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ABSTRACT

The influence of observations on the outcome of an analysis is of impor-
tance in statistical data analysis. A practical and well-established approach to
influence analysis is case deletion. However, it has its draw-backs when subsets
of observations are jointly influential and offset each other’s influence. Another

approach is local influence proposed by Cook (1986).

The local influence methodology of Cook (1986) is based on the curvature
of the likelihood displacement surface formed by model/data perturbations. Wu
and Luo (1993a, 1993b) further developed the idea and proposed the study of
the perturbation-formed surface of a variable by evaluating the curvature of the
surface in addition to its maximum slope. This thesis utilizes the local influence

approach to develop influence diagnostic methods for four different topics.

Firstly, we proposed a stepwise confirmatory procedure for the detection of
multiple outliers in two-way contingency tables. The procedure begins with the
identification of a reliable set of candidate outliers by evaluating the derivatives
of the perturbation-formed surface of the Pearson goodness-of-fit statistic. An
adding-back iterative algorithm is then applied to the candidate set to assess
their relative discordancy. Using two real data sets, the proposed procedure is
shown to be less susceptible to both masking and swamping problems than resid-
ual based measures. In a Monte Carlo study, the local influence diagnostics are
also found to outperform standard residual-based methods in terms of efficiency

and other criteria.

Transformations of covariates are commonly applied in regression analysis.
When a parametric transformation family is used, the maximum likelihood esti-
mate of the transformation parameter is often sensitive to minor perturbations
of the data. Diagnostics based on the local influence approach are derived to

assess the influence of observations on the covariate transformation parameter in
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generalized linear models. Three nuinerical examples are presented to illustrate
the usefulness of the proposed diagnostics. The need for transformation is also

addressed in addition to assessing influence on the transformation parameter.

A common method of choosing the link function in generalized linear mod-
els is to specify a parametric link family indexed by unknown parameters. The
maximum likelihood estimates of such link parameters, however, often depend
on one or several extreme observations. Diagnostics based on the local influence
approach are derived to assess the sensitivity of the parametric link analysis.
Two examples demonstrate that the proposed diagnostics can identify jointly
influential observations on the link even when masking is present. The appli-
cation of the diagnostics can also assist us in revising the link parameter and

hence the form of the model.

The portmanteau statistic is commonly used for testing goodness-of-fit of
time series models. However, this lack of fit test may depend on one or several
atypical observations in the series. We investigate the sensitivity of the portman-
teau statistic in the presence of additive outliers. Diagnostics based on the local
influence approach are developed to assess both local and global influence. Three

practical examples demonstrate the usefulness of the proposed diagnostics.
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CHAPTER 1

INTRODUCTION



1. INTRODUCTION

1.1 Aims and scope of this thesis

Statistical models are extremely useful devices for extracting and under-
standing the essential features of a set of data. It is well known that models are
always approximate description of the underlying processes and therefore are
nearly always not perfect. Because of this inexactness, the study of the vari-
ation in the results of an analysis under modest modifications of the problem
formulation becomes important. If a minor modification of an approximate de-
scription seriously influences key results of an analysis, there is surely cause for
concern. On the other hand, if such modifications are found to be unimportant,
the sample is robust with respect to the induced perturbation and our ignorance

of the precise model will do no harm (Barnard, 1980).

Much of the work on influence assessment of a model perturbation is con-
cerned with the perturbation scheme in which the weights attached to individuals
or groups of cases are modified. For the most part, the case-weights are restricted
to be either 0 or 1 so that a case is either deleted or retained in full weight. One
of the drawback of the single case deletion method is that subsets of observations
can be jointly influential or can offset each other’s influence. Although influence
subsets or multiple outliers can be identified by generalizing deletion statistics
formally to subsets of several points, the very large number of subsets usually

renders the approach impractical. {There are n!/[p!(n-p)!] subsets of size p}.

Cook (1986) proposed the local influence approach to influence assessment.
The idea of differentiation instead of deletion is prominent in this approach,
a change in paradigm from that of case-deletion. Local influence is based on
perturbation of a case or model components and not on its total deletion, and
employs a differential comparison of parameter estimates before and after per-

turbation. This approach gives us the influence of all the cases on the model



simultaneously, not individual cases or subset of cases separately by themselves.

Lawrance (1988) compared Cook’s local influence approach with the dele-
tion approach. Important advantages of the local influence approach were high-
lishted. Several useful schemes of perturbation were considered in that paper

with some emphasis on the assessment of the effect of perturbations.

Wu and Luo (1993a, 1993b) examined global and local influence by study-
ing the surface of a variable, such as the maximum likelihood estimate (MLE),
formed by perturbation, which they referred as the MLE surface. Their method,
which is called the second ordered approach, is based on an assessment of the
directions corresponding to large local maximum curvatures of the MLE surface,
in addition to the study of the maximum slope directions. It was found that,
for a single parameter of interest, the maximum slope of the MLE surface is the
same as the direction of the maximum curvature of Cook’s likelihood displace-
ment surface. Wu and Luo referred to the maximum slope as the first order

approach.

This thesis intends to utilize the local influence approach, both first and

second order, to develop influence diagnostic methods for the following topics.



1.1.1 Contingency tables

Diagnostics for measuring model deviations and influence of particular data
points are used extensively in modern regression analysis. For contingency tables
however, it is not the influence of individual cases which is of interest, but rather
the contribution to a lack of fit from the observed counts in a single cell in the
table, which must be evaluated. It is possible that a small subset of outlying
cells can give rise to significant test statistics when testing a particular model

for fit.

To detect outliers and interaction in two-way tables of measurements, one
often study residuals that become available after applying some process of fit-
ting the data. However, when dealing with similar matters in two-way contin-
gency tables, one shall encounter more features that need attention (Mosteller
and Parunak, 1985). Published methods for location of these cells include
residual-based methods and the sequential identification of cells whose dele-
tion leads to the maximum reduction in the statistic for independence (Brown
(1974), Perli, Hommel and Lehmacher (1985), Mufioz-Garcia, Moreno-Rebollo
and Pascual-Acosta (1987), Andersen (1992), Garcia-Heras, Mufioz-Garcia and
Pascual-Acosta {1993)). Also see Barnett and Lewis (1994, Chapter 12) for a
general review. Such procedures, however, tend to suffer from the deficiencies of
masking and swamping. Simonoff (1988) gave some discussion on the masking

and swamping problem in contingency tables.

Local perturbation approach based on the maximum slope and large curva-
tures associated with the perturbation formed surface of the Pearsons Chi-square
statistic will be investigated in Chapter 3 to reduce the masking and swamp-
ing problems. A stepwise outlier testing procedure proposed by Lee and Fung
(1997) will also be examined and modified. Numerical examples and a Monte
Carlo study will be used to assess the effectiveness of the local perturbation

diagnostics and the stepwise testing procedure.
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1.1.2 Covariate transformations in generalized linear models

Transformation of variables have been traditionally applied to data in an
effort to identify an easily interpretable and scientifically meaningful relation-
ship. Deletion diagnostics for assessing the case influence on the transformation
parameter estimators in the Box-Cox regression model have been extensively
studied in the last decade, see e.g. Cook and Wang (1983), Atkinson (1986),
Hinkley and Wang (1988). Recently, the local influence approach have also been
employed for diagnosing transformation. Many articles related to the local influ-
ence approach deal with the response transformation or the transform-both-sides
models, e.g. Lawrance (1988), Tsai and Wu (1992). Few articles address the

transformation of the covariates or explanatory variables only.

Wei and Hickernell (1996) presented diagnostics for the transformation of
explanatory variables using local influence. Their diagnostics, however, are only
applicable to the linear regression setting. This thesis extends the approach to
generalized linear models. We shall also address the need for transformation in

addition to assessing influence on the transformation parameter in Chapter 4.

1.1.3 Parametric link functions in generalized linear models

The Link function, which relates the linear predictor to the expected value of
the response, is a major component of the generalized linear models (McCullagh
and Nelder, 1989). The maximum likelihood estimate of the link parameter, and
hence the exact form of the link function, may depend crucially on one or a few

extreme observations.

Qur aim is to propose influence diagnostics for assessing the effect of minor
perturbations on the maximum likelihood estimator of the link parameter in
generalized linear models. In Chapter 5, three separate approaches based on

the analysis of the link parameter surface, profile likelihood displacement, and



partial influence will be investigated. Several numerical examples will be used
to illustrate sensitivity of the link analysis. The method enables one to revise

the link parameter and hence the form of the model.

1.1.4 Portmanteau statistic in time series

The fact that goodness-of-fit of a time series model is very prone to atypi-
cal observations has been a main concern to practitioners and researchers. The
major difficulty in detecting multiple outliers in time series is due to the corre-
lation structure of the process giving rise to the so called masking and smearing
problems (Bruce and Martin, 1989). Although numerous methods have been
proposed in literature on the topic of outlier detection, to our knowledge, no
work has been done on assessing the effect of multiple/ consecutive/ patches of
outliers on the model adequacy via the Portmanteau statistic. Fox (1972) pro-
posed two types of intervention models to classify two types of outliers, additive
and innovational, that might occur in practice. Wu, Hosking and Ravishanker
(1993) introduced the notion of reallocation outliers, which are additive outliers
whose magnitudes sum to zero. Many other patterns of outliers can possibly

take place but our effort is focused on additive outliers.

In Chapter 6 of this thesis, we will adopt the local influence approach to
study the slope of the perturbation-formed surface of the Portmanteau statistic.
Numerical examples will be used to illustrate the usefulness of the proposed

diagnostic in assessing sensitivity of the Portmanteau statistic.



1.2 Notational conventions

Most of the notations used in this thesis should be consistent with those in

the literature. Outlined below is the notational system used in this thesis.

The convention & = {x;;} indicates that the matrix & has z;; as its typical
(i,7)th element. Bold face quantities are reserved for vectors and should be
distinguished from ordinary scalars. The transpose of a matrix x is denoted by
x?. Parameters to be estimated are often denoted by Greek letters such as &
with corresponding estimate . The differentiation operator is % throughout

this thesis.

For two way contingency tables, z;; denotes the row marginal total and
z4; denotes the column marginal total, each summing to the sample size N. p;;
represents the probability for the (2, j}th cell z;; with row marginal probability
pi+ and column marginal probability py ;. ;s denotes are particular cell where
as x;; denotes a general cell. The expectation operator is denoted by E() and

e;; denotes the expected cell frequency.

In covariate transformation, y denotes the responses, x denotes the covari-
ates and z is reserved for the covariates to be transformed. The linear predictor
is denoted by 5 and the Likelihood operator is denoted by L(). Similar notations

apply to the generalized linear models in the link function Chapter.

For time series models, 4 is the tth observed value, a denotes the residu-
als, r; denotes the lag k autocorrelation of the residuals and B represents the

backward shift operator.



1.3 Statistical computing

Statistical computations are required extensively for this thesis. Commonly
used statistics, parameters in regressions, their standard errors, and simulations
of data are carried out using the existing S-plus functions. More complex pro-
cedures and the proposed diagnostics are implemented by writing customized
functions in S-plus. For brevity, such functions and programs are not listed in
this thesis. However, they are readily available from the author upon request or

downloaded from the author’s home page at
http : [ /www.cherli.com/johnyick [ Splusprog.html.

At times, the results maybe slightly different if another statistical computing
software is used. This could be due to the different numerical algorithms fa-
cilitated in different softwares. However, it is envisaged that such potential
discrepancies will be small and should not grossly affect the end results or con-

clusions.



CHAPTER 2

LOCAL INFLUENCE METHODOLOGY



2. OVERVIEW OF LOCAL INFLUENCE

Cook (1986) introduced the idea of local influence as a general tool to assess
the effect of small perturbations to data. The idea of differentiation instead
of deletion is prominent in this approach. Local influence is based using the
perturbation of a case and not on its complete deletion, and employs a differential
comparison of parameter estimates before and after perturbation. Cook (1986)
proposed the local influence approach on the perturbation formed likelihood
displacement surface and gave some results in the linear regression setting. The

concept was also discussed in Cook (1987).

Lawrance (1988) further developed the idea of local influence in the linear
regression setting with a weaker reliance on geometrical curvatures and com-
pared it to the case deletion approach. The paper also extended the perturba-
tion approach to include the linear model assumptions of constant variance and
independence, and contrasted to perturbations of the response and explanatory
variables. Extensions of the local influence approach to generalized linear models

were given by Thomas and Cook (1989, 1990).

Wu and Luo (1993a) proposed to examine global and local influences by
studying the surface of a variable, such as the maximum likelihood estimate
(MLE), formed by perturbation, which they referred to as the MLE surface.
Their method, the so called second-order approach, is based on an assessment
of the directions corresponding to relatively large local maximum curvatures of
the MLE surface, in addition to the study of the maximum slope directions.
It was found that, for a single parameter of interest, the maximum slope of
the MLE surface is the same as the direction of the maximum curvature of
Cook’s likelihood displacement surface. Wu and Luo referred to the maximum
slope as the first-order approach. Application of the approach was illustrated
via the transformation model. Wu and Luo (1993b)} gave further illustrations

by applying the approach to residual sum of squares and multiple potentials in
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regression are given in Section 2.2.
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2.1 Definition of local influence

This section presents a review of the definition and the development of

Cook’s (1986, 1987) local influence methodology.

Suppose a statistical model with a p-dimensional parameter vector € is of
interest. General perturbations are introduced into the model through an n x 1
vector w. Write L(0|w) for a log-likelihood corresponding to the perturbed data.
Let @ be the maximum likelihood estimate of @ and 8(w) be the corresponding
maximum likelihood estimate from the perturbed model. The influence of the

perturbation w can be assessed by the log-likelihood displacement

LD(w) =2 [L(é) iy (é(w))] ,

with @ = @(wp) being the parameter estimate under no perturbation. The
LD{(w) measures the distance between # and @(wyp) in terms of the log-likelihood
difference. To locate the directions of large change at LD{wyg)}, we approximate
the surface by its tangent plane. However, since LD (wyg) achieves its maximum
at 9, the likelihood displacement is nonnegative and achieves its minimum at
wp, 80 the tangent plane at LD(wy) is horizontal and carries no diagnostic
information about local change. Hence we turn to the normal curvatures at

LD(wo).
The normal curvature at LD{wyp) in the unit direction d may be expressed
as!

C(d) = 2|dT AL (G) 1 AT d], (2.1)
where A = 82L(8|w)/007 dw and L (9) = 92L(0|w)/dwdw! are both evalu-
ated at wq and 0.

Let d,..» be the direction cosine of maximum normal curvature, which is

the perturbation direction that produces the greatest local change in the pa-

rameter estimates as measured by the likelihood displacement. The most in-

12



fluential element of the data may be identified by their large components of
the vector dp,.., whereas sensitivity of the perturbation may be indicated by
the value Cpuz = C(dpnas), which is the maximum of equation (2.1} over all
possible directions. According to matrix theory, C)p,.. is the largest eigenvalue
of AL®0) AT and dp,q, is the corresponding eigenvector. The directional

cosine d,q; may be used as diagnostics for influence.

When a subset 8; from the partition 8 = (87,85 )7 is of interest, diagnostic

for influence can be based on

NIRRT ) P

2) [ 2 [ 2
where [L55] is determined from the partition [L(?)] = 1 2 ) con-
2 (L3 1L
71 22
formably with the partition of 8.
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2.2 Second-order approach

Wu and Luo (1993a, 1993b) studied the perturbation-formed MLE surface of
a parameter of interest in regression. Unlike the likelihood displacement surface,
such a MLE surface does not necessarily have zero first derivative at the null
point of no perturbation, so that its slope as well as curvature can be used to
examine local influence. They referred to the maximum slope as the first-order
approach and directions corresponding to the large normal curvatures as the

second-order approach.

Suppose that we have n cases for a given model and the parameter/statistic
of interest is . We introduce small perturbation into the data through a n x 1
vector w = wy +al € 2, where {2 denotes the open set of relevant perturbations,
I={(l,...,1,)7 is a unit direction vector, the scalar a measures the magnitude

of the perturbation in direction .

The null point wy = (1,...,1)7 which is equivalent to @ = 0, represents no
perturbation in any direction. If the case k is the only perturbation, then it is

located in direction —l.x~ from the null point, where I -4~ is defined as

e for i=k,
L {0 for ik

Under this structure, the MLE % of 5 is a function of w = w(a). The
geometric surface formed by the vector a(w) = (w?, f{w))? contains essential
information on the influence of the perturbation in question. Following the
derivation of Cook (1986), Wu and Luo obtained the signed normal curvature

in direction I,

'yl
Cp = !
L™ (0 4 Ty /2T (] & gty

14



with

i ()T
WG =7 l:
dwT W
azﬁ — tTﬁ(Q)Tl

dwdw? | , ’
(8]

The curvature Cj in equation (2.3) takes the form

1T F1

. 2.4
1T Aarl (24

According to matrix theory, the local maximum curvatures and correspond-

ing directions are the eigenvalue-eigenvector solution of the equation

|F — AM| = 0. (2.5)

The diagnostics for the first-order approach are the by-products of this method.

The value of maximum slope is 5171 which is the direction with cosine

"

[ 0]}

fori=1,...,n.

Wu and Luo also recommended the study of plots of 7(w) against the per-
turbation scale a for any direction of interest, including the directional cosines
associated with the maximum slope and large local curvatures. As mentioned
previously, the deletion of case k is related to the perturbation in direction —l{ <~
from the null point. Therefore, if case k is globally influential, the 7(w) curve
associated with that direction should have a great change on the a > 0 side.
Now suppose that a direction I of interest has an outstanding cosine I say. If
this large I > 0 then #(w) associated with I should behave like fj{w) associated
with {<g-. Similarly if this large Iz < 0 then 7(w) associated with I should
behave like f{w) associated with —l.gs. Therefore, we can investigate global

influence by studying these plots.
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Wu and Luo applied the local influence method to transformation param-
eters, residual sum of squares and multiple potentials in regression and demon-
strated that it is very effective as a diagnostic tool. The work of this thesis will

be based on Wu and Luo’s formulation of local influence.
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CHAPTER 3

TWO-WAY CONTINGENCY TABLES
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3. TWO-WAY CONTINGENCY TABLES

When assessing the goodness-of-fit of the independence model in contin-
gency tables, it is possible that a small subset of deviating cells can give rise to a
significant test statistic. The major problem is detection of such cells rather than
the subsequent outlier-resistant analysis (Bradu and Hawkins, 1982). Published
methods for location of outliers include discordancy criteria and the sequential
identification of cells whose omission leads to the maximum reduction in the
statistic for independence. An excellent review of the literature can be found in
Barnett and Lewis (1994, Chapter 12}. Residuals of various forms have often
been incorporated into formal detection procedures. Such procedures, however,
tend to suffer from the deficiencies of masking and swamping. Here, masking is
considered in respect of a measure of outlyingness. A conditional perspective on
masking and other aspects of deletion influence in regression are examined by

Lawrance {1995).

To identify multiple outliers in the context of a two-way contingency table,
we study the perturbation-formed surface of the Pearson goodness-of-fit statis-
tic, by evaluating the tangent plane and curvatures of the surface. Unlike the
assessment of local influence {Cook, 1986) on parameters of a model, we are
concerned with assessing the goodness-of-fit with respect to the independence
assumption. Through an example, it is found that the perturbation approach
provides effective diagnostics that are resistant to masking and swamping. A
Monte Carlo study was also carried out to assess the effectiveness of this de-
tection technique. Results indicate that the proposed diagnostics outperform
standard residual-based methods in terms of efficiency and other criteria. In
Section 3.3, we propose a stepwise confirmatory procedure to assess the rela-
tive discordancy of the candidate set of outliers. Two examples are given to

demonstrate the usefulness of this approach.
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3.1 Assessing goodness-of-fit

The problem of outliers detection in contingency tables has generally been
considered from the point of view of the independence hypothesis (Barnett and
Lewis (1994, p. 432)). Suppose we have a two-way r x ¢ contingency table
giving observed frequencies z;; (1 = 1,...,7;7 = 1,...,¢), with row marginal
totals z;. and column marginal totals z;, each summing to the sample size N.
The usual assumed null model is of independence between the row and column
classifications. An outlier is a particular cell whose observed frequency deviates
significantly from the corresponding expected frequency on the null model. Let
pi; = E|z;;/N]. Denoting the entire set of n = rc cells by .S and the subset of

cells under question by (2, the independence model is
Ho: Pij = DitDtj Spir=) prj=1p, V(i,j)eS.
i J

The two most prominent statistics for testing Hp against all omnibus alternatives

are the Pearson goodness-of-fit statistic

x2=3y (zi; — e3)”
U

and the likelihood ratio goodness-of-fit statistic

G2 =2 Z.’L‘ij ln(mij/ez-j)
(%]

where the expected cell frequency e;; = Np;; is estimated by z;; 2 ;/N under
multinomial sampling. Both statistics have a null asymptotic y? distribution

with {r — 1)} x (¢ — 1) degrees of freedom.

Qutliers detection in the above context should be distinguished from the
related problem of influence assessment where the main objective is assessing
sensitivity of model parameters. To identify influential observations in contin-
gency tables, Andersen (1992) proposed (cell) deletion diagnostics for the para-
metric multinomial distribution, with particular applications to the Goodman’s

RC association model (Goodman, 1981).
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3.1.1 Adjusted and deleted residuals

When the hypothesis of independence is rejected, it is important to identify
any cell(s) which display lack-of-fit and whose removal will lead to acceptance

of the quasi-independence model
Hi: piyj=pispsj ZPHPH =1, VY(i,j)€Q.
7

A variety of data analytic techniques have been proposed, the basic building
blocks of which are residuals of different forms; see Barnett and Lewis (1994,

Chapter 12) for a review. From the standardized residual

ri; = (@i — eij) [ V/eij (3.1)

Haberman (1973) constructed the adjusted residual as

Fij = rig {1 — 2is /N)(1 = 25 /N)}3. (3.2)

Another popular measure is the deleted residual (Brown, 1974), which is defined

as
r:‘j = (a:z-j — e’;j) /\/‘% \ (3.3)

where
ef; = (@i — zigl(@ej — 2i) (N — iy — 245 + 245) (3.4)
denotes the expected value of the (7, 7)th cell under H; with the (i, j)th cell

deleted or treated as missing.

The distributions of 7;; in different experimental situations are given by
Mufioz-Garcia et al (1987), while Fuchs and Kenett (1980) suggested using the
Bonferroni bound to provide critical values for the maximum #;; to test for
discordancy. Simonoff (1988) advocated the use of r}; coupled with a backwards-
stepping algorithm for outlier detection. The null distribution of rj;, however,

does not appear to be known.
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3.1.2 Perturbation on Pearson goodness-of-fit statistic

For a 7 x ¢ contingency table, a similar approach to Wu and Luo (1993a)
can be applied to the perturbation-formed surface of the Pearson goodness-of-fit
statistic. We introduce small changes w = (w1, ..., ch)T € £2, into the assumed
probability p;; so that it becomes w;;p;;, where { denotes the open set of relevant
perturbations and w;; > 0 ¥(4, 7). Suppose there is a null point wp = (1,...,1)7
€ Q representing no perturbation so that X?(wyp) gives the observed X?Z statistic.
The geometric surface of interest is formed by X?{w), the Pearson goodness-of-
fit statistic under perturbation w. To find the direction of largest local change,
we approximate the surface by its tangent plane at wp, which is determined
by %{ﬂ at wy. The direction of largest local change is just the direction of

maximum slope on this tangent plane over 2. It is found that

3X2(w) _ (1) _ (1)
o X = {X457) (3.5)
where
X5 = (33— i) {(—2 — (i — esj) €5} (3.6)

In the second order approach, the direction cosines corresponding to large
curvatures of the surface of interest are used to supplement the first order di-
agnostics. The second derivative of X?(w) evaluated at wy is a diagonal matrix
with entries

4371‘3‘ - 26:‘3‘ + 2 (ifz'j —_ eij)2 /B@j . (37)

The local maximum curvatures and their corresponding directions are then
found via equation (2.5). We denote the resulting direction of largest local
maximum curvature by X2 = (Xff )), and together with X1, they form our

main diagnostic quantities.

Alternatively, instead of treating X? as a data-generated statistic, we con-

sider X? as a function of n non-negative but not necessarily integer quantities
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z;;. We wish to study the perturbation-formed surface of this function by intro-
ducing small changes w to the variables such that z,; becomes w;;z;;. Again, the
geometric surface of interest X2(w) can be approximated by its tangent plane
at wy = {1,...,1)7. The resulting direction of maximum slope on this tangent

plane is
AX?(w)

dwT

- x = (x4 (59

g

where for a particular entry X7,

X 2(xzry —ery) oy 4 I +azrgters—(xrr—ers){ezry + 2405 —€rg)
IJ ery N
LIJ L1j (1 $r+)
— 6 b — .'Z" . e . a: .

+Z o ) (ens — wr)er; + 215)

Try & Tyg
+ Z o as ( ;\rr ) (eis — zag)(ess + Tig)

TrJye;
= Z ';ﬁ(eij — ig)(ei; + 345) -
itl AL

(3.9)

For the second order approach, perturbation directions corresponding to
large curvatures of the surface are recommended for assessing local sensitivity,
large components of which signify the presence of aberrant cells. Since the
curvature is a function of the first and second derivatives, we need to evaluate

2 2
—-——z—a gw(“’) at wg as well. It can be shown that

X% (w) 2y + N 22 1 1
—— 7 —2r?, + L _oN | - + >
Tr+T g BIJN .‘:L'I+33+J $1+£B+J

2 2 2
2 L4 LF; Lig
+203,8 ) —— - E -
F 61j$1+ 6[j.’l?]+N E%J.'E+J 6iJ$+JN

92X (w)
Owrylwrk

2 2
_ Try TiK TiJ TIK 21y 2Tk
= Z1JTIK — —

{G%JN B?KN . SIJN BIKN E€rJjrr4 CIRKTT+

2

b o d S 2L ( 1 1 ) S Ty ok
IJ4IK -  \ - — - -

= erj \%I+ rry N —~ eigZ1g N eixzigN
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82X (w)
Owp 0wy

2 2
Try o FLy o | BT g 2z 2xpg }
e, N  e2 N eyN e N ejrey epjriyg

2 2
x; 1 1 Ly LLj
T TIJTLI E — = - E -
p €iJ T+ :E_|_JN ; te:I:I+N eLj:cL+N

52X2(w) 2.13[; 237LK 2 SC?K
o = TIITLK - E -
Owy jOwr K ers erLK ezJ33+J EiKT+K

=TrjTrJ {

(3.10)

eriTr4+ eijL—l-

The direction cosines of largest local maximum curvature, X”, together
with the maximum slope direction X', provide diagnostics additional to those
obtained by perturbing probabilities above. Sampling properties of these direc-
tion cosines remain to be developed, but do not seem crucial at the diagnostic
stage when identification is the principal aim. Warning limits of :I:f—,% have also
been suggested for informal calibration (Lawrance, 1988). It should be remarked
that the diagnostics from the frequency perturbation approach are appropriate
in the context of the independence hypothesis, whereas those based on proba-
bility perturbations have the advantage of being generally applicable to any null

model.
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3.1.3 Perturbation on likelihood ratio goodness-of-fit statistic

The above perturbation schemes can also be applied to the likelihood ratio

statistic G?. However, under probability perturbations,

8G? (w)

T
OwT )

X (T
Wy

3

so that it does not provide any diagnostic information on the relative discordancy.

Formulae for the frequency perturbation approach are given below. For the

likelihood ratio statistic
x. -
G? =2 m-‘ln(-—ij-) ,

9G?(w)

) AT
Il =G'= <Gij> '

Wo

where for a particular entry G,

T 1 1
€rg Ti+ T4y

2.~2
For the second order approach, we also need BTCL){;‘L)L_.JU, which elements are

given by:
P’G*(w) _ 2:::11{3:” I ) F A 1z oz 11 }
8w;J6wU il?%_'_ x?f--f Tr+T4 g N LEI+N :L‘+JN Tr+ Tyyg

3 Ty  Tyg Tig TiJ
SR I )
+ Tt { TR + } {(I1+33+J) -t }

2 1 1 11
2
+ . — — -
Zﬁ_ x”m”(xij z N 2, N N?)

2 1 1 1 1

2 ] — — — — —

+Zj:a:u9313 ($?+ N i TN N3)

.

- Z 33%1%
AL,
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3262((.0) 1 i+ 2 2 Ly
Owy jOwr K it iy NZ N x5y i;éI%JK N2
1 1 1 1 1 1
+Y g — - - +x - = - )
; ‘ (m N :c+JN) e (:w N zygN
82(;2(&)) 1 Tyg 2 2 LTy
o a . _ — YriTrg _“_2+_—m— 3
3wIJ8wLJ Tyg N L g JAIAELL N
1 1 1 1 1 1
+j§$” (ﬂ?f N 931+N) i ($L+ _ﬁ_'rIH'N)
82G2(w) o Trjrrni
8wIJawLK N N

In general, we found that perturbation diagnostics derived from G? appear
to be less sensitive than those of X2. Therefore, we focus on the X? diagnostics

in subsequent investigations.
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3.1.4 An illustrati

Simonoff (1988) invented a 5 x 5 contingency table with 3 outlying cells
(1,2), (1,3) and (2,1) to illustrate the danger of swamping. The data set is
reproduced in Table 3.1. The Pearson goodness-of-fit statistic is 24.64 on 16

degrees of freedom (p-value = 0.076). The overall fit is neither extremely good

nor extremely bad.

on

Table 3.1

Simonoff (1988) 5 x 5 artificial table

18
39
24
20
23

41
20
20
20
19

41
20
20
19
20

20
22
16
19
17

21
22
18
19
20

Adjusted and deleted residuals

Table 3.2

-3.124 2532 2.532 -0.977 -1.084
-3.695 3.646 3.646 -1.195 -1.331
2.866 -1.604 -1.604 0.349 -0.012
4.118 -1.938 -1.938 0.440 -0.014
0.535 -0.291 -0.291 -0.151 0.127
0.760 -0.358 -0.358 -0.182 0.155
-0.418 -0.234 -0.506 0.794 0.471
-0.513 -0.288 -(.616 0.988 0.582
0.267 -0.618 -0.348 0.096 0.652
0.337 -0.751 -0.428 0.116 0.814

Table 3.2 gives the adjusted (above) and deleted {below) residuals for each
cell. The critical value obtained from the Bonferroni bound is 2.878 at a = 0.05.
The non-outlying cell (1,1} is wrongly identified for both types of residuals.
Contrary to claims in the literature (see e.g. Barnett and Lewis (1994, p. 438)),

we have found that the deleted residuals are still vulnerable to swamping.
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Table 3.3 shows the normalized maximum slope direction {above) and max-
imum curvature direction (below) for individual cells, based on the probability
perturbation approach. Using either X () or X (), the first three cells identified

are (2,1}, (1,2) and (1,3}, a correct result.

Table 3.3

Mazimum slope direction XV and mazimum curvature direction X (2)

0.381 -0.456 -0.456 0.126 0.142
-0.001 0.440 0.440 0.000 0.000
-0.514 0.206 0.206 -0.048 0.002
-0.783 -0.001 -0.001 0.000 0.000
-0.085 0.038 0.038 0.018 -0.016
0.000 -0.000 -0.000 (0.000 0.000
0.054 0.031 0.065 -0.104 -0.061
-(.00G -0.000 -0.000 (.000 0.000
-0.037 0.079 0.045 -0.012 -0.087
0.000 -0.000 -(.000 0.000 0.000

The extent of swamping effect on cell (1,1) is much less, especially for X @),
Similar results are obtained when perturbing X? through the observed frequen-

cies, whereas results using G? are less sensitive.
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3.2 Simulation study

In this section, we compare the performances of the outlier detection criteria,

in a simulation study. The main concerns are:
1. How often are outlying cells identified as such (efficiency)?
2. How often are outlying cells not identified (masked)?
3. How often are non-outlying cells wrongly identified (swamped)?

In the simulations, tables of size 5 x 5 are generated using the S-plus SAM-
PLE function. Following Simonoff (1988), frequencies in contaminant cells are

generated with slippage probability
-1

* -1 *
Pij = Pij (1 + AN 2) Z Dij ’
(#.0)ES

where the slippage constant, A;;, is zero for non-contaminant cells. The null
probabilities p;; are uniform for a 5 x 5 table with N = 500. According to
Kotze and Hawkins (1984}, “if the restriction that the number of outlier cells
is not more than a fixed proportion of all the cells does not hold, it may be
necessary to investigate the table for other reasons for deviation from the inde-
pendence hypothesis”. Consequently, we create three discordant cells occupying
the same positions as those of the artificial table in Table 3.1, Four alternatives

to independence are considered:
(a) A1z = Az = Agy = 30;
(b) Ayg =40, Ayz =30, Ay = 20;
(c) Ayg = A3 = Ay =-20;
(d) Ay = —20, Az = —20, Ay = 40.

Results based on 1,000 replications for each alternative configuration are
presented in Table 3.4. The table provides estimates of the following performance

measures.,
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(31 = probability of exactly correct identification;

(32 = probability of identifying all planted outliers;

(33 = probability of at least one non-outlying cell is incorrectly identified;
N¢e = average number of outlying cells identified;

Ny = average number of cells incorrectly identified.

Good performance of a criterion will be indicated by high values of 31,
and Ng but low values of 83 and ;. The perturbation approach is compared
to the backwards-stepping procedure outlined in Simonoff (1988). The reference
limit of the direction cosines is set at (.386, which corresponds to discordancy
testing at the nominal 5% level for a 5 x 5 table. QOutcomes of the simulations
show that estimates of &1, (2, and 33 have standard errors typically less than
0.0157; estimates of N have standard errors less than 0.0252; whereas estimates

of N; have standard errors less than 0.0244.

It is evident from Table 3.4 that the probability perturbation approach
is more efficient, as reflected by reasonably high &; probabilities, than the
backwards-stepping use of the deleted residuals. Ovwerall, the approach is less
affected by the masking problem, as shown by the relatively stable 3 estimates
and N closest to 3. Moreover, it gives lower 33 and Ny values (especially X (),
indicating lower levels of swamping. Simulations for the frequency perturbation
approach, which have been omitted for brevity, yield results similar to those
of probability perturbation. Our findings confirm that outlier detection based
on residuals is vulnerable to both masking and swamping effects, and that nei-
ther of the residuals performs uniformly better than the other in the settings

considered.
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Table 3.4

Simulation results

B Ba O3 Ng Ny

Alternative (a)
Backwards-stepping a 0.025 0.025 0.037 1.082 0.044
r* 0.051  0.052  0.084 1566  0.070
Perturbation X | 0063 0064 0.059 1.702  0.063
X@ | 0.057 0.057 0.023  1.589  0.023

Alternative (b}
Backwards-stepping r 0.011 0.011 0.023 1.483 0.045
r* 0.030  0.031  0.031 1429  0.086
Perturbation x@ 0.046 0.051 0.003 1.723 0.023
X @ 0.037  0.037 0.014 1592  0.014

Alternative (c)
Backwards-stepping 7 0.067 0.071 0.267 1.598 0.196
r* 0.013  0.019 0221  1.095  0.232
Perturbation XM 1 023 0238 0178 1.875  0.187
X@ | 0.039  0.039  0.061 1.131  0.145

Alternative (d)
Backwards-stepping T 0.059 0.061 0.227 1.613 0.248
r= 0.012  0.017 0201 1464  0.229
Perturbation X 0.035  0.036  0.223 1.454  0.243
x®@ 0.026  0.026  0.083  1.262  0.234
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3.3 Testing for discordancy

Application of the identification criteria will provide a subset € of possible
outlying cells. To test a single cell for discordancy, measures such as x2 — x7;
or G? — G%; on omitting cell (I, J) are recommended (Barnett and Lewis, 1994,
p. 435), where x% 7 and G% s are respectively the Pearson and likelihood ratio
statistics under the quasi-independence model Hy with cell (7, J) excluded. Both
test statistics may be compared to the X%l) reference distribution (Simonoff,
1988). As pointed out by Barnett and Lewis (1994), the consecutive testing of
cells for discordancy, whether it is done on an inward or outward basis, can still be
vulnerable to the masking problem. Although a number of multistage methods
exist in the outliers detection literature (see e.g. Davies and Gather (1993) for
a review), limited results are available for contingency tables. In the following,
a confirmatory procedure is proposed to ascertain the relative discordancy of a

group of outlying cells.

Lee and Fung (1997) devised an iterative diagnostic approach for the detec-
tion of multiple outliers in generalized linear models and nonlinear regressions.
The essence of their approach is to form a clean subset (included set) of the
data that is presumably free of outliers, and then assess the outlyingness of the
remaining observations {omitted set) relative to the included set in a stepwise
fashion. Unlike the regression setting, one cannot simply ‘delete’ any suspect
cell(s) from a contingency table, some modifications of their procedure become

necessary.

Algorithm

Step 1: Locate an initial omitted set @@ of m candidate outliers using an appro-
priate identification criterion.
Step 2. Fit the quasi-independence model to the data without ¢ as identified in

Step 1. Calculate the goodness-of-fit statistic 7’9 (in either x? or G? form).
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Step & For each (I.J) € Q, we put z;; separately back into the included set
and refit the quasi-independence model. Evaluate goodness-of-fit statistics TIQJ
from each of the m tables of imputed values, then find the reductions T’ 1% ~T%,
Step 4: Compare TI% — T9 to the X'(?l) critical value. The corresponding cell
that has been judged least insignificant is excluded from (). The remaining cells
form a new omitted set @, with size m, = m — 1.

Step 5 Repeat Steps 2 to 4 in a stepwise manner until the discordancy tests in
Step 4 are all significant. The cells in the eventual omitted set Q are declared

outliers.

In Step 4 of the algorithm, we choose to decrease the size of ¢} by one cell
per step, which is more conservative than the approach adopted by Lee and Fung
(1997). The critical value for the discordancy tests is also taken conservatively to
be the nominal X%n 1% cut-off of 6.635. A discussion on the true significant level
of backward testing can be found in Simonoff (1988). Based on the evidence from
the following two examples, it is recommended to use perturbation diagnostics
for identifying the initial omitted set of suspect outliers, in order to minimize
any potential masking effect. Finally, our experience with practical data sets
indicates that the use of either x2 or G? form will make little difference in

determining the eventual omitted set.
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3.4 Examples
3.4.1. Student enrolments data

Table 3.5 presents a 7 x 8 contingency table of student enrolmment figures
from seven community schools in the Northern Territory, Australia. The data
collections were conducted in eight different periods of the year. The Pearson
x? statistic is 85.72 and G? has the value 84.69 on 42 degrees of freedom, which

implies strong evidence against the independence hypothesis.

Table 3.5

Student enrolments Data

93 96 99 99 147 144 87 87
138 141 141 201 189 153 135 114
42 45 42 48 54 48 45 45
63 63 T2 66 78 78 93 63
60 60 54 al 51 45 39 36
174 169 156 156 153 150 156 159
78 69 84 78 94 66 78 78

Tsource: data from Northern Territory Department of Education 1995 Student Census.

Table 3.6 shows results of the identification criteria for selected cells of
interest. The critical value obtained from the Bonferroni bound is 3.124 at
o = 0.05 for the residual diagnostics and the reference benchmark for the per-
turbation diagnostics is set at 1.96/4/n = £0.262. Cells (1,5), (1,6), (2,4),
and (7.5) are suggested to be potential outliers according to the residuals.
The perturbation diagnostics X (1) and X(® together identify the candidate set
Q = {(1,5),(1,6).(2,4),(2,5)}. This same set is obtained under the frequency

perturbation approach.
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Table 3.6

Selected diagnostic results for student enrolments data

F: r* X(l} X(Z) X/ b
(15) | 3.16 387 032 020 -0.31 -0.18
(1,6) | 366 450  -038 -024 -0.37  0.25
(24) | 381  4.92 044 086  -0.45  0.87
(2,5) 2.02 2.55 -0.23 -0.33 -0.24 -0.35
(7,5) -3.42 -3.74 0.22 0.03 0.20 0.01

Table 3.7

Confirmatory analysis results for student enrolments data

TEIU — T X x(@ For
(1,5) 21.46 10.02
(1,6) 17.14 17.41
(2,4) 16.84 13.12
(2,5) 13.25 —
(7,5) — 10.43

We next apply the iterative algorithm to assess the relative discordancy of
the suspect outliers. Table 3.7 presents the result of the confirmatory analysis.
Both sets identified by the respective measures are confirmed to be discordant.
Upon application of the backwards-stepping method via the change in G? (Si-
monoff 1988) also produces the discordant set (1,5), (1,6), (24), (7,5).

An inspection of the school records found that during collection periods
5 and 6, a group of transient seasonal fruit picker families have moved into
the farming community near school 1, thus inflating this school’s enrolments
momentarily. Moreover, at collections 4 and 5, a significant population from
a different region has migrated into the community of school 2 to attend a
traditional funeral procession. As with most aboriginal funerals, the procession
lasted for around three months and hence increased the enrolments of school 2
over those two periods. Apparently, cell (2,5) was not detected by the residuals

due to masking in the identification stage, whereas the non-aberrant cell (7,5)
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was judged discordant possibly owing to the absence of cell (2,5} in the initial
omitted set. The perturbation approach appears to be resistant to such masking

and swamping effects.

On fitting the quasi-independence model with the confirmed outlying set
{(1,5), (1,6), (2,4),(2,5)} results in x> = 33.91 and G? = 34.27, suggesting no
departure from the quasi-independence assumption. The respective reductions

in goodness-of-fit statistics are clearly significant on 4 degrees of freedom.
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3.4.2 Archaeological data

As a second illustration of the confirmatory analysis, we consider the 19 X 6
contingency table from Mosteller and Parunak (1985), which gives the counts
of 19 kinds of artifacts found at 6 distance categories from permanent water in
southern Ruby Valley, Nevada. The data are reproduced in Table 3.8. The aim
of the original study was to investigate the association between site types as
defined by the kind of artifacts present, and the proximity to water. Following

Mosteller and Parunak, the ordering of the distances is not considered.

The Pearson goodness-of-fit statistic is 190.03 on 90 degrees of freedom,
indicating significant departure from independence. We prefer not to apply the

likelihood ratio test due to the presence of sampling zeros in the table.

Table 3.8

Archaeological data T

20 102 a4 38 29 3
33 136 86 58 56 7
27 122 68 51 53 0
2 10 8 5 4 0
11 82 34 35 30 2
10 53 25 17 17 3
39 185 38 100 53 13
34 179 70 78 60 11
26 78 24 26 14 6
24 83 32 41 26 3
8 44 16 28 39 3
15 75 30 35 27 8
11 32 4] 11 21 2
12 28 5 18 7 0
2 10 4 2 6 0
3 8 4 6 3 0
1 2 0 3 3 0
13 d 3 9 7 0
20 36 19 20 28 1

T source: data from Casjens (1974)
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Table 3.9

Selected diagnostic results for archaeological data

F r* X x@) X' X
(2,3) 2.95 3.63 -0.33 -0.10 -0.31  -0.09
(3,3) 1.86 2.23 -0.19 0.04 -0.19 0.05
(7,4) 1.92 2.37 -0.23 0.07 -0.22 0.07
(8,2) 1.26 1.78 -0.17  -0.87  -0.17  -0.85
(11,5) 1.48 5.49 -0.37 0.21 -0.38 0.18
(18,1} 5.379 6.81 -0.32 0.11 -0.30 0.09
(18,2) -3.16  -3.41  -0.09 0.01 -0.09 0.00

Table 3.9 shows results of the identification criteria for selected cells of
interest. The critical value obtained from the Bonferroni bound is 3.327 at
a = (.05 (Fushs and Kennett, 1980). The reference points for perturbation
diagnostics are taken to be 1.96/\/n = £0.184. Cells (11,5) and (18,1} have the
most extreme adjusted residuals. The deleted residuals also bring attention to
cells (2,3) and (18,2) in addition. With respect to the perturbation diagnostics,
the candidate set Q = {(2,3), (3,3),(7,4),(8,2},(11,5), (18,1)} is obtained.

If we apply the algorithm to the set {(2,3), (11,5), (18,1), (18,2)} from the
residuals, the first three cells are retained as outlying. The same result is ob-
tained by the backwards-stepping method. The candidate set ¢ from the per-
turbation approach is next considered. Table 3.10 lists the sequential changes

in x? during successive fittings of the quasi-independence models.

The eventual discordant set obtained is Q = {(2,3), (11, 5), (18,1)}. Upon
fitting the quasi-independence model with Q identified as such, the resultant
drop in x? = 52.22 is highly significant on 3 degrees of freedom. It is in-
teresting to remark that in their original analysis of the data, Mosteller and
Parunak also found (11,5) and (18,1) discordant, with detailed justification pro-
vided. Although an archaeological interpretation has been given for cell (2,3),
their exploratory and residual-based methods apparently rejected this somewhat

marginal outlier.
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Table 3.10

Confirmatory analysis results for archaeological data

TS —T9 TE — T T — T T2 - T

2,3) 877 9.15 9.60 8.03
(3,3) 3.75 3.98 1.24 —
(7,4) 2.53 2.74 — —
(8,2) 0.92 — — —
(11,5) 17.06 17.33 17.70 18.08
(18,1) 24.18 24.33 24.66 24.89
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3.5 Discussion

The perturbation approach is preferable to identification based on residuals
because it provides a more reliable set of candidate outliers and is more effective
in dealing with the masking and swamping problems. Another advantage of the
approach is that it only requires the independence assumption and does not rely
on the explicit formulation of a parametric model which is often required by
other diagnostic methods. The stepwise confirmatory procedure is also shown

to be effective.
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CHAPTER 4

COVARIATE TRANSFORMATION DIAGNOSTICS

IN GENERALIZED LINEAR MODELS
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4. COVARIATE TRANSFORMATION DIAGNOSTICS
IN GLM

Transformations of variables have often been applied to data in statistical
- modeling. Parametric transformation families, such as the Box-Cox power trans-
formation, is commonly used. Various diagnostics have been proposed to assess
the sensitivity of the maximum likelihood estimate (MLE) of the transformation
parameter; see e.g. Cook and Wang (1983), Atkinson (1986, 1988), Wang (1987),
Tsai and Wu (1990). Most of these methods are concerned with transformation
of the response or simultaneous transformation (transform-both-sides model).
Transformation diagnostics for the covariates, however, have been studied to a
lesser extent. Ezekiel and Fox (1959) introduced the partial residual plot. Box
and Tidwell (1962) suggested constructed variables and added variable plots to
assist the selection of suitable transformations for covariates. A review of such
procedures can be found in Cook and Weisberg (1982) and Chatterjee and Hadi
(1988).

Traditionally, transformation diagnostics are derived using the case dele-
tion approach (Cook and Weisberg (1982), Wei and Shih (1994a)). Since Cook
(1986) developed the local influence methodology as a general tool for assessing
the effect of small departures from model assumptions, there is a large body of
literature dealing with response transformation and simultaneous transforma-
tions based on this approach (Lawrance (1988), Hinkley and Wang (1988), Tsai
and Wu (1992), Shih (1993), Wei and Shih (1994b), Shih and Wei (1995)). In
contrast, limited diagnostics are available for analyzing the transformation of
covariates. Cook (1987) used a subset formula from local influence to derive di-
agnostics for partially nonlinear models, which include transformation of a single
covariate as a special case. Wei and Hickernell (1996) considered further exten-

sions to several covariates based on profile likelihood displacement and found
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that their diagnostics are related to those of Cook (1987). Nevertheless, all of

the above methods are devoted exclusively to the linear regression setting.

In this chapter we present local influence diagnostics for assessing the effect
of minor perturbations on the MLE of the covariate transformation parameters
in generalized linear models. Two separate approaches based on analysis of the
transformation parameter surface or profile likelihood displacement, and partial
influence, are proposed in the next section. Specific perturbation schemes are
outlined in Section 4.2 to examine the different aspects of influence. Three

illustrative examples are provided in Section 4.3.
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4.1 Profile likelihood displacement and local influence

We assume the responses ¥ = (y1,- -, ¥n)? have a density or mass function

of the form

Fy(yi:8) = exp { [y:6; — b(8;)] /a(é) + c(yi, 8)}

with 6; = k(n;), where n; is the linear predictor and a(-), b(-}, ¢(-) are known
functions. Without loss of generality the dispersion parameter ¢ is assumed
known or may be replaced by an estimate ¢ and write 4 = a(¢)}, which gives an
exponential-family density with natural parameter 8. The log-likelihood function

is then
a7ty fuik(n:) ~ b{k(m)}] .
i=1

Goodness-of-fit of a generalized linear model may often be improved by trans-
forming one or more covariates z of X = (®,2) = (1), **, T(p), (1), " Z(q))-

Let the linear predictor of the transformation model be
n=xd+ G(z,A)E,
where the n x g matrix G(z, A) = {g1(2(1): A1), -, 9q(2(q)1 Ag))> and
95(z()s Az) = {93 (=15 A0, -+ 95 (g, AT

represents a known, twice continuously differentiable transformation family in-

dexed by A; (=1, --,q). Here the parameter vector A is of special interest.

Let 6(\), £(A) be functions that maximize L(X; 8, &) for fixed A and denote
the corresponding profile log-likelihood for X by L(X; (), &(A)). To assess the
global influence of individual cases on the MLE X of A, one can adopt the case
deletion approach of Cook and Weisberg (1982). The difference between X and
)A\M, the MLE of A without case 4, can be measured through the profile likelihood
displacement

LD; = 2[L(X) — L(Ap)] (4.1)
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where L(A) = L(X; 8(A), £(A\)). For the special case of linear regression, Wei and
Hickernell (1996) obtained approximations to simplify computations of LD;. A

large value of LD); indicates that Xis likely to be dependent on case i.

4.1.1 First and second order approach

For the MLE surface of the transformation parameter A, we introduce small
changes into our model through an n x 1 vector w € £, where {2 denotes the open
set of relevant perturbations. Suppose there is a null point wg in £ representing
no perturbation so that Aw, = A. In the manner of Wu and Luo (1993a), the
MLE surface of A is the geometric influence graph formed by a(w) = (w7, Aw),

where Ay, is the estimate of A under perturbation w.

To find the direction of largest local change, we approximate the MLE sur-
face by its tangent plane at wyg, which is determined by %ﬁf- at wg. The direction
of largest local change is just the direction of maximum slope on this tangent
plane over §2. The derivations below are similar to those of Shih (1993, p.414)
for the transform-both-sides model. Write L(Alw) = L(A; 6(Alw), E(A|w)|w) for
the profile log-likelihood corresponding to the perturbed model, where 8{A|w)
and £(A|w) are functions that maximize L{X; 8, £|w) for fixed A and w. Then

Aw satisfies the following equation:

OL(X; 6, €|w)

RN =0.

Differentiating with respect to w; yields

82L(X; 8, &|w) (a)\w ) N B2L(X; 6, £|w)

=0.
AAONT Duw; B ONT

Therefore,

(4.2)

g [PLNEEw)] [ ~PL(N S Ew)
Ow; OAOAT B OAT '

Let Lgl) and Lgl) be the derivatives of L(X; d,&|w) with respect to A and (4, €)

respectively, with superscript (¢) denoting the #th derivative of the function. It
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can be shown that

F?L(X; 6, €lw) _ _ @

+ L@ O(E(A|w), EAw)) _ _ @
A ONT et Ow;

Tw

2wi

277 ;2
L2 [Léz)] 72
The partitions of L(?) are

LY = -3 52,60 (2, NTE€6V) (21, A) + SLidiag(€)GP (2, A)

i=1
L) = 3 (S2:diagl€) 0D (2, M,
i=1
82:G(zi, VTG (2, N)diag(€) + S1idiag(GM (z;, )\))>
L5 = [Li3]7
Ly = Zsz i, G2, ) (@i, G(=i, N))
where x; = (Z;1, -+, Zip) denotes the ith row of ,
GW(z;, A) = <gl(3)1\;)\1)""’gQ(g,q\;AQ)>
is a 1 x ¢ vector,
G2 (z;, A aG(Zz‘a;‘)
OAON]

is a g ¥ g matrix,
81, = gk () — bW k() )k (ms)

§2i = yak® () = (02 (k) K )12 + 00 (k)R ()

B L(X; 6,€|w) 82L(X; 8, Ew) .
while Lgi}z = o Y and Lgi)z = EREIC g)T are entries on the corre-
sponding columns of
_ 2L\ 6, &|w)

and further derived for various types of perturbations in Section 4.2. All of the

above quantities are evaluated at wo and A.
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To compute the maximum slope direction at the null point, li}ope, we evalu-

oA . . N :
% at wy and A. For second order local influence, the direction l%m which

St

ate
corresponds to the maximum normal curvature of the MLE surface is the main
diagnostic quantity to study the combined effect on A. As stated in Chapter 2,
Section 2.2, the local maximum curvatures and the corresponding directions are

the eigen value-vector solution of the equation

|FF— AM| =0
where the matrices
- R T _ .
T BwowT | dwT AAINT SwT ‘
. 9iw [050]
— YA | T
M=I+ WG [(%JT]

are evaluated at wy. Alternatively, we can apply the subset formulation of Cook

(1987) to the profile likelihood displacement
LD(w) =2 [L(X) ~ L(iw)] . (4.5)

An equivalent form to (4.4) is then

A(Aw; 6w, £,) {[L(z)}‘l — (g [ngg]—l ) } AT (A 8, €)) - (4.6)

If A is a scalar parameter (transformation of a single covariate, ie. ¢ = 1),
oy R i i .

then & L;i\éi %) becomes a scalar quantity so that l;\mw is proportional to

yone = (BAw/0wT)T and

slope
w 2 D@17 e
T = Ligy— L{Z [ng)} L5 (4.7)
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4.1.2 Partial influence approach

Let the linear predictor before transformation of covariate z be given by
g =xB+ 27 . (4.8)
The model after transformation is
n=xd+ Gz, A€, (4.9)

so that G(z, Ag) = z represents no transformation. A test of the hypothesis Hy:
XA = Ap can be based on Dy — D, the reduction in deviance from model (4.8)
to model (4.9). It is important to judge whether any particular observation
has an undue impact on this test. Denote Dgp;; and Dy for the deviances of
(4.8) and (4.9) respectively after deleting case i. In the manner of Lee (1988), a
partial influence measure for the impact of case ¢ on the transformation can be

formulated as
di = (Do ~ D) — (Do) — D) (4.10)
which represents the change in deviance due to the transformation of z when

the i-th observation is excluded.

Consider the log-likelihood L(A;4,&) of the transformation model (4.9).
The full MLE of X, &, € are denoted by X, 8, é respectively. Similarly, let
Lo(3, ) be the log-likelihood of model (4.8), with MLEs B and 4. Under minor
perturbations, the respective log-likelihoods become L(A; 8, £|w} and Lo (3, vy|w),
with associated MLEs (Aw, 0w, &) and (B, Y)- Suppose that L(; 8, &|wg) =
L{X;6,&) and Lo(83,|wa) = Lo(3,7). The partial influence on the transforma-

tion due to perturbation w can be assessed by
d(w) =2 {[Lo(B,%) - L(X:8,8)] — [Lo(Bun 3w) — Lwidw, &0)] } - (411)

Analogous to (4.10} in case-deletion, the log-likelihood displacement d(w) mea-
sures the local effect on the transformation parameter with respect to the con-

tours of the unperturbed deviance reduction.
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Let F = fd{w). We obtain the normal curvature at F(wo) along the direc-
tion I as
c@) = 2T Ry |

BQL(X{‘); 3&;,&@1) _ 32L0(Bwﬁ’w)

(2) —
£ Jwiw?® SwdwT

Applying the chain rule of differentiation yields

FO = A 8w 60) [LO(X:8,0)] T AT (w80, E0) i

V(B e0) [EP (89| V7 (B )

where A(Aw; 8w, £,) is defined in (4.3),

PLo(BAw)

v(ﬁw'* 7&.}) = Bwa(ﬁ, '7)T

evaluated at wy, 3, ¥, 8, £ and A. Expressions for L,gz)(,@, ~) and V{8,,, Y} are
derived under the original generalized linear model {4.8), which can be found in
Thomas and Cook (1989). Let 1% be the direction cosines of maximum normal
curvature, which is the perturbation direction that produces the greatest local

change in A as measured by (4.11). Similar to the derivation in Chapter 2 Section

2.2, 1% is just the eigenvector associated with the largest eigenvalue of

AL AT - v (4.13)

The most influential elements of the data on the transformation may be identified

d

¢ .. We also recommend to plot Ay, against the

by their large components of 1
perturbation scale for each local direction I of interest. The characteristics of
such curves should be informative for further investigation on the relationship

between local and global influences.
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4.2 Perturbation schemes

A number of perturbation schemes have been suggested to examine the
different aspects of influence (Cook (1987), Thomas and Cook (1989), Wu and
Wan (1994}). In the following, we consider relevant perturbation schemes and

derive the corresponding A(Aw; 6w, &,,) quantity.

4.2.1 Perturbation of case weights

We define a vector of weights w = (w1, -+ ,wn)?, w; > 0, to perturb the
contribution of each case to the log- likelihood. The point representing no per-
turbation is wy = {(1,---,1)7. We obtain A(Aw;dw, &) = (A¥) evaluated at
wp and 5«, where

AY = 81 (@i, G(z:, A), GM (21, N diag(€) ) - (4.14)
The case weight perturbation scheme actually generalizes case deletion, where
w; is limited to the values 0 or 1. Furthermore, if the deletion of the ¢th case is of
interest (as revealed by l,,4.), it may be considered as the perturbation located
in direction I[;; from the null point, where {|;; is the direction cosines with ¢-th
component —1 but zeros elsewhere (Wu and Luo (1993a, 1993b)). A plot of Ay
in the direction I;; can then monitor the global effects of downweighting the ith

case.

4.2.2 Perturbation of individual covariates x

We modify the j-th individual covariate,rm(j) of &, to x(;)(w) = z(; + tw,
as long as the covariate is not an indicator variable. Here, ¢ is the scaling
factor used to convert the generic perturbation w to the appropriate size and
units, and wy = (0,---,0)7 represents no perturbation. It can be verified that

A(Aw; 0w, €) = (AF) where
AT = 52,8 <a: Gz, A) + Sliuj,G(l)(z@,)\)diag(E» , (4.15)
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4.2 Perturbation schemes

A number of perturbation schemes have been suggested to examine the
different aspects of influence (Cook (1987), Thomas and Cook (1989), Wu and
Wan (1994)). In the following, we consider relevant perturbation schemes and

derive the corresponding A(Ay; 6w, &) quantity.

4.2.1 Perturbation of case weights

We define a vector of weights w = {wy,---,wn)T, w; 2> 0, to perturb the
contribution of each case to the log- likelihood. The point representing no per-
turbation is wg = (1,---,1)T. We obtain A(Aw; 8w, &) = (A¥) evaluated at
wo and 5\, where

AY = S1; <$1-,G(z¢-,)n), G(”(zi,)«)diag(m - (4.14)
The case weight perturbation scheme actually generalizes case deletion, where
w; 1s limited to the values 0 or 1. Furthermore, if the deletion of the ith case is of
interest (as revealed by Iz ), it may be considered as the perturbation located
in direction !; from the null point, where l};) is the direction cosines with i-th
component —1 but zeros elsewhere (Wu and Luo (1993a, 1993b)). A plot of Aws
in the direction I|;) can then monitor the global effects of downweighting the ith

case.

4,2.2 Perturbation of individual covariates x

We modify the j-th individual covariate, z(;y of z, to &) {w) = x(;) + tw,
as long as the covariate is not an indicator variable. Here, ¢ is the scaling
factor used to convert the generic perturbation w to the appropriate size and
units, and wy = {0,---,0)7 represents no perturbation. It can be verified that
A(Aw; 0w, &) = (AT) where

AT = 52,3 <:1: Gz, A) + 31z-uj,c:(1)(zﬁ-,).)dmg(g)> . (4.15)
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d; being the regression coefficient associated with @(; and u; denotes a 1 X g

row vector with j-th component 1 but zeros elsewhere.

4.2.3 Perturbation of individual transformed covariates z

We perturb the j-th transformed covariate z(;) to z()(w) = zy) + tw.
Again, ¢ is the appropriate scaling factor and wg = 0 indicates no perturbation.

We find that A(Aw; 8w, €y} = (AF), where

Af = <52%§J$1, S2t€JG(Zp )\) + SlzG(l)(Zw, A)’U,J,
(4.16)
§2:8,GN (i, N)diag(€) + S1i&;G (245, Nyu; )

with &; being the regression coeflicient associated with z(;), and Gz, A) is

the j-th entry of G (z;, A), G (255, A) is the (4, j)-th entry of G2 (z;, A).

4.2.4 Perturbation of responses

We then consider altering the responses by taking y{w) = ¥y + tw where
t = diag{[ab'®(k(n:))]7}. As with other additive perturbations, wo = 0 gives

the unperturbed state. It follows that A(Aw; 0w, &) = (AY), where
AY = kD) (@i, Gz, N), GO (2, Adiag(§)) - (4.17)

Note that this perturbation scheme may not be meaningful for discrete response,

such as those in binary logistic regression.

50



4.3 Examples

4.3.1 Snow geese data

Consider the snow geese data as reported by Weisberg (1985) and further
analyzed in Wei and Hickernell (1996). The data set consists of observations on
the response y = true flock size as obtained by count from aerial photographs
and covariate z = visually estimated flock size for a sample of n = 45 flocks of

SNow geese.
The original fitted regression model is
¥; =26.65 4 0.883x;
(8.61) (0.08)
with standard errors of the coefficients enclosed in parentheses. In view of the
heteroscedasticity evident in the data, Wei and Hickernell (1996) proposed the
following covariate transformation model

A1
yi=6+($‘/\ )f—%si.

Parameter estimates for § and £ are —35.759 (10.83) and 8.604 (0.63) respec-
tively, and A = 0.538.
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Figure 4.1

Case deletion diagnostics (rescaled) d; and 5\[1-] — X for snow geese data.
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Figure 4.1 shows the (re-scaled) partial influence measure d; and )A\[z-] — A,
based on case deletions. Case 29 is the most influential observation, which is
consistent with the index plot of profile likelihood displacement LD; (Wei and
Hickernell (Figure 2)). It affects the estimate of A significantly, 5\[29] = 1.38.
Indeed, case 29 is a leverage point recording the highest observer cdunt of 500

birds.

We next examine the local effect of each case on A. Based on the partial influ-
ence approach, the direction cosines lfmm from perturbing case weight, response,

and transformed covariate are plotted against case index in Figure 4.2.
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Figure. 4.2

Direction cosines limm from local perturbations for snow geese data.
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It is evident that the greatest local change in A depends essentially on case 29.

A

This result is consistent with the 15,

vectors displayed in Figure 4.3 under case

A

weight and response perturbation schemes. However, no cosine in I3, .

appears

to be outlying with respect to perturbations of the transformed covariate. Since

A
slope*

)

ma:cOCl

A is a scalar parameter, I It is interesting to note that Wei and
Hickernell had to resort to an alternative perturbation scheme (proportional

instead of additive) before case 29 becomes discordant.
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Figure. 4.3

Direction cosines 12

slope Jrom local perturbations for snow geese data.
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To confirm the indications of the proposed local influence diagnostics, we
plot Aw against the perturbation scale for each maximizing local direction 12,
in Figure 4.4. The effects of downweighting case 29 (in direction I[yg)) are al-
most the same as those of simultaneously perturbing all case weights, except
when the perturbation scale approaches 1, where A increases rapidly as the con-
tribution of case 29 is downweighted to zero. It is worth noting that while the
curve associated with response perturbations has the greatest slope at the null

state where the perturbation scale is 0, the analysis is quite insensitive to minor

modifications in the covariate.
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Figure. 4.4

A in directions of local influence for snow geese data.
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4.3.2 Erythrocyte sedimentation rate data

We next illustrate the proposed diagnostics with data from Collett (1991, p.
8) relating the chronic disease state y; (0 = healthy; 1 = unhealthy) of 32
individuals, judged from the erythrocyte sedimentation rate (ESR) reading, to

the plasma fibrinogen level z; {in gm/£). The fitted logistic regression model is
logit(f1;) = — 6.845 + 1.827x;
(2.764) (0.899)

with deviance 24.84 on 30 d.f. A constructed variable plot suggests cases 15 and
23 are outliers and that a non-linear transformation of z; is required; see Collett
(1991, p. 167). Collett then proceeded to include a quadratic term in the model.

Alternatively, we consider fitting the Box-Cox transformation model:

o -1
logit(ji;) = dg + ;61 + 3 £.

The resulting reduction in deviance, 8.06, is significant at the 5% level. The
MLE for A is 6.81, while parameter estimates for dp, 47 and £ are 20.731 (10.094),
—10.425 (5.095), 0.023 (0.013}, respectively. Case deletion diagnostics (re-scaled)
LD; and )A\[ﬂ - A displayed in Figure 4.5 identify case 15 only, but large values

of d; are found for case 15 and to a certain extent, case 23.
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Figure. 4.5
Case deletion diagnostics (rescaled) LD;, d; and ,i[z-} — X for ESR data.
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The direction cosines 12 and 1¢  from minor perturbations are plot-

slope max
ted against case index in Figure 4.6. Results based on the first/second order
approach are consistent with those of the partial influence approach. Upon
perturbing the transformed covariate, case 15, followed by case 23, have compo-
nents that are separated from those of the other individuals. An inspection of
the data reveals that these two observations correspond to unhealthy patients
with unusually low plasma fibrinogen counts. Under perturbation of case weight,
cases 5 and 14 emerge as influential on the transformation. We note that case
5 recorded the highest fibrinogen level compared to other healthy individuals in
the sample. On the other hand, case 14 has near average fibrinogen level among

the unhealthy group, yet its standardized deviance residual is the second largest

(after case 15) on fitting a quadratic logistic regression {Collett (1991, p. 168)).
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Figure. 4.6

Direction cosines li{ope and lfnu from local perturbations for ESR data.
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To further assess the extent of the perturbation effects, we plot the actual A
in Figures 4.7 and 4.8 for selected local directions I of interest, including those
related to the deletion of cases. The curve I[;5 associated with the downweight-
ing of case 15 alone has the greatest slope at the state of no perturbation, in
addition to producing the maximum global change in A. We also found that
as the contributions of cases 15 and 23 are being reduced to zero (direction
l115,23)) A approaches 1, representing no transformation. Therefore, once these

two observations are removed, there is no evidence for covariate transformation.
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Figure. 4.7

N>

in local influence directions associated with transformed covariate

perturbations for ESR data.
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The net overall change due to covariate perturbations is not dramatic since
the impact exerted by case 15 apparently has been compensated by the other
cases. Besides, perturbations in this direction give similar effects as those of
simultaneously modifying all case weights. Figure 4.8 also confirms that sen-
sitivity of the transformation parameter depends considerably on the weights

attached to cases 5 and 14.
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local influence directions associated with case weight perturbalions

for ESR data.
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4.3.3 Tree data

To provide a numerical illustration of the diagnostics when A is a vector quantity
of interest, we consider the tree data from Ryan, Joiner and Ryan (1976, p. 278).
The data consist of measurements on tree volume y (in f&*), tree height z, (in
ft), and tree diameter z; (in inches) at 4.5ft above ground level for a sample

of n == 31 black cherry trees. The following covariate transformation model,

A A2

i —1 i —1

y =6+ [ = £+ | =2 Er+ei,
A1 Az

suggested by Wei and Hickernell (1996}, will be adopted in our analysis. The

deviance of the fitted model is 188.247 with A = (2.583,1.738)T.

Figure. 4.9

Case deletion diagnostics (rescaled) d;, 5\[7;]1 — A and 5\[i]2 — A for Tree data.
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Figure 4.9 gives (re-scaled) /h\[ﬂl — X\, ;\[,;]2 — Xz, and d;. In addition to having
the most extreme LD; values (see Wei and Hickernell (Figure 8)), cases 17 and
18 induce substantial changes in the transformation parameter estimates upon
their deletion, Ay = (2.71,—1.137)7, Aqg = (2.325,6.25)7. Meanwhile, the
partial influence measure shows that the evidence for covariate transformation

depends mainly on case 31.

Figure. 4.10
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The local influence diagnostics under case weight perturbations are plotted in

Figure 4.10. Cases 17 and 18 are clearly influential according to the first order
b
lsllope

d

mar*®

and 2 whereas case 31 is also influential due to its large

diagnostics stope:?

component of I These direction cosines provide different diagnostic infor-
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mation to that of the I

maz

vector (Wei and Hickernell (Figure 9)). On the other
hand, case 31 emerges as the only influential observation under transformed co-
variate perturbations. It should be remarked that while case 31 corresponds to
the largest tree in the sample, cases 17 and 18 are medium sized trees but with

distinctive height of 85 ft and 86 ft respectively.
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CHAPTER 5

PARAMETRIC LINK FUNCTIONS IN

GENERALIZED LINEAR MODELS
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5. PARAMETRIC LINK FUNCTIONS IN GLM

The link function, which relates the linear predictor to the expected value
of the response, is a major component of a GLM (McCullagh and Nelder, 1989).
When the link function is unknown, it may be assumed as a member of a para-
metric family indexed by A, choices of which lead to different link specifications
(Pregibon, 1980). The parameter{(s) A is usually estimated by the method of
maximum likelihood (Scallan, Gilchrist and Green (1984), Kaiser (1997)}). Sev-
eral parametric families of link functions have been considered in the literature,

see e.g. Prentice (1976), Aranda-Ordaz (1981), and Pregibon (1980, 1985).

The maximum likelihood estimate (MLE) of A, A, and hence the exact form
of the link function, may depend crucially on one or a few extreme observations.
In Box-Cox transformation models, a variety of diagnostic techniques has been
developed for the transformation parameter; see Cook and Wang (1983), Atkin-
son (1988), Tsai and Wu (1990). The local influerice methodology of Cook (1986)
has also been applied to assess the sensitivity of the transformation parameter
estimator (Lawrance (1988), Tsai and Wu (1992)}. However, link modification
should not be confused with response transformation, the latter typically as-

sumes both linearity and normality on the transformed response-scale.

In this chapter we present influence diagnostics for assessing ‘the effect of
minor perturbations on the MLE of the link parameter in GLM. Two separate
approaches based on analysis of the link parameter surface and partial influence
are proposed in the next section. Specific perturbation schemes are outlined
in Section 5.2 to examine the different aspects of influence. Two numerical
examples illustrating sensitivity of the link analysis are provided in Section 5.3.
It is shown that application of the diagnostics can assist us in revising A and

hence the form of the model.
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5.1 Likelihood displacement and local influence

We consider n independent observations with responses ¥ = (1, -, Yn)"

and an n X p matrix of covariates . The responses y are distributed according

to the exponential family

Fo(wi;0) = exp { [y — b(8;)] /a(@) + c(v:. ) }

with g-link function 8; = k(7;, A), where n; = x;3 denotes the linear predictor,
and a(-), b(-), c¢(-) are known functions. The @-link function corresponds to a par-
ticular member of a parametric link family g(g, A) indexed by A = (Ar, -+, Ap)7,
where p = Ely|. Without loss of generality the dispersion parameter ¢ is as-
sumed known or may be replaced by an estimate ¢ and write 4 = a(¢). Here
the unknown parameter A is of special interest. The log-likelihood function is

then given by

i

L@ =& " [yik(mi, A) — b{k(n: M)} .

i=1

Goodness-of-fit of a GLM may often be improved by link modification.
Let B(A) be the function that maximizes L(A; 3) for fixed A and denote the
corresponding profile log-likelihood for A by L(A; B(A)). To assess the global
influence of individual cases on the MLE X of A, one can adopt the case deletion
approach of Cook and Weisberg (1982). The difference between- A and 5\[¢],
the MLE of X without case ¢, can be measured through the profile likelihood

displacement

LD; = 2[L(3) - L(3y)] (5.1)

where L(A) = L(A; B(A)). A large value of LD; indicates that X is likely to be

dependent on case 1.
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5.1.1 First and second order approach

For the MLE surface of the link parameter A, we introduce small changes
into our model through an n x 1 vector w = wy + al € {2, where Q2 denotes the

T is a unit direction vector and

open set of relevant perturbations, § = {I1,---,{,)
the quantity a measures the magnitude of the perturbations along the direction

{. The null point wy € £ represents no perturbation so that 5\;_.;0 = A

To find the direction of largest local change, we approximate the MLE
surface by its tangent plane at wg, which is determined by %‘% at wg. The
direction of largest local change is just the direction of maximum slope on this

tangent plane over £1.

Similar to the previous chapter, we write L(A|w) = L(X; B(A|w)|w) for the
profile log-likelihood corresponding to the perturbed model, where S(Alw) is the
function that maximizes L(X; Blw) for fixed A and w. Then Ay satisfies the

following equation:
OL(X; Blw) _

X 0.

Differentiating with respect to w; vields

D2L(X; , Blw) (aAw) PLBlw) _

ANONT B D OAT

Therefore,
- -1 -
Ow; OAINT A ONT ’ '

and

&2 L(X; Blw) (2) (2) OB(A|w)

Towont el
which is equivalent to

2 AT, L @
19, -1 1] 1),
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The partitions of L% are

ﬁ?—Z}WmWwM—NWMmJ»FWWWM]M”m,)

—Wumnwkx>

T
Ly = Zy, k(3 (1, A) = 6@ (k(ns, N)) [kén(m,A)ki”(m,A)]
—WW%W@%J)
2 2
L =1L
L{Q)

T
M—Zw@mm—ww ) (K M) kD 1, 2)

—WHmDW%M)

27 () 32L(\:
Quantities ijz = M nd Léi}z = M are entries on the
Ow; 0N dw; 083
corresponding columns of A(Ay;By) = %‘% . It is further derived for

various types of perturbations in Section 5.2.

The calculations for the maximum slope direction at the null point, I, Slope
and the direction l?)}wm corresponding to the maximum normal curvature of the
MLE surface, are the same as those in Chapter 4 Section 4.1.1.

5.1.2 Partial influence approach

Let the original model with the hypothesized link function be given by
g(u, Ao) = x6 . (5.3)
Suppose the underlying parametric link family is actually
glpu,A) =z . (5.4)

A test of the hypothesis Hy: A = Ay can be based on Dy — D, the reduction in

deviance from model (5.3) to model (5.4). Denote Dop; and Dy for the deviance
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of (5.3} and (5.4} respectively after deleting case i. Similar to Section 4.1.2, a
partial influence measure for the impact of case ¢ on the link can be formulated

as

d; = (Do — D} — (Do) — Dpgy) (5.5)

which represents the change in deviance due to link modification when the ith
observation is excluded. A large positive d; indicates the ith observation is
contributing substantially to the rejection of the assumed link, whereas a large
negative d; implies that deletion of the observation actually strengthens the

evidence for link modification.

Consider the log-likelihood L(A;3) of model (5.4). The full MLE of 3, A
are denoted by B3 and A respectively. Similarly, let Lo(8) be the log-likelihood
of model (5.3), with MLE 5. Under minor perturbations, the respective log-
likelihood becomes L(A; Blw) and Lg(8jw), with associated MLEs (Aw, By)
and &yy. Suppose that L(A; Blwo) = L(X; B) and Lo(8lwg) = Lo(8). The partial

influence on the link due to perturbation w can be assessed by
dw) =2{[Lo(®) - LA B)] - [Lolbw) — LOwsi Bw)|} - (58)

Analogous to (5.5) in case-deletion, the log-likelihood displacement d{w) mea-
sures the local effect on the link parameter with respect to the contours of the

unperturbed deviance reduction.

Following the same steps given in Section 4.1.2, to obtain the normal cur-

vature at F'(wp)} along the direction I, we have

FO = A o) [1P08)] AT (s ) - V() [12060)] V7 (60)

(5.7)
where A(Ayw; By,) = g?jé?;. |‘;;) and V(dy) = azaL—csg;l;'-')—} , is evaluated at

wo, 0, 3 and A. Expressions for L[(]Q) (8) and V(d.,) are derived under the original

generalized linear model (5.3), which can be found in Thomas and Cook (1989).
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d

S ags the perturbation direction that produces the greatest local

Again, 1
change in A as measured by (5.6) is just the eigenvector associated with the

largest eigenvalue of
A[LD]1AT - viLiP )T, (5.8)

The most influential elements of the data on the link parameter may be identified
by their large components of I%,.. To assess the global effects of the local
perturbations, one may plot j\wo L] against the perturbation size a for each
local direction ! of interest. As in the previous chapter, the characteristics of
such curves should be informative for further investigation on the relationship

between local and global influences.
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5.2 Perturbation schemes

As with covariate transformation, we consider relevant perturbation schemes

and derive the corresponding A(Auw; B,,) quantity below.

5.2.1 Perturbation of case weights

We define a vector of weights w = {wq, -+, wpn)7, w; > 0, to perturb the
contribution of each case to the log-likelihood. The point representing no per-
turbation is wy = (1,---, 1)7T. We obtain A(Aw;Bu) = (AP) evaluated at wy

and 5\, where

ar = {y =60 (kGn, M) (657 (0 2, KD (70, 0)) (5.9)

Similar to covariate transformation, the case weight perturbation scheme actu-
ally generalizes case deletion, where w; is limited to the values 0 and 1. Further-
more, if the deletion of the ith case is of interest (as revealed by l,45), it may be
considered as the perturbation located in direction I[; from the null point, where
l;;) are the direction cosines with ¢th component —1 but zeros elsewhere. A plot
of Aw in the direction l;;) can then monitor the global effects of downweighting

the ith case.

5.2.2 Perturbation of individual covariates x

We modify the j-th individual covariate, x(; of &, to x(;(w) = x(;) + tw
(7 =1,---,p), as long as the covariate is not an indicator variable. Here,  is the
scaling factor used to convert the generic perturbation w to the appropriate size

and units, and wg = {0,---,0)7 represents no perturbation. It can be verified
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that A(Aw; By) = (AT} where

=8 ({3 (i X) = 6@ Gelmi. NSV (o, A2

b0 k(i MRS (70, A) |

{witZ (i X) = B3 o, X)RL (3, MRS (0, 2) (5.10)
60 (s, A)REF (i, A AT)

L 1) = 60 o MDA 1, ) b

*

Here, k;él}(m, A) denotes the derivative of k(r;, A} with respect to n;, 3; is the
regression coefficient associated with @;y, and w; is a 1 x p row vector with jth

component 1 but zeros elsewhere.

5.2.3 Perturbation of responses

We then consider altering the responses by taking y{w) = ¥ + tw, t being
the appropriate scaling factor. As with other additive perturbations, wg = 0

gives the unperturbed state. We find that A(Ay; By,) = (AY), where
AY = (ki ) 6 (10, 0)) (5.11)

Note that this perturbation scheme may not be meaningful for discrete response,

such as those in binary logistic regression.

72



5.3 Examples
5.3.1 Leukemia data

It is well known that leukemia is a type of cancer characterized by an excess
of white blood cells. Cook and Weisberg (1982, p.179) reported the survival
times in weeks and associated white blood cell counts (WBC) as measured at the
time of diagnosis of 17 patients who died of acute myelogenous leukemia. Cook
(1986) used this data set to illustrate likelihood displacement local influence in
GLM, and assumed that the survival time y; follows an exponential distribution

with mean exp{dop + &1z}, where z; = log;,(WBC;).

The assumed model

can be embedded within the power transformation family

g{pi, A) = Bo + Buzs (5.13)

where

A .
_Je if A#0;
9(u A) = { log(pp) i A=0.

This family incorporates the identity, logarithmic, and reciprocal links as special
cases, and is particularly applicable to positive responses. The MLE of 4y and
§1 for model {5.12) are 8.48 (1.612), —1.11 (0.386), while the MLE of 3, #; and
A for model (5.13) are 3.24 (0.499), —0.33 (0.117) and 0.16 (0.002), respectively,

with asymptotic standard errors enclosed in parentheses.

Figure 5.1 shows the (re-scaled) profile log-likelihood displacement LD;,
partial influence measure d;, and )A\M — 5\, based on case deletions. Large values
of all three measures are found for case 17. Its deletion (5\517] = (.61) actually

strengthens the evidence for link modification. This is not surprising since case

17 corresponds to the only patient who survived a relatively long time (65 weeks)
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with a high WBC count of 100,000. The local influence analysis by Cook (1986)

also brought attention to case 17 as the single outlier in the sample.
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Figure 5.1

Case deletion diagnostics (rescaled) LD;, d; and 5\[1-} Y

for leukemia data.
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We next examine the local effect of each case on A. Based on the partial

. . . . d - .
influence approach, the direction cosines [, . from minor perturbations are

plotted against case index in Figure 5.2.
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Figure 5.2

Directional cosines 1% __ from local perturbations for leukemia data.
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It is evident that the greatest local change in X depends essentially on case
17 under case weight and covariate perturbation schemes. However, cases 14 and
15 also become discordant with respect to response perturbations. This result
is consistent with the lgep. vectors displayed in Figure 5.3 using the first order
approach, although the I, components appear to be less sensitive. Since A is

—

maxr’

a scalar parameter, lsope It is interesting to note that cases 14 and 15
are identical, having exactly the same WBC count as case 17 but recording the
shortest survival time of one week. Fach of these two cases tends to mask the

other’s effect, so that their joint influence on the link parameter would not be

apparent from case deletion diagnostics.

When either observation is excluded from the fit, A changes from 0.16 to

0.01, but if both cases are removed, A drops quite dramatically to —0.32.
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Figure 5.3

Directional cosines Lsiope from local perturbations for leukemia data.
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To further assess the global sensitivity of the link parameter, we plot the
actual A in Figure 5.4 for each local direction I of interest, including those related
to the deletion of cases. It should be remarked that both curves associated with
19

oo Dave the greatest slope at a = 0 (no perturbation). The curve resulting from

response perturbations is only defined for a > 0 such that the survival times are
always positive. Furthermore, downweighting case 17 alone (in direction Ijy7))
produces opposite effects (yet similar in magnitude) to those of simultaneously
modifying cases 14 and 15 (in direction I}14,15)). The maximum global change
in ) is attained when the contributions of all three cases are reduced to zero
(in direction 1[14'15,1—,-]). Upon their complete omission, A= 1.15, i.e. closed
to the identity link function. The combined impact on N is significant due to

their identical and extreme WBC count. Fitting an identity link model to the
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remaining data also results in a significant reduction in deviance of 12.5 (3 d.f.)

Therefore, the exact form of the link function depends crucially on the extreme

observations in this example.
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Figure 5.4

X in directions of local influence for leukemia data.
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5.3.2 Erythrocyte sedimentation rate data

We further illustrate the proposed diagnostics with data from Collett (1991,
p. 8) relating the chronic disease state y; (0 = healthy; 1 = unhealthy) of 32
individuals, judged from the erythrocyte sedimentation rate (ESR) reading, to

the plasma fibrinogen level x; (in gm/¢). The assumed logistic regression model

— M4

can be embedded within the Aranda-Ordaz (1981) family

g, A) = Bo + Brzs (5.15)

where the link function takes the form

s, A) =10g{(1_“3\A _1} :

This family incorporates the logistic (A = 1) and complementary log-log (A = 0)

links as special cases. The MLE of dy and §; for model (5.14) are —6.845 (2.764),
1.827 (0.899), while the MLE of 3, 31 and A for model (5.15) are —4.796 (2.218),
1.106 (0.727) and 0.552 (0.012), respectively, with asymptotic standard errors

enclosed in parentheses.

Figure 5.5 shows the (re-scaled) profile log-likelihood displacement LD;, par-
tial influence measure d;, and )A\[i} — A, based on case deletions. Qutstanding
values of LD; and 3\[2-] ~ X are observed for cases 15 and 23, whereas d; brought

our attention to case 13 as well.
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Figure 5.5
Case deletion diagnostics (rescaled) LD;, d; and 5\[i] - A
for ESRE data.
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We next examine local influence on the link parameter. The direction cosines
from local perturbations are plotted against case index in Figure 5.6. We note
that case 13 has outlying cosines according to the first /second order diagnostics.
Based on the partial influence approach, however, cases 15 and 23 have large

ld

e ap COmponents when case weights are perturbed. An inspection of the data

reveals that case 13 is a leverage point recording the highest fibrinogen counts of
5.06 gm/¢ in the sample. On the other hand, case 15 and case 23 correspond to
two unhealthy patients with relatively low fibrinogen levels, despite the plasma

protein concentrations will generally rise under inflammatory disease conditions.
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Figure 5.6
Directional cosines Lyope and 1%, from local perturbations

for ESR data.
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To assess the extent of the local perturbations, we plot A against a in Figures
5.7 and 5.8 for various local directions of interest. It is found that the effects of
simultaneously modifying all case weights are less than those of directly down-
weighting the aberrant cases. Moreover, the curves associated with the lg4pe
directions induce minor global changes. The net overall change due to covariate
perturbations is not dramatic because the impact exerted by case 13 apparently

has been compensated by the other cases.
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Figure 5.7

X in directions of local influence for ESR data.
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Indeed, the link parameter is quite insensitive to the downweighting of case
13 alone, as confirmed by the curve in direction Ij;3). Finally, fitting model (5.15)
without cases 15 and 23 results in a significant reduction in deviance of 19.17
(2 d.f.), with % = 1.608 (0.016), Fp = —39.78 (20.6), and #; = 11.5 (6.06). The

link analysis thus provides useful insights for model revision.
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Figure 5.8

X in directions of downweighting specific cases for ESR data.
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CHAPTER 6

PORTMANTEAU STATISTIC IN TIME SERIES
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6. PORTMANTEAU STATISTIC IN TIME SERIES

In many applications of time series, sample data are used to estimate the
parameters of the assumed model, and structural relationships are tested statis-
tically. It is common that estimation and the overall goodness-of-fit of an ARMA
model may be affected by one or several atypical observations. The unrecognized
abnormality will lead to poor forecasts based on the estimated model (Ledolter
(1989}, Chen and Liu, {1993)). The outliers also affect the sensitivity analysis
where the effects of minor changes to the data are monitored. It is therefore
important to determine whether the conformance of the hypothesized model is
achieved throughout the series or distorted by a few particular observations. The
aim of this chapter is to present effective diagnostics for assessing the effects of

aberrant observations on the portmanteau statistic.

The investigation of residuals has been well established in regression diag-
nostics. In time series analysis it is the residual autocorrelations that should
be examined. A widely used diagnostic for checking overall model adequacy
is the portmanteau statistic (Q (Box and Pierce, 1970) which accumulates the
lag K squared residual autocorrelations. However, the portmanteau statistic
and its variant such as the Ljung-Box-Pierce statistic (Ljung and Box, 1978)
are expected to be prone to outliers. It has been documented in the literature
that the existence of additive outliers can seriously bias the model coefficients,
whereas innovational outliers in general have a much smaller effect; see Ljung
(1993). Therefore, we limit our scope to additive outliers and assess the effect
of perturbations on the portmanteau statistic in ARMA models. Two separate
approaches based on global deletion and local influence analysis are proposed in
the evaluations. The resulting diagnostics are then demonstrated using several

examples.
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6.1 Assessing goodness-of-fit

We are concerned with diagnostic methods for assessing the influence of mul-
tiple and/or consecutive outliers on the goodness-of-fit through the portmanteau

statistic. Consider the stationary and invertible ARMA model

where B denotes the backward shift operator,
HB)=1-¢1B—..—¢,B? and #(B)=1-0,B—..—0,B,

¢(B) and 0(B) have all their roots outside the unit circle, and a; is Gaussian
white noise with zero mean and innovation variance ¢?. The well known port-
manteau statistic (Box and Pierce, 1970) for testing goodness or lack of fit is

K

Q=n) rilal

k=1
where r[d] is the lag k autocorrelation of the residuals a’s. If the orders (p, q)
are correctly specified and n > K, then (Q is distributed asymptotically as x?2
with degrees of freedom K — p — q. To improve the x? approximation of its null
distribution, several variants of the portmanteau statistic have been proposed in
the literature, including the Ljung-Box-Pierce statistic (Ljung and Box, 1978)

K

Q" =n(n+2) Z (n — k) rila).

k=1

The additional terms involving n and k, however, may be regarded as nuisance
parameters in the assessment of local influence in Section 6.1.2. Without loss of
generality, we shall focus on the standard form @) in subsequent investigations.
The effect of a change in innovation variance on () has been studied by Inclan
(1992). Meanwhile, robustified modifications of the portmanteau statistic for
testing model adequacy have also been proposed (Li (1988), Chan (1994), Jiang,
Hui and Zheng (1999)).
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6.1.1 Global influence

A practical approach to sensitivity analysis involves the removal of individ-
ual cases; see for example Cook and Weisberg (1982) for a review. However,
ordinary case deletion is inappropriate in time series. The problem can be ef-
fectively handled by treating the observation as missing data prior to parameter
estimation. To predict the missing values, we follow the state space representa-
tion of Kohn and Ansley (1986} which provides consistent and asymptotically
efficient estimates. Alternatively, the E-M Algorithm or other methods can be
used to impute the missing values. A summary of such procedures can be found
in Basu and Reinsel (1996). Based on the missing data approach, global influ-
ence for the portmanteau statistic ¢)(;) is evaluated from the incomplete series
{Y1s -y Yt—1, Yt+1: ---» Yn)- 1t can be quantified with respect to the asymptotic x2

reference distribution.

6.1.2 Local influence

Ledolter (1990) applied the local influence method to outliers detection in
time series via the normal curvature of the likelihood displacement surface. It
was found that the resulting diagnostic for which the curvature is maximized
is given by the vector of differences between observed and interpolated values.
Instead of relying on the likelihood displacement criterion, we study the effect
of additive-outlier perturbations on the portmanteau statistic. Consider the

additive outlier perturbation ARMA model

Yr = 2 +dwy ¢(B)z = 8(B)ay

T ¢  are the perturbations

where y, is the observed value, w = {wi1,...,wy)
with scale d, and {) denotes the open set of relevant perturbations. In the
manner of Wu and Luo (1993a}, the geometric surface of interest is formed

by @(w), the portmanteau statistic under perturbation w. Here the null point
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wp = (0,...,007 € Q represents no perturbation so that Q{wy) gives the observed
(7 statistic. Unlike the likelihood displacement surface, such a perturbation-
formed portmanteau statistic surface }(w) does not have zero first derivative
at wyp, so that its slope can be used to examine local influence. To locate the
direction of largest local change, we approximate Q{w) by its tangent plane at
wp. The desired direction is then given by the direction of maximum slope on
this tangent plane over . Such a direction vector, Q' = 9Q(w)/0w” evaluated

at wyp, will serve as our diagnostic tool. It can be shown that

K n ) e 2
@ => (S[k]t > a 24 Zaiat_k)/ (Z &?)
k=1 i i i
where the S[k|; terms are model dependent, formulae of which are given
below. Sampling properties of these direction vectors remain to be developed,

but do not seem crucial at the diagnostic stage. Warning limits of +Z,, /+/n may

be used for informal calibration (Lawrance, 1988).

AR(1) model with n observations

Skl = — iz
For 1 <t <k+1, Skl = drrk — Hlarris)

Sklk+1 = Qok41 — é(&zkﬂ + as)

Fork+1<t<n—k, Skl =1k + aek — Plr—r1 + ught1)
S[kln-t = tn2k + @n — Gin_2511)

~

Forn—k<t< mn, S[k}t = at_k — (;f)(a.t_k+1)

Slkln = Gn-i
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MA(1) model with n observations

S[k]y = ——

For1<t<k+1, Sk, =0S[klos1 + Gy — dryrsr

Slkle+1 = 0S[klkrz + Gap+1 — Gopt2 — b2

Fork+1<t<n-—k, Skl =0S[kles1 + s + sk — Gr—ps1 — Gkt
S[kln_t = 8S[k}n k11 + Gnook + Gn — Aokt

Forn—k <t<n, Skl = 8S[k]sr1 + ar -k — G x4

S[k]n — &n—k

ARMA(1, 1) model with n observations

Slkly = —~—

For 1 <t<k+1, S[kl; = 0S[k|se1 + tsor — HBrars1)

S[klxs1 = 0S[k]x 2 + dors1 — GAoxs2 + G2)

Fork+1<t<n—k, Skl = 0S[klis1 + 6ot + ek — H(Ge—pa1 + Gerps1)
Skt = 0S[kln—tt1 + @n_2x + &n — Glan—2+1)

Forn—k<t<n, Skl = 8S[k]se1 + ts_p — d(is_py1)

Sikln = dn_r

88



6.1.3 Global effect of local perturbations

Since (J} signifies how to perturb the postulated model to obtain the greatest
local change in @, the sensitivity of @ to the induced perturbations in direction
()} can be further assessed by profiling Q(w) against the perturbation scale d.
The characteristics of this curve should be informative for further investigation

on the relationship between local and global influences.
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6.2 Applications

6.2.1 AR(1) with consecutive outliers: Simulated series

An artificial AR(1)} series of n = 100 observations is generated using S-plus

function arima.sim with ¢ = 0.5 and innovation variance % = 1,

Figure 6.1

Contaminated AR(1) series.
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Fitting the AR(1) model gives ¢ = 0.497 (0.087), 62 = 0.851. The port-

manteau statistic ¢ = 16.24 at & = 20 is readily available from arima.diag.

To ensure stability of ), henceforth K is taken to be 20 lags. Two consecutive

additive outliers are created by adding 3 to the 49th and 50th observations. The

contaminated series, plotted in Figure 6.1, has ¢ = 0.507 (0.087), 62 = 1.074,

and Q{wg) = 17.09.
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Figure 6.2
Q(zy for contaminated AR(1) series.
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To assess global influence, missing values are introduced one-at-a-time. The
resulting likelihood is maximized based on Kalman filtering applied to its state
space representation (Kohn and Ansley, 1986). The method of initializing the
Kalman filter recursions is that given by Bell and Hillmer (1987). Figure 6.2
shows @,y with a horizontal reference line drawn at the null state value Q(wo).
As expected @49y is relatively large in the time series plot but case 50 does not

appear prominent, an artifact of the masking effect due to the adjacent outliers.
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Figure 6.3

Q; for contaminated AR(1) series.
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Figure 6.3 plots the absolute value of the normalized diagnostic ¢};. Both
spurious observations located at time points 49 and 50 have exceeded the warning
limit of % = (.196, suggesting they are locally influential on the test statistic.
We next plot Q(w) against the perturbation scale d for the direction €’ in
Figure 6.4, where the range of d is chosen to be £3&. It can be seen that a
small perturbation about the size of %5’ in direction @} (which is dominated by
its 49th and 50th components) would help reduce Q(wp) towards the value of

16.24 prior to contamination.
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Figure 6.4

Q(w) in direction Q' for contaminated AR(1) series.

93



6.2.2 IMA(1,1) with reallocation outliers: Retail sales of automobile

dealers

The term reallocation outliers is due to Wu, Hosking and Ravishanker
(1993), which can be considered as additive outliers whose magnitudes sum to
zero. They used 65 monthly observations (January 1985 to May 1990) from the
estimated retail sales of automotive dealers (seasonally adjusted) published in

the Survey of Current Business Statistics, US Department of Commerce.

Figure 6.5

Retail sales of automobile dealers.
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For this series, shown in Figure 5.5, Wu et al. (1993} identified the obser-
vation for September 1986 (¢ = 21) as a single additive outlier, whereas obser-
vations for December 1986 (t = 24) and January 1987 (t = 25) constituted a

reallocation outlier pair: sales in September 1986 appeared to be unusually high,
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sales in the following December and January were merely a reallocation with no
overall change in sales volume. The model fitted is IMA(1, 1), with estimated

mean 0.118 (0.028), § = 0.868 (0.079), 6% = 2.405 and Q(wy) = 15.01.

The plot of Q) in Figure 6.6 suggests that the observed portmanteau statis-
tic can be substantially distorted by the additive outliers. Indeed, if all three

observations are treated as missing, () increases to 19.51.

Figure 6.6

Q1) for retail sales series.
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However, only (}5; in Figure 6.7 is appreciably greater than the warning
limit of 0.243, which supports the classification of observation 21 as a single
additive outlier. The anomaly in the process occurring at the successive time
points 24 and 25 exerts minor impact on ) locally, which is consistent with the
reallocation property that their combined net disturbances to the series being

Zero.
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Figure 6.7

Q; for retail sales series.
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To further quantify the global effects of the local perturbations, Q(w) is
plotted against d in Figure 6.8. It is worth noting that an optimal ¢ can be at-
tained by perturbing the series simultaneously in direction ) with a magnitude

of about &2.
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Figure 6.8

Q(w) in direction Q' for retail sales sertes.
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6.2.3 ARMA(1,1) with isolated outliers: Chemical process concentra-

tion readings

We next consider the Series A taken from Box, Jenkins and Reinsel (1994}
which contains 197 readings of concentration in a chemical process observed
every two hours (Figure 6.9). Box et al. (1994, p. 214) fitted an ARMA(1,1)}
model to this series, with ¢ = 0.921 (0.042), § = 0.581 (0.083), 52 = 0.098, and
@ = 25.37 at k = 20 indicates the ARMA(1, 1) model has provided a reasonable

fit to the data.

Figure 6.9

Chemical process concentration readings.
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However, using an iterative robust fitting procedure, Lucefio (1998) found
two potential isolated outliers at times ¢t = 43 and ¢t = 64. It is therefore of
interest to scrutinize the contribution of such isolated outliers to the overall fit

in terms of the portmanteau statistic.

Figure 6.10

Q) for chemical process series.
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From Figure 6.11, we found that the greatest local change in ) as measured
by @’ depends to a large extent on observations 43 and 64, whose components
are well above the warning limit of (:14. But according to the Q) statistic

presented in Figure 6.10, both points are not flagged as globally influential.
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Figure 6.11

Q; for chemical process series.
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To confirm the indications of the diagnostics, we examine the actual @

displacements due to the local perturbations. It is evident from Figure 6.12 that

no overall improvement in the goodness-of-fit can be achieved by perturbing the

series in the neighbourhood of the null point. Apparently the influence exerted

by the isolated outliers has been compensated by the rest of the series. This

reinforces the implication of the above influence diagnostics results.
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Figure 6.12

Q(w) in direction ' for chemical process series.
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6.3 Discussion

We have addressed the local sensitivity of the portmanteau statistic through
the tangent plane of the perturbation surface (J(w) at the null point. An eval-
uation of the normal curvature of Q{w) in the manner of Wu and Luo (1993a)
appears logically to be the next step of analysis. However, due to the complexity
of Q2 application of the second order curvature approach is not considered in

our investigation.
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CHAPTER 7

CONCLUSIONS
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7. CONCLUSIONS

7.1 Concluding remarks

In this thesis, we have investigated some applications of the local influence
approach to influence assessment on the topics of two-way contingency tables,
covariate transformations and parametric link functions in generalized linear
models, and Portmanteau statistic in time series. Several diagnostic procedures
have been formulated based on the local influence approach. Through practical

examples, the proposed diagnostics were all found to be useful and informative.

In two-way contingency tables, we examined the local influence approach
for identification of outlying cells by perturbing the Pearson goodness-of-fit and
the Likelihood Ratio Goodness-of-fit statistics. It was found that diagnostics
derived from the Likelihood Ratio are generally less sensitive. Based on the
Pearson Goodness-of-fit statistic, the local influence approach for identification
of multiple outliers was preferable to residual-based methods as it is less sus-
ceptible to masking and swamping. The simulation study in Chapter 3 further
confirmed this. Apart from providing a more reliable set of candidate outliers,
an added advantage of the local influence approach is that it does not rely on
any explicit formulation of a parametric model which is often required by other
diagnostic methods. The local influence outlier detection method was shown to
work satisfactorily in conjunction with the confirmatory procedure proposed in

Chapter 3.

In Chapter 4, we addressed the application of local influence for assessing the
sensitivity of the maximum likelihood estimate of the covariate transformation
parameters in generalized linear models. Separate approaches based on analysis
of the (i) transformed parameter surface or profile likelihood displacement and
(ii) the partial influence, were found to be effective. The two approaches often

provide similar diagnostic information but at times offer additional information
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that supplement each other, (see snow geese example in Chapter 4). The various
perturbation schemes enable us to assess whether sensitivity of the analysis was

due to minor modifications in the covariate, response and/or case weight.

For sensitivity of the parametric link functions in generalized linear models,
we studied approaches based on analysis of the link parameter surface, profile
likelihood displacement and partial influence in Chapter 5. It was shown that
such approaches are useful and can identify jointly influential observations on
the link even when masking is present. Moreover, the influence diagnostics can

assist in the revision of the link function and hence the form of the model.

Application of the local influence approach to assess sensitivity of the Port-
manteau statistic in time series was investigated in Chapter 6. Variants of the
Portmanteau statistic such as the Ljung-Box-Pierce statistic were not consid-
ered since the modifications can be regarded as nuisance parameters in the local
influence analysis. The approach we took were through the tangent plane of the
perturbation surface at the null point. The three examples presented in Chap-
ter 6 have illustrated that this approach can yield valuable information on the
sensitivity of the Portmanteaun statistic. An examination of the actual displace-
ment of the Portmanteau statistic due to local perturbations can also provide
additional insight into the relationship between global and local influences. The
application of the second order curvature approach was not considered due to

computational complexity of the resulting diagnostics.
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7.2 Topics for future research

In this thesis, we have presented some applications of the local influence
approach. In areas where deletion methods suffer from problems such as masking
and swamping, the local influence approach often appears to be less susceptible.
This is evident from the four topics that we have explored. A brief account of

relevant, topics requiring further work are outlined below.

In the investigation of contingency tables in Chapter 3, we have restricted
the application of local influence diagnostics to goodness-of-fit of statistical in-
dependence in two-way contingency tables. It would be useful to extend the
approach to multi-way tables and uniform association model for doubly-ordered
two-way tables (Goodman (1979), Agresti (1990)). If analytical solutions are
not possible for such models, one may consider computational approaches to
computing derivatives of the perturbation-formed surface. It may be possible to

obtain analytical solutions for a few of the simpler models for three-way tables.

In covariate transformations, we have considered the linear predictor of the

following transformation model,
n=xd+ G(z,A)§,
where we transform one or more independent covariates z of X.

X ={(x,z)= {2y, T Z(1): "1 Z(q)}-

The n x ¢ matrix G(z, A) = (91(z(1), A1), -+, 9 (Z(q), Ag)), Where Ay, -+ A, are
scalars, was structured in a way that each covariate to be transformed has only
a single transformation parameter. For example, the covariate transformation

model in the tree data example:




However, it is also possible to have transformations where Ay, - - -, A, are vectors.
ie.,

G(Z, A) = (gl(z(l)vxlly e y'xlk); e agq(z(qja’\qlr Tty Aqk’))

For example,

A A
M1 _ 1 Az __ 1
yi=0+ Za — &+ Tig T E2+¢€i .
Al2 Az

The formulation of diagnostics for such models would be complex but fea-
sible for future investigation. Similar generalizations also are applicable to the

link parameters in generalized linear models.

The application of second-order local influence was not considered in our
analysis of sensitivity of Portmanteau statistics in time series due to the compu-
tational complexity of the resulting diagnostics. It may be worthwhile to investi-
gate the feasibility of obtaining the normal curvature for the perturbation-formed
Portmanteau statistic surface. The effectiveness of the proposed diagnostics in
assessing sensitivity of the Portmanteau statistic was only investigated by way
of three numerical examples. The preliminary findings may need to be con-
firmed by simulations. Possible features to be considered include different types
of ARMA models, magnitude and direction of contamination and different addi-
tive outlier patterns (consecutive, reallocation, isolated, etc). Sensitivity of the
Portmanteau statistic to innovational outliers could also be explored in future

research.
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Appendix: List of data sets
Al. Snow geese data- Weisberg (1985)

To estimate the number of snow geese in their summer range areas west of
Hudson Bay in Canada, small aircraft fly over the range and, when a flock geese
is spotted, an experienced person estimates the number of geese in the flock.
To investigate the reliability of this method, an experiment was conducted in
which an airplane carrying two observers flew over n = 45 flocks, and each
observer made an independent estimate of the number of birds in each flock. A
photograph of the flock was taken so that an exact count of the number of birds
in the flock could be made. The resulting data are given in Table A.1.

Table A.1

Snow geese data

Photo Observer 1 Observer 2 Photo Observer 1 Observer 2
56 50 40 119 75 200
38 25 30 165 100 200
25 30 40 152 150 150
18 35 45 205 120 200
38 25 30 409 250 300
22 20 20 342 500 500
22 12 20 200 200 300
42 34 35 73 50 40
34 20 30 123 75 80
14 10 12 150 150 120
30 25 30 70 50 60
9 10 10 90 60 100
18 15 18 110 75 120
25 20 30 95 150 150
62 40 50 57 40 40
26 30 20 43 25 35
88 75 120 55 100 110
56 35 60 325 200 400
11 9 10 114 60 120
66 55 80 83 40 40
42 30 35 91 35 60
30 25 30 56 20 40
90 40 120
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A2. Erythrocyte sedimentation rate data - Collett (1991)

The set of data from Collett {1991) which relates the chronic disease state
(0 = healthy; 1 = unhealthy) of 32 individuals, judged from the erythrocyte
sedimentation rate (ESR) reading, to their plasma fibrinogen level (in gm/?¢).

The data are given in Table A.2.

Table A.2
ESR data
Case WBC Survival time
1 0 2.52
2 0 2.56
3 0 2.19
4 0 2.18
5 0 3.41
6 0 2.46
7 0 3.22
8 0 2.21
9 0 3.15
10 0 2.60
11 0 2.29
12 0 2.35
13 1 5.06
14 1 3.34
15 1 2.38
16 0 3.15
17 1 3.53
18 0 2.68
19 0 2.60
20 0 2.23
21 0 2.88
22 0 2.65
23 1 2.09
24 0 2.28
25 0 2.67
26 0 2.29
27 0 2.15
28 0 2.54
29 1 3.93
30 0 3.34
31 0 2.99
32 0 3.32
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A3. Tree data - Ryan et ol (1976)

The data, given in Table A.3 consist of measure on the volume, height and
diameter at 4.5 feet above ground level for a sample of 31 black cherry trees
in the Allegheny National Forest, Pennsylvannia. The Data were collected to
provide a basis for determining an easy way of estimating the volume of a tree

using its height and diameter.

Table A.3
Tree data

Diameter Height Volume Diameter Height Volume
8.3 70 10.3 12.9 85 33.8
8.6 65 10.3 13.3 86 27.4
8.8 63 10.2 13.7 71 25.7
10.5 72 16.4 13.8 64 24.9
10.7 81 18.8 14.0 78 34.5
10.8 83 19.7 14.2 80 31.7
11.0 66 15.6 14.5 74 36.3
11.0 75 18.2 16.0 72 38.3
11.1 30 22.6 16.3 77 42.6
11.2 75 19.9 17.3 81 55.4
11.3 79 24.2 17.5 82 55.7
114 76 21.0 17.9 80 58.3
114 76 21.4 18.0 80 51.5
11.7 69 21.3 18.0 80 51.0
12.0 75 19.1 20.6 87 77.0
12.9 74 22.2

A4. Leukemia data - Cook and Weisberg (1982)

Leukemia is a type of cancer characterized by an excess of white blood
cells. At diagnosis, the count of white blood cells provides a useful measure of
the patient’s initial condition, more severe conditions being reflected by higher
counts. The survival times in weeks and the white blood cell counts (WBC) for

a sample of 17 patients classified as AG positive are given in Table A. 4.
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Table A.4

Leukemia data

Case WBC Survival time
1 2300 65
2 750 156
3 4300 100
4 2600 134
5 6000 16
6 10500 108
7 10000 121
8 17000 4
9 3400 39
10 7000 143
11 9400 56
12 32000 26
13 35000 22
14 100000 1
"15 100000 1
16 52000 5
17 100000 65

AB. Simulated series

An artificial AR(1) series of n = 100 observations is generated using S-PLUS
function arima.sim with ¢ = 0.5 and innovation variance ¢2 = 1. Two consecu-
tive additive outliers are created by adding 3 to the 49th and 50th observations.

The contaminated series is given in Table A.5.
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Table A.5

Sirnulated series

Obs Obs Obs

1 0.039 41 1.700 31 -0.832
2 0.344 42 0.610 82 -1.728
3 0.117 43 0.105 33 (0.896
4 -1.385 44 -1.841 84 (.899
4] -1.573 45 -0.458 85 -0.477
6 1.104 46 -0.728 86 (1.819
7 0.857 47 -0.829 87 (.518
3 -0.062 48 0.295 88 0.238
9 0.842 49 4.520 89 -1.202
10 2.329 30 3.681 90 -1.890
11 2.343 a1 0.144 91 -0.585
12 1.059 32 0.735 92 -0.914
13 0.111 33 1.337 93 -1.174
14 0.254 54 -0.466 94 -1.544
15 -0.841 35 -0.152 95 -1.142
16 -0.641 56 -1.938 96 -1.016
17 0.511 37 -2.249 97 0.148
18 0.442 28 -1.307 98 0.679
19 0.489 29 -0.669 99 1.395
20 -1.437 60 -1.150 100 0.140
21 -0.975 61 1.002

22 0.127 62 -0.198

23 -0.444 63 1.482

24 -1.169 64 (.153

25 -0.312 65 -0.226

26 0.118 66 (.204

27 0.534 67 -1.68

28 1.400 63 -1.452

29 1.214 69 -0.266

30 0.099 70 -0.158

31 -0.946 71 -0.475

32 -1.961 72 1.420

33 -2.388 73 -0.449

34 -(.686 74 -0.539

35 0.664 75 -0.538

36 0.449 76 1.569

37 -0.354 77 1.480

38 -1.751 78 1.112

39 -0.737 79 1.432

40 0.721 80 -0.330
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A6. Retail sales of automobile dealers series - Wu et al (1993)

Table A.6 contains 65 monthly observations (January 1985 to May 1990)
from the estimated retail sales of automotive dealers (seasonally adjusted) pub-

lished in the Survey of Current Business Statistics, US Department of Com-

merce.
Table A.6
Retail sales of automobile dealers series
Obs Sales Obs Sales Obs Sales
billions of $ billions of $ biltions of $
1 24.00 26 26.89 al 30.91
2 24.46 27 27.99 52 31.81
3 24.76 28 28.09 53 31.56
4 25.45 29 28.00 54 31.33
5 25.51 30 29.28 55 31.94
6 25.19 31 29.55 56 32.78
7 25.31 32 31.04 57 32.99
8 25.89 33 30.05 58 31.32
9 28.35 34 29.29 59 31.11
10 24.36 35 28.99 60 30.43
11 24.71 36 29.72 61 33.27
12 25.34 37 30.34 62 31.41
13 25.54 38 30.84 63 31.48
14 25.21 39 31.36 64 30.97
15 24.24 40 30.74 65 30.78
16 25.43 41 30.72
17 26.44 42 30.97
18 26.23 43 31.05
19 26.10 44 30.13
20 27.14 45 29.53
21 34.15 46 31.49
22 27.51 47 31.89
23 27.14 48 32.05
24 31.01 49 31.36
25 23.37 50 30.84

114



A7. Chemical process concentration series - Boz et al {1994)

Table A.7 contains 197 readings of concentration in a chemical process ob-

served every two hours.
Table A.7

Chemical process concentration readings series

Obs Concentration Obs Concentration Obs Concentration
1 17.0 71 17.3 141 16.6
2 16.6 72 17.4 142 16.5
3 16.3 73 17.7 143 17.0
4 16.1 74 16.8 144 16.7
5 17.1 75 16.9 145 16.7
6 16.9 76 17.0 146 16.9
7 16.8 77 16.9 147 17.4
8 17.4 78 17.0 148 17.1
9 17.1 79 16.6 149 17.0
10 17.0 80 16.7 150 16.8
11 16.7 &1 16.8 151 17.2
12 17.4 82 16.7 152 17.2
13 17.2 83 16.4 153 17.4
14 17.4 84 16.5 154 17.2
15 17.4 85 16.4 155 16.9
16 17.0 26 16.6 156 16.8
17 17.3 87 16.5 157 17.0
18 17.2 88 16.7 158 17.4
19 17.4 89 16.4 159 17.2
20 16.8 90 16.4 160 17.2
21 17.1 91 16.2 161 171
22 17.4 92 16.4 162 17.1
23 17.4 93 16.3 163 17.1
24 17.5 94 16.4 164 17.4
25 17.4 95 17.0 165 17.2
26 17.6 96 16.9 166 16.9
27 17.4 97 17.1 167 16.9
28 17.3 98 17.1 168 17.0
29 17.0 99 16.7 169 16.7
30 17.8 100 16.9 170 16.9
31 17.5 101 16.5 171 17.3
32 18.1 102 17.2 172 17.8
33 17.5 103 16.4 173 17.8
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Obs Concentration Obs Concentration Obs Concentration
34 17.4 104 17.0 174 17.6
35 17.4 105 17.0 175 17.5
36 17.1 106 16.7 176 17.0
37 17.6 107 16.2 177 16.9
38 17.7 108 16.6 178 17.1
39 17.4 109 16.9 179 17.2
40 17.8 110 16.5 180 17.4
41 17.6 111 16.6 181 17.5
42 17.5 112 16.6 182 17.9
43 16.5 113 17.0 183 17.0
44 17.8 114 17.1 184 17.0
45 17.3 115 17.1 185 17.0
46 17.3 116 16.7 186 17.2
47 17.1 117 16.8 187 17.3
48 17.4 118 16.3 188 17.4
49 16.9 119 16.6 189 17.4
50 17.3 120 16.8 190 17.0
51 17.6 121 16.9 191 18.0
52 16.9 122 17.1 192 18.2
53 16.7 123 16.8 193 17.6
54 16.8 124 17.0 194 17.8
55 16.8 125 17.2 195 17.7
56 17.2 126 17.3 196 17.2
57 16.8 127 17.2 197 17.4
b8 17.6 128 17.3

59 17.2 129 17.2

60 16.6 130 17.2

61 17.1 131 17.5

62 16.9 132 16.9

63 16.6 133 16.9

64 18.0 134 16.9

65 17.2 135 17.0

66 17.3 136 16.5

67 17.0 137 16.7

68 16.9 138 16.8

69 17.3 139 16.7

70 16.8 140 16.7
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