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Abstract

Orthogonal frequency division multiplexing (OFDM) modulation technique has

been used for high data rate transmission in wireless communications due to its

spectral efficiency and its resilience against fading channels. One of the major

drawbacks of the OFDM system is the high peak-to-average power ratio (PAPR)

of the transmitted signal. A high PAPR will introduce nonlinearity when the

OFDM signal is passed through a high power amplifier (HPA) at the transmitter.

The HPA is often peak-power limited, either because of telecommunication regu-

lations or application constraints. Nonlinearity creates inter-modulation between

carriers and introduces signal distortion which lead to an increase of the bit error

ratio (BER). In order to prevent nonlinearity, the power backoff can be increased

to ensure the HPA operates in its linear region. However, increasing the power

backoff will reduce the power efficiency of the HPA. Power efficiency is one of the

essential factors in wireless applications. Therefore, reducing the PAPR of the

OFDM signal is necessary to maintain the efficiency of the HPA.

Shaping the OFDM subcarriers with a properly selected pulse will reduce the

PAPR of the OFDM signal. Ideal filters are often used as the shaping pulses.

However, ideal filters are often non-causal and have to be truncated and shifted

properly before being put into implementation. Instead of using non-causal ideal

filters, a computationally efficient optimisation approach is proposed to design

causal pulse shaping filters. Numerical results illustrate the effectiveness of the

designed pulse shaping filters in reducing the PAPR of the OFDM signals.

The complementary cumulative distribution function (CCDF) is a meaningful

tool to analyse and quantify the PAPR of the OFDM signal. Theoretical analyses

and quantification of the CCDF have been thoroughly investigated in the existing

literature. However, those theoretical analyses were carried out on the assumption

that the OFDM signal is a stationary signal. When the OFDM signal is subjected

to pulse shaping, the resulting signal is not stationary anymore, it becomes a cyclo-

stationary signal. By introducing a random phase, the cyclostationary signal can

be stationarised. After the stationarisation process, the level crossing rate (LCR)



theorem is used to derive an upper bound for the CCDF of PAPR. The proposed

theoretical upper bound is validated by numerical simulations.

OFDM modulation technique has been incorporated into multiuser communi-

cation systems. To reduce the high PAPR in multiuser OFDM systems, a pulse

shaping approach can be used. However, the pulse shaping approach cannot be

implemented directly. It is necessary to establish users’ independence in multiuser

OFDM systems. An optimisation approach is proposed to design a set of or-

thogonal filters to generate a set of pulse shaping waveforms for different users.

Numerical examples illustrate the effectiveness of the designed set of pulse shaping

filters in reducing the PAPR of the multiuser OFDM signal.
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Chapter 1

Introduction

1.1 Overview of Orthogonal Frequency Division Mul-

tiplexing

Multicarrier modulation schemes have been developed to provide reliable high

speed data transmission over wired and wireless channels. Multicarrier modula-

tion schemes use the principle of frequency division multiplexing (FDM). At the

transmitter, data are assigned to non-overlapping frequency carriers and at the re-

ceiver, a filter bank is used to demodulate the received data. Orthogonal frequency

division multiplexing (OFDM) was proposed as a special multicarrier modulation

scheme. OFDM has emerged as one of the key technologies for supporting high

data rate transmissions because of its high spectral efficiency and its robustnesss

against multipath fading channels.

OFDM has been incorporated in wireline applications, such as power line com-

munication (PLC), digital subscriber lines (DSL) [2], wireless broadcast applica-

tions, such as digital audio broadcasting (DAB) and digital video broadcasting

(DVB). In addition, it has been widely implemented in wireless local area net-

works (WLANs), the IEEE 802.11 standard, 3G wireless systems [4]; the IEEE

802.16 (WiMax) standard [5] and the ETSI HIPERLAN/2 standards [6]. OFDM

has recently been adopted for 4G wireless systems and ultra-wideband (UWB) sys-

tems [3]. At present, it is highly considered as a candidate to support the future

fifth generation (5G) communication systems [8].
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The fundamental principle of OFDM is to divide a stream of high-rate data into

many of parallel low-rate data streams which are mapped to a number of orthogo-

nal subcarriers. The spectrums of the OFDM subcarriers overlap with each other

without introducing interference, as illustrated in Fig. 1.1. Due to the orthogonal-

ity between the OFDM subcarriers, the receiver can demodulate the transmitted

data without introducing inter-carrier interference (ICI). Consequently, OFDM

has a higher spectrum efficiency compared to the conventional FDM multicarrier

transmission schemes.

0
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Figure 1.1: Spectrum of an OFDM signal.

One of the significant advantages of OFDM systems is its robustness against

multipath fading channels. A lower complexity equalizers can be used to demod-

ulate the received data [7]. In single carrier systems, on the other hand, complex

equilizers are required to recover the distorted signal caused by frequency selective

fading.

OFDM can be efficiently implemented using Inverse Fast Fourier Transform

(IFFT)/ Fast Fourier Transform (FFT) . At the transmitter, the IFFT is used
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for data modulation and the FFT is used to demodulate the data at the receiver.

OFDM can eliminate inter-symbol interference (ISI) by employing cyclic prefix

(CP) with a duration longer than the impulse response of the multipath fading

channels.

The OFDM transmission block diagram is illustrated in Fig. 1.2. Consider that

the data symbols are divided into N parallel orthogonal subcarriers with each of

time duration Ts at the transmitter. Each N data symbols are grouped as an

OFDM block Z where Z=[Z0, Z1, ..., ZN−1]. The data symbols in Z are modu-

lated to N subcarriers and passed to IFFT before transmission.

Figure 1.2: Block diagram of OFDM system model.

The OFDM bandpass transmitted signal can be defined by

sc(t) = <{ŝ(t)ej2πfct} (1.1)

where fc denotes the carrier frequency and <{s} the real part of s. The baseband

equivalent of the OFDM transmitted signal, ŝ(t), can be expressed as

ŝ(t) =
N−1∑
k=0

Zke
j2πkt/T , 0 ≤ t<T (1.2)

where T = NTs represents the time duration of the OFDM symbol. It is assumed

that Zk are independent and identically distributed (i.i.d) random variables where
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it has zero mean and variance as

E[ZkZ
∗
n] =

 σ2, k = n

0, k 6= n
(1.3)

where (∗) represents the complex conjugate operator.

1.2 Peak-to-Average Power Ratio

Despite having been implemented in many communication systems due to the

multidimensional benefits, OFDM has several drawbacks. One of the drawbacks

is that the OFDM transmitted signal often exhibits high peak-to-average power

ratio (PAPR) [1].

Theoretically, increasing the number of subcarriers should be able to give bet-

ter performance in a sense that the OFDM systems will able to handle larger delay

spreads. However, in the time domain, the subcarriers sum up coherently and this

results in a large dynamic signal range and may produce a very high PAPR. The

high PAPR is a challenge for high power amplifier (HPA) at the transmitter. In

order to avoid nonlinearity, the peak power must be within the HPA linear region.

Nonlinearity will create inter-modulation between the carriers and introduces sig-

nal distortion. The in-band and out-of-band distortions will degrade the bit error

rate (BER) performance. Distortion can be reduced and generally avoided by

increasing the power backoff to keep the HPA operating in the linear range. How-

ever, additional power backoff means a larger dynamic range for the HPA. This

type of HPA reduces the power efficiency which then reduces the battery life in

portable systems. Due to the fact that the efficiency of battery life is a critical

issue to the success of portable products, the high PAPR should be reduced before

transmitting the OFDM signal to end user.

The PAPR of the OFDM signal in (1.2) can be defined by

PAPR =

max
0≤t<T

|ŝ(t)|2

E {|ŝ(t)|2}
(1.4)
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where max |ŝ(t)|2 represents the peak power and the E
{
|ŝ(t)|2

}
denotes the av-

erage power of the OFDM signal. When the envelope of the OFDM signal is

normalised, it can be expressed as

r̂(t) ,
|ŝ(t)|√
Pav

(1.5)

where Pav denotes the average power of the OFDM signals. Using (1.5), the PAPR

can be written as

PAPR = max
0≤t<T

|r̂(t)|2 (1.6)

For a large number of subcarriers, the probability of the PAPR reaching the

maximum value is very low [1]. A more meaningful way to analyse the PAPR of

the OFDM signal is to use the complementary cumulative distribution function

(CCDF). The CCDF calculates the probability of the OFDM signal exceeding a

specified PAPR threshold, γ. The CCDF of the PAPR can be defined by

CPAPR(γ) = Pr


max

0≤t<T
|ŝ(t)|2

Pav
≥ γ

 (1.7)

If (1.5) is used, the CCDF can also be written as

CPAPR(γ) = Pr { max
0≤t<T

r̂(t) ≥ √γ} (1.8)

1.3 Thesis Objectives

The objectives of this thesis are as follows:

1. Design pulse shaping filters using a computationally efficient optimisation

approach to reduce the PAPR of the OFDM signal and evaluate the effec-

tiveness of the proposed design with numerical simulations.

2. Investigate the PAPR distribution of the OFDM signal with pulse shaping.

3. Design a set of pulse shaping waveforms using an optimisation approach to

reduce the PAPR of the OFDM signal in multiuser communication systems.
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Figure 1.3: PAPR of the OFDM signal for different number of subcarriers

1.4 Thesis Overview and Contributions

The PAPR can be mitigated by using PAPR reduction techniques such as clipping

and filtering [26] [27], coding [19], phase manipulation techniques (e.g selected map-

ping, Partial Transmit Sequences) [16] [17] [18] and pulse shaping [9]. However,

some of these PAPR reduction techniques cause signal distortion that increases

the BER or increases the implementation complexity of the OFDM systems.

Pulse shaping technique reduces the PAPR of the OFDM signal without de-

stroying the orthogonality of the OFDM subcarriers. Pulse shaping can be imple-

mented in OFDM system with only minimal increase of implementation complex-

ity.

Chapter 2 presents some of the currently existing PAPR reduction techniques

and introduces the pulse shaping approach. Chapter 3 introduces causal pulse

shaping filter designs using a computationally efficient optimisation algorithm for

reducing the PAPR of the OFDM transmitted signal. Chapter 4 investigates the

BER performance of OFDM signal with the designed pulse shaping filters in multi-

path fading channels. Chapter 5 investigates the PAPR distribution of the OFDM

signal after pulse shaping is applied. Chapter 6 presents the design of a set of pulse
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shaping waveforms to reduce the PAPR of the OFDM signal in multiuser commu-

nication systems. Chapter 7 summarises this thesis and highlights the potential

further research.

Chapter 2: PAPR Reduction Using Pulse Shaping

In this chapter, after a brief overview of the currently existing PAPR reduction

techniques reported in the literature, the pulse shaping technique is investigated.

By shaping the OFDM subcarriers properly, the PAPR of the OFDM signals can

be reduced. The properly selected shaping pulse should be within the bandwidth of

the OFDM signal and the orthogonality of the OFDM subcarriers should be main-

tained. Simulation results illustrate that by selecting the shaping pulse properly,

the PAPR of the OFDM signal can be reduced.

Chapter 3: Optimal Pulse Shaping Filter Design for PAPR Reduc-

tion

In the current literature, ideal filters are used as shaping pulses to reduce the PAPR

of the OFDM signal. However, an ideal filter is often non-causal and truncation is

required for implementation. Truncation may introduce undesired ISI and lead to

unnecessary additional bandwidth. Instead of using non-causal ideal filters, this

chapter introduces the direct design of causal filters using computationally efficient

optimisation approach to reduce the PAPR of the OFDM transmitted signal. The

filter design problem is formulated as non-linear constrained optimisation prob-

lem. The non-linear constraints are linearised in order to solve the optimisation

problem efficiently. Numerical results illustrate that the designed pulse shaping

filters have better performance than the ideal filters in terms of PAPR reduction.

Chapter 4: BER Performance of the OFDM System with Pulse

Shaping over Multipath Fading Channels

Reducing the PAPR can be at the expense of an increase of BER at the receiver.

In this chapter, BER performance of the OFDM signal with pulse shaping is in-

vestigated. It is assumed that a matched filter is used and the full CSI is known

at the receiver. HIPERLAN/2 channel models are used to simulate the multipath

fading channels and low complexity detector is employed at the receiver. Numer-
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ical results illustrate that the designed pulse shaping filters improves the BER

performance of OFDM system over multipath fading channels.

Chapter 5: PAPR Distribution Analysis of OFDM Signal with

Pulse Shaping

In this chapter, the PAPR distribution of the OFDM signal with pulse shaping

is mathematically derived. Various theoretical analysis of PAPR distributions in

the current literature were carried out based on the OFDM signal as a stationary

signal. When pulse shaping is applied, the OFDM signal can be categorised as

a wide sense cyclostationary (WSCS) signal. By introducing a random phase, a

WSCS signal can be stationarised. After the proper stationarisation process, the

CCDF of the PAPR is analysed using level crossing rate (LCR) theorem and an

upper bound for the CCDF of the PAPR is derived. Numerical results show the

proposed upper bound is tight.

Chapter 6: Pulse Shaping Approach to PAPR Reduction for Mul-

tiuser OFDM Systems

Multiuser OFDM (MU-OFDM) communication systems have higher system effi-

ciency compared to single user OFDM systems. However, the high PAPR of the

MU-OFDM signal is considered as one of the major drawbacks of the MU-OFDM

systems. To reduce the high PAPR, pulse shaping approach can be used. How-

ever, direct implementation is not possible because in multiuser communication

systems, users’ independence should be established to ensure that users do not

interfere with each other. In this chapter, computationally efficient optimisation

approach is proposed to design a set of orthogonal pulse shaping waveforms to

reduce the PAPR of the MU-OFDM signal. Autocorrelation and cross-correlation

of the pulse shaping waveforms are specified in the constraints in order to minimise

ISI and co-channel interference (CCI). Designing a set of pulse shaping waveforms

with the autocorrelation and cross-correlation constraints is fundamentally differ-

ent than designing a single pulse shaping waveform. A computationally efficient

method to solve the optimisation design problem is presented. Numerical results

illustrate that the designed set of pulse shaping waveforms is efficient in reducing
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the PAPR of the OFDM signal in multiuser communication systems.

1.5 Publications

Parts of the contents in this thesis have been presented in the following conferences:

1. R. Reine and Z. Zang, ”Analysis and comparison of a set of ISI waveforms for

PAPR reduction in OFDM systems.” IEEE TENCON Conf., pp. 246-250,

Nov. 2011.

2. R. Reine and Z. Zang, ”A quadratic programming approach in pulse shaping

filter design to reducing PAPR in OFDM systems.” IEEE Conference on

Asia Pacific Commun. (APCC), pp. 572-576, Aug. 2013.

3. R. Reine and Z. Zang, ”Semi-infinite quadratic programming approach to

design FIR filter for PAPR reduction in OFDM system.” IEEE Statistical

Signal Processing (SSP) Workshop, Gold Coast, July 2014.

4. R. Reine and Z. Zang, ”Waveform Set Design Using Non-Convex Optimi-

sation Technique for PAPR reduction in Multiuser OFDM Signal.” IEEE

Conf. on Industrial Electronics and Applications (ICIEA), submitted .



Chapter 2

PAPR Reduction Using Pulse

Shaping

In this chapter, some of the existing PAPR reduction techniques are briefly anal-

ysed. The main discussion in this chapter is the pulse shaping technique. The

rest of this chapter is organised as follows: Section 2.1 presents the overview of

the PAPR reduction techniques. Pulse shaping technique is introduced in Section

2.2. The PAPR of the OFDM signals with pulse shaping is defined in Section 2.3.

Section 2.4 investigates the type of the shaping pulse that reduces the PAPR of

the OFDM signal. Section 2.5 introduces the existing Nyquist pulses. Numerical

simulations are presented in Section 2.6 to show that shaping the OFDM subcarri-

ers with a properly selected pulse reduces the PAPR of the OFDM signal. Finally,

the conclusion of the chapter is drawn in Section 2.7.

2.1 Overview of PAPR Reduction Techniques

Various approaches have been proposed in the literature to mitigate the high PAPR

of OFDM signals. Clipping [26] causes nonlinearity to the transmitted data and

introduces out-of-band noise. Filtering is used to minimise the distortion caused

by clipping but the peaks of the signal often return. Coding based PAPR reduction

technique sacrifices data rate as well as increases the complexity of the transceiver

design when the number of subcarriers is increasingly large[19]. Phase manipula-

tion techniques (e.g selected mapping, Partial Transmit Sequences) require addi-
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tional information to be sent to the receiver which increases the complexity to the

OFDM systems[16][17][18].

2.1.1 Clipping

In clipping technique, the peak values above a specified threshold in the time

domain is removed. Clipping process introduces nonlinearity. Clipping may cause

significant in-band distortion that leads to the increase of the BER and out-of-band

distortion which degrades the spectral efficiency of the OFDM signal. To reduce

the effect of distortion, filtering can be used after the clipping process, however,

filtering often causes significant peak-regrowth.

The clipped OFDM signal is generally represented as [26]

sclip(t) =

 ŝ(t), if |ŝ(t)| ≤ A

A, if |ŝ(t)| > A
(2.1)

where ŝ(t) is the baseband equivalent OFDM signal defined by

ŝ(t) =

N−1∑
k=0

Zke
j2πkt/T , 0 ≤ t<T (2.2)

and A = CR ∗ √σs, CR is the clipping ratio and σs is the average power of ŝ(t).

Fig. 2.1 shows the CCDF of the PAPR of OFDM signal with different clipping

ratios. Iterative clipping and filtering without an increase in the out-of-band power

has been suggested [14] to minimise the distortion caused by clipping. Deep clip-

ping method can be used as in [15] in order to reduce the peak regrowth problem

due to out-of-band filtering. However these techniques have high complexity and

are difficult to be implemented in OFDM systems.

2.1.2 Selected Mapping (SLM)

In SLM technique, different sets of signals which represent the same data are gen-

erated from the original data signal. The set of signals with the lowest value of

PAPR will be selected for transmission. The transmitter needs to send side infor-

mation regarding the selected set of signals to the receiver. The side information
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Figure 2.1: PAPR of OFDM with clipping (N=64).

is used to decode the received data at the transmitter.

The block diagram of OFDM signal with SLM is illustrated in Fig. 2.2. Con-

sider that the data symbol Z = [Z0, Z1, ..., ZN−1] is the input to U number of sta-

tistically independendent phase sequences B(u) = [b
(u)
0 , b

(u)
1 , ..., b

(u)
N−1]T where 1 ≤

u ≤ U . If the uth phase sequence is given by Z(u) = [Z0b
(u)
0 , Z1b

(u)
1 , ..., ZN−1b

(u)
N−1]T

where u = 1, 2, ..., U , every Z
(u)
k can be defined as

Z
(u)
k = Zkb

(u)
k 1 ≤ u ≤ U (2.3)

Then, the baseband equivalent of the OFDM signal is expressed as

sl(t)
(u) =

N−1∑
k=0

Z
(u)
k ej2πkt/t (2.4)

The PAPR of the SLM-OFDM signal is defined as follows

PAPRslm = arg min
0≤u≤U

max
0≤t<T

|sl(t)(u)|2

E{|sl(t)(u)|2}
(2.5)
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Figure 2.2: Block diagram of OFDM with SLM

Fig. 2.3 shows the CCDF of the PAPR of the OFDM signal using SLM where

different sets of phase sequence are generated by Riemann, Hadamard, and a uni-

form random sequences [16][17][18]. A side information contains the information

of the B(u) for the OFDM signal with the lowest PAPR. A lower PAPR value can

be achieved by increasing U . However, it means that U of IFFT sets will be re-

quired at the OFDM transmitter. Hence, the implementation complexity of SLM

in OFDM systems is increased when U is increased.
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Figure 2.3: PAPR of the OFDM signal with SLM (N=64).
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2.1.3 Tone Reservation

Tone reservation (TR) is categorised as a distortionless PAPR reduction technique.

TR uses reserved tones to reduce the high PAPR of the OFDM signal. TR often

requires extra information in the receiver to locate the position of the reserved

tones. This results in an increase of the OFDM system implementation complexity.

The TR technique [30] reserves Nt tones for peak reduction and uses the rest

of the tones (N −Nt) for data transmission. The ratio of TR, Nt/N , is typically

small and the peak-cancelling signal vector is Cr = [Cr(0), Cr(1), ..., Cr(N−1)]. The

OFDM signal is given by

s(t) = IFFT (X + Cr) = x(t) + cr(t) (2.6)

where X = [X0, X1, ..., XN−1] is the data symbol. The PAPR of the OFDM signal

is given by

PAPRTR =
max |x(t) + cr(t)|2

E{|x(t)|2}
(2.7)

By using more tones, the PAPR can be further reduced. However, this sacrifices

the efficiency of the bandwidth as more subcarriers are used to carry the tones

instead of the data information.

2.2 OFDM System Model with Pulse Shaping

The block diagram of the OFDM signal with pulse shaping is illustrated in Fig. 2.4.

Consider that the OFDM system consists of N subcarriers. The modulated symbol

Zk = [Z0, Z1, ..., ZN−1]T is mapped to the kth subcarrier and has symbol interval of

Ts. The baseband equivalent of the OFDM transmitted signal with pulse shaping

can be expressed as:

s(t) =

N−1∑
k=0

Zkpk(t)e
j2πkt/T , 0 ≤ t ≤ T (2.8)

where pk(t) is a pulse shaping waveform at the kth subcarrier with duration of T .
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Figure 2.4: Block diagram of OFDM transmitter with pulse shaping.

2.3 PAPR of the OFDM Signals with Pulse Shaping

The PAPR of the OFDM signal with pulse shaping (2.8) is given by:

PAPR =

max
0≤t<T

|s(t)|2

E{|s(t)|2}
(2.9)

If it is assumed that MPSK modulation is used, then E{|Zk|2} = 1 where the

OFDM symbols are uncorrelated to each other. The upper bound of the PAPR is

given by

PAPR ≤ PAPRmax =
1

N
max

0≤t≤T

(
N−1∑
k=0

|pk(t)|

)2

(2.10)

It can be seen from (2.10) that the pulse shaping waveform and the number of

subcarriers influence the PAPR.

2.4 Characterisation of Shaping Pulses That Reduces

the PAPR

PAPR can be mitigated by creating a proper correlation between OFDM subcar-

riers [25]. One method is to use coding to find the pulse shape that reduces the

PAPR. However, searching for the optimal pulse by coding-search can be exhaus-

tive and complex for a large number of subcarriers. Another method is to shape

different subcarriers in such a way that the peak amplitudes in the time domain

do not appear at the same time. However, designing different pulse for different
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subcarrier can be very complex. A simpler and effective way to achieve this is to

cyclic shift the pulse for every subcarrier [9].

Assume that p(t) is a time limited pulse of duration T and can be extended

periodically as follows

q(t) =
∞∑

i=−∞
p(t− iT ) (2.11)

where its Fourier series representation can be written as

q(t) =
∞∑

i=−∞
Cie

j2πfit (2.12)

where its Fourier coefficient can be expressed as

Ci =
1

T

∫ T

0
q(t)e−j2πfitdt (2.13)

The pulse pk(t) at the kth subcarrier can be obtained by truncating equation(2.12)

within the duration of T, which can be written as

pk(t) =


q(t− kTs), 0 ≤ t ≤ T

0, , otherwise

(2.14)

From (2.14), the upper bound of the PAPR can be expressed as

PAPRmax =
1

N
max

0≤t≤T

(
N−1∑
k=0

|q(t− kTs)|

)2

(2.15)

=
1

N

(
N−1∑
k=0

|q(kTs)|

)2

(2.16)

For a large number of subcarriers, (2.15) can be expressed as

N−1∑
k=0

|q(t− kTs)| ≈
N

T

∫ T

0
|q(t)|dt (2.17)

where the upper bound of the PAPR will be

PAPRmax =
N

T 2

(∫ T

0
|q(t)|dt

)2

≤ N (2.18)
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2.5 Nyquist Pulses

In order to prevent ISI, the shaping pulse should satisfy the following [22]:

P (f) ≈ 0

∣∣∣∣f − 1

2Ts

∣∣∣∣ > 1

2Ts
+

β

2Ts
(2.19)

where P (f) represents the Fourier transform of p(t), β denotes the excess band-

width (0 < β < 1) and Ts = T
N .

In the following example, four different sets of Nyquist pulses are investigated.

The Raised Cosine (RC), Squared Root Raised Cosine (SRRC), Better than Raised

Cosine (BTRC) and Orthogonal Better than Raised Cosine (OBTRC).

Raised Cosine. The Fourier transform of the RC, denoted as Prc(f), is given

by [35]

Prc(f)=



Ts sin
(
πfTs

2β + π
4

)
, |f | ≤ β

2Ts

Ts
β

2Ts
≤ f ≤ 2−β

2Ts

Ts sin
[
π(fTs−1)

2β + 3π
4

]
,
∣∣∣f − 1

Ts

∣∣∣ ≤ 2+β
2Ts

0, otherwise

(2.20)

SRRC. This SRRC is obtained by using RC as the base function. The Fourier

transform of SRRC, denoted as Psrrc(f), is given by [35]

Psrrc(f)=



√
Ts sin

(
πfTs
2β + π

4

)
, |f | ≤ β

2Ts
√
Ts

β
2Ts
≤ f ≤ 2−β

2Ts√
Ts sin

[
π(fTs−1)

2β + 3π
4

]
,
∣∣∣f − 1

Ts

∣∣∣ ≤ 2+β
2Ts

0, otherwise

(2.21)

BTRC. The BTRC pulse was designed to improve the robustness in the RC

pulse in reducing the ISI in the OFDM systems. The Fourier transform of the
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BTRC pulse is given as follows [32]

Pbtrc(f)=


Ts, 0 ≤ |f | ≤ 1−β

2Ts

Tse
−2ln2Ts

β

[
|f | − 1−β

2Ts

]
, 1−β

2Ts
≤ |f | ≤ 1

2Ts

Ts

{
1− e

−2ln2Ts
β

[
1+β
2Ts
− |f |

]}
, 1

2Ts
≤ |f | ≤ 1+β

2Ts

OBTRC. The Optimized Better Than Raised Cosine (OBTRC) pulse was de-

signed to improve the robustness in reducing the ICI. The Fourier transform of

the OBTRC pulse is given as follows [67]

Pobtrc(f)=


Ts, 0 ≤ |f | ≤ 1−β

2Ts

Tse
−2nln2Tns

βn

[
|f | − 1−β

2Ts

]
, 1−β

2Ts
≤ |f | ≤ 1

2Ts

Ts

{
1− e

−2nln2Tns
βn

[
1+β
2Ts
− |f |

]}
, 1

2Ts
≤ |f | ≤ 1+β

2Ts

where n > 1.

2.6 Numerical Simulations

Computer simulations are carried out to investigate the effectiveness of pulse shap-

ing technique in reducing the PAPR of the OFDM transmitted signal. The 104

QPSK data symbols are generated and T = 1. The shaping pulse in different sub-

carriers are originated from the main shaping pulse p(t). Consider that a shaping

pulse p(t) is time limited where

p(t) =

L−1∑
i=0

Cie
j2πi t

T , 0 ≤ t ≤ T (2.22)

where L = (1 + β)N and its Fourier coefficient can be expressed as

Ci =
1

T

∫ T

0
p(t)e−j2πi

t
T dt (2.23)

=
1

T
P (

i

NTs
) (2.24)
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From p(t), the shaping pulse at the kth subcarrier can be obtained by

pk(t) =
N−1∑
k=0

L−1∑
i=0

Cie
−j2π ki

N ej2π
k−i
N , 0 ≤ t ≤ T (2.25)

Fig. 2.5 illustrates when the SRRC pulse is used to shape the OFDM subcar-

riers. Fig. 2.5 illustrates the p0(t) as the main pulse and p1(t), p2(t) and p3(t) are

obtained from (2.25). Even though it is not shown in Fig. 2.5, there are total of

N = 64 subcarriers.

Fig. 2.6 illustrates the frequency spectrum of RC, SRRC, BTRC and OBTRC.
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Figure 2.5: The first four sets of pulse with SRRC as the main pulse for N=64
subcarriers.

the decay rate can be analysed from Fig. 2.6 and it can be seen that SRRC has

the fastest decay rate.

Fig. 2.7 depicts that by using a proper selection of pulse shape, the maximum

of the PAPR of the OFDM signals can be reduced. Without pulse shaping, the

maximum PAPR is around 12 dB for N = 128 and 11 dB for N = 64. It is

observed that the maximum value of the PAPR of the OFDM signal with pulse

shaping is near to the PAPR of the single carrier modulated signals. In the case of

a single carrier signal with β = 35%, the maximum PAPR is about 4 dB [74]. The
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PAPR result of single carrier is close to the result of the PAPR of the OFDM signal

shaped by the SRRC pulse as illustrated in Fig. 2.7. The PAPR maximum of the

OFDM signal shaped by the SRRC pulse is approximately 4.2 dB. It can be seen

from Fig.2.7 that when the roll-off parameter is increased, the PAPR decreases

rapidly.

Fig. 2.8 depicts the CCDF of the PAPR of the OFDM signal with pulse shaping

for N = 64. It is shown that when RC and SRRC pulses are used, a lower PAPR

can be obtained compared to using a rectangular pulse. For the case of using RC

and SRRC pulses with β = 20%, the PAPR is reduced by approximately 4.5 dB

and 5.5 dB respectively.

Fig. 2.10 illustrates that for N = 512, the CCDF of the PAPR is only slightly

increased as compared to N = 64. This shows that when the pulse shaping is used,

the PAPR is less sensitive to the increase of the number of subcarriers.
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Figure 2.6: Spectrum frequency comparison.

To assess the effects of the number of subcarriers on the OFDM signal with

pulse shaping, Fig. 2.9 presents the CCDF of the PAPR for N = 128 subcarriers.

The PAPR reduction using pulse shaping is consistent for N = 64. The maximum

PAPR ratio of both N = 64 and N = 128 is illustrated in Fig.2.11.

PAPR reduction performance using BTRC pulse and OBTRC pulse is demon-
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Figure 2.7: Maximum PAPR ratio for different number of OFDM subcarriers.
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Figure 2.8: CCDF of PAPR for RC and SRRC pulses for N=64.
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Figure 2.9: CCDF of PAPR of RC and SRRC pulses for N=128.
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Figure 2.10: CCDF of PAPR of RC and SRRC pulses for N=512.

strated in Fig. 2.12. It is observed that for the case of N = 64 and β = 20%, the

PAPR can be reduced approximately 4.7 dB and 5.4 dB when OFDM signal uses

OBTRC pulse and BTRC pulse, respectively.
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Figure 2.11: CCDF of PAPR using RC for N=64,128 and 512.
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Figure 2.12: CCDF of PAPR for BTRC and OBTRC pulses.

2.7 Concluding Remarks

In this chapter, the effectiveness of selected Nyquist pulses as shaping pulses to

reduce the PAPR of the OFDM signal is investigated. The impact of different
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value of roll-off parameter and different number of subcarriers on the PAPR of

the OFDM signal with pulse shaping are also analysed. The simulation results

demonstrate that the selected Nyquist pulses outperforms the rectangular pulse in

terms of PAPR reduction of the OFDM signal.



Chapter 3

Optimal Pulse Shaping Filter

Design for PAPR Reduction

Chapter 2 shows that shaping the OFDM subcarriers using Nyquist pulses can re-

duce the PAPR of the OFDM signal. Nyquist pulses are ideal pulses. Ideal pulses

or ideal filters are often non-causal where truncation and shifting are required in

practical implementation. Direct truncation may introduce undesired ISI.

In this chapter, instead of using the existing non-causal ideal pulses, com-

putationally efficient optimisation approach is proposed to design pulse shaping

waveforms to reduce the PAPR of the OFDM signal.

The rest of this chapter is organised as follows: Section 3.1 introduces the

system model of the OFDM signal with pulse shaping. In Section 3.2, the causal

filter design problem is formulated using an optimisation approach and a method

to solve the design problem is presented. The PAPR reduction performances are

presented in Section 3.3. Finally, the chapter is concluded in Section 3.4.

3.1 Overview of OFDM System Model with Pulse Shap-

ing

At the transmitter part of an OFDM system, the incoming data stream is divided

into parallel low rate data streams over a number of subcarriers. The modulated

symbol for the kth subcarrier is represented as Zk, with symbol interval Ts.
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Figure 3.1: OFDM with pulse shaping system model.

Fig. 3.1 illustrates the transmitter part of an OFDM system with pulse shaping.

It can be seen that the modulated data symbol Zk is multiplied with the shaping

pulse Pk(e
jω) at the kth subcarrier. This process can be written as:

dk = Pk(e
jω)Zk (3.1)

where Zk are often assumed to be i.i.d random variables with zero mean and

variance σ2 = E[|Zk|2] and N denotes the number of subcarriers. Then, the N-

points IFFT is applied to dk. The baseband equivalent of the OFDM signal with

pulse shaping can be expressed as

s(t) =

N−1∑
k=0

dke
j2πkt/T , 0 ≤ t<T (3.2)

It is worth to mention that (3.2) is different from single-carrier signals in [23].

Pulse shaping technique in frequency domain can also be regarded as precoding

technique.

It is considered that MPSK OFDM system with E{|Zk|2} = 1 and the symbols

are uncorrelated within every OFDM block. The maximum PAPR of OFDM signal

with pulse shaping is given as follows:

PAPR =
1

N
max

0≤t≤T

(
N−1∑
k=0

∣∣∣Pk(ejω)ej2πkt/T
∣∣∣)2

(3.3)
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In order to preserve orthogonality of the OFDM subcarriers and to avoid ISI,

it was suggested in [25] that the shaping pulse should satisfy the following:
pk(t) = 0

∣∣t− T
2

∣∣>T
2

Pk(f − k
T ) ≈ 0

∣∣∣f − 1
2Ts

∣∣∣> 1
2Ts

+ β
2Ts

The minimum bandwidth of the shaping pulse should be comparable to the band-

width of OFDM signal which is 1
Ts

where Ts is the symbol duration of the baseband

modulated signal Zk with Ts = T
N . Also, β is a design parameter that represents

the roll-off parameter.

To reduce the PAPR of the OFDM transmitted signal, the shaping pulse should

be designed in such a way so that the peaks should not appear at the same time

instant. One way is to select different shaping pulse for every subcarrier and this

way can be significantly complex. A simpler yet efficient approach is to design one

principle pulse and the rest of the pulse are generated by cyclic shifts the principle

pulse within the time interval 0 ≤ t<T . The frequency response of the principle

pulse is denoted by P0(ejω), then

Pk(e
jω) = P0(ejω)e−jωk, k = 1, ..., N − 1 (3.4)

where in the existing literature P0(ejω) is usually a frequency response of an ideal

pulse (e.g. a rectangular pulse, raised cosine pulse or square root raised cosine

pulse) or an ideal filter. In practical implementations, (3.4) is often discretised

and the discretised form of (3.4) can be written as:

Pi,k = Pi,0e
−j2π ik

N (3.5)

where i = 0, 1, ..., L− 1, L = (1 + β)N and k = 0, 1, ..., N − 1 .

Thus, instead of choosing ideal filters to construct the shaping pulse via trun-

cation followed by discretisation, in the next section, an optimisation approach is

used to directly design a FIR filter to generate the shaping pulse without the need

of truncation.
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3.2 Pulse Shaping Filter Design

3.2.1 Problem Formulation

The frequency response of an M coefficients filter is given by

P (ejω) =
M−1∑
k=0

hkφk(e
jω) = hTφ(ejω) (3.6)

where

h = [h0, h1, . . . h(M−1)]
T

φ = [φ0, φ1, . . . , φ(M−1)]
T

and φk(e
jω) is a set of orthogonal basis functions.

Here, the main focus is to design an M -tap FIR filter where

φk(e
jω) = e−jωk , k = 0, 1, 2, . . . (3.7)

The passband-to-stopband ratio of energies is a crucial performance measurement

for many applications, it is effectively a signal-to-noise ratio. The signal corre-

sponds to the passband energy and the noise corresponds to the stopband energy.

The stopband energy is defined by Es, where

Es =
1

π

∫ π

ωs

|P (ejω)|2dω (3.8)

and the passband energy is defined as Ep, which can be written as

Ep =
1

π

∫ ωp

0
|P (ejω)|2dω (3.9)

It is desireable to minimise the stopband to passband energy ratio. However,

adjusting the energy in the passband can be difficult [36]. Therefore, it is more

meaningful to minimise the stopband energy.

Mathematically the FIR filter design problem can be stated as:

Problem (P). Design an FIR filter P (ejω) which solves the following constrained
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optimisation problem

min
h

1

π

∫
Ωs

|P (ejω)|2dω (3.10)

subject to

|P (ejω)−D(ω)| ≤ σp, ω ∈ Ωp (3.11)

|P (ejω)−D(ω)| ≤ σs, ω ∈ Ωs (3.12)

where D(ω) is the desired (often non-causal) frequency response, Ωp the set of

passband frequencies, Ωs the set of stopband frequencies, σp a small strictly pos-

itive amplitude error upper bound for the passband, σs a small strictly positive

amplitude error upper bound for the stopband.

Remarks: (a) The magnitude constraints in (3.11) and (3.12) are non-linear

due to the fact that P (ejω) is complex. Therefore, problem (P) is a general nonlin-

ear optimisation problem. Solving this nonlinear optimisation problem will only

result in local minimum solutions. (b) While the objective function is chosen to

minimise stopband energy, the magnitude constraints (3.11) and (3.12) are chosen

to shape the digital filter to a desired spectral shape.

To effectively solve the nonlinear optimisation problem (P), in the following,

both the objective function and the constraints will be simplified. In particular, the

two sets of nonlinear constraints (3.11) and (3.12) will be linearised by introducing

an additional constraint parameter.

3.2.2 Problem Conversion

By simple algebraic manipulation, the objective function (3.10) can be simplified

to

min
h

{
1

2
hTQh + gTh

}
(3.13)

where

Q =
2

π

∫
Ωs

φ(ejω)φT (ejω)dω

g = − 2

π

∫
Ωs

φ(ejω)D(ω)dω
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and

e(ω) = [1, e−jω, . . . , e−jω(M−1)]T

Then, the nonlinear magnitude constraints (3.11) and (3.12) need to be sim-

plified. Non-linear constraints can be linearised by using the real rotation theorem

[22]. The real rotation theorem states that minimising |f | is equivalent to minimis-

ing <(ejΘ), Θ ∈ [0 2π]. According to the real rotation theorem [22], a magnitude

of inequality in complex number z=a+jb can be written in the equivalent form as:

|z| ≤ σ ⇔ max
0≤θ<2π

<
{
zejθ

}
≤ σ (3.14)

where <{·} denotes the real part of a complex value number.

After the linearisation process (see Appendix 3.A), it is clear that the con-

straints are now linear with respect to the design variable h.

From (3.13), (3.23) and (3.24), the optimisation problem (P) can be written

as :

min
h

{
1

2
hTQh + gTh

}
(3.15)

subject to

aTp (ω, θ)h ≤ bp(ω, θ) ω ∈ Ωp, θ ∈ [0, 2π) (3.16)

aTs (ω, θ)h ≤ bs(ω, θ) ω ∈ Ωs, θ ∈ [0, 2π) (3.17)

It can be seen that the optimisation problem (3.15)-(3.17) is a semi-infinite quadratic

programming problem. The number of variables h to be optimised is finite but the

number of constraints, which depends on both ω and θ is infinite. This problem

can be solved via discretisation of ω and θ or using the approach in [20].

From solving the semi-infinite quadratic programming problem (see Appendix

3.B), it suggests that the following version of the optimisation problem should be

considered:

Problem (Pb): Given discrete sets of {θi}2pi=1 and {ωl}Ll=1, find h which solves
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the following quadratic programming problem.

min
h

{
1

2
hTQh + gTh

}
(3.18)

subject to

Alph ≤ blp (3.19)

Alsh ≤ bls (3.20)

where, in passband, for each l, Alp is a 2p×M matrix with aTp (ωl, θi) = cos(ωlk−θi)

as its ith row and blp is a 2p-dimensional column vector with all its entries blp =

σp
sec( π

2p
) + D(ωl)cos(θi). In stopband, for each l, Als is a 2p × M matrix with

aTs (ωl, θi) = cos(ωlk − θi) as its ith row and bls is a 2p-dimensional column vector

with all its entries bls = σs
sec( π

2p
) .

Existing computationally efficient optimisation subroutines, such as quadprog,

in MATLAB Optimisation Toolbox can be used to solve the problem (Pb) to obtain

the global solution.

Note that (3.6) is the frequency response of nonlinear phase FIR filter. Linear

phase FIR filter can be used and the optimisation problem can be formulated and

converted as derived in Apendix 3.C.

3.3 Numerical Results

In this section, numerical results are carried out to show the effectiveness of the

designed pulse shaping filter to reduce the PAPR of the OFDM signal.

There are various ways to generate the pulse shaping matrix. One way is to use

a coding based technique such as Walsh Hadamard Transform (WHT). Another

way is to use filters to generate the pulse shaping matrix using (3.5). It can be

seen in Fig. 3.8 that the PAPR reduction using WHT coding is insignificant as

compared to the proposed method as in (3.5). The parameters for the FIR

filter design are σp = 10−5, σs = 10−4, M = 30 and N = 64. Raised cosine is

chosen to be the desired ideal filter. The comparison of time domain response

of the proposed FIR to non-causal RC is illustrated in Fig. 3.2. The frequency
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reponse of the proposed FIR filter is illustrated in Fig.3.3 and it can be seen that

its shape is very closed to the ideal RC filter (β = 20 %). It is observed that when

parameter σp is set to smaller value, it reduces the ripple in the passband which re-

sults in the increased in the stopband energy and this leads to higher PAPR of the

OFDM signals. Fig. 3.4 illustrates that the proposed FIR filter design approach

can improve the PAPR reduction of the OFDM signals. The OFDM symbols are

QPSK modulated.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2
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0.2

0.4
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1

Time
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Designed FIR Filter

Figure 3.2: Time domain response of designed FIR filter M=30.

Fig.3.5 illustrates the CCDF of PAPR of the OFDM signal for N = 64, σp =

10−5, σs = 10−4 and M = 26 (β = 10 % and β = 20 %). Fig.3.6 illustrates

the CCDF of PAPR of the OFDM signal for the case of N = 64, σp = 10−5 and

σs = 10−4 with M = 20 (β = 10 % and β = 20 %). Fig. 3.6 and Fig. 3.5 show

the effectiveness of the proposed filter design in reducing the PAPR of the OFDM

signal.

To assess the effect of different subcarriers, Fig. 3.7 illustrates for N = 128

subcarriers. The parameters for the FIR filter design are σp = 10−5, σs = 10−4

and M = 26 (β = 10 % and β = 20 %). It shows that the CCDF of the PAPR of

the precoded OFDM using the proposed designed FIR filter outperforms the one
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Figure 3.3: Frequency response of designed FIR filter M=30.
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Figure 3.4: CCDF of PAPR of OFDM signal with the designed FIR filter.
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Figure 3.5: CCDF of the PAPR with the designed FIR filter (M=26).
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Figure 3.6: CCDF of PAPR of OFDM signal with the designed FIR filter (M=20).
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Figure 3.7: CCDF of PAPR of OFDM signal with the designed FIR filter for
N=128.

using the ideal RC filter.

3.4 Concluding Remarks

In this chapter, instead of using ideal filters, causal filters designed using an op-

timisation approach to generate the shaping pulse in order to reduce the PAPR

of the OFDM signal. The causal filter design was formulated to minimise the

stopband energy subjected to nonlinear magnitude constraints in both stopband

and passband. In order to solve this filter design problem efficiently, the nonlinear

constraint is linearised using the real rotation theorem. Finally, the filter design

problem is simplified and solved as a quadratic programming problem. The nu-

merical results demonstrate that shaping the OFDM subcarriers with the proposed

filter design has better performance in terms of the PAPR reduction as compared

to using ideal filters (e.g. rectangular pulse and raised cosine pulse) as the shaping

pulse.
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Figure 3.8: Comparison of the PAPR of the designed precoded OFDM signal vs
WHT OFDM signal.

3.A Appendix: Constraint Linearisation

In this section, the nonlinear magnitude constraints (3.11) and (3.12) are linearised

using the real rotation theorem in (3.14). By using (3.14), the inequality constraint

(3.11) can be written as:

max
0≤θ<2π

<
{

(P (ejω)−D(ω))ejθ
}
≤ σp, ω ∈ Ωp (3.21)

Note that by substituting (3.6) in (3.21), the (3.21) can be rewritten as

<
{

(hTφ(ejω)−D(ω))ejθ
}
≤ σp ω ∈ Ωp (3.22)

for θ ∈ [0, 2π), which can be expressed as

aTp (ω, θ)h ≤ bp(ω, θ), ω ∈ Ωp, θ ∈ [0, 2π) (3.23)
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where

ap(ω, θ) = <
{
φ(ejω)ejθ

}
bp(ω, θ) = σp + <

{
D(ω)ejθ

}
In the stopband, it is often considered that D(ω) = 0. By using the real rotation

theorem, the constraint in stopband (3.12) can be simplified as

aTs (ω, θ)h ≤ bs(ω, θ), ω ∈ Ωs, θ ∈ [0, 2π) (3.24)

where

as(ω, θ) = <
{
φ(ejω)ejθ

}
bs(ω, θ) = σs

3.B Appendix: Solving Semi-Infinite Quadratic Pro-

gramming Problem

In this section, the semi-infinite quadratic programming problem (3.15)-(3.17) is

solved via discretisation of ω and θ.

For simplicity, parameter θ is discretised as {θi}2pi=1 with θi = π(i−1)
p , p ≥ 2.

Consider the following definition for the magnitude constraint in (3.23)

Y p
n (ω) = max

1≤i<2p
<
{

(hTφ(ejω)−D(ω))ejθi
}

(3.25)

which can be expressed as [21]

Y p
n (ω) ≤ max

0≤θ<2π
<
{

(hTφ(ejω)−D(ω))ejθ
}
≤ Y p

n (ω)sec(
π

2p
)

When p → ∞, the value of sec( π2p) → 1. This means that Y p(ω) gives a good

estimate of P (ejω) for a sufficiently large integer p. In fact, for p = 8, sec( π2p) =

1.020.

Therefore, instead of using magnitude constraints in passband in (3.22), the
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following strengthened inequality constraints over discrete sets {ωl}Ll=1 and {θi}2pi=1

should be considered

max
1≤i≤2p

<
{

hTφ(ejωl)ejθi
}
≤ σp
sec( π2p)

+ <
{
D(ωl)e

jθi
}

ω ∈ Ωp (3.26)

By using (3.7), the φ(ejωl) can be replaced with e−jωlk, then

max
1≤i≤2p

<
{
hT e−jωlkejθi

}
≤ σp
sec( π2p)

+ <
{
D(ωl)e

jθi
}

ω ∈ Ωp

max
1≤i≤2p

<
{

hT e−j(ωlk−θi)
}
≤ σp
sec( π2p)

+ <
{
D(ωl)e

jθi
}

ω ∈ Ωp

max
1≤i≤2p

hT cos(ωlk − θi) ≤
σp

sec( π2p)
+D(ωl)cos(θi) ω ∈ Ωp (3.27)

For the case of the magnitude contraint in the stopband (3.24), where it is often

assumed that D = 0, the new strengthened inequality contraint will be

Ys
p
n(ω) = max

1≤i<2p
<
{

(hTφ(ejω))ejθi
}

ω ∈ Ωs (3.28)

which becomes

Ys
p
n(ω) ≤ max

0≤θ<2π
<
{

(hTφ(ejω))ejθ
}
≤ Yspn(ω)sec(

π

2p
) ω ∈ Ωs

where the inequality contraints are discretised over discrete sets {ωl}Ll=1 and {θi}2pi=1

max
1≤i≤2p

<
{

hTφ(ejωl)ejθi
}
≤ σs
sec( π2p)

ω ∈ Ωs (3.29)

If the φ(ejωl) is replaced with e−jωlk, it will be

max
1≤i≤2p

<
{
hT e−jωlkejθi

}
≤ σs
sec( π2p)

ω ∈ Ωs

max
1≤i≤2p

<
{

hT e−j(ωlk−θi)
}
≤ σs
sec( π2p)

ω ∈ Ωs

max
1≤i≤2p

hT cos(ωlk − θi) ≤
σs

sec( π2p)
ω ∈ Ωs (3.30)
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3.C Appendix: Linear Phase FIR Filter

The frequency response of an M coefficient filter:

P (ejω) =
M−1∑
k=0

αkφk(e
jω) = αTφ(ejω) (3.31)

where

α = [α0, α1, . . . α(M−1)]
T

φ = [φ0, φ1, . . . , φ(M−1)]
T

and

φk(e
jω) = e−jωk k = 0, 1, 2, . . . (3.32)

For a linear phase FIR filter, by choosing M as an even number, the coefficients

αk satisfy αk = α(M−k) and P (ejω) can be written as

P (ejω) = A(ω)e−jrω (3.33)

where r = M
2 and A(ω) is given by

A(ω) =
r∑

k=0

hk cos(ω) = hTe(ω) (3.34)

with

hk =


αr, k = 0

2α(r−k), k = 1, . . . , r

h = [h0, h1, . . . h(r)]
T

e(ω) = [1, cos(ω), . . . , cos(r)]T
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Problem (LP). Design a linear phase FIR filter P (ejω) which solves the fol-

lowing constrained optimization problem

min
h

1

π

∫
Ωs

|A(ejω)|2dω (3.35)

subject to

|A(ejω)−D(ω)| ≤ σp, ω ∈ Ωp (3.36)

|A(ejω)−D(ω)| ≤ σs, ω ∈ Ωs (3.37)

where D(ω) is the desired (often non-causal) frequency response, Ωp is the set of

passband frequencies, Ωs is the set of stopband frequencies, σp is a small strictly

positive amplitude error upper bound for the passband, σs is a small strictly pos-

itive amplitude error upper bound for the stopband.

The objective function and the constraints are simplified and the nonlinear

constraints (3.36) and (3.37) are linearised in order to solve the nonlinear optimi-

sation problem (LP) effectively.

The objective function (3.35) is simplified to

min
h

{
1

2
hTQh + gTh

}
(3.38)

where

Q =
2

π

∫
Ωs

e(ω)eT (ω)dω

g = − 2

π

∫
Ωs

e(ω)D(ω)dω

By using the real rotation theorem (3.14), the inequality constraints can be

linearised and the optimisation problem (P) can be written as :

min
h

{
1

2
hTQh + gTh

}
(3.39)
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subject to

aTp (ω, θ)h ≤ bp(ω, θ) ω ∈ Ωp, θ ∈ [0, 2π) (3.40)

aTs (ω, θ)h ≤ bs(ω, θ) ω ∈ Ωs, θ ∈ [0, 2π) (3.41)

The optimisation problem is a semi-infinite quadratic programming problem and

can be solved via discretization of ω and θ as the following:

Problem (LPb): Given discrete sets of {θi}2pi=1 and {ωl}Ll=1, find h which solves

the following quadratic programming problem.

min
h

{
1

2
hTQh + gTh

}
(3.42)

subject to

Alph ≤ blp (3.43)

Alsh ≤ bls (3.44)

where in passband, for each l, Alp is a 2p x r matrix with aTp (ωl, θi) = 2cos(ωlk−θi)

as its ith row and blp a 2p-dimensional column vector with all its entries blp =

σp
sec( π

2p
) + D(ωl)cos(θi). In stopband, for each l, Als is a 2p x r matrix with

aTs (ωl, θi) = 2cos(ωlk − θi) as its ith row and bls a 2p-dimensional column vec-

tor with all its entries bls = σs
sec( π

2p
) .



Chapter 4

BER Performance of the

OFDM System with Pulse

Shaping over Multipath Fading

Channels

It has been investigated in Chapter 3 that designing causal pulse shaping filters

using an optimisation approach improves the PAPR reduction of the OFDM trans-

mitted signal. In this chapter, the BER performance of the OFDM system with

pulse shaping is investigated.

The rest of this chapter is organised as follows: Section 4.1 introduces different

types of fading channels are presented. Section 4.2 presents the HIPERLAN/2

channel models which are used to simulate the multipath fading channels. The

receiver OFDM system model with pulse shaping is introduced in Section 4.3.

The BER performances for different channel models are presented in Section 4.4.

Finally, the conclusion remarks are drawn in Section 4.5.

4.1 AWGN and Fading Channel Models

Multipath fading is caused by the constructive and destructive combination of ran-

domly delayed, reflected, scattered, and diffracted signal components. Depending
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on the nature of the propagation environment, such as the existence of a line-of-

sight (LOS) path, there are different models that represent the statistical behavior

of the multipath fading channels.

4.1.1 AWGN Channels

Since thermal noise is present in all communication systems, the thermal noise

characteristics (additive, white and Gaussian) are most often used to model noise

in communication systems [46]. Thus, additive white Gaussian noise (AWGN)

channel is the most common communication channel. Since thermal noise is a

Gaussian process and the samples are uncorrelated, the noise samples are also

independent [45]. The signal in communication systems can be represented by

random variables given by

y = x+ z (4.1)

where y represents the output , x represents the input and z represents the additive

noise term. The values of the noise follows the Gaussian probability distribution

function [46]

f(z) =
1√

2πσ2
e
−(z−µ)2

2σ2 (4.2)

where µ = 0 and σ2 = E[z2].

4.1.2 Rayleigh Fading Channels

Consider a Rayleigh distributed random variable of z where its probability density

function can be defined by [60]

f(z) =

 z
σ2 exp(− z2

2σ2 ), z ≥ 0

0, otherwise
(4.3)

where

σ2 = E[|z|2] (4.4)
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It is assumed that the random variable z consists of real and imaginary parts, x

and y, respectively and can be written as

z =
√
x2 + y2 (4.5)

where x and y are two i.i.d. Gaussian random variables with zero mean and

variance σ2.

When a random signal is transmitted over a multipath fading channel, the

real part and imaginary parts of the received signals are considered as the sum of

many random variables. According to the central limit theorem, for sufficiently

large number of paths, the real and imaginary parts of the signals can be modeled

approximately as a Gaussian random process with zero mean. The envelope of this

type of channel model will be Rayleigh distributed. Hence, a Rayleigh distribution

is a good model to represent a non line-of-sight (NLOS) environment [58][59].

4.1.3 Rician Fading Channels

In the LOS environment, the fading is considered as Rician fading [58] because it

is assumed that there is a dominant path in the multipath fading environments.

The Rician distribution is related to the Gaussian distribution and its pdf can be

expressed as [70]

f(z) =
z

σ2
exp

(
−z

2 +K2

2σ2

)
I0

(
Kz

σ2

)
(4.6)

where z = x + jy, x has mean of µx and variance σ2 and y has mean of µy and

variance σ2 with

K =
√
µ2
x + µ2

y (4.7)

I0(x) =
1

2π

∫ 2π

0
excos(φ)dφ (4.8)

I0(x) is the modified Bessel function of the first kind of zero order [71].
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4.2 HIPERLAN/2

High Performance Radio Local Area Network type 2 (HIPERLAN/2) is a stan-

dard defined by the ETSI/BRAN project [6]. HIPERLAN/2 networks supports

high-speed communications between mobile terminals and various communication

networks and the physical layer of HIPERLAN/2 is based on OFDM [69].

HIPERLAN/2 parameters for the indoor environment in [68] are used to sim-

ulate various multipath channel models. Channel A, B and C model Rayleigh

channels and channel D models Rician channel. Table 4.1 summarises the HIPER-

LAN/2 channel models for indoor environments. The fading models use tapped

delay lines where each tap suffers independent fading corresponding to an expo-

nentially decaying average power delay profile.

Table 4.1: HIPERLAN/2 channel models for indoor environments.

Name RMS delay Max Delay Characteristic

A 0.016T 0.122T Rayleigh
B 0.032T 0.228T Rayleigh
C 0.047T 0.328T Rayleigh
D 0.044T 0.328T Rician
E 0.078T 0.550T Rayleigh

4.3 Receiver System Model

In Chapter 3, the transmitter part of the OFDM system with pulse shaping has

been discussed. The modulated data symbol at the kth subcarrier, Zk is multiplied

with the pulse shaping filter Pk(e
jω) and can be expressed as

dk = Pk(e
jω)Zk (4.9)

where Zk are often assumed to be i.i.d random variables with zero mean and

variance σ2 = E[|Zk|2] and N denotes the number of subcarriers. Then, the N-

points IFFT is applied to dk. The baseband equivalent of the OFDM signal with
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pulse shaping is given by:

s(t) =
N−1∑
k=0

dke
j2πkt/T , 0 ≤ t<T (4.10)

It is assumed that the OFDM signal is transmitted over multipath fading chan-

nels and experienced additive white Gaussian noise (AWGN). The block diagram

for the receiver part of the OFDM system with pulse shaping is illustrated in

Fig.4.1. The total bandwidth of the OFDM system is assumed to be larger than

the coherence bandwidth of the fading channel. In this case, the fading can be

considered as frequency-selective fading.

The complex baseband equivalent of the impulse response of the multipath

Figure 4.1: Receiver structure of precoded OFDM.

fading channel is represented by [35]

h(τ) =

J−1∑
l=0

hlδ(τ − τl) (4.11)

where hl is the different complex tap weight with variance pl, τl the time delay of

the l-th path, and J the total number of multipaths. Each tap adopts a complex

Gaussian distribution of zero-mean and the variance of the real part is equal to

the variance of the imaginary part.

The received OFDM signal is given by

r(t) =

J−1∑
l=0

hls(t− τl) + w(t) ,−Tu ≤ t < T (4.12)
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where w(t) is a zero mean Gaussian white noise with its power spectral density N0

and Tu is the time guard interval.

To maintain the orthogonality of the OFDM subcarriers, the guard interval

is assumed to be larger than the maximum delay spread of the fading multipath

channels. In the frequency domain, the demodulated data at the ith subcarrier

can be written as

Yi =
1√
T

∫ T

0
r(t)e−j2π

i
T
tdt

=
√
THidi +Wi, i = 0, 1, ..., L− 1 (4.13)

where di is obtained from (4.9), Wi is a zero mean Gaussian noise and variance N0

and T is the duration of the OFDM signal. The frequency response of the channel,

Hi at subcarrier k can be expressed as

Hi =
J−1∑
l=0

hle
−j2πiτl/T (4.14)

which is a complex Gaussian random variable with variance

2δ2 =
M−1∑
l=0

pl (4.15)

It is assumed that perfect CSI is known at the receiver of the OFDM system. When

the HIPERLAN/2 system is used, two OFDM symbols preceding each burst of

data transmitted are used for channel estimation [6]. Generally, the HIPERLAN/2

system is used for an indoor environment because it is assumed that the terminals

only moves at a slow speed. By using (4.13), the CSI at the ith subcarrier is given

by

Ĥi =
Yi√
T d̂i

= Hi +
Wi√
T d̂i

(4.16)

where

d̂i =
N−1∑
k=0

pi,kCk i = 0, 1, ..., L− 1 (4.17)

where Ck = [C0, C1, ..., CN−1] is the pilot symbol. This means that (4.17) is

recognised at the receiver because it contains the predefined pulse shaping matrix
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and the pilot symbol.

The received signal (4.13) can be expressed in matrix form as:

Y =
√
THPZ + W (4.18)

where W is the noise vector, given as

W = [W0,W1, ...,WL−1] (4.19)

and matrix H is an L × L diagonal matrix denotes the channel coefficients of

different subcarriers with

H = diag(H0, H1, ...,HL−1) (4.20)

It is assumed that a one-tap equaliser minimum-mean-squared-error (MMSE) de-

tector is utilised at the receiver. The optimal weighting parameter for every sub-

carrier is given by:

Gi =
Ĥ∗i

|Ĥi|2 + δ2
w
δ2
s

, i = 0, 1, ..., L− 1 (4.21)

where δ2
w
δ2
s

is the ratio of the variance of the noise, w(t) over the variance of the data

transmitted symbol, s(t). The weighting parameter Gk minimises the interference

between OFDM modulated symbols and compensates the channel phase.

Fig.4.1 shows that the output of MMSE equaliser is multiplied by P∗. Matrix

P∗ is the Hermitian transpose of P. The demodulated data vector is given by

V = P* G Y (4.22)

=
√
TP* G H P Z + W′ (4.23)

where W’ is the complex Gaussian noise vector and

G = diag(G0, G1, ..., GL−1) (4.24)
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4.4 Numerical Simulations

In this section, numerical results are carried out to investigate the BER perfor-

mance of the OFDM signal with the designed pulse shaping filter.

Fig. 4.2 illustrates the CCDF of the PAPR of the OFDM signal for N = 64,

σp = 10−5, σs = 10−4, M = 26 and 104 QPSK data symbols are generated. The

desired ideal filter (D(ω)) is RC filter. The frequency reponse of the designed pulse

shaping filter is illustrated in Fig. 4.3.

Fig. 4.4 and Fig. 4.5 illustrate the BER of the precoded OFDM using the

designed linear phase FIR filter over AWGN and multipath fading channels. It

is shown that the proposed precoded OFDM has better BER performance com-

pared to the conventional OFDM. It is considered that the CSI is perfect and the

precoded OFDM signal is transmitted over channel A and channel B of HIPER-

LAN/2 system. The precoding technique takes benefits from the frequency se-

lectivity channel which leads to the improvement of the system performance and

these results are consistent with [9][83][84].

Fig. 4.6 illustrates that for BER 10−4, the proposed precoded OFDM only

requires SNR around 18 dB whilst the conventional OFDM requires around 32

dB for channel A. Channel B has a smaller coherence bandwidth than channel A.

As a result, it can be seen that the BER performance of the precoded OFDM is

generally better in channel B than in channel A.

Fig.4.7 and Fig.4.8 show the OFDM signal is transmitted over channel D of

HIPERLAN/2 where the fading channel is a Rician channel with K = 10. The

BER performance is decreased for precoded OFDM by the fact that a Rician

channel increases the line of sight to the precoding matrix.

4.5 Concluding Remarks

The BER performance of the OFDM system with designed pulse shaping filters

over multipath fading channels has been investigated in this chapter. The HIPER-

LAN/2 standard channel models were used to simulate the multipath fading chan-

nels. The channel models included Rayleigh and Rician fading channels. In the

receiver, it is assumed that the OFDM signal experienced AWGN, MMSE detec-
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Figure 4.2: CCDF of PAPR of OFDM signal with the designed linear phase FIR
filter.
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Figure 4.8: SNR performance for channel C and channel D.

tor is used and full CSI is known at the receiver. Numerical results demonstrated

that OFDM signal with the designed pulse shaping filters not only reduces the

PAPR of the OFDM signal but also improves the BER of the OFDM systems over

multipath fading channels.



Chapter 5

PAPR Distribution Analysis of

OFDM Signal with Pulse

Shaping

In the existing literature, PAPR distribution analysis and quantification were car-

ried out based on the assumption that the OFDM signals were stationary. When

a standard OFDM signal is subjected to pulse shaping, the resulting signal is no

longer stationary. It can be easily proven that the resulting signal is cyclostation-

ary. In this chapter, PAPR distribution analysis and quantification will be carried

out for OFDM signal with pulse shaping. A random phase can be introduced

to stationarise the cyclostationary signal. After the stationarisation process, the

complementary cumulative distribution function (CCDF) of the PAPR is analysed

using the level crossing rate (LCR) theorem and an upper bound for the CCDF of

the PAPR of the OFDM signal is derived.

The rest of this chapter is organised as follows: Section 5.1 introduces the LCR

theorem, briefly summarises the upper bounds and approximation of the OFDM

signals without pulse shaping and presents the definition of stationary and cy-

clostationary signals. Section 5.2 presents the analysis of the OFDM signal with

pulse shaping. PAPR distribution analysis of the stationarised OFDM signal is

presented in Section 5.3. Numerical results are presented in Section 5.4 and the

conclusion remarks are given in Section 5.5.
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5.1 Preliminaries

5.1.1 Level Crossing Rate Theorem

Given a random process r(t) and a constant γ, let ti denote the time instances

when r(t) crosses the line Lγ (which is parallel to the time axis) as illustrated in

Fig.5.1 .

r(ti) = γ (5.1)

The level crossing rate problem is the determination of the statistical properties

Figure 5.1: Level crossing of r(t).

of a random process crosses a given threshold, γ at ti [45]. It is assumed that r(t)

is stationary and let Nr(γ, t) denote the number of points crossing the threshold

γ at ti. The following shows the mean of Nr(γ, t) in terms of fr(r), the first order

density of r(t) and fṙ(ṙ), the first order density of its derivative ṙ(t) [72].

E[Nr(γ, t)] =

∫ ∞
−∞
|ṙ(t)|[frṙ(r, ṙ)]r=γdṙ (5.2)

where

frṙ(r, ṙ) = fr(r)fṙ(ṙ) (5.3)

and frṙ(r, ṙ) is the joint probability density of r(t) and ṙ(t).

The expected number of r(t) crosses threshold, γ (for positive and negative
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direction) for a period of T is given by

E[Nr(γ, T )] =

∫ T

0

∫ ∞
−∞
|ṙ|[frṙ(r, ṙ)]r=γdrdṙdt

= T

∫ ∞
−∞
|ṙ|[fr(r)fṙ(ṙ)]r=γdṙ

= T

∫ ∞
−∞
|ṙ|fr(γ, ṙ)dṙ (5.4)

According to [48], the upper bound of the CCDF of the PAPR of the OFDM

signal can be expressed by

Pr

{
max

0<t<T
|r(t)| > γ

}
≤ E[N+

r (γ, T )] (5.5)

and

E[N+
r (γ, T )] = T

∫ ∞
0

ṙfr(γ, ṙ)dṙ (5.6)

where E[N+
r (γ, T )] is the mean number of positive crossings at a given threshold

γ in one OFDM symbol during period T .

5.1.2 PAPR Distribution Analysis of the OFDM Signal without

Pulse Shaping

In the existing literature, PAPR distribution analyses were carried out based on

the assumption that the OFDM signal was a stationary signal [73][79][80][48][50].

According to [50], the CDF of PAPR is given by

F (γ) = (1− e−γ)αN (5.7)

where γ is a specified PAPR threshold, α is a parameter determined from computer

simulation. Hence, the empirical approximation of the CCDF of the PAPR can be

expressed as

CPAPR1(γ) = 1− (1− e−γ)αN (5.8)
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In [44], the LCR theorem is used to derive the CCDF of the PAPR given by

CPAPR2(γ)=

 1− (1−
√
γe−γ√
γ̄e−γ̄

)
√

π
3N
√
γ̄e−γ̄ γ > γ̄

1 γ ≤ γ̄
(5.9)

where γ̄ represents the prescribed PAPR reference level with the probability close

to 0 and γ̄ ≥
√

2
2 .

Another PAPR distribution analysis using LCR theorem is suggested by [48]

where the upper bound of the CCDF can be expressed as

CPAPR3(γ) ≤
√
π

3
N
√
γe−γ (5.10)

Fig. 5.2 illustrates the comparison of (5.8), (5.9), (5.10) for N = 64 and

N = 256. In the simulation, the OFDM symbols are QPSK modulated. Fig. 5.2

shows good results for the upper bound derived using the LCR theorem in (5.9).

Therefore, LCR theorem based approach is effective in quantifying the PAPR of

the OFDM signal. In the following, the LCR theorem will be used for the analysis

of the PAPR of the OFDM signal with pulse shaping.

5.1.3 Cyclostationary Signal and Stationarisation Process

Cyclostationary random process. A random process X(t) (complex or real)

is called cyclostationary in strict sense with period T if, for every integer n, any

collection of times t1, t2, ..., tn in Z or R, and Borel sets A1, A2, ..., An of C or R

[63],

Pr[X(t1 + T ) ∈ A1, X(t2 + T ) ∈ A2, ..., X(tn + T ) ∈ An]

= Pr[X(t1) ∈ A1, X(t2) ∈ A2, ..., X(tn) ∈ An] (5.11)

where T > 0 is the fundamental period of this random process.

Wide sense cyclostationary random process. A random process X(t) is
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Figure 5.2: Comparison of bounds of PAPR distribution

called wide sense cyclostationary if

E[X(t+mT )] = E[X(t)]

E[X(t1 +mT )X(t2 +mT )] = E[X(t1)X(t2)]

for any integer m [63].

Stationarisation of WSCS Signal. Assume that x(t) is a WSCS signal with

its mean and autocorrelation as follows

ηx(t+mT ) = ηx(t)

Rx(t1 +mT, t2 +mT ) = Rx(t1, t2)

for every integer m. Let θ be a random phase, which is uniformly distributed over

the interval between 0 and T and independent of x(t). By introducing a random

phase θ, the WSCS signal, x(t), can be stationarised [64]. Such a process results
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in the stationarised signal y(t) as follows

y(t) = x(t+ θ) (5.12)

which is stationary in wide sense with its mean and autocorrelation as follows [45]

ηy =
1

T

∫ T

0
ηx(t)dt (5.13)

Ry(τ) =
1

T

∫ T

0
Rx(t+ τ, t)dt (5.14)

5.2 Analysis of OFDM Signal with Pulse Shaping

Let s(t) denote the baseband equivalent of OFDM signal with pulse shaping

s(t) =
N−1∑
k=0

Zkpk(t)e
j2πk t

T (5.15)

The continous OFDM signal with pulse shaping can be expressed as

q(t) =

∞∑
i=−∞

s(t− iT ) (5.16)

=

∞∑
i=−∞

N−1∑
k=0

Zi,kpk(t− iT )ej2πk
t−iT
T (5.17)

The mean value of q(t) is given by

E[q(t)] = E

[ ∞∑
i=−∞

N−1∑
k=0

Zi,kpk(t− iT )ej2πk
t−iT
T

]

=

∞∑
i=−∞

N−1∑
k=0

E[Zi,k]pk(t− iT )ej2πk
t−iT
T (5.18)

= 0 (5.19)
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The autocorrelation of q(t) is given by

R(t, t+ τ) = E[q(t)q∗(t+ τ)] (5.20)

= E

 ∞∑
i=−∞

N−1∑
k1=0

Zi,k1pk1(t− iT )ej2πk1
t−iT
T (5.21)

∞∑
m=−∞

N−1∑
k2=0

Z∗m,k2
p∗k2

(t+ τ −mT )e−j2πk2
t+τ−mT

T


= σ2

∞∑
i=−∞

N−1∑
k=0

pk(t− iT )p∗k(t+ τ − iT )e−j2πk
τ
T (5.22)

where

E[Zi,k1Zm,k2 ] =


σ2, i = m and k1 = k2 = k

0, otherwise

(5.23)

The autocorrelation for the OFDM signal with pulse shaping, R(t, t+τ) is periodic

within period T. This analysis shows that OFDM signal with pulse shaping is a

WSCS signal.

Signal q(t) in (5.16) is cyclostationary and can be stationarised as the following

q̂(t) = q(t+ θ) (5.24)

where θ is a uniformly distributed random phase in the interval [0 T ] with its pdf

as follows

fθ(t) =

 1
T , 0 ≤ t ≤ T

0 , otherwise
(5.25)

After shifting by a random phase as in (5.24), q̂(t) will have the same peak value

of q(t).

Consider that the mean power for the OFDM signal with pulse shaping in one
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symbol duration, E[|s(t)|2], is given by

E[|s(t)|2] = E[sk(t)s
∗
m(t)]

= E

[
N−1∑
k=0

Zkpk(t)e
jk2πt/T

N−1∑
m=0

Z∗mp
∗
m(t)e−jm2πt/T

]

=

N−1∑
k=0

N−1∑
m=0

E[ZkZ
∗
m]pk(t)p

∗
m(t)ej2π(k−m)t/T

= σ2
N−1∑
k=0

pk(t)p
∗
k(t) (5.26)

where Zk is assumed to be i.i.d with zero mean and have variance as follows

E[ZkZ
∗
m] =


σ2, k = m

0, k 6= m

Eq.(5.26) shows that the average power is not constant anymore due to pulse

shaping. The average power can be defined as the average of the mean power of

signal s(t) in one symbol duration which can be expressed as

Pavg =
1

T

∫ T

0
E[|s(t)|2]dt

=
σ2

T

N−1∑
k=0

∫ T

0
pk(t)p

∗
k(t)dt (5.27)

Continous signal, q(t) will have the same average power as (5.27).

The average power of the stationarised signal ,q̂(t) can be expressed as

P ′avg = E[|q̂(t)|2] (5.28)

= lim
i→∞

1

2iT

∫ iT

−iT
E

[ ∞∑
k=−∞

s(t+ θ − kT )s∗(t+ θ − kT )

]
dt

= lim
i→∞

1

2iT

i∑
k=−i

∫ (k+1)T

−kT
E [s(t+ θ − kT )s∗(t+ θ − kT )] dt
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where Rs = E[s(t+ θ − kT )s∗(t+ θ − kT )] and can be expressed as

Rs = E

[
N−1∑
n=0

Zn,kpn(t+ θ − kT )ejn2π(t+θ−kT )/TZ∗n,kp
∗
n(t+ θ − kT )

e−jn2π(t+θ−kT )/T
]

=
N−1∑
n=0

E[|Zn,k|2pn(t+ θ − kT )p∗n(t+ θ − kT )]

= σ2
N−1∑
n=0

E[pn(t+ θ − kT )p∗n(t+ θ − kT )]

= σ2
N−1∑
n=0

∫ T

θ=0
pn(t+ θ − kT )p∗n(t+ θ − kT )

1

T
dθ (5.29)

Let γ = t+ θ − kT , (5.29) then can be expressed as

E[|q̂(t)|2] = σ2
N−1∑
n=0

∫ t−(k−1)T

γ=t−kT
pn(γ)p∗n(γ)

1

T
dγ (5.30)

The average of the power of stationarised signal q̂(t) in (5.30) can be written as

P ′avg =
σ2

T

N−1∑
n=0

∫ T

δ=0
pn(δ)p∗n(δ)dδ (5.31)

Eq.(5.31) shows that the average power is the same as in Eq. (5.27).

Then, the PAPR distribution for both q(t) and q̂(t) can be written as follows

Pr{PAPRq ≤ γ} = Pr{PAPRq̂ ≤ γ} (5.32)

Pr{
max

−∞≤t<∞
|q(t)|2

Pavg
≤ γ} = Pr{

max
−∞≤t<∞

|q̂(t)|2

P ′avg
≤ γ}

5.3 PAPR Distribution Analysis of Stationarised OFDM

Signal

5.3.1 Derivation of Joint pdf of OFDM Signal with Pulse Shaping

For any time instant t, the OFDM signal, s(t), can be expressed as

s(t) = x(t) + jy(t)
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where x(t) is the real part of s(t) and y(t) the imaginary parts of s(t). According to

the central limit theorem, in the case where the number of subcarriers is very large,

both x(t) and y(t) can be approximated as two independent Gaussian random

processes [22]. Hence the envelope of s(t) can be approximated as a Rayleigh

random process.

For mathematical convenience, a square-root of the PAPR, represented by the

crest factor (CR) is given by

CR =
√
PAPR =

max
0≤t<T

|s(t)|
√
Pav

(5.33)

= max
0≤t<T

r(t) (5.34)

where

r(t) =
|s(t)|√
Pav

=

√
x2(t) + y2(t)

Pav
(5.35)

is the envelope of the complex baseband OFDM signal with pulse shaping that is

normalised by average power.

The real and imaginary parts of s(t) are given by:

x(t) =
N−1∑
k=0

|Zk||pk(t)| cos(ϕt) (5.36)

y(t) =

N−1∑
k=0

|Zk||pk(t)| sin(ϕt) (5.37)

where ϕt = ψt + ψz + ψp and ψt = 2πkt
T , ψz = arg(Zk) and ψp = arg(pk(t)).

The first derivative of x(t) and y(t) can be written as

ẋ(t) =
dx(t)

dt
(5.38)

=
N−1∑
k=0

|Zk||ṗk(t)| cos(ϕ̇t) + |Zk||pk(t)|
2πk

T
cos(ϕt +

π

2
) (5.39)

ẏ(t) =
dy(t)

dt
(5.40)

=

N−1∑
k=0

|Zk||ṗk(t)| sin(ϕ̇t) + |Zk||pk(t)|
2πk

T
sin(ϕt +

π

2
) (5.41)
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where ϕ̇t = ψt + ψz + ψ̇p and ψp = arg(ṗk(t))

Let x, ẋ, y, ẏ denote the samples of Gaussian processes x(t), ẋ(t), y(t), ẏ(t), re-

spectively, at the same time instant. In order to derive the level crosing rate, the

joint pdf of x, ẋ, y, ẏ is required. The joint pdf of x, ẋ, y, ẏ is given by [45]

fx,y(X) =
1√

(2π)n|R|
exp[−1

2
XR−1Xt] (5.42)

where X = [x, ẋ, y, ẏ], n = 4, R is the covariance matrix and |R| = det(R). The

covariance values of x, ẋ, y, ẏ to form matrix R are derived in Appendix 5.A. The

covariance matrix can be expressed as

R =


σxx σxẋ 0 0

σxẋ σẋẋ 0 0

0 0 σxx σxẋ

0 0 σxẋ σẋẋ

 (5.43)

where the determinant of R is as follows

det(R) = |R| = (σxxσẋẋ − σ2
xẋ)2 (5.44)

The inverse matrix of R is given by

R−1 =
1

K


σẋẋ −σxẋ 0 0

−σxẋ σxx 0 0

0 0 σẋẋ −σxẋ

0 0 −σxẋ σxx

 (5.45)

where K = (σxxσẋẋ − σ2
xẋ).

From substituting (5.43) into (5.42), the joint pdf of x, ẋ, y, ẏ can be obtained

as

fx,ẋ,y,ẏ(x, ẋ, y, ẏ) =
1

4π2K
exp[−1

2
(
x2σẋẋ
K
−2

xẋσxẋ
K

+
ẋ2σxx
K

+
y2σẋẋ
K
−2

yẋσxẋ
K

+
ẏ2σxx
K

)]

(5.46)
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After converting the variables to to polar coordinates, the joint pdf for r, ṙ, θ, θ̇ is

derived in Appendix 5.B and can be expressed as

fr,ṙ,θ,θ̇(r, ṙ, θ, θ̇) =
r2σ4

4π2K
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)] (5.47)

Next is to integrate (5.47) with respect to variable θ from 0 to 2π to obtain the

joint pdf of r,ṙ, θ̇ as follows

fr,ṙ,θ̇(r, ṙ, θ̇) =

∫ 2π

0

r2σ4

4π2K
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)]dθ

=
r2σ4

2πK
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)] (5.48)

Then, by integrating (5.48) with respect to variable θ̇ from −∞ to ∞, the joint

pdf of r and ṙ, denotes by fr,ṙ(r, ṙ) can be written as

fr,ṙ(r, ṙ) =

∫ ∞
−∞

r2σ4

2πK
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)]dθ̇

=

∫ ∞
−∞

r2σ4

2πK
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)]dθ̇

fr,ṙ(r, ṙ) =
r2σ4

2πK
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
ṙ2

σ−1
xxK

)]

∫ ∞
−∞

exp[−σ
2

2

r2θ̇2

σ−1
xxK

]dθ̇

(5.49)

Note:
∫

exp(−ax2)dx =
√
πerf(

√
ax)

2
√
a

and erf(∞) = 1 and erf(−∞) = −1

fr,ṙ(r, ṙ) =
r2σ4

2πK
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
ṙ2

σ−1
xxK

)](

√
2πK√

σ2r2σxx
)

fr,ṙ(r, ṙ) =
rσ3

√
σxx2πK

exp[−σ
2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
ṙ2

σ−1
xxK

)] (5.50)
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5.3.2 Derivation of the Upper Bound for the Stationarised OFDM

Signal with Pulse Shaping

According to [44], (5.6) can be expressed by

E[N+
r (z, T )] = Tv+

r (z) (5.51)

where

v+
r (z) =

∫ ∞
0

ṙfr(z, ṙ)dṙ (5.52)

The LCR in (5.52) can be obtained by substituting fr(z, ṙ) into (5.50). The (5.52)

can be expressed as

v+
r (z) =

∫ ∞
0

ṙ
zσ3

√
σxx2πK

exp[−σ
2

2
(

z2

σ−1
ẋẋK

− 2
zṙ

σ−1
xẋK

+
ṙ2

σ−1
xxK

)]dṙ (5.53)

The probability that the stationarised OFDM signal, r̂(t) will cross a given

threshold z during period T can be expressed as

Pr

{
max

0<t<T
|r̂(t)| > z

}
= Pr[N+

r̂ (z, T ) ≥ 1] (5.54)

where N+
r̂ (z, T ) denotes the number of times when r̂(t) crosses the level γ during

period T . By using Markov inequality, (5.54) can be converted into

Pr

{
max

0<t<T
|r̂(t)| > z

}
≤ E[N+

r̂ (z, T )] (5.55)

where E[Nr̂(z, T )], the upper bound of the CCDF is given by

E[N+
r̂ (z, T )] = Tv+

r̂ (z) (5.56)

and

v+
r̂ (z) =

1

T

∫ T

0
v+
r (z)dt (5.57)

In Appendix 5.C, the LCR of the stationarised OFDM signal, r̂(t), is derived and
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can be expressed as

v+
r̂ (z) =

1

T

∫ T

0

zσ3√
σxx2π(σxxσẋẋ − σ2

xẋ)
exp[−σ

2z2

2σxx
]

{
(σxxσẋẋ − σ2

xẋ)

σ2σxx
exp[

2z2σ2

(σxxσẋẋ − σ2
xẋ)

σ2
xẋ

σxx
] + 2z

σxẋ
σxx

(1 +

√
2π(σxxσẋẋ − σ2

xẋ)

σxxσ2
erf(2z

σxẋ
σxx

))

 dt

(5.58)

The upper bound of the CCDF of the PAPR distribution of the stationarised

OFDM signal can be expressed as

CPAPR(z) ≤
∫ T

0

√
zσ3√

σxx2π(σxxσẋẋ − σ2
xẋ)

exp[− σ2z

2σxx
]

{
(σxxσẋẋ − σ2

xẋ)

σ2σxx
exp[

2zσ2

(σxxσẋẋ − σ2
xẋ)

σ2
xẋ

σxx
] + 2
√
z
σxẋ
σxx

(1 +

√
2π(σxxσẋẋ − σ2

xẋ)

σxxσ2
erf(2

√
z
σxẋ
σxx

))

 dt

(5.59)

5.4 Numerical Results

In this section, numerical results are presented to demonstrate the effectiveness

of the derived upper bound. In the simulation, 104 QPSK OFDM symbols are

generated and the Raised Cosine (RC) filter [35] is used as the shaping pulse.

Fig.5.3. illustrates the comparison of the derived upper bound and the simu-

lation results for N = 64, β = 10% and β = 20% where the derived upper bound

is very close to the simulation results. Fig.5.4 demonstrates the comparison of the

derived upper bound and the simulation results for larger number of subcarriers

N = 128. Numerical results show that the proposed upper bound is tight.

Fig.5.5. illustrates the results for the designed FIR filter with N = 64, β = 10%

and β = 20%. Numerical results consistently show that the proposed upper bound

is tight.
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Figure 5.3: Comparison of the proposed upper bound with the simulation results
for N=64.
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Figure 5.4: Comparison of the proposed upper bound with the simulation results
for N=128.
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5.5 Concluding Remarks

In this chapter, theoretical analysis of the PAPR distribution of the OFDM signal

with pulse shaping has been investigated. Without pulse shaping, OFDM signal

is stationary. However, with pulse shaping, the OFDM signal is a WSCS signal.

Direct analysis of the PAPR distribution of a cyclostationary signal can be very

complex. By introducing a random phase, the WSCS signal was then transformed

to a WSS signal. After the stationarisation process, the joint pdf of the station-

arised signal was derived to obtain the level crossing rate. Then, the CCDF of

PAPR was analysed using the LCR theorem and an upper bound for the CCDF

of PAPR was derived. Numerical results demonstrated that the proposed upper

bound was tight.

5.A Appendix: Covariances and Expected Value

In this section, the covariances and expected values of x, ẋ, y, ẏ for matrix R are

presented.
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Figure 5.5: Comparison of the proposed upper bound with the simulation results
for the designed FIR filter (N=64).
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It is assumed that Zk is assumed i.i.d random variables with

E[Zk] = 0 (5.60)

and

E[ZkZ
∗
i ] =

 σ2, k = i

0, k 6= i
(5.61)

Zk can be written in a form of ak + jbk where ak and bk are uniformly distributed

and i.i.d random variables where

E[a] = E[b] = E[ab] = 0 (5.62)

E[a2] = E[b2] = σ2/2 (5.63)

cos(argZk) =
a√

a2 + b2
(5.64)

sin(argZk) =
b√

a2 + b2
(5.65)

Then, the expected value of real and imaginary part of the signal can be ex-

pressed as

E[x(t)] = E

[
N−1∑
k=0

Zkpk(t) cos(ϕt)

]
(5.66)

=

N−1∑
k=0

E[Zk]pk(t) cos(ϕt) = 0 (5.67)

E[y(t)] = E

[
N−1∑
k=0

Zkpk(t) sin(ϕt)

]
(5.68)

=
N−1∑
k=0

E[Zk]pk(t) sin(ϕt) = 0 (5.69)



5. PAPR DISTRIBUTION ANALYSIS OF OFDM SIGNAL WITH
PULSE SHAPING 71

The expected value of the first derivation of x can be expressed as

E[ẋ(t)] = E
[∑N−1

k=0 |Zk||ṗk(t)| cos(ϕ̇t) + |Zk||pk(t)|2πktT cos(ϕt + π
2 )
]

=
∑N−1

k=0 E[|Zk|]|ṗk(t)| cos(ϕ̇t) + E[|Zk|]|pk(t)|2πktT cos(ϕt + π
2 )

= 0

(5.70)

The expected value of the first derivation of y is given by

E[ẏ(t)] = E
[∑N−1

k=0 |Zk||ṗk(t)| sin(ϕ̇t) + |Zk||pk(t)|2πktT sin(ϕt + π
2 )
]

=
∑N−1

k=0 E[|Zk|]|ṗk(t)| sin(ϕ̇t)] + E[|Zk|]|pk(t)|2πktT sin(ϕt + π
2 )]

= 0

(5.71)

It can be seen that the mean value of x, ẋ, y, ẏ can be written as

E[x(t)] = E[y(t)] = E[ẋ(t)] = E[ẏ(t)] = 0 (5.72)

In order to build the covariance matrix R, the covariances for x, ẋ, y, ẏ are

required. These covariances are as follows:

Cxx = E[(x− E[x])(x− E[x])] = E[x2] = σxx (5.73)

σxx = E[x2(t)] (5.74)

= E

[
N−1∑
k=0

Zkpk(t) cos(ϕt)Zkpk(t) cos(ϕt)

]

=

N−1∑
k=0

E [ZkZk]E[pk(t)pk(t)]E[cos(ϕt) cos(ϕt)]

= σ2
N−1∑
k=0

pk(t)pk(t) (5.75)

Cyy = E[(y − E[y])(y − E[y])] = E[y2] = σyy (5.76)
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σyy = E[y2(t)] (5.77)

= E

[
N−1∑
k=0

Zkpk(t) sin(ϕt)Zkpk(t) sin(ϕt)

]

=
N−1∑
k=0

E [ZkZkpk(t)pk(t) sin(ϕt) sin(ϕt)]

= σ2
N−1∑
k=0

pk(t)pk(t) (5.78)

Hence, σxx = σyy

Cxẋ = E[(x− E[x])(ẋ− E[ẋ])] = E[xẋ] = σxẋ (5.79)

σxẋ =
dE[x2(t)]

2dt
=
σ2

2

N−1∑
k=0

d

dt
E[pk(t)pk(t)]

=
σ2

2

N−1∑
k=0

d

dt
p2
k(t) (5.80)

Cyẏ = E[(y − E[y])(ẏ − E[ẏ])] = E[yẏ] = σyẏ (5.81)

σyẏ =
dE[y2(t)]

2dt
=
σ2

2

N−1∑
k=0

d

dt
E[pk(t)pk(t)]

=
σ2

2

N−1∑
k=0

d

dt
p2
k(t) (5.82)

Hence, σxẋ = σyẏ

Cẋẋ = E[(ẋ− E[ẋ])(ẋ− E[ẋ])] = E[ẋ2] = σẋẋ (5.83)
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σẋẋ = E

[
N−1∑
k=0

(|Zk||ṗk(t)|cos(ϕ̇t) + |Zk||pk(t)|
2πkt

T
cos(ϕt +

π

2
))2

]

=

N−1∑
k=0

E[(|Zk||ṗk(t)|cos(ϕ̇t))2 + 2|Zk||ṗk(t)|cos(ϕ̇t)|Zk||pk(t)|
2πkt

T
cos(ϕt +

π

2
)

+ (|Zk||pk(t)|
2πkt

T
cos(ϕt +

π

2
))2

=
N−1∑
k=0

E[|Zk|]2
{
|ṗk(t)|2E[cos(ϕ̇t)]

2 + 2|ṗk(t)||pk(t)|
2πkt

T
cos(ϕ̇t)cos(ϕt +

π

2
)

+ |pk(t)|2
4(πkt)2

T 2
E[cos(ϕt +

π

2
)]2
}

= σ2
N−1∑
k=0

[
1

2
|ṗk(t)|2 + 2|ṗk(t)||pk(t)|

2πkt

T
cos(ϕ̇t)cos(ϕt +

π

2
)

+
1

2
|pk(t)|2

4(πkt)2

T 2
] (5.84)

Cẏẏ = E[(ẏ − E[ẏ])(ẏ − E[ẏ])] = E[ẏ2] = σẏẏ (5.85)

σẏẏ = E

[
N−1∑
k=0

(|Zk||ṗk(t)|sin(ϕ̇t) + |Zk||pk(t)|
2πkt

T
sin(ϕt +

π

2
))2

]

=
N−1∑
k=0

E[(|Zk||ṗk(t)|sin(ϕ̇t))
2 + 2|Zk||ṗk(t)|sin(ϕ̇t)|Zk||pk(t)|

2πkt

T
sin(ϕt +

π

2
)

+ (|Zk||pk(t)|
2πkt

T
sin(ϕt +

π

2
))2

=

N−1∑
k=0

E[|Zk|]2
{
|ṗk(t)|2E[sin(ϕ̇t)]

2 + 2|ṗk(t)||pk(t)|
2πkt

T
sin(ϕ̇t)sin(ϕt +

π

2
)

+ |pk(t)|2
4(πkt)2

T 2
E[sin(ϕt +

π

2
)]2
}

= σ2
N−1∑
k=0

1

2
|ṗk(t)|2 + 2|ṗk(t)||pk(t)|

2πkt

T
sin(ϕ̇t)cos(ϕt +

π

2
)

+
1

2
|pk(t)|2

4(πkt)2

T 2
(5.86)

Hence, σẋẋ = σẏẏ.
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The covariances between x(t) and y(t) can be expressed as

Cxy = E[(x− E[x])(y − E[y])] = E[xy] = σxy (5.87)

Cyx = E[(y − E[y])(x− E[x])] = E[yx] = σyx (5.88)

Then, σxy and σyx can be expressed as follows

σxy = E[x(t)y(t)] (5.89)

= E

[
N−1∑
k=0

Zkpk(t) cos(ϕt)Zkpk(t) sin(ϕt)

]

=

N−1∑
k=0

E [ZkZkpk(t)pk(t)cos(ϕt) sin(ϕt)]

As ϕt can be rewritten as ϕt = argZk + ψb where ψb = 2πkt
T + arg(pk(t)),

σxy =
N−1∑
k=0

E [ZkZkpk(t)pk(t) cos(argZk + ψb) sin(argZk + ψb)] (5.90)

After algebraic manipulation and using (5.64) and (5.65), the following can be

expressed

σxy = σ2
N−1∑
k=0

pk(t)
2E
[
ab cos2(ψb)− ab sin2(ψb) + a2 cos(ψb) sin(ψb)− b2 cos(ψb) sin(ψb)

]
= 0 (5.91)

The derivatives of x(t) and y(t) are independent of each other and the covari-

ance values can be expressed as

Cẋẏ = E[(ẋ− E[ẏ])(ẏ − E[ẋ])] = Cẏẋ = 0

Cẋy = E[(ẋ− E[ẋ])(y − E[ẏ])] = Cyẋ = 0

Cxẏ = E[(x− E[x])(ẏ − E[ẏ])] = Cẏx = 0
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Therefore, the covariance matrix can now be written as

R =


σxx σxẋ 0 0

σxẋ σẋẋ 0 0

0 0 σxx σxẋ

0 0 σxẋ σẋẋ

 (5.92)

5.B Appendix: Derivation of the Joint pdf

In this section, the joint pdf for r, ṙ, θ, θ̇ is derived.

The joint pdf of x, ẋ, y, ẏ is defined by [45]

fx,y(X) =
1

4π2
√
|R|

exp[−1

2
XR−1Xt]

fx,y(X) =
1

4π2
√
|(σxxσẋẋ − σ2

xẋ)2|
exp[−1

2
XR−1Xt]

where

R−1 =
1

K


σẋẋ −σxẋ 0 0

−σxẋ σxx 0 0

0 0 σẋẋ −σxẋ

0 0 −σxẋ σxx

 (5.93)

where K = (σxxσẋẋ − σ2
xẋ)

fx,y(x, ẋ, y, ẏ) =
1

4π2
√
|(σxxσẋẋ − σ2

xẋ)2|
exp[−1

2
XR−1Xt]

By using the value of K and covariances , the joint PDF can be written as

fx,ẋ,y,ẏ(x, ẋ, y, ẏ) =
1

4π2K
exp[−1

2
(
x2σẋẋ
K
−2

xẋσxẋ
K

+
ẋ2σxx
K

+
y2σẋẋ
K
−2

yẏσxẋ
K

+
ẏ2σxx
K

)]

(5.94)



5. PAPR DISTRIBUTION ANALYSIS OF OFDM SIGNAL WITH
PULSE SHAPING 76

The transformation of the Cartesian coordinates (x, y) into the polar coordinate

system (r, θ) leads to the following transformation formulae

x = σr cos(θ) (5.95)

y = σr sin(θ) (5.96)

ẋ = σ(ṙ cos(θ)− rθ̇ sin(θ)) (5.97)

ẏ = σ(ṙ sin(θ) + rθ̇ cos(θ)) (5.98)

where σ =
√
Pav, r =

√
x2 + y2 and θ = arctan(y/x).

After converting the variables into polar coordinates, the joint PDF can be

written as

fr,ṙ,θ,θ̇(r, ṙ, θ, θ̇) = fx,ẋ,y,ẏ(x, ẋ, y, ẏ)|J | (5.99)

where J is the Jacobi matrix as follows

J =


∂x
∂r

∂x
∂ṙ

∂x
∂θ

∂x
∂θ̇

∂ẋ
∂r

∂ẋ
∂ṙ

∂ẋ
∂θ

∂ẋ
∂θ̇

∂y
∂r

∂y
∂ṙ

∂y
∂θ

∂y

∂θ̇

∂ẏ
∂r

∂ẏ
∂ṙ

∂ẏ
∂θ

∂ẏ

∂θ̇

 (5.100)

J =


σ cos(θ) 0 rσ sin(θ) 0

−σθ̇ sin θ σ cos(θ) −σ(ṙ sin(θ) + rθ̇ cos(θ)) −σr sin(θ)

σ sin(θ) 0 σr cos(θ) 0

−σθ̇ cos(θ) σ sin(θ) σ(ṙ cos(θ)− rθ̇ sin(θ)) σr cos(θ)

 (5.101)

The determination of the Jacobian matrix is as follows

|J | = r2σ4 (5.102)

After the transformation to polar coordinates, the joint pdf for r, ṙ, θ, θ̇ can be
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written as

fr,ṙ,θ,θ̇(r, ṙ, θ, θ̇) =
r2σ4

4π2K
exp[−1

2
(
(σr cos(θ))2σẋẋ

K
− 2

σr cos(θ)σ(ṙ cos(θ)− rθ̇ sin(θ))σxẋ
K

+
(σ(ṙ cos(θ)− rθ̇ sin(θ)))2σxx

K
+

(r sin(θ))2σẋẋ
K

− 2
r sin(θ)σ(ṙ sin(θ) + rθ̇ cos(θ))σxẋ

K
+

(σ(ṙ sin(θ) + rθ̇ cos(θ)))2σxx
K

)]

=
r2σ4

4π2K
exp[−1

2
(
σ2r2σẋẋ
K

− 2
σ2rṙσxẋ
K

+
σ2(ṙ2 + r2θ̇2)σxx

K
)]

=
r2σ4

4π2K
exp[−σ

2

2
(
r2σẋẋ
K
− 2

rṙσxẋ
K

+
(ṙ2 + r2θ̇2)σxx

K
)]

=
r2σ4

4π2K
exp[−σ

2

2
(

r2

σ−1
ẋẋK

− 2
rṙ

σ−1
xẋK

+
(ṙ2 + r2θ̇2)

σ−1
xxK

)] (5.103)

5.C Appendix: LCR of the Stationarised OFDM Sig-

nal

In this section, the LCR of the stationarised OFDM signal, r̂(t) is derived. Before

the stationarisation process, the LCR of r(t) is given by

v+
r (z) =

∫ ∞
0

ṙ
zσ3

√
σxx2πK

exp[−σ
2

2
(

z2

σ−1
ẋẋK

− 2
zṙ

σ−1
xẋK

+
ṙ2

σ−1
xxK

)]dṙ (5.104)

v+
r (z) =

zσ3

√
σxx2πK

∫ ∞
0

{
exp[−σ

2

2
(c+ bṙ + aṙ2)]

}
ṙdṙ (5.105)

where

a =
σxx
K

(5.106)

b = −2zσxẋ
K

(5.107)

c =
z2σẋẋ
K

(5.108)

To simplify the quadratic formula, consider that ṙ = x

f(x) = ax2 + bx+ c = a(x− h)2 + k (5.109)
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where h = −b/2a and k = ah2 + bh + c. Therefore, the exponent can be written

in form of

ea(x−h)2+k = ea(x−h)2
ek (5.110)

where

h = 2z
σxẋ
σxx

(5.111)

and

k = ah2 + bh+ c

=
σxx
K

(z
σxẋ
σxx

)2 − 2zσxẋ
K

(z
σxẋ
σxx

) +
z2σẋẋ
K

=
z2

K

{
−σxẋ2

σxx
+ σẋẋ

}
=

z2

K

K

σxx
=

z2

σxx
(5.112)

Using (5.110), the level crossing in (5.105) can be simplified to

v+
r (z) =

zσ3

√
σxx2πK

∫ ∞
0

{
exp[−σ

2

2
(a(ṙ − h)2 + k]

}
ṙdṙ (5.113)

Next, the integration process can be done by using the following substitution:

y = ṙ − h (5.114)

dy = dṙ (5.115)

By using (5.114), (5.113) can be expressed as

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2

2
k]

∫ ∞
−h

{
exp[−σ

2

2
(ay2 + k)]

}
(y + h)dy

=
zσ3

√
σxx2πK

exp[−σ
2

2
k]

∫ ∞
−h

exp[−σ
2

2
ay2](y + h)dy

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2

2
k]

{∫ ∞
−h

yexp[−σ
2

2
ay2]dy + h

∫ ∞
−h

exp[−σ
2

2
ay2]dy

}
(5.116)
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Part 1 of integration1 ∫ ∞
−h

y exp[−σ
2

2
ay2]dy (5.119)

u = y2

du = 2ydy

∫ ∞
h2

exp[−σ
2

2
au]

du

2
=

1

σ2a
exp[−σ

2

2
ah2]

Part 2 of integration 1

h

∫ ∞
−h

exp[−σ
2

2
ay2]dy = h(1 +

1

2

√
2π

σ2a
erf(h))

where erf(x) is an error function

erf(x) =
2√
π

∫ x

0
e−y

2
dy

Then, (5.116) can be expressed as

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2

2
k]

{
1

2σ2a
exp[−σ

2

2
ah2]] + h(1 +

1

2

√
2π

σ2a
erf(h))

}
(5.120)

Next is to replace parameter h and a in (5.120), this results in

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2k

2
]

{
K

σ2σxx
exp[−σ

2

2

σxx
K

(2z
σxẋ
σxx

)2] + 2z
σxẋ
σxx

(1 +

√
2πK

σxxσ2
erf(2z

σxẋ
σxx

))

}
(5.121)

1Note that in Gaussian integral that∫ ∞
0

xe−tx
2

dx =
1

2t
(5.117)∫ ∞

0

e−tx
2

dx =
1

2

√
π

t
(5.118)
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which can be simplified into

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2k

2
]

{
K

σ2σxx
exp[−2z2σ2

K

σ2
xẋ

σxx
] + 2z

σxẋ
σxx

(1 +

√
2πK

σxxσ2
erf(2z

σxẋ
σxx

))

}
(5.122)

By substituting k in (5.122), it results in

v+
r (z) =

zσ3

√
σxx2πK

exp[−σ
2z2

2σxx
]

{
K

σ2σxx
exp[−2z2σ2

K

σ2
xẋ

σxx
] + z

σxẋ
σxx

(1 +

√
2πK

σxxσ2
erf(2z

σxẋ
σxx

))

}
(5.123)

By substituting K to the above equation, (5.123) can be written as

v+
r (z) =

zσ3√
σxx2π(σxxσẋẋ − σ2

xẋ)
exp[−σ

2z2

2σxx
]

{
(σxxσẋẋ − σ2

xẋ)

σ2σxx
exp[− 2z2σ2

(σxxσẋẋ − σ2
xẋ)

σ2
xẋ

σxx
] + 2z

σxẋ
σxx

(1 +

√
2π(σxxσẋẋ − σ2

xẋ)

σxxσ2
erf(2z

σxẋ
σxx

))


(5.124)

By using (5.57), the LCR for the stationarised signal can be expressed as

v+
r̂ (z) =

1

T

∫ T

0

zσ3√
σxx2π(σxxσẋẋ − σ2

xẋ)
exp[−σ

2z2

2σxx
]

{
(σxxσẋẋ − σ2

xẋ)

σ2σxx
exp[− 2z2σ2

(σxxσẋẋ − σ2
xẋ)

σ2
xẋ

σxx
] + 2z

σxẋ
σxx

(1 +

√
2π(σxxσẋẋ − σ2

xẋ)

σxxσ2
erf(2z

σxẋ
σxx

))

 dt

(5.125)



Chapter 6

Pulse Shaping Approach to

PAPR Reduction for Multiuser

OFDM Systems

Pulse shaping approach was used in Chapter 3 and Chapter 4 to reduce the PAPR

of the single user OFDM transmitted signal in order to improve the overall OFDM

communication system performance in terms of PAPR reduction and BER perfor-

mance improvement. In this chapter, the effectiveness of pulse shaping approach

to PAPR reduction for multiuser OFDM (MU-OFDM) system is investigated.

Multiuser OFDM is a promising technique for high downlink capacities in mo-

bile communication systems. In multiuser communication systems, the OFDM

bandwidth is shared among multiple users. It is critical to design the OFDM sub-

carriers in such a way that users do not interfere with each other [89]. Previous

work in [85] proposed to design different precoder for different user for MU-OFDM.

However, the proposed design [85] does not consider PAPR reduction of the OFDM

signal. Recently [86], a method is proposed to establish user independence and to

reduce the PAPR of the MU-OFDM signal but the results only show marginal

PAPR reduction.

In this chapter, computationally efficient optimisation approach is proposed to

design a set of pulse shaping waveforms to reduce the PAPR of the MU-OFDM sig-

nal. Designing of a set of pulse shaping waveforms is fundamentally different from
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designing a shaping pulse for a single user OFDM system because cross-correlations

between the different pulse shaping waveforms have to be taken into consideration.

Therefore, the filter design technique in Chapter 3 cannot be applied to solve the

problem of designing a set of pulse shaping waveforms. The trade-off among users

are considered and formulated as mathematical problem which can be solved effi-

ciently and implemented effectively in practical application. The implementation

issue, such as minimising interference among users is mathematically formulated

as cross correlation and autocorrelation constraints.

The rest of the chapter is organised as follows: Section 6.1 presents the OFDM

system model for multiuser communication. Section 6.2 introduces the pulse shap-

ing filter design for MU-OFDM signal and computationally efficient method is pre-

sented to solve the pulse shaping waveform set design problem. Numerical results

are presented in Section 6.3 to demonstrate the effectiveness of the designed set of

pulse shaping waveforms in reducing the PAPR of the MU-OFDM signal. Finally,

concluding remarks are drawn in Section 6.4.

6.1 System Model

6.1.1 MU-OFDM System Model without Pulse Shaping

Consider that U users utilise the OFDM system with N subcarriers. The number

of subcarriers allocated for each user is Nu = N
U . It is assumed that each user has

Nu number of data streams mapped to the allocated subcarriers as illustrated in

Fig.6.1. The baseband equivalent of the OFDM transmitted signal for the uth user

is given by

ŝu(t) =

N ′u∑
k=0

Zuk e
j2πkt/T , 0 ≤ t<T (6.1)

where N ′u = (u − 1)Nu + m and m = 0, 1, 2, ...Nu − 1. The subcarrier allocation

can be on a fixed basis or on a dynamic basis [87][88]. It is assumed that the

subcarriers allocation method is fixed.
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Figure 6.1: Block diagram of multiuser OFDM system.

6.1.2 MU-OFDM System Model with Pulse Shaping

When a single user OFDM signal is subjected to pulse shaping, the baseband

equivalent of the OFDM transmitted signal is given by

ŝ(t) =
N−1∑
k=0

Zkpk(t)e
j2πkt/T , 0 ≤ t ≤ T (6.2)

where pk(t) is the shaping pulse at the kth subcarrier with a duration of T .

For multiuser communication systems, U users share the N subcarriers OFDM

system. The number of subcarriers allocated for each user is Nu = N
U and the

baseband equivalent MU-OFDM signal with pulse shaping can be expressed as

s(t) =
U∑
u=1

su(t), 0 ≤ t ≤ T (6.3)

where

su(t) =

N ′u∑
k=0

Zuk p
u
k(t)ej2πkt/T (6.4)
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where N ′u = (u − 1)Nu + m, m = 0, 1, 2, ...Nu − 1 and puk(t) is a pulse shaping

waveform at the kth subcarrier for the uth user.

Pulse shaping in the frequency domain can be regarded as a precoding process.

The block diagram of the precoded multiuser OFDM (PMU-OFDM) is illustrated

in Fig.6.2. The baseband equivalent of the PMU-OFDM transmitted signal at the

uth user can be expressed as

su(t) =

N ′u−1∑
k=0

duej2πkt/T , 0 ≤ t<T (6.5)

where N ′u = (u− 1)Nu +m, m = 0, 1, 2, ...Nu − 1 and

duk = P uk (ejω)Zuk (6.6)

To reduce the PAPR of the MU-OFDM transmitted signal, the proposed approach

is to design one principle pulse for each individual user and the different shaping

pulses for all the subcarriers belonging to this particular user can be generated by

cyclic shifting of this principle pulse. Let P u0 (ejω) denotes the frequency response

of the principle pulse for uth user, then

P uk (ejω) = P0(ejω)e−jωk, k = 1, ..., N ′u − 1 (6.7)

where N ′u = (u− 1)Nu +m, m = 0, 1, 2, ...Nu − 1.

In practical implementations, (6.7) is often discretised and the discretised pulse

can be expressed as

P uk = P u0 e
−j2π ik

Nu (6.8)

where i = 0, 1, ..., L− 1, L = (1 + β)Nu and k = 1, ..., N ′u − 1.

6.2 Pulse Shaping Waveform Set Design for MU-OFDM

System

The design of a set of pulse shaping waveforms can be generalised as the design

of a set of filters with specified constraints in time and frequency domain [42][85].
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Figure 6.2: Block diagram of PMU-OFDM.

The objective of the design problem is to minimise the stopband energy of the

designed pulse shaping waveforms and to maintain the spectral shaping efficiency.

Constraints are introduced in the problem formulation in order to minimise ISI

and CCI. All of the pulse shaping waveforms in the set are specified to have low

autocorrelation value at nonzero lags and low cross-correlation value at all lags for

low ISI and CCI, respectively.

6.2.1 Problem Formulation

For any given u, consider the following FIR filter Pu(ejω)

Pu(ejω) =

M−1∑
k=0

hu(k)φk(e
jω) = hu

Tφ(ejω) (6.9)

where

hu = [hu(0), hu(1), . . . hu(M − 1)]T

φ = [φ0, φ1, . . . , φM−1]T
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where

φk(e
jω) = e−jωk k = 0, 1, 2, . . . (6.10)

The pulse shaping waveform set design problem, denoted as Problem (PU), can

be stated as follows.

Problem(PU). Design a set of U filters PU = {P1(ejω), P2(ejω), ..., PU (ejω)}

which solves the following constrained optimisation problem

min
hu

max
U

max
ωp∈Ωp

{
||Pu(ejωp)|2 − |D(ωp)|2|+

γ

π

∫
Ωs

|Pu(ejω)|2dω
}

(6.11)

for u = 1, 2, . . . , U and subject to the following autocorrelation constraint

|Rac(m)| = |
M−1∑
i=0

hu(i)hu(i−mD)| ≤ η1 (6.12)

where m = 1, 2, ... and also the cross-correlation constraint

|Rcc(m)| = |
M−1∑
i=0

hn(i)hu(i−mD)| ≤ η2 (6.13)

for n 6= u, n = 1, 2, . . . , U , u = 1, 2, . . . , U and m = 0,±1,±2, . . . , where D(ω) is a

prescribed desired frequency response (usually the frequency response of an ideal

filter), Ωp the passband frequency set, Ωs the stopband frequency set, D a positive

integer representing the number of samples per symbol interval and γ a weighting

parameter chosen by the designer.

Remarks: (a) The first part of the objective function is to shape every filter to

a desired spectral shape (as prescribed by D(ω)). The second part of the objective

function is to minimise the stopband energy leakage. The parameter γ in the

objective function is chosen by the designer to reflect the designer’s preference for

better fitting (small γ) or lower stopband energy leakage (larger γ) of the designed

set of pulse shaping waveforms. D(ω) is often selected to be the frequency response

of a Nyquist pulse. One of the main reasons to use a Nyquist pulse is to allow the

implementation of the matched filter at the receiver. (b) In constraint (6.12) and

(6.13), η1 and η2 are small positive value in order to maintain a low ISI and low

ICI, respectively.
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6.2.2 Problem Conversion

After some algebraic manipulations (see Appendix 6.A), the optimisation problem

(PU) can be converted to the following simplified optimisation problem (PUb) in

which both the objective function and the contraints are quadratic of the param-

eters to be optimised

Problem(PUb). Find hu(u = 1, 2, ..., U) which solve the following optimisation

problem

min
hu

max
u

max
ωp∈Ωp

{
||hTuQ(ω)hu| − |D(ωp)|2|+

γ

π

∫
Ωs

Qs(ω)dω

}
(6.14)

for u = 1, 2, ..., U subject to

|hTuQmhu| ≤ η1 (6.15)

for 2 ≤ u ≤ U and m = 1, 2, ... and

|hTnGmhu| ≤ η2 (6.16)

where n 6= u, n = 1, 2, . . . , U , u = 1, 2, . . . , U , m = 0,±1,±2, . . . , Gm = Qm for

m > 0 and Gm = QTm for m ≤ 0.

Remarks: Instead of solving problem (PUb) to obtain P1(ejω), P2(ejω), ..., PU (ejω)

simultaneously, in our numerical computation, iterative technique is used to design

Pu(ejω) in a sequential manner. First, problem (PUb) is solved for P1(ejω) subject

to autocorrelation constraint (6.15). Then, by using P1(ejω), the optimisation

problem (PUb) is solved for P2(ejω), P3(ejω), P4(ejω), etc one by one in an iterative

fashion with both autocorrelation constraint (6.15) and crosscorrelation constraint

(6.16).

6.3 Numerical Results

In this section, numerical results are presented to demonstrate the effectiveness

of the designed set of pulse shaping waveforms in reducing the PAPR of the MU-

OFDM signal. The ideal frequency response D(ω) is the non-causal raised cosine

filter with β = 0.2 as illustrated in Fig.6.3. Fig.6.4 and 6.5 illustrate the spectra
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and the impulse responses of a set of four designed pulse shape waveforms. Other

design parameters are D = 4, M = 48, η1 = 0.001, η2 = 0.001 and N = 64.

The autocorrelation is set at low value at m 6= 0 (|Rac(m)| ≤ 0.001) and the cross-

correlation is set at low value at m = 0,±1,±2, . . . (|Rcc(m)| ≤ 0.001) to minimise

ISI and ICI.
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Figure 6.3: Time domain and frequency domain responses of raised cosine.
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Figure 6.4: Frequency spectrum of the four designed set of filters.
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Figure 6.5: Impulse response of the four designed set of pulse shaping filters.

Fig.6.6 illustrates the CCDF of the PAPR of the PMU-OFDM for U = 2.

It shows that the designed set of pulse shaping waveforms reduces the PAPR by

approximately 2 dB for N = 64, N = 128 and N = 256.

Fig.6.7 illustrates that the designed set of pulse shaping waveforms reduces
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Figure 6.6: PAPR for PMU-OFDM with U=2.
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the PAPR for different numbers of subcarriers. For N = 128, the PAPR can be

reduced by approximately 2 dB for U = 2 and 3 dB for U = 4. For U = 4 and

N = 256, the PAPR can be reduced by approximately 2 dB.

For further investigation, Fig.6.8 compares the CCDF of the PAPR of MU-
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Figure 6.7: PAPR for PMU-OFDM with U=2 and U=4.

OFDM for U = 2, U = 4 and U = 8 for N = 256. For U = 8 the PAPR of the

OFDM signal can be reduced by approximately 2 dB.

6.4 Concluding Remarks

In this chapter, PAPR reduction of the OFDM signal using pulse shaping ap-

proach for multiuser communication systems has been investigated. In multiuser

communications, users’ independence needs to be established to prevent ISI and

CCI. Designing a set of pulse shaping waveforms using an optimisation approach

for MU-OFDM communication systems was proposed. The pulse shaping wave-

form set design problem was formulated as a constrained minimax optimisation

problem with both autocorrelation and cross-correlation constraints. The opti-

misation design problem was solved effectively by iterative technique. Numerical

results demonstrated the effectiveness of the designed pulse shaping waveform set
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Figure 6.8: PAPR for PMU-OFDM for N=256.

in reducing the PAPR of the OFDM signal in multiuser communication systems.

6.A Appendix: Problem Simplification

In this section, the objective function and the constraint of Problem (PU) are

simplified.

It is assumed that the matched filter is used and the channel is considered flat,

the magnitude of the overall transfer function can be expressed as

|Pu(ejω)|2 = hTuQ(ω)hu (6.17)

where hu = [hu(0), hu(1), ..., hu(M − 1)) and

Q(ω) = e(ω)e(ω)T (6.18)

The magnitude error in the passband can be expressed as

ξp = ||hTuQ(ω)hu| − |D(ωp)|2| ωp ∈ Ωp (6.19)
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The energy error in the stopband can be written as

ξs = hTuQs(ω)hu (6.20)

where Qs is a matrix of NxN defined by

Qs =
1

π

∫
Ωs

Q(ω)dω (6.21)

In order to simplify constraints (6.12) and (6.13), the following matrix is defined

as

Qm =

 0NU 0m

Im 0TNU

 (6.22)

where Im represents an (N −mD) × (N −mD) identity matrix, 0m represents a

(mD)× (mD) zero matrix, 0NU represents an (mD)× (N−mD) zero matrix. The

autocorrelation constraints in (6.12) can be expressed as

|Rac(m)| = |hTuQmhu| ≤ η (6.23)

and the crosscorrelation constraints in (6.13) can be expressed as

|Rcc(m)| = |hTnGmhu| ≤ η (6.24)

where Gm = Qm for m > 0 and Gm = QTm for m ≤ 0.



Chapter 7

Conclusions and Future

Research

In recent years, OFDM modulation technique has been adopted and implemented

by many wireless communication standards due to its high bandwidth efficiency

and robustness against multipath fading. One of the main drawbacks of the OFDM

systems is that the transmitted signal often exhibits a high PAPR. The PAPR

of the OFDM transmitted signal determines the power efficiency of the HPA.

Therefore, reducing the PAPR of the OFDM signal is essential as power efficiency

in wireless communication relates to coverage range, power consumption and the

size of the terminals. This thesis has investigated the pulse shaping approach

to reducing the PAPR of the OFDM signal for both single user and multiuser

communication systems. Both theoretical analysis and extensive numerical studies

have been carried out to justify the effectiveness and efficiency of the proposed

approach.

7.1 Summary

In Chapter 2, some of the currently available PAPR reduction techniques and their

pros and cons were briefly summarised. Pulse shaping approach is effective in re-

ducing the PAPR of the OFDM signal with only minimal increase of implemen-

tation complexity. Numerical results demonstrated that the selected non-causal

Nyquist pulses can reduce the PAPR of the OFDM signal.
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Instead of using the existing non-causal Nyquist pulses (which need to be

truncated and shifted before implementation), in Chapter 3, causal pulse shap-

ing filters were designed using computationally efficient optimisation approach for

PAPR reduction of the OFDM signal. The pulse shaping filter design problem

was formulated as a nonlinear constrained optimisation problem. In order to solve

this design problem efficiently, the nonlinear constraint was linearised. Then, the

design problem was converted to a semi-infinite quadratic programming problem

and was solved via discretisation. Numerical results demonstrated that the shaping

pulse generated by the designed causal filter performed better than the non-causal

Nyquist pulses in terms of PAPR reduction of the OFDM signal and implementa-

tion simplicity.

In Chapter 4, the BER performance of the OFDM systems with pulse shaping

over multipath fading channels was investigated. The HIPERLAN/2 channel mod-

els for indoor environment were used to simulate the multipath fading channels.

In the OFDM receiver, the matched filters and the MMSE detector were used.

Numerical results demonstrated that the OFDM with the designed pulse shaping

not only reduces the PAPR but also improved the BER performance of the OFDM

signal over the multipath fading channels.

In Chapter 5, theoretical analysis of the PAPR distribution of the OFDM signal

with pulse shaping had been investigated. Without pulse shaping, OFDM signal

is stationary. However, with pulse shaping, the resulted OFDM signal becomes a

WSCS signal. By introducing a random phase, the WSCS signal was converted

to a WSS signal. The joint pdf of the stationarised signal was derived to obtain

the LCR of the OFDM signal. The CCDF of PAPR was analysed using the LCR

theorem and an upper bound for the CCDF of PAPR was derived. Numerical

results demonstrated that the proposed upper bound is tight.

Finally, Chapter 6 was devoted to the PAPR reduction of the OFDM signal

using pulse shaping approach for multiuser communication systems. In multiuser

communications, users’ independence needs to be established to prevent ISI and

CCI. It was proposed to design a set of pulse shaping waveforms (each waveform

for a different user) to reduce the PAPR of the OFDM signal. The design of a set

of pulse shaping waveforms is fundamentally different from the design of a single
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filter as in Chapter 3 because cross-correlations between the different pulse shaping

waveforms have to be taken into consideration. The pulse shaping waveform set

design problem was formulated as a non-convex optimisation problem. The design

problem was then simplified and solved effectively by iterative techniques. Numer-

ical results demonstrated the effectiveness of the designed pulse shaping waveform

set in reducing the PAPR of the OFDM signal in multiuser communication sys-

tems.

7.2 Future Research

There are various possibilities to extend this research work:

• The Filter Bank Multi-Carrier (FBMC) based systems combined with Offset

Quadrature Amplitude Modulation (OQAM) are considered as a promising

candidate to be the front runner to become the radio waveform in the forth-

coming 5G Radio Access Technology (RAT) [8]. The FBMC system has a

very similar structure to OFDM with pulse shaping. One of the disadvan-

tages of FBMC is also the high PAPR in the transmitted signal. In the

future, the proposed filter design can be modified and developed for FBMC

systems.

• The pulse shaping approach has been shown effective for multiuser commu-

nication systems. Multiuser communication systems increase the efficiency

of system capacity. Multiple antennas can increase the system capacity and

multi-input-multi-output (MIMO) can be incorporated in the OFDM sys-

tem. In the future, the proposed pulse shaping waveform set design can be

extended for multiuser MIMO OFDM systems.

• Finally, transmission over underwater acoustic (UWA) channel is popular

for some related industries such as oil and gas exploration. Modeling UWA

channel is complex because of large time-delay spread, wide Doppler spread

and limited bandwidth. In recent years, UWA communications have taken

advantage of the OFDM modulation technique. In the future, an optimi-

sation problem for OFDM with pulse shaping can be developed in order to
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reduce the PAPR and to improve the BER in the UWA environment.
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