and White, 1991; Stewart, 1994).

The GRV sequence is cross-cut by numerous porphyritic rhyolite, and less abundant andesite, dykes (Blissett et al., 1993). The Moonamby Dyke Suite (Giles, 1977) includes rhyolite porphyritic dykes that intruded the lower GRV at Lake Everard. The HS granite includes large batholiths and smaller intrusions of granite and minor quartz monzodiorite and quartz monzonite (Flint, 1993). Typical of much of the HS is medium-grained, locally porphyritic pink granite composed of quartz, alkali-feldspar, plagioclase, minor interstitial biotite, apatite and fluorite. HS granite intruded the GRV at various localities with sharp contacts and no major of metamorphic overprint in the host volcanic rocks (Blissett, 1985; Giles, 1988). The GRV are essentially undeformed and unmetamorphosed and primary textures are well preserved, in spite of the moderate alteration of feldspar.

3. Analytical methods

Whole-rock chemical analysis

Samples were crushed in a WC mill for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) whole-rock analysis at the University of Tasmania. Major and some trace elements (V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, and La) were measured by XRF, trace elements were analysed by ICP-MS. Samples were digested in HF/H$_2$SO$_4$ with the PicoTrace high pressure digestion equipment and analysed with an Agilent 4500 ICP-MS. XRF analyses were made with a Philips PW1480 X-ray Fluorescence Spectrometer. Detection limits for trace elements in ICP-MS are ≤0.01 ppm (REE) and ≤0.5 ppm for other elements, except As (5 ppm). Comparison of XRF and ICP-MS trace element data indicates a good correlation between the XRF and ICP-MS trace element data, the difference being <20% relative.

Melt inclusion sample preparation and major-trace element analysis

Samples selected for melt inclusion study were crushed in a steel mortar and sieved. Batches of quartz grains (fractions 0.4-1 mm) were heated in a furnace at 1 atm pressure to temperatures between 800° and 1050°C at 50°C intervals for 24 hours. Heating experiments were only carried out once for each batch of grains. During heating sessions, quartz grains were wrapped in platinum foil to avoid contamination (Kamenetsky and Danyushevsky, 2005). After heating, the grains were water-quenched and mounted in epoxy resin for inspection. Grains selected for analysis were extracted and individually mounted in single-grain mounts moulded in aluminium or brass tubes. Melt inclusions were then exposed and polished for analysis.

Electron probe microanalyses (EPMA) of a total of 65 melt inclusions were carried out
with a 5-spectrometer SX-100 Cameca microprobe. Operating conditions of 15 kV
acceleration potential difference, 10 nA beam current, counting time between 10 and 30 s,
and 5 µm spot size were used. Since heat-induced diffusion of elements under the electron
beam can result in underestimation of some components, the most volatile elements (K, Na,
F) were analysed first and the signal intensity was monitored during analyses. No significant
loss in signal intensity was observed. As a reference material, USGS glass BSR-2G was
chosen. Major element analyses on the standard glass show good agreement (<10%
relative) with data published by GeoRem and USGS. Diffusion of volatile elements (Chabiron
et al., 2001) and metals (Kamenetsky and Danyushevsky, 2005) can occur during heating
experiments, so both heated and unheated inclusions were analysed for comparison.

Eighteen melt inclusions were also analysed for trace elements on a Resonetics M50
excimer laser coupled with an Agilent 7500cs ICP-MS. Energy was 2 J/cm² at 5 Hz repetition
frequency. Spot size (20 - 60 µm) was comparable or slightly larger than melt inclusion size,
but the relatively low laser energy allowed ablation of only the glass inclusions and not the
host quartz. Ablation time was 60 s per inclusion. Glass NIST 612 was used as a standard
and glass BCR-2G was used as a secondary standard. Aluminium, measured by EPMA, was
used as the internal standard. The signal was stable to steadily decreasing and lacked
peaks, indicating that the glass was homogeneous. Comparison with published standard
compositions (Georem) indicates an error within 20% relative.

4. The Glyde Hill and Chitanilga Volcanic Complexes
 The Glyde Hill Volcanic Complex

 The Glyde Hill Volcanic Complex is dominated by felsic units (>90 %); minor andesite
 and very minor basalt are present (Fig. 2). Felsic to silica-rich intermediate units (SiO₂ >60
 wt.%), range in extent from ~10 km to >80 km across and are up to a few hundreds of metres
 thick. The volumes, estimated on the basis of the outcrop extent, range between ≤1 km³
 (Whyeela Dacite, Andesite I) and ~170 km³ (Yantea Rhyolite-dacite). Aspect ratio (ratio of
diameter of circle with equivalent area and mean thickness) is up to ~1:250 (Table 2).

 All the felsic lava units are evenly porphyritic; phenocrysts of albite, K-feldspar and
 ±quartz (<1 to >10 vol.%) are set in a microcrystalline, probably formerly glassy groundmass
 (Fig. 3a, b, Table 3). Phenocrysts are anhedral to euhedral, and largely unbroken. The most
 common accessory minerals are zircon, F-apatite, and Fe-Ti oxide. Most of the felsic lavas
 show cm-scale flow bands and flow lineations, and locally sheet parting. In some units
 (Wheepool Rhyolite, Yantea Rhyolite-dacite), flow bands are planar to folded in open to tight
 folds at the metre-scale. The Baldry Rhyolite shows evidence of intense flow deformation
 that produced non-cylindrical folds (sheath folds) in the interior of the unit, and a cm-thick
 vesicular carapace. Sheath folds are characterised by folded axis and sub-parallelism
between fold axis and flow lineation (Fig 3c). In sections perpendicular to the direction of flow, flow bands describe round or elongate concentric structures, representing intersections of culminations of folded axes (Fig. 3d). Spherulitic texture and lithophysae are locally present. Several units (Childera Rhyolite, Mangaroongah Dacite, Wheepool Rhyolite, Baldry Rhyolite, and Yantea Rhyolite-dacite) contain clast-supported monomictic breccia domains composed of either angular or lobate, porphyritic and amygdaloidal clasts set in porphyritic, flow banded or vesicular/amygdaloidal matrix (Fig. 3e, f). These zones, which are up to a few m thick and crop out for up to tens of m, are interpreted as autobreccia, and developed during viscous flow. The base of the Yantea Rhyolite-dacite is locally peperitic where the dacite has mingled with a fine grained deposit. The lobed outcrop distribution of the Yantea Rhyolite-dacite east of Lake Everard (Fig. 1c) suggests that the flow infilled an irregular topography.

Pyroclastic facies are very minor in the Glyde Hill Volcanic Complex, and include vitric ash tuff (Fig. 3g), composed of crystals and crystal fragments (<20 vol.% feldspar and quartz), and minor lithic fragments (<5 vol.%) set in a non-welded bubblewall-shard matrix (Table 3). Layers of breccia are also intercalated in the Mangaroongah and Childera Dacites. These breccias include cm-scale angular pumice or feldspar-phyric clasts in mm-sized matrix, and are interpreted as the products of minor explosive episodes that accompanied the main effusive activity.

Intermediate (andesite sensu lato: andesite, trachyandesite and trachyte, SiO$_2$ = 58 – 63 wt.%) and mafic-intermediate units (Nuckulla Basalt, basalt and basaltic (trachy)andesite, SiO$_2$ ≤52 wt.%) occur in limited areas, <10 km across, and are volumetrically minor. These units are mostly massive and evenly porphyritic with sparse phenocrysts of clinopyroxene ±plagioclase in a microcrystalline groundmass of plagioclase, amphibole-altered clinopyroxene, and magnetite.

The Moonamby Dyke Suite includes several quartz-feldspar-phyric rhyolite dykes (Fig. 3h) that cross-cut the Glyde Hill Volcanic Complex. These dykes are up to 100 m wide and crop out for up to 10-20 km, trending northwest to north-northeast.

Felsic igneous enclaves, centimetres to meters in size and composed of mm-scale anhedral crystals of quartz and K-feldspar in a microcrystalline quartzo-feldspathic groundmass are present in different volcanic units (Fig. 1b, c). Felsic igneous enclaves have gradational margins with the host volcanic rock (Fig. 4a), and are associated with the occurrence of anhedral quartz and K-feldspar grains scattered in the host rocks. These enclaves contain crystals of anhedral K-feldspar and amoeboid quartz (approximately 50 % vol.), separated by a microcrystalline quartz +K-feldspar +albite groundmass (Fig. 4b). Feldspar crystals are in many cases surrounded by a granophyric rim, up to 0.5 mm-thick,
formed by an intergrowth of elongate K-feldspar and quartz (Fig. 4c). These intergrowths make up 10–20 vol.% of the groundmass and only occur around K-feldspar. Quartz can be found as single rounded to amoeboid crystals, <0.5 mm across (partially resorbed magmatic quartz), or in round to lobed aggregates, 0.5 to 1 mm in size, associated with epidote and minor, fluorite, chlorite and titanite (“late” quartz, Fig. 4d). Accessory minerals include zircon, magnetite, fluorite, Ti-oxide, and epidote. These enclaves are interpreted as partially re-melted granite or crystal mush blocks. Similar enclaves have been described by Garner and McPhie (1999) in the Yardea Dacite of the upper GRV. Part of these enclaves have similar textures and mineral assemblage to the ones described here, but larger size (up to 50 m), and have been interpreted as partially melted HS granite (Garner and McPhie, 1999).

The Chitanilga Volcanic Complex

The Chitanilga Volcanic Complex includes a thick sequence (~3 km) of alternating lavas and pyroclastic units (Fig. 2) dipping to the southeast at a moderate angle (≤30°). The base of the sequence is concealed under Quaternary deposits. The lower part (~1 km) of the exposed sequence is composed of m-thick mafic to intermediate lava units (vesicular/amygdaloidal basalt and basaltic andesite), and interlayered felsic ignimbrite and other volcaniclastic units, each up to several tens of metres thick. These lavas are sparsely porphyritic and include phenocrysts of magnetite- and amphibole-altered ferromagnesian minerals (olivine?), and microphenocrysts of plagioclase in a microcrystalline plagioclase and magnetite groundmass.

The upper part of the sequence is dominated by felsic lavas and ignimbrites, and also includes minor intermediate lava. These intermediate to felsic lava units are up to several hundreds of metres thick and extend for up to 20 km. Aspect ratio is up to ~1:30 (Table 2). The volumes, estimated on the basis of the outcrop extent, range from <<1 km³ (Andesite) to >20 km³ (Chandabooka Dacite). Felsic lavas are all evenly porphyritic and include 5–10 vol.% phenocrysts of alkali feldspar ± minor quartz (Table 3). Phenocrysts are mostly anhedral (feldspar is sieve-textured and quartz is round or embayed), but unbroken.

Millimetre-scale, anhedral (round or amoeboid) quartz and feldspar are locally present, and are associated with felsic massive or banded igneous enclaves (Rhyolite-dacite Mi5). The groundmass is microcrystalline and composed of K-feldspar, albite and quartz. Bedding-parallel fiamme are locally present at the base of one unit (Rhyolite-dacite Mi2), and interpreted to be welded autobreccia. The 600-metre thick Rhyolite-dacite (Mi2) conformably overlies the mafic lavas and shows gently to steeply dipping flow folded flow bands, flow lineation and, locally, aligned amygdales. The Chandabooka Dacite lies at the top of the succession and has been correlated with the Yardea Dacite of the upper GRV (Blissett, 1985). It is locally flow banded at the mm-scale and contains phenocrysts of plagioclase (albite) in a microcrystalline quartzo-feldspathic groundmass. The unit is separated from the
rest of the underlying sequence by a thick and laterally continuous, massive, clast-supported breccia zone.

The pyroclastic units are up to 400 m thick and extend for up to a few tens of km. These units are massive to bedded/foliated (fiamme bearing or compositionally layered at the mm- to cm-scale; Fig. 5a). They contain a variable amount of feldspar and quartz crystals or crystal fragments (≤few mm, average 20 vol.% set in a very fine-grained eutaxitic or banded matrix. Devitrified glass shards and flattened pumice fragments (fiamme) are preserved in moderately welded ignimbrites and better preserved parts of rheomorphic ignimbrites. In more welded domains, where glass shards are not present, evidence of fragmental origin is provided by occurrence of angular crystal fragments (Fig. 5b). Lithic fragments are scarce to absent.

Some small-volume pyroclastic units are interbedded with the basalt at the base of the Chitanilga Volcanic Complex, indicating coeval felsic and mafic magmatic activity, although probably from different sources. These pyroclastic units are up to 100 m thick and laterally continuous and include non- to relatively welded, fiamme-bearing or cm-scale layered ignimbrites. The matrix is fine grained, eutaxitic and vitriclastic to microcrystalline. The Lake Gairdner Rhyolite is a 400-m-thick multiple-flow unit ignimbrite with a massive to eutaxitic texture, defined by fiamme (flattened and aligned pumice clasts) or by flattening of rare lithic components in the matrix (Fig. 5a). K-feldspar, albite and quartz crystal and crystal fragments are set in a variably compacted bubble-wall shard matrix (Fig. 5a, b).

The 200-m-thick Rhyolite-dacite (Mi5) overlies the Andesite and, locally, the Lake Gairdner Rhyolite east of Kokatha (Fig. 1c). The base of the unit shows a cm-scale, planar discontinuous bedding/lamination, conformable with the underlying unit. The middle and top parts are bedded and flow-folded (Fig. 5c-f). The mm- to cm-scale beds are defined by alternating crystal-rich, internally massive layers, and crystal-poor, internally finely banded and flow-deformed layers. The beds are variably flow-deformed in open to tight, isoclinal, and sheath folds (Fig. 5c-e). Ptygmatic folds are also present, and indicate vertical shortening. The orientation of axial planes of asymmetric folds, their vergence, and flow lineation (Fig. 5f) indicate east-northeast-directed viscous flow.

5. Melt inclusion description and heating experiments

Three units, the Wheepool Rhyolite, the Waurea Pyroclastics, and the Moonamby Dyke Suite, contain well preserved quartz phenocryst-hosted melt inclusions.

The Wheepool Rhyolite (samples GH06, 23, 24c, 59) comprises massive or flow-banded porphyritic lavas. Phenocrysts (~10 vol.%) are euhedral to subhedral plagioclase (albite) and K-feldspar (perthite), and minor (≤1 vol.%) subhedral to anhedral quartz, mostly ≤1 mm in diameter. The microcrystalline to micropoikilitic groundmass (<10 to 50 µm) is
The Waurea Pyroclastics (samples GH13, 95) include several different pyroclastic facies that vary in grain size, composition and texture. One of the facies is violet to pale grey, relatively poorly sorted crystal tuff (Fig. 3g), in which quartz is a main component (5-10 vol.%), other than K-feldspar, minor plagioclase (albite), and lithic fragments (<5 vol.%). Quartz occurs as anhedral (round to lobate) to subhedral crystals and angular crystal fragments. The matrix is fine grained (≤0.3 mm) and mainly composed of devitrified glass shards. The dykes of the Moonamby Dyke Suite (samples GH15, 70, 70B, 92) are up to tens of metres wide, show mostly homogeneous texture and contain medium- to coarse-grained phenocrysts (≤3 cm) of K-feldspar, quartz and minor sodic plagioclase (Fig. 3h). The quartz-feldspathic groundmass is microcrystalline (grain size ≤50 µm) to micropoikilitic. Quartz phenocrysts are anhedral and deeply embayed (or “vermicular”).

Quartz crystals in the Wheepool Rhyolite and the Waurea Pyroclastics contain glassy melt inclusions, together with crystalline, opaque to granular-textured, semi-opaque inclusions (Fig. 6). Melt inclusions are round to negative-crystal-shaped, mostly 5 to 60 µm in diameter, and exceptionally up to 100 µm. Glass is mostly preserved in relatively small inclusions (<40 µm). Glass is colourless or, in some cases, pink to pale brown. A bubble is present in all inclusions (bubble = 4.6 ±1.5 vol.% n = 16, and 7.0 ±2.2 vol.% n = 20 of the inclusion in the Wheepool Rhyolite and Waurea Pyroclastics, respectively). These are interpreted as shrinkage bubbles, formed during cooling, rather than being droplets of fluid co-trapped with the melt. Mineral phases are only locally present, including K-feldspar and Fe-Ti oxide (identified by SEM-EDS), and a yellow prismatic unidentified mineral. Because of the variable assemblage and crystal/glass ratio, these are interpreted as primary, co-trapped minerals. Some large (>50 µm) opaque melt inclusions have radial cracks, and are surrounded by a corona of small fluid inclusions. These are interpreted as decrepitation cracks, through which fluids expelled from the inclusion upon decompression and crystallisation were injected into the host mineral (Lowenstern, 1995). In contrast with the volcanic units, melt inclusions from the Moonamby Dyke Suite are completely crystalline (Fig. 6a-c), most likely as a consequence of slower cooling. Their shapes vary from round to elongate to subhedral, and their size is up to 60 µm. Multiple melt inclusions can occur in single crystals, either trapped along crystal growth planes (Fig. 6d) or randomly dispersed in the crystal. Melt inclusions along any given growth surface were trapped nearly simultaneously, whereas melt inclusions along different planes or dispersed in the crystal were trapped at different times, and likely at different stages of melt evolution.

Laboratory homogenisation was observed at 1000 – 1050°C in volcanic units (Wheepool Rhyolite and Waurea Pyroclastics), and at lower temperatures (800 – 850°C) in the Moonamby Dyke Suite. Homogenised inclusions (Fig. 6e) appear clear, round to
negative crystal-shaped, and locally have irregular, “bumpy” margins. Small melt inclusions (≤20 µm) are the most susceptible to homogenisation, and successfully homogenised inclusions are mostly up to 40 µm in size. Inclusions that failed to homogenise, even at high temperature, are of two types: 1) opaque to semi-opaque, crystalline inclusions, and 2) clear, glassy, two-phase (glass + bubble) inclusions. The former inclusions mostly have radial cracks or are intersected by penetrative fractures. The latter appear intact, have round or subhedral margins, and contain clear, colourless glass, together with one or multiple bubbles. Both groups of inclusions locally contain multiple bubbles protruding into the host mineral (Fig. 6f).

6. Geochemistry: comparison of whole-rock and melt inclusion analyses

Major element oxides (Tables 4 and 5, Fig. 7)

Silica content of the Gawler SLIP ranges between ~51 and 79 wt.%, with a sharp predominance of felsic rocks (dacite and rhyolite are > 90% in outcrop, Allen et al., 2008). The rock compositions are characterised by increasing K₂O (up to 7 – 8 wt.% with increasing silica, K₂O/Na₂O mostly between 1 and 3 for felsic samples, and low and decreasing CaO (≤ 1 wt.% at SiO₂ ≥ 70 wt.%) and MgO with increasing silica. The rocks are mostly calc-alkaline to alkali-calcic in the modified alkali-lime plot (Frost et al., 2001), have moderate to high FeOtot/(FeOtot + MgO) mol., which crosses the boundary between magnesian and ferroan fields (Frost et al., 2001), and are metaluminous to mildly peraluminous (alumina saturation index ASI = Al/(Na + K + 2Ca) mol ≤1.1 – 1.2). Higher and scattered ASI values are observed in some whole-rock samples. This scatter, together with the high K₂O/Na₂O (> 3) of some samples, can be attributed to alteration and mobilisation of alkalis. In the total alkalis versus silica diagram, whole-rock compositions straddle the line between alkaline and subalkaline fields.

Generally, overlap has been found between melt inclusion and whole-rock analyses for most major element oxides. Melt inclusion analyses have high K₂O (up to 7 – 8 wt.%) and low CaO and MgO (<0.2 and <0.8 wt.%, respectively). However, the decreasing trends with increasing silica of some elements (Na₂O, K₂O, and Al₂O₃) in melt inclusion analyses do not match whole-rock samples, and ASI in melt inclusion analyses does not show a clear trend with increasing silica. For each analysed unit, homogenised melt inclusions have higher average silica contents than non-homogenised inclusions.

Because the melt was saturated with respect to quartz at the moment of entrapment, some degree of post-trapping crystallisation of quartz on inclusion walls can be expected, resulting in decrease of silica in the melt inclusion. Compositional modifications can also be induced by experimental conditions, as host quartz is melted during heating in the laboratory. In general, heating to temperatures lower than the trapping temperature can result in low
silica in the melt inclusions, whereas heating to higher temperatures (overheating) will produce artificially high silica values. These processes could explain the wide SiO$_2$ melt inclusion composition range. Crystallisation and melting of host quartz would also have a “dilution” effect on oxides other than SiO$_2$, proportional to the amount of quartz crystallised or melted. This effect can be responsible for the decreasing trends of some element oxides in Harker diagrams (e.g. K$_2$O, Al$_2$O$_3$), which represent mixing lines with quartz. Further, a few melt inclusion analyses with SiO$_2$ <70 wt.% have very high K$_2$O and Al$_2$O$_3$ in comparison with whole-rock analyses (Fig. 7). This is not believed to be due to boundary layer effects, because low SiO$_2$ would correspond to the highest trace element values, which is not the case. Given the high K$_2$O and Al$_2$O$_3$ of these analyses, this effect may be due to contamination of melt inclusions from a few co-trapped feldspar crystals during heating experiments.

Trace elements (Tables 4 and 5, Figures 8 and 9)

Both whole-rock and melt inclusion analyses indicate high concentrations of rare earth elements (REE), Y, and high field strength elements (HFSE), and low concentrations of Cr and Ni in comparison with average continental crust values (Hu and Gao, 2008). Whole-rock concentrations of REE, Y, and Zr increase with silica and peak at ~70 wt.% SiO$_2$. Other HFSE (Nb, Ta, and Th) and Rb increase even in the most silica-rich compositions, and for high-silica analyses (>70 wt.%), these trends become sub-vertical. These relationships suggest incompatible behaviour of these elements, even after the magma reached eutectic composition. This is also clear in plots of these incompatible elements versus Al$_2$O$_3$ and alkalis (not shown). Whole-rock Sr, Ba, Eu, P, and Ti are negatively correlated with silica, compatible with crystallisation of modal minerals feldspar, apatite, and Fe-Ti oxide.

On trace element variation diagrams, melt inclusions and felsic whole-rock samples plot on similar trends. Primitive mantle-normalised plots of whole-rock and melt inclusion samples (Fig.9) have similar trends with Ba, Sr, Ti, P, and ±Eu negative spikes, and slightly decreasing REE distributions (La$_N$/Yb$_N$ = 12 ±3.5, n = 12). Melt inclusions are generally lower in compatible elements (Sr, Ba and Eu; elements that have a high distribution coefficient with feldspar; White et al., 2003) and higher in incompatible elements (Th, Nb, Ta, Rb), compared with felsic whole-rock samples. Thus, melt inclusions have generally "more evolved" compositions.

Melt inclusion trace elements have wide compositional ranges, even among inclusions in the same grain. Barium, Th, REE, Zr and Ta can vary by a factor of >3; Nb, Sr and Rb by a factor of 2 – 2.5. The largest ranges were measured for Cu (<9 to 1800 ppm). Although the possibility of contamination exists, laser ablation signals do not indicate significant surface Cu contamination introduced by polishing. A possible cause of Cu contamination can be
identified in diffusion in quartz during heating in the laboratory (Kamenetsky and Danyushevsky, 2005), which may have occurred despite wrapping the grains in Pt foil.

Melt inclusions show moderate to good correlation between incompatible elements (Nb-Ta, Nb-Th, Th-Rb are moderately to well correlated, $r^2 = 0.5$-0.8). Lead, U, and Sn show positive correlations with incompatible elements in melt inclusions, but have a wider scatter in whole-rock analyses. The ratios Th/U and Th/Pb retain near-primitive mantle values (~5, and ~0.5 by weight, respectively) in melt inclusions, but vary significantly in whole-rock samples (Fig. 8).

Volatile components

Melt inclusions have moderate to high F contents ($F \leq 1.3$ wt.%) and low Cl contents ($Cl \leq 0.2$ wt.%) (Table 5, Fig. 7). Broad positive F-Cl correlation exists in melt inclusions from the Wheepool Rhyolite. Chlorine shows a strong positive correlation with incompatible elements, Pb in particular ($r^2 = 0.84$), except for one analysis. In volcanic samples, broad positive correlation of F with REE, Y, Zr and Hf was also found. Phosphorus and S are consistently below detection limit (~250 and ~200 ppm, respectively for EPMA), in general agreement with the felsic whole-rock data (Table 4).

A fist order estimate of water content can be calculated from the difference between microprobe totals and 100 % (water by difference, H_2O^*; Devine et al., 1995). Unheated glassy inclusions, all from the volcanic units, have average $H_2O^* = 1.6 \pm 1.3$ wt. % (n = 12), whereas inclusions heated in the laboratory have average $H_2O^* = 1.0 \pm 0.9$ wt. % (n = 39). Melt inclusions from the Moonamby Dyke Suite, all homogenised in the laboratory, have average $H_2O^* = 3.1 \pm 1.0$ wt. % (n = 12). Water content of melt inclusions can be modified after entrapment by natural and experimental causes (leakage along microcracks, diffusion through quartz lattice; Lowenstern, 1995; Qin and Anderson, 1992). Thus, unheated inclusions are considered more representative of the original H_2O content. Estimates based on the difference method are also affected by significant analytical error. Microprobe totals of the standard glass analyses are within 1 wt.% uncertainty compared with published values. This uncertainty corresponds to ~40 % of (100 %-total) values of melt inclusions from unheated volcanic units, translating into ~40 % relative error for H_2O^* estimates in these samples.

Quartz-hosted, homogenised and unheated melt inclusions from the Eucarro Rhyolite of the upper GRV (McPhie et al., 2011) have very similar major element compositions to the lower GRV melt inclusions (Fig. 7). These inclusions are up to 100 µm in size, round to euhedral negative-shaped, and homogenised at ~850°C. The upper GRV melt inclusions and whole-rock samples have similarly high K_2O (up to ~7 wt.%) and K_2O/Na_2O (> 1), and low CaO (<1 wt.%), Ni, and Cr compared to the lower GRV; REE, Y, HFSE and
FeO$_{\text{tot}}$/(FeO$_{\text{tot}}$ + MgO) are higher at any given SiO$_2$ value (Tables 4 and 5, Figures 7 and 8). Trace element Harker diagrams (e.g. Th, Rb, Zr) indicate broader fractionation trends (i.e. larger scatter at any SiO$_2$ value) for the lower GRV than the upper GRV. This has been interpreted as indicative of multiple lines of descent in the lower GRV, representative of different magma batches (Stewart, 1994). Melt inclusions from the upper GRV have very similar F contents to the lower GRV (≤1.3 wt.% and slightly higher Cl contents (≤0.4 wt.%). The difference between EPMA totals and 100 % in upper GRV melt inclusions averages 98.5 ±1.4 wt.% (n = 47), largely overlapping the lower GRV.

Zircon saturation and magma temperature estimates

The ratio Zr/Hf remains nearly constant (Zr/Hf ~40) as Zr increases with increasing silica for SiO$_2$ ≤70 wt.%, and decreases with decreasing Zr in both whole-rock samples with SiO$_2$ ≥70 wt.% and melt inclusions (Fig. 8). This Zr trend is interpreted as indicative of zircon saturation and zircon crystallisation at SiO$_2$ ≥70 wt.%, accompanied by Zr-Hf fractionation (Linnen and Keppler, 2002; Thomas et al., 2002). Zircon solubility in silicate melts is strongly dependent on temperature (Rubatto and Hermann, 2007; Watson and Harrison, 1983). Application of the zircon saturation model (Watson and Harrison, 1983) to whole-rock samples with SiO$_2$ ≥70 wt.% and melt inclusions yields temperatures of 782 – 909°C (Tables 4 and 5) if one melt inclusion analysis with anomalously low Zr content is excluded. Peak temperature corresponds to 470 ppm Zr, although Zr concentrations as high as 680 ppm have been measured in the lower GRV (Giles, 1988; Stewart, 1994), translating into T = 945°C. For upper GRV melt inclusions, temperatures of T = 853 – 913°C can be calculated. This method takes into consideration the effect of network modifying components by means of the parameter M = (Na + K + 2Ca)/(Al · Si). Therefore, samples that show mobilisation of alkalis (low Na$_2$O ~1 wt.%, K$_2$O/Na$_2$O > 5) have been discarded when calculating zircon saturation temperatures. It should be noted, however, that F can increase the solubility of some HFSE in silicate melts, including Zr (Keppler, 1993), and potentially affect temperature estimates based on zircon solubility. Despite the uncertainties of the method, these temperatures partially overlap with available estimates for the upper GRV based on the equilibrium pigeonite-augite, which yield temperatures of 900 – 1100°C (Creaser and White, 1991; Stewart, 1994).

Comparison with other SLIP

Comparison of the GRV as a whole with other SLIP and large felsic volcanic units indicates compositional similarities (Fig. 10). In particular, for the compared provinces, K$_2$O mostly plots between high-K and ultra-K, and Zr increases with increasing SiO$_2$ and peaks around SiO$_2$ = 70 wt.%, with Zr concentrations well in excess of 500 ppm in the Etendeka and Snake River Plain provinces (Christiansen and McCurry, 2008; Marsh et al., 2001).
the compared provinces either plot in the ferroan field, or are transitional between ferroan and magnesian fields of Frost et al. (2001). High field strength elements, HREE, and Rb are enriched, whereas Sr is depleted, in comparison to the upper continental crust. In some of these provinces (Etendeka, Snake River Plain, Keweenawan, and GRV), phenocryst assemblages are mostly anhydrous (augite ± pigeonite are the common ferromagnesian minerals, whereas biotite and amphibole are scarce to absent), and estimated temperatures are higher than for most felsic rocks (up to \(> 1000^\circ C \), Table 1). These provinces are either dominated by large felsic lavas, or composed of both lavas and rheomorphic pyroclastic flows. Conversely, the Whitsunday Prince and the Sierra Madre Occidental, which are dominated by pyroclastic flow deposits, have lower Zr contents, and generally lower FeO\(_{tot}\)/(FeO\(_{tot}\) + MgO). In the Nb vs Y plot (Pearce et al., 1984), the compared rocks are transitional between the volcanic arc-collisional granite and within plate fields, and in the Nb vs 10000 · Ga/Al plot (Whalen et al., 1987), are transitional between I-type and A-type. The upper GRV melt inclusions and whole-rock samples plot in the within-plate field of tectonic environment discrimination diagrams (Pearce et al., 1984), and in the A-type field in terms of HFSE and Ga/Al (Collins et al., 1982; Whalen et al., 1987), whereas the lower GRV are transitional between the volcanic arc and within-plate fields, and between I- and A-type fields. Significant, although unconstrained, F contents have been inferred for the Keweenawan Midcontinent Rift volcanic units (Green and Fitz, 1993).

7. Discussion

7.1 Representativity of melt inclusion data

Melt inclusions can be affected by several processes that could limit their usefulness as indicators of melt composition. The effects of these processes should be assessed before analytical data are used. Accumulation of elements incompatible with the host mineral during its growth (boundary layer effect; Baker, 2008; Lowenstern, 1995) is inversely correlated with element diffusivity in the silicate melt, and can result in anomalously high element concentrations in melt inclusions in comparison with matrix glass. In the GRV melt inclusions, high concentrations of some trace elements alone (e.g. Th, Nb, Ta) could be attributed to boundary layer effect, however, the concurrent low concentrations of Sr, Ba and Eu (Figures 8 and 9) argue against this hypothesis. All these elements are incompatible with quartz, and would be increased to a different extent by boundary layer effects around crystallising quartz. Plots of compatible versus incompatible elements (e.g. Sr vs Nb, Sr vs Rb, Ba vs Th) describe similar trends in whole-rock and melt inclusion analyses, consistently with fractionation of modal minerals. This suggests that, if boundary layer effect occurred, it did not affect trace element contents significantly.

Wide variation of silica content between unheated and homogenised inclusions
suggests post-entrapment crystallisation and/or re-melting of host quartz during heating experiments. Some melt inclusions have significantly higher SiO$_2$ values (>80 wt.%) in comparison with whole-rock analyses. These values can be interpreted as due to melting of host quartz during heating experiments. Silica contents up to ~80 wt.% of homogenised melt inclusions are in broad agreement with the groundmass compositions, as inferred by simple mass-balance considerations. Consider for example the WheePOOL Rhyolite, which has whole-rock composition of SiO$_2$ = 78 wt.% (sample GH06, Table 4), with 10 vol.% feldspar content (SiO$_2$ = 65 wt.%), and 1 vol.% quartz. Under these conditions, a SiO$_2$ content of ~80 wt.% can be calculated for the groundmass. For the WheePOOL Rhyolite, homogenised melt inclusions have average SiO$_2$ = 78.5 ±1.3 wt.%, 6.44 wt.% (or 8.1 % relative) higher than unheated melt inclusions. This variation is reflected on concentrations of other elements and on trends in Harker diagrams.

Although caution is due because of the aforementioned analytical and experimental effects, we consider melt inclusion compositions as indicative of the melt composition in the crystallisation interval of quartz phenocrysts.

7.2 The effects of magmatic processes and rock alteration on composition

In ancient rocks, alteration introduces uncertainty in the interpretation of whole-rock geochemical data. The GRV show evidence of weak but widespread alteration of feldspar to sericite and brick-red, probably cooling-related, groundmass oxidation. Because of this alteration, whole-rock data, particularly the most “mobile” elements (Na, K), should be considered carefully.

Melt inclusion and whole-rock analyses show relatively good overlap for most “mobile”, water-soluble oxides (Na$_2$O, K$_2$O, CaO) (Tables 4 and 5, Fig. 7). Similarity between whole-rock and melt inclusion analyses suggests that alteration has not systematically and significantly affected the whole-rock content of alkalis. However, some whole-rock samples have scattered alkalis and ASI values, which can be attributed to local rock alteration (e.g. low Na whole-rock content of the Waurea Pyroclastics, sample GH13, Table 4, Fig. 7). A relative scatter of melt inclusion ASI was also observed. Because ASI values of unheated and heated melt inclusions overlap, this is not attributed to heating in the laboratory, and can tentatively be ascribed to different levels of remobilisation of alkalis during EPMA analysis.

The wide variations measured in melt inclusion trace element compositions cannot be explained by quartz dilution and boundary layer effects. Geochemical modelling of melt inclusion data indicates that variations in compatible and incompatible trace elements can be explained by extensive fractional crystallisation (~80% crystallisation, Fig. 11).

This would imply the presence of significant volumes of cumulates. Potentially, the voluminous HS plutons could represent crystal-rich mushes, from which felsic melt could
have been extracted. From a geochemical point of view, the cumulate should have complementary characteristics to the melt. However, primitive mantle-normalised plots (Fig. 10) indicate that the HS granite has similar compositional characteristics to the volcanic units and dykes, making it an unlikely candidate as cumulitic rock.

A second mechanism—partial remelting of crystallised magma—can be envisaged, and can be modelled as fractional melting of HS granite. This hypothesis seems to be substantiated by field and petrographic evidence, given the occurrence of felsic enclaves, or partially melted granite blocks. This hypothesis would also help explain why some melt inclusions have more evolved compositions than whole-rock samples. This is inconsistent with fractionation, which would lead to increase in incompatible elements and decrease of compatible elements in the most evolved melts, represented by groundmass or whole-rock. Processes of re-melting of crystallised portions of the magma chamber have been proposed for several large intermediate to felsic systems (Bachmann et al., 2002; Murphy et al., 2000). Under these conditions, melt inclusions may not represent a continuous sampling of evolving melt. The two mechanisms are not mutually exclusive, and might have occurred together.

Some trace elements, U, Pb and Sn in particular, show good correlation with Th in melt inclusions, indicating incompatible behaviour, but are scattered and variably depleted in whole-rock analyses compared to melt inclusions (e.g. Th vs U, Fig. 8). This depletion is reflected in the locally high whole-rock Th/U and Th/Pb and suggests late mobility of these elements.

Geochemical studies of igneous rocks hosting U mineralisation (Chabiron et al., 2001; Gray et al., 2011) have also found similar relationships between melt inclusion and whole-rock samples. Solubility of U and Sn in Cl-F-CO$_2$-bearing aqueous fluids at relatively oxidising conditions has been experimentally demonstrated (Bali et al., 2011; Keppler and Wyllie, 1991), whereas Th solubility seems less affected by variations of these parameters. Evidence of late-stage exsolution of a F-CO$_2$-bearing fluid has been found in rhyolite samples in both the Glyde Hill and the Chitanilga Volcanic Complexes in the form of pockets of H$_2$O-F-CO$_2$-bearing minerals (micro-miaroles and amygdales; Agangi et al., 2010). These fluids may be responsible for the differences between whole-rock and melt inclusion trace element data. We hypothesise that Th, Pb, U, and Sn mostly behaved as incompatible elements during magmatic fractionation, resulting in increased concentrations and in linear correlations, and near-primitive-mantle Th/U and Th/Pb ratios in the melt. Syn- to post-magmatic processes involving fluid leaching of ore metals resulted in preferential transport and depletion of U, Pb, and Sn relative to Th in the lower GRV.

7.3 Magma volatile content

Melt inclusion analyses indicate positive correlation between Cl and incompatible
elements (Pb, Rb, U, Th). Experiments on element partitioning between silicate melt and aqueous fluid have shown that Cl is highly volatile and strongly partitions into the fluid phase in equilibrium with the melt (Carroll and Webster, 1994). Thus, we interpret the observed correlation as a geochemical indication that the GRV melt was volatile-undersaturated during crystallisation of quartz. The patterns shown by F are somewhat more complex and could be due to fractionation of F-bearing minerals, such as F-apatite and fluorite from the melt. Evidence for the crystallisation of magmatic fluorite (fluorite daughter crystals in melt inclusions, and quartz-hosted fluorite inclusions) were found in the upper GRV (McPhie et al., 2011). Lower GRV samples presented here do not show such textural evidence, although several melt inclusions plot above fluorite saturation at 800°C in the F vs Ca plot (Fig. 7) (Dolejš and Baker, 2006), thus providing support for melt saturation with respect to fluorite. However, generally incompatible behaviour of F is expected. Many melt inclusion analyses indicate that F/CaO (wt.%) in the melt was >0.68, or F²/Ca (mol) >1. For these compositions, crystallisation of fluorite will not buffer F, which is expected to increase with progressing crystallisation (Dolejš and Baker, 2006).

The higher microprobe totals in heated inclusions can be explained by diffusion of H₂ out of the inclusions through the host mineral lattice or H₂O loss along microcracks during heating experiments (Qin and Anderson, 1992). Therefore, calculated H₂O concentrations of homogenised melt inclusion (H₂O* = 1.0 wt.% for the volcanic units and = 3.1 wt.% for the dykes) might be underestimated to some extent. Available melt inclusion data on the upper GRV (Eucarro Rhyolite; McPhie et al., 2011) also indicate high concentrations of F (≤1.3 wt.%), moderate Cl (≤0.4 wt.%), and high microprobe totals (average 98.5 wt.%) for unheated melt inclusions.

Volatile-undersaturation and low H₂O content of the melt are in agreement with the observed anhydrous parageneses observed in the lower GRV (Table 3) and upper GRV (Giles, 1988). Primary ferromagnesiamineral phases in the volcanic units are anhydrous, dacite and andesite units contain well-preserved clinopyroxene, and no amphibole or biotite are present. Biotite only occurs in interstitial position in the HS granite. Previous estimates of water content in GRV magmas based on paragenesis (method of Nekvasil, 1988) indicated a H₂O content of 1–2 wt.% (Creaser and White, 1991).

7.4 Eruption and emplacement mechanisms

7.4.1 Distinguishing felsic lavas from ignimbrites

Because of the different eruption and emplacement mechanisms, most lavas and pyroclastic flow deposits are readily distinguished on the basis of textures and geometry of the units. Rhyolitic lavas are usually <1 km³ in volume, and typical aspect ratios for felsic lavas and domes are between 1:1 and 1:100 (Henry et al., 1988; Walker, 1973). Typical
outcrop characteristics of lavas include flow folds and flow bands, elongate vesicles, autobreccia, and vesicular-pumiceous exterior around a non-vesicular interior (Fink and Manley, 1987; Henry et al., 1988; McPhie, 1993). At the microscale, even distribution of phenocrysts, paucity of broken crystals, and microcrystalline or glassy matrix are considered as indicative of lavas (Bonnichsen and Krauffman, 1987; Allen and McPhie, 2003).

Recognition of large, low-aspect ratio felsic lavas has been relatively recent (Bonnichsen and Krauffman, 1987; Green and Fitz, 1993; Twist and French, 1983), and until then extensive felsic units were assumed to be of pyroclastic origin.

Ignimbrites can be very large (hundreds of km3), and have aspect ratios typically in the range 1:100 to 1:1000, and occasionally much lower (Walker, 1980; Wilson et al., 1995). Diagnostic features of ignimbrites include abundant broken crystals, lithic fragments and glass shards (Henry et al., 1988; 1990; Henry and Wolff, 1992). Phenomena of welding (coalescence of juvenile components) and welding compaction can occur in ignimbrites, depending on the viscosity of the juvenile component, ratio between juvenile and non-juvenile components, and thickness of the deposit. A complete spectrum exists between low-grade, non-welded to high-grade, welded ignimbrites (Wright et al., 1980; Wolff and Wright, 1981; Walker, 1983). High and extremely high grade ignimbrites record a transition between particulate and non-particulate flow. As a result of viscous flow, the deposits can mimic textures of lavas (Andrews et al., 2008; Branney et al., 2004; Branney and Kokelaar, 1992). True lavas have been distinguished from extremely high grade (lava-like) ignimbrites based on combinations of characteristics, namely lack of lithic and pumice fragments, and steep flow bands, whereas ignimbrites may show local preservation of pyroclastic texture or gradation from coherent to clastic texture (Branney et al., 1992; 2008; Branney and Kokelaar, 2003). Welded pyroclastic flow deposits may also have vertical zoning of phenocryst abundance, an indication of deposition from granular fluid-based pyroclastic density currents (Branney and Kokelaar, 2003; Branney et al, 2008).

The widespread extent and low aspect ratio of some felsic units in the GRV lead some authors to interpret these rocks as ignimbrites in which intense welding had obliterated textural evidence of a fragmental origin (Blissett, 1985; Giles, 1977). However, several lines of evidence suggest that these units were probably emplaced as lavas. This conclusion is based on the evenly porphyritic texture, microcrystalline groundmass, deformation structures indicative of non-particulate flow such as flow bands and lineations, presence and distribution of thick breccia domains (autobreccia), elongate vesicles/amygdales, lack vitriclastic texture and lack or very local presence of fiamme, and paucity of fractured crystals. The very local presence of fiamme at the base of the Yantea Rhyolite-dacite can result from incorporation of pumice in the flow, or welding of clasts in basal autobreccia, and their presence does not disprove emplacement of a unit as lava (Bull and McPhie, 2007; Manley, 1996). Another
distinctive characteristic pointing to an effusive eruptive mechanism is the near-absence of broken crystals. Conversely, pyroclastic flow deposits contain a moderate amount of crystal fragments, even in welded domains where microtextural evidence of fragmental origin is not preserved (Fig. 5b).

The presence of medium-coarse grained felsic igneous enclaves also supports effusive eruption. These enclaves show evidence for partial melting (anhedral K-feldspar and amoeboid quartz crystals surrounded by fine grained groundmass) and subsequent quenching (microcrystalline groundmass, granophyric rims around K-feldspar, Fig. 4).

Quenching textures indicate moderate to high degrees of undecooling, and likely recorded temperature decrease accompanying eruption. Close compositional similarities with HS and felsic GRV samples (Fig. 9, Table 4) suggest that the enclaves originated from partial melting of previously crystallised GRV-HS magma, such as the solid margins of the magma chamber or largely solid crystal mushes. Textures imply limited disaggregation, and appear to be inconsistent with an explosive eruption mechanism. Stoped blocks from the margin and top of the magma chamber would have been nearly buoyant in the magma, and easily entrained during magma withdrawal.

Similar considerations and interpretations have been proposed for the Yardea Dacite and Eucarro Rhyolite of the upper GRV (Garner and McPhie, 1999; Morrow and McPhie, 2000; Allen and McPhie, 2003; McPhie et al., 2008). Other units (e.g. the Lake Gairdner Rhyolite) can be confidently interpreted as ignimbrites on the basis of the vitriclastic texture, presence of fiamme, and moderate amount of crystal fragments (Figures 3g, and 5a, b).

7.4.2 Eruption and emplacement of extensive felsic lavas

The eruption and emplacement mechanisms of volcanic units are determined by the interplay of several parameters, including magma bulk composition, volatile content, temperature, total volume erupted, and eruption rate. Bulk composition, temperature, crystal and bubble content, and dissolved volatile components are important controls on viscosity, which critically affects the eruption mechanism (Bottinga et al., 1995; Dingwell, 1996). The role of volatile components – H$_2$O and F in particular – in depolymerising and reducing the viscosity of silicate melts is well established (Dingwell and Mysen, 1985; Dingwell et al., 1985; Giordano et al., 2004; Holtz et al., 1999; Manning, 1981). Small variations in the concentration of these volatiles can generate large, non-linear variations in melt viscosity (Dingwell et al., 1985; Dingwell, 1996; Giordano et al., 2008). The effect of other volatile species (CO$_2$, Cl, S) on viscosity is less well constrained (Dingwell and Hess, 1998). Volatile components also play a fundamental role in triggering volcanic explosions through exsolution of a fluid phase and vesiculation of magma. An important difference between water and F is
that the latter is more melt-compatible, and has a lower tendency to exsolve into a fluid phase in equilibrium with the melt (Webster, 1990).

Magmatic temperatures in the GRV are believed to have been high; zircon saturation in the lower GRV indicates temperature up to ~950°C, and pyroxene geothermometry in the upper GRV indicates temperatures of 900 – 1100°C (Creaser and White, 1991; Stewart, 1994). Viscosity calculations for the Yardea Dacite indicate that these high temperatures, together with estimated water contents of 1 – 2 wt. %, and an average F content of ~0.16 wt. %, could have promoted a largely effusive behaviour (Pankhurst et al., 2011). These calculations are based on whole-rock F contents, which are higher than upper continental crust by a factor of 3 to 5 (Wedepohl, 1995), but which clearly represent underestimates of the original melt F content as indicated by melt inclusions. High F contents would have caused further viscosity reduction. Thus, high concentrations of de-polymerising and viscosity-reducing F of the GRV, coupled with high temperature and large volumes erupted, created the favourable conditions for large-volume effusive eruptions. The probable low water concentrations would have caused low degree of vesiculation and low explosivity during eruption. Large volumes of magmas (up to several hundreds of km³) were erupted mostly non-explosively, and high eruption rate allowed the lava to spread widely (several tens of km).

Significant amounts of F, high F/Cl, water-undersaturated compositions, and high magmatic temperatures have been inferred in the source magmas of other extensive felsic lavas and strongly rheomorphic ignimbrites of similar geodynamic setting and geochemical characteristics (Snake River Plain-Yellowstone, Christiansen and McCurry, 2008; Keweenawan Midcontinent Rift volcanic units, Green and Fitz, 1993; Etendeka Igneous Province, Namibia, Ewart et al., 1998b; 2004).

8. Conclusions

The GRV and HS granite represent a Mesoproterozoic SLIP (the Gawler SLIP) with a total volume of ~100 000 km³ or more (Blissett et al., 1993). The GRV are dominated by felsic lava units (>90 vol.%), and also include minor ignimbrites and intermediate to mafic lavas. The Glyde Hill and Chitanilga Volcanic Complexes are the best exposed successions of the lower GRV, and include several moderately extensive and voluminous felsic units (≤170 km³), and thick but localised mafic-intermediate lavas. Meso- and micro-scale textures suggest that most felsic units were emplaced as lavas that were able to flow for long distances (flood rhyolites). These characteristics include even porphyritic textures, indicators of viscous flow deformation (autobreccia, flow bands, elongate vesicles), and lack of fractured crystals and vitriclastic texture. The volcanic sequence was intruded by cogenetic granite and numerous porphyritic rhyolitic dykes.
Whole-rock and melt inclusion analyses in the lower GRV, and comparison with the upper GRV show that the GRV melt had high K_2O (up to 7-8 wt.%), high K_2O/Na_2O (> 1), high F (≥1.3 wt.%) concentrations throughout and was metaluminous to weakly peraluminous (ASI ≤1.1 – 1.2). Rare earth elements, HFSE, Y, Ga, and FeOtot/(FeOtot+MgO) are moderate to high in comparison with felsic continental crust, especially in the upper GRV. Concentrations of trace elements compatible with feldspar are low (Sr ≤160 ppm, Ba ≤1870 ppm, and Eu <3 ppm for SiO_2 ≥ 70 wt.%), and incompatible elements are high (Th ≤50 ppm, Rb ≤800 ppm, Nb ≤45 ppm), especially in melt inclusions. Overall, geochemical characteristics are consistent with protracted crystallisation of the modal mineral assemblages (feldspar, ±quartz, ±clinopyroxene, apatite, zircon, Fe-Ti oxide).

Similarity of whole-rock and melt inclusion compositions suggests that, despite the Mesoproterozoic age, most major and trace elements have not been substantially modified by alteration, and whole-rock analyses can be considered as indicative of the magma composition. Notable exceptions are the low alkalis in some samples (reflected in high ASI > 1.2), and Pb, U and Sn, which were selectively mobilised and variously depleted. alteration of Pb, U and Sn is evident from relatively low and scattered whole-rock compositions and lack of correlation between these elements and other incompatible elements (e.g. Th), whereas melt inclusion plots show good correlations, indicating incompatible behaviour. Mobilisation of Pb, U, and Sn may have occurred at late- to post-magmatic stages by means of a F-bearing fluid.

The combination of high concentrations of viscosity-reducing F in the melt, together with high magmatic temperatures (≤950°C zircon saturation temperature; 900-1100°C pyroxene thermometry; Creaser and White, 1991), would have favoured low explosivity and effusive behaviour during eruption of the GRV. These features help explain the abundance of extensive felsic lavas in the Gawler SLIP.

Acknowledgments

This research was funded by ARC-CODES grants to the authors. Field and logistical support was provided by the Primary Industries and Resources of South Australia (PIRSA, particularly Martin Fairclough and Stacey Curtis). Dr. Karsten Gömann, Philip Robinson and Katie McGoldrick (University of Tasmania) are thanked for analytical assistance. Notes provided by the three anonymous reviewers significantly improved the manuscript.

References

Webster, J.D., 1990. Partitioning of F between H_2O and CO_2 fluids and topaz rhyolite melt - Implications for mineralizing magmatic-hydrothermal fluids in F-rich granitic systems. Contributions to Mineralogy and Petrology 104, 424-438.

Fig. 1. Simplified geological map of the Gawler Range Volcanics and Hiltaba Suite granite (a), Chitailiga Volcanic Complex at Kokatha (b) and Glyde Hill Volcanic Complex at Lake Everard (c). Inset indicates the Gawler Craton and Proterozoic units in Australia. After Blissett (1975); Blissett et al. (1993); Giles (1977); Allen and McPhie (2002); Hand et al. (2007). Grid: GDA94.

Fig. 2. Simplified logs of the lower Gawler Range Volcanics: the Glyde Hill and Chitailiga Volcanic Complexes.

Fig. 3. Textures of the lower GRV: Glyde Hill Volcanic Complex, Lake Everard. a Wheepool Rhyolite (GH23, GR 0517647-6488394, polished block). Phenocrysts are an- to subhedral, but largely unbroken; inset: accessory minerals (back-scattered electron image, BSE). b Mangaroonga Dacite (GH21, GR 0515440-6484867, polished block); inset: Ca-pyroxene, apatite and unmix Fe-Ti oxide (BSE). c Folded flow bands in the Baldry Rhyolite. Arrow indicates axis plunge (GR 0509831-6501976). d Flow bands in the Baldry Rhyolite shown in a section perpendicular to flow direction. Concentric structures (dashed lines) represent intersected culmination of non-cylindrical folds. e Amygdaloidal autobreccia clast, Mangaroonga Dacite. (GR 0486138-6490540). f Autobreccia domain in the Mangaroonga Dacite. Dashed line indicates lobate clast (GR 0486261-6500298). g Waurea Pyroclastics (sample GH95, 0515405-6501456, polished block); inset: bubble-wall shard matrix (BSE). h Moonamby Dyke Suite (sample GH92, GR 0485550-6489826, polished block); inset: quartz phenocrysts in microcrystalline groundmass (plane polarised transmitted light). GR: Grid reference (GDA94).

Fig. 4. Felsic igneous enclaves. a Gradational contact between an igneous enclave (granite, left) and the host volcanic unit (Whyeela Dacite, right) (GR 0523705-6495238). b Anhedral mm-scale K-feldspar and quartz in fine grained groundmass (sample GH29, GR 0524305-6495515, thick section scan). c Anhedral K-feldspar crystal surrounded by a fine grained quartz-K-feldspar granophyric rim (sample GH32, GR 0523705-6495238, parallel polarised transmitted light). d Aggregate of quartz and fine grained epidote (sample GH32, parallel polarised transmitted light). GR: Grid reference (GDA94).

Fig. 5. Textures of the lower GRV: Chitailiga Volcanic Complex, Kokatha. a Eutaxitic-textured ignimbrite, Lake Gairdner Rhyolite (sample GH51, GR 0524029-6542642, polished block); inset: bubble-wall shard matrix (BSE). b Crystal fragments (some arrowed) suggest explosive eruption mechanism, even if the matrix does not preserve evidence of fragmental texture, Lake Gairdner Rhyolite (sample GH51, GR 0524029-6542642, scanned thick section). c Open asymmetric folds (GR 0524988-6541028), d Pygmatic folds (GR 0525008-6451038), and e isoclinal fold showing parallelism between elongation lineation and hinge line (0525170-6541134), Rhyolite-dacite (Mi5). f Diagrammatic log, and stereographic plot of fold limbs, elongation lineation and fold axes in the Rhyolite-dacite (Mi5). Deformation structures indicate a northwest-directed flow. GR: Grid reference (GDA94).

Fig. 6. Melt inclusions in the lower GRV. a and b Glass-bearing, subhedral negative crystal-shaped inclusions (Waurea Pyroclastics, sample GH95 and 13, respectively). c Subhedral negative crystal-shaped, crystalline melt inclusions (Moonamby Dyke Suite, sample GH15). d Multiple melt inclusions trapped at various growth stages of the quartz host (Waurea Pyroclastics, sample GH95, unheated). e Homogenised melt inclusion showing round and slightly irregular margins (Wheepool Rhyolite, sample GH23, heated to 1000°C). f Unsuccessful homogenisation attempt (Waurea Pyroclastics, sample GH13, heated to 1050°C). All images are in plain polarised transmitted light.

Fig. 7. Melt inclusion (EPMA) and whole-rock (XRF) major element compositions. Data recalculated to 100% anhydrous and plotted as wt.%. 1 Whole-rock data, large

Fig. 8. Melt inclusion (LA-ICP-MS, EPMA) and whole-rock (ICP-MS, XRF) trace element compositions. Data plotted as ppm, except SiO₂ recalculated to 100% anhydrous and plotted as wt.%. ¹ Whole-rock data, large symbols: this study, small symbols: Ferris (2001); Stewart (1994); PIRSA (2006). ² Melt inclusion data, lower GRV: this study, upper GRV: McPhie et al. (2011). Chondrite and primitive mantle values from Sun and McDonough (1989) and Münker et al. (2003).

Fig. 9. Primitive mantle-normalised whole-rock and melt inclusion compositions of the lower GRV. Melt inclusions: Wheepool Rhyolite average (n = 13). Normalising values after Sun and McDonough (1989).

Fig. 10. Comparison of the GRV with other SLIP and large felsic units worldwide. Lower GRV (this study); upper GRV (Stewart, 1994), Chon-Aike Province, Patagonia (Pankhurst and Rapela, 1995); Mapple and Poster Formations, Antarctic Peninsula (Riley, 2001); Sierra Madre Occidental, Mexico (Cameron, 1980); Whitsunday Province, Queensland (average values, Bryan et al., 2000); SNP-Yellowstone: Snake River Plain and Yellowstone, western USA (compiled by Christiansen and McCurry, 2008); Etendeka, Namibia (Ewart et al., 2004). Modified iron number (Fe* number = FeO_{tot}/(FeO_{tot} + MgO)) after Frost et al. (2001). UCC: upper continental crust (Hu and Gao, 2008). Nb vs 10000-Ga/Al after Whalen et al. (1987). Nb vs Y diagram after Pearce (1984). WPG: within-plate granite, VAG: volcanic arc granite, COLG: collisional granite, ORG: orogenic granite.

Fig 11. Modelling of crystallisation of andesite (sample GH39) compared with melting of granite (sample GH37). Both equilibrium and disequilibrium processes are compared. Numbers indicate fraction of solid (0.2 - 1). Equilibrium processes appear inadequate to explain wide compositional variations. Crystal-melt distribution coefficients: Ba 2.1, Sr 1.36, Nb 0.2, Th 0.2.
Glyde Hill Volcanic Complex (Lake Everard)

- Whyeela Dacite (L) [GH26]
- Felsic enclaves [GH29, 32]
- Yantea Rhyolite-dacite (L) [GH20, 24]
- Bunburn Dacite (L) [GH27]
- Nuckulla Basalt (L) [GH07, 69, 71]
- Wheepool Rhyolite (L) [GH06, 23, 24C, 59]
- Moonamby Dyke Suite [GH15, 70, 70B, 92]
- Waurea Pyroclastics (P) [GH13, 95]
- Mangaroo Ongah Dacite (L) [GH20, 21, 73]
- Yandoolka Rhyolite
- Andesite II (L) [GH17]
- Childera Dacite (L) [GH76]
- Andesite I (L) [GH72]
- base not exposed

[GH67B] Baldry Rhyolite (L)

Chitanilga Volcanic Complex (Kokatha)

- Chandabooka Dacite (L) [GH46]
- Rhyolite-dacite (Mi5) (L?) [GH40]
- Andesite (L) [GH39, 52]
- Volcaniclastic deposits
- Lake Gairdner Rhyolite (P) [GH51]
- Volcaniclastic deposits

- Rhyolite-dacite (Mi2) (L) [GH34]
- Volcaniclastic deposits
- Basalt (L) [GH41, 49, 50]
- Fiamme-rhyolite (P)
- Volcaniclastic deposits
- Microgranite dykes [GH44]
- Fiamme-rhyolite (P) [GH43]
- base not exposed

(L), (P) mode of emplacement (lava, pyroclastic deposit)

[GH23] sample label
granite
felsic enclave
felsic volcanic units
(SiO₂ > 63 wt.%)
dykes
melt inclusions
(Weepool Rhyolite)
<table>
<thead>
<tr>
<th>Volcanic province</th>
<th>Primary emplacement mechanism</th>
<th>Volume (km3)</th>
<th>Age (Ma)</th>
<th>Extrusion rate (km3 /year)</th>
<th>Reference</th>
<th>Magma temperature</th>
<th>Paragenesis of felsic rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gawler Range Volcanics, Australia</td>
<td>lava</td>
<td>25000</td>
<td>1591−1592</td>
<td>0.0125</td>
<td>Blissett et al., 1993; Fanning, 1988</td>
<td>900-1100°C</td>
<td>Qtz, ffs, ±CPx, Zrn, Ap, Fe-Ti ox, ±Fli</td>
</tr>
<tr>
<td>Keweenawan Midcontinent Rift Plateau, USA</td>
<td>lava, ignimbrite</td>
<td>/</td>
<td>1100</td>
<td>1000−1000°C</td>
<td>Green and Fitz, 1993</td>
<td></td>
<td>Pl, Kfs, ±Qtz, ±Aug, Mag, Zrn, Ap, ±Fli</td>
</tr>
<tr>
<td>Chon-Aike, Patagonia and Antarctic Peninsula</td>
<td>ignimbrite</td>
<td>230000</td>
<td>188−153</td>
<td>0.0066</td>
<td>Pankhurst et al., 1998; 2000</td>
<td>900-1100°C</td>
<td>Qtz, Pl, Kfs, Biot, Am, Mag, Il, Ap</td>
</tr>
<tr>
<td>Whitsunday, Australia</td>
<td>ignimbrite</td>
<td>2200000</td>
<td>132−95</td>
<td>0.0595</td>
<td>Bryan et al., 2000</td>
<td></td>
<td>Qtz, Pl, Cpx, Biot, Am, Ti-Mag</td>
</tr>
<tr>
<td>Sierra Madre Occidental, Mexico</td>
<td>ignimbrite</td>
<td>390000</td>
<td>38−20</td>
<td>0.0217</td>
<td>Cameron et al., 1990; Ferrari et al., 2002; Bryan et al., 2008</td>
<td>750-900°C</td>
<td>Pl, Opx, Cpx, Am, Mg, Il</td>
</tr>
<tr>
<td>Snake River Plain-Yellowstone</td>
<td>lava, ignimbrite</td>
<td>/</td>
<td>Neogene</td>
<td>2008</td>
<td>Christiansen and Curry, 2008</td>
<td>830-1050</td>
<td>Pl, Qtz, Fe-Ti ox, CPx, ±Am, ±Biot</td>
</tr>
<tr>
<td>Paraná-Etendeka province (silicic component)</td>
<td>lava</td>
<td>/</td>
<td>132±1−130</td>
<td>2001</td>
<td>Marsh et al., 2001</td>
<td>≥1000°C</td>
<td>Pl, CPx, Fe-Ti ox, ±Opx, ±Cpx, ±Am</td>
</tr>
</tbody>
</table>
Table 2. Volcanic textures and emplacement mechanisms of selected felsic units in the lower GRV

<table>
<thead>
<tr>
<th>Unit</th>
<th>Area* (km²)</th>
<th>Volume* (km³)</th>
<th>Aspect ratio**</th>
<th>Texture</th>
<th>Groundmass/ matrix</th>
<th>Phenocrysts/ crystals</th>
<th>Breccia domains</th>
<th>Flow deformation</th>
<th>Enclaves, xenocrysts</th>
<th>Emplacement mechanism interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Childera Dacite</td>
<td>267</td>
<td>81</td>
<td>61</td>
<td>coherent</td>
<td>microcrystalline</td>
<td>sub- to an-hedral</td>
<td>angular clasts and thin breccia layers</td>
<td>flow bands, lineation</td>
<td>no</td>
<td>lava flow</td>
</tr>
<tr>
<td>Mangaroongah Dacite</td>
<td>136</td>
<td>27</td>
<td>66</td>
<td>coherent</td>
<td>microcrystalline</td>
<td>eu- to sub-hedral or anhedral sieve-textured, glomerocrysts</td>
<td>angular or lobed amygdalitic clasts and thin breccia layers</td>
<td>autobreccia, deformed vesicles</td>
<td>no</td>
<td>lava flow</td>
</tr>
<tr>
<td>Wheepool Rhyolite</td>
<td>511</td>
<td>153</td>
<td>85</td>
<td>coherent</td>
<td>microcrystalline, locally flow-banded microcrystalline, µm-scale layering</td>
<td>anhedral</td>
<td>lobed clasts (autobreccia)</td>
<td>flow bands, autobreccia</td>
<td>no</td>
<td>lava flow</td>
</tr>
<tr>
<td>Bairdy Rhyolite</td>
<td>94</td>
<td>5</td>
<td>219</td>
<td>coherent</td>
<td>microcrystalline, flow-banded granite, µm-scale layering</td>
<td>sub- to eu-hedral</td>
<td>no</td>
<td>no</td>
<td>Qtz-fls enclaves</td>
<td>lava flow</td>
</tr>
<tr>
<td>Bunburn Dacite</td>
<td>67</td>
<td>7</td>
<td>93</td>
<td>coherent</td>
<td>microcrystalline, locally fiamme-bearing at base</td>
<td>sub- to eu-hedral</td>
<td>no</td>
<td>no</td>
<td>Qtz-fls enclaves</td>
<td>lava flow(?)!</td>
</tr>
<tr>
<td>Yantea Rhyolite-dacite</td>
<td>1123</td>
<td>168</td>
<td>252</td>
<td>coherent</td>
<td>microcrystalline, locally fiamme-bearing at base</td>
<td>sub- to eu-hedral</td>
<td>no</td>
<td>folded flow bands, lineation, elongate vesicles</td>
<td>rare lithic fragments</td>
<td>lava flow</td>
</tr>
<tr>
<td>Rhyolite-dacite (Mi2)</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>coherent</td>
<td>microcrystalline</td>
<td>anhedral</td>
<td>no</td>
<td>folded flow bands, lineation, elongate vesicles</td>
<td>rare lithic fragments</td>
<td>ignimbrite</td>
</tr>
<tr>
<td>Lake Gairdner Rhyolite</td>
<td>120</td>
<td>48</td>
<td>31</td>
<td>clastic</td>
<td>glass shards, fiamme-bearing</td>
<td>anhedral, fractured</td>
<td>no</td>
<td>no</td>
<td>rare lithic fragments</td>
<td></td>
</tr>
<tr>
<td>Rhyolite-dacite (Mi5)</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>coherent</td>
<td>locally fiamme-bearing, layered</td>
<td>eu- to sub-hedral</td>
<td>no</td>
<td>folded flow bands, lineation</td>
<td>Qtz-fls enclaves</td>
<td>lava flow(?)!</td>
</tr>
<tr>
<td>Chandabooka Dacite</td>
<td>77</td>
<td>23</td>
<td>33</td>
<td>coherent</td>
<td>microcrystalline</td>
<td>eu- to an-hedral</td>
<td>angular clasts at base</td>
<td>flow bands</td>
<td>no</td>
<td>lava flow</td>
</tr>
</tbody>
</table>

*Outcrop area and volume are calculated by interpolation of outcrops and represent minimum estimates

** Aspect ratio: diameter of circle of equivalent area/average thickness
<table>
<thead>
<tr>
<th>Rock type</th>
<th>Rhyolite lavas</th>
<th>Pyroclastic deposits</th>
<th>Dacite lavas</th>
<th>Basalt, basaltic andesite</th>
<th>Rhyolite dykes</th>
<th>Granite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture</td>
<td>porphyritic</td>
<td>massive-eutaxitic</td>
<td>porphyritic</td>
<td>sparsely porphyritic, amygda-</td>
<td>porphyritic</td>
<td>equigranular-seriate</td>
</tr>
<tr>
<td>Max grain size</td>
<td>5 mm</td>
<td>2 mm</td>
<td>5 mm</td>
<td>1 mm</td>
<td>3 cm</td>
<td>10 mm</td>
</tr>
<tr>
<td>Phenocrysts/ crystals</td>
<td>Ab, Kfs, ±Qtz</td>
<td>Qtz, Kfs, Ab</td>
<td>Ab, Kfs, ±Cpx, ±amphibole Qtz</td>
<td>Cpx, ±(altered) OI?</td>
<td>Qtz, Ab, Kfs</td>
<td>Qtz, Kfs, Ab, Bt</td>
</tr>
<tr>
<td>Groundmass</td>
<td>Qtz, Kfs, Ab</td>
<td>Qtz, Kfs</td>
<td>Ab, Kfs, Qtz</td>
<td>Fe ox, Bt</td>
<td>Qtz, Ab, Kfs</td>
<td>Fe ox, Bt</td>
</tr>
<tr>
<td>Groundmass/matrix texture</td>
<td>microcrystalline (≤20 µm)</td>
<td>vitriclastic (≤500 µm)</td>
<td>microcrystalline-micropoikilitic (≤50 µm)</td>
<td>microcrystalline (≤100 µm)</td>
<td>microcrystalline (≤100 µm), ±spoonitic Qtz</td>
<td>-</td>
</tr>
<tr>
<td>Phenocyst abundance/ crystal proportion</td>
<td>≤10%</td>
<td><20%</td>
<td>≤10%</td>
<td>≤5%</td>
<td>20-30%</td>
<td>-</td>
</tr>
<tr>
<td>Igneous enclaves</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Ab albite, Ap apatite, Bt biotite, Cb carbonate, Fl fluorite, Kfs K-feldspar, Mag magnetite, Mnz monazite, OI olivine, ox oxide, Cpx clinopyroxene, Qtz quartz, Ttn titanite, Zrn zircon.
<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO2 (wt.%)</th>
<th>Al2O3</th>
<th>FeO</th>
<th>FeO*</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>TiO2</th>
<th>P2O5</th>
<th>P</th>
<th>Sr</th>
<th>Nb</th>
<th>Ba</th>
<th>Pb</th>
<th>Total</th>
<th>Zr</th>
<th>Nb/Al</th>
<th>P2O5/FeO*</th>
<th>Al2O3/TiO2</th>
<th>SiO2/Al2O3</th>
<th>MgO/Al2O3</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Sr/FeO*</th>
<th>Nb/Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH06</td>
<td>0.50</td>
<td>11.45</td>
<td>12.5</td>
<td>5.1</td>
<td>3.7</td>
<td>7.6</td>
<td>10.2</td>
<td>9.0</td>
<td>6.0</td>
<td>5.7</td>
<td>0.4</td>
<td>1.5</td>
<td>1.1</td>
<td>0.6</td>
<td>0.7</td>
<td>1.90</td>
<td>6.5</td>
<td>0.05</td>
<td>1.13</td>
<td>0.67</td>
<td>1.77</td>
<td>0.13</td>
<td>3.1</td>
<td>2.1</td>
<td>1.9</td>
<td>1.8</td>
<td>0.12</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>GH53</td>
<td>0.50</td>
<td>11.45</td>
<td>12.5</td>
<td>5.1</td>
<td>3.7</td>
<td>7.6</td>
<td>10.2</td>
<td>9.0</td>
<td>6.0</td>
<td>5.7</td>
<td>0.4</td>
<td>1.5</td>
<td>1.1</td>
<td>0.6</td>
<td>0.7</td>
<td>1.90</td>
<td>6.5</td>
<td>0.05</td>
<td>1.13</td>
<td>0.67</td>
<td>1.77</td>
<td>0.13</td>
<td>3.1</td>
<td>2.1</td>
<td>1.9</td>
<td>1.8</td>
<td>0.12</td>
<td>0.75</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- SiO2, Al2O3, FeO, MgO, CaO, Na2O, K2O, TiO2, P2O5, P, Sr, Nb, Ba, and Pb concentrations were determined by XRF.
- Al2O3, TiO2, and SiO2 concentrations were determined by ICP-MS, except for V, Cr, Ni, Cu, Zn, Sr, Nb, Ba, and Pb, which were determined by XRF.

Table 4. Whole-rock compositions

Unit	detection method	WO	BD	BR	FLD	RH	FO	BR	CCI	LGR	MCI	MGE	MCO	MB	MD	MC	YRD	WO	B	NB	MD	ND	SD	A	B	AS	HS	FE	**								
Total		2%	28	56	24	46	39	15	24	62	36	22	20	10	33	26	38	47	3	30	28	23	26	26	28	26	26	4	4	4	4	4	4	4	4		
C		1	10	20	5	4	6	6	7	10	8	8	3	3	4	4	7	8	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

Notes:
- The Major elements (M) are determined by XRF.
- The trace elements (T) are determined by ICP-MS.

Appendix A:
- The data were obtained from the National Geophysical Data Center (NGDC).
- The data were analyzed from the following sources: (1) Argus et al., 2011; (2) M. (2012) - Encyclopedia of the Continental Crust (ECC2012).

Appendix B:
- The data were obtained from the following sources: (1) Argus et al., 2011; (2) M. (2012) - Encyclopedia of the Continental Crust (ECC2012).
Table 5. Selected melt inclusion analyses

| Sample | 1C 38a | 1D 33a | 1C 33b | 1D 33c | 1D 33d | 1C 33e | 1D 33f | 1C 33g | 1D 33h | 1C 33i | 1D 33j | 1C 33k | 1D 33l | 1C 33m | 1D 33n | 1C 33o | 1D 33p | 1C 33q | 1D 33r | 1C 33s | 1D 33t | 1C 33u | 1D 33v | 1C 33w | 1D 33x | 1C 33y | 1D 33z | 1C 33a | 1D 33b | 1C 33c | 1D 33d | 1C 33e | 1D 33f | 1C 33g | 1D 33h | 1C 33i | 1D 33j | 1C 33k | 1D 33l | 1C 33m | 1D 33n | 1C 33o | 1D 33p | 1C 33q | 1D 33r | 1C 33s | 1D 33t | 1C 33u | 1D 33v | 1C 33w | 1D 33x | 1C 33y | 1D 33z |
|--------|
| He | CO2 | Ar | N2 |
| 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 | 1.88 | 0.10 | 1.80 | 0.10 |
| 0.01 | 0.09 | 0.01 |
| 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 | 1.30 | 0.37 | 1.25 | 0.37 |
| 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 | 0.03 | 0.09 | 0.03 | 0.10 |

Major element contents by EPMA recalculated to 100% anhydrous, trace elements by LA-ICP-MS.

WR:Whole rim; Ri: rim; WR-Wrap: Proximal; MDS: Molybdenum Dyke Suite. M: (Na+K)x(Ca+y)/(Si+x), and Zircon saturation temperature (Watson and Flesner, 1989).

* HD = by difference 100% - EPA total.