
 

Faculty of Science and Engineering 

Department of Exploration Geophysics 

 

 

 

 

 

 

 

Analytical and Numerical Modelling of Elastic Properties of Isotropic 

and Anisotropic Rocks and Their Stress Dependencies  

 

 

 

 

 

Pavel Golodoniuc 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is presented for the Degree of 

Doctor of Philosophy 

of 

Curtin University 

 

 

 

 

May 2015 



 

2 

 

DECLARATION 

 

 

 

To the best of my knowledge this thesis contains no material previously 

published by any other person except where due acknowledgement has been made. 

Some results of the research that formed parts of the thesis chapters were published 

as conference extended abstracts and journal publications, and acknowledged 

accordingly in the thesis layout along with indication of my contribution to these 

works. This thesis contains no material that has been accepted for the award of any 

other degree or diploma in any university. 

 

 

 

 

 

 

 

 

 

Signature:  

 

 

Date:  5 May 2015 



 

3 

 

ACKNOWLEDGEMENTS 

First and foremost, I have to thank my committee members for their guidance 

and support, Prof Boris Gurevich, Dr Marina Pervukhina, Dr Maxim Lebedev, and 

Dr Andrew Squelch. Without their assistance and dedicated involvement in every 

step throughout the process, this PhD dissertation would have never been 

accomplished. I would like to thank you very much for your support and 

understanding over these past six years. 

I would like to express my deepest gratitude to my advisor, Dr Marina 

Pervukhina, for her excellent guidance, caring, patience, and providing me with an 

excellent atmosphere for doing research. Your advice on both research as well as on 

my career have been priceless. I would like to thank Prof Boris Gurevich, who was 

abundantly helpful and offered invaluable assistance and support. I would also like to 

thank Dr Maxim Lebedev for all the wonderful times spent in University laboratories 

that allowed to get an insight on experimental side of research. I appreciate all the 

help and support from Dr Andrew Squelch in computing aspects of my research. In 

addition, I would like to thank Curtin University research staff member, Assoc Prof 

Roman Pevzner, for assistance and insightful discussions over the years. This list 

would not be complete without a mention of Ms Deirdre L. Hollingsworth, 

Administrative Officer at the Department of Exploration Geophysics, who has 

always been responsive and helpful in administrative matters. 

Deepest gratitude are also due to the CSIRO research staff, Dr Valeriya 

Shulakova, Dr David N. Dewhurst, Dr Tobias M. Müller, and Dr Michael B. 

Clennell, for the collaborative atmosphere that would not be otherwise possible 

without their support. Big thank you to all of them for willingness to share ideas and 

their vast knowledge. In addition, I would like to thank Dr Thomas Poulet, Dr Robert 

Woodcock, and Dr Simon Cox for their continual encouragement, support and career 

development advices. 

Special thanks goes to Dr Claudio Delle Piane, Dr Nordgård Bolås, and Dr 

Jerome Fortin, who kindly provided rock samples and performed laboratory sample 

analysis, which were essential for the research. 

I would also like to thank my family members for their endless love and 

support. They were always supporting me and encouraging me with their best 

wishes. 

Finally, I would also like to thank all of my friends who supported me in this 

journey, and incented me to strive towards my goal. 



 

4 

 

TABLE OF CONTENTS 

Declaration .................................................................................................................. 2 

Acknowledgements ..................................................................................................... 3 

Table of contents ........................................................................................................ 4 

List of figures .............................................................................................................. 7 

List of tables .............................................................................................................. 10 

Abstract ..................................................................................................................... 11 

Introduction .............................................................................................................. 14 

Research background ................................................................................. 14 

Thesis layout .............................................................................................. 19 

Chapter 1 – Computational elastic up-scaling of sandstones on the basis of  

X-ray microtomographic images ............................................................................ 24 

1.1 Introduction ......................................................................................... 25 

1.2 Donnybrook sandstone petrophysical and micro-CT data .................. 27 

1.3 Image processing and meshing ............................................................ 28 

1.3.1 Image pre-processing for noise suppression ..................................... 29 

1.3.2 Histogram-based segmentation ........................................................ 30 

1.3.3 Effective medium calculation of averaged solid properties ............. 32 

1.3.4 Mesh generation and simplification ................................................. 32 

1.4 Numerical simulation of effective bulk and shear moduli .................. 33 

1.4.1 Algorithm and software .................................................................... 33 

1.4.2 Meshing uncertainty ......................................................................... 34 

1.4.3 Numerical simulation and accuracy testing ...................................... 36 

1.4.4 Meshing and numerical simulation of elastic moduli of Donnybrook 

sandstone ................................................................................................... 38 

1.4.5 Comparison with experimental data ................................................. 41 

1.5 Discussion ............................................................................................ 43 

1.6 Chapter conclusions ............................................................................. 46 

Chapter 2 – Experimental verification of the physical nature of velocity-stress 

relationship for isotropic porous rocks .................................................................. 47 

2.1 Introduction ......................................................................................... 47 

2.2 Workflow ............................................................................................. 50 

2.2.1 Experiment ....................................................................................... 50 



 

5 

 

2.2.2 Calculations of key parameters ........................................................ 50 

2.2.3 Testing theoretical predictions.......................................................... 52 

2.3 Data ...................................................................................................... 53 

2.4 Results ................................................................................................. 54 

2.5 Chapter conclusions ............................................................................. 56 

Chapter 3 – Parameterization of elastic stress sensitivity in shales .................... 57 

3.1 Introduction ......................................................................................... 58 

3.2 Modelling of the effect of isotropic stress on the anisotropic orientation 

of discontinuities ....................................................................................... 60 

3.3 Data ...................................................................................................... 64 

3.4 Fitting procedure and trends in microcrack properties ........................ 65 

3.5 Discussion ............................................................................................ 69 

3.6 Chapter conclusions ............................................................................. 73 

Chapter 4 – Stress dependency of elastic properties of shales: the effect of 

uniaxial stress ........................................................................................................... 74 

4.1 Introduction ......................................................................................... 74 

4.2 Modelling the effect of anisotropic stress on elastic coefficients of 

shales ......................................................................................................... 76 

4.3 Validation on experimental data .......................................................... 79 

4.4 Discussion ............................................................................................ 82 

4.5 Chapter conclusions ............................................................................. 83 

Chapter 5 – Prediction of sonic velocities in shale from porosity and clay 

fraction obtained from logs ..................................................................................... 84 

5.1 Introduction ......................................................................................... 85 

5.2 Forward modelling workflow .............................................................. 88 

5.3 Log data example................................................................................. 93 

5.4 Inversion for elastic properties of wet clay ......................................... 97 

5.5 Discussion .......................................................................................... 100 

5.6 Chapter conclusions ........................................................................... 102 

Concluding remarks .............................................................................................. 103 

References ............................................................................................................... 106 

Appendix A ............................................................................................................. 117 



 

6 

 

Stress dependency of elastic compliances of transversely isotropic media 

with anisotropically distributed discontinuities ....................................... 117 

Appendix B ............................................................................................................. 120 

SEG Publications ..................................................................................... 120 

 



 

7 

 

LIST OF FIGURES 

Figure 1.1 2D images of Donnybrook sandstone that comprise 66.1% of quartz 

(grey), 11.7% of feldspar (light grey), 10.6% of kaolinite (dark grey) and 

11.6% of pore space (black): a) obtained on a micro-CT and (b) SEM. ........... 27 

Figure 1.2 Donnybrook sandstone microstructure: (a) reconstructed images in three 

perpendicular directions, (b) interfacial surface: solid phase is transparent 

and pore space is shown by magenta. The original cube of 400×400×400 

pixels is subdivided into eight cubes of 2003 pixels as shown. ......................... 28 

Figure 1.3 Effect of 2D routines (horizontal stripes) applied to the 3D sample of 

Donnybrook sandstone. ..................................................................................... 29 

Figure 1.4 Comparison of different filters on the fragment of 3D Donnybrook 

sandstone: a) original image, b) 3D Gaussian smoothing filter, and c) 3D 

edge preserve smoothing. .................................................................................. 30 

Figure 1.5 A tomographic slice of a 3D image of a sandstone sample: a) original 

greyscale image, b) its segmented image consists of two phases – matrix 

(white patterns) and pore space (black patterns), c) image histogram 

showing the number of occurrences of voxel values and the current 

partitioning of the intensity range. ..................................................................... 31 

Figure 1.6 Schematic model of displacements applied to the faces of the cube to 

calculate (a) P-wave modulus and (b) shear modulus. ...................................... 34 

Figure 1.7 Models used for FEM simulations: (a) geometry; (b) overlapped meshing 

of BI and HR algorithms for spherical inclusion; (c) model BI70; (d) 

model BI50; (e) model HR70 and (f) model HR50. .......................................... 35 

Figure 1.8 Comparison of the results of finite-element simulations with theoretical 

predictions for meshing fulfilled in (a) AVIZO using the BI method; (b) 

AVIZO using the HR method............................................................................ 37 

Figure 1.9 Relative error of bulk modulus simulation caused by a finite size of a 

mesh element against porosity uncertainty for the (a) high-regularity 

method of meshing in AVIZO and (b) best isotropic method in AVIZO. ........ 38 

Figure 1.10 Different stages of surface simplification for part 1 of Donnybrook 

sandstone sample: a) original surface – 1,269,824 faces, b) simplified 

surface (edge collapsing algorithm) – 199,963 faces, c) re-meshed surface 

(BI algorithm, reduced by 50%) – 1,014,965 faces. .......................................... 39 

Figure 1.11 Volumetric tetrahedral mesh of one of eight 2003 cubes of Donnybrook 

sandstone: (a) solid and pore phases, (b) pore space and (c) rock matrix. ........ 40 



 

8 

 

Figure 1.12 Bulk and shear moduli simulated for all parts (circles) in comparison with 

SCA method predictions for pores of different shapes from spheres (solid 

line) to oblate spheroids with aspect ratios (0.01-0.5) (dashed lines). .............. 41 

Figure 1.13 Comparison of simulated bulk (a) and shear (b) moduli (solid line) with 

experimental data (circles) for Donnybrook sandstone measured for 

effective stresses 15-70 MPa. Linear trend observable at effective stresses 

of 50-70 MPa is marked with a dashed line. ..................................................... 43 

Figure 1.14 Illustration of existence of soft porosity in Donnybrook sandstone: (a) 

soft porosity calculated from stress dependency of bulk modulus shows 

exponential decay and almost vanishes at 50 MPa; (b) Experimentally 

measured saturated bulk moduli in comparison with bulk moduli 

calculated using Gassmann fluid substitution equation from dry moduli at 

different effective stresses. Two saturated moduli show obvious 

difference at low effective stresses and are in a good agreement at higher 

stresses. .............................................................................................................. 45 

Figure 2.1 Total, stiff and compliant porosities. ................................................................. 54 

Figure 2.2 Linear dependency of variation of compressibility with soft porosity. ............. 55 

Figure 2.3 Pressure dependency of compressibility and soft porosity with pressure. ........ 55 

Figure 2.4 Correlation between predicted and measured soft porosities. ........................... 56 

Figure 3.1 An Officer Basin shale showing particle alignment and the presence of 

microfractures (white arrows). Modified from Kuila et al. (2010).................... 61 

Figure 3.2 Schematic diagram of fitting procedure. Compliances calculated from 

experimentally measured velocities at different isotropic effective stresses 

are fitted using a set of equations 3.7-3.11. As a result of the fitting, four 

fitting parameters are obtained. ......................................................................... 66 

Figure 3.3 Histogram of the ratio of normal to tangential compliance for all the shale 

samples. Most of the values are far from unity. ................................................ 66 

Figure 3.4 Quality of fitting of the experimental stress dependencies of elastic 

coefficients. (a) Misfits from equations 3.7-3.11 and equations 3.12-3.16 

are shown by solid dots and open circles, respectively. (b) Relative excess 

in misfit caused by use of equations 3.12-3.16.................................................. 68 

Figure 3.5 Variations with depth of (a) crack orientation anisotropy parameter , (b) 

tangential compliance sBT, (c) ratio of normal to tangential compliance B, 

(d) characteristic pressure Pc. ............................................................................ 69 

Figure 3.6 Compliances (left) and anisotropy parameters (right) for both 

measurements and our model on brine-saturated hard shale (sample G3 



 

9 

 

from Wang, 2002). Values calculated from ultrasonic measurements are 

shown by circles. Fits using the full set of five compliances are shown by 

thick lines. Thin lines show fits using incomplete sets of compliances. In 

most of the cases, the thin and thick lines coincide. .......................................... 72 

Figure 4.1 Vph (circles), Vsh (diamonds), Vpv (squares) and Vs1 (triangles) velocities 

measured at 10 MPa of effective pressure in Officer Basin shale 

compared with model predictions (solid lines).................................................. 80 

Figure 4.2 Experimentally measured and predicted velocities in Officer Basin shale 

at effective pressures of 10 MPa vs. angle between the direction of the 

wave propagation and the normal to the bedding plane: (a) VP, (b) VSH. 

Predicted angular dependencies for 1 MPa, 8 MPa and 15 MPa are shown 

by blue, green and red lines, respectively. Experimentally measured 

velocities for 1 MPa, 8 MPa and 15 MPa are shown by blue circles, green 

squares and red triangles, respectively. ............................................................. 81 

Figure 5.1 SEM image of a shale sample extracted from the well of interest 

(courtesy of C. Delle Piane). Silt fraction mainly consists of quartz 

carbonate inclusions. Wet clay occupies the remaining volume of the 

shale. .................................................................................................................. 89 

Figure 5.2 Log data (left to right): Gamma ray (GR), bulk (RHO8) and grain 

(RHGE) density, neutron (NPOR) and density (DPOR) porosity. .................... 94 

Figure 5.3 Elastic coefficients C33 and C44 calculated from log data vs. wet clay 

porosity, , colour coded with respect to silt fractions are compared to 

CPS model predictions for silt fractions of 0.4, 0.3, 0.2 and 0.1, which are 

shown by brown, yellow, cyan and blue, respectively. ..................................... 95 

Figure 5.4 Gamma ray, compressional and shear sonic velocities (blue lines) in 

comparison with simulated velocities (red lines): (a) throughout the 

whole shale interval, the depth between major gridlines is 100 m; (b) 

throughout about 50 m of depth; 10 m distance between gridlines. .................. 96 

Figure 5.5 Modelled shale velocities vs. measured sonic log velocities. ............................ 97 

Figure 5.6 Elastic coefficients, c33 and c44, of clay obtained by the inversion 

procedure against wet clay porosity using silt aspect ratio of 1 (i.e. 

spherical). The best linear fit is shown by black line. ....................................... 98 

Figure 5.7 Depth dependencies of elastic coefficients, silt fraction and wet clay 

porosity: (a) C33 (green), c33 (blue), C44 (red) and c44 (magenta) and (b) 

wet clay porosity (red) and silt fraction (blue). By depth here, we mean 

the depth from some non-zero level. ............................................................... 101 



 

10 

 

LIST OF TABLES 

Table 1.1 Model of spherical inclusion: surface re-meshing and volumetric gridding 

parameters. Initial parameters: 25.16·104 points, 50.32·104 faces; 

simplified surface: 5.00·104 points, 10.00·104 faces. ....................................... 36 

Table 1.2 Donnybrook sandstone: volumetric grid and porosity parameters for all 8 

parts. .................................................................................................................. 39 

Table 5.1 Results the linear extrapolation of the inverted clay coefficients to 0  

using silt inclusions with different aspect ratios, α. Coefficients of 

determination, R2, indicate that linear trends fit the inverted coefficients 

better in the cases of large aspect ratios of silt inclusions. ................................ 99 

Table 5.2 Depth gradients. ............................................................................................... 100 

file:///D:/Curtin/Thesis/golodoniuc%20p_phd_final_submission.docx%23_Toc442367585


ABSTRACT 

11 

 

ABSTRACT 

Rock physics is a key scientific discipline that provides the bridge between 

seismic data and key rock properties, such as porosity, permeability and saturation. 

In this thesis, we try to establish links or dependencies between these key properties 

and the data obtained via direct measurements in laboratories. The knowledge of 

these dependencies allows more accurate estimations of porosity, permeability and 

saturation – the parameters that oil and gas industry is looking for to be produced 

from surface seismic data. With the recent development of computer tomography 

(CT) scanners, capable of producing high resolution 3D models of rock samples at 

resolutions up to below one micron, advancements in computer technologies, and 

availability of massive computational resources, it became feasible to run complex 

numerical experiments involving realistic models, verify various approaches, and up-

scale laboratory measurements to much larger volumes. Advances in X-ray micro-

CT technologies, including compact micro-CT scanners and gigantic national 

synchrotron facilities and scientific computing provides a range of opportunities for 

geophysicists to acquire realistic digital representations of complex porous media via 

computer tomography. This comes with its own challenges and requires a thoughtful 

approach to be taken during CT image acquisition and initial image processing 

including filtering, smoothing, and segmentation of different rock phases. Here we 

obtain realistic geometry of the Donnybrook sandstone sample and calculate sonic 

velocities using numerical simulation methods. For numerical simulations of rock 

properties the finite element method (FEM) is used. FEM is widely accepted in 

simulations of linear elastic properties of porous rocks and reliable implementations 

of FEM algorithms are readily available in a number of scientific packages. 

Predictions of elastic properties of sandstones are not straightforward and a number 

of studies have shown a tendency to predict somewhat higher velocities than 

obtained via laboratory experiments. Even at high resolution provided by modern 

micro-CT scanners they still cannot resolve cracks or contacts between individual 

grains in a mineral assembly. To explain the reason of discrepancies between 

numerically simulated and measured velocities, we compare velocities of saturated 

Donnybrook sandstone and Gassmann’s predictions. At all confining pressures 

below 50 MPa the Gassmann’s predictions are below measured velocities that is 

commonly explained by the squirt effect caused by presence of microcracks or grain 
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contacts. These grain contacts can reduce elastic moduli dramatically and lead to 

overestimation of elastic properties at low stresses. However, these microcracks are 

too thin and have very small aspect ratios (10-4 to 10-3) to be detected by X-ray 

microtomography, and therefore are not accounted for in numerical simulations. 

Therefore, since we cannot yet see the grain contacts and microcracks at resolution 

we have available today, we need to further study this topic theoretically. This is the 

next topic of our study. In the development and refinement of the 3D models of rock 

samples, I contributed to the micro-CT image processing and reconstruction of 3D 

models and further digital model adaptation for finite element modelling (FEM). 

Significant part of my work involved development of numerical algorithms, FEM 

numerical simulations, parallelization and up-scaling of algorithms to computer 

clusters, as well as interpretation of results. 

In the following chapters, we investigate elastic properties of grain contacts 

and microcracks using stress dependency of dry and saturated sandstones. We are 

specifically focused on the parameters, such as characteristic effective stress, under 

which microcracks are getting closed, as well as the function that describes stress 

dependency of crack specific areas. We begin with isotropic sandstones, then 

generalize our stress sensitivity approach to anisotropic media and specifically apply 

it to shales. I contributed to the development of the analytical model and 

implemented the numerical modelling workflow in MATLAB that is at the core of 

this study. I applied the numerical modelling procedure to shale samples, 

systematized, visualized, and contributed to critical analysis of the obtained results. 

Stress dependency of elastic properties of shales is of high interest as shales 

are the most common rock type encountered in sedimentary basins. We took about 

40 shale samples with stress sensitivities of elastic constants measured in laboratories 

and developed a model that describes the effect of orientation distribution function 

(ODF) of microcracks on elastic properties of rock matrix. This rock matrix can itself 

be either isotropic or anisotropic. The latter case is practically important as our shale 

samples are shown to be intrinsically anisotropic irrespective of presence of cracks in 

their structure. Combining the dual porosity approach of Shapiro (2003) with the 

non-interactive approximation of Sayers and Kachanov (1995) we propose a model 

that allows description of stress dependency of all five elastic coefficients of 

transversely isotropic (TI) shales by treating both the orientation distribution of clay 
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platelets and the compliance ratio of platelet contacts as model parameters. At first, 

this is done for the case of isotropic effective pressure and later extended further to 

the case of application of uniaxial anisotropic stress. We show that the same 

parameters can be used to describe variations in elastic stress tensor in shales in the 

case of applied isotropic or anisotropic stress. My contributions were in the areas of 

the further development of the proposed analytical model, performing numerical 

simulations on the test dataset, and theoretical interpretation of the results. 

Finally, we have applied effective medium approach to study the effect of silt 

on elastic properties of shales and demonstrated that shale vertical velocities can be 

modelled with two key parameters, namely silt fraction and porosity. These 

parameters can easily be measured by conventional and modern logging tools. This 

forms another important aspect of proposed methodology – the fact that it does not 

rely on the detailed knowledge of mineralogical content of shales. This represents a 

great advantage as mineralogical analysis is a very laborious process by itself and 

this information is rarely readily available for shales. I contributed to the 

development of the new analytical model, implementation of the numerical workflow 

for forward and inverse modelling of shale and clay elastic properties, as well as 

analysis and interpretations of modelled results and their comparison with the 

experimentally measured data. 
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INTRODUCTION 

RESEARCH BACKGROUND 

Finding relationships between rock texture and macroscopic elastic properties 

is important for understanding and quantitative interpretation of borehole and surface 

geophysical data. Computing such macroscopic properties from the rock 

microstructure is called elastic up-scaling. Due to the complexity of real rock 

microstructure, such as random distribution of grains of different mineralogy, and 

presence of different pore systems (e.g., primary and secondary porosity, 

microporosity, microcracks, etc.), such up-scaling can be a challenging task. Typical 

methods used for the elastic up-scaling include effective medium theory, micro-

mechanical models, upper and lower bounds based on continuum mechanics, or 

empirical relationships determined from laboratory or field measurements (e.g., 

Mavko et al., 1998). 

As far as the micro-structural characterization of porous rocks is concerned, a 

great deal of progress has been achieved through the development of scanning 

electron microscopy (SEM) (e.g., Solymar and Fabricius, 1999) and X-ray computed 

tomography (e.g., Flannery et al, 1987; Van Geet and Swennen, 2001) yielding 3D 

representations of rock microstructure. Nowadays synchrotron source and 

conventional source X-ray micro-CT can provide us with direct measurements of a 

3D structure at resolution down to one micron (e.g., Al-Raoush and Wilson, 2005; 

Arns et al., 2002; Spanne et al., 1994). These microtomograms yield detailed 

information on grain shapes and pore networks and are the building blocks of digital 

rock models. 

Stress dependency of elastic properties of reservoir rocks and seals is 

practically important for seismic interpretation, overpressure prediction, fluid 

identification and 4D monitoring. In spite of the importance of the problem, there is 

no conventional theory that allows describing stress dependency of rock elastic 

properties with a small number of physically plausible parameters. Shapiro (2003) 

proposed a physically plausible explanation of the exponential saturation of 

ultrasonic velocities into a linear trend that was experimentally observed by 

Eberhart-Phillips et al. (1989) for a number of clean and shaly sandstones. Shapiro 

showed that such a stress dependency could be explained by cracks with low aspect 

ratios of the same order of magnitude. Shapiro (2003) also suggested that the 
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decrease of elastic compliances of sandstones could be described with the same 

exponent as the decay of soft porosity with effective stress. In this thesis, we test this 

hypothesis by applying the proposed stress dependency theory on a number of 

sandstones. 

In the next stage of research, we further modify the model suggested by 

Shapiro (2003) to the case of shales that exhibit transversely isotropic symmetry. 

Two major causes of elastic anisotropy in shales are intrinsic anisotropy of clay 

platelets and anisotropic orientation distribution function (ODF) of these anisotropic 

clay platelets. These two sources of elastic anisotropy were successfully used to 

predict elastic anisotropy of shales in a number of studies starting from the 

pioneering work of Hornby et al. (1994). Two other causes of elastic anisotropy in 

shales, (1) anisotropic distributions of discontinuities and (2) aligned silt inclusions, 

have drawn much less attention in studies of shale elastic anisotropy. Stresses affect 

elastic properties of shales due to presence of discontinuities such as cracks and 

compliant grain contacts. Shapiro and Kaselow (2005) suggested a stress dependency 

model for orthorhombic media based on dual porosity approach that imply bimodal 

distribution of pore compliances and superposition of deformation fields caused by 

closure/shape change of these two groups of stiff and compliant pores under applied 

stress. Assumption that was made by Shapiro and Kaselow (2005) and Ciz and 

Shapiro (2009) to apply this dual porosity model to transversely isotropic (TI) media 

implicitly assumes that normal and tangential compliances of each individual crack 

are equal. This assumption oversimplifies the model and results in S13 coefficient to 

be independent of stress. However, as shown in Chapter 3, even though the variation 

of elastic compliance S13 might be small, it should not be neglected. Sayers (2005) 

used aligned discontinuities in shales to study stress dependency of elastic properties 

of shales. Here we use experimentally measured stress dependencies of shale elastic 

moduli to derive ODFs and elastic properties of cracks. We use formalism suggested 

by Sayers and Kachanov (1995) to develop a model that describes stress 

dependencies of all five elastic constants of TI media, if applied stress is isotropic. 

The stresses in the Earth interior are usually anisotropic. Non-hydrostatic 

stresses can cause elastic anisotropy, if the rock was initially isotropic, and change 

the rock symmetry, if the rock was initially anisotropic. The effect of a stress field on 

a discontinuity depends on the orientation of the discontinuity with respect to the 
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stress field. Knowledge of the pattern of stress-induced anisotropy (as expressed, for 

example, by the ratio of anisotropy parameters) can be useful for distinguishing it 

from other causes of anisotropy, such as presence of aligned fractures. Such patterns 

can also be used to distinguish, say, P-wave anisotropy from S-wave anisotropy 

estimated from S-wave splitting (Crampin, 1985). A number of authors have 

modelled stress-induced anisotropy by assuming the rock to contain a distribution of 

penny-shaped cracks, and considering variation of this distribution due to applied 

stress (e.g., Nur, 1971, Sayers, 1988). However, penny-shaped crack geometry may 

not give an adequate quantitative description of discontinuities in rocks (Sayers and 

Han, 2002; Gurevich et al., 2009; Angus et al., 2009). Alternatively, Mavko et al. 

(1995) and Sayers (2002) developed modelling approaches that do not restrict the 

shape of discontinuities but instead infer their parameters from measurements. These 

approaches require numerical calculations to obtain an insight into anisotropy 

patterns. To obtain a more simple and general insight to these patterns, we make 

some simplifying assumptions that allow us to compute the anisotropy parameters 

analytically. Our main assumption is that a rock containing some distribution of 

discontinuities is subjected to a small uniaxial stress (or uniaxial strain) such that it 

results in a weak anisotropy of the discontinuity orientation distribution, and weak 

elastic anisotropy. The initial crack orientation distribution is obtained from the study 

of stress dependencies of shales subjected to isotropic stresses. 

Modelling of anisotropic elastic constants of shales, if their porosity and 

mineralogy are known, is a challenging task by itself. Shales are complex composite 

materials with nanoscale intrinsically anisotropic clay platelets of different 

mineralogy interacting with nanoscale pores and silt inclusions of different shape, 

size and composition. Thus, many factors might critically affect elastic properties of 

these complex shale composites. Considerable effort has been made to predict elastic 

properties of shales using detailed knowledge of clay and silt mineralogy provided 

by XRD analysis, silt and pores aspect ratios and orientation distribution functions of 

clay platelets obtained from SEM images (e.g., Hornby et al., 1994; Peltonen et al. 

2008; Peltonen et al., 2009; Bayuk et al., 2007; Jensen et al., 2011). 

Mixture theories are routinely used to calculate effective elastic moduli of 

composites in the case when elastic properties of the constituents are known. 

Unfortunately, elastic properties of pure clays cannot be experimentally measured. A 
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classic approach for modelling of elastic properties of clays was suggested by 

Hornby et al. (1994). This classic approach counts for partial alignment of clay 

platelets (but not for microcracks or other discontinuities) and uses mixture theories 

to predict clay properties from the properties of water and 100% pure clay end 

members. This requires knowledge of a large number of parameters that can be 

measured only in laboratories on a limited number of samples, such as orientation 

distribution function of clay platelets, volumetric fraction of silt and volumetric 

fractions of free and bound water. Moreover, as it has been recently shown by Sayers 

(2013), this classic approach cannot explain larger strain magnitudes normal to 

bedding commonly observed in shales when stress is applied parallel to bedding 

compared to strain magnitudes parallel to bedding when the same stress magnitude is 

applied normal to bedding. 

A different approach is reported in a series of papers (Ulm and Abousleiman, 

2006, Ortega et al., 2007, Ortega et al., 2009). Ulm and Abousleiman (2006) directly 

measured elastic properties of wet clay packs using nanoindentation techniques and 

determined that the variations in shale elastic properties can be captured with two 

key parameters, namely, silt fraction and volumetric fraction of clay in a wet clay 

pack. Pervukhina et al. (2008a) inverted anisotropic moduli of shales obtained from 

ultrasonic pulse method for anisotropic moduli of clay. They confirmed the 

importance of the silt fraction and the fraction of clay in a wet clay pack as the key 

parameters for predicting of elastic properties of shales and elaborated the method. 

The obtained method was applied for modelling of sonic velocities in shales using 

silt fraction and porosity measured with wireline logging tools in a vertical well, 

which is detailed in Chapter 5. The obtained velocities were shown to be in a good 

agreement with measured sonic velocities throughout the depth of about 500 meters. 

Systematic overestimation of measured velocities by simulated sonic velocities in 

another vertical well was explained with abnormally high pore pressure (Pervukhina 

et al., 2013). The difference was calibrated with the experimental measurements and 

used for estimation of pore pressure in the formation. We use the same model to 

estimate elastic anisotropy in shales. Five elastic coefficients of vertical transversely 

isotropic (VTI) media are calculated using silt fraction and porosity measured with 

logging tools. Then these elastic coefficients are used to calculate phase and group 
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velocities in off-axis angle directions. The obtained velocities are then compared 

with sonic velocities measured in a deviated well. 

Within this thesis, I refer to work and activities conducted as part of the 

research in first person plural form as each chapter is the result of discussions and 

close collaboration between various individuals involved in this research. The results 

arising from the research reported in this thesis have been published as journal papers 

and conference extended abstracts, which is acknowledged accordingly in the Thesis 

Layout section below. 
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THESIS LAYOUT 

The following is intended to describe the motivation of each chapter of this 

thesis and briefly outline the chapter content. 

 

Chapter 1. The thesis begins with an investigation of the potential to simulate 

the elastic properties of rocks on digitized 3D models obtained from high resolution 

X-ray computer tomography (CT) images and the possibility to accurately up-scale 

the results to larger volumes. The proposed up-scaling approach appeared to be a 

challenging task not only because most commercial micro-CT scanners do not allow 

clear differentiation between main constituents of sandstones we analysed (e.g., 

quartz, feldspar, clay minerals, etc.), but also because of the fact that even at the  

maximum resolution of ~1 micron it is still not sufficient to resolve complex 

geometry of the grain contact areas. We carefully describe various approaches to CT 

image processing, such as filtering, smoothing, and segmentation of rock phases. 

Further, we mesh both grain and pore phases using irregular meshing procedures 

available in AVIZO software package and compare the effect of mesh accuracy with 

uncertainties of numerical modelling of elastic properties. Finally, we compare the 

numerical simulation results with experimentally measured elastic parameters and 

show that the discrepancy obtained at low effective stresses can be explained by the 

presence of grain contacts that are unresolvable by micro-CT scanners. In this 

chapter, I used the material published in the following journal paper with permission 

from leading co-authors: 

 

Shulakova V., Pervukhina M., Müller T. M., Lebedev M., Mayo S., Schmid 

S., Golodoniuc P., De Paula O. B., Clennell B. M., and Gurevich B., 2011, 

Computational elastic up-scaling of sandstones on the basis of X-ray micro-

tomographic images: Geophysical Prospecting, doi: 10.1111/j.1365-

2478.2012.01082.x. 

 

My personal contributions to the publication were in the areas of (a) micro-

CT image processing, reconstruction of 3D models of rock samples, and further 

digital model adaptation for finite element modelling (FEM) in ABAQUS FEA 

software suite, (b) FEM numerical simulations of effective bulk and shear moduli, 
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(c) algorithms development, parallelization and up-scaling to computer clusters, and 

(d) interpretation of results. 

 

Chapter 2. In this chapter, we looked at the physical nature of velocity-stress 

relationships for isotropic rocks and at the possibility to extend the theory to 

anisotropic rocks. We test the dual porosity concept proposed by Shapiro (2003) on 

experimentally measured elastic properties of dry reservoir sandstone from the 

Northwest Shelf of Australia (Siggins and Dewhurst, 2003). In this chapter, I used 

the material published in the following extended abstract with permission from 

leading co-authors: 

 

Pervukhina M., Gurevich B., Dewhurst D. N., Siggins A. F., Golodoniuc P., 

and Fortin J., 2010, Experimental verification of the physical nature of 

velocity-stress relationship for isotropic porous rocks: ASEG Extended 

Abstract at the 21st International Geophysical Conference and Exhibition 

(ASEG-PESA), Sydney, Australia. 

 

I developed the numerical modelling workflow in MATLAB that is at the 

core of this study. I also helped to analyse simulated results and further contributed 

to model adaptation for the case of anisotropic rocks. 

 

Chapter 3. The idea of the research reported in this chapter stems from 

successful application of Shapiro’s model (2003) to the sandstone as described in the 

previous chapter. Using Sayers-Kachanov formalism, we develop the stress-

dependency model for transversely isotropic (TI) media. The newly developed model 

describes stress sensitivity behaviour of all five elastic coefficients using four 

physically meaningful parameters, namely, specific tangential compliance of a single 

crack, ratio of normal to tangential compliances, characteristic pressure and crack 

orientation anisotropy parameter. This chapter is based on the published version of 

the following journal publication with permission from co-authors and publishers 

(see Appendix B): 
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Pervukhina M., Gurevich B., Golodoniuc P., and Dewhurst D. N., 2011, 

Parameterization of elastic stress sensitivity in shales: Geophysics, 76(3), p. 

WA147–WA155, doi:10.1190/1.3554401. 

 

I contributed to the development of the analytical model and implemented it 

in MATLAB to simulate the effects of application of isotropic stresses on the 

anisotropic orientation of discontinuities, such as grain or platelet contacts, cracks or 

fractures. I applied the numerical modelling procedure to 20 shale samples, 

systematized and visualized the obtained results, and contributed to critical analysis 

in the Discussion section of the chapter. 

 

Chapter 4. Here we further extend the model proposed in the previous chapter 

to gain a theoretical insight on the variation of elastic coefficients with anisotropic 

stress. Anisotropic stress is an important factor that adds to the complexities 

associated with the intrinsic anisotropy of shales caused by preferred mineral 

orientation. The model proposed in this chapter allows parameterization of the stress 

dependency of elastic coefficients of shales under anisotropic stress conditions with 

only four parameters that can be estimated from experimentally measured data. In 

this chapter, I used the material published in the following SEG extended abstract 

with permission from co-authors and publishers (see Appendix B): 

 

Pervukhina M., Gurevich B., Golodoniuc P., and Dewhurst D. N., 2011, 

Stress dependency of elastic properties of shales: the effect of uniaxial stress: 

SEG Extended abstract at the SEG 2011 Conference, San Antonio, USA, 

doi:10.1190/1.3627669. 

 

I planned the research in collaboration with research supervisors, contributed 

to further development of the proposed analytical model and performed numerical 

simulations on the test dataset obtained for a shale sample from the Officer Basin in 

Western Australia. I compared predicted elastic properties variation due to 

application of uniaxial stress for TI media with experimentally measured data, and 

was instrumental in theoretical interpretation. 
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Chapter 5. This chapter consists of two main parts – at first, using Clay-Plus-

Silt approach, we model elastic properties of shales from porosity and mineralogy 

logs, and then we invert the elastic properties of shales obtained from the sonic log 

measurements in the same vertical well for those of clays. 

Clay-Plus-Silt model is based on the idea that elastic moduli of clay can be 

estimated from total porosity and silt fraction that can relatively easy be obtained 

from wireline measurements or derived from common log measurements. This gives 

us an advantage to model and predict elastic properties of shales without detailed 

mineralogical analysis on samples, which significantly reduces the costs. 

In the second half of the chapter, we invert elastic coefficients of shales for 

vertical profiles of clay elastic coefficients. The results of the analysis give us an 

insight on how elastic coefficients of shales and clays are controlled by the porosity 

decrease due to compaction. 

In this chapter, I used the material previously published in the following 

EAGE and SEGJ extended abstracts, and that was later published in the Geophysics 

in 2015. All published materials were used with permission from leading co-authors 

and respective publishers (see Appendix B): 

 

 Pervukhina M., Golodoniuc P., Gurevich B., Clennell M. B., Nadri D., 

Dewhurst D. N., and Nordgård Bolås H. M., 2012, An estimation of sonic 

velocities in shale from clay and silt fractions from the Elemental Capture 

Spectroscopy log: Extended abstract, 74th EAGE Conference, Copenhagen, 

Denmark. 

 Pervukhina M., Golodoniuc P., and Dewhurst D. N., 2013, Rock physics 

modeling of sonic velocities in shales: Proceedings of the 11th SEGJ 

International Symposium, Yokohama, Japan, 398-401. 

 Pervukhina M., Golodoniuc P., Gurevich B., Clennell M. B., Dewhurst D. N., 

and Nordgård Bolås H. M., 2015, Prediction of sonic velocities in shale from 

porosity and clay fraction obtained from logs – a North Sea well case study: 

Geophysics, 80(1), p. D1-D10, doi:10.1190/GEO2014-0044.1. 

 

My role in the above mentioned publications were in the areas of (a) planning 

research activities and contribution to the development of the new analytical model, 
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(b) implementation of the numerical workflow for forward and inverse modelling of 

shale and clay elastic properties, and (c) analysis and interpretations of modelled 

results and their comparison with the experimentally measured data. 
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CHAPTER 1 – COMPUTATIONAL ELASTIC UP-SCALING OF 
SANDSTONES ON THE BASIS OF X-RAY MICROTOMOGRAPHIC 
IMAGES 

Up-scaling the elastic properties of digitized rock volumes as obtained from 

X-ray computer tomography (CT) imaging via computer simulations has the 

potential to assist and complement laboratory measurements. This computational up-

scaling approach remains a challenging task as the overall elastic properties are not 

only dependent on the elastic properties of the individual grains but also on the 

hardly resolvable pore spaces between adjacent grains such as microcracks. We 

develop a digitized rock image and elastic up-scaling workflow based on general-

purpose and widely available software packages. Particular attention is paid to the 

CT image processing including filtering, smoothing, and segmentation, as well as to 

the strategy for optimal meshing of the digital rock model. We apply this workflow 

to the microtomographic image of a well-consolidated feldspatic sandstone sample 

and determine the up-scaled bulk and shear modulus. These effective elastic moduli 

are compared to the moduli inferred from laboratory ultrasound measurements at 

variable effective stress [0-70 MPa]. We observe that the numerically up-scaled 

elastic moduli correspond to the moduli at a certain effective stress level at about 50 

MPa, beyond which the effective-stress dependency follows a linear trend. This 

indicates that the computational up-scaling approach yields moduli as if all compliant 

(soft) porosity was absent, i.e. microcracks are closed. To confirm this hypothesis, 

we estimate the amount of soft porosity on the basis of the dual porosity theory 

(Shapiro, 2003) and find that at 50 MPa the soft porosity is indeed practically zero. 

We conclude that our computational elastic up-scaling approach yields physically 

consistent effective moduli even if some geometrical features are below CT 

resolution. To account for these sub-resolution features either theoretical or 

additional computational approaches can be used. 

In this chapter, I used the material published in the following journal paper 

with permission from leading co-authors: 

 

Shulakova V., Pervukhina M., Müller T. M., Lebedev M., Mayo S., Schmid 

S., Golodoniuc P., De Paula O. B., Clennell B. M., and Gurevich B., 2011, 

Computational elastic up-scaling of sandstones on the basis of X-ray micro-
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tomographic images: Geophysical Prospecting, doi: 10.1111/j.1365-

2478.2012.01082.x. 

 

1.1 INTRODUCTION 

Recent advances in computer technology triggered the development of elastic 

up-scaling approaches based on numerical simulations of the elasticity equations 

directly applied to the digital rock models. Roberts and Garboczi (2000) suggested 

solving the equations of elasticity using finite element modelling (FEM) directly for 

microstructure obtained from computer tomography. Based on the FEM algorithm 

developed by Garboczi (1998), Arns et al. (2002) derived elastic moduli – porosity 

relationships from microtomograms of Fontainebleau sandstone. A similar approach 

is adopted by commercial companies such as Ingrain Inc. (e.g., Dvorkin, 2009). To 

simulate elastic wave propagation in digital rock, Saenger et al. (2007) employed the 

finite-difference method with a rotated staggered grid. Each of these algorithms was 

specifically designed to simulate the elastic behaviour of highly heterogeneous 

structures consisting of a number of components with strongly contrasting properties. 

Despite the progress in imaging technology and numerical algorithms, 

publications reporting numerical simulation of elastic properties of rock from the 

digitized microtomograms are scarce, and rarely are technical details given. We are 

not aware of any accurate prediction of elastic properties of rock from a 

microtomogram apart from the work of Arns et al. (2002) in which the authors 

studied a well consolidated, clean quartz Fontainebleau sandstone, a real godsend 

among sandstones. Typically, elastic moduli numerically simulated from 

microtomograms noticeably overestimate measured ones (e.g., Shulakova et al., 

2011), with computed shear moduli being in general more uncertain than bulk 

moduli. Apparent reasons for this discrepancy between measured and simulated 

moduli are a complex involving mineralogy of the solid phase of the rock and 

compressibility of grain-to-grain contacts. Microtomograms obtained with most 

commercial micro-CT scanners with a single X-ray energy do not allow 

differentiation between quartz, feldspar and various clays, the three main constituents 

of most sandstones. Furthermore, current micro-CT resolution is not sufficient to 

image the grain contact areas. Even if the grain-to-grain geometry could be resolved, 

the elasticity of the grain contact area, which may be rugose or covered with 
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submicron layers of clays, remains elusive and is not captured by numerical up-

scaling approaches based on a linear elasticity. 

The objective of this chapter is two-fold: firstly, to advance our 

understanding of how successfully elastic properties can be computed from digitized 

images of porous rocks and how accurate these estimates can be (benchmarked 

against lab measurements) in the presence of the complexities discussed above; 

secondly, we aim to develop a workflow that would be widely available to the 

research community and industry through using general-purpose and broadly 

accessible software packages. We used the functionality of the commercial packages 

AVIZO (Visualization Sciences Group) and ABAQUS FEA (SIMULIA), including 

certain proprietary algorithms and routines embedded within them. Other software 

packages with similar broad functionality could be employed to the same end with 

minor variations to our described procedures. We propose a comprehensive rock 

physics workflow that includes image processing, and theoretical and numerical 

simulations that allow accurate prediction of elastic properties of feldspathic 

sandstone from microtomograms. The input for all these algorithms is a set of 3D 

images obtained by a micro-CT scanner (microtomograms). We first process these 

microtomograms using AVIZO software. This processing includes filtering, 

smoothing and segmentation into different phases. We also explore AVIZO1 

capabilities to generate an optimal mesh for subsequent finite-element modelling and 

propose a methodology for mesh size reduction. The obtained segmented tomograms 

are meshed and the resultant orphan mesh is saved in an ABAQUS input format. The 

meshed microstructure is imported into ABAQUS1 finite element analysis (FEA) 

software in which elastic moduli of a rock sample are numerically simulated. The 

accuracy of the meshing and its effect on the accuracy of numerical simulation is 

tested using a microtomogram of a sandstone sample. Finally, we compare the 

simulated moduli with the experimentally measured ones. 

 

 

                                                 

1 AVIZO is a trademark of Visualisation Science Group. ABAQUS is a trademark of 

Dassault Systèmes. The authors do not make any endorsement or recommendations of these products 

or draw comparison with competitor’s software. 
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1.2 DONNYBROOK SANDSTONE PETROPHYSICAL AND MICRO-CT DATA 

To demonstrate our workflow, we will use a sample of Donnybrook 

sandstone as an example. The Donnybrook is well-consolidated, feldspathic 

sandstone of Cretaceous age named after the town of Donnybrook in the South-West 

of Western Australia. The sample was obtained from a surface quarry as a block with 

no visible sedimentary structures or heterogeneities apart from very subtle planar 

cross-lamination, so that measurements on core plugs and from small sub-samples 

are expected to have similar average properties at scales beyond a few mm. Three 

main constituents of the sample known from a petrographic description are quartz, 

plagioclase feldspar and dissolved K-feldspar transformed into kaolinite, which also 

forms grain coatings. Volumetric fractions of these minerals to the rock matrix 

determined from SEM image (Figure 1.1) are 75%, 13% and 12%, respectively. The 

average helium porosity of the Donnybrook sandstone measured by an automatic 

porosity/permeability system AP-608 is 15% and permeability is around 9 

millidarcies. 

 

 

Figure 1.1 2D images of Donnybrook sandstone that comprise 66.1% of quartz (grey), 11.7% of 

feldspar (light grey), 10.6% of kaolinite (dark grey) and 11.6% of pore space (black): a) obtained on a 

micro-CT and (b) SEM. 

 

The micro-CT images are obtained with the resolution of 2 m on an X-ray 

microscope which has an advantage of giving high phase-contrast useful for 

highlighting high spatial frequency features at grain boundaries in these samples 

(Mayo et al., 2003). Firstly, a cube of 400×400×400 pixels is cropped from the centre 

of the microtomogram and segmented using the methods described below, into a 
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solid phase and a pore space. Then the original cube is subdivided into eight pieces 

of 2003 pixels each (Figure 1.2). 

 

 

Figure 1.2 Donnybrook sandstone microstructure: (a) reconstructed images in three perpendicular 

directions, (b) interfacial surface: solid phase is transparent and pore space is shown by magenta. The 

original cube of 400×400×400 pixels is subdivided into eight cubes of 2003 pixels as shown. 

 

1.3 IMAGE PROCESSING AND MESHING 

Micro-CT images cannot be directly used for numerical simulations; they 

require pre-processing and segmentation into mineral and pore space phases. The 

data initially come as a set of 2D images, which are later stacked together to form 3D 

volume. Therefore, the processing of microtomograms can be either 2D slice-based 

or 3D volume based. Calculations in 2D only are generally much faster than 3D 

algorithms, but can lead to a range of problems. Throughout the chapter we use 3D 

processing of microtomograms as 2D slice-based processing can affect the geometry 

of the image features and cause undesired stripe-shape artifacts (Figure 1.3). 

3D image processing is performed in general-purpose commercial AVIZO 

software developed by Visualisation Science Group (Westenberger, 2008). It allows 

the user to perform 2 and 3D interactive data visualization, quantitative analysis and 

processing which features image filtering, mathematical morphology, segmentation, 

separation and meshing. 
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Figure 1.3 Effect of 2D routines (horizontal stripes) applied to the 3D sample of Donnybrook 

sandstone. 

 

1.3.1 IMAGE PRE-PROCESSING FOR NOISE SUPPRESSION 

Micro-CT images always contain noise of various types, which can degrade 

their quality and impede subsequent quantitative analysis. Thus, the first step in the 

processing of these images is suppression of random speckle noise. We tested 

different filter algorithms provided by AVIZO package aiming to enhance the signal-

to-noise ratio. 3D low-pass linear filter and 3D Gaussian smoothing filter show 

tendency to muffle fine details and distort grain edges. In order to suppress noise in 

regions with constant intensity and maintain grain boundaries, the Edge Preserve 

Smoothing (EPS) algorithm has been proven to give the best results (e.g., Nikolaou 

and Papamarkos, 2009). The EPS filter cancels most of the noise, preserves grain 

boundaries by searching for the most homogeneous fragments in an elementary 

volume of an input dataset and assigns the averaged value to this elementary volume. 

The comparison of the performance of the 3D Gaussian smoothing and EPS filters on 

our data is shown in Figure 1.4. One can see that the 3D EPS suppresses noise yet 

preserves the most important features of the original image while the Gaussian filter 

blurs the grain edges. Thus, 3D EPS is our preferred filter and has been applied to the 

whole volume of the Donnybrook sandstone microtomogram. 
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Figure 1.4 Comparison of different filters on the fragment of 3D Donnybrook sandstone: a) original 

image, b) 3D Gaussian smoothing filter, and c) 3D edge preserve smoothing. 

 

1.3.2 HISTOGRAM-BASED SEGMENTATION 

A 3D microtomogram is a set of numbers corresponding to X-ray densities 

D(x,y,z) assigned to each voxel (x,y,z) of the scanned volume. The volume is 

assumed to consist of a fixed number of distinct mineral phases plus the void ‘phase’ 

or pore space. After pre-processing, the values of X-ray density are expected to be 

similar for voxels belonging to the same phase but different for voxels belonging to 

different phases. It is impossible to know physical properties (such as elastic 

properties) for each voxel. On the other hand, physical properties of various minerals 

are well-documented (Mavko et al., 1998). Thus, it is logical to assign the properties 

of a particular phase (one of the minerals or void) to all voxels belonging to that 

phase. In order to do this, we need to identify the phase to which each voxel belongs. 

For instance, if a rock is assumed to consist of minerals 1, 2 and 3, and the space 

pore, we need to compute, for each voxel (x,y,z), the phase identifier P(x,y,z), which 

can take values 0, 1, 2, or 3 (with 0 corresponding to the void phase). The 

transformation of X-ray density volume D(x,y,z), into a phase index volume P(x,y,z) 

is called segmentation. 

As X-ray densities of quartz, feldspar and kaolinite in our micro-CT images 

are very close, we assume that these minerals form one composite mineral phase, and 

segment the tomogram into two phases only, namely, ‘grains’ and ‘pores’. The 
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mineral composition is taken into account at the later stage (see Section – 1.4 

Numerical simulation of effective bulk and shear moduli). 

The segmentation is based on a simple threshold (histogram-based) 

algorithm, which assigns labels to voxels according to their intensities. While this 

approach is considered to be adequate for this type of rock, we are aware that 

segmentation based on voxel intensity alone will not work universally for all rock 

types. The final segmentation of the Donnybrook sandstone is shown in Figure 1.5. 

The white patches represent grains (blue segment on the histogram) and the black 

patches are pores (white segment on the histogram). Suitable thresholds are found 

from image histograms showing the number of occurrences of voxel values and the 

current partitioning of the intensity range.  

Histogram-based segmentation algorithms do not properly treat overlapping 

distributions (e.g., Kaestner et al., 2008) and thus can lead to errors in phase 

segmentation and phase fractions obtained from microtomograms. Later we analyse 

the sensitivity of simulated elastic properties to variations in porosity arising from 

the variation of histogram cut-off values. For this study we opted to treat the solid as 

a single entity, and incorporate the effects of mineralogical variations through an 

averaging procedure rather than retaining distinct phases for quartz, feldspar and clay 

throughout the meshing and computation steps. The segmented tomogram could 

therefore be converted into a binary format where pore and grain are presented by 

zeros and ones, respectively. Further operations as described below are then needed 

to arrive at effective properties of the homogenized solid. 

 

 

Figure 1.5 A tomographic slice of a 3D image of a sandstone sample: a) original greyscale image, b) 

its segmented image consists of two phases – matrix (white patterns) and pore space (black patterns), 

c) image histogram showing the number of occurrences of voxel values and the current partitioning of 

the intensity range. 
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1.3.3 EFFECTIVE MEDIUM CALCULATION OF AVERAGED SOLID PROPERTIES 

The micro-CT images of the Donnybrook sample do not have strong contrast 

in X-ray density between quartz, feldspar and kaolinite, and hence do not allow 

reliable discrimination between these minerals based on voxel intensity alone. 

Instead, we estimate the bulk and shear moduli of the solid phase by means of the 

effective medium theory, namely the self-consistent approximation (SCA) 

(Berryman, 1980). This approximation was specifically designed to provide 

estimates that are symmetric with respect to all constituents (that is, it does not treat 

any constituent as a host or inclusion). Bulk and shear moduli are chosen as 39 and 

33 GPa for quartz (Han et al., 1986), 76 and 26 GPa for plagioclase feldspar (Woeber 

et al., 1963) and 12 and 6 GPa for kaolinite (Vanorio et al., 2003). Volumetric 

fractions of quartz, feldspar and kaolinite are determined from 2-D SEM image 

(Figure 1.1a) as 75%, 13% and 12%, respectively. Assuming (from SEM images, 

Figure 1.1b) that the aspect ratio of the grains is about 1, we obtain effective bulk 

and shear moduli of the solid phase as 37 GPa and 27 GPa, respectively. The 

adequacy of these assumptions and our implementation of SCA procedures can only 

really be tested by comparing computations (described next) against laboratory 

measurements of the rock elastic properties. 

 

1.3.4 MESH GENERATION AND SIMPLIFICATION 

In order to perform finite-element simulation of physical properties, a finite 

element mesh needs to be constructed. The two-phase segmented microtomogram is 

then subjected to meshing. First, interphase surfaces are represented by a set of 

triangles (so called triangular approximation). In AVIZO, this function is performed 

by SurfaceGen routine. As this and following methods are time and resource 

consuming, we have divided our 3-D volume into eight smaller subvolumes, and 

perform all the processing separately for individual subvolumes. The triangulated 

interface surfaces contain an enormous number of about 106 faces. Such a detailed 

mesh is often unnecessary, and can be reduced by a given factor S using AVIZO’s 

edge collapsing algorithm (Garland and Heckbert, 1997). Numerical tests show that 

reduction of the mesh by a factor, S, up to 5 produces a geometrical configuration 

very close to the original mesh. After the simplification, a so-called edge-flipping 
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technique (De Berg et al., 2008) is applied to triangles that do not meet the Delaunay 

criterion (Delaunay, 1934; Barber et al., 1996). 

Using a reduction factor S > 5 for the simplification algorithm results in 

oversimplified surfaces that do not preserve important details. To reduce the number 

of surfaces further, we use re-meshing algorithms. The best isotropic (BI) and high 

regularity (HR) re-meshing algorithms implemented in AVIZO allow us to keep fine 

details by fixing profiles of surfaces. The best isotropic vertex placement algorithm is 

based on Lloyd relaxation (Surazhsky et al., 2003). This high regularity algorithm 

uses explicit regularization of the triangles around a vertex (Szymczak et al., 2003; 

Alliez et al., 2005). While a decrease in a number of faces is crucially important for 

speed-up, it also causes distortion in pore shape and perturbs the total porosity. To 

estimate the effect of such distortion on resultant simulated elastic moduli, we tested 

50%, 70% and 90% triangle number reduction for each algorithm. The described 

workflow of a surface generation, simplification and re-meshing is applied to all the 

real and model samples below. The only difference in the procedures is a re-meshing 

algorithm and face reduction coefficients used in re-meshing. Hereafter, we name 

meshes according to the name of the re-meshing algorithm used and the face 

reduction coefficient. For instance, mesh HR90 means that the mesh is produced by 

SurfaceGen routine followed by simplification and re-meshing with high regularity 

algorithm employing 90% face reduction. The most relevant re-meshing procedure is 

chosen below based on the comparison of numerical results with the exact theoretical 

predictions. 

 

1.4 NUMERICAL SIMULATION OF EFFECTIVE BULK AND SHEAR MODULI 

1.4.1 ALGORITHM AND SOFTWARE 

For numerical simulation of elastic moduli, we use the finite element method 

that has been utilized in a number of works for elastic (and poroelastic) simulations. 

The simulations are performed by means of ABAQUS FEA software – a suite of 

software applications for finite element modelling, meshing and visualization – 

developed by Dassault Systèmes (http://www.3ds.com). To simulate the uniaxial 

deformation (P-wave) modulus M of a cubic volume, a normal displacement is 

applied to one of the faces, say, to the top of the cube while on all other faces the 
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normal the displacement is set to zero (Figure 1.6a). The modulus is then calculated 

as the ratio of the average stress to average strain ,x xM    where angle 

brackets denote averaging over all the elements. To simulate the shear modulus µ, a 

shear displacement is applied to the same face while the opposite face is fixed 

(Figure 1.6b). The bulk modulus is then calculated from M and shear modulus µ as 

3/4 MK . In this study, we assume the sample to be isotropic and, thus, the choice 

of faces of loading and directions of displacement is not important. 

 

 

 

Figure 1.6 Schematic model of displacements applied to the faces of the cube to calculate (a) P-wave 

modulus and (b) shear modulus. 

 

1.4.2 MESHING UNCERTAINTY 

To analyse the effect of meshing on porosity and elastic properties, we have 

tested it on the spherical inclusion model for which an exact analytical solution is 

known. We create a 200×200×200 cubic model with a spherical cavity with radius of 

25 units at the centre (Figure 1.7). A 3D volume is first generated by stacking a 

series of 2D tiff images with the nearest-neighbour interpolation algorithm. After 

assigning phase types as “solid” for the exterior and “pore” for the spherical 

inclusion, the SurfaceGen algorithm is used to create a triangulated interface. This 

interface contains 2.5·105 points and 5·105 faces. Then, this interface, is simplified 

to 0.5·105 points and 1·105 faces. Remeshing is done with HR and BI algorithms 

using 50%, 70% and 90% reduction coefficients. Any surface composed of triangles 

is checked for the presence of triangle intersections, which are removed manually by 

repositioning the corresponding tips. The results for both the algorithms look similar, 
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though the BI algorithm tends to produce surfaces with fewer intersections. Finally, 

the meshing of the phase volumes is generated using the TetraGen routine. 

The six different models (BI50, BI70, BI90, HR50, HR70 and HR90) are 

produced by applying different meshing algorithms (best isotropic and high 

regularity) to this simple geometry with 50%, 70% and 90% of reduction (Figure 

1.7c-f). Perturbation of porosity by meshing due to the discretization is shown in 

Table 1.1. Even coarse meshing (BI90 and HR90) results in only subtle fluctuations 

in porosity. However, even such small porosity perturbations along with possible 

shape distortion due to discretization may affect the results of numerical simulations 

of elastic properties. Below we compare results of numerical simulations of elastic 

properties for all our models with known theoretical results. 

 

 

Figure 1.7 Models used for FEM simulations: (a) geometry; (b) overlapped meshing of BI and HR 

algorithms for spherical inclusion; (c) model BI70; (d) model BI50; (e) model HR70 and (f) model 

HR50. 
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Table 1.1 Model of spherical inclusion: surface re-meshing and volumetric gridding parameters. 

Initial parameters: 25.16·104 points, 50.32·104 faces; simplified surface: 5.00·104 points, 10.00·104 

faces. 

Remeshing 

algorithm 

# points, 

*104 

# faces, 

*104 

# nodes, 

*105 

# triangles, 

*106 

# tetrahedrons, 

*106 

Porosity, 

*10-3 

Porosity 

perturbation,% 

 

BI 

(%) 

90 0.50  0.99  2.63  2.86  1.40  8.02  1.97 

70 1.50  3.00  1.28  1.43  7.09  8.07  1.36 

50 2.50  5.00  2.73  3.10  1.54  8.17  0.14 
 

HR 

(%) 

90 0.50  1.00  2.65  2.89  1.42  8.02  1.97 

70 1.53  3.0  1.30  1.47  7.27  8.07  1.36 

50 2.56  5.13  2.81  3.20  1.59  8.10  0.99 

 

1.4.3 NUMERICAL SIMULATION AND ACCURACY TESTING 

We perform FEM simulations for a single spherical dry cavity with volume 

3)3/4( Rp    and a hydrostatic stress d  applied at the infinity. The effective bulk 

modulus effK  for such a configuration is (Mavko et al., 1998): 

 




KKK geff


11

.  (1.1) 

Here gK  is bulk modulus of the mineral material and the single pore stiffness K  is: 

 
 
 



 212

1311






gKK
,  (1.2) 

where   is the Poisson ratio of the mineral material.  

 

The simulations are performed for two materials with highly contrasting 

properties for the host material and spherical cavity. The bulk moduli are assumed to 

be 35 and 10-5 GPa, respectively, and Poisson ratio of the spherical cavity is assumed 

to be 0.5. Simulations are done for different Poisson ratios  of 0.1, 0.16, 0.2, 0.3 and 

0.4 of the host material. The results of the simulations are shown in Figure 1.8 for 

both HR and BI algorithms with different reduction coefficients. The larger the value 

Poisson ratio used, the larger is the deviation of the numerical solution from the 

theoretical one. However, for all the values of , the numerical results converge to 

the theoretical solution as the meshing quality is improved. 
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Figure 1.8 Comparison of the results of finite-element simulations with theoretical predictions for 

meshing fulfilled in (a) AVIZO using the BI method; (b) AVIZO using the HR method. 

 

To estimate the uncertainty caused by the finite size of mesh elements for 

both HR and BI meshing algorithm with 50%, 70% and 90% of simplification, we 

calculated relative error in simulated bulk modulus 
TKK , where K  is an 

absolute difference between numerically simulated and theoretically predicted bulk 

modulus (
TK ). Figure 1.9 shows the relative error of the bulk modulus against 

porosity perturbation,   for the two meshing algorithms. For BI meshing, K  

linearly decreases with   with proportionality coefficients of 2 and 3 for Poisson 

ratios of 0.1 and 0.2, respectively, and tends to zero when the porosity perturbation 

tends to zero. The proportionality constant between K  and   has values of 2 and 

3 for Poisson ratios of 0.1 and 0.2, respectively. For the HR algorithm K  shows 

linear trends with   as well but with twice the coefficients for the same Poisson 

ratio. 
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  (a)   (b) 

Figure 1.9 Relative error of bulk modulus simulation caused by a finite size of a mesh element 

against porosity uncertainty for the (a) high-regularity method of meshing in AVIZO and (b) best 

isotropic method in AVIZO. 

 

We prefer to use the BI algorithm for meshing the microstructure of the real 

sample as (1.1) the relative error in bulk modulus 
TKK  is smaller for the same 

porosity perturbation and (1.2) the BI algorithm is more stable when processing large 

volumes and complex geometry of real samples. The above analysis also allows 

estimating an error of simulated elastic moduli caused by discrete meshing. Meshing 

of the spherical inclusion model using BI50 and BI70 procedures causes relative 

perturbation in porosity of 0.1% and 1%, respectively. Assuming that the same 

meshing procedures lead to the same porosity perturbations in the case of the 

sandstone sample with total porosity of about 15%, the porosity error caused by the 

meshing is expected to be about 0.1- 1%. Using the relationship between errors in the 

porosity and elastic moduli for the case of spherical cavity (Figure 1.9), we expect 

that the uncertainty in elastic moduli caused by meshing will not exceed 1%. 

 

1.4.4 MESHING AND NUMERICAL SIMULATION OF ELASTIC MODULI OF 

DONNYBROOK SANDSTONE  

The cube of 4003 voxels is cropped into eight cubic subvolumes of 2003 

voxels as shown in Figure 1.2b. To estimate the scatter of the properties within this 

sample, the porosity of subvolumes is calculated from segmented microtomograms 

and shows the spread from 12% to 22%. Note that the sample does not have gross 

heterogeneities or internal structures visible to the naked eye, so we can consider this 

level property variation to be inherent in this type of natural sandstone. 
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Each of these smaller cubes has been simplified and re-meshed using with the 

BI algorithm with 50% of surface simplification.  

 Figure 1.10 illustrates different stages of surface evolution for the first 

subvolume of the Donnybrook sample starting from (a) the original surface with 

1,269,824 faces, followed by (b) simplification to 199,963 faces using edge-

collapsing algorithm and (c) reduction to 1,014,965 faces after the best isotropic re-

meshing algorithm reduced the surface by 50% from original. 

 

 

Figure 1.10 Different stages of surface simplification for part 1 of Donnybrook sandstone sample: a) 

original surface – 1,269,824 faces, b) simplified surface (edge collapsing algorithm) – 199,963 faces, 

c) re-meshed surface (BI algorithm, reduced by 50%) – 1,014,965 faces. 

 

Surface generation, simplification and re-meshing are followed by meshing 

of the phase volumes by generating volumetric tetrahedral grids using the TetraGen 

routine based on the advancing front method (AFM) (Yasushi et al., 2004). A mesh 

of each of the eight subvolumes contains from 1.5-2.1 · 105 tetrahedra depending on 

the remeshing procedure (see Table 1.2 for details). 

 

Table 1.2 Donnybrook sandstone: volumetric grid and porosity parameters for all 8 parts. 

 
Parts 

1 2 3 4 5 6 7 8 

φ 0.14 0.17 0.22 0.15 0.15 0.12 0.13 0.12 

∆φ, % 0.97 1.18 0.67 1.26 1.28 1.65 2.03 1.56 

Points, *104 4.9 4.9 5.0 4.9 4.6 5.6 4.4 4.9 

Faces, *105 1.0 1.0 1.0 1.0 1.0 1.2 0.9 1.0 

Nodes, *105 3.3 2.8 2.9 2.9 2.8 3.6 2.6 3.2 

Triangles, *106 3.7 3.2 3.4 3.3 3.2 4.1 3.0 3.7 

Tetraherda, *106 1.9 1.6 1.7 1.7 1.6 2.1 1.5 1.8 
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Figure 1.11 shows meshing of one of the subvolume of Donnybrook 

sandstone, where rock matrix and pore space are shown by blue and magenta 

colours, respectively. 

 

 

Figure 1.11 Volumetric tetrahedral mesh of one of eight 2003 cubes of Donnybrook sandstone: (a) 

solid and pore phases, (b) pore space and (c) rock matrix. 

 

For each of the eight subvolumes, the elastic moduli are simulated using 

ABAQUS FEA software. The results of the simulations versus porosity are shown in 

Figure 1.12. Also shown in Figure 1.12 are SCA estimates for inclusions of different 

regular shapes, namely, spheres (aspect ratio 1) and oblate spheroids with different 

aspect ratios of 0.01-0.5. The moduli obtained by numerical simulation of the 

sandstone subvolumes are comparable with those obtained by SCA for a simple 

microstructure comprising equivalent elastic solids containing oblate spheroidal 

voids with aspect ratio ranging from 0.2-1. In order to define the aspect ratios for the 

actual sandstone pores we perform a statistical analysis. We first identify single items 

in the volume and thus we determine size, position and shape of each individual 

piece within a sample. We employ 3D watershed-based algorithm for partitioning 

(Najman and Schmitt, 1994). The values obtained from the statistical analysis give 

the average aspect ratio of pores of 0.7 (i.e. nearly equant) for the range of porosities 

from 0.12-0.22 found in the rock sub-volumes. 
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Figure 1.12 Bulk and shear moduli simulated for all parts (circles) in comparison with SCA method 

predictions for pores of different shapes from spheres (solid line) to oblate spheroids with aspect ratios 

(0.01-0.5) (dashed lines). 

 

1.4.5 COMPARISON WITH EXPERIMENTAL DATA 

The numerically simulated bulk and shear moduli are shown in Figure 1.13 in 

comparison with experimental data obtained for Donnybrook sandstone at effective 

stresses of 15-70 MPa using a pulse-transmission system operating at ultrasonic 

frequencies. The experiment was first performed on a sample with a diameter of 

38.15 mm and a length of 93.04 mm and then was repeated for a smaller sample with 

the same diameter but a shorter length of 56 mm. The experimental data are shown 

by solid circles with error bars corresponding to measurement uncertainty. The 

results of numerical simulations are shown by lines parallel to the effective stress 

axis as the elastic moduli obtained. Note that the porosity of the sample employed for 

ultrasonic measurements is 15% and the simulated moduli are shown for the 

subvolume with the same porosity taken from among the 8 smaller cubes. Linear 

trends that characterize elastic moduli variations at high pressures of 50-70 MPa are 

shown by dashed lines. 

One can see that numerically simulated moduli correspond to the 

measurements at the confining stress of about 40-50 MPa. To explain the differences 

between the simulated and experimentally measured moduli, we consider three 

different effective stress ranges, namely, low effective stresses 0-50 MPa, 

intermediate stresses of about 50 MPa and high effective stresses of 50-70 MPa. At 

low effective stresses, the elastic moduli are strongly affected by compliant porosity 
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represented by grain contacts and microcracks. Such microcracks reduce elastic 

moduli dramatically at low stresses (e.g., Shapiro, 2003; Angus et al., 2009; 

MacBeth, 2004; Liu H. H. et al., 2006). However, these microcracks are too thin and 

have too small aspect ratios (10-4 to 10-3) to be detected by X-ray microtomography 

(even though it is performed at ambient pressure), and therefore are not accounted 

for in numerical simulations. Indeed, the larger part of each grain-to-grain contact in 

a microtomogram (Figure 1.1a) is likely to be a highly compliant void of a low 

aspect ratio (see Figure 1.1b), but is treated in our processing as a welded contact. 

Thus simulated elastic moduli represent the sample without compliant porosity, and 

correspond to measurements at such pressures where such compliant porosity is 

effectively closed with respect to transmission of shear and normal tractions. The 

closure of compliant porosity results in exponential dependency of the moduli with 

effective confining pressure (e.g., Shapiro, 2003; Ciz and Shapiro, 2009; Pervukhina 

et al., 2010) and further discussed in Chapter 3. 

Figure 1.13 shows this exponential dependency in the experimental data up to 

the pressure of about 50 MPa. This is precisely where the measurements and 

simulations agree. At higher stresses of 50-70 MPa, we observe in the experimental 

points a linear trend of elastic moduli with pressure. Linear dependency of elastic 

moduli on stress at stresses above 40-50 MPa are a common feature of many rocks 

(Eberhard-Phillips et al., 1989), and is usually attributed to a decrease of stiff 

porosity (Mavko and Jizba, 1991; Shapiro, 2003; Vernik and Kachanov, 2010). The 

numerical simulations do not take into account this reduction of porosity (as the 

microtomograms are obtained at zero stress) and, thus, underestimate the 

experimentally measured elastic moduli. 
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Figure 1.13 Comparison of simulated bulk (a) and shear (b) moduli (solid line) with experimental 

data (circles) for Donnybrook sandstone measured for effective stresses 15-70 MPa. Linear trend 

observable at effective stresses of 50-70 MPa is marked with a dashed line. 

 

1.5 DISCUSSION 

It is well established that pore space of a sandstone rock free of load-bearing 

clays can be considered to have, at least from the point of view of elastic properties, 

two different types of pores that are denominated “stiff” and “soft” porosity (Shapiro, 

2003; Gurevich et al., 2009; Pervukhina et al., 2010). The stiff porosity corresponds 

to pores with large aspect ratios of ~10-2-1 and the soft (compliant) porosity is 

represented by smaller aspect ratios of about 10-3. The stiff porosity in sandstones 

comprises equant pores located at three or more grain junctions (see Figure 1.1) and 

it accounts for almost all of the total pore volume. The soft porosity, on the contrary, 

includes contacts between surfaces of grain faces, and contains only a tiny fraction of 

the total porosity (about 0.05-1% of the total). The stiff porosity in sandstones is well 

resolved by micro-CT scanners and the only source for errors associated with the 

stiff porosity is segmentation and meshing uncertainties. On the other hand, 

compliant porosity, which can be seen in SEM images (Figure 1.1b), is unresolvable 

in microtomograms. The reason is that the typical sandstone grain size is about 100 

µm and the grain contact with aspect ratios of 10-3 would have a width of 0.1 µm, 

while the resolution of conventional micro-CT scanners is about 1 µm. 

The impossibility to resolve soft porosity by conventional micro-CT methods 

makes quantitative prediction of elastic properties of sandstones a challenging 

problem as minor variations in the amount and aspect ratio of the compliant porosity 

lead to substantial changes in elastic compliances of sandstones (e.g., Shapiro, 2003; 



CHAPTER 1 – COMPUTATIONAL ELASTIC UP-SCALING OF SANDSTONES ON THE BASIS OF 
X-RAY MICRO-TOMOGRAPHIC IMAGES 

44 

 

Pervukhina et al., 2010). However micro-CT images contain all the necessary 

information to obtain moduli at high effective stresses as all existing theories accept 

that soft porosity shows exponential decay with an increase of effective stress and 

vanishes at stresses higher than 50-60 MPa (e.g., Pervukhina et al., 2010; Shapiro, 

2003; Becker et al., 2007). Additionally, the images include information of probable 

sources of soft porosity at grain contacts, namely, their surface areas and orientation 

angles. 

Soft porosity evaluated from fitting of stress dependency of experimentally 

measured compressibility (a reciprocal of bulk moduli) of dry rock by method 

suggested by Pervukhina et al. (2010) is shown in Figure 1.14a. An additional 

independent proof of the presence of soft porosity at low effective stresses and its 

closure at higher stresses can be given comparing the experimental moduli measured 

on the saturated sample with moduli calculated using Gassmann fluid substitution 

(Gassmann, 1951) obtained from experimentally measured dry moduli (Figure 

1.14b). Measured and Gassmann-computed saturated moduli are in a good agreement 

at high stresses, but show obvious divergence at lower effective stresses. This 

discrepancy between the moduli at low stresses can be explained by squirt effect 

(viscous dampening when water fills the cracks) that implies the presence of 

compliant porosity (Mavko and Jizba, 1991; Gurevich et al., 2009). With increase of 

effective stress and closure of soft porosity, the squirt effect vanishes and the 

difference of between the measured bulk moduli and that estimated by Gassmann 

substitution becomes negligible (within the experimental error). 

The procedure developed for image processing, interfacial surface 

triangulation and simplification, meshing and numerical simulation of elastic 

properties of rocks can be applied without much change for the analysis of 3D rock 

microstructure data obtained by Scanning Electron Microscope (SEM) combined 

with Focused Ion Beam (FIB) technology (e.g., Drury and Fitz Gerald, 1996; 

Matthijs de Winter et al., 2009) or other emerging techniques that increase the 

resolution down to nanometre scale. By employing such high-resolution techniques, 

numerical prediction of elastic properties might be possible at different confining 

stresses even with complex particle contacts. Further improvements can also come 

from the application of multi-energy data acquisition and processing (e.g., 

Shikhaliev, 2008; Yang et al., 2010; Qi et al., 2010) which allows clear 
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differentiation between grains with different mineralogy that would otherwise be 

lumped into a single “phase” in a single-energy tomogram. The segmentation of solid 

phase into the true mineral distribution then becomes possible and different elastic 

moduli can be attributed explicitly to individual grains instead of the use of the SCA 

to calculate effective elastic moduli of and averaged solid phase. 

 

 

 (a) (b) 

Figure 1.14 Illustration of existence of soft porosity in Donnybrook sandstone: (a) soft porosity 

calculated from stress dependency of bulk modulus shows exponential decay and almost vanishes at 

50 MPa; (b) Experimentally measured saturated bulk moduli in comparison with bulk moduli 

calculated using Gassmann fluid substitution equation from dry moduli at different effective stresses. 

Two saturated moduli show obvious difference at low effective stresses and are in a good agreement 

at higher stresses. 

 

It is also noteworthy that our computational approach can be readily extended 

in various directions. The algorithms already used can be scaled up to allow for much 

larger simulation sizes, given sufficient computational power (e.g., GPU cluster), 

allowing larger rock volumes and/or higher resolution datasets to be tackled. We 

have not fully explored the capabilities of available adaptive grids algorithms. This 

becomes a crucial step if the modelling domain increases or other fields are 

simultaneously computed. For example, effective poroelastic rock behaviour of fluid-

saturated rocks are of interest but require finer meshing in order to resolve fluid 

pressure diffusion processes (e.g., Wenzlau and Müller, 2009; Wenzlau et al., 2010). 

With adaptive meshing this complexity can be included without change in the overall 

numerical setup. 
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1.6 CHAPTER CONCLUSIONS 

We have developed a comprehensive digital rock physics workflow including 

3D imaging, processing and finite-element simulations of physical experiments with 

the focus on the numerical up-scaling of elastic moduli. As an example, the effective 

elastic bulk and shear moduli of a Donnybrook sandstone sample are numerically 

simulated using microtomograms. The simulated and measured elastic moduli are in 

a good agreement at the effective stress of about 50 MPa, which is the stress level 

where microcracks become effectively closed. We conclude that the computational 

elastic up-scaling approach yields physically consistent effective moduli for this rock 

microstructure, which is typical of many consolidated reservoir sandstones and 

aquifers. The grains are mainly quartz and feldspars with some clay and a moderate 

porosity and permeability is exhibited. To account for sub-resolution features, either 

theoretical or additional computational approaches need to be employed. Further 

research along these lines is also required to account for the full range of frequency 

and stress-dependent behaviour observed. 
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CHAPTER 2 – EXPERIMENTAL VERIFICATION OF THE PHYSICAL 
NATURE OF VELOCITY-STRESS RELATIONSHIP FOR ISOTROPIC 
POROUS ROCKS 

The exponential increase of seismic velocities with effective stress has 

usually been explained by the presence of pores with a broad distribution of aspect 

ratios. More recently, a stress-related closure of soft pores with a narrow distribution 

of compliances (e.g., grain contacts) has been suggested to be sufficient to explain 

such exponential stress dependency. Here we verify this theoretical interpretation 

using laboratory measurements on dry sandstones. Based on the experimental data, 

linear dependency of elastic compressibility on soft porosity and exponential decay 

of soft porosity and elastic compressibility with effective stress up to 60 MPa is 

confirmed. Soft porosity, estimated from the fitting coefficients of elastic 

compressibilities, is on the same order of magnitude but slightly lower than obtained 

from strain measurements. The results confirm applicability of previously proposed 

stress sensitivity models and provide justification for using this approach to model 

stress dependency of elastic properties for isotropic and anisotropic rocks. 

In this chapter, I used the material published in the following extended 

abstract with permission from leading co-authors: 

 

Pervukhina M., Gurevich B., Dewhurst D. N., Siggins A. F., Golodoniuc P., 

and Fortin J., 2010, Experimental verification of the physical nature of 

velocity-stress relationship for isotropic porous rocks: ASEG Extended 

Abstract at the 21st International Geophysical Conference and Exhibition 

(ASEG-PESA), Sydney, Australia. 

 

2.1 INTRODUCTION 

Knowledge of stress dependency of elastic properties of rocks is important 

for a variety of geophysical applications ranging from pore pressure prediction in 

sedimentary rocks and seismic monitoring of hydrocarbon production to constraining 

material properties in the mantle. It has been shown by many authors that stress 

dependency of compressional and shear velocity V in many dry porous rocks can be 

well approximated by a combination of linear and exponential terms (e.g., 

Zimmerman et al., 1991; Eberhart-Phillips et al., 1989): 
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 )exp()( PDBKPAPV  , (2.1) 

where P is confining pressure, A, K, B, and D are fitting parameters that provide the 

best agreement with the measured data. 

 

The exponential term in equation (2.1) is usually explained by presence of 

pores and cracks with a broad (often exponential) distribution of crack stiffnesses or 

aspect ratios. An attempt to explain the nonlinearity with cracks of similar shape was 

done by Mavko and Nur (1978) and resulted in polynomial strain vs. stress 

dependency and specific shape of non-elliptical cracks. Recently, Shapiro (2003) 

obtained a result that such exponential saturated to linear form may be explained by 

much more simple and physically plausible dual distribution of porosity. More 

precisely, Shapiro (2003) showed that if total porosity   of an isotropic rock can be 

divided into stiff porosity part s  and much more compliant part c , i.e.: 

 s c   
 (2.2) 

then dry rock compressibility 
drC  can be written as a simple linear function of stiff 

and compliant porosities: 

 
   1dr drs s s c cC P C       

 (2.3) 

 

Here drsC  is the compressibility of the porous rock with all compliant 

porosity closed (hereafter, stiff limit), s  and c s   are coefficients related to 

compliance of stiff and compliant pores, respectively, 0s s s      is the deviation 

of the stiff porosity from its zero-pressure value 0s . Compliant porosity c  and 

s  are assumed as low as 10% or less (Shapiro, 2003) to satisfy the assumption of 

linear variation of compressibility with porosity and independent in a sense that 

closure of c  does not affect s and vice versa. Note a change in notation: 
s  in 

the present work corresponds to s  in Shapiro (2003). 

In many cases, s s c c      and equation (2.3) reduces to:  

 

 
   1dr drs c cC P C   

 (2.4) 
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Variations of stiff and soft porosity with pressure have the form: 

 
 01s gr s drsP C C        (2.5) 

and 

 
 0 expc c c drsC P   

 (2.6) 

where 
grC  is the compressibility of the solid grain material and 0c  is the compliant 

porosity at zero pressure. Equation (2.5) is slightly more general than the form used 

by Shapiro (2003), as it does not require initial stiff porosity 0s  to be small. 

Substituting expression (2.6) for compliant porosity into equation (2.4) gives the 

variation of compressibility with pressure    dr dr drsC P C P C    in the form: 

 

 
   PCCPC drscccdrsdr   exp0  (2.7) 

 

If this variation is small (   drsdr CPC  ), then equation (2.3) together with 

the corresponding equation for the shear compliance yields equations similar in form 

to (2.1) for the bulk and shear moduli and for compressional and shear velocities of 

the dry rock (Shapiro, 2003). The moduli and velocities of saturated rocks (at low 

frequencies) can be obtained using Gassmann equations; in this case pressure P has 

the meaning of effective pressure. 

The stress sensitivity theory of Shapiro (2003) was extended to anisotropic 

rocks by Shapiro and Kaselow (2005). A number of studies use the theory to describe 

behaviour of various isotropic and anisotropic rocks, for instance, Becker et al., 

(2007), Pervukhina et al. (2008a), Pervukhina et al. (2008b), Liu et al. (2008) and De 

Paula et al. (2008). 

While the stress sensitivity approach of Shapiro (2003) provides an 

appealingly simple interpretation of equation (2.1) and the existence of compliant 

porosity has been reported by many authors, it is not yet widely accepted, partly due 

to the lack of the experimental verifications of this interpretation. The main difficulty 

in such experimental verification lies in the fact that, in most cases, the velocity-

stress relationship is obtained through ultrasonic experiments where variation of 

porosity with stress is not simultaneously measured. 
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In this chapter, we overcome this difficulty by using simultaneous 

measurements of ultrasonic velocity and porosity in a high-pressure cell. Porosity 

variations are estimated from measurements of axial strain. The results of our 

analysis for the sandstone samples used in the experiments are consistent with the 

physical interpretation of Shapiro (2003). 

 

2.2 WORKFLOW 

Our workflow consists of three main parts: laboratory measurements, 

computation of the key parameters, and analysis. 

 

2.2.1 EXPERIMENT 

The experimental program involves the following steps: 

 

1. Measure compressional Vp and shear Vs velocities for a dry sample as a 

function of isotropic confining pressure P.  

2. Simultaneously measure axial strain ax  as a function of pressure. 

3. Measure initial porosity at zero pressure 0  and/or initial density 0 . 

 

2.2.2 CALCULATIONS OF KEY PARAMETERS 

Once these data are measured, compressibilities plus stiff and soft porosities 

are obtained as follows: 

 

1. For each pressure, the dry bulk modulus drK  is obtained using the standard 

equation  2 2

04 3dr P SK V V      and compressibility as 
1

dr drC K  . Note that 

accuracy of the calculation of the bulk modulus using initial density 0  at 

0P   should be checked for a particular rock since the introduced error 

might be sufficient for a compliant rock. In the case of our samples, we have 

estimated density perturbations from axial strain measurements assuming that 
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all deformations are isotropic and found that the error caused by use of the 

initial density 0  is less than 0.4%. 

 

2. We then compute variation of porosity with pressure. Since experiments are 

performed with hydrostatic pressure, we assume that ax  represents the strain 

in all three directions. Then, the volumetric strain (relative variation of the 

sample volume v with pressure) is 0 0( ) / 3 axv v v    , where 0v  is 

sample volume at zero pressure. At the same time, the relative change of total 

volume grv  of solid grains with pressure is 

 0 0( ) / / 1gr gr gr gr grv v v C P      , where 0grv  is total volume of solid 

grains at zero pressure and grC  is the compressibility of the solid grain 

material, which is assumed known from mineralogical analysis. Since pore 

volume at any pressure is the total volume minus grain volume, grv v v   , 

using Zimmerman et al. (1986), we get: 

 

 

 

 
0

0

1 / 1
1 1

1

gr grgr
C P vvv

v v v







       


 (2.8) 

 

For small deformations, this gives: 

 
    0 0 01 1 1 1gr grC P C P             

 (2.9) 

 

Note that for 0P  , total volumetric strain,  , is negative, and is larger in 

absolute value than the grain deformation 
grC P ; therefore, using (2.9), 

porosity will decrease with increasing pressure, as it should. 

 

3. Now we have to define the parameters, which we called stiff and soft 

porosities. Since stiffness of pores is a relative measure, there is some 

freedom inherent in this distinction. One way to define stiff porosity is to 

assume that within the pressure range of measurements, say from 0-100 MPa, 

the stiff porosity changes linearly with pressure. Indeed, if measured 



CHAPTER 2 – EXPERIMENTAL VERIFICATION OF THE PHYSICAL NATURE OF VELOCITY-STRESS 
RELATIONSHIP FOR ISOTROPIC POROUS ROCKS 

52 

 

compressibilities and velocities can be described by a simple exponential 

relationship of the type given by equation (2.4), then at large pressures the 

compressibility drC  approaches a constant value 
drsC . Constant 

compressibility corresponds to a linear variation of the strain with pressure. 

Indeed, in a pressure interval where dry compressibility is approximately 

constant, 
dr drsC C , volumetric strain 

drC P    and equation (2.8) gives a 

linear relationship between porosity and pressure. This linear porosity trend is 

expected in the upper part of our pressure range, where all soft pores can be 

assumed closed. We can thus call this part of the porosity the stiff porosity. 

Assuming, following Shapiro (2003), that stiff and soft porosity variations are 

independent of one another, we can extrapolate this stiff porosity trend to 

lower pressures. In practice, we will estimate stiff porosity by fitting a linear 

trend to the porosity-pressure dependency in the uppermost part of the 

measurement pressure range (Walsh, 1965; Mavko and Jizba, 1991). 

 

4. Once stiff porosity is defined, the compliant (soft) porosity is defined by 

equation (2.2) as the difference between total and stiff porosity. We will also 

obtain soft porosity from a non-linear fitting of experimentally measured 

 drC P  as a ratio of the coefficient before the exponential to the exponent as 

predicted by equation (2.7). Hereafter, we refer to the former and latter soft 

porosity as measured and predicted, respectively. 

 

We fitted experimentally measured compressibilities 

   PCCCPC drscccdrsdrsdr   exp0  to get the best fit values of the stiff limit 

drsC  and then calculated    dr dr drsC P C P C   . 

 

2.2.3 TESTING THEORETICAL PREDICTIONS 

With equations (2.2) and (2.5) used effectively as definitions, we will test 

experimentally the following elements of Shapiro’s (2003) stress sensitivity theory: 

 

1. Test the adequacy of the linear relationship (2.4) between the dry compliance 

and soft porosity. 
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2. Test the adequacy of the exponential approximation, equation (2.6), for the 

soft porosity. 

3. Compare the exponent drscC  in the soft porosity fit, equation (2.6), with the 

same exponent in the drC  fit, equation (2.7), hereafter,  and C , 

respectively. 

4. Compare the measured against predicted soft porosity. 

5. Compare the two stress sensitivity coefficients appearing in equation (2.7). 

The coefficient dyn obtained from the proportionality constant is called 

dynamic because it is derived from the measurements of ultrasonic velocities. 

In contrast, the coefficient in the exponent st, which describes variation of 

soft porosity with pressure, is called static. In deriving these values from the 

corresponding fits (linear fit of 
drC  versus c  and exponential fit for 

drC  

versus pressure) we assume that high-stress compressibility 
drsC  is the same 

in both instances. 

 

2.3 DATA 

We used reservoir sandstone core samples from the Northwest Shelf of 

Australia between depths of 1700-2000 metres (Siggins and Dewhurst, 2003) to 

validate the stress dependency model. The other sample we used in our research is a 

cylindrical specimen of 80 mm in length and 40 mm in diameter that was prepared 

from Bleurswiller Sandstone, which was collected from a quarry in Frain (Vosges, 

eastern France). The experimental procedure and results were published in Fortin et 

al. (2007). We calculate elastic compressibilities using longitudinal and shear 

velocities in the dry samples. Porosity variations are obtained from changes in the 

length of the cylindrical samples. 

Total, stiff and compliant porosity are shown in Figure 2.1 for the 

Bleurswiller Sandstone sample for loading phase. As outlined above, stiff porosity 

(solid line) is obtained by linear extrapolation of the high-stress trend determined 

from two points at 60 and 65 MPa. Compliant porosity (open circles) is estimated by 

subtracting stiff porosity from the total porosity and is reasonably approximated by 

an exponential fit (dashed line). The total porosity is shown as solid circles. 
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Figure 2.1 Total, stiff and compliant porosities. 

 

2.4 RESULTS 

In Figures 2.2 and 2.3, we illustrate tests of the stress sensitivity theory for 

the Bleurswiller sandstone and then show test results on all samples (Figure 2.4). The 

test of linearity of the relationship between compressibility and soft porosity 

(equation 2.4) is demonstrated in Figure 2.2, which shows pressure variation of 

compressibility  drC P  as a function of compliant porosity and its linear fit for the 

loading limb. The square of the Pearson product moment correlation coefficients R2 

is 0.99 indicating a very good correlation between  drC P  and  Pc . 

Measured stress dependencies of variations of elastic compressibility 
drC  

and compliant porosity c  with stress for the same sample are presented in 

logarithmic scale in Figure 2.3. Straight solid and dashed lines show linear fits of the 

compressibility deviation  drC P  and compliant porosity  Pc , respectively. 

Those linear fits are nearly parallel, which confirms that compressibility variation 

and soft porosity are well approximated by the same exponentials. 

 

0.236

0.238

0.24

0.242

0.244

0.246

0.248

0 10 20 30 40 50 60 70

Pressure, MPa

T
o

ta
l 
&

 S
ti

ff
 p

o
ro

s
it

y

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

S
o

ft p
o

ro
s

ity

Total porosity

Stiff porosity

Soft porosity

Soft porosity (f it)



CHAPTER 2 – EXPERIMENTAL VERIFICATION OF THE PHYSICAL NATURE OF VELOCITY-STRESS 
RELATIONSHIP FOR ISOTROPIC POROUS ROCKS 

55 

 

 

Figure 2.2 Linear dependency of variation of compressibility with soft porosity. 

 

 

Figure 2.3 Pressure dependency of compressibility and soft porosity with pressure. 

 

 

The predicted soft porosities shown in Figure 2.4 in comparison with 

measured ones are of the same order of magnitude but somewhat lower. The 

predicted vs. measured soft porosity trends are mpr  74.0  and mpr  84.0  for 

loading and unloading, respectively, indicating a better prediction of the soft porosity 

from the measured compressibility data during unloading. 
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Figure 2.4 Correlation between predicted and measured soft porosities. 

 

2.5 CHAPTER CONCLUSIONS 

Theoretical interpretation of exponential stress dependency of elastic 

properties of rocks based on a dual porosity concept has been tested using laboratory 

measurements on dry sandstones. For those sandstone samples, the following 

postulates of the theoretical model are shown to work well: (1) linear dependency of 

elastic compressibility on soft porosity and (2) exponential decay of soft porosity and 

elastic compressibility with effective stress up to 60 MPa. The magnitude of the 

variation of stiff porosity with stress is shown to be comparable with compliant 

porosity. However, this variation has a negligible effect on rock compressibility up to 

60 MPa. Soft porosity estimated from the fitting coefficients of the elastic 

compressibilities is on the same order of magnitude but slightly lower than obtained 

from strain measurements. These results confirm the applicability of Shapiro’s 

(2003) stress sensitivity model and hence provide justification for using this 

approach to model the effect of stress on properties of both isotropic and anisotropic 

rocks.
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CHAPTER 3 – PARAMETERIZATION OF ELASTIC STRESS 
SENSITIVITY IN SHALES 

Stress dependency and anisotropy of dynamic elastic properties of shales is 

important for a number of geophysical applications, including seismic interpretation, 

fluid identification and 4D seismic monitoring. Using Sayers-Kachanov formalism, 

we develop a new model for transversely isotropic (TI) media, which describes stress 

sensitivity behaviour of all five elastic coefficients using four physically meaningful 

parameters. The model is used to parameterize elastic properties of about 20 shales 

obtained from laboratory measurements and from the literature. The four fitting 

parameters, namely, specific tangential compliance of a single crack, ratio of normal 

to tangential compliances, characteristic pressure and crack orientation anisotropy 

parameter show moderate to good correlations with the depth from which the shale 

was extracted. With increasing depth, the tangential compliance exponentially 

decreases. The crack orientation anisotropy parameter broadly increases with depth 

for most of the shales, indicating that cracks are getting more aligned in the bedding 

plane. The ratio of normal to shear compliance and characteristic pressure decreases 

with depth to 2500 m and then increases below this to 3600 m. The proposed model 

allows evaluation of the stress dependency of all five elastic compliances of a TI 

medium, even if only some of them are known. This may allow the reconstruction of 

the stress dependency of all five elastic compliances of a shale from log data for 

example. 

This chapter is based on the published version of the following journal 

publication with permission from co-authors and publishers (see Appendix B): 

 

Pervukhina M., Gurevich B., Golodoniuc P., and Dewhurst D. N., 2011, 

Parameterization of elastic stress sensitivity in shales: Geophysics, 76(3), p. 

WA147–WA155, doi:10.1190/1.3554401. 
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3.1 INTRODUCTION 

Shales are the most common rock type encountered in sedimentary basins. 

Due to their strongly anisotropic properties, the presence of shales in the subsurface 

may cause significant errors in depth obtained from surface seismic data, in normal 

moveout (NMO) correction, dip moveout correction (DMO), migration and 

amplitude versus offset analysis (e.g., Castagna et al., 1993; Banik, 1984; Sayers, 

1999; Tsvankin et al., 2009). Seismic anisotropy of shales is caused by a number of 

factors, including intrinsic anisotropy of clay minerals that are abundant in shales, 

preferred orientation of clay platelets, alignment of thin flat pores, and kerogen 

inclusions (e.g., Hornby et al., 1994; Johnston and Christensen, 1995; Sayers, 1999). 

Various studies have addressed the problem of prediction of shale anisotropy, 

which requires values of the five elastic stiffness coefficients required to describe a 

transversely isotropic (TI) medium and Thomsen’s anisotropy parameters (Thomsen, 

1986). Johnston and Christensen (1995) reported a strong positive correlation 

between seismic anisotropy and so-called orientation indices that reflected clay 

mineral alignment. Johansen et al. (2004) studied the effect of alignment of grain 

scale texture on seismic anisotropy and reflectivity of shales. Sayers (2005) related 

the clay platelet orientation distribution to the behaviour of Thomsen’s  parameter, 

which is the only anisotropy parameter needed to interpret the small-offset amplitude 

variation with offset (AVO) response. Using self-consistent approximation (SCA) 

effective media theory, Hornby et al. (1994) reconstruct the TI elastic tensor of the 

Greenhorn Shale on the basis of the knowledge of clay platelet orientation 

distribution and silt inclusion fraction, assuming knowledge of clay elastic 

properties. All these previous studies required knowledge of detailed microstructure 

and assume that anisotropic the elastic moduli of individual clay minerals are known. 

However, the clay platelet orientation characteristics, which require thorough 

quantitative image analysis, can vary from sample to sample even for shale samples 

acquired just a few meters apart. In addition, elastic properties of clay minerals 

reported in the literature range in value by more than an order of magnitude (e.g., 

Aleksandrov and Ryzhova, 1961; Woeber et al., 1963; Han et al., 1986; Castagna et 

al., 1993; Hornby et al., 1994; Katahara, 1996; Vanorio et al., 2003; Ortega et al., 

2007) and depend on a number of parameters such as clay mineralogy, water content 

and sample preservation. 
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Recently, Ulm and Abousleiman (2006) suggested a simple model that allows 

prediction of anisotropic elastic moduli of shales. This model implies that shale 

elastic properties are independent of clay mineralogy and allows prediction of elastic 

moduli on the basis of only two parameters, namely, silt fraction and clay packing 

density (CPD), a volumetric fraction of clay minerals in wet shale without silt 

inclusions. Using this model in combination with the SCA approach, Ulm and 

Abousleiman (2006) estimated elastic moduli of clay minerals from measurements of 

elastic properties of a number of shales. Bayuk et al. (2007) used the general singular 

approximation (GSA) effective media approach to estimate the elasticity tensor of 

clay minerals from experimentally measured elastic properties of the Greenhorn 

Shale used in Hornby’s study (Hornby et al., 1994). The approach of Ulm and 

Abousleiman (2006) and Bayuk et al. (2007) was further refined by Pervukhina et al. 

(2008a, 2008b) who suggested using a differential effective media (DEM) approach 

as the most relevant for shale microstructure. The suggested method works quite well 

for predicting anisotropic elastic moduli of shales based on CPD and silt fraction. 

However, it fails to predict stress dependency of elastic properties of shales 

(Pervukhina et al., 2008a, 2008b), which has been observed in many experiments 

(e.g., Jakobsen and Johansen, 2000; Dewhurst and Siggins, 2006; Kuila et al., 2010; 

Delle Piane et al., 2010). 

The problem of stress dependency of shale properties is important for such 

applications as pore pressure prediction, or time lapse seismic monitoring. Despite 

this, there is no widely accepted theory for stress dependency of elastic properties of 

shales. Sayers (1999) studied stress dependencies of air-dry and fluid-saturated 

shales using the Sayers and Kachanov (1995) excess compliance approach and 

obtained ratios of normal to tangential compliances of clay platelet contacts for the 

both cases, assuming the contacts were well aligned. Prioul et al. (2004) and Prioul 

and Lebrat (2004) described the stress dependency of shales using a model based on 

non-linear elasticity with three stress-sensitive (nonlinear) parameters, although this 

model is suitable only for a stress range where stiffnesses are quasi-linear with stress. 

Shapiro and Kaselow (2005) suggested a stress dependency model for orthorhombic 

media based on a dual porosity approach. Their model is based on the bimodal 

distribution of pore compliances and superposition of deformation fields caused by 

closure/shape change of these two groups of soft and stiff pores under applied stress. 
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Ciz and Shapiro (2009) used this approach to build a model of experimental shale 

measurements from the North Sea previously reported by Hornby (1998) and showed 

a good model fit to the measurements. However in the isotropic limit, the model of 

Ciz and Shapiro (2009) has been shown to be equivalent to the isotropic version of 

the model of Sayers (1999) with exponential dependency of excess compliances on 

pressure and with an additional assumption that normal and tangential compliances 

of each grain contact are equal (Gurevich et al., 2009). This assumption may not be 

physically adequate, especially for water-saturated rocks at ultrasonic frequencies, 

since water in intergranular pores and microfractures should strongly reduce normal, 

but not tangential, compliance. 

Herein, a new model is proposed that allows description of stress dependency 

of all five elastic coefficients of TI shales by treating both the orientation distribution 

of clay platelets and the compliance ratio of platelet contacts as model parameters. 

To this end, we combine the dual porosity approach of Shapiro and Kaselow (2005) 

with the non-interactive approximation of Sayers and Kachanov (1995). 

 

3.2 MODELLING OF THE EFFECT OF ISOTROPIC STRESS ON THE 

ANISOTROPIC ORIENTATION OF DISCONTINUITIES 

Following Shapiro (2003), Shapiro and Kaselow (2005) and Ciz and Shapiro 

(2009), we assume that variation of elastic properties of a shale subjected to effective 

confining pressures of up to 60 MPa can be explained by closure of soft (compliant) 

porosity. Soft porosity comprises a small part of total porosity and consists of pores 

with high compliances, such as fractures, cracks and grain or clay platelet contacts. 

Figure 3.1 shows an SEM image, which illustrates existence of both stiff and 

compliant pores in shales. 

We model shale as an intrinsically transversely isotropic medium that is 

permeated with discontinuities such as grain or platelet contacts, cracks or fractures, 

which are distributed anisotropically. We assume that the probability density for a 

particular orientation can be written as: 

 

 

 
   

2 2

2
2

0 0

1 cos 1 cos
,

4 1 31 cos sin
W

d d
 

   
 

     

 
 

   (3.1) 



CHAPTER 3 – PARAMETERIZATION OF ELASTIC STRESS SENSITIVITY IN SHALES 

61 

 

where  is an angle between the z-axis and the normal to the crack surface (range [0, 

]),  determines the rotation about the z-axis (range [0, 2]) and   is the crack 

orientation anisotropy parameter. Isotropic distribution of cracks corresponds to the 

case when 0  and in the case when   is large, there is a strong alignment of 

cracks. One can check that the probability density defined by equation 3.1 satisfies 

the normalization condition: 

 

 
 

2

0 0
, sin 1W d d

 

        (3.2) 

 

 

Figure 3.1 An Officer Basin shale showing particle alignment and the presence of microfractures 

(white arrows). Modified from Kuila et al. (2010). 
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The exact geometry of individual cracks is not specified. Instead, the 

behaviour of cracks is defined by 
TB , the specific tangential compliance (tangential 

compliance of a crack with a unit surface area) and a ratio /N TB B B  where 
NB  is 

specific normal compliance. For parameterization purposes, only effective properties 

are important, so the surface area A and the compliance ratio B are assumed to be the 

same for all cracks. We assume that 
NB  and 

TB  are independent of cracks 

orientation and do not change with stress (for analysis of this assumption for 

isotropic rocks, see Pervukhina et al., 2010). Following Schoenberg (2002), Shapiro 

(2003) and Shapiro and Kaselow (2005), we further assume that the surface area of 

individual cracks decreases with stress exponentially. Therefore, a specific surface 

area per unit volume 0 0s N A  also varies exponentially with stress, such that: 

 
   0

0 exp / cs P N A P P 
 (3.3) 

where N0 is the total number of cracks integrated over all angles, 0A  is the specific 

surface area of an individual crack at zero stress, P is effective stress and Pc is a 

characteristic crack closing pressure. 

 

When a rock with this distribution of discontinuities is subjected to a small 

compressive isotropic stress, the density of cracks along a particular plane is assumed 

to be reduced exponentially with the normal stress traction acting on that plane. The 

area of the cracks in the case of their anisotropic distribution will reduce differently 

in different directions. An effect of this anisotropic variation of the crack areas on 

elastic properties can be modelled using the Sayers and Kachanov (1995) non-

interactive approximation: 
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Here, 
ijklS  is the excess compliance caused by the presence of compliant 

cracks, 
0

ijklS  are compliances at high stress with all soft cracks closed and ijklS  are 

the compliances at some intermediate stress; 
ij  is the Kronecker delta; r is the 

number of planar discontinuities with surface area ( )rA  and ( )r

in  and 
( )r

jn  are i-th and 

j-th components of the unit vector that is normal to the surface of the rth grain 

boundary in volume V; finally, 
NB  and 

TB  are the normal and tangential 

compliances of an individual crack. 

 

Substituting equations 3.1 and 3.3 into equations 3.4-3.6, we obtain variation 

in compliances due to the closure of discontinuities at different pressures as follows: 
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Here  4 1 3ns s       and 0

0s N A  is the specific surface area of cracks 

per unit volume. The detailed derivation of equations 3.7-3.11 is given in Appendix 

A. Note that shales exhibit TI anisotropy and five independent elastic compliances 

S11
0, S33

0, S44
0, S66

0 and S13
0 are required even at high effect stresses when all 

compliant cracks are supposed to be closed. Such intrinsic anisotropy is caused by 

anisotropic individual clay mineral moduli and preferential orientation of domains of 

aggregated clay minerals. If we assume N TB B , then equations 3.7-3.11 can be 

simplified as follows: 
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Thus, to parameterize the stress dependency of shales for the general case, 

when N TB B  (i.e. equations 3.7-3.11 above), four parameters are necessary, namely 

n Ts B , tangential compliance of an individual crack per unit area multiplied by the 

normalized specific surface area of cracks per unit volume; B, the ratio of crack 

normal to crack tangential compliance; η, the crack orientation anisotropy parameter 

that characterizes angular crack distribution, and cP , the characteristic pressure at 

which compliant pores close. For the case of so-called scalar crack approximation 

when N TB B , three parameters n Ts B , η, cP  are required. Note that the parameters 

ns  and TB  are coupled and cannot be obtained independently. Hereafter, we refer to 

n Ts B  as TB  bearing in mind that it is, in fact, multiplied by the normalized specific 

surface area of cracks per unit volume. Below, we fit experimentally measured stress 

dependencies of elastic properties of shales using both the general set of equations 

3.7-3.11 and the scalar crack approximation (equations 3.12-3.16) and show the 

uncertainties that are introduced in the latter case. 

 

3.3 DATA 

We applied our model to a number of shales from the Officer Basin, Bass 

Basin, Carnarvon Basin (offshore Australia), Africa and the North Sea (Pervukhina 

et al., 2008b). The details of the experimental procedure and sample preparation can 

be found in Dewhurst and Siggins (2006) and Dewhurst et al. (2008a, 2008b). We 
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also used stress dependencies measured by Wang (2002) on shale samples from 

Africa, North Sea shales, Gulf Coast shale and hard shales. We used measurements 

obtained for samples cut parallel and perpendicular to bedding, as application of an 

isotropic stress would not change the TI symmetry of these samples. All the samples 

were preserved (prevented from drying) before measurements. All the data were 

obtained in the experiments with controlled pore pressure. The measurements for 

shales from the Officer Basin, Bass Basin, Carnarvon Basin, Africa and the North 

Sea were obtained under a pore pressure of 5 MPa. The pore pressures for other 

shales are given in Wang (2002). 

The shale samples were recovered from depths between 200 and 3604 m and 

vary in their physical properties and in their mineralogy. Unfortunately, Wang (2002) 

does not report information about overburden pressure, diagenesis, geological 

history, clay content and mineralogy of the investigated shales. The depth of origin 

of the shale samples is the only environmental parameter known for all the shales. 

 

3.4 FITTING PROCEDURE AND TRENDS IN MICROCRACK PROPERTIES 

The fitting procedure is schematically shown in Figure 3.2. Compliances 

calculated from experimentally measured velocities at different isotropic effective 

stresses are fitted using the sets of equations defined in 3.7-3.11 or 3.12-3.16. The 

Levenberg-Marquardt method (Moré, 1977) is used for nonlinear fitting of 

experimentally obtained stress dependencies of the elastic compliances of shales with 

equations 3.7-3.11 or 3.12-3.16, considering BT, B, Pc and η as fitting parameters. We 

first fit the data using the scalar crack approximation in equations 3.12-3.16 and then 

use the resultant parameters BT, Pc and η and B = 1 as an initial estimate for the 

general set of equations 3.7-3.11. For the second procedure, we use a condition B  2 

as a constraint to fit the results. 

A histogram of the compliance ratio, B, obtained using equations 3.7-3.11, is 

shown in Figure 3.3. The values are distributed in three distinct groups, (i) small 

values less than 0.2, (ii) normal values from 0.7-1.1 and (iii) large values of about 2. 

Departure from unity is observed even in the group with the values from 0.7 to 1.1. 

This suggests that the ratio B = 1 which corresponds to the model of Ciz and Shapiro 

(2009) may not be adequate for shales. 
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Figure 3.2 Schematic diagram of fitting procedure. Compliances calculated from experimentally 

measured velocities at different isotropic effective stresses are fitted using a set of equations 3.7-3.11. 

As a result of the fitting, four fitting parameters are obtained. 

 

 

 

Figure 3.3 Histogram of the ratio of normal to tangential compliance for all the shale samples. Most 

of the values are far from unity. 
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To understand the excess in misfit of the experimental stress dependencies 

caused by the assumption that B = 1, we compare the results of the experimental data 

fitting using equations 3.7-3.11 and 3.12-3.16. The misfits are shown in Figure 3.4a 

by solid dots (equations 3.7-3.11) and open circles (equations 3.12-3.16). Figure 3.4b 

shows the relative excess of misfit caused by the assumption that 
N TB B . The 

relative misfits are close to zero and consequently the misfits are almost the same 

when B is close to unity. However in other cases, the misfit by equation set 3.12-3.16 

noticeably exceeds the one obtained by use of equations 3.7-3.11 (note that the plot 

in Figure 3.4a is in logarithmic scale). The error caused by use of a scalar crack 

approximation (equations 3.12-3.16) exceeds the error resulted from fitting with the 

full set of equations 3.7-3.11 by up to 70%. Similar results were obtained by Angus 

et al. (2009) who used a synthetic data set to estimate an error caused by usage of a 

scalar crack approximation instead of the full set of equations. From here onwards, 

we use only equation set 3.7-3.11 to fit the experimental stress dependencies of 

elastic properties of shales to avoid additional errors caused by the assumption that 

N TB B . 

All four fitting parameters are plotted versus depth of shale extraction in 

Figure 3.5. Crack orientation anisotropy parameter, η, shows a general linear growth 

with depth of origin (Figure 3.5a) although there is significant scatter of the fitting 

values. Higher values of η mean better alignment of the cracks in the bedding plane; 

consequently, an increase of η with the depth indicates increased alignment of 

discontinuities with increasing overburden pressure. 

Tangential compliance of a single crack normalized to the area of the crack 

exponentially decreases with depth (Figure 3.5b). This implies that cracks are stiffer 

in shales that are recovered from greater depths than in the shales extracted from 

shallower depths. 

The ratio of normal to tangential compliance initially decreases from 1 to 0.1 

with the increase of depth from 1000 to 2500 m (Figure 3.5c), implying that normal 

stiffness of shales grows faster with the overburden pressure than the tangential one. 

Then B increases again reaching 2 at the depth of 3500 m. In other words, in the 

depth range of 1000-2500 m, cracks become relatively stiffer in the plane of the 

crack than in the normal direction with increasing depth. However, below 2500 m, 

the reverse seems to occur. While it is commonly accepted that individual shales can 
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become stiffer and more anisotropic with depth, this variation of the ratio of normal 

to tangential compliance is a new finding that has yet to be explained. 

The characteristic pressure, Pc, shows no obvious trend with the depth of 

origin (Figure 3.5d). Pc is equal to ~20 MPa for the shallow (less than 1500 m) and 

deep (more than 2500 m) depth. For the intermediate depth of 1500-2500 m, Pc drops 

to 10 MPa. 

 

 

Figure 3.4 Quality of fitting of the experimental stress dependencies of elastic coefficients. (a) Misfits 

from equations 3.7-3.11 and equations 3.12-3.16 are shown by solid dots and open circles, 

respectively. (b) Relative excess in misfit caused by use of equations 3.12-3.16. 
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Figure 3.5 Variations with depth of (a) crack orientation anisotropy parameter , (b) tangential 

compliance sBT, (c) ratio of normal to tangential compliance B, (d) characteristic pressure Pc. 

 

3.5 DISCUSSION 

Our model of pressure dependency of shale properties can be compared to 

that of Ciz and Shapiro (2009). Although our fits to experimental data are somewhat 

better, this is achieved by introducing a new parameter, the compliance ratio B. Is 

this justified? Connected to this, we note that in the isotropic limit, the equations of 

Ciz and Shapiro (2009) reduce to a particular case of the equations of Shapiro (2003) 

with the ratio of bulk to shear ‘piezosensitivities’ (Q) equal to (1 ) (1 2 )   , where 

  is Poisson’s ratio at the high-pressure limit where all compliant porosity is closed. 

In turn, it has been shown (Gurevich et al., 2009) that equations of Shapiro (2003) 

(without dependency of stiff porosity on pressure) are equivalent to an isotropic 

version of Sayers and Kachanov (1995) equations with exponential dependency of 

both NB  and TB  on pressure. There is also a direct relationship between Q and the 

compliance ratio N TB B B  in the isotropic version of the Sayers-Kachanov model. 
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In particular, (1 ) (1 2 )Q      corresponds to 1B   (Gurevich et al. 2009, 

equation 10). While improvement of the fit by allowing B to be a free parameter may 

not be huge, we think that assumption 1B   may not be physically adequate, 

especially for water-saturated rocks at ultrasonic frequencies, since water in 

intergranular microcracks should strongly reduce 
NB  but not 

TB . For isotropic rocks, 

this has been confirmed by analysis of laboratory measurements (see Sayers and 

Han, 2002, and Angus et al., 2009). We believe this is also logical for anisotropic 

rocks, including shales, even if quality of shale data may not be sufficient at present 

to show this conclusively. We also note that even with a new parameter B, our model 

still has fewer parameters than the model of Ciz and Shapiro (2009). 

The developed model allows one to obtain statistically qualitative properties 

of microcracks in shales. For the analysed dataset, these properties show moderate to 

good correlations with the depth of extraction. Even though some of the parameters 

exhibit only a broad correlation with the depth of origin, such general correlations for 

shales may be helpful for initial characterisation of stress dependencies of elastic 

properties of shales in new basins. Thus, we believe that more extensive and 

statistically representative studies are required to confirm, improve (if possible) and 

understand the physical meaning of the obtained broad correlations. For example, it 

is well known that stress history and temperature also control mechanical and elastic 

properties of shales (e.g., Nygard et al., 2004; Peltonen et al., 2009) through 

poroelastic effects and diagenetic mineral reactions respectively. Unfortunately, such 

data were not available for most of the shales evaluated, so we were unable to 

characterize the shales more specifically in these terms at this stage. However, even 

with this restriction, the model gives some results that seem geologically intuitive, 

suggesting a physically sound basis for further development. 

From analysing this limited dataset, one can conclude that the crack 

orientation anisotropy parameter  shows only a broad correlation with the depth. 

While clay particle orientation and associated microfractures are often seen as 

dependent on overburden stress, this can also occur through other less well defined 

processes that are not governed by depth alone. In addition, clay alignment also can 

depend on the volume of the silt fraction and the shape of silty grains, which may 

result in differential compaction of clays and wrapping around more rigid particles. 
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Hence, larger datasets may not drastically improve the correlation between  and 

depth of extraction or overburden pressure. 

Shear compliance (BT) shows a good correlation with depth of extraction 

(Figure 3.5b). More complex behaviour is observed for the ratio of normal to 

tangential compliance B (Figure 3.5c) in that it decreases from 1 to 0.1 between 1000 

and 2500 m and then increases above unity to 3600 m. This may reflect the effects of 

diagenesis that generally starts at the depth of about 2000-3000 meters, driven by 

temperatures above 65˚C (Ruud et al., 2003; Avseth et al., 2008; Storvoll and Brevik, 

2008). It should be noted that the ratio of normal to tangential compliance in a given 

rock will reflect the roughness of the crack surfaces and this might be affected by 

mineralization. The values of B estimated for real rocks often exceed theoretical 

predictions for traction-free cracks (which always yields B < 1). In particular, Angus 

et al. (2009) observed values of N TB B  up to 1.75 for dry shales. MacBeth and 

Schuett (2007) found that the ratio B may increase to the values above unity for 

thermally damaged samples. Possible contact mechanisms and the effect of 

mineralization on the values of B are discussed in detail in Sayers et al. (2009) and 

Kachanov et al. (2010). The characteristic stress, Pc, also shows a minimum in 

absolute values at depths of ~2500 m, similar to that observed for B; this may 

support our speculative suggestion that the microcrack parameters reflect the effects 

of mechanical compaction and diagenesis undergone by a particular shale sample. 

More data and detailed information on shale mineralogy and microstructure are 

required to test these observations. 

The model we have developed can also be used for predicting the stress 

dependency of unknown elastic parameters from the known ones. This problem is 

practically important either for laboratory measurements in shales, where the C13 

coefficient is often unreliable and, for the field data analysis, where log data only 

allow determination of up to four out of five elastic coefficients of TI media (Sinha et 

al., 2006). Note that the fitting problem described by equations 3.7-3.11 is 

overdetermined (see Figure 3.2). Elastic compliances used for the fitting are 

calculated for each effective stress at which ultrasonic velocities were measured. For 

instance if ultrasonic velocities were measured at np effective stresses, we have 5np 

equations in total. Thus, the four fitting parameters might be determined from 

experimental stress dependencies of an incomplete set of elastic coefficients. If, for 
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example, compliances S11, S33, S44 and S66 are known at four different effective 

stresses, we have in total 16 equations. The problem is still over determined in that 

four output parameters that provide the best fit of our experimental data can be found 

and then used to calculate the variation of S13 at different effective stresses using 

equation 3.11. If we assume that only S11, S33 and S66 compliances are known at four 

different effective stresses, we obtain a system of 12 equations that still allow 

solutions for the four parameters B, BT0,  and P0. Then the variations of elastic 

compliances S13 and S44 can be found with equations 3.9 and 3.11. For sample G3 

from brine-saturated hard shales (Wang, 2002), Figure 3.6 shows the prediction of 

stress dependencies of the elastic coefficients, Thomsen anisotropy parameters and 

anellipticity parameter (Tsvankin, 1997) using as input stress dependencies of five, 

four and three elastic coefficients. 

 

 

Figure 3.6 Compliances (left) and anisotropy parameters (right) for both measurements and our model 

on brine-saturated hard shale (sample G3 from Wang, 2002). Values calculated from ultrasonic 

measurements are shown by circles. Fits using the full set of five compliances are shown by thick 

lines. Thin lines show fits using incomplete sets of compliances. In most of the cases, the thin and 

thick lines coincide. 
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The fitting parameters , B, sBT, P0 are 20, 2, 0.007 GPa-1 and 20 MPa. The 

predictions obtained from input of four elastic coefficients (S11, S33, S44, S66) are 

almost indistinguishable from those obtained for the input of five; the differences for 

the case of input of three elastic coefficients (S11, S33, S66) are also small. However, it 

is important to note explicitly that this prediction does not include prediction of the 

intrinsic compliances 
0

ijS , nor of the stress dependence due to the hard compliance at 

large effective stress. 

 

3.6 CHAPTER CONCLUSIONS 

A new stress dependency model for TI media was developed and used to 

parameterize stress dependencies of the elastic properties of about 20 shales. The 

four fitting parameters (namely, specific tangential compliance of a single 

discontinuity, ratio of normal to tangential compliances, characteristic pressure and 

crack orientation anisotropy parameter) show moderate correlations with the depth 

from which the shale was extracted. With increasing depth, the tangential compliance 

exponentially decreases. The crack orientation anisotropy parameter broadly 

increases with the depth for most of the shales, indicating that cracks are becoming 

more aligned. The ratio of normal to shear compliance as well as characteristic 

pressure decrease to depths of 2500 m and then increase below this to 3600 m. The 

suggested model also allows the prediction of stress dependency of all five elastic 

compliances if only three or four compliances are known. This could be useful for 

the reconstruction of stress dependencies of all five elastic compliances of shale from 

log data, for example. 
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CHAPTER 4 – STRESS DEPENDENCY OF ELASTIC PROPERTIES OF 
SHALES: THE EFFECT OF UNIAXIAL STRESS 

Along with intrinsic anisotropy caused by preferred mineral orientation that is 

common in shales, anisotropic stress is an important factor that affects shale elastic 

response. While variations of elastic coefficients with anisotropic stress have been 

the subject of experimental studies, theoretical insight is still largely lacking. Here, 

we further extend the model proposed in Chapter 3 to the case where shales are 

subjected to uniaxial stress, which allows parameterization of the stress dependency 

of elastic coefficients of shales under anisotropic stress conditions. We show that 

parameterization requires four parameters, namely, specific tangential compliance of 

a single crack, the ratio of normal to tangential compliances, characteristic pressure, 

and a crack orientation anisotropy parameter. These parameters can be estimated 

from experimentally measured stress sensitivity of elastic coefficients in shales to 

isotropic stress. 

In this chapter, I used the material published in the following SEG extended 

abstract with permission from co-authors and publishers (see Appendix B): 

 

Pervukhina M., Gurevich B., Golodoniuc P., and Dewhurst D. N., 2011, 

Stress dependency of elastic properties of shales: the effect of uniaxial stress: 

SEG Extended abstract at the SEG 2011 Conference, San Antonio, USA, 

doi:10.1190/1.3627669. 

 

4.1 INTRODUCTION 

The effect of stress on elastic properties of shales is also important for 

understanding of depositional trends especially at the upper 2000-3000 meters where 

the compaction is mostly mechanical. Despite the importance of the effects of 

isotropic and especially anisotropic stress on elastic properties of shales, little work 

has been done on theoretical understanding and predicting such properties and 

generally for the case of isotropic stress. All the existing theoretical approaches to 

the problem of elastic stress sensitivity are based on the analysis of orientation 

distribution of discontinuities and their normal, BN, and shear, BT, compliances. 

Sayers (1999) studied stress-dependent seismic anisotropy of shales using ultrasonic 
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measurements on two fully saturated shales of Jurassic age reported by Hornby et al. 

(1994), two air-dry shales from the Millboro and Braillier members of the Devonian-

Mississipian Chattanooga Formation (Johnston and Christensen, 1993) and air-dry 

mature, kerogen-rich shale (Vernik, 1993). Sayers used the formalism presented in 

Sayers and Kachanov (1995) that takes into account extra compliance induced by 

fractures and cracks. Sayers (1999) calculated BN / BT ratios for each point of 

confining stress assuming that the discontinuities are perfectly aligned. Analysing the 

experimentally obtained stress dependencies of the five elastic coefficients, Sayers 

(1999) concluded that the contacts between clay particles are more compliant in 

shear than in compression and the ratios of normal to tangential compliances of 

individual cracks are higher for the air-dry shales compared to those in saturated 

shales. 

Ciz and Shapiro (2009) studied the variations of elastic compliances and 

anisotropic parameters of Jurassic North Sea shale with isotropic stress reported in 

Prioul et al. (2004). They applied the so-called porosity deformation model (also 

known as dual porosity model, stress-sensitivity or piezo-sensitivity) initially 

developed by Shapiro (2003) for dry isotropic rock and later extended by Shapiro 

and Kaselow (2005) to the case of orthorhombic symmetry. Ciz and Shapiro (2009) 

described stress dependency of all elastic coefficients apart from S13, which is 

independent of stress in the porosity deformation model. As laboratory 

measurements commonly show noticeable variations in S13 with pressure, this is a 

limitation of the porosity deformation model. The Sayers-Kachanov model seems to 

be more universal. 

Using the Sayers-Kachanov model, Gurevich et al. (2011) suggested a new 

analytical model of stress induced anisotropy caused by application of uniaxial stress 

to an isotropic cracked medium. Using a similar approach, we developed a new 

model for stress dependency of transversely isotropic (TI) media in Chapter 3, which 

predicts stress sensitivity behaviour of all five elastic coefficients using four 

physically plausible parameters. These are the specific tangential compliance of a 

single crack, the ratio of normal to tangential compliances, the characteristic pressure 

and a crack orientation anisotropy parameter. The model has been used to 

parameterize elastic properties of about 20 shales. The four fitting parameters 

showed moderate to good correlations with the depth from which the shale was 
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extracted. With increasing depth, the tangential compliance exponentially decreases. 

The crack orientation anisotropy parameter broadly increases with the depth for most 

of the shales, indicating that cracks are getting more aligned in the bedding plane. 

The ratio of normal to shear compliance and characteristic pressure decrease with the 

depth to 2500 m, and then increase in the depth range of 2500-3600 m. The 

suggested model also allows prediction of the stress dependency of all five elastic 

compliances of a TI medium, even if only some of them are known. 

This study extends the model developed earlier in Chapter 2 and Chapter 3 to 

anisotropic (uniaxial) stresses. We show that at small uniaxial stresses, these effects 

can be described using the same four parameters. Moreover, the values of these 

parameters can be extracted from the experimental measurements obtained at 

isotropic stress. Predictions of the model are compared with experimental 

measurements. 

 

4.2 MODELLING THE EFFECT OF ANISOTROPIC STRESS ON ELASTIC 

COEFFICIENTS OF SHALES 

Continuing the study we have conducted earlier in Chapter 3, we model the 

shale as an intrinsically transversely isotropic medium that is permeated with 

discontinuities (cracks or fractures). We assume an anisotropic orientation 

distribution of discontinuities for which the probability density for a particular 

orientation can be written as: 

  
   

2 2

2
2

0 0

1 cos 1 cos
,

4 1 31 cos sin
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d d
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 (4.1) 

 

where  is an angle between the z-axis and the normal to the crack surface (range [0, 

]),  determines the rotation about the z-axis (range [0, 2]) and   is the crack 

orientation anisotropy parameter. An isotropic distribution of cracks corresponds to 

the case where 0   and in the case when   is large, there is a strong alignment of 

cracks. One can check that the probability density defined by equation 4.1 satisfies 

the normalization condition: 

 
 

2

0 0
, sin 1W d d

 

      
 (4.2) 
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Both here and below, the z-axis is chosen as a symmetry axis of the TI 

medium. The exact geometry of individual cracks is not specified. Instead, the 

behaviour of cracks is defined by a ratio B of the normal BN to tangential BT excess 

crack compliances. All cracks are assumed identical; thus, B is the same for all 

cracks. 

The medium can undergo a zero or nonzero isotropic stress. The effect of the 

nonzero isotropic stress on shale can be taken into account by assuming an 

exponential reduction of crack area A(r) (and specific area of cracks s =A(r)/V) with 

effective pressure P (confining pressure minus pore pressure) as follows: 

 
 0 exp / cs s P P 

 (4.3) 

where s0 is specific area of all the cracks at zero pressure and Pc is a characteristic 

crack closing pressure (Schoenberg, 2002; Shapiro, 2003; Shapiro and Kaselow, 

2005; Vlastos et al., 2006). 

 

When the rock is subjected to a small uniaxial compressive stress (σ) in 

addition to an isotropic stress, the density of cracks along a particular plane is 

reduced in proportion to the normal stress traction acting on that plane. To model 

closure of cracks due to application of anisotropic stress, we can assume that 
 r

NB  

and 
 r

TB  are the same for all orientations of cracks, while A(r) (and specific area of 

cracks s =A(r)/V) varies with direction of the crack normal, depending on the normal 

stress acting in that direction: 

  0 exp / cs s P   (4.4) 

When uniaxial stresses are small compared to Pc, the exponential expression 

in equation 4.4 can be approximated by a linear expression: 

  0 1 / cs s P   (4.5) 

 

The uniaxial stress does not change the TI symmetry of the shale if it is 

applied along its symmetry axis (z-axis in our case). The variation of elastic 

compliances with the applied isotropic and uniaxial stresses can be calculated using 

Sayers-Kachanov model as follows: 
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Here, ijklS  is the excess compliance caused by the presence of compliant 

cracks, 
0

ijklS are compliances at high stress with all soft cracks closed and ijklS are the 

compliances at some intermediate stress; ij  is the Kronecker delta; r is the number 

of planar discontinuities with surface area 
( )rA  and 

( )r

in  and 
( )r

jn  are i-th and j-th 

components of the unit vector that is normal to the surface of the r-th grain boundary 

in volume V; finally, NB  and TB  are the normal and tangential compliances of an 

individual crack. 

Substituting equations 4.1, 4.3 and 4.5 together into equations (4.6-4.8), we 

can obtain variations of five elastic compliances for a TI fractured medium that is 

subject to both pressure (P) and uniaxial stress () parallel to the symmetry axis of 

the TI medium. The derivation of the equations can be done following the procedure 

that is described in detail in Chapter 3. 

Here we restrict our study to the case of constant effective pressure P and 

calculate variations of elastic compliances with variation of only anisotropic stress σ. 

The formulae below express the variations in terms of the four parameters as follows: 
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Here we employ the conventional matrix notation (e.g., Nye, 1985), which assumes 

that: 

mn ijklS S , when m and n are 1, 2, or 3; 

2mn ijklS S , when m or n is 4, 5, or 6; 

4mn ijklS S , when both m and n are 4, 5, or 6. 

 

Note that the four parameters in equations 4.9-4.13 are the same as in the case 

of isotropic stress and hence can be determined from the isotropic experiments. Thus, 

the variations of elastic properties of shales if an anisotropic stress is applied can be 

predicted from the variations that occur when the shale is subjected to an isotropic 

stress. Here we show the applicability of this approach using experimental 

measurements made on a shale from the onshore Officer Basin in Western Australia 

(Kuila et al., 2010). 

 

4.3 VALIDATION ON EXPERIMENTAL DATA 

We compare ultrasonic velocities that were measured in a multistage triaxial 

test on a shale sample from the Officer Basin with predictions from the theoretical 

model. The Officer Basin shales are red shales of low porosity, comprising mainly 

illite, orthoclase and quartz. These shales are laminated and in parts are rigid grain 

supported. The sample of interest is extracted from the depth of 603 m and has a 

porosity of 6%, clay fraction of 17% and clay content of 41%. It consists of quartz 

(25%), orthoclase (29%), illite (35%), albite (4%), chlorite (4%), kaolinite (2%) and 

haematite (2%). The sample is cut perpendicular to the bedding and thus, the 

application of a uniaxial stress normal to the bedding does not change the TI 

symmetry of the sample. 

The ultrasonic experiments were done on a preserved, saturated shale sample 

with controlled pore pressure. Firstly, a confining pressure is increased to some level, 

for instance 20 MPa, and pore pressure is equilibrated at, for instance, 5 MPa, then 

the axial stress is increased by increments, for instance, to 1, 2, 5, 8 and 15 MPa. The 

details of the experimental procedure and sample preparation can be found in Kuila 

et al. (2010). 
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The theoretical predictions made using formulas 4.9-4.13 and model 

parameters B = 0.2, BT = 7 MPa-1  = 4 and Pc = 57 MPa were obtained from 

isotropic measurements (refer to Chapter 3 for further details). In Figure 4.1, the 

measured and predicted variations in P- and S-wave velocity due to variations of 

axial stress are shown for effective pressures of ~10 MPa. In Figure 4.2 (a, b), P- and 

S-wave velocities are shown as a function of angle of incidence for the same 

effective stress and axial stresses of 1, 8 and 15 MPa. 

 

 

 

Figure 4.1 Vph (circles), Vsh (diamonds), Vpv (squares) and Vs1 (triangles) velocities measured at 10 

MPa of effective pressure in Officer Basin shale compared with model predictions (solid lines). 
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Figure 4.2 Experimentally measured and predicted velocities in Officer Basin shale at effective 

pressures of 10 MPa vs. angle between the direction of the wave propagation and the normal to the 

bedding plane: (a) VP, (b) VSH. Predicted angular dependencies for 1 MPa, 8 MPa and 15 MPa are 

shown by blue, green and red lines, respectively. Experimentally measured velocities for 1 MPa, 8 

MPa and 15 MPa are shown by blue circles, green squares and red triangles, respectively. 
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4.4 DISCUSSION 

Both theoretical predictions and measurements show moderate dependency of 

velocities with the uniaxial stress: this dependency gets weaker with an increase of 

effective stress. While uniaxial stress increases from 0 to 8 MPa, VP and VS increase 

by ~20 m/s at effective stresses of 10-20 MPa and even by a smaller amount at 

higher stresses. The model predicts maximal variations in VP when the wave 

propagates perpendicular to the bedding plane, while VS increases in both directions 

(parallel and perpendicular to the bedding plane). Variations in the uniaxial stress 

have the smallest effect on acoustic wave propagation in oblique directions. 

However, these conclusions are valid for this particular shale and need to be verified 

on other shales before application. 

The developed model predicts well the variations in velocities due to the 

application of uniaxial stress at small values (< 10 MPa) of the uniaxial stress. At 

higher values of uniaxial stress, the model overestimates experimentally measured 

velocities, which show no further increase and can even decrease with increasing 

uniaxial stress. This is probably caused by opening of cracks parallel to the applied 

direction of the uniaxial stress which is known to reduce velocities in shale samples 

(Sayers, 1988; Dewhurst and Siggins, 2006; Kuila et al., 2010). The model presented 

here is not designed for prediction of such effects and is thus applicable to small 

axial stress variations ( cP  ) only, due to the assumed linear closure of 

discontinuity areas with stress (equation 4.5). 

It is worth emphasizing again that the four parameters used in the model are 

derived from the dependency of the elastic properties of the shale on isotropic stress 

and are nevertheless shown to the given an adequate prediction of variation in elastic 

properties under uniaxial stress. This fact implies that the model captures the essence 

of the stress dependency mechanism and the proposed four parameters can be used to 

parameterize stress sensitivity of different rock types. 

The model can be used to analyse stress-related anisotropy in shales in situ 

where stress perturbations are small and the corresponding variation in elastic moduli 

can be assumed linear. For the general case of large stresses, when density of the 

cracks cannot be considered reducing linearly, an analytical solution is not feasible 

and numerical solution is required. However, experimental measurements in shales 

show that for many samples, linear variation of compliances with stress is a 
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reasonable approximation and our model can be used to analyse the experimental 

data for a moderate range of applied uniaxial stresses. The stress range that can be 

investigated increases with shale strength. 

 

4.5 CHAPTER CONCLUSIONS 

A new model for prediction of elastic properties variation due to application 

of uniaxial stress for TI media with discontinuities has been developed. The model 

has been tested on experimental data obtained for a shale sample from the Officer 

Basin in Western Australia. The predicted variations in elastic velocities are in a 

good agreement with experimentally measured data. The developed model can be 

used for prediction of elastic properties response to application of a small uniaxial 

stress normal to the bedding plane when only variation of elastic properties with 

isotropic stress is known. 
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CHAPTER 5 – PREDICTION OF SONIC VELOCITIES IN SHALE FROM 
POROSITY AND CLAY FRACTION OBTAINED FROM LOGS 

Prediction of sonic velocities in shales from well logs is important for seismic 

to log ties, when sonic log is absent for a shaly section, for pore pressure anomaly 

detection, and for data quality control. Anisotropic elastic coefficients of the wet 

clay, a hypothetic composite material that includes all clay and water of the shale but 

exclude silt inclusions, are assumed as a first order approximation to be linearly 

dependent on wet clay porosity. Here by the wet clay porosity, we mean a ratio of a 

pore volume occupied by water to a total volume of the wet clay, where the former is 

calculated from bulk and grain densities. Effects of silt inclusions on elastic 

coefficients of shales are taken into account by using the anisotropic differential 

effective medium (DEM) model. Silt inclusions are modelled as spherical quartz 

particles. Simulated elastic coefficients of shales are used to calculate compressional 

and shear velocities and compared with the sonic velocities observed on a test dataset 

from a well penetrating a 500 m vertical section of shale. 

To further study elastic properties of clays, elastic coefficients of shales are 

inverted for vertical profiles of clay elastic coefficients. The analysis of these 

coefficients shows that in the considered well, the increase in elastic coefficients of 

shales is controlled by the increase of silt fraction with depth. Elastic coefficients of 

clay show no increase with depth. Compared to the elastic moduli of shale, the 

inverted elastic moduli of wet clay show much stronger correlation with clay 

porosity, which confirms the hypothesis that silt fraction is one of the key parameters 

for modelling of elastic properties of shale. 

In this chapter, I used the material previously published in the following 

EAGE and SEGJ extended abstracts, and that was later published in the Geophysics 

in 2015. All published materials were used with permission from leading co-authors 

and respective publishers (see Appendix B): 

 

 Pervukhina M., Golodoniuc P., Gurevich B., Clennell M. B., Nadri D., 

Dewhurst D. N., and Nordgård Bolås H. M., 2012, An estimation of sonic 

velocities in shale from clay and silt fractions from the Elemental Capture 

Spectroscopy log: Extended abstract, 74th EAGE Conference, Copenhagen, 

Denmark. 
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 Pervukhina M., Golodoniuc P., and Dewhurst D. N., 2013, Rock physics 

modeling of sonic velocities in shales: Proceedings of the 11th SEGJ 

International Symposium, Yokohama, Japan, 398-401. 

 Pervukhina M., Golodoniuc P., Gurevich B., Clennell M. B., Dewhurst D. N., 

and Nordgård Bolås H. M., 2015, Prediction of sonic velocities in shale from 

porosity and clay fraction obtained from logs – a North Sea well case study: 

Geophysics, 80(1), p. D1-D10, doi:10.1190/GEO2014-0044.1. 

 

5.1 INTRODUCTION 

Shales have been largely neglected in the past as barren overburden but have 

attracted considerable interest in recent years as reservoirs, source rocks and seals. In 

particular, knowledge of the factors that control elastic properties of shales is 

important for their characterisation from surface and borehole seismic data. 

Knowledge of elastic properties of shales and the parameters controlling those 

properties is important for the quantitative seismic data interpretation, pore pressure 

prediction and seismic anisotropy estimation. Most studies of shale properties are 

based on very laborious and time-consuming ultrasonic measurements on preserved 

shale samples. These samples give a very sparse representation of ubiquitous shaly 

sediments in the subsurface. Thus it would be useful to predict elastic properties of 

shales from their characteristics derived from well log data. The main objective of 

this chapter is to develop a methodology for predicting elastic properties of shales 

from their porosity and composition derived from logs, and to test and calibrate this 

approach against sonic log data. 

 Shales are highly heterogeneous multi-scale rocks with micro-scale silt 

inclusions, nano-scale porosity and various clay minerals as a host matrix. Despite 

the fact that elastic properties of shales have been studied for decades, there are still 

no generally accepted approaches to modelling of elastic properties of shales because 

of their complex nature. Application of effective medium theories, which have been 

successfully used to model properties of other rocks, to shales is challenging as the 

values of elastic properties of clay minerals are uncertain, as clays do not form large 

single mineral conglomerates and, thus, their properties cannot be measured by 

conventional ultrasonic pulse methods. The problem is further complicated by the 

fact that clay minerals exhibit strong elastic anisotropy. Theoretical, empirical and 
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experimental approaches have been proposed for estimation of elastic properties of 

shales and clays. Hornby et al. (1994) in their pioneering work modelled elastic 

properties of shales starting from isotropic clay penetrated with perfectly aligned 

ellipsoidal inclusions filled with water. They used self-consistent approximation 

(SCA) to model anisotropic moduli of a wet clay pack with different aspect ratios of 

ellipsoidal inclusions and then adjusted the amount of water to the desired value 

using the differential effective medium (DEM) approach. The Voigt-Reuss-Hill 

average was then used to calculate elastic moduli of wet clay composites with known 

orientation of clay platelets. The orientation distribution function (ODF) of the wet 

clay packs was estimated from SEM images of shale samples. Eventually, the effect 

of silt inclusions was taken into account by using DEM approach. Similar approaches 

to modelling of elastic properties of shales based on effective medium models were 

proposed by Jakobsen et al. (2000), Draege et al. (2006), Bayuk et al. (2007), 

Nishizawa (2010), Moyano et al. (2012) and Vasin et al. (2013). Ciz and Shapiro 

(2009) studied effects of discontinuities, such as clay platelet contacts and 

microcracks, on elastic properties of shales and their stress dependencies. Previously 

in Chapter 3, we showed that the ODF and strength of these discontinuities in shales 

change with depth. These physics-based theoretical approaches require a number of 

parameters, namely, aspect ratio of pores, the fractions of bound and free water and 

ODFs of clay platelets and microcracks that can be measured only in laboratories for 

a limited number of samples. 

Elastic properties of clays with different mineralogies were studied by a 

number of authors. Aleksandrov and Ryzhova (1961) measured anisotropic elastic 

properties of crystalline mica. Woeber et al. (1963) measured elastic moduli of 

kaolinite on a cubic sample. Castagna et al. (1985) extrapolated experimental data 

with different mineralogies to a zero-porosity limit. Katahara (1996) derived elastic 

properties of different clay minerals using Voigt-Reuss-Hill averaging. Wang et al. 

(2001) inverted measured clay and epoxy mixture properties for elastic properties of 

illite, smectite, mixed layer illite-smectite and kaolinite. Pal-Bathija et al. (2008) and 

Prasad et al. (2005, 2002) studied properties of clay minerals using atomic force 

microscope and nanoindentation methods. Vanorio et al. (2003) measured elastic 

properties of smectite cold-pressed from the clay powder. Sayers (2005) and Bayuk 

et al. (2007) inverted experimental measurements in Cretaceous Shales (from Jones 
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and Wang, 1981) for elastic properties of illite-smectite-kaolinite mixture. Mondol 

(2007) and Voltolini et al. (2009) measured elastic properties of smectite, illite and 

kaolinite mixtures obtained from wet clay powders by compaction. All these studies 

result in a set of isotropic and anisotropic moduli of clay minerals that differ from 

each other by more than an order of magnitude. Indeed, bulk modulus K, ranges from 

1.5-60.2 GPa and shear modulus µ from 1.4-31.8 GPa. Such an enormous variability 

in elastic properties of clays results in massive uncertainty when modelling elastic 

properties of shales using an effective medium approach. 

Recently, an alternative approach (the so-called GeoGenom model) was 

developed and successfully applied for prediction of elastic properties of shales 

without a detailed knowledge of clay mineralogy or microstructure (Ulm and 

Abousleiman, 2006; Ortega et al., 2007). This approach is based on the hypothesis 

that elastic properties of wet clay are entirely controlled by its total porosity and, for 

a given total porosity, is insensitive to clay mineralogy. The properties of wet clay 

will still depend on mineralogy indirectly as different clay minerals have different 

water content. The foundation to the GeoGenom model was laid by Ulm and 

Abousleiman (2006) who suggested using nanoindentation for direct measurements 

of elastic properties of clays in natural shales of complex mineralogy. The 

experimental data were then used to calibrate poroelastic dependency of elastic 

moduli vs. porosity for wet clay composites by Ortega et al. (2007). The method was 

extended to predict elastic moduli of shales by populating the wet clay composites 

with silt inclusions. The effect of silt inclusions is taken into account by SCA 

modelling which assumes that both constituents are connected and thus can be load 

bearing when concentrations of the constituents are approximately equal.  

The most attractive idea of the GeoGenom model is that elastic moduli of 

clay can be estimated from total porosity and silt fraction. This idea was further 

tested by Pervukhina et al., (2008a,b), who inverted ultrasonic anisotropic elastic 

coefficients of shales for elastic coefficients of clays using an anisotropic DEM 

approach (Nishizawa, 1982). Based on the obtained results, Pervukhina et al., 

(2008a,b) showed that a linear relationship between the water fraction in wet clay 

packs and the anisotropic elastic coefficients of clays is a reasonable first-order 

approximation. The elastic coefficients of hypothetical clay with zero water fraction 

were obtained by interpolation of these linear dependencies. This method, hereafter 
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called Clay-Plus-Silt (CPS) model, will be described further in more detail. An 

advantage of this method is that it does not require detailed knowledge of clay 

mineralogy and microstructure and has no fitting or adjustment parameters. It can be 

directly applied for modelling of elastic properties of shales from well log data as all 

the necessary parameters can be obtained from wireline measurements. Furthermore, 

as wireline logs contain thousands of point measurements, this method can be used 

for statistically representative inversion of elastic properties of shale for those of 

clay. Such inversion can be used for the justification and improvement of the clay 

moduli. 

In this study, we first test the predictive power of Clay-Plus-Silt methodology 

by applying it to modelling of shale velocity profiles in a vertical well. The input 

parameters that are necessary for this modelling are recovered from independent 

wireline log measurements such as density log and neutron porosity. Grain density, 

which is required to calculate porosity from density logs, is obtained from Elemental 

Capture Spectroscopy (ECS) tool and known mineral grain densities. The simulated 

elastic wave velocities are compared with the velocities measured by the sonic tool 

(DSI). Then, we design an algorithm that allows inversion of measured sonic 

velocities of shales for elastic coefficients of clays. 

 

5.2 FORWARD MODELLING WORKFLOW 

To predict elastic properties of shales from log-derived porosity and 

mineralogy we employ the Clay-Plus-Silt (CPS) model proposed by Pervukhina et al. 

(2008a,b) based on the concept of the GeoGenom model. In the CPS model, the only 

required input parameters are volume fractions of shale constituents, namely, the 

volume fractions of clay, silt and water. 

Here, the terms shale and clay are used in the sense that is common for rock 

physics studies (e.g., Hornby, 1994; Sayers, 2005; Bayuk, 2007; Mondol, 2007). By 

shale, we mean a composite material that consists of a wet clay load-bearing matrix 

and silt inclusions floating in this matrix. By wet clay we mean hypothetic composite 

material that includes all clay and water of the shale but without silt inclusions. All 

water is assumed to be contained in the wet clay; silt inclusions do not contain any 

porosity. For the sake of brevity hereafter, we sometimes use terms “clay” and “wet 

clay” to denote the wet clay. It is worth noting again that the terms “clay” and 
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“shale” have different meanings here as the latter means the composite of clay and 

silt (see Figure 5.1, which shows an SEM image of shale extracted from the well of 

interest). Hereafter, elastic coefficients of shale and clay are denoted with upper and 

lower-case letters, respectively. 

 

 

Figure 5.1 SEM image of a shale sample extracted from the well of interest (courtesy of C. Delle 

Piane). Silt fraction mainly consists of quartz carbonate inclusions. Wet clay occupies the remaining 

volume of the shale. 

 

The CPS model was previously applied to a suite of shales for which 

ultrasonic velocities were measured by ultrasonic pulse method (Dewhurst and 

Siggins, 2006; Dewhurst et al., 2008; Kuila et al., 2011) and concentrations of clay 

and non-clay components were known from XRD analysis. The elastic coefficients 

of anisotropic shales predicted with the CPS model were shown to be in good 

agreement with the experimentally measured elastic coefficients of shales. 

(Pervukhina et al., 2008a,b). 

The CPS model can be extended to prediction of sonic velocities of shales 

obtained by wireline log measurements if the porosity and concentration of clay and 

non-clay constituents are also obtained. Here we use the density and neutron porosity 

logs to find clay and silt fractions (Ellis and Singer, 2008). The results of the 

modelling procedure are compared with sonic velocities measured by a sonic tool 
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(DSI) from the same well. The detailed modelling procedure is described below. At 

each step, we underline all assumptions that we make. 

 

1. At the first step we calculate porosity, , of rock from density log as follows: 

    
wgbg    (5.1) 

Here 
b  is bulk density, 

g  is the matrix density obtained from the dry 

weight fractions of the composite minerals measured by the ECS tool and w  

is the saturating fluid density (brine for this particular well). 

Alternatively, the porosity can be estimated from neutron logs by 

calibrating it with laboratory core measurements. However, one must be 

careful as the standard laboratory porosity measurement procedures are not 

well established for shale and might give systematically biased results. It is 

generally known that mercury intrusion porosimetry (MIP) underestimates 

porosity in shales. Another method of estimation of free water mass fraction 

in shales is based on the comparison of preserved (saturated) shale density 

with the density of the dry shale (obtained by keeping it in an oven at a 

temperature of 105C for 24 hours). This method assumes that all water has 

been evaporated from the sample; this assumption is questionable, especially 

for low permeability shales. Hereafter we use the porosity calculated from the 

bulk and grain density using equation (5.1).  

 

2. Clay and silt fractions out of the solid phase, 0

cf  and 0

sf , are then estimated 

using a neutron-density cross-plot (e.g., Ellis and Singer, 2008). The 

volumetric clay and silt fractions are then calculated as: 

   10

cc ff  (5.2) 

and 

  cs ff 1  (5.3) 

 

3. The wet clay porosity, , is determined as a ratio of the volume of pores to 

the total volume of the clay constituent: 

 








cf
 (5.4) 
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The WCP is analogous to the clay packing density parameter (CPD) 

introduced by Ulm and Abousleiman (2006), but we find WCP more 

intuitive. CPD and WCP are connected by a simple relation 1CPD . By 

introducing WCP parameter in such a way, we assume that all the porosity is 

hosted between clay platelets and that the silt is non-porous. This assumption 

is plausible as, for the well of interest, the silt mostly consists of quartz 

inclusions and these microscopic quartz particles can be considered as non-

porous. 

 

4. We here assume that both the shale and its clay constituent are transversely 

isotropic with a vertical symmetry axis (VTI). This is a reasonable 

approximation for shales that are not subject to vertical fractures or 

anisotropic horizontal stress. Furthermore, based on a number of laboratory 

experiments, Pervukhina et al. (2008a,b) showed that a linear dependency of 

shale elastic coefficients on clay packing density is a reasonable first order 

approximation for a wide range of wet clay porosities. The dependency of the 

elastic coefficients, 
ijc , on WCP will then be linear as well: 

   5.00

ijij cc  (5.5) 

Here 0

ijc  are elastic coefficients of hypothetical clay with 0 , which were 

obtained from the linear regression coefficients and were shown to be equal 

to 0

11c  = 46.4 GPa, 0

33c  = 29.9 GPa, 0

13c  = 17.9 GPa, 0

44c  = 6.7 GPa and 

0

66c  = 11.2 GPa (Pervukhina et al., 2008a). The coefficient 0.5 arises in 

equation 5.5 as we assume that the wet clay is not load-bearing if the 

volumetric water fraction in it is equal or exceeds 50%. Hereafter, we use 

these relations to estimate elastic coefficients of clay based of porosities and 

clay fractions obtained by logs (equations 5.1 and 5.2). 

 

5. Steps 1-4 give allow us to compute anisotropic elastic moduli of wet clay. In 

addition to wet clay, the shale usually contains significant amount of silt 

inclusions, Indeed, the concept that silt fraction has a prominent effect on 

elastic coefficients of shales and that this effect must be taken into account is 

widely accepted (e.g., Hornby et al., 1994; Bayuk et al., 2007; Ulm and 
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Abousleiman, 2006). We take into account the effect of the silt inclusions 

using an anisotropic Differential Effective Medium (DEM) approach 

(Nishizawa, 1982). The DEM method calculates elastic properties of shale by 

incrementally adding silt inclusions into the clay matrix up to the measured 

fraction of the silt constituent (equation 5.2). Anisotropic elastic properties of 

the clay matrix are calculated from equation 5.5. Application of DEM model 

implies that silt is present in the form of isolated inclusions in the 

interconnected clay matrix. The silt inclusions are modelled as quartz 

spheroids. The assumption of connectivity of the clay matrix and round shape 

of silt inclusions are consistent with observations of numerous SEM images 

(e.g., Desbois, 2009). It is worth noting that this approach is not applicable to 

shaly sands in which microstructural distribution of clay in a sandstone 

should be taken into account and which can depend of clay fraction and 

compaction (for more detailed information see, for instance, Sams and 

Andrea, 2001). 

 

6. Elastic wave velocities in the direction normal to bedding are then calculated 

as follows: 

   2
1

33 bP CV   (5.6) 

   2
1

44 bS CV   (5.7) 

 

These equations will give sonic velocities in a well that is drilled normal to 

bedding plane. In the case of a deviated well or tilted bedding, the calculation 

of the velocities from the elastic coefficients depends on whether group or 

phase velocity is measured by a sonic tool. The detailed discussion on this 

topic can be found in Miller et al. (2012) and Pervukhina et al. (2013). 

 

7. To estimate uncertainties of the velocity simulation at each depth, we perform 

simulations with N=100 realisations of the input parameters (namely, 

porosity, , and clay fraction, fc, with added Gaussian noise of 5%). The 

mean and standard deviation for both compressional and shear velocities are 

then calculated as: 
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and 
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5.3 LOG DATA EXAMPLE 

To test the predictions of the workflow described above, we apply it to log 

data in a vertical well. Log data, namely, gamma ray (GR), bulk and grain density, 

neutron and density porosity and mineralogy measured in the well are shown in 

Figure 5.2. The distance between the major grid lines is 100 metres and between the 

minor ones is 25 metres. 

The GR values are high (160-180 gAPI) throughout the whole 500 metres 

depth interval apart from the interval of about 40 metres in the middle and a few 

short intervals at the bottom. The high gamma ray values are a good indication of 

shales if no other radioactive minerals are present. The abundance of the shale in the 

well is also confirmed by the deviation of the measured neutron porosity from the 

porosity calculated from density using equation 5.1. Neutron porosity is up to 20% 

higher than density porosity in the depth intervals with high gamma ray readings and 

the porosities match each other in the depth intervals with low gamma ray values. 

Modelling of shale properties is done only for the depths at which silt fraction is 

below 0.4. 

Figure 5.3 gives a visual illustration that the silt effect on elastic properties of 

shales is observable on the log measurement scale. The elastic coefficients of shales 

are then plotted against wet clay porosity, , and colour coded in accordance with silt 

fraction, fs. Elastic coefficients C33 are calculated from sonic velocities and bulk 

density as follows: 

 2

33 PbVC   (5.10) 

 2

44 SbVC   (5.11) 
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Figure 5.2 Log data (left to right): Gamma ray (GR), bulk (RHO8) and grain (RHGE) density, 

neutron (NPOR) and density (DPOR) porosity. 
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Figure 5.3 Elastic coefficients C33 and C44 calculated from log data vs. wet clay porosity, , colour 

coded with respect to silt fractions are compared to CPS model predictions for silt fractions of 0.4, 

0.3, 0.2 and 0.1, which are shown by brown, yellow, cyan and blue, respectively. 

 

The individual coefficients C33 and C44 are shown for shale ( 4.0sf ) 

throughout the whole depth interval. The same elastic coefficients simulated using 

DEM approach for four different silt fractions 0.1, 0.2, 0.3 and 0.4 are shown by light 

blue, green, orange and dark red solid lines, respectively. The elastic coefficients of 

shale regardless its silt fraction exhibit significant scatter and show no obvious trend 

with wet clay porosity. However, for a narrower range of silt fractions, for example, 

from 0.1 to 0.2, the elastic coefficients show obvious trends that are similar to the 

trends of model predictions. 

 

Gamma ray log, measured sonic velocities and CPS model predictions are 

shown in Figure 5.4 at two different scales. In Figure 5.4a the sonic velocities (blue 

lines) are shown in comparison with mean modelled velocities (red lines) calculated 

using equation (5.8) throughout the whole shale interval of about 500 metres. The 

dashed and dotted lines are the smoothed measured sonic velocities plus and minus 

10%, respectively. In Figure 5.4b the gamma ray and velocities are shown for a ~50 

metre interval. Red dashed and dotted lines in Figure 5.4b are 2V , where mean 

velocities and standard deviation are calculated using equations (5.8) and (5.9). 
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(a) (b) 

   

Figure 5.4 Gamma ray, compressional and shear sonic velocities (blue lines) in comparison with 

simulated velocities (red lines): (a) throughout the whole shale interval, the depth between major 

gridlines is 100 m; (b) throughout about 50 m of depth; 10 m distance between gridlines. 

 

 

The cross-plot of the modelled versus measured velocities is shown in Figure 

5.5. The modelled compressional velocity is in a good agreement with measured 

sonic log velocity with linear regression coefficient of 1.0 and the coefficient of 

determination R2=0.8. The modelled shear velocities show a systematic shift of about 

8% but the coefficient of determination is still 0.8. This discrepancy might be 

explained by the fact that for the forward modelling we used the elastic coefficients 

of clay that were derived from laboratory experiments on preserved shale samples 

excavated from different places all over the world (details can be found in 

Pervukhina et al., 2008a,b). In the following sections, we invert the log sonic 

velocities measured in shales for elastic coefficients of clay but we do not use these 

coefficients for forward modelling. The purpose of the inversion is to study 

variations of clay properties with wet clay porosity and with depth in more detail, 

rather than to fit modelling results with the measured ones. 
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Figure 5.5 Modelled shale velocities vs. measured sonic log velocities. 

 

5.4 INVERSION FOR ELASTIC PROPERTIES OF WET CLAY 

In the previous section, we showed that the CPS model can be used to 

estimate elastic moduli of shales from porosity and mineralogy logs. In the interval 

covered by sonic data, we can also invert the sonic velocity and silt fraction for 

elastic moduli of wet clay using the anisotropic DEM model without a priori 

knowledge of the relationship between clay moduli and porosity. However, it is 

worth noting that the inversion is limited to two elastic coefficients of clays 33c  and 

44c , as only these elastic coefficients of shale can be obtained from sonic velocity 

measurements in vertical wells drilled normal to bedding. 

Here we invert the elastic properties of shales obtained from the sonic log 

measurements in the same vertical well throughout the whole 500 metres shale 

interval. The inversion is done by minimising the function: 

     



4

3

2exp,,,
i

iiiis

DEM

iiii CcfCc   (5.12) 

 

Elastic coefficients of shales exp

iiC  are calculated from sonic log velocities 

using equations (5.10) and (5.11). DEM

iiC  are simulated using anisotropic DEM 

(Nishizawa, 1982).  and fs are calculated for a particular depth log measurements 

using equations (5.3) and (5.4). The inversion is done for several aspect ratios, α, of 
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silt inclusion ranging from 0.1 to 1. The initial guess for the inversion is obtained 

using equation (5.5) with 0

33c  = 29.9 GPa, and 0

44c  = 6.7 GPa. The Levenberg-

Marquardt method (Moré, 1977) implemented in the MATLAB optimization toolbox 

is used to minimise function (5.12). 

To study sensitivity of the inverted elastic coefficients of clay to the aspect 

ratio of silt inclusions, we inverted 
33C  and 44C  for elastic coefficients of clays for 

six aspect ratios of silt inclusions of 0.1, 0.2, 0.3, 0.5, 0.7 and 1.0. The study is 

limited to the aspect ratios in the range from 0.1 to 1.0 as these aspect ratios of the 

silt inclusions have been observed in micro- and nanotomographic studies of shale 

microstructure. The inverted 
33C  and 44C  are plotted in Figure 5.6 against  for silt 

inclusion aspect ratio of 1. This figure demonstrates that removing the effect of silt 

dramatically reduced the large scatter (as shown in Figure 5.3) of the elastic moduli 

for a given clay porosity. Elastic coefficients exhibit obvious negative trend with the 

increase of WCP. The best fit linear trends are shown in the same plot by black solid 

lines. Elastic coefficients 0

33c  and 0

44c  of the clay in the hypothetic non-porous state 

(with zero wet clay porosity) can be obtained by extrapolating the trend lines to zero 

WCP. 

 

 

Figure 5.6 Elastic coefficients, c33 and c44, of clay obtained by the inversion procedure against wet 

clay porosity using silt aspect ratio of 1 (i.e. spherical). The best linear fit is shown by black line. 
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The elastic coefficients at zero wet clay porosity are shown in Table 5.1 for 

different aspect ratios of silt inclusions of 0.1, 0.2, 0.3, 0.5, 0.7 and 1.0. The averaged 

values are 3.03.320

33 c  and .1.05.70

44 c  One can see that the effect of the 

aspect ratio of silt inclusions on the inverted coefficients of clays does not exceed 

2%. This indicates that the rigorous bounds for elastic moduli are quite close for 

these moduli of the constituents. Therefore, in further analysis, we use elastic 

coefficients inverted using silt particles with aspect ratios of 1.0 (i.e., spheres). These 

values of the elastic coefficients of hypothetic clay with zero porosity are close 

(especially for c33) to the values of 29.9 GPa and 6.7 GPa, which were acquired from 

laboratory measurements (Pervukhina et al., 2008a) and are used for forward 

modelling. 

 

 

Table 5.1 Results the linear extrapolation of the inverted clay coefficients to 0  using silt 

inclusions with different aspect ratios, α. Coefficients of determination, R2, indicate that linear trends 

fit the inverted coefficients better in the cases of large aspect ratios of silt inclusions. 

α 0.1 0.2 0.3 0.5 0.7 1.0 

33c , GPa 32.0 32.0 32.1 32.3 32.4 32.7 

2

33R  0.7 0.7 0.7 0.8 0.8 0.8 

44c , GPa 7.3 7.4 7.5 7.6 7.6 7.6 

2

44R  0.5 0.6 0.7 0.7 0.7 0.7 
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5.5 DISCUSSION 

The inversion results for the moduli c33 and c44 of clay, corresponding to the 

original moduli of shale C33 and C44, wet clay porosity and silt fraction are shown in 

Figure 5.7 (a, b). The best linear fits of these values are shown in the same plots and 

Table 5.2 summarises their depth gradients. We see that the shale moduli, C33 and 

C44, systematically increase with depth by ~5% and ~3% per 100 metres, 

respectively. Assuming that wet clay porosity decreases with depth due to 

compaction, we must expect to see some increase of clay elastic coefficients with 

depth. As a matter of fact for this particular well, the depth gradients of either WCP 

or clay elastic coefficients c33 and c44 are negligible (Table 5.2). Instead, a noticeable 

silt fraction increase with the increase of depth of 4% per 100 metres is detected, 

which may explain the observed stiffening of the shale. 

The lack of increase of compaction-induced porous clay moduli with depth is 

intriguing. This might be the result of the fact that the clay fraction is obtained from 

the neutron-density separation using a single clay point for the whole 500 metres 

depth. It is hard to assess the validity 

of this assumption in our well since 

it shows very large systematic 

increase of silt fraction with depth. It 

is most likely that the depth interval 

of 500 metres is simply not 

sufficient to clearly see the 

compaction trend and separate it 

from the strong shale trend caused 

by the changes in silt and clay 

fractions. This issue requires further 

analysis. 

 

 

 

 

 

 

Table 5.2 Depth gradients. 

 Per 100 meters 

33C
,GPa 5% 

44C
, GPa 3% 

33c
, GPa -0.5% 

44c
, GPa -0.5% 

 , % -0.5% 

sf
, % 4% 
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(a)  (b) 

  

Figure 5.7 Depth dependencies of elastic coefficients, silt fraction and wet clay porosity: (a) C33 

(green), c33 (blue), C44 (red) and c44 (magenta) and (b) wet clay porosity (red) and silt fraction (blue). 

By depth here, we mean the depth from some non-zero level. 
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5.6 CHAPTER CONCLUSIONS 

We have confirmed that wet clay porosity and silt fraction are the two key 

parameters for modelling of elastic properties of shales. These parameters can be 

obtained from clay fraction derived from common well log measurements such as 

neutron-density separation or similar quantitative mineralogy information. 

Knowledge of these parameters allowed prediction of elastic properties of shales 

throughout the depth interval of about 500 metres without detailed knowledge of the 

shale mineralogy. The predicted velocities show good agreement with the measured 

velocities but a systematic shift is observed for shear velocities.  

The analysis of the elastic properties of clay inverted on the basis of the 

knowledge of the log measurements of sonic velocities, bulk and grain density, plus 

silt fraction shows that in the considered well, the increase in elastic coefficients of 

shales is controlled by the increase of silt fraction with depth. Elastic coefficients of 

clay show no increase with depth. Furthermore, compared to the elastic moduli of 

shale, the inverted elastic moduli of wet clay show much stronger correlation with 

clay porosity, which confirms the hypothesis that silt fraction is one of the key 

parameters for modelling of elastic properties of shale. 
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CONCLUDING REMARKS 

Various research aspects covered in this thesis include (a) 3D reconstruction 

of X-ray microtomographic images for acquisition of realistic computer models of 

rocks, (b) experimental verification of velocity-stress relationship for isotropic 

porous rocks, (c) shale anisotropy and parameterization of elastic stress sensitivity in 

shales, (d) prediction of sonic velocities in shales from clay and silt fractions from 

the data obtained from wire logging tools without detailed knowledge of rock 

mineralogy. Given the diversity of petrophysics problems addressed in this thesis and 

independence of some chapters, obtained results from each chapter are summarised 

individually: 

 

 Chapter 1. A comprehensive digital rock physics workflow has been 

developed to support realistic 3D image reconstruction, processing and noise 

suppression, and finite element method simulations to complement laboratory 

experiments. On a computer model reconstructed from a real sandstone 

specimen it has been demonstrated that numerically simulated elastic moduli 

correlate well with laboratory measurements, proving the method 

applicability for computational up-scaling of elastic moduli of porous rocks. 

 

 Chapter 2. Dual porosity concept and its interpretation of exponential stress 

dependency of elastic properties of rocks has been tested using laboratory 

measurements on dry sandstones and has shown that (a) elastic 

compressibility is linearly dependant on soft porosity, and (b) exponential 

decay of soft porosity and elastic compressibility can be observed with 

effective stress up to 60 MPa. The obtained results reconfirm the applicability 

of Shapiro’s (2003) stress sensitivity model and hence provide justification 

for using this approach to model the effect of stress on properties of both 

isotropic and anisotropic rocks. 

 

 Chapter 3. The main objective has been achieved with the development of a 

new stress dependency model for TI media for parameterization of 

dependencies of the elastic properties of shales. The proposed model is based 

on a combination of the dual porosity approach of Shapiro (2003) and the 
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non-interactive approximation of Sayers and Kachanov (1995). Our findings 

suggested that the proposed model allows the prediction of stress dependency 

of all five elastic compliances if only three or four compliances are known. 

This opens up new opportunities for the reconstruction of stress dependencies 

of all five elastic compliances of shale from log data, when detailed 

information is not available or is hard to obtain. 

 

 Chapter 4. In this chapter, we further developed the model proposed in 

Chapter 3 for prediction of elastic properties variation due to application of 

uniaxial stress for TI media with discontinuities. The results of numerical 

simulations have shown that (a) effects caused by application of small 

uniaxial stresses can be described using four physically plausible parameters, 

and (b) predicted variations in elastic velocities are in a good agreement with 

experimentally measured data. This allowed the model to be used for 

prediction of elastic properties response to application of a small uniaxial 

stress normal to the bedding plane when only variation of elastic properties 

with isotropic stress is known. 

 

 Chapter 5. In this chapter, we used the Clay-Plus-Silt (CPS) model that is 

based on two physical parameters, namely, clay packing density and silt 

fraction that are considered to be the key parameters for modelling of elastic 

properties of shales. Knowledge of these parameters allows accurate 

prediction of elastic properties of shales without detailed mineralogical 

analysis, whereas clay packing density and silt fraction parameters may 

relatively easy be obtained from wireline measurements or derived from 

common log measurements such as neutron-density separation or similar 

quantitative mineralogy information. The clay packing density parameter is 

shown to be a proxy of the effect of compaction processes on elastic 

properties of clay matrix of shales. Elastic coefficients of clay have shown no 

increase with depth. The predicted velocities show good agreement with the 

measured velocities but a systematic shift is observed for shear velocities. In 

addition, the inverted elastic moduli of wet clay, as compared to the elastic 

moduli of shale, have shown much stronger correlation with clay porosity. 
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This confirmed the hypothesis that silt fraction is one of the key parameters 

for modelling of elastic properties of shale. 
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APPENDIX A 

STRESS DEPENDENCY OF ELASTIC COMPLIANCES OF TRANSVERSELY 

ISOTROPIC MEDIA WITH ANISOTROPICALLY DISTRIBUTED 

DISCONTINUITIES 

Orientation distribution of cracks is commonly described with the help of two 

coordinate systems, global (measurement system) and local (associated with the 

orientation of an individual crack). The two systems are related by three Eulerian 

angles (θ, φ, ψ), where θ ranges lie in the range [0, π] and determine the angle 

between the z’-axis of the local system and the z-axis of global system, φ controls the 

rotation about the z-axis (range [0, 2π]), and ψ specifies the rotation of the crack 

about the local z’-axis (range [0, 2π]). If the z’-axis of the local coordinate system 

coincides with the normal to the crack surface, we reduce the number of angles to 

two, namely, θ and φ. The spherical system determined with these two angles and the 

z-axis, which here is assumed to coincide with the axis of rotational symmetry of the 

medium, is a convenient system for calculating αij and βijkl tensors from equations 3.5 

and 3.6. Note that the three components of a unit vector in a spherical coordinate 

system can be written as: 

 𝑛1 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, (A.1) 

 𝑛2 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, (A.2) 

 𝑛3 = 𝑐𝑜𝑠𝜃. (A.3) 

Calculation of αij and βijkl tensors for cracks with a particular orientation 

distribution function, determined by equations 3.1 and 3.2 and with surface area 

governed by equation 3.3, involves integration over all possible orientations of 

cracks, i.e. over all angles θ and φ that define the direction of the normal to a crack 

surface. Integration over the angles θ and φ is integration over the surface of a unit 

sphere; the infinitesimal element of the surface should be written as sinθdθdφ. 

The probability that the normal to the surface of the crack forms an angle θ 

with the z-axis that lies in the interval [θ1, θ2] can be written as: 

 

 
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0 0
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or, if we take into account equation 3.1, as follows: 
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The specific number of cracks per unit volume whose normals form an angle 

θ with the z-axis that lie in the interval [θ1, θ2] can then be written as: 
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where N0 is the total number of cracks. 

 

In equation 3.5, summation over all cracks can be replaced with integration 

over all angles, and αij for a unit volume can be written as: 

 





ddnnAB
N
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
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Taking into account equation 3.3 and assuming that BT is the same for all 

crack orientations, equation A.7 can be rewritten as: 

 
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Noting that the specific surface area of cracks per unit volume is equal to 

𝑠0 = 𝑁0𝐴
0 and denoting 𝑠𝑛 = 𝑠0/(1 + 𝜂/3), we can rewrite equation A.8 as 

follows: 
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Taking into account equations A.1-A.3 and integrating over all angles in 

equation A.9 we finally get the tensor αij as follows: 
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The tensor βijkl for a unit volume can be obtained in a similar way: 
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(A.11) 

 

Substituting αij and βijkl into equation 3.4, we obtain the excess compliances 

(equations 3.7-3.11) caused by cracks with an orientation distribution function given 

by equation 3.1. If B = 1, equations 3.7-3.11 reduce to equations 3.12-3.16. 
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