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Summary

General routing problems deal with transporting some commodities and for trav-
elling along the arcs of a given network in some optimal manner. In the modern
world such problems arise in several contexts such as distribution of goods, trans-

portation of commodities and/or people etc.

Tn this thesis we focus on two classical routing problems, namely the Travelling
Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). The TSP can
be described as a salesman travels from his home city, visits each of the other
(In — 1) cities exactly once and returns back to the home city such that the total
distance travelled by him is minimised. The VRP may be stated as follows: A
set of n customers {with known locations and demands for some commodity) is
to be supplied from a single depot using a set of delivery vehicles each with a
prescribed capacity. A delivery route starts from the depot, visits some customers
and returns back to the depot. The VRP is to determine the delivery routes for

each vehicle such that the total distance travelled by all the vehicles is minimised.

These routing problems are simple to state in terms of describing them in words.
But they are very complex in terms of providing a suitable mathematical formu-
lation and a valid procedure to solve them. These problems belong to the class
of N'P-hard (Non-deterministic Polynomial) problems. With the present knowl-
edge, it is believed that the problems in NP-hard are unlikely to have any good
algorithms to arrive at optimal solutions to a general problem. Hence researchers
have focused their effort on; (i) developing exact algorithms to solve as large size

problems as possible; (ii) developing heuristics to produce near optimal solutions.

The exact algorithms for such problems have not performed satisfactorily as they
need an enormous amount of computational time to solve moderate size problems.
For instance, in the literature, TSP of size 225-city, 4461-city and 7 397-city were
solved using computational time of 1 year, 1.9 years and 4 years respectively
(Jinger et al, 1995). Thus heuristics, in particular the probabilistic methods
such as tabu search, play a significant role in obtaining near optimal solutions. In

the literature, there is very little comparison between the various exact algorithms
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and heuristics. (Very often the real-life problems are too large and no optimal

solution can be found in a reasonable time. )

One of the problems with a probabilistic heuristic is that different implementa-
tions (runs) of the same probabilistic heuristic on & given problerh may produce
distinct solutions of different quality. Thus the desired quality and reproducibility
of the solution cannot be ensured. Furthermore, the performance of the heuristics
on the benchmark problems provide no guarantee of the quality of solutions that
can be obtained for the problem faced by a researcher. Most of the documentation
on the performance of heuristics in literature problems provides no information
regarding the computational effort (CPU time) spent in obtaining the claimed
solution, reproducibility of the claimed solution and the hardware environment

of the implementation. This thesis focuses on some of these deficiencies.

Most of the heuristics for general combinatorial optimisation problems are based
on neighbourhood search methods. This thesis explores and provides a formal
setup for defining neighbourhood structures, definitions of local optimum and
global optimum. Furthermore it highlights the dependence and drawbacks of

such methods on the neighbourhood structure.

It is necessary to emphasise the need for a statistical analysis of the output to
be part of any such probabilistic heuristic. Some of the statistical tools used for
the two probabilistic heuristics for TSP and VRP are developed. Furthermore,
these heuristics are part of a bigger class called tabu search heuristics for combi-
natorial optimisation problems. Hence it includes an overview of the TSP, VRP
and tabu search methods in Chapters 2, 3 and 4 respectively. Subsequently in
Chapters 5, 6, 7 and 8 ideas of neighbourhood structure, local optimum etc. are
developed and the required statistical analysis for some heuristics on the TSP
and VRP is demonstrated. In Chapter 9, the conclusion of this thesis is drawn
and the direction of future work is outlined. The following is a brief outline of

the contribution of this thesis.

In Chapter 5, the ideas of neighbourhood structure, local optimum, global op-

timum and probabilistic heuristics for any combinatorial optimisation problems
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are developed. The drawbacks of the probabilistic heuristics for such problems
are highlighted. Furthermore, the need to select the best heuristic on the basis

of testing a statistical hypothesis and related statistical analysis is emphasised.

Chapter 6 illustrates some of the ideas presented in Chapter 5 usiﬂg the GENIUS
algorithm proposed for the TSP. Statistical analysis is performed for 36 variations
of GENIUS algorithm based on different neighbourhood parameters, different
types of insertion methods used and two types of constructions of starting solu-
tions. The analysis is performed on 27 literature problems with size ranging from
100 cities to 532 cities and 20 randomly generated problems with size ranging
from 100 cities to 480 cities. In both cases the best heuristic is selected. Fur-
thermore, the fitting of the Weibull Distribution to the objective function values
of the heuristic solutions provides an estimate of the optimal objective function
value and a corresponding confidence interval for both the literature and ran-
domly generated problems. In both cases the estimate of the optimal objective

function values are within 8.2% of the best objective function value known.

Since the GENIUS algorithm proved to be efficient, a hybrid heuristic for the TSP
combining the branch and bound method and GENIUS algorithm to solve large
dimensional problems is proposed. The algorithm is tested on both the literature
problems with sizes ranging from 575 cities to 724 cities and randomly generated
problems with sizes ranging from 500 cities to 700 cities. Though problems could
not be solved to optimality within the 10 hours time limit, solutions were found

within 2.4% of the best known objective function value in the literature.

In Chapter 7, a similar statistical analysis for the TABURQUTE algorithm pro-
posed for the VRP is conducted. The analysis is carried out based on the differ-
ent neighbourhood parameters and tested using 14 literature problems with sizes
ranging from 50 cities to 199 cities and 49 randomly generated problems with
sizes ranging from 60 cities to 120 cities. In both sets of the problems, the sta-
tistical tests accepted the hypothesis that there is no significant difference in the
solution produced between the various parameters used for the TABUROUTE
algorithm. By fitting the Weibull distribution to the objective function values
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of the local optimal solutions, the optimal objective function value and a cor-
responding confidence intervals for each problem is estimated. These estimates
give values that are to within 6.1% and 18.3% of the best known values for the

literature problems and randomly generated problems respectively.

In Chapter 8, the general neighbourhood search method for a general combinato-
rial optimisation problem is presented. Very often, the neighbourhood structure
can be defined suitably only on a superset S of the set of feasible solutions S.
Thus the solutions in S\S are infeasible. Several questions are posed regarding
the computational complexity of the solution space of a problem. These concepts

are illustrated on the 199-city CDVRP, using the TABUROUTE algorithm.

In addition, the idea of complexity of the solution space based on the samples
collected over the 140 runs is explored. Some of the data collected include the
number of solutions with distance and/or capacity feasible, the number of feasible

neighbourhood solutions encountered for one run, etc. Questions such as

s How many solutions are there for the 199-city problem ?

e How many numbers of local minima solutions are there for the 199-city

problem?

e What is the size of the feasible region for the 199-city problem?

are answered. Finally, the conclusion is drawn that this problem cannot be used as

a benchmark based on the size of the feasible region and too many local minima.

The conclusion of this thesis and directions of future work are discussed in Chap-
ter 9. There are two appendices presented at the end of the thesis. Appendix
A presents the details of the Friedman test, the expected utility function test
and the estimation of the optimal objective function value based on the Weibull

distribution. Appendix B presents a list of tables from Chapters 6, 7 and 8.
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Chapter 1

Introduction

1.1 Brief background

General routing problems deal with transporting some commodities and/or trav-
elling along the arcs of a given network in some optimal manner. In the modern
world such problems arise in several contexts. Some examples, though not ex-

haustive are:

e distribution of goods and services from one or more depots to several cus-

tomer locations;

e production planning and distribution of products from plants/factories to

retail outlets;

e inventory planning and distribution of commaodities from depots to several

retail outlets;
e aircraft and crew scheduling;

e transportation of semi finished products from and/or between production
points and distribution points in a manufacturing or mining environment.
Such problems, dealing with the management and operational planning of vehicles

and/or crews in a network, are faced on a day-to-day basis by many organisa-
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tions and government. These are termed as routing problems. The origin of
such routing problems can be traced to the classical Travelling Salesman Pro-
blem (TSP) which gave rise to another classical problem, namely the Vehicle
Routing Problem {VRP). For a recent review on routing problems we refer

to Bramel and Simchi-Levi (1997).

The Travelling Salesman Problem is to find a route for the salesman to travel
from his home city, visit each of the other (r — 1) cities exactly once and return
back to the home city such that the total distance travelled by him is minimised.
The history of TSP can be traced back to Euler (1759) (cited in Lawler et al.,
1985) who discussed the problem of the knight’s tour. For a detailed history on
TSP we refer to Lawler et al. (1983). The TSP appears in disguise in several
other problems arising from practical applications. Some examples of such appli-
cations are: drilling of printed circuit boards, Chinese postman’s problem, X-ray
crystallography, vehicle routing, scheduling, computer wiring, control of robot

motions, etc. For some exposure to such applications see Jinger et al. (1995).

The Vehicle Routing Problems are natural generalisations of the TSP and they
address some cases of the routing problems dealing with the distribution of goods.
More precisely a general VRP may be stated as follows: A set of n customers
with known locafions and demands for some commodity is to be supplied from a
set of depots using a set of delivery vehicles each with a prescribed capacity. A
delivery route starts from a depot and visits some customers and returns back to
the depot. The VRP is to determine the delivery routes, one for each vehicle, such
that the total distance travelled by all the vehicles is minimised. Furthermore,

the delivery routes of the vehicles must satisfy the following conditions:

e every customer’s demand must be satisfied;
e each customer appears on exactly one vehicle route; and

e the total demand of customers appearing in a vehicle route can not exceed

the capacity of that vehicle.
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If the above problem concerns a single depot and a common vehicle capacity,
then the problem is called capacity restricted vehicle routing problem (CVRP).
Several variations of VRP can be recognised in day-to-day distribution problems.

These variations are obtained by adding some more side constraints such as

o upper bound restriction on the distance travelled by a vehicle along a vehicle

tour;

» customer’s restriction on time windows during which a vehicle could visit

the customer.

As already outlined, there are many scenarios of distribution problems involv-
ing the applications of VRP. Some specific examples include distribution and/or
collection of fuel, milk, newspapers, mail, garbage, etc. (cited in Lawler et al.

(1985)).

These routing problems are simple to state in terms of describing them in words.
But they are very complex in terms of providing a suitable mathematical for-
mulation and a valid procedure to solve them. The classical TSP and VRP are
comparatively easy in terms of providing valid mathematical formulations. How-
ever, solution procedures are very complex in terms of the computational effort
required to solve an instance of a problem. The computational complexity of a
problem is determined through the analysis of the required worst case compu-
tational effort to solve various instances of the problem by the best algorithm.
Normally the computational effort of an algorithm to solve a problem is quantified
as a function of the size of the input instance of the problem. The computational
complexity of an algorithm to solve a problem is the worst case computational
offort taken over all instances of the same size of the problem and is expressed
as a function of the problem size. Whenever this function is polynomial, the

algorithm is considered to be good.

For many combinatorial optimisation problems such as TSP and VRP, the com-
putational complexity of all the known exact algorithms grows exponentially as a

function of the size of the problem. The literature in computational complexity is
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well developed. For details of this subject, we refer to Johnson and Papadimitriou
(1985). The TSP and VRP belong to the class of NP-hard {Non-deterministic
Polynomial) problems. With the present knowledge it is believed that the pro-
blems in NP-hard are unlikely to have any good algorithm.

Thus for many combinatorial optimisation problems in the class of N'P-hard,

researchers have focussed their effort on the following:

e development and implementation of exact algorithms exploiting the modern
computing power so as to solve as large size problem as possible within a

reasonable computational effort;

e development and implementation of heuristic algorithms so as to produce

near optimal solutions to a general problem rather quickly.

More specifically, for TSP and VRP, researchers have developed exact algorithms
based on partial enumeration schemes. Recent success in solving large size pro-
blems of TSP exactly is through polyhedral branch and cut methods. These
methods depend on good mathematical formulations, polyhedral properties of
the cutting planes and efficient coding implemented on modern fast computers.
In spite of such advancements, the computational effort required to solve exactly
some of the TSP are still high. For example, TSP of size 225-city, 4461-city and
7397-city were solved by using computational time of 1 year, 1.9 years and 4
years respectively (Jiinger et al., 1995). Recently Applegate et al. (1998) solved
a 13509-city problem using 3 months computational time on a network of 48

workstations.

The vehicle routing problem is a much more difficuit problem when compared to
TSP. Exact branch and cut algorithm have been developed for VRP by several
authors. Largest size VRP solved exactly is a 134-city by Augerat et al. (1995)
and Hill (1995).

Since the initial attempts, several heuristic algorithms have been proposed and
used for both TSP and VRP. Some of these heuristics are deterministic and of

polynomial computational complexity. Every implementation of a deterministic
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heuristic on a given instance produces the same solution. Some authors have
studied the complexity of finding a near-optimal tour for a TSP and established
certain negative results (Johnson and Papadimitriou, 1985). Karp and Steele
(1985) have made certain probabilistic analysis of heuristics assuming that the
cities of a TSP are drawn independently from a uniform distribution over the
d-dimensional unit cube. Recently a number of researchers have developed heu-
ristics for both TSP and VRP based on probabilistic methods such as tabu search,
neural networks, genetic algorithms and simulated annealing. Fach implementa-
tion of a probabilistic heuristic on a given instance may produce a new solution.

Some of these heuristics are of exponential computational complexity.

A typical manager faces a particular instance of a TSP and/or VRP that occurs
in the day-to-day operations of his/her organisation. The concerned management
is interested in solving the problem faced by them. But they get no guarantee of
any desired quality solution from using any of the heuristics in the literature. For

an end user, the current status of TSP and VRP can be summarised as follows:

e The exact algorithms may not solve a given instance of the problem in a

reasonable time.
e There are too many heuristics available.

e Very little effort is put into assessing the quality of solutions produced by

heuristics.

e Different implementations (runs) of the same probabilistic heuristic on a
given input instance of a problem may produce distinct solutions of different
quality. Thus desired quality and reproducibility of the solution can not be

ensured.

e Most of the comparisons (available in the literature) between the perfor-
mance of the various heuristics are based on the so called benchmark lit-
erature problems. Problems faced by the end user may not be similar to

the benchmark literature problems. Furthermore, the performance of the



heuristics on the benchmark problems provide no guarantee on the quality

of solutions that can be obtained in the problem faced by a typical end user.

e Most of the documentation on the performance of the heuristics on the
literature problems provide no information regarding the ‘computational
effort (CPU time) spent on obtaining the claimed solution, reproducibility
of the claimed solution and hardware environment of the implementation.

Thus many of the comparisons documented are irrelevant to the end user.

e There is 3 lack of acceptable methods to compare various heuristics.

As noted by Bodin et al. (1983), annual distribution cost is estimated to be
around $400 billion in the United States. Furthermore, surveys show that physical
distribution costs account for about 16% of the sales value of an item consumed.

Any reduction in these costs will be of significant benefit to consumers.

This thesis focuses on some of the above deficiencies. In the next section we

provide a brief review of the contents of this thesis.

1.2 Review and Summary of Thesis

Most of the heuristics for general combinatorial optimisation problems are based
on neighbourhood search methods. Hence we provide a formal setup for defining
such neighbourhood structures, definitions of local optimum and global optimum.
Furthermore, we highlight the dependence and drawbacks of such methods on the

neighbourhood structure. Any given combinatorial optimisation problem, say
minimise {f(z) : z € S}
can be reworded based on the neighbourhood structure as:

Find z* € § such that f(z*) = g = min{g} : 1 <i < 7}



where g,1 < i < v are the distinct local minimum objective function values re-
alised by the set of all local minimum solutions of S. Note that two distinct neigh-
bourhood structures may lead to distinet sets of local optimum values, though
the global optimum values will be same. Also for all A'P-hard problems, we have
no prior knowledge of the local optimum values g7, global optimum value f(z*)
and the number of distinct local optimum values, y. For a given neighbourhood
structure, deterministic heuristics generate exactly one of the local optimum val-
ues. The probabilistic heuristics implemented several times on a given input data
of the problem may generate some of the distinct g?, but will not ensure anything

about the quality of the solutions produced.

We thus emphasize the need for a statistical analysis of the output to be part of
any such probabilistic heuristic. We develop and illustrate some of the statistical
analysis that can be performed for the two probabilistic heuristics for TSP and
VRP. Furthermore, these heuristics are part of a bigger class called tabu search
heuristics for combinatorial optimisation problems. Hence this thesis includes
an overview of the TSP, VRP and tabu search methods in Chapters 2, 3 and
4 respectively. Subsequently in Chapters 5, 6, 7 and 8 we develop our ideas
of neighbourhood structure, local optimum etc. and demonstrate the required
statistical analysis of some heuristics on TSP and VRP. In the following we briefly

describe the topics discussed under each Chapter.

In Chapter 2, we present a review on exact algorithm and heuristics for the TSP.
Exact algorithms are based on branch and bound and branch and cut methods.
We also present a brief review of the tools such as subtour elimination con-
straints, cutting planes and various relaxed problems used in the exact methods.
Furthermore, we present various heuristic algorithms based on tour construction

procedures, tour improvement procedures and the combination of them.

In Chapter 3 we provide a review of the algorithms for two classes of VRPE.
We restrict our attention to CVRP and capacity and distance restricted VRP
(CDVRP). After discussing a popular mathematical model for VRP, we provide

a review of exact algorithms based on branch and cut methods. We also discuss



the various heuristics for the CVRP and CDVRP.

Our research relates to the tabu search methods and hence we provide an overview

of the tabu search methods and its applications to TSP and VRP in Chapter 4.

In Chapter 5, we formally introduce and develop the ideas of ﬁeighbourhood
structure, local optimum, global optimum and probabilistic heuristics for combi~
natorial optimisation problems. We highlight the drawbacks of the probabilistic
heuristics for such problems. We emphasize the need for integrating the statistical
analysis of local optimum values with probabilistic heuristics. Furthermore, we
{llustrate the need to select the best heuristic on the basis of testing of statistical

hypothesis and related analysis.

Chapter 6 illustrates some of the ideas presented in Chapter 5 using the GENIUS
algorithm for the TSP proposed by Gendreau et al. (1992). We present the details
of the GENIUS algorithm in Section 6.2. In Section 6.3 and 6.4 we carry out
statistical analysis for 36 variations of the GENIUS algorithm based on different
neighbourhood parameters, different types of insertion methods used and two
types of constructions of starting solutions. The analysis is performed on 27
literature problems with size ranging from 100 to 532 cities and 20 randomly

generated problems with size ranging from 100 to 480 cities.

For the case of the literature problems, the result shows that 9_CGENI_ABC_US
(with neighbourhood parameter p = 9, insertions methods type A, type B and
type C and using the convex hull technique for constructing the starting solution})
is the best heuristic among the 36 heuristics. For the case of randomly generated
problems, 9 CGENI_AB_US (with neighbourhood parameter p = 9, insertions
methods type A and type B and using the convex hull technique for constructing
the starting solution) proved to be the best heuristic. Furthermore, the fitting of
Weibull distribution gives an estimate of the optimal objective function value and
a corresponding confidence interval in both the literature and randomly generated
problems. The estimate of the optimal objective function values are within 8.2%
of the best objective function value known for the literature problems and 6.5%

for the randomly generated problems.



Since the GENIUS algorithm shows some promising results, we decide to combine
the GENIUS algorithm with the branch and bound method to solve some large
dimensional problems. This is discussed in Section 6.5. We test the algorithm
on both the literature problems with sizes ranging from 575 cities to 724 cities
and randomly generated problems with size ranging from 500 cities to 700 cities.
Although the algorithm shows some unsatisfactory results, it solved the problems

yielding a solution within 2.4% of the best known objective function value.

In Chapter 7, we pose similar questions for the vehicle routing problem. We
present the details of the TABUROUTE algorithm for the CVRP and CDVRP
in Section 7.2. Subsequently in Sections 7.3 and 7.4, we conduct a statistical
analysis for four variations of the TABUROUTE algorithm based on different
neighbourhood parameters. These are tested using 14 literature problems with
sizes ranging from 50 cities to 199 cities and 49 randomly generated problems
with sizes ranging from 60 cities to 120 cities. In both cases of the problems,
the statistical tests accepted the hypothesis that there is no significant difference
between the various versions of TABUROUTE heuristics.

By fitting the Weibull distribution to the objective function values of local optimal
solution, we estimate the optimal objective function value and a corresponding
confidence intervals, for each problem, for both the literature problems and ran-
domly generated problems. The estimate optimal objective function values are to
within 6.1% and 18.3% of the best known values for both the literature problems

and randomly generated problems respectively.

In Chapter 8, we present the general neighbourhood search method for a general
combinatorial optimisation problem. Note that very often, the neighbourhood
structure can be defined suitably only on a superset S of the set of feasible
solutions S. Thus the solutions in S\S are infeasible. Furthermore the objective
function f(z) on S is suitably extended to f'(z) on & such that f'(z) = f(z) for
every z € S. Subsequently we define distinct local optimum objective function
values as ff,1 < i < fand g/,1 <1 <7 respectively for § and 5. Several

interesting questions are posed regarding the computational complexity of the



solution space of a problem. We illustrate these concepts for a 199-city COVRP
using the TABUROUTE algorithm.

We explore the idea of complexity of the solution space based on the samples
such as the number of solutions with distance and/or capacity'feasibility, the
number of feasible neighbourhood solutions encountered for one run, etc. Such
information was collected during the 140 runs. We pose the question: “how many
local minimum solutions are there for the 199-city problem ?”. The results show
that the expected number of local minimum solutions for the 199-city problem is
4.8587x10%™. Furthermore, the feasible region of the 199-city problem is approx-
imately 11% of the total size of S based on the TABUROQUTE algorithm. We
conclude that this problem can not be used as a benchmark problem based on

the data we have gathered.

Finally there are two appendices. Appendix A presents the detail of the Friedman
test, the expected utility function test and the estimation of the optimal objective
function value using fitting of the Weibull distribution. Appendix B presents a
list, of tables from Chapter 6, 7 and 8.

The concepts of Chapter 6, 7 and 8 can be further studied to integrate these
methods into several of the recently developed probabilistic heuristics for many
combinatorial optimisation problems. In Chapter 9, we summarise our conclu-
sions on the basis of this thesis and indicate direction for future research in this

areas.

1.3 Relevant Notation

In this section we present the assumptions and notation used in this thesis.

Travelling salesman problem (TSP)

Travelling salesman problem (TSP) is to find a route for the salesman to travel

from his home city, visit each of (n — 1) other cities exactly once and return to
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the home city such that the total distance travelled by him is minimised.

Let G = (V, A) be a graph where V = {1, 2, ..., n} is a set of vertices representing
the cities. Without loss of generality we take city 1 as the home city of the
salesman. The set of arcs can be denoted as A = {(3,7) : 1,7 € V} permitting
the direct travelling by the salesman between two cities. Associated to arc (4,7),
there is a cost (or distance) ¢; for travelling directly from city ¢ to city j. The
cost matrix C = ({c;;)) is an nxn matrix associated to the set of arcs A. The
TSP is called a symmetric TSP (STSP) if ¢;; = ¢;; for every (i, 7) € A. The cost
matrix C is said to satisfy the triangle inequality if and only if ¢;; +¢jx 2 cix for
all i, j and k. A Hamiltonian tour in G = (V, A) is defined as a cycle with |V |
edges on a graph with | V' | vertices.

Vehicle routing problem (VRP}

We use the following notation to describe the VRP introduced in Section 1.1.

Let G = (V, A) be a graph where V = {0,1,...,n}, the vertices 1,1 <1 < n
represent the n different customers and vertex ‘0’ represents the single depot of
the problem, A = {(i, ) : i € V,j € V,i # j} represents the set of arcs permitting

the direct travelling by a vehicle between two vertices of V.

Associated to arc (3, 7) in A, there is a cost ¢;; representing the distance or travel
time from vertex i to vertex j, i # 5,4, € V. Each customer i, has a demand
¢, of the commodity and service time 4;,1 <4 < n. Let m denote the number of

vehicles used by the problem.

A vehicle route can be represented by a cycle (0, 4, %2, ..., r, 0}, starting and ending
at depot ‘0’ in graph G. Note that {i;, %2, ..., 3.} € V. For the case of the capacity
restricted vehicle routing problem (CVRP), every vehicle route must satisfy the
condition that the total demand of the customers in a vehicle route cannot exceed
a common vehicle capacity denoted by Q. For the capacity and distance restricted
vehicle routing problem (CDVRP), the total time travelled by a vehicle must not

exceed an upperbound L.
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Chapter 2

An Overview of The Travelling

Salesman Problem

This chapter provides a literature overview for the Travelling Salesman Problem
(TSP). TSP is one of the most widely studied problems in combinatorial opti-
misation. Since many applications can be modelled as a TSP or a variant, it
has attracted many researchers from different fields such as Mathematics, Op-
erations research, Artificial Intelligence and Physics. Some applications include
drilling of printed circuit boards, X-ray crystallography, vehicle routing, schedul-
ing and computer wiring. For a detailed discussions of these applications see
Lawler et al. (1985). Omne important factor which interests researchers in the
TSP is that though the problem is easy to formulate, it belongs to the class of
NP-hard (NP stands for non-deterministic polynomial time) problems. This
class consists of problems that are computationally difficult. It is considered un-
likely that polynomial time algorithms exist for TSP. A number of exact methods
have been proposed to solve the TSP (Laporte, 1992). So far, the Branch and
Bound method combined with polyhedral techniques provide the best approach
to solving the TSP exactly. This approach is discussed in Section 2.1. Other
techniques which provide near optimal solutions are called heuristics or approxi-
mate algorithms. That is, if a solution is obtained using a heuristic algorithm, it

cannot be guaranteed that there is no other better solution available. Heuristics
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algorithms are discussed in Section 2.2.

The concept of TSP dates back to the 1700s and the term “Travelling Salesman
Problem” was introduced by Merrill Flood in 1930s (see Lawler et al., 1985).
The TSP involves a salesman starting from his home city, visiting-each city from
the list exactly once and coming back to the home city such that the total travel
distance is as small as possible. Let G = (V, A) be a graph where V = {1,2,..,n}
is a set of vertices and A = {(i,7) : 4,7 € V'} is a set of arcs. Let ¢;; be the cost
(or distance) associated with the arc (4, 7) and €' = (c;;) be the cost (or distance)
matrix associated with set A. The problem is symmetric if ¢;; = ¢ for all ¢
and 7. The cost matrix C is said to satisfy the triangle inequality if and only if
¢ij + ¢k > ci for all ¢, j and k. A Hamiltonian tour is defined as a cycle on a
graph of n nodes traversing each node exactly once. The length of a Hamiltonian
tour is the sum of the distances associated with the arcs in the tour (cycle). The

TSP is to find a Hamiltonian tour with smallest length.

In the last two decades, the increasing power of computers, the development
of polyhedral theory and efficient algorithms have contributed enormously to the
progress made in solving the TSP. Recently, Applegate, Bixby, Chvétal and Cook
have solved some of the “unsolved” problems in TSPLIB (Reinelt, 1995). These
include a 3038-city problem solved in 1991, a 4461-city problem solved in 1993,
7397-city problem solved in 1995 and a 13509-city problem solved in 1998. Despite
these successes, TSP is far from being solved satisfactorily. Some relevant points

to be noted are:

1. There is no algorithm which is guaranteed to solve any instance; that is,

solving a problem exactly regardless of its size, structure and characteristics.

2. Many exact algorithms developed for the TSP are not capable of solving

large practical size problems in a reasonable time.

3. Heuristic algorithms or approximate algorithms proposed to provide near

optimal solutions cannot ensure desired quality in terms of near optimality.
4. Very often randomness is involved in some of the heuristic algorithms. Such
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heuristics cannot ensure reproducibility of solutions for a problem under

different executions of the heuristic.

Despite improvements in computer technology, such as the availability of super-
computers and parallel computers, many problems still remain difficult to solve.
A group of researchers from CRPC (Applegate et al., 1998) took 3 months com-
putational time on a cluster of 48 workstations to solve the 13509-city problem.

That is equivalent to 12 years computational time on a single processor machine.

For literature reviews of the TSP we refer to the book by Lawler et al. (1985),
and papers by Laporte (1992) and Reinelt (1994). The rest of this chapter is
divided into two sections. Section 2.1 and 2.2 discuss the exact algorithms and

heuristic algorithms used recently for the TSP respectively.

2.1 Exact Algorithms

Exact algorithms used to solve the TSP are based on one of the mixed integer
linear programming formulations for the TSP and/or Branch and Bound meth-
ods. Dantzig, Fulkerson and Johnson (1954) provided the following mixed integer

linear programming;:

Minimise
D02 Ty (2.1)
P F-1
subject to
Szy=1, 1<i<n (2.2)
J#i
Yay=1 1<j<n (2.3)
i#j
0<zy; <1, a:,-jinteger,lgign,lgjgn,i%j (2.4)
S oz <| S| -1, VS C{1,2,.,n}, 2<[S[|<n -2 (2.5)

1,j€85,i7)
We denote (2.1) to (2.5) by Problem P. Next consider the relaxed linear program-

ming problem denoted by P’ obtained from P by relaxing the integer restrictions

in (2.4) and a subset of constraints in (2.5). The following observations are made:
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Consider any Hamiltonian tour and correspondingly define

1 if (i, §) belongs to the Hamiltonian tour (26)

Ty = i
0 otherwise

It is easy to check that z;; satisfy (2.2) - (2.4).

e Every solution to (2.2) - (2.4), restricting attention to z;; = 1, may not
necessarily give rise to a Hamiltonian tour. In fact such solutions may give
rise to non-Hamiltonian cycle called subtours (i.e. cycles not involving every

node).

e The set of constraints (2.5) precisely eliminate solutions with subtours and

hence are called subtour elimination constraints.

e Note that the number of constraints of type (2.5) increases exponentially
(of the order of 2") with the number of cities, n. Hence for most values of
n, the above model (2.1) - (2.5) cannot be solved as a linear programme

even if we relax the 0-1 restrictions in (2.4).

e The relaxed problem (2.1) - (2.4) is the well known Assignment Problem

and there are efficient algorithms to solve it.

e Solution z}; to P' is an optimal solution to P if z; satisfies all the constraints

(2.2) - (2.5).

e Furthermore, checking the feasibility of ((z;)) to P (i.e. the constraints
(2.2) - (2.5)) is equivalent to checking that 7' = {(Z, ) : z3; > 0} forms a
Hamiltonian tour in G = (V, A).

e Given that T C A, it is very easy to check whether 7" forms a Hamiltontan
tour. Furthermore, if T is not a Hamiltonian tour then it is very easy to
find a violation subtour elimination constraints of type (2.5). Dantzig et al.

(1954) called constraints (2.5) the cutting planes.

Based on these observations, Dantzig et al. (1954) proposed the following method
to solve the problem P.
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Step 1. Define Problem P' as (2.1) - (2.4) without integer restriction.
Step 2. Solve P’ and obtain ((zy)), T = {(i,7) : 2 > 0}.

Step 3. If T forms a Hamiltonian tour then stop; Otherwise, locate a solution
S which violates constraint (2.5) and add this constraint to problem

P’. Go to Step 2.

They solved a 49-city problem which was considered large at that time. Their
work showed that the cutting plane concept was relevant to solve general mixed
integer linear programming problems. The method was later formalised by Go-
mory (1958, 1960, 1963) (cited in Lawler et al., 1985) who invented the Cutting
Plane Algorithm for integer linear programming problems. This method can solve
problems in a finite number of iterations which may be large. However the most
popular method to solve TSP is the Branch and Bound method which is discussed
in Section 2.1.1 and the Branch and Cut method. This approach incorporates
the polyhedral approach to solving the TSP and is discussed in Section 2.1.2.

There are a vast number of papers published in the literature for the TSP and we
present here some of the important algorithms for the Symmetric TSP (STSF)
and Asymmetric TSP (ATSP) in Tables 2.1 - 2.2.
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Author/(s) Method(s) Comments
Dantzig et al. | Integer linear programming | Provided the first formulation
{1954) formulation and solved a 49-city problem

Held and
Karp (1970, 1971),
Christofides (1970)

Bellmore and Mal-
one* (1971)

Helbig Hansen and
Krarup (1974)

Smith and Thomp-
son {1977)

Bazaraa and

Goode* (1977)

Miliotis
(1976,1978)

Houck et al. (1980)

Padberg and Hong
(1980)

1-tree relaxation

Assignment  Problem  (AP)

relaxation

1-tree relaxation

1-tree relaxation

1-tree relaxation

Branch and cut method with
subtour elimination inequalities

n-path relaxation

Branch and cut
method with subtour elimination
and 2-matching inequalities

Proposed the 1-tree relaxation
using Branch and Bound method
for TSP

Proposed the Branch and Bound
method using AP relaxation.
Both symmetric and asymmetric
problems are tested.

Improved the algorithm of Held
and Karp (1971)

Used less memory than the Karp
and Held’s algorithm

Fxtended the Held and Karp and
introduced the stepped fathom-
ing scheme in the Branch and
Bound method

Provided a competitive approach
to solving the TSP

Produced weaker bound than
1-tree relaxation and required
longer computation time

Solved 74 problems with sizes

ranging from 15 to 318 cities

Table 2.1: Exact algorithm for the STSP. (The * indicates that the proposed
algorithm is used for both ATSP and STSP)
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Author/{s)

Method(s)

Comments

Crowder and Pad-
berg {1989)

Carpaneto et al.
(1989)

Malik and Fisher
(1990)

Descrochers and

Laporte (1991)
Grotschel and Hol-
land (1991)

Padberg and Ri-
naldi (1991)

Applegate et ak
(1995)

Jiinger and Stérmer
{1995)

Applegate et al.
(1998)

Branch and cut method with
subtour elimination and comb
constraints

Additive bounding procedure

1-tree relaxation

Integer linear programming

Branch and cut method with
subtour elimination, 2-matching,
comb and clique tree inequalities

Branch and cut method with
subtour elimination, 2-matching,
comb and clique tree inequalities

Branch and Cut method with
cligue-tree-like inequalities

Parallel implementation on the
Branch and Cut method by
Jinger et. al. (1994)

Branch and Cut with various
facet-defining inequalities

Solved problems of sizes ranging
from 48 to 318 cities

Randomly generated test pro-
blems of size up to 200 vertices
were solved

A dual ascent algorithm to
compute the multipliers of la-
grangean relaxation and required
less computational time

Improved the MTZ subtour elim-
ination constraints

Solved problems up to 1000 cities

Solved 42 symmetric TSPs with
sizes ranging from 48 to 2392
cities

Solved some unsolved problems
from TSPLIB with sizes ranging
from 225 to 7397 cities

Solved some literature problems
from TSPLIB

Solved the 13509 city problem
from the TSPLIB with a network
of 48 workstations

Table 2.1: (Cont.} Exact algorithm for the STSP. (The * indicates that the proposed algorithm
is used for both ATSP and STSP)
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Author/(s)

Method(s)

Comments

Smith et al. (1977)

Smith (1978)

Carpaneto and
Toth (1980)
Balas and

Christofides (1981)

Fischetti and Toth
(1989)

Miller and Pekny
(1991)

Pekny et al. (1991)

Pekny and Miller
(1992)

Carpaneto et al
(1995)

AP relaxation

1-tree relaxation

AP relaxation

Lagrangean
relaxation based on
AP and Branch and
Bound method

Additive  bound-
ing and Branch and
Bound method

Dual of AP

Dual of AP

Dual of AP

AP relaxation and
Branch and bound
method

Made two improvements: lower bounds were cal-
culated using the cost operators based on the as-
signment solution from parent node; and a last in
first out (LIFQ) branching strategy was adopted
to save the computer memory. Problems of sizes
up to 200 nodes were tested.

Found the reason that AP relaxation is more ef-
ficient for the STSP

Proposed a new branching rule and a new way to
calculate lower bound. The algorithm solved up
to 240 cities problems

Made various improvements including the lower
bound calculated from the Lagrangean problem
from AP, new branching and bounding proce-
dures were used. The proposed algorithm re-
quired less computational time and smaller search
tree. 120 randomly generated problems were
solved with maximum size up to 325 nodes

Proposed different boundings and problem of size
2000 was solved in 8329 seconds

TUsed a method which quickly pruned a large num-
ber of solutions. Problems with various matrix
gtructures were tested

Used an algorithm for Directed Hamiltonian Cy-
cle (DHC) for ATSP so that the problem pro-
duced a Hamiltonian tour or that the tour did
not exist. Randomly generated problems of size
up to 3000 nodes were solved

Parallel implemented the Miller and Pekny (1991)
algorithm by converting the cost matrix to a
sparser matrix so that the optimality of the fi-
nal solution was retained. Various classes of pro-
blems were tested with sizes ranging from 250 to
3000 cities

Improved the Carpaneto and Toth (1980} algo-
rithm and solved up to 2000 vertices on DEC sta-
tion 5000/240 computer in less than 3 minutes

Table 2.2: Exact algorithm for the ATSP
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2.1.1 Branch and Bound methods

The Branch and Bound method can be described as a partial enumeration method
to which a search tree is associated. The root of the search tree corresponds to
the entire set of feasible solutions. Every node of the search tree corresponds to a
subset of solutions with an associated lower bound on the objective function value
of the solutions from this subset. The lower bound is often obtained by solving
a corresponding relaxed linear programming problem. While searching for an
optimal solution at a node of the search tree, the associated subset of solutions
can be partitioned into smaller subsets with corresponding descendent nodes of
the search tree. This method of creating new search paths is called branching.
In the search, under certain conditions nodes can often be discarded. The worst
case involves a complete enumeration of the search tree. The process stops when

every node is either discarded or searched.

The concept of Branch and Bound method was used by Dantzig et al. (1954)
in solving the 49 cities problem. However, Eastman (1958) was the first-who
attempted to solve the TSP by Branch and Bound (cited in Lawler et al., 1985)
and the term Branch and Bound was first introduced by Little et al. (1963).

We outline the Branch and Bound algorithm in the following:

Step 1. (Initialisation) Set the upper bound z* = 00 and put TSP on the list,
Q.

Step 2. (Node selection, Subproblem and Branching rule) If @ is empty and
#* < oo then TSP tour is optimal; If @ is empty and z* = oc then there
is no solution. If @ is not empty, choose the problem (ot subproblem)

P’ from  according to subproblem selection and remove it from .

Step 3. (Lower bound) Solve the relaxation of subproblem P’ and let z be its
optimal cost. Tf z > 2*, go to Step 2. If z < z* and the optimal
solution of P’ forms a hamiltonian tour, store the solution and set
2* = 2. Otherwise, apply a branching rule to define new subproblems

as descendants of the subproblem P’ and store them in @. Go to Step
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2.

Different Subproblem Selection Rules, Branching Rules and Relaxation
are used by different authors. For details refer to Lawler et al. (1985) and La-
porte (1992) and the references there. A number of authors have used different
relaxations of the linear programming formulation for TSP such as the Assign-
ment Problem (AP), 1-tree relaxation and Lagrangean' relaxation based on AP.
The various formulations and relaxations for the ATSP and the 1-tree relaxation

formulations for the STSP are described in the following.

Assignment Problem

The Assignment Problem (AP) can be described as assigning n jobs to m ma-

chines and the total cost Z Z ¢i;2;; is minimum. This is one of the first relax-

ations used for the TSP. N:)té#t:hat (2.1) - (2.4) provide a formulation of the AP.
Thus it is a relaxation of the TSP formulation (2.1) to (2.5) provided by Dantzig,
Fulkerson and Johnson (1954). Note that a lot of the algorithms are based on
the AP relaxation are for asymmetric TSP. Since our work is concentrated on
the symmetric TSP, the AP relaxation is briefly discussed here. Some of the
effective algorithms are proposed by Smith et al. (1977), Carpaneto and Toth
(1980), Balas and Christofides (1981), Miller and Pekny (1991) and Carpaneto et
al. (1995). For detail of the subject, we refer to Balas and Toth (1985) and the
references above. In the following we discuss some of the recent work by various

authors.

Cuarpaneto and Toth algorithm (1980)

Carpaneto and Toth (1980) proposed an algorithm based on the lowest-first
branch and bound (branching is always done on the node with lowest objec-
tive function value) for the ATSP. At each node, h say, the problem is solved by
the Modified Assignment Problem (MAP,) defined by constraints (2.1) - (2.4)

and additional constraints associated with excluded arcs subset Ej, and included
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arcs subset I, defined as follows:
By, = {(i,5) € A: z;; is fixed to 0}, I = {(4,j) € A : z;; is fixed to 1}.

Suppose the optimal solution of M AP does not produce a hamiltonian tour and
the optimal objective function value of M AP, is less than the current best known
solution, then m subproblems are generated from node h according to the new

branching rule (derived from Bellmore and Malone (1971)) described below:

Let G4, ¢ = 1,...,d, be the subtours produced from M AP, and consider a subtour
G.q = (Vy, Ag) with V, = {rq1; s Tge, } and arcs Aq = {(quirq2)7"'J(quq‘qul)}
where e, =| V, |=| 4, | for the gth subtour. The subtour G, which has the

minimum pumber of not-included arcs in the set I, such that
m = ep— | Ap N I |= minig—r, . ay{€a— | AgN I [}

is chosen for branching.

Let A = {(s1,t1), - (Sm,m)} be the subset of not-included arcs of A, The
subset of the excluded and included arcs associated with jth descending node

g(5),7 =1,..,m of node h is

By = EnU{(s;: t5)};
I_q(j] = Ih U {(Si,ti) L1 = 1, ,j - 1}

The proposed algorithm was able to solve 20 randomly generated problems with
sizes ranging from 40 to 240 cities in average CPU time of 3-36 seconds on CDC
6600.

Carpaneto, Dell’amico and Toth algorithm (1995)

Carpaneto et al. (1995) proposed a lower first, branch and bound algorithm based
on AP relaxation and a subtour elimination branching scheme. The algorithm
improves from the algorithm of Carpeneto and Toth (1980) in the following four

aspects:
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1. At the root node (node 0}, the reduction procedure removes any arcs which
cannot belong to an optimal tour. The original matrix C is transformed into
C where each entry of C is reduced by u; and v; 1.e. T = Cij — Ui — 5 >0
where u; and v; are the optimal solution of the dual problem q,ssociated with
the AP. ¢;; represents a lower bound on the increase of the optimal solution
value of AP corresponding to the inclusion of arc (3, ) in the solution AP.
Let z be the lower bound obtained from the dual problem of AP. If the
feasible solution, say z*, is known, then each arc (2,7} € A such that ¢; >
z* — z is removed since the inclusion of the arc will not lead to solution less
than z*. Hence the original graph G has been transformed into a sparse

one, G = (V, A) where A = {(i,j) € A:g; <2* —z}.

2. The MAP is solved at each node and the efficiency of the algorithm depends
greatly on solving MAPs. At node h, a parametric technique is used to find
only one shortest augmenting path instead of solving the M AP, from scratch
and arc (s, t) is excluded from the solution M AP; (k is the parent node of
h). To obtain a solution from M APy, we only need to consider constraints
(2.2) for i = s and constraints (2.3) for j = ¢ in the reduced cost matrix c;.

'The resulting time complexity to solve each MAP is O(]| A | logn).

3. Effective data storage is introduced to store the information associated with
the node of the decision tree, avoiding the updating of the unchanged in-

formation.

4. Consider a node h which has several optimal solutions. A connecting pro-
cedure which decreases the number of subtours is applied repeatedly using

the following:

Given two subtours G, = (V,,, 4,) and Gy = (V4, 45), consider a pair of arcs
(10, Ja) € A, and (iy, Jy) € Ay such that &, 5, = G4 = 0, then subtours G,
and G, can be connected to form a unique subtour G, = (Vo U Vi, Ag U Ay
(i, Ja) U (i5, 30)) U ((a: Jb) U (b Ja))-

If o hamiltonian tour is found, it is the optimal solution to node A.
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Using the improved algorithm, the randomly generated problems of sizes up to

2000 nodes were solved on a DEC station 5000/240 computer in less than 3

minutes.

Miller and Pekny (1991)

Miller and Pekny (1991) considered the duality of the AP which can be formulated

as follows:
Maximise
n n
Z s + Z Vs (27)
i=1 3=1
subject to

ey —ui—v; 20, ,JEV, i#] (2.8)

To effectively solve a problem by avoiding examining a large number of solutions,
they created a simpler problem which has the same optimal solution to the original
problem and can be solved faster. Consider a modified cost matrix c;; for the

ATSP, associated with a relaxation AP’ and its dual-AP":

oo otherwise.

) { cij ifey <A

Let the optimal value of ATSP and AP be »(ATSP) and v(AP) respectively.
Consider the following proposition (Miller and Pekny, 1991):

An optimal solution z* for ATSP' is an optimal solution for ATSP if
v(ATSP) — v(AP) < A+ 1— Uy = Vrpe (2.9)
and
Al =ty — Uy 20, Vi€V (2.10)

where (', ') is an optimal solution to dual AP’ and V.., 15 the maximum elernent
of /. Note that A+ 1 — u; — Upg, i the smallest reduced cost of the discarded
matrix element which guarantees that no excluded element can lead to better

sohition.
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A feature is added to their branch and bound method, to quickly find the solution
for ATSP from the set of optimal solutions to AP. This feature (Hamiltonian
cycle problem reduction) is to reduce the solution of ATSP to the solution of a

Hamiltonian cycle problem on a given graph.

Let an admissible graph be defined as G = (V, A) where V' is a set of vertices
and 4 = {(i,) | ci; — uf — v} = 0} where u} and v} are the optimal dual-AP
variables. A hamiltonian cycle on G is an optimal solution to ATSP. If G does
not have a Hamiltonian cycle, then the lower bound AP can be increased by the
smallest nonzero reduced cost. This feature is incorporated in their branch and

bound method.

Five different classes of randomly generated problems were tested using the al-
gorithm suggested by Miller and Pekny (1991) and the problem with 500000-city
was solved on a Cray2 supercomputer which required 12,623 seconds computing
time. Furthermore, Pekny and Miller (1992) implemented the above method using
parallel implementation. Three different classes of randomly generated problems

were tested and problems of size up to 10000-city have been solved.

This concludes the review for the ATSP. The 1-tree relaxation for the STSP is

discussed in the following.

1-tree Relaxation Approach

Consider that an undirected graph G = (V,A) where V={1,...,n} is a set of
vertices and A is a set of edges. Let ¢;; be the edge weight from node 7 to
4. A tree is a connected graph without a cycle. Given the weighted graph &,
the minimum spanning-tree problem is to find a spanning tree in G having the
smallest edge sum weight. A 1-tree consists of a connected graph with two distinet
edges joining to vertex 1 and the graph restricted to V — {1} is a tree. A l-tree
is a tour if and only if each vertex has degree 2. The following formulation of the
minimum 1-tree problem is due to Christofides (1970) and Held and Karp (1970,
1971):



Minimise
Y iz (2.11)
i<y
subject to
Yoz =2, ‘ (2.12)
J

> z=mn, (2.13)

1<i<j<n
Z Tij Sl ) | -1, 5C {233; "'1”}: (214)
iLJES I
0 < zy; <1, zy; integer. (2.15)

Assuming z;;'s to be 0-1 variables, we can note the following. Constraints (2.12)
ensure that vertex 1 has degree two. Constraint (2.13) ensures that the edge set
{(3,4) : ;; = 1} forms a tree on vertices of V — {1}. Constraints (2.14) are the
subtour elimination constraints which prevent the formation of subtours. Held
and Karp (1970) established that the extreme points of the polyhedron generated
by (2.12) - (2.15) has one to one correspondence with the set of 1-trees on the
vertex set V. A solution z;; to (2.12) - (2.13) representing a 1-tree will form a
TSP tour if it further satisfies

Sy +Yzi=2 25i<n-1 (2.16)

i J<i
Note that (2.16) ensures that each vertex has degree two. Thus (2.11) -(2.16)
provide another formulation of the TSP, where the minimum weight 1-tree pro-
blem is a relaxation of the TSP. Furthermore, if a minimum weight 1-tree given

by «}; forms a TSP tour then zj; is an optimal tour for the TSP.

Held and Karp (1970) used Lagrangian relaxation techniques to solve the TSP
(2.11) - (2.16). They added the equation (2.16) to the objective function (2.11)

and defined the Lagrangian relaxation problem as follows:

L{n) = min {Z CiiZi5 + Z T [Z Tij + Z Tji — 2} : z;; satisfies (2.12) — (2.15)}

i< i 3> j<i
(2.17)
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that is,

L(m) = min {Z(ng 4 W) — 2y mi ¢ @y satisfies (2.12) — (2.15)}
i<i i
(2.18)

The strongest lagrangean relaxation is given by « = 7* such thatw
L(m) = mfr;\x{L(w)} (2.19)

and this problem is called the lagrangean dual of the TSP. T he Lagrangian
relaxation problem L(m*) provides a lower bound for the optimal tour length of
the TSP. Subgradient optimisation method is used to solve (2.19) and further
details can be found in Nemhauser and Wolsey (1988). Problems of sizes 20 to

64 nodes were solved.

Other authors who have contributed to this topic include Helbig Hansen and
Krarup (1974) who improved the Held and Karp algorithm by considering dif-
ferent methods for calculating 7 in the subgradient method. Their algorithm is
95 times faster than the Held and Karp’s algorithm. The problems tested range
from 10 to 80 nodes. Held and Karp used the breadth first search method where
a list of subproblems is created which require a large memory space for storage.
The disadvantage of this is it limits the sizes of the problems solved. To overcome
this, Smith and Thompson (1977) proposed the last-in-first-out (LIFO) implicit
enumeration search algorithm which requires less memory space. Problems of
sizes up to 100 nodes were solved. Bazaraa and Goode (1977) extended the work
of Held and Karp and solved the dual problem of the original formulation. In the
case of STSP, three literature problems of sizes up to 57 cities and 10 randomly
generated problems of sizes up to 80 cities were solved. In the case of ATSP, 8
randomly generated problems of sizes up to 30 to 60 cities were solved. Malik
and Fisher (1990) proposed the dual ascent for finding the multipliers of the La-
grangean relaxation which is faster and used less CPU time compared with the
subgradient method used by Held and Karp in which ten literature problems of

size up to 100 cities were solved.
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2.1.2 Branch and Cut methods

Branch and cut is an approach combining the Branch and Bound method and
polyhedral theory to find strong cutting planes or constraints desgribing the fea-
sible solution space of the TSP. This method has been successful in solving some
of the large dimensional hard problems in the literature. Some polyhedral theory

terminology is described below:

Recall that a problem P can be defined as P : min{cz subject to z € S} where
S is defined as a set of feasible solutions. The relaxation of P can be defined
as P = min{cz subject to Az < b,z € R"}. The polyhedron of P' can
be described by an intersection of a set of a system of linear inequalities i.e.
P’ = {z € R*"Az < b}. A bounded polyhedron is called a polytope. An
inequality aTz < ap is valid for P CR*if P' C {z € R"|eTz < ap}. A subset
F of the polyhedron P’ is called a face of P’ if there exists a valid inequality
Tz < ag with respect to P’ such that F = {x € P’ loTz = ag}. A convex
hull of P’ is the smallest convex set containing all point in P’ and is denoted by
conv(P’). So a facet-defining valid inequality is a valid inequality describing
conv(P"). Facet-defining inequalities can be used to give a strong relaxation of

P,

The idea of Branch and Cut method was first introduced by Dantzig et al. (1954)
in 1954 to solve a 49-city problem. The relaxation problem P’ is solved and a
solution z is obtained. If z lies outside of S, then z can be separated from S
by a cutting plane which satisfies all the points of S and violates the solution z.
This is added to the problem which results in a tighter relaxation. This process is
continued until a solution in S is found. However, the challenge of the Branch and
Cut method is to find the facet-defining inequalities which describe the convex
hull of the feasible solutions of the TSP. Over the years, some facet-defining
inequalities for TSP have been developed in the literature. The first facet-defining
inequality i.e. subtour elimination constraint was discovered by Dantzig et al.
(1954) for their integer linear programming formulation. Grotschel and Padberg

(1979a, 1979b) introduced two classes of inequalities called 2-matching and
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comb which can be used as cutting planes. Grotschel and Pulleyblank (1985)
introduced another class of inegualities called clique tree inequalities. These
inequalities have been used successfully in solving the TSP in recent years for
large dimension problems. It should be noted that other classes of facet defining
inequalities (see Naddef and Rinaldi, 1991, 1993) have been found but have not
proven computationally useful. The above four families of the inequalities will
be discussed briefly in the following. For further details refer to Grotschel and

Padberg (1985).

Consider a graph G = (V, A), an edge (i, j) € A is an ordered pair (i, j) of nodes of
V. Let S be a subset of nodes in V and define E(S) = {(i,j) € A|i€ S,j € S}

The four families of facet defining inequalities are described in the following:

(a) Subtour elimination constraints (Dantzig et al. (1954), Grotschel and
Padberg (1979a, 1979b)) were first identified by Dantzig et al. (1954). This
constraint is to prevent the formation of the subtours and hence the name ‘subtour
elimination’.
> =z <81, ScV, 25[S[€n—2 (2.20)
t,7C8,iA]

Another form of (2.20) is given in the following:

SN z; 21, SCV, §=V\S, 2<[5i<n-2 (2.21)

i€S jef

Constraint (2.21) can be interpreted as there is at least one edge from S connected

to S.

(b} 2-matching inequalities (Grétschel and Padberg (1979a, 1979b)) make sure

that every vertex contains exactly two edges. The formulation is defined as

1
> omy+ > ey SIH[+5(0 A1) (2.22)
(i.5)eE(H) (i, A

for all H C V and all A’ C A satisfying
i) | {4, 4N H |=1 for all (4,5) € 4’
(11) {Zkajk} N {ihjf} = ozk # l &Ild (ik:jk): (ihjl) S A':'
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(iii) { A" |> 3 and odd.
The set H is called the handle and the edges of set A’ are called the teeth.

(c) Comb inequalities (Grotschel and Padberg (19792, 1979b)) are defined as:
8 kS 1 ’
Y ozg+Y Y w<H[+Y (TGl -5+ (229)
(i.1)EE(H) k=1(i,f)€E(Th) . k=t

for all H,T},...,T; CV satisfying

)| TeNH|>LEk=1,..,8;

) | Tk \H |2 1L,k=1,..,s;

i) TN =6,1<k<i<s,;

iv) s > 3 and odd.

The set H is called the handle and sets Ty are called the teeth of the comb. If (i)

(
(
(
(

is satisfied with equality the comb inequality is called simple.

(d) Clique tree inequalities (Grétschel and Pulleyblank, 1986) are defined as:
i > Eij‘*‘i Y oz < zf: | Hy | +Es)(i T | —tk)_%(3+1) (2.24)
k=1(i,j)cE(Hy) k=1 (i,5)€E(T}) k=1 k=1

for all Hy,..,H, CV and T1,...,7; C V are called the handles and teeth of the

clique tree. The number of handles intersected by the tooth Tj is defined by .

A clique tree is a connected subgraph of K, whose cliques satisfy the following

properties:

(i) The cliques are partitioned into two sets namely the set of handles and the
set of teeth;

(ii) no two teeth intersect;

(i11) no two handles intersect;

(iv) each tooth contains at least 2 and at most n — 2 nodes and at least one node
not belonging to any handle;

(v) each handle intersects odd numbers (> 3) of teeth;

(vi) if a tooth T and a handle H have a nonempty intersection, then HMT is an
articulation set of the clique tree. An articulation set is referred to a subset of
vertices, say A, in a connected graph, G, such that graph G is disconnected by

removing the set A.
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Recall from previous section that while solving TSP using the Branch and Bound
method the lower bound must be calculated as close to the upper bound as
possible. The advantage of using facet defining cuts is that they will usually
result in stronger lower bounds being obtained. Weyl (1935) (cited in Padberg
and Rinaldi, 1990a) established that the convex hull of the set of all TSP tours

can be described by a system of linear inequalities
lr < Ip,¥(l,lp) € L (2.25)

where £ is a finite family of linear inequalities such that each inequality of £
induces a different facet of the convex hull. Note that z = (zi;) € R*-1), Only
a proper subfamily £’ of the family of £ is known and | £/ | increases exponentially
in terms of the number of cities n. So to solve the TSP using the Branch and

Cut method, the following relaxed problem using the cutting plane procedure is

solved.
Minimise
DD GiiTis (2.26)
i #i
subject to
Yom+y.zi=2 1<i<n, (2.27)
7 i
Iz <ly Y(I,) e L, (2.28)
0<z<1. (2.29)

‘The cutting plane procedure is given below. Define £y to be a set of known

inequalities.
Step 1. Set £ = 0.

Step 2. Solve (2.26), (2.27), (2.28) for £' = £ and (2.29) and let the solution

be z.
Step 3. Find one or more inequalities in £p violated by 7.
Step 4. If none is found, then stop; Otherwise add the inequalities to L and

go to Step 2.
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This method depends on efficient ways of finding inequalities of Lo in Step 3.
This problem is referred to as the identification or separation problem. Exact
methods are usually unavailable or too siow and hence heuristic procedures are

used.

The term Branch and Cut was first used by Padberg and Rinaldi (1987) in their
algorithm to solve a 532-city problem which essentially has four components: a
heuristic to find an upper bound, a set of procedures to identify the violated
inequalities, an LP solver and a procedure which combines branching and cutting
plane techniques. The exact methods for defining subtour elimination constraints
and 2-matching inequalities were found by Gomory and Hu (1961) and Padberg
and Rao (1982) (cited in Padberg and Rinaldi, 1990a). Improved methods are
discussed in Padberg and Hong (1980), Padberg and Rinaldi (1990, 1991) and
Applegate et al. (1995). In particular, Padberg and Rinaldi (1991) proposed

efficient reduction techniques to speed up the convergence of the exact methods.

With the development of powerful computers and elegant Branch and Cut algo-
rithms, large size TSP’s have been solved to optimality. Crowder and Padberg
(1980) solved problems from 48 to 318 cities with the use of subtour elimination
and comb constraints. Padberg and Hong (1980) solved a total of 74 problems
with sizes ranging from 15 to 318 cities using an exact procedure for finding
subtour elimination constraints and a heuristic for the 2-matching constraints.
Grotschel and Holland (1991) solved a 1000 cities problem. Padberg and Rinaldi
(1987) solved the 532-city probiem and the term Branch and Cut was first de-
fined in their paper. A breakthrough came in 1991 when they solved a 2392-city
problem, the largest problem solved at the time. The success of their work was

mainly due to the following factors:

e A combination of procedures, heuristics and exact procedures ((Padberg
and Rinaldi, 1990a, 1990b) and (Padberg and Rao, 1982)) to identify the
subtour elimination inequalities, 2-matching inequalities, comb inequalities

and cligue-trees inequalities are used in their algorithm.
e Faster computers, CYBER 205 and IBM 3090/600, are used to handle larger
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dimension problems to reduce the running time. Table 2.3 shows the com-

parison of the running time with different computers.

Problems
1002 2392
CYBER 205 7hours 18mins | 27hours 20mins
IBM 3090/600 | 3 hours 10 mins | 2hours 40mins

Table 2.3: Comparison of running for larger dimension problems with different
computers

s Two types of LP solvers are used: XMP was used on CYBER 205 and OSL
was used on IBM 3090/600. The type of LP solver can significantly affect
the running time of the algorithm. Table 2.4 shows the comparison of the

time used by different LP solvers.

Problems
1002 2392
CYBER 205 19104 79425
IBM 3080/600 5225 5890

Table 2.4: Comparison of the total CPU time (in second) spent in LP solver

o An efficient heuristic is required to find a good upper bound. The Lin and

Kernighan (1973) heuristic was used.

e The best node search is adopted where the node with the lowest objective
function value is selected to branch. This allows the keeping of the smaller

search tree,

e One way to increase the efficiency of the LP solver is to keep the constraint
matrix sparse. To do this reduction procedures are used to reduce the size
of the support graph. The support of an inequality is the partial subgraph

that is spanned by the edge having nonzero coefficients in the inequality.

Exact methods for subtour elimination and 2-matching constraints are used. Heu-

ristic procedures are used to find comb inequalities and clique tree inequalities.
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A group of researchers Applegate, Bixby, Chvital and Cook solved some of the
problems from TSPLIB which include 3038 cities , 4461 cities in 1993, 7397 cities
in 1995 and 13509 cities in 1998. The success of solving the 7397-city problem

was due to the following factors

o A combination of efficient cut finding techniques were used including a few
new ways of finding cuts such as gluing together old constraints into a
conglomerate cuf, the checking for the consecutive ones properly and a new

way of finding comb inequalities based on dominos and necklaces.

e The availability of a network of UNIX workstations.

Recently, the 13509-city problem was solved by Applegate et al. (1998), which
is the largest problem solved to date. The main factor for their success is due
to the new trick of projecting S and a given point z* in R" into a lower dimen-
sional space. The algorithm was Tun on a network of 48 workstations including

DigitalAlphas, Intel Pentinm IIs and Pentium Pros and Sun UltraSpares.

This concludes the section of exact algorithm. The heuristics or approximate

algorithms are discussed in the next section.

2.2 Heuristic Algorithms

One of the drawbacks of exact algorithms for the TSP is that they usually take
a long time to solve the problem and thus can only handle smaller size problems.
Hence heuristic algorithms, or approximate algorithms, are developed to find the
‘near-optimal’ solutions for larger dimension problems within a reasonable CPU

time.

Heuristic algorithms for the TSP can be divided into three groups:

e tour construction procedure - gradually builds up a tour by adding a

city at each step;
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e tour improvement procedure - improves the tour by exchanging the

position of the cities such that the cost of the tour is improved;

e composite algorithm - combines the above two procedures.

The heuristic algorithms and the major development for TSP using heuristic

algorithms are discussed in Tables 2.5 and 2.6.

Author(s)

Method(s)

Comments

Lin (1965)

Lin and Kernighan
(1973)

Or (1976)

Golden and Stew-
art (1985)

Gendreau et al.

(1992)

Chatterjee et al.
(1996)

Sun et al. (1993)

Homaifar et al
(1993)

3-Opt
Improvement of 3-
Opt by Lin (1965)
Or-Opt algorithm
CCAO
(Convex-hull,
Cheapest insertion,
Angle selection and

Cr-Opt)

GENIUS

Genetic algorithms

Hierarchical
strategy

GA

! to within 1% of the optimal solution B

Proposed one of the earliest edge exchanging
techniques

Proposed a further improvement of the 3-Opt al-
gorithm by Lin (1965)

Proposed a modification of the 3-Opt procedure

Proposed a composite algorithm

Proposed a heuristic algorithm and clairhed to
outperform other heuristics in solution quality
and CPU times

Proposed a one parent crossover scheme for their
GA. Problems from TSPLIB ranging from 100 to
666 cities were tested and the results were within
3.2% of the optimal solution

Proposed that the algorithm was able to produce
a rough solution in a short time period

Proposed a GA with matrix crossover. Problems
tested include 25 to 318 cities and yield solution

Table 2.5: Heuristic algorithms for TSP
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Author(s)

Method(s)

Comments

Chardaire et al.
(1995)

Poon and Carter
(1995)

Budinich (1996)

Somhon et al
(1997)

Meeran and Shafie
(1997)

Nagata and
Kobayashi (1997)

Tsubakitani
Evang (1998a)

and

Simulated
annealing

Genetic algorithms

Neural Network

Neural Network

Convex hull and lo-
cal search
algorithm

Genetic algorithm

Jump search

Proposed a heuristic based on the SA approach.

Proposed the tie-breaking crossover and union
crossover 2 for their GA. Four problems of sizes
from 20 to 30 are tested.

Proposed a NN algorithm and tested with pro-
blems with sizes ranging from 10 to 1000. The
results showed that it performs better than SA
for problems with more than 500 cities.

Proposed an algorithm based on self-organising
approach. Problems from TSPLIB ranging from
51 to 1400 were tested and the deviation is to
within 2.2% of the best known solutions.

compared the proposed algorithm with three
other TSP heuristics and the results indicated
that the proposed algorithm performed better.

Proposed the edge assembly crossover (EAX) for
their GA. Problems tested ranging from 101 to
3038 cities from the TSPLIB.

Indicated in the results that jump search outper-
forms tabu search and iterative local search on
the literature and randomly generated problems

Table 2.5: (Cont.) Heuristic algorithms for TSP

2.2.1 Tour construction procedure

In the 1960s and 1970s various types of tour construction algorithms were devel-

oped with the hope of finding near-optimal tours for large size problems. These

methods are outlined in the following. For further details of the method, refer to

Lawler et al. (1985).

o Nearest addition procedure - Insert a city &k not yet in the tour between i

and j such that the cost cx; is minimum and either ¢ and j or both are in

the tour.

o Nearest insertion procedure - Similarly as above except k is inserted in the

best place. This improves Nearest addition procedure by inserting £ in the
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Author(s) Comparison of dif- | Types of comparison What  the  author(s)
ferent heuristics claimed?
CCAO Four insertion pro- | Percentage deviation from | That
{Golden cedures and two ! lower bound, CPU time | CCAO outperformed all
& Stewart, | post-optimisation and Friedman test other algorithms
1985) procedures
Gendreau GENIUS, Compared with random | That ~ GENIUS  out-
et al. | GENI, CCAO, Lin | generated problems and performed other heuristics
(1992) (1965), SA, TS, Lin | literature problems from | for TSP in terms of solu-
& Kernighan (LK) | 100 - 500 and 100 - 532 | tion quality and computa-
(1973) cities using CPU time and | tional times
solution cost
Perttunen Random initial so- | Compared with randomly | That the use of construc-
(1994) lution and Clark- | generated problems of size | tion procedure improved
Wright as initial so- | 100 and 1200 using CPU | the performance of the
lu- time and the percentage | heuristic
tion and Lin (1965), | deviation from the best
LK and Or-Opt for | known sclution
post-optimisation
procedure
Tsubakitani | Jump search (the | Compared That the jump search
and FEvans | proposed), TS with | 7 literature problems from | showed more effective and
(1998a) 2-Opt and 3-Opt 33 to 105 and randomly | quicker converging then
generated problems from | TS
50 to 150 cities wusing
CPU time, number of
moves made and percent-
age deviation from the
best known solution

Table 2.6: Types of comparisons for the heuristic algorithms by different authors
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Author(s) Comparison of dif- | Types of comparison What  the  author(s)
ferent heuristics clatmned?
Yagiura Genetic DP (the | Compared in CPU time | That the proposed algo-
and Ibaraki | proposed), LK, Or- | and error rate (%). Pro- | rithm genetic DP attained
(1996) opt and 3 other lo- | blems used are unknown | better  solutions than
cal search methods other heuristics except the
Genius algorithm
Lin et al | SA, Genetic- | Compared using randomly | That the improved SA
{1993) Annealing  (GA) | generated problems from | solved some large scale
(the proposed) 16 to 144 cities and lit- | A"P-hard problems
erature problems from 30
to '75 cities by the number
of moves made, error rate
(%) and CPU time
Somhon et | Proposed algo- | Compared 20 literature | That the proposed algo-
al. (1997) | rithm, Matsuyama | problems from 51 to 1400 rithm obtained a solution
(1992), Guilty net | cities using CPU (single | to within 1.3% of the opti-
{Burke and | run) and percentage devi- | mal compared with other
Damany, 1992) and | ation from optimal heuristics which can only
Elastic net (Durbin be obtained to within 3%
and Willshaw,
1987)
Budinich Proposed algo- | Compare That NN algorithm was
{1996) rithm, Elastic net | random problems from 10 | competitive with SA algo-

(Durbin and Will-
shaw, 1987) and SA
{(Kirtpatrick et al.,
1983)

to 1000 cities by taking
average tour length of 10
runs for the proposed al-
gorithm over bound by
SA and percentage devia-
tion from the solution of
Durbin and Willshaw

rithm for problems more
than 500 cities

Table 2.6:(Cont.} Types of comparisons for heuristic algorithms by different authors
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best minimum place instead of inserting it next to j.

Cheapest insertion procedure - Choose a city k such that it gives the smallest
cost over all other cities not yet in the tour i.e. min ¢ for all k not in the

tour.

Farthest insertion procedure 1 - Choose a city k not in the tour and j in
the tour such that g = mazy{min;ck;} and insert & between 2 and j such

that ¢, + cxj — ¢ij is minimum.

Farthest insertion procedure 2 - Choose a city k£ not in the tour such that

it is farthest from any city in the subtour.

Arbitrary insertion procedure (Rosenkrantz, Stearns and Lewis, 1977) - Ar-
bitrary select a city k not yet in the tour and insert it between 1 and j such

that ¢ + cp; — Cij Is minimum.

Nearest neighbour insertion - Let city j be the last node in the tour, then

insert city k to the tour such that city & is closest to city 7.

Convex hull insertion procedure (Stewart, 1977) - Choose a city k£ not in
the tour such that ¢y + cx; — ¢;; is minimum and insert £* between ¢ and j

such that (e~ + cx-5)/cij is minimum.

Greatest angle insertion procedure {Norback and Love, 1977, 1979) - Insert
k not yet in the tour such that it forms the largest angle with the edges

(4,k) and (k,7) where 7 and j are cities in the tour.

Ratio times difference insertion procedure (Or, 1976) - Insert & between 1

and 7 such that (cix + cxj — €ij){Cik + Cks)/cij is minimum.

Depending on the type of procedure, the complexity of the algorithms are between

O(nlogn) and O(n®). According to Golden and Stewart (1985), these algorithms

produced solutions to within 5% to 7% of the optimal and are used as a start-

ing point or initial tour for other tour improvement procedures and composite

procedures.
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2.2.2 Tour improvement procedure

The earlier work on tour improvement procedures was developed by Croes (1958),
Lin (1965) and later improved by Lin and Kernighan (1973) and Or (1976). Re-
cent approaches for the tour improvement procedures include sirﬁulated anneal-
ing, tabu search, genetic algorithm and neural networks. These methods are
discussed in the following. For further details of the work, refer to Lawler et al.
(1985) and Johnson and McGeoch (1997). The discussion of tabu search is left
to Chapter 4.

The r-Opt algorithm

The r-Opt algorithm is one of the best known edge exchanging procedures which
was originally proposed by Croes (1958) for 7 = 2 and later improved by Lin
(1965) for 7 = 3 for the symmetric TSP. In a consideration of a feasible tour, the
algorithm is to delete r edges and replace them by a second set of edges to form a
new tour with reduced cost. The process is repeated until no further improvément
can be made and when this happens, the solution is said to be r-optimal. Figure

2.1 shows the 2-opt procedure.

NS

Figure 2.1 : 2-Opt

Lin-Kernighan method

Lin and Kernighan (1973) improved Lin’s r-Opt algorithm by considering different
values of r throughout the algorithm. The Lin-Kernighan algorithm is more
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difficult to code than the Lin’s r-Opt algorithm because the r value needs to be
determined at each iteration. If r edges are considered, then a series of tests need
to be done to decide if 7 + 1 edges are needed to be used in the next iteration.
This method is reported to outperform 2-Opt and 3-Opt for the TSP. See Johnson
and McGeoch (1997) for details.

Or-Opt method

An improved 3-Opt method haé been proposed by Or (1976), whose algorithm
only considered a small number of exchange edges and works extremely well. The
algorithm is referred to as the Or-Opt algorithm. This algorithm is to remove 7
(r = 3, then 2) vertices in the tour and tentatively insert the r vertices between

two other cities such that the tour length is reduced.

Simulated Annealing

The idea of Simulated Annealing (SA) was introduced by Metropolis in 1953 in
an algorithm to simulate the cooling of material in a heat bath. In this process a
solid material is heated until it is melted and then cooled back into a solid state.
The structure of the cooled solid depends on the rate of cooling. The algorithm

is controlled by the Boltzman distribution

10 = g5 (77) 2:30

where E denotes the energy at temperature 7' and k refers to the Boltzman

constant. A probability of the form

—AE

p(AE) = exp (_k?) (2.31)

was used to control the behaviour of the system of particles in thermal equilibrium
at temperature T. For a given time T, a perturbation mechanism is applied to
the current state of the system and transformed to the next state. The resulting
energy change is called AE. If the energy decreases, then the system moves to a

new state. If the energy increases the state is accepted according to probability
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(2.31). The process is repeated until the system reaches the frozen state. This
approach was applied by Kirkpatrick et al. (1983) thirty years later by relating the
physical cooling process of Metropolis to combinatorial optimisation problems.
In this case the cost or objective function value corresponds to the energy in the
physical system, the feasible solutions correspond to the states of the system, the
neighbouring solution corresponds to the change of the state of the system and the
heuristic solution corresponds to the frozen state of the system. The objective
is to search for the feasible solutions to a problem so that it converges to an
optimal solution. Such a method has been applied successfully to areas such as
computer design, artificial intelligence and TSP. For further details of Simulated
Anealing (SA), refer to Aarts and Korst (1989), Otten and van Ginneken (1989) |
and Dowsland (1993).

The general outline of the SA algorithm for the TSP can be described as fol-
lows. Note that the variation in implementing the algorithm differs in generating
the initial solution, updating the temperature, defining the frozen state and the

definition of the neighbour.

Step 1. An initial TSP tour 7 is obtained. Initialise the temperature T° > 0.

Set ™ = T.

Step 2. Make a random movement from the current tour 7 {0 a new tour 7'
(a neighbour of 7) according to a suitable method. Calculate the cost

A =) ~ (7).

Step 3. If A < 0, set 7 = 7. If ¢(7) < ¢(7*) set 7* = 7. Otherwise, compute a

random number z € [0, 1].
Step 4. If v < exp(—A/T) set 7 = 17"
Step 5. Repeat Steps 2,3 and 4 for a pre-determined number of times.

Step 6. Update temperature 7' and repeat Steps 2, 3, 4 and 5 for a pre-

determined number of times. Stop.

Kirkpatrick et al. (1983) were the first to apply SA to the TSP. However, they
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only é,pplied it to small size problems and running times were not reported.
Furthermore, Johnson and McGeoch (1997} made a comparison between the SA
algorithm, 2-Opt, 3-Opt and Lin-Kernighan algorithm on randomly generated
Fuclidean problems of sizes of 100, 316 and 1000 cities. The results showed
that the SA algorithm produced on average worse tours than 3-Opt and the Lin-
Kernighan algorithm and required longer CPU time. One approach for the SA
to produce better quality tours is to increase the number of steps of temperature.
The disadvantage of this method is that it requires longer computation time than
other methods (3.5 days running time for the SA algorithm compared with 0.77
seconds for the Lin-Kernighan algorithm for the 1000-city problem (Johnson and
McGeoch, 1997)). So to speed up the algorithm, Nahar et al. (1985) and Golden
and Skiscim (1986) (cited in Johnson and McGeoch, 1997) tried to reduce the
steps of the temperature (i.e. using fewer temperatures), the results of which
indicate that this produces a worse solution. Fortunately there are ways to speed
up the SA algorithm by (1) pruning the neighbourhood (that is, by avoiding
introducing a city with a long edge which makes the tour worse); and (2) starting
with a lower temperature. Combining them has improved the performance of the
SA drastically. The improved SA has produced better quality tours than Lin-
Kernighan, 2-Opt and 3-Opt but unfortunately still requires longer CPU time as
reported by Johnson and McGeoch (1997).

Other authors who have proposed heuristics based on the SA and include TSP as
their test problems, include Lin et al. (1993), Lin & Hsueh (1994) and Chardaire
et al. (1995). In all cases, they showed that their heuristics produce good results.

One of the attractions of the SA is its simuple structure which can easily be com-
bined with other algorithms. In general, the SA produces good quality solutions
but requires a long CPU time. For a quality solution and CPU time, one tends
to use the Lin-Kernighan method for TSP.
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Genetic Algorithms

Genetic algorithms (GA) were invented by John Holland in the early 1970s to
simulate some difficult problems involving natural evolution on a computer. The
early applications of GA lie in the field of Artificial Intelligence such as game
playing and pattern recognition. Recently GA have been applied to combinatorial

optimisation problems using the TSP as a benchmark problem.

GA are a search algorithms based on mechanics of natural selection. They work
with a population of solutions and attempt to improve the solution using the ‘best
fit’ principle. A solution is called a chromosome which consists of binary digits
of 1's and 0’s . Each chromosome in the population is given a fitness score. A
number of the ‘fittest’ chromosomes are selected to produce the next generation.
Two parents from the fittest group are randomly selected to create two children
based on the operations which alter the chromosomes. These operations include
crossovers, mutations and inversions. Each operation is briefly described in
the following and for convenience a graphical explanation based on the concept

of TSP is given in Table 2.7.

Crossover is a technique of combining the features of two parents to produce
offspring. A One-point crossover is a standard technique which occurs when
parts of two parents’ chromosomes are swapped at a randomly chosen point and
produce two children. Mutation is a process that occurs after crossover when
a single bit of an offspring is flipped. Inversion occurs when the order between
two chosen elements is inverted and this alters the location of the genes of the

chromosomes. These new generated children are then sent to become the new

Type Parent(s) | Child(ren)
Crossover | 1-2{3-4-5-6 | 1-2-4-3-6-5
2-1|4-3-6-5 | 2-1-3-4-5-6

Mutation | 2-4-3-1-5-6 | 6-4-3-1-5-2
Inversion | 2-1-3-4-5-6 | 2-4-3-1-5-6
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generation until there are n new chromosomes in the new generation. The new
generation, in general, will be fitter than the old generation. The process of
generating a new generation is continued and the algorithm terminates when the
parents cannot produce any further different children. The following is an outline

of the GA algorithm for TSP:

Step 1. Obtain an initial set 7 of TSP tours.

Step 2. Combine two parents from 7 and produce new tours. Add the new

tours to 7.
Step 3. Reduce the set 7 according to some rules.

Step 4. Repeat Steps 2 and 3 until the stopping criteria is satisfied. Output
the best tour and stop.

The first attempt to apply GA to TSP was done by Goldberg and Lingle (1985)
(cited in Reeves, 1993) in which an optimal solution was found for a 33-city
problem. Different crossover schemes are used by different authors in their GA
namely partially mapped crossover (PMX) by Goldberg and Lingle (1985}, cycle
crossover (CX) by Oliver et al. (1987), order crossover (OX) by Davis (1985),
matrix crossover (MX) by Homaifar et al. (1993) and edge recombination is
investigated by Grefenstette et al. (1985) and Whitley et al. (1989). Table
2.8 gives a brief description of the crossover methods used by different authors.
A one parent crossover scheme is suggested by Chatterjee et al. (1996} which
is discussed in more detail. The edge assembly crossover (EAX) proposed by
Nagata and Kobayashi (1997) has optimally solved problems ranging from 101
to 3038 cities using a 200MHz Pentium. The computational time for 3038 cities

is approximately 2.5 hours.

Chatterjee et al. (1996) introduced a one parent crossover (asezual reproduction)
scheme which can be applied to a permutation of n solutions of a TSP. They
defined MUTS3 as a 3-cut on a tour which cuts the tour in 3 places and rearranging
the tour pieces. For example, a MUT3 operation at the third, sixth and eighth
locations for a solution is given by 1-2-|3-4-5-6|7-8/9-10 and the tour is arranged
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Crossover types

Author(s)

Description of method/ezamples

Edge
recombination

Cycle crossover

Matrix crossover

Tie-breaking
CTOSSOVer

Whitley et al
(1989)

Oliver et al. (1987)

Homaifar et al
(1993)

Poon and Carter
(1995)

Consider the edge map for all the cities from par-
ent 1 and 2. Select the element with the fewer
edges to create the first element for the offspring.
The rest of the places of the offspring are ran-
domly picked so that the edge map has fewer
edges.

A cycle refers to a common subset of cities in the
subtour. The cycle from the two parents is iden-
tified and then swapped to produce two offspring.

Present the 2 parents in the matrix form with 1
if there is an edge connected between city i and
4. If not the matrix is set to 0. Randomly pick 2
points for crossover and the resulting matrix may
have duplication of 18 in some rows and no 18 in
others. Remove the 1s from the duplicating row
to the row with no 1s. If the resulting matrix
contains a cycle, then some edges are deleted and
added such that a legal tour is formed.

The Tie-Breaking Crossover #1 can be described
as follows. 2 parents and two random points are
chosen for crossover (this results in ties in the off-
spring). A string of size n's called a Crossover
Map is generated using integers between 0, 1, ..,
n— 1. Each of the element in the offspring is then
multiplied by n and the corresponding number is
added in the Crossover Map. The lowest element
in the string is replaced by 1, the next lowest ele-
ment by 2 and so on. This gives the new offspring.
We refer to the Tie-Breaking Crossover #2 to the
authors.

Table 2.8: Various crossover methods for the TSP

as 1-2-7-83-4-5-6-0-10. Rank is used to represent the legal tour and inversion

and mutation work directly with the rank. For example, given a solution S, 6-

8-7-4-2-9-1-5-10-3, the inversion of S’ between third and sixth position is given
6-8-9-2-4-7-1-5-10-3. The mutation of S between third and eighth position is

given by 6-8-5-4-2-9-1-7-10-3. They pointed out that the operations of inversion,

MUT3 and mutation represent the cutting of the tour at 2, 3 and 4 places which

can be generalized as a r-cut operation (r = 2,3, 4, ...} and is similar to the r-Opt

by Lin (1965). The number of cuts is decided by a value p between 0.35 and

0.45. Six problems of sizes ranging from 100 to 666 cities were tested and the
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Crossover types Author(s) Description of method/ezamples

Order crossover Davis {1985) Two cut points are randomly generated. A sec-
tion between the cut points of parent 1 is copied
to the offspring. The rest of the places of the
offspring are filled with other elements that have
not yet occurred. )

Partially mapped | Goldberg and Lin- | Two cut points are generated and the cut out sec-
CTOSSOVET gle (1985) (cited in | tion represents the swapping of elements between
Reeves, 1993) parents 1 and 2 to generate the offspring. The
rest of the places of the offspring are filled with
an element or elements from parent 2.

Edge assembly | Nagata and | Two parents A and B are chosen. A graph G’
Crossover Kobayashi (1997) consisting of the edges of both parents A and B
is generated. Several cycles called AB-cycles are
generated by tracing the edges of parent A and
B on G'. A set of subtours is generated from
AB-cycles by choosing the effective edges and ap-
plying them to parent A. The set is called the
Ezchangeable Edge Sets (E-sets). The immediate
individual is obtained from E-sets and applied to
parent A. This results in several subtours and is
then modified to form a valid tour.

Table 2.8: (Cont.) Various crossover methods for the TSP

solutions were found to within 3.5% of the optimal solution. Both the Euclidean
and non-Euclidean randomly generated problems were tested on the proposed

algorithm.

Neural Networks

Neural Networks (NN) is inspired by the functioning of the human brain. A
set of neurons are connected by a certain network. A neuron receives an input,
computes the output and sends signals to other neurons. The application of
NN is used mostly in the area of pattern recognition. For details of NN and its

applications refer to Peterson and Séderberg (1993).

In general, Neural Networks algorithms for the TSP can be divided into two
classes. The neurons in the first class are organised in the integer programming
formulation and in the second class, the neurons are viewed as points 1n space

which move towards the position of the cities.
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The first application of NN for the TSP was proposed by Hopfield and Tank
(1985) (cited in Johnson and McGeoch, 1997) based on the integer programming

formulation as follows.

Minimise
n n n—1
S8 dij(zimzin + Y TS igern)) (2.32)
i=15=1 ‘ k=1
subject to
n
Yazx=1 1<k<n, (2.33)
i=1
Zmikzla 1 ST;STL, (234)
k=1
zix € {0,1}, 1 <4, k< n. (2.35)

In this formulation when z = 1 in a solution then it corresponds to the situation
that city ¢ is in in the k position of the tour. Constraint (2.33) describes that
each position in the tour contains exactly one city and constraint (2.34) describes
that each city is in one position of the tour. Each z;; is viewed as a neuron which
is connected in a network such that the constraints are satisfied and the cost is
minimum. The algorithm, did not perform well and failed to converge to a feasible
solution for the 30-city problem. Improvements were made by others and larger
sized problems were tried, however the results were not impressive. Johnson and
McGeoch (1997) pointed out that the results of a single run of 3-Opt performed

better in solution quality and time than the above approaches.

The second class of NN for the TSP is quicker and can handle larger size problems.
The algorithm starts with a ring or a cycle of m neurons at the centre of all the
cities. At each iteration, a city is chosen at random and a meuron which is
closest to the city is declared as the winner. According to predetermined rules,
the winner neuron and neighbours which lie “close” by are moved to a position
closer to the city. The algorithm is continued until every city is in the tour.
There are two variants of this class; the elastic net (Durbin and Willshaw,
1987) and self-organising map (Kohonen (1988), Budinich (1996), Somhon et
al. (1997)). The elastic net approach is able to handle 1000-city problems but
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the comparison of the results between the elastic net, 2-Opt and Lin-Kernighan
showed that 2-Opt and Lin-Kernighan give faster and better solutions (Johnson
and McGeoch, 1997). The self-organising map is able to handle large instances
which include a 2392-city problem, solved to 10% above the optimal by Fritzke
and Wilke (1991) (cited in Johnson and McGeoch, 1997). Other results include
a 30000-city problem which is solved to within 7% of the average of the Held
and Karp lower bound by Amin (1994) (cited in Johnson and McGeoch, 1997)
and a 1400-city problem which requires 11,493 seconds CPU time by Somhon et
al. (1997). These results not only take longer CPU time but also produce less
optimal solutions than the result by 2-Opt or 3-Opt.

This concludes the heuristic algorithms. In the following section, the composite

algorithms are discussed.

2.2.3 Composite algorithms and other heuristic algorithms

Composite algorithms refer to the combination of the tour construction proce-
dures and the tour improvement procedures. Several efficient composite algo-
rithms have been developed and they include the CCAO algorithm by Golden and
Stewart (1983), GENTUS algorithm by Gendreau et al. (1990), Jump search by
Tsubakitani and Evans (1998a) and an algorithm by Meeran and Sharfie (1997).
The algorithm by Sun et al. (1993) based on a hierarchical strategy will be exam-
ined. All the heuristics are designed for the symmetrical Euclidean TSP. Refer to
Chapter 6 for the GENIUS algorithm and the rest of the algorithms are discussed

in the following.

The CCAO algorithm (Golden and Stewart, 1985)

The CCAO heuristic refers to Convex hull, Cheapest insertion, Angle selection
and Or-Opt method. It starts by defining a partial tour which forms a convex
hull of vertices. For each vertex not in the partial tour, say k, two adjacent cities ¢

and j are identified such that the cost calculated by ik +cx; —¢i5 1s the minimum.
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Select a vertex k such that the angle between edges (z, k) and (k, j) is as large as
possible and insert k between ¢ and j. The cheapest insertion and angle selection
are repeated until a Hamiltonian tour is obtained. T he Or-Opt method is then

applied to improve the tour.

Jump Search (Tsubakitani and Evans, 1998a)

The Jump Search is a powerful and yet simple metaheuristic for the TSP proposed
by Tsubakitani and Evans (1998a). The proposed algorithm is shown to be more
effective than the tabu search on the benchmark and the randomly generated
problems. The idea of Jump Search comes from the fact that there are some
good solution regions and there are some poor solution regions. If there was a
search procedure which could jump from a good plateau to a better one, then
better solution regions could be searched for more efficiently. The algorithm starts
by generating a set of jump destinations (starting points) whose neighbourhoods
are disjointed. A local search heuristic is applied to the best jump destination.
If a better solution {local optimum) is found, then a local search is applied to
the second best jump destination. The process is continued until the iteration
time is reached or all jump destinations are used. Six different tour constructions
heuristics are used to generate a set of diversify jump destinations. Two local
search heuristics i.e. 2-Opt and 3-Opt are used to compare the proposed algorithm

with the tabu search and the iterative local search.

Seven literature problems of size ranging from 33 to 106 cities and three randomly
generated test problems of size ranging from 50 to 150 cities are tested. The
results indicate that the jump search cutperforms the tabu search and iterative
local search for both sets of test problems. In particular, the jump search with
3-Opt is found to perform well on the literature problems. Five out of seven
optimal solutions were found. When directly comparing the jump search and the
tabu search, the results show that the jump search is able to find better solutions
more quickly. The reason is that the jump search is able to make more moves than

the tabu search in a given time period. The tabu search requires time to check



if the candidate move is tabu. Tsubakitani and Evans found that the number of

moves the tabu search made is less than half of that of the jump search.

The Meeran and Shafie Algorithm (1997)

Meeran and Shafie (1997) proposed an algorithm for optimum path planning
based on the convex hull method and the local search heuristic. The term “opti-
mum path planning” is used in areas such as machine layout, motion planning and
mechatronics. In the computing/mathematics literature, optimum path planning
is traditionally addressed as a “Travelling Salesman Problem”. This algorithm
uses the Graham scan algorithm to find an initial sub-tour for a given set of
points. A local search heuristic is then applied successively until all the points
are in the tour. The complexity of the algorithm is O(n?). The algorithm is com-
pared with simulated annealing, Hopfield networks and the TSPotts algorithm
and the results indicate that the Meeran and Shafie’s algorithm is better than

the others.
The following is the description of Meeran and Shafie’s algorithm:

The algorithm starts by creating a convex hull i.e. a subtour of a given set
of points by using the Graham Scan algorithm. A set of neighbourhoods are
created by clustering groups of points within circles. The circle is created by
the edge of the convex hull. For example, let AB be the edge of a convex hull
boundary, then the circle is created using the diameter of AB. All the points
which lie inside the circle AB are therefore regarded as the neighbourhood. For
those points which lie outside the circle or within the “intersection” of two circles,
the cost of inserting the point to neighbourhood A and B is calculated such that
the point is inserted into the neighbourhood with the lowest insertion cost. The
neighbourhood optimisation heuristic is then applied to each neighbourhood. A
mid point of the edge z is calculated and the points in the neighbourhood are
sorted according to the mid point z. The first three sorted points are examined by
the triangle rule where the longest edge of the triangle is deleted and the shortest
edge is accepted into the tour. The process is repeated for all sorted points. The
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intersecting edges are deleted and reconnected by the non-intersecting edges. The
neighbourhood optimisation step is used for all the neighbourhoods. In the end
a neighbourhood linking procedure is called to link all the “sub-tour” in each

neighbourhood and hence give an optimised tour.

Hierarchical Strategy for the TSP

The algorithm proposed by Sun et al. (1993) is based on a hierarchical strat-
egy which is widely used in the areas of social science, information processing,
administration and management. The algorithm is very efficient and it takes 15
to 25 seconds to get a solution for 15,000 cities on a Hewlett Packard 700 work
station. However the solution is not close to the global optimum and no system-
atic way is known to refine the solution. The algorithm was tested on two sets of
data: four different groups of randomly and uniformly distributed data with sizes
ranging from 1,000 to 16,385 cities and 25 literature problems from TSPLIB with
problems’ sizes ranging from 70 to 3,038 cities. The solutions for the four groups
of data were obtained within 29 seconds computing time and the solutions for
the literature problems are within 3% to 25% of the optimal solutions. The CPU

time for obtaining the solutions for the literature problems were not given.

A detailed description of the algorithm is given below.

Step 1. Divide the area into four districts and hence all cities are separated
into four groups. The position of the district is calculated by taking
the average position of the corresponding group of cities. The shortest

route between the four districts is obtained exactly.

Step 2. Each district is subdivided into 4 sub-districts and the average position

of the sub-districts is calculated according to Step 1.

Step 3. The tour is modified by calculating the shortest path between the sub-

districts and joining the tour with three other districts.

Step 4. Repeat Step 2 and 3 until there is only one city inside each of the

sub-districts.
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This concludes the overview of the exact and heuristics algorithms for the TSP,

In the next Chapter, an overview of the exact and heuristics algorithms to solve

the VRP is discussed.
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Chapter 3

An Overview of The Vehicle
Routing Problem

The Vehicle Routing Problem (VRP) can be described as the delivery or collection
of goods from one or several depots to a set of customers or cities so that the travel
distance or cost is minimised. Usually, some side constraints are imposed such
as restrictions of the vehicle capacity and/or length of travel, the period of time
the customers has to be serviced etc. Practical applications arise in the physical
distribution of gbods for example delivery of fuel, newspapers, grocery, pet foods
to customers and etc. Furthermore, considerable financial resources are spent on
distribution, for example, Bodin et al. (1983) report that the annual distribution
cost is approximately $400 billion in the US and £15 billion in the UK. Hence
numerous distribution costs can be saved by properly studying and implementing
an efficient model. Recently, a Swiss company reduced its distribution costs by
10 - 15% by modelling the problem to a VRP model and using an appropriate
heuristic algorithm to solve the model (Semet and Taillard, 1993).

The VRP was first introduced by Gavin et al. (1957) forty years ago to dis-
tribute gasoline to service stations using a fleet of vehicles of various capacities.
Extensive studies have been conducted on this problem and various algorithms

including the exact algorithms and heuristics algorithms have been proposed to
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solve the problem in order to reduce the distribution costs. The VRP can be
viewed as an extension of the TSP with more than one vehicle and with addi-
tional side constraints. The VRP is much more difficult to solve with the same
number of customers or cities than for the TSP. The largest problem solved for
the capacity restricted VRP (CVRP) is the 134 customers problem using exact
methods (Augerat et al., 1995 and Hill, 1995). The literature problems with up
to 200 customers for both the CVRP and capacity and distance restricted VRP
(CDVRP) are tackled using heuristics.

There are various names used in the literature which refer to the VRP. These
include vehicle scheduling, truck dispatching and delivery problems (cited in
Christofides, 1985). For different aspects of the VRP, refer to Bodin and Golden
(1981), Bodin et al. (1983} and the book by Golden and Assad (1988).

In the following two sections, an overview of the algorithms developed in the
literature to solve the VRP are discussed. Section 3.1 and Section 3.2 discuss
exact algorithms and heuristic or approximate algorithms respectively. Note that

this thesis focuses on the symmetric problems only.

A simple symmetric VRP can be formulated as follows (Laporte et al., 1985).

Minimise
> 2 Ciii (3.1)
i€V i<y
subject to
jEV
Z.’A‘Sﬁ‘{*zmij:g, ieV (33)
j<i >
Sz <|S]-1(8), ScV,3L[S[n—-2 (3.4)
i,jES
1 if a vehicle travels between ¢ to j;
zi; = { 2 if a vehicle makes a single trip from ¢ = 0 to j; (3.5)

0 otherwise.

m > 1 and integer (3.6)

99



where m represents the number of vehicles used in the solution and can be either
fixed or free. For S C V, I(S) represents a lower bound on the number of vehicles
required to serve the customers of S in an optimum solution. Constraints (3.2)
and (3.3) specify the degree of the depot and the customer locations. Constraints
(3.4) are called the subtour elimination constraints which prevent the formation
of subtours disconnected from the depot and subtours connected to the depot

which do not satisfy the capacity, or other restrictions.

3.1 Exact Algorithms

The approaches used to solve the VRP exactly are extensions of the algorithms
from the TSP. It can be divided into three categories, namely direct tree search,
integer linear programming and dynamic programming. For a survey of the exact
methods for the VRP, refer to Christofides (1985), Laporte and Nobert (1987)
and Laporte (1992). The integer linear programming can be classified into three
sections: set-partitioning formulation, vehicle flow formulations and commodity
flow formulations (Laporte and Nobert, 1987). The formulations can be solved
by the branch and bound or the branch and cut methods. However, the problem
is difficult. By 1985, problems with up to 60 customers were solved. Larger size
problems have been solved recently due to the success of the polyhedral theory
and the improvement in computer power. In particular, Augerat et al. {1995)

and Hill (1995) solved the 134-customer problem for the CVRP.

Table 3.1 present the various formulations and methods used in the literature to
solve the CVRP and/or CDVRP. Section 3.1.1 discusses the algorithm by Fisher
(1994) based on the minimum K-trees which solves the 100-customer benchmark
to optimal. The polyhedral approach for the VRP is discussed in Section 3.1.2.
This includes the discussion of the algorithm by Laporte et al. (1985}, the im-
provements by Achuthan et al. (1996a, 1996b, 1996c and 1998) and Augerat et
al. (1995).



Author/(s)} Method(s) Comments/Results
Christofides % | Direct tree search | Proposed algorithm solved two problems with 6
Eilon (1969) - methods and 13 customers
Christofides, Min- | Tree search | Proposed algorithm solved 6 out of 10 problems
gozzi &  Toth | algorithm based on | with sizes ranging from 10 to 25 customers
(1981a) minimum k-degree
center tree and g
routes
Christofides, Min- | State-space Proposed algorithm solved 10 problems with cus-
gozzi &  Toth | relaxation tomers from 10 to 25
(1981b)
Laporte et al. | Integer linear pro- | Proposed two exact algorithms to solve DVRP on
(1984) gramming based on | Euclidean and non-Euclidean problems with sizes
branch and bound | ranging from 20 to 60 custormers
method and cutting
plane method
Laporte, Nobert | Integer linear | Solved 83 out of 84 randomly generated problems
and Desrochers | programming with sizes ranging from 15 to 50. Proposed a
{1985) branch and cut algorithm for the CVRP. Pro-
blems include the euclidean and non-euclidean
with size 15-50 customers and 15-60 customers.
Gavish and | Integer linear | Tested the large sized problems up to 500 cities
Srikanth (1986) programming
Agarwal, Set Partitioning | Tested seven problems from Christofides et al.
Mathur and Salkin | formulation (1981a) with sizes ranging from 15 to 25. Their
(1989) algorithm was 13 times fasver than Christofides
et al.

3.1.1

Table 3.1: Exact algorithms for the VRP.

The Minimum K-Tree Approach

Fisher (1994) defined a K-tree to be a set of n 4 k edges that span the graph G

with » + 1 nodes. The VRP is modelled in such a way as to find the minimum
cost K-tree with degree 2K on the depot subject to: the capacity restrictions

and that each node is visited only once.

Let z be a set of unordered pairs of edges between each node 7,4 € V and
between the depot ‘0’. Define X to be a set of z which defines a K-tree satisfying

> Toi = 2K. So the formulation is as follows:
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Method(s)

Comments/Results

Author/(s)
Achuthan and Cac-
cetta (1991)
Cornuejols and
Harche (1993)
Araque et al.
(1994)

Fisher (1994)
Mingozzi,
Christofides &
Hadjiconstantinou
(1994)

Augerat et al
(1995)

Achuthan, Cac-
cetta & Hill (1996a)

Mixed integer lin-
ear programming

Graphical vehi-
cle routing problem
(GVRP)

Path-Partitioning
formulation

minimum k-trees

Set, partitioning
formulation

Vehicle flow formu-
lation and branch
and cut method

Branch
method

and cut

Provided an MILP formulation for the capacity
and distance VRP which overcame the error by
Kulkarni and Bhave {(1985)

Demonstrated the use of other facet inequalities
such as subtour elimination and comb inequalities
to solve CVRP

Discussed various cutting planes.  Problems
tested included 21-60 custorners.

Found optimal or improved solutions of the 7
out of 12 problems tested with customers ranging
from 25 to 199. Solved 100 customer benchmark
problem

Tested problems for CVRP with sizes ranging
from 21 to 75

Solved 9 out of 13 problems ranging from 22 to
134 customers and found optimal solution to the
134 customers problem

Proposed a new subtour elimination constraint
to solve CVRP. A fotal of 1590 randomly gener-
ated problems were tested with customers ranging
from 15 to 100 and 10 literature problems of sizes
from 10 to 25 customers

subject to

where [(S) = [q

Table 3.1: (Cont.) Exact algorithms for the VRP

min 3 et (3.7)
i,jeVu{0}
> zy=2 VieV (3.8)
jevuio}, j#i
Sy x> 2(S), VS Vand | S |> 2 (3.9)

€5 je8

(5)
Q

] is 2 lower bound on the minimum number of vehicles
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required to service S, ¢(S) = Yiesg and S =V U {0} — 5. Let u;,s € V and
vs > 0for SCV,| S |> 2 be the lagrange multipliers for (3.8) and (3.9). So the
Lagrange relaxation of (3.7) - (3.9) can be defined as

]
Llu,v)=min Y. CyTy+2p ui+2 3 wsl(S) (3.10)
TEX 5 ievu{o} i=1 scv
where ug = 0 and &; = ¢ — uy — U ~ Z Us-
(ie5,j€5)0T{ie5 jeS)

The capacity constraints can be tightened as follows:

For any S C V, let

jes
(0, jes
0, &S5 and | S'|< 2
€= s ! 5] (3.12)
gk, jeS and| 8 |>2
1, jes-8

So the tightened capacity constraints are
S e Yz > 2(S) forall SCV,[S5|>2 (3.13)
j=0 eS8

The Lagrangian relaxation is solved by the subgradient method. Heuristics are

developed to identify violating capacity constraints. At each subgradient iteration

three heuristics are used to obtain feasible solutions.

This algorithm was tested on six benchmark problems with sizes ranging from
50 to 199 customers. These problems were taken from Christofides and Eilon
(1969) and Christofides et al. (1979). The algorithm was also tested on six “real
problems” with sizes ranging from 25 to 134 customers. The optimal solution

was found for the 100-customer benchmark taken from Christofides et al. (1979).
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3.1.2 Polyhedral Approach For VRP

The success of the polyhedral approach to solving the TSP has inspired investiga-
tion to apply the theory to the VRP. Study of the facet inequalities is carried out
by Laporte et al. {1985) and Achuthan et al. (1996¢c). Further improvements are
given in Achuthan et al. (1996a, 1996b). Furthermore, Cornuejols and Harche
(1993) defined the comb inequalities for the CVRP and Araque et al. (1994) ex-
plored the polyhedral structure for the unit demand VRP and generated strong
cut based on multistars, partial multistars and subtour elimination constraints.
Other classes of valid inequalities such as comb and extended comb inequalities,
generalised capacity inequalities and hypotour inequalities have been investigated
by Augerat et al. (1995). Their algorithm has solved some literature problems
including the 134-customer problem, which is the largest CVRP solved optimally
in the literature. The problem is also solved by Hill (1995).

Cornuejols and Harche (1993)

Cornuejols and Harche (1993) followed the approach used in the study of graphical
TSP. This approach aimed to find facets for the graphical relaxation of TSP
which lead to facets for the TSP (Naddef and Rinaldi, 1991). The graphical
vehicle routing problem (GVRP) is a relaxation of CVRP which is concerned
with constructing k tours such that each customer must be in at least one of the

routes and that the capacity restrictions are satisfied.

The comb inequalities for the STSP have been proved by Cornuejols and Harche
(1993) to be valid facets for the CVRP and are defined in the following;

For a complete graph G with k > 2, let Wy, W1, ..., W, C V satisfy

L lW;\WQ |_>_ ]., i”—‘l,...,S
o |[WinWy|>1

o [W;NW; =0, 1<i<j<s
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e 5> 3 and odd

The comb inequality is

3

Js+1

Y <Y Wl +a(k—1) (3.14)
a=01,jeW, a=0
where
f ]
0, if0¢ | W,
a=0
a=41 if0eWy\ | W.or0eW\W,forsomeb=1,..s, (3.15)
a=1
| 2, if0oeW,NW, for some b =1, ..., 5.

In addition to the above conditions, if 0 € Wi \ Wy, the comb inequality can be

strengthened as follows:

8

Zz%sz}imw

e=014j W,

+ k- R(V\ W) (3.16)

3s+1
2

where R(S) is defined to be the smallest integer ¢ such that 51,..., S, - Sy 18 a

partition of {V \ 0} satisfying »_ ¢ <Q,1<a<kand 5C UE_; Sa-
i€85a

The subtour elimination constraints and comb inequalities are used to solve the
four examples. First the relaxed problem is solved and then the LP is strength-
ened by adding the facets inequalities which are generated by hand and added
to the LP. This process is repeated. Three 18-customer problems and the 50-

customer benchmark problemn were solved.

The Laporte, Nobert and Desrochers Algorithm (1985)

In the paper by Laporte et al. (1985), the branch and bound methods based on
the integer linear programming for the CVRP and CDVRP are proposed. This
work is an extension of the initial work by Laporte and Nobert (1983) and Laporte
et al. (1984). |
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Recollect that the formulations (3.1) - (3.6) are suitable for both the CVRP and
CDVRP where I(S),S C V is suitably defined. The subtour elimination con-
straint (3.4) is a direct generalisation of the corresponding constraint »_ i <|
S | —1 for the TSP. Hence the number of constraints is of the order (;F EZf‘ Fur-
thermore, the subtour elimination constraints of the CVRP and CDVRP include

a further difficulty of estimating an appropriate value for [(S), S C V.

In the branch and bound method developed by Laporte et al. (1985), the sub-

problem associated with a node of the search tree can be defined as follows:

e The reduced problem is obtained from (3.1) - (3.3), (3.5), (3.6) and some
additional subtour elimination constraints of type (3.4). Some variables

may also be fixed.
o Using

[ Ties & for CVRP,

I(S) =
max{§ Yies @» 1 Liges 6%} for COVRP.

(3.17)
A relaxation of the subproblem is obtained by relaxing the integer restrictions
of (3.5). Whenever this relaxation does not produce an optimal solution to the
subproblem, a violated subtour elimination constraint from the optimal solution
of the relaxed problem needs to be identified. In the case of the TSP, there is
an efficient method of recognising the subtour elimination constraint. But in the
case of the VRP, there is no efficient method for recognising a violation of (3.4)
(Augerat et al., 1995). Laporte et al. (1985) proposed a simple search heuristic
to find the violated constraint of type (3.4). However, Achuthan et al. (1996b)
give a counter-example for the CDVRP when using I(5) defined by (3.17). The
estimate for {(S) may eliminate an optimal solution for the CDVRP because the

distance bound is incorrect.

This algorithm was tested on both the Euclidean and non-Fuclidean randomly
generated problems with sizes ranging from 15 to 50 cities for the Euclidean case

and 15 to 60 cities for the non-Euclidean case.
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Achuthan, Caccetta and Hill (1996a)

The work of Achuthan et al. {1996a) is an improvement of Laporte et al. (1985).
They proposed another subtour elimination constraint as follows:»
> oz + S zu-m<|S| —1(S) (3.18)
i,jESi<] i€S
for SCVwith1 < Si<n—2

Achuthan et al. (1996¢c) used both (3.4) and (3.18) in their algorithm to search
for violating constraints. A comparison of their result with that of Laporte et
al. (1985) on a range of randomly generated problems, showed that Achuthan
et al. (1996¢c) algorithm produced better lower bound and used less branches.
Further improvements were made by Achuthan et al. (1996a) by developing three
new cutting planes which were useful in eliminating infeasible or non-optimal
solutions in their branch and cut algorithm to solve the CVRP. The new algorithm
was tested on the randomly generated problems from 15 to 100 customers. A
comparison between their new algorithm with the algorithm developed by Laporte
et al. (1985) and their earlier algorithm showed that the new algorithm not only
produced a smaller search tree and superior bounds but also required less CPU

time.

Achuthan et al. (1996b) also applied the above algorithm, and proposed a pro-
cedure for generating a good lower bound on the number of vehicles needed to
service a subset of customers for the CDVRP. This method is described in the

following:

For a subset S C V, at node k of the search tree, let F{k,v,5) be the set of
feasible solution of CDVRP at node k obtained by (3.2) - (3.4) and other cutting
planes in the LP by restricting the constraints in node & to 5 U {0} and set
3 z;; = 2v where v is a specified positive number. Some variables in the LP
;}leirbe fixed. At the node k, three problems can be defined. For further details

refer to their paper.

A lower bound for the number of vehicles can be described in the following:
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Define

a(S) = [&Eﬁl , (3.19)
and let "
b(S) = min ”H_’%ﬂ} .a(8) <v<| S 1] (3.20)

where Hi(v,S) is a lower bound on the distance travelled between customers
in S and the depot. Then the lower bound I(S) of node k is defined as [x(S) =
max [a(5), bx(S)]. Note that the lower bound () is obtained by solving a second
LP obtained from the LP subproblem by modifying the objective function.

A total of 4590 problems were tested which included the CDVRP Euclidean
problem with sizes ranging from 15 to 50 customers and non-Euclidean problems
with sizes ranging from 15 to 60 customers. Three out of eight literature problems
were sc;lved but some large size problems (7 > 100) could not be completed within

a 1-hour limit.

Achuthan et al. (1998) proposed eight cutting planes for the CVRP. T hey also
used a Bin Packing lower bound proposed by Martello and Toth (1990} for the
values of /(S) in the subtour elimination constraints. Tighter lower bounds were
produced compared with their earlier work and the results by Fisher (1994).
However, when comparing the lower bound to the work by Augerat et al. (1995),
Achuthan et al. (1998) produced the lower bound within 1.57% of the best known
upper bound on average whereas Augerat et al. (1995) produced lower bounds
to within 1.23% of the best known upper bound on average. However, Achuthan
et al. (1998) used less total CPU time to generate the initial lower bound by a
factor of 5.76 times compared with Augerat et al. (1995).

Augerat, Belenguer, Benavent, Corberan, Naddef and Rinaldi (1995)

Augerat et al. (1995) proposed a branch and cut algorithm for the CVRP based on
procedures which extensively search for the violations of the subtour elimination

constraints, the use of the comb inequalities, the Bin Packing lower bound and
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the Hypotour inequalities. This algorithm was tested on 13 problems with sizes
ranging from 22 to 134 cities. Nine problems were solved optimally including the

134 cities problem.

This concludes the review for the exact algorithms for the VRP. In the next

section we will discuss the heuristic algorithms for the VRP.

3.2 Heuristic Algorithms

Heuristic algorithms developed for the VRP can be classified into two classes:
the classic and modern heuristics. The classic heuristics involve construction and
improvement of the routes. Some of these heuristics include the saving method
by Clarke and Wright (1964), the Sweep algorithm by Gillet and Miller (1974)
and the two-phase algorithm developed by Christofides et al. (1979). A recently
developed heuristic along the lines of the classic ones is the petal heuristic by
Renaud et al. (1996). These heuristics will be discussed in Section 3.2.1. The
modern heuristics include the genetic algorithm (GA), simulated annealing (SA),
neural networks (NN) and tabu search (TS). In particular, heuristic algorithms
based on TS have produced good quality results. Parallel implementation of the
TS heuristic as shown by Taillard (1993) not only reduced the CPU time but
was also able to produce results for randomly generated problems up to 1024
customers in 123.7 seconds. The SA, NN and GA will be discussed in Section
3.2.2. The TS algorithms for the VRP are discussed in Chapter 4. Table 3.2
shows a list of major developments of the classic heuristics for the CVRP and/or
CDVRP. This thesis focuses on the VRP with capacity restriction (CVRP) and
capacity and distance restrictions (CDVRP) only. For additional details on this
subject, refer to Gendreau et al. (1997) and Laporte et al. (1999).
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Author/(s)

Method(s)

Comments/Results

Clarke and Wright
(1964)

Gillet and Miller
(1974)

Christofides,
Mingozzi and Toth
(1979)

Paessens (1988)

Bachem et al
(1996)

Renaud et al.
(1996)

Breedam (1995)

E} Ghaziri (1991)

Matsuyama (1991)

Alfa, Heragu and
Chen (1991} (cited
in Gendreau et al.
(1997))

Torki, Somhon
and Enkawa {1997)
(cited in Somhon et
al. (1997))

Bramel & Simchi-
Levi (1995)

Osman (1993)

Saving method

Sweep algorithm

Two phase method

Saving algorithm

Simulated trading

heuristics

Petal heuristics

SA

NN

SA

NN

Location based

heuristic

SA

Proposed the earliest heuristic to soive VRP

Tested the proposed algorithm on problems with
21 to 250 customers

Proposed a competitive algorithm which tested
on the 14 benchmark problems for CVRP and
CDVRP with customers ranging from 50 to 199

Improved the saving method by using less CPU
time and memory

Proposed a parallel implemented iterative search
algorithm which is competitive with the Tabu
search for CVRP, CDVRP and VRP with time
windows

Proposed a competitive heuristic with less CPU
time which provided the solutions to within 2.38%
of the best known solutions with customers from
50 to 199

Proposed a SA algorithm with three types of im-
proved edge exchange method. Fourteen CVRP
and CDVRP were tested

Proposed the first NN algorithm for CVRP

Solved the VRP of size 532 customers derived
from TSP by adding a capacity constraint

Proposed a SA algorithm and tested the algo-
rithm on 3 problems (n = 30,50, 75). The results
were poor

Proposed a self-organizing NN algorithm for VRP
which obtained solutions to within a few percent
of optimal

Proposed an algorithm based on the capacitated
concentrator location problem {(CCLP) and ex-
tended the idea to the CVRP. Tested the algo-
tithm on 7 literature problems and the results
showed that the proposed heuristic is competitive
with the other heuristic algerithms

Found 13 out of 26 better solutions for the lit-
erature and randomly generated problems with
customers ranging from 29 to 199

Table 3.2: Major development of the heuristics for the CVRP and/or CDVRP.
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3.2.1 Classic heuristic algorithms for VRP

In the following we briefly discuss a few of the earliest heuristic algorithms pro-
posed for the VRP. In addition, a recent algorithm, petal heuristic, an improve-

ment procedures are discussed.

Saving Method (Clarke and Wright, 1964)

The saving method developed by Clarke and Wright (1964) is one of the earliest
heuristics for solving the VRP. The algorithm can be described as follows:

Create n vehicle routes as (0,7,0),1=1,...,n.

Calculate the saving s;; = i +¢o5—Cij, H,J = 1,.., 7 where s;; is the saving

in cost which produces the route (0,4, 7, 0) instead of (0,4,0) and {0, 4,0).

Order the saving in a list in descending order. Two routes are merged if

the resulting route is feasible.

Repeat this until no more routes are in the list.

Others who have proposed a variation of this method include Tillman and Cochran
(1968), Gaskell (1967) and Yellow (1970). The improved algorithm which reduced
the computational time was shown by Golden et. al. {1977) and Paessens (1988)
(cited in Laporte, 1992).

Sweep algorithm (Gillet and Miller, 1974)

The sweep algorithm was developed by Gillet and Miller (1974) to solve medium
to large size CDVRP. However, the origins of this work are found in Wren (1971)
and Wren and Holiday (1972) for CVRP (cited in Laporte, 1992).

Each vertex is located in terms of the polar coordinates (7, 6;) for i = 1,...,n
with the depot at ry = 0 and 6y = 0. The coordinates are arranged in ascending

order according to #;. The algorithm can be described as follows:
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e Choose an unused vehicle k.

e Start with the vertex with the smallest angle and assign the vertex to vehicle
k if the capacity is not exceeded. Repeat the process until all the vertices

are in the routes.

e Optimise each vehicle route using one of the TSP algorithms (exact or

heuristic).

The Two-Phase method (Christofides et al., 1979)

The two phase method was developed by Christofides et al. (1979) for solving
the CVRP and CDVRP. The algorithm is divided into two sections which can be

described as follows:

Phase 1:

Step 1. Set k = 1.

Step 2. Choose an unrouted customer as a seed, s say, for building up the

route By. Calculate §; for all the unrouted customers 3 # s where

51:COE+/\6157A_>_1

Step 3. Select and insert ¢* into route k (Ry) if 6 = min [6;] and feasibil-
ity holds. Optimise R using r-opt and repeat Step 3 until no more

customer can enter Ry.

Step 4. Set k = k -+ 1 and repeat Step 2 (with new route Ry} and Step 3 until

all customers are in the routes.

Phase 2:

Step 1. Let h be the number of routes obtained from Phase 1 where R, =
(0,%,,0) and 7 = (1,...,h) for the seed customer ¢, of R,,1 <r <h
Set K = (Rla'":Rh)-
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Step 2. For each R, € K and for each unrouted node j, calculate e-; = coj. +

cio — o, where > 1 and €-; = min |€,].
UCji, = Coiy [T 3 R,ex[ vi)

Step 3. Choose R, € K andset K = K \ R,. For each j compute 8, =€y ;€

where €v; = min |€.;].
v &EK[ rJ]

Step 4. Select and insert j* into R, where ;- = max [¢;]. Optimise R, using

r-opt and repeat Step 3 until no more vertices can be inserted.

Step 5. If K # 0, go to Step 2. Otherwise if all vertices are in the route, then
stop. Otherwise, go to Step 2 in Phase 1.

An Improved Petal Heuristic (Renaud et al., 1996)

The petal heuristic was first proposed by Foster and Ryan (1976) for the VRP
and later extended by Ryan et al. (1993) (cited in Renaud et al., 1996). The
improved petal heuristic was proposed by Renaud et al. (1996) to generate a
set of routes using the petal method and the optimal selection was made by
solving the set partitioning problem using a column generation procedure. This
heuristic produced near optimal solutions and used less computational time. The
1-petal heuristic and 2-petals heuristic were used to generate routes which can

be described in the following:

1-petal heuristic constructs a Hamiltonian tour for S customers. An initial tour
is formed and the remaining vertices are inserted into the partial tour. Finally

the tour is improved by 4-opt edge exchange scheme.

2-petal heuristic starts with 2 seed vertices which are farthest apart to create
two initial tours. The remaining vertices are inserted using the cheapest feasible
insertion procedure. The tours are reoptimised by 4-opt according to a parameter
~. If any uninserted vertices remain, then six operations (similar to A-interchange
by Osman {1993)) are applied to improve the partial tours. As soon as one of
the operations is feasible, the move is implemented and the insertion procedure
starts again. When all vertices are in the routes, reoptimise each of them with

4-opt. The algorithm can be described as follows.
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Step 1. Label all vertices in increasing order according to the polar angle of
each position of the vertices with the depot. If ties occur then the

vertex with the smallest radius is selected first. Set 7 = 0.
Step 2. Set i =i+ 1, if 2 > n stop.

Step 3. Let S = {v;} and record the cost ¢ = 2c;. Set j =4+ 1 and S =
{v;,v;}. If the Toute is infeasible go to Step 4. Otherwise update S and

C.

J
Step 4. Set j = j+1and S = {vj, ..., v;}, if Y gx > @, go to Step 5. Otherwise
k=i
apply 1-petal heuristic with 5. If no fe'asible route is defined, go to Step

5. Otherwise record solution .S and cost ¢. Repeat this step.

J
Step 5. If ¥ g > 2Q, go to Step 6. Otherwise apply 2-petal heuristic. If no
k=i
feasible solution is found, go to Step 6. Otherwise record solution S

and cost ¢. Set j = j + 1 and repeat this step.

Step 6. If j = 2, go to Step 2. Otherwise consider & to be the last vertex in
S where h = j,j — 1,...,3. Let cs be the cost of S with vertex h. If

€hy < Cp, Temove vy, from S and go to Step 2.

The solutions generated from the above heuristic are either embedded or inter-

secting routes which are then solved by the set partitioning problem defined as

follows.
Min Zc;:ng (3.21)
IeL
subject to
Sagm =1, k=1,..,n (3.22)
ek
=0 orl (3.23)

where L is a set of candidate 1-petal and 2-petal solutions, ¢; is the cost of routes
and ay = 1 if v belongs to route [. All pairs of vehicle routes are checked to
determine if they can be combined. The combined route is then reoptimised by

the 1-petal heuristic.
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The algorithm was tested on 14 benchmark problems from Christofides et al.
(1979) for the CVRP and CDVRP. The average results lie within 2.38% of the
best known solution with running time between 0.43 to 11.70 minutes on a Sun

Sparc 2 workstation.

Improvement Heuristics

There are two types of tour improvement procedures for VRP. Onmne of the Edge
exchanges for a single route based on the concept of k-Opt by Lin (1965)
where k edges are replaced by another set of & edges. The other is called the edge
exchanges for multiple routes where vertices or edges are exchanged between
two routes. There are 3 basic exchanges which include relocation, exchanges
and crossover. Similar operations are also developed by Van Breedam (cited
in Laporte et al., 1999). For detail of this subject refer to Kindervater and
Salvesbergh (1997).

This concludes the classic heuristic algorithms for the VRP. In the next section,

modern heuristic algorithms developed for the VRP are discussed.

3.2.2 Modern heuristic algorithms for VRP

The modern heuristics developed recently for VRP are based on genetic algorithm
(GA), neural networks (NN), tabu search (TS) and simulated annealing (SA).
These methods explore the solution space more thoroughly by combining special
procedures or functions. In general, these methods produce better solutions than
the classic heuristic algorithms, but requiring longer CPU time. In some cases
hybridization methods based on these new local search methods are proposed to
solve the VRP. Note that a few hybridization methods have been proposed to
solve the VRP with time window (VRPTW). However, there is no hybridization
method for solving the CVRP and CDVRP. In this section, the methods based
on GA, SA and NN for CVRP and CDVRP are discussed. For a review on TS
for solving the VRP refer to Chapter 4.
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In order to compare various algorithms developed for CVRP and CDVRP, 14

benchmark problems from Christofides et al. (1979) are used for testing the

algorithms. The way of comparing the algorithm is based on the deviation of the

solution obtained by the proposed algorithm with the best known solution in the

literature and the CPU time required to run the problems. A table of solutions

for the 14 benchmark problems from Christofides et al. (1979), solved by different

authors with different heuristics, is presented in Table 3.3.

Note that the literature of GA for solving the VRP is limited. No research has

been done on either CVRP and/or CDVRP. However, there are a few papers

reporting on the VRP with time window (VRPTW)} with/without capacity con-

straints since this is a more practical problem.

Problem | Types | EG | Alfa® | B° RT? T GHI® T 05 | O | Renaud
50 C 586 | 556.0 | 521 - 52461 524.61 528 524 524.61
75 C - 892.3 | 841 - 835.26 835.32 838 | 844 854.09
100 C - - 830 - 826.14 826.14 | 829 835 830.40
150 C - - 1063 - 1028.42 | 1031.07 | 1058 | 1044 | 1054.62
199 C - - 1360 | 1291.45 | 1208.79 | 1311.35 | 1376 | 1334 | .1354.23
50 C,D - - h48 - 555.43 | 5hb.43 | B35 | 595 560.08
75 (ON)] - - 920 - 90968 909.68 909 | 911 922.75
100 C,D - - 870 - 865.94 865.94 866 | 866 B77.29
150 Cc,D - - 1197 - 1162.55 | 1162.89 | 1164 | 1184 | 1194.51
199 C.D - - 1462 | 1395.85 | 1397.94 | 1404.75 | 1418 | 1422 | 1470.31
120 C 1133 - 1042 - 1042.11 | 1042.11 | 1176 | 1042 | 1109.14
100 C 836 - 821 - 819.56 819.56 826 818 824.77
120 D - - 1568 - 1541.14 | 1545.94 | 1545 | 1545 | 1585.20
100 D - - 867 - 866.37 | 866.37 | 890 | 866 885.87

Table 3.3: Comparison of the solutions obtained for the modern heuristic for

CVRP and CDVRP using 14 benchmark problems from Christofides et al. (1979)

1: El Ghagziri (1991)

2 Alfa et al. (1991) (cited in Gendreau et al. (1997))
& Breedam {1995)

4: Rochat & Taillard (1995)

&: Taillard {1993)
6: Gendreau et al. (1994)

7 Osman {1993): From SA algorithm

& Osman (1993): Best solution from TS between the FBA and BA
9 Renaud et al. (1996)
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Simulated Annealing and VRP

There are three algorithms based on SA for VRP by Alfa et al. (1991) (cited
in Gendreau et al., 1997), Osman (1993) and Breedam (1995). The following
describe the last two papers and omit the SA algorithm by Alfa et al. (1991)

since it produced poor results on the small to medium size problems.

The SA algorithm developed by Osman (1993) was based on a scheme used to
search the neighbourhood called A-interchange generation mechanism. Let S =
{Ri,..., Ry, s Ry, ..., Rm} e the feasible VRP solution. Select two routes R, and
R, from S and let S, and S, be the set of nodes replaced between the routes K,
and R, using the )-interchange where S, C R, and S; € Ry. The size | Sp |< A
and | S, |< A where A equals 1 or 2. This process consists of interchanging S, and
S, between the routes or shifting the customers from one route to another if either
S, or S, is empty. The new routes are R;, = (Rp—Sp)US, and R; = (R,—S5,)US5;p
and the new VRP solution becomes S = {Ri, ..., Ry, ..., By, .., Bm}. The following
is an outline of the SA algorithm by Osman:

Step 1. Obtain an initial solution using the Clark and Wright saving algorithm.

Step 2. Perform a neighbourhood search of the initial solution using a A-
interchange generation mechanism without implementing the moves
to obtain Az and Amin, the largest and smallest value change in the
objective function values. Let S* = S be the current solution. Set

R=3,k=1,T = Apg and 3 be the number of feasible exchanges.

Step 3. Select a solution S’ from the neighbourhood.

(£ 118)y . .
T > @ where f is a uniform random

If f(S8") > f(S) and exp

parameter 0 < # < 1, accept S'.
If f(S") < f(S*), update S* = S’ and T* = T.
Otherwise retain S.

Step 4. Update the temperature according to the following:

Normal decrement rule:
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Amaz - Amin
(n’l@ + ﬂ‘\/E)Ama:c Amz‘n

T where v =

1 + ¥
Apply occasional increment rule when a cycle of search is completed

without accepting any l-interchange move:

T
T, = max(—g,T*) and set Ty, =7T;. Update k =k + 1.

Step 5. Stop if £ = R and report the best solution 5*. Otherwise go to Step
3.

A total of 26 problems including both the literature problems from 29 to 199
customers and randomly generated problems from 50 to 100 customers, were
tested on the algorithm for the CVRP and CDVRP. The algorithm found 8 out
of 14 better solutions from the problems of Christofides et al. (1979).

Breedam (1995) proposed three types of routes improvements for the VRP based
on SA algorithm. One is the String Relocation method which locates a string of
‘o’ customers from one route to another, another is the String Exchange method
exchanges a string of ‘e’ customers from one route to another with a string of
‘%’ customers and the final method is called the String Mix method which is a

mixture of the above. The results of this algorithm are shown in Table 3.3.

Neural networks and VRP

Neural networks (NN) consists of a set of neurons which are interconnected and
composed of weights that give some information about the networks. Starting
from random weights, these weights are adjusted using a learning algorithm to

improve the neuron’s ability to perform a task.

The literature of NN for VRP is limited. Applications of NN based on the model
of self-organising maps for the CVRP can be found by El Ghaziri (1991) and
Matsuyama (1991). The following describes the algorithm by El Ghaziri (1991)

s Several different rings (or routes) are defined with weight vectors 1e. the

initial position of the units in the ring.
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e Aninput vector is considered and the output value is calculated (the weighted
sum of its inputs). The winning output, say j*, is the unit with maximal

output.

e The weight vectors are then modified by w; = w; + f(J, (I — w;) where
w; = (wy;),i = 1,...,n is the weight vector of unit j and f is a function of

j and j*.

e The unit of weight vectors are gradually modified until there is a weight
vector that is close to each vertex. These rings are gradually moved to the

vertices and form a set of VRP tours.

This algorithm was tested on three problems (50, 100, 120 customers) from
Christofides et al. (1979) but the results were not good. Matsuyama (1991)
employed a similar idea to solve the CVRP with 532-city problem derived from
the TSP literature problem by adding a capacity constraint.

In this Chapter, a review of the exact and heuristic algorithms to solve the VRP
in the literature is presented. The comparison of the algorithms is based on the
deviation between the obtained solutions with the best known solutions for the
literature problems. In particular, the problems from Christofides et al. (1985)
are used as the benchmark problems to test various algorithms. In Chapter 5,
the techniques or methods to compare various algorithms based on the use of the
statistical tools, are proposed. In the next Chapter, the tabu search method and

its applications to the TSP and VRP are discussed.



Chapter 4

Tabu Search

This chapter is devoted to Tabu Search (TS), a heuristic which has achieved
widespread success in solving practical optimisation problems over the last few
years. The origin of the TS went back to the 1970s and the modern form of TS
was derived independently by Glover (1986) and Hansen {1986). The hybrids
of the TS have improved the quality of solutions in numerous areas such as
scheduling, transportation, telecommunication, resource allocation, investment
planning. The success of the TS method for solving optimisation problems was
due to its flexible memory structures which allowed the search to escape the
trap of local optima and permitted to search the forbidden regions and explored

regions thoroughly.

In Section 4.1 a brief overview of the TS algorithm will be presented. For details
of the TS method refer to Glover (1990, 1995, 1996) and Glover and Laguna
(1995, 1997). TS is still in the early stages of development with majority of
its applications occurring since 1989. Much success has come from tackling the
Vehicle Routing Problem (VRP) and the Travelling Salesman Problem (TSP).
Sections 4.2 and 4.3 discuss the development of TS method with reference to the
TSP and the VRP respectively.
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4.1 An Overview of the Tabu Search method

Tabu search is a meta-heuristic which is designed to cross the boundaries of
feasibility and search beyond the space of local optimality. The use of flexible
memory based structures is the centre strategy of the TS method. It can be

differentiated in long and short term memory. This feature allows the TS method:

1. To use the information already evaluated to search the region thoroughly;

2. To control the process, by using the memory structure to free or to con-
tinue the search process using techniques such as tabu restriction and

aspiration criteria embedded in T5; and

3. To allow the use of intensification and diversification strategies for
searching the region thoroughly and to search a new region using the Long

and short term memory.

The structure of the TS method is similar to the local search (or peighbourhood
search). Let X be the set of all solutions and for each solution z € X, let
N(z) C X be an associated neighbouring set. At each iteration, the best solution
' is chosen from the neighbouring set N(z), ie. f(z') < f (z) where f(z) is
the objective function value of the solution z. Then an operation called a move
can be used to reach from z to «’. However, TS goes beyond local search by
maintaining a record of history during the search. This determines which solution
can be reached from the current solution and hence modify the neighbourhood
set, denoted by N'(z). In some large problems a subset of the neighbourhood set
called the candidate list denoted by cand N (z), is created because it is costly
to examine all the elements in the neighbourhood set. The TS method is outlined

as follows.

Step 1. Select a solution z € X. Initialize the cost function f(z) and the best

solution z*.

Step 2. Determine the candidate list, cand_N(z), from the modified neighbour-

hood set N'(z). Choose a solution z' € cand_N(z) which improves the
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cost function.

Step 3. Update the new solution z’ and z*. Repeat Steps 1 and 2 until a

termination criterion is satisfied.

4.1.1 Short Term Memory

Short term memory is the core of the TS method and the most commonly used
structure which keeps the attributes of the recently changed solution. It is also
called recency-based memory. Recency-based memory keeps a record of the
recently changed solutions by assigning them to a tabu-active list. In fact, those
solutions which are tabu-active are declared as tabu. This feature prevents the
solutions which are tabu from being in the neighbourhood set N(z) and also being
revisited again for a certain number of iterations. The primary goal is to allow

the process to go beyond the local optimal and still make good quality moves.

Tabu list is used to manage the recency-based memory where it keeps a record
of solutions which are tabu-active. The duration for which a solution remains
tabu is measured in terms of iterations and is called tabu tenure. Tabu tenure
can vary in different stages of the search process or period of time. Hence this
creates a different trade-off for the long term and short term memory strategies
which results in a dynamic and robust technique for the TS method. T he size of
the tabu list can have a great effect on the search process. If the list is too short,
the process may return to the same local optima which prevents the search to
explore other solution space. In contrast, if the tabu list size is too long, longer
computational time is needed to search the tabu list to determine if the move is
tabu. Tsubakitani and Evans (1998b) have researched in this area by testing the
symmetric TSP using the 2-opt and 3-opt procedures to find a reasonable size
for the tabu list. Their results showed that the tabu list size should be as small
as possible but long enough to allow the heuristic to move away from the local
optimal. The more powerful the search method is, the smaller the tabu list size

should be.

Another important element in TS is the aspiration criteria which over-rules
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the tabu status of a move’s attributes if a certain condition is met. That is, a
move which is classified as tabu is considered to be admissible if it improves the

objective function value.

In most of the situations when the problems are large, examining all the neigh-
bourhood sets is expensive and hence TS used the candidate-list strategy
which restricts the number of solutions to be examined. As a result reduce
the computation effort. Glover (1995) suggested a list of selecting candidate-
list strategies: subdivision strategy, aspiration plus strategy, elite candidate list
strategy, bounded change candidate list strategy and sequential fan candidate
list strategy. For details of these strategies refer to Glover (1995) and Glover and
Laguna (1997).

In order to choose the best admissible candidate from the candidate list, each
move is evaluated based on the change of the objective function value of the
solution before and after the move. Tabu status is then checked for admissibility.
If the move is not tabu, it is accepted; otherwise, the aspiration criteria is applied
to override the tabu status if the solution is of better quality. The best move, in

terms of solution quality, is chosen.
The short term memory structure can be described as follows.
Step 1. A solution 2’ € N(z) is chosen and removed from the candidate list.

Step 2. Check the tabu status of the solution. If z' is tabu, proceed to Step 3.
Otherwise go to Step 4.

Step 3. (Aspiration criteria) If the objective function value f(z') improves the
solution quality, go to Step 4. Otherwise a large penalty is added to
the f(z'}.

Step 4. If 2’ is the best solution among all the candidate list, update the record.

Step 5. If the candidate list is empty, implement the best solution z’ recorded

and stop. Otherwise go to Step 1.
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4.1.2 Long Term Memory

In some applications short term memory is sufficient to produce a good quality
solution, but the TS method becomes stronger when long term memory compo-
nents are used. When using long term memory, the neighbourho-od set consists
of a selection of elite solutions, i.e. high quality local optimal obtained at various
stages of the search process. Some of these elite solutions can be identified in a
cluster of a region by the intensification strategy or in different clusters by the

diversification strategy.

The intensification and diversification strategies counterbalance and reinforce one
another. They make use of the frequency-based memory, which provides infor-
mation obtained from the recency-based memory and broadening the selection
of solutions. Two types of frequency-based memory are recorded: iransition
frequency which identifies the number of times a particular attribute moves and

residence frequency which identifies the number of time the attribute resides

in the solution.

Intensification Strategy

Intensification strategy focuses the search on good regions and good solution fea-

tures. The approach of the intensification strategy can be described as follows.

Step 1. The short term memory is applied.

Step 2. Apply an elite solution strategy, i.e. select a list of high quality

local optima.

Step 3. If the list is empty, stop; Otherwise choose a solution and remove it

from the elite solution list.

Step 4. Apply the chosen solution using steps which describe short term mem-
ory structure from Section 4.1.1. If a good quality solution is found

during the search, add to list.

Step 5. Repeat Steps 2, 3 and 4 until the iteration limit 1s reached.
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In the literature there are three variants of the intensification strategy which have

been proven to be useful.

o A diversification measure is introduced such that the solutions recorded
each time differ from another. The short term memory is then erased before

starting from the best solution recorded;

e A bounded sequential list is created which adds the new solution at the end
of the list if the solution is better than any previous solutions. The current
last element in the list is chosen as the basis for starting the search. The
short term memory for this solution is recorded so that the move which was
previously taken to be forbidden is kept and different moves can be created

in order to create new solutions; and

o To begin the search from unvisited neighbours which have been previously

generated.

Another type of the intensification strategy is called intensification by decompo-
sition. This strategy placed restrictions on some parts of the solution structure
to generate a form of decomposition which focuses more on other parts of the

solution structure.

Diversification Strategy

Diversification strategy explores new regions and is based on a modifying choice
rule by bringing the attributes which are infrequently used into the solution. The
timing for applying the diversification step is important and only applies at the
local optima. In order to identify appropriate moves so that the search procedure
can jump out of the local optima, a memory function can be used to identify the
relative attractiveness of the moves based on the move distance. This is based
on the idea that the greater the distance involved in the move, the greater the
cost is compared to a smaller shift. Hence large distance moves are generally

unattractive and rarely chosen. Furthermore, historical information is used to
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identify moves which are infrequent and with a large distance. This provides a

good technique for diversification (Glover, 1990).

Another form of diversification is to restart the solution process from different
solutions generated randomly or by a set of starting heuristic solutions. This
approach was applied to TSP by Malek et al. (1989) and quadratic assignment
problem by Skonic-Kapov (1989) (cited in Glover, 1990). Rochat and Taillard
(1995) implemented this approach by producing a set of different initial solutions

so that different regions can be explored.

A variant of the TS method called probabilistic tabu search keeps track of
tabu evaluation during the process with the move chosen probabilistically from
the set of evaluated moves. Rochat and Taillard (1995) applied this approach to

their algorithm which will be discussed in Section 4.3.2.

4.1.3 Strategic Oscillation

Strategic oscillation provides an effective interplay between intensification and
diversification strategies for the intermediate to long term memory. It operates
by moving the solution until it reaches a boundary, which can be represented by
feasibility, a point where normally the method would stop. However the method
does not stop here, the neighbourhood definition is extended or the condition of
selecting the moves is modified in order to allow the boundary to be crossed. It
then moves for a specified depth beyond the boundary and turns around. The
boundary is again crossed from the opposite direction, approaching a new turning
point. The process is continued by crossing the boundary from different directions
which creates the oscillation pattern. This pattern is controlled by modifying the
evaluations and the rules of movement depending on the region and the direction
of search. The strategy has been applied to multidimensional knapsack problems
and the graph theory problems. For further details of this subject refer to Glover
and Laguna (1997).
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4.1.4 Path Relinking

Path relinking is an approach which generates new solutions by investigating the
path that connects the elite solutions. It starts from a solution called initiating
solution and a path is generated in the neighbourhood space which leads to a

second solution called guiding solution.

This approach chooses moves which incorporate the attributes of the guiding
solutions to create a “good attribute composition” in the current solution. The
composition of each step is determined by choosing the best move based on a set
of criteria, from a restricted set of moves that incorporate a maximum number
of attributes of guiding solutions. However aspiration criteria can be overridden

by allowing other moves of high quality to be considered.

After a collection of one or more elite solutions are identified, weights are as-
signed to the attributes of these guiding solutions. Larger weights are assigned to
attributes occurring greater number of times which emphasised on the solutions

with high quality.

The intensification strategy based on the path relinking may choose solutions to
be the elite solutions which lie in the common region or have similar attributes.
The diversification strategy based on path relinking on the other hand chooses
solutions which are from different regions or have different {eatures. Refer to

Glover and Laguna (1997) for further details.

4.2 Tabu Search and The Travelling Salesman
Problem

The first TS algorithm for TSP was suggested by Glover in 1986 (cited in Johnson
and McGeoch, 1997). Similar work was also done by Malek et al. (1989), Knox
(1994) and Fiechter (1994). The algorithms proposed by these authors adopted
the 2-edge exchange strategy. Different tabu list size and aspiration criterion were

suggested. Smaller size problems from 25 to 105 cities were tested by Malek et al.
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(1989) and Knox (1994). Fiechter (1994) combined long and short term memory
of TS which allowed the algorithm to find near-optimal solutions for some large
problems from 500 to 100 000 cities. Parallel implementations of the algorithm

were proposed to speed up the CPU time.

Malek et al. (1989) also implemented a parallel version of the TS algorithm and
their results showed that the parallel algorithm outperformed the serial one in

terms of CPU time and solution quality.

The following discusses the TS algorithm by Knox (1994).

4.2.1 The Knox algorithm (1994)

Knox proposed a TS method together with the 2-edge exchanges for the symmet-
ric TSP. The 2-edge exchange can be described as deleting 2 non-adjacent edges
from the current tour and adding 2 other edges to obtain a feasible tour. The
author pointed out that there is a relationship between the number of searches
made and the length of each search which will influence the quality of the best
solution identified by the tabu search method. Tests were done on six literature
problerns ranging from 25 to 75 cities and the results showed that 4 searches and
(0.0003*n*) iterations per search are required to produce approximately 95% best
solutions. A comparison of the TS method and the 2-opt and 3-opt on the six
problems showed that TS yields better quality solutions. This result, however,

was only based on smaller size problems (less than 75 cities).

The following outlines the TS algorithm by Knox.

Step 1. Construct an initial tour either randomly or by some initial tour con-

struction procedures.

Step 2. Identify a set of 2-edge exchange moves and select the best admissible

candidate.
Step 3. Implement the best admissible candidate.

Step 4. Update the tabu list, aspiration list, other variables and the local best
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tour found so far. If the stopping criterion is reached, go to Step 5.
Otherwise go to Step 2.

Step 5. Update the global best tour if the recent tour found is the best one

found so far.

Step 6. If the number of searches is reached, output the best tour and stop.

Otherwise go to Step 1.

4.3 Tabu Search and The Vehicle Routing Pro-
blem

In this section, the applications of the TS method for the VRD are discussed. Due
to the limited success of exact methods to solve the VRP of more than 100 cus-
tomers, researchers have denoted considerable effort towards developing efficient
heuristic algorithms that provide good solutions to large-scale problems. One re-
cent approach is the tabu search method. This section will focus on the capacity
restricted vehicle routing problem (CVRP) and capacity and distance restricted
vehicle routing problem (CDVRP). Table 4.1 shows a list of the development of
the TS method with reference to the VRP. The TS has shown some promising
results in solving the VRP. The method not only demonstrates some new results
for the problems in the literature but also solves some real-life problems. In solv-
ing two real-life cases using the TS method, cost was reduced approximately by
15% as reported by Semet and Taillard (1993) and Rochat and Semet (1994).
Parallel implementations of the TS algorithm are able to bandle larger size pro-
blems as suggested by Taillard (1993). He proposed two decomposition methods
for solving the VRP for uniform and non-uniform problems. The method is to
partition the problem into several subproblems and solves them independently.
This approach is tested on the uniform problems by Christofides et al.(1979). The
results indicated that better solutions were found for 5 out of 14 problems. The
120-city problem from Christofides et al. (1979) and the 385-city problem were

tested for the nonuniform problems. The algorithm showed some improvement
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Author/(s)

Special Features

Comments/Results

Osman (1993)

Taillard (1993)

Semet & Taillard
(1993)

Gendreau et
al.(1994)

Rochat & Semet
(1994)

Rochat & Taillard
(1995)

Xu & Kelly(1996)

Special data
structures

Decomposition
method and TS

Real life VRP with
TS method

GENIUS+TS

Real life VRP with
TS method
Probabilistic TS

Network ow based
TS method

Obtained 13 better solutions out of the 17 litera-
ture problems. Also tested on 9 randomly gener-
ated problems

Obtained 5 better solutions out of 14 problems
from Christofides et al.(1979). Parallel implemen-
tation for TS method and randomly generated
problems were tested from 64-1024 cities

Reduce 10-15% of the distribution costs for the
company in Switzerland

Obtained 11 better solutions out of the 14 pro-
blems from Christofides et al.(1979)

Found good solutions in a reasonable amount of
CPU time and saving approximately 17% costs

Improved on the solutions for several problems
from the literature

Solved 5 out of 7 problems from the literature
solutions

Table 4.1: Development of the TS methods for the VRP

in the solutions. Furthermore, randomly generated problems ranging from 64 to

1024 cities were also tested.

Real-life VRPs and TS

Solving real-life problems are different from solving problems from the literature.

In the case of real-life problem a variety of restrictions need to be considered.

Two real-life VRPs using the TS method were considered by Semet and Taillard

(1993) and Rochat and Semet (1994).

Semet and Taillard (1993) considered delivering groceries order (70-90 orders)

to 45 different grocery stores in Switzerland. The vehicles used by the company

consists of trucks and trailers. The problem was to minimise the transportation

costs while satisfying the following constraints:

e The order must be delivered within a time window;
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e The carrying capacity of a vehicle must be satisfied; and

e Each store can only be reached by a subset of trucks and trailers.

The TS method was used to solve the problem and the results indicated a 10-15%

reduction in distribution costs.

Rochat and Semet (1994) considered the delivery of pet food and flour for a
major firm in Switzerland. The problem was to reduce the transportation costs
since it represented a large percentage of the total costs of the company. A few
constraints were considered in the problem such as customers, fleet and crew
requirements. Two sets of customers were considered: a small set representing
the farmers and a large set which consists of wholesalers, bakers and retailers.
Each customer was visited by one vehicle and was reached by a subset of vehicles.
A variety of delivery locations were considered such as village, isolated farm and
centre of the city and the time windows for delivering the products needed to
be satisfied. A heterogeneous fieet consisting of 14 trucks was used and each
was characterised by the volume and weight capacity of the truck. Each vehicle
started and ended at the depot and the carrying capacity of the truck must be
satisfied. The total length of a route which included travel time, service time,
waiting time and access time (which was the time taken for finding the way to
the customer from the village centre and parked the vehicle) cannot exceed 10
hours 15 minutes. According to the Swiss federal law of work and rest for the

professional drivers, the following needs to be followed:

o At least an hour break needs to be taken by the driver after 4 hours of

uninterrupted driving time or 5.5 hours of uninterrupted work.

Uninterrupted work or driving time was referred to as not interrupted by a 30-
minute break. The results showed that good solutions with fewer vehicles than

those used in previous were produced within a reasonable CPU time.
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4.3.1 The Osman algorithm (1993)

The TS method is based on the use of memory structure. The data structures
use to store information require in the design must be such that the time taken
to search the information is minimum. In the TS algorithm proposed by Osman,
a special data structure is used to reduce the computational time. Two matrices
named BSTM and RECM with dimensions mxm and m(m — 1) are used in the
algorithm so that the required information can be quickly scanned. The top
triangular part of the BSTM(p,g) (1 < p < ¢ < m) is used to store the change in
the objective function value of the best move of customers i and j from routes p
to g or if the move is not allowed, a large arbitrary number is assigned. The lower
part of the BSTM(g,p) is used to store an index [ which is associated with routes
p and ¢ for the matrix RECM. The matrix RECM is used to store the attributes
of the best move, for example, RECM({, 1)=¢ and RECM(, 2)=j.

In the TS method, parameters such as the tabu list size! (i.e. how long the
move is tabu for?), the stopping criteria (i.e. when to stop?) will need to be
determined. Osman used the regression technique to determine such parameters
based on the number of cities, n, the number of vehicles used, m, and the demand
for each customer versus the vehicle capacities. The tabu list data structure used
by Osman is a m(n+1) matrix called TABL. It has n rows, one for each customer
and the extra row is used to store the shift process information (the shift process
is either (0,1) or (1,0) which can be described by shifting one customer from one
route to another) and 7 column for the vehicles. TABL(3, p) records the iteration

number where customer ¢ is removed from route p.

In the algorithm, two selection strategies were used: the best-admissible strateqy
(BA) where the best-admissible move is chosen from the neighbourhood set and
first-best-admissible strategy (FBA) where the first admissible move which im-
proves the objective function value is selected. If there is no improvement then

the best non-improvement move is chosen. The two selection strategies were

LOsman refers to tabu list size which is denoted by | T's | as the period of iterations the

move i3 tabu.
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tested for a range of literature problems and randomly generated test problems.
The algorithm with FBA strategy obtained 13 better solutions out of the 17
literature problems with sizes ranging from 29 cities to 199 cities and 6 better
solutions out of the 9 random test problems with sizes ranging frem 50 cities to
100 cities. The algorithm with the BA strategy found 12 better solutions for the

literature problems and 3 better soluticns for the random test problems.

The following outlines the TS algorithm by Osman:

Step 1. Obtain a solution S by the savings method. Initialise the tabu list
size | Ts |, the tabu list data structure TABL, the stopping criteria M.
Set k=1, k,=0 and the best solution so far, S5 = S. Initialise the two
matrices BSTM and RECM if BA strategy is used. Initialise the best

solution Sp.

Step 2. Choose a feasible and admissible move $' from the neighbourhood
based on BA or FBA strategies. Update TABL with the new acceptable
move. Update the solution S = §' and set k = k+1. If f(5") < f (Ss),
update S, and set k, = k. Update the data structure RECM and
BSTM if BA is used.

Step 3. If (k — k) >M go to Step 4; otherwise go to Step 2.

Step 4. Stop. Report the best solution Sj.

4.3.2 The Rochat and Taillard algorithm (1995)

The algorithm proposed by Rochat and Taillard (1995) is based on two compo-
nents of the long term memory of TS method, i.e. intensification and diversifi-
cation strategies. The approach of their algorithm comes from probabilistic tabu
search which uses the information generated by the search history and measures
of attractiveness, to evaluate probabilities for selecting the next attributes. Those

attributes with higher evaluation are in favour.

Their TS algorithm can be described as {follows.
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Step 1. Generate I different initial tours with the local search method.

Step 2. Remove any tours with only one customer. Sort the tours in increasing

order according to the cost/distance and call this new set of tours T'.

Step 3. Set 7" = T. Let S be a set of tours extracted from T and set 5 = 9.
Choose ¢t € T' probabilistically based on the evaluation of the objective
function value. Set S = S U {t}. Remove from 7" all the customers

belong to t.

Step 4. Construct a feasible solution S’ using the partial solution S and inctude
some customers not belong to S. Improve the solution quality of S with

a local search method.

Step 5. Remove tours with one customer from the improved tour S’ and insert

the remaining tours to T. Repeat Step 2.

Step 6. Repeat Steps 3 to 5 until stopping criterion is reached.

In Step 1, several different initial solutions are generated and the aim is to explore
diverse regions of the solution space and hope that a solution of high quality will
exist in this set of solutions. As the process progresses, the set of tours, T,
will grow and the partial solutions are becoming more and more complete. The
process will automatically intensify the search after several iterations of Step 3
to 5 because the worst solutions are removed from T' and the best tours are
extracted more frequently and hence the search changes from a diversification to

intensification process.

One of the disadvantages of the local search algorithm is the large computa-
tional effort because it processes sequentially and hence parallel implementation
is difficult. However, the TS algorithm proposed by Rochat and Taillard, can be
parallelized easily.

Rochat and Taillard (1995) applied their algorithm to the basic VRP (i.e. one
depot and identical vehicles) and VRP with time windows (VRPTW). The results

showed that solutions have been improved for the basic VRP problems for 134
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cities from Fisher (1994), 199 cities from Christofides et al. (1979) and 385 cities
from Taillard (1993); and for the VRPTW 27 problems out of the 56 Solomon’s
VRPTW problems were found to improve in the quality of the solution.

4.3.3 The Xu and Kelly algorithm (1996)

Xu and Kelly approached the VRP using the TS method with the network flow-
based model. Their work is an extension of Glover (1992) and Stewart et al.
(1994) (cited in Xu and Kelly, 1996). The purpose of this approach is to ex-
change the customers between routes such that the distance and feasibility are

simultaneously considered.

The network model can be divided into four levels of arcs. The first level consists
of a source node S with an input flow of ¢ units which is connected with m
vehicles. On level 2, all m vehicles are connected with » customers. The flows on
these arcs represent the correspoﬁding customer being removed from its current
route. On level 3, all n customers are connected with m vehicles and the flows on
these arcs represent the corresponding customer being inserted into a particular
route. On level 4, the flow represents the number of customers in each route and

all arcs are joined to a sink node T with the output flow of ¢ units.

Let fL be the flow along the arc from customers i to j on level 1, Cj; be the
cost on that are, LY, and U} be the lower and upper bound on that arc. The

mathematical representation of the model is given below.

Minimise
n b . 9 " m 3 5
SN CEfE 4+ Cinfi (4.1)
j=1i=1 j=1k=1
subject to
m
S fa=c¢ (4.2)
=1
=3 f2=0i=1.,m (4.3)
i=1
T 9 m
S R-Y =0, i=1.,n (4.4)
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S i - fl=0k=1,.,m (4.5)
j=1

L)
i=1l .
LL<fi<Ugi=1,...m (4.7)
LL<fR<Uti=1u,m, j=1.,n (4.8)
L3 < f% < Uk k=1,.,m, j=1,..,n (4.9)
Ly < fir < Ug k=1,..,m (4.10)

In the algorithm the search oscillates between the swap moves and the network
flow moves. The swap move is where two customers are exchanged between the
two routes. While the network flow move dominates the search, the swap move
is executed every s, iterations or if iter_swap > iteration count for the algorithm
where iter_swap is a pre-determined integer number. If the move is tabu, the
associated costs are changed to a large number and when the tabu status is

released, then the associated cost is recalculated.

The 3-opt procedure is used to improve the tour where three edges are deleted
from the current tour and reconnected them in different ways such that the ob-
jective function value is improved. A TS component which is called TSTSP tries
to reduce the gap between the heuristic solution and the optimal route for larger
TSP. This approach uses two different moves: ejection and swap. The ejection
move ejects one customer to another position while the swap exchanges two cus-
tomers’ positions. During the search process, all eligible moves are evaluated and
the best move is selected. If a move is made which leads the search back to the
previous solution, then the move is declared tabu for a number of iterations. But

the tabu status can be overridden if the move leads to a new solution.

Let A and € be the pre-defined tolerances of the solution values, n, be the pre-
determined iteration counter and iter be the iteration count for the algorithm.
Let the objective function value of the current solution and best feasible solution
be current_solution and best_solution respectively. The following outlines the

algorithm.
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Step 1. Generate an initial solution using the sweep method.

Step 2. If (iter mod s, = 0) or (iter_swap > iter) evaluate the swap moves pro-
cedure. Otherwise evaluate the network flow model using the CPLEX

LP solver. Update the elite solution and select the best move as cur-

rent_solution.

Step 3. For every n iterations or if (current_solution - best_solution < A) im-
proves the current solution using 3-opt. If (current_solution - best_solution

<€) apply TSTSP.

Step 4. Update the variables, penalty parameters, iter_swap and tabu list. If

(current_solution < best_solution) update the best tour. Set iter = iter

+ 1.

Step 5. Repeat Steps 2 to 4 until the maximum number of iterations is reached.

Otherwise stop.

Tests were carried out using the capacity restricted problems from Christofides
et al. (1979) and Fisher (1994). The sizes of the problems were ranging from 44
to 199 cities. The results showed that the algorithm was competitive or outper-

formed recent heuristics on both real and integer distances.

This concludes the literature review for the TS method for the TSP and the
VRP. The following chapter discusses the drawbacks faced by an end user while
solving the TSP and VRP and presents a formal definition of the neighbourhood

structure.
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Chapter 5

Neighbourhood Structures and

Heuristics

The reviews of the literature in Chapters 2, 3 and 4 reiterate the following draw-

backs faced by researchers while solving a TSP or VRP:

The exact algorithms may not solve a given instance of the problem in a

reasonable time;
There are too many heuristics available;

Very little effort is put into assessing the quality of solutions produced by

heuristics;

Different implementations (runs) of the same probabilistic heuristic on a
given input instance of a problem may produce distinct solutions of different
quality. Thus desired quality and reproducibility of the solution cannot be

ensured;

Most of the comparisons available in the literature between the performance
of the various heuristics are based on the so called benchmark literature
problems. Problems faced by the researchers may not be similar to the

benchmark literature problems. Furthermore, the performance of the heu-
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ristics on the benchmark problems provide no guarantee on the guality of

solutions that can be obtained for the problem faced by a researcher;

e Most of the documentation on the performance of heuristics on literature
problems provide no information regarding the computatioﬁal effort (CPU
time) spent on obtaining the claimed solution, reproducibility of the claimed
solution and hardware environment of the implementation. Thus many of
the comparison documented on heuristics are irrelevant to the researcher;

and

e The lack of accepted method of comparisons between the various heuristics.

These deficiencies emphasise the need for a proper statistical evaluation of any
probabilistic heuristic proposed for a combinatorial optimisation problem. In this
chapter we develop a scheme for performing the required statistical analysis. In
Section 5.1, we introduce three different combinatorial optimisation problems and
demonstrate different types of neighbourhood structures used in the literature for
these problems. We also highlight the dependency of the heuristic algorithm on

the exact neighbourhood structure used.

In Section 5.2 we present a formal abstract definition of neighbourhood structure,
local minimum and global minimum solutions for a combinatorial optimisation
problem. Furthermore, we discuss the use of such structure in a probabilistic
search method. Subsequently we introduce the statistics (that is indicators of
measure of performance of the heuristics) that could be analysed to evaluate the
heuristics. These techniques are developed with the intention of selecting the
best heuristic or the best set of parameters for a given heuristic in the context of
solving a problem. Some of the concepts of this chapter appear in Achuthan and
Chong (1999). Subsequently in Chapter 8 we further extend the investigation
of neighbourhood search method on the basis of the complexity of the solution

space for a given instance of a problem.
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5.1 Background

Without loss of generality, a combinatorial optimisation problem can be defined
as, the problem of minimising an objective function defined over a set of discrete

feasible solutions. The problem can be formally stated as
Minimise {f(z): z € S} ' (5.1)

where f is a cost function and S represents the set of feasible solutions of the
problem and z represents a typical feasible solution. There are various classes of
combinatorial optimisation problems such as the scheduling problem, TSP and
VRP. The method used to recognise the solution z € S varies from problem to
problem. In the following we describe a few examples of combinatorial optimisa-

tion problems.

1. Scheduling Problem
The general scheduling problem normally involves a set of n jobs and a set
of m machines. Each job has to be processed on some machines. There
may be precedence relations between jobs and also between processing a
particular job on two different types of machines. The processing times are
given. The problem is to schedule the jobs on the machines satisfying the
given restrictions and minimising the total elapsed time between the start
of the first processing job and the completion of the last processing job. To
provide a suitable mathematical model for such general scheduling problem
is not easy. More specifically, let us consider the general scheduling problem

described below
e 1 machines, denoted by £, 1 <k < m.
e 71 jobs, denoted by ¢,1 <1 < n.
e 7, refers to the arrival time of job 2,1 <2 < n.

e d, refers to the due date, that is the time by which all operations of

the job ¢ must be completed, 1 <1 < n.
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e Job i consists of a set of g; operations: {1, Pi1}s e {05 Digi}
where the integer m;; refers to the identification number of the ma-
chine that is required to perform jth operation of job i, 1 < m;; < ™.
The processing time p; ; refers to the amount of time required for ma-

chine m; j to perform this operation.

Tn such a general scheduling problem, a feasible schedule x will be repre-
senting collection of intervals associated to each operation (mi;;, pi,;) such
that the total sum of the intervals associated to a operation (m;;, pi;) is
pi;- The set S will be the collection of all feasible schedules z satisfying the
given restrictions on the jobs, their operations and their precedence rela-
tions. The objective is often to find a feasible schedule z* which minimises

the total elapsed time over the set S.

In the following we describe the model of the flow-shop scheduling problem

with two machines.
Two-machine Flow Shop

Two-machine flow shop problem is a special case of the above general
scheduling problem where the number of machines m = 2 and the tech-
nological ordering of the machines is same for all the jobs. In other words,
mi1 = 1 and myz = 2 for all i, 1 < ¢ < n. Farthermore we assume that

r;=0forall:, 1 <2< n.

To simplify the notation, define

A; = p;1 be the processing time of the ith job on the first machine.
B; = p; 2 be the processing time of the ith job on the second machine.
F. = the time of completion of ith job.

Each job consists of a pair (4;, B;) and the followings are assumed:

e Each machine can work on only one job at a time.

e Each job can be processed on only one machine at a time. For a job

i, 4; has to be finished before starting B;.
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For a two-machine flow shop problem, while minimising the total elapsed
time, it is enough to consider the permutation schedules with same permu-
tation on both machines. Therefore a feasible schedule can be represented
by a permutation 7 = (m(L), 7(2), ..., 7(n)) of the n jobs. Furthermore, the

total elapsed time under the schedule x can be established as

Fipas (%) = max Fri) = 1max ZA,,-(,) + Z B.,T(.,,)] (5.2)

1<i<n 1<r<n ol

Thus the two machines flow-shop problem can be reworded as
minimise {Fiee (1) : 7 = (7(1), .., 7(n}) € 5}

where S is the set of all permuations of the n jobs, 1 < 4 < n and Free (7r)
is given by (5.2). A permutation of the n jobs, 1 <7 < nis denoted by
(r = (x(1),...,w(n)). We refer to Conway et al. (1967) for detail of the

two-machine flow shop problem.
Three-machine Flow Shop

In this case, m;; = j, where 1 < 7 < 3and 1 < i < n. Similarly in
the case of the three-machine flow shop problem we can restrict attention
to the permutation schedules and seek to minimise the total elapsed time

expressed as

Frae (ﬂ') = max Far(t) = 1<I¥_1<a§<n Z Aﬂ'(‘l} + Z B'rr(:) + Z Dw(l) (53)

1<i<n

Note that A;, B; and D; denote the processing times of job ¢ on machines
1, 2 and 3 respectively. Thus again the three machines flow-shop problem

can be reworded as
minimise { Fras (7} : 7 = (7(1), ..., 7(n)) € S}

where S is a set of all permutations of the n jobs, 1 < ¢ < n and Finae (m)

is given by (5.3)

9. The Travelling Salesman Problem (TSP)
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From the review given in Chapter 2, we can reword the TSP as
minimise{ f (7} : 7 € 5§} (5.4)

where S = {n = (1,42, ...,in, 1) is a tour such that (é2, ..., i) is a permu-
tation of the (n — 1) cities, 2 < ¢ < n}. The objective function value is
Flm) = ¥, Cini,., and i1 = iy, = 1. Recall that ‘1’ is the home city of

the salesperson.

. The Vehicle Routing Problem {(VRP)

From the review provided in Chapter 3, we can reword a CVRP as follows

using the following notation:

o Let m, = (0,7F,...,7¥ ,0) be a vehicle tour of kth vehicle if 0,7F,...7F,
forms a cycle in the graph G = (V, A).
o Let T = (my, ..., ®m) be a set of m valid vehicle tours if
— every pair of vehicles u and v visit disjoint set of customers, that
is, we have {7}, .., 72} n{r}, ..., 7} = 0 for every u # v,1 <
u,v < m; and
— the total demand of the customers in every vehicle tour does not

exceed the vehicle capacity, that is Zq,,; < @ for every u,1 <
i=1
u < M.

e S is the set of feasible solutions to CVRP can be written as

S ={T = (m1,...,7m) : T is a set of m feasible vehicle tours }. (5.5)

e The objective function f(7) representing the total time travelled by

all /n vehicles can be written as

= 3" d(me) (5.6)

k=1

where d(m) = E Cra uH,Téc =7F ., =0,1 <k < m. Note that d(r)
is the time travelled by kth vehicle.
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Again the CVRP is reworded using the above notation as
minimise {f(T) : T € S}

where S is a set of feasible solutions of CVRP given by (5.5) and f(T) is
given by (5.6)

In the next section we provide an insight into the dependency of the heuristic on

the definition of neighbourhood structure.

5.1.1 Neighbourhoods

A suitable definition of neighbourhood structure plays an important part in lo-
cal search methods for optimisation problems. How well an algorithm solves a
problem depends on how well the neighbourhood structure is defined. There are
optimisation problems where a suitable definition of the neighbourhood struc-
ture ensures that a global optimum can be easily obtained by a local search
method. For example consider the two-machine flow shop problem which can
be solved efficiently by Johnson's algorithm. This can be interpreted as trav-
elling through a neighbourhood structure defined as follows. Two permuta-
tions 7 and 7' are neighbours if they differ exactly in two adjacent positions.
In other words, if 7 = (w(1),...,w(i — 1), 7 (8}, w(i + 1),7(¢ + 2),...,w(n)) then
= (r(1), .., w(i = 1), (i + 1), 7(2), 7(i + 2),...,7(n)}.

Thus in the case of the two-machine flow shop problem,

o the set of all feasible solutions is represented by the set of all permutations;

and

e two feasible solutions = and =’ are neighbours if 7' can be obtained from 7

(by interchanging two consecutive positions) and vice versa.

Due to the following theorem by Smith (1956), this neighbourhood structure
ensures that starting from any feasible solution 7, one can reach the optimal

solution 7* by using a standard local search method.
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Smith’s Theorem (1956)

Let f be a real-valued function on a set of permutations of n jobs. A sufficient

condition that f(x*) < f(x) for all permutation is that:

e There is a real-valued function g defined on ordered pairs of jobs such
that if = is a permutation and 7' is a permutation obtained from m by

interchange of the ith and (i + 1)th element in 7 then f(r) < f (n') if
g(w (i), 7 +1)) < glm(i+ 1), 7(d))-

e The optimal solution 7* is such that ith job precedes jth job if g(3,7) <
(4, %)

In fact Johnson’s algorithm can be derived using this theorem where g(1,7) =
min(A;, B;) and if g(i,7) < g(j,i) i.e. min(A;, B;) < min(A;j, B;) then job 1
is scheduled before job j. Johnson’s algorithm can be implemented in O(nlogn)
time. The same neighbourhood structure does not produce any efficient algorithm
for the three-machine flow shop problem. In fact the three machine flow-shop pro-
blem is known to be A"P-complete and hence it will be unlikely that we can find
any neighbourhood structure that can yield a good algorithm. It is very unlikely
that one will be able to identify a good neighbourhood structure yielding efficient
local search methods for the hard combinatorial optimisation problems. However,
the literature has focused significantly on developing a variety of neighbourhood

structures and local search methods for such hard problems.

Neighbourhood structures are defined differently for different classes of combina-
torial optimisation problems. Furthermore different algorithms used to solve a
particular problem will define the structure differently. In the following we briefly

describe the neighbourhood structure defined for TSP and VRP.

Travelling Salesman Problem (TSP)

One important neighbourhood structure used in many algorithms to solve TSP is

based on the k-opt procedure developed by Lin (1965). k-opt can be viewed as a
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tour improvement procedure where the cost is calculated based on deleting k edges
and then reconnecting the vertices back into a single tour. In the literature, k=2

or 3 are widely used. Figures 5.1 and 5.2 show the 2-opt and 3-opt procedures.

1 2 1 . 2

Figure 5.1: 2-Opt

Figure 5.2: 3-Opt

For 2-opt procedure, 2 edges (1,2) and (4,5) are deleted and replaced by (2,5) and
(1,4). Similarly for 3-opt procedure, three edges (1,2), (3,4) and (3,6) are deleted
and replaced by (1,3), (2,5) and (4,6).

For the algorithm, the local optimum depends on the neighbourhood structure.
For example, for the 2-opt procedure, if the edge (1,2) is chosen for deletion,
we can choose the other edge to be deleted as (4,5) or (3,4) or (5,6) and hence
obtain respectively the three neighbours as the three solutions shown by figures
5.1, 5.3a and 5.3b. Thus under 2-opt procedure, three neighbours of TSP tour
7=(1,2,3,4,5,6,1) are depicted in Figure 5.1, 5.3a and 5.3b corresponding to tours
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=(1,4,3,2,5,6,1), 7"=(1,3,2,4,5,6,1) and 7" '=(1,5,4,3,2,6,1) respectively.

GC\ /:>3

Figure 5.3a Figure 5.3b

Different neighbourhood structures can be obtained from different procedures for
the same problem. Similarly under 3-opt procedure, three neighbours of TSP tour
7=(1,2,3,4,5,6,1) are depicted in Figure 5.2, 5.4a and 5.4b corresponding to tours
7'=(1,3,2,5,4,6,1), 7'=(1,5,4,2,3,6,1) and 7=(1,4,5,3,2,6,1) respectively. These
neighbours are obtained by deleting the same edges (1,2}, (3,4) and (5,6) but by
inserting different sets of edges. Note that these neighbours cannot be obtained
by 2-opt procedures, for the given 7=(1,2,3,4,5,6,1). For a given solution =, let
the neighbourhood sets under 2-opt and 3-opt procedures be denoted respectively
by Na(w) and Ns(w). The relationship between Np(r) and N3(w) is not casy to
study. In fact they may be unrelated and may be even disjoint. Hence the Jocal
minimum obtained by these two procedures may be different.

1 2

6 ‘&3
[ Y
5 4

Figure 5.4a Figure 5.4b

There are variations of the &-opt used in the literature such as the Lin-Kernighan
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algorithm (Lin and Kernighan, 1973), Or-opt (Or, 1976) and Genius algorithm
(Gendreau et al., 1992). The Lin-Kernighan algorithm is a variation of the 2-
opt and 3-opt procedures where different value of k at different iterations of the
algorithm need to be determined. This procedure is more powerful than 2-opt
and 3-opt procedures. Or-opt is another variation of k-opt. Genius algorithm
uses a similar idea of deleting and inserting three edges and four edges which are
called Type I and Type II unstringing and stringing procedures. The procedures
calculate the cost of deleting and inserting the closest neighbours of a node, v

say, based on a predetermined number p. The best tour is chosen to implement.

Table 5.1 shows a list of some recent local search methods based on neighbourhood

structures as a variation of k-opt procedure for the TSP.

Author/(s) Algorithm Comments

Gendreau et al. i Genius Procedures similar to 3-opt and 4-opt called

{1992) Type I and Type II stringing and unstringing
are used in the algorithm.

Malek et al. (1989) | TS Used 2-opt as the basic move in their
algorithm.

Fiechter (1994) TS Used 2-opt in the parallel algorithm.

Knox {1994) TS Used 2-opt in their algorithm.

Charttejee et al. | GA The operations used in their procedures such

(1996) as the inversion, MUT3 and mutation are sim-

ilar to k-opt where k=2,3 and 4.

Tsubakitani and | TS Used 2-opt and 3-opt in their algorithm.
Evans (19983)

Table 5.1: Examples of variations of k-opt as improvement procedures for the
TSP
Vehicle Routing Problem

The neighbourhood structure of VRP can be viewed as an extension of that of
TSP. There are two types of neighbourhood structures which can be defined for

VRP.
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1. The first one is based on exchanging edges on the same route. Procedure

k-opt (normally k=2) is used to improve the tour.

2. The second type is based on exchanging edges on different routes. Three

techniques are defined which include relocation, exchange and crossover.

e A relocation can be described as a node deleted from a route and

inserted into another.

o An exchange is when two nodes from two different routes are deleted
and inserted into the opposite respective routes i.e. swapping of nodes

between the two routes.

e A crossover is when the crossing links of the two routes are replaced

by two non-crossing links to produce two new routes.

Table 5.2 shows a list of local search methods used by various authors in the

literature where various neighbourhood structures are used. In these problems

Author/(s) Algorithm Comments

Christofides et al. | 2-Phase k-opt is used to improve on single route.

(1979)

Ryan et al. (1993) | Petal heuristic 4-opt is used to improve on the single route.

Osman (1993) SA An exchange called M-interchange by Osman
is used where the number of customer is 1 or
2.

Garcia et al. (1994) | TS Used 2-opt and Or-opt in their algorithm.

Gendreau et al. | Taburoute Used Genius algorithm to improve the tour.

(1994) This can be on the same route or different
routes depending on the neighbour of node to
be deleted or inserted.

Breedam (1995) SA Used relocation and exchange in the
algorithm.

Xu and Kelly | TS Used 3-opt to improve tour.

(1996)

Table 5.2: Examples of the neighbourhood structures used for VRP

different types of neighbourhood structures have been used. Relationship between
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the neighbourhood structures for a given problem is not studied. In the next
section we provide a formal setup of the neighbourhood structure in an abstract
form. In Chapter 8, we extend these ideas to study the complexity of the solution
space in terms of a given neighbourhood structure and the corresponding local

search method.

5.2 Formal Definition of Neighbourhood Struc-

tures

Recall that a combinatorial optimisation problem can be defined as (5.1). Very
often it is difficult to describe the elements of S. However it can be easy to describe
elements of a superset S of S where S is finite and discrete. Note that a typical
element ¢ € S can be represented using mathematical notation of finite size, such
as € B" or a system of linear equations, etc. In most real life problems, for
a given z € 8, it is easy to check the feasibility of z 1.e. whether z € S. The
definition of neighbourhood structures we describe here are based on the VRP
case. The neighbourhood structures for the TSP case can easily be derived from
this. Note that for the case of TSP, the elements represented by both & and S
are the same when we represent a solution of TSP by a permutation @ of the
(n — 1) cities excluding the home city. However, for the capacity restricted VRP
(CVRP), the superset S represents set of all valid tours, namely feasible and
infeasible. The set S represents the set of all feasible solutions. As we already
discussed the set S can be represented by system of linear equation given by (2.2)
- (2.5).

For a given solution z € S, we define a subset, N(z), as the neighbours of z. The
neighbourhood structure must satisfy the following:

Assumption 1 : z' € N(z)ifand onlyifz € N(z') forallz #z' € 5.
Assumption 2 : For any given pair of solution z and 2/, there exist a sequence of

distinct solutions such that z = z1, ..., zx = 2’ where z; € N{z;_1) for 2<i < k.
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For a well defined objective function f(z) over S and neighbourhood structure
N(z) for z € 8, we can introduce a direction between z and every z' € N(z)
as follows: there exists a directed edge from z to z' if f(z) > f(z'). This edge
indicates the direction of the required move operation for improvement in the

objective function.

The solution z* is defined to be the local minimum of § if z* € S and f(z*) <
f(z) for all z € N(z*). This means that there is no edge leading from z* to = for
every z € N(z*). The solution z* is defined to be the local minimum of 5 if

z* € Sand f(z*) < f(z) forallz € N(z*)N S.

Let ff, f5,..., f5 be the distinct local minimum objective function values realised
by the set of all local minimum points of §. In many real life problems we have no
prior knowledge regarding the size of 3. A combinatorial optimisation problem
with smaller § may be considered as a solvable problem, whereas a problem with
larger 3 certainly has to depend upon other characteristics of the function f, if

it is to be solved efficiently.

First note that some of the local minimum points of S may not be in 5 and hence
are not feasible. Restricting our attention to S, we denote by g7, 93, ..., g, the
distinct local minimum objective function values realised by the set of all local
minimum points of S. The given original problem, minimise {f(z) : = € S}, can

be reworded as:
Find z* € S such that f(z*) = g5 where g5 = min{g; : 1 <i <~}

The effectiveness of an algorithm in solving the above problem lies in how well
the neighbourhood structures can be defined and explored. However, this also
depends on how difficult the problem is. Thus one is interested in the performance
of the algorithm on a range of problems and in particular, on ‘bad’ problems. In

the following section we discuss the ideas of performance of the algorithms.
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5.2.1 Performance of Heuristics

Different heuristics have different neighbourhood structures, running time, com-
plexity and may even produce different solutions. Some heuristics run faster but
may not produce optimal solutions often. Others take a longerutime and usu-
ally produce near-optimal solutions. So one of our interests is to find out the
performance of these heuristics. One way to do this is to find the bound or the
ratio of the obtained solution to the optimal solution. For some heuristics, the
bounds can be represented by a function of the number of nodes and for some
other heuristics, the bounds can be a constant. Note that there are two types of
heuristics: deterministic and probabilistic. For a given problem, a deterministic
heuristic H produces the same solution f7 each time the heuristic is applied. Ex-
amples of these heuristics include the nearest neighbour and cheapest insertion
algorithms. For the probabilistic heuristic, each application produces different
solutions. Examples of these heuristics include the Genius algorithm (Gendreau

et al., 1992) and Taburoute algorithm (Gendreau et al., 1994).

Since the optimality of the solution for a given heuristic algorithm H say, cannot
be ensured, we are interested in finding out how close the obtained solution fy is
to the optimal objective function value f(z*) for a given problem. In one run of
a heuristic we can obtain any one of the set of distinct objective function values
9%, 93, - ¢4 (the values corresponding to the local optimal solutions). Very often,
~ is unknown and the set of values g}, g3, ..., g5 is also not known. Hence the

optimal objective function value f(z*) cannot be determined in the absence of
9159352 Gy

In order to evaluate the performance of a heuristic and to answer questions like
how close is the heuristic solution to the optimal, the measures used are the
magnitude of | f(z*) — f; | or

heuristic solution  fx (5.7)
optimal solution  f(z*)’ '

Table 5.3 shows a list of algorithms, the complexity and the bounds on the ratio
fir

. The upper bound
fla") PP

of the heuristic solution and the optimal solution i.e.
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on the table is with reference to expression (5.7). This bound is measured over a

set of all problems i.e.

max Th
(set of all problems} f(z*)

The sharpness of the upper bound is shown in column 3 and is sometimes referred
to the worst-case performance of the heuristics. These bounds are derived from

a theoretical analysis of the heuristic algorithms.

Algorithm Upper Bound | Sharp Upper Bound | Complezily Reference

Lin and | - - O(n>?) Papadimitriou(1992)

Kernighan

nearest 1llogan] + 5 | loga{n+1) + 3 O(n?) Lenstra and Rin-

neighbour nooy Kan (1981)

nearest 2 2 O(n?) Lenstra and Rin-

insertion nooy Kan (1981)

cheapest 2 2 O(n%logan) | Lenstra and Rin-

insertion nooy Kan (1981}

nearest addition | 2 2 O(n?) Lenstra and Rin-
nooy Kan (1981)

convex hull - - O(n*logz(n)) | Golden et al
(1980)

farthest An(n) +0.16 | - 0(n?) Golden et  al

insertion (1980)

Christofides 3 - 0O(r3) Golden et  al
(1980)

k-opt - - O(n*) Lenstra and Rin-
nooy Kan (1981)

k optimality for | - 2(1- 1) - Lenstra and Rin-

k<% nooy Kan (1981)

Table 5.3: Heuristic algorithms for the TSP: Complexity and upper bound on
the ratio of the heuristic solutions to the optimal solution

There are situations when we need to compare the performances of two or more
heuristics. Suppose we have a probabilistic heuristic H where randomness is

involved and n different implementations of H provide solutions z}’ with objective
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function value f(z), 1 < i < n. The work of Gendreau et al. (1992) compares
two heuristics H, and H, through the mean objective value of several trials, that
is

F(e) and -3 fal").
i=1

n
i=1

Sl

We believe that such sample mean is not a good indicator since in any imple-
mentation of the heuristic the user will obviously prefer the best known solution,

that is
min; f(z).

Some statistical methods used in the literature to compare the performance of
various heuristic include the non-parametric tests such as Wilcoxon or Friedman
tests. These tests are based on testing of hypothesis where the null hypothesis
is such that 'All heuristics are performed equally well on all problems’ versus
the alternative hypothesis that 'All heuristics are not performing equally well
on all problems’. Golden and Stewart (1985) carried out such study based on
some heuristics for the TSP. The drawback of this test is that it only accepts
or rejects the null hypothesis and does not give information about the heuristic
that performs the best. This problem can be resolved by the expected utility
function (Golden and Assad, 1984) that ranks the heuristics that perform well
on an average. They applied the method for the TSP.

For a probabilistic heuristic, on a given problem over r runs, let fis - [l be
the local optimal solition obtained by the r runs. Note that over the r runs,
some of these solutions may appear more than once. We are interested to assess
the number of times or the frequency of the occurance of the distinct local op-
tima, gf,1 < ¢ <. The performance of the heuristic can be measured by the

magunitude of

Il’liIllS.igr | f}[ - f(.’.U*) 1
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or the magnitude of the ratio . i

NNy <4

& 59
as is done for the deterministic case. However (5.8) can be viewed as a random
variable and for a given problem, one can estimate the objective function values
of an optimal solution from the set of objective function value fe1<i<r
obtained by the 7 runs of the heuristic. Furthermore, a confidence interval for the
objective function value of the optimal solution can be evaluated. This method

was investigated by various researchers to predict an optimal solution for the

combinatorial problems.

In the next chapter we demonstrate these ideas on the GENIUS algorithm applied
to the TSP. In Chapter 7 we explore the use of these tools on the TABUROUTE
algorithm applied to the CVRP and CDVRP.
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Chapter 6

Statistical Evaluation of the
GENIUS Algorithm for the
Symmetric TSP

This chapter provides a statistical evaluation to validate the comparison of the
performance of the heuristics discussed in Chapter 5. We investigated the ideas
based on the GENIUS algorithm (Gendreau et al., 1992) developed for the TSP
The GENIUS algorithm is chosen because it is claimed to outperform known
heuristics to solve TSP in terms of solution quality and computing time. An
overview of the GENIUS algorithm is given in Section 6.1. The statistical tests
include the Friedman test (Golden and Stewart, 1985), expected utility approach
(Golden and Assad, 1984) and fitting of the Weibull distribution to the obtained
solutions (Golden, 1978) discussed in Chapter 5 are extended to the 36 variations
of heuristics for the literature problems and the randomly generated problems.
The variation of the heuristics are based on various neighbourhood parameters,
insertion methods and construction initial solution procedures. From the combi-
nation of the 36 heuristics, four new algorithms are produced. This is discussed
in Sections 6.2 and 6.3. For details of statistical methods we refer to Appendix
A. Some of the results of this chapter are part of our published work in Achuthan

and Chong (1998).
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6.1 The GENIUS algorithm

The Genius algorithm is developed by Gendreau, Hertz and Laporte (1992) for
the symmetric TSP. The algorithm can be divided into two parts: GENI and US

which can be described in the following.

The Generalised Insertion Procedure (GENI)

The Generalized Insertion (GENI) procedure starts with a partial tour of 3 cities
and at each iteration a randomly selected city is inserted into the partial tour until
a Hamiltonian tour is constructed. The notation and terminology is introduced

as follows.

Given a partial (or complete) tour 7/, a city v and an integer p, define

K,(v,7") = {u: city u is one of the p closest cities,in tour 7, to the given city v }.
(6.1)
Note that if | 7/ |> p then | Kp(v,7) |=p; if | 7" |< p then Ky (v, 7') =| 7' .

Parameter p is called the neighbourhood parameter and its value determines the
extent of the search imposed by the algorithm. The larger the value of p, the more
extensive the search for new tours will be. Many of the heuristics and algorithms
developed for TSP and VRP use K,(v,7') as a basic neighbourhood set of vertex
v, where elements of K, (v,7') play a key role in extending or searching for new

tours from 7.

Cijven an orientation of a partial tour 7' and a city v; of 7, let v, be the
next city in 7’ to which the given orientation forces to travel from wv;. Given an
orientation of a partial tour 7, v not in 7’ and v;, v; € Kp(v,7'), let v be a vertex
on the path from v; to v; and let v, be a vertex on the path from v; to v; such
that vz € K,(viy1,7) and v € Kp(vj41,7'). Three types of insertion methods to

insert v between v; and v, in for a partial tour 7’ is defined as follows.

Type A Insertion: For v # v; and vy # v;, the set of arcs {{vi, vit1), (v7,j41)

and (Uk,'l)k+1)} is replaced by {(Ui:v): (U,’Uj), (Ui+19vk) and (Uj+l1vk+l)}- The
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orientation of the two paths (viy1,...,v;) and (vj41,...,ux) are reversed. Type
A insertion is illustrated in Figure 6.1. For the special case when v = v;
and v;11 = vk, Type A insertion reduces to the standard insertion procedure as

illustrated in Figure 6.2.

Vit

.
\hh
Vi \"\_‘ Vi
4

e q* ?
/-‘ S, -
Vi+1! - e -
* - Vier 1 S - Vil
P, e /_‘/
-~ "-\._‘_ l -

Vi

Figure 6.1: Type A Geni Insertion

VipI=Vj

Vi
Vi

i
g
i v
i
I

H
H
.

:

Vi=Viel
v,
Vil k+1 VE=Vie1

Figure 6.2: Standard insertion when v; 1, = vy, vg = v

Type B Insertion: For vy # v; and vk # vj41; v # v and v # vy, the

set of arcs {(vs,vip1), (i1, %), (¥j,v501) and (ve_1,v5)} is replaced by {{vi,v),
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(v,v5), (U1, v541), (Vk—1,%—1) and (ve1,vk)}. The orientation of the two paths
(vis1, -, U1_1) and (i, ..., v;} are reversed. This scheme of insertion is illustrated

in Figure 6.3.

Figure 6.3: Type B Geni Insertion

Type C Insertion: We call the scheme of inserting v between v; and v;4; when

v; € K,(v,7') as Neighbour insertion. For notational convenience Neighbour
insertion by Type C insertion. This includes the special case of Type A insertion

as illustrated in Figure 6.2.

The flow chart of the GENI algorithm is presented in Figure 6.4.

Unstringing and Stringing Procedure (US)

The post optimisation procedure proposed by Gendreau et al. (1992} is to remove
a vertex from the tour and insert it back. The removal of vertex v; from the tour

can be accomplished by two methods called Unstringing procedures defined below.
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GENI

l

INITIAL PARTIAL TOUR:

Randomly select 3 vertices and define
partial tour 7 . Set I/ = funselected
vertices ).

Randomly select v from U and set &/ = U - {v],

Apply the least cost insertion of v into? among all
pessible Type A, Type B and Neighbour insertion
using N, ,(v). The resulting tour is called 7 again.

All cities in tour ¥ 7

NO

(Is U = {1} ?)

STOP

A tour Tis obtained.

Figure 6.4: GENI Algorithm
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The insertion is called the Stringing procedure that is similar to type A, type B
and type C of GENIL.

Type I Unstringing: For a given tour 7 and its orientation, suppose that vertex

v; (or v) is to be removed, let v; € Kp(v;.1,7) and vy € K,(v;_1,7) be a vertex on
the path (viy1,.,vj—1). The ares {(vi—1, v}, (¥, vi41), (vk, vk+1) and (vj,vj41)}
are deleted and replaced by {(vi_y, &), (vit1,7v;) and (vg41,v541)}. The two
paths (viy1, ..., %) and (vgy1,...,v;) are reversed. The result is a new partial tour

7' without involving vertex v;. This is shown in Figure 6.5.

vior v) Verd vi{or v) Vies

3 P . B
Y Vit
Vit '\ b

Vi

A
! i
! 1
! 1
{ ’ I
! i {
i _ ;
! |
i !
Vins A VR Vel o Ve
* g Vg

- \ -

/' - o
vi

Figure 6.5: Type I Unstringing

Type 11 Unstringing: For a given tour 7 and its orientation, let v (or v)

be the vertex to be removed. Let v; € Kp(vis1,7) and vx € Kp(vi1,7) be a
vertex on the path (vj,,..., vi—2) and let v € Kp(vg,1) be a vertex on the path
(vj,..,vk_1). The arcs {(vi 1, i), (vi,vi41), (vj—1,95), (vi,v141) and (Vk, Vkr1) }
are deleted and replaced by {(vi_1, ve), (viy1,7j-1), (vis1,v;) and (v, v341)}. The
two paths (vis1, ..., v;_1) and (vi41, ..., vg) are reversed. The resulting partial tour

7' does not involve vertex »;. This is shown in Figure 6.6.

Unstringing (1, v,; 7, C(7")): Given a complete tour 7 and a specified city v,
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v;{orv) Visd

Vil

V!

Vi

Vil Vist

Figure 6.6: Type II Unstringing

this procedure applies the type I and type II Unstringing methods to the tour 7
with city v, for both possible orientations of 7. Then the best partial tour 7/, in

the sense of least cost, C{7'), is chosen.

Stringing (7', v;;7",C(7")): Given a partial tour 7" and a specified city v; not

in 7', this procedure applies the type A, type B and type C insertion methods to

' and a complete tour 7 with least cost, C'(7") is obtained.

The flow chart of the US procedure described in Figure 6.7 uses the above Un-

stringing and Stringing procedures.

Given a TSP tour 7, its neighbourhood can be considered as K(r) = {7’ : 7'
can be obtained from 7 by a suitable unstring and then string operation}. More
precisely select a customer v from 7 and then obtain a partial tour 7' by deleting
a customer v by either Type I unstringing or Type II unstringing. The string
operation is then performed on 7’ to obtain a complete permutation 7. Note that
the neighbourhood structure K{7) is understood from the context on the basis

of the stringing types, unstringing types and the neighbourhood parameter p.

118



Us

:

Let 7= (vs vz ..., vn, v1) be a given initial tour of cost

z=C(t)

!

Set¢ =7,z =zandf=1

Apply Unstringing (t°,v,;7 .z ) where
cost z=Clg')

b

Apply Stringing ('r' VT z)

Set
T =1
=z
t=1

'

Sers =+l

STOP

P the best
known tour with
cost z

Figure 6.7: US Algorithm
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The initial partial tour of GENI is made up of three randomly selected cities. In
contrast to this initial partial tour, one can start GENI with any other suitable
initial partial tour. Gendreau et al. (1992) have implemented GENI with the
initial partial tour generated by the convex hull of the cities. This version of GENI
is denoted by CGENI. The convex hull technique of generating a partial tour is
used by Golden and Stewart (1985) while implementing a heuristic denoted by
CCAQ (convex hull, cheapest insertion, angle selection and Or-opt) (see Section
2.2 for detail). The US procedure can be applied to any given complete tour 7.
- Gendreau et al. (1992) also applied US procedure to the tour obtained by CGENI
and named this combination as CGENIUS. Furthermore, we replace the Or-opt
procedure of CCAQ with US and name the new combination as CCAUS.

Several versions of the heuristics GENIUS, CGENIUS and CCAUS can be ob-
tained by varying the Stringing types, Unstringing types and the neighbourhood
parameter p. Both the Unstringing types were used in the US procedure of the
different heuristics considered in this section. The various combinations of String-
ing types used in the heuristics are ABC, AB, AC and BC. Note that Gendreau
et al. (1992) used all three types of insertion methods in their algorithm. The
different values considered for the neighbourhood parameter p are 3, 5, 7 and 9.
A given heuristic GENIUS with neighbourhood parameter p and Stringing types
AB will be denoted by p.GENI_AB_US. Similarly a given heuristic CGENIUS
with neighbourhood parameter p = 7 and Stringing types ABC will be denoted
by 7. CGENI_.ABC_US. Thus GENIUS and CGENIUS give rise to 32 different
heuristics in total. Furthermore the given heuristic CCAUS with neighbourhood
parameter p is denoted by p.CCAUS. Note that p . CCAUS is a deterministic pro-
cedure in the sense that every execution of this procedure on a given problem will
yield the same solution. There are 4 such heuristics. The variations of GENIUS
and CGENIUS are not deterministic procedures and hence we execute them on a
given problem for 100 times and take the least cost solution. All programmes for
these heuristics were written in C and were executed on Silicon Graphic INDY
machine with a single 100 MHZ IP22 processor with 32 Mbytes of memory size
and run speed of 87.3 MIPS.
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In the following sections, we carry out the statistical tests to compare these 36

heuristics.

6.2 Statistical Evaluation on the Literature Pro-

blems

In this section we carry out an analysis of the heuristies using 27 literature pro-
blems chosen from Krolak et al. (1971) and Reinelt (1995). The sizes of these
problems range from 100 cities to 532 cities and the best known lower bounds
are shown on Table 6.1. In order to compare the heuristics we have executed
each of the 36 heuristics on every problem. For each heuristic of the types
p_GENI_types US and p.CGENIL types US we execute it 100 times on a given
problem. The least objective function value out of the 100 runs is chosen as the
objective function value associated to that heuristic on the given problem. Table
B.1 shows the best objective function value obtained over 100 runs for various

heuristics Hj on the given problem i, i.e. min;<,<i00( f}}j),- (see Appendix B).

Note that for 3 problems on Table 6.1 we obtained similar tour but different
objective function values from the literature. These solutions are presented in
the bracket on Table 6.1. This may be due to different versions of C compiler
and truncation of the number. We use our solution {in the bracket) for carrying

out the statistical analysis.

In the following, we carried out the Friedman test to compare the 36 heuristics.
Friedman test is an extension of the Wilcoxon test and it is used when comparing
three or more heuristics. It is a non-parametric test similar to the ANOVA test

of homogeneity.
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Problem | size n | Best known lower bound c(7*) Iteference
a280 280 2579 Reinelt (1995)
bierl27 127 118282 Reinelt (1995)
ch130 130 6110* (6099) Reinelt (1995)
ch150 150 6528 Reinelt (1995}
d198 198 15780 Reinelt (1995)
ill01 101 629 Reinelt (1995)
gil262 262 2378 Reinelt (1995)
linl05 | 105 14379* (14380) Reinelt {1995)
lin318 318 42029 Reinelt (1995)
prl07 107 44303 Reinelt {1995)
prizd | 124 59030 Reinelt (1995)
prl36 136 96772 Reinelt (1995)
pridd | 144 58537 Reinelt (1995)
prlbs2 152 73682 Reinelt (1995)
pr226 226 80369 Reinelt (1995)
pr264 264 49135 Reinelt (1995)
pr29g | 299 48191 Reinelt (1995)
prd39 439 107217 Reinelt (1995)
rat195 195 2323 Reinelt (1995)
ta225 225 126643 Reinelt (1995)
tsp225 | 225 3919 Reinelt (1995)
uls9 | 159 42080 Reinelt (1995)
k24 100 21282 Krolak et al. (1971)
pch442 | 442 50778 Reinelt (1995)
rd100 100 7910* (7911) Reinelt (1995)
rd400 | 400 15281 Reinelt (1995)
att532 532 27686 Reinelt (1995)

Table 6.1: Problems and their best known lower bounds in the literature

6.2.1 Friedman Test

Comparison of the k heuristics denoted by H,,..., Hy can be made through a
non-parametric test suggested by Friedman. We refer the details of this approach
to Appendix A. We carried out the Friedman test on 3 cases:

Case 1. Compare all 36 heuristics.

Case 2. Compare the 16 p_ CGENI _types_US heuristics.

Case 3. Compare the 16 p_GENI_types.US heuristics.

Our null hypothesis is that all 36 heuristics are all equal in performance. Tables
B.2, B4, and B.6 (see Appendix B) provide the ratio of the obtained heuristie
solutions over the best known solution, i.e. 7 = % where ¢(7*) = the best
known solution of problem j for various cases. For a given problem j, the ratios

r;; are arranged in increasing order and ranked from 1 to £. The rank of rj; is
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denoted by R;;. Those ratios giving rise to a tie are given the average rank of the
associated indices. Tables B.3, B.5, B.7 , (see Appendix B) show the ranking of

n

the various cases and calculation of B; = Y Ri;, 3 (Ry;)? and R}.

=1 i=1

The summary of the calculations for the Friedman test for the 3 cases listed above
are given in Table 6.2. The table includes the calculation of the statistic Ar, Br
and the test statistic Tp with o = 0.05 level of significance. Note that the null
hypothesis that the heuristics are equally accurate is rejected for all 3 cases as
Ty > F,. Thus we need to locate the best heuristic and further investigation of

the heuristics through the expected utility approach will assist us towards this

goal.
Case 1 Case 2 Case 3
Hypothesis: All 36 heu- | All 16 | Al 16
ristics are equally | p_.CGENI types US| p_.GENI types US
accurate. heu- heu-
ristics are equally | ristics are equally
accurate. accurate.
n=27,k=236 n=27k=16 n=27,k=16
Ar = 3o, 5 (Riy) 416181 37853 38020
Br=1L13" R? 364610.26 32258.46 32380.37
Ty — =B (EECD/Y | 619 1.86 5.38
F(k—1),(n—~ ){k—1)) | Foos(35,910) = 1 | Fo0s(15,390) = Fo.05(15,390) =
1.67 1.67
Conclusion: Reject Reject the null | Reject the null
the null hypothe- | hypothesis that all | hypothesis that all
sig that all 36 heu- | 16 16
ristics are equally | p.CGENI_types US| p_GENL types US
accurate at a = | heuristics heuristics
0.05. are equally accu- | are equally accu-
rate at o = (.05. rate at o = 0.05.

Table 6.2: Computational result on Friedman test on three cases.

6.2.2 Expected Utility Approach

The Friedman test is a procedure testing of location i.e. mean or median of the
distribution and nothing about the shape or the dispersion of the distribution.
So the results can be unsatisfying. Another method to compare the heuristics is

called the Expected Utility Approach (Golden and Assad, 1984). This approach
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can be used to answer question such as which heuristic is the most accurate? We
extend the idea to the 36 heuristics for the TSP. We refer details of this approach

to Appendix.
Let z be the percentage deviation of the heuristic solution and the best known

solution of a particular heuristic on a given problem i.e.

__ heuristic solution - best known solution
- best known solution x100%.

T

Empirically we fit a gamma function to z. The heuristic which yields the largest
expected utility function is the most accurate. Golden and Assad (1984) sug-

gested that the risk averse decreasing utility function is of the form:
u(z) = v — Bexp™
where 7, 3, > 0. The expected utility function can be derived and is in the form:
v —B(1—bt)~

where b and ¢ are the estimated parameters of the Gamma function. We select
the utility function where v = 500, § = 100 and ¢ = 0.05, where ¢t measures the
risk of aversion for the utility function and ¢ <1 /3 Note that v and 3 are chosen

arbitrarily.

Tables B.8 (see Appendix B) show the percentage deviation, z, from the best
known solution and Table 6.3 shows the summary of the calculation required for

the expected utility function. The notations used in Column 2 to 5 of Table
2 —

6.3 are T = %éwj, s? = £ 3il(x; — T)? b = % and ¢ = (g)2 respec-
tively. The last column provides the rank 1 to 36 of the entries v — B(1 —
bt) ¢ of Column 6 corresponding to the largest to smallest. The results indi-
cated that 9. CGENT_ABC_US is the most accurate of 36 heuristic followed by
5.CGENI_AB_US based on the 27 literature problems. p_.CCAUS does not per-

form well compare to p_.GENT types_US and p.CGENI._types_US.
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Heuristic z 82 b é 500 — 100(1 — 0.05b)~° | Rank
3 CGENIABC_US | 0.6287 | 0.3717 | 0.5912 | 1.0634 396.7573 29
3_CGENI.AB_US 0.5377 | 0.3902 | 0.7257 | 0.7408 307.2234 25
3.CGENI_ACUS 0.6770 1 0.8080 | 1.1948 | 0.5666 396.4475 31
3_CGENIBC.US 0.6632 | 0.3761 | 0.5671 | 1.1693 396.5787 30
5 CGENI.ABC US | 0.5059 | 0.3073 | 0.6074 | 0.8329 397.3977 21
5.CGENI AB_US 0.4055 | 0.2709 | 0.6681 : 0.6069 397.9164 2
5 CGENI AC_US 0.5213 | 0.2890 | 0.5545 | 0.9402 397.3211 24
5. CGENI.BC_US 0.5180 | 0.3267 | 0.6307 | 0.8213 397.3329 23
7.CGENI.ABC_.US | 0.4310 | 0.2730 | 0.6334 | 0.6805 397.7855 7
7 .CGENI.AB.US 0.4682 | 0.2958 | 0.6318 | 0.7411 © 397.5923 12
7_.CGENI_AC_US 0.4195 | 0.2686 | 0.6402 | 0.6553 397.8448 4
7.CGENIBC.US 0.4877 | 0.2941 | 0.6030 | 0.8086 397.4929 17
9_CGENI_ABC_US | 0.4020 | 0.2465 | 0.6132 | 0.6555 397.9372 1
9 CGENL.AB_US 0.4405 | 0.2522 | 0.5726 | 0.7693 397.7398 8
9_CGENI ACUS 0.4094 | 0.2615 | 0.6387 | 0.6410 397.8974 3
9. CGENLBC_US 0.4922 | 0.3038 ! 0.6174 | 0.7972 397.4682 18
3_.GENI_ABC_US 0.5717 | 0.3614 | 0.6322 | 0.9042 397.0527 26
3.GENI_.ABUS 0.5788 | 0.4130 | 0.7136 | 0.8110 397.0010 28
3.GENIL.AC_US 0.5799 | 0.2929 | 0.5051 | 1.1480 397.0196 27
3_GENLBC_US 0.7255 | 0.4760 | 0.6560 | 1.1059 396.2423 32
5_GENIL.ABC_US 0.4761 | 0.2817 | 0.5915 | 0.8049 397.5537 14
5_GENI_AB_US 0.4850 | 0.3334 | 0.6874 | 0.7056 397.5012 16
5_GENIL.AC_US 0.5005 | 0.3621 | 0.7235 | 0.6917 397.4181 20
5_GENI BC_US 0.5161 | 0.3176 | 0.6154 | 0.8386 397.3442 22
7_.GENI_ABC_US 0.4689 | 0.2975 | 0.6344 | 0.7391 397.5884 13
7_.GENLAB_US 0.4220 | 0.2351 | 0.5572 | 0.7574 397.8366 5
7 GENI_LACUS 0.4678 | 0.2963 | 0.6335 | 0.7383 397.5946 11
7.GENI BC_US 0.4983 | 0.3494 | 0.7012 | 0.7107 397.4310 19
9 GENI_ABC_US 0.4469 | 0.2862 | 0.6404 | 0.6978 397.7029 9
9_GENL.AB.US 0.4214 | 0.2601 | 0.6172 | 0.6827 397.8364 6
9 GENI_AC_US 0.4543 | 0.3449 | 0.7591 | 0.5985 397.6567 10
9_GENI BC_US 0.4758 | 0.3519 | 0.7395 | 0.6434 397.5458 15
3. CCAUS 2.5762 | 2.7403 | 1.0636 | 2.4219 385.8476 36
5 CCAUS 2.0184 | 2.3661 | 1.1722 | 1.7218 389.0396 35
7 CCAUS 1.9587 | 1.9199 | 0.9802 | 1.9983 389.4366 34
9_CCAUS 1.7789 | 1.6005 | 0.8997 | 1.9772 390.4718 33

Table 6.3: Calculations for the expected utility function for the literature pro-
blems

6.2.3 Fitting of Weibull Distribution (Literature Problems)

Tn this section we will evaluate the heuristic solutions using the statistical extreme
value theory, Weibull distribution, which was proved by Fisher and Tippet (1928)
(cited in Golden, 1978) to obtain an estimate of the optimal objective function
value and an estimate of the confidence interval for the problems. Given a proba-

bilistic heuristic implemented several times on a given problem, let 2, Zo, - Zig
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be the observed local minimum objective function values corresponding to g runs
of ith batch of implementation. Thus the best known objective function value in
the ith implementation can be denoted by z; = min{zi1, zi2, ..., Zig}- Furthermore
if the probabilistic heuristic is implemented r times then we have the best known
objective function value of this problem by heuristic as v = min{z;, 1<i<r}
By the extreme value theory, irrespective of the distribution of the objective func-
tion value, as ¢ increases the random variable Z' (representing the minimum of
a random sample of size g} follows Weibull distribution. We refer to Appendix A

for further details on this subject.

We fitied the Weibull distribution to the solutions on the following problems:
a280, bier127, ch130, ch150, d198, eill01, gil262, lin318, prl36, prid4, prib2,
pr226, pr264, pr299, pr439, rat195, ts225, tsp225, uls9, pcb442, rd400 and attb32.
Note that problems 1in105, pr107, pri24, k24 and rd100 are left out because the
heuristics obtained the best known solution as reported in the literature. For a
given heuristic and a given problem, we take 10 independent samples, each of size
10. More specifically, in terms of implementing the heuristic, it is equivalent to
running the heuristic 10 times and obtaining the best objective function value z;,
for #th run, 1 < i < 10. Thus let v = min{z; | 1 < i < 10}. We adapted the least
square approach by Golden (1977, 1978) to solve the following equation:

cln(zg — @) — clnb = In(—In(1 — F(zo)))- : (6.2)

The equation (6.2) can be derived from the cumulative Weibull distribution by
taking the logarithm twice. For different values of the parameter, ‘a’, say @,
we use the least square method (6.2) to estimate b; and ¢; for the corresponding
parameters ‘b’ and ‘c’. The set of parameters that yields the smallest Kolmogorov
Smirnov (K-S) statistic D is selected because it is much more sensitive to small
changes in ‘e’ compared to selecting a set of parameter which vields the largest

correlation coefficient.

The test statistic with modified form of D by Stephens (1974) (cited in Scheaffer

and McClave, 1990) is used
0.11

T=D [\/ﬁ+ 0.12 + —ﬁ] (6.3)
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The rejection starts at 1.358 for o = 0.05 significance level.

The results show that final estimated solutions are within 8.2% of the best-known
solutions for p_.CGENI _types_US and 6.5% for p_ GENI_types US. The K-S statistic
fall below the critical value 1.358 for 0.05 level of significance except for one case
for 4198 and four cases for ul59. Table 6.4 shows the number of times that the
estimated confidence interval included the best-known solution. Table 6.5 shows
a list of various problems with the corresponding best heuristic and the estimated
optimal objective. The heuristic and the estimate are chosen using the smallest
g among the various heuristics used. Note that % is a measure of performance

and the smaller it is the more powerful the corresponding heuristic is.

Heuristic | 3 AB | 3. ABC [ 3ACT3BC [ 5AB [ 5 ABC | 5 AC | 5.BC
CGENIUS | 19 19 20 20 18 20 19 19
GENIUS 17 18 17 16 19 17 17 19

Heuristic | 7.AB | 7ABC | 7.AC [ 7BC | 9.AB [ 9 ABC | 9. AC | 9.BC
CGENIUS | 18 18 19 17 20 20 19 17
GENIUS 18 18 19 20 17 19 20 18

Table 6.4: Number of times the estimated confidence interval include the best
known lower bound on the 22 literature problems with various heuristics

6.2.4 Conclusion

In conclusion, the p_.CCAUS model does not perform well compared to the

p_CGENI_types US and the p GENI types US. From the result of the expected
utility function test, we learn that 9 CGENI_ABC_US appears to be the best heu-
ristic among the 36 heuristics. Alternatively we can choose heuristic 5 CGENI_AB

_US for quality of the solution and computational times.

Finally we include the number of distinct local optimal solutions gf,1 < 2 < «v
generated for each problem for each heuristic. Tables 6.6 and 6.7 show the number
of distinet solutions obtained, i.e. -y, over the 100 runs for the p_ CGENI_types US
and the p_GENI types_US. These tables illustrate that the number of local min-
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Estimated Best
optimal knoun

Problem Heuristic objective | lower bound | Deviation % K-S statistic
a280 5 CGENI_ABC US | 2604.00 2579 0.9% 0.0110 0.0837
atth32 5 CGENI_AC_US | 27916.00 27686 0.8% 0.0064 0.0830
bierl127 | 9.CGENI_AB_US | 118340.00 118282 0.04% 0.0066 0.2706
ch130 7. CGENI_BC US 6112.00 6099 0.2% 0.0015 0.0893
ch150 | 7.CGENLABC US| 6552.00 6528 0.4% 0.0040 0.0840
d198 7.CGENIBC_US | 15787.00 15780 0.05% 0.0025 .0840
eil101 7_.CGENIBC_US 635.00 629 0.95% 0.0124 0.0862
gil262 9_CGENIBC US 2393.00 2378 0.6% 0.0110 0.0830
lin318 3 CGENI.AB.US 42629.00 42029 1.4% 0.0052 0.0830
pcb442 | 5 CGENLABUS | 51331.00 50778 1.1% 0.0065 0.0829
prld4d 5. CGENI_.ABUS | 58565.00 58537 0.05% 0.0016 0.0861
prls2 9_CGENI_AB.US | 73646.00 73682 -0.05% | 0.0045 0.2488
pr226 9_CGENI_LAC US | 80368.00 80369 -0.001% | 0.0001 0.0972
pr2éd 5 CGENI_AC_US | 49125.00 49135 -0.02% | 0.0023 0.0857
pr299 3_.CGENIL.ABUS | 48281.00 48191 0.18% 0.0035 0.0829
pr439 5 CGENIBC.US | 107836.00 107217 0.6% 0.0063 0.0830
rat195 9_CGENI_AC_US 2339.00 2323 0.7% 0.0072 0.2495
rd400 5_.CGENLLAB.US | 15412.00 15281 0.9% 0.0106 0.0835
8225 7_CGENI_BC_US | 126490.00 126643 -0.12% | 0.0101 0.2488
tsp225 | 9 CGENI_ABC_US | 3963.00 3919 1.1% 0.0067 0.0886
ulh9 5. CGENIAC TS | 41824.00 42080 -0.6% 0.0160 0.2555
a28(0 9 GENI_AC_US 2565.00 2579 -.5% 0.0235 0.1019
atth32 7_.GENILABC US | 27979.00 27686 1.1% 0.0052 0.0886
bierl27 5_GENI_AC_US 118373.00 118282 0.07% 0.0018 0.3764
ch130 g_GENI_AB_US 6049.00 6099 -0.8% 0.0120 0.0895
ch150 7.GENL_AB_US 6505.00 6528 -0.35% | 0.0120 0.1191
d198 9_GENI AB_US 15737.00 15780 -0.3% 0.0041 0.1215
€ill101 9_GENI_ABC US 633.00 629 0.6% 0.0162 0.1351
gil262 3_GENI.BC.US 2370.00 2378 -0.33% (.0260 0.1284
lin318 7_GENI_AB_US 42324.00 42029 0.7% 0.0047 0.3302
pcb442 3_.GENIBC.US 51678.00 50778 1.8% 0.0054 0.1389
prl36 5 GENI.AC_US 97107.00 96772 0.3% 0.0030 0.1484
prld4 9 GENI_AB_US 58529.00 58537 0.01% | 0.0013 0.1379
prl5s2 9_GENT ABC_US | 73632.00 73682 -0.07% | 0.0030 0.3905
pr226 9 GENI.BC_US 80368.00 80369 -0.001% | 0.0001 0.1320
pr264 9. GENI_AC_US 49085.00 49135 -0.1% 0.0023 0.1062
pr299 7_GENLACUS 48238.00 48191 0.09% 0.0036 0.1276
pr439 9_GENI.BC_US 108030.00 107217 0.7% 0.0037 0.0934
rat195 5_GENI_AB_US 2312.00 2323 -0.5% 0.0262 0.4000
rd400 5 GENI.AB_US 15448.00 15281 1.1% 0.0065 0.3271
15225 5_GENI_AC_US 126593.00 126643 -0.03% | 0.0073 0.1967
tsp225 9_GENI_AC_US 3936.00 3919 0.4% 0.0153 0.1047
ulh9 3_GENI_AB US 42030.00 42080 -01% 0.0052 0.5741

Table 6.5: Computational results for the literature problems - Point estimation for
p CGENI_types_US and p GENI types US chosen using the smallest performance

measure
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imum is highly dependent on neighbourhood structures. Some of the problems,
e.g. bierl27, seem to produce a large proportion of distinct local minimum so-
lutions which indicate this may be hard problem with too many local minimum.

So no algorithm will solve such problems in a reasonable time.

3.CGENI types US 5.CGENItypes_US 7 CGENLtypes_US 9_CGENI types_US

Problem | AB | ABC | AC | BC | AB | ABC | AC | BC | AB| ABC | AC | BC | AB ABC | AC | BC

a280 72 66 TL 66 63 72 69 66 67 66 64 67 Tl 65 65 63
bier127 97 97 100 | 94 96 94 96 a3 93 92 90 87 93 90 93 84
chl130 82 84 75 76 70 73 73 68 57 67 63 65 60 60 67 72
ch150 75 80 83 78 il 7T 83 79 76 82 72 70 71 76 78 74
d198 92 86 89 90 89 86 92 82 89 90 93 92 8 81 82 82
eil101 24 25 27 27 22 24 22 | 24 22 24 22 22 20 22 22 23
gil262 54 62 66 61 56 61 58 58 58 54 58 59 60 65 57 659
lin105 68 68 67 73 15 17 19 19 14 11 12 12 9 10 19 10
1in318 96 93 97 97 95 96 97 96 94 97 99 a3 95 94 97 95
pri0o7 47 41 48 59 17 21 19 17 17 16 15 15 10 11 11 11
prl24 25 37 37 41 20 i7 18 19 13 14 13 19 10 13 10 14
pridé 94 95 98 a7 B4 85 88 94 75 80 92 92 76 80 78 21
prid4 94 93 98 94 54 57 T0 58 25 32 33 36 17 14 19 20
pris2 91 85 87 83 65 53 60 54 64 61 66 69 42 36 42 32
pr226 94 98 98 98 58 64 65 60 47 56 53 56 30 38 44 34
pr264 89 40 93 93 7T 72 76 78 58 62 61 65 63 66 66 70
pr299 97 o7 98 99 i 98 100 | 97 95 97 97 a3 96 90 94 93
pr439 100 99 100 | 98 99 100 100 | 98 98 98 100 | 99 | 100 99 100 ; 99
rat195 60 58 58 64 59 63 60 65 54 54 60 60 57 54 63 62
£s225 79 84 78 86 54 58 47 50 38 47 46 48 43 44 41 44
tsp225 70 75 75 76 68 70 72 70 63 65 63 59 66 63 60 61
uls9 93 99 99 95 70 73 9 70 54 57 76 59 56 57 7l 56
k24 41 413 49 34 1t 13 20 17 10 8 16 a 6 7 18 10
pcb442 98 99 98 99 97 94 98 95 98 95 90 94 98 96 100 | 100
rd100 65 65 70 66 4 43 44 41 32 34 33 35 28 25 33 30
rd400 85 86 85 86 84 92 87 84 85 86 89 81 81 85 88 89
atth32 92 92 91 92 91 a7 094 91 93 95 90 93 86 100 92 a1

Table 6.6: Number of distinct solutions, ~, using various p.CGENI_types US
heuristics
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3_GENI_types_ US 5_GENI types_US 7_GENItypes US 9_GENI types_US

Problem | AB | ABC | AC | BC | ABE | ABC | AC | BEC | AB | ABUC | AC | BC AB | ABC | AC | BC
a280 67 68 69 73 66 43 48 46 71 73 68 Tl T 72 T2 74
bierl27 99 98 99 98 93 59 57 58 97 97 99 98 95 97 95 95
ch130 80 82 81 81 75 45 50 48 66 73 T0 63 61 63 66 67
ch150 87 83 86 B6 59 72 76 76 75 74 78 72 68 72 76 83
di9s 930 94 98 96 86 90 89 83 78 81 83 90 76 74 81 82
eil101 26 22 26 26 21 26 26 23 22 19 19 23 22 26 24 24
gil262 61 55 60 63 63 57 59 56 57 58 59 55 59 60 58 59
linl05 73 79 83 78 24 32 29 29 19 18 27 25 24 20 25 22
lin318 98 97 96 100 94 98 98 94 93 96 93 96 100 94 95 96
prid7 45 54 64 55 21 21 24 18 15 16 17 18 10 139 11 11
pri24 46 77 67 65 27 41 35 40 11 15 17 20 16 15 17 19
pr136 98 97 98 96 36 93 94 94 86 80 86 90 86 80 85 85
prl44 88 95 97 99 56 64 62 58 23 35 34 35 13 20 24 26
pri52 93 94 94 96 63 5T 67 64 55 70 59 61 30 a8 36 44
pr226 87 96 94 92 43 56 58 Tl 44 55 51 56 29 36 37 12
pr264 91 93 95 93 74 77 80 74 59 66 73 59 78 79 64 78
pr299 98 96 97 98 99 100 93 98 94 95 95 99 94 97 97 96

prd39 98 99 100 99 98 99 100 99 99 99 99 99 99 99 100 | 100
rat195 57 60 63 62 63 61 58 61 56 b5 58 58 55 57 87 fils)
ts225 86 89 85 89 50 69 56 58 44 55 57 57 51 57 50 56
tsp225 68 79 77 70 68 65 66 63 64 62 65 59 54 61 60 62
ulbH9 87 90 94 89 64 61 86 60 48 58 58 63 40 4] 56 52
k24 33 50 33 36 13 19 24 17 13 12 15 13 12 9 14 9
pchdd2 94 97 95 99 100 99 99 98 97 Q9 a7 98 96 97 95 97
rd100 67 67 69 74 42 41 51 43 33 34 30 42 29 20 28 32
rd400 88 86 86 87 89 86 89 86 88 88 89 90 92 32 82 90
attd32 95 96 98 92 100 92 94 93 95 92 92 89 100 99 100 99

Table 6.7: Number of distinct solutions, -,

ristics

130

using various p_GENI_types US heu-




6.3 Statistical Evaluation on the Randomly Gen-
erated Problems

We are interested in analysing the heuristics using the randomly generated pro-
blems since the literature problems may not be a typical real-life problem set.
Tn this section we generated 20 Euclidean test problems with sizes ranging from
100 to 480 in increments of 20. Each of the 32 heuristics (i.e. p-CGENI.iypes US
and p_GENI_types.US) is executed on each problems 100 times and one time on
p.CCAUS. Table 6.8 shows the best obtained solution of 100 runs frormm 36 heu-
ristics for each problem. The best solution obtained for each heuristic over 100

runs is shown in Table B.9 in Appendix B.

Problem | size n | Best obtained solution c(r+)
pl 100 7758
p2 120 8541
p3 140 8866
pd 160 9418
p5 180 10111
p6 200 10595
p7 2920 11696
p& 240 11969
p9 260 12229
pl0 280 12612
pll 300 13203
p12 320 13215
pl3 340 14019
pl4 360 14516
pl5 380 14865
pl6 400 15042
pl? 420 15133
pl8 440 15896
pl9 460 16172
p20 480 16137

Table 6.8: Randomly generated problems and best obtained solutions from 36
heuristics

Similar statistical tests, i.e. Friedman test, expected utility approach and fitting
Weibnll distribution to the obtained heuristic solutions are carried out for the
randomly generated problems. We present the results in the following and refer

the details of these tests to the previous section and Appendix A.
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6.3.1 Friedman Test

We carried out the Friedman test on 3 cases:

Case 1. Compare all 36 heuristics.

Case 2. Compare the 16 p . CGENI _types_US heuristics.

Case 8. Compare the 16 p_ GENI types US heuristics.

Our null hypothesis is that the heuristics are all equal in performance versus the
alternate one. Tables B.10, B.12, and B.14 (see Appendix B) provide the ratio
for various heuristics and cases. The ranking and calculations for Friedman test
of the heuristics are shown on Tables B.11, B.13, B.15. The summary of the
calculation for Friedman test for the 3 cases listed are given in Table 6.9 where
Tr is the test statistic at & = 0.05 level of significance. From the table we note
that the null hypothesis is rejected for all 3 cases. That is we reject that the
heuristics are all equal in their performance. Thus we need to locate the best

heuristic and this can be attained through the expected utility approach.

Case 1 Case 2 Case 3
Hypothesis: All 36  heu- | Al 16 | All 16
ristics are equally | p_CGENLiypes US| p_GENIL fypes US
accurate. hew- heu-
ristics are equally | ristics are equally
: accurate. accurate.
n =20,k = 36 n =20k =16 n=20,k=16
Ap =30, Vb (Ry)? 320934 29582.5 29408
Be =13 R 280802 24779.48 24815.65
Ty — poBr-lnk(bH17)/) | 16,28 6.56 7.01
Fol(ki—1),(n— 1)(k—1)) | Fo.0s(35,646) = 1 | Foos(15,285) = | Fo.os(15,285) =
1.67 1.67
Conelusion: Reject Reject the null [ Reject the null
the null hypothe- | hypothesis that all | hypothesis that all
sis that all 36 heu- | 16 16
ristics are equally | p_.CGENLiypes US| p.GENI types US
accurate at o = | heuristics heuristics
0.05. are equally accu- | are equally accu-
rate at o« = 0.05. | rate at @ = 0.05.

Table 6.9: Computational result on Friedman test on three cases for the 20 ran-

dom generated problems
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6.3.2 Expected Utility Function

With the rejection of the null hypothesis from the Friedman test, we carried
out the expected utility procedure to define the best heuristic. Let z be the
percentage deviation from the heuristic solution and the best known solution of

a particular heuristic on a given problem i.e.

_ heuristic solution - best known solutionxloo%_

d best known solution

Empirically we fit a gamma function to z. The heuristic which yields the largest
expected utility function is the most accurate. Golden and Assad (1984) sug-

gested that the risk averse decreasing utility function is of the form:
u(z) = v — Bexp”
where 7, 3, > 0. The expected utility function can be derived and is in the form:
v — B(1 - bt)~
where b and ¢ are the estimated parameters of the Gamma function.

We select the utility function where v = 500, § = 100 and ¢ = 0.05 where ¢
measures the risk of aversion for the utility function and ¢ < % Note that
and 3 are chosen arbitrarily. Table B.16 shows the percentage deviation, z (see
Appendix B). Table 6.10 shows the summary of the calculation required for the
expected utility function. The result shows that 9_CGENI_AB_US is the best
heuristic among the 36 heuristics follow by 9 CGENI_ABC US. The heuristics
p_.CCAUS do not perform well for the randomly generated problems. Note that
p.CGENI_types_US and p_GENI types US are more sophisticated heuristics and

require longer running time than p CCAUS.

6.3.3 Fitting of Weibull Distribution (Randomly Gener-
ated Problems)

In this section, an estimate solution and a confidence interval for each estimate

solution for each of the randomly generate problem is obtained. This is done
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Heuristic z 52 b & 500 — 100(1 — 0.05b)° | Ranking
3.CGENI_ABC.US | 0.7886 | 0.1022 | 0.1887 | 2.8692 395.9466 29
3.CGENI_AB_US 0.5415 | 0.2374 | 0.3010 | 2.6193 397.2418 23
3_CGENI_ACUS 0.6966 | 0.1723 | 0.2473 | 2.8164 396.4333 27
3_.CGENIBC.US 0.7360 | 0.1714 | 0.2329 | 3.1601 396.2289 28
5 CCGENIABC US | 05517 | 0.1336 | 0.2852 | 1.6417 397.1905 24
5 CGENI_AB.US 0.4683 | 0.0968 ; 0.1764 | 3.1438 397.6132 15
5 CCENI_AC TS | 05370 j 0.1989 | 0.3704 | 1.4497 397.2527 22
5_CGENI_BC_US 0.4924 | 0.1016 | 0.2064 | 2.3850 397.4941 16
7 CGENILABC US | 0.4433 | 0.1033 | 0.2606 | 1.5215 307.7423 11
7_CGENI_AB_US 0.3966 | 0.1264 | 0.2852 ; 1.5539 397.9839 5
7 CGENI_AC_US 0.4160 | 0.0882 | 0.2119 | 1.9627 397.8864 8
7_.CGENILBC.US 0.3962 | 0.0684 | 0.1726 | 2.2945 397.9903 4
9 CQENILABC.US { 0.4459 | 0.0608 | 0.2246 | 1.2059 367.7322 12
9 CCGENI_AB_US | 0.2708 | 0.1012 | 0.2269 | 1.9649 308.6288 1
9_CGENI_ACUS 0.3089 | 0.0686 | 0.2223 | 1.3892 398.4346 2
9_CGENI BC_US 0.4670 | 0.1333 { 0.2855 | 1.6357 397.6199 14
3_GENI_ABC_US 0.8312 | 0.0882 | 0.1394 | 4.5404 395.7204 31
3.GENI.AB_US 0.6330 | 0.2036 | 0.2449 | 1.6794 396.7729 26
3. GENI_AC_US 0.7979 | 0.2255 | 0.2827 | 1.5006 395.9001 30
3_GENI.BC_US 0.8552 | 0.2108 | 0.2465 | 1.7223 395.6034 32
5_GENI_ABC_US 0.5230 | 0.2039 | 0.3937 | 1.3154 397.3348 21
5.GENI_ AB_US 0.5179 | 0.1182 | 0.2260 | 1.1001 397.3498 19
5.GENI_AC_US 0.5205 | 0.1303 | 0.2503 | 1.0403 397.3362 20
5_GENI_BC_US 0.6167 | 0.1091 | 0.1769 | 1.4662 396.8539 25
7. GENI_ABC.US 0.4184 | 0.0850 | 0.2121 | 1.8879 397.8676 10
7_GENI_AB_US 0.4006 | 0.1386 | 0.3313 | 0.7269 397.9659 6
7. GENI_AC US 0.5106 | 0.1146 | 0.2245 | 1.0777 397.399 17
7_GENI_BC_US 0.5178 | 0.1103 | 0.2130 | 1.1218 307.3628 18
9 GENIABC_US 0.4106 | 0.0718 | 0.2055 | 1.6998 397.9146 7
5 GENI_AB_US 0.3494 | 0.0862 | 0.2100 | 0.8958 308.2282 3
9 GENI_AC_US 0.4171 | 0.1382 | 0.3313 | 0.7247 397.8743 9
9_GENI.BC_US 0.4545 | 0.0955 | 0.21(1 | 0.9915 397.6889 13
3_CCAUS 2.6818 | 0.7195 | 0.2682 51777 385.5461 36
5_CCAUS 2.1479 | 0.5463 | 0.2543 | 4.2589 388.5854 35
7_.CCAUS 2.0928 | 0.7901 | 0.3775 | 3.4060 388.8577 34
9 _CCAUS 1.9155 | 0.6013 | 0.3139 | 3.4187 385.865 33

Table 6.10: Expected utility function for the randomly generated problems
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by fitting the Weibull distribution to the 32 heuristics (p. CGENI_types US and
p_GENI _types_US) for the 20 randomly generated problems. For a given heuristic
and a given problem, we take 10 independent samples, each of size 10 and let
v = min{z | 1 <i < 10}. We estimate the parameters @, b and & by solving
equation (6.2) using the least square approach. The set of parameters that yields
the smallest Kolmogorov Smirnov (K-8) statistic D is chosen. The modified form
of D by Stephens (1974) (cited in Scheaffer and McClave, 1990) as shown in
equation (6.3) is used and the rejection starts at 1.398 at o = 0.05 significance

level. We refer to the Appendix A for details of this subject.

The final estimated solutions are within 6.5% for both p_.CGENI fypes US and
p GENI_types US of the best solution. The K-5 statistic falls below the critical
value (1.358) at o = 0.05 level of significance. Table 6.11 shows the number of
times that the estimated confidence interval included the best-known solution.
Table 6.12 shows the estimated optimal for the various problems chosen using
the smallest % among the various heuristics used. The value % represents the

measure of the interval width and the smaller it is, the powerful the heuristic is.

Heuristic | 3.AB | 3.ABC | 3AC | 3BC | 5AB [ 5 ABC | 5.AC | 5.BC
CGENIUS | 20 20 20 20 19 20 20 20
GENIUS 20 20 20 20 20 20 20 20

Heuristic | 7.AB | 7 ABC | 7.AC | 7BC [ 9 AB | 9 ABC | 9.AC | 9.BC
CGENIUS | 20 20 20 20 20 20 20 20
GENIUS 20 20 20 20 20 20 20 20

Table 6.11: Number of times the estimated confidence interval includes the best
obtained lower bound on 20 randomly generated problems

We have successfully estimated a solution and the confidence interval for each of

the 20 randomly generated problems.

6.3.4 Conclusion

In conclusion, the heuristic 9.CGENI_AB.US is the best heuristic followed by
9_CGENI ABC_US for the randomly generated problems as indicated by the ex-
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Estimated Best
eptimal known A K-S
Problem Heurstic objective | lower bound | Dewviation % statistic
pl 9_CGENI_BC_US 7757.00 7758 -0.01% | 0.0009 | 0.0836
p2 3. CGENI_ABC_US | 8504.00 3541 -0.4% 0.0150 | 0.0832
p3 7_CGENIL.ACUS 8846.00 8866 -0.2% 0.0102 | 0.0832
pd 9_CGENI_AB_US 9448.00 9418 0.3% 0.0021 | 0.0837
po 5. CGENI_AB_US | 106260.00 10111 1.5% 0.0075 | 0.0852
pb 7_CGENI_ABC_US | 10671.00 10595 0.7% 0.0083 | 0.0832
p7 7 CGENI_ABC_US | 11775.00 11696 0.6% 0.0036 | 0.0852
p8 7 CGENIABUS 1} 1207100 11969 0.8% 0.0029 | 0.0906
p9 7. CGENI_ABC.US | 12209.00 12229 0.2% 0.0157 | 0.0830
pl0 3.CGENIBC.US | 12668.00 12612 0.4% 0.0082 | 0.0832
pll 5. CGENI_ABC_US | 13150.00 13203 -0.4% 0.0206 | 0.0830
pl2 9_CGENILBC.US 13251.00 13215 0.3% 0.0112 | 0.0830
pl3 9 CGENI_AB US | 14108.00 14019 0.6% 0.0061 | 0.0840
pld 3_.CGENLLACUS | 14606.00 14516 0.6% 0.0089 | (:.0836
plb 3. CGENILACUS | 14927.00 14865 0.4% 0.0064 | 0.0838
plé 5 CGENLLACUS | 1521100 15042 1.1% 0.0077 | 0.0843
pl7 5.CGENIBC US | 15199.00 15133 0.4% 0.0104 | 0.0835
pl8 9_CGENI_ACUS | 16011.00 15896 0.7% 0.0057 | 0.0836
pl9 3.CGENI_BC_US 16292.00 16172 0.7% 0.0072 | 0.0831
p20 7 .CGENIL.BC.US | 16149.00 16137 0.07% 0.0101 | 0.0830
pl 7.GENI_ABC US 7756.00 7758 -0.02% 0.0007 | 0.0853
p2 9_GENI_AB_US 8535.00 8541 -0.07% 0.0050 | 0.0867
pd 5_GENILAC_US 8855.00 8866 0.1% 0.0056 | 0.0850
pd 7T GENIL.AC_US 9436.00 9418 0.2% 0.0063 | 0.0887
pa 3.GENI_AB_US 10117.00 10111 0.06% 0.0172 | 0.0842
pb 9_GENI AC_US 10642.00 10595 0.4% 0.0090 | 0.0838
p7 3_GENI.AB.US 11809.00 11696 1.0% 0.0060 | 0.0830
p8 7. GENI_AB_US 12084.00 11969 1.0% 0.0031 | 0.0832
po 9 GENI_AC_US 12333.00 12229 0.85% 0.0053 | 0.0843
pl0 7.GENI_AB_US 12620.00 12612 0.06% 0.0090 | 0.2416
pll 9_GENI AB. LS 13291.00 13203 0.7% 0.0076 | 0.0831
pl2 7.GENI_AC US 13325.00 132156 0.8% 0.0072 | 0.0832
pl3 8_GENI_AC US 14085.00 140119 0.5% 0.0074 | 0.0832
pld 3. GENI.ACUS 14699.00 14516 1.3% 0.0042 | 0.0843
plb 5.GENI_ACUS 14944.00 14865 0.5% 0.0047 | 0.0830
plé 3_GENI_ACLS 15202.00 15042 1.1% 0.0135 | 0.0831
pl7 9_GENI_AC_US 15251.00 15133 0.8% 0.0044 | 0.0847
pl8 5.GENI_.ABC_US 15997.00 15896 0.6% 0.0042 | 0.0839
pl9 9_GENI.BC_US 16163.00 16172 -0.06% 0.0093 | 0.0833
p20 | $.GENIABUS 16171.00 16137 0.2% 0.0075 | 0.0832

Table 6.12: Computational results for the randomly generated problems - Point
estimation for p.CGENI_types US and p GENI #ypes US chosen using the small-
est performance measure
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pected utility approach. Note that the heuristic p.CCAUS does not perform well

for the randomly generated problems.

6.4 Partial Enumeration Heuristic for the Trav-

elling Salesman Problem

In this section we propose a hybrid heuristic algorithm for the TSP based on the
Branch and Bound method and the Genius algerithm by Gendreau et al. (1992).
Since Genius algorithm claimed to outperform known alternative heuristics to
solve TSP in terms of solutions quality and computational time to large size pro-
blems (less than 532 cities). Therefore one is tempted to use the algorithm in
every node of the search tree with the hope that it might provide an approxi-
mate solution closer to the lower bound of that node. With this motivation, we

proposed an algorithm based on the following features:

o The partial enumeration scheme based on the branch and bound method.

e A modified Genius algorithm to solve the restricted relaxed problem at

every node of the search tree.

e 1-tree relaxation method (Held and Karp (1970, 1971)) for constructing a

lower bound at every node of the search tree.

We discuss the branch and bound method, 1-tree relaxation and the procedures

required for the algorithm in the following.

Branch and Bound is a partial enumeration scheme which searches for an
optimal solution by partitioning the set of all TSP tours throughout a search
tree. Every node in the search tree corresponds to a subset of solutions and the
node is represented by a set of included and excluded edges of the tours. The

method is based on four important features viz:

1. The bounding method associates a lower bound to a node of the search tree
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such that any feasible solution of that node has objective function value

greater than or equal to the lower bound.

9. The branching method partitions the set of feasible solutions of a node into

subsets associated with the children of this node.

3. A node may be fathomed if it is known that it will not produce any better

solution than the current best known solution.

4. Updating the best-known solution in hand in the case of a better solution
being obtained by locating the optimal solution of the restricted subset of

feasible solutions of a node of the search tree.

Minimum cost 1-tree problem is used to find a lower bound (LB) for each
subproblem. The problem can be solved using Prim’s algorithm. First, find the
minimum cost spanning tree in V = {1,2,...,n}\ {1} and then find the two edges
with least cost and join them to vertex 1. This method was first suggested by
Held and Karp (1970, 1971). Johnson et al. (1996) demonstrated that the Held
and Karp lower bound produces good quality near optimal solutions. For details
of this approach we refer to Section 2.2. The problem L{s*) = mgx{L(vr)} is
solved by using the subgradient method (Nemhauser and Wolsey (1988)). Note
that L(w) is defined as

L{m) = min {Z(C,‘J‘ + 1 + 7Ty — 2 )W ¢z satisfies (2.12) — (2.15)} (6.4)
i<j i
and 7;,1 < i < n are the lagrangean multipliers associated to the degree con-

straints in (2.16).

Subgradient Method to find L(r*)

Step 1. Let & be the iteration number and set © = m;. Find L(r) by solving

the minimum cost 1-tree (6.4) for m = .

Step 2. If the optimal tour T is found or the objective function value of T is
greater than the upper bound, ie. z(T) > UB, stop.
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Otherwise set 7}, = 7t + ty(d} — 2),% € V where #; is the step length

, a(UB — L(m))
and is defined by I = _ ,
Y Ziev(d;c - 2)2

0<a<?2 dis the degree of

vertex 7 in T.

Set k£ = k£ + 1 and go back to Step 1.

Branching procedure: Consider the cost matrix C' = ((ci;)} associated to this
node of the search tree. Note that in this matrix the excluded edges have the
entries as ‘oo’ and included edges have the least cost entry in that row or column.
For convenience the cells with least cost entries in every row or column is called
a zero cell. Thus every row and column has at least one zero cell. For every zero
cell (7, 7) not yet included, an extra cost e;; of not using the cell (4, 7) is computed

as follows:
€5 = Iﬂink?gj Cix + min;# pj-

The edge (r,s), among the not yet included zero cells, is chosen such that
ers = max{e;; : (i,5) is not yet included zero cell}. The edge (r,s) is used for

branching i.e. to create branches from the current node of the search tree.

Inclusion/Exclusion procedure: The edge (r, s) selected from the Branching
procedure is used to branch and generate the next two child nodes. In the Inclu-
sion procedure, the cost matrix is updated according to the following. Let c;; be
the modified matrix of ¢;; such that ¢; = oo for all j # s, ch, = oo for all i # 7,
c

ar

= 0o and ¢; = ¢ for all other (¢,7). In the Exclusion procedure, the cost

matrix is updated according to the following: ¢, = oc and ¢j; = ¢;; for all other
(8,9)-

We used the best first search technique in the algorithm. Two child nodes from
the parent node are produced and the LB of each child nodes is calculated. If

LB > UB then the node is fathomed; Otherwise the child node is inserted into
the search list such that the smallest LB is at the front of the search list.

We outline the proposed algorithm in the following.
Step 1. Initialisation of variables. Set A to be the set of active nodes in the
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search tree.

Step 2. If A is empty, stop. Otherwise choose the first node from A and obtain
the LB based on the 1-tree relaxation and subgradient method.

Step 3. Decide which edge to branch upon based on the Branching Procedure.

Step 4. Generate the new node. Update the cost matrix with the edge chosen

from Step 3 for the Inclusion and Exclusion Procedure accordingly.
Step 5. Update the nodes in A.

Step 6. If A is empty, stop. Otherwise select the first node from the tree for
branching, go to Step 3.

The procedure described is an exact algorithm. The flow chart of this algorithm
is presented in Figure 6.8. But in the implementation we stop the execution when
the number of nodes generated by the search tree exceeds a preset limit or CPU

time exceeds a preset time.

The Inclusion and Exclusion Procedure is outlined in the following.

Step 1. Update the cost matrix with the edge selected from the Branching

Procedure.

Step 2. Check for the change in condition of the 1-tree solution in the sense
that addition of new edges inclusion or exclusion has changed the con-
dition for 1-tree solution compared to the parent node. If the 1-tree
solution has not changed then update the LB for the current node.
Otherwise find the new lower bound using the 1-tree relaxation and

the subgradient method.

Step 3. Check for condition if lower bound > best known objective function
value 7 If it is not true, perform the Genius algorithm (with the hope
of getting a better solution) and return to main program. Otherwise

return to the main program.
The flow chart of this routine is presented in Figure 6.9.
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Input of data

!

Initialisation
A = {set of active nodes in the search tree}

No

Find lower bound: minimum cost 1-tree

Branching (node(i), node()))

A
Inclusion * (node(i), node(j), A)

A 4

L
Exclusion * (node(i), node(j), A}

Update search ree A
(Fathoming node or add node to search tree)

y
mdai}, nodei)

(* See the tlow chart for Inclusion and Exclusion}

Figure 6.8: Branch and Bound and GENIUS Algorithms (*See the flow chart for

Inclusion and Exclusion)
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Inclusion/Exclusion

1

Updalte data for current node

l

Has condition for 1-tree changed ?

Yes w‘

Find lower bound: minimum cost 1-tree Update lower bound for current node

Is lower bound > optimal ?

GENIUS**

Update TSP tour

(** See the flow chart for GENIUS)

Figure 6.9: Inclusion/Exclusion Procedure (**See the flow chart for GENIUS

algorithm)
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We refer to Section 6.1 for the Genius algorithm. The modified Genius algorithm
applied to the restricted problem at a node of the search tree can be briefly

outlined as follows:

1. From the fixed edges obtain a finite number of disjoint paths denoted by
say Py, P, ..., B

2. Suppose that the path P; = (U},...,v’T). Replace path P; by edge (v},'u;)
with the cost of this edge equal to the cost of path P; i.e. the sum of the
costs of edges in P;. For each path P; and each vertex v not in any of the
paths P,,1 < 4 < I, we will retain edges (v,v;) and (v,v}) provided they
are not excluded edges at this node. Furthermore we eliminate the edges

(v,}2<i<r—1L

3. For any pair of vertices % and v not in paths P;,1 < j < [, we retain the

edge (u,v) provided it is not excluded.

4. Apply the usual Genius algorithm to this reduced graph with the slight

modification that the edge (v},v},—") will never be chosen for the unstring

operation.

The flow chart of this modified Genius algorithm is presented in Figure 6.10 .

6.4.1 Computational Results

The proposed algorithm is tested on two sets of problems namely the literature
problems from TSPLIB and the randomly generated problems. Note that the

program is written in C and run on the Silicon Graphic machine at 195MZ.

The Literature Problems

Six problems with size ranging between 500 - 800 cities from the TSPLIB are

selected. In addition we include the following:
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GENIUS

:

Update distance matrix, Inclusion/Exclusion edges of
active node from A which form several paths

v

Generate initial TSP tour, T, by joining
paths and single nodes with cost z

v

Update T =1,7 =z t =1

;

Unstringing node ¢ from T

> A
Return  |[NO Stringing node ¢ to T with new cost z
Yes T
Near optimal stopping
condition satisfies ?
Yes No
Update T =1,z =z t = ! Sett=1+1

No

Figure 6.10: Modified GENIUS Algorithm
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e Several tours are obtained using the modified Genius algorithm at the Root

node and the best tour is chosen for upper bound (UB).

The result is shown in Table 6.13 with maximum running time set to 10 hours.

The algorithm produced solutions to within 2.4% of the best—knoﬁn solution.

Solution at | Improved | Best known | Percentage | Number of child

Problem | Root node | Solution Soluiion Deviation |- node generated
d657 50388 49596 48912 1.3 5
pb54 37309 35167 34643 1.5 8
ratb75 6999 6917 6773 2.1 7
rat783 9192 8952 8806 1.6 2
ub74 37868 - 36905 1.6 16
u724 43093 42566 41910 2.4 8

Table 6.13: Computational results for the proposed algorithm on literature pro-
blems

Randomly Generated Problems

The proposed algorithm is also tested on the randomly generated problems. The
problems are generated using the exponential distribution. The nodes are ran-
domly generated such that the density of nodes is reduced as the distance from
the depot increases. The depot is taken to be at the origin in the plane. The
probability density function (p.d.f) of the exponential distribution is

flz) = dexp ™, 0<z <00,A>0 (6.5)
and the cumulative distribution function (c.d.f) can be obtained as
F(ry= f AexpMdr=1-exp 7 (6.6)
o

Let
w=1—exp ™.
Then after rearranging, we have

In{l —u)

St |

o= —
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where u € (0,1) and r represents the radius for the location on the Cartesian

coordinates. The problem is generated as follows:

Step 1. Randomly select a number between 0 and 1 for v and calculate the
radius 7 = —1in(1 — u).
Step 2. Randomly select an angle 8 € (0,27).

Step 3. Convert (r,#) into the x-y coordinate form where z = reostt and y =

rsing.

Note that we used A = 10,20, 30 and generated 9 problems with sizes from 500 -
700. Each of these problems is allowed to run for 10 hours. The following table

shows the results of the randomly generated problems.

Objective function value
Size | Best Solution | fmprove- Time Mazx Node
Problern | of A | using Gentus ment (Seconds) | Iteration | No.
500 10 1207 1197(1) 1021.93 56 112
600 10 1408{0) - - 25 50
700 10 1545 1541(1) 3160.32 18 36
500, 20 2068(0) - - 47 9
600 20 2483 2463 1941.16 26 52
2461(2) 3426.00
700 20 2504(0) - - 17 33
500 30 2019 2002 1172.52 49 98
2890(14) | 10790.90
600 | 30 3603(0) - : 28 55
700 30 3490(0) - - 17 34

Table 6.14: Computational results for the propesed algorithm on randomly gen-
erated problems

Column 2 provides the value of A. Column 3 refers to the best solution obtained
using Genius algorithm at the root node. For every improvement of solution it 1s
recorded in Column 4 and the time (in seconds) is recorded in Column 5 when the
improvement is made. Columns 3 and 4 show the best solution obtained for the
problem and in brackets the number of iterations taken to vield the best-known
solution. The last column shows the number of child nodes generated by the

algorithm for various problems.
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In conclusion we note that some improvement is found for the randomly generated
problems, but no new best solutions are found for the literature problems. This
is perhaps an indication of the difficulty of these problems. We conclude the

algorithm is unsuitable for finding optimal solutions.

In the next chapter, we continue the investigation of the ideas presented in Chap-

ter 5 to TABUROUTE algorithm, a heuristic developed for the VRP.
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Chapter 7

TABUROUTE Algorithm and
The Values of Its Parameters

We have emphasised in Chapter 5 the need for statistical analysis in any proba-
bilistic neighbourhood search method for a AP-hard combinatorial optimisation
problem. In this chapter we illustrate such analysis for a TABURQUTE algorithm
proposed for VRP.

The probabilistic neighbourhood search algorithm, by its inherent nature, does
not have the ability to reproduce the same solution for different runs of the
algorithm on the same input of a problem. Thus while evaluating a probabilistic

algorithm it is essential to seek answers to some of the following questions:
e For the given problem, how far is the solution produced by the algorithm
from an optimal solution 7

e Can a confidence interval be developed using the solutions produced by the

algorithm 7

e How does the algorithm perform on randomly generated problems of pre-

scribed size 7

Many authors have used the following scheme to favour their algorithm. They
demonstrate the closeness of solutions produced by the algorithm to the best

known solution on a set of literature hard problems. Often these authors do not
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talk about the reproducibility of their solution or the number of implementations

used to generate their ”good” solution.

For example, Xu and Kelly (1996) tested their algorithm on a set of benchmark
problems and compared their solations with the closeness of 5% and 1% of the
best known solution and analysed the CPU time taken to construct such solutions.
Rochat and Taillard (1995) tested their algorithm on a set of benchmark problems
and compared the average of the five runs with the closeness of 5%, 2% and 1%

of the best known solution.

We feel this method of comparison is unscientific and in fact may be fruitless. One
may never face the so called hard problems of literature in real life. Furthermore,
there is no guarantee that an algorithm which performed satisfactorily on a hard
problem will perform at least equally satisfactorily on another randomly chosen

problem.

Thus, as discussed in Chapter 5, we need to have a scheme of comparing al-
gorithms in a more scientific way. We illustrate this through choosing optimal
values of parameters for the TABUROUTE algorithm. We choose TABUROUTE
algorithm for our demonstration since it is a probabilistic neighbourhood search
method for VRP and also nses the GENIUS algorithm of Chapter 6 as a sub-
routine. Furthermore, extensive testing of the parameters for TABUROUTE is
not done by Gendreau et al. (1994) and there is the need to verify this statisti-
cally. The statistical tools used in Chapter 6 on TSP are extended to CVRP and
CDVRP and tested on both literature and randomly generated problems.

We describe the TABURQUTE algorithm by Gendrean et al. (1994) in Section
7.1. Comparisons of various heuristics of the TABUROUTE algorithm on lit-
erature and randomly generated problems using statistical tools are performed
respectively in Section 7.2 and 7.3. Some of the results of this Chapter are pub-

lished in Achuthan and Chong (1999a).
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7.1 The TABUROUTE Algorithm

The TABURQUTE algorithm was developed by Gendrean et al. (1994) for the
capacity and distance restricted VRP. The initial VRP solution is constructed
from the TSP tour produced by the GENIUS algorithm (Gendreau et al., 1992).
The algorithm incorporates the characteristics of the tabu search (TS) method
and GENIUS algorithm to form a powerful heuristic. Relevant notation is dis-

cussed in the following.

Define S to be the VRP solution of m routes R, ..., R, where m ranges between
1 and an upper bound /.. Note that R, = (0,1, ..., %, 0) is a route that is a cycle
passing through the depot ‘0’ in G. The vertex ¢ representing a customer belongs
to exactly one route R,,1 < 7 < m. For a feasible solution S, a cost F1(S) can

be defined as follows:

RS =% ¥ o (1)

r=1(ij)ER,
where ¢;; is the cost (or distance) matrix. For any feasible or infeasible solution,

a cost F3(8) is associated and can be defined as follows:

++ﬁ§:!( > cij+25,;) —LT

r=1 | \({,9)ER" i€ Ry
(7:2)

F(S)=FR(SH+ad, { Sal-Q
r=1 i€R.

where « and 3 are two positive parameters and [z]* = max(0,z). The demand

and service time of each customer i is denoted by g; and &; respectively. Recall

that ) and L are the prescribed vehicle capacity and prescribed upper limit on

the length of each route.

If S is feasible then Fi(S) and F3(S) are identical; Otherwise Fy(S) consists of
penalty terms for excessive vehicle capacity and/or route duration. Let 5% be
the best known feasible solution and §* be the best known feasible or infeasible
solution. Define F} = F|(S*) is the objective function value of the best known
feasible solution and Fyf = F,(S*) is the objective function value of the best known
solution, feasible or infeasible. In the following we describe the TABUROUTE
algorithm developed by Gendreau et al. (1994).
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TABUROUTE Algorithm

TABUROUTE algorithm starts by constructing a TSP tour using the GENIUS
algorithm (Gendreau et al., 1992). The obtained TSP tour is then used to con-
struct an initial solution for VRP solution. All the VRP routes —sta,rt from the
depot ‘0’. Typically the first route starts with the first city on the TSP tour
and include cities up to where the capacity or distance restriction is not violated.
The process is continued until all the cities are included in the routes (the so-
lution is then feasible) or until 7 — 1 vehicles are used and all the remaining
cities are assigned to route m (in this case the solution may be infeasible). The
obtained solution S is then passed on to procedure S1: SEARCH where better
solution is searched for A = 32@ times (n refers to the number of cities). The
best solutions S* and §* are recorded and referred to as First Solution. The best
solution S* is then passed to an improvement step (52: SEARCH). The vertices
that are frequently moved and produced good solutions are again considered in
an intensification step, $3: SEARCH. Figure 7.1 presents the flow chart for the
TABUROUTE algorithm. '

SEARCH Procedure

The SEARCH procedure is the heart of the TABUROUTE algorithm. The pro-
cedure incorporates the GENIUS algorithm along with the TS characteristics and
forms a powerful heuristic for VRP. Figure 7.2 represents the flow chart of the
SEARCH procedure.

In Step 1 of the procedure, a list of g vertices are randomly chosen from W where
W =V — {0}. The size of q is fixed at 5m for 51 and 52 and at L%—lj for S3. For
each vertex v from the list of g vertices, the cost of removing v from its current
route R, and adding it to a new route R, is calculated. The new route R; has at
least p closest neighbours of ». If no such new route exists then create a new route
R, with v. The new solution is defined to be §’. If this move is tabu and if the

conditions in Step 2b are satisfied, then solution S’ is retained. If the conditions
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TABUROUTE

’

Step 1: Initialisation

(x:B:], F]' = co

v

Step 2: Generate VRP solution from the TSP
tour according to capacity or distance restriction.

Update F, ,F,,S",5 .
Repeat for & times +

S1: SEARCH (input: 5, W, ¢, fimas; output: ¥, ,F; ,5°,5")

[First Solution

!

If F, <oo thenS=S"; otherwise S = 5"

i 2

v

If F* <oothenS=8"; otherwise S= 8§~

!

Step 3: $2: SEARCH (input: S, W, g, 7imes; output: ", F; ,S".8") —J

Solution Improvement

]

Step 4: $3: SEARCH (input: S, W, ¢, fimas; output: ', F;,8°,8")

v

If F <cothenS=8"; otherwiseS= S

v

Figure 7.1: TABUROUTE Algorithm
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SEARCH
Y
1=1

v

Step 1: Let § be the VRP solution,

Randomly select a list of g cities.

I

Y

Step 2a: Compute cost of inserting v from R; to
R; using GENI procedure. Called the
new solution §.

Repeat for all v in g list

: Step 2b: I (S feasible and Fy(S) < F)yor
Ku;g;’tg %‘5 (8 infeasible and FoS) < F})keep S
else update F(S).

~. —

b 3 y

Step 3; Identify the best solution s
which has the lowest value F.

v

Stepd: () B (5)>Fy(8) 1
() 5 feasible ?
(i) US has not been used at £-1 ?

No

Step 4a: Implement s Step 4b: Apply USto §

h

Update ot and f

StepS: Update f=t+ 1 F . F.87,8

No

Figure 7.2: SEARCH Procedure



are not satisfied, F'(S") is updated according to the following;

F(S) = F(S') if Fy(S") < F2(S) 73)

Fy(5') + Omazvymgfy, otherwise
where 8,0, = max | FI(S) — F2(S) | (where ¢; and t; are defined as the two
successive iterations). g is a scaling factor and is set to 0.01. fy is defined as
the ratio of the number of times vertex v is removed to the iteration number .
This step is also called the diversification where the vertices which are moved
frequently are penalised by adding some constant to the objective function value.

This step ensures the algorithm explores different solution spaces.

Steps 2a and 2b are repeated for all v in the list g. The solution with the lowest
F value is selected and is defined as S. Note that S may not be implemented here
because it is advantageous to improve the solution S by applying the Unstringing
(US) procedure (Gendreau et al., 1992). If the following three conditions are
satisfied

2. S is feasible; and

3. US has not been used at iteration ¢t — 1

then the post optimisation procedure US is applied to 5; Otherwise S is imple-
mented. Step 5 updates the parameters used in the procedure. Tabu list (that is
the list of moves being prohibited for a certain number of iterations) is updated.
The move which has been implemented in Step 4a is declared tabu for ¢ + 8 iter-
ations where 8 € [Dpin, Omaz) = [5, 10] is chosen randomly at each iteration. The

parameters and solutions ¢ = ¢+ 1, Fy", F5, 5" and S* are updated.

The two penalty parameters, « and 3, for capacity and distance are updated if ¢ is
a multiple of b (h = 10 in the algorithm) in Step 6. If all the previous h solutions
were feasible for vehicle capacity, set & = £ and if they were all infeasible then set
a = 2c. Similarly, if all the previous A solutions were feasible for route length,

set # = 5 and if they were all infeasible then 3 = 2.
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Steps 1 to Step 6 are repeated. The procedure is stopped if the value of FT' and
Fy have not decreased for the last 1., iterations. The value n,,,; is chosen to

be n for S1 and S3 and 50n for 52.

TABUROQUTE algorithm uses the neighbourhood parameter p defined in the
context, of basic neighbourhood set K, (v, ') for any given complete tour 7', vertex

v and integer p.
K,(v, 7'} = {u: city u is one of the p closest cities, in tour 7, to a given city v }.

We compare the heuristics through the neighbourhood parameters used in the
GENI algorithm within the TABUROUTE algorithm. The different values con-
sidered for the parameter p are 3, 5, 7, 9. we named the TABUROUTE algorithm
with parameter p as p. TR. The algorithm is tested on 14 literature problems with
sizes ranging from 50 to 199 cities and 28 randomly generated problems with sizes
ranging from 60 to 120 cities. All problems are executed on Silicon Graphic INDY
machine with a single 100 MHz IP22 processor with 32 Mbytes of memory size
and run speed of 87.3 MIPS.

7 9 Statistical Evaluation on the Literature Pro-
blems

In this section the quality of solutions obtained by the corresponding four differ-
ent TABUROUTE algorithms on the 14 literature problems of the CVRP and
CDVRP is analysed. The problem size ranges from 50 to 199 cities. Table 7.1
provides the list of 14 literature problems and the corresponding best known so-
lutions. These problems are selected because they are commonly used in the

literature for comparing various heuristics.

For a given problem, the heuristic p TR is implemented 100 times. Let z; be the

best objective function value of the ith run 1 < ¢ < 100. Table 7.2 provides the

best solution obtained over 100 runs i.e. z* = min z for the heuristic p T'E. For
<i<

1<i<100
a given problem, let T} be the CPU time of the 7th run of the heuristic p ' R. Table
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Problem | size n | Types | Best known solution References
1 50 C 524.61 Taillard(1993)
2 75 C 835.26 Taillard(1993)
3 100a | C 826.14 Taillard(1993)
4 150 C 1028.42 Taillard(1993)
5 199 C 1291.45 Taillard(1993)
6 120 C 1042.11 Taillard (1993}
7 100 C 819.56 Taillard(1993)
8 50 C,h 1055.43 Taillard(1993)
9 75 Cc.D 1659.68 Taillard(1993)
10 100a | CD 1865.94 Taillard(1993)
11 150 cD 2662.55 Taillard (1993}
12 199 CDD 3385.85 Taillard(1993)
13 120 cD 7541.14 Taillard (1993)
14 100 C.D 9866.37 Taillard (1993)

Table 7.1: Problems and best known solutions for CVRP and CDVRP in litera-
ture

7.3 provides average, maximum and minimum of the CPU time T;,1 <1 < 100
for each heuristic and each problem. The various p. TR are compared using the
Friedman test and fitting the Weibull distribution to the objective function values
of the heuristic solutions. For each problem, an estimate of the optimal objective

function value and a confidence interval are obtained.

Heuristics
Types | Problems | 5_.TR 5 TR 7.TR 9.TH
100 819.56 | 819.56 | 825.65 | 823.01
100a 830.47 | 82867 | 82044 | 829.16
120 1051.29 | 1062.56 | 1064.78 | 1063.04
CVRP 150 1041.67 | 1037.91 | 1051.38 | 1037.97
199 1323.33 | 1328.25 « 1327.44 | 13228
50 52461 | 524.61 | 524.61 | 524.61
75 84749 | 847.27 | 845.61 | B48.51
100 0387.41 | 9892.52 | 9904.71 | 9926.44
100a 1866.87 | 1865.94 | 1866.74 | 1865.94
120 7558.34 | 7T551.96 | 7567.46  7559.88
CDVRP 150 2685.80 | 2672.68 | 2684.13 | 2678.57
199 3447.91 | 3454.52 | 3470.15 | 34673
50 1055.74 | 1055.43 | 10565.71 ; 1055.68
75 1672.65 | 1688.46 | 1687.61 | 1685.54

Table 7.2: Best solutions obtained over 100 runs
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. CDVRP CVRP
Heuristics | Problems Avg Max Min Avg Mazx Min
100 340.3055 | 782.6575 | 196.8507 | 451.7983 | 3676.3335 | 143.6949
100a 1149.0275 | 10122.9922 | 526.1581 | 943.9544 | 2800.6262 413.4459
120 653.7323 | 4432.7461 | 357.7786 | 1593.423 | 10899.0752 | 710.5774
3_TR 150 2565.9272 | 7086.96 | 1206.1377 | 1966.539 | -4450.8276 | 1052.282
199 5296.7062 | 13765.7686 | 2216.6616 | 3289.9219 | 8984.7559 1852.5862
50 193.372 533.2775 90.3322 | 123.0666 | 259.8174 72.2992
75 302.0238 | 1020.1932 | 162.6991 | 212.0408 | 5255154 120.589
100 365.0788 | 7017106 | 106.7593 | 570.0044 | 2146.5833 | 164.9963
100a 1174.8658 | 6746.4917 | 576.6296 | 1061.6984 | 4374.0269 | 346.5421
120 991.3002 | 3213.5386 | 463.2013 | 1984.8854 | 24785.0391 | 692.5593
5 TR 150 2883.0921 | 10120.7607 | 1306.7087 | 1751.8382 | 6606.9277 | 708.0551
199 6344.0444 | 24263.9551 | 2543.9893 | 2652.8088 | 13012.4111 | 1297.9062
50 258.8524 | 3068.7844 | 127.7983 | 86.3125 266.5571 44.7964
75 335.0851 927.53 197.318 148.7832 367.2972 74.3031
100 460.8656 | 1044.2836 | 273.8224 | 545.5847 | 1899.7314 145.7821
100a, 1566.1907 | 7914.2822 698.923 | 1055.9017 | 6435.3081 | 363.1575
120 052.8554 | 3622.0347 | 608.0027 | 2117.6162 | 7760.6211 855.1738
7.TR 150 3966.4523 | 9035.1904 | 1525.0378 | 1958.1425 | 4938.3833 | 1044.4165
199 6866.6214 | 26574.375 | 2635.2129 | 3305.1717 | 10115.7949 1649.449
50 234.9798 503.7396 132.316 119.335 416.822 4 58.8372
75 383.571 2621.5306 | 230.6247 175.386 651.9361 80.1732
100 552.2582 | 1226.1611 | 348.3135 | 690.4614 | 3239.4426 252.556
100a 2005.7605 | 34781.3359 | 731.7193 | 1023.1036 | 3002.7605 522.8018
120 1340.3151 | 3517.7886 | 850.2844 | 2991.575% | 11581.917 1183.6176
9. TR 150 3304.6044 | 8083.099 | 1733.7213 | 2873.3756 | 8642.2158 | 1138.0166
199 7309.5313 | 24273.5391 | 3412.3489 | 5569.4132 | 13296.7148 3014.4636
50 303.8128 | 4933.3457 | 145.3665 | 217.6618 480.7551 110.1158
75 570.2576 | 1802.6537 | 368.4459 | 375.6549 | 6950828 | 245.2195

Table 7.3: Running Time (in seconds) for the literature problem on various heu-

ristics

7.2.1 Friedman Test

We carried out the Friedman test for the CVRP and CDVRP, on four heuristics

p.TR with the null hypothesis that there is no difference in performance between

these heuristics against the alternate that there is difference. For details of the

test refer to the Appendix A. Table 7.4 shows the

objective function value of the heuristic solution

ratio =
o

bjective function value of the best known solution

and its associated ranking for various heuristics on different problems for both

CVRP and CDVRP. The summary of the Friedman test is given in Table 7.5
for both CVRP and CDVRP.
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CVRP CDVRP

Problems | 9.TR | 5.TR | 7.TR | 9.TR || 3.7R | 56TR | 71K [ 4.TR

100 T 1 | 1.0074 | 1.0053 || 1.0021 | 1.0026 | 1.0038 | 10060

100a | 1.0052 | 1.0030 | 1.0039 | 1.0036 || 1.0004 | 1 | 1.0004 | 1

120 | 1.0088 | 1.0196 | 1.0217 | 1.0200 || 1.0022 | 1.0014 | 1.0034 | 1.0024

Ratio | 150 | 1.0128 | 1.0082 | 1.0223 | 1.0092 || 1.0087 | 1.0038 | 1.0081 | 1.0060
199 | 1.0246 | 10284 | 1.0278 | 1.0242 || 1.0183 | 1.0202 | 1.0248 | 1.0240

50 1 1 1 1 | 10002 1 |1.0002 | 1.0002

75 | 1.0146 | 1.0143 | 1.0123 | 1.0158 || 1.0078 | 1.0173 | 1.0168 | 1.0155

100 5 | 15 1 3 I 2 3 1

100a 4 1 3 2 4 1.5 3 L5

120 1 2 4 3 2 1 4 3

Rank | 150 3 1 4 2 4 1 3 2
199 2 4 3 1 1 2 4 3

50 25 | 25 | 25 | 25 4 1 3 2

75 3 2 1 4 1 4 3 2

R; 17 | 14 | 215 | 175 || 17 | 125 | 23 | 175
> R AT5 | 345 | 7325 | 49.25 | 55 | 2925 | 77 | 4825

Table 7.4: Ratio and rank for the Friedman test for the CVRP and CDVRP

CVRP

CDVRP

Hypothesis:

All 4 p. TR heuris-
tics

are equal in perfor-
mance for CVRP.

All 4 p TR heuris-
tics

are equal in perfor-
mance for CDVRP.

Ar =Y, 35 (Ry)?

204.5

209.5

k
BF = %E_’f:l R?

179.07

182.93

Ty — (o0 (Br—(nEET)/A]

g—Bp

0.9606

1.79

Fo((k— 1), (n - 1){k - 1))

Fy0s5(3,18) = 8.68

Conclusion:

Do not reject the
null hypothesis that
all 4 p TR heuris
tics are equal in per-
formance for CVRP
at o = 0.05.

Do not reject the
null hypothesis that
all 4 p TR heuris-
tics are equal in per-
formance for CD-
VRP at o = 0.05.

Table 7.5: Computational result on Friedman test on CVRP and CDVRP

The null hypothesis that there is no difference between the four p TR heuristics

for both CVRP and CDVRP is accepted at 5% level of significance. This con-

cludes that there is no significant difference between the quality of the solutions

generated by heuristic p TR with different neighbourhood parameters. Further-

more, these problems are hard in the sense that the set of feasible local optimum

solutions of these problems may be very dense and hence most of the heuristics
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will need enormous computational effort to find better solutions.

In the next section we attempt to estimate an optimal objective function value

and its confidence interval for each problem.

7.2.2 Fitting of Weibull Distribution (Literature Problems)

In this section, we fit the Weibull distribution, an extreme value distribution, to
the objective function values generated by Taburoute algorithm. Subsequently,
an estimate of the optimal objective function value and its confidence interval is

calculated.

Suppose a given probabilistic heuristic is implemented several times on a given
problem. Let z;, g, ..., %, be the observed local minimum objective function
values corresponding to the ¢ runs of the ith batch of implementation. Thus the
best known objective function value in the ith implementation can be denoted
by z; = min{#, zi2, ..., Zig}. Furthermore if the probabilistic heuristic is imple-
mented r times then we have the best known objective function value of this
problem by the heuristic as v = min{z,1 <i < r}. By the extreme value theory,
irrespective of the distribution of the objective function values, as ¢ increases the
random variable Z' (representing the minimum of a random sample of size q)

follows the Weibull distribution.

Hence for a given heuristic implemented on a given problem we fit the Weibull
distribution to the set of random samples z;,1 < i < r of size 7. Weibull cumula-
tive distribution function can be rewritten as the following equation of a straight

line by taking the logarithm twice:

In(—In{1 — F(zo))) = cIn{zg — a) — clnb (7.4)

where @, b and ¢ are the location, scale and shape parameters of the Weibull

distribution.

To fit the Weibull distribution to z;, 1 <4 < r, we follow the procedure suggested
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by Golden (1977, 1978):

1. Fix a suitable value @ (smaller than v) for ‘a’, the location parameter.

2. For the specific value &, estimate b and é by the least square method fitting

(7.4) to the observe values z;,1 < i < r for 2.

3. Consider the null hypothesis that Z' follows the Weibull distribution with

location parameter @, scale parameter b and shape parameter ¢.

4. Compute the statistic

O;I_l
N
where D is the Kolmogorov-Smirnov (K-S) statistic (Scheaffer and McClave
(1990)).

T=D [\/ﬁ +0.12 + (7.5)

5. If T > 1.358, reject the null hypothesis and choose the next G as a =
i — 1. Go to Step 2. Otherwise, accept the latest a, b and ¢ as the best fit

parameter values for i, b and & respectively.

We fitted the Weibull Distribution to the solutions on all the 14 problems for
CVRP and CDVRP. Tables 7.6 and 7.7 show the estimate parameters a, b, &, con-
fidence interval (v— b, v) for @, performance measure and the proportion deviation

between the estimate solution and the best known objective function value.
In the case of CVRP we observe that
e The deviation of the estimated solution from the best known solution is

below 6.1% (the 50-city problem was not included in the Weibull fitting

because the problem was solved by the four heuristics).

e The best known solutions are located within the 100(1 — exp™ )% = 100%

confidence intervals.

o The average performance measure (or the relative interval width) for various

heuristics is presented in Table 7.8. This is calculated by taking the sum
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Confidence Interval Proportion

Problems a b g Lower Upper T Deviation
100 769.56 | 53.9656 | 33.4867 | 765.09 819.55 | 0.0658 -0.0610
100a 780.47 | 55.3801 | 23.7552 | 775.08 830.47 | 0.0667 | -0.0552
120 1001.29 | 77.8077 | 6.11 97348 | 1051.29 | 0.074 -0.0391
3 TR 150 991.67 | 67.9173 | 10.3711 | 973.75 | 1041.67 | 0.0652 -0.0357
199 1273.33 | 74.9491 | 7.7311 | 1248.38 | 1323.33 | 0.0566 -0.0140
50 - - - - - - -
75 797.49 | 55.3152 | 23.7619 | T792.17 847.48 | 0.0653 -0.0462

ot

100 769.56 | 56.5174 | 36.2545 | 763.04 819.55 0.069 -0.0610
100a 778.67 | 56.0274 | 17.4871 | 772.64 828.66 | 0.0676 -0.0574
120 1012.56 | 56.0756 | 19.6269 | 1006.47 | 1062.55 } 0.0528 -0.0283
5. TR 150 987.91 | 72.3899 | 11.0139 | 965.52 | 1037.91 | 0.0697 -0.0393
199 1278.25 | 70.8641 | 7.2465 | 1257.38 | 1328.24 | 0.0534 -0.0102
50 - - - - - - -
75 797.27 | 58.438 | 19.7157 | 788.83 847.27 0.069 -0.0454

100 775.66 | 50.696 | 66.592 | 774.06 | 825.64 | 0.0614 | -0.0535
100a | 779.44 | 54.368 | 18.5033 | 775.07 | 829.43 | 0.0655 | -0.0565
120 | 1014.78 | 94.0792 | 2.1462 | 970.69 | 1064.77 | 0.0884 | -0.0262
7TR | 150 | 1001.38 | 61.7625 | 13.4255 | 989.61 | 1051.37 | 0.0587 | -0.0262
190 | 1277.44 | 71.6685 | 8.9137 | 1255.76 | 1327.43 | 0.054 | -0.0108
50 - - - - - - -
75 795.61 | 58.4145 | 18.8737 | 787.19 | 845.60 | 0.0691 | -0.0474
100 T73.01 | 53.6362 | 36.7561 | 770.27 | 823.90 | 0.0651 | -0.0557
100a | 779.16 | 56.3373 | 15.5820 | 772.82 | 820.16 | 0.0679 | -0.0568
120 | 1061.04 | 30.5667 | 0.868 | 1032.47 | 1063.04 | 0.0288 | 0.0181
9.TR | 150 987.97 | 73.0187 | 10.5433 | 964.946 | 1037.96 | 0.0703 | -0.0393
199 12728 | 74.856 | 9.0176 | 1247.93 | 1322.79 | 0.0566 | -0.0144
50 - - - y - - .
75 798.51 | 55.0607 | 10.720 | 792.54 | 848.50 | 0.066 | -0.0439

Table 7.6: FEstimates of parameters of Weibull distribution for the CVRP

of all the elements for each heuristic and divided by the total number of
heuristics. From the table we can conclude empirically that 9 TR is the
best among the four heuristics for CVRP on literature problems since it

has the smallest performance measure.
In the case of CDVRP we observe that

e The deviation of the estimated solution from the best known solution 1s

below 4.7%.

e The best known solutions are located within the 100(1 — exp™)% = 100%
confidence intervals except for one case (Problem 100 with 9 TR but the

interval is very close to the best known solution).
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Confidence Interval Proportion
Problems a b é Lower Upper 2 Deviation
100 0837.41 | 122.3512 | 4.6538 | 9765.05 9R87.40 0.0124 -0.0029
100a 1816.87 | 60.1949 | 11.3813 | 1806.67 | 1866.86 | 0.0322 -0.0262
120 7550.34 | 45.9487 | 1.2589 | 7512.39 | 7558.33 | 0.0061 0.0012
3TR 150 2635.80 | 85.4018 | 6.1011 | 2600.48 | 2685.8894 | 0.0318 -0.0100
199 3397.91 | 115.9567 | 5.258 | 3331.95 | 3447.9084 | 0.0336 0.0035
50 1053.74 | 3.5912 3.6306 | 1052.14 | 1055.73 | 0.0034 -0.0016
75 1622.65 | 92.3776 | 5.1122 | 1580.27 | 1672.64 | 0.0552 -0.0223
100 9842 52 | 129.4352 | 3.8467 | 9763.08 | 9892.51 0.0131 -0.0024
100a 1815.94 | 58.4773 | 12.6218 t 1807.46 | 1865.94 | 0.0313 -0.0267
120 7537.06 | 40.0441 | 2.2156 | 7511.91 | 7551.9585 | 0.00563 -0.0004
5 TR 150 2622.68 | 106.5743 | 5.0097 | 2566.10 | 2672.6812 | 0.0399 -0.0149
199 3404.52 | 132.856 | 3.8064 | 3321.66 | 3454.5247 | 0.0385 0.0055
50 1005.43 | 52.5725 | 38.173 | 1002.85 | 1055.4302 | 0.0498 -0.0473
75 1638.46 | 90.7552 | 4.0657 | 1597.70 | 1688.4648 | 0.0538 -0.0127
100 9854.71 | 97.2426 | 5.7255 | 9807.47 | 9904.7148 | 0.0098 -0.0011
100a 1816.74 | 56.1703 | 15.0452 | 1810.56 | 1866.7382 | 0.0301 -0.0263
120 7517.46 | 56.7763 | 10.7768 | 7510.68 | 7567.4614 | 0.0075 -0.0031
7T-TR 150 2634.13 | 74.3846 | 6.2243 | 2609.74 | 2684.1277 | 0.0277 -0.0106
199 3420.15 | 96.2036 | 4.8282 | 3373.94 | 3470.1526 | 0.0277 0.0101
50 1005.71 | 51.8401 | 50.3247 | 1003.76 | 1055.7061 | 0.0492 -0.0471
75 1637.61 | 80.4566 | 5.0995 | 1607.15 1687.60 | 0.0477 -0.0132
100 ORO5.44 | 59.7577 | 3.3116 | 9866.67 | 9926.43 0.006 0.0029
100a 1815.94 | 56.5992 | 16.0497 | 1809.34 | 1865.94 | 0.0303 -0.0267
120 7500.88 | 78.3164 | 4.0933 | 7481.56 | 7559.88 | 0.0104 -0.0041
2. TR 150 2628.57 1 86.693 5.4416 | 2591.87 | 2678.56 0.0324 -0.0127
199 3417.3 | 105.2249 | 4.6902 | 3362.07 | 3467.30 0.0303 0.0092
50 1006.68 | 51.5329 | 32.2946 | 1005.14 1056.67 | 0.0488 -0.0461
] 75 1635.54 | 94.4606 | 4.1616 | 1591.08 1685.54 0.056 -0.0145

Table 7.7: Estimates of parameters of Weibull distribution for the CDVRP

3 TR | 5.TR

7.TR

9.TH

0.0688 | 0.0545

0.0567

0.0507

Table 7.8: Average performance measure for different heuristics for CVRP

o The average performance measure for various heuristic is presented in Table

7.9. From the table, we can conclude empirically that 3_TR is the best

among the four heuristic for CDVRP for literature problems.

8.TR | 5.TR

7.TR

9. TR

0.0249 | 0.0331

0.0285

0.0306

Table 7.9: Average performance measure for different heuristics for CDVRP

162




7.2.3 Conclusion

From the above findings we can conclude from the Friedman test that there is
no significant difference between the quality of the solutions generated by the
algorithms based on different neighbourhood parameters. Empirically we can
choose 9 TR for CVRP and 3.TR for CDVRP for good quality solution. However

one may choose 3_TR since it uses less computational time.

We have illustrated the good quality of the solution for each problem by obtaining
a point estimate and its confidence interval for each problem. The estimated
solution for each problem is accepted here since the deviation from the best
known solution is within 4.7% for CDVRP and 6.1% for CVRP. The results from

the confidence interval are also encouraging.

In the following we present tables and graphs showing a few findings from the
results obtained for the CVRP and CDVRP.

s Graphs 7.1(a) and 7.2(a) show the pattern of the average diversification
steps for various heuristics on various problems for the CVRP and CD%,TRP.
Recall the diversification strategy penalised those vertices which have been
moved frequently by adding a penalty to the objective function value. For
each heuristic applied to each problem, we collect the average number of di-
versification steps. Note that the pattern of the graphs is stable for different
heuristics for both the CVRP and CDVRP. However the 150-city problem
for the CDVRP has a larger number of steps than the CVRP. The 199-city
problem has a higher number of steps for the lower parameter (p = 3) for

both CVRP and CDVRP.

e The CPU #ime increases as the parameter number increases as shown in
Graphs 7.1(b) and 7.2(b) for the CVRP and CDVRP. Note that as the size
of the problem gets larger and as the parameter gets larger, the CPU time

increases. This is especially noticeable for the 199-city problem.

e The pattern for the average number of times the Search procedure is used

remains stable for different heuristics as shown in Graphs 7.1(c) and 7.2(c).
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But the number of searches increases as the number of cities increase for

both CVRP and CDVRP.

e In each run of a heuristic on a problem, we record the number of feasi-
ble neighbourhood moves and the total number of neighbourhood moves
(feasible and infeasible). The proportion can be calculated as

number of feasible neighbours

;= p . ; - 7.6

Pi = {otal number of neighbours (feasible and infeasible) (7.6)
. il pi .

The average proportion is calculated by T The average proportion

of feasible neighbourhood moves is rather small (less than 47% for CVRP
and less than 25% for CDVRP respectively) as shown in Table 7.10.

e The average proportion of feasible solutions S implemented are small (less
than 14% for CVRP and less than 2% for CDVRP respectively) as shown
in Table 7.11. Note that the average proportion of feasible solutions § im-
plemented can be caleulated as follows. In each run of a heuristic on a
problem, the number of solutions implemented is recorded and the propor-

tion of feasible solutions S implemented can be calculated as

g  feasible solutions implemented
py = : : (7.7)
total solution searched
Z].‘OO ps
k] 1

So the average proportion over the 100 runs can be calculated as oo

CVRP CDVRP
Problems | 2.TR | 5. TR | 7.TR | 8. TR STR | 5.TR | 7.TR | 9.TR
100 §.4521 | 0.4735 | 0.4382 | 0.4099 || 0.2505 | 0.2466 | 0.2419 | 0.2264
100a 0.3895 | 0.3704 | 0.3632 | 0.3963 || 0.1049 | 0.1071 | 0.1028 | 0.1024
120 0.313 | 0.3212 | 0.3371 | 0.3279 || 0.1421 | 0.1321 | 0.1357 | 0.1138
150 0.227 | 02131 | 0.2363 | 0.2182 || 0.1131 | 0.1118 | 0.1142 | 0.1113
199 0.2106 | 0.2049 | 0.202 | 0.1848 || 0.1122 | 0.1102 | 0.107 | 0.1068
50 0.311 | 0.3042 | 0.3092 | 0.301 || 0.1493 | 0.1447 | 0.1465 | 0.1431
75 0.313 | 0.3013 | 0.2941 | 0.2493 || 0.2276 | 0.2202 | 0.2098 | 0.1538

Table 7.10: Proportion of feasible neighbourhood recorded while searching

In the following section, the heuristics are compared throngh some randomly

generated problems.
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CVRP CDVRP
Problems | 3TR | 5.TR | 7.TR | 9. TR STR | 5.1k | 7.Tk | 9.TR
100 0.0399 | 0.0283 | 0.0244 | 0.02 0.0012 | 0.0019 ; 0.0015 | 0.0019
100a 0.0238 | 0.0267 | 0.0254 | 0.0283 || 0.0104 | 0.0114 | 0.0096 | 0.0074
120 0.0264 | 0.02 | 0.0265 | 0.0273 || 0.0039 | 0.0084 | 0.005 | 0.0051
150 0.0103 | 0.0105 | 0.0099 | 0.0088 || 0.003 | 0.0028 | 0.0036 | 0.0032
199 0.0052 | 0.0049 | 0.0052 | 0.0044 ;| 0.0011 | 0.0011 | 0.0012 | 0.0012

50 0.1102 | 0.1363 | 0.1278 | 0.1285 || 0.0207 , 0.0168 | 0.0192 | 0.0148

75 0.0168 | 0.0151 | 0.0181 | 0.0165 || 0.0035 | 0.0029 | 0.0029 | 0.0025

Table 7.11: Proportion of feasible solution S implemented during the search
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Graph 7.1: Summary of results for the CVRP
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7.3 Statistical Evaluation on the Randomly Gen-

erated Problems

In this section we generate 28 Euclidean CDVRP test problems with sizes ranging
from 60 to 120 cities in increments of 10. The randomly generated problems are

based on the following parameters:

o The problems are classified into four groups with different g, 0 < 8 <
1, which measures the tightness of the vehicle capacity restrictions. The

parameter 8 is taken to beIO, 0.33, 0.67 and 1.0.

e The total demand @ is generated as in Laporte et al. (1985)

Q= -6)max{e}+63 g
icV

o The demand g; is randomly generated between [1,100].

o The length of the problems is set to be L = 1800.

Note that similar test problems are used for the case of CVRP by omitting the

length.

The purpose of running the algorithm with randomly generated problem is to
validate the performance of the algorithm and to examine the algorithms with
different problems with various tightness of the vehicle capacity #. For the case
of CDVRP, we have a total of 28 problems where the sizes of the problems range
from 60 cities to 120 cities. For each size, say 60 cities problem, we have four
problems with various vehicle capacity restrictions as indicated by #. For the case
of the CVRP, we used the same problems and the length of the problems is set
to be infinity. The problems with § = 1.0 are omitted since for these problems,
the capacity constraints are not binding. Each problem 1s executed for 30 runs

for each p TR where p = {3,5.7,9}.

Tables 7.12 and 7.13 show the best obtained solution for various heuristics over

the 30 runs for CVRP and CDVRP. Table 7.14 shows the best lower bound
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solution obtained in 30 runs for CVRP and CDVRP. The average, maximum and
minimum CPU time over the 30 runs for each problem for CVRP and CDVRP

are digplayed on Tables B.17-B.21 in Appendix B.

Heuristic
Size of Problems | 6 2. Th 5.TR 7.TR 9 TR
0 32882 32882 | 32090.64 | 32882
60 0.33 | 7055.47 | 7055.47 | 7055.47 | 7085.47
0.67 | 6554.05 | 6554.05 | 6554.05 | 6554.05
0 | 41310.05 | 41201.7 | 41272.44 | 4127244
70 0.33 | 7575.8 7565.48 | 7565.48 | 7565.48
0.67 | 6530.05 | 6530.056 | 6530.05 | 6530.05
0 49237.42  48799.15 | 49136.33 | 49265.8
80 0.33 | 8107.12 8107.12 8107.12 | 8107.12
0.67 | 7204.35 | 7193.85 | 7193.85 | 7193.85
0 | 49275.49 | 48882.88 | 48520.66 | 48808.67
90 0.33 | 8490.16 8490.16 8407.48 | 8490.16
0.67 | 7640.16 | 7640.16 | 7640.16 | 7640.16
0 53151.21 | 52320.05 | 52330.26 } 52181.08
100 0.33 | 8044.25 8044.25 8044.25 | 8044.25
0.67 | 7884.73 | 7884.73 | 7943.18 | T967.84
0 60173.6 | 60142.05 | 60876.18 ; 60856.85
110 0.33 | 8770.18 | 8770.18 | 8770.18 | 8770.18
0.67 | 8367.18 8334.14 8318.87 | 8334.14
0 67243.66 | 67194.95 | 67038.76 | 66437.76
120 0.33 | 9378.96 9384.57 9384.46 | 9384.46
0.67 | 8751.35 | 873247 | 8707.93 | 875135

Table 7.12: Best solutions generated by 30 runs for randomly generated CVRP

In the following we carried ont the statistical tests to compare the quality of the

solutions generated.

7.3.1 Friedman Test

We carried out the Friedman test on the four VRP heuristics for the CVRP and
CDVRP based on the null hypothesis that there is no significant difference in
performance between the four heuristics. Tables 7.15 and 7.16 show the ratio

and its associated ranking for CVRP and CDVRP. For details on this subject

refer to Appendix A.

The summary of the Friedman test is given in Table 7.17 for both the CVRP
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Size of Problems

Heuristic

3_TR

5. TR

T TR

3.TR

60

70

80

90

100

110

120

0.33
0.67

0.33
0.67

0.33
0.67

0.33
0.67

0.33
0.67

0.33
0.67

0.33
0.67

32882
10316.01
10190.48
11803.82
41310.95

9564.41
10549.62
11430.76
49237.42
17605.76

13124.3
11880.61
49316.42
12690.61
146%0.79
11113.89
53151.21

13641.3

9558.52

9513.19

60173.6
12938.67
15709.97

120121
67243.66
12152.37
16032.56
11772.77

32882
10265.93
5875.03
11687.98
41201.7
9547.81
10661.56
11426.52
48799.15
18033.06
13702.25
11673.64
48896.63
13815.28
14966.99
11968.12
52181.08
14518.54
5568.17
9549.26
60142.05
12660.21
14864.85
13485.23
67194.95
12143.61
15776.17
11754.93

32990.64
10280.75
9875.03
11897.62
41272.44
9562.57
10569.63
11426.52
49136.33
17533.73
12529.2
11871.4
4B570.59
13868.53
16703.74
11617.68
52181.08
13535.99
9568.17
9549.26
60810.58
12497.02
14457.82
13065.63
67019.33
11984.98
16151.71
11662.22

32882
12150.88
9876.83
11883.75
41272.44
9555.19
10552.55
11426.52
49136.33
17922.35
13554.15
11636.68
49316.42
13242.18
16248.51
10960.87
52181.08

13576
9568.17
9527.47
60877.96
12517.48
14491.64
13697.44
66437.76
12152.37
16542.77
12304.62
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Sizes | @ CDVRP | CVRF
0 32882.0 | 32882.0
60 | 0.33 | 10265.93 | 7055.47
0.67 | 9875.03 | 6554.05
1.0 | 11687.98 -
] 41201.7 | 412017
70 | 0.33 | 9547.81 | 7565.48
0.67 | 10549.62 | 6530.05
1.0 | 11426.52 -

0 48799.15 | 48799.15
80 [0.33 | 17533.73 | 8107.12
0.67 | 12520.2 | 7193.85
1.0 | 11636.68 -
0 48570.59 | 48520.66
90 | 0.33 | 12690.61 | 8490.16
0.67 | 14690.79 | 7640.16
1.0 | 10960.87 -
0 52181.08 | 52181.08
100 | 0.33 | 13535.99 | 8044.25
0.67 | 9558.52 | 7884.73
1.0 | 9513.19 -
0 60142.05 | 60142.05
110 [ 0.33 | 12497.02 | 8770.18
0.67 | 14457.82 | 3318.87
1.0 | 12012.12 -
0 66437.76 | 66437.76
120 | 0.33 | 11984.98 | 9378.96
0.67 | 15776.17 | 8707.93
1.0 | 11662.22 -

Table 7.14: Best lower bound solution generated in 30 runs for CVRP and CD-
VRP
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Ratio Rank
Problems | 6 | 3TR | 6.1R | 7.TR | 9.7R | 3TR | 5.TR | 7.TR | 9.TR
0 i 1 (10033 1 2 ) 4 2
60 033 1 1 1 1 25 | 25 | 25 2.5
067 | 1 1 1 1 25 | 2.5 2.5 | 25
0 | 10026 | 1 |1.0017 10017 | 4 1 2.5 2.5
70 | 03310013 | 1 1 1 1 2 2 2
0671 1 1 1 1 25 | 25 2.5 2.5
0 | 1008 | 1 |10069| L0095 | 3 1 2 4
8 033 1 1 1 1 25 | 2.5 25 | 25
0.67 | 1.0014 | 1 1 1 4 2 2 2
0 | 1015310072 | 1 | 10057 | 4 3 1 2
9 | 033] 1 1 |10008| 1 2 2 1 2
067 1 1 1 1 25 | 25 | 25 2.5
0 | 1.0185 | 1.0026 | 1.0028 | 1 4 2 3 1
100 |033| 1 1 1 1 25 + 25 | 25 2.5
067 | 1 1 | 1.0074 | 10105 | 1.5 1.5 3 4
0 |10005| 1 |10122| 10118 2 1 4 3
110 | 033 | 1 1 1 1 2.5 2.5 25 | 25
0.67 | 1.0058 | 1.0018 | 1 | 10018 | 4 2.5 1 2.5
0 | 10121 | 1.0113 | 1.0090 | 1 4 3 2 1
120 033 1 |1.0005| 10005 | 1.0005 | 1 4 25 | 25
0.67 | 1.0049 | 1.0028 | 1 | 10049 | 35 2 1 35
R; 605 | 465 | 515 | 5L5
STRY | 192.25 | 113.25 | 141.25 | 137.75

Table 7.15: Ratio and Rank for the Friedman test on randomly generated CVRP
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Ratio Rank
Problems | ¢ | 8.TR | 5.IR | 7.7k | 9TR |8 TR 5TR| 7.TR ] 9.TR
60 0 1 I [10033] 1 2 2 1 2
60 |033| 10048 | 1 | L00O14| 11836 | 3 1 2 4
60 | 067 10319 | 1 1 10001 | 4 | 15 | 15 | 3
60 1 | 1.0099 1 | 10179 | 1.0167 | 2 1 4 3
70 0 | 1.0026 1 | 10017 | 1.0017 | 4 1 | 25 | 25
70 | 033} 10017 | 1 |10015| 1.0007 | 4 1 3 2
70 067 1 1.0106 | 1.0018 | 1.0002 | 1 4 3 2
70 1| 10003 1 1 1 1 2 2 2
80 0 | 1.0089 1 |1.0069 | 1.0069 | 4 1 | 25 | 25
80 |033| Loo41 | 1.0284 | 1 | 1.0221 | 2 4 1 3
80 | 067 1.0474 | 10936 | 1 | 1.0818 | 2 4 1 3
80 1 | 10209 | 1.0031 | 10201} 1 4 2 3 1
90 0 | 10153 | 1.0067 | 1 | 1.0153 | 35 | 2 1| 35
9 |033| 1 1.0886 | 1.0928 | 1.0434 | 1 3 4 2
9 | 067| 1 |1.01880|1.1370 | 11060 | 1 2 4 3
90 1 | 1.0139 | 1.0918 | 1.0599 | 1 2 4 3 1.
100 0 | 10185 1 1 1 4 2 2 2
100 | 033 1.0077 | 1.0725 | 1 | 1.0020 | 3 4 1 2
100 067} 1 1.0010 | 1.0010 | 1.0010 | 1 3 3| 3
100 1 1 1.0037 | 1.0037 | 1.0015 | 1 | 35 | 35 | 2
110 ¢ | 10005 | 1 |10111| 10122 | 2 1 3 4
116|033 | 1.0354 | 1.0130 | 1 | 1.0016 | 4 3 1 2
110 | 067 | 10866 | 1.0281 | 1 | 10023 | 4 3 1 2
110 1 1 11226 | 1.0877 | 1.1403 | 1 3 2 4
120 0 |1.01213 | 1.0113 | 1.0087 } 1 4 3 2 1
120|033 | 10139 | 10132 | 1 | 10139 | 35 | 2 1| 35
120|067 | 10162 | 1 | 10238 1.0485 | 2 1 3 4
120 1 | 10094 | 10079 | 1 | 10550 | 3 2 1 4
R; 76 | 66 | 65 | 73
| S RL | 2455 | 1875 | 182 | 214

Table 7.16: Ratio and Rank for the Friedman test on randomly generated CDOVRP
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and CDVRP. From the table we conclude that the hypothesis is not rejected
for CVRP and CDVRP. This suggests that there is no significant difference be-
tween the quality of the solutions generated by four algorithms based on different

neighbourhood parameters. Since the null hypothesis is not rejected, the expected

utility function test to select the best heuristic need not be carried out.

CVRP

CDVRP

Hypothesis:

All 4 p. TR heuris-
tics are equally ac-
curate for CVRP.

All 4 p_TR heuris-
tics are equally ac-
curate for CDVRP.

Ar =30, 370 (Ry)’

644.5

829.0

BF = %Z;:l R?

529.86

703.07

Tp = (DB (RT3

0.8474

0.6585

Ap—Br
Fol(k = 1), (n - )(k — 1))

F0_05 (3, 60) = 8.53

F(]_gs (3, 60) — 8.53

Conclusion:

Do not reject the
null hypothesis that
all 4 p TR heuris-
tics are equal in per-
formance for CVRP
at o = 0.05.

Do not reject the
null hypothesis that
all 4 p TR heuris-
tics are equal in per-
formance for CD-
VRP at o = 0.05.

Table 7.17: Computational results for the Friedman

We further carry out the Friedman test on four groups according to various 6,
i.e. the tightness of the vehicle capacity restrictions. The null hypothesis is Hy:
There is no difference between the various heuristics for different # (= 0, 0.33,

0.67, 1.0) on the CVRP/CDVRP. The final solutions are presented in Table

CDVRP CVRP
) Arp B Te Conclusion Ap Br Tr Conclusion
0.0 | 204.5 | 1845 | 2.85 | Do not reject Hp || 207.5 | 18293 | 1.94 Do not reject Hy
0.33 | 209.5 | 179.36 | 0.87 | Do not reject Hy || 185.5 | 175.35 | 0.21 | Do not reject Hy
0.67 | 207.5 | 177.07 | 0.41 | Do not reject Ho | 191.5 | 178.71 | 1.74 | Do not reject Hy
1.0 | 207.5 | 175.21 | 0.04 | Do not reject Hy - - - -
Table 7.18: Computational results on Friedman for different ¢

7.18 according to different # for CVRP and CDVRP. The hypothesis is rejected
if the test statistic Tr > Fye5(3, 18) = 8.68. The table shows that the hypothesis
is not rejected for all cases. That is there is no difference between various p T R

in their performance on problems with various & for both CVRP and CDVRP.
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In the next section we fit the Weibull distribution to the objective function values

of local optimum solutions generated by the heuristics.

7.3.2 Fitting of Weibull Distribution (Randomly Gener-
ated Problems)

The purpose of this section is to investigate for a point estimate and a confidence
interval for the optimal objective function value. This provides us with a tool to
measure the solutions and allows us to evaluate the performance of each heuris-
tic. In particular, we fit the Weibull distribution to the local optimal objective

function values.

We take r = 6 independent samples, each of size ¢ = 5 and let v = min{z :
1 < i < 6} be the smallest value. The Weibull cumulative distribution can be
rewritten as an equation of a straight line as (7.4) which can be solved by the least
square approach. Golden's (1977, 1978) least square approach was followed such
that the parameter that yields the smallest Kolmogorov- Smirnov (K-S) statistic
D is selected. The modified form of D by Stephens, (7.5) is used at o = 0.05
level of significance and the rejection starts at 1.358. For details of this subject

refer to Appendix A.

Tables 7.19 - 7.26 show the result obtained from fitting the Weibull distribution
to the objective function values of the solutions generated by the heuristics for
the CVRP and CDVRP. The results include the estimated lower bound, &, the
estimated parameters for the Weibull distribution, b and ¢, the 100(1 — exp™)%
confidence interval, the performance measure and the deviation of the estimated

solution from the best known solutions.

We summarise the results in Tables 7.27 and 7.28 for CVRP and CDVRP. The
second column shows the number of times the confidence interval includes the

best known lower bound obtained. The deviation (Column 3) refers to the

estimated solution - best known solution (7.8)

best known solution
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Size of Confidence Interval Proportion
Problems | 8 i’ b é Lower Upper % Dewiation

60 0 - - - - - - -

60 0.33 | 7016.47 | 79.752¢ | 1.5109 | 6975.71 | 7055.47 | 00113 | -0.0055
60 0.67 | 6507.05 | 50.2491 | 28.3568 | 6503.79 | 6554.04 | 0.0077 | -0.0071
70 0 | 41260.95 | 227.7451 | 1.3831 | 41083.20 | 41310.95 | 0.0055 0.0014
70 033 | 7525.8 | 86.0876 | 3.2097 | 7489.71 | 7575.80 | 0.0114 | -0.0052
70 0.67 | 6480.05 | 94.4062 | 1.7002 | 6435.64 | 6530.04 | 0.0145 | -0.0076
80 0 49187.42 | 148.9167 | 1.2871 | 49088.50 ; 49237.41 | 0.003 0.0079
80 033 | 8057.12 | 62.3069 | 7.4898 | 8044.81 | 8107.11 | 0.0077 | -0.0061
80 0.67 | 717535 | 54212 | 2.7014 | 7150.14 | 7204.35 | 0.0075 | -0.0025
90 0 4929549 | 172.2354 | 0.8771 | 49103.25 | 49275.49 | 0.0035 0.0143
90 0.33 | 8440.16 | 100.8358 | 2.6762 | 8389.32 | 8490.16 | 0.0119 | -0.0058
g0 0.67 | 7580.16 | 135.6285 | 1.8007 | 7504.52 | 7640.15 | 0.0178 -0.0065
100 0 53101.21 | 211.4901 | 1.2168 | 52939.72 | 53151.21 | 0.004 0.0176
100 0.33 | 799425 | 97.7041 | 2.3825 | 7946.54 | 8044.25 | 0.0121 | -0.0062
100 0.67 | 7834.73 | 154.5864 | 2.5388 | 7730.14 | 7884.72 | 0.0196 | -0.0063
110 0 60123.6 | 863.1718 | 0.9099 | 59310.42 | 60173.59 | 0.0143 -0.0003
119 0.33 | 8753.18 | 51.2764 1.21 8718.90 | 8770.17 | 0.0058 -0.0019
110 0.67 | 8317.18 | 101.5639 | 3.0611 | 8265.61 | 8367.17 | 0.0121 | -0.0002
120 0 67193.66 | 100653 | 3.6412 | 67143.01 | 67243.66 | 0.0015 0.01137
120 0.33 | 932896 | 73.3284 | 5.0229 | 9305.63 | 9378.96 | 0.0078 -0.0053
120 0.67 | 8701.35 | 185.1985 | 1.7903 | 8566.15 | 8751.34 i 0.0212 -0.0007

Table 7.19: Estimates of parameters of the Weibull fitting for 3 TR on CVRP

Size of Confidence Interval Proportion
Problems | 8 a b é Lower Upper 2 Deviation
60 0 32832 259.6315 1.054 | 32622.36 | 32881.99 | (1L.0079 -0.0015
60 0.33 | 7005.47 | 138.4675 1.462 6917.00 | 7055.47 | 0.0196 -0.0070
60 0.67 | 6508.05 47.7409 24.3611 | 6506.30 | 6554.04 | 0.0073 -(0.0070
70 0 41185.7 96.7274 1.4542 | 41104.97 | 41201.70 | 0.0023 -0.0011
70 0.33 | 751548 98.1998 3.6163 | 7467.28 | 7565.48 | 0.013 -0.0066
70 0.67 | 6480.05 77.5151 2.0577 | 6452.53 | 6530.04¢ | 0.0119 -0.0076
80 0 48749.15 | 353.0742 | 0.9995 | 48446.07 | 48799.14 | 0.0072 -0.0010
80 0.33 | 8061.12 54.899] 42321 8052.22 | 8107.11 | 0.0068 -0.0056
80 0.67 | T183.85 25.8015 1.1185 7168.04 | 7193.85 | 0.0036 -0.0013
90 0 48832.88 | 560.4262 0.8017 | 48322.45 | 48882.88 | 0.0115 0.0062
90 0.33 | 8440.16 90.9332 3.3029 8399.22 | 8490.16 | 0.0107 -0.0058
90 0.67 | 7590.16 | 110.2887 | 2.0693 | 7529.86 | 7640.15 | (0.0144 -0.0065
100 0 52270.05 | 1026.2986 | 0.9248 | 51203.75 | 52320.05 | 0.0196 0.0017
100 0.33 | 8000.25 61.6653 3.0865 | 7982.58 | 8044.25 | 0.0077 -0.0054
100 0.67 | T834.73 135.5961 2.0571 7749.13 | 7884.72 | 0.0172 -0.0063
110 0 60092.05 | 593.4003 1.0071 | 59548.65 | 60142.05 | 0.0098 -0.0008
110 0.33 | 8720.18 77.2905 3.6867 | 8692.88 | 8770.17 | 0.0088 -0.0057
110 0.67 | 8284.14 126.8874 | 2.9076 8207.25 | 8334.14 | 0.0152 -0.0041
120 0 67144.95 | 107.6324 1.6489 | 67087.31 | 67194.94 | 0.0016 0.0106
120 0.33 | 9334.57 75.4683 5.0368 | 9309.09 | 9384.56 | 0.008 -0.0047
120 0.67 | 8682.47 177.9002 | 2.5597 | 8554.57 | 8732.47 | 0.0204 -0.0029

Table 7.20: Estimates of parameters of the Weibull fitting for 5. 1'R on CVRP
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Size of Confidence Interval Proportion
Problems | 8 i b é Lower Upper b Deviation
60 0 - - - - - - -
60 0.33 | 7009.47 70.3299 1.7271 6985.14 7055.47 0.01 -(0.0065
60 0.67 | 6508.05 47.7400 24.3611 | 6506.30 6554.04 | 0.0073 -0.0070
70 0 41226.44 | 66.7082 2.908 ! 41205.72 | 41272.43 | 0.0016 0.0006
70 0.33 | 7h15.48 101.0153 1.8811 ‘7464.46 | 7h65.48 | 0.0134 -0.0066
70 0.67 | 6510.05 32.7692 1.7152 6497.28 ¢ 6530.04 | 0.005 -0.0030
80 ¢ 49086.33 | 495.0295 1.1642 | 48641.30 | 49136.33 | 0.0101 0.0058
80 0.33 | 8060.12 48.3678 25.5599 | 8058.75 8107.11 0.006 -0.0057
&80 0.67 | 7146.85 53.1637 8.7713 7140.68 7193.85 | 0.0074 -0.0065
90 0 ARAT9.66 | 1049.3754 | 0.8518 | 47480.28 | 48529.65 | 0.0216 -0.0010
90 0.33 | 8447.48 89.9892 3.9561 8407.48 8497.47 | 0.0106 -0.0050
90 0.67 ; 7606.16 67.7979 1.1916 7572.35 7640.15 | 0.0089 -0.0044
100 0 52280.26 | 932.3264 1.0123 | 51397.93 | 52330.25 | 0.0178 0.0015
100 0.33 | 7994.25 55.4283 12.8244 | T988.82 | B044.25 | 0.0069 -0.0062
100 0.67 | 7893.18 90.5022 3.6342 7852.68 7943.18 | ¢.0114 0.0010
110 0 60828.18 49.6693 53.9354 | 60826.50 | 60876.17 | 0.0008 0.0114
110 033 | 8720.18 63.7785 4 4858 8706.40 8770.17 | 0.0073 -0.0057
119 0.67 | 8268.87 161.5308 2.1345 8157.33 8318.86 | 0.0194 -0.0060
120 0 660988.76 216.174 1.63 66822.58 | 67038.75 | 0.0032 0.0082
120 0.33 | 9364.46 48.9903 1.5993 0335.46 | 9384.45 | 0.0052 -0.0015
120 0.67 | B657.93 239.2235 1.6713 8468.70 8707.93 | 0.0275 -0.0057

Table 7.21: Estimates of parameters of the Weibull fitting for 7.T'R on CVRP

Size of Confidence Interval Proportion
Problems | @ it b é Lower Upper b Deviation

60 0 - - - - - - -

60 0.33 | 7005.47 110.067 1.3682 6945.40 7055.47 | 0.0156 -0.0070
60 0.67 | 6508.05 4R8.4268 | 24.6854 | 6505.61 6554.04 | 0.0074 -0.0070
70 0 41232.44 | 68.4475 2.7512 | 41203.99 | 41272.43 | 0.0017 0.0007
70 0.33 | 7515.48 117.294 2.3728 7448.18 756548 | 0.0155 -0.0066
70 0.67 | 6480.05 77.1944 2.2663 6452.85 6530.04 | 0.0118 -0.0076
80 0 49215.8 | 334.9975 | 1.4265 | 48930.80 | 49265.80 | 0.0068 0.0085
80 0.33 | 8061.12 59.5116 6.6742 8047.60 | 8107.11 | 0.0073 -0.0056
&80 0.67 | 7184.85 24.9415 1.0406 T168.90 7193.85 | 0.0035 -0.0012
90 0 ARTT1.67 | 428.7371 | 0.7526 | 48379.93 | 48808.66 | 0.0088 0.0049
90 0.33 | 8440.16 00.5682 | 3.1807 | 8399.50 | 8480.16 | 0.0107 -0.0058
90 0.67 | 7590.16 | 151.6832 2.131 7488.47 | 7640.15 | 0.0199 -0.0065
100 0 52131.08 | 477.126 0.8467 | 51703.95 | 52181.07 | 0.0091 -0.0009
100 0.33 | 8039.25 9.7973 21028 | 803445 | 8044.25 | .0012 -0.0006
100 0.67 | 7917.84 64.4978 6.3772 7903.34 7067.84 | 0.0081 0.0041
110 0 60R06.85 | 131.8363 | 2.4681 | 60725.01 : 60856.85 | 0.0022 0.0110
110 0.33 | 8720.18 | 105.9156 | 1.9973 2664.26 8770.17 | 0.0121 -0.0057
110 0.67 | 8284.14 | 123.2983 | 2.1834 8210.84 2334.14 | 0.0148 -(.0041
120 0 66387.76 | 897.3158 | 0.8743 | 65540.44 | 66437.75 | 0.0135 -0.0007
120 0.33 | 9334.46 60.9188 7.2489 9323.53 §384.45 | 00065 -0.0047
120 0.67 | 8701.35 164.393 2.0671 8586.95 | 8751.34 | 0.0188 -0.0007

Table 7.22: Estimates of parameters of the Weibull fitting for 9 TR on CVRP
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Size of Confidence Interval Proportion

Problems | 8 i b é Lower Upper b Deviation
60 0 32836 74.7635 | 1.5097 | 32807.23 | 32881.99 | 0.0023 -0.0013

60 0.33 | 10266.01 | 421.754 | 0.9205 | 9894.25 | 10316.00 | 0.0409 | 7.7927-06
60 0.67 | 10140.48 | 653.3982 | 1.0456 | 9537.08 | 10190.48 | 0.0641 0.0268
60 1 11753.82 | 294.5452 | 1.2293 | 11509.27 | 11803.82 | 0.025 0.0056
70 0 41260.95 | 284.3769 | 1.9617 | 41026.57 | 41310.95 | 0.0069 0.0014
70 0.33 | 9514.41 86.2630 | 2.7202 | 9478.14 | 9564.41 0.009 -0.0034
70 0.67 | 10499.62 | 666.0506 | 0.8975 | 9883.56 | 10549.61 | 0.0631 -0.0047
70 1 11380.76 | 1026.7039 | 0.8266 | 10404.05 | 11430.75 | 0.0898 -0.0040
80 0 49187.42 | 93.0813 2186 | 49144.33 | 49237.41 | 0.0019 0.0079
80 0.33 | 17555.76 | 2176.704 | 0.7618 | 15429.05 | 17605.75 | 0.1236 0.0012
80 0.67 | 130743 | 1121.3043 | 0.881 | 12002.99 | 13124.30 | 0.0854 (.0435
80 1 11830.61 | 247.1738 | 1.158 | 11633.43 | 11880.60 | 0.0208 0.0166
90 0 49266.42 | 123.4973 1.149 | 49192.92 | 49316.42 | 0.0025 0.0143
90 0.33 | 12640.61 | 1353.4794 | 0.7744 | 11337.13 | 12690.60 | 0.1067 -0.0039
90 0.67 | 14640.79 | 1389.1791 | 0.8634 | 13301.61 | 14690.79 | 0.0946 -0.0034
90 1 11063.89 | 1191.8186 | 0.8204 | 9922.07 | 11113.89 | 0.1072 0.0093
100 0 53101.21 285.78 2.3779 | 52865.43 | 53151.21 | 0.0054 0.0176
100 0.33 | 13591.3 | 1543.1797 | 1.0077 | 12098.12 | 13641.29 | 0.1131 0.0040
1400 0.67 | 9510.52 53.5394 | 9.4833 | 9504.98 | 9558.52 | 0.0056 -0.0050
100 1 9463.19 226.2444 | 1.4886 | 9283.94 | 9513.19 | 0.0241 -0.0052
110 0 60123.6 739.6823 | 0.8311 | 59433.91 | 60173.59 | 0.0123 -0.0003
110 0.33 | 12889.67 793.627 | 0.7381 | 12146.04 | 12939.67 | 0.0613 (.0314
110 0.67 | 15659.97 | 830.676 1.1148 | 14879.29 | 15709.96 | 0.0529 0.0831
110 1 11962.1 | 2584.9096 | 0.8288 | 9427.19 | 12012.10 | 0.2152 -0.0041
120 0 67193.66 | 98.4574 | 4.6965 | 67145.20 | 67243.66 | 0.0015 0.0113
120 0.33 | 12102.37 | 157.2301 | 1.5256 | 11995.13 | 12152.36 | 0.0129 0.0097
120 0.67 | 15982.56 | 1519.9383 | 0.9651 | 14512.62 | 16032.56 | 0.0948 0.0130
120 i 11722.77 | 718.7304 | 0.9648 | 11054.03 | 11772.76 | 0.0611 0.0052

Table 7.23: Estimates of parameters of the Weibull fitting for 3. TR on CDVRP
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Size of Confidence Interval i Proportion
Problems | & 73 b ¢ Lower Upper —:’; Deviation

60 0 32832 344.0684 | 1.0454 | 32537.92 | 32881.99 | 0.0105 | -0.0015
60 0.33 | 10215.93 | 248.8247 | 1.042 | 10017.10 | 10265.92 | 0.0242 ; -0.0048
60 0.67 | 9825.03 | 682.6261 | 0.8801 | 9192.39 | 9875.02 | 0.0691 -0.0050
60 1 11637.98 | 859.8125 | 0.7994 | 10828.16 | 11687.97 ¢ 0.0736 -0.0042
70 0 41155.7 06.7274 | 1.4542 | 41104.97 | 41201.70 | 0.0023 -0.0011
70 0.33 | 949781 | 92.9457 | 3.9838 | 9454.86 | 9547.80 | 0.0097 | -0.0052
70 0.67 | 10611.56 | 1130.1206 | 0.8864 | 9531.44 | 10661.56 | 0.106 0.0058
70 1 11423.52 | 91.6944 | 0.5039 | 11334.82 | 11426.52 | 0.008 -0.0002
80 0 | 48749.15 | 435.7469 | 1.2074 | 48363.40 | 48799.14 | 0.0089 | -0.0010
80 0.33 | 17983.06 | 1423.7475 | 0.8563 | 16609.31 | 18033.05 | 0.079 0.0256
80 0.67 | 13652.25 | 218.7179 | 1.1814 | 13483.53 | 13702.24 | 0.016 0.0896
80 1 11623.64 | 665.2527 | 1.0237 | 11008.38 | 11673.63 | 0.057 -0.0011
90 0 48846.63 | 505.4161 | 1.2311 | 48391.21 | 48896.62 | 0.0103 0.0056
90 0.33 | 13765.28 | 140.2008 | 2.3457 | 13675.07 | 13815.27 | 0.0101 0.0846
90 0.67 | 14916.99 | 819.225 | 1.0255 | 14147.76 ; 14966.98 | 0.0547 0.0153
90 1 11918.12 | 314.5135 | 0.9536 | 11653.61 | 11968.12 | 0.0263 0.0873
100 0 | 52131.08 | 964.4125 | 1.015 | 51216.66 | 52181.07 | 0.0185 | -0.0009
100 0.33 | 14468.54 | 464.5027 | 1.0183 | 14054.03 | 14518.53 | 0.032 0.0688
100 0.67 - - - - - - -

100 1 9499.26 80.5015 | 3.1031 | 9468.75 | 9549.25 | (.0084 -0.0014
110 0 60092.05 | 385.5444 | 0.8448 | 59756.51 | 60142.05 | 0.0064 -0.0008
110 0.33 | 12610.21 | 612.3281 | 0.9053 | 12047.87 | 12660.20 | 0.0484 0.0090
110 0.67 | 14814.85 | 1843.535 | 0.7982 | 13021.31 | 14864.84 | 0.124 0.0246
110 1 13435.23 | 484.6977 | 1.1852 | 13000.53 | 13485.23 | 0.0359 0.1184
120 0 67144.95 | 186.9259 | 1.6659 | 67008.01 | 67194.94 | 0.0028 0.0106
120 0.33 | 12111.61 | 214.7208 | 0.8194 | 11928.87 ' 12143.60 | 0.0177 (.0105
120 0.67 | 15726.17 | 1099.077 | 1.0847 | 14677.09 | 15776.16 | 0.0697 | -0.0031
120 1 11704.93 | 917.4092 | 0.9053 | 10837.51 | 11754.92 | 0.078 0.0036

Table 7.24: Estimates of parameters of the Weibull fitting for 5.TR on CDVRP
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Size of Confidence Interval Proportion
Problems | ¢ i b é Lower Upper 5 Deviation
60 0 - - - - - - -

- 60 0.33 | 10230.75 | 1025.3195 | 0.8753 | 9255.43 | 10280.75 | 0.0997 -0.0034
60 0.67 | 9866.03 904.8482 | 0.4886 | 9670.17 | 9875.02 | 0.0207 -0.0009
60 1 11847.62 | 1232.7283 | 0.7926 | 10664.89 | 11897.62 | 0.1036 0.0136
70 0 4122244 | 83.6615 21124 | 41188.77 | 41272.43 | 0.002 0.0005
70 0.33 | 9533.57 58.8895 23297 | 9503.68 | 9562.57 | 0.0062 -0.0014
70 0.67 | 10519.63 | 1430.7605 | 0.5985 | 9138.86 | 10569.62 0.1354 -0.0028
70 1 1142552 421803 0.3801 | 11384.34 | 11426.52 | 0.0037 | -8.7515E-05
80 0 49086.33 | 212.4522 | 1.3025 | 48923.87 | 49136.33 | 0.0043 0.0058
&0 0.33 | 17483.73 | 1210.8809 | 0.711 | 16322.84 | 17533.72 | 0.0691 -0.0028
80 0.67 ¢ 12479.2 | 1607.7218 | 0.7508 | 10921.47 | 12529.20 | 0.1283 -(3.0039
20 1 11821.4 172.638 2.0542 | 11698.76 | 11871.39 | 0.0145 0.0158
480 0 48520.59 | 1088.7469 | 1.0253 | 47481.83 | 48570.58 | 0.0224 -0.0010
90 0.33 | 13848.53 81.9703 1.1876 | 13786.55 | 13868.52 | 0.0059 0.0912
a0, 0.67 | 16653.74 | 247.8057 | 1.4391 | 16455.93 | 16703.74 | 0.0148 0.1336
a0 1 11567.68 | 607.1636 | 1.0612 | 11010.51 | 11617.68 | 0.0523 0.0553
100 0 52131.08 | 851.6394 | 0.8R04 | 51329.43 | 52181.07 | 0.0163 -0.0009
100 0.33 | 13714.57 | 1069.0346 | 1.0074 | 12695.53 | 13764.57 | 0.0777 0.0131
100 0.67 | 9528.17 163.366 0.8513 | 9404.80 9568.17 | 0.0171 -0.0031
100 1 9499.26 74.985 27081 | 0474.27 | 9549.25 | 0.0079 -(1.0014
110 0 60760.58 | 148.9994 | 1.9914 | 60661.58 | 60810.58 | 0.0025 0.0102
110 0.33 | 12447.02 | 1019.7807 | 0.6804 | 11477.24 | 12497.02 | 0.0816 -0.0040
110 0.67 | 14407.82 | 2393.3653 | 0.6798 | 12064.45 | 14457.82 | 0.1655 -0.0034
110 1 13015.63 | 985.0035 | 0.8683 | 12080.62 | 13065.62 | 0.0754 0.0835
120 0 66969.33 | 205.0229 | 1.6802 | 66814.30 ; 67019.32 | 0.0031 0.0080
120 0.33 | 1193498 | 2910574 | 1.5076 | 11693.92 | 11984.97 | 0.0243 -0.0041
120 0.67 | 16101.71 | 734.1469 | 0.9998 | 15417.56 | 16151.71 | (.0455 0.0206
120 1 1161222 | 626.3576 | 1.0508 | 11035.86 | 11662.22 | 0.0537 -0.0042

Table 7.25: Estimates of parameters of the Weibull fitting for 7.TR on CDVRP
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Size of Confidence Interval Proportion
Problems | 0 i b é Lower Upper % Deviation

60 0 32835 82.9717 1.447 | 32799.02 | 328R81.996 | 0.0025 -0.0014
60 0.33 | 1214488 | 2287438 | 0.6084 | 11922.13 12150.87 | 0.0188 0.1830
60 0.67 | 9826.83 86.3765 | 2.2564 | 9790.45 9876.83 | 0.0087 -0.0048
60 1 11833.75 | 899.7178 | 0.7901 | 10984.03 | 11883.75 | 0.0757 0.0124
70 0 41222.44 787776 3.1571 | 41193.65 41272.43 | 0.0019 0.0005
70 0.33 | 9505.19 75.2779 | 6.3591 9479.91 9555.18 | 0.0079 -0.0044
70 0.67 | 10502.55 | 1290.4041 1 0.6203 0262.14 10552.54 | 0.1223 -0.0044
70 1 | 11376.52 | 397.7214 | 0.5352 | 11028.80 11426.52 | 0.0348 -0.0043
80 0 | 49086.33 | 287.1177 | 0.9809 | 48849.21 ! 49136.33 | 0.0058 0.0058
80 0.33 | 17872.35 | 580.2623 | 0.9853 | 17342.08 17922.34 | 0.0324 0.0193
80 0.67 | 13504.15 | 210.2248 | 1.3675 | 13343.92 13554.15 | 0.0165 0.0778
80 1 11586.68 | 439.1059 | 1.1399 | 11197.57 | 11636.68 | 0.0377 -0.0042
a6 0 49266.42 189.828 1.004 49126.59 49316.42 | 0.0038 0.0143
S0 0.33 | 13192.18 829577 0.9052 12412.60 13242.17 | 0.0626 0.0395
90 0.67 | 16198.51 | 560.5336 | 0.9648 15687.97 16248.50 | 0.0345 0.1026
90 1 10910.87 : 1389.7355 | 0.7666 9571.13 10960.87 | 0.1268 -0.0045
100 0 52131.08 | 838.1142 | 0.7328 51342.96 52181.07 | 0.0161 -0.0009
100 0.33 13526 1003.8331 | 0.8531 | 12572.1649 | 13575.99 { 0.0739 -0.0007
100 0.67 - - - - - - -

100 1 9477.47 97.124 3.483 0430.3457 9527.46 | 0.0102 -0.0037
110 0 G0827.96 | 83.1047 : 24947 | 60794.85 60877.95 | 0.0014 0.0114
110 0.33 | 1246748 954.386 0.8794 | 11563.09 12517.47 | 0.0762 -0.0023
110 0.67 | 14441.64 | 1242.2467 | 0.8376 13249.39 14491.63 | 0.0857 -0.0011
110 1 13647.44 | 447.5608 | 0.8016 13249.87 13697.43 | 0.0327 | . 0.1361
120 0 66387.76 | 660.3613 | 0.7203 65777.39 66437.75 | 0.0099 -0.0007
120 0.33 | 12102.37 101.809 2.6522 12050.55 12152.36 | 0.0084 0.0097
120 0.67 | 16492.77 | 624.8949 | 1.0679 15917.87 16542.76 | 0.0378 0.0454
120 1 12254.62 | 233.089 | 1.1986 | 12071.52 12304.61 | 0.0189 0.0507

Table 7.26: Estimates of parameters of the Weibull fitting for 9. TR on CDVRP
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Number of times the confidence interval Performance Measure
Heuristic | includes the best known solution (Total) | Deviation | Min Mazx
3TR 16(20) 1.4% 0.03 0.021
5.TR 20(21) 1.06% | 0.0016 0.02
7.TR 17(20) 11% | 0.0008 | 0.0275
9TR 16(20) 0.85% 0.0012 0.019

Table 7.27: Summary of the quality of the best known solution for the CVRP

and this is recorded using the largest value (in percentage) among all the pro-
blems. The maximum and minimum performance measure for each heuristics are

recorded in Column 4.

In the case of CVRP

e 69 times, or about 97% (out of 71), the best known lower bounds are in-

cluded in the 100(1 — exp~®)}% = 99.75% confidence interval.

e The deviation of the estimated solution and the best known lower bound is

small {<1.4%) for all cases.
o Intervals of the performance measure are between 0.8% to 2.75%.

e Empirically one would prefer to use 5 TR for randomly generated problems
for the CVRP since this heuristic produces good quality solutions. Note
that it has the highest frequency for inclusion of the best known solution

in the confidence interval.

Number of times the confidence interval Performance Measure
Heuristic | includes the best known solution (Total) | Deviation | Min Maz
3TR 23(28) 8.3% 0.0015 0.2152
5 TR 21(27) 11.8% 0.0023 0.124
TTR 19(26) 13.3% 0.1655 0.1656
9TR 16(27) 18.3% 0.0014 0.1223

Table 7.28: Summary of the quality of the best known solution for the CDVRP

In the case of CDVRP:
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e 79 times, or about 73% (out of 108), the best known solution is included
in the 100{1 — exp~®)% = 99.75% confidence interval. Note that in some
cases the generated solutions are the same as the best known solutions and

hence they are not counted in the analysis.

e The deviation of the best known lower bound and the estimated solution is

within 18.3%.
o The performance measure is between 0.14% to 21.5%.

e Heuristic 3.7'R has the highest frequency for inclusion of the best known
solution in the confidence interval and the lowest measurement of the per-
centage deviation from the best known solution compared to other heuris-
tics. Hence one would prefers to use 3 TR for randomly generated CDVRP

problems.

7.3.3 Conclusion

Performing the Friedman test on randomly generated problems produced similar
results to that given by the literature problems. That is there is no significant
difference between the quality of the solutions generated by the algorithms based
on different neighbourhood parameters. The result also suggests that the differ-
ent neighbourhood parameters has no effect on the quality of the solution with

different structure i.e. different capacity tightness.

By the fitting of Weibull distribution, we have successfully estimated the point
estimate, &, and the confidence interval for the optimal objective function value
for each CVRP problem. The deviation of the estimated solution from the best

known solution is encouraging for the CVRP case.

In the next chapter we study the complexity of the solution space based on the

199-city problem and the running of the TABUROUTE algorithm.

183



Chapter 8

Complexity of the Solution Space
of a Combinatorial Optimisation

Problem

In the past 20 years an enormous number of algorithms have been developed to
solve combinatorial optimisation problems. Many of these problems are proven
to be N'P-hard (Lawler et al., 1985). All the exact algorithms for these hard
problems cannot solve large size problems in a reasonable time. As a result, ap-
proximate or heuristic algorithms have been proposed to find good solutions to
these problems. Recently, several probabilistic algorithms based on the principles
of genetic algorithm, neural networks, simulated annealing and tabu search meth-
ods have been proposed. These algorithms aim to provide high quality solutions,
compared to solutions derived using traditional heuristics, with a modest increase

in computing time.

In order to test and compare the algorithms developed, benchmark problems are
used. Yet we have little knowledge about. the complexity of the solution space of
these benchmark problems. This chapter uses the ideas developed in Chapter 5
and extends the work of Chapter 7. The objective of this chapter is to propose

a method, using statistical analysis, to evaluate the complexity of the solution
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space of a typical combinatorial optimisation problem in the context of a proposed
algorithm. The analysis is illustrated using the 199-city VRP from the literature
and TABUROUTE algorithm. The 199-city problem is studied because it is one

of the common literature problems used to test many VRP algorithms.

The rest of this chapter is divided as follows. Section 8.1 gives the background of
the complexity of the solution space of any combinatorial optimisation problem.
A general neighbourhood search method is discussed. Section 8.2 discusses the
199-city capacity and distance restricted vehicle routing problem (CDVRP) and
introduces the notation used. Section 8.3 examines the searching characteristics
of the TABUROUTE and the results are shown in Section 8.4. Some of the results
of this chapter have appeared in Achuthan and Chong (1999b).

8.1 Complexity of Solution Space

Formally any combinatorial optimisation problem can be stated as
minimise {f(z) : z € S}

where S represents a finite, discrete set of feasible solutions of the problem, and
f is a real valued function defined on S. Often it may be difficult to describe a
typical element of S. It will be easy however to describe elements of a superset
S of S where &S is also finite and discrete. Thus, a typical element z of & can
be represented using mathematical notation of finite size, such as z € B™ or a
system of linear equations, etc. Furthermore, for a given z € S, 1t will be easy
to check whether x € S. The objective function f(z) defined over S is extended
to f'(z) defined on S such that f'(z) = f(z) for every z € S. Although the
size of S is finite, but for many combinatorial optimisation problems & grows
exponentially in terms of some size parameters of the problem. For example,
for a given set of n symbols {1,2,...,n}, the set S may be defined as the set
of all permutations of the n symbols, so that | & |= n!. The set of feasible

solutions S can be described through some verifiable property for z € S. In other
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words given any z it is easy to verify whether z € 5. For such combinatorial
optimisation problems, complete enumeration of § is unrealistic due to the size
of the set. Hence many approximate or heuristic algorithms developed for solving
the combinatorial optimisation problem are based on local or neighbourhood
search where the solution is improved from one solution to another until a certain
termination condition is satisfied. Such improvement is accomplished through a

well defined move operation from a solution to one of its neighbours.

We refer to the definition of the neighbourhood of z to Section 5.1.1. Recall
that the neighbours of z, N(z), is a subset of S where a suitable neighbourhood
structure has been defined. We define z* as a local minimum of § if z* € &
and f'(z*) < f'(z) for all z € N(z*). Let ff,1 < i < 3 be all the distinct
local minimum objective function values realised by the set of all local minimum
points of S. Similarly, z* € S is a local minimum of S if f (z*) < f{z) for all
z € N(z*) 8. Let gf,1 < i < v be all the distinct local minimum objective
function values realised by the set of all local minimum points of 5. We present

a general Neighbourhood Search Method in the following.
General Neighbourhood Search Method
Step 1. The given problem is min {f(z) : z € S}. Define a superset S such that

S C S and extend f(z) to f'(z) on S with the property f'(z) = f(z)

for every z € S.
Step 2. Define the Neighbourhood Structure N(z) for z € S.

Step 3. (Initialisation) Set 7 = 1 where r denotes the rth attempt to locate
a minimum point. Set R* = R where R* is the upper limit on the
number of attempts to locate a set of local minimum points. Define a

stopping rule, denoted by STR, for the search for a local minimum.

Step 4. {Search for a local minimum) Construct an initial random solution, z”
from S. Set ¢ = 1 and z, = z" where t denotes the {th iteration in the

search for a local minimum.
Step 5. (Iteration ¢t and move operation) Choose 7, € N(x;) satistying cer-
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tain prespecified conditions regarding the objective function values of

the neighbours.

Step 6. (Check stopping rule for a local minimum) If the current solution Zy;
satisfies the stopping rule STR, then go to Step 7. Otherwise set
t =t -+ 1 and go to Step 5.

Step 7. (Local minimum of rth run) Set z; = z:.1 where z7 denotes a local
minimum point obtained in the rth run of this search method. Ifr > R*

go to Step 8. Otherwise set r =r 4 1 and go to Step 4.

Step 8. Note that ¥, ..., z}, ..., 2% provide the set of Jocal optimum solutions
obtained by the heuristic. Define z* as the best known solution where

F(z*) = min{f(z2) : 1 <r < R*}. Output z* and f(z*). Stop.

For convenience, we have described a very simple version of the above General
Neighbourhood Search Method. Many of the heuristics suggested in the literature
involve some special features such as diversification, tabu search strategies, etc.
as part of the search methods. We assume that all such features can be included
as part of the selection criteria in Steps 4 and 5 and the stopping rule in Step
7. Several versions of the Neighbourhood Search Method can be obtained by
varying the techniques of defining the superset S, the neighbourhood structure

N(x), selection criteria in Steps 4 and 5 and the stopping rule.

The output of an implementation of the General Neighbourhood Search Method
on a typical combinatorial optimisation problem provides a set of solution z7,1 <
r < R* and the corresponding f(z*),1 < r < R*. This realisation can be
viewed as a random sample of observations taken from a set of all local minimum
points and the corresponding distinct objective function values f7, ..., f3- Note
that some of the observations will be part of the set of feasible solutions S and
the corresponding distinct objective function values g7, ..., gy. How ‘good’ is a
neighbourhood search method in solving a ’typical instance’ of a problem 7Itis
not easy to answer these questions in an objective way. In the following discussion

we outline several important characteristics that may provide an assessment of
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the search method on an instance of a problem. We first introduce some notation
regarding the unknown population with reference to the given neighbourhood

search method and an instance of the problem being solved.

Let the sets of local minimum points of S be denoted by level sets SiM ={z €
S: fiz) = f3},1 < 6 < B. Similarly, the sets of local minimum points of S
are denoted by level sets SF™ = {z € S: f(z) = g;},1 < 8 < 7. Note that at
the outset, we have no prior knowledge of 7, 3; ¢5,1 <0 < v7; f3,1 €8 < 3;
SEM 1 <9< 3 and S§M,1 < 6 <. Furthermore, note that gj and fj may not
be related. The quality of the superset S can be assessed by estimating | S | and

| § |; and w the proportion of the set of feasible solutions. The definition of

| S| <
superset S can be considered satisfactory when %?: is close to 1 and it is very
5.
unsatisfactory when :?: is very close to zero.

The complexity of the solution space of the given instance of the problem with

reference to the search method is quantified by several characteristics such as
1. The number of distinct local minimum values, 3 and -y respectively for the
superset & and the feasible set 5.

9. The sizes of the level sets of local minimum values, | S§™ |,1 <0 < 8 and

| §FM |1 < @ < vy for the superset S and the feasible set S respectively.

8 LM " gLM
3. The proportions of local minimum points 29:1{ ‘1989 | and Eg‘li A|9 Iﬂ |
for S and S respectively.
: o | SEY |
4. The proportion of feasible local minimum points T in &.

When 3, 7, i | SFM | and i | SFM | are large integers, the neighbourhood
search methoﬁgs1 are unlikely tc?zﬁlnd the optimal solution to the original problem.
Researchers use certain benchmark problems to assess any proposed new algo-
rithm. But most of the benchmark problems are hard problems with unknown

complexity of solution space. Their suitability to assess a proposed new algorithm
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is questionable. In the next section we apply the definitions described above to

one such benchmark problem, namely the 199-city CDVRP.

8.2 199-city Capacity and Distance Restricted

Vehicle Routing Problem

In this section we study the 199-city literature problem in detail in relation to
its structure and the search characteristics of TABUROUTE (Gendreau et al.,
1994). Define the following notation:

S = {z : z is a VRP route}

Sc = {z:z € S and z satisfies capacity restriction}
Sp = {z:z € S and z satisfies distance restriction}
Scp = ScMSp

Note that Scp is the set of feasible solutions denoted by S in the previous section.
On S we define a neighbourhood structure based on the insertion methods of types
A, B and C introduced by Gendreau et al. (1992) as discussed in Section 6.1.
Furthermore the extension of the objective function f from Scp, Sc or Sp to S

can be the same i.e. f'(7) = f(1),V7 € S.

Recall that for the general VRP, the problem is to find the minimum cost solution,
that is to find f(7*) = min{f'(r) : 7 € S} where S is the set of all VRP solutions.
More precisely the CDVRP can be stated as finding f(7**) = min{f(r) : 7 €

Sep} where

= (1, e T) U e ={1,..,nt, N =0,k #1,
o [T U= b=k 2L ]
EiETinSQtd(Tk)SL>1SkSm

Note that 7 = (71, ..., Ts) denotes a set of m vehicle tours where 7 = (0, vk, Vk2,
<oy Ukj,, 0) 18 the kth tour visiting customers Vg1, k2, ...y Ukj, from the depot 0. For
notational convenience, the set of customers visited by tour 7 is also denoted by

73, ignoring the depot. The total distance travelled by tour 7 is denoted by d(7y)-

189



Note that 75 N7y = @ for k £ ! and Q and L are the prescribed vehicle capacity
and allowable distance for the vehicle tours, 7,1 < k < m respectively. Hence

we have Sgp € S and f(r**) > F(r*). If 7* € Scp then f(r**) = f'(r*) = f(r°).

For a given z € S, N(z) is the neighbourhood of z and
N(z) = {2’ € S : 7' can be obtained from z by any one of the insertions type}.

Let the feasible neighbours of z be denoted by N¢(z)} = N(z) N Scp-

Note that a run of the TABURQUTE algorithm can be visualised as starting
from an arbitrary initial solution z, and travel through solutions z,, s, ooy TF,
such that z; € Ng(zi-1), f(z:) < f(zi-1) and 7} € Sgp = U, Sp™. In an actual
realisation of a run of TABUROUTE the sequence T = Ty, 2, ..., T = 2} will
be a subsequence of the feasible and infeasible solutions travelled by the various
iterations of the run. Furthermore, note that at the ith iteration of the rth
run of TABUROUTE, we have the associated solution z} and the corresponding
neighbourhood sets N (z]) and Ny(z7). Thus the set of solutions scanned through
as part of the neighbourhood sets by the rth run of TABUROUTE can be denoted
by N' = Uk N(z}) and Nj = Ul Ny(z]) where k, is the total number of

iterations used in the rth run.

Thus, we are particularly interested in answering the following questions for a

given algorithm based on a given neighbourhood structure.

1. How many local minima are there in the problem 7 That is, what is the

size of St 7

2. How much improvement has been made for a particular run ? That is, what
is the magnitude of f(«7) — f(z} ) where =z, is the terminating solution of

k.th iteration of rth run?

For a large m, it is impossible to find | Sgp | by a complete enumerations of S¢p.
Furthermore each run of TABURQUTE stops at exactly one element of S¢p.
Thus our effort will be to estimate | S&p | through implementing TABUROUTE

for several runs, each run starting with a random solution.
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We have gathered the solutions of 140 runs of the 199-city problem by TABU-
ROUTE algorithm with neighbourhood parameter 5. We investigate the search
characteristics of the TABUROUTE algorithm in the next section.

8.3 Search Characteristics of the TABUROUTE
Algorithm for the 199-city Problem

In this section we are interested in finding out the characteristics of the TABU
ROUTE algorithm. We run the experiment on the 199-city problem with the
neighbourhood parameter p = 5 for 140 times with a maximum of 25 vehicles. In

each run of the problem, we collect the following data:

e the total number of neighbourhood solutions encountered, | N* |;

e the number of feasible neighbourhood solutions encountered, | N} | = |

N Sep |;
e CPU time (in seconds);
e the starting solutions and final solutions;
e the number of solutions being capacity feasible, | N™ N S¢ |;
e the number of solutions that are distance feasible, | N N Sp |;

e the number of solutions with both capacity and distance infeasible, | N" |

- | N7 |;

s cumulating all the runs, the total number of solutions and both capacity
and distance feasible solutions can be denoted by N and Ny respectively

where N = UM N™ and Ny = U},“:OIN};
e the total number of iterations; and

e the iteration number where the best solution x; was obtained.
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TABURQUTE algorithm has the following main random features:

e For each run the starting solution is generated through a random selection

of customers into routes.

e At each iteration i of a run, the current solution z; is improved by the
move operation by locating zi11 € N (z;) such that f(zi1) < f(z;). Note
that this operation is of deterministic nature since for a given z;, the neigh-
bourhood structure N(z;) and the objective function f(x) are deterministic.
However, the complexity of the neighbourhood structure, the enormousness
of the number of solutions and the inherent features of the objective func-
tion will allow the move operation to be considered as a random movement

in the desired direction.

o Thus the final solution z} of each run & can be considered as a random

sample from S¢p.

To understand the consistency and quality of the solutions provided by TABU-
ROUTE, we study the sampling distribution of the objective function value of
the starting solutions and the final solutions of various runs. The gap between
the objective function values of the final and starting solutions is also examined.
A natural question arises: Is the random sample generated by the 140 runs from

a Normal population 7 The result from the data is summarised in Table 8.1.

Objective function value

Is the corresponding sample | p-value | mean | standard deviation
from a Normal distribufion
3
starting solution | No 0.046 | 3694.78 29.02
final solution No 0.004 | 3572.74 45.06
gap Yes 0.13 122.04 52.56

Table 8.1: The result of the Anderson-Darling normality test for various samples

Figure 8.1 provides the normal probability plot and shows the Anderson-Darling

normality test results corresponding to Table 8.1. The starting solutions, final
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solutions and the gap of the solutions are shown in Table B.22 in Appendix B.
From Table 8.1 we can conclude that the improvement of the starting solutions to
the final solutions i.e. the gap between the starting solutions to the final solutions

follow a normal distribution with mean 122.04 and standard deviation 52.56.

In the following we study the distribution of the objective function values of the

starting and final solutions.

Consider a set of » independent samples, each sample of size g, from a parent
population bounded below by ‘a’. If z; is the smallest value from sample ¢, let
v =min{z : 1 <1 < r} be the smallest value. As g gets larger, the distribution of
z; follows a Weibull distribution with ‘a’ as the location parameter (see Appendix
A for details of this subject). The cumulative Weibull distribution function is

given by

F(zo) = P(x < 7o) =1 —ezp [_ (:Eo b— a)c]

for zp > a > 0,b > 0,¢ > 0 where o is the location parameter, b is the scale
parameter and c is the shape parameter. The null hypothesis is that the final
solutions follow a Weibull distribution. Hence we fit the Weibull distribution to

the final solutions obtained from the 140 runs with r = 28 and ¢ = 5. Table 8.2

shows the result we obtained. We conclude that the final solutions follow a
i b é Best known solution | fconfidence interval] | Deviation
3371.79 | 156.0496 | 5.9664 3385.85 3315.7372, 3471.7869 -0.0042

Table 8.2: Results obtained from fitting the 140 solutions of the 199-city problem
to Weibull distribution

Weibull distribution with estimated parameters @,b and & as shown in Table 8.2.

The estimated solution & is 0.4% from the best known solution in the literature.

We proposed that the objective function value of the starting solutions follow
a log-normal distribution and fitted the log-normal distribution with p=8.2146
and ¢=0.0078 to the starting solution. The probability density function of the

log-normal is given by
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1 —(Inz — p)?
f(w)_:w\/i?_reXp 20,2 .

We use the test statistic, 7', the modified form of D, by Stephens (1974) (cited
in Scheaffer and McClave (1990})

T=D (\ﬂn) 1012+ ﬂ) (8.2)

(n)

where D is based upon the maximum distance between the estimated distribution
and the empirical distribution. At a=0.05 significant level, the null hypothesis is
rejected if T > 1.358. From our sample, using (8.2) we have T' = 1.0736. Thus we
do not reject the null hypothesis that the starting solutions are a sample drawn

from a log-normal distribution.

From the data gathered, we also observed the folowing:

o The average proportion of feasible neighbourhood solutions for 140 runs,

N
~———|| J\{((;f)) ll is 0.1094 =~ 11% and the standard deviation is 0.0112. This sug-

gests the feasible neighbourhood is rather small.

N7 |
| N[’
each run is very small (with mean = 0.001473 and standard deviation =

visited in

e The proportion of the feasible solutions in each run,

0.000826) which suggested that the algorithm processes a lot of infeasible

solutions.

e About 70% of the final solutions are obtained within first 30% of the search

time which implies that 70% of the search time is wasted.

In the next section, we attempt to answer the first question posed in Section 8.2.
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Figure 8.1: Normal probability plot and Anderson-Darling test for the starting, final solution and gap.
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8.4 How many local minima are there for the

199-city problem ?

Let T = The total number of solutions for 199-city problem that can be formed
using at most 25 vehicles. The number of local minima for the 199-city problem

using at most 25 vehicles can be estimated as

1407
10 (8.3)

We can compute T as follows:

Let S(k,n) = Number of solutions with n customers using & vehicles. There are

two cases to be considered:

e Suppose we have allocated n — 1 customers into k — 1 vehicles, there is only

one way to allocate the last nth customer into kth vehicle.

e Consider that n — 1 customers are serviced using k vehicles. The last cus-
tomer n can be inserted to any of the k vehicles and between any of the n—1
customers. Let’s suppose that it is inserted to the right of 4,1 <: <n—1
or to the right of the depot. Hence there are n — 14k ways of inserting the

last customer.

Thus the number of feasible solutions for n customers using & vehicles can be

written recursively as :
S(k,n) =8k —1,n—1)+(n—-1+k)}Sk,n—1) (8.4)
The total number of solutions for n customers is given by
T=3 Sk n). (8.5)
k=1

Note that T includes some solutions that are infeasible. Since the number of

%gi-‘ we can range the values of £ from [gé—‘gi]

vehicles, k, required is at least l-

to n.
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The data obtained from 140 runs was with at most & = 25 vehicles, hence for this
particular case we have [%&-I — 14 and from the calculation of Mathematica

3.0, T is approximated to be
25 -
T =3 S(k,199) = 1.1661x10* (8.6)
k=14
Thus from (8.3) we have the expected number of local minima for the 199-city
problem based on at most 25 vehicles is

140T 1.1661x10%%2x140

= — 4.8587x10%"
S N 3.36x10° e

where
S0 N = 3.36x107

is the total number of neighbourhood solutions encountered from the 140 runs.

In the following we propose to give an approximate estimate for the number of
feasible local minima for the 199-city problem. Let P(N;) be the proportion of
the neighbourhood feasible solutions and P(S¢p) be the proportion of the local
minima in the set of feasible solutions. Then an approximate estimate of the
number of feasible local minima for the 199-city problem is P(N _f) (Sep)T. In
order to calculate the number of feasible local minima for the 199-city problem
for different %, we execute the algorithm 100 times for each &, 14 < k < 24. Note
that for k = 14 to 17 infeasible solutions were produced and we discarded these
values of k. Hence our sampling includes for & = 18 to 24 only. Note that for
k = 18 and 19, some runs are infeasible and so the total number of feasible runs

obtained for £ = 18 to 24 as 504. Hence

S e T Ni(k)  1.24x10°

= = (.1059
> 8 ,Efi“lNr(k) 1.17x10'°

P(Ny) =

and

504 504
PS¢ = = 0.4x1075.
Bon) = Yae s oy Np(k)  1.24x10° x
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The expected number of feasible solutions and feasible local minima can be cal-
culated using the Binomial distribution approach since each solution is either
*feasible’ or ‘infeasible’. This is shown in Table 8.3. The total number of solu-

tions, T, can be obtained using Mathematica 3.0 as follows:

24
T =Y S5(k,199) = 1.7526x10*".

k=18
Solution Proportion Expected number
Feasible P(N;) = 0.1059 TP(N;) = 1.8563x10°0
Feasible local minimum | P(S%p) = 0.4x107% | TP(N§)P(Sgp) = 7.4240x10%7

Table 8.3: Expected number for P(N;) and P(S¢p)

So the 95% upper limit for the number of local minimum 5%, can be obtained
using the table above and u + 4.470 where y = TP(N;)P(Sgp) and 0 =
JTP(N)P(Sgp)(1 — P(N;)P(Stp)). So p+ 4470 = 7.4240x10°%.

8.5 Conclusion

We have little knowledge about the complexity and the solution space of problems
in the literature. In this chapter we have attempted to estimate the number of

local optimal solutions for a particular problem using a statistical approach.

According to the study above, there are a lot of local minima for the 199-city
problem and of all the 140 runs we obtained 140 different solutions. We estimated
the expected number of local minima solutions for the 199-city problem with at
most 25 vehieles is 4.8587x10%. The 95% upper limit for the number of local
minima in 8%, for 199-city problem is 7.4240x10?7. Furthermore the feasible
region of the 199-city problem is rather small. This can be shown by that there
is only approximately 11% of the neighbourhood solutions being feasible during

the search by TABUROUTE.

Since the number of solutions found is huge, one has to run the algorithm many

times to achieve the best minimum. This also suggests that this problem is hard
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in the sense that there are too many local minima. We may not find this type of
problem in the real world. Hence we feel that this problem should not be used

as a benchmark problem to test different algorithms.
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Chapter 9

Conclusion and Further Research

This thesis focuses on two classical routing problems, the Travelling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP). These problems are easy
to describe in words but difficult to solve mathematically. Over the last 50 years,
various algorithms both exact and heuristics, have been developed to solve these
problems. In spite of the improvement and the use of the sophisticated computer
technology and mathematical formulations, there are several instances of these
problems that remain unsolved today. There is not one algorithm or method that

can handle all instances and/or all sizes of these problems.

Statistical Evaluation for the GENIUS Algorithm

A statistical analysis is carried out to optimally choose the parameters of the GE-
NIUS algorithm proposed by Gendreau, Hertz and Laporte (1992} for the TSP.
The analysis is performed using 27 literature problems with sizes ranging from
100 to 532 cities and 20 randomly generated problems with sizes ranging from
100 to 480 cities. In the case of the literature problems, the result shows that
9_CGENI_ABC_US (with neighbourhood parameter p = 9, insertions methods
type A, type B and type C and using the convex hull technique for constructing
the starting solution) is the best heuristic among the 36 heuristics. In the case

of randomly generated problems, 9.CGENI_AB_US (with neighbourhood param-
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eter p = 9, insertions methods type A and type B and using the convex hull
technique for constructing the starting solution) proves to be the best heuristic.
Furthermore, an estimate of the optimal objective function value together with
the corresponding confidence interval is developed using the Weibull distribution.
These estimates of the optimal objective function values are within 8.2% of the
best objective function value known for the literature problems and 6.5% for the

randomly generated problems.

Since the GENIUS algorithm proved to be efficient for large dimension problems, a
hybrid heuristic algorithm combining the GENIUS algorithm and the branch and
bound method is proposed. This algorithm was tested on the literature problems
with sizes ranging from 572 to 724 cities and randomly generated problems with
sizes ranging from 500 to 700 cities. The solutions generated were found to be

within 2.4% of the best known objective function value for the literature problems.

Statistical Evaluation for the TABUROUTE Algorithm

In the case of VRP, the TABUROUTE algorithm proposed by Gendreau, Hertz
and Laporte (1994) was statistically analysed for choosing the best parameter
values. The analysis was carried out based on different neighbourhood param-
eters. These are tested using 14 literature problems with sizes ranging from 50
cities to 199 cities and 49 randomly generated problems with sizes ranging from
60 cities to 120 cities. In both sets of problems, the statistical test accepted the
hypothesis that there is no significant difference between the solutions generated

by the TABUROUTE for various parameters used.

Complexity of the Solution Space

To assess the performance of a newly designed algorithm, benchmark problems
from the literature are often used. However, there is limited documentation or
study regarding the complexity of the benchmark problems. In this thesis, an

approach to quantify the complexity of an instance of a problem in the context
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of specific algorithm is proposed. In particular, the complexity of a benchmark
problem is explored based on the concept of neighbourhood structures and the
corresponding local and global optimum solutions. This is a main feature of every
NP hard combinatorial optimisation problem. In the present context of CDVRP,
using Taburoute algorithm, the number of local optimum solutions for the set of
feasible solutions of a given problem is estimated. This is demonstrated through

the 199-city literature problem.

Data regarding the set of feasible and infeasible solutions were collected based
on 140 runs of the Taburoute algorithm on the 199-city problem. This sample
includes the number of solutions with distance and capacity feasible, the number
of feasible neighbourhood solutions encountered for one run, etc. to examine the
feasible region and the number of solution for the problem. The results show that
the expected number of local minima solutions for the 199-city problem with at
most 25 vehicles is 4.8587x10%74. Furthermore, the feasible region of the 199-city
problem is rather small. There is only approximately 11% of the total size of S,
the feasible region based on the TABUROUTE algorithm. Since the expected
number of solutions found is huge, one has to run the algorithm many times to
achieve the best minimum. This suggests that the problem is "hard’ in the sense
that there are too many local minima. Therefore this problem should not be used

as a benchmark to test any new algorithms.

Thus to summarise, the main findings of this thesis are

o Any heuristic suggested for a NP hard combinatorial optimisation problem
of large dimension must be statistically explored to assess its closeness to

the optimal objective function value.

e Whenever a heuristic does not provide a reasonable closeness to optimal
objective function value, the solution space of the specific instances of the

problem must be investigated.

e The benchmark literature problem may not be good indicator to assess the

capability of new algorithms.
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Further Research

For further research, one might like to characterise the statistical distribution
followed by the objective function values of the local optimal solutions. Though
the Weibull distribution is an extreme value distribution, it does assume that
the underlying random variable has a continuous distribution. In the context
of combinatorial optimisation problem the local optimal objective function value

follows an extreme discrete distribution.

Assume specific properties on the problem instances and neighbourhood struc-
tures, then investigate into possible statistical distribution that can describe the
random variables representing the objective function value of the local optimum.
Such analysis on literature problem may not yield any universal statistical distri-

bution.
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Appendix A

A.1 Friedman Test

Comparison of k heuristics denoted by Hy, ..., Hy can be made through a non-
parametric test suggested by Friedman. Friedman test is an extension of the
Wilcoxon matched pairs procedure. It is a non-parametric test of homogeneity,
similar to the classical ANOVA. The null hypothese is that the & heuristics are all
equal in their performance. This test can be described as follows: Let z;; denote
the objective function value of the solution obtained by heuristic 7 on problem 3.
In order to make the comparison of heuristics independent of the parameters of
the problems, define the ratio ry; = %JL where L; = {the best known solution of
problem j}. For a given problem j, the ratios ry; are arranged in increasing order
and ranked from 1 to k. Those ratios giving rise to a tie are given the average
rank of the associated indices. Thus let R;; be the rank given to heuristic 7 on

problem j. Furthermore let
Ri=3 Ry
j=1

denote the total score associated to heuristic ¢ = 1,..., k. Under the null hypoth-
esis: Hy: E[R)] = B[R] = ... = E[Ry] (they all attain the same expected total
score) where E[R;] is the expected total score of heuristic i. The test statistic

(n — 1)(Br — (nk(k + 1)°)/4)

Tr =
d Ap — Bp
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follows the F-distribution with (k — 1) and (n — 1)(k — 1) degrees of freedom,

where
k n
Ap =YY (Ry)*
i=1 j=1
and
B lzk:Rﬂ
F= i

The null hypothesis is rejected if Tr > F((k—1), (n—1)(k — 1)) at c significance
level. For further details of this test see Golden and Stewart (1985).

A.2 Expected Utility Approach

Friedman test is a test based on location (mean or median) and not the shape
or dispersion of the distribution. Thus the results can be less satisfying. Hence
Golden and Assad (1984) proposed the expected utility approach. The expected
utility approach was proposed to compare two or more heuristics and provides
answers to questions such as which heuristic is the most accurate? It is a test
to compare two or more heuristics and is concerned with the downside risk and
expected accuracy. The procedure searches for a heuristic which performs well
on average and rarely performs poorly. The approach can be described in the

following:
e Let z;; be the percentage deviation of the obtained solution and the best

known solution for heuristic ¢ and problem j.

o Fit a gamma distribution to the histogram of frequency vs. percentage

deviation from the solution.

o A risk averse decreasing utility function of the form u(z) = v — Bexp™
where 7, 3,t > 0 is selected. Note that v and 3 can be chosen arbitrarily
and ¢t < 1/b.
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e Finally the expected utility for each heuristic is calculated and we select
the one that yields the largest value.

The gamma, function was used for several reasons: First, it has a simple density

function with zero minimum value. In particular,

1@ = ()" e () e

where

['(c) = foo exp “ut " du.
0

Secondly, the parameters can be estimated by method of moments:

s? T\ 2
T 8
» 1 2 1
where:t::EE z; and s° = —

S (x:; — %)* are the sample mean and sample
n

S
I

1 1
variance (unadjusted). Thirdly, the moment generating function is in a simple
form:

E(exp®) = (1 —bt) "
So the expected utility function can be easily computed as
I3 u(@)f(2)ds = (v — Bexp®®) f(z)dz = v — BE(exp™) =y — B(1 - bt)™"

The heuristic with the largest value of expected utility function is chosen to be
the best heuristic.

A.3 Fitting of Weibull Distribution

Heuristic solutions are evaluated using statistical extreme value theory, Weibull

distribution, which was proved by Fisher and Tippet (1928) (cited in Golden,
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1978) to obtain the optimal point and confidence interval for the optimal solution.
Suppose we have r independent samples, each of size ¢, from a parent population
which is bounded from below by a. If z; is the smallest value from sample i, let
v = min{z : 1 < i < r} be the smallest value. As g gets larger, the distribution
of z; follows a Weibull distribution with ‘e’ as the location parameter. The

cumulative distribution of Weibull distribution is given by

F(zo) = P(z < 20) = 1— exp [— (xo 3 a”

for z; > ¢ > 0,b > 0,¢ > 0 where a is the location parameter, b is the scale

parameter and c is the shape parameter.

Estimate for the three parameters can be determined by using the principle of
maximum likelihood which was suggested by Harter & Moore (1965), Mann et
al. (1974) (cited in Golden, 1978), Zanakis (1977), Golden and Alt (1979) (cited
in Golden and Stewart, 1985). Golden (1977, 1978) suggested the least square

approach as outline in the following:

e The Weibull cumulative distribution can be written as

ol (5] =1 o

e Taking the logarithms twice, we have

¢ln(zg — a) — clnb = In(— In(1 — F(Xo)))
which is an equation of a straight line.

o The equation can also be written as
In(—In(1 — F(Xq))) = Bo + B1In{zp — a)

by substituting % = —clnd and 5, =c.

o If ‘a’ is fixed, the least square method can be used to estimate 5y and j;.
Then ‘b’ and ‘c’ can be estimated. The Kolmogorov Smirnov (K-5) statistic

is used to identify the set of parameters.

207



The K-S test is outline in the following:

e Let 71, ...,zn be a sample of observations and reorder them from smallest

to largest, (1) < ... £ Z(n)-
e Calculate

Fo(z) = Loy Si< 3t =2,m
1 if!L'Z:E{n).

e Under the null hypothesis, the random variable X follows the distribution

funtion F(z). So the K-S statistic D is based on the maximum distance

between F(z) and Fy(z), i.e.
D = mgx | F(2) - Fua)|

where D = max(D*+, D7), DF = maxicn| 21— F(z;)], D™ = maXicical F(Z3)—
=
—].
e The null hypothesis is rejected if D) is large. We used the modified form of

D with specified F(z) by Stephens (1974) (cited in Scheaffer and McClave
(1990)) which can be given as

0.11
T = 124 =1 Al
D|y/n+012+ N (A.1)

The rejection region starts at 1.358 for o = 0.05 significant level.

The set of parameters which yields the smallest Kolmogorov Smirnov (K-S) statis-
tic I is selected because it is much more sensitive to small changes in ‘a’ compared
to selecting a set of parameter which yields the largest correlation coefficient. An
approximate confidence interval of ‘a’ is given by (v — b,v). Golden and Stewart
(1985) pointed out that % is a performance measure and the smaller it is the

more powerful the heuristic.
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Appendix B

B.1 Tables
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Heuristic a280 | bier127 | chi130 | ch150 | d198 | eili01 | gil262

3. CGENIABC_US | 2593 | 118683 | 6099 | 6554 | 16032 | 641 2410
3. CGENIAB_US | 2612 | 118470 | 6099 | 6554 | 15836 } 641 2392
3_.CGENI.AC.US | 2605 | 118313 | 6118 | 6555 | 16457 | 640 2401
3.CGENI.BC_US | 2630 | 119054 | 6107 | 6554 | 15900 | 638 2407
5. CGENLABC.US | 2614 | 118616 | 6099 | 6564 | 15823 | 63& | 2410
5 CGENI_AB.US | 2590 | 118580 | 6099 | 6555 | 15793 | 638 2404
5. CGENI.AC.US | 2608 | 118856 | 6113 | 6570 | 15797 | 639 2407
5. CGENLBC_US | 2602 | 118616 | 6099 | 6555 | 15825 | 638 2405
7.CGENL_LABC_US | 2615 | 118621 | 6099 | 6555 | 15797 | 638 2402
7.CGENI_AB_US | 2600 | 118683 | 6113 | 6555 15780 | 638 2409
7 CGENIAC.US | 2608 | 118626 | 6113 | 6555 | 15780 | 638 2409
7 CGENLBC.US | 2599 | 118490 | 6113 | 6555 | 15795 | €638 2403
9 CGENLABC_US | 2607 | 118461 | 6099 | 6554 | 15780 | 639 2406
9 CGENIAB_US | 2603 | 118616 | 6099 | 6555 | 15790 | 640 2398
9_CGENI_AC_US | 2600 | 118616 | 6099 | 6554 | 15780 | 638 2397
9.CGENI.BC_US | 2608 | 118616 | 6099 | 6555 | 15784 | 638 2407
3.CENLLABC_US | 2609 | 118454 | 6108 | 6566 | 15786 | 641 2420
3 GENI_AB_US 2603 | 118621 | 6111 | 6554 | 15780 | 639 2416
3_GENI_ACUS 2607 | 118501 | 6125 | 6555 | 15832 | 638 2406
3_GENIBC.US 2606 | 118470 | 6118 | 6568 | 15804 | 638 2420

5 GENI.ABC_US | 2603 | 118647 | 6113 | 6556 | 15787 | 638 2406
5 GENIL.AB_US 2602 | 118490 | 6099 | 6555 | 15780 | 641 2400

5 GENI_AC_US 2614 | 118423 | 6099 | 6555 | 15793 | 638 2414

5 GENIBC_US 2612 | 118647 | 6113 | 6545 | 15780 | 638 2411
7.GENI_ABC_US | 2607 | 118615 | 6099 | 6550 | 15780 | 639 2403
7.GENI_AB_US 2508 | 118693 | 6113 | 6555 | 15780 | 638 2404
7T_GENI_AC_US 2601 | 118647 | 6113 | 6554 | 15780 | 641 2411
7_GENI.BC_US 2619 | 118693 | 6099 | 6361 | 15780 | 638 2414
9. GENI.ABC_US | 2601 | 118714 | 6099 | 6555 | 15780 | 638 2408
9 GENI_AB_US 2593 | 118423 | 6099 | 6555 | 15787 | 638 2399
9_ GENI_AC US 2615 | 118616 | 6113 | 6555 | 15780 , 639 2404

9 GENIBC._US 2615 | 118313 | 6099 | 6555 | 15787 | 638 2407

3_CCAUS 2643 | 121062 | 6382 | 6657 | 15871 | 653 2440
5 CCAUS 2643 | 121062 | 6213 | 6657 | 15871 | 638 2417
7.CCAUS 2643 | 121062 | 6213 | 6657 | 15871 | 647 2415
9 CCAUS 2643 | 120088 | 6162 | 6700 | 15871 | 653 2418

Table B.1: The best objective function value obtained over 100 runs for various heuristics j on

the given problem i i.e. min (ff;;): for the TSP on the literature problems
1<r<100 7
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Heuristic linl105 | in818 | pri07 | pri24 | pri36 | priff | pris?

3 CGENIABC_US | 14380 | 42691 | 44303 | 50030 | 97477 | 58564 | 73931
3_.CGENI_AB_US | 14403 | 42743 | 44303 | 59030 | 97120 | 58537 | 73880
3_.CGENIACUS | 14403 | 42391 | 44303 | 59030 | 97129 | 58554 | 73880
3 CGENLBC_US | 14380 | 42587 | 44303 | 59076 | 97133 | 58607 | 73818
5.CGENIABC.US | 14380 | 42345 | 44303 | 59030 | 97865 | 58571 j 73818
5.CCGENIAB_US | 14380 | 42320 | 44303 | 59030 | 96994 | 58571 | 73682
5.CCENIAC.US | 14380 | 42336 | 44303 | 55030 | 97011 | 58554 | T3880
5 CGENIBC.US | 14380 | 42378 | 44303 | 59030 | 97420 | 58571 | 73682
7 CGENIABC_US | 14380 | 42248 | 44303 | 59030 | 97388 | 58537 | 73682
7 CGENI_AB_US | 14380 | 42327 | 44303 | 59030 | 97220 | 58537 | 73682
7 CGENLAC_US | 14380 | 42214 | 44303 | 59030 | 96994 | 58537 | 73682
7 CGENI.BC.US | 14380 | 42371 | 44303 | 59030 | 97207 | 58637 | 73780
9_.CGENI_ABC.US | 14380 | 42357 | 44303 | 59030 | 97229 | 58537 | 73682
9 CGENI.AB_US | 14380 | 42395 | 44303 | 59030 | 97179 | 58537 | 73786
9.CGENI.AC_US | 14380 | 42265 | 44303 | 59030 | 97207 | 58537 | 73682
9_CGENI.BC_US | 14380 | 42494 | 44303 | 59030 | 97388 | 58537 | 73682
3_GENIABC_US | 14403 | 42541 | 44303 | 59076 | 97333 | 58537 | 73818
3_GENI.AB_US 14391 | 42630 | 44303 | 59030 | 96785 | 58607 | 73682
3.GENI_AC_US 14425 | 42791 | 44303 | 59164 | 96985 | 58746 | 73818
3_GENI.BC.US 14403 | 42741 | 44303 | 59030 | 97259 | 59110 | 73818

5 GENIABC US | 14380 | 42544 | 44303 | 59030 | 97207 | 58588 | 73682
5.GENI.AB.US 14380 | 42461 | 44303 | 59030 | 97007 | 58554 | 73682

5 GENI AC_US 14380 | 42460 | 44303 | 59030 | 97157 | 58588 | 73682
5 GENIBC US 14380 | 42337 | 44303 | 59030 | 97401 | 58588 | 73682
7 GENI.ABC_US | 14380 | 42201 | 44303 | 59030 | 97198 | 58537 | 73682
7.GENI AB_US 14380 | 42374 | 44303 | 59030 | 96994 | 58537 | 73682
7.GENI_AC_US 14380 | 42314 | 44303 | 59030 | 97170 | 58537 | 73818
7_GENIBC_US 14380 | 42306 | 44303 | 5903C¢ | 97007 | B853IT | 73682
9 GENLABC US | 14380 | 42436 | 44303 | 59030 | 97007 | 58537 | 73682
§ GENI_AB_US 14380 | 42365 | 44303 | 59030 ;| 97192 | 58537 | 73682
9_GENIAC_US 14380 | 42147 | 44303 | 59030 | 96994 | 58537 | 73682
9_GENI BC US 14380 | 42300 | 44303 | 59030 | 97170 | 58537 | 73682

3.CCATS 14380 | 43386 | 44482 | 60626 | 100278 | 61213 | 76385
5 CCAUS 14380 | 43013 | 44482 | 60396 | 99756 | 60864 | 74876
7.CCAUS 14380 | 42842 | 44482 | 60347 | 99756 | 59434 | 75578
9.CCALUS 14380 | 42842 | 44482 | 60347 | 99756 | 59225 | 74285

Table B.1: (Cont.) The best objective function value obtained over 100 runs for various heu-
ristics j on the given problem i i.e. 1<m3111100( fir;)s for the TSP on the literature problems
—_r...
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Heuristic pr226 | pr264 | pr299 | pr439 | rati95 | 1s225 tsp225

3. CCGENIABC.US | 80414 | 49203 | 48364 | 108460 | 2359 | 126643 | 3967
3. CGENIABUS | 80360 | 49135 | 48325 | 108186 | 2327 | 126062 | 3974
3. CGENIAC_US | 80459 | 49135 | 48321 | 108255 | 2350 | 126643 | 3972
3 CGENLBC_US | 80720 | 49203 | 48307 | 108109 | 2340 | 126643 | 3985
5_CCENLABC.US | 80369 | 49203 | 48208 | 107592 | 2348 | 126643 | 3983
5 CCENLAB_US | 80369 | 49135 | 48199 | 107455 | 2346 | 126643 | 3962
5. CGENI_AC_.US | 80369 | 49135 | 48259 | 107843 | 2342 | 126643 | 3982
5.CGENI_BC_US | 80369 | 49203 | 48304 | 107944 | 2347 | 126680 | 3979
7.CCENI_ABC US | 80369 | 49135 | 48197 | 107444 | 2348 | 126643 | 3959
7 CGENI_AB_US | 80369 | 49135 | 48199 | 107929 | 2345 | 126643 | 3969
7. CGENIL AC_US | 80369 | 49135 | 48193 | 107638 | 2345 ; 126643 | 3977
7 CGENI.BC_US | 80360 | 49135 | 48259 | 108075 | 2363 | 126962 | 3971
9 CGENIABC_US | 80369 | 49135 | 48193 | 107732 | 2349 | 126643 | 3969
9.CGENIAB_US | 80369 | 49135 | 48193 | 107790 | 2345 | 126962 | 3960
9 CCENIAC_US | 80369 | 49135 | 48193 | 107696 | 2348 | 126643 | 3976
9. CCENI.BC_US | 80369 | 49135 | 48244 | 107951 | 2344 | 126962 | 3977
3.GENILABC US | 80485 | 49135 ! 48466 | 107950 | 2340 | 126713 | 3961
3_.GENI_AB US 80467 | 49203 | 48371 | 108340 | 2349 | 126643 | 3975
3_.GENI_AC US 80418 | 49135 | 48340 { 108075 | 2347 | 126962 | 3965
3_ GENLBC.US 80440 | 49203 | 48365 | 109144 | 2353 | 127043 | 3977
5.GENILLABC.US | 80369 | 49180 | 48224 | 107907 | 2341 | 126643 | 3976
5. GENI_AB.US 80360 | 49203 | 48244 | 107647 | 2362 | 127444 : 3969

5 GENI_LAC_US 80369 | 49135 | 48267 | 107706 | 2352 | 126643 | 3970
5 GENIBC.US 80360 | 49203 | 48338 | 107989 | 2350 | 126680 | 3980
7 GENLLABC_US | 80369 | 49135 | 48193 | 108103 | 2358 | 127444 | 3966
7_GENI_AB.US 80369 | 49135 | 48233 | 107967 | 2346 | 126643 | 3969
7T_GENL AC_US 80369 | 49135 | 48288 | 107831 | 2343 | 126643 | 3978
7. GENI.BC.US 80369 | 49135 | 48327 | 107949 | 2348 | 126643 | 3966
9_GENIABC_US | 80369 | 49135 | 48224 | 107852 | 2351 | 126643 | 3978
9_GENI AB US 80369 | 49135 | 48254 | 107841 | 2347 | 126643 | 3968
9. GENI_AC.US 80369 | 49135 | 48278 | 107396 | 2349 | 126643 | 3936
9_GENI.BC_US 80369 | 49135 | 48244 | 108080 | 2345 | 126643 | 3977

3.CCAUS 81238 | 52326 | 48506 | 109430 | 2373 | 134748 | 3992
5 CCAUS 80518 | 52112 | 48199 | 109077 | 2372 | 134748 | 3989
7_CCAUS 80518 | 52002 | 48199 | 109077 | 2376 | 133412 | 3992
9.CCAUS 80518 | 51908 | 48199 | 108455 | 2376 | 130428 | 3992

Table B.1: (Cont.) The best objective function value obtained over 100 runs for various heu-
ristics  on the given problem ¢ i.e. 1<m§1100( fi;)« for the TSP on the literature problems
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Heuristic w139 | kroA100 | pebif2 | rdl00 | rd400 | ait532
3 CGENTABC.US | 42396 | 21282 | 51246 | 7911 | 15482 | 27873
3 CGENLAB.US {42080 ! 21282 | 51455 | 7911 | 15537 | 728053
3. CGENLAC.US | 42080 | 21282 | 51360 | 7911 | 15526 | 28022
3.CCENIBC.US | 42411 | 21282 | 51564 | 7911 | 15517 | 28049
5.CGENLABC._US | 42080 | 21282 | 51392 | 7911 | 15468 | 27809
5 CGENLABUS | 42080 | 21282 | 51514 | 7911 | 15431 | 28099
5 CGENLAC.US | 42324 | 21282 | 51483 | 7911 | 15456 | 28001
5 CGENLBC_US | 42080 | 21282 | 51620 | 7911 | 15520 | 27981
7 CGENIABC_US | 42080 | 21282 | 51305 | 7911 | 15492 | 27990
7 CGENLAB.US | 42080 | 21282 | 51527 | 7911 | 15492 | 28013
7 CGENLAC_US | 42080 | 21282 | 51273 | 7911 | 15475 | 27907
7 CGENLBC.US | 42080 | 21282 | 51229 | 7911 | 15515 | 27946
9. CGENLABC.US | 42080 | 21282 | 51197 | 7911 | 15403 | 27879
9.CGENLAB.US | 42080 | 21282 | 51395 | 7911 | 15458 | 27970
9.CGENLAC.US | 42080 | 21282 | 51171 | 7911 | 15515 | 27972
9. CGENLBC.US | 42080 | 21282 | 51529 | 7911 | 15465 | 27946
3.GENLABC.US | 42088 | 21282 | 51400 | 7917 | 15520 | 28046
3.GENLABUS | 42080 | 21282 | 51605 | 7917 | 15500 | 28135
3. CENLAC.US | 42080 | 21282 | 51448 | 7911 | 15468 | 28052
3 GENLBC_US | 42080 | 21282 | 51728 | 7911 | 15546 | 28105
5.GENIABC.US | 42080 | 21282 | 51360 | 7911 | 15498 @ 27952
5. GENLABUS | 42080 | 21282 | 51215 | 7911 | 15501 | 27948
5 GENILAC.US | 42080 | 21282 | 51464 | 7911 | 15540 | 27929
5.CENILBC US | 42080 | 21282 | 51527 | 7911 | 15435 | 28011
7.GENT ABC.US | 42080 | 21282 | 51516 | 7911 | 15428 | 27930
7.GENLABUS | 42080 | 21282 | 51165 | 7911 | 15440 | 28029
7 GENJ.AC_US | 42080 | 21282 | 51322 | 7911 | 15444 | 27961
7 GENLBC.US | 42080 | 21282 | 51462 | 7911 | 15522 | 27974
9.GENIABC_US | 42080 | 21282 | 51404 | 7911 | 15433 | 27944
9 GENLAB.US | 42080 | 21282 | 51422 | 7911 | 15501 | 27965
9 GENI AC_US | 42080 | 21282 | 51365 | 7911 | 15523 | 27918
9 CENIBC US | 42080 | 21282 | 51614 | 7911 | 15517 | 27888

3.CCAUS 42929 | 21282 52018 | 8090 | 15842 | 28187
5 CCAUS 42548 | 21282 51885 | 8084 | 15734 | 28157
7.CCAUS 42548 | 21232 51952 | 8084 | 15693 | 28158
9 CCAUS 42548 | 21282 51849 | 8084 | 15682 | 28159

Table B.1: (Cont.) The best objective function value obtained over 100 runs for various heu-
ristics § on the given problem § i.e. 1<m21}00( fir;)i for the TSP on the literature problems
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Heuristic a280 | bierl27 | chi30 | chi50 ; d198 esllf1 i qil268

3. CGENI_ABC.US | 1.0054 | 1.0034 1 1.0039 | 1.0159 ; 1.0191 | 1.0134
3. CGENI_ABUS | 1.0128 | 1.0016 1 1.0039 | 1.0035 | 1.0191 | 1.0059
3_CGENI.AC_US 1.010 ! 1.0003 | 1.003 | 1.004 | 1.0429 | 1.0175 | 1.0096
3. CGENI.BC.US | 1.0197 | 1.0065 | 1.0013 | 1.0039 | 1.0076 | 1.0143 | 1.0122
5.CGENLABC_US | 1.0135 | 1.0028 1 1.0055 | 1.0027 | 1.0143 | 1.0134
5. CGENILAB_US | 1.0042 | 1.0025 1 1.0041 | 1.0008 | 1.0143 | 1.0109
5 CGENIACUS | 1.0112 | 1.0048 | 1.0022 | 1.0064 | 1.0011 | 1.0158 : 1.0122
5_CGENIBC US | 1.0089 | 1.0028 1 1.0041 | 1.0028 | 1.0143 | 1.0113
7.CGENI_ABC_US | 1.0139 | 1.0028 1 1.0041 | 1.0011 | 1.0143 | 1.0101
7.CGENI.AB_US | 1.0081 | 1.0033 | 1.0022 | 1.0041 1 1.01430 | 1.0130
7 CGENILACUS | 1.0112 | 1.0029 | 1.0022 | 1.0041 1 1.01430 | 1.0130
7 CGENIBC.US | 1.0077 | 1.0017 | 1.0022 | 1.0041 | 1.0009 | 1.01431 | 1.0105
9 CGENI.ABC_US | 1.0108 | 1.0015 1 1.0039 1 1.0158 | 1.0117
9 CGENI_AB_US | 1.0093 | 1.0028 1 1.0041 | 1.0006 | 1.0175 | 1.0084
9_CGENI_ACUS | 1.0081 | 1.0028 1 1.0039 1 1.0143 1 1.0079
9_CGENI.BC_US | 1.0112 | 1.0028 1 1.0041 | 1.0003 | 1.0143 | 1.0122
3_GENLABC_US | 1.0116 | 1.0014 | 1.0014 | 1.0058 | 1.0003 ; 1.0191 | 1.0176
3 GENI_AB_US 1.0093 | 1.0028 | 1.001% | 1.0039 1 1.0158 | 1.0159
3_GENI_AC_US 1.0108 | 1.0018 | 1.0042 | 1.0041 | 1.0032 | 1.0143 | 1.0117
3_GENIBC.US 1.0104 | 1.0015 | 1.0031 | 1.0061 | 1.0015 | 1.0143 | 1.0176
5 GENIABC.US | 1.0083 | 1.0030 | 1.0022 | 1.0041 | 1.0004 | 1.0143 | 1.0117
5 GENI_AB_US 1.0089 | 1.0017 1 1.0041 1 1.0191 | 1.0092
5.GENI_LAC_US 1.0135 | 1.0011 1 1.0041 | 1.0008 | 1.0143 | 1.0151
5.GENI.BC_US 1.0127 | 1.0030 | 1.0022 | 1.0026 1 1.0143 | 1.0138
7.GENI.ABC.US | 1.0108 | 1.0028 1 1.0033 1 1.0158 } 1.0105
7_GENI_AB_US 1.0073 | 1.0034 | 1.0022 | 1.0041 1 1.0143 | 1.0109
7.GENI_AC_US 1.0085 | 1.0031 | 1.0022 | 1.0039 1 1.0181 | 1.0138
7_.GEN1.BC_US 1.0155 | 1.0034 1 1.0050 1 1.0143 | 1.0151
9_GENI.ABC.US | 1.0085 | 1.0036 1 1.0041 1 1.0143 | 1.0126
9 GENI_AB_US 1.0054 ; 1.0011 1 1.0041 | 1.0004 | 1.0143 | 1.0088
9.GENI_AC_US 1.0139 | 1.0028 | 1.0022 | 1.0041 1 1.0158 | 1.0109
9_GENLBC_US 1.0139 | 1.0002 1 1.0041 | 1.0004 | 1.0143 | 1.0121
3_.CCAUS 1.0248 | 1.0235 | 1.0464 | 1.0197 | 1.0057 | 1.0381 | 1.0260
5.CCAUS 1.0248 | 1.0235 | 1.0186 | 1.0197 | 1.0057 | 1.0143 | 1.0164
7_.CCAUS 1.0248 | 1.0235 | 1.0186 | 1.0197 | 1.0057 | 1.02861 | 1.0155

9 CCAUS 1.0248 | 1.0228 | 1.0103 | 1.0263 | 1.0057 ¢ 1.03815 | 1.0168

Table B.2: Ratio for the TSP on 27 literature problems for Case 1
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Heuristic Tinl05 | lin818 | pri07 | pri24 | pri36 | priff | pris2
3_CGENI_ABC_US 1 1.0158 1 1 1.0072 | 1.0004 | 1.00336
3.CGENI_AB_US | 1.0015 | 1.01698 1 1 1.0035 1 1.0026
3_CGENLACUS | 1.0016 | 1.0086 1 1 1.0036 | 1.0002 | 1.0026
3_.CGENI.BC_US 1 1.0133 1 1.0007 | 1.0037 | 1.0011 | 1.0018
5 CGENI_ABC.US 1 1.0075 1 1 1.0112 | 1.0005 | 1.0018

5 CGENI_AB_US 1 1.0071 1 1 1.0022 | 1.0005 1
5. CGENI.AC_US 1 1.0073 1 1 1.0024 | 1.0002 | 1.0026
5_CGENIBC_US 1 1.0083 1 1 1.0066 | 1.0005 1
7_CGENI_ABC_US 1 1.0052 1 1 1.0063 1 1
7_CGENI_AB_US 1 1.0071 1 1 1.0046 1 1
7_CGENI_AC_US 1 1.0081 1 1 1.0022 1 1
7_CGENIBC_US 1 1.0078 1 1 1.0044 1 1.0013
9 CGENI_ABC.US 1 1.0087 1 1 1.0047 1 1
9.CGENI_AB_US 1 1.0056 1 1 1.0042 1 1.0014
9_CGENI AC_US 1 1.0110 1 1 1.0044 1 1
9_CGENI.BC_US 1 1.0110 1 1 1.0063 1 1
3_.GENI_ABC_US | 1.0015 { 1.0122 1 1.0008 | 1.0057 1 1.0018
3_GENI_AB US 1.0007 | 1.0143 1 1 1.0601 | 1.0011 1
3_GENI_ACUS 1.0031 | 1.0181 1 1.0022 | 1.0022 | 1.0035 { 1.0018
3_.GENIBC_US 1.0015 | 1.0169 1 1 1.0050 | 1.0097 ; 1.0018
5_GENI_ABC_US 1 1.0122 1 1 1.0044 | 1.0008 1
5 GENI_AB US 1 1.0103 1 1 1.0024 | 1.0002 1
5. GENLAC TS 1 1.0102 1 1 1.0038 | 1.0008 1
5_GENI_BC_US 1 1.0073 1 1 1.0064 | 1.0008 1
7T.GENI_ABC_US 1 1.0041 1 1 1.0044 1 1
7.GENI_.AB US 1 1.0082 1 1 1.0022 1 1
T.GENI_.ACUS 1 1.0067 1 1 1.0041 1 1.0018
7_GENI.BC_US 1 1.0065 1 1 1.0024 1 1
9 GENI_ABC_US 1 1.0096 1 1 1.0024 1 1
9 GENI_AB US 1 1.0079 1 1 1.0043 1 1
9 GENI_AC_US 1 1.0028 1 1 1.0022 1 1
9_GENIBC_US 1 1.0064 1 1 1.0041 1 1
3_CCALUS 1 1.0322 | 1.0040 | 1.0270 | 1.0362 | 1.0457 | 1.0366
5 CCAUS 1 1.0234 | 1.0040 ; 1.0231 | 1.0308 | 1.0397 | 1.0162
7.CCAUS 1 1.0193 | 1.0040 | 1.0223 | 1.0308 | 1.0153 | 1.0257
9 CCAUS 1 1.0193 | 1.0040 | 1.0223 | 1.0308 | 1.0117 | 1.0081

Table B.2: {Cont.) Ratio for the TSP on 27 literature problems for Case 1
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Heuristic pro26 | pr264 | pr299 | pri89 | rat195 ts285 | tsplLh

3 CCENLABC_US | 1.0005 | 1.0013 ; 1.0035 | 1.0116 | 1.0154 1 1.0122
3_CGENI_AB_US 1 1 1.0027 | 1.0090 | 1.0017 | 1.0025 | 1.0140
3.CGENILACUS | 1.0011 1 1.0026 | 1.0096 | 1.0116 1 1.0135
3.CGENIBC_US | 1.0043 | 1.0013 | 1.0024 | 1.0083 | 1.0073 1 1.0168
5_CGENI_ABC_US 1 1.0013 | 1.0022 | 1.0034 | 1.0107 1 1.0163
5_CGENI_AB_US 1 1 1.0001 | 1.0022 | 1.0099 1 1.0109
5 CGENI.AC_US 1 1 1.0014 | 1.0058 | 1.0082 1 1.0160
5_.CGENIBC_US 1 1.0013 1 1.0023 | 1.0067 | 1.0103 | 1.0002 | 1.0153
7.CGENI_ABC_US 1 1 1.0001 | 1.0021 | 1.0107 1 1.0102
7_CGENI_AB US 1 1 1.0001 | 1.0066 | 1.0094 1 1.0127
7_CGENI_AC_US 1 1 1.0000 | 1.0039 | 1.0094 1 1.0147
7_.CGENLBC_US 1 1 1.0014 | 1.0080 | 1.0172 | 1.0025 | 1.0132
9.CGENI_.ABC_US 1 1 1.0000 | 1.0048 | 1.0111 1 1.0127
9_CGENI. AB_US 1 1 1.0000 | 1.0053 | 1.0094 | 1.0025 | 1.0104
9 CGENI_AC_US 1 1 1.0000  1.0044 | 1.0107 1 1.0145
9_CGENIL BC_US 1 1 1.0010 | 1.0068 | 1.0090 | 1.0025 ; 1.0147
3.GENI.ABCUS | 1.0014 1 1.0057 | 1.0068 | 1.0073 | 1.0005 | 1.0107
3_GENLAB_US 1.0012 | £.0013 | 1.0037 ; 1.0104 ; 1.0111 1 1.0142
3_GENILACUS 1.0006 1 1.0030 | 1.0080 | 1.0103 | 1.0025 | 1.0117
3_GENIBC_US 1.0008 | 1.0013 | 1.0036 | 1.0179 | 1.012¢ | 1.0031 | 1.0147

5 GENI_ABC_US 1 1.0009 | 1.0006 | 1.0064 | 1.0077 1 1.0145
5 GENI_AB_US 1 1.0013 | 1.0010 | 1.0040 | 1.0167 | 1.0063 | 1.0127
5 GENI AC_US 1 1 1.0015 | 1.0045 | 1.0124 1 1.0130
5 .GENIBC_US 1 1.0013 | 1.0030 | 1.0072 | 1.0116 | 1.0002 | 1.0155
7.GENI_ABC US 1 1 1.0008 | 1.0069 | 1.0150 | 1.0063 | 1.0118
7.GENI_AB_US 1 1 1.0008 | 1.0069 ! 1.0099 1 1.0127
7 GENI_AC.US 1 1 1.0020 | 1.0057 | 1.0086 1 1.0150
7_GENLBC_US 1 1 1.0028 | 1.0068 | 1.0107 1 1.0119
9_GENI_ABC US 1 1 1.0006 | 1.0059 | 1.0120 1 1.0150
9_GENI_AB_US 1 1 1.0013 | 1.0058 | 1.0103 1 1.0125
9_GENI AC_US 1 1 1.0018 | 1.0016 | 1.0111 1 1.0170
9_GENIBC._US 1 1 1.0011 | 1.0080 | 1.0094 1 1.0147
3_CCAUS 1.0108 | 1.0649 | 1.0065 | 1.0206 | 1.0215 | 1.0639 | 1.0186

5 CCAUS 1.0018 | 1.0605 | 1.0001 | 1.0173 | 1.0210 | 1.0639 | 1.0178
7_CCAUS 1.0018 | 1.0601 | 1.0002 | 1.0173 | 1.0228 | 1.0534 | 1.0186

9 CCAUS 1.0018 | 1.0564 | 1.0001 | 1.0115 | 1.0228 | 1.0298 | 1.0186

Table B.2: (Cont.) Ratio for the TSP on 27 literature problems for Case 1
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Heuristic uwl59 | kroA100 | pcbf42 | rd100 | rdf00 | alt53%

3 CGENI_ABC_US | 1.0075 1 1.0092 1 1.0131 | 1.0067
3_.CGENI_AB_US 1 1 1.0133 1 1.0167 | 1.0132
3_.CGENI_AC_US 1 1 1.0114 1 1.0160 | 1.0121
3. CGENI.BC_US | 1.0078 1 1.0154 1 1.0154 | 1.0131
5.CGENI_ABC_US 1 1 1.0121 1 1.0122 | 1.0044
5 CGENI_AB_US 1 1 1.0144 1 1.0098 | 1.0149
5 CGENI_AC US | 1.0057 1 1.0138 1 1.0114 | 1.0113
5 CGENI_BC_US 1 1 1.0165 1 1.0162 | 1.0106
T CGENL ABC.US 1 1 1.0103 1 1.0138 | 1.0109
7.CGENI_AB_US 1 1 1.0147 1 1.0138 | 1.0118
7. CGENI_AC_T:S 1 1 1.0097 1 1.0126 | 1.0079
7.CGENI.BC.US 1 1 1.0088 1 1.0153 | 1.0093
9 CGENI_.ABC_US 1 1 1.0082 1 1.0079 | 1.0069
9. CGENI_AB_US 1 1 1.0121 1 1.0115 | 1.0102
9 CGENI_AC_US 1 1 1.0077 1 1.0153 | 1.0103
9 CGENIBC.US 1 1 1.0147 1 1.0120 | 1.0093
3 GENI_ABC_US | 1.0001 1 1.0122 | 1.0007 | 1.0156 | 1.0130
3 GENI_AB.US 1 1 1.0162 | 1.0007 | 1.0143 | 1.0162
3_GENI_AC_US 1 1 1.0131 1 1.0122 | 1.0132
3. GENIBC_US 1 1 1.0187 1 1.0173 | 1.0151
5 GENI_ABC_US 1 1 1.0114 1 1.0142 | 1.0096
5.GENI_AB_US 1 1 1.0086 1 1.0143 | 1.0094

5 GENI_AC_US 1 1 1.0135 1 1.0169 | 1.0087

5 GENI.BC_US i 1 1.0147 1 1.0100 | 1.0117

7 GENI_ABC_US 1 1 1.0145 1 1.0096 | 1.0088
7 GENI_AB_US 1 1 1.0076 1 1.0104 | 1.0123
7_GENI_AC_US 1 1 1.0107 1 1.0106 | 1.0099
7_GENI BC_US 1 1 1.0134 1 1.0157 | 1.0104
9_GENI_ ABC_US 1 1 1.0123 1 1.0099 | 1.0093
9_GENI AB.US 1 1 1.0126 1 1.0143 | 1.0100
9 GENI_AC_US 1 1 1.0115 1 1.0158 | 1.0083
9.GENI_BC_US 1 1 1.0164 1 1.0154 | 1.0072
3_.CCAUS 1.0201 1 1.0244 | 1.0226 | 1.0367 | 1.0180
5_CCAUS 1.0111 1 1.0218 | 1.0218 | 1.0296 | 1.0170
7_CCAUS 1.0111 1 1.0231 | 1.0218 | 1.0269 | 1.0170
9_CCAUS 1.0111 1 1.0210 | 1.0218 | 1.0262 | 1.0170

Table B.2: (Cont.) Ratio for the TSP on 27 literature problems for Case 1
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Heuristic @280 | bieri27 | ch190 | ch150 | d198 | eill0l | gil262 | bin105
3. CGENILABC US| 25 26.5 9 6 35 31 24.5 15.5
3.CGENILAB.US | 245 7.5 9 6 29 31 1 33.5
3_CGENI_AC_US 15 1.5 30.5 185 36 27.5 6 33.5
3_CGENI.BC_US 32 32 18 6 34 11 18.5 15.5
5_CGENI_ABC_US | 26.5 16.5 9 29 26 11 24.5 15.5
5_CGENI_AB_US 1 12 9 18.5 | 205 11 11 15.5
5 .CGENI_AC_US 21 3 25 32 23.5 24 18.5 15.5
5. CGENIBC.US | 105 16.5 9 18.5 27 11 13 15.5
7. CGENIABCUS | 20 20.5 9 18.5 | 23.5 11 7 15.5
7_CGENI_AB_US 6.5 26.5 25 18.5 7 11 22.5 15.5
7.CGENI_AC US 21 22 25 18.5 7 11 22.5 15.5
7 CGENI.BC_US 5 9.5 25 18.5 22 11 8.5 15.5
9_CGENI_ABC US| 18 6 9 6 7 24 15 15.5
9 CGENI_AB_US 13 16.5 9 18.5 19 27.5 3 15.5
9_CGENI_AC US 6.5 16.5 9 6 7 11 2 15.5
9_CGENIBC_US 21 16.5 9 18.5 14 11 18.5 15.5
3_GENI_ABC_US 23 5 19 30 15 31 345 33.5
J_GENI_AB_US 13 20.5 20 6 7 24 3 31
3_GENI_AC US 18 11 32 18.5 28 11 15 36
3_.GENIBC_US 16 7.5 30.5 31 25 11 34.5 335
5 GENI_ABC_US 13 24 25 18.5 17 11 15 15.5
5_GENI_AB_US 10.5 9.5 9 18.5 7 31 5 15.5
5. GENI_AC_US 26.5 3.5 9 185 | 20.5 11 28.5 15.5
5. GENIBC_US 24.5 24 25 1 7 11 26.5 15.5
7_.GENI_ABC US 18 13 9 2 7 24 8.5 15.5
7_GENI_AB US 4 28.5 25 18.5 T 11 11 15.5
7T_.GENI_AC US 8.5 24 25 6 7 31 26.5 15.5
7.GENI.BC_US 31 28.5 9 28 7 11 28.5 15.5
9_GENI_ABC.US 8.5 30 9 18.5 7 11 21 15.5
9_GENI_AB_US 25 3.5 9 18.5 17 11 4 15.5
9_GENI_AC_US 29 16.5 25 18.5 7 24 11 15.5
9_GENI BC.US 29 1.5 9 18.5 17 11 18.5 15.5
3.CCAUS 345 35 36 34 31.5 | 35.5 36 15.5
5 CCAUS 34.5 35 335 34 315 11 32 15.5
T CCAUS 34.5 35 33.5 34 315 34 30 15.5
9 CCAUS 34.5 33 35 36 315 ! 355 33 15.5

Table B.3: Ranking for the Friedman test for the TSP on the literature problems for Case 1
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Heuristic Und18 | pri07 | pri24 | pr136 | pri44 | pris2 | pr226 | pr264

3 CGENI_ABC_US 29 16.5 15 31 22 32 26 28.5
3_CGENI_AB_US 31 16.5 15 11 9.5 30 13 12
3. CGENI_AC_US 19 16.5 15 12 20 30 29 12

3_CGENIBC_US 27 16.5 | 30.5 13 29.5 25.5 35 28.5

5 CGENI_ABC_US 13 16.5 15 32 24 25.5 13 28.5
5 CGENI_AB US 10 16.5 15 4.5 24 10.5 13 12
5_ CGENI,ACUS 11 16.5 15 10 20 30 13 12

5_CGENI.BC US 18 16.5 15 30 24 10.5 13 285
7. CGENI_ABC_US 4 16.5 15 27.5 9.5 10.5 13 12
7.CGENI_AB US 9 16.5 15 23 9.5 10.5 13 12
7_CGENI_AC US 3 16.5 15 4.5 9.5 10.5 13 12
7_CGENIL.BC.US 16 16.5 15 21 9.5 21 13 12
9_CGENI_ABC.US 14 16.5 15 24 9.5 10.5 13 12
9_CGENI_AB.US 20 16.5 15 17 9.5 22 13 12
9_ CGENI_AC_US 5 16.5 15 21 9.5 10.5 13 12
9_CGENIBC.US 24 16.5 15 27.5 9.5 10.5 13 12
3.GENI_ABC US 26 16.5 | 30.5 26 9.5 25.5 31 12

3_GENI_AB_US 28 16.5 15 1 29.5 10.5 30 28.5
3.GENI_ACTUS 32 16.5 32 2 31 255 27 12

3 GENI.BC_US 30 16.5 15 25 32 25.5 28 28.5
5 GENI_ABC US 25 16.5 15 21 27 10.5 13 24

5 GENI_AB_US 23 16.5 15 8 20 10.5 13 28.5
5_GENI.ACUS 22 16.5 15 14 27 10.5 13 12
5_GENIL.BC_US 12 16.5 15 29 27 10.5 13 28.5

7.GENI_ABC_US 2 16.5 15 19 9.5 10.5 13 12
7_GENI.AB_US 17 16.5 15 4.5 9.5 10.5 13 12

7_GENI_ACUS 8 16.5 15 15.5 9.5 25.5 13 12
7_GENI_BC_US 7 16.5 15 8 9.5 105 13 12
9 GENI_ABC_US 21 16.5 15 8 9.5 10.5 13 12
9_GENI_AB_US 15 16.5 15 18 9.5 10.5 13 12
9 GENI_AC_US 1 16.5 15 4.5 9.5 10.5 13 12
9 GENIBC_US 6 16.5 15 15.5 9.5 10.5 13 12
3.CCAUS 36 34.5 36 36 36 36 36 36
5.CCAUS 35 34.5 35 34 35 34 33 35

7 CCAUS 33.5 34.5 33.5 34 34 35 33 34
9_CCAUS 33.5 34.5 33.5 34 33 33 33 33

Table B.3: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
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Heuristic pro99 | pri89 | rat195 | ts8225 | tsp225 | w159 kroA 100
3. CGENI_ABC_US 32 32 30 11 8 E31 18.5
3_CGENI.AB_US 28 28 1 27 17 14.5 18.5
3_.CGENI_.AC_US 27 29 24.5 11 16 14.5 18.5
3_CGENIBC_US 26 27 2.5 11 31 32 18.5
5_CGENI_ABC_US 24 4 18.5 11 30 14.5 18.5

5_CGENI_AB_US 9 3 12.5 11 4 14.5 18.5
5_CGENI_AC_US 19.5 13 5 11 29 30 18.5
5 CGENIBC_US 25 17 15 22.5 27 14.5 18.5
7. CGENI_ABC.US 6 2 18.5 11 1 14.5 18.5
7 CGENI_AB_US 9 16 9.5 11 11.5 14.5 18.5
7_CGENI_AC US 3 5 9.5 11 22.5 14.5 18.5
7-CGENIBC_US 195 23.5 32 27 15 145 18.5
9_CGENI_ABC_US 3 9 22 11 115 14.5 18.5
9 CGENI_AB_US 3 10 9.5 27 2 14.5 18.5
9 CGENI_AC_US 3 7 18.5 11 19.5 14.5 18.5
9_ CGENI.BC.US 16 20 7 27 225 14.5 18.5
3_GENI_ABC_US 35 19 2.5 24 3 29 18.5
3_GENI_AB.US 34 30 22 11 18 14.5 18.5
3.GENI.AC_US 31 23.5 15 27 5 14.5 18.5
3.GENLBC.US 33 35 28 30 225 14.5 18.5
5 GENI_ABC_US 12.5 15 4 11 19.5 14.5 18.5
5 GENI_AB_US 16 6 31 31.5 11.5 14.5 18.5
5.GENI_AC_US 21 8 27 11 14 14.5 18.5
5 GENI.BC US 30 22 24.5 22.5 28 145 18.5
7.GENI_ABC_US 3 26 29 31.5 6.5 14.5 18.5
7 GENLAB_US 14 21 12.5 11 11.5 14.5 18.5
7_GENIL.AC_US 23 11 6 11 25.5 14.5 18.5

7_GENIBC_US 29 18 18.5 11 6.5 14.5 18.5
9 GENI_ABC_US 125 14 26 11 25.5 14.5 18.5

9 GENI_AB_US 18 12 15 11 9 14.5 18.5
9_GENI_AC_US 22 1 22 11 32 14.5 18.5
9_GENIBC_US 16 25 9.5 11 225 14.5 18.5
3_.CCAUS 36 36 34 356.5 35 36 18.5
5 CCAUS 9 33.5 33 35.5 33 34 18.5
7_CCAUS 9 33.5 35.5 34 35 34 18.5
9 CCAUS 9 31 35.5 33 33 34 18.5

Table B.3: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
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220



Heuristic pebfd2 | rd100 | rd{00 | ait532 | R; > R R%

3 CGENI_ABC_US 6 15.5 14 2 550 14060 302500
3 CGENI_AB_US 19 15.5 30 28 507 .12063 257049
3_.CGENILACUS 10.5 15.5 28 24 540.5 12807.75 202140.25
3_CGENIBC.US 28 15.5 23.5 27 614.5 16090.75 377610.25
5. CGENI_ABC_US 13 15.5 11.5 1 487 10482 237169
5. CGENI_AB_US 23 15.5 3 30 348 5701.5 121104
5_CGENI.AC_US 22 15.5 8 21 510.5 11100.75 260610.25
5 CGENIBC_US 31 15.5 20 19 510.5 10783.75 260610.25
7 CGENI_ABC_US 8 15.5 15.5 20 3725 6431.25 138756.25
7.CGENI_AB_US 25.5 15.5 15.5 23 410.5 7141.75 168510.25
7_CGENI.AC_US 7 15.5 13 5 351 5636 123201
7_CGENI_BC US 5 156.5 21.5 10.5 441.5 8339.25 194922.25

9_CGENI_ABC.US 3 15.5 1 3 327 4989 106929
9 CGENI_AB_US 14 15.5 9 16 386 6562.5 148996
9_CGENI_AC US 2 15.5 215 17 324 4772 104976
9_CGENI_BC_US 27 15.5 10 10.5 440.5 8051.25 194040.25
3.GENI_ABC_US 15 31.5 25 26 596.5 15592.25 355812.25

3.GENLAB _US 29 315 18 32 570 14266 324800
3_.GENIACUS 18 15.5 11.5 28 555 13571 308025 -
3_GENI.BC_US 32 15.5 32 31 681.5 18860.75 464442 .25
5 GENI ABC_US 10.5 15.5 17 13 442 7994.5 195364
5 GENI_AB_US 4 15.5 19.5 12 420.5 8191.25 176820.25
5.GENI_AC_US 21 15.5 31 7 451.5 8855.75 203852.25
5_GENI.BC_US 25.5 15.5 5 22 514 11444 264196
7.GENI_ABC US 24 15.5 2 8 373 6888.5 139129
7T GENIAB.US 1 15.5 6 25 369 6148 136161
7_GENI_AC TS 9 15.5 7 14 413.5 77692.75 170982.25
7.GENILBC_US 20 15.5 26 18 445.5 8847.75 198470.25
9 GENI_ABC US 16 15.5 4 9 3925 6707.75 154056.25
9 GENI_AB_US 17 15.5 19.5 15 355.5 5249.75 126380.25
9 GENI_AC US 12 15.5 27 6 410 7914.5 168100
9_GENI_BC_US 30 15.5 23.5 4 408 7405.5 166464
3_CCAUS 36 36 36 36 919.5 31673.75 845480.25
5_CCAUS 34 34 35 33 835 27328 697225
7.CCAUS 35 34 34 34 856 28234.5 732736
9_CCAUS 33 34 33 35 852.5 28002.25 726756.25
Ap = 416181 | nByr = 9844476.5

Table B.3: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
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Heuristic a280 | bieri27 | ch180 | ch150 | d198 | edllf1 | gil262

3_CGENI_ABC_US | 1.0054 | 1.0033 1 1.0039 } 1.0159 | 1.0190 | 1.0134
3. CGENI.AB US | 1.0127 | 1.0015 1 1.0039 | 1.0035 | 1.0190 { 1.0058
3.CGENIAC_US | 1.0100 | 1.0002 | 1.0031 | 1.0041 | 1.0429 | 1.0174 | 1.0096
3 CGENLBC.US | 1.0197 | 1.0065 | 1.0013 | 1.0039 | 1.0076 ; 1.0143 | 1.0121

5 CGENI_ABC_US | 1.0135 | 1.0028 1 1.0055 | 1.0027 | 1.0143 | 1.0134
5 CGENI_.ABUS | 1.0042 ; 1.0025 1 1.0041 | 1.0008 | 1.0143 | 1.0109
5. CGENILAC_US | 1.0112 | 1.0048 ! 1.0022 | 1.0064 | 1.0010 | 1.0158 | 1.0121
5 CGENIBC.US | 1.0089 | 1.0028 1 1.0041 | 1.0028 | 1.0143 | 1.0113

7.CGENI_.ABC.US | 1.0139 | 1.0028 1 1.0041 | 1.0010 | 1.0143 | 1.0100
7. CGENI_AB US | 1.0081 | 1.0033 | 1.0022 | 1.0041 1 1.0143 | 1.0130
7.CGENI.LAC_US | 1.0112 | 1.0029 | 1.0022 | 1.0041 1 1.0143 } 1.0130
7. CGENIBC_US | 1.0077 | 10017 | 1.0022 | 1.0041 | 1.0009 | 1.0143 | 1.0105

9_CGENI.ABC_US | 1.0108 | 1.0015 1 1.0039 1 1.0158 | 1.0117
9_CGENI_AB_US | 1.0093 | 1.0028 1 1.0041 | 1.0006 | 1.0174 | 1.0084
9 CGENI ACUS | 1.0081 | 1.0028 1 1.0039 1 1.0143 | 1.0079
9 CGENI.BC_US | 1.0112 | 1.0028 1 1.0041 ; 1.0002 | 1.0143 | 1.0121

Table B.4: Ratio for the TSP on the 27 literature problems for Case 2

Heuristic lini05 | hnd18 | pri07 | pri24 | pr196 | prii4 | pri52
3_.CGENI_ABC_US 1 1.0157 1 1 1.0072 | 1.0004 | 1.0033
3.CGENI.AB_US i 1.0015 | 1.0169 1 1 1.0035 1 1.0026
3_CGENILACUS | 1.0015 | 1.0086 1 1 1.0036 | 1.0002 | 1.0026
3_CGENIB(C_US 1 1.0132 1 1.0007 | 1.0037 | 1.0011 | 1.0018
5 CGENI_ABC._US 1 1.0075 1 1 1.0112 | 1.0005 | 1.0018
5_CGENI_AB.US 1 1.0071 1 1 1.0022 | 1.0006 1
5 CGENI_AC_US 1 1.0073 1 1 1.0024 | 1.0003 | 1.0026
5_CGENIBC_US 1 1.0083 1 1 1.0066 | 1.0005 1
7_CGENI_ABC US 1 1.0052 1 1 1.0063 1 1
7.CGENI_AB_US 1 1.0071 1 1 1.0046 1 1
7T_CGENIAC_US 1 1.0044 1 1 1.0022 1 1
7 CGENIBC.US 1 1.0081 1 1 1.0044 1 1.0013
9 CGENI_ABC_US 1 1.0078 1 1 1.0047 1 1
9_CGENI AB_US 1 1.0087 1 1 1.0042 1 1.0014
9. CGENI_AC_US 1 1.0056 1 1 1.0044 1 1
9_CGENIBC US 1 1.03110 1 1 1.0063 1 1

Table B.4: (Cont.) Ratio for the TSP on the 27 literature problems for Case 2
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Heurstic pri26 | pro64 | pr299 | pr439 | rat195 | ts225 | tsp225

3 CGENI_ABC_US | 1.0005 | 1.0013 | 1.0035 | 1.0116 | 1.0154 1- 1.0122
3_CGENI_AB_US 1 1 1.0027 | 1.0090 | 1.0017 | 1.0025 | 1.0140
3.CGENILACUS | L0011 1 1.0026 | 1.0096 | 1.0116 1 1.0135
3.CGENIBC.US | 1.0043 | 1.0013 | 1.0024 | 1.0083 | 1.0073 1 1.0168

5 CGENI_ABC_US 1.0013 | 1.0022 | 1.0034 | 1.0107 1 1.0163
5 CGENI_AB_US 1 1.0002 | 1.0022 | 1.0099 1 1.0109
5 CGENI_AC_US 1 1.0014 | 1.0058 | 1.0081 1 1.0160
5 CGENI.BC_US 1.0013 | 1.0023 | 1.0067 | 1.0103 | 1.0003 | 1.0153

7 CGENI_ABC_US 1 1.0001 | 1.0021 | 1.0107 1 1.0102
7 CGENI_AB_US 1.0002 | 1.0066 | 1.0094 1 1.0127
7T CGENIACUS 1.0000 | 1.0039 | 1.0094 1 1.0147
7_CGENIBC_US 1.0014 | 1.0080 | 1.0172 | 1.0025 | 1.0132

9_CGENI_ABC_US 1.0000 | 1.0048 | 1.0111 1 1.0127
9_CGENI_AB.US 1.0000 | 1.0053 | 1.0094 | 1.0025 | 1.0104
9 CGENI_AC_US 1.0000 | 1.0044 | 1.0107 1 1.0145
9 CGENIBC._US 1.0010 | 1.0068 ! 1.0090 | 1.0025 | 1.0147

—

O = = T

[ =

Table B.4: (Cont.) Ratio for the TSP on the 27 literature problems for Case 2

Heuristic ul59 | kroA100 | pcbid2 | rd100 | rd400 | ati532
3_CGENI_ABC_US | 1.0075 1 1.0092 1 1.0131 | 1.0067
3_.CGENI_AB_US 1 1 1.0133 1 1.0167 | 1.0132
3 CGENI_AC_US 1 1 1.0114 1 1.0160 | 1.0121
3_.CGENI.BC_US | 1.0078 1 1.0154 1 1.0154 | 1.0131
5 CGENI_ABC_US 1 1 1.0120 1 1.0122 | 1.0044
5_CGENI_AB_US 1 1 1.0144 1 1.0098 | 1.0149
5 CGENI AC_US | 1.0057 1 1.0138 1 1.0114 | 1.0113
5 CGENI.BC_US 1 1 1.0165 1 1.0162 | 1.0106
7_CGENI_ABC_US 1 1 1.0103 1 1.0138 | 1.0109
7_CGENI_AB_US 1 1 1.0147 1 1.0138 | 1.0118
7. CGENI_AC_US 1 1 1.0097 1 1.0126 | 1.0079
7_CGENI BC_US 1 1 1.0088 1 1.0153 | 1.0093
3_CGENI_ABC_US 1 1 1.0082 1 1.6079 | 1.0069
9_CGENI_AB_US 1 1 1.0121 1 1.0115 | 1.0102
9 CGENI.AC.US 1 1 1.0077 1 1.0153 | 1.0103
9 CGENIBC_US 1 1 1.0147 1 1.0120 | 1.0093

Table B.4: (Cont.} Ratio for the TSP on the 27 literature problems for Case 2
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Heuristic 4280 | bieri27 | chi130 | ch150 | d198 | eil101 | gil262 | linl05
3.CGENL.ABC_US 2 135 b.5 3 15 15.5 15.5 7.5

3. CGENI.AB_US 13 3 5.5 3 13 15.5 1 15.5
3_CGENI_AC_US 8 1 16 10 16 13.5 4 15.5
3_CGENIBC.US 16 16 11 3 14 5.6 11 7.5
5 CGENILABCUS | 14 8 5.5 15 11 5.5 15.5 7.5
5. CGENI_AB_US 1 5 5.5 10 7 h.5 7 7.5
5_CGENI_AC_US 11 15 13.5 16 9.5 11.5 11 7.5
5 CGENI.BC_US 6 8 5.5 10 12 5.5 8 7.5

7_.CGENILABCUS | 15 11 5.5 10 9.5 5.5 5 7.5
7 CGENI.AB_US 4.5 13.5 13.5 10 2.5 8.5 13.5 7.5
7 CGENI_AC US 11 12 13.5 10 2.5 5.5 13.5 7.5

- 7. CGENIBC.US 3 4 13.5 10 8 5.5 6 7.5
9 CGENI_ABC_US 9 2 5.5 3 2.5 11.5 9 7.5
9_CGENI.AB_US 7 8 5.5 10 6 13.5 3 7.5
9.CGENI_AC_US 4.5 8 5.5 3 2.5 5.5 2 7.5
9 CGENIBC_US 11 8 5.5 10 5 5.5 11 7.5

Table B.5: Ranking for the Friedman test for TSP on the literature problems for Case 2

Heurtstic in3i8 | pr107 L pri12f | pri86 | prid4 | pr152 | pr226 | pr264
3_.CGENI_ABC_US 15 8.5 8 15 12 16 14 14.5
3_CGENI_AB_US 16 8.5 8 4 5 14 7 6.5
3_.CGENL.AC.US 11 8.5 8 5 10.5 14 15 6.5
3.CGENIBC_US 14 8.5 16 6 16 11.5 16 14.5
5.CGENI_ABC_US 7 8.5 ] 16 14 11.5 7 14.5
5 CGENI_AB_US 5 85 8 1.5 14 4.5 7 6.5
5 CGENI_ AC_ES 6 8.5 8 3 10.5 14 7 6.5
5_CGENI_BC US 10 85 8 14 14 4.5 7 14.5
7. CGENI_ABC_US 2. 8.5 8 12.5 5 4.5 7 6.5
7 CGENI_AB_US 4 8.5 8 10 5 4.5 7 6.5
T_.CGENI_AC US 1 85 8 1.5 5 4.5 7 6.5
7_CGENI_BC _US 9 8.5 8 8.5 5 9 7 6.5
9 CGENI_ABC_US 8 8.5 8 11 5 4.5 7 6.5
9 CGENI_AB_US 12 8.5 8 7 5 10 7 6.5
9_CGENI_AC US 3 8.5 8 8.5 5 4.5 7 6.5
9 CGENIBC_US 13 8.5 8 12.5 5 4.5 7 6.5

Table B.5: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
Case 2
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Heuristic pr299 | pri39 | rat195 | 3885 | tsp225 | ui159 kroA100
3_CGENI_ABC_US 16 16 15 6 4 15 8.5
3_.CGENI_AB_US 15 14 1 14.5 9 7 8.5
3.CGENI_AC US 14 15 14 6 8 7 8.5
3_CGENI.BC_US 13 13 2 6 16 16 8.5
5 CGENI_ABC.US 11 3 11 6 15 7 85
5.CGENI_AB_US 6.5 2 8 6 3 7 8.5
5 CGENI.AC_US 9.5 8 3 6 14 14 85
5_CGENIBC_US 12 10 9 12 13 7 8.5
7.CGENI_ABC_US 5 1 11 6 1 7 8.5
7_CGENI_AB_US 6.5 9 6 6 5.5 T 8.5
7_.CGENI_AC_US 2.5 4 6 6 11.5 7 8.5
7_CGENI_BC_US 9.5 12 16 14.5 7 7 8.5
9. CGENI_LABCUS | 25 6 13 6 5.5 7 8.5
9_CGENI_AB_US 2.5 7 6 14.5 2 7 8.5
9. CGENI_AC US 2.5 5 11 6 10 7 8.5
9_CGENI.BC_US 8 11 4 14.5 11.5 7 8.5

Table B.5: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
Case 2

Heuristic pchi42 | rdl00 | rdf00 | atts32 | Ry SR RZ
3. CGENI ABCUS | 4 85 | 8 3 | 2835 | 3622.25 80372.25
3CCENLABUS | 10 | 85 | 16 | 15 | 257 3076 66049
3.CGENIACUS | 7 85 | 14 | 13 | 2775| 320575 77006.25
3.CGENLBCUS | 15 | 85 | 13 | 14 |3115| 408475 97032.25
5.CGENLABCUS | 8 85 | 6 1| 2535 | 2798.25 64262.25
5CGENLABUS | 12 | 85 | 2 16 | 183 1564.5 33489
5.CGENIACUS | 11 | 85 | 3 1| 285 2749.5 65025
5.CGENIBCUS | 16 | 85 | 15 9 | 263 2826 69169
7.CGENIABCUS | 6 85 | 95 | 10 |1965( 171475 38612.25
7CGENLAB.US | 13 | 85 | 95 | 12 |2155  1970.75 46440.25
7.CCENLAC US 5 85 | T 4 |1875, 1608.25 35156.25
7.CGENIBC.US 3 85 | 115 | 55 | 222 2095 49284
9.CGENIABCUS | 2 85 | 1 3 | 1715 | 134275 20412.25
9.CGENLABUS | 9 85 | 4 7 | 2005 | 1717.25 40200.25
9 CGENLACTS 1 85 | 115 | 8 |1685| 125325 28392.25
9.CGENIBCUS | 14 | 85 | 5 5.5 | 226 2134 51076
Ap = 37853 | nBr = 870978.5

Table B.5: (Cont.) Ranking for the Friedman test for the TSP on the literature problems for
Case 2
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Heurtstic a280 | bieri27 | chi30 | ch150 | d198 | eilifl | gil262

3. GENIABC_US | 1.0116 | 1.0014 | 1.0014 | 1.0058 | 1.0004 | 1.0160 | 1.0176
3_.GENI_AB_US | 1.0093 | 1.0028 | 1.0019 | 1.0039 1 1.0158 | 1.0159
3.GENILAC_US | 1.0108 | 1.0018 | 1.0042 | 1.0041 | 1.0033 | 1.0143 } 1.0117
3_.GENI.BC_US | 1.0104 | 1.0015 | 1.0031 | 1.0061 | 1.0015 | 1.0143 | 1.0176
5 CENLABC._US | 1.0093 | 1.0030 | 1.0022 | 1.0041 | 1.0004 | 1.0143 | 1.0117
5 GENI_AB_US | 1.0089 | 1.0017 1 1.0041 1 -| 1.0190 | 1.0092
5 GENLLAC US | 1.0135 ; 1.0011 1 1.0041 | 1.0008 | 1.0143 | 1.0151
5. GENLBC.US | 1.0127 | 1.0030 | 1.0022 | 1.0026 1 1.0143 | 1.0138
7.GENI_ABC.US | 1.0108 | 1.0028 1 1.0033 1 1.0158 | 1.0105
7 GENI_AB_US | 1.0073 | 1.0034 | 1.0022 | 1.0041 1 1.0143 | 1.0109
7 GENILAC_US | 1.0085 | 1.0030 | 1.0022 | 1.0039 1 1.0190 | 1.0138
7.GENI.BC US | 1.0155 | 1.0034 1 1.0050 1 1.0143 | 1.0151
9_GENI_ABC US | 1.0085 | 1.0036 1 1.0041 1 1.0143 | 1.0126
§_GENI_AB.US | 1.0054 | 1.0011 1 1.0041 | 1.0004 | 1.0143 | 1.0088
9_GENILAC_US | 1.0139 | 1.0028 | 1.0022 | 1.0041 1 1.0158 | 1.0109
9_ GENL.BC.US 1 1.0139 ; 10002 1 1.0041 | 1.0004 | 1.0143 | 1.0121

Table B.6: Ratio for the TSP on the 27 literature problems for Case 3

Heuristic lini105 | in318 | pri07 | pri2f | pri36 | prif4
3.GENI ABC.US | 1.0015 | 1.0124 1 1.0007 | 1.0057 1
3. GENI_AB.US | 1.0007 | 1.0142 1 1 1.0001 | 1.0011
3.GENI_AC_US | 1.0031 ! 1.0181 1 1.0022 | 1.0022 | 1.0035
3_GENIBC_US : 1.0015 | 1.0169 1 1 1.0050 | 1.0097
5_GENI_ABC_US 1 1.0122 1 1 1.0044 | 1.0008
5_GENI_AB US 1 1.0102 1 1 1.0024 | 1.0003
5 GENI_AC US 1 1.0102 1 1 1.0039 | 1.0008
5_GENI_BC_US 1 1.0073 1 1 1.0064 | 1.0008
7.GENT_ABC_US 1 1.0041 1 1 1.0044 1
7.GENI_LAB US 1 1.0082 1 1 1.0022 1
7 GENIACUS 1 1.0067 1 1 1.0041 1
7.GENIBC_US 1 1.0065 1 1 1.0024 1
9_GENI_ABC US 1 1.0096 1 1 1.0024 1
9 GENI_AB_US 1 1.0079 1 1 1.0043 1
9_GENI_.AC.US 1 1.0028 1 1 1.0022 1
9 GENI_BC_US 1 1.0064 1 1 1.0041 i

Table B.6:

(Cont.) Ratio for the TSP on the 27 literature problems for Case 3
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Heuristic pris2 | pr226 | pr264 | pr299 | pr439 | ratl9s 13225
3.GENI_ABC_US | 1.0018 | 1.0014 1 1.0057 | 1.0068 | 1.0073 | 1.0005
3_GENI AB_US 1 1.0012 | 1.0013 | 1.0037 | 1.0104 | 1.0111 1
3. GENIAC US | 1.0018 | 1.0006 1 1.0030 | 1.0080 | 1.0103 | 1.0025
3 GENI.BC_US | 1.0018 | 1.0008 | 1.0013 | 1.0036 | 1.0179 | 1.0129 | 1.0031
5_GENI_ABC_US 1 1 1.0009 | 1.0006 | 1.0064 | 1.0077 1
5_GENI_AB.US 1 1 1.0013 | 1.0011 | 1.0040 | 1.0167 ; 1.0063
5_GENI_AC US 1 1 1 1.0015 | 1.0045 | 1.0124 1
5_GENLBC_US 1 1 1.0013 | 1.0030 | 1.0072 | 1.0116 | 1.0003
7_GENI.ABC_US 1 1 1 1.0000 | 1.0082 { 1.0150 | 1.0063
7.GENI_AB_US 1 1 1 1.0008 | 1.0069 | 1.0099 1
7. GENI_ACUS | 1.0018 1 1 1.0020 | 1.0057 | 1.0086 1
7_GENI.BC_US 1 1 1 1.0028 | 1.0068 | 1.0107 1
9_GENI_ABC_US 1 1 1 1.0006 | 1.0059 | 1.0120 1
9_GENI_AB US 1 1 1 1.0013 | 1.0058 | 1.0103 1
9 GENI.AC_US 1 1 1 1.0018 | 1.0016 | 1.0111 1
9_GENI.BC_US 1 1 1 1.0010 | 1.0080 | 1.0094 1
Table B.6: (Cont.) Ratio for the TSP on the 27 literature problems for Case 3
Heuristic tsp225 | wi59 | kroA100 | pcbf42 | rd100 | rdf00 | ait532
3.GENI.ABC_US | 1.0107 | 1.0001 1 1.0122 | 1.0007 | 1.0156 | 1.0130
3 GENI_ABUS | 1.0142 1 1 1.0162 | 1.0007 | 1.0143 | 1.0162
3.GENI_ACUS | 1.0117 1 1 1.0131 1 1.0122 | 1.0132
3.GENIBC.US | 1.0147 1 1 1.0187 1 1.0173 | 1.0151
5 GENI_LABC_US | 1.0145 1 1 1.0114 1 1.0142 | 1.0096
5. GENI_AB US | 1.0127 1 1 1.0086 1 1.0143 | 1.0094
5 GENI_ACUS | 1.0130 1 1 1.0135 1 1.0169 | 1.0087
5. GENI.BC US | 1.01565 1 1 1.0147 1 1.0100 | 1.0117
7T.GENI_ABC . US ! 1.0119 1 1 1.0145 1 1.0096 | 1.0088
7.GENI_.AB US | 10127 1 1 1.0076 1 1.0104 | 1.0123
7T_GENIACUS | 1.0150 1 1 1.0107 1 1.0106 | 1.0099
7_GENI.BC_US 1.0119 1 1 1.0134 1 1.0157 | 1.0104
9 GENI_ABC.US | 1.0150 1 1 1.0123 1 1.0099 | 1.0093
9 GENI_AB_US | 1.0125 1 1 1.0126 1 1.0143 | 1.01007
9_GENILACUS | 10170 1 1 1.0115 1 1.0158 | 1.0083
9_GENIBC_US | 1.0147 1 1 1.0164 1 1.0154 | 1.0072

Table B.6: (Cont.) Ratio for the TSP on the 27 literature problems for Case 3
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Heuristic a280 | bier127 | chi30 | ch150 | 4198 | eill01 | gil262 | hin105
3GENIABCUS | 11 4 3 15 10 15 155 14.5
3_.GENI_AB_US 6.5 10 9 3.5 5 12 14 13
3_GENI_AC US 9.5 7 16 9 16 5.5 6.5 16
3_GENI_BC US 8 9 15 16 15 5.5 15.5 14.5
5.GENI.ABC US| 6.5 12 12 9 12 5.5 6.5 6.5
5_GENI_AB.US 5 6 4 9 5 15 2 6.5
5 GENI_AC_US 13 2.8 4 9 14 5.5 12.5 6.5
5. GENI.BC.US 12 12 12 1 5 5.5 10.5 6.5
7_GENI_LABCUS | 9.5 8 4 2 5 12 3 6.5
7T_GENI_AB_US 2 14.5 12 9 5 5.5 4.5 6.5
7_GENI_AC.US 3.5 12 12 3.5 5 15 10.5 6.5
7_GENIBC_US 16 14.5 4 14 5 5.5 12.5 6.5
9 GENILABCUS | 3.5 16 4 9 5 5.5 9 6.5
9_GENI_AB_US 1 2.5 4 9 12 5.5 1 6.5
9_GENIACUS | 145 9 12 9 5 12 4.5 6.5
9 GENIBC.US | 145 1 4 9 12 5.5 B 6.5

Table B.7: Ranking for the Friedman test for the TSP on the literature problems for Case 3

Heuristic lin318 | pri07 | pri24 | pr136 | priff | pris2 | pr226 | pr264
3.GENI_ABC_US 13 8.5 15 15 5 14.5 16 6
3_GENI_AB US 14 8.5 7.5 1 14 6.5 15 14.5
3_GENI_AC_US 16 8.5 16 2 15 14.5 13 6
3.GENIBC US 15 8.5 7.5 14 16 14.5 14 14.5
5 GENI_ABC US 12 8.5 7.5 13 12 6.5 6.5 12
5 GENI_AB_US 11 8.5 7.5 6 10 6.5 6.5 14.5
5_.GENI_AC US 10 8.5 7.5 8 12 6.5 6.5 6
5_GENIBC_US 6 8.5 7.5 16 12 6.5 6.5 14.5
7_GENI_ABC_US 2 8.5 7.5 12 5 6.5 6.5 6
7_GENI_AB_US 8 8.5 7.5 3.5 5 6.5 6.5 6
7.GENI_ACUS 5 8.5 7.5 9.5 5 14.5 6.5 6
7_.GENI_BC.US 4 85 7.5 6 5 6.5 6.5 G
9.GENI_ABC_US 9 8.5 7.5 6 5 6.5 6.5 6
9_GENI_AB_US 7 8.5 7.5 11 5 6.5 6.5 6
9_GENI_AC_US 1 8.5 7.5 3.5 5 6.5 6.5 6
9_GENI.BC.US 3 8.5 7.5 9.5 5 6.5 6.5 6

Table B.7: (Cont.) Ranking for the Friedman test for the TSP on the 27 literature problems
for Case 3
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Heuristic pr299 | pri39 | rati95 | ts225 | tsp285 | ul59 | kroA100
3_GENI_ABC.US 16 9 1 12 1 16 8.5
3 GENI.AB_US 15 15 9.5 5.5 9 8 8.5
3.GENI.ACUS 13 12 6.5 13 2 3 8.5
3_GENI_BC.US 14 16 14 14 11.56 8 8.5
5. GENILABCUS | 2.5 7 2 5.5 10 8 8.5
5 GENI_AB.US 5.9 2 16 156.5 6.5 8 8.5
5 GENILAC_US 8 3 13 5.9 8 8 8.5
5_GENI.BC_US 12 11 11 1 15 8 8.5
7.GENI_ABC_US 1 14 15 15.5 3.5 8 8.5
7T.GENI_AB_US 4 10 5 5.5 6.5 8 8.5
7_.GENIL.AC_US 10 4 3 5.5 13.5 8 8.5
7_GENIBC_US 11 8 8 5.5 3.5 8 8.5
9. GENI ABC.US | 2.5 6 12 5.5 13.5 8 8.5
9. GENI. AB_US 7 5 6.5 5.5 5 8 8.5
9 GENL.AC_US 9 1 9.5 5.5 16 8 8.5
9_GENIBC_US 5.5 13 4 5.5 11.5 8 8.5

Table B.7: (Cont.) Ranking for the Friedman test for the TSP on the 27 literature problems
for Case 3

Heuristic pcbi42 1 vd100 | rd400 | aits32 | R; 3. R R
3.GENIABCUS: 6 15.5 12 13 296 3820.5 87616
3_GENI_AB.US 14 155 8 16 278 3312.5 77284
3_GENI_AC.US 9 7.5 6 14 276 3323 76176
3 GENIBC US 16 7.5 16 15 339 4603.5 114921
5 GENI_ABC_US 4 7.5 7 7 217 1980 47089
5 GENI_AB_US 2 7.5 3.5 6 210 2030 44100
5_GENI_AC_US 11 7.5 15 3 2225 2137.75 49506.25
5 GENIBC_US 13 7.5 3 11 253 2723.5 64009
7_GENI_ABC_US 12 7.5 1 4 194 1844.5 37636
7T_GENI_AB US 1 7.5 4 12 182.5 1474.25 33306.25
7. GENI_AC.US 3 7.5 5 ) 206.5 1900.256 42642.25
7. GENIBC_US 10 7.5 13 10 221 2111 48841
9 GENI_ABC_US 7 7.5 2 53 191 1604 36481
9_GENI_AB . US 8 7.5 9.5 9 179 1365 32041
9 GENI_AC_US 5 7.5 14 2 203 1911 41209
9_GENI.BC_US 15 7.5 11 1 203.5 1879.25 41412.25
Ap= 38020 | nBF=874270

Table B.7: (Cont.) Ranking for the Friedman test for the TSP on the 27 literature problems
for Case 3
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Heuristic a280 | bieri27 | ch130 | chi50 | d198 | eillDl | gil262
3_CGENI_ABC_US | 0.5428 | 0.3390 0 0.3982 | 1.5969 | 1.9077 | 1.3456
3 CGENI_AB_US | 1.2795 | 0.1589 0 (.3982 | 0.3548 | 1.9077 | 0.5887
3. CCENILAC_US | 1.0081 | 0.0262 | 0.3115 | 0.4136 | 4.2902 | 1.7488 | 0.9671
3.CGENI.BCUS | 1.9775 | 0.6526 ! 0.1311 | 0.3982 | 0.7604 | 1.4308 | 1.2195
5_CGENI_ABC_US | 1.3571 | 0.2823 o 0.5514 | 0.2724 | 1.4308 | 1.3456
5. CGENI_AB.US | 0.4265 | 0.2519 0 0.4136 | 0.0823 | 1.4308 | 1.0933
5 CGENIAC.US | 1.1244 | 0.4852 | 0.2295 | 0.6433 | 0.1077 | 1.5898 | 1.2195
5. CGENIBC US | 0.8918 | 0.2823 0 0.4136 | 0.2851 | 1.4308 ; 1.1354
7.CGENI_ABC US | 1.3958 | 0.2866 0 0.4136 | 0.1077 | 1.4308 | 1.0092
7. CGENI.AB_US | 0.8142 | 0.3390 | 0.2295 | 0.4136 0 1.4308 | 1.3036
7_.CGENI_AC_US | 1.1244 | (.2908 | 0.2285 | 0.4136 0 1.4308 | 1.3036
7 CGENLBC_US | 0.7754 | 0.1758 | 0.2295 | 0.4136 | 0.0950 | 1.4308 | 1.0513
9_ CGENI_ABC.US | 1.0856 | 0.1513 0 0.3982 0 1.5808 | 1.1774
9 CGENI_AB US | 0.9305 | 0.2823 0 0.4136 | 0.0633 | 1.7488 | 0.8410
9 CGENIACUS | 0.8142 | 0.2823 0 0.3982 a 1.4308 | 0.7989
9 CGENIBC.US ! 1.1244 | 0.2823 0 0.4136 | 0.0253 | 1.4308 | 1.2195
3.GENIABC.US | 1.1632 | 0.1454 | 0.1475 | 0.5821 | 0.0380 | 1.9077  1.7661
3_GENI_.ABUS 0.9305 | 0.2866 | 0.1967 ! 0.3982 0 1.5898 | 1.5979
3.GENI_AC_US 1.0856 ¢ 0.1851 | 0.4262 | 0.4136 | 0.3295 | 1.4308 | 1.1774
3. GENIBC_US 1.0469 | 0.1589 | 0.3115 | 0.6127 | 0.1520 | 1.4308 | 1.7661
5 GENI_ABC_US | 0.9305 | 0.3085 | 0.2295 | 0.4136 | 0.0443 | 1.4308 | 1.1774
5.GENI_AB_US 0.8918 | 0.1758 o 0.4136 0 1.9077 | 0.9251

5 GENI_AC.US 1.3571 | 0.1192 0 0.4136 | 0.0823 | 1.4308 | 1.5138

5 GENI.BC_US 1.2795 | 0.3085 | 0.2295 | 0.2604 1.4308 | 1.3877
7T_.GENLABC_US | 1.0856 | 0.2815 0 0.3370 1.5898 | 1.0513
7.GENI_AB_US 0.7367 | 0.3474 | 0.2295 | 0.4136 1.4308 | 1.0833
7.GENIAQ_US 0.8530 | 0.3085 | 0.2295 | 0.3982 1.9077 | 1.3877
7 GENIBC.US 1.5509 | 0.3474 0 0.5055 1.4308 | 1.5138
9_GENI.ABC US | 0.8530 | 0.3652 0 0.4136 1.4308 | 1.2615
9 GENI_AB_US 0.5428 | 0.1192 0 0.4136 | 0.0443 | 1.4308 | 0.8830
9 GENI_.ACUS 1.3958 | 0.2823 | 0.2295 | 0.4136 0 1.5898 | 1.0933
9_GENI_BC_US 1.3958 | 0.0262 0 0.4136 | 0.0443 | 1.4308 | 1.2195

coo oo o

3.CCAUS 2.4815 | 2.3503 | 4.6401 | 1.9761 | 0.5766 | 3.8155 | 2.6072
5 CCAUS 2.4815 | 2.3503 | 1.8691 | 1.9761 | 0.5766 | 1.4308 | 1.6400
7.CCAUS 24815 | 2.3503 | 1.8691 | 1.9761 | 0.5766 | 2.8616 | 1.5559
9 CCAUS 2.4815 | 2.2877 | 1.0329 | 2.6348 | 0.5766 | 3.8155 | 1.6820

Table B.8: Percentage deviation of the heuristic solution and the best known solution for the
TSP on the literature problems
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Heuristic Wni0s | kin318 | pri0Y | pri2f | pri86 | prii4

3_CGENL ABC_US 0 1.5751 0 0.7285 | 0.0461
3_.CGENI_AB US | 0.1599 | 1.6988 0 0.3596 0

3_.CGENI.AC.US | 0.1599 | 0.8613 0 0.3689 | 0.0290

0
o
0
3 CGENIBC_US 0 1.3276 0 0.0779 | 0.3730 | 0.1195
5_ CGENI_.ABC_US 0 0.7518 ] 0 1.1294 | 0.0580
5 CGENI_AB_US 0 0.7137 0 0 0.2294 | 0.0580
5 CGENI_AC_US a 0.7304 0 0 0.2469 | 0.0290
5 CGENI.BC_US Q 0.8303 0 0 0.6696 | 0.0580
7.CGENI_ABC US 0 0.5210 0 0 0.6365 0
T_CGENI.AB_US 0 0.7080 0 0 0.4629 0
7.CGENI_AC_US 0 0.4401 0 0 0.2294 0
7_CGENIBC_US 0 0.8137 0 0 0.4495 0
9_CGENI_ABC US 0 0.7804 0 0 0.4722 0
9_CGENI_AB_US 0 0.8708 0 0 0.4205 0
9_CGENI_AC_US 0 0.5615 0 0 0.4495 0
9 CGENIBC_US 0 1.1063 0 0 0.6365 0
3_GENI_ABC_US i 0.1599 | 1.2419 0 0.0779 | 0.5797 0
3 GENI_.AB_US 0.0764 | 1.4299 0 0 0.0134 | 0.1195
3_GENILACUS 0.3129 | 1.8130 0 0.2270 1 0.2201 | 0.3570
3. GENIBCUS 0.1599 | 1.6940 0 0 0.5032 | 0.9788
5 GENI_LABC_US ) 1.2253 0 0 (0.4495 | 0.0871
5 GENI_AB_US 0 1.0278 0 0 0.2428 | 0.0290
5 GENI_AC_US 0 1.0254 0 0 0.3978 | 0.0871
5 GENI.BC_US 0 0.7328 0 0 0.6499 | 0.0871
T-GENI_ABC_US 0 0.4116 0 0 0.4402 0
7.GENILLAB_US a 0.8208 0 0 0.2294 0
7T_GENI AC_US 0 0.6781 0 0 0.4112 0
7 GENIBC_US 0 0.6590 0 0 0.2428 0
9_GENLABC_US 0 0.9683 0 0 0.2428 0
9 GENI_AB_US 0 .7994 0 0 0.4340 0
9_GENI AC_US 0 0.2807 0 0 0.2294 0
9 GENIBC.US 0 0.6447 0 0 0.4112 0
3.CCAUS 0 3.2287 | 0.4040 | 2.7037 | 3.6229 | 4.5714
5 CCAUS 0 2.3412 | 0.4040 | 2.3140 | 3.0835 | 3.9752
7. CCAUS 0 1.9343 | 0.4040 | 2.2310 | 3.0835 | 1.5323
9. CCAUS 0 1.9343 | 0.4040 | 2.2310 | 3.0835 | 1.1753

Table B.8: (Cont.) Percentage deviation of the heuristic solutions and the best known solution
for the TSP on the literature problems
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Heuristic pri5? | pr226 | pr264 | pr299 | pri39 | rati95 | ts225
3 CGENLABC_US | 0.3379 | 0.0559 | 0.1383 | 0.3589 | 1.1667 | 1.5497 0
3_.CGENI_AB_US | (0.2687 0 0 0.2780 | 0.9037 | 0.1721 | 0.2518
3.CGENI.ACUS | 0.2687 : 0.1119 0 0.2697 | 0.9681 | 1.1622 0
3_CGENLBC_US | 0.1845 | 0.4367 | 0.1383 | 0.2407 | 0.8319 | 0.7318 0
5 CGENILABC_US | 0.1845 0.1383 | 0.2220 | 0.3497 § 1.0761 0
5_CGENI_AB_US 0 0 0.0166 | 0.2219 | 0.9900 ¢
5 CGENI_LAC_US | 0.2687 0 0.1411 | 0.5838 | 0.8179 0
5_CGENIBC_US 0 0.1383 | 0.2344 | 0.6780 | 1.0331 | 0.0292
7_.CGENI_ABC_US 0 0.0124 | 0.2117 | 1.0761 0
7_CGENI_AB_US 0 0.0166 | 0.6640 | 0.9470 0
7_CGENL.AC US 0 0.0041 | 0.3926 } 0.9470 4]
7. CGENIBC.US | 0.1330 0.1411 | 0.8002 | 1.7219 | 0.2518
9_CGENI_ABC_US 0 0.0041 | 0.4803 | 1.1192 0
9_CGENI_AB_ US | 0.1411 0.0041 | 0.5344 : 0.9470 | 0.2518
9_CGENI_AC_US 0 0.0041 | 0.4467 | 1.0761 ¢
9_CGENIBC_US 0 0.1099 | 0.6845 | 0.9040 | 0.2518
3_.GENI_ABC_US | 0.1845 | 0.1443 0.5706 | 0.6836 | 0.7318 | 0.0552
3.GENI_AB_US 0 0.1219 | 0.1383 | 0.3735 | 1.0474 | 1.1192 0
3_GENI_AC_US 0.1845 | 0.0609 0 0.3091 | 0.8002 | 1.0331 | 0.2518.
3_GENI_BC_US 0.1845 | 0.0883 | 0.1383 | 0.3610 | 1.7972 | 1.2914 | 0.3158

COOoOo O o o000

ocoo oo oo

5 GENI. ABC_US 0 0 0.0815 | 0.0684 | 0.6435 | 0.7748 0
5 GENI_AB_US 0 0 0.1383 | 0.1099 | 0.4010 | 1.6788 | 0.6324
b GENI ACUS 0 0 0 0.1577 | 0.4560 | 1.2483 0
5 GENI.BC_US 0 0 0.1383 | 0.3050 | 0.7200 | 1.1622 | 0.0292
7_GENI_ABC_US 0 0 0 0.0041 | 0.8263 | 1.5066 | 0.6324
7 GENI_AB_US 0 0 0 0.0871 | 0.6995 | 0.9900 0
7 GENI_AC_US 0.1845 0 0 0.2012 | 0.5726 | 0.8609 0
7_GENI.BC_US 0 0 0 0.2822 | 0.6827 | 1.0761 0
9_GENT ABC_US 0 0 0 0.0684 | 0.5922 | 1.20563 0
9_GENI_AB_US 0 0 0 0.1307 | 0.5819 | 1.0331 0
9_GENI_AC US 0 0 0 0.1805 | 0.1669 | 1.1192 0
9_GENIBC_US 0 0 0 0.1099 | 0.8049 | 0.9470 0
3_CCAUS 3.6684 | 1.0812 | 6.4943 | 0.6536 | 2.0640 | 2.1523 | 6.3998
5_CCAUS 1.6204 | 0.1853 | 6.0588 | 0.0166 | 1.7347 | 2.1093 | 6.3998
7 CCAUS 2.5732 | 0.1853 | 6.0181 | 0.0166 | 1.7347 | 2.2815 | 5.3449
9_CCAUS 0.8183 | 0.1853 | 5.6436 | 0.0166 | 1.1546 | 2.2815 ; 2.9887

Table B.8: (Cont.) Percentage deviation of the heuristic solutions and the best known solution
for the TSP on the literature problems
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Heunristic tsp225 | ul59 | kroA100 | pcbi42 | rd? 00 rd{00 | ott532
3_CGENI_ABC_US | 1.2248 | 0.7509 (0.9216 0 1.3153 | 0.6754
3_.CGENI_AB US | 1.4034 0 1.3332 0 1.6752 | 1.3256
3.CGENI.ACUS | 1.3523 0 1.1461 0 1.6032 | 1.2136
3 CGENIBC_US | 1.6841 | 0.7865 1.5479 0 1.5444 | 1.3111
5_.CGENI.ABC_US | 1.6330 0 1.2091 0 1.2237 | 0.4442
5 CGENI_LAB_US | 1.0972 0 1.4494 0 0.9816 | 1.4917
5. CGENI_LAC_US | 1.6075 | 0.5798 1.3883 0 1.1452 | 1.1377
5.CGENIBC.US | 1.5310 1] 1.6581 0 1.6229 | 1.0655
7_CGENI_ABC_US | 1.0206 1.0378 0 1.3807 | 1.0980
7.CGENI_ AB_US | 1.2758 1.4750 0 1.3807 | 1.1811
7_CGENLAC_US | 1.4799 0.9748 0 1.2695 | 0.7982
7. CGENIBC.US | 1.3268 0.8881 0 1.5313 | 0.9391
9_CGENI ABC_US | 1.2758 0.8251 0 0.7983 | 0.6971
9_CGENI_LAB_US | 1.0461 1.2150 0 1.1583 | 1.0257
9_CGENI_AC_US ! 1.4544 0.7739 0 1.5313 | 1.0330
9 CGENIBC_US | 1.4799 1.4789 0 1.2041 | 0.9391

1.2249 | 0.0758 | 1.5640 | 1.3002
1.6286 | 0.0758 | 1.4331 | 1.6217

3_GENI_ABC.US | 1.0717 | 0.
3_GENI_AB_US 1.4289

OOOODDDOOODODDOSOOOOOOOD

=Rl R =R === =l = Y e R e B o N e R B = S o B e o B e i e B e Bt e e == e i e [ e et L

3_GENIACTS 1.1737 1.3184 0 1.2237 | 1.3219
3_GENI BC_US 1.4799 1.8708 0 1.7341 | 1.5134
5_GENI_ABC US | 1.4544 1.1461 0 1.4200 | 0.9607
5 GENI.AB_US 1.2758 0.8606 0 1.4396 | 0.9463
5 GENI_AC_US 1.3013 1.3500 0 1.6949 | 0.8776
5.GENIBC_US 1.5565 1.4750 0 1.0077 | 1.1738
7 GENILABCUS | 1.1992 1.4533 0 0.9619 | 0.8813
7T .GENI_AB_US 1.2758 0.7621 0 1.0405 | 1.2388
7T_GENI_AC_US 1.5064 1.0713 0 1.0666 | 0.9932
7_GENI.BC_US 1.1992 1.3470 0 1.5771 ¢ 1.0402
9_GENI_ABC US | 1.5054 1.2328 0 0.9946 | 0.9318
9_GENI_AB.US 1.2503 1.2682 0 1.4396 | 1.0077
9_GENI_AC TS 1.7086 1.1560 ] 1.5836 | 0.8379
9_GENIBC_US 1.4799 1.6463 0 1.5444 | 0.7296
3. CCAUS 1.8627 | 2.0175 2.4420 | 2.2626 | 3.6712 | 1.8095

5 CCAUS 1.7861 | 1.1121 2.1800 | 2.1868 | 2.9644 | 1.7012

7 CCAUS 1.8627 | 1.1121 2.3120 | 2.1868 | 2.6961 | 1.7048

9 CCAUS 1.8627 | 1.1121 2.1091 | 2.1868 | 2.6241 | 1.7084

Tabie B.8: (Cont.} Percentage deviation of the heuristic solution and the best known solution
for the TSP on the literature problems
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Heuristic prl r2 p3 P4 p5 p6 p7

3 CGENI_AB_US | 7763 | 8541 | 8921 | 9422 | 10208 | 10690 | 11810
3. CGENI_ABC_US | 7758 | 8562 | 8889 . 9443 | 10259 | 10763 | 11739
3. CGENIAC.US | 7763 | 8571 | 8935 | 9457 | 10126 | 10625 | 11763
3.CGENI.BC.US | 7763 | 8552 | 8871 | 9455 | 10281 | 10694 | 11750
5. CGENI_AB.US | 7758 | 8541 | 8866 | 9418 j 10273 & 10673 t 11749
5.CCENI_ABC_US | 7758 | 8552 | 8901 | 9456 | 10146 | 10655 | 11809
5 CGENLAC_US | 7758 | 8541 | 8889 | 9418 | 10269 | 10598 | 11718
5 CGENLBC.US | 7758 | 8541 | 8866 : 9457 | 10136 | 10670 | 11704
7 CGENI_AB.US | 7758 | 8541 | 8866 | 9426 | 10196 | 10625 | 11710
7. CGENLABC_US | 7758 | 8541 | 8866 | 9418 | 10221 | 10697 | 11778
7 CGENIAC_US | 7758 | 8541 | 8886 | 9426 | 10218 | 10644 | 11745
7 CGENLBC_US | 7758 | 8541 | 8886 | 9435 | 10124 | 10610 | 11769
9 CGENI_AB_US 1 7758 | 8541 | 8889 | 9454 | 10169 | 10598 | 11745
9_CGENI_ABC_US | 7758 | 8552 | 8889 | 9418 | 10222 | 10638 | 11696
g CGENLAC_US | 7758 | 8541 | 8889 | 9418 | 10133 | 10625 | 11742
9_CGENILBC_US | 7758 | 8541 | 8866 | 9435 | 10111 | 10639 | 11762
3_.GENI_AB US 7758 | 8571 | 8868 | 9449 | 10159 | 10699 | 11815

3 GENIABC_US | 7758 | 8562 | 8868 | 9442 | 10235 | 10688 | 11834
3. GENI_AC US 7758 | 8541 | 8866 | 9442 | 10211 | 10761 | 11761
3_GENIBC_US 7758 | 8571 | 8916 | 9426 | 10293 | 10655 | 11840
5_GENI_AB_US 7758 | 8552 | 8866 | 9455 | 10282 | 10598 | 11761
5.GENI_ABC_US | 7758 | 8552 | 8889 | 9442 | 10243 | 10598 | 11754
5 GENI.AC_US 7758 | 8541 | 8866 | 9442 | 10139 | 10678 | 11746
5_GENIBC_US 7758 | 8541 | 8892 | 9464 | 10213 | 10667 | 11780
7_GENI_AB_US 7758 | 8541 | 8886 | 9426 | 10203 | 10661 | 11712
7 GENI.ABC_.US | 7758 | 8541 | 8866 | 9435 | 10136 | 10595 | 11712
7.GENIL.AC_US 7758 | 8552 | 8866 | 9442 | 10219 | 10674 | 11744
7_GENIL.BC_US 7758 | 8541 | 8866 | 9457 | 10176 | 10595 | 11761
9_GENI.AB_US 7758 | 8541 | 8866 | 9418 | 10148 | 10595 | 11744
9 GENT_ABC.US | 7758 | 8541 | 8866 | 9426 | 10204 | 10664 | 11781
9. GENI_AC US 7758 | 8541 | 8866 | 9418 | 10132 | 10671 | 11758
9_GENIBC_US 7758 | 8541 | 8889 | 9456 | 10124 ; 10651 | 11751

3. CCAUS 7865 | 8769 | 9072 | 9682 | 10597 | 10995 | 12005
5.CCAUS 7843 | 8766 | 9071 | 9553 | 10449 | 10867 | 12039
7.CCAUS 7795 | 8766 | 9071 | 9733 | 10338 | 10969 | 12009
8_CCAUS 7795 | 8766 | 9071 | 9585 | 10333 | 10919 | 12009

Table B.9: The best solution obtained over 100 runs for various heuristics Hj on the given

problem i, i.e. min (fg;): for the TSP on the randomly generated problems
1<r<100
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Heuristic r8 g pld pll pl2 p18 pld

~ 3.CGENILAB.US | 12035 | 12300 | 12673 | 13289 13309 | 14019 | 14567
3. CGENIABC._US | 12083 | 12242 | 12665 | 13281 | 13373 | 14155 | 14689
3 CGENIAC.US | 12094 | 12414 | 12722 | 13359 ; 13322 | 14127 | 14639
3 CGENI.BC.US | 12100 | 12314 | 12699 | 13299 | 13342 | 14177 | 14582
5.CCGENI.AB_US | 12026 | 12290 | 12674 | 13233 | 13307 | 14115 | 14566
5.CGENI_ABC_US | 12051 | 12268 | 12612 | 13347 | 13288 | 14121 | 14606
5.CGENILAC.US | 12052 | 12236 | 12691 | 13283 | 13340 | 14073 | 14590
5 CGENIBC.US | 12063 | 12325 | 12644 { 13329 | 13320 | 14117 | 14578
7 CGENLAB_US | 12074 | 12322 | 12666 | 13312 | 13308 | 14049 | 14543
7 CGENIABC_US | 12018 | 12324 | 12634 | 13326 | 13315 | 14122 | 14545
7 CGENI_AC_US | 12050 | 12250 | 12669 | 13308 | 13318 | 14112 | 14528
7 CGENLBC.US | 12052 | 12291 | 12648 | 13288 | 13327 | 14088 | 14600
g CCENIAB.US | 12049 | 12246 | 12624 | 13282 | 13286 | 14129 | 14571
9 CGENI_ABC_US | 12051 | 12285 | 12632 | 13325 | 13296 | 14074 | 14542
9_.CGENLAC_US | 12049 | 12259 | 12635 | 13279 | 13317 | 14085 | 14516
9 CGENIBC.US | 11991 | 12292 | 12635 | 13340 | 13301 | 14115 | 14539
3_GENI.AB_US 12084 | 12291 | 12697 | 13292 | 13347 | 14102 | 14618
3.GENI_ABC.US | 12101 | 12335 | 12755 | 13426 | 13317 | 14109 | 14689
3_.GENIACUS 12108 | 12298 | 12665 | 13368 | 13336 | 14193 | 14714
3.GENIBC US 12077 | 12386 | 12710 | 13344 | 13368 | 14066 | 14615
5_GENI.AB_US 12057 | 12365 | 12693 | 13341 | 13282 | 14138 | 14567
5.GENIABC US | 12053 | 12333 | 12663 | 13311 | 13280 | 14089 | 14632
5 GENI_AC_US 12042 | 12229 | 12664 | 13306 | 13348 | 14133 | 14567
5.GENIBC_US 12057 | 12268 | 12675 | 13390 | 13302 | 14066 | 14633
7_GENLAB_US 12087 | 12283 | 12649 | 13295 | 13215 | 14112 | 14660
7_CENIABC.US | 12061 | 12240 | 12633 | 13372 | 13320 | 14075 | 14601
7_GENI_AC_US 12039 | 12317 | 12658 | 13203 | 13346 | 14128 | 14543
7_GENI.BC_US 12057 | 12340 | 12679 | 13365 | 13360 | 14079 | 14589
9_GENI_AB_US 12010 | 12271 | 12656 | 13340 | 13291 | 14081 | 14593
9.CENI_LABC US | 12045 | 12305 | 12685 | 13259 | 13296 | 14086 | 14551
9_GENI.AC_US 11969 | 12345 | 12656 | 13334 | 13318 | 14132 | 14541
9_GENI_BC US 12055 | 12259 | 12654 | 13285 | 13323 | 14147 | 14645

3.CCAUS 12197 | 12585 | 12822 | 13581 | 13705 | 14486 | 14780
5. CCAUS 12208 | 12371 | 12806 | 13438 | 13684 | 14312 | 14777
7. CCAUS 12129 | 12371 | 12773 | 13497 | 13684 | 14323 | 14777
9 .CCAUS 12129 | 12371 | 12773 | 13494 | 13663 | 14310 | 14756

Table B.9: (Cont.} The best solution obtained over 100 runs for various heuristics Hj on the

given problem i, i.e. l<mir%00( fiz;)« for the TSP on the randomly generated problems
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Heuristic pls pl6 pl7 pi8 pl? p20

3 CGENLAB_US | 14942 | 15161 | 15254 | 15927 | 16305 | 16269
3.CGENI_ABC_US | 14962 | 15287 | 15322 | 16053 | 16297 | 16277
3 CGENIAC_US | 14946 | 15261 | 15142 | 16070 | 16235 | 16256
3. CGENLBC_US | 14977 | 15096 | 15271 | 16100 | 16346 | 16277
5. CGENI_AB_US | 14914 | 15161 | 15205 | 16020 | 16215 | 16220
5.CGENI_ABC_US | 14981 | 15192 | 15269 | 16001 | 16278 | 16176
5.CCGENLAC_US | 14957 | 15237 | 15322 | 16011 | 16267 | 16202
5 CGENLBC_US | 14903 | 15168 { 15267 | 16018 | 16287 | 16197
7 CGENI_AB_US | 14801 | 15195 | 15196 | 15928 | 16221 | 16217
7 CGENIABC.US | 14921 | 15042 | 15239 | 15975 | 16212 | 16187
7. CGENI_AC US 14879 | 15126 | 15184 | 16014 | 16208 | 16217
7_CGENI_BC_US 14869 | 15110 | 15253 | 15998 | 16218 | 16198
9 CGENI_AB_US | 14866 | 15063 | 15143 | 15896 | 16205 | 16159
9 CGENI_ABC_US | 14935 | 15174 | 15269 | 15975 | 16245 | 16205
9 CGENIAC US | 14888 | 15049 | 15210 | 16032 | 16184 | 16213
9. CGENLBC_US | 14934 | 15174 | 15240 | 16102 | 16282 | 16257
3.GENI_AB_US 14964 | 15166 | 15206 | 16008 | 16253 | 16234
3.GENIABC.US | 14933 | 15240 | 15312 | 16018 | 16360 | 16223
3_GENI_AC.US 14974 | 15272 | 15269 | 16032 | 16301 | 16276
3.GENI_BC_US 15042 | 15254 | 15307 | 15960 | 16347 | 16309
5_GENI_AB_US 14865 | 15162 | 15256 | 15999 | 16172 | 16147
F_GENI_ABC_US 14884 | 15215 | 15201 | 16011 | 16257 { 16197
5 GENI_AC_US 14964 | 15244 | 15203 | 16034 | 16291 ; 16237
5.GENIBC_US 14965 | 15197 | 15251 | 15965 | 16288 | 16257
7.GENI_AB_US 14921 | 15140 | 15192 | 15961 | 16186 | 16211

7 GENI_ABC_US | 14941 | 15210 | 15242 | 16000 | 16256 | 16169
7T_GENI_AC_US 14004 | 15175 | 15268 | 16008 | 16250 | 16259
7_GENI_BC_US 14941 | 15138 | 15207 | 16003 | 16237 | 16234
9_GENI_AB US 14913 | 15166 [ 15171 | 15948 | 16232 | 16216
g CENI_ABC_US | 14941 | 15174 | 15133 | 15971 | 16203 | 16167
9 GENI.AC US 14913 | 15186 | 15267 | 15900 | 16189 | 16225
9_GENI_BC_US 14906 | 15172 | 156274 | 15948 | 16231 | 16137

3.CCAUS 15237 | 15262 | 15548 | 16342 | 16486 | 16715
5_CCALS 15184 | 15281 | 15500 | 16305 | 16310 | 16644
7_CCAUS 15201 | 15242 | 15500 | 16283 | 16206 | 16534
9_CCAUS 15142 | 15239 | 15460 | 16291 | 16208 | 16467

Table B.9: (Cont.) The best solution obtained over 100 runs for various heuristics Hj on the
given problem i, i.e. nglloﬂ( fir;)s for the TSP on the randomly generated problems
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Heuristic ri p2 p? P4 pé pb p7
3_CGENI_AB.US | 1.0006 1 1.0062 | 1.0004 | 1.0095 | 1.0089 ; 1.0097
3_CGENI_ABC_US 1 1.0024 | 1.0025 | 1.0026 | 1.0146 | 1.0158 | 1.0036
3 CGENIAC_US | 1.0006 | 1.0035 | 1.0077 | 1.0041 | 1.0014 | 1.0028 | 1.0057
3.CGENLBC_US | 1.0006 | 1.0012 | 1.0005 | 1.0039 | 1.0168 | 1.0093 | 1.0046
5_ CGENI_AB_US 1 1 1 1 1.0160 | 1.0073 | 1.0045
5. CGENI_ABC_US 1 1.0012 | 1.0039 | 1.0040 ! 1.0034 | 1.0056 | 1.0096
5. CGENI_AC US 1 1 1.0025 1 1.0156 § 1.0002 | 1.0018
5 CGENI_BC US 1 1 1 1.0041 | 1.0024 | 1.0070 { 1.0006
7 CGENI_AB_US 1 1 1 1.0008 | 1.0084 | 1.0028 | 1.0011
7_CGENI_ABC_US 1 1 1 1 1.0108 | 1.0096 | 1.0070
7_CGENILLAC_US 1 1 1.0022 | 1.0008 | 1.0105 | 1.0046 | 1.0041
7 CGENIBC_US 1 1 1.0022 | 1.0018 | 1.0012 | 1.0014 | 1.0062
9_CGENI_AB.US 1 1 1.0025 | 1.0038 | 1.0057 | 1.0002 | 1.0041
9_CGENI_ABC_US 1 1.0012 | 1.0025 1 1.0109 | 1.0040 1
9_CGENI_AC.US 1 1 1.0025 1 1.0021 | 1.0028 | 1.0039
9_CGENI.BC_US 1 1 1 1.0018 1 1.0041 : 1.0056
3_.GENI_AB_US 1 1.0035 { 1.0002 | 1.0032 | 1.0047 | 1.0098 | 1.0101
3.GENLABC_US 1 1.0024 | 1.0002 | 1.0025 | 1.0122 | 1.0087 | 1.0117
3_GENI_AC.US 1 1 1 1.0025 | 1.0098 | 1.0156 | 1.0055
3_GENI.BC_US 1 1.0035 | 1.0056 | 1.0008 | 1.0180 | 1.0056 | 1.0123
5 GENI_AB_US 1 1.0012 1 1.0039 | 1.0169 | 1.0002 | 1.0055
5_GENI_.ABC_US 1 1.0012 | 1.0025 | 1.0025 | 1.0130 | 1.0002 | 1.0049
5 GENI_AC US 1 1 1 1.0025 | 1.0027 | 1.0078 | 1.0042
5_GENIBC_US 1 1 1.0029 ; 1.0048 | 1.0100 | 1.0067 | 1.0071
7_GENI_AB_US 1 1 1.0022 | 1.0008 } 1.0090 | 1.0062 | 1.0013
7_GENI_ABC_US 1 1 1 1.0018 | 1.0024 1 1.0013
7.GENTL.ACUS 1 1.0012 1 1.0025 | 1.0106 | 1.0074 ; 1.0041
7.GENI.BC_US 1 1 1 1.0041 | 1.0064 1 1.0055
9 GENI_AB_US 1 1 1 1 1.0036 1 1.0041
9_GENI_LABC_US 1 1 1 1.0008 | 1.0091 | 1.0065 | 1.0072
9 GENLAC US 1 1 1 1 1.0020 | 1.0071 | 1.0053
9_GENIBC_US 1 1 1.0025 | 1.0040 | 1.0012 | 1.0052 | 1.0047
3_.CCAUS 1.0137 | 1.0266 | 1.0232 | 1.0280 | 1.0480 | 1.0377 | 1.0264
5. CCAUS 1.0109 | 1.0263 | 1.0231 | 1.0143 | 1.0334 | 1.0256 | 1.0293
7_CCAUS 1.0047 | 1.0263 | 1.0231 | 1.0334 | 1.0224 | 1.0352 | 1.0267
9_CCAUS 1.0047 | 1.0263 | 1.0231 | 1.0177 | 1.0219 | 1.03056 | 1.0267

Table B.10: Ratio for the TSP on the randomly generated problems for Case 1

237




Heuristic p8 p9 pl0 pll pl2 p18 rl4
3.CGENIAB.US | 1.0055 | 1.0058 | 1.0048 | 1.0065 | 1.0071 1 1.0035
3. CGENILABC._US t 1.0095 | 1.0010 | 1.0042 | 1.0059 | 1.0119 | 1.0097 | 1.0119
3 CGENLACUS | 1.0104 | 1.0151 | 1.0087 | 1.0118 | 1.0080 | 1.0077 | 1.0084
3 CCGENLBC.US | 1.0108 | 1.0069 | 1.0068 | 1.0072 | 1.0096 | 1.0112 1.0045
5 CGENLAB_US | 1.0047 | 1.0049 | 1.0049 | 1.0022 | 1.0069 | 1.0068 | 1.0034
5 CGENI_ABC.US | 1.0068 | 1.0031 1 1.0109 | 1.0055 | 1.0072 | 1.0062
5 CGENIACUS | 1.0069 | 1.0005 | 1.0062 | 1.0060 | 1.0094 | 1.0038 | 1.0050
5 CGENIBC_US | 2.0078 | 1.0078 | 1.0025 | 1.0095 | 1.0079 | 1.0069 | 1.0042
7 CGENILAB_US | 1.0087 | 1.0076 | 1.0042 | 1.0082 | 1.0070 | 1.0021 1.0018
7 CGENLABC.US | 1.0040 | 1.0077 | 1.0017 | 1.0093 | 1.0075 | 1.0073 | 1.0018
7 CGENIAC_.US | 1.0067 | 1.0017 | 1.0045 | 1.0079 | 1.0077 | 1.0066 | 1.0008
7 CGENL.BC_.US | 1.0069 | 1.0050 | 1.0028 | 1.0064 | 1.0084 | 1.0049 | 1.0057
9. CGENIAB.US | 1.0066 | 1.0013 | 1.0009 | 1.0059 | 1.0053 | 1.0078 1.0037
9.CCENI_ABC_US | 1.0068 | 1.0045 | 1.0015 | 1.0092 | 1.0061 | 1.0039 1.0017
9 CCGENLACUS | 1.0066 | 1.0024 | 1.0018 | 1.0057 | 1.0077 | 1.0047 1
9 CGENLBC.US | 1.0018 | 1.0051 | 1.0018 | 1.0103 | 1.0065 | 1.0068 1.0015
3_.GENIL.AB_US 1.0096 | 1.0050 | 1.0067 | 1.0067 | 1.0099 | 1.0059 | 1.0070
3. GENILABC.US | 1.0110 | 1.0086 | 1.0113 | 1.0168 | 1.0077 ; 1 0064 | 1.0119
3_GENI.AC US 1.0116 | 1.0056 | 1.0042 | 1.0124 | 1.0091 | 1.0124 | 1.0136
3_.GENIBC_US 1.0090 | 1.01283 | 1.0077 | 1.0106 | 1.0115 | 1.0033 | 1.0068
5.GENI_AB US 1.0073 | 1.0111 § 1.0064 | 1.0104 | 1.0050 | 1.0084 | 1.0035
5. CENLABC._US | 1.0070 | 1.0085 | 1.0040 | 1.0081 | 1.0056 | 1.0049 1.0079
5_ GENI.ACUS 1.0060 1 1.0041 | 1.0078 | 1.0100 | 1.0081 | 1.0033
5_GENI BC_US 1.0073 | 1.0031 | 1.0049 | 1.0141 | 1.0065 | 1.0033 | 1.0080
7 GENI_AB_US 1.0008 | 1.0044 | 1.0029 | 1.0069 1 1.0066 | 1.0057
7 CENLABC.US | 1.0076 | 1.0008 | 1.0016 | 1.0128 | 1.0079 | 1.0039 1.0058
7_GENI_AC US 1.0058 | 1.0071 | 1.0036 1 1.0099 | 1.0077 | 1.0018
7_.GENI.BC_US 1.0073 | 1.0090 | 1.0053 | 1.0122 | 1.0109 | 1.0042 . 1.0050
9_GENI_AB_US 1.0034 | 1.0034 | 1.0034 | 1.0103 | 1.0057 | 1.0044 ;| 1.0053
0. GENI_ABC.US | 1.0063 | 1.0062 | 1.0057 | 1.0042 | 1.0061 | 1.0047 1.00241

9_GENI AC US 1 1.0094 | 1.0034 | 1.0099 | 1.0077 { 1.0080 | 1.0017
9_GENIBC_US 1.0071 | 1.0024 | 1.6033 | 1.0062 | 1.0081 | 1.0091 | 1.0088
3_CCAUS 1.0190 | 1.0291 } 1.0166 | 1.0286 | 1.0370 | 1.0333 | 1.0181
5 CCAUS 1.0199 | 1.0116 | 1.0153 | 1.0177 | 1.0354 | 1.0209 | 1.0179
7 CCAUS 1.0133 | 1.0116 | 1.0127 | 1.0222 | 1.0354 | 1.0216 | 1.0179
9 CCAUS 1.0133 | 1.0116 | 1.0127 | 1.0220 | 1.0339 | 1.0207 | 1.0165

Table B.10: (Cont.) Ratio for the TSP on the randomly generated problems for Case 1
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Heuristic pl5 plé p17 pl8 pl9 p20
3.CGENLAB_US | 1.0051 | 1.0079 : 1.0079 | 1.0019 | 1.0082 | 1.0081
3.CGENIABC_US | 1.0065 | 1.0162 | 1.0124 } 1.0098 | 1.0077 | 1.0086
3.CGENLAC_US | 1.0054 | 1.0145 | 1.0005 | 1.0109 | 1.0038 | 1.0073
3.CGENI.BC.US | 1.0075 | 1.0035 | 1.0091 | 1.0128 | 1.0107 ; 1.0086
5 CGENI_AB.US | 1.0032 | 1.0079 | 1.0047 | 1.0078 | 1.0026 | 1.0051
5 CGENI_ABC_US | 1.0078 | 1.0099 | 1.0089 | 1.0066 | 1.0065 | 1.0024
5 CGENIAC_US | 1.0061 | 1.0129 | 1.0124 | 1.0072 | 1.0058 | 1.0040
5.CGENIBC.US | 1.0025 | 1.0084 | 1.0088 | 1.0076 ; 1.0058 | 1.0037
7 CGENLAB.US | 1.0017 | 1.0101 | 1.0041 | 1.0020 | 1.0030 | 1.0049
7.CGENI_ABC .US | 1.0037 1 1.0070 | 1.0049 | 1.0024 | 1.0030
7 CGENI_AC_US | 1.0009 | 1.0055 | 1.0033 | 1.0074 | 1.0022 | 1.0049
7 CGENI.BC_US | 1.0002 | 1.0045 | 1.0079 | 1.0064 | 1.0028 | 1.0037
0_CCGENIAB_US | 1.0000 | 1.0013 | 1.0006 1 1.0020 | 1.0013
9_CGENI_ABC_US | 1.0047 | 1.0087 | 1.0089 | 1.0049 | 1.0045 | 1.0042
9 CGENI_AC_US | 1.0015 | 1.0004 | 1.0050 | 1.0085 | 1.0007 : 1.0047
9_.CGENIL.BC US | 1.0046 | 1.0087 | 1.0070 | 1.0129 | 1.0068 | 1.0074
3.GENI_.AB_US 1.0066 | 1.0082 | 1.0107 | 1.007¢ | 1.0050 | 1.0060
3 GENI_ABC_US | 1.0045 | 1.0131 | 1.0118 | 1.0076 | 1.0116 | 1.0053
3_GENI_AC_US 1.0073 | 1.0152 | 1.0089 | 1.0085 | 1.0079 | 1.0086
3 GENILBC.US 1.0119 | 1.0140 | 1.0114 | 1.0040 | 1.0108 | 1.0106
5 GENI.AB US 1 1.0079 | 1.0081 | 1.0064 1 1.0006
5.GENI_ABC_US | 1.0044 | 1.0072 | 1.0052 | 1.0012 | 1.0037 | 1.0025
5 GENI_AC_US 1.0046 | 1.0086 | 1.0073 1 1.0061 | 1.0025
5. GENI BC_US 1.0067 | 1.0103 | 1.0077 | 1.0043 | 1.0071 | 1.0074
7.GENI_AB_US 1.0037 | 1.0065 | 1.0038 | 1.0040 | 1.0008 | 1.0045
7 GENILABC_US | 1.0051 | 1.0111 | 1.0072 | 1.0065 | 1.0051 ; 1.0019
7.GENI_AC_US 1.0026 | 1.0088 | 1.0089 | 1.0070 | 1.0048 | 1.0075
7 GENI BC.US 1.0051 | 1.0063 | 1.0048 | 1.0067 | 1.0040 | 1.0060
9. GENI_AB_US 1.0032 | 1.0082 | 1.0025 | 1.0033 | 1.0037 | 1.0048
9_GENI_ABC_US | 1.005% | 1.0087 1 1.0047 | 1.0019 | 1.0018
9_GENI_AC US 1.0032 | 1.0095 | 1.0088 | 1.0002 | 1.0010 | 1.0054
9_GENI.BC_US 1.0027 | 1.0086 | 1.0093 | 1.0032 | 1.0036 1

3_.CCAUS 1.0250 | 1.0146 | 1.0274 | 1.0280 | 1.0194 | 1.0358
5.CCAUS 1.0214 | 1.0158 | 1.0242 | 1.0257 | 1.0085 | 1.0314
7.CCAUS 1.0226 | 1.0132 | 1.0242 | 1.0243 | 1.0021 | 1.0246
8 CCAUS 1.0186 | 1.0130 | 1.0216 | 1.0248 | 1.0022 | 1.0204

Table B.10: (Cont.) Ratio for the TSP on the randomly generated problems for Case 1



Heuristic pl p2 ps pi | p5 | pb p7 | p8
3.CGENI_AB_US 31 11 31 8 18 | 27 29 6
3 CGENIABCUS | 15 | 285 | 24 22 | 27 | 32 T 26
3_CGENI_AC_US 31 31 32 30 4 10 23 29
3_.CGENLBC.US 31 | 245 | 17 ;255 30 | 28 15 30
5_CGENI_AB_US 15 11 7.5 4 29 | 23 14| b
5 CGENILABC.US | 15 | 245 | 29 | 275 | 10 | 165 | 28 | 135
5. CGENI_AC_US 15 11 24 4 28 | b.5 6 155
5 CGENIBC_US 15 11 75 | 30 |75 21 2 23
7.CGENI_.AB_US 15 11 7.5 11 [ 15 | 10 3 24
7Y.CGENIABCUS | 15 11 | 7.5 4 23 | 29 25 4
7_CGENI_AC_US 15 11 19 11 | 21| 14 | 115 | 12
7.CGENIBC_US 15 11 19 5 (25| 8 24 | 15.5
9_CGENI_AB_US 15 11 24 24 | 13 | 5.5 | 11.5 | 10.5
9 CGENIABCUS | 15 | 245 | 24 4 24 § 12 1 13.5
9 CGENI_AC_US 15 11 24 4 6 10 8 10.5
9_CGENIBC.US 15 11 75 | 15 1 13 22 2
3.GENI_AB_US 15 31 | 155 23 § 12| 30 30 27
3_GENI_ABC_US 15 [285 155 | 19 [ 25§ 26 31 31
3_GENI_AC.US 15 11 7.5 19 | 19| 31 20 32
3_GENI.BC._US 15 31 30 11 | 32 | 165 | 32 25
5 GENI_AB.US 15 | 245 | 7.5 | 255 | 31 | 55 | 20 20
5_GENI_ABC_US 15 ;245 | 24 19 | 26 | 5.5 17 17
5. GENI_AC.US 15 11 [ 7.5 19 9 25 13 8
5_.GENIL.BC_US 15 11 28 32 1 20| 20 26 20
7.GENI_AB_US 15 11 19 11 16| 18 | 45 | 28
7 .GENI_ABC_US 15 11 75 15 (75 2 4.5 | 22
7T.GENI_AC.US 15 (245 | 7.5 | 19 | 22| 24 | 9.5 7
7_GENI_BC_US 15 11 75 | 30 | 14 2 20 20
9_GENI_AB US 15 11 7.5 4 11 2 9.5 3
9_GENI_ABC_US 15 1t 7.5 11 |17 | 19 27 9
9_GENI AC.US 15 It 7.5 4 5 22 18 1
9_GENIBC_US 15 11 24 | 275 | 2.5 15 16 18

3_CCAUS 36 36 36 3 | 36 | 36 33 35
5_CCAUS 35 34 34 33 | 35| 33 36 36
7. CCAUS 33.5 | 34 34 36 | 34 | 35 | 34.5|33.5
9. CCAUS 335 34 34 34 | 33| 34 | 345 | 335

Table B.11: Ranking for the Friedman test for the TSP on the randomly generated problems
for Case 1
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Heuristic p9 | pi0 | pi1 | p12 | p18 | p14 | pl5 | pl6
3_CGENI_AB_US 18 21 10 13 1 12 22 | 95
3.CGENIABCUS| 4 [1756°7 5 32 30 | 3051 25 36
3_CGENI_AC US 35 31 27 21 23 28 | 23 32
3_CGENIBC.US 21 29 13 26 31 16 30 4
5_CGENI_AB_US 14 22 2 11 (185 | 10 13 | 9.5
5 CGENILABCUS | 9.5 1 26 4 21 23 31 21
5_CGENI_AC_US 2 26 7 25 5 18 24 26
5 CGENI.BC.US 25 8 20 | 195 | 20 15 8 14
7_CGENI_AB_US 23 19 17 12 2 6.5 7 22
7. CGENI_ABC_US | 24 5 19 14 22 8 14.5 1
7_CGENI_AC US 6 20 15 | 17.5 | 16.5 2 4 6
7 CGENIBC.US | 155| 9 9 23 12 | 205 3 5
9_CGENI_AB_US 5 2 6 3 25 14 2 3
9_CGENLABCUS | 13 3 18 | 7.5 6 b 18 17
9.CGENLACUS | 75 | 6.5 4 | 155 | 10 1 6 2
9 CGENIBC._US 17 | 65 | 2251 9 |[185| 3 17 17
3.GENIL AB.US 155 28 11 28 14 25 | 26.5 | 12,5
3_GENI_ABC_US 27 32 32 [155 (| 15 | 305 | 16 28
3_.GENI_AC_US 18 1175 | 29 24 32 32 29 M
3.GENI BC_US 34 30 25 31 35 | 24 32 31
5. GENI_AB_US 30 27 24 2 28 12 1 11
5_GENI_ABC_US 26 15 16 5 13 26 5 25
5_GENI_AC US 1 16 14 29 27 12 | 265 ; 30
5 GENIBC.US 9.5 23 31 10 | 35 | 27 28 23
7-GENI_AB_US 12 10 12 1 16.5 | 20.5 | 14.5 8
7T_GENT_ABC_US 3 4 30 | 185 7 22 20 24
7 GENI_LAC_US 22 14 1 27 24 | 6.5 9 19
7 GENIBC.US 28 24 28 30 8 17 20 7
g GENI_AB_US 11 | 125 225 | 6 9 19 | 115 | 125
9 GENI_ABC_US 20 25 3 7.5 11 9 20 17
9_GENI_AC_US 20 [ 125 | 21 176 | 26 4 | 115 20
9 GENILBC_US 7.5 11 8 22 29 29 10 15

3_.CCALUS 36 36 36 36 36 36 36 33
5 CCAUS 32 35 33 | 345 | 34 | 345 | 34 35
7 CCAUS 32 [ 335| 35 | 345 | 35 | 345 | 35 29
9 CCAUS 32 [ 335 | 34 33 33 33 33 27

Table B.11: (Cont.} Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 1

241



Heuristic p17 | p18 | p19 | p20 R; > B
3_CGENI_AB_US 18 3 31 28 3485 7905.25
3. CGENIABCUS | 315 | 29 20 | 30.5 481.5 13302.25
3_CGENILAC_US 2 30 16 24 482 13290
3_.CGENI_BC.US 26 31 33 ! 305 491.5 13225.75
5_CGENI_AB_US 10 25 11 18 2725 4685.75
5.CGENIABCUS | 24 16 25 6 371.5 8409.25
5 CGENIACUS | 315 205|235 11 328.5 7069.25
5. CGENIBC.US | 205 ;235 | 23.5 | 8.5 322.5 6283.75
7. CGENI_AB_US 7 4 13 16.5 245.5 3841.75
7 CGENILABCUS | 13 | 115 | 10 7 267.5 4796.75
7_CGENI_AC_US 5 22 85 | 165 253.5 3890.25

7_CGENI_BC_US 17 13 12 10 259 4050
9_CGENI_AB.US 3 1 6 3 187.5 2902.75
9 CGENIABCUS | 24 115 | 18 12 271 4729
9_CGENI_AC_US 12 | 26.5 2 14 195.5 2790.25
9_CGENI_BC_US 14 32 26 | 25.5 204.5 5679.25
3_GENI_AB.US 28 | 185 20 | 215 432 10225.5
3 GENI_ABC_US 30 | 235 35 19 494.5 13112.25
3_GENI_AC US 24 | 265 | 30 29 479.5 12620.75
3_GENI.BC_US 29 7 34 32 5056 14437.5
5_GENI.AB_US 19 14 1 2 320 Ti44
5.GENI_ABC US 8 2051 22 8.5 338 6764
5.GENI_AC_US 9 28 28 23 351 7649.5
5_ GENI_BC_US 16 9 27 25.5 404.5 9480.75
7_GENI_AB_US 6 8 3 13 247 3846
7_GENI_ABC US 15 15 21 5 270 4922
7T_GENI_AC.US 22 | 185 | 19 27 337.5 6828.25
7T_GENIBC_US 11 17 17 | 21.5 348 7309.5
9_GENLAB_US 4 6 15 15 207 2694.5
9_GENI_ABC_US 1 10 5 4 249 4106.5
9_GENI_AC_US 20.5 2 4 20 271.5 5061.25
9 GENI_BC_US 27 5 14 1 307.5 6172.75
3_CCAUS 36 36 36 36 712 25364
5.CCAUS 3451 35 32 35 684.5 23451.75
7 CCAUS 345 | 33 7 34 651.5 21950.75
9 CCAUS 33 34 8.5 33 637.5 20941.25
Bp— 280802.025 | Ap= 320934

Table B.11: (Cont.) Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 1
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Heuristic pl p2 p3 p4 j139) pb em p7
3.CGENI_AB_US | 1.0006 1 1.0062 | 1.0004 | 1.0095 | 1.0086 | 1.0097
3_.CGENI.ABC_US 1 1.0024 | 1.0025 | 1.0026 | 1.0146 | 1.0155 | 1.0036
3 CGENIAC.US | 1.0006 | 1.0035 | 1.0077 | 1.0041 | 1.0014 | 1.0025 1.0057
3 CCENLBC.US | 1.0006 | 1.0012 | 1.0005 | 1.0039 | 1.0168 | 1.0090 | 1.0046
5_CGENI_AB_US 1 1 1 1 1.0160 | 1.0070 | 1.0045
5. CGENIABC_US 1 1.0012 | 1.0039 | 1.0040 | 1.0034 | 1.0053 | 1.0096

5 CGENI_AC_US 1 1 1.0025 1 1.0156 1 1.0018
5 CGENILBC_US 1 1 1 1.0041 | 1.0024 | 1.0067 | 1.0006
7 CGENI_AB_US 1 1 1 1.0008 | 1.0084 | 1.0025 | 1.0011
7.CGENI_.ABC_US 1 1 1 1 1.0108 | 1.0093 | 1.0070
7_CGENI_AC_US 1 1 1.0022 | 1.0088 | 1.0105 | 1.0043 | 1.0041
7_CGENIBC_US 1 1 1.0022 | 1.0018 § 1.0012 | 1.0011 | 1.0062
9_CGENI_AB_US 1 1 1.0025 | 1.0038 | 1.0057 1 1.0041
9_CGENI_ABC_US 1 1.0012 | 1.0025 1 1.010¢ | 1.0037 1
9_ CGENI_AC_US 1 1 1.0025 1 1.0021 | 1.0025 | 1.0039
9_CGENI_BC_US 1 i 1 1.0018 1 1.0038 | 1.0056

Table B.12: Ratio for the TSP on the randomly generated problems for Case 2

Heuristic p8 p9 pl0 pil pl2 pi3 pl4
3 CGENIAB_US | 1.0036 | 1.0052 | 1.0048 | 1.0042 | 1.0017 1 1.0035
3_CGENLABC.US | 1.0076 | 1.0004 | 1.0042 | 1.0036 | 1.0065 | 1.0097 | 1.0119
3 CGENLAC.US | 1.0085 | 1.0145 | 1.0087 | 1.0095 | 1.0027 | 1.0077 | 1.0084
3.CGENL.BC.US | 1.0090 | 1.00637 | 1.0068 | 1.0049 | 1.0042 | 1.0112 | 1.0045
5 CGENI_LABUS | 1.0029 | 1.0044 | 1.0049 1 1.0015 | 1.0068 | 1.0034
5. CGENI_ABC_US | 1.0050 | 1.0026 1 1.0086 | 1.0001 | 1.0072 | 1.0062
5 CGENLAC.US | 1.0018 | 1.0050 | 1.0062 | 1.0037 | 1.0040 | 1.0038 | 1.0050
5 CGENIBC_US | 1.0060 | 1.0072 | 1.0025 | 1.0072 | 1.0025 | 1.0069 | 1.0042
7 CCENLAB.US | 1.0069 | 1.0070 | 1.0042 | 1.0059 | 1.0016 | 1.0021 1.0018
7 CGENIABC.US | 1.0022 | 1.0071 | 1.0017 | 1.0070 | 1.0021 | 1.0073 | 1.0019
7 CGENILAC.US | 1.0049 | 1.0011 { 1.0045 | 1.0056 | 1.0024 | 1.0066 | 1.0008
7 CCENLBC.US | 1.0050 | 1.0044 | 1.0028 | 1.0041 | 1.0030 | 1.0049 | 1.0057
9 CGENILAB_US | 1.0048 | 1.0008 | 1.0008 | 1.0037 1 1.0078 | 1.0037
9 CGENIABC_US | 1.0050 | 1.0040 | 1.0015 | 1.0069 | 1.0007 | 1.0039 | 1.0017
9 CGENI AC_US | 1.0048 | 1.0018 | 1.0018 | 1.0034 | 1.0023 | 1.0047 | 1.0014
9_CGENI.BC US 1 1.0045 | 1.0018 | 1.0080 | 1.0011 | 1.0068 | 1.0015

Table B.12: (Cont.) Ratio for the TSP on the randomly generated problems for Case 2
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Heuristic plh pi6 p17 p18 pl8 p20
3.CGENI_AB US | 1.0051 | 1.0078 | 1.0073 | 1.0019 | 1.0074 | 1.0068
3.CGENI_ABC.US | 1.0064 | 1.0162 | 1.0118 | 1.0098 | 1.0069 | 1.0073
3_.CGENI_AC_US | 1.0053 | 1.0145 1 1.0109 | 1.0031 | 1.0060
3_.CGENI.BC_US | 1.0074 | 1.0035 | 1.0085 | 1.0128 | 1.0100 | 1.0073
5 CGENI_AB.US | 1.0032 | 1.0079 | 1.0041 | 1.0078 | 1.0019 | 1.0037
5.CGENI_ABC_US | 1.0077 | 1.0099 | 1.0083 | 1.0066 | 1.0058 | 1.0010
5.CGENI_AC.US | 1.0061 | 1.0129 | 1.0118 | 1.0072 | 1.0051 | 1.0026
5 CGENI.BC_US | 1.0024 | 1.0084 | 1.0082 | 1.0076 | 1.0051 | 1.0023
7. CGENLAB_US | 1.0016 | 1.0101 | 1.0035 | 1.0020 | 1.0022 | 1.0035
7. CGENI_ABC_US | 1.0036 1 1.0064 | 1.004¢ | 1.0017 } 1.0017
7.CGENLAC US | 1.0008 | 1.0055 | 1.0027 | 1.0074 | 1.0014 | 1.0035
7. CGENLBC_US | 1.0002 | 1.0045 | 1.0073 | 1.0064 | 1.0021 | 1.0024
9 CGENILAB_US 1 1.0013 | 1.0000 1 1.0012 1
9.CGENI_ABC_US | 1.0046 | 1.0087 | 1.0083 | 1.0049 | 1.0037 | 1.0028
9_CGENI_ACUS | 1.0014 | 1.0004 | 1.0044 | 1.0085 1 1.0033
¢ CGENIBC_US | 1.0045 | 1.0087 | 1.0064 | 1.0129 | 1.0060 | 1.0060

Table B.12: (Cont.) Ratio for the TSP on the randomly generated problems for Case 2
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Heuristic pl [p2 ] p8 ] pd | 05| p6 | p7 | P8
3.CGENIABUS |15 6 | 15 6 9 | 13 ;16 4
3CGENIABCUS | 7 (15 11 11 |13 16 | 5 14
3 CGEENIACUS |15 |16 | 16 | 15656 | 3 5 |12 | 15
3.CGENIBCUS |15 |13 | 6 13 (16| 14 | 10 | 16
5_CGENI_AB.US T| 6 3 3 15112 9 3
5CGENIABCUS | 7 {13]| 14| 14 | 6 | 10 | 15 | 85
5. CGENI_AC_US 716 |11 3 14115 4 | 105
5 CGENI BC_US 716 3 |15 5 |11 2 12
7_CGENI_AB_US T\ 6 3 75 | 8 5 3 13

JCGENIABCUS | 7 [ 6 3 3 11 1 15 | 14 2
7.CGENI_AC_US 7|6 |75| 75|10 9 |75 7
7_.CGENI_.BC_US 716 |75 95| 2 3 | 13| 105
9_CGENI_AB_US Y| 6 11| 12 7 [15}75]| 55

9CGENIABCUS | 7 |13 | 11 3 12| 7 1 8.5
9_CGENI_AC_US 716 11 3 4 5 6 5.5
9_CGENI BC_US 716 3 95 | 1 8 |11 1

Table B.13: Ranking for the Friedman test for the TSP on the randomly generated problems
for Case 2

Heuristic p9 | p10 | pif | p12 | p13 | p14 | p15 | pib
3_.CGENILLABUS |11 | 12 7 7 1 8 11 | 7.5
3 CGENIABC US | 2 9 3 16 | 15| 16 | 14 | 16
3COENIACUS (161 16 | 16 | 12 | 13 | 156 § 12 15
3 CGENIBCUS |12 1b 8 15 | 16 | it | 1b 4
5 CGENIL.AB US 8 | 13 1 5 | 8h | 7T 7 7.5
5 CGENIABCUS | 6 1 15 2 11 14 16 12
5CGENIACUS |1 | 14 5 14 3 12 | 13 | 14
5 CGENIBCUS |15 7 13 |11 | 10 | 10
7. CGENILABUS |13 | 10 | 10 6 2 5
7T_CGENI_ABC_US 4 12 8 12 6
7T_.CGENI_AC US 11 9 10 7 2
7 CGENIBC_US & 6 13 6 13

— —

SN e

RS NWwE oo
en

9_CGENI_AB US§ 2 4 1 14 9 3
9 CGENI_ABC_US 3 11 3 4 4 10.5
9 CGENIACUS 55 | 2 9 5 1 2
9 CGENIBC.US 55 | 14 4 | 85} 3 10.5

Table B.13: (Cont.) Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 2
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Heuristic pl7 | p18 | p19 | p20 R; > B

J
3_CGENI_AB_US 10 2 15 14 189.5 2174.25
3_.CGENI ABC.US | 155 | 13 14 | 155 241 3290.5
3_CGENI_AC_US 1 14 8 12 247.5 3460.25
3_CGENIBC_US 14 15 16 | 155 258.5 3600.25
5_CGENI_AB_US 5 11 5 11 147 1338.5
5. CGENLABCUS | 125 | 7 12 2 198 2379.5
5. CGENLACUS ;155 | 8 | 105 | 6 173 1926
5 CGENIBC_US 11 10 1105 ; 4 178 1856.5
7 CGENI_AB_US 4 3 7 9.5 140 1209.5
7. CGENI.ABC.US 7 4.5 4 3 144.5 1408.25
7 CGENI_AC_US 3 9 3 9.5 138 1089
7 CGENIBC US 9 6 6 5 146.5 1285.75
9_CGENI_AB_US 2 1 2 1 100.5 B14.75
9_CGENI.ABC_US | 12.5 | 4.5 9 7 148 1351
9_ CGENI_AC.US 6 12 1 B8 108 753.5
9 CGENI_BC_US 8 16 13 13 161 1644

Bp =24779.475 | Ap =20582.5

Table B.13: {Cont.} Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 2
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Heuristic pi ré p3 P4 ps pb p7
3_GENI_AB_US 1 | 1.0035 | 1.0002 | 1.0032 | 1.0034 | 1.0098 | 1.0087
3. CENILABC_US | 1 | 1.0024 | 1.0002 | 1.0025 | 1.0109 | 1.0087 | 1.0104
3_GENI_AC_US 1 1 1 1.0025 | 1.0085 | 1.0156 | 1.0041
3_.GENI.BCUS 1 | 1.0035 | 1.0056 | 1.0008 | 1.0166 | 1.0056-| 1.0109
5 GENIAB.US | 1 ! 1.0012 1 1.0039 | 1.0156 | 1.0002 | 1.0041
5 GENILABC.US | 1 | 1.0012 | 1.0025 | 1.0025 | 1.0117 | 1.0002 | 1.0035
5 GENI.AC_US 1 1 1 1.0025 | 1.0014 | 1.0078 | 1.0029
5 GENI.LBC_US 1 1 1.0026 | 1.0048 | 1.0087 | 1.0067 | 1.0058
7_GENI_AB_US 1 1 1.0022 | 1.0008 | 1.0078 | 1.0062 1
7.GENIABCUS § 1 1 1 1.0018 | 1.0011 1 1
7_GENI_AC.US 1 | 1.0012 1 1.0025 | 1.0093 | 1.0074 | 1.0027
7_GENI_BC_US 1 1 1 1.0041 | 1.0051 1 1.0041
9 GENILABUS {1 1 1 1 1.0023 1 1.0027
9GENIABCUS | 1 1 1 1.0008 | 1.0079 | 1.0065 | 1.0058
9 GENIACUS | 1 1 1 1 1.0007 3 1.0071 | 1.0039
9_GENIBC.US 1 1 1.0025 | 1.0040 1 1.0052 | 1.0033

Table B.14: Ratio for the TSP on the randomly generated problems for Case 3

Heuristic P8 p9 pll pli p12 pl3 pl4

3.GENIAB_US | 1.0096 | 1.0050 | 1.0050 | 1.0067 | 1.0099 | 1.0025 | 1.0052
3_.GENI_ABC_US | 1.0110 | 1.0086 | 1.0096 | 1.0168 | 1.0077 | 1.0030 | 1.0101
3.GENILAC_US | 1.0116 | 1.0056 | 1.0025 | 1.0124 | 1.0091 | 1.0090 | 1.0118
3_.GENIBC_US | 1.0090 | 1.0128 | 1.0060 | 1.0106 | 1.0115 1 1.0050°
5_.GENI.AB_US | 1.0073 | 1.0111 | 1.0047 | 1.0104 | 1.0050 | 1.0051 | 1.0017
5 GENI_ABC.US | 1.0070 | 1.0085 | 1.0023 | 1.0081 | 1.0056 | 1.0016 | 1.0062
5 GENLLACUS | 1.0060 1 1.0024 | 1.0078 | 1.0100 | 1.0047 | 1.0017
5 GENI.BC_US | 1.0073 | 1.0031 | 1.0033 | 1.0141 | 1.0065 1 1.0063
7 GENI_AB_US | 1.0098 | 1.0044 | 1.0012 | 1.0069 1 1.0032 | 1.0040
7_GENI_ABC_US | 1.0076 | 1.0008 1 1.0128 | 1.0079 | 1.0006 | 1.0041
7. GENI_AC_US | 1.0058 | 1.0071 | 1.0019 1 1.0099 | 1.0044 | 1.0001
7.GENLBC US | 1.0073 | 1.0090 | 1.0036 | 1.0122 | 1.6109 | 1.0009 | 1.0033
9_GENIAB.US | 1.0034 | 1.0034 ! 1.0018 | 1.0103 | 1.0057 | 1.0010 | 1.0035
9_GENI_ABC_US | 1.0063 | 1.0062 | 1.0041 | 1.0042 | 1.0061 | 1.0014 | 1.0006
9_GENI_AC US 1 1.0094 | 1.0018 | 1.0099 | 1.0077 | 1.0046 | 1.0032
9_GENI.BC_.US | 1.0071 | 1.0024 | 1.0016 | 1.0062 | 1.0081 | 1.0057 | 1.0071

Table B.14 (Cont.) Ratio for the TSP on the randomly generated problems for Case 3
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Heuristic pis pi6 pl7 pl8 pl9 p20
3 GENI.AB_US | 1.0066 | 1.0018 | 1.0107 { 1.0067 | 1.0050 | 1.0060
3. CENTABC_US | 1.0045 | 1.0067 | 1.0118 ; 1.0074 | 1.0116 | 1.0053
3 CENI.AC.US | 1.0073 | 1.0088 | 1.0089 | 1.0083 | 1.0079 | 1.0086
3 GENLBC.US | 1.0119 | 1.0076 | 1.0114 | 1.00377 | 1.0108 | 1.0106
5.GENI_AB_US 1 1.0015 { 1.0081 | 1.0062 1 1.0006
5 GENILABC_US | 1.0012 | 1.0050 | 1.0044 | 1.0069 | 1.0052 | 1.0037
5 GENLAC_US 1 1.0066 | 1.0070 | 1.0046 | 1.0084 ; 1.0073 | 1.0061
5 GENLBC.US | 1.0067 | 1.0038 | 1.0077 | 1.0040 | 1.0071 | 1.0074
7 GENI_AB.US | 1.0037 | 1.0001 | 1.0038 | 1.0038 | 1.0008 | 1.0045
7 GENI_ABC_US | 1.0051 | 1.0047 | 1.0072 | 1.0062 | 1.0051 | 1.0019
7 GENLAC_US | 1.0026 | 1.0024 | 1.0089 | 1.0067 | 1.0048 | 1.0075
7T.GENIBC US | 1.0051 1 1.0048 | 1.0064 | 1.0040 | 1.0060
9. GENT_AB_US | 1.0032 | 1.0018 | 1.0025 | 1.0030 | 1.0037 | 1.0048
9 GENI_ABC_US | 1.0051 | 1.0023 1 1.0044 | 1.0019 | 1.0018
g_GENIL.AC.US | 1.0032 | 1.0031 ! 1.0088 1 1.0010 | 1.0054
9 CENIBC_US | 1.0027 i 1.0022 | 1.0093 | 1.0030 | 1.0036 1

Table B.14 (Cont.) Ratio for the TSP on the randomly generated problems for Cage 3
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p5 | pb | p7 | p8
6 | 15 | 14 | 13
1314115 |15
10| 16 | 10 | 16
16| 7 | 16 | 12

Heuristic pl | p2 p? | 4

3 GENLABUS |85 | 155|105} 12

3.GENIABCUS |85 | 14 (105 8§

3.GENIACUS |85 | 5.5 5 9

3.GENIBCUS | 85| 155 | 16 4
5 GENIAB.US |85 | 12 5 13!'15145|10: 9
5. CENIABCUS | 85| 12 |135| 9 |14 45| 7 | 6
5. GENILACUS |85 1] b.b 5 9 4 113 5 | 4

16

4

6

9

15

1.5

4

5.GENIBCUS |85 | 55 | 15 11| 10|12 |9
7.GENILAB.US |85 | 55 | 12 8| 8 15|14

7.GENI.ABC.US | 85 | 5.5 5 312 ;15|11
7.GENILACUS |85 | 12 5 12 (12 (35| 3
7. GENIBCUS |85 55 5 712 1019
9 GENIABUS | 83 | 3.5 5 51 2 |36 | 2

9 GENI.ABC US | 85 | 5.5 5 99 | 13|65
9_GENILACUS | 85! 5.5 5 (15 2|11} 8 1
9 GENIBCUS |85 |55 |135| 14 | 1 | 6 6 7

Table B.15: Ranking for the Friedman test for the TSP on the randomly generated problems
for Case 3

Heuristic p9 | p10 | p11 T p12 | p18 | p14 | pi5 | plb
3GENIABUS | 7 § 4 4 13 8 11 | 125 | 4.5
3 GENIABCUS | 12| 16 | 16 7 9 15 8 13
3GENIACUS | 8 9 13 | 11 | 16 | 16 15 16
3GENIBCUS |16| 15 | 11 | 16 | 1.5 | 10 16 15
5. GENLABUS |15 13 | 10 2 14 | 45 1 3
5.GENI.ABCUS | 11| 7 7 3 7 12 2 12
5 GENI_AC_US 1 8 6 14 | 13 | 45 | 125 | 14

5GENIBCUS | 4 | 10 | 15 6 1.5 | 13 14 10
7.GENI.ABUS | 6 2 5 1 10 8 7 2
7.GENLABCUS | 2 1 14 9 3 9 10 11
TGENIACUS |10} 6 1 12 | 11 2 3 8
7GENIBCUS |13 11 | 12 | 15 4 6 10 1
9. GENI_AB_US 5 45 9 4 5 7 55 | 4.5
9. GENILABCUS | 9 | 12 2 ) 6 3 10 T
9 GENIACUS |14 | 45 | 8 8 12 1 5.5 9
9 GENILBC_US 3 3 3 10 | 15 | 14 4 6

Table B.15: (Cont.) Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 3
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Heuristic pl7 | pi8 | p19 | p20 R; 3o B
3_GENL.AB_US 14 115 9 [ 105 213.5 2503.75
3.GENI.ABC US | 16 14 16 8 249 3290.5
3 .GENI.AC_US 12 15 14 15 240 3138.5
3_.GENI.BC_US 15 4 15 16 245.5 3452.75
5 GENI.AB_US 9 8 1 2 159.5 1710.75
5.GENI_.ABC.US | 4 13 11 L 168.5 1680.75
5 GENI_AC_US 5 16 13 12 173 1867
5_GENI BC._US 8 6 12 13 199.5 2286.75
7 GENI_AB_US 3 5 2 6 118.5 945.75
7.GENI_ABCUS | 7 9 10 4 131.5 1138.75
7 GENIAC_US 11 115 | 8 14 162.5 1623.75
7_GENIBC_US 6 | 10 7 | 105 167.5 1693.75
9_GENI_AB_US 2 3 6 7 95.5 539.75
9. GENIABCUS | 1 7 4 3 128 1022.5
9 GENI_AC_US 10 1 3 9 127.5 1111.25
9_GENI BC_US 13 2 3 1 140.5 1401.75
Br —24815.65 | Ap =20408

Table B.15: (Cont.) Ranking for the Friedman test for the TSP on the randomly generated
problems for Case 3
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Heuristic pl p2 i) P4 1) pb 7
3_.CGENI_AB_US | 0.0644 0 0.6203 | 0.0424 | 0.9593 | 0.8966 | 0.9746
3.CGENI_ABC.US 0 0.2458 | 0.2594 | 0.2654 | 1.4637 | 1.5856 | 0.3676
3 OGENIAC US | 0.0644 | 0.3512 | 0.7782 | 0.4141 } 0.1483 | 0.2831 | 0.5728
3. CGENLBC.US | 0.0644 | 0.1287 | 0.0563 | 0.3928 | 1.6813 j 0.9344 | 0.4616
5_.CGENI_AB_US 0 0 0 0 1.6022 | 0.7361 | 0.4531
5. CGENI_ABC.US 0 0.1287 | 0.3947 | 0.4034 | 0.3461 | 0.5663 | 0.9661
5 CGENILAC.US 0 0 0.2594 0 1.5626 | 0.0283 | 0.18380
5_CGENI_BC_US 0 0 0 0.4141 | 0.2472 | 0.7078 | 0.0683
7_CGENI_AB_US 0 0 0 0.0849 | 0.8406 | 0.2831 | 0.1196
7_CGENI_ABC_US 0 0 0 0 1.0879 ! 0.9627 | 0.7010
7.CGENI_AC_US 0 0 0.2255 | 0.0849 | 1.0582 | 0.4624 | 0.4189
7.CGENI_BC_US 0 0 0.2255 | 0.1805 | 0.1285 | 0.1415 | 0.6241
9_CGENI.AB_US 0 0 0.2504 | 0.3822 | 0.5736 | 0.0283 | 0.4189

9_ CGENI_ABC_US 0 0.1287 | 0.2594 0 1.0978 | (0.4058 0
9_CGENI_AC_US 0 a 0.2594 0 0.2175 | 0.2831 | 0.3932
9_CGENIBC.US 0 0 0 0.1805 0 0.4152 | 0.5642
3_GENIL.AB_US 0 0.3512 | 0.0225 | 0.3291 . 0.4747 | 0.9815 | 1.0174
3_.GENI_ABC.US 0 0.2458 | 0.0225 | 0.2548 | 1.2263 | 0.8777 | 1.1798
3.GENI_AC_US 0 0 0 0.2548 | 0.9890 | 1.5667 | (0.5557
3_GENIL.BC_US 0 0.3512 | 0.5639 | 0.0849 | 1.8000 | 0.5660 | 1.2311
5 GENI_AB_US 0 0.1287 0 0.3928 | 1.6912 | 0.0283 | 0.5557
5 GENI_ABC.US 0 0.1287 ! 0.2594 | 0.2548 | 1.3055 | 0.0283 | 0.4958
5.GENI.AC_US 0 0 0 0.2548 | 0.2769 | 0.7833 | 0.4274
5_GENI.BC_US 0 0 0.2932 | 0.4884 | 1.0088 | 0.6795 | 0.7181
7_GENI_AB_US 0 0 0.2255 | 0.0849 | 0.9089 | 0.6229 | 0.1367
7_GENI_ABC_US 0 0 0 0.1805 | 0.2472 0 0.1367
7_GENI_AC_US 0 0.1287 0 0.2548 | 1.0681 | 0.7456 | 0.4103
7_GENI.BC_US 0 0 0 0.4141 | 0.6428 0 0.5557
9_GENIL.AB_US 0 0] 0 0 0.3659 0 0.4103
9_GENI_ABC US 0 0 0 0.0849 | 0.9197 | 0.6512 | 0.7267
9_GENI_AC_US 0 0 0.5453 0 0 4.2076 | 0.7173
9_GENI_BC_US 0 0 0.2504 | 0.4034 | 0.1285 | (.5285 | 0.4702
3_CCAUS 1.3792 | 2.6694 | 2.3234 | 2.8031 | 4.8066 | 3.7753 | 2.6419
5_CCAUS 1.0956 | 2.6343 | 2.3122 | 1.4334 | 3.3428 | 2.5672 | 2.9326
7. CCAUS 0.4769 | 2.6343 | 2.3122 | 3.3446 | 2.2450 | 3.5299 | 2.6761
9_CCALCS 0.4769 | 2.6343 | 2.3122 | 1.7732 | 2.1956 | 3.0580 | 2.6761

Table B.16: Percentage deviation of the heuristic solutions and the best known lower bound,
z, on randomly generated problems for the TSP
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Heuristic p8 p9 pll pll pl2 pl8 pi4

3 CGENI_AB_US | 0.5514 | 0.5805 | 0.4836 | 0.6513 | 0.7113 0 .0.3513
3_CGENI_ABC.US | 0.9524 | 0.1063 : 0.4202 | 0.5907 | 1.1956 | 0.9701 | 1.1917
3 CGENLAC.US | 1.0443 | 1.5127 | 0.8721 | 1.1815 | 0.8096 | 0.7703 | 0.8473
3. CCENLBC.US | 1.0044 | 0.6950 | 0.6898 | 0.7271 | -0.9610 | 1.1270 | 0.4546
5 CGENLAB.US | 0.4762 | 0.4988 | 0.4915 | 0.2272 | 0.6961 | 0.6847 | 0.3444
5 CGENI_ABC_US | 0.6851 | 0.3189 0 1.0906 | 0.5524 | 0.7275 | 0.6200
5 CGENLAC.US | 0.6934 | 0.0572 | 0.6263 | 0.6059 | 0.9458 | 0.3851 | 0.5097
5 CGENLBC.US | 0.7853 | 0.7850 | 0.2537 | 0.9543 | 0.7945 | 0.6990 | 0.4271
7 CGENLAB_US | 0.8772 | 0.7604 | 0.4281 | 0.8255 | 0.7037 | 0.2139 | 0.1860
7 OGENLABC.US | 0.4093 | 0.7768 | 0.1744 | 0.8316 | 0.7567 | 0.7347 | 0.1997
7 CGENIAC. US | 0.6767 | 0.1717 | 0.4519 | 0.7952 | 0.7794 | 0.6633 | 0.0826
7 CGENLBC_US | 0.6934 | 0.5069 | 0.2854 | 0.6437 | 0.8475 | 0.4921 | 0.5786
9. CGENIAB_US | 0.6683 | 0.1390 | 0.0951 | 0.5983 | 0.5372 | 0.7846 | 0.3788
9_CGENI_ABC.US | 0.6851 | 0.4579 | 0.1585 | 0.9240 | 0.6129 | 0.3923 | 0.1791

9.CGENIAC.US | 0.6683 | 0.2453 | 0.1823 | 0.5756 | 0.7718 | 0.4707 0
§g_CCENLBC.US | 0.1838 | 0.5151 | 0.1823 | 1.0376 | 0.6507 | 0.6847 | 0.15684
3. GENI.AB_US | 0.9608 | 0.5069 | 0.6739 | 0.6740 | 0.9988 | 0.5920 | 0.7026
3.GCENLABC US | 1.1028 | 0.8667 | 1.1338 | 1.6890 | 0.7718 | 0.6419 | 1.1017
3_GENI_AC_US 1.1613 | 0.5642 | 0.4202 | 1.2497 | 0.9156 | 1.2411 | 1.3640
3_GENI.BC_US 0.9023 | 1.2838 | 0.7770 | 1.0679 | 1.1577 | 0.3352 | 0.6820
5 GENI_AB US 0.7352 | 1.1121 | 0.6422 | 1.0452 | 0.5069 | 0.8488 | 0.3513
5.GENILABC.US | 0.7018 | 0.8504 | 0.4043 | 0.8179 | 0.5675 | 0.4993 | 0.7991
5_GENI_AC.US 0.6099 0 0.4123 | 0.7801 | 1.0064 | 0.8131 | 0.3513
5_.GENIBC.US 0.7352 | 0.3189 | 0.4995 | 1.4163 | 0.6583 | 0.3352 | 0.8060
7_GENI_AB_US 0.9858 | 0.4415 | 0.2933 | 0.6968 0 0.6633 | 0.5786
7 GENILABC_US | 0.7686 | 0.0899 | 0.1665 | 1.2800 | 0.7945 | 0.3994 | 0.5855
7.GENI_AC US 0.5848 | 0.7196 | 0.3647 0 0.9912 | 0.7775 | 0.1860
7_GENI BC_US 0.7352 | 0.9076 | 0.5312 | 1.2269 | 1.0972 | 0.4279 | 0.5028
9 GENI_AB_US 0.3425 | 0.3434 | 0.3488 | 1.0376 | 0.5751 | 0.4422 | 0.5304
9. CENLABC_US | 0.6349 | 0.6214 | 0.5788 | 0.4241 | 0.6129 | 0.4779 | 0.2411

9 GENI_AC_US 0 0.9485 | 0.3488 | 0.9921 | 0.7794 | 0.8060 | 0.1722
9_GENIBC_US 0.7185 | 0.2453 | 0.3330 | 0.6210 | 0.8172 | 0.9130 | 0.8886
3_CCAUS 1.9040 | 2.9111 | 1.6650 | 2.8629 | 3.7079 | 3.3311 | 1.8186
5.CCAUS 1.9968 | 1.1611 | 1.5382 | 1.7798 | 3.5489 | 2.0900 | 1.7980
7TCCAUS 1.3367 | 1.1611 | 1.2765 | 2.2267 | 3.5489 | 2.1684 | 1.7980
9.CCAUS 1.3367 | 1.1611 | 1.2765 | 2.2040 | 3.3900 | 2.0757 | 1.6533

Table B.16: (Cont.) Percentage deviation of the heuristic solutions and the best known lower
bound, %, on randomly generated problems for the TSP
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Heuristic pls plf pl17 pis& pl8 p20

3.CGENIAB._US | 0.5179 | 0.7911 | 0.7995 | 0.1950 | 0.8224 | 0.8179
3_.CGENI_ABC_US | 0.6525 | 1.6287 | 1.2489 | 0.9876 | 0.7729 | 0.8675
3.CCENI_AC.US | 0.5449 | 1.4559 | 0.0594 | 1.0946 | 0.3895 | 0.7374
3.CGENIBC_US | 0.7534 | 0.3589 | 0.9119 | 1.2833 | 1.0759 | 0.8675
5 CGENIAB.US | 0.3206 : 0.7911 | 0.4757 | 0.7800 | 0.2658 | 0.5143
5.CGENI_ABC_US | 0.7803 | 0.9972 | 0.8986 | 0.6605 | 0.6554 | 0.1287
5.CGENI.AC_US | 0.6189 | 1.2063 i 1.2489 | 0.7234 | 0.5874 | 0.4028
5.CGENI.BC.US | 0.2556 | 0.8443 | 0.8854 | 0.7674 | 0.5874 | 0.3718
7 CGENILAB_US | 0.1749 | 1.0171 | 0.4163 | 0.2013 | 0.3028 | 0.4957
7 CGENI_ABC_US | 0.3767 0 0.7004 | 0.495698 | 0.2473 | 0.3098
7 CGENI_AC_US | 0.0941 | 0.5584 | 0.3370 | 0.7423 | 0.2226 | 0.4957
7 CGENLBC.US | 0.0269 | 0.4520 | 0.7929 | 0.6416 | 0.2844 | 0.3780
9 CGENI_AB_US | 0.0067 | 0.1396 | 0.0660 0 0.2040 | 0.1363
9_CGENI_ABC US | 0.4709 | 0.8775 | 0.8986 { 0.4969 | 0.4513 | 0.4213
9_CGENI_AC_US | 0.1547 | 0.0465 | 0.5088 | 0.8555 | 0.0742 | 0.4709
9_CGENILBC_US | 0.4641 { 0.8775 | 0.7070 | 1.2959 | 0.6801 | 0.7436
3.GENI_AB_US 0.6659 | 0.8243 | 1.0771 | 0.7045 | 0.5008 | 0.6011
3 GENI.ABC.US | 0.4574 | 1.3163 | 1.1828 | 0.7674 | 1.1625 | 0.5329
3.GENLAC.US 0.7332 | 1.5290 | 0.8986 | 0.8555 | 0.7976 | (0.B613
3_GENI.BC_US 1.1907 | 1.4093 | 1.1498 | 0.4026 | 1.0821 | 1.0658
5_GENI_AB.US 0 0.7977 | 0.8127 | 0.6479 0 0.0619
5 GENI_ABC.US | 0.1278 | 1.1501 | 0.4493 | 0.7234 | 0.5255 ; 0.3718
5 GENI_AC.US 0.6659 | 1.3429 | 0.4625 | 0.8681 | 0.7358 | 0.6196
5 GENLBC_US 0.6727 | 1.0304 | 0.7797 | 0.4340 | 0.7172 | 0.7436
7_GENI_AB_US 0.3767 | 0.6515 | 0.3898 | 0.4089 | 0.0865 | 0.4585
7 GENI_ABC US | 0.5112 | 1.1168 | 0.7202 | 0.6542 | 0.5194 | 0.1983
7. GENI_ACUS 0.2623 | 0.8841 | 0.8620 | 0.7045 | 0.4823 | 0.7560
7.GENIBC.LS 0.5112 | 0.6382 | 0.4889 ! 0.6731 | 0.4019 | 0.6011
9_GENI AB_US 0.3229 | 0.8243 | 0.2511 | 0.3334 | 0.3710 | 0.4895
9 GENI_ABC_US | 0.5112 | 0.8775 0 0.4718 | 0.1916 | 0.1859
9_GENI_AC US 0.3229 | 0.9573 | 0.8854 | 0.0251 | 0.1051 | 0.5453

9 GENI.BC_US 0.2758 | 0.8642 | 0.9317 | 0.3271 | 0.3648 0

3_CCAUS 2.5025 | 1.4625 | 2.7423 | 2.8057 | 1.9416 | 3.5818
5 CCAUS 2.1459 | 1.5888 | 2.4251 | 2.5729 | 0.8533 | 3.1418
7.CCAUS 2.2603 | 1.3296 | 2.4251 | 2.4345 | 0.2102 | 2.4601
9.CCAUS 1.8634 | 1.3096 | 2.1608 | 2.4849 | 0.2226 | 2.0449

Table B.16: (Cont.) Percentage deviation of the heuristic solutions and the best known lower
bound, z, on randomly generated problems for the TSP
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Heuristics | Problems | 8 Avg Mazx Min
60 0 237.5564 | 1768.9958 96.9684
60 0.33 | 2234.9847 | 6346.4771 1013.11
60 0.67 | 3428.6286 | 5743.9868 | 1928.985
70 0 453.1362 | 2136.5752 | 148.0993
70 0.33 | 3521.3148 | 6464.9248 | 916.3478
70 0.67 | 6710.9231 | 12710.8945 | 2704.053
80 0 1395.9621 | 3566.5703 | 298.0847
80 0.33 | 76278.7704 | 15860.5566 | 2808.843
3. TR 80 0.67 | 6720.2301 | 12976.5332 | 3864.989
90 0 815.4179 i 4368.6094 |- 288.361
90 0.33 | 7472.8743 | 14750.7168 | 4281.2036
90 0.67 | 9244.5631 | 23234.2422 | 6265.6646
100 0 1766.5985 | 7150.2915 | 532.3311
100 0.33 | 12531.7682 | 29862.3555 | 4732.7114
100 0.67 | 14944.2568 | 24566.9062 | 9984.7119
110 0 14427178 | 4045.1799 286.078
110 0.33 | 6125.1091 | 22020.2812 | 2288.6021
110 0.67 | 25793.7119 | 45487.6211 | 15282.1133
120 0 849.3315 | 2766.9734 | 198.3229
120 0.33 | 9308.9945 | 35635.875 | 3808.7434
120 0.67 | 15376.9596 | 37326.8203 | 8180.697
60 0 479.8037 | 1377.3808 | 121.2088
60 0.33 | 2745.5551 | 6595.647 | 1113.4283
60 0.67 | 4344.4562 | 10065.0439 | 2064.3862
70 0 361.347 958.7052 181.918
70 0.33 : 3988.0489 | 9106.1523 | 1660.2761
70 (.67 | 8040.6092 | 13978.7666 | 4256.0186
80 0] 1429.088 | 3962.5876 | 463.8429
80 0.33 | 7551.6667 | 16430.3594 | 3663.6875
80 0.67 | 8995.1722 | 30182.668 | 5943.1289
90 0 1205.0065 | 3978.9236 403.8918
90 0.33 | 9954.8268 | 24040.9863 | 5325.3857
5 TR 90 0.67 | 12981.145 | 21756.4082 | 74890.313
100 0 1761.6704 5439.48 599.4321
100 0.33 | 16963.0449 | 39832.5977 | 6930.9741
100 0.67 | 20201.672 | 26961.127 | 13730.6738
110 0 2216943 | 9569.0225 | 652.5438
110 0.33 | 22914.9227 | 52694.0078 | 9386.1982
110 0.67 | 36885.0431 | 72151.1406 | 23263.5762
120 0 716.6344 | 4758.8276 | 202.2454
120 0.33 | 21003.719 | 59908.4883 | 7746.4707
120 0.67 | 40961.4724 | 81183.3125 | 20920.4727

Table B.17: CPU time for various heuristics and problems for CVRP
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Heuristics | Problems | 9 Avg Moz Min
60 0 264.859 888.5994 182.7571
60 0.33 | 3263.5624 | B8490.7041 1442.662
80 0.67 | 6432.8156 | 13313.3525 | 3119.7461
70 4] 587.6851 | 4880.5459 | 307.6363
70 0.33 | 4885.654 | 10212.8006 | 2238.6794
70 0.67 | 12139.3609 | 23991.2383 | 3652.2393
80 0 1896.7009 | 4057.1406 | 552.9423
80 0.33 | 10518.0645 | 31177.9395 | 5050.8687
7-TR 80 0.67 | 12424.4113 | 35029.5977 | 5369.4414
90 0 552.3931 1590.3988 266.8705
90 0.33 | 5597.5221 | 14076.7148 | 2655.5669
90 0.67 | 7844.2219 | 15161.2559 | 4561.6328
100 0 2807.0371 | 8553.5732 | 830.3708
100 0.33 | 20190.1297 | 58946.0273 | 9077.5928
100 0.67 | 14624.5785 | 28992.0098 | 9548.501
110 0 879.8393 | 4235.1992 | 292.1474
110 0.33 | 10828.6287 | 27325.7383 | 3801.0698
110 0.67 | 23202.5882 | 46511.4844 | 14246.0029
120 0 983.338%9 2891.4153 452817
120 0.33 | 19141.0622 | 34118.5586 | 8409.598
120 0.67 | 31470.7941 | 63322.6797 { 12548.1064
60 0 492.0439 | 1951.0975 | 251.7275
60 0.33 | 3831.6523 | 9953.5742 | 1828.7433
60 0.67 | 7736.4583 | 20456.7871 ; 3696.8167
70 0 732.5354 2181.6436 398.9037
70 0.33 | 6469.3581 | 11981.5586 | 2582.2588
70 0.67 | 14576.3382 | 26389.082 | 4034.8188
80 0 2158.8872 | 4550.9917 844.3342
80 0.33 | 12765.0469 | 28906.4746 | 5574.0562
80 0.67 | 14679.1878 | 25725.1816 | 5008.5381
90 0 628.8134 1687.6681 315.7257
90 0.33 | 7409.6235 | 24504.4336 | 3091.4841
9 TR 90 0.67 | 9538.8135 | 15826.8066 | 6346.9829
100 0 1229.13 3249.0081 451.7488
100 (.33 | 10284.3587 | 26413.4004 | 4820.9292
100 0.67 | 21094.6431 | 43981.0703 | 13450.1045
110 ¢ 2159.0415 | 6916.6689 576.6367
110 0.33 | 16568.5615 | 38720.9883 | 7308.646
110 0.67 | 31254.8077 | 63677.4375 | 17650.7188
120 0 889.747 1451.1758 610.9728
120 0.33 | 33490.6921 | 68498.4297 | 11553.8145
120 0.67 | 36204.3628 | 64688.4922 23563.5

o]
o
o

Table B.17: (Cont.) CPU time for various heuristics and problems for CVRP




Heuristics | Problems | 8 Avg Maz Min
60 0 91.4658 | 403.7842 | 37.0375
60 0.33 | 299.6909 | 882.53 | 56.4964
60 0.67 | 417.8179 | 2899.628 | 69.1873
60 1 | 221.4221 | 550.4393 | 109.1583
70 0 | 143.3803 | 324.678 | 68.7589
70 0.33 | 353.1786 | 1039.097 | 108.5089
70 0.67 | 310.7105 | 662.1725 | 134.6801
70 1 550.5395 | 1451.16 | 263.961
80 0 | 605.6641 | 1520.528 | 192.4874
80 0.33 | 3453.189 | 92959.18 | 346.2704
80 0.67 | 1024.137 | 5955.112 | 322.8848
3. TR &0 1 518.6251 | 1141.502 | 247.2048
90 0 | 580.2012 | 2547.663 | 167.8304
90 0.33 | 1122.983 | 3653.372 | 192.2978
90 0.67 | 650.3455 | 2095.03 | 304.7519
90 1 | 596.4514 | 2074.287 | 146.8414
100 0 | 795.9616 | 2444.602 | 269.3813
100 0.33 | 1577.632 | 4504.363 | 645.0719
100 0.67 | 1042.804 | 2819.647 | 665.6364
100 1} 1226.758 | 4105.629 ; 555.1238
110 0 | 1317.354 | 5092.291 | 321.8372
110 0.33 | 1552.556 | 6241.788 | 692.4044
110 0.67 | 2389.266 | 8607.697 | 784.1398
110 1 2029.404 | 6253.177 | 827.9911
120 0 | 1064.751 | 3392.222 | 332.8735
120 0.33 | 2124.932 | 5957.85 | 324.2401
120 0.67 | 2192.492 | 8235.302 | 1072.92
120 1 1900.938 | 8482.218 | 440.6808

Table B.18: CPU time for various problems on 3.TR for CDVRP
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Heuristics | Problems | @ Avg Moz Min
60 0 317.3374 | 1533.117 | 63.2211
60 0.33 | 327.7784 | 1261.082 | 59.1955
60 0.67 | 1001.227 | 5607.92 | 181.7493
60 1 | 379.4076 | 969.2667 | 122.3564
70 g 333.147 | 2208.991 | 88.8582
70 0.33 | 637.7458 | 2529.564 | 145.0143
70 0.67 | 677.0948 | 1693.696 | 206.5935
70 1 843.581 | 1920.55 | 234.4286
80 o 1585.653 | 3845.671 | 362.5106
80 0.33 | 2199.765 | 13419.03 | 518.6433
B0 0.67 | 2216.417 | 6349.86 | 322.7588
80 1 1063.535 | 3245.304 | 172.7024
90 0 | 601.3566 | 1770.835 | 231.7165
90 0.33 | 1393.088 | 3583.186 | 543.5041
90 0.67 | 969.1379 | 4780.03 | 449.14
5 TR 90 1 1429.524 | 7237.5 | 532.45651
100 0 ! 9386132 | 3284.673 | 383.5909
100 0.33 | 1849.693 | 4224.337 | 700.4343
100 0.67 | 1047.254 | 2629.211 | 363.4647
100 1 1070.346 | 2700.708 | 441.3165
110 0 1095.18 | 4749.581 | 353.7647
110 0.33 | 1758.117 | 5897.814 | 633.9471
110 0.67 | 2476.075 | 8512.382 | 775.8676
110 1 2665.932 | 6610.774 | 967.6436
120 0 997.2349 | 6266.61 | 475.5369
120 0.33 | 2766.291 | 8526.02 | 456.7755
120 0.67 | 2286.557 | 7266.052 | 1246.639
120 1 2797.643 | 7666.105 | 537.3464

Table B.19: CPU time for various problems on 5. TR for CDVRP
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Heuristics | Problema | @ Avg Mazx Min
60 0 | 140.8014 | 784.6545 | 70.444
60 0.33 | 370.5199 | B38.8128 | 122.9931
60 0.67 | 1023.614 | 2455.84 | 155.1746
60 1 231.0896 | 412.3763 | 136.9723
70 0 | 240.0102 | 805.3698 | 134.1521
70 0.33 | 505.6273 | 2064.36 | 184.1071
70 0.67 | 567.506 | 1506.8 | 251.3545
70 1 1232.064 | 4458.91 | 388.6183
80 0 | 857.2558 | 1899.872 | 331.2632
80 0.33 | 1356.708 | 3769.536 | 315.7648
&0 0.67 | 1728.605 | 6736.96 | 248.9617
7_-TR 80 1 R47.1529 | 5780.78 | 197.5079
90 0 673.1002 | 1922.811 | 346.0992
90 0.33 | 2417.261 | 8846.94 | 591.2238
90 0.67 | O83.8583 | 2279.877 | 539.7195
90 1 | 820.5672 | 3275.003 | 187.7541
100 0 1164.535 | 4218.234 | 438.8352
100 0.33 | 2231.273 | 15165.76 | 951.1664
100 0.67 | 1176.113 | 3357.347 | 413.7453
100 1 1580.283 | 4126.207 | 846.7077
110 0 1576.383 | 5494.737 | 512.952
110 0.23 | 1708.168 ; 5426.039 | 310.9808
110 0.67 | 3169.725 | 22220.18 | 871.7354
110 1 2057.037 | 8119.226 | 1002.574
120 0 1209.197 | 9903.661 | 636.6119
120 0.33 | 2844.387 | 8096.103 | 687.4197
120 0.67 | 2437.627 | 11145.57 | 1525.277
120 1 3165.13 | 16914.8 | 613.295

Table B.20: CPU time for various problems on 7.TR for CDVRP
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Heuristics | Problemns | 6 Avg Maz Min
60 0 | 241.3917 | 924.9945 | 112.097
60 0.33 | 402.009 | 897.47 | 91.6341
60 0.67 | 797.9925 2621 86.8334
60 1 327.7953 | 789.0801 | 202.4427
70 0 | 4029915 | 1190.1 | 202.1509
70 0.33 | 533.0048 | 2496.13 | 251.9802
70 0.67 | 821.5097 | 2233.17 271.7017
70 1 1693.862 | 7261.72 524.56
80 0 898.6741 | 1969.620 | 390.029
80 0.33 | 1471.691 | 4666.595 | 431.6797
80 0.67 | 1605.325 | 3691.7 | 327.0862
80 1 1007.208 | 3396.796 | 232.2562
90 0 762.5736 | 3146.992 | 498.2704
90 0.33 | 2595.932 | 13617.24 | 514.278
90 0.67 | 920.6093 | 1945.916 | 273.3677
3. TR 90 1 1885.471 | 32311.82 | 266.1679
100 0 1746.467 | 4554.93 | 621.6412
100 0.33 | 4214.518 | 76788.17 | 936.819
100 0.67 | 1090.289 | 2137.654 | 552.1661
100 1 | 1737.685 : 4077.154 | 550.3028
110 0 2577.257 | T584.188 | 730.4549
110 0.33 | 3483.789 | 33508.02 | 415.3878
110 0.67 | 3236.889 | 9615.815 ; 756.2133
110 1 3305.496 | 14221.09 | 479.6924
120 0 1384.608 | 4086.99 | 911.1996
120 0.33 | 2961.918 | 12495.92 | 587.5276
120 0.67 | 2743.446 | 8743.357 | 544.7787
120 1 3154.182 | 17528.71 | 673.4438

Table B.21: CPU time for various problems on 9 TR for CDVRP
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Starting solution | Final solution gap
3738.205383 3549.784094 | 188.421289
3737.526927 3627.390183 | 110.136744
3687.929709 3628.496363 59.433346
3716.947139 3576.905808 | 143.041331
3658.621466 3524.428616 134.19285
3715.450563 3608.344914 | 107.105649
3712.641891 3611.019286 | 101.622605
3673.357062 3652.704233 20.652779
3646.803872 3633.506052 13.38782
36'73.357062 3658.878542 14.47852
3696.413103 3549.251196 | 147.161907
3699.845979 3588.123885 | 111.722094
3700.967377 3637.076382 63.850995
3719.947139 3593.77145 126.175689
3750.652521 3624.338941 126.31358
3713.645241 3490.591405 1| 223.053836
3683.2995999 3577.372264 | 105927735
3688.470069 3612.28323 76.186839
3648.731982 3519.912752 128.81923
3638.421303 3619.561136 18.860117
3712.641861 3595.9108 116.731091
3702.377403 3585.014945 | 117.362458
3674.743245 3489.16507 185.578175
3689.864192 3598.411542 91.45265
3707.501448 3557.512752 | 150.078696
3678.916092 3587.211036 091.705056
3653.358999 3518.856932 | 134.502067
3694.21328 3624.967554 69.245726
3661.824001 3511.205533 | 150.618558
3712.831126 3541.200354 1 171.630772
3705.415754 3594.77108 110.644674
3739.366723 3537.250444 | 202.116279
3717.811747 3528.137373 | 189.674374
3695.832358 3495.513226 | 200.319132
3719.947139 3626.303611 93.643528
3638.421303 3619.561186 18.860117
3684.778161 3649.808845 34.969316
3669.692478 3517.11258 152.579898
3734.290087 3624.89726 109.392827
3692.145714 3533.802457 | 158.253257
3715.59696 3577.118772 | 138.478188&
3700.967377 3617.059051 83.908326
3661.824001 3593.271264 68.552827
3711.728202 3573.092396 | 138.635806
3677.303364 3487.066539 | 190.236825
3688.524822 3529.832627 | 158.692185
3716.061927 3628.496363 87.565564
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Table B.22: (Cont.) Starting solution, final solution and their gaps for 140 runs for the 199-city

problem

Starting solution | Final solution gap
3717.109689 35990.274745 | 117.834944
3715.59696 3564.32157 151.27539
3713.704176 3586.117912 | 127.586264
3717.811747 3496.140035 | 221.671712
3665.833025 3548.803984 | 117.029041
3718.114469 3605.150745 | 112.863724
3715.59696 3566.211032 | 145.385928
3678.714448 3608.213314 | 70.501134
3744.541072 3582.461342 162.07973
3678.964856 3518.973645 | 159.991211
3699.058487 3583.735308 | 115.323179
3693.300026 3566.334927 | 126.965099
3758.500236 3596.549216 | 161.95102
3665.696717 3600.1815 65.515217
3681.298085 3567.809079 | 113.489006
3660.028448 3648.064046 | 11.964402
3641.128852 3572.176126 | 68.952726
3676.207335 3565.523636 | 110.683699
3721.684416 3521.986306 199.69811
3684.778161 3487.819204 | 196.958957
3684.267898 3603.390863 | 80.877035
3684.778161 3575.202377 | 109.485784
3675.915015 3633.434003 | 42.481012
3674.557132 3599.421359 75.135773
3667.01398 3602.469582 64.544398
3671.20311 3584.306476 | 86.986634
3722.242282 3518.750774 | 203.491508
3717.811747 3576.937235 | 140.874512
3669.01892 3629.587138 39.431782
3719.947139 3517.738002 | 202.205137
3663.651964 3580.57306 83.078904
3684.267898 3612.192444 | T72.075454
3676.010944 3541.916023 | 134.094921
3664.141736 3597.676547 66.465189
3648.731982 3521.811193 | 126.920789
3675.647931 3581.705932 | 93.941999
3707.473599 3501.917517 | 115.556082
3646.803872 3514.221977 | 132.671895
3675.647931 3619.514114 56.133817
3739.522101 3610.2544 129.267701
3724.496857 . 3585.903056 | 138.592901
3744.541072 3564.932251 179.608821
3715.59696 3523.750387 | 191.837573
3689.864192 3479.608153 | 210.256039
3674.065177 3471.786906 | 202278271
3675.647931 3555.549966 | 120.097965
3717.811747 3576.213641 | 141.598106
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Table B.22: {Cont.} Starting solution, final solution and their gaps for 140 runs for the 199-city

problem

Starting solution | Final solution gap
3658.621466 3496.229903 | 162.391563
3724.496857 3587.667817 | 136.82504

3697.7452 3626.86886 70.87634
3740.050526 3623.53902 116.51150
3726.36547 3609.617353 | 116.74811
3678.916092 3546.53043% : 132.385653
3716.506524 3556.799785 | 159.706739
3688.470069 3642.953997 | 45.516072
3675.915015 3621.979154 | 53.935861
3737.526927 3596.624357 | 140.90257
3704.343727 3585.130735 | 119.212962
3765.323145 3571.554762 | 193.768383
3717.109689 3491.351517 | 225.758172
3719.024647 3557.537813 | 161.486834
3663.550157 3570.801069 | 92.749088
3734.290087 3594.160923 | 140.129164
3711.728202 3624.89726 86.830942
3736.55232 3508.084159 | 228.468161
3660.763277 3587.770281 | '72.992996
3675.647931 3544.466143 | 131.181788
3688.470069 3538.191484 | 150.278585
3687.844925 3511.021893 | 176.823032
3675.647931 3551.543151 | 124.10478
3678.066974 3561.727417 | 116.339557
3696.635791 3483.788748 | 212.847043
3705.313811 3506.32439 | 198.980421
3637.844587 3573.136848 | 64.707739
3746.040879 3551.84666 | 194.194219
3765.323145 3638.421303 | 126.901842
3722.242282 3512.904212 209.33807
3711.728202 3575.445698 | 136.282504
3661.824091 3634.648347 | 27.17H744
3691.019086 3558.217951 | 132.801135
3638.421303 3568.93002 69.491283
3637.404192 3551.048797 | 86.355395
3696.413103 3500.959051 | 195.4540562
3715.59696 3569.241615 | 146.355345
3712.641891 3579.506175 | 133.135716
3665.696717 3582.070112 | B83.626605
3689.864192 3493.983446 | 195.880746
3713.704176 3602.616765 | 111.087411
3655.857368 3628.991065 | 26.866303
3687.929709 3622.650626 | 65.279083
3669.692478 3622.420976 | 47.271502
3687.929709 3588.879147 | 99.050562
3676.024635 3547.553311 | 128.471324

p= 3604.77892 3572.7409 122.0379
g = 29.0166 45.0586 52.5593
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