This is the accepted version of the following article: Nadarajah, N. and Teunissen, P. 2014. Instantaneous GPS/Galileo/QZSS/SBAS Attitude Determination: A Single-Frequency (L1/E1) Robustness Analysis under Constrained Environments. Navigation: Journal of the Institute of Navigation. 61 (1): pp. 65-75, which has been published in final form at http://doi.org/10.1002/navi.51
Instantaneous GPS/Galileo/QZSS/SBAS Attitude

Determination: A Single-Frequency (L1/E1)

Robustness Analysis under Constrained Environments

N. Nadarajah1 and P. J. G. Teunissen1,2

1GNSS Research Centre, Curtin University, Perth, Australia

2Department of Remote Sensing and Geosciences, Delft University of Technology, Delft, The Netherlands

ABSTRACT

The augmentation of new global navigation satellite systems (GNSS) and regional navigation satellite systems (RNSS) to existing GPS enhances the availability of satellite based positioning, navigation, and timing (PNT) solutions. A combined GNSS constellation will significantly increase the number of visible satellites and thus will improve the geometry of observed satellites, enabling improvements in PNT solution availability, reliability, and accuracy. Among existing systems, the European Galileo system, the Japanese quasi-zenith satellite system (QZSS), and satellite based augmented system (SBAS) share at least one frequency (L1/E1) with GPS. In this contribution, we analyse the robustness of pure single-frequency carrier-phase attitude determination using these four systems under constrained environments.

The successful resolution of the integer carrier phase ambiguities is the key to precise attitude determination using multiple GNSS antennas mounted on a platform. Making use of the known baseline length of rigidly fixed antennas, the constrained Least-squares AMBiguity Decorrelation Adjustment (C-LAMBDA) method yields high integer resolution success rates. In this contribution we analyse the performance of the C-LAMBDA method and compare it to the standard LAMBDA method using single-frequency data from four systems (GPS/Galileo/QZSS/SBAS) under constrained environments. Our analyses include robustness studies of C-LAMBDA method under various satellite deprived environments such as satellite outage, open-pit and urban canyon environments using real data consisting of L1/E1 observations from GPS, Galileo, QZSS, GAGAN, and MSAS collected for ten days at Curtin University, Australia. The results demonstrate the enhanced robustness that four systems bring to single-epoch single-frequency attitude determination.

Keywords: GPS, Galileo, QZSS, SBAS, single-frequency attitude determination, C-LAMBDA
INTRODUCTION

Single-frequency positioning, navigation, and timing (PNT) using global navigation satellite systems (GNSS) is of interest for low-cost applications such as navigating unmanned aerial vehicles (UAVs). Augmenting new GNSS and regional navigation satellite systems (RNSS) to existing GPS enhances the availability of PNT solutions. Among existing systems, the European Galileo system, the Japanese quasi-zenith satellite system (QZSS), and satellite based augmentation system (SBAS), which includes the US WAAS, the European EGNOS, the Japanese MSAS, and the Indian GAGAN, share at least L1/E1 frequency with GPS. In this contribution, we analyse the robustness of pure single-frequency (L1/E1) instantaneous attitude determination under constrained environments using current constellations of the above systems.

GNSS attitude determination is a rich field of current studies, with a wide variety of challenging (terrestrial, sea, air and space) applications [1–9]. Carrier phase integer ambiguity resolution is the key to fast and high-precision GNSS positioning and attitude determination. Once this has been done successfully, the carrier phase data will act as very precise pseudo range data, thus making very precise positioning and attitude determination possible. Recent attitude determination methods make use of the popular LAMBDA method, see e.g. [10–13], as this method is known to be efficient and known to maximize the ambiguity success rate [14–17]. However, the standard LAMBDA method has been developed for unconstrained GNSS models. The method is therefore not necessarily optimal for the GNSS attitude determination problem, for which often the baseline length is provided as well. The Constrained (C-) LAMBDA method [18–22] makes use of this information and finds the optimal nonlinear constrained integer least-squares solution. This paper demonstrates the effectiveness of the C-LAMBDA method compared to the standard LAMBDA method in resolving integer ambiguities for attitude determination using pure single-frequency observations from multi-GNSS, consisting of GPS, Galileo, QZSS, and SBAS.

Analyses of PNT solutions using dual system (GPS with one of the other systems) have been reported in various studies. The performance of the combined GPS-Galileo PNT solutions has been analyzed in [23–27]. The benefit of augmenting GPS with QZSS is demonstrated in [28]. Beyond the intended functionality, which is to broadcast GNSS error corrections, SBAS has been proven to contribute to PNT [29–31]. In this contribution, we analyze the performance of combined four-system attitude determination using real data from identical receivers. Since intersystem biases (ISBs) [26,32] vanish between receivers of same type [25,29], we consider intersystem double differencing, which uses a single pivot satellite for all four systems and yields a higher level of redundancy than system-specific differencing. In the case of mixed receiver attitude determination, however, non-zero ISBs must be corrected to retain the advantage of intersystem double differencing [25].

In this contribution we concentrate on single-epoch, i.e. instantaneous, attitude determination, as this is the most challenging for integer ambiguity resolution. Moreover, when successful, it has the additional benefit of making the solutions insensitive to cycle slips. Our analyses consist of a robustness study of the C-LAMBDA method under different constrained environments, such as open-pit tracking, the presence of satellite outages, and urban canyon applications. We simulate satellite outages, open-pit masking, and the urban canyon effect using real data consisting of L1/E1 observations from GPS, Galileo, QZSS,
GAGAN, and MSAS, collected for ten days at Curtin University, Perth, Australia. We analyse the corresponding performance of the C-LAMBDA method and demonstrate the enhanced robustness of multi-GNSS, single-epoch single-frequency attitude determination under such constrained environments. This study is believed to be the first four-system attitude determination analysis. This contribution is organized as follows: Section “GNSS-Based Attitude Determination” describes the functional and stochastic model for GPS/Galileo/QZSS/SBAS observations. It also describes the C-LAMBDA method using the quadratically constrained GNSS model for attitude determination. Section “Real-Data Analysis” presents the results of attitude determination revealing improved performance of combined system. Finally, Section “Conclusions” contains the summary and conclusions of this contribution.

GNSS-BASED ATTITUDE DETERMINATION

In this section we present our attitude determination method using the single frequency combined GPS/Galileo/QZSS/SBAS system. First we describe the functional and stochastic model for the combined observations and then we present the steps for solving the baseline constrained, mixed-integer attitude model.

GPS/Galileo/QZSS/SBAS Observations

Let us consider two identical GPS/Galileo/QZSS/SBAS receivers \(r \) and 1 with identical antennas forming a short baseline and collecting observations at L1-frequency. Double differencing is used to eliminate satellite/receiver clock errors and instrumental hardware delays. When combining common frequency observations from multiple systems, one can perform either system-specific double differencing \([33]\) or inter-system double differencing \([34,35]\). In the latter case, which yields a higher level of redundancy than the former, one should, however, take into account the inter-system bias (ISB) due to system specific hardware delays, more so when mixed receiver types are used. In this work, we consider identical receivers/antennas for which ISBs are known to be absent \([25,29]\). Also, since attitude determination is based on short baselines, the differential atmospheric delays can be neglected \([36]\). Hence, the double differenced (DD) pseudo-range and carrier-phase observations for satellite pairs 1-\(\Phi \) of GNSS system pairs 1-\(\Phi \) with a single pivot satellite, denoted as \(p_{1r}^{1,\Phi} \) and \(\phi_{1r}^{1,\Phi} \) respectively, are given as \([25,27]\)

\[
E(p_{1r}^{1,\Phi}) = p_{1r}^{1,\Phi}, \quad s_{\Phi} = \begin{cases} 2, \ldots, m_{\Phi} \text{ for } \Phi = 1 \\ 1, \ldots, m_{\Phi} \text{ otherwise} \end{cases} \tag{1}
\]

\[
E(\phi_{1r}^{1,\Phi}) = p_{1r}^{1,\Phi} + \lambda N_{1r}^{1,\Phi}, \tag{2}
\]

where \(E(\cdot) \) denotes the expectation operator, \(p_{1r}^{1,\Phi} \) is the DD topocentric distance, \(\lambda \) is the wave length, \(N_{1r}^{1,\Phi} \) is the time-invariant integer DD carrier-phase ambiguity, and \(m_{\Phi} \) is the number of satellites from system \(\Phi \). For simplicity of formulation, we assume that satellites are ordered such that first \(m_1 \) satellites are of system 1, next \(m_2 \) satellites are of
system 2, and so on ($\sum_{k=1}^{M} m_k = m + 1$, the number of tracked satellites), where M is the number of systems.

The linearized DD observation equations corresponding to (1) and (2), read

$$E\left(\Delta p_{1r}^{1,s_F}\right) = g_{1r}^{1,s_F} b,$$

$$E\left(\Delta \phi_{1r}^{1,s_F}\right) = g_{1r}^{1,s_F} b + \lambda N_{1r}^{1,s_F},$$

where $\Delta p_{1r}^{1,s_F}$ and $\Delta \phi_{1r}^{1,s_F}$ are the observed-minus-computed code and phase observations, b is the baseline vector containing relative position components, and g_{1r}^{1,s_F} is the geometry vector given as $g_{1r}^{1,s_F} = e_{1r} - e_{1s}$ with e_{1r} the unit line-of-sight vector between receiver-satellite pair $r - s$. The vectorial forms of the DD observation equations read

$$E(y_p) = G_r b$$

$$E(y_\phi) = G_r b + \lambda z$$

with

$$y_p = [\Delta p_{1r}^{1,2_1}, \ldots, \Delta p_{1r}^{1,m_1}, \Delta p_{1r}^{1,2_2}, \ldots, \Delta p_{1r}^{1,m_2}, \ldots, \Delta p_{1r}^{1,1_M}, \ldots, \Delta p_{1r}^{1,m_M}]^T$$

$$y_\phi = [\Delta \phi_{1r}^{1,2_1}, \ldots, \Delta \phi_{1r}^{1,m_1}, \Delta \phi_{1r}^{1,2_2}, \ldots, \Delta \phi_{1r}^{1,m_2}, \ldots, \Delta \phi_{1r}^{1,1_M}, \ldots, \Delta \phi_{1r}^{1,m_M}]^T$$

$$G_r = [g_{1r}^{1,2_1}, \ldots, g_{1r}^{1,m_1}, g_{1r}^{1,2_2}, \ldots, g_{1r}^{1,m_2}, \ldots, g_{1r}^{1,1_M}, \ldots, g_{1r}^{1,m_M}]^T$$

$$z = [N_{1r}^{1,2_1}, \ldots, N_{1r}^{1,m_1}, N_{1r}^{1,2_2}, \ldots, N_{1r}^{1,m_2}, \ldots, N_{1r}^{1,1_M}, \ldots, N_{1r}^{1,m_M}]^T$$

For the stochastic modelling (e.g. thermal noise, multipath), we apply elevation dependent weighting [37]. That is, the standard deviation of the undifferenced observable ς can be written as

$$\sigma_\varsigma(\theta) = \sigma_\varsigma_0 \left(1 + a_\varsigma_0 \exp\left(-\frac{\theta}{\epsilon_\varsigma_0}\right)\right)$$

where θ is the elevation angle of the corresponding satellite, and σ_ς_0, a_ς_0, and ϵ_ς_0 are model parameters. We further assume that the receivers have similar characteristics and that the observation noise standard deviations can be decomposed as
follows:

\[
\begin{align*}
\sigma_{\theta_0}^2 &= \sigma_r \sigma_{\theta_0}^\phi V^{\phi} \\
\sigma_{\rho_0}^2 &= \sigma_r \sigma_{\rho_0}^\phi V^{\phi} \\
V^{\phi} &= \left(1 + a_0 \exp\left(-\frac{\theta_0}{\theta_0}\right)\right)
\end{align*}
\] (12)

where \(\sigma_r\) is the receiver, and \(\sigma_{\theta_0}^\phi\) and \(\sigma_{\rho_0}^\phi\) are observation dependent weightings.

The GPS/Galileo/QZSS/SBAS Constrained Baseline Model

When combining the single-epoch linearized DD GNSS code and phase observation equations of (5) and (6), we obtain the mixed integer model of observation equations:

\[
E(y) = Az + Gb, \quad z \in \mathbb{Z}^m, \quad b \in \mathbb{R}^3
\] with \(m = \sum_{\phi=1}^{M} m_\phi - 1\) (13)

where \(y = [y_1^r, y_2^r]^T\) is the \(2m \times 1\) vector of linearized (observed-minus-computed) DD carrier-phase and pseudorange observations, \(z\) is the \(m \times 1\) vector of unknown DD integer ambiguities, \(b\) is \(3 \times 1\) vector of unknown baseline parameters, \(G = e_z \otimes G_r\) is the \(2m \times 3\) geometry matrix with \(e_n\) the \(n \times 1\) vector of 1’s and \(\otimes\) denoting the Kronecker product \([38,39]\), \(A = [\lambda I_m, 0]^T\) is the \(2m \times m\) design matrix with \(I_n\) the identity matrix of size \(n\).

To construct the stochastic model for the observations in (13), consider the undifferenced observations reading as

\[
\zeta = [\zeta^r_1, \zeta^r_2]^T
\] (14)

where \(\zeta^r_\phi = [\phi^r_1, p^r_\phi]^T, \phi^r_\phi = [\phi^r_{1\phi}, \ldots, \phi^r_{M_\phi}]^T, p^r_\phi = [p^r_{1\phi}, \ldots, p^r_{M_\phi}]^T, p^r = [p^r_{1\phi}, \ldots, p^r_{M\phi}]^T, \) and \(\phi^\phi_{\phi} \) are the undifferenced code and phase observations for \(r \rightarrow s_\phi\) receiver-satellite pair. Using the noise characteristics of (12) and assuming the observables to be mutually uncorrelated, the dispersion matrix of the observation vector \(\zeta\) can be written as

\[
D(\zeta) = Q_r \otimes \text{blockdiag}(Q_\theta, Q_p)
\] (15)

where \(D(\cdot)\) denotes the dispersion operator, \(Q_r = \text{diag}([\sigma_1^r, \sigma_2^r]), Q_\theta = \text{blockdiag}(Q_{\phi}^1, \ldots, Q_{\phi}^M), Q_\phi^\phi = (\sigma_{\rho_0}^\phi)^2 \text{diag}\left[(\nu_1^\phi)^2, \ldots, (\nu_{M\phi})^2\right], Q_p = \text{blockdiag}(Q_p^1, \ldots, Q_p^M),\) and \(Q_p^\phi = (\sigma_{\rho_0}^\phi)^2 \text{diag}\left[(\nu_1^\phi)^2, \ldots, (\nu_{M\phi})^2\right]\) are the co-factor matrices. Using the DD op-
erator $D' = D'_T \otimes I_2 \otimes D'_m$, the dispersion matrix of the DD observations can be written as

$$D(y) = Q_{yy} = D(D' z)$$

$$= (\sigma_1^2 + \sigma_2^2)I_2 \otimes D'_m \text{blockdiag}(Q_\phi, Q_p)I_2 \otimes D_m$$

(16)

with $D'_m = [-e_n, L_n]$ the differencing matrix.

The DD observation equations of (13) form, together with the dispersion matrix of (16), a mixed-integer Gauss-Markov model with unknown integer vector $z \in \mathbb{Z}^m$ and unknown baseline vector $b \in \mathbb{R}^3$. This model can be strengthened with the known baseline length. With the inclusion of the baseline length constraint, we obtain the GNSS compass model [19, 20]

$$E(y) = Az + Gb \quad \|b\| = l, z \in \mathbb{Z}^m, b \in \mathbb{R}^3$$

$$D(y) = Q_{yy}$$

(17)

where l is the known baseline length and $\| \cdot \|$ denotes the unweighted norm. Hence, the baseline is thus now constrained to lie on a sphere with radius l ($S_l = \{ b \in \mathbb{R}^3 \mid \|b\| = l \}$). Our objective is to solve for b in a least-squares sense, thereby taking the integer constraints on z and the quadratic constraint on vector b into account. Hence, the least-squares minimization problem that will be solved reads

$$\min_{z \in \mathbb{Z}^m, b \in S_l} \|y - Az - Gb\|_Q^2$$

(18)

with $\| \cdot \|^2_Q = (\cdot)^T Q^{-1} (\cdot)$. It is a quadratically constrained (mixed) integer least-squares (QC-ILS) problem [18], for which no closed-form solution is available. In the following sections, we describe the method for solving (18).

The Ambiguity Resolved Attitude

We now describe the steps for computing the integer ambiguity resolved attitude angles.

The real-valued float solution

The float solution is defined as the solution of (18) without the constraints. When we ignore the integer constraints on z and the quadratic constraint on b, the float solutions \hat{z} and \hat{b}, and their variance-covariance matrices are obtained as follows:

$$\begin{bmatrix} Q_{\hat{z}z} & Q_{\hat{z}b} \\ Q_{\hat{b}z} & Q_{\hat{b}b} \end{bmatrix}^{-1} \begin{bmatrix} \hat{z} \\ \hat{b} \end{bmatrix} = \begin{bmatrix} A^T \\ G^T \end{bmatrix} Q_{yy}^{-1} y$$

(19)
with

\[
\begin{bmatrix}
Q_{zz} & Q_{zb} \\
Q_{bz} & Q_{bb}
\end{bmatrix} = \left(\begin{bmatrix}
A^T \\
G^T
\end{bmatrix} Q_{yy}^{-1} \begin{bmatrix}
A \\
G
\end{bmatrix} \right)^{-1}
\]

The \(z\)-constrained solution of \(b\) and its variance-covariance matrix can be obtained from the float solution as follows

\[
\hat{b}(z) = \hat{b} - Q_{bb} Q_{bb}^{-1} \hat{z} \\
Q_{b(z)b(z)} = Q_{bb} - Q_{bb} Q_{bb}^{-1} Q_{bb} = (G^T Q_{yy}^{-1} G)^{-1}
\]

Using the above estimators, the original problem in (18) can be decomposed as (20)

\[
\min_{z \in \mathbb{Z}^m, b \in \mathbb{S}_l} \|y - Az - Gb\|_{Q_{yy}}^2 = \\
= \|\hat{e}\|_{Q_{yy}}^2 + \min_{z \in \mathbb{Z}^m} \left(\|\hat{z} - z\|_{Q_{zz}}^2 + \min_{b \in \mathbb{S}_l} \|\hat{b}(z) - b\|_{Q_{b(z)b(z)}}^2 \right)
\]

with \(\hat{e} = y - A\hat{z} - G\hat{b}\) being the vector of least-squares residuals. Note that the first term on the right hand side of (22) does not depend on the unknown parameters \(z\) and \(b\) and is therefore constant.

The integer ambiguity resolution

Based on the orthogonal decomposition (22), the quadratic constrained integer minimization can be formulated as:

\[
\hat{z} = \arg \min_{z \in \mathbb{Z}^m} C(z)
\]

with ambiguity objective function

\[
C(z) = \|\hat{z} - z\|_{Q_{zz}}^2 + \|\hat{b}(z) - \hat{b}(z)\|_{Q_{b(z)b(z)}}^2
\]

where

\[
\hat{b}(z) = \arg \min_{b \in \mathbb{S}_l} \|\hat{b}(z) - b\|_{Q_{b(z)b(z)}}^2
\]
The cost function $C(z)$ is the sum of two coupled terms: the first weighs the distance from the float ambiguity vector \hat{z} to the nearest integer vector z in the metric of $Q_{\hat{z}}$, while the second weighs the distance from the conditional float solution $\hat{b}(z)$ to the nearest point on the sphere S_l in the metric of $Q_{\hat{b}(z)}$.

Unlike with the standard LAMBDA method \[40\], the search space of the above minimization problem is non-ellipsoidal due to the presence of the second term in the ambiguity objective function $C(z)$. Moreover, its solution requires the computation of a nonlinear constrained least-squares problem \[25\] for every integer vector in the search space. In the C-LAMBDA method, this problem is mitigated through the use of easy-to-evaluate bounding functions \[20, 41\]. Using these bounding functions, two strategies, namely the Expansion and the Search and Shrink strategies, were developed, see e.g. \[18, 42\]. These techniques avoid the computation of \[25\] for every integer vector in the search space, and compute the integer minimizer \hat{z} in an efficient manner.

The ambiguity resolved attitude

For a single baseline, b is related to the Euler-angles $\xi = [\psi, \theta]^T$, with ψ the heading and θ the elevation, as $b(\xi) = lu(\xi)$, where $u(\xi) = [c_{\theta}c_{\psi}, c_{\theta}s_{\psi}, -s_{\theta}]^T$ with $s_{\alpha} = \sin(\alpha)$ and $c_{\alpha} = \cos(\alpha)$. The sought-for attitude angles $\xi(\hat{z})$ are the reparametrized solution of \[25\]. Using a first order approximation, the formal variance-covariance matrix of the ambiguity resolved, least-squares estimated heading and elevation angles is given by

$$Q_{\xi \xi} \approx \frac{1}{l^2} \left(J_{u,\xi}(\hat{\xi})^T Q_{\hat{b}(z)\hat{b}(z)}^{-1} J_{u,\xi}(\hat{\xi}) \right)^{-1}$$

with Jacobian matrix

$$J_{u,\xi}(\xi) = \begin{bmatrix}
 -s_\psi c_\theta & -c_\psi s_\theta \\
 c_\psi c_\theta & -s_\psi s_\theta \\
 0 & -c_\theta
\end{bmatrix}$$

As the results in the next section show, this first order approximation works well. This is due to the fact that the ambiguity resolved solution is driven by the high precision of the carrier phase observables.

REAL-DATA ANALYSIS

In this section the performance analyses of GPS/Galileo/QZSS/SBAS attitude determination using real data are presented. The data was collected from two TRM59800.00-SCIS antennas mounted on the roof of the Bentley campus building 402 of Curtin University in Perth, Australia. As shown in Figure 1(a), they form a short baseline ($l = 8.418$ m, Figure 1(b)). These antennas are connected to two TRIMBLE NETR9 GNSS receivers continuously tracking all available GNSS satellites.
The stochastic model parameters of the elevation dependent model \([11]\) for the receivers are reported in Table \(1\). The large parameter values for SBAS are due to the narrower transmitted signal bandwidth (2.2 MHz) compared to that of other systems (e.g., 20 MHz for GPS) \([29, 43]\).

We considered data from Curtin’s stations for ten days from June 9 to 18, 2013 with a sampling interval of 30 seconds. Figure \(2\) shows the GPS/Galileo/QZSS/SBAS satellite visibility for June 9 (the skyplots, the number of satellites, and the PDOP values) demonstrating improved satellite visibility of the combined system.

We consider two performance measures for our analyses; the first one is the empirical instantaneous ambiguity success.
fraction (relative frequency), which is defined as

\[
\text{success fraction} = \frac{\text{number of correctly fixed epochs}}{\text{total number of epochs}}
\]

where the true ambiguities are computed using known antenna coordinates in WGS84 as the antennas used are part of Curtin’s permanent stations. However, only length information is used for C-LAMBDA processing. The second performance measure is the ambiguity fixed angular estimation accuracy, which is given by the formal and empirical standard deviations of attitude angular estimates. Table 2 summarizes the benefits of augmenting different systems. Augmenting GPS with one or more systems improves ambiguity resolution. Especially with C-LAMBDA, instantaneous ambiguity resolution is possible (indicated in blue text) for the scenario considered (Figure 1). Furthermore, SBAS significantly contributes to improved ambiguity resolution even though it has less precise observations than that of other systems (Table 1). Although augmentation significantly improves ambiguity resolution and thus the ability to achieve instantaneous results, augmenting GPS with one or more systems does not significantly improve the ambiguity-fixed angular accuracy. This is understandable as any ambiguity-fixed solution is driven by the highly precise carrier-phase data. Also note that combining L1/E1-observations from non-GPS satellites does not yet offer continuous attitude solution (indicated in emphasized text) due to the poor satellite geometry with current Galileo and QZSS constellations, which are under development. By combining all four systems, one can achieve instantaneous single-frequency attitude determination even with the unconstrained LAMBDA method (indicated in bold text) for the scenario considered (Figure 1). With this clear indication of benefits from augmenting multiple system, we further analyse the performance of the augmented system under various satellite deprived environments in the following sections and compare with that of GPS-only solutions.

Table 2. Instantaneous ambiguity success fractions (relative frequencies) and angular accuracy measured by empirical and formal (given in brackets) angular standard deviations. SBAS consists of two GAGAN and two MSAS satellites. For the combined Galileo/QZSS/SBAS constellation, only a fraction of epochs (given in emphasized text) was processed due to the poor satellite geometry (PDOP > 100)

<table>
<thead>
<tr>
<th>Systems (PDOP)</th>
<th>Success Fraction</th>
<th>Angular Standard deviation [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAMBDA</td>
<td>C-LAMBDA</td>
</tr>
<tr>
<td>GPS (2.00)</td>
<td>0.85</td>
<td>0.99</td>
</tr>
<tr>
<td>GPS/Galileo (1.87)</td>
<td>0.92</td>
<td>1.00</td>
</tr>
<tr>
<td>GPS/GAGAN (1.72)</td>
<td>0.94</td>
<td>1.00</td>
</tr>
<tr>
<td>GPS/MSAS (1.87)</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>GPS/SBAS (1.63)</td>
<td>0.98</td>
<td>1.00</td>
</tr>
<tr>
<td>GPS/Galileo/QZSS/SBAS (1.50)</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Galileo/QZSS/SBAS (5.75)/0.88</td>
<td>0.07</td>
<td>0.34</td>
</tr>
</tbody>
</table>

1. where the true ambiguities are computed using known antenna coordinates in WGS84 as the antennas used are part of Curtin’s permanent stations. However, only length information is used for C-LAMBDA processing. The second performance measure is the ambiguity fixed angular estimation accuracy, which is given by the formal and empirical standard deviations of attitude angular estimates.
2. Table 2 summarizes the benefits of augmenting different systems. Augmenting GPS with one or more systems improves ambiguity resolution. Especially with C-LAMBDA, instantaneous ambiguity resolution is possible (indicated in blue text) for the scenario considered (Figure 1). Furthermore, SBAS significantly contributes to improved ambiguity resolution even though it has less precise observations than that of other systems (Table 1). Although augmentation significantly improves ambiguity resolution and thus the ability to achieve instantaneous results, augmenting GPS with one or more systems does not significantly improve the ambiguity-fixed angular accuracy. This is understandable as any ambiguity-fixed solution is driven by the highly precise carrier-phase data. Also note that combining L1/E1-observations from non-GPS satellites does not yet offer continuous attitude solution (indicated in emphasized text) due to the poor satellite geometry with current Galileo and QZSS constellations, which are under development. By combining all four systems, one can achieve instantaneous single-frequency attitude determination even with the unconstrained LAMBDA method (indicated in bold text) for the scenario considered (Figure 1). With this clear indication of benefits from augmenting multiple system, we further analyse the performance of the augmented system under various satellite deprived environments in the following sections and compare with that of GPS-only solutions.

Table 3. Instantaneous single-frequency ambiguity success fractions (relative frequencies) and angular accuracy measured by empirical and formal (given in brackets) angular standard deviations for simulated GPS satellite outage. For some cases, a fraction of epochs (given in emphasized text) were processed due to a poor satellite geometry for positioning (PDOP > 100)

<table>
<thead>
<tr>
<th>Number of GPS satellites (PDOP)</th>
<th>Success Fraction</th>
<th>Angular Standard deviation [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAMBDA</td>
<td>C-LAMBDA</td>
</tr>
<tr>
<td>0 (5.75)</td>
<td>0.07 (0.07)</td>
<td>0.25 (0.20)</td>
</tr>
<tr>
<td>2 (3.07)</td>
<td>0.25 (0.04)</td>
<td>0.73 (0.12)</td>
</tr>
<tr>
<td>4 (2.23)</td>
<td>0.67 (0.02)</td>
<td>0.97 (0.04)</td>
</tr>
<tr>
<td>6 (1.81)</td>
<td>0.96 (0.01)</td>
<td>1.00 (0.03)</td>
</tr>
<tr>
<td>8 (1.56)</td>
<td>1.00 (0.01)</td>
<td>1.00 (0.03)</td>
</tr>
<tr>
<td>10 (1.51)</td>
<td>1.00 (0.01)</td>
<td>1.00 (0.03)</td>
</tr>
</tbody>
</table>

Table 4. The contribution SBAS: Instantaneous single-frequency ambiguity success fractions (relative frequencies) and and angular accuracy measured by empirical and formal (given in brackets) angular standard deviations for the augmentation of GPS with different number of SBAS satellites

<table>
<thead>
<tr>
<th>Number of SBAS satellites (PDOP)</th>
<th>Success Fraction</th>
<th>Angular Standard deviation [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LAMBDA</td>
<td>C-LAMBDA</td>
</tr>
<tr>
<td>0 (2.00)</td>
<td>0.85 (0.02)</td>
<td>0.99 (0.04)</td>
</tr>
<tr>
<td>1 (1.92)</td>
<td>0.91 (0.02)</td>
<td>1.00 (0.04)</td>
</tr>
<tr>
<td>2 (1.87)</td>
<td>0.95 (0.02)</td>
<td>1.00 (0.04)</td>
</tr>
<tr>
<td>3 (1.81)</td>
<td>0.97 (0.01)</td>
<td>1.00 (0.04)</td>
</tr>
<tr>
<td>4 (1.63)</td>
<td>0.98 (0.01)</td>
<td>1.00 (0.04)</td>
</tr>
</tbody>
</table>

Satellite Outages

We simulated this satellite deprived environment by arbitrarily removing a number of visible GPS satellites. Note that, arbitrary removal of satellites over long period (ten days) enables us to evaluate average performance. Table 3 reports the LAMBDA and C-LAMBDA ambiguity success fractions for single-frequency processing and ambiguity resolved attitude angular accuracy (angular standard deviation). The benefits of using C-LAMBDA are highlighted using bold text. For the scenario considered (Figure 1), the C-LAMBDA method on average offers instantaneous attitude solution with all visible satellites from current non-GPS constellations and with as few as six GPS satellites, while LAMBDA method on average requires at least eight GPS satellites together with all visible satellites from current non-GPS constellations to achieve instantaneous solution. The formal standard deviations (terms in brackets) are well in line with the empirical standard deviations confirming the assumed stochastic model parameters in Table 1. A slight degradation of the angular accuracy with the number of satellites can be observed.

We also analysed the contribution of SBAS system for instantaneous attitude determination by augmenting GPS with different number of SBAS satellites. Table 4 summarizes the contribution of SBAS satellites highlighting benefits of using C-LAMBDA method (indicated using bold text). With C-LAMBDA processing, single-frequency user can achieve instantaneous attitude determination by augmenting GPS L1-observations with that of as few as one SBAS satellite for the scenario considered (Figure 1). This is an interesting boost for single-frequency users, as at least one SBAS satellite (from WAAS, EGNOS, MSAS, and GAGAN) is uninterruptedly visible almost anywhere in the world enabling instantaneous attitude determination, which is immune to cycle slips.
Table 5. Instantaneous ambiguity success fractions (relative frequencies) for the real data with simulated open-pit using elevation masking; For some cases, a fraction of epochs (given in brackets) were processed due to a lack of sufficient visible satellites for positioning (requires at least four satellites) or due to a poor satellite geometry (PDOP > 100).

<table>
<thead>
<tr>
<th>Elevation Cut-off [deg]</th>
<th>PDOP GPS only</th>
<th>LAMBDA</th>
<th>C-LAMBDA</th>
<th>PDOP GPS+Galileo+QZSS+SBAS</th>
<th>LAMBDA</th>
<th>C-LAMBDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.00</td>
<td>0.85</td>
<td>0.99</td>
<td>1.50</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>20</td>
<td>3.13</td>
<td>0.56</td>
<td>0.93</td>
<td>2.36</td>
<td>0.96</td>
<td>0.98</td>
</tr>
<tr>
<td>30</td>
<td>6.64 (0.94)</td>
<td>0.25</td>
<td>0.75</td>
<td>3.52</td>
<td>0.82</td>
<td>0.98</td>
</tr>
<tr>
<td>40</td>
<td>12.65 (0.65)</td>
<td>0.08</td>
<td>0.56</td>
<td>7.70 (0.90)</td>
<td>0.45</td>
<td>0.86</td>
</tr>
<tr>
<td>50</td>
<td>21.35 (0.23)</td>
<td>0.02</td>
<td>0.46</td>
<td>16.37 (0.26)</td>
<td>0.23</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table 6. Empirical and formal (given in brackets) angular standard deviations [deg] of the ambiguity fixed attitude angles for single-frequency data with simulated open-pit using elevation masking.

Open-pit Problem

We simulated this constrained environment using elevation angle masking. Table 5 reports the ambiguity resolution success fractions for single-frequency processing with different elevation angle maskings. The benefit, improved availability of attitude solutions, of using a combined system is highlighted (in bold text).

Note that, for large elevation masking angles, a fraction of epochs (given in brackets) were processed due to a lack of sufficient visible satellites for positioning (requires at least four satellites) or due to a poor satellite geometry (PDOP > 100).

For the scenario considered (Figure 1), the single-frequency C-LAMBDA processing of a combined system enables the availability of instantaneous attitude solutions for an open-pit with up to 20 deg elevation masking, while it is not possible for GPS-only processing even with 10 degree elevation masking.

The angular accuracies (standard deviations) of the single frequency processing are reported in Table 6. As shown, increasing elevation masking degrades both ambiguity resolution and the angular accuracy. But note that the combined system angular accuracy for a 20 degree mask angle is the same as that of GPS for only a 10 degree mask angle.

Urban Canyon

In this section we analyze the robustness of the C-LAMBDA method under an urban canyon effect, which is a well-known problem depriving GNSS based navigation solutions in urban environments [44–47]. We simulate the urban canyon blockage effect using a simple model, where we have two buildings as shown in Figure 3 placed symmetrically with respect to the attitude platform on an urban road. The blockage is defined by three angles: γ_0 the azimuth of the center of the first building (defining the direction of the road), α_0 the elevation at the center of the building (defining the height of the buildings), and β_0 the azimuth angle (defining the width of the buildings). For example, in the case of $\gamma_0 = 90^\circ$, $\alpha_0 = 60^\circ$, $\beta_0 = 45^\circ$.
Figure 3. Simulated urban canyon: Buildings on both sides of an urban road blocking satellite visibility; Angle γ_0 defines the direction of the road, while angles α_0 and β_0 define the height and the width of the buildings, respectively.

<table>
<thead>
<tr>
<th>α_0 (deg)</th>
<th>β_0 (deg)</th>
<th>GPS only</th>
<th>C-LAMBDA</th>
<th>GPS+Galileo+QZSS+SBAS</th>
<th>LAMBDA C-LAMBDA</th>
<th>C-LAMBDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>0.30</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>0.67</td>
<td>0.96</td>
<td>0.98</td>
<td>1.00</td>
<td>0.95</td>
<td>1.00</td>
</tr>
<tr>
<td>60</td>
<td>0.55</td>
<td>0.90</td>
<td>0.93</td>
<td>0.99</td>
<td>0.93</td>
<td>0.99</td>
</tr>
<tr>
<td>80</td>
<td>0.50 (0.99)</td>
<td>0.86 (0.99)</td>
<td>0.93 (0.99)</td>
<td>0.92 (0.93)</td>
<td>0.92 (0.93)</td>
<td>0.92 (0.93)</td>
</tr>
<tr>
<td>20</td>
<td>0.75</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>0.43</td>
<td>0.85</td>
<td>0.93</td>
<td>1.00</td>
<td>0.94 (0.99)</td>
<td>0.94 (0.99)</td>
</tr>
<tr>
<td>60</td>
<td>0.21 (0.87)</td>
<td>0.70 (0.87)</td>
<td>0.69 (0.99)</td>
<td>0.94 (0.99)</td>
<td>0.94 (0.99)</td>
<td>0.94 (0.99)</td>
</tr>
<tr>
<td>80</td>
<td>0.14 (0.81)</td>
<td>0.58 (0.81)</td>
<td>0.58 (0.93)</td>
<td>0.92 (0.93)</td>
<td>0.92 (0.93)</td>
<td>0.92 (0.93)</td>
</tr>
<tr>
<td>20</td>
<td>0.72</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>0.26 (0.99)</td>
<td>0.68 (0.99)</td>
<td>0.86</td>
<td>0.99</td>
<td>0.86</td>
<td>0.99</td>
</tr>
<tr>
<td>60</td>
<td>0.03 (0.52)</td>
<td>0.39 (0.52)</td>
<td>0.17 (0.55)</td>
<td>0.68 (0.55)</td>
<td>0.17 (0.55)</td>
<td>0.68 (0.55)</td>
</tr>
<tr>
<td>80</td>
<td>0.00 (0.13)</td>
<td>0.14 (0.13)</td>
<td>0.02 (0.14)</td>
<td>0.37 (0.14)</td>
<td>0.02 (0.14)</td>
<td>0.37 (0.14)</td>
</tr>
<tr>
<td>20</td>
<td>0.72</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>0.23 (0.98)</td>
<td>0.66 (0.98)</td>
<td>0.83</td>
<td>0.98</td>
<td>0.83</td>
<td>0.98</td>
</tr>
<tr>
<td>60</td>
<td>0.02 (0.45)</td>
<td>0.36 (0.45)</td>
<td>0.14 (0.46)</td>
<td>0.58 (0.46)</td>
<td>0.14 (0.46)</td>
<td>0.58 (0.46)</td>
</tr>
<tr>
<td>80</td>
<td>0.00 (0.02)</td>
<td>0.27 (0.02)</td>
<td>0.00 (0.02)</td>
<td>0.40 (0.02)</td>
<td>0.00 (0.02)</td>
<td>0.40 (0.02)</td>
</tr>
</tbody>
</table>

Table 7. Instantaneous single-frequency ambiguity success fractions (relative frequencies) and the average computation time [sec] (given in brackets) for simulated urban canyon (Figure 3); For some cases, only a fraction of epochs (given in brackets) were processed due to the absence of sufficient satellites for positioning (requires at least four satellites) or due to a poor satellite geometry for positioning (PDOP > 100).

and $\beta_0 = 60^\circ$, the model represents two buildings with a height of 9 meters and a width of 17 meters on both sides of a ten-meter wide road in the North-South direction. Urban canyons can also introduce multi-path effects and sometimes other types of interferences that are not considered in this contribution. The robustness of the C-LAMBDA method against multi-path effects has already been studied and demonstrated in using a simulation study.

We considered the urban canyon along a road in North-South direction ($\gamma_0 = 90^\circ$). This corresponds to the worst case deprivation due to a lack of visible satellites towards the South direction in Perth, Australia (South polar region). Table 7 summarizes the ambiguity resolution success fraction for the simulated urban canyon scenario demonstrating the benefits (highlighted using bold text) of augmenting systems. Note that, for large values of α_0 and β_0, only a fraction of epochs (given in brackets) were processed due to the absence of sufficient satellites for positioning (requires at least four satellites) or due to a poor satellite geometry (PDOP > 100). For almost all other cases of combined system with the scenario considered (Figure 1), instantaneous ambiguity resolution is possible due to the exploitation of the geometry constraints in the C-LAMBDA method. The corresponding angular accuracies (standard deviations) are reported in Table 8 showing that empirical values are in line with formal values (given in brackets). A combined system processing not only improves the success fraction, but also slightly improves the angular accuracies. Both the ambiguity resolution success fraction and the angular accuracy, however, degrade as the effect of the urban canyon increases (i.e., angles α_0 and β_0 increase).
Table 8. Empirical and formal (given in brackets) angular standard deviations [deg] of the ambiguity fixed attitude angles for simulated urban canyon (Figure 3); * refers to the cases with not enough samples to compute reliable statistics.

<table>
<thead>
<tr>
<th>α0 (deg)</th>
<th>β0 (deg)</th>
<th>GPS only</th>
<th>GPS+Galileo+QZSS+SBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Heading</td>
<td>Elevation</td>
</tr>
<tr>
<td>20</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>40</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>60</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>80</td>
<td>0.02 (0.02)</td>
<td>0.05 (0.04)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>20</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>40</td>
<td>0.02 (0.02)</td>
<td>0.05 (0.06)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>60</td>
<td>0.03 (0.03)</td>
<td>0.05 (0.06)</td>
<td>0.03 (0.03)</td>
</tr>
<tr>
<td>80</td>
<td>0.03 (0.03)</td>
<td>0.06 (0.06)</td>
<td>0.03 (0.03)</td>
</tr>
<tr>
<td>20</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>40</td>
<td>0.02 (0.02)</td>
<td>0.06 (0.07)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>60</td>
<td>0.09 (0.10)</td>
<td>0.10 (0.11)</td>
<td>0.07 (0.07)</td>
</tr>
<tr>
<td>80</td>
<td>* (*)</td>
<td>* (*)</td>
<td>* (*)</td>
</tr>
<tr>
<td>20</td>
<td>0.02 (0.02)</td>
<td>0.04 (0.04)</td>
<td>0.01 (0.01)</td>
</tr>
<tr>
<td>40</td>
<td>0.02 (0.03)</td>
<td>0.07 (0.07)</td>
<td>0.02 (0.02)</td>
</tr>
<tr>
<td>60</td>
<td>0.10 (0.11)</td>
<td>0.12 (0.12)</td>
<td>0.08 (0.08)</td>
</tr>
<tr>
<td>80</td>
<td>* (*)</td>
<td>* (*)</td>
<td>* (*)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

In this contribution we analysed the performance of the C-LAMBDA method for instantaneous attitude determination using single-frequency (L1/E1) observations from GPS/Galileo/QZSS/SBAS. Using real data from a rooftop experiment, we demonstrated that through any of the given augmentations of GPS, instantaneous single-frequency attitude determination is achieved with the C-LAMBDA method. We also demonstrated that such is even possible with the unconstrained LAMBDA method, at least in the Asia-Pacific region, when all four systems are combined in a mild multipath environment. We further analysed the performance of single-frequency attitude determination under various satellite deprived environments. The C-LAMBDA method offers instantaneous attitude solution with all visible satellites from current non-GPS constellations and with as few as six GPS satellites, while the LAMBDA method requires at least eight GPS satellites together with all visible satellites from current non-GPS constellations to achieve instantaneous solution.

The single-frequency C-LAMBDA processing of a combined system enables the availability of instantaneous attitude solutions for an open-pit with up to 20 degree elevation masking, while it is not possible for GPS-only processing even with 10 degree elevation masking. We also showed that the use of a combined constellation significantly improves the attitude solution availability under satellite masking effect in urban environment. Overall, this study demonstrated the realization of instantaneous attitude determination by combining single-frequency (L1/E1) observations from all available systems in a mild multipath environment.

ACKNOWLEDGEMENTS

This work has been executed in the framework of the Positioning Program Project 1.01 “New carrier phase processing strategies for achieving precise and reliable multi-satellite, multi-frequency GNSS/RNSS positioning in Australia” of the Cooperative Research Centre for Spatial Information (CRC-SI) and the Australian Space Research Program GARADA.
project on SAR Formation Flying. The second author P. J. G. Teunissen is the recipient of an Australian Research Council Federation Fellowship (project number FF0883188). All this support is gratefully acknowledged.

REFERENCES

