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Abstract

This paper considers the relationship between social capital and health in
the years before, at and after retirement. This adds to the current literature
that only investigates this relationship in either the population as a whole or
two subpopulations, pre- and post-retirement. We now investigate if there
are further additional subpopulations in the years to and from retirement.
We take an information criteria approach to select the optimal model of sub-
populations from a full range of potential models. This approach is similar
to that proposed for linear models by Gonzalo and Pitarakis (2002). Our
contribution is to show how this may also be applied to nonlinear models
and without the need for estimating subsequent subpopulations conditional
on previous fixed subpopulations. Our main finding is that the association of
social capital with health diminishes at retirement and this decreases further
ten years after retirement. We find a strong positive significant association of
social capital with health, although this turns negative after twenty years, in-
dicating potential unobserved heterogeneity. The types of social capital may
differ in later years (e.g. less volunteering) and hence overall social capital
may have less of an influence on health in later years.
JEL Classification: I2 I1 C1

∗We would like to thank William Greene, seminar participants at the University of Western
Australia and Curtin University, Perth, the University of Leeds and the 4th Australasian Workshop
on Health Economics and Econometrics, for useful comments and suggestions. We would also like
to thank the Editorial Board of Health Economics, Chris Skeels, and two anonymous referees, for
extremely useful suggestions. We would also like to thank Yiu-Shing Lau for research assistance.
Finally, we thank the Australian Research Council for their generous support. The usual caveats
apply.

1

This is the accepted version of an article which has been published in final form as: Gannon, B. and Harris, D. and Harris, M. 2014. 
Threshold effects in nonlinear models with an application to the social capital-retirement-health relationship. Health Economics.  
23 (9): pp. 1072-1083. http://doi.org/10.1002/hec.3088



1 Introduction1

This paper investigates the relationship between an individual’s self-assessed health

(SAH) and their accumulated levels of social capital (SC), and how that relationship

varies with the length of time the individual has before or after their retirement

from the labour force. The rationale stems from the economic model of health

production (Grossman 1972) and the developments on economics of social capital

in later years (see, for example, Glaeser, Laibson, and Sacerdote 2002, Durlauf and

Fafchamps 2005). The model proposed by Glaeser, Laibson, and Sacerdote (2002)

states that there may be both market (e.g. work and wages) and non-market (e.g.

health) returns to social capital. Investment in social capital may decline with the

opportunity cost of time but increase with the occupational returns to social skills.

Furthermore, investment may decline with age and their model predicts that this

decline is not dependent on health, i.e. for those who are in good health, the decline

still persists. Their model motivates our idea that the relationship between SAH and

SC will change due to labour market status, i.e. if they retire. Glaeser, Laibson, and

Sacerdote (2002) emphasise that there may be no effect of retirement on social capital

investment if the exit from work is expected - in addition, there could be anticipated

effects (before retirement) as well as even lagged effects (post-retirement). Following

on from this, Smith (2010) proposes that exit from the labour market may impact

on the potential returns to social capital, but if retirement is expected then these

returns may not be discretely affected at retirement. Consequently, the effect of

social capital on health may remain much the same up to the time of retirement

or even at retirement. The effect in later years however may be determined by a

different type of social capital.

1This paper uses data from SHARE wave 1 2.5.0, as of May 24th 2011.The SHARE data
collection has been primarily funded by the European Commission through the 5th Framework
Programme (project QLK6-CT-2001-00360 in the thematic programme Quality of Life), through
the 6th Framework Programme (projects SHARE-I3, RII-CT-2006-062193, COMPARE, CIT5-
CT-2005-028857, and SHARELIFE, CIT4-CT-2006-028812) and through the 7th Framework Pro-
gramme (SHARE-PREP, N◦ 211909, SHARE-LEAP, N◦ 227822 and SHARE M4, N◦ 261982).
Additional funding from the U.S. National Institute on Aging (U01 AG09740-13S2, P01 AG005842,
P01 AG08291, P30 AG12815, R21 AG025169, Y1-AG-4553-01, IAG BSR06-11 and OGHA 04-064)
and the German Ministry of Education and Research as well as from various national sources is
gratefully acknowledged (see www.share-project.org for a full list of funding institutions).
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While there has been much research on the effect of social capital on health and

the effect of retirement on health, there has been less investigation into the impact of

social capital on health before, at, or after retirement. There are plausible arguments

as to why social capital matters for health of the older population. In terms of the

effect of social capital on health, many studies have found that higher levels are

associated with better self reported health for adults of all ages (see, for example,

Petrou and Kupek 2008, Ronconi, Brown, and Scheffer 2010, d’Hombres, Rocco,

Suhrcke, and McKee 2011). Recent studies that have specifically analysed data on

older individuals include Sirven and Debrand (2008), Sirven and Debrand (2012)

and van Groezen, Jadoenandansing, and Pasini (2011). Using involvement in social

activities as a proxy for social capital, Sirven and Debrand (2008) find that there

is a positive effect on reducing the probability of poor health and show that social

participation contributes by three percentage points to the increase in the share of

individuals reporting good or very good health on average. Sirven and Debrand

(2012) then find that social capital does have a causal impact on health, but there

was no differentiation made in this paper across subpopulations such as age groups

or retirement status. van Groezen, Jadoenandansing, and Pasini (2011) find that

civic participation has a positive effect on health across all European countries.

In the only other study that does exist to date, to our knowledge, on the SAH-SC

relationship for those in retirement, outcomes are considered only for the post-

retirement periods (Smith 2010). The authors exogenously impose a discontinuity

in the reponse at retirement age and find that there is a positive impact of social

capital on those with poorer health at retirement. This leads us to conjecture that

there could be heterogeneity in the response of SAH to SC across subpopulations

before, at and after retirement, particularly if there are adverse health shocks.2 Since

we do not know precisely when anticipated or lagged effects may happen, our study

is critical to further understanding of the effect of social capital on health status for

older people.

In general, the retirement literature has estimated relationships pre- and post-

2Indeed this suggests that retirement could be endogenous with respect to health, if adverse
health shocks causes people to retire.
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retirement, which in most countries equates to pre- and post- age 65 for males and

60 for females. The SAH-SC relationship may differ depending on years to and from

retirement, therefore in this paper we search for data-determined heterogeneity over

the variable years to and from retirement. We concentrate on the model for male

retirement in this paper. We follow a simple search methodology to determine the

optimal number of subpopulations and their position, based on similar standard

optimal model selection in linear models (Gonzalo and Pitarakis 2002). Our model

allows us to estimate associations between SC and SAH.

2 Methodology

We search for sample heterogeneity in the response of SAH to variations in SC

across populations defined in terms of years to retirement. We suggest a simple

model selection methodology to determine both the number of subpopulations and

their definition. This method is a version of latent class or finite mixture mod-

elling, see Fruhwirth-Schnatter (2004). Our approach follows that of Gonzalo and

Pitarakis (2002), who took a similar approach for linear regression models. Our

approach differs from theirs in two respects. Firstly, we extend the approach to a

non-linear model estimated by maximum likelihood; in our case an ordered probit

model. Secondly, we estimate the definitions of all subpopulations simultaneously,

rather than sequentially as they do. The details of our approach follow.

2.1 Threshold models and discrete data

Consider a parametric model for i.i.d. random vectors (Yi, Zi) with conditional

density function f (y|z; θ) and parameter vector θ. We allow θ to take different

values across a finite number of subpopulations, determined by an i.i.d. observed

variableRi which may or may not be included in Zi. Based on observations (yi, zi, ri),

i = 1, . . . , N , the model is assumed to take the form of the density function

gM (yi|zi, ri; θ, τ) =

M∑
m=1

f (yi|zi; θm) · rm,i (τ) , (1)
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where rm,i (τ) = 1 {τm−1 < ri ≤ τm}, 1 {A} is the indicator function that takes the
value 1 if A is true and 0 otherwise, θ = (θ1, . . . , θM)′, τ = (τ 1, . . . , τM−1)

′, and M

is the number of subpopulations, each of which is determined by the thresholds τ j

that satisfy −∞ = τ 0 < τ 1 < . . . < τM−1 < τM = ∞. These thresholds are not
assumed to be known and will be estimated from the data, along with M . Thus

rm,i are dummy variables, each taking the value 1 if observation i is classified into

subpopulation m based on thresholds τ , and 0 otherwise. For example, if M = 2

then the model is

g2 (yi|zi, ri; θ1, θ2, τ 1) =

{
f (yi|zi; θ1) , if ri ≤ τ 1,
f (yi|zi; θ2) , if ri > τ 1.

An implicit assumption in specification (1) is that the distribution of Yi, once condi-

tioned on Zi, depends on Ri only through the determination of the subpopulation.

If Ri is included in Zi then this assumption is automatically satisfied. If Ri is not

included in Zi then this assumption need not hold, although as a practical matter

it may be appropriate in this case to expand the model in (1) to f
(
yi|zi, ri; θj, ηj

)
in order to exploit any additional explanatory power in Ri.

If the number of subpopulations M is known then estimation of the remaining

parameters in (1) can be achieved by maximising the log-likelihood

`M (θ, τ) =
N∑
i=1

ln gM (yi|zi, ri; θ, τ) (2)

over θ and τ , yielding estimators θ̂
(M)

and τ̂ (M) and maximised log-likelihood value

`M

(
θ̂
(M)

, τ̂ (M)
)

= ˆ̀
M . The estimation of θ follows by applying maximum likeli-

hood separately to each of the M sub-samples specified by the thresholds τ . These

M maximum likelihood estimators are denoted θ̂
(M)

(τ) =
(
θ̂
(M)

1 (τ) , . . . , θ̂
(M)

M (τ)
)′
.

The concentrated log-likelihood is then `M
(
θ̂
(M)

(τ) , τ
)
,where conditional indepen-

dence of observations is assumed. The practical estimation of the threshold model

involves searching over τ values by grid search within the support of (r1, . . . , rN),

with M maximum likelihood estimators computed for each τ tried. This procedure

is generally practical for small numbers of subpopulations, say 2, 3, 4, 5, but then

quickly becomes computationally prohibitive as the dimension of M grows.
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Following the suggestion of Gonzalo and Pitarakis (2002) in linear regression

models, we select M on the basis of an information criterion; that is

M̂ = arg min
M

IC (M) ,

where:

IC (M) = −2ˆ̀
M + λNpM ; where M = 1, ...,M∗ (3)

M* is the maximum number of subpopulations to be considered for the analysis.

This may be specified on a theoretical basis, but more commonly will be specified

on the practical grounds of the maximum number of subpopulations for which es-

timation is computationally feasible. λN is a deterministic function of N ; and pM

is the number of parameters in a model with M subpopulations. If θj contains k

parameters then the model contains Mk parameters in θ and M − 1 parameters in

τ , so that

pM = Mk +M − 1.

Some common choices of λN include the following.

λN = lnN BIC/SC (Schwarz 1978)
λN = 2 AIC (Akaike 1987)
λN = 1 + lnN CAIC (Bozdogan 1987)
λN = 2 ln lnN HQIC (Hannan and Quinn 1979)

These criteria are derived from differing principles and have differing properties.

The BIC, CAIC and HQIC penalties can be shown to result in consistent model

selection for the true M , while the AIC has some non-zero probability of over-

selection of M asymptotically (Gonzalo and Pitarakis 2002).3

In summary what we propose is to estimate via a grid search, all possible m =

1, . . . ,M models, and choose the one which minimises the appropriate IC.4

3Simple analysis of λN shows that, for N > 8, M̂AIC ≥ M̂HQ ≥ M̂BIC ≥ M̂CAIC .
4Stata code for the search procedures employed in this paper is available from the authors on

request.
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2.2 The Ordered Probit model

We consider an ordered probit (OP) model,5 derived from a latent variable Y ∗i of

the form

Y ∗i = Z ′iγ + Ui, (4)

with Zi being a vector of explanatory variables (with no constant term), γ a vector

of unknown coeffi cients and Ui a standard normal disturbance term. This latent

variable translates to the observed ordered, discrete, random variable Yi, with j =

1, ..., J outcomes, via the mapping

Yi = j · 1
{
µj−1 < Y ∗i ≤ µj

}
,

where −∞ = µ0 < µ1 < . . . < µJ−1 < µJ = ∞ are the boundary parameters with

µ =
(
µ1, . . . , µJ−1

)′
to be estimated in addition to γ. With θ = (γ, µ), the OP

density function is given by

f (yi|zi; θ) = Φ
(
µyi − z

′
iγ
)
− Φ

(
µyi−1 − z

′
iγ
)
.

Following the general model (1) we define, for each subpopulation m, coeffi cient

vectors γm and boundary parameters µm =
(
µm,1, . . . , µm,J−1

)′
for m = 1, . . . ,M ,

so that an M -subpopulation OP model with threshold variable ri has conditional

density function

gM (yi|zi, ri; θ, τ) =
M∑
m=1

(
Φ
(
µm,yi − z

′
iγm
)
− Φ

(
µm,yi−1 − z

′
iγm
))
· rm,i (τ) ,

where θ =
(
γ1, . . . , γM , µ1, . . . , µM−1

)
. The log-likelihood is then computed using

equation (2) and, if each γm contains k coeffi cients, the penalty term pM in (3) is

pM = Mk +M (J − 1) + (M − 1) .

The computation of M̂ can proceed using any IC in (3).

A model in which γ differs across subpopulations, but the boundary parameters

µ do not, can be specified as

gM (yi|zi, ri; θ, τ) =

M∑
m=1

(
Φ
(
µyi − z

′
iγm
)
− Φ

(
µyi−1 − z

′
iγm
))
· rm,i (τ) ,

5The proposed methodology can similarly be applied to any nonlinear model estimated by
maximum likelihood, where the relevant density is entered into equation (2).

7



where now θ = (γ1, . . . , γM , µ), and the IC penalty pM is

pM = Mk + (J − 1) + (M − 1) .

We assume, as in our application below, that only a subset of the γ coeffi cients

vary across subpopulations. Let z1,i be the k1 regressors whose coeffi cients, denoted

γ1,1, . . . , γ1,M , vary across subpopulations and let the remaining k2 regressors z2,i

have constant coeffi cients γ2. In this case the conditional density simplifies to

gM (yi|zi, ri; θ, τ) =

M∑
m=1

(
Φ
(
µyi −

(
z′1,iγ1,m + z′2,iγ2

))
− Φ

(
µyi−1 −

(
z′1,iγ1,m + z′2,iγ2

)))
·rm,i (τ) ,

where θ =
(
γ1,1, . . . , γ1,M , γ2, µ

)
, with IC penalty

pM = Mk1 + k2 + (J − 1) + (M − 1) .

Indeed, our methodology applies even if one has no prior information regarding

whether all, or subsets of, the parameters of the model are constant or vary by

subpopulation. All competing models can be simply compared using their IC.

Model selection based on IC can be given a hypothesis testing interpretation

(Gonzalo and Pitarakis 2002). If a model with M1 subpopulations is preferred by

an IC (M) to a model with M2 subpopulations, where M1 > M2, the ordering

IC (M1) < IC (M2) implies that 2
(

ˆ̀
M1 − ˆ̀

M2

)
> λN (pM1 − pM2). That is, the

smaller modelM2 would be rejected in favour of the larger modelM1 by a likelihood

ratio (LR) test using a non-standard critical value of the form λN (pM1 − pM2). The

level of significance of this likelihood ratio test depends on the choice of λN , with

larger λN (e.g.. BIC and CAIC) implying a test with lower size and power, hence

preferring smaller models. The preceding argument also holds for M1 < M2 since

then 2
(

ˆ̀
M2 − ˆ̀

M1

)
< λN (pM2 − pM1), implying the smaller modelM1 is not rejected

in favour of the larger model M2.

We note here that our method is explicitly based upon certain identifying as-

sumptions and restrictions which may be an issue for researchers applying similar

techniques elsewhere. Explicitly these are:

1. The data we have to hand is cross-sectional, so that we cannot easily condition

on any individual unobserved heterogeneity as would be possible in a panel
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data setting. We do note, however, that our suggested techniques are similarly

appropriate to the use of nonlinear panel data models, one simply has to

adjust the likelihood functions accordingly (see, for example, Greene 2010,

Wooldridge 2010).

2. The model does not contain any endogenous regressors.

3. Any potential endogeneity of the threshold variable - years to and from retire-

ment - is not dealt with in our paper.

4. There are no omitted variables related to the variation on the response para-

meter.

5. Variation in responses across subpopulations is deterministic and variation

within each range is homogeneous.

3 Data

We use data fromWave 1 of the SHARE (Survey of Health, Ageing, and Retirement)

data set, collected in 2004/2005. This is a cross-national individual level longitudinal

data set including more than 38,000 Europeans aged over 50. The database contains

rich information on health status, socioeconomic characteristics, housing, as well as

various proxies for social capital. Data are available across 11 countries (Austria,

Germany, Sweden, Netherlands, Spain, Italy, France, Denmark, Greece, Switzerland,

Israel) in which we have self-reported measures of health, various indicators of social

capital e.g. volunteering, (that we later utilise to define a composite measure of

social capital), as well as a range of personal demographics typically used in this

literature (such as education levels and a full range of country dummies). These

data have been widely used before and in related contexts (see, for example, Sirven

and Debrand 2012).

The variable we wish to model is an individual’s self-assessed health, denoted

SAHi, which is defined on a five point Likert-scale:
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SAHi =


1 poor
2 fair
3 good
4 very good
5 excellent

.

The social capital variable, denoted SCi, is measured as a continuous index, in-

creasing in levels of social capital and incorporating many facets of social capital

(including volunteering, caring, networking, family ties). This index has been devel-

oped in detail and discussed in depth by Gannon and Roberts (2012). However, in

short, the index was found to be a good and robust measurement of social capital

and predictor of health using several definitions of self assessed health and mental

health. The index is scaled from 0 to 1 and has a mean score of 0.38. The SAH

variable has a mean value of 3.24.

The relationship between SAHi and SCi is hypothesised to vary with the years

to and from retirement variable, Ri. This variable is constructed by us, for all

retirees, from a question within SHARE, “In which year did your last job end?”.

In Wave 1 of the data, most retired respondents answered this question, whereas in

Wave 2 there were many missing values.6 We therefore concentrate on Wave 1 of

the data only. For employees, we calculated years to retirement based on expected

retirement age for each country. In most countries this was age 65 for men and age

60 for women; although here we only consider our model for males. The Ri variable

therefore takes on 40 possible values, ranging from −15 years to retirement to 25

years past retirement (we only analyse individuals to age 80 due to the very small

sample sizes beyond this, hence our maximum number of years past retirement is

25). For example, if a person is aged 55 and we expect them to retire at age 65,

this variable will take the value of −10. On the other hand, if they are aged 75 and

retired at age 65, then this variable takes a value of 10.

Following the literature, the model also includes an additional set of control vari-

ables, standard demographics, such as log of household income, highest education

level, married/living with partner, and country dummies, that are included in a

regressor vector (net of SCi) Xi. Our estimation sample size is n = 10, 320.

6We have checked the response rate for those who were present in wave 1 and find that even
with matching up responses across waves, there is still 12% missing on this variable.
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4 Empirical model

The standard (constant-coeffi cient) OP model for the SAH-SC relationship is based

on the latent variable representation

SAH∗i = βSCi + α′Xi + Ui, (5)

where, with regard to the earlier notation, Zi = (SCi, Xi), Ui ∼ i.i.d.N (0, 1) and

SAH∗i is an unobserved continuous measure of latent health. As is usual, and as

described above, this latent variable is assumed to be mapped into the observed

dependent variable SAHi by

SAHi = j · 1
{
µj−1 < SAH∗i ≤ µj

}
, j = 1, . . . , 5, (6)

where µ1, . . . , µ4 are the boundary parameters to be estimated (setting µ0 = −∞
and µ5 =∞).
We now extend this constant-coeffi cient model to allow for the hypothesised

differential effect of social capital on health with respect to an individual’s position

with regard to time to and past retirement. Thus our threshold model now allows

the coeffi cient β on SCi to vary according to years to and from retirement, while

assuming that α and µ1, . . . , µ4 are constant across all individuals.
7 This threshold

model takes the general form

SAH∗i =

M∑
m=1

βm (SCi ·Rm,i) + α′Xi + Ui, (7)

where the mapping of equation (6) is unchanged and the subpopulation indicators

are defined as

Rm,i = 1 {τm−1 < Ri ≤ τm} , m = 1, . . . ,M,

with the number of subpopulations M and the threshold parameters τ 1, . . . , τM−1

(with τ 0 = −∞, τM = ∞) to be estimated from the data. This model splits the

data into M subpopulations, defined by R1,i, . . . , RM,i, that each have a constant

7A more general model would allow all parameters to so vary. However, we have no strong
priors as to why this would be the case. Moreover, as described above, such a case could still easily
be entertained by the methods suggested.
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coeffi cient on SCi given by β1, . . . , βM . Setting M = 1 in (7) gives the constant

coeffi cient model (5) as a special case (in which case τ 0 = −∞, τ 1 =∞ and R1,i = 1

for all i).

In this particular application, where the threshold variable Ri takes one of only

40 values (due to the restrictions noted above) and the sample size is relatively large,

it is possible to set M = 40 in equation (7) and re-define the threshold indicators as

Rm,i = 1 {Ri = m} , m = 1, . . . , 40,

in the process removing the need for explicit estimation of the threshold parameters.

That is, as we have a discrete threshold variable, and multiple observations per

observed category, it is possible to estimate the fully unrestricted model withM = 40

subpopulations.8 Clearly this yields a very highly parameterised model (with a

different coeffi cient on SCi for each different value of Ri), which although allowing

for a very flexible SAH-SC profile across all years to and from retirement, is unlikely

to be entertained as an appropriate empirical model. Such an unrestricted model is

only possible when the threshold variable takes a small number of possible values

(relative to the sample size). However, in this instance it provides a useful model

for comparative purposes.

In summary, we can consider three benchmark models involving no search pro-

cedures. Firstly, where the β coeffi cient is fixed. Secondly, where it is allowed to

vary for all observed values of Ri. And finally, where we adopt the approach in

the literature to essentially translate the problem into a binary one, such we simply

split SCi into two: pre- and post-retirement.9 Compared to these benchmark mod-

els, we then consider a range of models which entertain all possible combinations

of m = 1, . . . ,M∗ = 5 subpopulation models (where M∗ is the maximum set value

of M), and optimally choose M according to the IC stated above. Note that, in

practical terms, the researcher must pick a value for M∗. Ideally this should be as

8This would not be possible if the threshold variable were continuous, and moreover is not one
that many applied researchers would necessarly entertain, being particularly unparsimonious.

9An anonymous referee suggested we should include age squared and perhaps an interaction
between SC and age, and present this as our benchmark model. They also suggested presenting
results as partial effects. However, we estimated these models and they did not add any useful
information to the benchmark model. In addition, the partial effects demonstrate a very similar
pattern to those of the coeffi cients, so we excluded these for reasons of space.
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large a number as possible (noting the trade-offwith regard to additional estimation

time). We also note that in practical terms, the procedure can be sped-up by not

searching over the full support of Ri. For example, in our application, it is rather

unlikely that any threshold will occur at either end of the distribution of Ri.
10

5 Results

Although not reported for reasons of space, a limited set of Monte Carlo experiments

was considered to evaluate the performance of our techniques.11 All of the techniques

showed good performance in correctly selecting the number and position of the

thresholds; and fared better the larger the difference across subpopulations and

with fewer subpopulations. However, these did reveal that the BIC would be the

preferred criterion across a range of scenarios considered. Thus, in general, we

would recommend the use of BIC in such a search procedure. This is in line with

the findings of (Gonzalo and Pitarakis 2002) ( p. 337) for the linear model.

Turning now to the empirical application, the results for the benchmark models

(Imposed Subpopulations), as well as the optimal model for each M = 1, . . . , 5

(Estimated Subpopulations) are presented in the form of estimated coeffi cients in

Table 1.12 Table 1 also presents the various maximised likelihood functions and

information criteria along with the optimally chosen candidates for τ in each of

these.

Firstly, consider the exogenously imposed number of subpopulation results (columns

10We note here the possibility of the years to and from retirement variable being potentially
endogenous, and also that for those yet to retire, that this variable has been measured with some
noise. However, rigorous treatment of either these aspects is beyond the scope of the current
paper, and moreover the consequences of such are not yet known. For the majority of those in our
sample who are retired, we know the retirement year for all, except for 3% whose information is
missing from the sample. We treat this as an accurate date of retirement. For those not retired,
we estimate the years to retirement based on the statutory date of retirement and acknowledge
that this is measured with noise.

11The full set of these results are available from the authors on request.
12For reasons of space we only present the coeffi cients for the social capital variables. Full

coeffi cient results are available on request, but are in general accordance with those expected and
found in the previous literature.
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5− 7). The constant coeffi cient model (M = 1) in the fifth column of results, would

correspond to the situation where the researcher did not impose any threshold in the

SAH-SC relationship with regard to years to and from retirement. The results show

the expected significant positive relationship between SAH and SC, with β̂1 = 0.457.

In light of previous literature, we then allow for an exogenously determined thresh-

old in this relationship at the point of retirement and obtain the results in column

6. Here we indeed see that the assumption of a constant relationship looks question-

able, with a halving of the coeffi cient from 0.638 to 0.305 post-retirement. Again, as

expected the effect of SC on health diminishes after retirement. Although unlikely

to be considered as a sensible, or parsimonious, model by most researchers, the final

column gives the results of allowing a different effect of SC on SAH for every ob-

served value of time to and from retirement. Note that for reasons of space, we do

not report all these coeffi cients, but they are presented and discussed below in Figure

1. A comparison of these exogenously imposed subpopulations, across all IC mea-

sures, clearly shows that the M = 40 model is heavily over-parameterised, whereas

exogenously imposing a single threshold at retirement does appear warranted.

We now turn to the optimally chosen threshold models. Although our Monte

Carlo simulations suggested a preference for the BIC (especially in comparison to

the AIC), here this is inconsequential, as all methods choose the same number of

subpopulations and at the same places for all possible candidates for all τ . Thus

from Table 1, we see that for all possible M = 2 candidate models, we find that

the optimal one corresponds to the single threshold, eight years after the year of

retirement. Allowing for one more subpopulation (M = 3) now finds a threshold at

retirement and then another one several (seventeen) years past retirement. Moving

toM = 4, we find thresholds at retirement, an intermediate threshold ten years past

retirement, and a considerably later threshold at 19 years past retirement. Finally,

we consider all possible M = 5 candidate models, although here this appeared to

be over-parameterised as the M = 4 model was found to be preferable, as we now

discuss.

Before analysing the results in more detail, it is useful to compare IC measures

for all considered models. It is clear that all of the four IC measures favour the
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optimally chosen M = 4 model, with thresholds at retirement, and 10 and 19 years

past retirement. Thus the results forM = 4 show that we do, indeed, find a threshold

in the social capital/health relationship in the year at retirement (τ 1 = 0). This is

an interesting finding and confirms the existing results in the literature which simply

exogenously impose a threshold here. Our main finding is that the effect of SC on

health diminishes at retirement and additionally the effect decreases further in later

years after retirement. This could reflect lagged effects and the fact that the types

of social capital may differ in later years (e.g. less volunteering) and hence overall

social capital may have less of an influence on health. Nonetheless, there is still a

strong significant effect of social capital on health for all individuals up to twenty

years post-retirement, potentially reflecting the impact of both current and lagged

effects at older age.

Our results also show that the pre-retirement relationship does not seem to be

subject to any threshold, and hence across all ages from 50 upwards, the effect of

social capital on health is relevant but, in contrast to the post-retirement era, it

is not overly important to distinguish the years to retirement. While research to

date has only specified retirement status as a binary outcome, we now show the

importance of specifying years since retirement.

Prior to the first threshold, social capital is found to have a significant positive

effect on health
(
β̂1 = 0.696

)
. In the second subpopulation, from the year after

retirement until ten years after retirement, this SC effect remains positive but is

weaker than before retirement
(
β̂2 = 0.366

)
. The third subpopulation, from 11-

19 years after retirement, essentially shows that SC here has only a very weak

effect on health levels (β̂3 = 0.063, and insignificant); whereas the final fourth

subpopulation, from 20 years after retirement onwards, shows a significantly negative

SAH-SC relationship
(
β̂4 = −0.551

)
.

These results compare to previous research, whereby Smith (2010) looked at

post-retirement health status conditioned on health status at retirement year, and

found a positive link between SC and health for those with baseline poor health.

That paper however, did not look at years since retirement. Our results suggest that

exogenously imposing a single threshold at year of retirement, could yield potentially
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biased and misleading results and policy inference. While we find that social capital

does impact on health at retirement, we also find large significant effects in later

years, even if at a smaller magnitude. Similar to Rocco and Suhrcke (2013) we find

social capital is good for health pre- and post-retirement (unless one is in retirement

at least 19 years) and while we also can only propose limited policy implications,

these should nonetheless be considered. For example, Rocco and Suhrcke (2013)

propose interventions such as provision of support or promotion of volunteering. In

our case, this may be important in years after retirement, as well as in the years

leading to retirement or at retirement.

The estimated weakening relationship between social capital and health in later

years suggests it is likely that the type of social capital is relevant here, and that

high levels of SC in earlier years are likely to reflect higher levels of volunteerism, in

later years family ties and networks may be more dominant but these do not have

as great an association with health production (Gannon and Roberts 2012).

In Figure 1 we present a range of coeffi cient estimates for the SC variable by years

to and from retirement. We consider a range of models here: General, where, as

described above, we have a separate effect for each observed realisation of Ri; Base,

where there is no threshold effect; Optimal - which is the optimal threshold model

(using any IC); and Pre and Post, which would be the effect of simply splitting the

SC index at retirement age, as would typically be done in the literature.

Considering the parameters first, and starting from the most rigid approach with

regard to years to and from retirement, the static positive effect of SC on health

is exhibited by the horizontal Base line. Allowing for a threshold, exogenously de-

termined, at retirement age, clearly suggests that the effect of SC, while remaining

positive, diminishes for retirees. However, now consider the results for the fully

unrestricted model, with M = 40 and coeffi cients β̂1, . . . , β̂40. These clearly suggest

the SAH-SC relationship may be fairly constant before retirement, but then slopes

downwards, becoming less positive, and even negative a number of years after retire-

ment. Compare this to the optimally determined relationship, which again shows a

constant effect prior to retirement, but then one that diminishes in effect, and in-

deed becomes negative at 20 years past retirement. One good interpretation of our
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Table 1: Threshold Model Estimation Results; Standard Errors in Parentheses
Estimated Subpopulations Imposed Subpopulations

Column 1 2 3 4 5 6 7

Number of subpopulations 2 3 4 5 1 2 40

Log-likelihood ˆ̀
M −13954 −13942 −13936 −13934 −13969 −13956 −13922

pM 21 22 23 24 20 21 59
BIC (M) 28103 28334 28084 28090 28123 28107 28398
AIC (M) 27951 28174 27918 27916 27979 27955 27963
CAIC (M) 28124 28356 28107 28114 28143 28128 28458
HQIC (M) 28002 28228 27974 27975 28027 28006 28110
Threshold
parameters
τ 1 8 0 0 −8 n/a 0 -
τ 2 17 10 0 -
τ 3 19 10 -
τ 4 19
Social Capital
coeffi cients
β̂1 0.551∗∗

(0.072)
0.670∗∗
(0.078)

0.696∗∗
(0.078)

0.621∗∗
(0.090)

0.457∗∗
(0.694)

0.638∗∗
(0.078)

-

β̂2 0.165∗
(0.087)

0.318∗∗
(0.075)

0.366∗∗
(0.076)

0.764∗∗
(0.087)

0.305∗∗
(0.076)

-

β̂3 −0.294∗
(0.136)

0.063
(0.136)

0.374∗∗
(0.077)

-

β̂4 −0.551∗∗
(0.007)

0.094
(0.099)

-

β̂5 −0.509∗∗
(0.171)

Notes: standard set of demographics (education level, age in years, marital status, log of household income) and

country dummies included. ∗∗ and ∗ respectively denote significance at 5 and 10%. For all M all IC measures

selected the same model. τ values denote years past retirement. τ and β not presented for M = 40 model for

reasons of space. The estimated subpopulation results for each M correspond to the optimal model for all

m = 1, . . . ,M models considered. Overall preferred results in bold.
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Figure 1: Estimated coeffi cients under alternative model restrictions

threshold model is that it captures the most flexible relationship in a parsimonious

way by estimating a much smaller number of subpopulations, within each of which

the relationship is constant. Indeed, it is exactly in this manner that it is possible to

identify both the position, and form, of any thresholds in the SAH-SC relationship

with regard to years to and from retirement. Although not reported for reasons of

space, as would be expected the results for the partial effects simply reflect those

patterns in the coeffi cients values.

We are reticent to label any of these effects as causal, as there is the distinct

possibility of reverse causation here; we therefore label the estimated relationships

as associative. Furthermore, contemporaneous shocks may affect health and social

interaction and a change in health could be affected by unobservables that correlate

with social connectedness at baseline (Smith 2010).

6 Concluding comments

In this paper we considered heterogeneity in the response of health to social capital,

pre- and post-retirement. It is likely that the composition and level of social capital

will change past retirement, such that it is likely to have differing effects on health
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in this period. The results showed that by estimating these important relationships

over a range of years, as opposed to simply pre- and post-events, we revealed new

results of policy relevance. Indeed, the results suggested that exogenously imposing

a single threshold at retirement age could both give misleading policy advice and

disguise potentially interesting results.

Our suggested technique was to estimate all possible subpopulations, and to

pick that which minimises the BIC, as evidence suggested this out-performed other

available IC metrics. We suggest that the technique is generally applicable to any

discrete choice, or limited dependent variable, model estimated by maximum likeli-

hood techniques, and thus would be applicable in a vast array of instances. Indeed,

we envisage a wide array of potential applications in the health economics field, such

as nonlinear effects of income on health behaviours; of body mass index on health

outcomes; of child’s age and parental income in models of child health; of years to

and from retirement in many models of health behaviours.
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