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“A dance run pointing straight up the comb signals that food is in
the same direction as the sun. Straight down signals food is the exact
opposite direction. All intermediate angles signal what you would
expect. Fifty degrees to the left of the vertical signifies 50 degrees to
the left of the sun’s direction in the horizontal plane. The accuracy of
the dance is not to the nearest degree, however. Why should it be, for
1t is our arbitrary convention to divide the compass into 360 degrees?
Bees divide the compass into about “8 bee degrees”. Actually, this is
approximately what we do when we are not professional navigators.
We divide our informal compass into eight quadrants: N, NE, E, SE,
S, SW, W, NW.”

Richard Dawkins
The difference between the reason of man and the instinct of the

beast is this, that the beast does but know, but the man knows that
he knows.

John Donne



Abstract

The role of spatial reasoning in the development of systems in the domain of
Artificial Intelligence is increasing. One particular approach, qualitative spatial
reasoning, investigates the usage of abstract representation to facilitate the rep-
resentation of and the reasoning with spatial information.

This thesis investigates the usage of intervals along global axes as the under-
lying representational and reasoning mechanism for a spatial reasoning system.
Aspects that are unique to representing spatial information (flow and multi-
dimensionality) are used to provide a method for classifying relations between
objects at multiple levels of granularity. The combination of these two mech-
anisms (intervals and classification) provide the basis for the development of a
querying system that allows gualitative queries about object relations in multi-
dimensional space to be performed upon the representation.

The second issue examined by this thesis is the problem of representing in-
tervals when all the interval relations may not be known precisely. A three part
solution is proposed. The first shows how the simplest situation, where all re-
lations are explicit and primitive, can be represented and integrated with the
above mentioned querying system. The second situation demonstrates how, for
interval relations that are primitive but are not all explicitly known, an effective
point based representation may be constructed. Finally, when relations between
intervals are disjunctions of possible primitive interval relations, a representation
is presented which allows solutions to queries to be constructed from consistent
data.

Qur contribution is two-fold:

1. amethod of classifying the spatial relations and the means of querying these

relations;

2. a process of efficiently representing incomplete interval information and the

means of efficiently querying this information.

The work presented in this thesis demonstrates the utility of a multi-dimensional

qualitative spatial reasoning system based upon intervals. It also demonstrates
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how an interval representation may be constructed for datasets that have vari-
able levels of information about relationships between intervals represented in the

dataset.
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Chapter 1

Introduction

We're drowning in information and starving for knowledge.

Rutherford D. Rogers

Since its conception, over 30 years ago, the field of Artificial Intelligence has
investigated a range of problems from disembodied intelligence through to au-
tonomous mobile agents [51]. Whilst investigating these problems, many new
areas of interest have emerged as the field matures and grows. |

A significant new area of research is Spatial Reasoning. No matter what the
domain of investigation, spatial reasoning will play some role. For some problems
this role is minor. Yet for many, spatial reasoning plays a significant part in
developing solutions to a variety of problems (i.e. autonomous agents).

Spatial reasoning is not restricted to the field of Artificial Intelligence. It
crosses many fields of computing from Geographic Information Systems [11, 58]
through to the automated placement of components in VLSI Design [4, 14]. In-
deed, spatial reasoning is not bound just to the field of computing. Cognitive
scientists have investigated biological systems in an attempt to understand the
spatial reasoning process observed in organic agents [38, 53].

The traditional approach to spatial reasoning is to utilise the computational
power of computers to provide brute force solutions to spatial reasoning problems.
This has lead to difficulties with the amount of information (and computation)

required and the types of solutions provided by these systems.



These quantitative methods focus upon gathering precise information and re-
turning equally precise information about spatial relationships or spatial actions.
An alternative method is to classify and represent information according to a
set of qualitative values. This simplifies the problem and provides accurate and
efficient (though not precise} spatial information.

These types of qualitative solutions have arisen due to the demands for a
higher speed of response and the production of results that have greater sig-
nificance. Quantitative systems tend to become ensnared in large amounts of
computation and produce, what is for some problems, overly precise information.

The types of problems for which qualitative spatial reasoning systems are
most appropriate are those that require meaningful responses but do not require
a high level of precision. Upon these types of systems queries may take the form
of:

Query: Where is object A wrt object B?
Satisfactory response: To the left.

The type of information to be queried from the system determines what in-
formation needs to be represented and how reasoning about this information is
performed. If a system requires qualitative information and is provided with
quantitative data then much of this quantitative data can be ignored (via classi-
fication) as it is not needed for producing the qualitative responses to queries.

Qualitative systems may be used in conjunction with quantitative systems to
provide a level of preprocessing to aid in the search for precise information. In
our work we shall focus upon the problem of using qualitative information for

multi-dimensional spatial reasoning.

1.1 Multi-dimensional Qualitative Spatial Rea-
soning

Space is vast, both in the possible positions of objects in space and the possible
shapes of the objects. Yet queries about object relations and shape tend to take,

in many situations, a distinctly qualitative nature.



Thus the domain of qualitative representation and reasoning with multi-
dimensional space takes the form of large amounts of precise information upon
which imprecise queries are performed. The choice of representation of the quan-
titative information in terms of the qualitative classifications plays an important
role in determining what type of information is represented and thus what type
of information can be extracted from the representation.

There are two significant choices for the qualitative representation of spatial

information:

1. the method of representing the shape of an object and

2. the method of representing the position of the object in space.

These are not mutually exclusive choices. The shape of an object will dictate
the representation of the object’s position and vice versa. Further considerations
include the types of queries to be performed on the representation, the efficiency
of available methods of representing this information and the completeness of the
information about the object’s position and shape.

Once the quantitative information has been abstracted into qualitative infor-
mation according to the above qualitative choices, there are significant restrictions
upon the queries that can be made upon this representation. Much of the pre-
cise information about objects and their relations will be lost in this abstraction
process thus preventing precise queries. Certain types of qualitative representa-
tion will prevent the querying of other types of qualitative information from that
representation.

One of the most significant aspects of representing spatial information is the
varying amounts of detail that are available about the shapes of objects and their
relationships. The incompleteness of this information requires that the known
details be used to infer some information about those unknown details of shapes
and relationships. The incomplete information may be considered to be a form of
uncertainty about relations, where the known information is not exact but falls
within a set of values.

We now begin the process of restricting the domain in order to begin making

choices about the information to be represented (and extracted) and the method
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of representing (and extracting) that information.

1.1.1 Qualitative Spatial Reasoning using Intervals

The types of queries of the spatial information that we consider are:

purely relational (no distance information);

» not precise (quantitative values are not required);

multi-dimensional;

limited shape information.

A qualitative representation of spatial information provides a method of clas-
sifying objects and the basis for constructing a query language for extracting
information based on these classifications.

The method of qualitative representation that will be used in this thesis is
based upon one dimensional intervals. By dividing space into three global per-
pendicular axes objects can be represented as intervals along these axes. The
intervals will not be represented using quantitative information but based upon
relations between intervals of the same dimension.

Much of the inspiration for this interval based representation of objects in
space has been generated from the work in the domain of temporal reasoning.
In particular, Allen [2] provides a powerful method of qualitative classification of
interval relations (see Table 1.1). Allen also provided a method of representing
these interval relations [2].

The effect of this qualitative interval representation on spatial objects and
their relations is to reduce objects to simple approximations along each axis. Es-
sentially, objects are represented as intervals in one dimension, bounding boxes in
two dimensions and cuboids in three dimensions. The qualitative representation
of the objects’ relations is purely relational (defined in terms of their relationships
to other objects).

Thus given our criteria that queries will be about the relationships between

objects, that these relations need not be precise, that no distance information is
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Table 1.1: Allen’s Interval Relations [2].

Relation  Symbol Inverse Pictorial Example
X before Y b bi XXX YYY
Xequal Y = = XXX
YYY
X meets Y m mi XXXYYY
X overlaps Y 0 oi XXX
YYY
X during Y d di XXX
YYYYYYY
X starts Y s sl XXX
YYYYY
X finishes Y f fi XXX
YYYYYY

required and that limited shape information is queried: a qualitative representa-
tion using the interval based approximations is an adequate representation.

Objects are given a qualitative shape (interval) and position (relative to the
other objects). We shall investigate the domain of temporal reasoning to provide
methods for efficiently representing the interval information and techniques for
dealing with the problems of incomplete information.

The representation of interval information that is incomplete provides the
greatest obstacle for our proposed system. Allen’s idea of constructing closure is
expensive (NP-Complete) and alternative systems of representation fail to capture
the expressiveness of Allen’s system. It will be our task to develop a new method
of efficiently representing incomplete interval information that allows for efficient
querying of the interval information.

The proposed type of system is not intended as a complete solution to the
spatial reasoning problem. It provides a solution for dealing with qualitative

spatial information.



1.2 Contribution

Using intervals to represent space is not a unique approach. Qur contribution is

two-fold:

1. the method of classifying the spatial relations and the means of querying

these relations;

2. the process of efficiently representing incomplete interval information and

the means of efficiently querying this information.

Our system of classification of objects in multi-dimensional space using inter-
vals makes use of the characteristics of space that are not present in temporal
interval reasoning. This provides a logical method for performing multiple levels
of queries about the information represented by the multi-dimensional intervals.

The efficient representation of qualitative interval information has been the
focus of considerable effort in the field of temporal reasoning. Qur approach is
to represent intervals in terms of end points and interval relations in terms of
conjunctions of point relations. For systems where information is incomplete,
traditional methods either perform closure upon the representation or complete
minimisation of the information {41].

Our method is to perform a type of minimisation that reduces the amount
of explicit representation without requiring expensive construction costs. This is
accomplished by limiting minimising in the graph to the area local to the addition
of new information. We shall demonstrate how our system is able to provide
information about individual interval relations without performing closure upon

the representation.

1.3 QOutline

In Chapter 2 we present the methods that are used for qualitative spatial rea-
soning and the representation of interval information. We examine a variety of

different spatial representations looking at the benefits and costs of each. In the



domains of spatial and temporal reasoning the issues of point and interval rep-
resentations are heavily debated. We shall look at this debate and study the
significant contributions. When addressing the problem of representing interval
information, where the information about these intervals is incomplete a balance
must be struck between the construction time of the representation, the search
time for interval relations and the space required to represent that information.
We shall examine two key techniques that provide alternative methods of repre-
senting incomplete interval information.

Our work in multi-dimensional qualitative spatial reasoning is the focus of
Chapter 3. We introduce our method of representing objects in space in terms
of intervals and look at the significance of the lack of temporal flow in providing
the ordering of intervals in space. Subsequently, we develop a querying system
that allows for multi-level queries of the spatial relations.

In Chapter 4, we begin our analysis of the problem of representing interval in-
formation. For a simplistic type of data, a set of intervals where information about
every interval relation is explicitly known and these relations are unambiguous,
we show how the spatial representation system of Chapter 3 may be effectively
represented using the end points of intervals. Artificial and real datasets are used
to demonstrate the effectiveness of this system.

Beyond the trivial interval representation described in Chapter 4, Chapter
5 investigates the problem of representing a set of intervals where information
about every interval relation is not explicitly known though those relations that
are known are unambiguous. We demonstrate the performance of a point based
representation that uses a variant of minimisation to represent the information.
The method offers efficient construction time and space usage, as well as an
efficient querying mechanism.

Chapter 6 investigates the problem of representing sets of intervals where
information about every interval relation is not explicitly known and those that
are known may be uncertain {one of a limited set of possibilities). We extend
the system of Chapter 5 to provide a method of representing this type of interval

information. Qur results indicate that this system is able to extract information



about individual interval relations and provide information about other interval
relations on which these solutions are dependent.

The concluding remarks are presented in Chapter 7.



Chapter 2

Background

Deep in the human unconsciousness is a pervasive need for a logical
universe that makes sense. But the real universe is always one step beyond

logic.

from ‘The Sayings of Muad'Dib" by the Princess Irulan

The problem of representing and reasoning with space is complex and multi-
faceted. There is no single method of representation or reasoning that is superior
to all others. Preferable methods for representation are dependent upon the
tasks that are to be performed and the type of information that is represented.
In certain situations precise quantitative information is necessary. In other sit-
uations, this precision inhibits the ability to access the data or complicates the
representation and hence the reasoning that is to be performed.

Spatial representation and reasoning systems for 2-D and 3-D are often founded
upon 1-D temporal representation and reasoning systems. We shall examine tech-
niques of representing time to provide an insight into spatial representation.

In this chapter, we focus upon a selection of work that examines the problem of
qualitative reasoning in time and space. We look at two approaches to represent-
ing temporal information, closure-based (Section 2.1.1) and methods that do not
use closure (Section 2.1.2), that use either intervals or points as temporal atomic
units. Qualitative spatial reasoning techniques — which have drawn upon the fields
of temporal reasoning, geographic information systems and robotic navigation —

are examined in Section 2.2. The conclusions are presented in Section 2.3.
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2.1 Time

An analysis of the work in spatial reasoning would be incomplete without an
analysis of the work in time. The techniques used in temporal reasoning are in
many cases directly applicable to space. This application is limited due to the
difference in the number of dimensions required to represent time and space, with
space being 2 or 3 dimensional whereas time, arguably, can be modeled as a single
dimension. Thus the use of temporal techniques in space must accommodate
the problems introduced by multi-dimensionality and other properties unique to

space.

2.1.1 Closure

There are two main methods for representing qualitative temporal information:
as intervals or as points. An interval may be represented as a time duration
that has a begin point and an end point. Similarly, a point represents a single
instant in time. A quantitative representation of this information would involve
precise values indicating the position of the points. Qualitative representations
use relations between points or intervals that exclude quantitative information
such as the precise positions of the points. The qualitative representations take
advantage of the ordering of the points or the relationship between the intervals
to represent the relations between points and intervals, respectively.

In this chapter we will focus on qualitative representations. Before proceeding
into a discussion of various reasoning techniques, we define the basic representa-
tion for temporal information.

We define an abstract network of binary relations, (TAU, TR}, where each
node of the network represents a temporal atomic unit, TAU, and the edges be-
tween the nodes represent femporal relations, TR. A set of temporal relations
is defined by a set of primitive relations, PR, and a set of disjunctions of these
premative relations, DPR, where each disjunct is of the form PR; V PR,V ...
PR,, where m < |PR|. The properties of the temporal atomic units and their
temporal relations, such as transitivity and asymmetry, allow for deductions. The

intersection operator “+” denotes the combination of two alternative TRs for a
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given pair of TAUs. The primitive relations that are members of both TRs form
the result of the intersection.

(PR1V PRy V PRy) + (PR V PRyV PR3) = (PR, V PR3)

The composition operator “x” uses a set of rules derived from the properties
of the temporal atomic units and their primitive relations to propagate relations
between pairs of temporal atomic units. Given two pairs of TAUs (A, B) and (B,
C) and their relations TR45 and TRpe the relation TR 4 may be determined
from a set of rules (TR4p X TRge = TRag).

The network and the operations that may be performed on the network
amount to a relational algebra [66).

Given this algebra, we are interested in establishing all possible deductions
from the initial network of binary relations (eclosure). There are three properties

of closure on this algebra that are of interest [32].

o Satisfiability problem (SAT) is the problem of determining if for every pair of
TAUs (A, B}, a primitive relation from the TR 45 can be selected such that
those relations are consistent. That is, there exists an assignment of values

to all TAUs which satisfies all of those selected relations (see Figure 2.1i).

o Minimal labeling problem (MLP) is the problem of determining the TR’
for every TR, TR’ C TR such that every element of the TR’ is used in a

consistent solution (see Figure 2.1ii).

o All consistent solutions problem (ACSP) is the problem of determining all

consistent combinations from each TR (see Figure 2.1iii).

The SAT, MLP and ACSP are polynomially equivalent [32].

2.1.1.1 Interval Algebra

Interval algebra (IA) [2] is an algebra with 13 primitive relations (Table 2.1),
213 disjunctions and composition rules as described in Allen’s transitivity table
(Table 2.1.1.1). The 13 primitive interval relations are based upon seven basic

relations and their inverses (except egual which is its own inverse).
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i)ASAT:AbB,BbD,AbC,CbD,BbC,AbD

ii) MLP: A {o,b,m,=) B,BbD,Ab(,B {o,m,b} C,AbD,B {o,mb} C

iii) Part of ASCP:

AoB,BoC,CoD,AbC,BbD,AbD
AbB,BbC,CbD,AbC,BbD,AbD
AmB,BmC, CmD, AbC,BbD,AbD
A=B,BbC,C=D,AbC,BbD,AbD

Figure 2.1: An example of i) SAT, ii) MLP and iii) ACSP

The following is an example of a disjunction of interval relations that indicates

that A is either before (b) or after (bi) B:
A {b, bi} B.

The transitivity table provides the means of propagating interval relations.
Relations that are disjunctions of relations between a pair of intervals may also
be propagated by propagating each of the interval relations in the disjunction.
For example, the transitivity table can be used to propagate disjunctive interval

relations [2] as follows:
AmBxB{ddi}]C=>A{bods}C
This is derived from the transitivity table using the following deductions:

AmBxBdC=A{ods}C
AmBxBdiC=AbC

12



Table 2.1: Allen’s Interval Relations [2].

Relation  Symbol Inverse Pictorial Example
X before Y b bi XXX YYY
Xequal Y = = XXX
YYY
X meets Y m mi XXXYYY
X overlaps Y ) ol XXX
YYY
X during Y d di XXX
YYYYYYY
X starts Y 8 si XXX
YYYYY
X finishes Y f fi XXX
YYYYYY

SAT, MLP and ACSP are NP-Complete for Interval Algebra [32, 75].
A simpler representation of Interval Algebra groups the 13 primitive inter-
val relations into 3 different classes. These three classes become the primitive

relations for a new algebra. Consider an algebra Az which is defined as follows:

Ag:{b,bi,n}

where N = { m, mi, o, o, s, si, f, fi, d, di, = }

SAT for As is NP-Complete [32). Yet we are able to define restricted subsets
for this algebra for which SAT is polynomial. The full set of relations for A; is:

do={b,bi,N,bN,Nbi bbibnNbi}
For the following three restricted subsets of Ay, the SAT is polynomial:

S ={b,bi,N,bN,Nbibnbi}
82 = { b, bi, N, b bi}
d3={bbi,N,bnNhi}
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Table 2.2: Allen’s Transitivity Table (omitting ‘=) [2] where
(Ar1B) x (Br2C)=(Ar3C),dur = (d As A f) and con =

(di A si A fi)

Br2C | b bi d di o ol m mi ] si f fi
ArlB
“before” b b no bom | b b bom | b bom | b b bom | b
info ds ds ds ds
“after” bi no bi bi oi | bi bl oi | bi bi oi | bi bi oi | bi bi bi
info mi d mi d mi d mi d
f f f r
“during” d b bi d no beoem | bi of | b bi d bi of | d bom
info ds mi d mi d ds
f f
“contains” di | bfio | bi oi [ 0ol = | di odifi | oi di | odifi | of di | difio | di di 81| di
mdi | di mi | dur o sl si oi
sl con
“overlaps” o b bi oi fods | bfio | bom | ol = | b oi di | o difio [dso | bom
di mi m di dur o si
s con
“overlapped- | bfio | bi oidf | bi of [oi = | bi oi | odifi | bi oidf | oi bi | oi oi di
by"” ol m di midi | duro | mi mi si
si con
“meets” m b bi oi [ods | b b ads | b ffi= | m m dso | b
mi di
si
“met-by” mi | bfio | bi oidf | bi oidf | bi sai= [ bi dfoi | bi mi mi
m di
“gtarts” s b bi d bfio| bom |oidf | b mi 8 ssi= | d bmo
m di
“started by” | bfio | bi oidf | di odifi | oi odifi | mi ssi= | si o di
si m di
“finishes” f b bi d bi oi | ods | bi oi [ m bi d bt oi | f ffi=
mi di mi i
si
“finished-by” | b bi of jods | di o af di | m si ol [ o di fi= | fi
fi mi di 8i di

si

For a fourth restricted subset, the SAT is NP-Complete.

See Golumbic and Shamir [32] for proofs.

8s={ bbi,bN,Nbi,bnbi}

Since it has been shown that for restricted subsets of A; there are polynomial
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solutions, we can expect that there will be restricted subsets of Interval Algebra

for which SAT is polynomial.

2.1.1.2 Point Algebra

Point Algebra is an algebra with 3 primitive relations ({<, >, =}), 2* disjunctions

({<,>,=,<=,=>,<>,<=>}) and composition rules as defined in Table 2.3.

Table 2.3: The composition table for the primitive point relations.

Br2C
< > =
ArlB
< < <=> | <
> <=> > >
= < > | =

Similar to Interval Algebra (IA), the constraint table of Point Algebra (PA) is
used to propagate disjunctions of point relations by propagating each of the prim-
itive point relations individually and finding the union of the resulting relations.

For example, the composition of the following relations:
(A{<=}B)x (B{=>}C)= A {<=>}C
is derived from the following primitive point compositions:

(A<B)x(B=C)=>A<C
(A=B)x(B=C)=A=C
(A<B)x (B>C)=> A <=>C
(A=B)x(B>C)=A>C

A path consistency [52, 54] algorithm (first introduced by Allen [2] for IA) can
be used to determine if every triple (set of three nodes) in the network is consistent,
with respect to each other (3-consistency) [75, 67]. This does not determine

the consistency of the entire PA network. For a restricted subset of relations
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PA. = {<,>,=,<=,=>,<=>} the path consistency algorithm computes SAT
in O(n?) [75]. An extended consistency algorithm (4-consistency) [70] computes
SAT for PA in O(n?) time. New techniques have improved this, such that SAT
and MLP can be computed in O(n?) and O(mn?, n?) respectively, where n is the
number of points and m is the number of pairs of points whose relation is not
equal (the disjunction {<>}) [29, 69).

An interval may be represented in terms of its extreme points (end points).
Thus an interval X may be represented as an ordered pair of points x<X where
x is the first eXtreme point (begin point) and X is the second extreme point (end
point). For the rest of this thesis X denotes the interval and x, X denote the
interval’s end points.

It is possible to represent an interval in terms of its end points and an interval
relation in terms of a conjunction of end point relations. Not all interval rela-
tions in Interval Algebra can be correctly represented by Point Algebra using this
method. The interval relations that cannot be represented by PA are those re-
lations that represent “disjointness” between intervals. A complete enumeration
of all relations from IA that can be correctly represented in PA is given in [70].
The subset of Interval Algebra that can be represented using Point Algebra is
denoted SA.

The following example indicates why certain interval relations cannot be repre-
sented using PA. The interval relation A { b, bi } B, depicted as two conjunctions
of point relations in Figure 2.2i {bold line depicts the relation A 5 B and dashed
line depicts the relation A b B), is an IA relation that represents “disjointness”
of end points.

The interval relation is represented as a disjunction of two conjunctions

((a < b)A(a < B)AMA <BA(A < B))V({a > b)A(a > BIA(A > BA(A > B))
is represented in Point Algebra as:

(a<>b)Ala<>B)A(A<>bA{A<>B)

When the PA representation (Figure 2.2ii) is queried about the relationship
between A and B, the following interval relation is returned {b, bi, o, oi, d,

di}, indicating that the PA representation has not accurately represented the
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1) ii)

— AbiB
---- AbB

Figure 2.2: The interval relation A {b, bi} B represented as i) two conjunec-

tions of point relations and ii) using PA

intended information. Thus for certain interval relations, PA is unable to express
the relational information.

The work in interval constraints and an analysis of Point Algebra [43, 44,
68, 74] have provided much of the basis for this work. Heuristics for Interval
Algebra [71], non-convex intervals [42] and constraint propagation [45] examine

other issues related to IA and PA that is outside the scope of this thesis.

2.1.1.3 Summary

The tasks of computing SAT, MLP and ACSP for Interval Algebra are NP-
Complete. The SAT, MLP and ACSP for Point Algebra are polynomial but PA
is not as expressive as Interval Algebra (there are relations in IA that cannot
be represented by PA). For restricted subsets of Interval Algebra, the tasks of
computing SAT, MLP and ACSP are polynomial.

The tractable restricted subsets of Interval Algebra do provide valuable do-
mains but are limited to problems that rely on these restricted subsets of relations.
It is our intention to focus upon the more general problem of representing Interval

Algebra via alternative methods.
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2.1.2 Non-Closure representation

The ability to compute SAT, MLP, ACSP for an algebra provides information
about: whether or not there is a consistent interpretation, all the possible consis-
tent labelings for a given relation and all the consistent combinations, respectively.
The effectiveness of these solutions is mitigated by the fact that these problems
are NP-Complete for Interval Algebra.

The issues of concern for any representation are the construction time, the
space requirements, the query time and the ability to determine the consistency
of the representation. An alternative method to computing closure on a repre-
sentation, in order to determine the SAT, MLP or ACSP of the representation, is
to provide a representation such that its consistency can be established via other
means. The purpose of such a system is to provide efficient means of representing
the information, querying and determining consistency.

These types of systems can be broadly classified as being non-closure systems.

Non-closure systems are divided into:

¢ tractable subsets of Interval Algebra (like SA),

e full Interval Algebra.

For each of these types of systems, methods are examined for determining the
consistency of the representation and provide efficient construction and query
times.

We examine two systems that use non-closure methods for representing tract-
able subsets of algebras. A Time-Map Manager called Indexed Time Table
{IxTeT) [31} and Timegraphs-1I [28] represent only explicit relations about points.
Timegraphs-1I represents a larger algebra than SA.

Only explicit information about point relations is represented in IxTeT. The
system has the same expressive power as PA. For every relation in PA, IxTeT
represents the relationship between two points using between 0 and 2 links from
the following set {<=, <>}. All <= loops (cycles) in the network, where no pair
of nodes used to construct the loop is connected by the <> link, may be reduced

to a single node. The consistency of the network is established by determining if,
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when all such loops have been collapsed and the <> links removed, there are no
<= loops in the network [31]. Otherwise, the representation contains inconsistent
information.

The problem of searching for the relationships between two points is stream-
lined by translating the network into a maximum spanning tree. Ranks are
assigned to the nodes according to the tree structure. The ranking system is used
to help determine the relationship between points during the search process. The
system allows for the addition and the removal of facts. Experimental results
indicate a linear time and space for construction of the representation, for the
retrieval, the addition and the femoval of information.

IxTeT does not provide a complete solution to the problem of representing
<> relations as it “cannot derive some strict orderings induced by <> rela-
tions” [28, p.4]. Timegraphs-II is a system that represents the explicit PA rela-
tions in a graph. Edges between nodes in the graph are restricted to the following:
{<,<=,<>}. A <-path is a path where every edge (link) in the path is labeled
with the relation <. A <=-path is a path that includes only labels < or <=.

A timegraph is consistent if, similarly to IxTel', there exists no <=-cycle or
<-cycle where any pair of the nodes in the cycle is connected by a <> edge.
In non-closure systems, such as Timegraphs, querying about relations is a non-
trivial problem. Timegraphs-I1 uses two mechanisms for efficient queries. The
system has been designed for data that consists of groups of well-ordered points
called chains, which are <= paths, where no node from one chain belongs to
another chain. A second method, similar to IxTeT, ranks elements of the nodes
in the chains and the nodes are assigned pseudo-times to indicate their ranks with
respect to the entire graph.

Links between chains, called cross links (or meta-edges), indicate the relation-
ship between nodes in different chains and meta-veriices indicate vertices that
are used by the cross links. Transifive edges are edges that connect nodes in the
same <=-chain. To help the query process, all implicit < links are made explicit.
An example of the timegraph’s representation is given in Figure 2.3 (from [28]).

The consistency can be determined in O(e) time; ranking of the vertices in
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Figure 2.3: An example of Gervini’s Timegraph representation where links
between nodes in chains are solid edges, cross-edges are dashed, solid nodes

are meta-vertices and unlabeled edges are <= links.

O(n + e) time and minimising cross links in O(n + e) where n is the number of
vertices and e is the number of edges.
This organisation of Timegraphs-IT allows four types of queries to be computed

in constant time, where:

e two points are alternative names of the same node (i.e. two points are

equal);
e two points are members of the same chain;

e the points have the same pseudo-time and there is no <> link between

them;
e there is a <> link connecting them.

For the remaining situations, where there maybe a <-path or a <=-path be-
tween the nodes, queries are computed in O(k + & + i} where & is the number
of meta-edges, fi is the number of meta-vertices and k is a constant. The perfor-
mance of this system is best, when data is organised into chains of ordered points
and thus the numbers of meta-edges and meta-vertices are low.

An extension to Timegraphs-II involves the addition of disjunctions of PA
relations.

For example,
A<=BVA<>B
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This allows for the expression of at least 2'! relations from Interval Algebra [28].
This type of representation allows for non-binary relations i.e. I before J or I
after K.

Disjunctions of PA relations are maintained using a separate table and the
disjunctions in the table are maintained using a set of pruning rules (based on
derivability, tautology and resolution) to keep a minimum set of disjunctions.
The consistency checking for this disjunctive timegraph is NP-Complete.

Other non-closure systems include Tachyon [65] (a point-based representation
that integrates quantitative information), Sequence Graphs [15] (that exploit the
ordering of intervals) and Timegraphs [30] (the predecessor to Timegraphs-II).

2.1.3 Discussion

The SAT, MLP and ACSP closures are NP-Complete for Interval Algebra and
polynomial for Point Algebra. SAT for Point Algebra is O(n?*) and MLP for Point
Algebra is O(mn?, n®) where n is the number of points and m is the number of
<> relations. Non-closure systems (for PA) are able to determine consistency,
construct representation and search in linear time for restricted types of datasets.
For more general problems, the complexity becomes O(n?).

The intractability of IA prevents any practical approach for representing large
datasets of interval relations. Timegraphs-1I extension indicates that there are

partial solutions to specific problems.

2.2 Space

We shall examine the use of qualitative spatial reasoning in multi-dimensional
space by examining key aspects of this domain. Using these aspects we shall
describe several systems for representing and reasoning with multi-dimensional

qualitative spatial information.
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2.2.1 Relative vs global axes

There are two alternative frames of reference that may be used. A global reference
selects a particular set of directions, i.e. compass directions or global axes, and
relates all objects with respect to this reference. Relative frames of reference have
been used to model human cognitive processes such that references are made with
respect to the observer or the object [37, 60].

The use of relative frames of reference introduces problems related to the
understanding of the objects. There are three different types of relative frames

of reference.

e An infrinsic reference indicates that the relationship between the two ob-
jects is determined by one of the objects having a distinct surface that is
assigned to be the front of that object and the relationship between the two

objects is expressed with reference to this surface.

For example, “It was terrible, the boy was standing right in front of the
car” (Figure 2.4i).

o An eztrinsic reference indicates that the relationship between the two ob-
jects is expressed with reference to an external influence (an object or a

given action).

For example, “The boy was standing in front of the fire hydrant”. The
relation front was attributed to this relationship because the fire hydrant is

assigned a “front” as it was in front of the large building (Figure 2.4ii).

e A deictic reference is dependent upon the perspective of the viewer. The
relationship between the two objects is dependent upon the position of the

objects relative to the position of the viewer.

For example, “The ambulance stopped in front of the boy” (Figure 2.4iii).

From the observer’s point of view the ambulance is in front of the boy.

The use of these types of relative frames of reference requires information
about: which objects have significant distinct surfaces, the frame of reference to be

used and how relations can be translated between different relative references [37].
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i) boy in front of car ii) boy in front of fire hydrant iii) ambulance in front of boy

Figure 2.4: Examples of relative frames of reference: i) intrinsic, ii) extrinsic

and iii} deictic.

2.2.2 n-D techniques

The qualitative representation of objects and their relations in multi-dimensional
space has been based upon extending 1-D techniques to n-D. We shall look at
how three different methods of representing 1-D information can be augmented
to represent n-D space. The three 1-D representations are: point-based, interval-
based and topology-based.

Topology considers the properties of objects with respect to how they inter-
sect [18, 22]. Objects are represented as datasets and the relationship between
the objects is represented in terms of their interiors (°) and boundaries (9).

The possible relationships between two objects expressed in terms of the in-
tersection of the interiors and boundaries is represented in Table 2.4,

This topological information can be represented as an algebra with 8 primitive
relations, 2% disjunctions and a composition table [19, 37).

The simplex concept is used to construct object descriptions. A (O-simplex is a
node; a 1-simplex is an edge (a connection between two 0-simplexes); a 2-simplex
is a triangle (three 1-simplexes), etc [21]. Complex simplexes can be constructed
from a set of simplexes of the same dimension. In an object made up of simplexes,
the boundary is the external skeleton of the simplex (see Figure 2.5).

An n-dimensional object has n different ways of meeting another object {see

Figure 2.6) [23]. Extensions to the topological system include topologies with
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Table 2.4: Topological relationships between two objects [18].
ona e |an° | °nad
disjoint B 0 ) 0
meet A0 | 0 @ @
overlap @ Q1 #£0 | #0
inside O 10| #£0| 0
contains O £ 0 | £0
covers #0 | £0| 0 | £0
| coveredBy | #0 |#D | A0} 0
equal 0 | £0| 0 Y

1) i) iii)
Figure 2.5: i) A complex simplex: ii) the interior and iii) the boundary

holes [20] and integrating topology with order [39).

Interval representations in 1-D time have been discussed previously in Sec-

i) i}

Figure 2.6: Two different meets relations for 2-D relations i) 1-meets and

ii) 0-meets
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Figure 2.7: 2-D objects represented as bounding boxes.

tion 2.1.1.1. This system may be directly applied to the problem of representing
1-D space and extended for representing n-D space. An object in n-D space may
be represented as n intervals along n orthogonal 1-D axes, and thus, 2-D objects
would be represented as two 1-D intervals and 3-D objects as three 1-D intervals.

This representation introduces approximations to the shape of the n-D objects.
For example, a 2-D object is represented by its bounding box, and relations be-
tween objects are expressed in terms of the relationships between these bounding
box approximations {see Figure 2.7).

The representation of time as points has been discussed in Section 2.1.1.2.
Points may be used to represent objects in n-D space. This results in a complete
loss of information about the shape of the objects. Point representations may be
used in conjunction with other methods to augment the representation such that
information about an object’s shape and the relationship between objects can be

represented.

2.2.3 Qualitative spatial reasoning systems

An object can be represented as a single point. The virtue of this type of a system
is that the points may be ordered linearly and thus storage and access to informa-
tion about the point relations is efficient. The problem with representing objects
as points is that much of the information about object shape and, consequently,
the relations is lost.

Chang et. al. [7, 11] and Lee et. al. [48] present a system of representing 2-D

objects as two 1-D strings of points, called 2-D Sirings. Global axes are used so
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Figure 2.8: Objects may be represented as points and these points repre-

sented as 2D-Strings.

that all objects in the representation are related with respect to two orthogonal
axes (see Figure 2.8). Using the relations {<, =}, a string of points is a linearly

ordered set of points of the format:

{Pl To P2Ty P3 -« o PB}

where p, € the set of all points and r, € {<, =}. The notation AB may be
used to represent equality between A and B (i.e. A=B).

Part of the work in strings has focused upon the use of similarity retrieval for
matching strings [6, 12]. We shall not be looking at this work, as it is outside the
scope of this thesis.

Methods to augment the point representation have focused upon increasing
the expressive ability of the representation whilst maintaining the original effi-
ciency of representing and accessing the information. By introducing an extra
operator “meets”, Chang et. al. [8, 9, 10] changed the basis of representation
and increased the expressiveness of the string based representation. The relation
“meets” is a binary interval relation.

A vertical and horizontal line is projected from every object’s extreme points

along the horizontal and vertical axes. When one of these lines crosses another

26



U: AlA’B’B

Figure 2.9: Complex relations are reduced to simpler relations by subdivid-

ing objects.

object then that object is divided into two sub-objects. This process is performed
for every object in the representation (see Figure 2.9). A string representation
with an increased relational vocabulary {<, =, |} (where | is the relation “meets”)
may be used to represent the resulting objects and their relations. This hybrid
point-interval representation, called 2D G-Strings, is able to accurately represent
relations between objects (objects are treated as intervals) such that efficient rep-
resentation and querying similar to the original 2D-Strings applies. The cutting
reduces all thirteen interval relations to one of the three relations {<,=,}, sets
restricted to these three relations may be linearly ordered (String).

The main criticism of this type of representation is that when representing a
large number of objects the numbers of sub-objects created via cutting is very
large. Lee and Hsu [46, 47, 49] proposed increasing the number of interval rela-
tions used to represent the objects so that the need for cutting would consequently
be reduced. The new set of relations are {<, =, |, %, [, ], /} where the new op-
erators are % - during™', [ - starts™,} - finishes™! and / - overlaps. Strings that
do not use the relation overlaps are unambiguous (see Figure 2.10}. The use of
the overlaps relation generates ambiguous strings (see Figure 2.11). Thus the cut
operator is used to eliminate the overlaps operator resulting in an unambiguous

string that uses fewer cuts than G-Strings (see Figure 2.12).
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U: E%((A[CY(BID))
V: E%((C%D)(AB))

Figure 2.10: A C-Strings example without the relation overlaps (note: extra

round brackets are used to emphasise the operator precedence).

)

A

B

[c[ ]

i) jii)

B B

[c  C ]

Figure 2.11: Illustrating problems with overlaps. The C-String Represen-

-----

iv or v [49].

The resulting representation, called 2D C-Strings, is able to represent all types
of relations between objects efficiently (objects are treated as intervals).

The representation of intervals in terms of extreme points was proposed with
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U: (A%(B]C))IB[C

Figure 2.12: A single cut is needed to remove the overlaps relation

B

A [T D]
C

U: A<AB<C<BD<C<D
V: C<A<D<D<A<CB<B

Figure 2.13: A B-String representation of the objects

respect to Point Algebra (in Section 2.1.1.2). Yang [50, 77] introduced the 2D
B-Strings (see Figure 2.13), which is a linear ordering of the extreme points of
objects. This representation is able to represent all interval relations and provide
an efficient method for representation and access. 2D B-Strings capture all the
simplicity of the original 2-D Strings, whilst being able to represent all primitive
interval relations between intervals.

Interval representations of space have been defined using global and relative
frames of reference. Guesgen [34, 35] defines an interval algebra with four prim-
itive relations (Table 2.5}, 2¢ disjunctions and a composition table as given in
Table 2.6, where O, represents the 1-I) intervals used to represent the objects
and S, is the space the interval occupies. The algebra has the same properties of
all types of interval algebra, and thus SAT, MLP and ACSP are NP-Complete in
this case. The multi-dimensionality of the representation is a simple process of n

x 1-D interval representations.
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Table 2.5: Guesgen’s spatial interval algebra [35].

Relationship Sym | Conv | Definition
0, left of Oy < - Yee S,y Se:z <y
0O, attached to Oy | = - YeeS,yeS:z<yAndre S, ye€S:x=y
04 overlapping Oy | < = dJzeSiVye S z<yATyeSVere Sz <y
A3z e S,y3S x>yt
O, inside Oq C .| JyeSVz e Sz <yAFye S Ve e S x>y

A system of representing spatial information using intervals with a relative
frame of reference has been developed for the domain of image database query-
ing [13]. Objects in 3-D are represented in terms of their minimum enclosing
parallelepiped (mep) and are given a directional component that is defined as the
plane that passes through the centroid of the object and is orthogonal to the
minimum axis of the mep.

Three different frames of reference are presented.

o A global referencing system, where meps of objects are translated as extreme

points along the given axes.

e Object-centered referencing system, where the objects are given individual

reference axes (similar to intrinsic and extrinsic).

¢ Observer-centered referencing, where the axes are relative to an observer’s

point of view (similar to deictic).

Regardless of the referencing system, an indication is given about the direc-
tional component of the relations. There are three alternative criteria for classi-
fying the directional component of a relation: collinear, parallel and non-parallel.
Position relations of the 3-D objects are expressed in terms of three 1-D interval
relations, similar to [35].

Papadias and Sellis [57] examine topological systems to augment both point

and interval systems. A point-based representation of objects using a global set of

1Definition modified due to error detected by [56]
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Table 2.6: Composition rules for Guesgen’s spatial interval algebra [35].

Relation Relation between O, and O3
between
Oy and Oy ~ - = = = = C
< = ? < | <= < <=2 =, =
<=, C =, C | <, C
> ? N Il B >, > -, >
=,C =,C =,C
= < |==| <= |C,Ol < |C,&]e0?| =<
=,
- <=2 > |C,3dJ]| » |=C - == |
<, 7 C
= < | < |20 22| g0 | <X
=, 7 = C,3 <,
= <X > &3 = |&E= - | =C | -
<, 0 C,3 = =,
C = - <X |- == - C ?
~, L | =,C
| L2 |- telms|sal=23 <> 13
<, =,3| 3 | C,0

axes allows for the expression of directional information about object relations.
The relational direction between two objects is described in terms of the rela-
tionships between the centroids of the objects along the two global axes. The
following definitions are given for the eight compass directions (see Figure 2.14).
Given that X(object) and Y(object) are the positions of the object’s centroid

along the x and y axes respectively:

p north-west q < X(p) < X(q) A Y(p) > Y{(q)

p north-of q < X(p) = X(q) A Y(p) > Y(q)

p north-east ¢ < X(p) > X(g) A Y(p) > Y(q)

*Value modified to due to error detected by [56]
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1 - northwest
1 2 3 2 - north
3 - northeast
4 - west
5 - same position
6 - east
7 8 9 7 - southwest
8 - south
9 - southeast

Figure 2.14: Compass directions used to describe 2-D relations

p west-of g & X(p) < X(a) A Y(p) = Y(q)
p same-pos q & X(p} = X(q) A Y(p) = Y(q)
p east-of ¢ & X(p) > X(q) A Y(p) = Y(q)
p south-west q < X(p) < X{(q) A Y(p) < Y(q)
p south-of q & X(p) = X(q) A Y(p) < Y(q)
p south-east q & X(p) > X(q) A Y(p) < Y(q)
By representing the object as four extreme points {equivalent to two intervals),
the compass directions may be redefined. For example, the compass direction

north-of may be redefined as follows:

p strong-north q & Y(B(p)) > Y(U(q)) (Figure 2.15i)
p weak-north g < Y(U(p)) > Y(U(@)) A Y(B(p)) > Y(B(a))
A Y(B(p)) < Y(U(q)) (Figure 2.15ii)
p north-south q & Y(U(p)) > Y(U(q)) A Y(B(p)) < Y(B(q)) (Figure 2.15iii)

——

where U(object) and B{object) are the upper and bottom extremes of the
object.

These relations, using either 1-point or 4-points to define the object, may be
augmented with topological relations. The relations are expressed as two values:
directional and topological i.e. p west-covers q.

In a comprehensive work that infegrates a point-based system, topology and
relative frames of reference, Hernandez [36, 37] represents objects as points and

augments this representation by an orientation system based upon subdividing
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i) i) fii)

Figure 2.15: Relations based on four extreme points i) p strong-north q ii)

p weak-north q and iii) p north-south g

space relative to a single point. Alternative choices of subdivision are depicted in
Figure 2.161.

A relative orientation node (ron) is used to indicate the relationship between
two objects (see Figure 2.16ii). A composition table can be generated for propa-
gating the relationships between rons (see Table 2.7).

The relations expressed in terms of intrinsic, extrinsic and deictic frames of
reference are converted into a canonical representation by rotating the relations
represented in the ron of the object. The topological and ron information about
relations between objects may be used in concert to describe a relation in terms
of both the topology and orientation. For example, if A front B and A disjoint B
then the relation may be expressed as A [front, disjoint] B.

There are 64 (8 x 8) primitive relations, 2% disjunctions and a composition
table that may be derived from the composition tables for topology and orien-
tation. To help visualise the disjunctions of relations, the topological relative
orientation node (¢ron) may be used to represent the new composite topology
and orientation relations (see Figure 2.17).

The structure of the tron is derived from the concepts introduced by analysing
the results of deductions. For Interval Algebra, topology, orientation and the
orientation/topology pair there is an observable property of the propagation. The
result of the propagation of relations may be a disjunction of relations. Every

relation in the disjunction is conceptual neighbour.

Definition 2.1 Two relations between pairs of events are (conceptual) neigh-

bours, if they can be directly transformed into one another by continuously de-
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Table 2.7: The composition table for the orientation relations. The relation
are back (b), left-back (Ib), left (1), left-front (If), front (f), right-front (rf),
right (r) and right-back (rb).

Br2C
ArlB b b 1 1f f rf r rb
b b |{b b} | {bIb, | {byb| ? |{b b, | {b,rd,| {b, tb}
1} 1, 1If} r, rf} r}
b | {1 | b | {b ]| {bl|{bL| 7 |{bb | {bb,
15} | 18 b1} | b}
1 O, |y | 1 || | L | 7 | o,
b} | £ b, rb}
If {If, 1, | {f1, | {if, 1} If | {1, £} | {if, £, | {If, {, ?
Ib, b} b} rf} rf, r}
f LR | (61, | {510} £ | (61} | {fof, | {E o,
L} | 1 i} | b}
rf {rf, r, ? {cf, £, | {rf, £, | {zf, £} rf {rf, £} | {cf, £,
rb, b} If, 1} If} rb}
r {r, b, | {z, b, 7 {r, f, | {r, f, | {r, rf} T {r, rb}
b} | b, b} (11 |6
rb {rb, b} | {rb, b, | {rb, b, ? {rb, r, | {tb, r, | {rb, r} T
1b} Ib, 1} rf, f} rf}

forming the events. [25, p. 204]

We shall not be using this propagation in our work, the details of the properties

of conceptual neighbours may be found in [24, 25].

Mukerjee and Joe [55] present a system of representing and propagating rel-
ative frames of reference without translating relations to a common frame of
reference. Directional information about object relations is determined by as-
signing each object a relative orientation. Two systems are used, one based upon

points and the other upon intervals (see Figure 2.18).
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i} Alternative choices for zoning

back
left-back right-back
left right
left-front right-front
front

ii) Relative orientation node

Figure 2.16: The zoning choices in i) led a relative orientation node (ii).

[{covers, contains, coveredBy, inside, equal},]

left-back right-back

[tangent, right]

[disjoint, left]
[overlap ,right-front]

right-front

Figure 2.17: A structure that incorporates topological and orientation in-

formation

Relations between objects are propagated by the use of collision parallelo-
grams to determine how the objects relate positionally to each other. For 2-D

objects the lines used to divide the space {with respect to the object) are ex-
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IVl 1
4 8
Iy, 11
5 6 7
i) Point based diviston of space ii} Interval based division of space

Figure 2.18: The point and interval-based spatial divisions.

Collision
Parallelogram

Figure 2.19: The collision parallelogram is the intersection of each objects

division lines.

tended ad infinitum. If these lines between two different objects intersect then
a relationship between the two objects may be deduced (see Figure 2.19). Prop-
agation of these relations is inaccurate and can only be used in a limited way
(see {26, 27, 781).

A unifying theory for points and intervals expressed in terms of cyclic orders
is given in [61]. Spatial extensions to traditional logics that will not be discussed

include modal logics [72, 73] and fuzzy logic [16, 17).

2.2.4 Discussion

There are two key issues for the representation of qualitative spatial information:
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o The use of global and relative frames of reference.

e The representation of point, interval and topological information in n-D

space.

Systems have been developed for spatial reasoning that use global reference
frames for interval systems, relative reference frames for interval systems, global
reference frames for point systems augmented with topological information, rela-
tive reference frames for point systems augmented with topological information,
and global references for intervals systems augmented with topological informa-

tion.

2.3 Conclusion

There are many different methods for the representation of and reasoning with
spatial and temporal information. We have examined a variety of methods for
representing and reasoning with time and with space. We have concentrated on
qualitative methods as they provide a means of approximating information that
simplifies both the representation and the reasoning process.

Qualitative representations of temporal information have focused upon the
use of point and interval primitives for representation. An algebra for both inter-
val and point-based representations may be defined as a set of primitive relations,
the set of disjunctions of these primitive relations and the rules for propagating
information about these relations. Three properties that may be derived from a
closure are of interest when representing these algebras. The satisfiability prob-
lem, minimal labeling problem and the all consistent solutions problem provide
representations such that the existence of a consistent labeling, the minimum re-
lations needed to represent all consistent labelings and a list of all the consistent
labelings may be determined respectively.

Closure construction is an NP-Complete problem for Interval Algebra but
for restricted subsets of Interval Algebra there are polynomial solutions to these
problems. Polynomial solutions also exist for Point Algebra. Interval Algebra

cannot be accurately represented using Point Algebra (i.e. in terms of end points
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of intervals). For a restricted subset of Interval Algebra, Point Algebra may be
used to provide a polynomial solution to the closure problem.

The intractability of Interval Algebra has led to the development of non-
closure based systems for representing qualitative temporal information. These
systems have focused upon providing eflicient methods of representing interval
information. They represent interval relations in terms of their end points, deter-
mining the consistency of the representation and provide systems that are able
to efficiently access point relations. As expected, non-closure systems cannot be
used to determine the consistency of Interval Algebra in polynomial time.

The problem of representing and reasoning with qualitative spatial informa-
tion can be considered with respect to two key aspects: 1) The use of global or
relative frames of reference and 2) the representation of spatial information in
terms of topology, intervals and/or points.

Spatial information may be represented and reasoned with in terms of a fixed
global frame of reference (i.e. cartesian axes). Alternatively, relations between
objects may be expressed relative to a characteristic of the object (front) or an
observer’s point of view. These relative frames of reference may be transferred to
a common {global) frame of reference or reasoned with as is.

Topological information about spatial relations involves determining how two
objects intersect in space. Position and other shape-based information may
be represented in terms of intervals and points. The representation of multi-
dimensional objects using either points or intervals simplifies the shape of the
objects and thus the positional relationships between the objects. Combinations
of topological, point and interval representations have been used to develop a
variety of spatial reasoning systems for a variety of problems.

It is our aim to develop a multi-dimensional spatial reasoning system using n x
1-D intervals. We shall take advantage of the multi-dimensional spatial domain to
provide a method of reasoning (at multiple levels) about the relationships between
objects. A querying system shall be developed from this representation to provide
a means of performing complex queries. We shall also provide a non-closure based

system for representing and accessing interval information.
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By taking advantage of the characteristics of space, our system goes beyond
the straightforward extrapolation of temporal intervals to the spatial domain
proposed by Guesgen (34, 35]. The ability to perform queries at multiple levels
of granularity enables sophisticated querying of the spatial information. Our
non-closure based representation of intervals allows for efficient representation
and querying of the interval information that has varying states of certainty.
Considering the only other approaches are either incomplete or NP-Complete,
this method offers a significant alternative for representing and reasoning with

incomplete interval information.
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Chapter 3

Multi-dimensional Spatial

Reasoning

‘Space,’ it says ‘is big. Really big. You just won't believe how vastly
hugely mindbogglingly big it is. | mean you may think it's a long way down

the road to the chemist, but that’s just peanuts to space. Listen . . .

The Hitch Hikers Guide to the Galaxy

Interval-based representations are more expressive than point-based ones. We
begin our work by describing a multi-dimensional spatial reasoning system based
on intervals. Our representation allows for the grouping of relations into a hier-
archic abstraction, which is used as a foundation of the spatial reasoning system.
Like Guesgen [35], we shall treat an n-D system as being equivalent to n 1-D
systems. There are thirteen interval relations in 1-D and thus in n-D there are
13" relations (i.e. 169 for 2-D and 2197 for 3-D).

The layout of this chapter is as follows. The basic definitions are introduced in
Section 3.1. The new spatial relation, NS-Relation, is defined in Section 3.2. This
relation is used to develop a multi-dimensional spatial reasoning system described
in Section 3.3. The querying system is discussed in Section 3.4 and conclusions

follow in Section 3.5.
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3.1 A-Space

In this section we define the basic concepts necessary to introduce our work.

Definition 3.1 A topological space is a pair (A,7) consisting of a set A and 7
a collection of subsets of A, called open sets, satisfying the following azioms: i)
the union of open sets is an open set, ii) the finite intersection of open sets is an

open set, 1it) A and the empty set O are open sets.

[64, p3]

Definition 3.2 The dual notion of a closed set is related to the notion of open
set: it is a set whose complement is open. Thus, if U € 7 then A/ U is closed,
‘and, conversely, if F is closed then A/F is open.
As a result of the duality of set-theoretic operations, the collection of all closed
sets of a space A satisfy the following properties:
i) The sets A,D are closed.
ii) The intersection of any collection of closed sets is closed.

iit) The union of any finite number of closed sets is closed.

(5, p41j

Definition 3.3 A poini p is a limit point of a set A if every open set containing
P contains at least one point of A distinct from p. A limit point of a set A is

denoted as limit(A ).
[64, p5]

Definition 3.4 The closure of a set A is the set A together with its limit points,
denoted by A (or A™).

(64, p6]

Using these background definitions, a single dimensional dense space can be

created and convex intervals in this space can be defined without the use of order.

Definition 3.5 An A-Space is a topological space (A,7) such that there is a one
to one mapping: A — R.
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Thus A-Space has the properties of linearity and density. An object in A-

Space is represented as an interval. An interval may be convex or non-convex.

Definition 3.6 An interval X is any set in A-Space, and is denoted as inter-
val(X).

An intervel X in A-Space is convez if

Va,bCcX,~(anNnb=0Aanb= §)

Otherwise an inlerval 158 non-conver.

In the remainder of this thesis we will be dealing exclusively with convex intervals.
An A-Space may be represented as an interval that has limit points and is the

interval in which all the other intervals exist.

Definition 3.7 In an ordered A-Space, the A-Space and the intervals within that

space are assigned an ordering.

In any given ordered interval, the limit points are assigned names with respect
to that order. One limit point is called the begin point (denoted b(interval}) and
the other is called the end point (denoted e(interval)). If an A-Space, A, is given
an ordering such that one limit point precedes (the precedes relation is denoted
as £; see Appendix A for details) the other limit point, then the first point is the
begin point and the second is the end point (represented as b{A) £ efA)).

The A-Space can be assigned an ordering, which can be transferred to all of
the intervals that inhabit the A-Space. The process of transferring the ordering
from the A-Space to the intervals in that A-Space is described in Appendix B.

3.2 NS-Relation

When defining an ordered A-Space there are two possible ways of selecting the
begin point from the alternative limit points of an A-Space. Each choice indicates
an alternative ordering of the points in the environment. The ordering of the
points, as designated by the choice of the begin point, is called the flow.

The flow provides a consistent and structured framework for representing and

analysing the relationships between objects. Alternative flows define different

42



ii)

Figure 3.1: Flows i) and ii) represent different orderings along the same
axis.

Flow

A-Space

Figure 3.2: The ordering of the limit points of the interval as designated by
the flow in A-Space.

orders. These orderings do not affect the actual physical relationship between
the objects. An example of alternative flow descriptions is given in Figure 3.1
where in Figure 3.1i, A is before B and in Figure 3.1ii, B is before A.

The flow of an A-Space allows an ordering of all the intervals to be defined
with respect to that A-Space. Given an arbitrary interval Y, the ordering of the
points of the interval is designated with respect to the flow of the A-Space. The
first limit point of the interval is the begin point of the interval with respect to
the flow of A-Space (see Figure 3.2).

Some characteristics of the relationship between objects remain consistent
irrespective of the flow used, and other characteristics change with respect to the
flow used. In Figure 3.1 objects A and B are disjoint, and depending on the
flow, A precedes B or B precedes A. The invariant aspect of the relationship is
the relation disjoint (non-intersecting). The wvariant aspect of the relationship,

dependent on the flow used, indicates the ordering of the objects. A spatial
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relationship between any two objects can be described in terms of its variant and
invariant components and used as a basis of abstraction for relationships between
objects in multi-dimensional space. The invariant element of a spatial relation is
called the A-Relation (see Section 3.2.1}. The variant element of the relationship
is called the Orientation (See Section 3.2.2).

Definition 3.8 A spatial relation that is described in terms of its variant and
invariant elements, with respect to the flow, is called an NS-Relation. In 1-D, an

NS-Relation has the following format:
(A-Relation, Orientation)

where A-Relation describes the invariant part of the relation and Orientation

describes the variant part of the relation.

3.2.1 A-Relations

There are six different types of invariant relations into which all of the thirteen

different interval relations [3] can be classified.

Definition 3.9 An A-Relation is o relation that is used to describe the flow in-
variant component of the relationship between two intervals. There are siz A-

Relations, {disjoint, overlaps, meets, during, equal, ends}.

Table 3.1 illustrates the six different types of A-Relation that may be used
to describe the relationship between objects. The set of conditions necessary for
each A-Relation (Column 2) and a diagrammatic representation of each relation
{Column 3) are shown. For example, the relation ends is described as one interval
being a strict subset of the other with the further condition that exactly one limit
pdint of each interval is equal to a limit point of the other interval. An example

of ends is illustrated in column 3.

3.2.2 Orientation

The flow imposed on an ordered A-Space allows for an ordering of the intervals

within the space.
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Table 3.1: A-Relations.

A-Relation name Definition Pictorial ezample
disjoint A disjoint Biff (AN B =0)
A
B
meets
Ameets Bif (ANB#B A
(3 x € limit(A), I y € limit(B) = A
x=9A{A-x)N(B-y)=0))) B
overlaps
Aoverlaps Bif (ANB # 0
A(A-(ANB)) # 0) _A
A(B-(ANB))# 0) _B
equal Aequal Bif A=B
A
B
during
A during Biff (A ¢ BV B C A)
A
A (V x € limit(A} AV y € limit(B) —
= x#7)) B
ends
Aends Biff ((ACBVBCA)
‘A
A (3 x € limit{A), I y € limit(B) =
= x =y)) B

Definition 3.10 An Orientation is a relation used to describe the flow variant

component of o relation between {wo intervals.

The variant component of the

interval relation is described in terms of the relationship between the end points

of the two intervals.

The format of the orientation is defined in terms of the ordering of points:

interval operator interval
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where interval indicates the intervals involved, and operator determines the
two limit points used and the ordering of those limit points. Three operators

<, >, >< are used to distinguish between different orientations.

1. < (given as A<B) indicates that the begin point of the first interval precedes
the begin point of the second interval, which is equivalent to 6(A) £ b(B)

with respect to the ordered A-Space.

2. > {given as A>B) indicates that the end point of the first interval follows
the end point of the second, which is equivalent to ¢(B) £ e(A), again with
respect to the ordered A-Space.

3. The composite operator >< (given as A><B) indicates that both > and

< are true, i.e. A<B and A>B.

The operator >< is flow invariant and is only used to differentate between

the two types of during relations.

3.2.3 New Spatial Relations

The complete set of thirteen interval relations can be constructed through com-
binations of pairs of A-Relations and orientations. The orientation allows for
the discrimination between different members of a group of relations that are
described by one A-Relation.

Table 3.2 enumerates all instances of the six A-Relations. With the A-
Relations disjoint, overlaps, meets and during there are two ways of ordering
an interval A with respect to a second interval B. The ends relation has four
instances, one for each of the different ways of ordering that A-Relation. There
is only one entry for the eguals relationship; equals is the only relation that is
flow-independent.

Each instance of the four interval relations disjoint, overlaps, during and meets
can be described using two alternative orientations. For consistency, a single ori-

entation (Column 4) will be used. Column 5 shows the equivalent Allen operators.
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Table 3.2: A-Relation instances and their Orientation discriminators.

A-Relation Instance Valid Orient. | Standard Orient. | Allen’s Operators
__i_ A before B
disjoint i A<B, B>A A<B B inv(before) A
_wi B before A
_B B<A, A>B B<A A inv(before} B
A A overlaps B
overlaps _B A<B, B>A A<B B inv(overlaps) A
i B overlaps A
B B<A, A>B B<A A inv(overlaps) B
A A meets B
meets B A<B, B>A A<B B inv(meets) A
- B meets A
B B<A, A>B B<A A inv(meets) B
_L A equal B
equal . B B equal A
"é A starts B
ends B B>A B>A B inv(starts) A
A A finishes B
B B<A B<A B inv(finishes) A
: A B starts A
B A>B A>B A inv(starts) B
A B finishes A
B! A<B A<B A inv(finishes) B
£ B during A
during B B><A B><A A inv(during) B
A A during B
B A><B A><B B inv(during) A
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Figure 3.3: Each 2-D object is represented in terms of its bounding box.

Table 3.1 shows that when dealing with space, the six primitive A-Relations
can be used to describe relationships between intervals without any notion of or-
der. The subsequent imposition of order (via orientation) adds to the A-Relation
such that a unique representation for each of the thirteen relations between two

intervals is possible.

3.3 n-D Spatial Reasoning

Relations in multi-dimensional space (n-D) can be represented using n 1-D NS-
Relations. An approximate representation of the object is made in terms of the
extreme points of the object along each axis (See Figure 3.3 for an example). A
bounding box is one method that can be used to simplify the shape of a given
object. Other types of approximations such as minimum bounding circle may
be used [59]. We have chosen bounding boxes as they can be represented as
independent intervals along each dimension.

This approximation of an object’s shape allows reasoning about the object’s
relationships with respect to other objects. Transforming relations between sys-
tems that use different axes and/or origins will not be developed in this thesis.
A global origin with fixed perpendicular axes is chosen and the bounding boxes

are determined relative to this coordinate frame.

Definition 3.11 An n-D NS-Relation is defined to be a set of n 1-D NS-Relations,

one for each dimension as:

{ NS-Relation; - NS-Relations ... - NS-Relation,}

or
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{ (A-Rel,, Orienty )uyis,, (A-Rely, Orients )ozis, - - - (A-Rel,, Orient, )ozis,

The set of 1-D NS-Relations is listed in an order determined by the axes.

Thus an n-D NS-Relation can usually be described as the following ordered set:
{ (A-Rely, Orient, ), (A-Rels, Orients)...(A-Rel,, Orient,) }
The ordered set of relations may also be represented as follows:
<A-Rel;-A-Rely-...-A-Rel, > <Orient;-Ortenty- ... -Orient, >

Both notations will be used in this thesis.

3.3.1 n-D Classifications

Based on the variant and invariant components, we can build a hierarchy to allow
for the querying of object relations at different levels of abstraction. There are

three layers in this hierarchy and they are described as Classifications 1, 2 and 3.

Classification 1

L)

Classification 2 more specific

N )

Classification 3

more abstract]

Definition 3.12 A relation that is described in terms of both the variant and

invariant aspects of the relationship 1s designated as belonging to Classification 1

(C1). This classification allows for a unique description to be given to each of

the 13 base interval relations. In n-D, the format of a Classification 1 relation is:
(A-Rel;-A-Rels-...-A-Rel,,}) (Orient;-Orient, .. .-Orient,)

Definition 3.13 A Classification 2 (C2) relation is a relation that has been de-

scribed solely in terms of the invariant component of the interval relation.
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In n-D, the format of a Classification 2 relation is:
(A-Rel;-A-Rels-. .. -A-Rel,,)

This classification groups the 13 base relations into 6 different relations ac-
cording to the invariant component of the base relation. For both Classification

1 and 2 the order of the relations along each dimension is maintained.

Definition 3.14 A Classification 3 (C3) relation is a relation that only exists in

n-D when n > 1 and describes the interval relation in terms of an unordered set
of A-Relations.

The format for a Classification 3 relation is:
{A-Rel;, A-Rel;, ... A-Rel;} where 1, j,1€ {1...n}

Listing relations without indicating the axis to which they apply means that
we do not know or care how the objects are oriented with respect to the axes,
but we do know the qualitative, coarse relations between the objects.

The relationship between Classifications 1 & 2 and 2 & 3 as well as the tran-

sition functions can be formally defined, as shown in the following subsections.

3.3.1.1 Transforming an n-D relation from Classification 1 to Classi-

fication 2

The process of transferring from Classification 1 to Classification 2 involves iden-
tifying the A-Relations used to describe the C1 Relation. A relation described

solely in terms of an A-Relation (the invariant component) is a C2 relation.

f: NS-Relotion® —  A-Relation”
(NS-Rel;, NS-Rel; ... NS-Rel,) — {A-Rel;, A-Rel; ... A-Rel,)
or

((A-Rely, Orienty), ... (A-Rel,, Orient,)} — ({(A-Rel;, ... A-Rel,)

The transformation from Classification 1 to Classification 2 involves projecting
the A-Relations out of the NS-Relations. This results in a loss of information and

thus the transformation is many-to-1.
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3.3.1.2 Transforming an n-D relation from Classification 2 to Classi-

fication 1

The inverse process of transforming a relation from Classification 2 to Classifi-
cation 1 requires that a description of the invariant component be supplied. A
single C2 relation may match many C1 relations. However, the given C2 relation

and the C1 relations share the same A-Relation.

f': A-Relation® — NS-Relation™
(A-Rely, A-Rely...A-Rel,) —  {{(A-Rel; Orienty)...(A-Rel, Orienty,)}
{(A-Rel; Orienty; )...(A-Rel, Orients,))

{(A-Rel; Orientyy)...(A-Rel, Orient,,,))}

The f;' transformation involves enumerating all NS-Relation instances of the

given A-Relations.

3.3.1.3 Transforming an n-D relation from Classification 2 to Classi-

fication 3

The transformation from Classification 2 to Classification 3 removes the order-
ing of the A-Relations. Thus there is no restriction as to which axis should be
associated with a particular A-Relation.

To illustrate this we define the set ARel = {disjoint, overlaps, during, meets,
equals, ends } and the set T',(A) = A contains exactly n elements [40, p23]. Then

the transformation of a C2 relation to a C3 relation is;

f2:A-Relation® — TL(A)={ a;}a; € ARel, 1<i<n }.
A-Rel; - A-Rel; ... A-Rel, — { A-Rely, A-Rel; ... A-Rel, }

3.3.1.4 Transformation of an n-D relation from Classification 3 to

Classification 2

The inverse transformation ;' requires that all the possible combinations of the

n A-Relations for n dimensions be enumerated.
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LU THA) ={ a| &, € ARel, 1<i<n} — A-Relation®

{ A-Rel;, A-Rely ... A-Rel,} — { A-Rel; - A-Rely ... A-Rel,
A-Rel; - A-Rel; ... A-Rel,

A—Rela - A—Relb P A—Reld }

The f,' transformation involves enumerating all unique permutations of the
A-Relations.

The transformation between Classification 1 and Classification 3 can be con-
structed by composing the other transformations as follows:

i NS-Relation™ — A-Relation™ = TL(A) ={ a; | 0; € ARel, 1<i<n }.

LU TLA) ={ & a; € ARel, 1<i<n } = A-Relation®™ — NS-Relation™"

3.3.2 Examples

We examine two examples of an n-D system: Section 3.3.2.1 examines 2-D NS-

Relations whilst Section 3.3.2.2 examines 3-D NS-Relations.

3.3.2.1 2-D NS-Relations

This section describes a two dimensional system using the n-D representation
outlined in the previous section. A 2-D NS-Relation can be expressed in the

following format:
A-Relation, -A-Relation, orient;-orient;

There are 13? (169) possible base relations between two 2-D objects. These
169 relations can be described using the C1 2-D NS-Relations. A more abstract
representation, where there are 36 (6) different C2 NS-Relations, describes the
relationship in terms of the flow-independent characteristics of the relationship.
The 21 different 2-D NS-Relations at Classification 3 describe a relationship in-

dependent of flow and axis.
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1) disjoint-ends ii) disjoint-ends iii) disjoint-ends iv} disjont-ends

x:A<B, v:B>A x:A>B, y:A>B x:A<B, y:B<A x:A>B, y:A<B

v) disjoint-ends vi} disjoint-ends  vii) disjoint-ends viii) disjoint-ends
x:A<B, y:A>B x:A>B, y:B>A x:A<B, y:A<B xA>B, y:B<A

ix) ends-disjoint %) ends-disjoint x1) ends-disjoint xii) ends-disjoint
x:B<A, y:A<B x:A<B, y:A>B x:A>B, y:A>B xB>A, y:A<B

xiii) ends-disjoint  xiv) ends-disjoint  xv) ends-disjoint xvi) ends-disjoint
x:B<A, y:A>B x:A<B, v:A<B x:B>A, v:A>B x:A>B, y:A<B

Key: Object B

Flow

Figure 3.4: Examples of the {disjoint, ends} relation.

A pictorial representation of the C3 2-D NS-Relations is given in Table 3.3.

All the C1 2-D NS-Relations for the C3 2-D NS-Relation (ends, disjoint) are
given in Figure 3.4. Note that Figures 3.4(i-viii) list the C1 2-D NS-Relations
for the C2 2-D NS-Relation disjoint-ends, and Figures 3.4(ix-xvi) list the C1 2-D
NS-Relations for the C2 NS-Relation ends-disjoint.
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3.3.2.2 3-D NS-Relations

A 3-D NS-Relation can be expressed in the following format:
A-Relation, -A-Relations - A-Relations Orient;-Orienty- Orients

There are 2196 (13%) base relations between any two 3-D objects. The 2196
base relations are described by the C1 3-D NS-Relations. 216 C2 3-D NS-
Relations are used to describe the relationship independent of the direction of
the flow. There are 56 C3 3-D NS-Relations.

There are six C2 2-1) NS-Relations that can be made up of the relation that
consists of equal, overlaps and ends. Table 3.4 shows the six C2 3-D NS-Relations
and the possible orientations (36) that could be used to create the 48 C1 3-D
NS-Relations. Five of the six C2 3-D NS-Relations are illustrated in Figure 3.5

(a C1 example for each is chosen to illustrate the type).

Table 3.4: Permutations of the equal, overlaps and ends relations in 3-
D (equals is flow independent, hence introduces no constraint along the

respective axis).

Relation Possible QOrientations

equal-overlaps-ends | Y: A<B, B<A
Z: A<B, A>B, B>A, B>A
equal-ends-overlaps | Y: A<B, A>B, B<A, B>A
Z: A<B, B<A
overlaps-equals-ends | X: A<B, B<A
Z: A<B, A>B, B<A, B>A

overlaps-ends-equal | X: A<B, B<A
Y: A<B, A>B, B<A, B>A
ends-overlaps-equal | X: A<B, A>B, B<A, B>A
Y: A<B, B<A
ends-equal-overlaps | X: A<B, A>B, B<A, B>A
Z: A<B, B<A
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i) Relation equal-ends-overlaps ii) Relation: equal-ends-overlaps
Onientation: Y:A<B, 7Z:A<B Orientation: Y:A>B, Z:A<B
by -

i1i) Relation: equal-ends-overlaps iv} Relation: equal-ends-overlaps
Orientation: Y:A<B, Z:A>B Orientation: Y:A>B, Z:A>B
Ay Av

v) Relation: equal-ends-overlaps vi) Relation: equal-ends-overlaps
Orientation: Y:B<A, Z:A>B Orientation: Y:B>A, Z:A>B

Ay A

viii) Relation: equal-ends-overlaps

vii) Relation: equal-ends-overlaps
Orientation: Y:B>A, Z:A<B

Orientation: Y:B<A, 7Z:A<B

Key: Object A Object B

Figure 3.6: The eight C1 3-D NS-Relations for the C2 3-D NS-Relation

equal-ends-overlaps.
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3.4 Queries

In this chapter, the focus has been upon the process of representing objects in
space in terms of intervals along multiple axes. The relationships between objects
have been expressed in terms of the relationship between the intervals representing
these objects along each dimensional axis. We have also provided a method of
classifying these relations according to similarities between relations when both
flow independence and axis independence are considered.

From this representation of objects in space, a query language can be specified
to provide the means of accessing information about relations between objects
in space. The multiple levels of classification allow for a powerful hierarchy of
queries to be formed about object relations.

The query language provides the only access to the spatial information. It
thus represents both the power and the limitations of the type of representation
of spatial information proposed in this thesis.

In this section we demonstrate a querying system based on 1-D, 2-D) and 3-D
representations outlined in the previous sections. We use logical operators and
variables to enable sophisticated queries about object relations to be constructed.

In this section, querying uses the following representation of NS-Relations:

A disjoint 1<2 B
to describe the NS-Relation instead of
A disjoint B A<B

that we have been using so far in this chapter.

A query may contain variables, which are used to either return a value of
interest (i.e. satisfying the query) or are used as part of the constraint(s) rep-
resented by the query and their specific values are of no interest to the querist.
Variables may be used to represent objects and relations.

Three types of variables are used to represent unknown values within a query:

1. The value of an anonymous variable is of no concern; it is used to determine
if there is a value (any value) that will match this aspect of the query.

An anonymous variable is represented as ?%a. Anonymous variables may
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be used as the orientation for queries associated with the relation equals

(equals has no orientation).
Example 3.1 Anonymous variable

(??a disjoint 1<2 B)

Is there an interval that satisfies the relation disjoint <2 with respect to
interval B? The query only determines the existence of such an object and

does not return the actual value.

. A numbered variable places the restriction that any match to this variable
must match other instances of the same numbered variable used in this
query. This allows for restrictions to be placed on the query matching the
variable. Note that the actual value of the result is of no concern, although
the existence of such a value is relevant. A numbered variable is represented

as ??n where n is a unique number representing this numbered variable.
Example 3.2 Numbered variable

{and 771 disjoint 1<2 B 771 overlaps 1<2 C)

Is there an interval that satisfies both given relations to the given intervals?
The example uses an operator “and” which is defined later and is given in

prefix notation.

. Named variables are of interest to the querist. The matches to these vari-
ables are returned. A named variable is represented as #name where name
is the unique name used to identify the variable. To avoid confusion there

is a restriction on the variable names: the name itself cannot begin with

L
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Example 3.3 Named variable

(A disjoint 1<2 B)

What are the names of the intervals that satisfy the given relation to interval

B?

The discussion of queries is divided into two main sections: atomic queries and
composite queries. Both the atomic and composite queries can be further subdi-

vided into 1-D, 2-D and 3-D queries as discussed in the following sub-sections.

3.4.1 Atomic queries

3.4.1.1 1-D Queries

The general form of a 1-D query using NS-Relations to express the relationship

between two intervals is as follows:
intervall A-Relation Orientation interval2

There are three different types of elements that make up a query: the intervals,

the A-Relation and the orientation.

1. Intervals are used to represent the objects or elements of the environment for
which the relationship will be described using the NS-Relation. The interval
name may be known or unknown as part of the search. In an environment
where the interval is described by name, the following are possible values
in a query:

A an object named A
??a an anonymous interval

7?1 an interval that is restricted to a specific instance

?7(G a named variable whose value is returned to the user
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2. An A-Relation is used to determine the pattern of the relation between the
intervals. An A-Relation may be one of the following six types: disjoint,

meets, overlaps, during, equal and ends.
Example 3.4 Queries with different A-Relations

(intervall disjoint orient interval2)

- The A-Relation between the intervals is disjoint and the
other elements are known;
(intervall overlaps orient interval2)
- The A-Relation between the intervals is overlaps and the other elements
are known;
(intervall ?7a orient interval2)
- The A-Relation between the intervals is unrestricted and the other
elements are known;
(intervall 771 orient interval2)
- The A-Relation is restricted to a particular type (possibly determined
by some other part of the query) and the other elements are known;
(intervall ?A orient interval2)
- The A-Relation is not known yet and is to be established, and the other

elements are known.

3. The orientation between the intervals is used to differentiate between vari-
ous A-Relations. It defines an ordering of the end points of the two intervals.

The following examples show the role of orientation in queries.
Example 3.5 Queries with different Orientations

(intervall disjoint 1<2 interval2)
- the relation is disjoint and the first interval precedes the second;

(intervall during 1><2 interval2)
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- the relation is during and the first interval encompasses the second;
(intervall during ?7a interval2)

- the relation is during with no specific orientation indicated;
{intervall disjoint 271 interval2)

- the relation is disjoint with a possibly predefined orientation;
(intervall overlaps ?A interval2)

- the relation is overlaps with an unknown orientation which is to be

established;

(intervall ??7a 1>2 interval2)

- intervall terminates after interval2.

The three types of elements that make up 1-D queries can be combined to-
gether in a variety of combinations where each element is either known or un-

known.

Example 3.6 Queries with different names, A-Relations and orientations

A disjoint 1<2 B
- returns true if A is disjoint to B with an orientation where the begin

point of A is less than the begin point of B;
TA disjoint 1<2 B

- returns all the intervals that are disjoint to B and the begin point of

7A is less than the begin point of B;
7A disjoint 1<2 7B

- returns all the intervals that are disjoint to each other and the begin of

?A is less than the begin of 7B;
ATA1<27B

- returns all the A-Relations and the intervals where the begin point of

A precedes the begin point of that interval.

62



3.4.1.2 2-D Queries

A 2-D query is expressed in terms of two 2-D objects and a 2-D NS-Relation. A
2-D NS-Relation consists of two 1-D NS-Relations. Thus, a 2-D query has the

following structure:
objectl Relationl Orientl Relation2 Orient2 object2

The first A-Relation/Orientation pair (Relationl Orientl) is used to express
the objects’ relationship along the x-axis (the first 1-D NS-Relation) and the
second pair (Relation2 Orient2) is used to express the cbjects’ relationship along
the y-axis (the second 1-D NS-Relation). Objects 1 and 2 are represented by
their interval approximations (their interval along each axis). For dimensions
higher than one, the interval approximation of the objects will be referred to as
the object.

The three different types of components that make up a 2-D query have been

discussed in the previous section.
Example 3.7 Sample 2-D queries

(A disjoint 1<2 disjoint 1<2 B)
- verify whether A and B are non-intersecting and B is to the upper right

of A;
(A disjoint 1<2 77a 77a B)

- verify whether A is before B along the x-axis;
(A ?7a ??a during 1><2 B)

- verify whether A is during 1><2 B along the y-axis;
(772 7A 77a 7B 77a B)

- determine the A-Relations (along both axes) of all objects with respect to B.

<

3.4.1.3 3-D Queries

A 3-D query consists of two objects and a 3-D NS-Relation (three pairs of A-
Relation/Orientation used to describe relations along the x, y and z axes). The

general form for a 3-D Query is:
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objectl Relatl Orientl Relat2 Orient2 Relat3 Orient3 object2

The 3-D query is a straightforward extension of the 2-D query. The additional
NS-Relation (Relation3 Orient3) is used to express the constraint in the third

dimension. Axis independent relational queries are discussed in Section 3.4.2.
Example 3.8 Sample 3D queries

(A disjoint 1<2 disjoint 1<2 disjoint 1<2 B)

- verify whether A precedes and is non-intersecting to B along all axes;
(A 77a 1<2 77a 1<2 77a 1<2 B)

- verify whether A starts before B in all three dimensions;
(?A 77a ?7a during 77a 77a 1<2 B)

- determine which intervals occur during B along the y-axis and start

before B along the z-axis.

3.4.2 Composite n-D queries

Atomic n-D queries, as described in the previous section, provide a system for
making a limited number of queries about the given environment. To increase
the utility of atomic queries, a set of logical operators are defined for combining
atomic queries into composite queries. This section first discusses the methods
for making composite queries and then demonstrates the power of the system.
Three logical operators — conjunction, disjunction and negation — are used
to create compound queries from the atomic queries. We use pre-fix notation to

express composite queries.

1. All the atomic queries {q;) in the conjunction (A q; ...q,) must be true
for the conjunction to be true. Binding of variables is ordered from left to
right through the conjunction. Bindings that are made in the first query are
applied to the second query. This process of binding variables in consecutive

atomic queries is repeated until the final atomic query is reached.
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e (and (A disjoint 1<2 B) (A overlaps ?%a ?A})
Is A before B and if so does A overlap any intervals, and if so which

ones?

2. Disjunction (V qi ...qs) of atomic queries requires at least one of the
queries (g;) be true for the entire query to be true. Bindings are made
individually and all the bindings are returned as different instances of the

solution. All solutions are determined.

o (or (B overlaps ?%a ?%a) (C 2A %%a D))

Does B overlap anything or what is the A-Relation between C and D?

3. Negation is used as a special instance of conjunction, where the negated

query is used to eliminate specific bindings made as part of the non-negated

query.

o (and (?A disjoint ?%a B} (not (?A overlaps 9%a C)))

What objects are disjoint to B and not overlapping C?

Negation is only used to help restrict conjunction queries. De Morgan’s

theorem can be used to reduce some other forms of negation into this format.
Example 3.9 Resolving not
Find all the pairs of objects whose relation is not disjoint-overlaps 1<2-1>2.
(not TA disjoint-overlaps 1<2-1>2 7B) —
(and (?A ?7a-77a 77a-77a 7B)

(not 7A disjoint-overlaps 1<2-1>2 7B))

This is translated into the search for all relations where they do not have the

relationship disjoint-overlaps 1<2-1>2.

6o



Compound queries can be used to provide a variety of different tasks in query-
ing. A selection is listed for the 1-D, 2-D and 3-D queries. The 1-D queries are
selected to highlight some of the possibilities of composite queries, while the 2-D

and 3-D queries look at issues specific to 2-D and 3-D respectively.

3.4.2.1 1-D Composite Queries

Compound queries demonstrate the true expressive power available with num-
bered and named variables. They allow for bindings to be made and thus re-
strictions to be propagated between the atomic components of the composite

query.
Example 3.10 1D composite queries

(and (771 disjoint 77a A) (?A overlaps 77a 771))

What are the names of the intervals that overlap an interval that is disjoint
to A7

(and (7A disjoint 77a B) (7A overlaps 1<2 C))

What intervals are disjoint to B and overlap 1<2 C7
o

A variety of new queries can be defined in terms of atomic and composite 1-
D queries. For instance, the heuristic query “between” can have two possible
interpretations:
Case 1: non-intersecting “between”

One interval is between two intervals and it does not intersect either interval

(nibetween see Figure 3.71)

A nibetween B C — (or (and (A disjoint 1<2 B)
(A disjoint 1>2 C))
{(and (A disjoint 1>2 B)
(A disjoint 1<2 C)))
Case 2: intersecting “between”

An interval relation between two intervals may be intersecting (ibetween see

Figure 3.7ii) and it may intersect one or both.
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B C B C

A
i) i)

Figure 3.7: Two interpretations of between: i) non-intersecting between :

A nibetween B C and ii) intersecting between: A ibetween B C.

A ibetween B C — (or (and (B 77a 1<2 A)
(C 77a 1>2 A))

(and (C 77 1>2 A)
(B 77a 1<2 A)))

Similarly, the relation “left-of” has two possible interpretations:

Case 1: non-intersecting left-of

A is to the left of B and the two intervals do not intersect each other (nileft-of).

A nileft-of B — (A disjoint 1<2 B)

Case 2: intersecting left-of

A is to the left of B and the two intervals may intersect each other (ileft-of):

A ileft-of B — (A 77a 1<2 B)

A variety of such queries can be constructed in terms of combinations of the

primitive A-Relation/QOrientation pairs and in terms of other composite queries.

3.4.2.2 2-D Composite Queries

Composite queries may also be formed in 2-D. For example, an object is between

if it is between in either dimension.

2-D: A nibetween B C — (or (and (A disjoint 1<2 77a 77a B)
(A disjoint 1>2 77a 77a C))
(and (A disjoint 1>2 77a 77a B)
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(A (disjoint 1<2 77a 772 C))
(and (A ?7a 77a disjoint 1>2 B)

(A 7?a ??a disjoint 1<2 C))
(and (A ?7a 77a disjoint 1<2 B)

(A 7?a ??7a disjoint 1>2 C)))

2-D: A ibetween B C — (or (and (A ?7a 1<2 ??a 77a B)

(A 77a 1>2 77a 77a C))

(and (A 77a 1>2 77a 77a B)

(A 77a 1<2 77a 77a C))

{and (A 77a 77a 77a 1>2 B)

(A 77a 77a ?7a 1<2 C)))
(and (A 77a ?7a ?7a 1<2 B)

(

A 772 77a 772 1>2 C)))

The above examples define two objects to be “between” in 2-D if they are
“between” in either of the dimensions. Alternative interpretations could be de-
fined where two objects are “between” in 2-D only if they are “between” in both

individual dimensions.

3.4.2.3 3-D Queries

In 3-D there is greater flexibility for expressing composite queries when compared
to 1-D or 2-D. Each atomic 3-D query has 3 components (one for each dimen-
sion) and a composite query may impose restrictions on any one dimension (3
possibilities), any pair of dimensions (3 possibilities) or all 3 dimensions.
Following our example of the “between” operator we can see seven possible

interpretations for “between” in 3D:
1. between along the x-axis only
2. between along the y-axis only
3. between along the z-axis only

4. between along the x and y axes
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5. between along the x and z axes
6. between along the y and z axes

7. between along all three axes.

We can also allow for axis-independent definitions, such as A is “between” B
and C along an axis. Two examples of axis-independent queries are given below.
If a single relation along one of the axes is known, there are three situations

that must be checked: where the relation is true along the x, y or z axes.

3-D (objectl relation orient object2)
(or (objectl relation orient ?7a ?7a ?7a ?7a object2)
(objectl 7?a ?7a relation orient 77a 77a object2)

(objectl ?7a 77a 77a 77a relation orient object2))
When two relations are known, there are six permutations.

3-D (objectl RelationA OrientA RelationB OrientB object2)

(or (objectl RelationA OrientA RelationB OrientB 77a 77a object2)
(objectl RelationA OrientA 7?a ?7a RelationB OrientB object2)
(objectl RelationB OrientB RelationA OrientA ?7a ?7a object2)
(objectl RelationB OrientB ?7a ?7a RelationA OrientA object2)
{objectl 77a 77a RelationA OrientA RelationB OrientB object2)
(objectl 77a 77a RelationB OrientB RelationA OrientA object2))

We have demonstrated how our system for reasoning about spatial relations
may be used to construct queries about object relations in 1-D, 2-D and 3-D. We
have also demonstrated the range of possible n-D queries that can be defined by

the user.

3.4.3 Specification

Similar to [13], we present a syntactic definition for general query construction in
our system, using extended BNF notation.

<A-Rel> = disjoint | overlaps | during | ends | equals | meets
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<Ori> = 1<2 | 1>2 | 2>1 | 2<1 | 1><2 | 2><1

<variable> = 7?7’ [ number | ‘a’ | | ‘’name

<A-Relation> := <A-Rel> | <variable>

<Orientation> := <Ori> | <variable>

<object> = <variable> | name

<1D-NS> 1= <object> <A-Relation> <orientation> <object>
<nD-ARel> ::= <A-Relation> { ‘-’ <A-Relation> } »~!

<nD-Ori> = <orientation> {*-’ <orientation> } "1

<nD-NS> = <object> <nD-ARel> <nD-Ori> <object> |

<object> {<A-Relation> <orientation> } ™ <object>

<bi-boolean> ::= or | and

<uni-boolean> ::= not

<Composite> ::= <uni-boolean> <nD-NS> | <bi-boolean> <nD-NS> <nD-NS>

| <bi-boolean> <Composite><Composite>

Number is a string of numeric characters. Name is a string of alpha-numeric
characters.
Note: When constructing Composite relations each of the <nD-NS> must be of

the same dimension.

3.4.4 Classifications and Queries

Classifications provide the means of describing groups of relations such that high-
level reasoning can be performed on them. The 1, 2 and 3 dimensional simple
and composite queries developed in the previous sections have provided the means
for representing relations at different levels of abstraction. The querying system
offers the means of forming queries at any of the three levels of Classification.
Classification 1 and 2 queries are easily constructed from the simple queries

using variables as shown below.
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objectl (disjoint 1<2)°! object2 -+ objectl disjoint 1<2 object2
objectl (disjoint)?? object2 — objectl disjoint ?%a object2

Classification 3 queries can be constructed using composite queries.

objectl (disjoini, overlaps)®?® object2 —
(or (objectl disjoint ?%a overlaps ?%a object2)

(objectl overlaps ?%a disjoint ?%a object2))

3.5 Conclusion

This chapter has demonstrated a relational system for reasoning about multi-
dimensional spatial relations. The system uses the concept of flow and axis in-
dependence to provide a means of classifying relations into groups that share
common characteristics. A description of the complete set of 13 primitive in-
terval relations is given for the spatial domain in terms of NS-Relations. The
NS-Relation is defined in terms of the invariant (A-Relation) and variant {orien-
tation) component of the relation.

The basic 1-D representation is generalised to n-D. The difficulties of rea-
soning with a large (multi-dimensional) space are reduced by using a system of
hierarchic classifications that allow for the grouping of relations that share com-
mon characteristics. Finally, a set of query primitives are defined (based on the
NS-Relation), which allow for the construction of a comprehensive set of queries.
This query language provides the only means of access to information about spa-
tial relations.

This concludes the section dealing with multi-dimensional spatial reasoning.
In the next chapter we begin our work on representing the intervals which have
been used to represent the spatial information. The next chapter details a repre-
sentation of intervals for a simple subset and then shows how the querying system

of this chapter is applied to the representation.
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Chapter 4

Interval Representation

The best material model of a cat is another, or preferably the same, cat.

A. Rosenblueth and N. Wiener

The previous chapter examined a method of reasoning with multi-dimensional
space. This method involved representing objects in space in terms of their inter-
vals along perpendicular axes. Reasoning about spatial relations was performed
in terms of these interval-based representations.

For the rest of the thesis, the problem of representing this interval information
shall be the focus of our effort. This problem has been identified as being non-
trivial and directly comparable to the problem of representing temporal intervals.

Figure 4.1 illustrates the division of the representation problem. At the high-
est level is the spatial information. The middle level is the interval-based repre-
sentation of these spatial objects. The lowest level is the actual representation of
the interval information.

We shall first formally define interval representations, and then the four dif-

ferent kinds of interval representations.

Definition 4.1 An interval representation IR = (Int, IA, ¢) is a triple where
Int is the set of intervals, IA is the set of all possible interval relations (23} and
¢ is a set of triples { interval, label interval, ) defining the mapping between the
intervals and their relations, where interval,, interval, € Int and label € TA.

The terms “label”, “interval relation” and “edge” will be used interchangeably.
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ﬁ raw data

b
a
interval representation
x:b(a)<e(a)<b(b)<e(b)
y:b(a)<b(b)<e(a)<e(b) point representation

Figure 4.1: The three levels of representation: raw data represents the quan-
titative information; the interval representation is the interval approxima-
tion of the object; and the point representation is the point representation

of intervals.

There are two criteria by which we discriminate between different interval
representations. By restricting the types of interval relations that may be used

to create an interval representation, we are able to define the following:

Definition 4.2 A Primitive IR is an interval representation where the set of
labels is restricted to primitive interval relations, i.e. {disjoint 1<2, disjoint
I>2, overlaps 1<2, overlaps 1>2, equals, during 1><2, during 2><1, meets
1<2, meets 1>2, ends 1<2, ends 1>2, ends 2<1, end 2>1}.

Definition 4.3 A Disjunctive IR is an interval representation where at least one

{abel in the IR is a disjunctive interval relation.

Our second criteria is the number of relations that are explicitly known. An
unknown relation is a disjunction of all thirteen primitive interval relations. There
are two cases: where all relations are explicitly known, and where only some of
the relations are explicitly known.

The two criteria allows us to define four interval representations as follows:

1. a primitive interval representation where all relations are explicitly known

2. a primitive interval representation where some relations (but not all) are

explicitly known
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3. a disjunctive interval representation where all relations are explicitly known

4. a disjunctive interval representation where some relations (but not all) are

explicitly known.

In this chapter we shall describe the method of representing spatial informa-
tion using an interval representation and show, for one type of interval represen-
tation (all are explicitly known and every relation is a primitive interval relation),
the method of representing these intervals.

The representation of the other types of interval sets will be the subject of
the following two chapters. The systems described in those two chapters are
interchangeable with the interval representation described in this chapter, with
respect to the overall spatial reasoning system. They differ only in the types of

information to be represented and the method of representation used.

4.1 Intervals and end points

The problem of representing intervals is not new. In the domain of temporal
reasoning this problem has generated a variety of different solutions. Allen’s [2]
interval-based reasoning system promotes a powerful method of representing in-
tervals as the most primitive unit and develops a method of closure for propagat-
ing information about intervals.

Despite its virtues, Allen’s system does not provide a complete closure (all
possible propagations) of the interval information. Alternative methods have
used different combinations of primitives (points and intervals) and propagation
methods (closure and non-closure).

These different combinations are motivated by desire to minimise different

costs associated with the representation. The costs are:

e the space to represent the information,
e the construction time and

e the search time (to determine the relationship between a pair of intervals).

74



The construction time and search time are non-complementary. Space used
to represent the information plays a secondary consideration.

The method of interval representation used in this thesis is based upon a point
based representation of intervals that uses non-closure methods of propagating
relational information. For the simplistic interval representation of this chapter,
many of the details of the representation will not be apparent. Chapters 5 and 6
provide greater detail of the proposed system.

For the rest of this section, the issues of representing intervals in terms of

points are discussed.

Definition 4.4 An interval A consists of two end points. The begin point of
interval A is denoted as ‘e’ and the end point is denoted as ‘A’. The relationship
between two points z and y is represented in either of the following formats:

zy to lustrate that z < y

(zy) to illustrate that z = y

4.1.1 Interval relations to point relations

Using the end point representation of intervals, it is possible to derive an end

point-based description of primitive interval relations.

Definition 4.5 A primitive interval relation can be expressed in terms of four

point relations. The four point relations that will be considered for any two in-
tervals X and Y are: xy, xY, yX and XY. For every unambiguous relationship
(primitive interval relation) between intervals X and Y, there is an equivalent
unique conjunction of point relations (see Table {.1). A conjunction is used as

all of the point relations must be true if the corresponding interval relation is true.

It is now possible to represent interval relations in terms of conjunctions of

point relations.

4.1.2 Point relations to interval relations

The information about interval relations, as represented by the point-based rep-

resentation of the intervals, must be derivable from the point representation. By
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Table 4.1: The interval relations described in terms of the relationship

between the end points of the intervals.
XY Interval Relation

zY | yX

&
Lin]
S
h.q

disjoint 1<2

disjoint 1>2

ANV A

meets 1<2

meets 1>2

overlaps 1<2

overlaps 1>2

during 2><1

V I IA|IVIATVY ATV A
0

during 1><2

ends 2>1

VANV IV IALTVY AV A

ends 1>2

ends 2<1

AV

ends 1<2

H
ANIA TN IAIANTA AN ITA A
AN IANIA TN IATAN AN TA A

equal

reversing the process from the previous section, an interval relation between two
intervals X and Y can be determined by establishing the relationship of four key
point relations: zy, zY, yX and XY. Thus the method of interval representation
using point relations is complete.

Table 4.2 demonstrates that, for each of the interval relations, there are key
point relations that will determine the actual interval relation. For example, the
relation disjoint 1< 2 is true if and only if the relation y>X is true.

For the problem of determining if a given interval relation is true between two
intervals, a maximum of three point queries is required. When determining the
interval relation between two intervals, a careful ordering of the point relations
to be queried makes it possible to reduce the average number of point queries
needed to determine the interval relation.

Seven of the thirteen relations can be identified (or ruled out) by determining

the point relationship between zy and XY. Thus if the checks are performed in
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Table 4.2: Interval relations defined in terms of their significant point rela-

tions.

Interval Relation | zy | 2Y | yX | XY

disjoint 1<2 >

disjoint 1>2 >

meets 1<2 =

meets 1>2 =

overlaps 1<2

overlaps 1>2

during 2><1

ANV VA

during 1><2

ends 2>1

VAV AV A

ends 1>2

ends 2<1

ALV
I

ends 1<2

equal

the following order: zy, XY, yX and zY; then only three of all interval relations
(namely meets 1> 2, disjoint 1>2 and overlaps 1>2) require all four checks to be
performed. Hence, the efficiency of the querying system depends on the checks
being performed in the correct sequence.

We shall be considering a variety of situations for representing intervals using
point relations and determining interval relations from point relations. In some
situations it is not possible to unambiguously determine all of the four point
relations used to describe a given interval (see Chapters 5 and 6).

In such a situation the point relations that can be determined unambiguously
may be used to restrict the possible interval relations to a subset of the 13 prim-
itives. For example, if it is known that the begin point of A and the begin point
of B are equal, then (from Table 4.1) the relationship between intervals A and
B is one of the following: ends 2>1, ends I>2 or equal.

Given this ability to represent primitive interval relations as point relations
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and the ability to query this point representation to extract information about
interval relations, we shall now consider the simplest case: a primitive interval

representation where every relation is explicitly known.

4.2 Interval Representation: The Simple Case

Even with the simplest type of representation — a set of intervals where every
relation between every pair of intervals is explicitly known and each of these
relations is a primitive interval relation — the considerations of representation
space, construction time and search time are an issue.

Two methods of representation are considered. The first represents all inter-
val relations (though this is the closure method there is nc need to propagate
information at construction time as all information is available), and the second
represents a minimal set of information about intervals by representing them in

terms of end points.

4.2.1 Closure

For a set of intervals where every interval relation is known and each interval
relation is a primitive interval relation, an explicit representation would contain
n intervals and n{n-1) primitive interval relations.

For this situation the construction time is 0 (as all relations are known), search

space is n(n-1) and search time is constant (table lookup).

4.2.2 Linear Ordering

Alternatively, the intervals and the interval relations may be represented in terms
of their end points and the relationships between these end points. For the
problem where every interval relation is known and every known relation is a
primitive interval relation, the graph used to represent the point relations can be

reduced to a linear ordering of end points.

Definition 4.6 A primitive interval representation based upon points may be

represented as a Point Graph (PG) = (N, ) where N is the set of nodes (all
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end points of intervals) and ¢ is a set of pairs (n;, n;) defining a relation on the
nodes; n; and n; € N.

{n;, n;) is an edge that represents the relationship “<” between points rep-
resented by nodes n; and n;. A pair of points that are equal are represented as
a single node that has a compound label (representing the two end points). The

relation n; > n; may be represented as (n;, n;).

The construction of the graph PG from the interval representation is a two
part process (see Algorithm 4.1) of converting the intervals into end points and
then converting interval relations into conjunctions of point relations. These point
relations may then be added to the graph. Every interval relation in the set of

interval relations IR can be converted into a conjucntion of point relations ( pr,

A Pry A pre A pry ).

Given interval representation ( Int, IR )
N=0,p=0
{the points from the intervals}
foreach interval € Int
N’ = N + Bfinterval) + E(interval)
{the begin < end relation}
foreach interval € Int
¢’ = ¢ + B(interval) < E(interval)
{the point relation from the interval relations}
foreach ( pr, A pry A pro Apry ) € IR
foreach ( p, relation p, ) € ( pr, A pry A pre A prg )

@’ = p + {p, relation p,)

Algorithm 4.1 The procedure for constructing a point graph from a primitive

interval representation.

This type of representation allows for a linear ordering to be constructed. The
point graph representation can be reduced to a linear ordering by removing all

redundant edges from the graph (full minimisation).
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Let G be a graph and ab the relation between two nodes in the graph G.
Let the function search{G, rel) be a boolean function, where the first argument
is a graph and the second a point relation. The function search returns true if
relation rel can be found by performing a search of the graph G, otherwise the

function returns false (i.e. if false or not known).

Definition 4.7 Given G = (N, ¢ ), redundant edges is a set @, such that ¢, C ¢,

and @, are defined as the edges that can be removed from the graph such that

every relation represented by these edges can be deduced by searching the graph

( N )y P (:Or) :
Thus we can state that the edge used to represent the relation ab is redundant

with respect to the graph G if the following is true:
search(G - ab, ab).

Definition 4.8 A fully minimised graph is a graph G = (N, @) where none of

the edges in ¢ are redundant (¢, = 0).

See [1] for a formal analysis of graph minimisation (also called Transitive
Reduction).

If all redundant edges are removed from the graph PG, and PG is deri.ved from
a primitive interval representation, where all relations are explicitly known, then
the resulting graph is a linear ordering of points. To remove the redundant edges
every relation (2n-1) must be checked in O(n) time. Thus the linear ordering
would be achieved in O(n?) time.

Our non-closure method presented here is not as efficient, in terms of search
time and construction time, as the closure method described above. It is presented
here only to show that it does provide a viable method of representing information
about intervals.

The non-closure method, however, requires less space than the closure method.
For a problem where space is paramount, this solution would be preferred over
the closure method.

In this simple situation the closure method does not need to propagate in-

formation to determine every interval relation (as they are already known). For
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other more complex situations the necessity to propagate information in order to
perform closure significantly increases the cost of constructing the representation
(NP-Complete).

The simplistic case of this section provides the opportunity to represent a
minimal amount of information about the interval relations. As each relation
between the intervals is known and is primitive, it is possible to construct a linear
ordering of the end points. Thus for n intervals there are 2n end points and 2n-1
point relations. The relationship between end points can be determined in (on
average) 2 x (n/2) time [62]. It takes up to four point searches to determine an

interval relation. The worst case would be 4n time.

4.3 Results

In this chapter an algorithm has been described using a system based on linear
ordering for representing information about intervals, for sets of intervals where
every interval relation between a pair of intervals in the set is explicitly known
and that relation is a primitive interval relation.

Though this is not an optimal solution, it does provide the basis for construct-
ing a complete system that encompasses the entire process of representing spatial
information (see Figure 4.1). In Chapters 5 and 6 more complex problems will be
solved by expanding the minimisation technique outlined in this chapter. These
new methods will provide the same information that the linear order system pro-
vides (though they represent different types of interval information) and are thus
equivalent with respect to the high-level reasoning and subsequent queries on the
representation.

This section on results does not emphasise the performance of the system
(with respect to search time, construction time and representation space) but
demonstrates the ability to connect the components together. The raw data
about spatial relations is represented as intervals. Intervals are represented as
points. Queries about object relations are described in terms of interval relations.
These interval queries are then converted into point queries. Finally, the point

query (a search) is performed upon the point representation (see Figure 4.2).
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Query: a disjoint-disjoint 1<2-1<2 b

x:a disjoint 1<2 b y:a disjoint 1<2 b
x:e(a)y<b(b) y:e(a)<b(b)
search V search
x:b(a)<e(a)<b(b¥<b(c)<e(c)<e(b) y:b(c)<b(a)<e(a)<b(b)<e(c)<e(b)

<\/
TN b
D & — .

Figure 4.2: The complete system entails the representation of raw spatial

data as intervals, the representation of these intervals as points, the specifi-
cation of n-D queries, the processing of n-D queries into single dimensional
interval queries, the conversion of interval queries to point queries and the

search of point queries in a point representation.

The system described has been implemented in C++ on an SG R4400 pro-
Cessor.

In the next section, we introduce an artificially generated dataset (randomly
choosing the positions of the objects). The 2-D environment depicted in Fig-
ure 4.3 will be used for the example queries. Examples of queries are given in
English and are then translated into the syntax accepted by the query system.

For each example the query is converted into the equivalent point queries
that are performed by the low level point search system. Bindings of variables

are performed from left to right.

4.3.1 Simple queries

The following are examples of simple queries performed on a sample environment
(Figure 4.3) using the system described in this chapter. The results were gen-

erated from a program. QQueries presented to the querying program and results
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roadl

hedge road3
house
ghed
—
:I tree2
treel
i Rt

Figure 4.3: A 2-D example environment. The flow runs from top to bottom

and from left to right.

from the program are prefixed with ‘P

Queryl: Is the object road2 disjoint to and followed by object road# along both
axes?

Result 1 - true

P:(and road? disjoint-disjoint 1<2-1<2 road$)

x-axis: road2 disjoint 1<2 road3 = b(road3) > e(road2)

y-axis: road2 disjoint 1<2 road3 = b(road3) > e(road2)

P:Stotus:true
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Query2: What is the name of all the objects that are disjoint to and preceded
by the object road? along both axes?

Result 2: road3, hedge, shed and tree2

P:{and road?2 disjoint-disjoint 1<2-1<2 %object)

x-axis: road2 disjoint 1<2 ?object = b(%object) > e(road2)
y-axis: road2 disjoint 1<2 ?object = b(7object) > e(road2)

The x-axis query binds Tobject to all the objects whose begin point is greater
than e(road2) and then uses those bindings to test if those objects also have their
begin point greater than e(road2) in the y-axis.

P: (?object= road3) (?object= hedge) (?object= shed) (?object= tree2)

<

Queryd: What are all the objects disjoint to and preceded by another object
along both axes?

Result 3: (road2 to road3), (road2 to hedge), (road2 to shed), (road2 to tree2),
(roadl to shed), (roadl to tree2)

P:{and ?object] disjoint-disjoint 1<2-1<2 ?object2)

x-axis: 7objectl disjoint 1<2 ?object2 = b(?object2) > e(7objectl)
y-axis: Tobjectl disjoint 1<2 Pobject2 = b(7object2) > e(?objectl)

The x-axis query binds the pairs of objects to 7object1 and 7object?2 if the begin
of Tobject? is greater than the end point of 7objectl. It then takes those bindings

and checks to see if that relation is true for the y-axis.

P: ((7objectl= road2)(7object2= road3))
((?objectl= road2)(?object2= hedge})
((?objectl= road2)(?object2= shed))
((7objectl= road2){?object2= tree2))
((?objectl= roadl)(?object2= shed))
{(?objectl= roadl)(7object2= tree2))
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Query4: What is the orientation of the two objects road2 and hedge that are
disjoint along both dimensions?

Result 4: 1<2, 1<2

P:(and road? disjoint-disjoint ?orl-?or2 hedge)

x-axis: road?2 disjoint 7orl hedge = (or b(road2) > e(hedge) b(hedge) > e(road2))
y-axis: road2 disjoint ?or2 hedge = (or b(road2) > e(hedge) b(hedge) > e(road2))

The query checks to see if either of the disjoints are true for the x-axis by checking
that b(road2) greater than the e(hedge) or that the b(hedge) is greater than the
e{road2). If one is true then checks to see if it is disjoint for the y-axis. Only
returns a value if a relation was found for both axes.

P: (Pori= 1<2) (for2= 1<2)

Queryd: For all the objects that are disjoint along both axes to the object road2
return the object’s name and the orientation.

Result 5: (1<2, 1<2, road3), (1<2, 1<2, hedge), (1<2, 1<2, shed), (1<2, 1<2,
tree2)

P: (and road?2 disjoint-disjoint fori-%or2 Zobject)

x-axis: road2 disjoint ?orl 7object = (or b{road2) > e(?object) b(Tobject) >
e(road2))

y-axis: road2 disjoint 7or2 ?object = (or b(road2) > e{?object) b{?object) >
e(road2))

The query finds all the objects whose end point is less than b(road2) or whose
begin point is greater than the e(road2). Given the x-axis bindings, it checks
to see if the end point of each binding is greater than the b(road2) or the begin
point of each binding is less than the e(road2) along the y-axis.
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P: ((?object= road3)(?orl= 1<2)(%or2= 1<2))
((?object= hedge)(?orl= 1<2)(?0r2= 1<2))
({(?object= shed)(?orl= 1<2}(?or2= 1<2))

((

Tobject= tree2)(?orl= 1<2)(7or2= 1<2))

Queryb: Return the A-Relation along the y-axis, the orientation along both axes
and the object’s name for all the objects that are disjoint to the object road2
along the x-axis?

Result 6: (disjoint, 1<2, 1<2, road3), (disjoint, 1<2, 1<2, hedge), (during, 1<2,
2><1, salinity area), (disjoint, 1<2, 1<2, shed), (disjoint, 1<2, 1<2, tree2),
(overlaps, 1<2, 1<2 roadl).

P: (and road? disjoint-?rel forl-?or2 Pobject)

x-axis: road2 disjoint 7orl 7object = (or b(road2) > e(?object) b(7object) >
e(road?2))

y-axis: road2 7rel 7or2 7object = b(road2) ? b(?object), b(road2) ? e(?object),
b(?object) ? e(road2), e(road2) 7 e(?object)

The query determines if there are objects whose end point is less than b(road2)
or that the begin point is greater than e(road2). For each of those bound objects
it determines their relation to the object road2, using the standard four point

test.

P: ({7object= road3)(Torl= 1<2)(7or2= 1<2)(?rel= disjoint))
({(?object= hedge)(?orl= 1<2)(?or2= 1<2){?rel= disjoint))

((?object= shed)(7orl= 1<2)(?or2= 1<2)(?rel= disjoint))
((?object= tree2)(?orl= 1<2)(?or2= 1<2)(7rel= disjoint))

(
(
((?object= salinity area)(Torl= 1<2)(Tor2= 2><1)(?rel= during))
(
(
((?object= roadl)(?orl= 1<2)(?or2= 1<2)(?rel= overlaps))
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Query7: What is the A-Relation along each axis for the objects road2 and road$,
given the begin of road? precedes the begin of roedd along each axis.

Result 7: (disjoint, disjoint)

P: (and road2 Prel-%rel2 1<2-1<2 road3)

x-axis: road2 7rel 1<2 road3 = b(road2) < b(road3), b(road2) ? e(road3),
b(road3) 7 e(road2), e(road2) ? e(road3)

y-axis: road2 7rel 1<2 road3 = b(road2} < b(road3), b(road2) ? e(road3),
b{road3) 7 e(road2), e(road2) 7 e(road3)

This is a slight variation on the four point test as one of the points must be
a particular value b(road2) < b(road3). If there is a valid binding this will
determine the x-axis relation. The same approach applies for the y-axis.

P: (?rel= disjoint)(?rel2= disjoint)
¢

Query8: For an object whose begin point is preceded by the begin point of the
object road2 along both axes, return the object’s name and the A-Relations along
each axis.

Result 8: (overlaps, disjoint, house), (disjoint, disjoint, road3), (disjoint, disjoint,
hedge), (disjoint, disjoint, shed), (disjoint, disjoint, tree2), (disjoint, overlaps,
roadl).

P: {and road2 ?rel-?rel2 1<2-1<2 ?object)

x-axis: road2 7rel 1<2 Tobject = b(road2) < b(7object), b(road2) 7 e(?object),
b(?object) ? e(road2), e(road2) 7 e(7object)

y-axis: road2 ?rel 1<2 7object = b(road2) < b{?object), b{road2) 7 e(?object),
b(?object) 7 e(road2), e(road2) 7 e(7object)

The query determines all the objects whose begin point is greater than b(road2)
and then determines the relation using the four point test (checks the other three
relations) along the x-axis. For the y-axis, each of the objects bound to 7object
are then tested to see if they satisfy b(road2) < b(?object). If they do, then check

to see if there is a valid relation.
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P: ((7object= house)(?rel= overlaps)(?rel2= disjoint))

(
Tobject= road3)(?rel= disjoint)(?rel2= disjoint))
) (

2 ((
((
((7object= hedge)(7rel= disjoint)(?rel2= disjoint))
((7object= shed)(7rel= disjoint)(?rel2= disjoint))
((?object= tree2)(7rel= disjoint)(7rel2= disjoint))
((

Tobject= roadl)(?rel= disjoint)(?rel2= overlaps))

Queryd: What is the relationship between the objects road2 and road3?
Result 9: disjoint-disjoint 1<2-1<2
P: (and road2 ?rel-?rel2 %or-%or2 road3)

x-axis: road2 7rel Yor road3 = b(road2) ? b(road3), b(road2) ? e(road3),

b(road3) ? e(road2}, e(road2) ? e(road3)

y-axis: road2 7rel2 ?or2 road3 = b(road2) ? b(road3), b(road2) ? e(road3),
b(road3) 7 e(road2), e(road2) ? e(road3)

This is a standard four point test to determine the relationship between objects
road2 and road3. The same check is performed to determine the y-axis relation.

P: (?rel= disjoint)(?or= 1<2)(for2= 1<2)(?rel2= disjoint)

Queryl0: What is the relationship of every object to read2?

Result 10: {equal-equal road2), (during-disjoint 1><2-1<2 treel), (overlaps-ends
1<2-2>1 field), (overlaps-disjoint 1<2-1<2 house), (disjoint-disjoint 1<2-1<2
road3), (disjoint-disjoint 1<2-1<2 hedge), (disjoint-during 1<2-2><1 salinity
area), { disjoint-disjoint 1<2-1<2 shed), (disjoint-disjoint 1<2-1<2 tree2), (disjoint-
overlaps 1<2-1<2, roadl)

P: (and road? ?rel-%rel2 Por-?or2 Pobject)

x-axis: road2 7rel 7or 7object = b(road2) ? b(?object), b(road2) 7 e(?object),

b(?object) 7 e(road2), e{road2) 7 e(7object)
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y-axis: road2 Trel2 7or2 7object = b(road2) ? b(?object), b(road2) ? e(?object),
b(?object) ? e(road2), e(road2) 7 e{?object)

For every object it uses the four point test to determine the relationship to the

object road2. It then does the same for the y-axis.

P: ((Tobject= road2)(7rel= equal)(?rel2= equal)
((7object= treel)(?rel= during)(?or= 1><2)(7or2= 1<2)(?rel2= disjoint)
((7object= field)(7rel= overlaps)(?or= 1<2)(Tor2= 2>1)(7rel2= ends))
((7object= house)(?rel= overlaps)(Tor= 1<2)(?or2= 1<2)(rel2= disjoint))
(
((7object= hedge)(?rel= disjoint)(?or= 1<2)(?0or2= 1<2)(?rel2= disjoint))

((?object= salinity area)(?rel= disjoint){?or= 1<2}(?or2= 2><1)(?rel2= during))
7object= shed)(rel= disjoint)(Tor= 1<2)(?or2= 1<2)(?rel2= disjoint))
Tobject= tree2)(Trel= disjoint)(?or= 1<2)(?or2= 1<2)(Trel2= disjoint))

(
(
(
(
(?object= road3)(rel= disjoint)(?or= 1<2)(Tor2= 1<2}(rel2= disjoint))
(
(
(
(
(Tobject= roadl)(?rel= disjoint)(Tor= 1<2)(Tor2= 1<2)(?rel2= overlaps))

(
(
(

4.3.2 Composite Queries

In this section we give examples of how composite queries are constructed from
simple queries. Logical operators {and, or, not} are used to logically connect
individual simple queries. Low level point queries are not given in this section.

Queryll: Is it true that the relationship between objects field and hedge is

during 1><2 along the x-axis and

disjoint 1< 2 along the y-axis
and that the relationship between object road3 and hedge is

disjoint 1>2 along the x-axis and

during 1><2 along the y-axis?
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Figure 4.4: An illustration of possible positions of the objects with relation
to the field and the road3 (Query 12). The actual relation between the field

and the road3 may not be known.

Result 11: True

P: (and field during-disjoint 1><2-1<2 hedge road$ disjoint-during 1>2-1><2
hedge)

P: Status: true

Queryl2: Find all the objects that have the relationship

during 1><2 along the x-axis to the object field, and

the begin point follows the begin point of the object field along the y-axis
and the object also has the relationship

during 1><2 along the y-axis to the object moad3, and

the end point of the object is before the end point of the object road3 along the

x-axis?

The query is depicted in Figure 4.4

Results 12: (disjoint, disjoint, hedge), (disjoint, disjoint, shed), (disjoint, disjoint
tree2)

P: (and field during-frel 1><2-1<2 Pobjects road3 Prel2-during 1>2-1><2 Pob-

Jects)

P: ((?rel2= disjoint)(7objects= hedge)(?rel= disjoint))
((?rel2= disjoint)(Tobjects= shed)(?rel= disjoint))
((Trel2= disjoint)(Tobjects= tree2)(?rel= disjoint))
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Figure 4.5: The possible position of the object and the object2 as described
in the composite query (Query 13).

(Jueryl3: Find the names of all the objects that have the relationships

during 1><2 along the x-axis

overlaps 1< 2 along the y-axis

to the object field, or have the relationship
disjoint 1>2 along the x-axis
during 1><2 along the y-axis

to object road$ (see Figure 4.5).

Result 13: (house, treel, tree2, shed, hedge), {salinity area, roadl)

P: (or field during-overlaps 1><2-1<2 ?object road3 disjoint-during 1>2-1><2
Zobject2)

P: (?object?= house) (Pobject2= treel) (Pobject2= tree2) (%object?= shed) (?ob-
Ject2= hedge) (Pobject= salinity area) (Pobject= roadl)

(Queryld: What are the objects that have the relationship

during 1><2 along the x-axis to the object field,

the begin point follows the begin point of the object field along the y-axis

or have the relation
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Figure 4.6: The possible position of object given with relation to field and
roadd (Query 14).

disjoint 1>2 along the x-axis

during 1><2 along the y-axis

to object road3 (see Figure 4.6)?

Result 14: house, treel, tree2, shed, hedge, (disjoint, hedge), (overlaps, salinity
area), (disjoint, shed), (disjoint, tree2), (overlaps, roadl).

P: (or field during-frel 1><2-1<2 ?object road3 disjoint-during 1>2-1><2 ?0b-
Ject)

P: {(?object= house))

(Tobject= treel))

(Tobject= tree2))

(Tobject= shed))

(Tobject= hedge))

(Tobject= hedge)(?rel= disjoint))
(7object= salinity area}(?rel= overlaps))
(?object= shed)(rel= disjoint))
(?object= tree2)(?rel= disjoint))

A
(
(
(
(
(
(
(
(
(

7object= roadl)(?rel= overlaps))

Compound queries can be nested. The following examples demonstrate how
compound queries may be nested inside each other.

Ctuerylb: What objects are
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Figure 4.7: The possible position of object given the two constraints de-

scribed by Query 15.

during 1><2 along the x-axis to the object field,

the begin of the object follows the begin of object field along the y-axis
but not

disjoint 1>2 along the x-axis

during 1><2 along the y-axis

to the object roadd (see Figure 4,7)7

Result 15: (overlaps, roadl), (overlaps, salinity area)

P: (and field during- Prel 1><2-1<2 ?object (not roadd disjoint-during 1>2-1><2
fobject))

P: ((?rel= overlaps)(?object= road1))

((?rel= overlaps)(?object= salinity area))

Queryl6: What are the objects that are either
during 1><2 along the x-axis
disjoint 1<2 along the y-axis

to the object salinify area and

disjoint 1>2 along the x-axis
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Figure 4.8: The possible positions of object as described in the query (Query
16).

during 1><2 along the y-axis

to the object roads

or has the relation
the A-Relation end along the x-axis
the A-Relation disjoint along the y-axis

to the object house (see Figure 4.8)7
Result 16: (1>2, 1<2 treel), (1<2, 1<2, tree2), hedge.
P: (or (and salinity area during-disjoint 1><2-1<2 Pobject road? disjoint-during

1>2-1><2 Pobject) house ends-disjoint Por-Zor2 ?object)

P: ((?object= treel)(Tor= 1<2)(?or2= 1<2))
((Tobject= tree2)(?or= 1<2)(?or2= 1<2))
((?object= hedge))

4.4 An Application

To demonstrate how the proposed multi-dimensional spatial reasoning system can

be applied, we present in this section an application from the area of Geographic
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Information Systems (GIS). GIS data is characteristically large (hundreds to mil-
lions of objects) and the position and shape of every object in the dataset is
precisely known. The spatial information is usually in the form of complex quan-
titative shapes but many systems also provide information about the bounding
boxes of objects (the extreme x and y coordinates of the objects) to assist in
accessing relational information about objects.

When designing a system for representing this GIS data, the types of in-
formation to be represented and the types of queries to be performed must be
considered. The particular types of problems that are the focus of this work are

when the information is quantitative but the types of queries are qualitative.
An example query: Show all the salinated regions that are on private land?

The information about salination and land ownership are common aspatial
information that may be associated with a dataset. The spatial component of the
query is much more ambiguous. What is the exact spatial relationship specified
by the relation “on”?

Using the system described in Chapter 3, a qualitative query may be con-
structed that will accurately describe a particular relationship. It also provides a
method of grouping queries according to the classifications. A large vocabulary
of queries may be constructed using the querying system described in Section 3.4.

An example real dataset and the types of queries that may be performed on

that dataset are presented as follows.

4.4.1 The dataset

The US Department of the Interior uses a file format called GIRAS to represent
some GIS datasets. We shall use a dataset’ in this format (Figure 4.9). The

GIRAS data format provides two pieces of information of interest:
e objects (regions) described by polygons, and
e the bounding boxes of these objects.

The information is quantitative in nature and thus all possible pairwise re-

! Available from http://edcwww.cr.usgs.gov/doc/edchome/ndedb/ndedb.html.
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Figure 4.9: GIRAS dataset from the US Department of the Interior: Land
usage in area of WILMINGTON, DE NJ PA.

lations between objects or bounding boxes are known. We shall remove the
quantitative information and represent only the bounding boxes of the objects
as a set of intervals, represented in terms of linearly ordered end points. Each
object in the dataset has been assigned a unique name to discriminate between

different objects.

4.4.2 GIS Queries

The amount data represented by the dataset is considerable. Looking at Fig-
ure 4.9 it is difficult to determine where one object ends and another starts. If all
the labels assigned to each object are included in the figure, it would quickly be-
come unintelligible. The options are to increase the size of the picture or provide

some sort of referencing system.
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i} axs disjoint-during 1<2-1><2 ?object

axs Tobject

ii) axs disjoint-during ?7a-1><2 7object

or Jobject axs

?object

iii) (and axs disjoint-during ??a-1><2 ?1 ?1 during-disjoint 1><2-1<2 ?object)

Tobject

Figure 4.10: Pictorial representations of sample queries

This type of problem reflects the difficulties inherent in large complex sets
of data. This section shows how the querying system allows information to be
extracted from the complex dataset (such as depicted in Figure 4.9). Based
upon one object in the dataset (azs), information is extracted about objects with
respect to the object azs.

The information about objects is represented in terms of bounding boxes
which can be represented as intervals (along 2 dimensions) which, in turn, may
be represented as a linear ordering of end points of intervals.

The following examples demonstrate the usage of the spatial querying system

on the sample dataset.
Example 4.1 Queries on the dataset
i) azs disjoint-during 1<2-1><2 ?object (depicted in Figure 4.10i)

x-axis: axs disjoint 1<2 Tobject = e(axs) < b(?object)
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axs

axt
avx

Figure 4.11: A relational depiction of the objects avz and azt to the object

azs. The 2D relation is disjoint-during 1<2-1><2.
y-axis: axs during 1><2 7object = b{axs) < b(?object) and e(axs) > e(?object)

By binding the results of a search for intervals whose begin points are greater
than e(axs) on the x-axis to 7object, a simple check can be made to see if any of
the intervals bound to Tobject satisfy the y-axis checks.

Answer: (avx, axt)

In this section we shall construct a figure that illustrates the relations queried
from the dataset. Each query will indicate the increase in knowledge about the
relations between objects. Figure 4.11 depicts the relationship of the objects avz

and azt to the object azs.

ii} azs disjoint-during ?%a-1><2 Pobject (depicted in Figure 4.10ii)
x-axis: axs disjoint ?7a 7object = e(axs) < b(?object) or baxs) > e(?object)
y-axis: axs during 1>< 2 7object = b(axs) < b(7object) and e(axs) > e(?object)

Binding all the results of the search for intervals whose begin points are greater
than the point e(axs) or whose end points are less than the point b(axs) to Zobject,
a simple check can be made to see if any of these intervals satisfies the y-axis
conditions.

Answer: (awc, axr, awd, axq, axp, axo, axl, bde, axm, awg, axj, axh, awi,
axg, axf, awj, axd, awk, axb, axa, awl, awm, awz, awn, awy, awv, awo, awr, aw(,

awu, awp, avb, aws, avx, axt)
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awc  axo axa gy axt

axr  axl awl gy avx
awd  bdec awm .4

axq axm AWZ .
awj

axp awg  awn
. axf

awu axj awy

awp axh awv awq

awi awo aws
avb

axg awr

Figure 4.12: A relational depiction of the objects that satisfy the 2D query

disjoint-during 7or-1><2,

Figure 4.12 shows the distribution of the objects given that we have already

established the relationship between azs and the objects avz and azt.
o

iii) (and axs disjoint-during ?%a-1><2 21 £1 during-disjoint 1><2-1<2 Pobject)
(depicted in Figure 4.10iii)

x-axis: axs disjoint 77a 71 = e{axs) < b(?71) or b(axs) > e(71)
y-axis: axs during 1>< 2 71 = b(axs) < b(?1) and e(axs) > ¢(71)

Binding all the results of the search for intervals whose begin points are greater
than the point e(axs) or whose end points are less than the point b(axs) to 71,
a simple check can be made to see if any of these intervals satisfies the y-axis
conditions.

and
x-axis: 71 during 1>< 2 ?object = b(?1) < b(7object) and e(71) > b(7object)
y-axis: 71 disjoint 1<2 ?object = e(71) < e(?object)

The bindings from the previous query are continued and these are checked

against the x-axis and y-axis conditions.
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awe  axo axa

axd
axr axl
awl awk
awd bde
awm
axq axm awz ) axt
awj
axp awg awn avx
axf

awn 2Xj]  awy
awp axh awv awq

awi  awo  aws

axg  awr \L

axs

avb

axy ayg azp bef
|\ &—— azq ayh bax ays ———smi
baw bav azw

1 [}
bax azs azx : :

Figure 4.13: All the objects that are during-disjoint 1><2-1<2 to the ob-

jects to which azs is disjoint-during ?%a-1><2.

Answer: (axy, azq, baw, bax, ayg, ayh, bav, azs, azp, bax, azw, azx, bef, ays,
awu)

Using this new information we can now illustrate the position of the objects
in Figure 4.13. This figure depicts the relative position of objects, not the actual
positions. Indeed we do not know the exact relation of the objects but we do

know what possible relationships they may have.

iv) azi Prelz-Prely Porc-fory azs

x-axis: axi ?relx Torx axs = b(axi) 7 b(axs), e(axi) 7 e(axs), b(axi) ? e(axs),

b(axs) 7 e(axi).

y-axis: axi 7rely 7ory axs = b(axi) 7 b(axs), e(axi) ? e(axs), b(axi) 7 e(axs),

b(axs) 7 e(axi).

Following the procedure given in Section 4.1.2 specific queries about point

relations can be used to determine the interval relation.
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What is the 2-D NS-Relationship between objects azi and axs?

Answer: (“relx= disjoint)(Torx= 1<2)(?ory= 1><2)(?rely= during)

v} (and axi 21-22 23-24 axs Pobject 71-22 93-2/ azs)

x-axis: axi 71 73 axs = b(axi) 7 b(axs), e(axi) ? e(axs), b(axi) 7 e(axs), b(axs)

7 e(axi).

y-axis: axi 72 74 axs = b(axi) 7 b(axs), e(axi) ? e(axs), b(axi) ? e(axs), b(axs)

7 efaxi).

See the above example and bind the solutions to the appropriate variables.

and
x-axis: 7object 71 73 axs
y-axis: Tobject 72 74 axs

Given the information about the A-Relations, Orientations and key point
relations for specific interval relations described in Section 4.1.1, bindings can be
made to the intervals that have the same relationship.

What objects have the same relationships to object azs as does object azi?

Answer: (axi, aik, aqm)

Figure 4.14 shows the objects which have the same relationship to the object
azs as the object azi. No relationship between the objects azi (or other objects
of the same group) and awc (or other objects of. the same group) can be derived
from this pictorial representation except with respect to their relationship to the
object ars. That is, the object axiis during 1><2 along the y-axis to the object

awc. There is no horizontal information except that both are disjoint 1< 2 to azs.

Lo4

From these queries, the information about several objects’ relationships to the
object azs have been established. More importantly, we can determine that they
are the only objects that have those relationships to azs (as represented in the
dataset). This method of querying provides a systematic and accurate method

of determining the relationships between objects in complex datasets.
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' aik D E axs

Figure 4.14: All the information about the objects that has been acquired

by five different queries.
4.5 Conclusion

For a simple problem, this chapter has demonstrated the entire process of repre-
senting information about objects and their spatial relations in terms of intervals.
These intervals are then represented in terms of a linear ordering of the end points
of these intervals. This can only be done for one type of dataset.

Examples of the methods for searching this representation using the spatial
queries of the previous chapter were given. This process involved breaking down
the interval queries into point queries and then generating interval solutions from
the results of these point queries. This process was performed on an artificially
generated dataset and a real GIS dataset.

The representation of intervals presented in this chapter (linear ordering) is
only appropriate for one simple type of representation problem. The next two
chapters (Chapters 5 and 6) describe more complex types of representations and

the methods introduced to represent them.
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Chapter 5

Primitive Interval
Representations where some

relations are unknown

The concept of progress acts as a protective mechanism to shield us from

the terrors of the future.

‘Collected Sayings of Muad’Dib’ by the Princess Irufan

In this chapter we expand the point-based system of representing intervals to
encompass the types of interval datasets where information about every pair of
intervals is not explicitly known but whenever interval relations are known they
are only primitive interval relations.

For a system performing closure on such a dataset, the construction process
would involve propagating information about interval relations that usually leads
to the creation of disjunctive interval relations. These disjunctive interval re-
lations are then used as a part of the construction process. Thus this type of
problem is usually grouped together with the problem of representing disjunctive
datasets.

For our non-closure based representation, this type of dataset provides an
interesting problem and we are able to provide an efficient method of representing
this type of information.

The system of linearly ordering points presented in the previous chapter is
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not applicable as the relationship between every pair of end points is not ex-
plicitly provided. Thus a graph-based representation will be used to represent
the point information. To minimise the cost of construction (space) and search
time, a method of minimisation will be used that requires low construction time
(Section 5.1).

Extracting point relations from this graph is the process of searching from
a given point for another point. An efficient method of search is presented in
Section 5.2.

The performance of the representation system with respect to a control is
presented in Section 5.3. A variety of different types of graphs are randomly
generated and a suite of searches performed on each of these graphs.

A discussion of the relevance of the interval representation presented in this

chapter is given in Section 5.4 and the conclusions in Section 5.5.

5.1 Graph-based Interval Representation

A primitive IR can be represented in terms of the relationships between end points
of the intervals in the dataset. When the relations between every pair of intervals
is not known (is not primitive and explicit), the linear ordering method of the
previous chapter cannot be used. We shall examine the alternative methods for
representing intervals and interval relations as points and point relations in a

graph.

5.1.1 Graph construction

The method of graph construction presented in this chapter takes a set of inter-
val relations and incrementally constructs a point-based representation. Every
interval relation is converted from its interval representation to an equivalent
point-based representation. The information about these point relations is then
added to the Point Graph (PG). The fact that the begin point of every interval
precedes the end point of the same interval is also added to the graph, i.e. the

begin point of interval A is less than the end point of the same interval (a < A).
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There are many alternative methods of modifying the above representation
to optimise a particular aspect of the access to or representation of the interval
information.

There are three main strategies that are commonly used. Closure minimises
the access time to the information at the cost of space and time to construct the
representation. Full minimisation reduces the amount of data used to represent
the information at the cost of access time to and the construction time of the
representation. Simply leaving the data as is, optimises the construction time and
results in variable access time and representation space. No single representation
is, or can be, optimal in all aspects.

Rather than constructing a graph using consistent data, random values are
used for each interval relation added to the graph. Consistency checks are then
performed to determine if the new interval relation to be added to the graph is
consistent with the information already represented in the graph. Thus the time
given for constructing the graph representation also includes the time taken to
determine the consistency of every interval relation with respect to the graph
before it is added. In order to determine the effectiveness of different methods
of representing interval information, a control dataset is created that represents
consistent information about interval relations in a graph upon which no modifi-

cations have been made.

5.1.1.1 Local minimisation

We propose a system of local minimisetion that has low, although not minimal,
cost for construction, storage space and search. Local minimisation is a variant
of full minimisation that provides significant savings with respect to the cost of
construction.

The method described in this section reduces the number of edges used to
represent the information about interval relations. When a new edge is added
to the representation, a check is made to see if any of the edges adjacent to
the new edge are redundant. These redundant edges are removed. The result

is a minimisation strategy that only checks areas local to the addition of the
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new information. Although this strategy does not guarantee the removal of all
redundant edges it does remove many of the edges at a much reduced cost when

compared to the full minimisation strategy.

Definition 5.1 A path of length x exists between two nodes, n; and n,, if there

exists ezactly = edges that may be used to form a sequence of edges that connect

n; and n;. i.e. a path of length 3 is {mng, nane, Men;}.

Definition 5.2 Two nodes, n; and n;, are adjacent with distance z if the shortest

path between n; and n; is of length z.

Definition 5.3 A graph G = (N, ¢) is locally minimised up to “n” if, whenever

a new edge (n;, n;) is added, all redundant edges of adjacency with distance up

lo n are removed.

The system of minimisation described hereafter uses an adjacency of one edge.
After adding ab to a partially constructed graph G, the following checks are
required:

Given a graph with points a and b that both precede a third point n, adding
an edge between a and b will make one of the current edges redundant (see

Figure 5.11).

ifAne N|an,bn € p= ¢ = — (an) (5.1)

Given a graph where a precedes some point n that precedes b then the addi-

tion of an edge between a and b will be redundant (see Figure 5.1ii).

if ImeN |an,nbe p=¢ =yp— (ad) (5.2)

Given a graph where points a and b are both preceded by a third point n,

adding an edge between a and b will cause one of the edges to be redundant.

if Ine N|na,nbep=y¢ =¢—(nb) (see Figure 5.17i) (5.3)

The algorithm for constructing a locally minimised graph of size 1 is as follows:

106



i) Removing the link an ii) removing the link ab iii) removing the link nb

Figure 5.1: Three different situations where the three different local min-

imisation rules are used when adding the edge (a, b).

Given nodes a, b € N when adding edge ab:

if not search(G, ba)
¥’ =+ (ab)
if 3neN|an,bnep= ¢ =p—(an)
if Ine N|an,nbeyp= ¢ =¢— (ab)

if In€ N |na,nbecyp=¢ =¢—(nb)

Algorithm 5.1 Adding an edge between nodes using the local minimisation rules.

5.1.1.2 An Example

Figure 5.2 helps illustrate the effect of local minimisation on a graph when new
edges are added to the graph. A new edge is added after a check of the current
graph is performed to see if the new information to be added would contradict
the current information in the graph. If no contradiction occurs, then the edge
is added and the local minimisation rules are applied.

In Figure 5.2i the addition of the edge EF causes two changes to be made
to the graph. Firstly the connection from e to F is removed as it is redundant
(Equation 5.3) and secondly, the actual edge FF' is removed (Equation 5.2) as it
is also redundant. The final graph is shown in Figure 5.2ii.

5.1.1.3 Analysis

Local minimisation does not eliminate a large number of the connections between

the nodes. The number of edges removed due to local minimisation is dependent
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i) before

1i) after

Figure 5.2: Addition of extra information using local minimisation.

upon the density of the graph (the number of edges). A locally minimised graph
normally contains redundant information i.e. it is not fully minimised.

The search for relations between nodes in a locally minimised graph differs
from the search algorithms used to search a fully minimised graph. Search algo-
rithms for fully minimised graphs can take advantage of the lack of redundant
edges in optimising their search. Locally minimised graphs cannot rely upon this

assumption as they may contain redundant edges. The presence of redundant
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edges will result in an increase in the number of possible search paths a search
algorithm must consider and thus the cost of the search would increase. Heuris-
tics may be used in the search process to reduce the cost of searching a graph
that contains redundant edges.

The problem of searching a graph with redundant edges is handled by a similar
mechanism for pruning the search space in a fully minimised graph. A fully min-
imised graph will have search convergences (multiple paths between two points)
and a search that keeps track of the nodes that have been previously searched
will reduce the number of possible search paths. A locally minimised graph will
have an increased number of search convergences compared to the equivalent fully
minimised graph and thus efficient handling of the convergence problem is more
significant.

A positive side effect of the increased number of redundant edges between
nodes is that, on average, the search will progress faster through the graph (by
skipping local areas). Figure 5.3 demonstrates an example where the search of the
locally minimised representation would be faster than the search of the equivalent
fully minimised representation. A fully minimised graph would construct a path
of length 5 between e and fwhereas a locally minimised graph (as in this example)
requires a path of length 2. The worst case search situation of local minimisation
is equivalent to full minimisation. The issues of density and connectivity will be

discussed further in Section 5.3.

5.1.1.4 Extending minimisation

Local minimisation is one method of organising the information about the rela-
tionships between points in the given graph. The choice of an adjacency value of
1 is only one possible method of local minimisation. For certain applications it
may be practical to spend more time on construction (adjacency > 1) to minimise
space. The cost of increasing the adjacency from 1 to 2 is significant. Given that
there are m edges for every node then the cost of maintaining an adjacency of
1 is (m x m — 1) checks per addition, and for adjacency 2 it is (m x m — 1) x

(m —1 x m— 1) checks per addition. The adjacency 2 check is the determination
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Figure 5.3: A search for the relationship af on a locally minimised graph
results in a search that follows the path abf whereas a fully minimised graph

(no bf) would require the search to use the path abedef.

i)

ii)
ahf, bfe, hgf, bfg
abe, acd, cdg, bec
ahg, hdg, cdh, adh

ace, cef, ecd, cdh

Figure 5.4: For the graph given in i) all the triples in which two of the

components are a distance of two or less links from “a” are listed in ii).

of all the triples that are two links or less from “a” (see Figure 5.4).
Full minimisation (or transitive reduction, see [1]) is equivalent to a local

minimisation with an adjacency of a number greater than the maximum path
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length between any two nodes. Thus full minimisation can be considered to be an
extreme type of local minimisation. The benefit of a system of local minimisation
with a low adjacency value over a system with a higher adjacency value is in time
of construction.

The construction time increases as the adjacency increases. The effect of

increasing the adjacency on search will be examined in the next section.

5.1.1.5 Construction costs

The construction time of a graph is dependent upon two factors: the time taken
to verify if the relation is already represented in the graph (constant time), and
the time taken to search if the inverse relation is true (one search). If neither is
true then a new edge can be added in constant time.

Once the new link has been added then local minimisation can be performed.
The three minimisation rules (Section 5.1.1.1) are applied with respect to the
adjacent nodes. The time taken to perform this is dependent upon the number of
nodes adjacent to the given two nodes. The number of adjacent nodes is depen-
dent upon the density of edges between the nodes and the size of the adjacency.
See Section 5.3 for an empirical evaluation.

The amount of space taken to represent the information using local minimisa-
tion falls between the actual number of edges to be represented and the minimum
number needed to represent the information. The exact performance of the sys-
tem will be evaluated in Section 5.3. The next section will examine the search

process.

5.2 Search

The representation of intervals and their relations described in this chapter pro-
vides a point-based representation of this information. Thus the search for inter-
vals and their relations can be translated into an equivalent search for points and

point relations.
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5.2.1 Point search

The search for (or query of) the relation between two points is a process of
determining if there is a path between the two points in the graph representation.
We provide algorithms for determining if there is a path between two points.
The most primitive operation is the search for a target point (destination
node) from a given start point (starting node} in the graph in a given direction.

The direction indicates one of two possible search strategies:
< - searching for a target point that precedes the given start point; and
> - searching for a target point that is preceded by the given start point.

Thus from a start point a search is performed for a target point in a given direction.

A version of a breadth first search is used, and the algorithm is outlined as follows:

pointsearch(Start_point, Direction, Target_point)
begin
current list = Start point
while not ( Target_point € current list)
new list = next(current list, Direction)
current list = new list

end

Algorithm 5.2 Searching for a Target point in the graph.

The function nexf returns the points adjacent (size 1) to the points that are
members of the current list in the given direction. A search for a particular point
in a given direction from a start point proceeds by creating a list of current points
(initially the start point) and searching from the points in the list of current points
in the direction indicated. A new point is added if it is linked in the given direction
from a point in the current list. Points are removed from the current list when
every link in the given direction, adjacent to the point, has been added to the
current list. The search continues until the target point is located (member of

the current list) or the current list is empty (not found).
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Using this primitive search algorithm any point relation can be found if there
exists a path between the start point and the target point in the given direction.
If the search for a target point (a) in a given direction (<) from a start point ()
is successful then a specific relation is true (a<?). Determining the point relation
between two points involves searching the graph to see if any of the three point

relations are true {a<b or a>b or a=b} (see Algorithm 5.3).

Given @, be N
ifa=15
return @ = b
else
if (pointsearch(e, <, b))
return a > b
else
if {pointsearch(a, >, 4))
return ¢ < b
else

return unknoun

Algorithm 5.3 FEstablishing the relation between two points “a” and “b”.

5.2.2 Costs

The search results depend on the dataset, that is, the number of nodes, the
number of edges and the order in which the information is added. There are two

extreme situations that occur in full minimisation:

1. A situation where n-2 nodes are ordered with respect to 2 nodes but not

with respect to each other (see Figure 5.5) is the highest number of edges

situation, where the number of edges is (n — 2) x 2 and the search time is

constant (maximum 2 edges away).

2. The lowest number of edges situation is a linear ordering of points. There

are n-1 edges in the system and the search time is: (n— 1) checks performed

for an unsuccessful search and n/2 (on average) for a successful search.
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Figure 5.5: A fully minimised graph where the number of edges is a maxi-

muin.

There are two extrema for a system of local minimisation with an adjacency of 1:

1. Highest number of edges. Imagine a system where random edges are added

to the system and the local minimisation rules are never needed. This
system continues to have edges added until no more edges may be added
without the local minimisation rules being used. This situation is the

highest number of edges case for local minimisation of adjacency of 1. The

number of edges is n?/4. The search time is, at most, the time taken to

search 2 edges (each node is at most two edges away from any other node).

2. Linear ordering (see above).

The relationship between the number of edges and the search time is not
linear. There is a worst case situation for the search where the number of edges is
high, but the level of connectivity is low [33, 63]. Thus when considering the costs
of search, the data being represented can have significant and complex influence.
The most expensive component of local minimisation is the search time. The
number of edges and nodes determine the search time. Section 5.3 will demon-

strate the effect of the number of edges and nodes on the search.

5.2.3 Search improvements

The presence of redundant edges increases the possible number of search paths in
the representation and thus the cost of performing search on the representation.
The very nature of the data being represented (intervals) and the way in which

the data is represented (points) provides opportunities for search efficiencies.
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5.2.3.1 History

The most obvious cost saving for breadth first search is removing the extra
searches due to different search paths converging to the same point. The sim-
plest method to keep track of the search progression is to keep track of the nodes
encountered as the search progresses.

We represent the nodes in a graph as the set N. Initially all members of the set
N are also members of the set of unmarked nodes UM. As the search progresses,
the encountered nodes are transferred from the set UM to the set M. At all times
the union of the set of unmarked nodes UM and the set of marked nodes M is
equal to the set of nodes N and M N UM = 0. If a search branch reaches a
node that is a member of the set of marked nodes M then the search branch is
discontinued.

Set membership can be efficiently determined by adding an extra boolean field
to the definition of a node: (name, searched?}. At the beginning of a search all
nodes have their “searched?” field set to false. As the search progresses nodes

encountered during the search have their “searched?” field set to true.

5.2.3.2 Begins and ends

'The points being represented are end points of intervals. This fact can be used
to reduce the search. The search for a path between two interval points may be
satisfied or terminated upon encountering the companion point for that interval.
For instance, since it is always true that the begin of an interval precedes the end
of the same interval, if the search in direction < for a begin point of an interval
encounters the end point of that interval then the search is satisfied because begin

point < end point.

5.2.4 Interval search

A search for an interval relation can be divided into point searches. Searching
for an interval relation is equivalent to searching for each of the point relations in
the conjunction that represents the interval relation. The search improvements

of Section 4.1 can be applied to reduce the cost of this search.
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Figure 5.6: The final graph from Figure 5.2.

Let us examine the process of determining the relationship between intervals
B and A in Figure 5.6.

The first step is to consider the relationships between the four significant point
relations between B and A: ba, bA, aB and BA. Searching the graph produces the
relations shown in Table 5.1 and the corresponding diagrammatic representation
1s shown in Figure 5.7. Note, that due to the factors discussed in Section 4.1.2,
only three of the point relations need to be checked to determine this interval
relation.

Let us now examine the relationship between intervals C and G in Figure 5.6.
Table 5.2 contains the relation between the end points of C and G.

The relations between ¢G and CG are not defined in the graph. Thus, there
is ambiguity and there are five possible relationships between the intervals C and

G (see Table 5.2).

Table 5.1: The results of the four point queries and the deductive result

between intervals B and A.

ba | bA | eB | BA Result

> > | < | > |disjoint 1>2
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A B

Figure 5.7: The relationship between intervals A and B.

Table 5.2: Point relation results for intervals C and G. Shows the intervals

that match.

cg | cG | gC| CG Results

> * | < | * | disjoint 1>2
meets 1>2

overlaps 1>2

during 2><1

ends 2<1

5.3 Test Results

In this section we shall demonstrate the performance of the local minimisation
system. The three components of the evaluation are the random generation of
the datasets, the control algorithm and the statistical methods for evaluating
algorithm performance.

The local minimisation method is not restricted to particular types of datasets.
Thus all datasets for evaluating the algorithms are generated using random tech-
niques. The method for constructing a graph is as follows:

Given a number of intervals (size), the end points of these intervals become
nodes (N) of a graph (G). Given a number of links to be added to each node
(initial density), each link is added if the link is consistent with the current
graph. This consistency is determined by checking to see if the converse of the
relation represented by the link to be added is true (i.e. for <, the converse is
>,=}. This check is performed by searching the graph to see if these relations
are true.

Using this method a control representation can be constructed. This control
represents the basic method of constructing a consistent graph and shall be used
to compare other methods with respect to the construction, the representation

space and the searching of the graph.
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The local minimisation algorithm differs from the above method of construct-
ing a graph by only one factor. After a new edge is added to the graph, a check is
made to see if the local minimisation rules come into affect. Edges are removed
from the graph according to the local minimisation rules.

This results section will focus upon providing a comparison between the con-
trol and local minimisation methods of constructing a graph.

Statistical analysis of the performance of these two methods requires that
randomised datasets be generated for a variety of different initial densities for a
number of different sized datasets. For each initial density of each different sized
graph, thirty datasets are generated.

The performance of each algorithm is judged by the time taken for construc-
tion, the time to search for point relations in the graph and the number of rela-
tions needed to represent the graph. The search time is the average time it takes
to determine the truth value of a point relation in the graph for 1000 different
searches. An individual search consists of randomly choosing two points and then
searching to see if a given relation is true for those two points. The averages for
construction time, search time and the number of edges from the thirty datasets
represent a statistical evaluation of the algorithm’s performance.

A local minimisation algorithm will use an adjacency of 1.

5.3.1 Data

The following results were obtained using a SG R4400 processor using a program
written in C++.

The results have been generated for the control and local minimisation for
four different sized graphs, with a variety of different initial densities.

The four data sizes are 100 intervals (200 points) given in Table 5.3, 200
intervals (400 points) given in Table 5.4, 300 intervals (600 points) given in Table
5.5 and 400 intervals (800 points) given in Table 5.6. In each case averages {of

thirty datasets) are given for construction time, number of edges and search time.
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Table 5.3: Results for data size 200 (100 intervals).

Control Local Minimisation
initial || construction | number | search time || construction | number | search time
density | time (secs) | of edges (secs) time (secs) | of edges (secs)
10 8 2135 3.5 8 1217 31
20 18 3424 4.2 18 1295 3.2
30 29 4457 4.1 27 1307 3.5
40 34 5097 4.4 37 1325 3.4
50 41 5789 4.0 47 1325 3.4
60 49 6354 4.0 55 1323 3.6
70 56 7054 3.8 66 1322 3.4
80 63 7742 3.6 76 1292 3.5
90 71 8351 3.5 87 1281 3.5
100 71 8609 3.4 96 1285 3.6
110 75 8986 3.3 108 1219 3.6
120 80 9245 3.3 115 1290 3.5
130 86 9934 3.1 127 1255 3.6
140 89 9961 3.2 137 1229 3.5
150 89 10368 3.1 144 1211 3.4

5.3.2 Analysis

The analysis of the performance of the local minimisation against the control

algorithm is made by comparing the construction time, search time and the num-

ber of edges of each algorithm over a number of different sized graphs and for a

number of different initial densities. Such an analysis follows.

5.3.2.1 Construction

The construction time is the time taken to construct a graph of a given size with

a given initial density. The process of construction begins by creating a number

of nodes and then adding links between these nodes. The addition of a link to the
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Table 5.4: Results for data size 400 (200 intervals).

Control Local Minimisation
initial || construction | number | search time || construction | number | search time
density | time (secs) | of edges (secs) time (secs) | of edges (secs)

10 53 4569 10.4 54 3166 10.5
30 200 10794 16.6 192 3762 12.0
50 364 15717 16.8 326 3887 12.3
70 484 19252 16.2 454 3962 12.3
90 663 23962 14.8 570 4106 12.3
110 688 25538 14.9 701 4026 12.4
130 873 29926 14.2 877 3740 12.2
150 909 31998 13.2 1007 3592 12.0
Table 5.5: Results for data size 600 (300 intervals).

Control Local Minimisation
initial || construction | number | search time || construction | number | search time
density || time (secs) | of edges (secs) time (secs) | of edges (secs)

10 184 7013 23.0 160 5419 20.6
30 831 18106 38.9 723 7222 25.1
50 1694 28356 52.7 1325 7063 27.3
70 2504 37781 37.8 1941 6770 27.8
80 3225 46230 35.9 2551 6471 28.6
90 3910 54198 33.7 3106 6243 28.4
110 4430 60708 35.8 3666 6126 28.0
130 5239 68594 31.0 4323 6037 28.2

graph requires that a check be performed to determine if the new link contradicts

the current graph representation. This check is a search of the current graph to

see if a relation exists that contradicts the relation to be represented.
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Table 5.6: Results for data size 800 (400 intervals).

Control Local Minimisation
initial | construction | number | search time || construction | number | search time
density || time (secs) | of edges (secs) time (secs) | of edges (secs)
10 385 9430 39.3 355 7678 35.6
30 1807 24791 75.5 1702 11030 44.3
50 3976 38709 79.8 3275 11060 47.5
70 5942 51961 74.8 4886 10657 48.6
90 8117 64721 75.7 6473 10427 50.2
110 10398 76463 69.0 8053 10045 50.3
130 12133 889552 65.5 9545 9870 51.5

An algorithm may also include the modification of the graph representation.

Local minimisation requires that the adjacent nodes be checked for redundant

links.

The construction times for both local minimisation and the control are given in

Figure 5.8. The y-axis represents the construction time and the x-axis represents
the initial density.

Each of the graphs demonstrates that the construction times for both local
minimisation and the control are similar. For the graph of size 100, the construc-
tion times for the control are consistently below those for local minimisation. For
the graph of size 400, the reverse is true.

It would be expected that local minimisation be consistently more costly to
construct than the control, considering the extra checks involved for local min-
imisation. The behaviour of the control and the local minimisation algorithms
can be explained in part by the existence of a search process in the construction
algorithm. This search performance will change along the patterns indicated in

the section on search (Section 5.3.2.3).
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Figure 5.8: The relationship between the construction times of the control
and the local minimisation are given for the four datasizes (intervals) at

different densities.

5.3.2.2 Number of edges

For the control algorithm, only consistency checking affects the number of edges,
whilst for the local minimisation algorithm the reductions caused by the local
minimisation rules are also a factor.

Figure 5.9 and Figure 5.10 depicts the relationship between the number of
edges in the local minimisation representation against the number of edges in the
control. The graph gives the values for four different sized datasets where the
y-axis represents the the number of edges in the locally minimised graph and the
x-axis represents the number of edges in the control. Each data plot indicates the
averages for the control and local minimisation number of edges that are derived
from graphs that have the same initial density.

The pattern that emerges for the comparison of the four different size datasets
graphed is that there is a peak point for the local minimisation. Preceding that
point the gradient is relatively sharp and after the point the gradient decreases

more slowly. The explanation for this behaviour is based around the concept of
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the critical density of a dataset. When the number of edges in a dataset reaches
a particular value, the local minimisation rules begin to have a substantial affect
on the number of edges used to represent the information. The critical value is
based upon the number of edges in the graph and the size of the graph.

The local minimisation rules are not used heavily when the number of edges in
the graph is low (sparse)}, but once the number of edges reaches the critical value
the rules begin to have a significant effect on the total number of edges present.
This effect increases and will continue to increase until it is a fully minimised
graph. The issue is further complicated by the effect of connectivity (see the next

section).

5.3.2.3 Search times

A search is the time taken to determine the truth of a given relation between two
points in a graph. For this evaluation, the search points are selected randomly
from the set of nodes of the graph. The relation to be tested between these two
points is also randomly selected. The point relationship represented by these two
random points and the random relation is checked by searching for that relation
in the graph.

For each dataset generated for each initial density for each size, 1000 searches
are performed. The average search time for performing 1000 searches for thirty
datasets is used to indicate the search performance.

Given an initial density, we compare the search times for the two methods of
representing the information (control and local minimisation) for four different
data sizes in Figures 5.11, 5.12, 5.13 and 5.14. The initial density is given along
the x-axis and the search time is given along the y-axis. '

The above mentioned graphs depict the search time with respect to the initial
density of the graph. Figure 5.15 depicts the search time against the actual
number of edges in the graph. In this graph the behaviour of the search time for
the locally minimised graph is consistent with the pattern depicted in the control
graph. The locally minimised graph uses a low number of edges to represent

information {and the subsequent low search time) whereas the control steadily
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increases the number of links.

Of particular interest is the behaviour of the control graph as the initial density
increases and thus the number of edges in the graph increases. By examining
this behaviour, we can compare the overall performance of the locally minimised
graph and the control. It will also provide insights to the patterns indicated in
the empirical data.

The relationship between the search time and density (number of edges per
node) can be explained in terms of connectivity [33, 63]. The connectivity of a
graph is the level of interconnection of the nodes in the graph. A graph with low
connectivity is one where the average shortest path between each pair of nodes
is high. Conversely, a graph with high connectivity is one where the average
shortest path between nodes is low.

The time taken to perform a search is dependent upon two factors. The
increase in the density of the graph indicates that there are more paths to follow
and thus increases the search time. The increase in connectivity of the graph
indicates the length of the path between two points is decreasing. As the length
of the path between any two nodes decreases then the time taken to traverse this
path will decrease.

The behaviour of a search in a graph will depend upon the connectivity of the
graph and the density of the graph. An indication of the behaviour of the search
can be determined by examining four different extreme situations that may occur.

Qualitative terms are used to indicate the connectivity and density of the
graph. For conmectivity, high indicates the average size of a path is approaching
1 or 2 links. Whereas low indicates the average size of a path is approaching
(n — 1) links, where n is the number of nodes in the graph. Similarly, density
is low when the total number of links in the graph is similar to the number of
nodes. Density is high when the total number of links in the graph is approaching
(n x n — 1), where n is the number of nodes in the graph.

Three of the four extreme situations are:

e The density is low and the connectivity is low; leading to good search

performance as there is low number of paths to follow.
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e The density is high and the connectivity is low; leading to poor search

performance as there are many long paths to follow.

e The density is high and the connectivity is high; leading to good search

performance as the many paths but those paths are short.

The final situation where the connectivity is high and the density is low will
not often occur as the situation represents an unlikely event, i.e. given the few
links present they lead to a highly connected graph.

For each of the four graphs 5.11, 5.12, 5.13 and 5.14 the control follows this
pattern. As more edges are added to these graphs their density and connectivity
would increase until constant search time would occur (as every node would be
linked to every other node, closed).

In contrast, the number of edges in a locally minimised graph decreases as
the number of edges added to the graph increases (due to the effect of redundant
adjacent edges being removed). The locally minimised graph approaches full

minimisation as the number of edges added to the graph continues to increase.

5.3.2.4 Summary

In this chapter, we have introduced the concept of local minimisation as a method
for providing an efficient means of representing information about point relations.
To demonstrate the effectiveness of our system, the performance of the local min-
Imisation system was compared to a control. In both the control and the local
minimisation systems, the costs of determining the consistency of the represen-
tation were included in the construction costs.

For a number of different sized and density datasets we have demonstrated
(using empirical data) the performance of the locally minimised system. This
performance was judged by three criteria: the construction time, the number of
edges in the graph and the search time. To determine the local minimisations
behaviour with respect to the construction time, the representation space and the
search time, a comparison of the performance of the local minimisation system is

judged purely in terms of its comparative performance to that of the control.
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(x-axis) and the search time (y-axis) for the control and locally minimised

graphs of sizes 200, 400, 600 and 800.

Our analysis of the local minimisation strategy indicates how the system re-
duces the number of edges needed to represent the information. We have shown
that the construction time of the local minimisation strategy is of the same order
as the control. The number of edges used to represent the information is near
minimal (approaches minimal as the number of edges added to the representation
is very dense). Thus the search time to determine a point relation in the local
minimised representation is comparable to a fully minimised representation.

When choosing a balance between construction time, representation space and
search time, local minimisation provides low construction costs and representation
space with an adequate performance for search time. This adequate performance
is based upon it being more effective than the control except when the control is
very dense {closure).

Our system of local minimisation provides a minimisation system that has
nearly the same costs for representation space and search time as full minimisa-
tion. The system does not require exhaustive checks to construct the representa-

tion and thus the construction time is very low (same order as the control).
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There are several motivations for providing a comparative analysis of the
performance of our local minimisation strategy over providing upper bounds of
the “performance”.

Upper bounds provide an extreme upper limit for the algorithm but do not
indicate either the lower bound or the average performance of the algorithm. The
type of data used for the algorithm may greatly influence the performance of the
algorithm making the upper bound values irrelevant. Indeed, for the problem
given in this chapter, the performance of the algorithm is driven by the data
(density and connectivity). The structure of the data significantly influence the
performance of the system.

Evaluations of the performance of the alternative systems (Allen [76]) rely
upon consistent data. The costs of generation of this consistent data is omitted
from the results and provides an artificial evaluation of the closure and non-closure
based systems. Determining consistency is a significant part of the problem. Thus

the costs should also be indicated.

5.4 Discussion

In Chapter 4, it was shown that a linear ordering of end points may be used to
accurately represent interval relations for the problem where all interval relations
were primitive and every relation was explicitly known. This chapter has extended
this notion of a point-based representation to encompass problems where intervals
are primitive but may not all be explicitly known.

One of the significant benefits of the closure-based representation is that a
minimal labelling of all interval relations could be constructed. This minimal
labelling provides the least ambiguous interval relation for each interval relation
with respect to every other relation in the representation. Thus every other
interval relation and consequences pertaining to those relations would be used to
determine the minimal label for every interval relation in the representation.

The locally minimised point-based representation does not propagate informa-
tion during construction. All propagation is performed during the search process

for determining the relationships between points. The paths used by the search
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mechanism represent the process of utilizing other relations information to pro-
vide information about this point relationship.

The search mechanism will continue to search for a path between two points
until one is found or until it is determined that no possible path exists between
the two points. Once the relationships between all four key end points for an
interval relation have been determined (being either a point relation or unknown),
the interval relationship is minimal. There are only 29 possible relations (see
Table 5.7) that may be derived from the possible combinations of four point
relations having the values {<, >, =, *}, where * represents the unknown relation
or a relation that does not affect the overall interval relation.

Twenty-seven of these relations correspond to the relations derivable from
primitive interval relations as given in Allen’s Transitivity Table [2]. This provides
a theoretical foundation for the derivation of the relations Allen has generated
for his table. There are two relations (indicate special in Table 5.7) that are
exceptions as they may be derived from primitive point relations but not via the
direct propagation given in Allen’s Table.

Indeed, closure of this representation can be constructed by determining every
relation between every pair of interval relations. Given that the search time to
determine these relations is polynomial, a restricted algebra that corresponds to
the 29 relations given above has polynomial closure.

The restricted algebra represented by this problem is small, it represents one
type of interval representation. Qur point-based system does provide an efficient
solution to representing and querying the information about interval relations
(with respect to the restricted algebra). The main objective of this chapter has

been to introduce the concepts that shall be discussed further in the next chapter.

5.5 Conclusion

This chapter has focused upon the problem of representing sets of intervals where
every interval relation between a pair of intervals may not be explicitly known
and those that are known are primitive interval relations. A graph-based method

of representing the end points of intervals and their relations is used to provide
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Table 5.7: Twenty-nine valid relations

Interval Relation

Conjunction of PRs

ab

aB

bA

AB

Special

disjoint 1<2

disjoint 1>2

meets 1 <2

ALYV A

1)

meets 1 >2

overlaps 1 < 2

overlaps 1 > 2

during 1><2

during 2><1

AV IV IAIV ATV IA

ends 1<2

ATV ATV IAIVIATY A

ends 1>2

A%

ends 2<1

A

ends 2>1

Il

A

equal

I

{disjoint 1<2, meets 1<2, overlaps 1<2}

*IA A (AIANIAIAIAIA|ATA

{disjoint 1<2, meets 1<2, overlaps 1<2,

during 2><1, ends 2>1}

* | A

ANANIANIAN AN IAIAITANTAITALTA

*

N A

{disjoint 1<2, meets 1<2, overlaps 1<2,

during 1><2, ends 1<2}

{disjoint 1<2, meets 1<2, overlaps 1<2,
overlaps 1>2, during 1><2, during 2><1,

ends 2>1, ends 1>2, ends 2<1, ends 1<2,

equal}

{disjoint 1>2, meets 1>2, overlaps 1>2}

{disjoint 1>2, meets 1>2, overlaps 1>2,

during 2><1, ends 2<1}
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Table 5.7: Twenty-nine valid relations (cont.)

completely unknown

Interval Relation Conjunction of PRs | Special
ab|aB | bA | AB
{disjoint 2>>1, meets 1>2, overlaps 1>2, 1l <] >
during 2><1, ends 1>2}
{disjoint 1>2, meets 1>2, overlaps 1<2, R B P * Y
overlaps 1>2, during 1><2, during 2><1,
ends 2>1, ends 1>2, ends 2<1, ends 1<2,
equal}
{overlaps 1<2, overlaps 1>2, during 1><2, *l < | < *
during 2><1, ends 2>1, ends 1>2, ends 2<1,
ends 1<2, equal}
{overlaps 1<2, during 2><1, ends 2>1} *l<l <] <
{overlaps 1<2, during 1><2, ends 1<2} < | < *
{overlaps 1>2, during 2><1, ends 2<1} > | < | < *
{overlaps 1>2, during 1><2, ends 1>2} Pl | < | >
{ends 2>1, ends 1>2, equal} =| * | * *
{ends 2<1, ends 1<2, equal} G R B B
* ¥ * *

an efficient method of representing and retrieving this interval information.

Local minimisation provides a cost effective method for reducing the amount

of data required to represent an equivalent amount of information to that of the

control. With regards to construction costs, local minimisation is equivalent to

the control, there is a minimal decrease for larger datasets (see Figure 5.8). The

search performance of this representation approaches that of a fully minimised

system.

This method can be applied to any interval representation whose interval re-

lations can be reduced to point relations. For a system using four end point

relations (conjunction) it is able to represent twenty-nine different interval rela-

tions, twenty-seven of which directly relate to the deductions performed in Allen’s
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transitivity table [2].

In the next chapter we shall increase the expressive ability of our graph-based
representation by allowing disjunctions between point relations to be represented.
This will allow the representation of an increased number of interval relations,
and also the representation of sets of intervals where the relation between every

pair of intervals may not be known and those that are known may be disjunctive.

134



Chapter 6

Disjunctive Interval

Representations

The butterfly counts not months but moments,
And has time enough.

Rabindranath Tagore

To increase the expressive ability of the system described in the previous
chapter, we introduce the concept of being able to represent disjunctions of point
relations and disjunctions of conjunctions of point relations.

This provides us with the ability to represent interval relations that are dis-
junctions of primitive interval relations. Thus allowing the representation of sets
of intervals where the relationship between every pair of intervals may not be
known and those that are known may be disjunctions of primitive interval rela-
tions.

Our method of representing disjunctions of intervals as disjunctions of con-
junctions of point relations (where the conjunction of point relation corresponds
to a primitive interval relation), allows the possibility of representing disjunctions
of point relations that do not correspond to any interval relation. Thus the so-
lution presented here not only has the expressive ability of Interval Algebra but
also relations beyond that algebra [28]. We shall restrict ourselves to the discus-
sion of the problem of representing disjunctions of intervals using disjunctions of

conjunctions of end points.
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We begin by defining these disjunctive relations and demonstrating how they
are to be represented and integrated into the graph-based representation intro-
duced in the previous chapter (Section 6.1).

The introduction of disjunctions causes serious complications with respect to
the search process. A search may only proceed if issues of disjunctions are ac-
counted for. The results of the search may provide multiple alternative solutions,
with which there is room for significant efficiencies (Section 6.2). We examine
effectiveness of our representation and the search in Section 6.3 to demonstrate
the utility of the system presented in this chapter.

Section 6.4 compares the performance of the disjunctive representation against
the system of the previous chapter for a variety of different densities of disjunc-
tions. A summary of the significant issues of this chapter is presented in Sec-

tion 6.5 and conclusions in Section 6.6.

6.1 Disjunctive Relations

A disjunction of interval relations expresses the uncertainty about the relationship
between two intervals. The disjunction contains a list of the primitive relations
that may be true for a pair of intervals. Ounly one of these primitive interval
relations is true, thus the disjunction is an exclusive-or. Each of the interval
relations in the disjunction may be represented as a conjunction of point relations.

Thus each disjunction is represented in disjunctive normal form (DNF) as:
(point-rel;; A ... A point-rely,,) V (point-rel,; A ... A point-rel,, )

Given a disjunctive interval representation, our aim is to determine the exis-
tence of those relations between intervals that rely upon consistent information.
This is achieved by organising the information about the disjunctions of interval

relations such that inconsistencies can be easily identified.

6.1.1 Weak links

To represent these disjunctive interval relations we shall extend the graph repre-

sentation introduced in the previous chapter. The nodes of this graph represent
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the end points of intervals, and the edges between nodes represent the relations
between end points.

When a relation between two intervals is represented by a single primitive
interval relation then this relation is absolute. Hence the point relations, repre-
senting the interval relation, could be directly added to the graph. Such edges
can never be removed, and henceforth these types of links shall be called solid

links.

Definition 6.1 A solid link is a monotonic binary relationship. A solid link is

of the form (n;, n;} where n; and n; represent nodes, and n; precedes ;.

The information represented in a disjunctive interval relation represents the
alternative interval relations that may hold for a given pair of intervals. The
uncertainty of a disjunction means that one, and no more, of the disjuncts holds.
In other words, the other disjuncts will be considered false when one disjunct
is proven. Thus the information represented by the respective point relations is
uncertain. If we add the respective links to the representation for every disjunc-
tion, some of them will need to be removed when the uncertainty is resolved. To
distinguish between the monotonic and nonmonotonic links, we introduce weak
links to represent nonmonotonic relations, whereas solid links are used to express

monotonic relations.

Definition 6.2 A weak link (n;, n;, conj) is an edge that represents a nonmono-
tonic relationship between two points represented by nodes n; and n;, and conj

represents the conjunction (of point relations) associated with the weak link (See

Figure 6.1).
For example, the disjunctive interval relation:

(A disjoint 1<2B V A disjoint 1>2 B)
1s represented in terms of its point relations

(a<bha<BAb>AANA<B)V{a>bAa>BAb<AANA> B)
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Figure 6.1: The relationship between the disjunction and the entries in the

Weak Link

graph.

Each point relation is associated with a weak link in the graph depicted in Fig-
ure 6.2. A symbolic representation is given for the conjunction to relate the
individual weak links to the conjunction.

The augmented graph containing disjunctions is defined as follows.

Definition 6.3 The Disjunction Graph DG = (N, ¢, 8) is a triple where N is

a set of nodes (all end points), ¢ is a set of pairs {n;, n;) defining a mapping
between the nodes and solid links where n;, n; € N, and 0 is a set of triples {n;,

ny, conj) indicating the mapping on nodes imposed by the weak links.

6.1.1.1 Adding weak and solid links

The addition of weak and solid links is dependent upon what information is
currently represented in the graph. The following indicates what checks must be
performed when adding weak or solid links.

A solid link indicates that the relationship between the two points is known.
If any weak links exist between these two points then these weak links must be
removed from the graph, as they are either proven or disproven by the relation
associated with the solid link.

The algorithm to add the solid links to the graph is given in Algorithm 6.1.
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Figure 6.2: The representation of weak links in a graph. The links indi-
cate the relation “less than” and the weak links are labeled to indicate the
disjunct to which they belong i.e. o to indicate A disjoint 1>2 B and 3 to
indicate A disjoint 1<2 B.

The effect of removing a weak link (proven or disproven) to the disjunctions is

discussed in Section 6.1.2.

if = ({(a, b) € ) then {search for a solid link }
if — (pointsearch(a, <, b) & a = b then  {search for a contradiction }
begin
py=¢+(ab) {add a link}
foreach { a, b, conj)) € ¢ {remove proven weak links}
8§ =0—(a,b, cong)
foreach (b, a, conj}) € 8 {remove disproven weak links}
#=6—{b,a, conj)
end

Algorithm 6.1 Adding a solid link

To add a solid link between two nodes in a graph, a check must be made
to determine if the actual solid link between those two nodes already exists. A
search is performed to determine if a solid path (a path made of only solid links)
exists that contradicts the new link to be added. If neither are true, then the solid
link is added. The addition of the solid link may make weak links redundant.
A check is made to see if the weak links between the two nodes (to which the
solid link is being connected) are proven or disproven. The local minimisation

procedure of the previous chapter is then performed on the solid links. This check
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of the weak links does not remove all possible redundancies caused by adding a
solid link. This will be discussed further in Section 6.2.5.

Adding a weak link to a graph (Algorithm 6.2) can have no other direct effect
other than the weak link that is being added being proven or disproven (that
the relation is proven or disproven by the information already represented in the
graph). Before a weak link can be added to the graph, a check is made to see
if the relation is already represented in the graph (search the graph to see if the
relation already holds). A similar check must be made to see if the current graph

contradicts the weak link (search the graph for the contradictory relation).

Given weak link (a, b, conj)
if - (pointsearch(a, b, >)) then {check if no solid link}
if - (pointsearch(a, b, <} or a = b) {check if contradiction}
¢ =8 + (a, b, conj} {add new weak link}

Algorithm 6.2 Adding o weak link between two nodes

Consider the examples in Figure 6.3.

Nodes, representing two different points, may be proven to be equal. Two
such nodes are combined into one node (representing two or more end points).
This is only possible if no solid link (or path of solid links) exists between these
two nodes, otherwise this would contradict the equality relation. The solid links
and the weak links of each node are redirected to the combined node. Any con-
tradiction that results from combining the solid links indicates that an overall
contradiction has occurred. Weak links may be proven or disproven as a conse-
quence of making the two nodes equal. This in turn may cause other weak links
to become proven or disproven. This may cascade to cause other pairs of nodes
to be made equal. Contradictions are avoided by removing the initial relation

that lead to the contradiction.

6.1.2 Disjunction resolutions

‘There are several situations where the information represented by the disjunc-

tions may be modified by the addition of new information to the representation.
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i} a weak link is added between nodes a and ¢ after a check is made
to see if a strong path exists between these two nodes

® K»@
D
® ®

ii) the weak link between a and b cannot be added
because a solid link already exists between these two nodes

solid link

© @\ ©
BN -~ -+ weak link
® ®

iii} the weak link between a and c is removed because
the new solid link makes it redundant

Figure 6.3: Adding links to a network. i) A weak link is added between a
and c¢; ii) A weak link is not added between a and b; and iii) A weak link is

replaced by a solid link between a and c.

There are three significant events that may occur: a weak link being proven, a
weak link being disproven or a new disjunction being added. These three events
may cause other situations to occur i.e. a disjunction being proven or disproven
(contradiction).

6.1.2.1 Removing point relations

The rules used to determine the effect of proving or disproving a weak link are
based upon the disjunctions. There are two assumptions underlying the repre-

sentation of disjunctive relations:

e Every disjunction must be true (or there is a contradiction)

e The disjunctions are represented in just-one disjunctive normal form.
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A conjunction of point relations represents a single interval relation. The
maintenance of each conjunction during the graph construction process follows
the logical properties of conjunctions. Proving one point relation causes that
point relation to be removed from the respective conjunction, and the conjunct’s
respective weak link is removed from the graph.

Disproving a point relation causes the entire conjunction to be removed from
the disjunction, and each conjunct’s respective weak links in the graph are also
removed.

For example, the effect of proving or disproving the relation d on a disjunction
is shown below:

if ((and)V(cAd)V(eAF)A-d= ({aAb)V (eA f)),

the relation (¢ A d) is removed as d is disproven.

However, if (a AB)V (cAd)V(eAFAd = ((aAb) VeV (eAf)),

then d is proven but ¢ is not removed.

As we are dealing with disjunctions that have “exclusive or” properties, when
an interval relation in the disjunction is proven (each element of the conjunction
is true), it is removed from the disjunction and every other interval relation of
that disjunction is disproven (the conjunctions and their respective weak links).
Removing all the elements of a disjunction causes a contradiction to occur (all
disproven). It is assumed that one of the elements of the disjunction is true,
and if none are true then the disjunction is contradictory with respect to the
representation.

One property of the combination of the disjunction of interval relations and
their conjunction of point relations is the proving of common elements of the
conjunctions in a disjunction {Distributive Law). If a particular point relation is
true for all the interval relations (conjunctions) of a given disjunction, then that
point relation can be added to the graph as a solid link. If this point relation is
false then the entire disjunction would be false, and thus a contradiction would
OCCUL.

The distributive law can be used to prove relations to be true:

(lernb)V(enc))=aAn(bVe)
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a is true for both conjunctions, thus it is proven.

If ‘A’ is false then the disjunction is false and so a contradication exists.

6.1.2.2 Adding disjunctions

The addition of a new disjunction requires that weak links are added to the graph
to represent the point relations of the disjunction. If a disjunction already exists
that shares the same pair of intervals then the intersection of the two disjunctions
is determined. This intersection now represents the relationship between the two
intervals.

For example:

A {disjoint 1<2, meets 1<2, overlaps 1<2} B N
A {disjoint 1<2, meets 1<2, during 1><2} B =
A {disjoint 1<2, meets 1<2} B

6.1.3 Disjunction Table

The weak links used to represent the point relations of a disjunction provide only a
partial representation of the disjunction. They represent only the point relations
and the conjunctive associations between the point relations. A disjunctive table
is used to represent the relationship between the conjunctions and organising
point relations with respect to their conjunctions.

This information is also used to restrict the search process such that informa-
tion about interval relations cannot be constructed using relations from different

conjunctions of the same disjunction.

Definition 6.4 A disjunction of interval relations is represented by a disjunc-

tion of up to 13 unique primitive interval relations as follows:
Disjunction of interval relations = (interval relation,V ... Vinterval relation,),

n< 13

Definition 6.5 A Disjunction Table (diable) is a collection of disjunctions of

interval relaiions.
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Disjunction Table = [(Disjunction of interval relations)

(Disjunction of interval relations),

{Disjunction of interval relations),,]
A diable is used to represent all the disjunctions used in a representation.

For example, if the relationships between intervals A & B and A & C are
given by:
1) (A disjoint 1<2B V A disjoint 1>2B)
i) (A disjoint 1<2 C Vv A overlaps 1<2 C),

the respective dtable contains the following:

(a<bAa<BAbD>AANA<B)V{a>bAa>BAb<AANA> B)(61)

(a<cha<CAc>ANA<C)V(a<cha<CAc<ANA<O) (62)

Upon this structure the disjunctive rules may be applied. Every point relation
in every conjunction of every disjunction will have an equivalent weak link in
the graph. Searches for the relationship between two points use the dtable to

determine if the path is reliant upon inconsistent information.

6.2 Search

The process of establishing the relationship between two intervals becomes the
process of determining the relationships between the significant pairs of end points
of the two intervals (see Chapter 4.1).

In our graph-based representation, determining the relationship between two
end points is the process of conducting a search of the graph to determine if a path
exists between the two end points. There are two situations that lead to inconsis-
tency for path construction that must be avoided. The first situation occurs when
the point relations used to construct that path are weak links that represent point

relations from different conjunctions of the same disjunction (see Section 6.2.1).
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And the second situation, where the point relations used to construct the path

are directly inconsistent with respect to each other (see Section 6.2.5).

6.2.1 Inconsistency via disjunctions

There are restrictions on which point relations may be used to construct paths
as defined by the disjunctions of interval relations (dtable). It is the inability of
Point Algebra to restrict the usage of point relations from different conjunctions
of the same disjunction that prevents Point Algebra from accurately representing
Interval Algebra.

For instance, the relations A disjoint 1<2 B and A disjoint 1>2 B would be

represented as the conjunctions 6.3 and 6.4 respectively.

(a<bAha<BAb>ANA< B) (6.3)
(a>bAa>BAb<AANA>B) (6.4)

The two alternative orders, defined by the above examples, are illustrated in
Figure 6.4. Without restrictions on the use of the point relations (as used with
Point Algebra), a disjunction of these two relations would allow the following

combination of relations to be deduced:

(e<bAa<BAb<AAA<B).

This conjunction of point relations implies that the interval relation A over-
laps 1<2 B is true, which was not the intended statement of the disjunction: A
disjoint 1<2B V A disjoint 1>2 B.

The Point Algebra representation allows for relations to be deduced that were
not intended to be represented. Thus the representation allows for the deduction
of relations that are inconsistent with what was intended to be represented.

To prevent this situation from occurring we use the dtable to restrict the
point relations that may be used to construct a valid solution to a point query. By

recording the conjunction of every weak link used to construct a path, we are able
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- = conjunction 6.3

— conjunction 6.4

Figure 6.4: The two alternative interval relations A disjoint 1<2 B and A

disjoint 1>2 B.

to restrict the point relations that may be used such that different conjunctions
of the same disjunction will never be used to produce an individual solution.
The process of propagating the restrictions implied by the disjunctions in
performing closure on PA is prohibitively expensive. Our non-closure system of
maintaining minimal (near) information reduces the necessity for propagation to

search time, thus performing the minimum propagation necessary.

6.2.2 Restricting Search

In this section we examine the mechanics of restricting certain combinations of
point relations when constructing a search path between two points in the rep-
resentation. The information detailing which combinations of relations can and
cannot be used is represented in the diable.

We shall use the term search to denote the process of determining the rela-
tionship between two points in our representation. The term branches will be
used to indicate the state of the search. A search, expressed in the format (point,
point, relation), involves determining if there is a path between the two points in

the “direction” indicated by the relation, where relation € {<,>,=}.

Definition 6.6 Given a path {{n, na, conjs), ... (nj_1, n;, conj,)} each con-

Junction cong; in the path expresses a restriction on what new edges may be added
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to this path. A solid link may be considered to be a weak link with no dependencies
{conjunciion = NULL).

We are not interested in exactly which edges have been used, but the conjunc-
tions from which these edges are derived. Thus it is only necessary to record the
conjunctions upon which the individual search paths are dependent. A dependency
is a list of these conjuncilions that represent the weak links that have been used to
construct a path.

dependency = {conjunction,,...conjunction,, }

where conjunction; defines the restriction introduced by the weak links used to

construct the path.

The construction of a search path must take into account the restrictions

introduced as the path is constructed.

Definition 6.7 A branch By = {(n;, dependency) represents a path that is an
element of the state of the search, where n; is the current node and dependency
is the list of the restrictive conjunctions previously used to construct a path from

a given initial node to the current node n;.

Definition 6.8 A staie of the search is defined to be the branches { B, B,...B,}

where B; is a branch.

The following considers the process of searching for a point relation using the
system of branches.

When an individual branch reaches a point n, where there are m alternative
paths for the branch to continue upon, m copies of the branch are created to
represent the alternative paths. A list of the possible links from a given node
indicates the possible new paths from that node:

L={L;,L,... L, }

where L; is a pair {n;, conjunction;) and for n; there is an edge in the graph
{np, n;, conjunction;)

Given a Graph G and a current node n,, we apply a function (Function 6.1)
to determine the set of links for the given node. This algorithm looks for all the

nodes that are directly after (the links are directional} the given node and creates
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a list of links from each of those nodes (a similar algorithm may be used to search

for those before).

lol(n,)

listoflinks = null

foreach {n;, n;) € ¢ {all solid links from node}
if n; = n, then listoflinks = listoflinks + (n;, nil} {if linked to n, then add}

foreach (n;, n;, conj) € ¢ {all weak links}
if n; = n, then listoflinks = listoflinks + (n;, conj)  {if linked to n then add}

return listoflinks

Function 6.1 The function for determining the list of links (lol)

Using these preliminary definitions, the process of determining the relationship
between two points can itself be defined. This process takes into account the
restrictions represented by the information in the dtable.

A search (Algorithm 6.3) begins at a given point and initially has no depen-
dencies (LB). The search proceeds towards the target point in a given direction.
For each of the current states, a set of possible new links towards the solution is
determined (L). For each of these new links that are compatible with the current
state, a new state is created having a dependency that is the combination of the
current state and the new path’s dependencies. If this new state actually repre-
sents a solution then that solution is recorded (SOLUTION), otherwise the new
state is recorded to be used for the continuing search (LBHOLD).

The issue of compatibility of a link and the current state is determined by
checking to see if the link’s dependency is consistent with every member of the
states’ dependency (see Function 6.2). Two dependencies are only inconsistent
if they are members of different conjunctions of the same disjunction (this infor-
mation is represented in the dtable).

The solution to the point query is a list of the alternative sets of dependencies,

at least one of which must be true if the point relation is true.

Definition 6.9 A dependency list {dependency,, dependencys, ... dependency, }

is @ collection of all the dependencies on which a given solution is dependent.
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search(startnode, finishnode, direction)
LB = {{startnode, NULL)}
LBHOLD = NULL, SOLUTION = NULL
while (LB # §)
begin
foreach (n;, dep;) € LB {every branch in the list}
begin
L = lol(n,;, direction)
foreach (n;, conj;) € L {for each link}
{check if the link {n;, conj;) can be added}
if (compatible(dep;, conj;))
begin
if (n; = fintshnode)
{add to the list of solutions}
SOLUTION = SOLUTION + (dep; + conj;)
else {add new search}
LBHOLD = LBHOLD + (n;, dep; + conj;)
end {if}
end {foreach}
LB = LBHOLD {replace old for new}
LBHOLD = NULL
end {while}

Algorithm 6.3 Search for e point relation

compatible(dependency, conjunction)
compatible = true
foreach k € dependency
if (diseq(k, conjunction) & —(k = conjunction))
{where diseq is a function that checks dtable to see if in same disjunction}
compatible = false

end

Function 6.2 Verification of compatibility
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Figure 6.5: Restrictions on the search process. Where i) is the disjunction

table, ii) the graph and iii} a trace of the search from 0 to 9.

For example, given the dtable and graph depicted in Figure 6.5, a search (0,
9, >) progresses as shown in Figure 6.5iii. The branches (5, XY) and (9, CYZA)
are discontinued as contradictions arise from their dependencies, (5, XY) has
contradictory dependencies as X and Y cannot both be true and (9, CYZA) has
the contradictory dependencies A and C.

Given the ability to determine the relationship between two points and the
resultant dependencies upon which the solutions rely, the next two sections look

at how this information is used.

6.2.3 Solid Solutions

The best solution to any query is one that returns a solid solution where a solid
solution is one that does not consist of any weak links (no dependencies). Thus
to determine the relationship between two points, a check is performed to see
if there is a solid solution for the directions before, after and equal, prior to the

search for a weak solution. The search mechanism from the previous chapter is
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used to perform these solid searches.

As mentioned previously, it is possible for the graph to contain redundant
weak solutions. These redundant weak links have a different significance to the
redundant solid links. Redundant weak links may represent false information that
is no longer true in the representation. Rather than performing the expensive
process of removing all redundant weak links, checks are made of the solutions
to queries to make sure that they are not dependent upon redundant weak links.
The first check is to look for a solid solution to the query thus making any weak

solution obsolete. The second check will be discussed later.

6.2.4 Weak Solutions

Weak solutions are solutions to queries that have dependencies, thus they depend

upon other point relations being true.

Definition 6.10 A Weak Solution, (WS,) is a pair (point-relation, dependency

list) used to represent the possible relationship between two points and the alter-
native sets of relations upon which this may depend. “Point-relation” indicates
the point relation to which the weak solution refers and the dependency list is the
list of dependencies that must hold for the relation to be true (the point relation

is true if one or more of the dependencies is shown fo be true).

Each dependency represents conjunctions (thus their weak links) upon which
a particular path relies. If every conjunction for a dependency holds (shown to
be true) then that relation is true, otherwise that dependency can no longer be
used to indicate that the given relation may hold.

There are certain hierarchical properties of the dependencies that may be used
to reduce the number of dependencies used in representing a relation’s dependency
list. These properties may also be used to simplify the search process.

A weak solution that has a lesser number of dependencies than another weak
solution is dependent upon fewer relations. Thus solutions that have a minimal
number of dependencies are preferred.

This does not mean that a solution with a greater number of dependencies

is discarded in favour of a solution with fewer dependencies. Each is an equally
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valid possibility, the only exception occurs when one set of dependencies is a
strict subset of the other. The solution that is the strict subset is retained in
place of the solution with more dependencies, since the solution that is a subset
represents an equivalent solution with fewer dependencies.

There are two areas of the search where this property may be used.

6.2.4.1 Efficiencies in search

A search process that evaluates all the possible links for all branches is inefficient.
There is obvious scope for effective pruning of this search space.
1) Superset of solutions

Any branch whose dependencies are a superset of a known solution (equal or
greater set of dependencies) is superseded. There is no need to continue searching
along this path as any solution derived from this branch will be discarded when
the results are returned. This is due to the fact that any solution along this path
will have at least the same dependencies as the established solution. We are only
interested in results with the least number of dependencies.

All branches whose dependencies are a superset of a known solution can be

removed as given in Algorithm 6.4.

{Given a branch (n;, dep;}}
solution = {pr, deplist}
foreach dep; € deplist

if dep; 2 dep; then

stop branch

Algorithm 6.4 Checking if the current search branch is a superset of o previous

solution.

For example, given a solution that is dependent upon the relations (abc) being
true, any branch that reaches a node and has the dependency (abc) or a superset
of (abc) may be a solution to the problem. However, any possible solution derived
from this branch will have a minimum of (abc) as its dependency. Thus the branch
need not be continued as its final solution will consist of at least the same, if not

more, dependencies as a known solution.
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Every time a new branch is created a check is made to see if the branch’s
dependencies are a superset (greater or equal) of a solution’s dependencies. If it
is, then the new branch can be discarded.

A solution which is a strict subset of another solution can be used to remove

the second solution from the list of solutions (i.e. redundant).

Example 6.1 Terminating the branches whose dependencies are a superset of a

solution.

Consider the graph depicted in Figure 6.6i. A search from node C to node B

gives the following results:

e Solution 1 with dependency x (path = {C, 1, 5, B) V {C, 6, B));
e Solution 2 with dependency yx (path = (C, 1, 2, B}) and

e Solution 3 with dependency yz (path = (C, 1, 2, 3, B)).

The dependency of Solution 2 is a superset of the dependency of Solution 1.
Thus only the results of Solution 1 and Solution 3 are significant.

When constructing a search from node C for node A (see Figure 6.6ii), there
are several branches terminated due to various reasons: search repetition (i.e.
convergence at node 5), superset of a known solution (i.e. 3-zy is a superset of
A-y) and superset of previous searches (i.e. 7-x is redundant due to previous
search of 7, see the next section).

2) Supersets of Searches

In the previous chapter, the method of pruning the search space involved
marking nodes to prevent the repetition of the search. Similarly, we are able
to reduce the amount of redundant searching for the system described in this
chapter.

As a search through the graph progresses, a given branch may encounter a
node that has previously been visited by another branch of the same search. If
a branch that reaches a given node has no dependencies, then any other branch

that later reaches the same point is superseded by this branch. Any branch from
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Figure 6.6: i) An example graph (weak links shown as dashed lines and solid
links as solid lines} contains points A, B, C. ii) The search from point C for

the point A, where elements are of the form: node - dependencies.

this point will have a greater or equal set of dependencies. This can be extended
to include branches whose dependencies are supersets of a previous branch.

If a branch reaches a node which has dependencies X, and a branch that later
reaches the same point has dependencies Y, then if X C Y, the later branch
(with dependencies Y) is superseded by the earlier branch (with dependencies
X). If the branches’ dependencies are equal then, again only one branch should
be continued.

There are two ways of recording branches so that redundant branches can
be pruned. A global list of the branches (nodes and their dependencies) is used
to record each branch as it reaches a node and its corresponding list of current
dependencies (all states). Every branch checks with the global list to see if the

current node is in the global list and if the dependencies of those entries in the
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Figure 6.7: A search generates a global history list that helps identify repet-

itive branches.

global list are subsets of the current branch.

The global branch list can be kept minimal by recording only the minimal
(subsets) dependencies for each node. Thus if a node that was reached by a
branch with dependencies X is later traversed by a branch with dependencies Y,
and Y is a subset of X, then the global entry with dependencies X can be replaced
by a new entry with dependencies Y.

For example, given the disjunction table in Figure 6.7i and the graph in Fig-
ure 6.711, a search progresses incrementally creating a global dependency list. The
growth of the dependency list is given in Figure 6.7iii. The global list is modified
when new elements (and their dependencies) are added and old elements are re-
moved. A new element is added only if it is not superseded by a current element,
and an old element is removed if it is superseded by a new element, i.e. (8 yx) is
removed when the new element (8 x) is added.

This results in a feasible solution. This solution, however, has problems as
the size of the history can grow prohibitively and the checks for matches become

expensive. One method to reduce the growth is to record a fraction of the actual
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elements in the list. For example, only every second branch would be added to
the global list. There is a cost associated with this heuristic, with some of the
information missing, future searches may be duplicates of past ones. Hence, there
1s a trade-off between the storage (and search) of the history and cost in time to
duplicate searches.

There is an improved method that is similar to the search heuristic of marking
nodes as the search progresses (used in the previous chapter). A local history can
be kept for each node. This does not change the size of the search list but does
break it up into smaller lists which can be stored as a property of a node. Thus
when a branch reaches a node, the checks are performed with the list maintained
at that node. The search of the global list, due to its size, carries a substantial
cost. With the local lists there are no extra comparisons for any history not
directly associated with the current node. Figure 6.8 shows the local branch list
system using the search from Example 6.7. As the searches progress, new local
dependencies are created. The addition and removal of dependencies is exactly

the same as in the global system except the dependencies are stored at each node.

Definition 6.11 Given a disjunctive graph DG = (N, @, 6) we can define a set
of nodes that contain o list of dependencies called N-dep, such that there is a 1-1
mapping between N and N-dep. N-dep is a set of pairs (endpoint;, dependency list;)
where endpoint; is the name of point(s) represented by the node n; € N, and depen-

dency list is the local list of dependencies that will be used to construct searches.

The dependency list for each node is initialised to the empty set before a
search is performed on the graph. The algorithm for local dependency heuristic
is given in Algorithm 6.5.

When a branch reaches a particular node, the dependency of that branch
is checked to see if it is a superset of any of the dependencies stored at that
node (left by previous branches). If so, the branch is discontinued. Otherwise
the branch’s dependency is checked to see if it supersedes any of the current
dependencies stored at that node. All the superseded dependencies are removed

and the branch’s dependency is added to the local list.

156



y
4 . .
nh X 3 searches created from the begin point
2
nil
5
Y
3 g
\ X
1 4 searches diverge and recombine
nil X, a g
2 X
nil 7
Xa
5
¥
3 6
Y ¥, XC, ad
1 4
nil X, a 9 8 not all searches have completed
3 X, a X
il 5
Xd, a
5
3 6
Y ¥, XC, ad
1 1
nil X, a 9 8 . .
5 X, a X,a final result minimal dependencies
nil 7
Xa, a

Figure 6.8: The growth of the local search lists as the search progresses.

All dependencies are given with respect to the initial node 1.

6.2.4.2 Redundant information in weak solutions

Each solution path that is generated for a particular point relation is represented
as a set of interval relations (conjunctions) that must be true if that particular
solution path is true. No proactive elimination of redundant weak links has been
performed on this representation. Thus, it is possible that a solution may rely
upon information that is no longer valid in the representation.

Our alternative to the expensive process of proactively removing redundant
weak links, is to check the relations used for each solution to see if these relations
are contradicted in the representation. This is done by checking if there are solid

solutions to the interval relations that contradict or confirm the interval relations
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Given a branch (n;, dep;}
n; = {end point,,, deplist,,,)
superset = false

{check if current search is a superset of any of the local dependencies}
foreach dependency; € deplist,,

begin

if dep; 2 dependency;

superset = true

end
if superset

stop branch
else
{if not superset then check to see if local dependencies are supersets}
{if a local dependency is a superset then remove and add current dependencies to list}

begin

foreach dependencyy, € deplist,,

if dep; C dependencyy,
deplist,, = deplist,,, - dependency;
deplist,, = deplist,,, + dep;
end {else}

Algorithm 6.5 Using and maintaining local dependency lists

upon which the solution is dependent.

If an interval relation that a path is dependent upon is proven to be false,
then that entire path is no longer valid. Alternatively, if the interval relation
is proven, then the path is dependent upon less uncertain relations. Thus the

interval relation is removed from the set of dependencies for that path.

6.2.5 Inconsistency

So far we have examined only one type of inconsistency that may occur when

using disjunctive interval relations. A second type of inconsistency that may
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Figure 6.9: The two types of loops that are derived from consistent links

(i.e. consistent with respect to each other).

occur when constructing a path is when the relations in the path contradict each
other.

If (for example} A < B, then A > B cannot hold. This type of direct con-
tradiction is avoided as the search always progresses in the same direction, i.e.
along < or > directions. It is possible, however, to create a logically equivalent
situation if cycles are allowed. In Figure 6.9 two examples of loops that lead to
contradictions are depicted.

"The pruning mechanism for the search method also prohibits cycles. When-
ever a node is revisited, the path is discarded, thus preventing the loop from
occurring and avoiding possible contradictions.

In this chapter, no attempt has been made to check the consistency of the en-
tire representation. Such a check is an NP-Complete problem. Thus it is possible

for a representation to contain two disjunctions that will cause a contradiction.

6.2.6 Using Weak Solutions

Solid and weak point relation solutions to queries about point relations may be
combined to construct solutions to interval queries. In Chapters 4 and 5 these
types of interval queries have depended solely upon the use of solid solutions. In
this section we shall examine the various possible combinations of weak and solid
solutions.

A weak solution is expressed as: a point relation between two points and a list

of dependencies. Each of these dependencies is a list of conjunctions that repre-
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sent alternative paths, i.e. sets of relations that the current relation is dependent
upon. Relations that have dependencies may only be combined if there exists at
least one consistent union of a dependency from each of the weak solutions.

For example, given the weak solution a<B with dependency (c<D A e<d)
and the weak solution A>B with dependency (¢>D A e<F), relations a<B and
A>B cannot be combined as their dependencies are incompatible {i.e. rely on
inconsistent information: a<B relies on c¢<D and A>B relies on ¢>D).

Many point relation inconsistencies are not as obvious as in the given example.
The disjunction table is used to check for inconsistencies when interval relations
are established from weak solutions.

Two dependencies may be combined if none of the conjunctions represented
by each dependency are different conjunctions of the same digjunction. The
algorithm to combine two weak solutions WS; and WS, is given in Algorithm 6.6.
The check function determines if the two dependencies are compatible and is

defined in Functicon 6.3.

newdependency = §}
WS, = {{p-rely, deplist;)}
WS, = {{p-rely, deplisty)}
foreach dependency; € deplist;
foreach dependency; € deplist,
{check if compatible}
if check(dependency;, dependency;)
{add to new dependency list}
newdependency = newdependency + append(dependency;, dependency;)

Algorithm 6.6 Combining two dependencies lists
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check(dependencyl, dependency?) {check if dependencies compatible}
begin
check = true

foreach conjunction; € dependencyl

if —(compatible(dependency2, conjunction;)) {if not compatible}
check = false
end

Function 6.3 Check is used to determine the compatibility of dependencies

An interval relation that has been constructed using weak solutions has a de-
pendency list that indicates relations on which the interval relation is dependent.

This dependency list will be listed with the interval relation.

Example 6.2 Weak solutions combined to determine dependencies for interval

relations

A solution that has the solid relations a<b, b<A and a<B and a weak solution
A<B with dependencies (E<f A A>C) would be listed as:

A overlaps 1<2 B with dependencies (E<f A A>C).

Figure 6.10 shows an example graph where the solutions to selected point
relations are:

b<a {1V 4);

B<A (1)

a<B (?7) and

b<A (3).

The relations b<a (1 V 4) and b<A (3) cannot be used together as their

dependencies are contradictory.

6.3 Analysis

We have significantly increased the expressive ability of the system presented in

Chapter 5. We are now able to represent the full set of Interval Algebra (IA)
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Figure 6.10: A section of a graph and the corresponding dtable that refer
to the intervals A and B.

relations (2'3). It is also possible to extend the expressiveness of this system to
relations outside of IA ((a<b A a<B) V (a<c A A<C)), though this will not be
developed in this thesis.

For the closure-based systems, the goal is to determine all the consequences
given a set amount of information. The SATisfiability problem (SAT) to de-
termine if there is a consistent labelling of every interval relation, the Minimal
Labeling Problem (MLP) to determine the minimal IA relation needed to rep-
resent each interval relation and, most significantly, the All Consistent Solutions
Problem (ACSP) to determine every possible consistent combination of interval
relations that will provide a consistent labelling of every interval relation (all
combinations), are NP-Complete for IA.

Our non-closure system does something different, for an interval pair it returns
the alternative interval relations that may be true. For each interval relation it

provides all the alternative sets of interval relations upon which it is dependent.

Query: A7 B

162



Solution:

disjoint 1<2 if A overlaps 1<2 C and F during 1><2 G
or A overlaps 1<2 C and F overlaps 1<2 H
or A overlaps 1>2 C and J overlaps 1<2 F

overlaps 1<2 if A overlaps 1<2 B

during 1><2 if B meets 1<2 F.

Thus allowing for a form of ACSP to be developed, for each pair of intervals
the system can determine the alternative possible interval relations that may be
valid. For each of these possible solutions, the list of interval relations that any
solution is dependent upon is given (there may be multiple alternative sets of
dependencies for each interval relation).

The focus has been upon providing a method of representing interval relation
(disjunctive) and demonstrating a method of propagating interval information.
Its virtue will be its ability to provide information about individual interval rela-
tions (or clusters of interval relations) with respect to the entire data set without
the need to extrapolate all interval information (as with closure).

There may be multiple dependencies for each weak solution. All possible
combinations of dependencies are determined. Each dependency is consistent

with respect to itself.

6.4 Results

In order to evaluate the performance of the system described in this chapter, its
performance is compared to the simpler system described in the previous chapter.
As with the previous system the results were obtained using a SG R4400 processor
using a program that was written in C++.

The raw data for the two systems differs only in that the new disjunctive
system is able to represent disjunctive interval information. Thus a number of
different initial densities of disjunctions are evaluated for the same initial densities

and sizes as used in the previous chapter.
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Three data sizes 100, 200 and 300 are considered at three different disjunc-
tion initial densities (actually four, considering the primitive representation as no
disjunctions) in Tables 6.1, 6.2 and 6.3. Initial densities indicate the number of
links added to each node, “const” is the construction time in seconds, “number
of links” is the number of solid links used in the representation, “number of weak
links” is the number of weak links used in the representation and “search” is the
time taken to perform 1000 queries on the representation. Many of the disjunc-
tive links will not be added as they contradict the “current” representation. The
number of disjunctions added follows a non-linear pattern (see below).

Similar to the previous chapter, the times for search, construction and the

number of weak and solid links are the averages of 30 datasets.

6.4.1 Analysis

In the previous chapter (Chapter 5) our analysis of the performance of the local
minimisation system was compared to a control dataset. The performance of the
systems compared the construction times, search times and the number of solid
links in the graphs. This provided a direct comparison of the two representations
based upon the key characteristics of the representation.

In this chapter, we have introduced the property of disjunctive interval re-
lations in an interval representation. In order to gauge the performance of this
disjunctive system a variety of different initial density of disjunctions are com-
pared. The key issue will be the density of the disjunctions, the construction
time, the search time and the density of the non-disjunctive links. The control
for this chapter is a locally minimised dataset with no disjunctive information

(from Chapter 5).

6.4.1.1 Construction

The construction process is very similar to the process described in Chapter 5.
The only difference is the addition of disjunctive information to the representa-
tion. The introduction of disjunctive information requires the construction of the

disjunctive table (dtable) and the addition and maintenance of the weak links
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Table 6.1: A comparison of the primitive IR system against three different
initial densities of disjunctions using the disjunctive IR system for a dataset

of size 200 (100 intervals). Construction and Search times are given in

seconds.
initial densities
10 30 30 70 90
const (secs) 8 27 | 47 | 66 | 87
primitive number of links 1217 | 1307 | 1325 | 1322 | 1281
(control) 1000 searches (secs) 31 | 35 | 34 | 34 | 35
const (secs) 14 | 41 70 | 99 | 130
disjunction | number of links 1223 | 1269 | 1338 | 1259 | 1261
density'l | number of weak links | 98 85 57 38 52
(denl) 1000 searches (secs) 5.8 | 4.7 | 44 | 42 | 46
const (secs) 13 | 41 | 70 | 98 | 128
disjunction | number of links 1222 | 1313 | 1306 | 1298 | 1297
density 3 number of weak links | 37 31 27 24 23
{(den3) 1000 searches (secs) 4.7 | 42 | 4.2 | 42 | 4.1
const (secs) 13 | 52 | 72 9 | 126
disjunction | number of links 1224 | 1324 | 1319 | 1288 | 1293
density 5 | number of weak links { 24 20 17 16 15
(denb) 1000 searches (secs) 4.7 | 58 | 42 | 42 | 4.0

in the representation. There are also extra costs in adding solid links to the
representation as their effect on the weak links must be determined.

Examine the graphical representation of the construction times for four differ-
ent densities of disjunctions (where one is the conirol) for three different datasizes
depicted in Figure 6.11. The x-axis is the initial density and the y-axis is the
construction time in seconds.

There are minor changes in the gradient for the construction time for the three
different densities with respect to the gradient of the control. There are slight

variations from a consistent gradient for each of the three data sizes, the most
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Table 6.2: A comparison of the primitive IR system against three different
initial densities of disjunctions using the disjunctive IR datasets for a dataset

of size 400 (200 intervals). Construction and Search times are given in

seconds.
initial densities
10 30 50 70 90
const (secs) 594 | 192 | 326 | 454 | 570
primitive | number of links 3166 | 3762 | 3887 | 3962 | 4106
(control) 1000 searches (secs) | 10.5 | 12.0 | 12.3 | 12.3 | 12.3
const (secs) 85 | 304 | 531 | 889 | 975
disjunction | number of links 3066 | 3713 | 3753 | 3351 | 3617
density 1 number of weak links | 192 | 174 | 166 | 103 | 128
(denl) 1000 searches (secs) | 18.2 | 17.9 | 17.7 | 17.0 | 16.0
const (secs) 85 | 318 | 523 | 767 | 981
disjunction | number of links 3190 | 3767 | 3817 | 3951 | 3799
density 3 number of weak links | 79 65 57 o4 52
(den3) 1000 searches (secs) | 16.5 | 16.8 | 16.6 | 16.1 | 16.9
const (secs) 83 | 308 | 527 | 755 | 1061
disjunction | number of links 3163 | 3826 | 3847 | 3824 | 3760
density 5 number of weak links | 48 38 44 33 29
{denb)} 1000 searches (secs) | 15.5 | 17.1 | 16.8 | 16.0 | 16.8

notable being density 5 in the 300 intervals’ graph.

The difference between the different densities of disjunctive intervals is less
than the difference between the control and each of these densities. This leads
to the conclusion that there is an inherent cost involved in resolving weak links
that does not increase proportionally to the density of the disjunctive interval
relations.

This increase in the construction time, demonstrated in this empirical analysis
of the construction process, is consistent with the expected costs of adding and

maintaining the disjunctive relations.
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Table 6.3: A comparison of the primitive IR system against three different
initial densities of disjunctions using the disjunctive IR system for a dataset

of size 600 (300 intervals). Construction and Search times are given in

seconds.
initial densities
10 30 50 70 90
const (secs) 160 | 723 | 1325 | 1941 | 2551
primitive number of links 2419 | 7222 | 7063 | 6770 | 2551
(control) 1000 searches (secs) | 20.6 | 25.0 | 27.3 | 27.8 | 28.6
const (secs) 256 | 1080 | 1986 | 2856 | 3745
disjunction | number of links o141 | 6703 | 6573 | 6330 | 6018
density 1 number of weak links | 265 | 203 | 233 | 163 | 184
(denl) 1000 searches (secs) | 41.7 | 40.1 | 37.9 | 38.9 | 36.1
const (secs) 270 | 1185 | 2192 | 3003 | 4214
disjunction | number of links 5396 | 7045 | 7040 | 6597 | 6430
density 3 number of weak links | 106 | 92 96 74 79
(den3) 1000 searches (secs) | 36.8 | 37.7 | 41.1 | 37.3 | 45.7
const (secs) 270 | 1188 | 4214 | 3178 | 4237
disjunction | number of links 2394 | 7180 | 6430 | 6719 | 6434
density 5 number of weak links | 69 62 79 39 48
(den5) 1000 searches (secs) | 35.8 | 37.6 | 45.7 | 38.6 | 44.1

6.4.1.2 Number of links

The effect of disjunctive interval information on the number of solid links in
a representation is directly attributed to the conversion of weak links to solid
links (due to elements of disjunctions being proven) and the subsequent local
minimisation of these new solid links. Thus the overall effect would be a minor
increase in the number of solid links to be represented (the amount of “known”
information) and a variable increase/decrease of the actual number of relations

to be represented according to the local minimisation of these solid links.
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The graphical representation of this data is given for three different initial
densities of weak links and is compared to a control in Figure 6.12 for three
different datasizes. The x-axis represents the initial density and the y-axis is the
number of links added.

For each of the three different datasizes, the different data densities closely
follow that of the control. All variation can be attributed to the effect of an
increased number of solid links and the local minimisation performed when adding

those solid links,

6.4.1.3 Weak links

The number of weak links used to represent disjunctions is dependent upon the
number of disjunctions that can be added to the representation and the number
removed due to inconsistencies and the proving of specific interval relations.

The graph in Figure 6.13 illustrates that, for higher densities of disjunctive
interval relations (density I down to density 5), the number of weak links is
greater than the lower densities. For each of the three different datasizes, three
different densities of disjunctions are represented {four if you include the control
that has no disjunctions) where the x-axis indicates the initial density and the
y-axis indicates the number of weak links added.

There are minor fluctuations in each of the graphs, though it cannot be deter-
mined whether this is due to the relationship between the number of solid links
and the number of disjunctions or simply the noise of the dataset. It is sufficient
to say that there is no significant relationship between the density of the Tepre-
sentation and the subsequent representation of the disjunctive interval relations

as weak links.

6.4.1.4 Search time

The effect of the introduction of disjunctive interval relations on the search was
significant. It required the recording of individual search paths at cach point of
the search in order to reduce redundant searches. It also required that checks be

made against these records to identify these redundant searches. The disjunctive
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table would also be used to prevent the use of incompatible interval relations
(members of the same disjunction) to be used as a solution. It also meant that
there are multiple possible results to each individual search, and thus the search
would not terminate upon the first solution but continue until all solutions are
found.

A graphical comparison of the data for the search time for the three different
densities of disjunctive interval relations and a control are given in Figure 6.14
for three different data sizes. The x-axis represents the number of links to be
added and the y-axis indicates the search time.

Similar to the construction time, the difference between the different densities
of disjunctions is much less than the difference between each density and the con-
trol. Again, this allows for the conclusion that the costs involved in maintaining

the disjunctive relations are not proportional to the density of the disjunctions.

6.5 Summary

In this chapter we examined the problem of representing disjunctive interval rep-
resentations. Each of the interval relations in the disjunctions can be represented
as a conjunction of point relations. Each of these point relations arc represented
as a weak link in a graph. The disjunctions are also represented in a table (dtable)
to correlate point relations to conjunctions and conjunctions to disjunctions.

Search of this representation involves constructing paths in the graph between
two points. All paths that use weak links belonging to different conjunctions of
the same disjunction are discarded. This is a property of the disjunctions where
only one of the disjuncts may be true {exclusive-or).

A successful path may rely upon a number of weak links. Bach of these
paths has an associated dependency (a list of the conjunctions upon which it
is dependent). The paths whose dependencies are supersets of other successful
paths are redundant (dependent upon a greater set of relations than the other
successful path). Our method of efficiently pruning the search also prevents the
inconsistency caused by cycles.

A weak solution is a collection of all the successful paths between two given
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points. An interval relation is deduced from combinations of solitions to point
queries. A combination of two dependent point solutions is obtained by finding
consistent combinations from the dependencies of these two point solutions. Two
paths are consistent if no dependency for a path is inconsistent with another
dependency of another path, namely no pair of conjuncts (one element from
each path) are members of the same disjunction. If no combination satisfies this
constraint, then these point sclutions cannot be combined. An interval relation
can only be determined from the successful combination of specific point relations.

Our representation never requires construction of closure and never establishes
the consistency of the entire representation. It only determines if there exists
a solution to a given interval query that can be constructed from consistent
information. For every possible solution it provides all constraints which must be

satisfied in order for that solution to be consistent.

6.6 Conclusion

The problems of SAT, MLP and ACSP for disjunctive interval representations
are NP-Complete. Our non-closure method has presented a means of determin-
ing solutions to queries about interval relations in polynomial time. Although the
consistency of the entire representation cannot be determined, we can generate
consistent solutions to queries. The solutions include the dependencies that indi-
cate which relations must be true if the queried relation is true. All alternative
consistent. dependencies are generated as part of the solution.

This was achieved by extending the representation of the previous chapter to
include disjunctive interval relations. As with the system described in Chapter
4, intervals and interval relations are represented in terms of points and point
relations respectively. The disjunctive relations are represented by a disjunction
table and weak links. The disjunctions are represented as disjunctions of conjunc-
tions of point relations and these point relations as weak links in a graph. The
restrictions imposed by the disjunctions are maintained by the table of disjunctive
relations.

The search for point relations proceeds by determining which relations were
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used to construct search paths and ensuring that the restrictions on which point
relations can be used to construct a path (indicated in the disjunction table} are
upheld. The efficient search of the representation using pruning techniques also
prevents contradictory solutions from being generated, by not allowing cycles in
the search paths.

The virtue of this type of solution is that, for representations where con-
sistency cannot be determined in polynomial time, we can generate consistent
solutions to individual queries about interval relations in polynomial time. We
have presented experimental results for random datasets that show how this rep-
resentation system compares to the system of the previous chapter. These results
indicate that constructing the representation and determining consistent solutions
for disjunctive interval representations is of a similar order to the incomplete non-

disjunctive system.
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Chapter 7

Conclusion

On two occasions I have been asked [by members of Parliament|, ‘Pray,
Mr. Babbage, if you put into the machine wrong figures, will the right
answers come out?’ I am not able rightly to apprehend the kind of

confusion of ideas that could provoke such a question.

Charles Babbage

7.1 Discussion

Qualitative representation of data places constraints upon the types of reasoning
that may be performed upon that information. It provides the means of organ-
ising the data that allows simplistic answers to specific types of problems. The
costs of representing and extracting this information are significantly less than
representing and reasoning with the raw data.

Our choice of qualitative representation has been influenced by the types of
information that are required from our representation. Qur solution provides
qualitative relational information about objects in multi-dimensional space.

A key part of the problem was the development of a system for representing
this qualitative information. The presence of uncertainty in this information

significantly increased the difficulty of the problem.
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7.2 Summary

We began in Chapter 1 by separating the problem into two different components:
the problem of representing spatial information as intervals, and the problem of
representing these intervals as points.

Our review of the current literature involved examining the significant work in
qualitative spatial reasoning. This review demonstrated the substantial parallels
between the work in temporal reasoning and spatial reasoning in the use of points
and intervals as the basic unit of representation. Issues unique to the spatial
domain include multi-dimensionality and the use of global and relative axes.

The domain of temporal reasoning provided a large amount of background
for the use of intervals and points as primitives for representing qualitative in-
formation. Allen [2] provided a powerful method of representing intervals and
their relations using a system of closure. Due to the costs of performing this clo-
sure, alternative point-based closures have been proposed but none could capture
the expressiveness of Allen’s original work. Gervini [28] presented one of a few
systems that proposed non-closure based representations. It provided an efficient
method of representing interval relations that was nearly as expressive as Interval
Algebra.

It was our intention to develop a system of multi-dimensional reasoning that
represented objects in space as intervals along orthogonal axes. We would then
represent these intervals using a non-closure point-based representation. These
two systems could be integrated using a simple interval representation and then
could be extended to problems that include uncertainty and were equivalent to
Interval Algebra.

Space is dense and information about objects in space is subsequently vast.
In order to organise this information, a set of assumptions were made about the
types of information that would be required from the system. We then set about
representing that information and determining how that information could then
be extracted.

Our assumptions involved restricting the types of information that would be

required about objects in space. Only qualitative relational information between
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objects in space would be represented and queried. Information about precise
shape, precise position and precise relation would not be required or made avail-
able by the system.

Objects in space were reduced to interval approximations along global orthog-
onal axes. The relationship between objects was then expressed in terms of their
interval relations along each of these axes. These relations were developed around
Allen’s interval-based temporal model but taking into consideration the unique
properties of space. T'wo of these properties, the lack of global flow in space and
the multi-dimensionality of space, were used to produce a method of classifying
relations at different levels of granularity. A querying language was developed to
assist in the formation of queries about object relations in space. Simple boolean
operators and variable binding extended the vocabulary of the querying language.

This led to the problem of how to represent the intervals along each dimension.
Intervals were associated in terms of interval relations but it was not assumed that
the data would be complete. Thus the problem was divided into three different

types of interval representations: for a set of intervals where

¢ the relationships between every pair of intervals was explicitly known and

those relations were primitive interval relations,

e the relationships between every pair of intervals was not explicitly known

and those that were known were primitive interval relations,

¢ relations were disjunctions of primitive interval relations, regardless of whether

all interval relations were known or unknown.

To demonstrate the qualitative reasoning system of Chapter 3, the simplest
representation (where all pairs are explicitly known and those relations are prim-
itive interval relations) was represented using a linear ordering of the end points
of the intervals in Chapter 4. Queries about individual interval relations can
be extracted from the representation by determining the relationships between
particular end points.

For two datasets, one artificial and the other real, the process of performing

queries upon these datasets was demonstrated. Individual multi-dimensional in-
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terval queries (from Chapter 3) were converted into 1-D interval queries, which
were in turn converted into point queries. The results of these point queries could
be used to determine the actual interval relations required by the interval query.

Though the interval representation system given in Chapter 4 was simplistic,
it did demonstrate the ability of the point representation of intervals to provide
results for the interval query system developed in Chapter 3. In Chapters 5 and
6 this system was extended to allow for a larger variety of interval information
to be represented.

The first stage of this expansion was to allow for incompleteness about interval
relations (Chapter 5). For interval representations of sets of intervals where the
relationship between every pair of intervals may not be known but those that
are known are primitive interval relations, a graph-based representation of end
points of intervals was introduced. Using a minimisation strategy, the information
about end points could be efficiently represented (space) with minimal increase
in the construction time. The search time for this representation is comparable
to full minimisation. The system also provided a deductive foundation for the
generation of Allen’s transitivity table.

To increase the expressiveness of this system, disjunctions between intervals
were represented by a new system in Chapter 6. This allowed for the representa-
tion of sets of intervals whose explicit relations were disjunctive interval relations.
This was achieved by allowing disjunctions between interval relations to be rep-
resented along side the primitive interval relations. The restrictions imposed by
the disjunctions were maintained by a table of disjunctions.

This led to a significant increase in the complexity of the search process. No
longer were relations simply known or unknown. Relations could now be non-
monctonic. Thus a search between two points would produce multiple possible
solutions. Special methods were used to reduce the redundancy in the search.

Seolutions to searches of individual point relations could be combined to deter-
mine interval relations only if the individual solutions were not dependent upon
contradictory information. Individual solutions could consist of multiple alterna-

tive dependencies and thus a combination could be constructed between any pair
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of dependencies (each from a different solution).

The performance of this system was evaluated against the system in Chapter 5.
This disjunctive representation does not determine the consistency of the entire
representation in polynomial time (an NP-Complete problem), but it provides
consistent solutions to individual queries in polynomial time. Thus responses to
queries about interval relations would indicate both the possible “relation” and

any “dependencies” this relation was dependent on.

7.3 Future Directions

The greatest restriction to this system are the choices made about the types of in-
formation to be represented and queried about the system. uture developments
would involve the integration of this system with quantitative systems and other
qualitative systems that represent distances between and intersections of objects
in space.

Freksa’s work [25] in the dynamic change of interval relations and the issues of
deictic axes are both directions relevant to this thesis. The possible applications
of the system defined in this thesis are many and varied. Problems ranging
from Geographic Information Systems, Pictorial and Video Indexing, Robotic
Navigation, DNA sequencing and Historical dating are just a few key areas of

applications that may be investigated.

180



Appendix A
Propagating order

¥V a and V¥ b being limit points of intervals A and B respectively, if a € b then

3 X interval(X) | & = B(X) and b = E(X)

where ¢ is the symbol for the relation preceeds.

The relations between the points, illustrated in F igure A.1, describe all the
possible ways that a precedes b. We note that the situation illustrated in Fig-
ure A.1i subsumes the situation in Figure A.lii, i.e. B(A)<B(B) = B(A)<E(B)
because B(K)<E(K) holds for every interval K. Similarly Figure A.liii subsumes
the situation in Figure A.1iv. E(A) £ E(B) does not necessarily mean that E(A) ¢
B(B) because we could have B(B) ¢ E(A). Thus an expression about the ordering

X X

i) B(A) & B(B) i) B(A) & E@B)

X X

iii) E(A) & B(B) iv)E(A) E E(B)

Figure A.1: Four different situations where point a precedes point b, indi-

cated by the interval X
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of the end points of any two intervals could be described solely in terms of the

relations depicted in Figure A.li and Figure A.1iii.
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Appendix B

End points

The ordered A-Space determines how the ordering of the intervals is designated.
The interval ordering is identified by assigning the first limit point to be the
begin point and the second limit point as the end point (the first and second
are the ordering given with respect to the A-Space).

An interval Y in the A-Space A (see Figure B.1i) has the begin point as-
signed as in Figure B.lii}). The end point is, for a convex interval, the other
limit point of the interval. An invalid allocation of the ordering of the interval
is given in Figure B.1iii). This situation can be identified by the existence of a

point (p) along the interval Q that is equal to a limit point of the interval Y.

The formal definition is as follows:
For any interval Y, the limit point designations for this interval are assigned

with respect to the ordered A-Space (4) as follows (see Figure B.2):

0 ii) iti)

Figure B.1: i) An interval Y in the A-Space A; ii) the interval Y with a
specific ordering; and iii) and incorrect ordering with respect to the A-

Space.
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—_ e e e ' e e — —

Figure B.2: Labelling an interval

Let B = limit(Y)
if b(A) = B then
b(Y) = B and e(Y) = limit(Y) where e(Y) # B
else if e(A) = B
¢(Y) = B and b(Y) = limit(Y) where b(Y) # B
else
3X,3Y and 3 7 are intervals
a = B(A) = limit(X)
£ = limit(X) = limit(Z) where limit(X) # «
limit(Z) = Emit(Y) = B(Y) where limit(Z) # 8 and ~38 = limit(Y)
limit(Y) = E(Y) where limit(Y) # B(Y)
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