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ABSTRACT

Precipitation of gibbsite from supersaturated caustic aluminate solutions has been
investigated extensively due to its central role in the commercial Bayer plant, for
extracting the alumina compound from bauxite. The primary focus of Bayer process
simulation and optimisation is to help maximise the product recovery and the
production of a product crystal size distribution (CSD) that meets the product
specification and improves downstream process performance. The product CSD is
essentially determined by the nucleation, growth and agglomeration kinetics, which
occur simultaneously during the precipitation process. These processes are still
poorly understood, owing to the high complexity of their mechanisms and of the

structure of the caustic aluminate solutions.

This research focuses on the modelling and kinetics estimation aspects of simulating
gibbsite precipitation. Population balance theory was used to derive different
laboratory gibbsite precipitator models, and the discretised population balance
models of Hounslow, Ryall & Marshall (1988) and Litster, Smit & Hounslow (1995)
were employed to solve the resulting partial integro-differential equations. Gibbsite
kinetics rates were determined from literature correlation models and also estimated
from the CSD data using the, so-called, differential method. Modelling of non-
stationary gibbsite precipitation systems showed that error propagated with the
precipitation time scale. The main contribution to the observed error was found to be
from the uncertainties in the kinetic parameter estimates, which are estimated from
experimental data and used in the simulation. This result showed that care is required
when simulating the CSD of non-stationary precipitators over longer time scales, and
methods that produce precise estimates of the kinetics rates from the experimental

data need to be used.

Kinetics estimation study from repeated batch gibbsite precipitation data showed that

the uncertainty in the experimental data coupled with the error incurred from the
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kinetic parameter estimation procedure used, resulted in large uncertainties in the
Kinetics estimates. The influences of the experimental design and the kinetics
estimation technique on the accuracy and precision of estimates of the nucleation,
growth and agglomeration kinetics for the gibbsite precipitation system were
investigated. It was found that the operating conditions have a greater impact on the
uncertainties in the estimated kinetics than does the precipitator configuration. The
kinetics estimates from the integral method, i.e. non-linear parameter optimisation
method, describe the gibbsite precipitation data better than those obtained by the
differential method. However, both kinetics estimation techniques incurred
significant uncertainties in the kinetics estimates, particularly toward the end of the
precipitation runs where the kinetics rates are slow. The uncertainties in the kinetics
estimates are strongly correlated to the magnitude of kinetics values and are

dependent on the change in total crystal numbers and total crystal volume.

Batch gibbsite precipitation data from an inhomogeneously-mixed precipitator were
compared to a well-mixed precipitation system operated under the same operating
conditions, i.e. supersaturation, seed charge, seed type, mean shear rate and
temperature. It was found that the gibbsite agglomeration kinetic estimates were
significantly different, and hence, the product CSD, but the gibbsite growth rates
were similar. It was also found that a compartmental model approach cannot fully
account for the differences in suspension hydrodynamics, and resulted in
unsatisfactorily CSD predictions of the inhomogeneously-mixed precipitator. This is
attributed to the coupled effects of local energy dissipation rate and solids phase

mixing on agglomeration process.
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CHAPTER 1

INTRODUCTION

Precipitation of gibbsite, a polymorph of aluminium trihydroxide, from caustic
aluminate solutions is arguably the most important step of the Bayer process
employed in commercial alumina plants, for recovering alumina from bauxite. The
Bayer process has been in use since its development by Karl Joseph Bayer back in
1888. The gibbsite precipitation process is extraordinarily slow and is a critical factor

controlling the rate of alumina preduction from an operating alumina plant.

The main considerations in the precipitation process are (1) the recovery of the
crystalline product from the caustic aluminate solutions, and (2) the product crystal
size distribution (CSD). These two factors affect the economics of the process.
Hence, the primary focus of Bayer process simulation is to meet these requirements.
Predicting the product vield is relatively simple, generally done via mass and energy
balances, but predicting the product CSD is more difficult, as the product CSD is
determined by the simultancous occurrence of a number of processes, i.e. nucleation,

growth and agglomeration.

The two important steps in developing the precipitator model for predicting the
product CSD, are the formulation and solution of the mathematical model capable of
describing the process, and the estimation of the kinetics rates to be incorporated in
the model. The population balance (PB) theory has been widely used for deriving

mathematical models for laboratory and industrial precipitators.



Most crystallisation and precipitation simulation studies rely on empirical models of
the kinetics, due to a lack of understanding of their mechanisms. The empirical
models usually correlate the kinetics rates to the process variables that are the most

influential on the kinetic mechanisms.

Despite enormous efforts invested into studying the gibbsite precipitation system in
the last few decades, the fundamental understanding of the process mechanisms
involve in the precipitation remains incomplete. This is attributed to the complex
structure of the caustic aluminate solutions, intricate process mechanisms, the
induction period phenomenon, and the difficulty of measuring the mechanisms
accurately. The best known studies undertaken to investigate the mechanisms of
nucleation, growth and agglomeration in gibbsite precipitation system are the
experimental studies of Misra (1970), Misra and White (1971a; 1971b), Sakamoto,
Kanehara & Matsushita (1971), White and Wright (1971), Brown (1972a; 1972b;
1975), Low (1975), Halfon and Kaliaguine (1976a; 1976b), White and Bateman
(1988), Ilievski (1991), Veesler and Boistelle (1993; 1994), Ilievski and White
(1994a; 1994b; 1995) and Ilievski and Hounslow (1995). However, much of the
work is qualitative and some findings are contradictory. Most of the experimental
studies were performed in batch operation, even though the common commercial
Bayer plants are continuous operation. The batch operation has several advantages
over the continuous operation, it is less complex to perform, requires less inventories
of materials, less time and investment, and large number of data of different
conditions (i.e. supersaturation) can be obtained in a single run. Hence, batch

configuration is often employed in the laboratory research for kinetics studies.

There are differences and contradictions between the gibbsite kinetics estimates
reported by different authors. White and Bateman (1988), Veesler and Boistelle
(1994) and Muhr et al. (1997) all reported the discrepancy in the published gibbsite
growth rates. Low (1975) and Ilievski and White (1994a; 1994b; 1995) reported
different gibbsite agglomeration mechanisms. Similarly, the experimental gibbsite
secondary nucleation studies of Misra and White (1971a), Halfon and Kaliaguine
(1976a) and Loh, Ang & Kirke (1988) showed some contradictions. Li, Livk &
Ilievski (2000a) proposed that these differences may be due to inconsistencies in the

methods used by those authors to estimate the respective kinetics.



The current work is motivated by the need to explain the differences in precipitation
kinetic parameters reported in the literature for this system, and to investigate the
effect of uncertainties in the kinetic parameters on CSD simulation. The specific

issues under consideration in the current research are

(1) the applicability of the PB theory in describing well-mixed gibbsite precipitation
system;

(2) the uncertainty in the experimental precipitation data, and consequently the
uncertainties in the kinetics estimates;

(3) the impact of the uncertainties in the kinetics estimates on CSD simulation;

{4) the influence of the precipitator configuration and kinetics estimation technique
on the accuracy and precision of the kinetics estimates;

(5) the influence of an inhomogeneous suspension on gibbsite precipitation, i.e.
precipitation kinetics and product CSD; and

(6) options for incorporation of hydrodynamics into the precipitator model.

This thesis comprises four parts. The first part consists of Chapters 2 to 4, which give
a review of the gibbsite precipitation system, PB theory, precipitator modelling and
precipitation kinetics estimation techniques. The second part, consisting of Chapters
5 and 6, demonstrates the applicability of the PB model to simulate well-mixed
precipitation system with different configurations, and investigates the issue of error
propagation in modelling the precipitators. Chapters 7 to 9 focus on Kinetics
estimation issues such as, the uncertainty in the experimental precipitation data, and
the influence of precipitator configuration and estimation technique on the accuracy
and precision of the kinetics estimates. Finally, Chapters 10 and 11 include a review
on mixing models and an experimental study of an inhomogeneously-mixed

suspension batch gibbsite precipitation, respectively.

The work undertaken in this thesis was part of a larger Al Parker Cooperative
Research Centre for Hydrometallurgy effort to improve precipitator modelling and
Kinetics estimation. Work not performed by the author is acknowledged where

appropriate in the text.



CHAPTER 2

BAYER PRECIPITATION OF ALUMINIUM TRIHYDROXIDE

2.1 INTRODUCTION

Aluminium trihydroxide, AI(OH),, is one of the two groups of crystalline aluminium
hydroxides reported in the literature. The other group is the monohydrates, AIO(OH).
The four main polymorphic forms of the trihydroxides are gibbsite (y-Al(OH)s3),
bayerite, d-AI(OH); and nordstrandite, and the two common polymorphs of the
monohydrates are boehmite and diaspore (Misra 1970; Schoen and Roberson 1970).

Precipitation of aluminium hydroxide from supersaturated caustic aluminate
solutions (i.e. under Bayer precipitation conditions) has been studied and reported
extensively in the literature. Misra (1970) and Ilievski (1991) reviewed most of the
studies prior to the 1990s. Under the Bayer process conditions, bayerite, gibbsite and
boehmite may be present. Reports have been made on the conditions such as, pH and
temperature that favour one form over the others, their stability and inter-conversion
processes (Oomes, de Boer & Lippens 1961; Ginsberg, Huttig & Stichl 1962;
Chistyakova 1964; Schoen and Roberson 1970; Sato 1984; van Straten and de Bruyn
1984).

The aluminium trihydroxide precipitation experiments conducted in the current work
and those used from other sources were generated under Bayer conditions at
temperatures between 60-80 °C. Numerous experimental studies on aluminium
trihydroxide precipitation have reported that gibbsite is the trihydroxide polymorph

forms primarily at the temperature ranges between 40-100 °C (Ginsberg, Huttig &



Stieh]l 1962; Sakamoto 1963; Sato 1984, van Straten and de Bruyn 1984; Lee et al.
1997). This chapter reviews briefly the current state of knowledge of the precipitation

of gibbsite from supersaturated caustic aluminate solutions.

2.2 PRECIPITATION OF GIBBSITE

In order for a precipitation to occur, a solution must be supersaturated, that is the
concentration of the solute must in excess of the saturation or equilibrium
concentration. Bulk precipitation will not take place if the solution is saturated or
undersaturated. The equilibrium concentration of a solution at any given temperature

is determined from the solubility curve.

2.2.1 Solubility of AI(OH); in Caustic Aluminate Solutions

Caustic aluminate solutions are commonly prepared by the dissolution of aluminium
hydroxide in aqueous sodium hydroxide solutions. There have been numerous studies
on speciation in these solutions, using various analytical techniques such as,
potentiometry, Infra-red, nuclear magnetic resonance, Raman, UV-Vis and X-ray
diffraction spectroscopies (Lippincot, Psellos & Tobin 1952; Moolenaar, Evans &
McKeever 1970; Zambd 1986; Radnai et al. 1998; Sipos et al. 1998), and molecular
dynamic modelling (Gale et al. 1998; Watling et al. 1998). There still remains
considerable uncertainty in regards to which aluminate species exist in the caustic
aluminate solutions. In general, many investigators agree that AI(OH), ions exist in
dilute caustic aluminate solutions, and the dissolution of aluminium trihydroxide may

be represented by

Al(OH), + OH" Al(OH), (2.1)

However, there is evidence that species such as, AlO;, AIO(OH),, Al,O(OH), and

other poly-aluminium species exist in caustic aluminate solutions (Moolenaar, Evans
& McKeever 1970; Zambé 1986; Radnai et al. 1998). The existence of some of the

species depends on the solution concentrations.



Solubility studies of AI(OH); in caustic aluminate solutions have been performed by
Pearson (1955), Misra (1970), McCoy and Dewey (1982), Chaubal (1990) and
Rosenberg and Healy (1996). The equilibrium aluminate species concentration is
determined by temperature and caustic concentration. The aluminate species
concentration, A, 1s expressed as g L' ALOs, and the caustic concentration, C, is
expressed as either g L' Na,O or g L' Na,CO; following the common terminology
used in either European or North America industrial practice, respectively. Misra
(1970) extensively reviewed the solubility studies of caustic aluminate solutions, and
derived the following correlation from the available solubility data for synthetic

caustic aluminate liquor in the literature,

(2.2)

2486.7 N 1.08753CJ
T

A= Cexp(6.2106—
where A” is the equilibrium aluminate species concentration in g Lt ALy, Cis the
caustic concentration in g L NayO and T is the temperature in K. This correlation is
derived for the caustic concentration range of 30-230 g L™ Na,O and the temperature

range of 298-373 K, and it has a 95% confidence limits of £15%.

Rosenberg and Healy (1996) derived a more compliant AI{OH); solubility correlation

that is applicable for both synthetic and plant liquors, which has the form

2 5l

10(—9.2082J7 (14T +0.87430-0.214977)

A" =0.96197C| 1+ 2.3)
exp(3C

where C is the caustic concentration in g L' NayCOs, AG is the Gibbs energy of
dissolution and has a value of —30.96 kI mol™ | R is the ideal gas constant and 7'is the
temperature. The ionic strength, /, in the caustic aluminate solution can be evaluated
from the simplified expression derived by Rosenberg and Healy (1996). For the
caustic aluminate liquor containing sodium carbonate as impurity, the ionic strength,

I, can be expressed as



{ =0.01887C +0.019115C 2.4)

where SC is the concentration of sodium carbonate in g L™

2.2.2 Precipitation Mechanisms

Precipitation of gibbsite from caustic aluminate solution involves process
mechanisms such as, nucleation, growth and agglomeration. These mechanisms often
take place simultaneously. Apart from these mechanisms, other processes such as,

breakage or attrition may also occur during the precipitation process.

2.2.2,1 Nucleation

Nucleation is the process of formation of new crystals in solution, and can be
classified as either primary or secondary. Primary nucleation describes the nucleation
mechanisms when no solute crystals are present, and is lermed homogeneous when
nucleation occurs spontancously in a solution free of any particles, and termed
heterogeneous when non-solute particles are present. Secondary nucleation on the
other hand describes the nucleation mechanism that requires the presence of

suspended solute crystals.

It has been reported that the nucleation is strongly dependent on the supersaturation
(i.e. concentration driving force), which is closely linked to the solubility of the
precipitation system. At high solubilities and low supersaturation, the nucleation
mechanism is likely to be secondary or heterogeneous, and at low solubilities and
high supersaturation homogeneous nucleation is favoured (Mersmann 1995).
However, spontaneous homogeneous nucleation will not occur unless the
supersaturation is above the metastable limit. Supersaturated solutions above this
limit are said to be labile (i.¢. unstable) and are termed metastable if below this limit,

and require seeding to promote precipitation (Mullin 1993).

Nucleation is not well understood in most precipitation processes. Many of the
difficulties are due to the lack of suitable techniques and instrumentation to
accurately measured the negligible size of nuclei, and preparation of impurities free

solution. Qualitative fundamental studies on nucleation in the Bayer precipitation



have been performed by Pearson (1955), Kuznetsov (1963), Scott (1963),
Glastonbury (1969), Misra and White (1971a; 1971b), Brown (1972a; 1972b; 1975;
1977), Halfon and Kaliaguine (1976a), Loh, Ang & Kirke (1988) and Rossiter et al.
(1998). However, the knowledge of the nucleation mechanism remains limited and

contradictory.

Several explanations have been suggested to explain the secondary nucleation
mechanism in gibbsite precipitation. Pearson (1955) and Scott (1963) stated that
broken fragments formed by attrition of the seed crystals could be the main source of
new crystals. Misra and White (1971b) argued that this is only valid at high agitation
intensity, and does not explain the generation of fines at low temperature and
agitation rates. Brown (1972a; 1972b) suggested that nucleation depends on
supersaturation and initial seeding (i.e. total seed surface area), and the nucleation
mechanism is closely associated with crystal growth via a surface nucleation
mechanism. Brown (1977) further proposed that the aluminium ion clusters diminish
in size as temperature rises, and the breakdown of clusters is completed above 75 °C.
Misra and White (1971a), Brown (1975; 1977), Loh, Ang & Kirke (1988) and
Hievski (1991} all reported that there is negligible nucleation at temperature above 75
°C. Misra and White (1971a) proposed the following relation for gibbsite secondary

nucleation

B° =k,5%A, (2.5)

which has a square dependence on supersaturation, s = (A-A"), and a first order
dependence on the total crystal surface area, A;. The nucleation rate constant, kg,
depends on the precipitation environment. However, this correlation was derived
based on five experimental data sets. Misra and White (1971a) stated that further
experiments need to be done in order to assess if the reported empirical orders of the
supersaturation and the total surface area above are appropriate to describe gibbsite

secondary nucleation in general.



2.2.2.2 Growth

Crystal growth is the process where solute is deposited from a supersaturated solution
onto crystal surfaces. The growth process is believed to involve two successive steps,
which are (1) transportation of the solute or solute cluster from bulk solution to the
crystal surface and (2) surface reaction that integrates the new material into the
crystal lattice (King 1973; Chaubal 1990}). The growth rate can be a mass transfer
step or a surface reaction step (i.e. surface integration). In most cases, one of the steps
is rate controlling. In those where both steps offer significant resistance, Garside

(1971) introduced an effectiveness factor, #,, defined in Equation (2.6), as a measure
of the relative importance of each. As 7, approaches 1, the surface integration step

becomes dominant.

measured growth rate

n.= , 3 -
growth rate if surface integration controlled

(2.6)

In practice, the commonly used empirical model for the growth rate is expressed as
G=k,s* (2.7

where k, and g are the growth rate constant and the empirical order of the
supersaturation, s = (A-A"), respectively. Note that the growth rate is normally

defined as the change in crystal size with time (see Chapter 3 for further details).

There are a large number of studies on gibbsite crystal growth reported in the
literature. Gibbsite growth is extraordinary slow (i.e. a few microns per hour) and
exhibits a marked dependence on temperature, supersaturation (Pearson 1955; Misra
and White 1971a; King 1973; Veesler and Boistelle 1993; Ilievski and White 1994a),
and caustic concentration (White and Bateman 1988). In general, gibbsite growth is
correlated to the temperature and supersaturation according to the relation in

Equation (2.7), and the growth rate constant, k,, is expressed as an Arrhenius

AE
G:kG CX{—E]SZ (28)

equation to give



which has a square dependence on supersaturation, AE is the activation energy, R is
the gas constant, and 7 is the temperature. The term kg may be a function of process
conditions and chemical species in the solution. Misra and White (1971a) and White
and Bateman (1988) reported that the growth of gibbsite is surface reaction
controlled, due to the low growth rate at high supersaturation, the high growth rate
activation energies, and the negligible effect of agitation on the growth rate. Misra
and White (1971a) found that gibbsite growth rate is independent of crystal size, that
is, crystals growth at relatively similar rates irrespective of their sizes. White and
Wright (1971) showed that size dispersion effects in gibbsite precipitation are

negligible.

A number of gibbsite growth rate equations have been reported in the literature, in
which supersaturation are expressed in different functional forms of concentration.
The most frequently used expression is the concentration difference, (A-A"), where A
and A" are aluminate and equilibrium aluminate concentrations, respectively. Table
2.1 shows some of the supersaturation expressions used in the published gibbsite

growth rate equations.

Table 2.1. Published supersaturation expressions and activation energies for gibbsite growth rates.

Misra and White (1971a) A4y 599+6
King (1973) (A-A"YVFC 532+12
Low (1975) (A-A") 624112
Overbey and Scott (1978) (A-AN(C+A") 83.1
Mordini and Cristol (1982) C(A-A") 79
White and Bateman (1988) (arc-A1onc'™ 70.7 £7
Aundet and Larocque (1989) (A-A") 77.3+6
Veesler and Boistelle (1994) AIA™-1 1207
Mubr et al. (1997) (A-AT) 67.9
Cornell et al. (1999) In(A/A"™Y 141
Harris et al. (1999) (A-A") 51+5

Note: ' The empirical order of the supersaturation is 3;
C 1s caustic concentration; and
FC is free caustic concentration.
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There is large variation in the reported activation energy, AE, for the growth rate
equations in Table 2.1. This is likely due to the uncertainty in the experimental
measurements, and the different supersaturation expressions used. These large
variations in AE result in different ; values in Equation (2.8), and hence, the growth
rates. Ilievski and White (1994a) collected the available growth rate data for pure
caustic aluminate liquors in the literature, and re-structured the Arrhenius equation
centred at temperature of 70 °C and caustic concentration of 100 g L' Na,O, and

derived the following correlation

G=Lexp —760 1__1 s° (2.9)
JC/100 T 343.16

where the supersaturation is expressed as

s=[A'A*] (2.10)

The 95% confidence limits of the correlation are within +50%, and AE has a value of

63.2 kJ mol™.

Veesler and Boistelle (1993) pointed out that the solubility of the aluminate is greatly
affected by the caustic concentration. Thus expressing the supersaturation in terms of
concentration differences in the growth rate equation limits its applicability to the
specific range of caustic concentration used to derive the rate equation. Hence, that
may be why the published growth rate equations are not applicable to a wider caustic
concentration range. They reconciled the differences between the published growth
rates at different caustic concentrations by normalising the caustic effect using the
relative concentration, (A-A*)/A*. They showed that all growth rates measured at
different caustic concentrations lie on a single curve when the supersaturation is

expressed in relative concentration.
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A number of microscopic studies of gibbsite crystal growth have been reported. Lee
and Parkinson (1999) investigated the growth of single gibbsite crystals by in siru
optical microscopy. They found that growth of the (110) prismatic face is via spiral
growth. The basal face grows via the birth and spread mechanism when the relative
supersaturation is above 0.67 and via spiral growth below this value. Freij et al.
(1999) investigated the kinetics and surface evolution of single crystals growing at 80
°C, using both in situ optical microscopy and ex sifu atomic microscopy techniques.
They found that at a low relative supersaturation of 0.43, the basal face grows via a
step flow mechanism, via birth and spread at a relative supersaturation of 1.0, and by

both mechanisms at a relative supersaturation of 0.71.

Harts et al. (1999) employed the dynamic light scattering technique to characterise
nucleation and growth processes in unseeded synthetic Bayer liquors. The technique
is based on the variations of the light intensity scattered from crystals in a suspension
over time. Information on the numbers and diameters of the crystals may be obtained
by monitoring the intensity of the scattered light and short-term fluctuations in it,
respectively. Comparisons were made between gibbsite nuclei growth in the
nanometer range and gibbsite crystal growth in the micrometer range. They
concluded that the growth of nuclei less than 200 nm is dominated by agglomeration
or Ostwald ripening and larger nuclei are by single crystal growth. Roach, Cornell &
Griffin (1998) reported on the application of a new scanning electron microscopic
technique, known as charge contrast imaging, which enables the growth history of a
gibbsite crystal to be studied. They suggested that growth of gibbsite on different
faces can be directly measured and the presence of secondary nucleation can also be

detected.

2.2.2.3 Agglomeration

Agglomeration is the process where smaller particles collide and adhere, eventually
forming a stable new particle or agglomerate. It is the dominant size enlargement
mechanism in gibbsite precipitation system, due to the extraordinary slow growth
rate. The agglomeration of gibbsite crystals in caustic aluminate solutions has been
studied by Misra (1970), Sakamoto, Kanehara & Matsushita (1971), Low (1975),
Halfon and Kaliaguine (1976b), Tlievski and White (1994b; 1995), Veesler, Roure &

12



Boistelle (1994), Ilievski and Hounslow (1995) and Seyssiecq et al. (1998). The
mechanism for gibbsite agglomeration is not well understood, but it is believed to be
a two sequential step process, suggested by the experimental results of Misra (1970)
and Low (1975), which are

(1) shear induced collisions between particles lead to the formation of loosely bound
aggregates; and
(2) cementation of loose aggregates by deposition from solution, which eventually

forming a stable agglomerate.

White (1988) reported that gibbsite crystal agglomeration is favoured by low
agitation level, high supersaturation, high seed charge and fines crystal sizes. He also
stated that it is difficult to generate agglomerates larger than 50 um in practice, and
that larger agglomerates increase their size by further crystal growth. Scott (1963)
and Low (1975) reported that agglomeration is favoured at high growth rates, which

suggests the importance of the cementation process.

The mechanism of agglomeration is described by the agglomeration kemel, &t v,&).
There are different forms of the agglomeration kernel to describe the different process
conditions thought to cause the agglomeration. Sastry (1975) proposed that the

agglomeration kernel consist of two terms as

Bv,8)=B,f(.8) (2.11)

The term f, depends on operating conditions (eg. supersaturation, fluid viscosity,
temperature and stirrer speed) which controls the extent of agglomeration. While the
term £v,£) is a function of crystal sizes v and & which controls the shape of the
resultant crystal size distribution (CSD).

In the literature, a number of theoretical and empirical models have been proposed to

describe the agglomeration mechanisms under different process environments. The

common models are those describing collision mechanisms under the condition of
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Brownian motion, laminar shear, turbulent diffusion, turbulent inertia, gravitational
settling, and some empirical kemels derived for analytical convenience. Some of the

proposed agglomeration kernels are shown in Table 2.2.

Table 2.2. Some of the proposed agglomeration kernels published in the literature.

~ Agglomerationkernet -~ ]~ Description .
ﬁo (V‘."'3 +”§";;)(1.)".1"'3 +§" &) | | Brov.s.frlién m‘c.)t“ion.(Sn:lc:olucl.m;#sk.i 1917) ~
B+ &y Laminar Shear (Smotuchowski 1917)

Turbulent Diffusion {(Low 1975)
B, (V' + &7 |V' - f"’3| Gravitational settling, L>50um (Berty 1967)
ﬁo (v— 5)2 v+ 5‘1) Semi empirical kemnel {Thompson 1968)
B B4 £y |V2"3 — &2 | Gravitational settling, L<50um (Drake 1972)
B+ ECY P =E Turbulent Inertia (Drake 1972)
ﬁo Size independent or random coalescence
ﬂo (v é‘ ) Product kernel
ﬁﬂ (v+ .f) Sum kernel
B, W7+ &y Empirical kernel, 2 parameter (Ilicvski 1951)
B +EY (v ETY Empirical kemel, 3 parameter (Iievski 1991)

These kernels are described in detail in Drake (1972), Hartel and Randolph (1986a;
1986b), Ilievski and White (1994a) and Smit, Hounslow & Paterson (1994). A
number of investigations have tried to infer an agglomeration kernel that best
describes the agglomeration mechanism involved. The approaches employed for
selecting the agglomeration kemel include (1) finding a kernel that best fits the
experimental CSD (Hartel and Randolph 1986b; Hounslow 1990c; Ilievski and White
1994a; 1995; lievski and Hounslow 1995); (2) using self-preserving theory (Ilievski
and White 1994a); and (3) using the inverse problem method (Muralidar and
Ramkrishna 1986).

Low (1975) derived a model for gibbsite agglomeration by theoretical considerations
of particle collisions in a turbulent flow system. He proposed that the collisions of
particles entrained within the turbulent eddies are due to diffusion, which is similar to
the laminar shear model of Smoluchowski (1917). His agglomeration model has a

strong dependency on the crystal size. Halfon and Kaliaguine (1976b) assumed a
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functional form for their agglomeration model and then determined the parameters of
best fit. Their model shows gibbsite agglomeration is independent of crystal size.
Perhaps the most extensive studies on characterising the gibbsite agglomeration
kernel and thus the agglomeration mechanism are those of Hievski and White (1994a;
1995) and Tlievski and Hounslow (1995). They utilised three independent methods,

which include

(1) determining which agglomeration kernel consistently results in the best fit to 200
sets of data available;

(2) matching the shape of the self-preserving CSD with functional forms derived
from population balance models with different agglomeration kernels; and

(3) a novel technique employing doped gibbsite “tracer” crystals, and a two

dimensional population balance model.

They demonstrated that gibbsite agglomeration is either size independent, or that the
size dependency is so weak that it may be considered size independent for modelling

purposes.

Halfon and Kaliaguine (1976b) derived a correlation model for the agglomeration
kernel from batch experimental data at 60 °C and found that the agglomeration kernel

has a fourth order dependence on supersaturation.

B=k,s (2.12)
where k, is the agglomeration rate constant and depends on the hydrodynamic
conditions. Remillard, Cloutier & Methot (1980) also inferred that the agglomeration
kernel has a fourth order dependence on supersaturation in their studies of alumina

precipitation. Ilievski and White (1994b) proposed a correlation model for gibbsite

agglomeration,

B= kHs“[EJA | (2.13)
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where k; = 0.05 * 0.01, s is supersaturation in g L' ALOsy/ g L'Na,O and P/V is the
power per unit volume in kg s m'. The 95% confidence limits on the estimates are +
70%. This correlation is applicable between the P/V range of 22-1420 kg s® m”, the
temperatures range of 75-78 °C and s 0f 0.93-0.99 g L ALOy/ g L' Na;0.

The agglomeration kernels proposed in Table 2.2 do not reveal the mechanism on
how the loose aggregates are held together in supersaturated solutions to form stable
agglomerates through cementation. One explanation is that loose aggregates are held
together by van der Waals forces with short range repulsion due to the hydration
barrier layer or the electrical double layer, or both. Thus, increasing the solution ionic
strength may increase the aggregation rate (Hartel and Randolph 1986b; Hounslow
1990c; Ilievski 1991; David, Marchal & Marcant 1995).

Mumtaz et al. (1997) stated that when crystals collide in a supersaturated solution,
they temporarily adhere to each other, and due to precipitation at the point of contact,
a bridge between the crystals is formed. This bridge must withstand the stress
induced by hydrodynamic drag in order to form stable agglomerates. They reported
that the cementation process is diffusion controlled, and agglomeration is dependent
on shear rate and solution ionic strength. They also suggested that not all shear
induced collisions are successful in forming an aggregate, and incorporated an overali

aggregation efficiency of collisions, 7, to the shear induced agglomeration kernel as

B=nB,f(v.5) 2.14)

2.2.2.4 Crystal Breakage and Aftrition

Crystal breakage is the process where crystals rupture into two or more parts,
resulting in the parent crystal losing its identity. Attrition, on the other hand, is the
chipping off of small fragments from the crystal surface following collisions between
crystals, as well as between crystal and impeller and finally between crystal and

precipitator wall. But in this case the parent crystal retains its identity (Misra 1970).
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Crystal breakage is only significant at very high agitation rates, and in practice, the
agitation rates employed in both the laboratory and in industrial precipitators are kept
as low as possible to avoid breakage. This is because it is difficult to distinguish
between fines generated by nucleation and the fragments resulting from crystal

breakage, and hence, complicates the CSD analysis in the precipitation process.

2.2.3 Induction Period

Ilievski, Zheng & White (1989) reported that during the precipitation of gibbsite from
seeded supersaturated caustic aluminate solutions in a laboratory precipitator, there is
a period where no noticeable change in the solution supersaturation and solids
content is observed. This period is referred to as the induction period, and is also
defined as the period between the seed addition to the liquor and the onset of

measurable precipitation (Smith and Woods 1993).

The induction time has been proposed to be a period of surface preparation (Brown
1972a; 1972b; 1977; Halfon and Kaliaguine 1976a). llievski, Zheng & White (1989)
showed that the induction period can be reduced by seeding fresh liquor with
growing crystals, a technique referred to as cross-fertilisation. This further suggests

that the seed surface is conditioned during the induction period.

Brown (1972a; 1972b) found from his scanning electron microscopy (SEM) studies
that a fine structure can be seen developing on the crystal surface during the
induction period. Smith and Woods (1993) provided SEM micrographs that clearly
indicate the appearance of precipitated material onto seed crystal surfaces during the
induction period. Lee, Parkinson & Tsukamoto (1999) employed the dynamic light
scattering technique to investigate the kinetics of gibbsite crystal growth during the
induction period. They suggested that crystal growth follows the polynuclear birth
and spread model during the induction period before the onset of secondary

nucleation.
The mechanism of the induction phenomenon is not clear. Misra (1970), Misra and
White (1971b), Brown (1972a; 1972b; 1977), llievski, Zheng & White (1989), Smith

and Woods (1993) and Smith, Austin & Tlievski (1995) have studied the induction
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time in seeded caustic aluminate solutions. The induction time has been reported to
depend on the initial supersaturation, initial seed surface and temperature. Brown
(1972a) reported that impurities lengthen the induction time by impeding the
absorption of aluminate ions on the surface. Brown (1977) derived a correlation

model for the induction time,

log,, @ = C(I)-3x10*T* —0.76A)° —4.8log,, s (2.15)
10 0 i0

where @ is the induction time in minutes, C(J) is a function of impurity type and
concentration, T is the temperature in °C, A, is the seed surface area in m’ L, and s

is the supersaturation.

Brown (1972a; 1972b) noted that the induction period is most noticeable when seed
charges are low and supersaturation is high. He also suggested that the generation of
nuclei coincides with the end of the induction period. This theory is supported by the
increase in turbidity that corresponds to the birth of nuclei at the end of the induction
period (Smith and Woods 1993). Ilievski, Zheng & White (1989) performed an
experimental study to deduce an induction time mode! that incorporated the effects of

supersaturation, surface area and temperature, which they found to be

— a & P
0 =exp(K,)A,s exp(T - 273} (2.16)

with K,=-29+5, ¢=-0410.04, £=-3.510.3, p= 11000 = 2000 K. The errors are
the 95% confidence levels. They then combined the effect of supersaturation and

temperature to relate the induction time to the initial growth rate G, which is

calculated from Equation (2.9). The correlation model becomes
0 =exp(K,)A; G} (2.17)

where K,=910.5, g=-04+0.04 and g =-1.71 0.2.
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2.3 CONCLUSIONS

Precipitation of aluminium trihydroxide under Bayer conditions has been reviewed.
Most reported findings agreed that gibbsite is the most likely trihydroxide polymorph
formed under the Bayer precipitation conditions between 40-80 °C. Despite the long
history of the Bayer precipitation process and the considerable research effort
devoted to investigate this particular precipitation system, a fundamental
understanding of the precipitation process remains incomplete. The lack of
understanding of this process can be attributed to the highly complex nature of
caustic aluminate solutions, and the complexity of the precipitation phenomena
involved. These are demonstrated by the inconclusive findings reported in the
literature in regards to which aluminate species exist in the caustic aluminate
solutions, and the unexplained mechanisms for nucleation, growth and agglomeration

and the induction time period.
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CHAPTER 3

POPULATION BALANCE MODELLING OF PRECIPITATION
SYSTEMS

3.1 INTRODUCTION

Modelling of dispersed phase particulate systems such as, aerosols, colloids or
precipitation requires the properties of the particles that characterise the systems to be
specified. A particle is characterised by properties such as, size, shape, surface area,
mass, and composition. In precipitation systems, we are interested in how the crystal
size and total number of crystals change with time. As the system involves large
numbers of crystals with different sizes, a mathematical formulation, known as the
crystal size distribution, is often used to describe how crystals are distributed with
respect to their size. In addition, a mathematical theory capable of describing the

behaviour of the crystal population during the precipitation processes is also needed.

The population balance theory is the mathematical framework widely used in
modelling particulate systems. It is derived from the law of conservation of particle
numbers. According to the concept for particulate systems introduced by Hulburt and
Katz (1964), a crystal in the particle phase space is characterised by its internal
coordinates, i.e. its properties, and its external coordinates, which define its location
in space. If 2 number of internal properties vary between crystals, then it is difficult
to characterise the system and a multi-dimensional distribution is required.
Fortunately, the chemical composition of a system of particulates generally does not
vary from crystal to crystal. Randolph and Larson (1988) suggested that if the shapes

of all crystals are roughly uniform, then the system can be described by a one-
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dimensional size distribution function. Before discussing the population balance
theory, it is necessary to clarify crystal size and introduce the concept of crystal size

distribution.

3.2 CRYSTAL SIZE

Crystal size depends on the method of crystal measurement and is generally
expressed in terms of some equivalent dimension such as, diameter of a sphere, or a
linear dimension according to the measuring techniques. Some crystal size
definitions are volume diameter, surface diameter, projected area diameter, sieve
diameter, or maximum chord. Allen (1981) provided a good description of many
particle measurement techniques. The crystal size used in precipitation studies is
either diameter, L, or volume, v. Both have merit, as will be discussed later. These

two size properties are related through a volume shape factor, £,, as

v=k I’ (3.1)

3.2.1 Crystal Size Distribution

The crystals in a precipitator have a range of sizes, which can be described by a
crystal size distribution (CSD). A CSD simply indicates the amount of crystals in
each size range. This amount can be either in terms of the number or the mass. In
precipitation systems, it is desirable to account for the number of crystals, hence, a
number size distribution is considered in the modelling process. The CSD may be
expressed as a number density function, a cumulative number oversize, or a
cumulative number undersize. If the size is taken as linear size L, then the number

density function is n(L) and is defined as

n(L) = f‘%’:l (32)

where dN(L) is the differential number, in the differential neighbourhood of L.

Multiplying Equation (3.2) with dL will give the number of crystals within the size

interval L to L + dL in a given volume of slurry. The cumulative number undersize,
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CUS(L), and cumulative number oversize, COS(L), are the number per unit sturry
volume of crystals smaller and greater than size L, respectively. The inter-

relationships between all these distributions are

I
CUS(L)= .[n(L)dL (3.3)
0

and

COS(L)= In(L)dL ~CUS(L) (3.4)

According to Equation (3.2), if the internal coordinate is taken as volume, v, then,

_ dN(v)

0 (3.5)

n(v)

Comparing Equation (3.5) to Equation (3.2), the differential number dN is the same,

as v and L are related according to Equation (3.1), from which it follows

L) &V _ oy p2 (3.6)
n(v) dL

3.2.2 Moments of a Crystal Size Distribution
It is sometimes convenient to consider the moments of a CSD in precipitation system
analysis. There are two types of moments, these are (1) Moments about the origin,

1.e. L =0, defined as
u,= JLfn(L)dL 3.7
]

and (2) Moments about the mean, 4, defined as

m, =I(L~ﬂ,)jn(L)dL (3.8}
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Representation of the CSD in the moment form reduces the complexity of modelling
precipitation systems. The moments are related to the physical and statistical
properties of the precipitation system. For example, in the precipitation system with
a population of Nt crystals, the physical and statistical properties of the system are

summarised in Table 3.1. For further details see Randolph and Larson (1938).

Table 3.1 Summary of the relationships between moments and the physical and statistical
properties of a precipitation system.

B

Total num erAgf cryst:;tis, ZGT - e ﬂo or mg
Total crystal length, Ly H
Total crystal surface area, Ar kot
Total crystal volume, V7 kot

Total crystal mass, Mr fo X N7

Mean crystal size, Lo 1l
Variance, o (mzfmo-(mlfmu)z)
Coefficient of variance, CV (mo mafm;>-1)"°

Randolph and Larson (1988) showed that various useful mean size can be determined

from the following relation:

1

M J ik

Ly =|—= (3.9
/ (ﬂk

For example, Ly is the volume mean size, L3; is the volume surface mean or Sauter

mean, and Ls; is the mass mean size.
3.3 POPULATION BALANCE THEORY

The mathematical description of particulate systems in particle phase space,
otherwise known as the population balance (PB), has been used to describe systems
of particles undergoing different internal processes. The PB theory was pioneered by
Hulburt and Katz (1964), and then elaborated by Randolph and Larson (1988). The
PB is a continuity statement in particle phase space, and expressed in terms of the

number density distribution, n, as
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3—?+V.(nv)=B-—D (3.10)

where 7 is time, v is the velocity vector, which represents the rate of change of
position in phase space involving both the external and internal coordinates. The
external coordinates give the spatial location of particles, and the internal coordinates
refer to those particle properties independent of position such as, particle size,
chemical activity or particle age. The terms B and D represent the birth and death
functions at a point in phase space, which can account for processes such as,

nucleation, agglomeration and breakage.

The above equation is a microscopic form of the PB model, as it describes the
particulate system at a microscopic level. The macroscopic PB model is of more
practical use, and was derived by Randolph and Larson (1988). For a well-mixed
system of volume V, with k entering and leaving streams, each with a volumetric

flow rate of Q; and number density function of n;, the PB model has the form

4
%+V-v‘.n+n-—-———d(lzfv)=B—D—%—2Qini (3.11)
where v; is the internal velocity. This is the generic form of the population balance
equation (PBE) used in modelling particulate systems. In modelling precipitation
processes, it allows the incorporation of different processes such as, nucleation,
growth and agglomeration, as well as different modes of operations to completely
describe the system being modelled. The internal coordinate in Equation (3.11) is

taken as particle size, i.e. linear size or volume.
3.3.1 Nucleation

Nucleation is a birth process, creating particles of negligible size. If the nuclei are of

the same size, Lo, then the nucleation birth term, B,, is

B, =B°S(L—L,) (3.12)
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where B° is the nucleation rate, and &L-L,) is the Dirac delta function, which is
defined as
L=L

1
§(L—LD)=][ 0 L#LD (3.13)

This formulation is used frequently in modelling precipitation systems involving

nucleation processes.

3.3.2 Growth
Growth is accounted for explicitly in the PB model and is defined as the velocity

along the size, x, axis:

G="— (3.14)

McCabe’s AL law, which states growth is independent of linear crystal size, is valid
for most solution precipitation systems (Mullin 1993). In such a case, using the linear
size L, simplifies the PB model. However, some systems do exhibit size dependent
growth (Canning and Randolph 1967; Abegg, Stevens & Larson 1968; Budz, Jones
& Mullin 1987; Yokota and Kubota 1996). There are a number of possible
explanations for the size dependent growth. One is attributed to the bulk diffusion
effects in which growth rate increases with crystal size, because of an inverse
relationship between solubility and size (Garside, Phillips & Shah 1976). The other
explanation is that the number of surface active sites, or dislocations increases with

crystal size (Mullin 1993).

Growth rate dispersion is another phenomenon that violates McCabe’s AL law. It is
found that in some systems, crystals of the same size exhibit different growth rates
under the same precipitation conditions (White and Wright 1971; Graside 1979).
This phenomenon is thought to occur because different crystals experience different
environments in the precipitator (Randolph and Larson 1988) or because of inherent

structural differences of the crystals (Zumstein and Rousseau 1987a). Two growth
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rate dispersion mechanisms have been proposed. Firstly, the random fluctuation
growth dispersion (Randolph and White 1977), where under constant conditions the
growth rate of individual crystal vary with time. Secondly, the intrinsic growth
dispersion (Randolph and Larson 1988), where under constant conditions each crystal
grows at a constant rate, which is different to the other crystals. It is quite frequently
argued that most systems that exhibit apparently size dependent growth are actually
experiencing growth rate dispersion (Girolami and Rousseau 1985; llievski and

White 1996).

3.3.3 Agglomeration
Hulburt and Katz (1964) developed a PB binary collision model for agglomeration
using volume as the internal coordinate. The birth of particles of sizes within the

interval v to v + dv due to the agglomeration of particles of sizes v—£and £is

BA(t,v)=%Iﬂ(r,v—é,é)n(t,v—é)n(t,f)dcf (3.15)
0

The factor 1/2 is included as the integral counts each collision twice. The death of

particles of size v due to agglomeration with any particle of size £is expressed as
D, (t,v)=n(t, v)_[ B(t,v,En(, &)ds (3.16)
(]

where A1,v,&) is the agglomeration kernel, which is a measure of the frequency of
collisions between particles of volumes v and ¢ that are successful in producing an

agglomerate.

The above formulation has found extensive use in the description of agglomeration in
the field of atmospheric aerosols (Ramabhadran, Patterson & Seinfeld 1976; Gelbard
and Seinfeld 1978a; 1978b), and in precipitation systems (Harte]l and Randolph
1986b; Hounslow, Ryall & Marshall 1988; Ilievski and White 1994a; 1995). Sastry
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(1975) proposed that the kernel consists of two factors as discussed in Chapter 2, i.e.

Equation (2.11), and it is now common practice to view the kernel in this manner.

3.3.4 Choice of Internal Coordinates

Two internal coordinates that can be used in PB formulation are length L and volume
v. In modelling systems without an agglomeration term, using length can greatly
simplify the PBE. On the other hand, if the system solely involves agglomeration,
then using volume leads to a simpler PBE. If both growth and agglomeration take
place simultaneously, then choosing the internal coordinate becomes rather difficult.
The reason, as explained by Hounslow (1990c) and Ilievski (1991), is that in length
coordinate the agglomeration term becomes extremely complicated, whereas in
volume coordinate the growth term becomes highly non-linear. This problem is best
illustrated by the following example of a well-mixed, constant volume, batch
precipitation system with simultaneous growth and agglomeration taking place. The

PB model yields

an _ 3(Gn)
dt ox

=B,-D, (3.17)

where x is the internal coordinate, and B, and D, are the respective birth and death
terms due to agglomeration. If the internal coordinate L is used, then the PBE

becomes

on(t,L) , - dnlt,L)

£y 3L =B,(t,L)-D,(,L) (3.18)

Hounslow, Ryall & Marshall (1988) showed that the birth and death terms can be

expressed in terms of L as

2 3 3433
pan-L J‘ﬁ(r,[L AP L ATeD ;g
2 ) (2 -A)3
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and

D, (t,L)=n(z, L)J. B, L A)n(t,A)dA (3.20)
0

where L and A are linear crystal sizes.

If the volume v is used as the internal coordinate, the growth rate is no longer size
independent. For volume equivalent crystal diameter, the volumetric growth rate, G,,

can be expressed in terms of the linear growth rate, G, as

G, =3k 3Gv* (3.21)
The PBE then becomes
P 3 5
—-'%’t’l) +3k,:G Lg”)u =B, (t,v)~ D, (V) (3.22)
v

where Ba(t,v) and D4(t,v) are expressed in equations (3.15)-(3.16). It can be seen that

neither choice of the internal coordinates result in a simpler form of the PBE.
3.4 THE MOMENT FORM OF THE PBE

Sometimes knowledge of the complete CSD is unnecessary. Rather some average or
total quantities from the CSD are sufficient. The moment transform, defined in
section 3.2.2 is one method for estimating such averaged properties of a particulate
system. Randolph and Larson (1988) provided a clear description of the use of
moment transformation in the solution of the PBE. The moment transformation
converts the intractable PBE into a set of ordinary differential equations. The jth
moment of a distribution is defined in Equation (3.7). With the épplication of a
moment transformation, the PBE (3.11) is converted into a set of ordinary differential

equations as
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%_OJ 0 : 7. . i o in out ,, out 3
i B + jGu; + B, DJ+V Q" 1y, Q" uy; (3.23)

where j = 0,1,2,...k, and & is the order of the moments. B® is the nucleation rate, and
B ; and D ; are moment transformed birth and death terms, given as
B, = ij’B(t, LydL (3.24)
0

and

D= J.Lj D(t,L)dL (3.25)

The zeroth, first, second and third moments are related to total number, Nr, length,

L, area, Ay, and volume, V7 of crystals per unit volume of suspension, respectively.

Hounslow, Ryall & Marshall (1988) showed that B; and D; can be simplified for a
size independent kernel, i.e. &Xt,L,A) = [, in Equation (2.11). In that case, B, canbe

evaluated if j/3 is an integer. Hence, for j=0, 3 and 6, B; are given as

— 1 —_ —
By = -Z-ﬁﬂgi Bs = fu,fdy; and Be = Ji75 (3.26)
The term D; for a size independent kernel is

D; =k, (3.27)

3.5SOLUTION METHODS FOR THE PBE

Establishing the PB model for a given system is simple, but solving the PBE is
relatively difficult. The solution of the PBE involves finding the number density

function, #, that satisfies the governing equation (3.11) and the initial and boundary
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conditions. Considerable attention has been focused on methods for solving the PBE
in the published literature. Pulvermacher and Ruckenstein (1974), Gerald and
Seinfeld (1978a) and Ramkrishna (1985) provided a thorough discussion on this
matter. A brief overview on the solution methods for the PBE reported in the

literature is presented in the following sections.

3.5.1 Analytical Solutions

The resulting PBE describing the system being modelled is often a non-linear partial
integro-differential equation. Analytical solutions for the PBEs are generally
unavailable, except for special cases, eg. agglomeration or growth is the sole kinetic
factor involved in the process. In the presence of both agglomeration and growth, the
situation becomes more difficult as demonstrated earlier. Some of the special cases

for which analytical solutions have been reported in the literature are provided in

Table 3.2.

Table 3.2. Some of the analytical solutions published in the literature in the fields of
aerosols and precipitation.

Aerosols

Ramabhadran, Patterson & Seinfeld (1976) | coagulation and growth by condensation

Gelbard and Seinfeld (1978a) coagulation and growth of multi-component aerosol
Gelbard and Seinfeld (1978b) coagulation; coagulation and growth

Precipitation - MSMPR

Randolph and Larson (1988) growth and nucleation; size dependent growth
Hounslow (1990a) size (in)dependent agglomeration

Tavare and Patwardhan (1992) agglomeration, growth and nucleation

Hostomsky and Jones (1993) nucleation and agglomeration

ILee and Saleeby (1994) agglomeration and size dependent growth

Saleeby and Lee (1994) agglomeration and size independent growth
Saleeby and Lee (19935) agglomeration and random growth rate dispersion

Analytical solutions obtained in the literature are limited to simple growth functions,
(eg. size independent or linear size dependent), simple agglomeration kemels (eg.
size independent kernel or sum kernel), and simple seed distribution (eg. exponential
distribution). It should be noted that analytical solutions obtained for aerosols are in
terms of volume. In the case of simultaneous agglomeration and growth, a volume
independent growth is assumed. This assumption may be valid for growth by

condensation in aerosols, but its applicability to precipitation systems is doubtful.
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In precipitation systems, most analytical solutions (in length coordinate) are found for
steady state mixed suspension mixed product removal (MSMPR) systems. However,
some analytical solutions for MSMPR precipitation system using volume coordinate
are also reported (Tavare and Patwardhan 1992; Lee and Saleeby 1994; Salecby and
Lee 1994; 1995). For those PBEs that can be dealt with analytically, the Laplace
transform method is often employed because it handles the partial differential and
integral equation forms well. In the cases where the inverse Laplace transforms are
not straightforward to evaluate, or involve a complex integral inversion,
approximation techniques have been used to obtain the analytical solutions. These
include Picard’s method (Hounslow 1990a), Taylor series (Lui and Thompson 1992;
Lee and Saleeby 1994) or reversion method (Saleeby and Lee 1994; 1995).

3.5.2 Similarity Selution

The similarity approach of solving the PBE for an aggregation system is based on the
similarity theory developed by Swift and Friedlander (1964). This approach has been
used widely in the aerosol aggregation systems (Wang and Friedlander 1967,
Pulvermacher and Ruckenstein 1974; Ramabhadran and Seinfeld 1975; Lee 1983),
and to lesser extent in other fields (Ramabhadran 1975; Sastry 1975; Skrtic,
Markovic & Fuerdi-Milhofev 1984; Tlievski and White 1994a). The similarity
approach reduces the PBE to an ordinary integro-differential equation in terms of a
dimensionless particle volume, and then is solved accordingly. This approach has not

been applied to systems involving other mechanisms or continuous systems.

3.5.3 Method of Moments

Moment transformation of the PBE into ordinary differential equation as discussed in
section 3.4 provides an alternative approach to solve the PBE. The resulting moment
equations can be expressed in terms of the physical properties of the precipitation
system. Important moment equations are those of zeroth, first, second and third
moments. In this research, crystal length or diameter is used as the internal coordinate
in modelling the gibbsite precipitation system, due to simultaneous growth and
agglomeration being involved. The presence of the agglomeration in the precipitation
process results in both first and second moment equations containing complex

intractable integral terms (see Hounslow, Ryall & Marshall 1988). The treatment of
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the moment equations is restricted to precipitation processes involving simultaneous

size independent agglomeration and growth, or nucleation.

3.5.3.1 MSMPR System
In an unseeded steady state MSMPR system involving simultancous agglomeration,

growth and nucleation, the resulting zeroth and third moment equations are

omd
_y1+2pB°7 -1 (3.28)

ﬂO_ ﬁ_z_

and

g =36r (3.29)
1

Equations (3.28)~(3.29) reveal the relations between the measurable variables (i.e. i,

> and g3) and the operating variables (i.e. 8, B°, G and 7) in the steady state system.

3.5.3.2 Dynamic Systems

In a batch system with agglomeration and growth occurring, the zeroth moment is

dﬂo l 2
0 - By 3.30
dt 270 (3-30)

which implies that the change in the total number of crystals depends only on crystal

agglomeration and the number of crystals. Similarly, the resulting third moment is

du,
—==3G 3.31
=36, (3.31)

The change in total crystal volume depends on the growth rate and total crystal

surface area, and not directly on crystal agglomeration.
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In the case of simultaneous agglomeration, growth, and nucleation taking place in a

batch system, the zeroth moment equation becomes

didy _
dt

o 1 2
B ——fuy (3.32)
2
Equation (3.32) indicates that nucleation affects the change in total crystal numbers,
along with agglomeration and the total crystal numbers. The third moment equation
in this case is equivalent to Equation (3.31), as the contribution to the total crystal

volume by nucleation is negligible.

Generally, it is impossible to obtain an analytical solution for the batch system as the
operating variables continuously change with time. If the agglomeration kernel can
be kept constant for an extended time interval, then the analytical solution for

Equation (3.30) can be found with the initial condition, t4(t) | =0 = Ho(0), as shown

1 1
PON © 2

ﬁ (3.33)

where £4,(0) is the total seed crystal numbers added initially.

Similarly, for a special case, where time-invariant nucleation rate and agglomeration

kemnel can be assumed in Equation (3.32), the analytical solution is found to be (see

o) = fﬁo xexp(\/ Bﬂﬁr) 1] (3.34)

1+ Kexp( ZB"ﬁt)

Appendix 1}

where
B°+\/F 2 1,(0)
(3.35)
J_ \/— 20)
and

M|, =2B° /B (3.36)
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The latter result implies that the total number of crystals eventually depends on the
balance of nucleation and agglomeration kinetics, as time becomes large. With the
addition of nucleation process, the analytical solution becomes a complex function of
operating variables compared to Equation (3.33). This implies that deducing the

kinetics rates in the latter system is much more complicated.

3.5.4 Numerical Methods

The majority of numerical methods are well covered in the reviews of Gerald and
Seinfeld (1978b), Ramkrishna (1985) and Seigneur et al. (1986). The numerical
methods generally employed to solve the PBE are the method of weighted residuals,

the finite element method and the discretisation method.

3.5.4.1 Weighted Residuals/Finite Element Methods
In the method of weighted residuals, the solution of the PBE is approximated by a

linear combination of chosen basis functions as

neD)= Y a O (L) 337

i=1

where ¢(L) are some known functions on the interval [0,e0). The unknown
coefficients a,(f) are determined by substituting Equation (3.37) into the governing
PBE to define a residual. The equation is then multiplied by weight functions and
integrated over the domain of interest. Rawlings, Miller & Witkowski (1993)
reported that the limitations of the weighted residuals method are that an efficient set
of basis functions, ¢(L), cannot always be found, convergence can be slow, and

exhibits oscillatory behaviour if a discontinuity exists in the solution.

Ramkrishna (1973) and Singh and Ramkrishna (1975) proposed the use of problem-
specific pelynomials (PSP) as trial functions in the weighted residuals method for
solving the PBE. Sampson and Ramkrishna (1985) further suggested the use of root
shifted PSP as improvement of the PSP in the collocation method. Bhatia and
Chakraborty (1992) developed a medified weighted residuals method in which they

combined expansions based on limiting forms of the true solution to solve the PBE.
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This method converts the PBE into a system of algebraic equations and solves

accordingly. But it is applicable to steady state precipitation system only.

In the finite element method, the size domain is subdivided into elements, and the
assumed solution is approximated by basis functions on each element. Rawlings,
Miller & Witkowski (1993) reported that this method converges slower than the
weighted residuals method, but it can be tailored to handle discontinuity and a
sharply changing CSD. Gelbard and Seinfeld (1978a) combined the collocation
method with finite element method, and incorporated piecewise cubic polynomial
into the collocation formulation, which gives excellent agreement between the
numerical results and analytical solutions. The drawbacks of their method are the
high computation time required for determining the coefficients of the polynomials,
and the complexity in implementing the method in a code. Nicmanis and Hounslow
(1998) developed a finite element algorithm for solving the MSMPR PBE, which
combines both collocation and the Galerkin methods. They emphasised that the
Galerkin method must be used in the growth probiem in order to obtain a well-

conditioned system.

Wulkow, Gerstlauer & Nieken (1999) developed a method called the adaptive
Galerkin h-p method for solving the PBE. This method is based on a generalised
finite element scheme, with self-adaptive grid and order construction, and a Rothe’s
type time discretisation. They emphasised that the method has an automatic error
control for time and prbperty discretisation. This method seems to be promising for
solving the PBE, but no in depth details are given. The- method has been
implemented in a software package called PARSIVAL, and is commercially

available.

3.5.4.2 Discretisation Methods

The discretisation method, which is sometimes referred to as the discretised
population balance (DPB), transforms the continuous PBE into a number of sub-
equations. The number of sub-equations generated depends on the number of size

intervals selected. These equations are written as ordinary differential equations,
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describing the rate of change of the number of particles in each discretised size

interval. The generic form of the DPB is

aN, _(dnN.) (dN;) [aN.}  [dN, (3.38)
g | d |, \d ), \d |, \ at )

The change in particle numbers in the i size interval, N;, is directly the result of the
change in numbers in that particular interval due to agglomeration, growth,
nucleation and net-flow term, respectively in Equation (3.38). Hence, the essence of

the discretisation method is to derive the formulation to each of the discretised terms.

A large number of discretisation methods have been reported in the literature
(Gelbard, Tambour & Seinfeld 1980; Sastry and Gaschignard 1981; Batterham, Hall
& Barton 1981; Marchal et al. 1988; Hounslow, Ryall & Marshall 1988; Landgrebe
and Pratsinis 1990; David et al. 1991; Litster, Smit & Hounslow 1995; Wynn 1996).
These methods vary in their choice of discretisation of the size domain (linear,
geometric or arbitrary), their assumptions about the shape of the size distribution

within each interval, and the choice of average values of properties in each interval.

Hounslow, Ryall & Marshall (1988) reviewed the discretisation techniques published
in the literature prior to the 1990s, and noted that most of the authors fail to test their
discretisation methods. Some of them result in significant error in the prediction of
total crystal numbers and volume. In addition, not all of them are simple to solve.
Hounslow then developed a discretisation method based on the criterion that the
moments of the DPB should be consistent with those of the continuous PB. Litster,
Smit & Hounslow (1995) and Wynn (1996) further extended Hounslow’s discretised
agglomeration model to allow for an adjustable size discretisation ratio and improved

convergence.

Hill and Ng (1996) developed a discretised agglomeration model, which correctly
predicts total crystal numbers and volume, and is applicable to equal size intervals
and geometric size intervals of any ratio. For an equal size interval, a single set of

equations is produced, while for geometric intervals, the proposed method becomes
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unattractive to use as the geometric ratio decreases toward 1. This is because the
discretised agglomeration model to be solved is no longer unique, and more terms are
involved at larger size range. Kumar and Ramkrishna (1996a; 1996b) developed a
fixed pivot technique to solve the agglomerative PBE, where the discretised size can
be geometric with varying coarseness, and a more flexible pattern; fine in some size
ranges and coarse elsewhere. They claimed that this technique has the same accuracy
as the Litster’s discretised agglomeration model but is computationally more
efficient. However, the fixed pivot discretised agglomeration model over-predicts the
crystal numbers over the larger size domain, due to the steeply non-linear gradients in
the number density over the discretised interval. They further introduced a moving
pivot technique, which has the same feature as the fixed pivot technique, but is more
accurate in predicting the crystal numbers over large size ranges. Kumar and
Ramkrishna (1997) extended their previous model by including discretised growth
and nucleation models. The growth term is solved by a technique that combines both
the moving pivot method and the method of characteristics in order to avoid

oscillatory behaviour of the numerical solution.

In the current research, Hounslow’s discretisation method, and hence, those of
Litster, Smit & Hounslow (19935) and Wynn (1996) will be adopted to solve the
PBEs of interest. This approach is simple to implement and computationally

efficient.
3.6 HOUNSLOW’S DISCRETISED POPULATION BALANCE MODEL

The main challenge of a discretisation method is to derive an accurate formulation

for each of the discretised terms in Equation (3.38) that are efficient to solve.

3.6.1 Discretised Net-Flow Term

The formulation of the net-flow term is straightforward, and can be expressed as

dN;‘ 1 in prin out Ay out
F =1

=
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The right hand side of Equation (3.39) is the net crystal numbers that flow in and out

of the i size interval and V is the system working volume.

3.6.2 Discretised Nucleation Model
Nuclei are usually considered to occur at the smallest discretised size interval, which
is equivalent to the smallest detectable size of the particle size analyser. Hounslow,

Ryall & Marshall (1988) defined the discretised nucleation model as

aNgy B =l (3.40)
dt | |0 i>1

where B° is the nucleation rate. This model assumes that nuclei of the same size as

the mean first size interval,f, , are generated.

3.6.3 Discretised Growth Models
Hounslow, Ryall & Marshall (1988) developed size independent discrete growth

terms that satisfy the criterion

du,
d—tj = jGi, (3.41)

Two discretised growth models were developed; a two-term and a three-term

discretised model. The two-term growth model is given as

vy __G (rN.,—N,) (3.42)
dt |, (r—DL

where r = Ly /L; = 29 3 is the geometric size discretisation ratio. The terms Z; and
L+ are the lower and upper bounds of the i™ size interval, respectively. This model
predicts the zeroth moment correctly, but overpredicts all other moments. However,

we are generally interested in the first four moments (i.e. 4 and j =0, 1,2 and 3).
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The degree of over prediction of the moments can be reduced if the discretised size
resolution is increased. Following Litster, Smit & Hounslow (1995), the geometric

size discretisation ratio is defined as

r= L _ o (3.43)

where g is the size resolution parameter and an integer greater than zero. The effect
of discretised size resolution on the over prediction can be investigated by increasing
g. Hounslow, Ryall & Marshall (1988) showed that the two-term growth model over

predicts the j* moment by a factor of

1+7Y r/ 1)1
= — 3.44
q?fnq [ 2 Ir_]_)] ( )

The over prediction factor of the j’h moment, @,,, for any g in Equation (3.44), is the

ratio of the resultant moments from the two-term growth model to the moments in
Equation (3.41). It has a value greater than one, and equals to one if the moments
match exactly. Table 3.3 shows the over prediction factor of the j* moment at

different g.

Table 3.3. The over prediction factor of the 7* moment at different q
for the two-term growth model.

1 1.13 1.28 1.45
2 1.06 1.13 1.20
3 1.04 1.08 1.13
4 1.03 1.06 1.09
5 1.02 1.05 1.07
6 1.02 1.04 1.06
7 1.02 1.03 1.05
8 1.01 1.03 1.04

The values of ¢, reduce significantly as the ¢ value increases, particularly those of
the third moment (i.e. from 45% at g = 1 down to 4% at g = 8). This demonstrates

that the two-term growth model becomes accurate with finer size resolution.
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The three-term growth model has the form

12GL [[1- L IJN,— ! INZJ i=1
[ﬂ) AL - "o (3.45)

dt
26 [ _r N +N-——N, | i#l
(1+rL\r-1 r'—1

This model ensures correct prediction of the first three moments (i.e. j = 0,1 and 2},
but overpredicts the third moment marginally, that is, 1.8% with ¢ = 1 and becomes
negligible as g increases. Hounslow, Ryall & Marshall (1988) and Hounslow (1990a}
found that the numerical solution obtained from the three-term growth model gives
satisfactory agreement with the analytical solutions of the size dependent and size
independent growth systems. They further stated that this growth model will cause
numerical oscillations if the number of particles in the first size interval falls to zero.
To overcome this problem, they suggested that for seceded systems, replacing any
negative values of N; with zero will provide the correct solution. Similarly, for a
system that involves growth and nucleation, the three-term discretized growth model
above will lead to oscillations in the CSD. Hounslow, Ryall & Marshall (1988)
pointed out that the two-term growth model should be used for systems with

unseeded nucleation.

3.6.4 Discretised Agglomeration Model
Hounslow, Ryall & Marshall (1988) considered that crystal agglomeration is a result

of four binary contact mechanisms, as summarised in Table 3.4.

Table 3.4. Binary contact mechanisms proposed by Hounslow, Ryall & Marshall (1988) for
developing the discretised agglomeration model.

1 Birth

2 Birth i-1 i-1

3 Death i toi-1
4 Death i o oo
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It is assumed that the size independent agglomeration kernel is constant within each
size interval. A geometric discretised size ratio of vii/v; = 2 is used. This is
equivalent to a linear size ratio of L;.1/Li = 2! The contribution of each of the four
mechanisms is summed over all crystals and the formulation is derived to ensure that
the resultant zeroth and third moments of the discretised agglomeration model satisfy

the criteria,

du, | du,
—_— y and —_= 0 346
” 2)6#0 i (3.46)

Hounslow, Ryall & Marshall (1988) stated that the zeroth moment equation of the
discretised agglomeration model satisfies the above criterion but a volume correction
factor is required to ensure the third moment equation is in agreement with the

criterion. Hence, the discretised agglomeration model has the following form

i—-2
dN, 2 1
(?J = N,‘—l 2] iﬁi—l,jNJ' + Eﬁi—l,i-INl?;l
t s =

i1 o
_Ni22j_iﬁz,ij _N:Z)B;,ij
- P

=1

(3.47)

This model gives excellent agreement with the analytical solutions for both size
dependent and independent agglomeration kernels in the batch and steady state

systems.

3.7 LITSTER’S DISCRETISED AGGLOMERATION MODEL

A drawback of the Hounslow’s discretised agglomeration model above is that it fixes
the discretisation domain at vi,./v; = 2. In practice, it is frequently desirable to use a
much finer discretisation. In addition, the method results in considerable error in
higher-order moments of the CSD (i.e. j > 3), which leads to inaccuracies in
prediction of the shape of the CSD (llievski, White & Hounslow 1993). Another
problem with the method is that larger size intervals occur at the larger end of the

CSD.
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Litster, Smit & Hounslow (1995) developed an improved version of the original
Hounslow’s discretised agglomeration model. In this version, the geometric size
discretisation is adjustable, and the geometric ratio is via/v; = 2“‘7, or length ratio,
Liy/L: = 299 ag discussed in section 3.6.3. Tt takes advantage of the greater
resolution in the measured CSD possible with modern particle size analysis devices.
This new model is similar to the original version, simple to solve and correctly
predicts the total crystal numbers and volume. As in the original discretised
agglomeration model, agglomeration is considered as a result of binary contact. In
this finer size discretisation, five types of interaction need to be considered; three
birth types and two death types. Details on the interactions between particles that are
added and removed from a size interval are given in Litster, Smit & Hounslow
(1995). Wynn (1996) further improved the accuracy and convergence of the
discretised agglomeration model of Litster, Smit & Hounslow (1995), leading to the

following form

2(1 i+l)/q
[ )A zﬁ—ljl 11 ;2uq_1

2(j—i+l)1‘q -1+ 2—(p-llfq
> 2‘, By N,

lig _
p=2 j=i=5p4 2 1

+— ﬁ: —q.i=q :Hq
-1 iH=5,4 (348)

2(j—i)lq +2llq _2—plq
2 zﬂ"’”N N alls _1

p=1 j=i+l-§

-8 +1
2(1 ig
EﬁuN J e _
- Zﬁr,ijNj

j=i-8+1

where

gln(1-277'7)
= —_ 4
s, Int[l ~ (3.49)

and S; corresponding to the S, value at p=1.
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This equation reduces to Hounslow’s discretised agglomeration model when g = L.
Litster, Smit & Hounslow (1995) showed that for a large g value, the discretised
agglomeration model is able to predict correctly (1) cumulative number and volume
distributions, (2) self-preserving CSD, and (3) higher-order moments of the CSD. As
the value of ¢ increases, the computational time increases. They further suggested
that for a trade off between accuracy and computational time, a value of 3 or 4 for ¢
is reasonable. Wynn (1996) observed that the improvement in convergence for the

modified discretised agglomeration model is effective only for g > 4.

3.8 CONCLUSIONS

The population balance theory that describes dispersed phase particulate systems has
been introduced. This mathematical framework is widely used in modelling
precipitation systems, undergoing processes such as, nucleation, growth and
agglomeration. Establishing the PBE to describe any precipitation system is
straightforward, but solving it is relatively difficult. The degree of complexity for
solving the PBE depends on the internal processes involved. Solution methods for
the PBE have been reviewed. The most frequently used method for solving the PBE
for precipitation systems involving simultaneous nucleation, growth and
agglomeration is the discretisation method. The DPB models of Hounslow and

Litster will be adopted in this research to solve the resulting PBEs.
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CHAPTER 4

PRECIPITATION KINETIC PARAMETER ESTIMATION

4.1 INTRODUCTION

Modelling of precipitators requires knowledge of the precipitation mechanisms that
take place during the precipitation process; namely, nucleation, crystal growth and
agglomeration. These precipitation mechanisms essentially determine the product
CSD, an important product quality parameter that is necessary to control in order to
meet product quality specifications. The formulation of a PB model for most
precipitation configurations is simple, but obtaining the right kinetic expressions for
the nucleation, growth and agglomeration is more difficult. A further complication is
that these processes occur simultaneously during the precipitation run, making it very
difficult to analyse their contribution to the product CSD and to deduce their rates. In

addition, they may interact with each other.

In practice, precipitation kinetics rates are usually determined from experimental data
via parameter estimation procedures. Kinetic parameter estimation methods have
been reviewed by Tavare (1991; 1995a), Rawlings, Miller & Witkowski (1993) and
Ilievski and White (1996). This chapter provides a brief review of the practical
experimental techniques used to generate the precipitation data and methods for

determining the kinetics from these precipitation data.

4.2 EXPERIMENTAL TECHNIQUES FOR PRECIPITATION

A number of experimental techniques have been reported in the literature for
generating precipitation data. These include continuous, batch and semi-batch

precipitation experiments, and are described below.
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4.2.1 Continuous Precipitation

The mixed suspension mixed preduct removal (MSMPR) precipitation configuration
has been used widely in precipitation kinetics studies. The precipitation experiment
is carried out in a well-mixed vessel with uniform suspension and representative
product removal. Supersaturation can be generated by cooling, heating, evaporating
the liquor, or by chemical reaction. There are several disadvantages in performing
MSMPR experiments, firstly, it is time consuming, i.e. a long time is required to
reach a steady state (Tlievski 1991). Secondly, it is difficult to achieve a true steady
state, as the apparatus is highly sensitive to small upsets, and can be unstable and
oscillate continuously (Randolph and Larson 1988). Thirdly, it requires a large
inventory of material. Finally, only one kinetic measurement can be obtained per run,
and the transient data is discarded. The precipitation experiment should be performed
such that sampling does not significantly disturb the system. Randolph and Larson

(1988) stated that sample volume should be less than 10% of the vessel volume.

4.2.2 Batch Precipitation

Batch precipitation experiments are an attractive alternative to the MSMPR system.
The major advantages of batch precipitation are its operational simplicity, i.c. a large
number of kinetics data points are obtained in a single run, and significantly less
liquor inventory and development time are required. However, the results can be
difficult to interpret because the conditions in the precipitator are constantly
changing. The precipitation experiment usually starts with supersaturated liquor at
the nominated temperature, and the system is desupersaturated (i.e. the solute
concentration is decreased) as the precipitation run proceeds. The solution or solids

data can be taken regularly at different times during the batch run.

4.2.3 Semi-Batch Precipitation

Semi-batch precipitation experiments have the facility to measure a large number of
kinetic responses in a single run, and to control certain precipitation conditions
(Ilievski and White 1996). A commonly used semi-batch mode is the constant
composition precipitation experiment (Seyssiecq et al. 1998; Ilievski 2000), where
the solute concentration is monitored and maintained by an on-line feedback
controller via conductivity probe. This system is transient in nature and does not

reach steady state.
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4.2.4 Precipitation Data Measurement

The available experimental data in precipitation experiments consists of both
solution and solids measurements. The solute concentration and product CSD
characterise the state of the precipitator, and are vital for the estimation of kinetic

parameters.

4.2.4.1 Solution Measurement

The solute concentration of the precipitation system can be determined by taking
liquor samples during the precipitation run and analysed via chemical analysis (eg.
titration). Other analytical techniques for the determination of solute concentration
include refractometer (Skidar and Randolph 1976; Helt and Larson 1977),
densitometer (Ploss, Tengler & Mersmann 1984; Riebel, Kofler & Loffler 1990,
Redman and Rohani 1994), temperature float method (Wang, Zeng & Qian 1989),
and conductivity measurement (Smith and Woods 1993; Nallet, Mangin & Klein
1998). The solute concentration profile or “desupersaturation curve” represents

important data for estimating kinetics rates, particularly the crystal growth rate.

4.2.4.2 Solids Measurement

Solids samples from the precipitator can be sampled for the determination of CSD
and solids content. The solids content is determined by recovering and weighing the
dry solids. The crystal sizing techniques reported in the literature include sieves,
electrozone principle methods (eg. Coulter counter) and light scattering devices (eg.
Malvern and Microtrac). On-line CSD measurement from a laser light scattering
particle size analyser has also been used (Felton and Brown 1980; Randolph, White
& Low 1981; Jager et al. 1991). Rawlings, Miller & Witkowski (1993) reported that
the information of the CSD can also be obtained from transmittance measurement,
i.e. the fraction of light transmitted by crystal slurry, using a spectrophotometer.

According to the Beer-Lambert law, they stated that

transmittance = }{— =exp(—k{) 4.1)
0

where [ is the intensity of undiffracted light that passes through the suspension of

crystals and [, is the intensity of the incident light. x is the slurry turbidity, and [ is
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the flow cell width. Rawlings, Miller & Witkowski (1993) further stated that for non-

spherical particles, the turbidity can be transformed to

K =3k, JuLG(t,L)dL (4.2)
o

which gives a direct relationship between the transmittance and the second moment

of the CSD, and k, is the surface shape factor.
4.3 KINETIC PARAMETER ESTIMATION METHODS

A large number of methods have been developed for extracting the kinetics rates
from steady state and dynamic experimental precipitation data. These methods are

discussed in the following sections.

4.3.1 Methods for Steady State Precipitation Data

4.3.1.1 Classical Graphical Method for a MSMPR System

The application of the laboratory MSMPR precipitator for determining the
precipitation kinetics has been widely reported. The description of the use of the
MSMPR system for simultaneous determination of growth and nucleation rates is
treated in Randolph and Larson (1988). For an unseeded, steady state, perfectly
mixed precipitator, with size independent growth and nucleation occurring, the

steady state PBE of the MSMPR precipitator has the form

B° L
= - 4.
n(L) G exp{ Gz‘} (4.3)

where n(L) is the crystal number density function, B° is the nucleation rate, G is the

growth rate, L is the linear crystal size and 7 is the mean residence time. The growth
and nucleation rates can be determined from the experimental CSD data using a
semi-logarithmic plot of Equation (4.3), which should give a straight line. The
growth rate is determined from the slope of the semi-log plot, and the nucleation rate

is calculated from the intercept.
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However, most MSMPR precipitation systems generally do not yield straight lines.
An upward curvature in the fine end of the CSD has been often reported (Garside and
Shah 1980; Randolph and Larson 1988; Hostomsky and Jones 1991). Ilievski and
White (1996) reported that the curvature could be either due to size dependent
growth, growth rate dispersion, agglomeration, or non-representative sampling, or
combination of the above phenomena. Similarly, they also stated that any downward
curvature at the coarse end may be due to agglomeration and non-representative

sampling.

4.3.1.2 Cumulative Weight Method

A drawback of the above graphical technique is the inaccuracy in determining the
nucleation rate that results from the uncertainty in the CSD measurement,
particularly, at the fine end of the CSD and the extrapolation of the CSD to size zero.
Zumstein and Rousseau (1987b) used the cumulative weight data instead of the
number density data to estimate the nucleation rate, in order to minimise the effect of
these uncertainties. They fitted the experimental cumulative weight data with a non-
linear regression model to determine the parameter G7. The nucleation rate is then

estimated from

— MT
6p,k,7(GT)’

[}

(4.4)

where M; is the total crystal mass, g; is the solute density and %, is the volume shape

factor.

4.3.1.3 Non-linear Parameter Fitting Method
Non-linear fitting of experimental CSD data with a suitable function has also been

employed. Sowul and Epstein (1981) used an exponential function of the form
br
n(t,L) = cexp(—al) cxp[—TJ 4.5)

to fit the MSMPR CSD data, and a, b and ¢ are empirical constants.

43



The growth and nucleation rates can be determined from

bt
G=— 4.6
2 (4.6)
and
B’ =c¢ exp(— bTT] 4.7)

This approach can be time consuming, as it requires the determination of the
empirical parameters that give the best fit between the empirical function and

experimental CSD data.

4.3.1.4 Simultaneous Method for Agglomeration, Growth and Nucleation

All the methods described above are applicable for a MSMPR precipitation system
with simultaneous size independent growth and nucleation. The MSMPR system
with size dependent growth has been treated in Canning and Randolph (1967),
Abegg, Stevens & Larson (1968), Randolph and White (1977) and Randolph and
Larson (1988).

Hounslow (1990b) introduced a kinetic parameter estimation method for a steady
state precipitation system where simultaneous agglomeration, growth and nucleation
are occurring. He transformed and solved the dimensionless PBE describing the
MSMPR system, and then combined the analytical solution of the dimensionless
steady state PBE with the zeroth and third moment equations. The growth rate can be

determined independently from

7
=t 48
. @.8)

where g and g3 are the second and third moments of the CSD, respectively. The

agglomeration kernel, f, is estimated from

g TF2K -1 “9)
HT
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where 4, is the zeroth moment, and K is the aggregation parameter and is estimated

from

21,,
S TR @19

Aga Agg
L, is referred to as the index of aggregation, and it has a value between 0 (no
aggregation) and 1 (complete aggregation of every crystal formed). For the steady
state MSMPR system considered by Hounslow (1990b), £,,, is determined as follows

I, =1-CV * 4.11)

where CV is the coefficient of variance of the CSD. The nucleation rate is then

determined by

B =— (4.12)

4.3.2 Methods for Dynamic Precipitation Data

4.3.2.1 Solute Mass Balance Method

The crystal growth rate can be estimated from the desupersaturation curve using the
solute mass balance (Ilievski and White 1996) and rearranged to give

k__ds

[1]

3k,0,A, di

(4.13)

where A; is the total crystal surface area and s is the solute concentration. The
desupersaturation curve is usually numerically differentiated to estimate ds/dt at any
time instant. This method assumes that nucleation contributes negligibly to the

desupersaturation,
4.3.2.2 Initial Derivatives Method

Garside, Gibilaro & Tavare (1982) developed the method of initial derivatives, which

fits the initial part of the desupersaturation curve with a second-degree polynomial as
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Ac=a, +ap +a,t’, where Ac is the solute concentration (kg/ kg solvent) and ¢ is

time. The first and second derivatives of the fitted desupersaturation curve are

evaluated at £ = 0, i.e.

dAc d’Ac
— =a,; and >
ar |, dt

= 2a, (4.14)

t=0

The parameters in the empirical power law growth model, equivalent to Equation

(2.7), are then determined according to

2k ,a, 2a4a,

= 4.15
g 3pSkVA0LO alz ( )
and
a
kA =——21 4.16
A (4.16)

where A, and L, are the seed surface area and seed mean size, respectively.

4.3.2.3 Cumulative CSD Method
Misra and White (1971a) employed a cumulative number oversize plot to estimate

the growth rate. The growth rate is determined by the amount of lateral shift, AL,
over a time period, At, i.e. G = AL/As. This method is limited to systems with

negligible agglomeration and breakage. Similarly, they estimated the nucleation rate

from the measured crystal numbers according to

g =2 (4.17)
At

where AN is the net change in crystal numbers at zero size per unit volume at a given
time interval, Az. However, it is not possible to measure the nuclei at zero size. Misra
and White (1971a) reported that the smallest detectable size of the orifice tube they
used in the Coulter counter particle size analyser was 1.42 um. They assumed that no
agglomeration and breakage occurred, and that nuclei grow at the same rate as the

larger crystals. In that case, it can be argued that the number of crystals measured
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greater than 1.42 pm at any time must have been the number of crystals at some prior
time, t—At, where At is the time required for nuclei to grow to the detectable size of

1.42 um, and is determined from the relation,

i

IG(t)dt =142um (4.18)

t—fe

and G is determined from the approach described above. However, they found that
the scatter in the raw data led to a high degree of scatter in their estimates of

nucleation rate.

4.3.2.4 Laplace/Fourier Transform Methods
Tavare and Garside (1982, 1986a) developed a method for estimating the kinetic
parameters in the Laplace domain. For a batch precipitation with size independent

growth and no agglomeration and breakage, the PB model gives

dn(t,L) -G an(t,L)

4.19
ot dL 19

Taking the Laplace transform with respect to L, gives
dﬁ—c(;t"—g~)-+(_?sﬁ(t,s)—§" -0 (4.20)

where s is the Laplace transform variable with respect to size L. B°and G are

averaged values over a small time interval Ar. A plot of An(z,s)/ At versus sn(t,s)

should give a straight line, provided At 1s small. G and B’ are determined from the
slope and intercept of the plot, respectively. Similarly, an equivalent Fourier

transform method for estimating the kinetics is also described in Tavare (1986a).

4.3.2.5 Moments Matching Method
This method requires matching of the experimentally measured moments with those

derived theoretically from the PBE for the precipitation system considered. The
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moment of a distribution has been defined in Chapter 3. For a batch precipitation
system with simultaneous nucleation and size independent growth occurring,
application of this method yields the following moment equations for determining

nucleation and growth rates,

du,

2B 421

i (4.21)
du,

st P o 4.22
dt Ho .22)

The zeroth and first moments in equations (4.21) and (4.22) are determined from the
experimental CSD data, and both time derivative terms are evaluated by numerical
differentiation. The moments matching method is particularly sensitive to errors in

the coarse size intervals, because the weighting favours the coarse size end.

Tavare and Garside (1993) applied the moments matching method to extract
agglomeration, growth and nucleation kinetics from the experimental data, utilising
the first three moment equations for a semi-batch precipitation system. They
assumed that the growth rate was independent of crystal volume. However, there is
some doubt about the validity of this assumption, and hence, the applicability of their

approach to estimating the kinetics in a precipitation system.

Hounslow, Ryall & Marshall (1988) showed that for size independent growth, only
those moments that are a multiple of 3 can be evaluated analytically. Hence, the
zeroth, third and sixth moment equations can be employed to extract agglomeration,
growth and nucleation Kinetics from the experimental precipitation data. However, it
needs to be emphasised that large uncertainty in using higher order moment
equations can occur. This method and its problem will be discussed in detail in

Chapter 9.
4.3.2.6 The Bramley, Hounslow & Ryall (1996) Method

Bramley, Hounslow & Ryall (1996) introduced a novel differential method for the

determination of precipitation kinetics. Their method uses the discretised population
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balanice model of Hounslow, Ryall & Marshall (1988), and transforms it to derive the
equations for the zeroth and third moments and the number of particles in the first

size interval. Their method has the form

£y, =B, +®,f (4.23)
i, =®,.G+L'B, (4.24)
N, =0,G+B,+0 (4.25)

where the coefficients @y , ®; , ®, and ®; can be calculated from the experimental

data and are defined as

n -2 i = 1< -
b, = ZNHZ]}’ ]f(Li—l,Lj)Nj +E;f(st1,Lf—l)Nf_l

i1 =

n i-1 " n (426)
NN 27 f(LiL)N, - DN F(L.L)N,
=1 f=1 i=l J=l
®, =-N> (L, L)N, (4.27)
=1
2 r r
®, = 1- N, — N 4.28
? (1+r)L]([ rz—ljl rr -1 QJ (+.28)
@, = 2 LAV
T+l 21 o)
(4.29)

+Z 2 ( 4 Ni41+Ni—-2r—Nj+,JE?
- Q+rL\r -1 rr—1

where f (Z,fj) is the size dependent term of the agglomeration kernel, and Z, is the

mean size of the i size interval. This approach is not restricted to only size

independent agglomeration system as in the case of the moments matching method
of Tavare and Garside (1993) described above.
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The time derivative terms, #&,, f,and N, are the rate of change in the zeroth

moment, third moment and number in the first size interval, respectively. These
terms are determined from the experimental data using a numerical differentiation
scheme. The above system of linear equations (4.23)-(4.25) needs to be solved
simultaneously in order to determine the values of the agglomeration kemel, /3, the
growth rate, G, and the source term rate, B,. The source term rate in the above
equations is the apparent nucleation rate, but is not necessarily the true nucleation

rate. It is a measure of the rate of crystal numbers appearing in the first size interval

(of mean size L) of the particle size analyser.

The aforementioned methods for estimating kinetics from dynamic precipitation data
involve estimation of the time derivative terms, and are referred to as the differential
methods in the literature (Aoun et al. 1999; Livk, Pohar & llievski 1999). The error
introduced by numerical differentiation will propagate through the kinetic parameter

estimation methods, and can lead to large errors in the parameter estimates.

4.3.3 Non-Linear Parameter Estimation Method

The application of the non-linear parameter estimation method (or sometimes
referred to as integral method) to determine precipitation kinetic parameters has
increased since the 1980s (Tavare, Shah & Garside 1985; Beigler, Damiano & Blau
1986; Tavare 1986a; Qiu and Rasmouson 1990; 1991; Hostomsky and Jones 1991;
Rawlings, Witkowski & Eaton 1992; Farrell and Tsai 1994; Miller and Rawlings
1994; Aoun et al. 1999). The method is complex and requires an iterative
optimisation scheme to obtain the optimum kinetic parameter estimates. However,
the optimisation scheme does not require model simplification. This method is
potentially the most accurate and precise parameter estimation method available in
the literature, as it avoids the numerical differentiation procedures of differential
methods. However, to compensate for the accuracy and precision in the parameter
estimates, this method has several drawbacks (Livk, Pohar & Ilievski 1999). Firstly,
it is computationally intensive and time consuming. Secondly it can suffer from
problems associated with solution convergence (i.e. multiple minima), and finally, if
the optimisation problem is not well posed, then uniqueness of parameter estimates is

in doubt. Several authors repeated their parameter optimisation procedure with

55



different sets of initial guess in order to ensure solution convergence, for the same

experimental data set (Nallet, Mangin & Klein 1998).

The parameter estimation problem is posed as an optimisation problem:

min (D(yexp[,ymodel(g))

. o (4.30)
Subject to  Precipitation Model

The aim is to minimise the objective function, ®(&), with the optimum kinetic
parameter values, 8, subject to the precipitation model and measurement data used.
In order for the non-linear parameter optimisation scheme to be successful in
estimating precipitation kinetic parameters, careful experimental design and selection
of the objective function are required (Rawlings, Miller & Witkowski 1993). The

usual form of the objective function used is

m ]

©O) = Y, Y 0,657 -y o) @31)

= =l

which is the sum of squares difference between the experimental measurement and

model

and y™* are the /™ experimental measurement and model

model prediction. y7¥

4
prediction, respectively, at the j™ sampling instant during the experiment. @, is the

weighting assigned to the i™ measured variable, m, and # are the number of samples

of each measured variable, and &represents the kinetic parameters.

Tavare, Shah & Garside (1985) and Hostomsky and Jones (1991) employed the non-
linear parameter optimisation method to estimate the nucleation, growth and
agglomeration Kinetics rates in the MSMPR system. Livk, Pohar & Ilicvski (1999)
incorporated a differential approach into the non-linear optimisation problem to
determine growth, agglomeration and nucleation rates in batch gibbsite precipitation.
They reduced the optimisation problem into three sub-problems, which can be solved

sequentially using both solute concentration and CSD data.
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4.4 UNCERTAINTY IN THE PARAMETER ESTIMATES

There is no doubt that the kinetics estimates determined from the experimental data
will incur estimation uncertainty. However, the uncertainty bounds of the kinetics
estimates are generally not reported in most of the parameter estimation studies in the
literature. A number of investigators have found significant scatter in the parameter
estimates using different parameter estimation methods on the same data (Nyvlt and
Broul 1982; Tavare 1986a; Jager et al. 1991). It has also found that different
investigators studying the same precipitation system have published quite different
kinetic parameters. For example, Rohani (1993) reported large discrepancies in the
published nucleation and growth kinetics from different authors studying potassium
chloride system. Yokota, Sato & Kubota (2000} also reported similar inconsistencies

in the kinetic parameters for the potash alum system.

The inconsistency in the kinetic parameter values and the failure of some kinetic
parameter estimation methods to obtain accurate values are related to the issues of
proper experimental design, choice of measurement data used in determining the
parameter, and uncertainty in the kinetic parameter estimates (Rawlings, Miller &
Witkowski 1993). In precipitation systems, the choice of the measurable variables,
namely, solute concentration and CSD data, is an important factor in determining the
accuracy of the parameter values. Rawlings, Witkowski & Eaton (1992) showed that
the use of solute concentration data alone is insufficient to determine the nucleation
parameters accurately. This is not surprising given that nucleation contributes
negligibly to the desupersaturation data, and hence, the solute concentration data is
not sensitive enough to determine the nucleation rate. They further demonstrated that
by using additional information (i.e. transmittance data in their case) in the objective
function, the uncertainties in both growth rate and nucleation rate parameters were

significantly reduced.

Uncertainty in the measured data can lead to large uncertainty in the kinetic
parameter estimates through the parameter estimation procedure. The uncertainty in
the parameter can be readily determined if many replicate experimental data sets are
available. However, replicate data sets from precipitation experiments can be

difficult to generate, due to the constraints on time or resources for carrying out large
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number of experiments, or both. An alternative is to employ Monte Carlo simulations
to generate replicate data sets, by adding random errors to the original data set, in
accordance with the assumed measurement probability distribution. However, Monte
Carlo simulations are time consuming when used with the non-linear parameter
optimisation, because the estimation process is computationally intensive (Rawlings,
Miller & Witkowski 1993). Bard (1974) stated that the uncertainty of the parameters
in a non-linear parameter optimisation problem can be roughly determined from the
diagonal elements of the covariance matrix, using the maximum likelihood method.

The details are given in Bard (1974) and will not be treated here.

4.5 CONCLUSIONS

Experimental precipitation techniques and kinetic parameter estimation methods
used to extract kinetics rates from the experimental precipitation data have been
reviewed. There is no universal kinetic parameter estimation technique for
determining the kinetics, as the techniques used will depend on which processes are
present and the experimental setup employed. It should be borne in mind that all
kinetic parameter estimation techniques incur uncertainty in the Kinetic parameter
estimates. This originates from uncertainty in the measurement data, which is being
propagated by the Kinetic parameter estimation techniques used to extract the kinetic

parameters.
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CHAPTER 5

MODELLING WELL-MIXED GIBBSITE PRECIPITATION
SYSTEMS

5.1 INTRODUCTION

This chapter focuses on modelling the CSD in well-mixed gibbsite precipitation
experiments conducted in a constant composition semi-batch configuration under the
conditions such that, agglomeration and growth were occurring, and nucleation was
negligible; and a batch configuration under the conditions where simultaneous
agglomeration, growth and nucleation took place. The PB theory is adopted here to
model both experimental rigs. The Hounslow’s discretisation method is used to solve
the resulting PBEs. Gibbsite kinetics rates are determined from correlations
published in the literature and from the experimental data by matching the moments
of the CSD or by the Bramley’s method. The suitability of the developed precipitator
models to describe the experimental systems being modelled is validated by
comparing the CSD predictions to the corresponding experimental gibbsite
precipitation data. In addition, the quality of the CSD predictions made in the
constant composition system, using the kinetics from correlation models is compared

with those using kinetics estimated by the moments matching method.

5.2 THE EXPERIMENTAL GIBBSITE PRECIPITATION DATA

The gibbsite precipitation experiments reported in this chapter were performed by
Ilievski, McShane & Rudman (1997). Two different precipitation configurations
were used: a constant composition semi-batch system and a batch system. A

schematic of the experimental precipitation system is depicted in Figure 5.1.
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Figure 5.1. Schematic of the constant composition experimental precipitation unit of Ilievski,
McShane & Rudman (1997): 1, overhead stirring motor; 2, baffles; 3, impeller; 4, water jacket; 3,
liquor feed tank; 6, peristaltic pump; 7, computer monitoring system; 8, clear liquor or solids
withdrawal system; 9, draft tube with spoilers; 10, conductivity probe; 11, turbidity probe; and 12,
precipitator.

In both of the batch and constant composition precipitation experiments, a 4-litre
stainless steel precipitator and an on-line computer monitoring system was used. In
the constant composition configuration, the liquor feeding and withdrawal systems
were also utilised. Ilievski, McShane & Rudman (1997) reported that the liquor
composition was kept constant by maintaining the sct point conductivity. Deviations
from the set point conductivity result in the feed pump being activated, which in turn
feeds liquor of an appropriate composition to the precipitator at a rate regulated by
fecdback control. The conductivity was monitored on-line and shown to be
proportional to the aluminate concentration. The precipitator was operated in a semi-
batch mode with clear liquor flow (i.e. solids are retained). The clear liquor removal
rate was at the same volumetric flow rate as the feed addition. Details of the
development of the constant composition precipitator and its validation are reported

in Ilievski (2000).
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The constant composition precipitation experiment was conducted at a constant
temperature of 80 °C and agitated at 800 rpm by an IKA EUROSTAR overhead
stirring motor with a 86 mm Lightnin® A310 axial impeller. The caustic aluminate
solution was prepared by digesting technical grade gibbsite crystals in a hot aqueous
sodium hydroxide solution, and made up to a supersaturation ratio A/C of 0.6
(expressed in g L' Al,Oy/ g L' NayCOs). A seed charge of 15 g L7 (Alcoa C31
gibbsite) was used. An important feature of this constant composition precipitation
experiment is that the precipitator was operated under conditions where the
agglomeration and growth kinetics are expected to be constant, and negligible

nucleation and crystal breakage are expected (Ilievski, McShane & Rudman 1997).

Ilievski, McShane & Rudman (1997) periodically sampled the suspension for
determination of liquor composition, magma density and CSD. They demonstrated
that the particulate phase sampling was representative. The CSD were determined
using a Coulter® counter multisizer II, which measures particle population and
spherical volume equivalent diameter. The liquor composition was determined using
a Watts-Utley titration (Watts and Utley 1956). Their experimental data were
checked for mass balance consistency. Figure 5.2 shows that the aluminate species
concentration, A, during the course of the constant composition precipitation

experiment, constant with time at 111 £ 2 g L1 AlOs.
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Figure 5.2. Aluminate species concentration, A, during the constant composition precipitation run
{from the data of Ilievski, McShane & Rudman 1997).
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The batch precipitation experiment was carried out isothermally at 60 °C and agitated
at 800 rpm in the same precipitator vessel used in the constant composition
experiment described above. An initial supersaturation ratio A/C of 0.7 and a seed
charge of 20 g L were employed. Under these operating conditions, agglomeration,
growth and nucleation occurred simultaneously during the precipitation run. Figure
5.3 shows the typical desupersaturation curve obtained in the batch precipitation

experiment.
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Figure 5.3. Typical desupersaturation curve from the batch precipitation run
(from the data of Ilievski, McShane & Rudman 1997).

5.3 MODELLING THE CONSTANT COMPOSITION PRECIPITATION
EXPERIMENT

5.3.1 Constant Composition Precipitator Model
The PB model for the experimental constant composition, semi-batch precipitator
described above is

on on
—_ + —

~ +G=-=B,~D, (5.1)

The term #n is the crystal number density function, ¢ is the time, G is the linear growth
rate, and L is the crystal size. B, and D, are the birth and death terms due to

agglomeration, respectively as described in Chapter 3.
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The assumptions made in deriving the above PB model are (1) the precipitation
system is well-mixed; (2) constant precipitator working volume; (3) no crystals
withdrawn from the precipitator; (4) no nucleation and crystal breakage; (5) size

independent crystal growth; and (6) agglomeration occurring.

Tlievski and White (1994a) and Ilievski and Hounslow (1995) showed that gibbsite
agglomeration can be considered independent of crystal size for modelling purposes.
Hence, for a size independent agglomeration kernel, B, given in Equation (3.19) can

be expressed as

L

2 3 933
g, =PL I”(”[L —A DA 4, (5.2)
2 (L3 ,__/13)3

which represents the appearance of crystals into the size range L to L + dL due 1o

agglomeration of crystals of sizes L — A and A. Similarly, D, is
D, = Bn(s, L)Jn(t,ﬂ)dzl (5.3)
o

which is the disappearance of crystals in the size range L to L + dL as they

agglomerate with crystals of any size, A.

5.3.2 Discretised Constant Composition Precipitator Model
The PB model equations (5.1), (5.2) and (5.3) above are intractable and the DPB was
used to solve them. For the constant composition experiment considered here, the

DPB for the i™ size interval, i.e. Equation (3.38) can be written as

ﬂ[ﬂj [di] 54)
dt dt |, a |,

where N; is the number of crystals per unit volume of slurry in the i™ size interval.
The terms on the right hand side of Equation (5.4) are the rate of change in crystal

numbers in the i™ size interval due to crystal agglomeration and growth, respectively,
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and can be represented by equations (3.47) and (3.42) or (3.45). A size discretisation

ratio, r = 2 was used. A fourth-order Runge-Kutta numerical technique has been

used to solve the DPB equations in a computer code written in Visual Basic.

5.3.3 Experimental Data Transformation

The experimental CSD data could not be used directly in the DPB model because the

measured size intervals did not follow a /2 progression. Two approaches were
considered for transforming the CSD data into the correct form, i.e. to estimate the

crystal numbers in each discretised interval. These are outlined below.

5.3.3.1 Approximation from Absolute Particle Numbers

In this approach, the crystal numbers in each size interval are determined by
summing all the numbers from the raw data that fall within the lower and upper
bounds of the discretised interval. At the extremes, a linear approximation function is
applied to estimate the fractional number portion of the measured size interval that
falls within the discretised size intervals. The details of this approach are illustrated
below. Consider the bounds of the measured size intervals to be denoted as x; and
those for the discretised size intervals as L;, and the number within size x; t0 xj.1

denoted as Y; and the number within size L; to L;y; as N;, as shown in Figure 5.4.
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Figure 5.4. A comparison of the experimentally measured and discretised size intervals.



The number, N;, in the size interval L; to L;,; is estimated according to equations

(5.5) and (5.6),

xk; +My+1 xkl +M)

ky+M-1
k+M .
E Y, + 1 ]Ykl""wl i=1

N, =1 - (5.5)
L Lot = Xpem, .
k1t Yf + Yk,~+M,~ i#1
xk +M+1 x ki +M;
where
1 i=1
k, = _ {5.6)
k_ +M,_ +1 i#l

M:is defined such that
JL1'+1 — xio o .
M, ={Inf ——— |:L <x'<L,;i=12,.p (5.7

The term /4 is the width of the equally spaced measured size intervals. x; is the

starting measured size that falls between the discretised interval of L; to L;y. This
formulation however is valid only for a discretisation ratio greater than the
experimentally measured size interval width. Hence, if a finer size discretisation

ratio, i.e. r < h, is desired, then the next approach should be employed.

5.3.3.2 Approximation from Particle Number Density

In this approach, the number density, n;, in each discretised size interval, with the
geometric mean of L, :m is approximated from the experimental number
density, y;, of measured size interval of x; to x;,,, using linear or cubic spline
functions. The number, N;, in the discretised size interval is then estimated by
multiplying the number density with the discretised size width of (L;4; - L;). This

approach is only suitable for narrow discretised size interval widths.
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5.3.4 Constant Composition Kinetic Parameter Estimation

The agglomeration kernel, £, and growth rate, G, were determined from the
correlation models of Tlievski and White (1994a; 1994b) discussed in Chapter 2, 1.e.
equations (2.13) and (2.9), respectively. Similarly, # and G were also estimated by
matching the zeroth and third moment formulations of Equation (5.1) with the
experimental data. In this experimental system, it can be assumed that (a) the
nucleation rate can be ignored, (b) the agglomeration kernel and the growth rate are
independent of crystal size, and dependent only on supersaturation and temperature,
and (c) the precipitator operation is isothermal and at constant supersaturation.
Hence, the resulting zeroth and third moment equations are identical to equations

(3.30) and (3.31) discussed in Chapter 3.

The zeroth moment equation (3.30) can be solved analytically for a time-invariant £
to give (see Appendix 1)
1 1

1
- 3.33
w® w0 2P 439

where u(f) is the total crystal numbers in the precipitator at time ¢, and is measured
experimentally. 1(0) is the number of seed crystals added initially. The value of fis
estimated from the slope of the plot of 1/44(f) against ¢ using linear regression, as

shown in Figure 5.5.
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Figure 5.5. Linear least squares fit to the experimental data. Plot of 1/44(f) against time, ¢,
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Similarly, G can be estimated from a linear least squares fit to Equation (3.31), as
shown in Figure 5.6, where the terms dgs(1)/dt and p(f) are obtained by transforming

the experimental CSD data, according to
w©=Y DNO (5.8
i=1

where j denotes the order of the moments. Equation (5.8) is the discrete form of the
moments of the CSD in Equation (3.7). As noted in Li, Rohl & Dievski (2000), the
linear behaviour of figures 5.5 and 5.6 confirms the assumptions of size independent

agglomeration and growth, and indeed, the other model assumptions.
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Figure 5.6. Linear least squares fit to the experimental data. Plot of dia(£)/dr against [6(1).

The £ and G estimates from the correlation models and the moments matching
method were different. For the constant composition experimental conditions
reported here, the £ estimate from the correlation model was 1.02x107 mL hr',
which is significantly lower than the value of 4.63x107 mL hr'! estimated from the
zeroth moment matching. The G estimate from the correlation model was 4.80 um

hr' compared to the value of 2.44 pm hr' from the third moment matching.
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5.4 CONSTANT COMPOSITION SIMULATION RESULTS

5.4.1 Comparison of Constant Composition Data to Model Prediction

In the context of this chapter, the DPB model using £ and G estimates from the
correlation models and from the moment equations are referred as CModel and
MModel, respectively. The prefixes 2G and 3G are used to denote the use of either
the two-term or three-term growth models in the DPB model, i.e. Equation (3.42) or
(3.45). A comparison of the CSD predictions made at different simulation times from
the 2GMModel and 3GMModel, with the experimental CSD is presented in Figure
5.7, which shows that the CSD predictions by the 3GMModel give better agreement
to the experimental CSD than those from the 2GMModel. The 2GMModel results in

more crystals in the larger size ranges.
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Figure 5.7. Comparisons of the experimental data and model predictions, by the 2GMModel and
3GMModel at different simulation times. (a) 24 minutes; (b) 75 minutes;
(c) 96 minutes; and {d) 123 minutes.
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Figure 5.8 shows the comparison of the CSD predictions from the 3GCModel and
3GModel (this model will be explained in details later on) to the experimental CSD.
It can be seen that poorer CSD predictions were obtained from the 3GCModel
compared to the experimental CSD, than those from either of the MModels in Figure
5.7. This is expected since the kinetics used in the MModel are essentially the best fit
parameters to the experimental data, assuming that the form of the model is correct.
The main source of the discrepancy between the CModel predictions and the

experimental data is due to the low [ estimate predicted by the agglomeration

correlation.
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Figure 5.8. Comparisons of the experimental data and model predictions, by the 3GCModel and
3GModel at different simulation times. (a) 24 minutes; (b) 75 minutes;
{c} 96 minutes; and (d) 123 minutes.
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As the effect of crystal agglomeration on the product CSD is great compared to that
from crystal growth (due to the extraordinary slow gibbsite growth), the effect of
crystal growth cannot be observed clearly from the CSD predictions made by the
3GCModel in Figure 5.8. However, the effect of crystal growth on the product CSD
can be observed by using the f estimate from the zeroth moment matching and G
estimate from the correlation model. This approach is referred to as 3GModel in
Figure 5.8, which shows the resultant CSD predictions are of the same shape as the
experimental CSD but shifted to larger sizes as in the 3GCModel. This clearly

indicates that the G estimate from the correlation model is too high.

Figure 5.9 shows the predictions of the total number of crystals, to(f), by different
models. The CModel predicts significantly higher number of crystals. In contrast, the
MModel gives a much better prediction, and the relative error is less than 7% in the
MModel compared to up to 85% for the CModel.
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Figure 5.9. Comparisons of the experimental and predicted total crystal numbers, gy(1), by the
2GMModel, 3GMModel, and 3GCModel.

The results clearly demonstrate that the literature correlation models for the gibbsite
agglomeration and growth are not accurate in describing the gibbsite precipitation
data being modelled. It is important to recognise the high statistical uncertainties

quoted for the correlation models; the 95% confidence limits on the agglomeration
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and growth correlation models are £ 70% and + 50%, respectively. In contrast, the
moment equations estimate the kinetics directly from the experimental data being

measured and are expected to provide better estimates.

5.4.2 Error Propagation

It can be observed in Figure 5.7 that the CSD predictions are continuously drifting
away from the experimental data as the simulation time increases. This, as reported
by Li, Rohl & Ilievski (2000), suggests propagation of error in the DPB model. To
put the error propagation in clearer context, two simulations are presented. In the
first, hereafter referred to as the “seed” approach, all the transient CSD predictions
are made starting at time z = ( (after accounting for the induction time). In the second
approach, hereafter referred to as the “preceding” approach, the transient CSD at
sample time £ is predicted using the experimental CSD at the preceding sample
ttme of f; as the starting distribution. If error propagation is significant then we
expect the “seed” approach simulations to show greater deviation with time than the
“preceding” approach simulation. This is seen to be the case in Figure 5.10, which
compares the experimental CSDs with the predicted product CSDs at different

simulation times, from both the “seed” and “preceding” approaches.

To quantify the deviations between the model predictions and the experimental data,
the sum of squares error, SSE, given by Equation (5.9), is used to measure the

goodness of fit of the DPB model predictions to the experimental data.

2

S0 = 2( Np " N::"‘l (:)J (59
= u (1) Hy (@)

where the superscripts “expt” and “model” denote the experimental and predicted

quantities, i.e. the crystal numbers in the i™ size interval, N;, and the total crystal

numbers, u, respectively. The normalised SSE defined above ensures that the

decrease in crystal numbers with time, due to the agglomeration of crystals, does not

bias the SSE estimate.
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Figure 5.10. Comparisons of the experimental data and model predictions, by the 3GMModel
at different simulation times, with the “seed” and “preceding” approaches.
(a) 24 minutes; (b} 75 minutes; (¢) 96 minutes; and (d) 123 minutes.

Figure 5.11 shows the difference in the SSE between the “seed” and “preceding”
approaches using the 3GMModel. The differences in the SSE continuously increase
with time, which clearly demonstrates that the error in the DPB model propagates
with time. The extent of the propagation of error may be exacerbated by the coarse
discretised size used in the discretisation method, and will be discussed in Chapter 6.
In general, the DPB model of the constant composition precipitator is capable of
accurately predicting the product CSD over short time intervals, i.e. up to 75 minutes
for this particular precipitation data. The approach of starting with the seed CSD and
predicting product CSDs over longer time periods will need to be assessed in view of

the propagation of error.
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Figure 5.11. The difference in the sum of squares error between the “seed” and “preceding”
approaches, using the 3GMModel, for the constant composition experiment.

5.5 MODELLING THE BATCH PRECIPITATION EXPERIMENT

5.5.1 Batch Precipitator Model
The PB model for the batch precipitator considered has the form

g—’:+Gg—Z=BA—DA+BN (5.10)

The model assumptions made are the same as those assumed in deriving the constant
composition precipitator model, with the exception that nucleation is occurring in

this case, and is described by the term By.

5.5.2 Discretised Batch Precipitator Model

The DPB for the i™ size interval in this batch system is written as

AN, (AN, ) fdN ) AN, (5.11)
dt da |, \d J; dr |,

The terms on the right hand side of Equation (5.11) are the discretised
agglomeration, growth and nucleation terms as given in Chapter 3. As mentioned in

Chapter 4, the true nucleation rate cannot be determined, as the particle size analyser
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is unable to detect the negligibly small nuclei. The source term rate, B, is usually
adopted as a measure of the apparent nucleation rate (i.e. replacing B° by B, in
Equation (3.40)). This term affects only the crystal numbers in the first discretised
size interval, the smallest measurable size of the particle size analyser. Hence, the

discretised source term is defined as

: B i =1
any z ! . (5.12)
dt |, 0 Otherwise

5.5.3 Batch Kinetic Parameter Estimation
The method of Bramley, Hounslow & Ryall (1996) was applied to estimate the 5, G
and B, from the experimental data simultaneously. Equations (4.23)-(4.25) can be

rearranged to give

D (5.13)

P 2
g=—LB, (5.14)
(I)3
Jaa_B
=40 u 5.15
B > (5.15)

It should be noted that all the parameters in the above equations are time dependent.

The terms @y, ®,, @, and P; are given in Chapter 4, and can be determined from the
experimental CSD data. Similarly, the time derivative terms, f , &, and Nl arc

determined from the experimental data using a numerical differentiation scheme.

The estimates of f, G and B, for the batch system are shown in Figure 5.12, as a
function of supersaturation, A/A*, where A" is determined using the solubility
correlation of Misra (1970), in Equation (2.2). The # and G estimates from the

correlation models of Ilievski and White (1994a; 1994b) are also presented for
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comparison. It should be mentioned that the kinetics rates presented here are those
after the induction time.
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Figure 5.12. Kinetics estimates determined from correlation models and by the Bramley’s method.
(a) Agglomeration kernel, £ (b) growth rate, G; and {(c} source term rate, B,.
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Figure 5.12 shows typical kinetic behaviour in a batch system, where the rates
decrease as the system is desupersaturated, and illustrates the dependency of the
kinetics on the supersaturation. The f estimates from the correlation model are
significantly higher than those from the Bramley’s method. These results are
opposite to those in the constant composition experiment, where the [ estimate is
significantly lower than the zeroth moment matching method. The discrepancy may
be due to the temperature effect on the agglomeration rate constant, ky, in the
correlation model in Equation (2.13). This gibbsite agglomeration correlation model
was derived for the temperatures between 75-78 °C, which are significantly higher

than the 60 °C employed in the batch precipitation experiment considered here.

The G estimates from the Bramley’s method drop rapidly as the batch system is
desupersaturated, compared to the gradual decrease in G estimates from the
correlation model. However, the G estimates from the correlation model do not show

great deviation to those from the Bramley’s method except at high A/A" values.
5.6 BATCH SIMULATION RESULTS

The CSD predictions from both the 2GMModel and 3GMModel using the kinetics
estimates from the Bramley’s method are shown in Figure 5.13. It can be seen that
the 3GMModel gives better CSD predictions than the 2GMModel, which is similar
to the findings obtained from modelling the constant composition experiment.

However, it should be emphasised here that this result is for the discretisation ratio of

/2, and if this discretisation ratio is reduced the accuracy of the two-term growth

model will improve, as discussed in Chapter 3, section 3.6.3.

Figure 5.14 again shows that the “preceding” approach gives better CSD prediction
than the “seed” approach. This result further supports the likelihood of significant
error propagation in the DPB precipitator models. Figure 5.15 shows the difference
in the SSE between the “seed” and “preceding” approaches for the batch system

increases with time as in the constant composition case.
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5.7 CONCLUSIONS

The PB theory was used to model both well-mixed, constant composition, and well-
mixed batch gibbsite precipitators. Comparisons between model predicted CSDs and
the experimental CSDs in the constant composition system have shown that the CSD
predictions using agglomeration and growth kinetics correlations from the literature
were poor, and good agreement was achieved if the kinetics were estimated by the
moments matching method. This highlights that the current correlation models are
unsuitable for describing the precipitation data being modelled. It was found that the
three-term growth model is more accurate than the two-term growth model in

modelling both precipitation systems considered when a discretisation ratio of

2./5 was used.

The SSE of the model predictions in both experimental systems increases
monotonically with time, which puts a time constraint on modelling the product CSD
accurately. The progressive deviation between the experimental and predicted CSDs
is believed to be due to the propagation of error in the DPB model. The propagation
of error is a potential problem, which may be significant in precipitator modelling. It

is assessed further in Chapter 6.
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CHAPTER 6

MODELLING WELL-MIXED NON-STATIONARY
GIBBSITE PRECIPITATION SYSTEMS:
SOURCES OF ERROR AND THEIR PROPAGATION

6.1 INTRODUCTION

This work follows the findings of the previous chapter, where it was found that,
using the DPB model, the transient CSD predictions are in good agreement with the
experimental CSDs initially but deviate with time. These deviations in the CSD
predictions with time have also been observed in other constant composition and
batch experimental data sets, as reported by Li, Rohl & Ilievski (2000). Depending on
its magnitude, this accumulated or propagated error may have a significant impact on
the simulation of non-stationary precipitators. Furthermore, it may compromise
precipitator control in cases where predictive control methods using PB models are
employed. This chapter addresses the issue of error propagation in the DPB
precipitator models. The specific aims are to identify the sources of this error,

establish if they are significant and to investigate how they may be reduced.

The constant composition semi-batch system was chosen to study the impact of error
propagation on precipitator modelling. The reason for selecting this experimental
configuration instead of the batch configuration is that constant agglomeration and
growth kinetics can be used in the simulation of the transients for all sample times,

which reduces the complexity of the investigation greatly.
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6.2 SOURCES OF ERROR IN THE SIMULATION

As noted by Li, Rohl & Ilievski (2000), there are a number of possible explanations
for the progressive drift observed between the predicted and experimental CSDs for
the non-stationary precipitator. These include: (1) the PB model correctly represents
the precipitation processes at the beginning of the run but not at later times; (2) a
systematic error in parliculate sampling and measurement, i.e. it was not
representative at later times; (3) errors in the numerical solution such as, finite
domain error, numerical diffusion and discretisation errors being propagated; and (4)
uncertainty in the estimated kinetic parameters, arising from random errors in the

experimental data, being propagated through the DPB model.

The first possibility can be discounted because the “preceding” approach simulations
did not show significant deviations at the later sample times, as shown in Chapter 5.
Further, the estimated growth and agglomeration kinetics from the moments
matching method do not change during the precipitation experiment, which is
consistent with the moments form of the model. The second possibility is also
unlikely because an extensive study on this system was conducted to ensure that
sampling is representative, and to minimise the sampling and sizing error (Ilievski,
McShane & Rudman 1997). The relative contributions of the other potential error

sources are discussed below.

6.2.1 Random Error in the Experimental CSD

The sources of error in the experimental CSD data are:

(1) sampling and sample preparation, which can be reduced by iso-kinetically taking
large samples and minimising the number of sub-sampling and sample
preparation steps;

(2) error associated with operation of the Coulter Counter multisizer, which can be
reduced by using the appropriate orifice tube and sample volume, good
calibration, and low coincidence; and

(3) counting statistics, which can be reduced by increasing the number of particles

counted.
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Li, Rohl & Ilievski (2000) reported on unpublished CSIRO reproducibility data, and
estimated that the 95% probable error in the measured zeroth moment and third
moment ranged from 4-10% and 5-20%, respectively. A reproducibility study of

batch precipitation experiments reported in Chapter 7 gives comparable estimates.

6.2.2 Finite Domain Error and Numerical Diffusion

Finite domain error, termed by Gelbard and Seinfeld (1978a), is unavoidable in
numerical techniques, and is incurred because the computation is carried out on a
finite rather than an infinite domain. The failure to count particles beyond the size
domain leads to particles outside the size domain being wrongly assigned to size
intervals within the domain. Gelbard and Seinfeld (1978a) suggested that this error
can be minimised in the DPB model by adding extra size intervals beyond the
specified size domain, to account for any particles from outside the specified domain.
Finite domain error is not a significant concern in the current work because

prediction of total crystal numbers was found to be accurate (see Figure 5.9).

Kumar and Ramkrishna (1997) reported that the discretised growth model of
Hounslow, Ryall & Marshall (1988) overpredicts in the tail region of the distribution
due to numerical diffusion. This is a term they used to describe the errors that occur
when the discretised growth partial differential equation corresponds to a different
original equation with a diffusion term. The extent of this error for the finer size
discretisation is not known. If this error is significant, it will affect the higher order
moment predictions, i.e. over-predict the higher moments, as the moment calculation
is weighted towards the larger size intervals. Figure 6.1 does not show significant

over prediction of the CSD tail, suggesting numerical diffusion is not a concern.

6.2.3 Contribution of Discretisation Error to Model Error
The coarse size discretisation ratio used in the DPB model may have contributed to
the observed error propagation. The Hounslow’s discretised growth models can be

used with finer size discretisation ratios. However, the Hounslow’s discretised

agglomeration model is restricted to use with a size discretisation ratio of 42 . Fora
finer size discretisation ratio, the agglomeration model of Litster discussed in Chapter

3 can be employed.
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The extent of the discretisation error was assessed by varying the discretised size
resolution, g. Figure 6.1 shows the comparisons between the CSD predictions made
for g = 1,2 and 4, together with the experimental data. The “seed”” approach and the
Kinetics estimates determined from the constant composition precipitation data in
Chapter 5 were used in these simulations. It should be noted that in order to compare
the simulation results for different ¢ on a common basis, the CSDs are presented in

number density, n;, which is determined from the number, ¥;, according to

n(L) = — 6.1)

(2" -1,

where L, is the geometric mean for the i" size interval.
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Figure 6.1. Effect of increasing the size discretisation resolution, g, on the predicted CSDs.
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Figure 6.1 shows that there is little change in the appearance of the predicted CSDs
between g = 1 and g = 4. This suggests that by increasing g cannot fully account for
the deviation between the predicted and experimental CSDs. Figure 6.2 shows the
SSE, i.e. Equation (5.9), between model predictions and experimental data with time,
for g = 1, 2 and 4. This figure shows that using finer discretisation intervals does

decrease the magnitude of the SSE, but, in all cases, the SSE increases with time.

SSE
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Figure 6.2. Comparisons of sum of squares error between the experimental data and model predictions,
forg=1,2and 4.

The separate contributions to the error arising from discretisation of the
agglomeration and growth terms were assessed by comparing numerical sclutions for

the agglomeration only and growth only cases with the analytical solutions.

6.2.3.1 Error Contribution from the Discretised Agglomeration Model (DAModel)
The DPB model for the agglomeration only case is given in Chapter 3, i.e. equations

(3.48) and (3.49). The equivalent continuous PB model is

on
o =B,-D, (6.2)
The analytical solution to Equation (6.2) with the seed CSD of
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Pseed = &-exp[—i] (63)
VU vﬂ

N, is the seed numbers and v, is the mean seed size (in volume coordinate}, is shown

by Gelbard and Seinfeld (1978a) to be

A\ R A (6.4)
v (t+2) T+2

where 7 = N,f ¢, is the dimensionless time. Equation (6.4) is integrated from v; to

214y, to give the number N; within size interval v; to i1,

gt a 73
N, = 2N, expl — 2L —exp| — 2 L (6.5)
T+2 T+2 T+2

where I? =v; /v, is the dimensionless length and = 1+1/g, see Appendix 4.

The analytical and numerical solutions, with g = 1 and 3, are presented in Figure 6.3.
The value of fused was estimated from the constant composition experimental data
shown in Chapter 5. The DAModel predicted CSD results were then transformed into
number densities using Equation (6.1). Figure 6.3 shows that agreement between
analytical and numerical solutions is excellent, particularly when g = 3, where both

solutions virtually fall on the same curves at each simulation time, #.

A plot showing the SSEs of each of these comparisons on a log-linear scale is
presented in Figure 6.4. The SSE is seen to increase initially with time and then
plateau, for each discretisation resolution, g. The SSE decreases for larger g values,
implying, as expected, that the relative magnitude of the error associated with the
discretised agglomeration model is reduced as the discretisation interval is made
finer. However, examination of the CSDs showed that the improvement is very

small between g = 1 and ¢ = 3. The results suggest that the error arising from
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discretisation of the agglomeration term does not significantly contribute to the

deviations observed in Figure 6.1.
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Figure 6.3. Comparisons of analytical and numerical solutions for the semi-batch system with a
constant, size independent agglomeration kernel only. (a) g =1; and (b) g = 3.
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Figure 6.4. SSE between the analytical and numerical estimates of the number density for the
agglomeration only case; forg =1, 2 and 3.

6.2.3.2 Error Contribution from the Discretised Growth Model (DGModel)
The DPB model for growth only is given by Equation (3.45). The equivalent
continuous PB model for the constant supersaturation, semi-batch system with size

independent growth only is

on on
= G= 6.6
ot dL (©.0)
It can be shown that an analytical solution of the form
n = Rgpeq (L — Gt) 6.7

satisfies Equation (6.6), see Appendix 5.

Two different functional forms for the seed CSD were considered: an exponential
distribution and bell-shape distribution, both having length as the internal coordinate.
These functional forms are commonly encountered in the experimental gibbsite
precipitation studies (Li, Rohl & Tlievski 2000). The following functional form can

be used to describe both distributions
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¥-1 ¥
nseed = YNO £ CXp — i (68)
Lﬂ La Lo

where L, is the seed mean size. ¥ defines the seed CSD form, i.e. y = 1 for the
exponential function and ¥ = 3 for the bell-shaped Weibull function, respectively.

For a constant growth rate, Equation (6.7) gives

0 LGt

¥-1 ¥
= - - 6.9
n ;VNG(L Gt] ox _[L Gt] L>Gt (6.9)
L L

o

(]

The number, N;, within size interval of L; to L;; is obtained by integrating Equation

(6.9) from L, to 2'*L,;, which gives

0 L <Gt

N, = Y —GtY 6.10
TIN | exp _[L,LGIJ e _(rLt GIJ L, > Gr (6.10)

a

Clearly, for a semi-batch system with size independent growth only, the CSD will
shift laterally towards larger size domain as time increases. The G values used were
estimated from the experimental precipitation data in Chapter 5. The analyses for the

two different seed types are discussed separately.

6.2.3.2.1 Exponential Seed CSD (y=1I)

The seed CSD used in the experiment shown in Figure 6.1 was approximately
exponential. The analytical and the numerical solutions for g = 3 are presented in
Figure 6.5. Most of the discrepancy is in the smaller sizes, up to the mode of the
CSD. This discrepancy was greater in g = 1 (not presented here). As time increases,
errors in the smaller size range become more severe. The discontinuity at L = Gf in

Equation (6.9) for y = 1 is the main cause of problems in the numerical solution.
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Kumar and Ramkrishna (1997) have reported on the problem of locating a

discontinuity when using numerical techniques.
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Figure 6.5. Comparisons of analytical and numerical solutions for a semi-batch system with constant,
size independent growth only and an exponential seed CSD, for ¢ = 3.

6.2.3.2.2 Bell-Shaped Seed CSD (y=3)

Figure 6.6 shows that the agreement between the analytical and numerical solutions,
for g = 3, is better at earlier times. The agreement for g = 1 was significantly poorer
than that for ¢ = 3, and is not shown here. The slight over-prediction of the tail of the
distributions may be due to numerical diffusion, but the effect is very small. The
small peak observed at the smaller sizes is due to the numerical instability introduced
by the three-term growth discretisation model. This problem is associated with the
minimum size, L, used in the model. If the discretised size intervals are too narrow
at the smaller size domains, the numerical solution shows oscillation. As g increases,
a larger L, is needed to avoid this oscillation in the smaller size intervals. Hounslow
(1990a) showed that there is a clear defined “no-go” region in which inaccurate
solutions are obtained due to L; being too small. Kumar and Ramkrishna (1997)
proposed a method of combining the discretization technique and the method of
characteristics, to overcome this numerical instability, and although the method
seems promising, it cannot easily be combined with the agglomeration discretisation

models used here.

89



6x10*

Analytical
e DG Model

4 hr

% t=2hr
Lt=6hr

5x10° -

‘Et

g=3

4x10° o

-
'é 3x10*
=
2
e 2x10°

1x10° =

70

L (um}

Figure 6.6. Comparisons of analytical and numerical solutions for a semi-batch system with constant,
size independent growth only and a bell-shaped seed CSD, for g = 3.

The SSEs between the analytical and numerical solutions, for both the exponential
and Weibull seed functions were observed to increase monotonically with time as
shown in Figure 6.7, in contrast to the “agglomeration only” case, which tended to

plateau with time.
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Figure 6.7. Comparisons of sum of squares error between analytical and numerical solutions for the
growth only case with both exponential and Weibull seed CSDs; for g = 1 and 3.
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The results suggest that error associated with the growth term discretisation will
contribute more to error propagation than the agglomeration term discretisation.
However, these errors introduced by the growth term discretisation cannot fully

explain the differences between the predicted and experimental CSDs.

6.3 CONTRIBUTION OF KINETIC PARAMETER UNCERTAINTY TO
MODEL ERROR

6.3.1 Error in Agglomeration and Growth Kinetics Estimates

The error in the experimental data will be propagated into the estimated moments,
i.e. to, M and w5, which are then used to estimate the kinetic parameters. The kinetic
parameters, £ and G may be viewed as random variables, which are assumed to be
normally distributed, with mean values estimated from the slopes of the linear
regressions shown in Chapter 5 and with standard distributions ¢, and o; estimated
from the regression statistics. The 95% probable error in £ and G were estimated to
be + 16% and £ 30%, respectively, using Student’s t distribution with the appropriate
degrees of freedom. The larger uncertainty in G relative to £, is most likely a
consequence of the numerical differentiation of ds(#)/dt required for the estimation
of G. It was found that the uncertainty in G was influenced by the numerical
technique used. Given the limited number of experimental data points, sophisticated
numerical differential schemes could not be used. Best fit curves to the experimental

data were used to help estimate dis(2)/dt.

6.3.2 Monte Carlo Simulation of Error in DPB Model

A Monte Carlo approach was used to simulate the uncertainty in CSD prediction
resulting from the uncertainties in £ and G estimates. 1000 pairs of § and G
parameters were generated using the Gaussian random number generator in
Microsoft Excel™. The means and standard deviations for these Gaussian error
distributions of #and G were obtained from the linear regression, as described above.
The CSD was then simulated for each parameter pair. The “mean” CSD was the
same as the model predicted CSD, given earlier. The 95% confidence limits on the

CSD predictions were estimated from the spread of the predicted number in a given
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size interval at a given sample time. As seen in Figure 6.8, the estimated 95%

confidence limits spread with time, as expected for error propagation.
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Figure 6.8. The 95% probable error bounds, estimated by Monte Carlo simulation, on the number
density propagated from the errors in Sand G. (a) r = 24 minutes; and (b) # = 75 minutes.

Figure 6.9 shows the 95% confidence limits on the predicted zeroth and third
moments broaden with time as the simulation proceeded. These results also show
that the drift between the predicted and experimental CSDs with time could be
explained by propagation of the error in the two kinetic parameters in the DPB

model. The kinetic parameters, § and G, are clearly the main contributors to the

uncertainty in the predicted CSD. Reducing the uncertainties in £ and G requires both
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high precision experimental data and simple, accurate kinetics estimation methods.

These important issues are treated in Chapters 7,8 and 9.
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Figure 6.9. The 95% probable error bounds from Monte Carlo simulation on the (a) zeroth moment,
Mo, and (b) third moment, 44, propagated from the errors in Fand G.

6.4 RELATIVE CONTRIBUTIONS FROM ERROR IN THE AGGLOMERATION
AND GROWTH KINETICS ESTIMATES

6.4.1 Isolating Agglomeration and Growth Contributions in the Experimental Data
Ilievski (1991) applied results developed by White (1971) and introduced a method

that allows the separate contributions of the agglomeration and growth kinetics on the
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CSD to be isolated. The resultant experimental “agglomeration only” CSD can be

compared to the CSD predicted from the discretised agglomeration model.

In this non-nucleating, semi-batch solids retention system with size independent
growth and no growth dispersion, agglomeration is the only process to alter the shape
of the CSD. Growth only shifts the CSD laterally by AL over time Ar. White (1971)
developed a technique to estimate this lateral shift using the moments of the PBE.
The essence of this technique is as follows. The change in the third moment with

time, for a size independent growth only system is

!

du, .
—2 =3C 6.11
di oy ( )

where ” denotes the normalised moment. The normalised second moment, 2, can be

expressed in terms of the distribution variance, o and the mean M as
W=+ ul’ (6.12)

Rearranging these equations and integrating from L — AL to L, the expression for

the growth adjustment term AL (i.e. lateral shift) becomes (see Appendix 6)
Apy =AD =3 AL” +3u,AL (6.13)

where Auj is the change in the third moment. AL is obtained by solving Equation
(6.13); 4, w5 and Auj are determined experimentally. Subtracting this lateral shift,

AL, from the experimental CSD removes the growth contribution, and the resulting
CSD will be due nominally to agglomeration alone. Other assumptions inherent in
using Equation (6.13) to remove the growth contribution are (i) any agglomeration
takes place first followed by growth, and (ii) the variance of the CSD does not
change with time. The inaccuracy introduced by Equation (6.13) is expected to be

small, because the gibbsite growth kinetics are slow (Ilievski and White 1994a).
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6.4.2 Comparison of the Predicted and Experimental “Agglomeration Only” CSD
The DPB mode! for the precipitator with only agglomeration occurring is given by
Equation (3.47). Figure 6.10 shows the comparison between the “agglomeration

only” CSD (i.e. adjusted with AL removed) and the CSD predicted by DAModel,

with g = 1 and using the festimate from Chapter 5.
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Figure 6.10. Comparison of the adjusted experimental and model predicted CSDs from the discretised
agglomeration model (DAModel).

The simulation was carried out only for a CSD with the same vartance. For the
experimental run considered here, constant CSD variance only applied over limited
sample times, between ¢ = 54 to ¢t = 75 minutes. As can be seen, reasonable
agreement is observed, although it seems that AL is slightly underestimated in this
case. The result indicates that the discretised agglomeration model does accurately
predict the agglomeration contribution to the shape of the product CSD. The
equivalence of the areas under the adjusted experimental CSD and the DAModel
CSD is consistent with the discretised agglomeration model’s ability to predict total
crystal numbers, as already seen in Figure 6.9(a). However, it should be noted that
the applicability of this approach to cases where the CSD variance changes
significantly and the growth kinetics are fast is doubtful. This result suggests that, for
this data, the error in the growth kinetics has a greater contribution to the deviations

observed in the full CSD simulation. This highlights the need for accurate and
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precise estimates of the growth kinetics, and reconciliation of the third moment of the

CSD with the experimental solids concentration should always be conducted.

6.5 CONCLUSIONS

The well-mixed, constant supersaturation, semi-batch gibbsite precipitation system
was used to investigate the source of the propagated error in the DPB model. It was
found that using a finer discretisation resolution can reduce the SSE between the
predicted and experimental CSDs but the improvement is small. The agglomeration
term discretisations of Hounslow, Ryall & Marshall (1988) and Litster, Smit &
Hounslow (1995) were both found to be quite precise and accurate. The discretised
growth model is less accurate but accuracy can be significantly improved with higher
g values (i.c. finer discretisation resolution). Investigation of the possible sources of
error has shown that the error in the DPB model prediction is most strongly
influenced by the uncertainty in the estimates of the agglomeration and the growth
rate parameters used in the simulation. To minimise the extent of propagation of
these uncertainties, both high precision experimental data and simple, accurate
kinetics estimation methods are required. These will be considered in Chapters 7, 8

and 9.
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CHAPTER 7

AN INVESTIGATION ON THE UNCERTAINTIES IN BATCH
GIBBSITE PRECIPITATION DATA
AND KINETIC PARAMETER ESTIMATES

7.1 INTRODUCTION

In Chapter 6, it was observed that the uncertainties in the kinetics estimates have
been shown to be a significant source of error in CSD simulations. Clearly, the
uncertainty in the experimental precipitation data contributes to the uncertainty in the
kinetic parameter estimates generated from that data. This chapter focuses on the
uncertainties in batch gibbsite precipitation experimental data and kinetics estimates.
The objectives are to assess the reproducibility of the experimental data from
repeated batch precipitation experiments, to quantify the uncertainty in the

experimental data, and to determine the uncertainties in kinetic parameter estimates.
7.2 BATCH GIBBSITE PRECIPITATION EXPERIMENTS

Six repeated batch gibbsite precipitation experiments were performed in this study.
The experiments were conducted following procedure developed at CSIRO Minerals.
The same 4-litre precipitator was used in all experiments. Precipitation experiments
were carried out isothermally at 80 °C and agitated at 480 rpm. An initial liquor
composition with an A/C ratio of 0.7, and a seed charge of 15 g L was used. The
experimental batch precipitation set-up used is equivalent to the batch configuration

described in Chapter 5.
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7.2.1 Experimental Precipitation Procedure

The precipitator was preheated with water at 80 °C circulated around the water jacket
of the precipitator. A Julabo MS12 water circulator was used as the heat source to
maintain the circulating water temperature. The temperature reading was within
10.5%. The synthetic liquor was poured into the precipitator prior to the precipitation
run and the precipitator was closed with the stainless steel lid, to minimise carbon
dioxide intake by the liquor from the atmospheric and evaporation losses during the
run. The liquor was kept suspended in the precipitator with an IKA EUROSTAR
overhead stirrer at the nominated stirrer speed. A 86 mm Lightnin A310 impeller was
used. The conductivity and temperature, and turbidity readings were monitored on-

line through the conductivity and turbidity probes, respectively.

The precipitation run is ready to proceed once steady readings for the conductivity
and temperature, and turbidity are stabilised. The gibbsite seed crystals were fed into
the precipitator through the port in the precipitator lid. During the precipitation run,
liquor and particulate samples were taken regularly via the port in the lid. The
samples were then analysed for liquor composition, solids content and CSD. The

precipitation experiments reported here were run for 2.5 hours.

7.2.2 Liquor Preparation

An initial caustic concentration of 200 g Lt Na,CCO; (i.e. combined aluminate and
free hydroxide) was used to determine the amount of technical grade gibbsite seed
crystals (Alcoa C31 gibbsite) and the AR grade sodium hydroxide pellets required
for making up the synthetic liquor. The gibbsite crystals were digested in a hot
aqueous sodium hydroxide solution, once the hydrate was completely dissolved, hot
aqueous sodium carbonate solution was added. Sodium carbonate solution was added
to simulate the plant liquor, which normally contains carbonate as impurities. The
amount of sodium carbonate added was 40 g L™ liquor. The solution was filtered
through a 0.45 um membrane filter in a stainless steel pressure vessel, to remove any
residual crystals, i.e. undissolved gibbsite crystals. The filtered solution was then

weighed and made up to the required volume with hot deionised water.
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7.2.3 Seed Preparation

The gibbsite crystals used in making up the synthetic liquor and those used as seed in
the precipitation experiments were from the same source (Alcoa C31 gibbsite). A
QuantaChrome sieving riffler was used to prepare representative gibbsite seed
samples for the precipitation experiments, where the bulk gibbsite seed was cut to the
required weight. The riffled seed samples used in this experimental study were
within 14.93 + 0.08 g L', which is in good agreement with the nominated seed
charge of 15 g L' The representative seed samples generated by the sieving riffle
have an exponential CSD function (see Figure 7.4(a)), which was determined using

the Coulter counter multisizer II.

7.2.4 Liquor and Particulate Sampling

Liquor and particulate samples were withdrawn periodically for analysis during the
precipitation runs. Hence, proper particulate sampling technique is necessary to
ensure unbiased results. In practice, accurate suspension sampling is rather difficult
to achieve. Ideally, isokinetic withdrawal of the slurry is desired. There should be no
change in the fluid flow direction ahead of the sample tube, such that the liquid and
crystals of all sizes experience the same conditions at the entrance to the sampling
device (llievski 1991; MacTaggart, Nasr-El-Din & Masliyah 1993). In order to
achieve such a withdrawal condition, the sampling rate and the width of the sampling
tube are important factors. It was recommended that the withdrawal velocity should
be close to the circulation velocity at the point of entrance such that settling does not
occur (Randolph and Larson 1988), and the internal diameter of sampling tube

should be at least 5 times that of the largest crystal diameter (N¢vit et al. 1985).

In the current work a sampling pipette tip of 1.0 mm inner diameter was used, and
the largest product crystal was approximately 100 wm. In addition, a draft tube with
spoilers was used to direct the flow upward, since sampling at an upright position
helps ensure isokinetic conditions. Both liquor and particulate samples were sampled
with a micropipette, which is designed for high accuracy liguid sampling. The
samples taken for liquor composition analysis and solids content determination were
immediately filtered through a 0.45 pm membrane in a vacuum filter. The filtrate

was collected in a vial with a small drop of gluconate solution (with concentration of

99



400 g L") to halt the precipitation process. The filtrate was then taken for liquor
composition analysis. The solids were thoroughly rinsed with hot deionised water in
the vacuum filter prior to being collected in a watchglass and dried in an oven at 60
°C. This drying temperature was well below the temperature necessary to cause
decomposition of crystals (Ilievski 1991). The solids content was measured by
weighing the dry solids. Similarly, particulate samples taken for CSD determination
also had gluconate solution added to halt the precipitation process in the samples.

These samples were sized immediately after the precipitation run finished.

7.2.5 Liquor Analysis

The liquor composition was determined with an inflection point titrimetric method,
originally developed by Watts and Utley (1956). This analysis method relies on the
presence of carbonate ions in the liquor to determine the total caustic, C, and
aluminate species, A, content of caustic aluminate liquors. The liquor analysis was
performed on an automated Metrohm titrator, specifically set up for caustic
aluminate liquor analysis at CSIRO Minerals, Waterford. The analyses were
performed by CSIRO Minerals analytical services.

7.2.6 CSD Measurement

The Coulter counter multisizer II was employed to determine the CSD. This particle
size analyser measures a volume equivalent diameter. The Coulter counter multisizer
was operated following the procedure described in Ilievski, McShane & Rudman
(1997) for the orifice tube selection, selection of a suitable electrolyte solutton, and
obtaining a representative sample volume for analysis. A 200 pm orifice tube was
used to analyse the CSD, which covers the size range of 3.7-128 pum. The electrolyte
solution contained 0.9% NaCl by weight to ensure good electrical conductivity. A
small amount of 0.25% decon solution is used as a dispersant in the crystal sizing
operation. The electrolyte and decon solutions were filtered through a 0.2 pm
membrane filter prior to the CSD analysis, to remove any residual matter which may
interfere with the accuracy of the analysis. Prior to crystal sizing, the Coulter counter
was calibrated with blank electrolyte. The Coulter counter multisizer is linked to an

on-line computer, which allows easy access and manipulation of the CSD data.
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The main sources of error in crystal sizing are sampling from the precipitator and
sampling at the orifice tube. The samples required for crystal sizing operation were
obtained from the precipitator directly without the sub-sampling procedure. The
required sample volume for analysis depended on the precipitation conditions,
precipitation time, seed charge, and seed type. As these factors determine the crystal
concentration in the precipitator, the sampling volume at each sampling time has to
be determined by trial and error for any given operating conditions, in order to ensure

that the crystal concentration is within the range recommended in the Coulter counter

manual.

7.3 TRANSIENT PRECIPITATION DATA

7.3.1 Liquor Composition

The inittal aluminate and caustic concentrations in the liquor averaged for the six
experiments were 139+ 1.0 g L' and 197 £ 2.0 g L respectively. Figures 7.1 and
7.2 show the aluminate, A, and caustic, C, concentrations, and their spreads, during
the precipitation runs. The error bars indicate that the standard deviations in A and C
are relatively constant during the precipitation runs, and are within 1.0% and 2.0% of

the averaged values, respectively.
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Figure 7.1. Transient aluminate species concentration, A, during the precipitation runs.
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Figure 7.2. Transient caustic concentration, C, during the precipitation runs.

7.3.2 Total Mass Content
The total mass content, m, in this experimental study was determined from the
Coulter counter data, solids content (see section 7.2.4, p100), and titration data. The

mass determined from the Coulter counter data is according to

m(t) = p k p.(f) (7.1)

where p, is the hydrate density, %, is the volume shape factor, taken to be 776 and

() is the third moment of the CSD. The mass determined from the titration data is

according to the following mass balance

m(t) = m(0) + §(4(0) - A(D)e(r)) (7.2)

where m(0) is the seed charge mass, g, is the liquor density, ¢ is the conversion
factor from ALO; to A(OH); and &) is the change in liquor volume with time due
to deposition of solute from solution to solids phase. 4(0) and A(¢) are the initial and

transient aluminate species concentrations, respectively.
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Figure 7.3 shows the total mass content determined from the three techniques. It was
found that the total masses obtained from the solids content are marginally higher
than those measured from the Coulter counter data and titration data; except at the
beginning of the precipitation process where the Coulter counter data gives the
highest m. Nevertheless, the differences are within the data spread (i.e. standard
deviation) in each of the measurement techniques, which was £ 7%. The consistency
in m from solids content, Coulter counter and titration measurements shows that the

particulate phase sampling error between the experiments is relatively small.
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Figure 7.3. Comparisons of the total mass content, m, determined from Coulter counter data, solids
content and titration data.

7.3.3 Reproducibility of the CSD Data

Comparisons of seed CSD between the batch precipitation experiments in Figure
7.4(a), demonstrates that the sampling technique employed in the experiments gives
reproducible CSD data. Figure 7.4(b) shows poorly reproducible CSD data was
obtained at the sampling times of 15 and 35 minutes into the precipitation run, which
are normally within the induction period of the precipitation process. The induction
time was determined from both desupersaturation curves (see Figure 7.1) and
conductivity measurements, and is approximately 30-35 minutes for the precipitation
conditions employed here. The main discrepancy in the CSD data is at the smaller
size intervals. However, beyond the induction period, reproducible CSD data are
again obtained, as shown in Figure 7.4(c) for CSD data at sampling times of 55

minutes and 90 minutes (see Appendix 7 for the reproducibility of the CSD at other
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sampling times). The poorly reproducible CSD data during the induction period may

be due to some complex mechanistic activities affecting the precipitation mechanisms.
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Figure 7.4. Comparisons of transient CSD data between batch precipitation experiments.
(a) Seed CSD; (b) at 15 and 35 minutes; and {¢) at 55 and 90 minutes.
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Other experimental data of interest are the total crystal numbers, i, third moment,
M3, and crystal numbers in the first size interval, N;. These quantities are determined
from the CSD data. Figures 7.5(a)-(c} show the transient i, i3, and N, data,

respectively. The error bars show the standard deviations in the data.

These transient data reveal precipitation kinetics trends during the precipitation run.
The steep decrease in the to in Figure 7.5(a) indicates that the agglomeration kinetics
is particularly fast initially and then slows down substantially as the liquor is being
desupersaturated. This corresponds to the flat region in the figure. In Figure 7.5(b),
the u3 changes negligibly initially followed by a rapid increase and then plateaus as
the supersaturation is exhausted. This essentially reflects the growth rate behaviour,
as the g3 has no contribution from agglomeration and negligible contribution from
the source term rate. Figure 7.5(c) shows that the change in &; follows the trend of

the change in g in Figure 7.5(a).

7.3.4 Uncertainty in the Experimental CSD Data

CSDs together, in particular, the t, #3, and Ny, are critical data required in kinetic
parameter estimation techniques used in this work, as reported in Chapter 4. It was
observed that the measured CSDs vary considerably during the induction period, and
become reproducible as the precipitation proceeds beyond this period. The
uncertainty in the crystal numbers in each size interval was evaluated from the six

replicate data sets, using the standard deviation of the data.

The uncertainty can be quantified either in terms of relative uncertainty, &, or the
probable error, 8. The relative uncertainty is the ratio of the standard deviation and
the mean of the data, whereas, the probable error is determined by multiplying the
relative uncertainty with a ¢4, , factor, and is determined from Student’s t probability
distribution, with (1-&)% confidence limits and v degrees of freedom. For the 95%
confidence limits of the data in this study, t42,, = 2.571 with &= 0.05 and v= 5. The
95% probable error will exacerbate the magnitude of the uncertainty in the data, due

to the small sample of six data sets.
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It should be noted that the uncertainty in the crystal numbers in each size interval
vary with time, as the crystal numbers in a size interval are changing continuously
due to the precipitation. Figure 7.6 shows the evolution of the CSD (normalised
values from the replicate data sets, i.e. N "= N/ug) during the precipitation run. As

can be seen, the seed CSD undergoes dramatic changes.
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Figure 7.6. Evolution of the CSD during the batch precipitation experiments, expressed as normalised
number, N = Nyl .

Figure 7.7(a) shows the relative uncertainty, &, , in each size interval at different

sampling times (not all CSD data are shown in Figure 7.6 in order to avoid
congestion). It is observed that the uncertainties in the larger size intervals are
particularly large compared to those at the smaller size ranges. This can be attributed
to the significantly fewer crystals present in the larger size range as shown in Figure
7.6. The uncertainty in each size interval for size intervals smaller than 80 pum is
approximately 5-20%. The uncertainty in each size interval is expected to be
inversely proportional to the crystal numbers. This is demonstrated in Figure 7.7(a),
where the uncertainty in the larger size range is reduced marginally as the CSD shifts
toward the larger size intervals, during the course of precipitation run (i.e. from =0
to 120 minutes). Similarly, the uncertainty in the smaller size range increases

marginally, as the crystal numbers in these size intervals are reduced over time.
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Figure 7.7. The relative uncertainty in the CSD data, (a) in each size interval and (b) as a function of
crystal number counts.

This is further demonstrated by Figure 7.7(b), which shows that the highest
uncertainty corresponds to the lowest crystal number counts, and vice-versa. A linear
correlation exists between the relative uncertainty and the crystal numbers, for
crystal number counts up to 10 mL™. The uncertainty is quite scattered for crystal
number counts beyond 10* mL", and there are not enough data to establish a trend of
the uncertainty over this range. The observed uncertainty may not only depend on

crystal number counts, other factors that may contribute to the uncertainty include
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sampling errors, sizing error due to coincidence and minor variations between

precipitation experiments.

Figure 7.8 shows the uncertainties in g, 3 and N; for the six data sets. The
uncertainties in 4y and g are of similar order, which are scattered around 5%. It can
be seen that the uncertainty in g during the induction period (i.e. less than 35
minutes) of the precipitation process is marginally larger. The uncertainty in N 18
significantly higher, at around 25%. The uncertainties in g and t3 do not vary

significantly with time during the precipitation runs.
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TFigure 7.8. The estimated uncertainties in the experimentally measured total crystal numbers, £, third
moment, i, and crystal numbers in the first size interval, N,.

7.4 KINETIC PARAMETER ESTIMATION

Under the precipitation conditions used in this experimental study, crystal
agglomeration and growth are the dominant precipitation mechanisms (Ilievski,
McShane & Rudman 1997). However, the field of view effect complicates the
kinetics estimation procedure. This is because the Coulter counter multisizer can
only measure crystals larger than the minimum detectable size of 3.7 wm for the 200

pm orifice tube used. There is a continuous movement of smaller crystals into the
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field of view of the Coulter counter multisizer with time. Hence, a source term rate
was used to account for this phenomena, which is defined as a measure of crystal
numbers appearing in the first size interval as discussed in Chapter 4. The source
term rate in this experimental study is likely to be a result of agglomeration and

growth of small gibbsite crystals into the detectable size.

The Bramley’s method was used to estimate the agglomeration kernel, £, growth
rate, G, and source term rate, B,, simultaneously from the precipitation data.
Numerical differentiation techniques were employed to determine the time derivative
terms in equations (4.23)-(4.25). The £, G and B, estimates are shown in Figures
7.9(a)-{c), as a function of supersaturation, A/A". The aluminate species solubility
correlation of Rosenberg and Healy (1996) was used to determine A", The kinetic
parameter estimates were determined from sampling times of 25 minutes onwards.
The error bars indicate the relative uncertainties in both the kinetic parameter
estimates and A/A”. In Figure 7.9, the highest and lowest A/A” values correspond to
the early stage and the end of the precipitation run, respectively. The figures show
that the kinetics are slow during the induction period, but increase toward the end of
the induction peried. Beyond this period, the precipitation kinetics decrease as the

liquor is desupersaturated.

7.4.1 Uncertainties in the Kinetic Parameter Estimates

The relative uncertainties in the kinetics estimates (defined as the ratio of the
standard deviation and mean of the six kinetics estimates) are plotted as a function of
time in Figure 7.10. Generally, the uncertainty in each of the kinetic parameter
increases with the precipitation time, except at early times for the G and B, estimates

(i.e. within the induction period of the precipitation run).

The uncertainty in the Kinetics estimates is likely to be determined by two factors,
firstly, the relative change in the total crystal numbers, third moment and crystal
numbers in the first size interval, and secondly, the relative magnitude of the kinetics
rates. The first factor determines the accuracy of the time derivative terms in
equations (4.23)-(4.25), which are generally evaluated by numerical differentiation

techniques, and the latter factor affects the sensitivity of the kinetics estimates.
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Figure 7.9. Kinetics estimates determined by the Bramley’s method. (a) Agglomeration kernel, 5;
{(b) growth rate, G; and (c) source term rate, B,.
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Larger uncertainty at the end of the precipitation run can be explanied by the lower
kinetics rates as the system is desupersaturated, and larger errors introduced by the
numerical differentiation as the relative changes in the t, (s and N, are relatively
small (i.e. corresponding to the flat regions in figures 7.5(a)-(c)). The large
uncertainties observed during the early stage of the precipitation run correspond to
the estimates within or in the vicinity of the induction period, where the G and B, are
relatively slow (see figures 7.9(b) and (¢)) and the change in the z; is small. Larger

uncertainty in the B, may also be due to the large uncertainty in Nj.

From Figure 7.10, the relative uncertainties in the kinetics estimates are typically
within 30%, which are relatively high for # and G estimates given that the
uncertainty in the experimental i and g data are relatively small, i.e. 5%. This
suggests that the numerical differentiation technique used in determining the time
derivatives terms introduces significant errors, particularly at the sampling times
toward the end of the precipitation runs. The accuracy of the kinetic estimates is not
only influenced by the uncertainty in the experimental data, but also depends on the

form of the transient experimental data.
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Figure 7.10. Estimated relative uncertainties of the kinetic parameters from six replicate
experimental data sets.
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7.4.2 Kinetic Parameter Estimates Validation via CSD Simulation

The DPB model was used to simulate the CSD of two randomly chosen experimental
data sets (Batch#32 to Batch#37 in Appendix 8). A discretisation ratio of 2"'* was
used and the simulations were carried out between the sampling times of 55 to 120
minutes. A comparison of the experimental CSD and model predictions using the
estimated kinetics will help to assess the adequacy of the kinetics estimates. Figures
7.11 and 7.12 show the comparisons of the experimental and predicted CSD from
“seed” and “preceding” approaches, described in Chapter 5. The “preceding”
approach simulations show excellent agreement with the experimental data. This
shows that the kinetics estimates from the Bramley’s method are adequate. As
discussed from the findings in Chapter 5, the predicted CSDs from the “seed”

approach are in good agreement with the experimental CSDs initially, then deviate

with time.
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Figure 7.11. Comparisons between the experimental data (Batch#34) and model predictions using the
estimated kinetics with the “seed” and “preceding” approaches at different sampling times.
(a) 55 minutes; (b) 75 minutes; (¢) 90 minutes; and (d) 120 minutes.
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7.5 MONTE CARLO SIMULATION OF KINETIC PARAMETER UNCERTAINTY

The uncertainty in the kinetics estimates determined previously are based on six

replicate data sets, which is not large enough to give an accurate estimation of the

uncertainty limits. To establish statistically significant uncertainty estimates, at least

30 sets of experimental data should be used. Obviously it is not feasible to perform a

large number of repeated experiments. Hence, a Monte Carlo approach was

employed to further investigate the uncertainty in the kinetics estimates. 1000 sets of

replicate experimental data were generated using the built-in random number

generator in Microsoft Excel™. A standard normal distribution function with mean,

# =0 and standard deviation, o = 1 was used as a basis to generate the random data,
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z. The crystal numbers in each size interval, &;, were then determined from the

generated random data, z, according to Equation (7.3},
N, =N,+z0, (7.3)

The resultant computer-generated crystal numbers, N, in each size interval were

normally distributed with mean,ﬁi, and standard deviation, o N, - The mean and

standard deviation for each sampling time were estimated from the batch
experimental data sets. Bramley’s method was then used to determine the kinetics
estimates of the 1000 data sets. The uncertainties for the kinetics estimates between

sampling times of 35-120 minutes were determined from the resultant spread.

The relative uncertainty for each of the kinetic parameters is plotted in Figure 7.13.
The trend with precipitation time resembles that determined from the six replicate
data sets. The uncertainties also increase with precipitation time, and are within 30%.
This shows that the estimates from the six data sets give a rough estimation of the

uncertainties, except at the early stage of the precipitation run.
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Figure 7.13. Kinetic parameter uncertainty profiles determined by Monte Carlo simulation.
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7.6 THE EFFECT OF SIZE DISCRETISATION RATIO ON THE KINETIC
PARAMETER ESTIMATES

Bramley’s method requires that the experimental size interval be transformed into the
discretised size interval that follows a geometric size discretisation ratio of r = 2",
as discussed in Chapter 5. An investigation was conducted to assess if the discretised

size ratio will affect the accuracy and precision of the kinetics estimates.

The kinetics estimates reported above were determined uvsing a modification of the
Bramley’s method with r = 2”7 and g = 2. Here, the discretisation ratios with ¢ = 1,4
and 6 were used. The differences between the kinetics estimates were found to be
within 2% for the f and G estimates, but higher for the B,, which were + 4%. This
latter result is expected as the uncertainty in the N; is influenced greatly by the
discretised size width. In comparison, the f and g, which determine f and G
kinetics estimates, respectively are not greatly affected. Hence, the differences in the
kinetics estimates observed here are primarily due to the differences in the CSD
content for each discretisation ratio, as different size discretisation ratios will result
in a different number of discretised size intervals, and crystal numbers in each

discretised size interval.

Monte Carlo simulation was also performed to investigate the effect of the
discretisation size ratio on the uncertainties in the kinetics estimates. Because of the
intensive computing time required to perform the Monte Carlo simulation, this study
was restricted to determine the uncertainties of the parameter estimates for two

sampling times only.

Figures 7.14(a)-(b) show the uncertainties in the kinetic parameters at sampling times
of 45 and 55 minutes, respectively. The discretisation ratio with g = 1 resulted in the
largest uncertainties in B and G estimates, and the lowest uncertainty in the B,
estimates. The differences in the uncertainties between ¢ = 2 to 6 are within 3%,
which indicates the influence of ¢ > 2 on the kinetics estimates uncertainties is not

significant, compared to the uncertainties in the kinetics estimates themselves.
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Figure 7.14. Kinetic parameter uncertainty as a function of size discretisation resolution, g.
(a) 45 minutes; and {b) 55 minutes.

If the crystal numbers in each size interval are assumed to be independent random

variables, then, the uncertainties in #, and £ can be evaluated according to

_ N 2w ) g
5, = Z(aw. &N (7.4)

where ¥ represents the quantities such as, o, ¢ and Ny, and AN, is taken to be the

standard deviation of the crystal numbers in the discretised size interval.
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Figure 7.15 shows the plot of the ratio of the uncertainties, ¢ = §,{g = 1) /d{g = 1)
against g, for sampling times of 45 and 55 minutes. It can be seen that the ratio of the
uncertainties in fp and /& are consistently less than 1, which means that higher order
discretisation (i.e. larger g) improves the precision in the estimates of these
parameters. On the other hand, the ratio of the uncertainty of N; is consistently
greater than 1, which shows that g = 1 leads to the lowest uncertainty in the first size
interval. Hence, larger uncertainties in £ and G estimates with ¢ = 1 can be explained
by the larger uncertainties in i, and the gs. Similarly, that the uncertainty in the B,

increases with g, can be explained by the increase in the uncertainty in Ny with q.
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Figure 7.15. The relative uncertainties in the transformed experimental total crystal numbers, L4,
third moment, t, and crystal numbers in the first size interval, N, resulted from different size
discretisation resolations. (a) 45 minutes; and (b) 55 minutes.
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7.7 CONCLUSIONS

An investigation into the uncertainty in batch gibbsite precipitation data and
precipitation kinetics estimates was undertaken both experimentally, based on six
repeated experiments, and theoretically using Monte Carlo and statistical analysis.
Analysis of the transient liquor composition showed that the variation in the liquor
composition is negligible. The consistency in the total mass content calculated from
Coulter counter data, solids content and mass balance using titration data showed that

the particulate phase sampling error is small.

Comparisons of the transient CSD data demonstrated that reproducible data was
attained after the induction period. The uncertainty in each size interval depends on
the crystal numbers in that interval, which varies with time. The experimentally
obtained total crystal numbers and third moment data were reproducible, and
uncertainties were around 5%. The uncertainty in the crystal numbers in the first size
interval was significantly higher. This study demonstrated that consistent and reliable
batch gibbsite precipitation data can be obtained after the induction period using the

experimental procedure employed.

For batch precipitator, uncertainties in the kinetics estimates appear to increase with
precipitation time. Monte Carlo simulation also showed that the uncertainties in the
kinetics parameter estimates increase with time. This is believed to be due to the
changing magnitude of the kinetics values, the total crystal numbers and third
moment. Further investigation showed that the discretised size ratio has little effect

on the kinetics estimates and their uncertainty bounds.

It needs to be emphasised that the findings of this study only strictly apply to the
precipitation conditions used. It is only an indication of the magnitude of the
uncertainty in the data. The results should not be directly applied to other
precipitation conditions, as the precipitation conditions employed determine the form

of the CSD, and hence, the crystal numbers in each size interval.
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CHAPTER 8

THE INFLUENCE OF PRECIPITATOR CONFIGURATION
ON THE ACCURACY AND PRECISION
OF GIBBSITE PRECIPITATION KINETICS ESTIMATES

8.1 INTRODUCTION

The objective of this chapter is to investigate the effect of laboratory experimental
design on the accuracy and precision of the precipitation kinetics estimates. Three
different configurations of the same precipitator vessel (i.e. batch and two modes of
semi-batch operation) were considered. The logic of the approach taken is that the
different precipitator configurations will produce different functional forms of the
product CSDs. It is hypothesised that some functional forms of the CSD may be
better suited for extracting accurate and precise kinetics estimates for a given kinetic
parameter estimation procedure. The hypothesis follows Rawlings, Miller &
Witkowski (1993), who reported that different experimental configurations strongly
influence the information content of the data and that this should be a major

consideration in parameter estimation problems.

The quality of the kinetics estimates will be evaluated by comparing the experimental
CSD with the CSD predicted using the estimates. A Monte Carlo simulation is used
to explore which of the precipitator configurations will lead to kinetics estimates with
the lowest uncertainty, the purpose being to identify a preferred laboratory

precipitator configuration for gibbsite kinetics studies.
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8.2 THE GIBBSITE PRECIPITATION EXPERIMENTS

8.2.1 The Experimental Procedure

Precipitation of gibbsite from supersaturated caustic aluminate solution was
performed in three different precipitation configurations: batch, semi-batch at
constant composition with representative solids removal (CCRSR), and semi-batch at
constant composition with classified solids removal (CCCSR). The experimental
gibbsite precipitation data reported in this chapter for analysis were extracted from
Ilievski et al. (1998). The set-up of the experimental precipitation systems considered
here are equivalent to those described in Chapter 5. The same 4-litre stainless steel
precipitator, fitted with a draft tube and a 86 mm A310 Ligthnin impeller, was used
in all experiments. All runs were conducted at a nominal caustic concentration of 180
g L' Na,CO,. The range of measured caustic concentrations, across all the runs, was

less than + 2.5%.

In the constant composition experiments, the aluminate species concentration was
118 + 1 g L' ALO,, i.e. a supersaturation A/A’ of 2.84. The composition in the
CCRSR and the CCCSR was maintained constant by feeding liquor of a higher
aluminate species concentration and lower total caustic concentration at a rate
regulated by feedback control based on on-line conductivity measurements. Figure
8.1 shows that the control strategy was effective in maintaining the aluminate species
concentration constant with time for both semi-batch configurations. The
desupersaturation of the aluminate species in the batch precipitator is shown for
comparison. The initial aluminate species concentration for the batch experiment
was 129 g L ALO,, i.e. A/A" = 2.93. All the precipitation experiments were carried

out at 60 °C, agitated at 800 rpm and with a seed charge of 20 g L".

In the CCRSR and the CCCSR experiments, solids were removed from the overflow
while the fresh liquor was fed to the precipitator, both at the same regulated flow
rate. Ilievski et al. (1998) reported that the precipitator working volume remained
essentially constant because the solids content was very low and the density change

in the liquor due to precipitation was negligible.
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Figure 8.1. The concentration of the aluminate species, A, over the duration of the precipitation
experiments (from the data of Ilievski et al. 1998).

For the CCRSR experiment, representative solids removal from the overflow was
demonstrated by the observed good match between the overflow CSD with that
sampled from the precipitator. Tracer studies on the same system, reported by
DNievski, Rudman & Metcalfe (1998) with the feed and withdrawal rates fixed
continuously (i.e. 30 mL min™) at the CCRSR withdrawal pump setting, showed
exponential residence time distribution functions for both the particulate and the
liquor phases. An elutriator was used in the CCCSR experiment to remove fine
crystals. The classification function, A(), was determined from analysis of the tank
and overflow CSDs. A(L) is 1 for the CCRSR system. For the CCCSR system
employed, the best fit to the experimentally observed classification function was

(Ilicvski et al. 1998)

2.02-0.133L L<15.2
(L) = ~Hm 8.1)
0 Otherwise

8.2.2 Experimental Data from the Different Precipitator Configurations
Figure 8.2 shows the transient total crystal numbers, g, for each configuration. For

the batch system, the 4, decrease quite rapidly initially and then plateau as the
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supersaturation is consumed. For CCRSR and CCCSR configurations, the g,
decrease steadily with time. This is expected because the supersaturation is
maintained constant in these systems. For the batch system, the slope of the curve in
Figure 8.2, which is the rate of change of total crystal numbers, is directly related to
the agglomeration kemel, £, and source term rate, B,. Whereas, for the constant
composition configurations, the rate of crystal numbers exiting the system also needs

to be considered.
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Figure 8.2. Measured transient total crystal numbers, i, for the different precipitation systems
{from the data of Ilievski et al. 1998).

Figure 8.3 shows the total crystal mass, m. The total crystal mass in the batch system
1s consistently higher than in the constant composition configurations because of
solids removal in the latter. As expected, m is lower in the CCRSR system than in
the CCCSR system because larger crystals are also being removed from the
precipitator in the former system, compared to only fine crystals being removed from
the latter. The slope of the curve for the batch configuration in Figure 8.3 is
predominantly determined by the deposition rate due to crystal growth, &, because
the B, contributes negligible mass. The G in the batch system is continually changing
with time because of desupersaturation. In contrast, the G in the constant
composition experiments is time-invariant but the crystal mass removal rate also

affects the corresponding curves in Figure 8.3.
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Figure 8.3. Measured transient total crystal mass, m, for each of the precipitator configurations
(from the data of Thevski et al. 1998).

Figure 8.4 shows the experimentally measured transient CSD for the different
precipitator configurations. The CSDs are expressed as the normalised number in a
size interval, N = N/, to enable meaningful comparison. N, is the measured number
of crystals per unit volume of slurry in the i” size interval at a given time and g, is the
measured total crystal numbers at the same sample time. The measured CSD from
the three configurations are significantly different, which was the reason for their

selection.

Figure 8.4 shows that each of the product CSD have features that appear at the fines
end. These may affect the kinetics estimates, particularly the nucleation source term.
The cause of this feature is uncertain, though two possible sources are: (1) nuclei and
seed crystals agglomerating and growing into the field of view of the particle size
analyser, and (2) the presence of “inert” crystals which do not participate in the
precipitation process (llievski and White 1994a). The “inert” crystals could be
inactive gibbsite crystals, or impurity crystals contained in the industrial gibbsite
seeds used in the experimental study. However, no work was done to test these

hypotheses.
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Figure 8.4. Evolution of the experimental CSD with time for the different precipitator configurations.
(a) Batch; and (b) CCRSR and CCCSR (from the data of lievski et al. 1998).

8.3 KINETICS ESTIMATION FROM THE EXPERIMENTAL DATA

8.3.1 Kinetics Estimation Method
The Bramley’s method introduced in section 4.3.2.6 is modified slightly to include
flow terms for the two semi-batch precipitation configurations (i.e. representative

removal and classified removal) to give
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f, =B, +¢0ﬁ—5 (8.2)
1

i, =L'B, +¢3G—5 (8.3)
T

N, =B, +cplﬁ+c1>2G~£ (8.4)
T

The kinetic parameters B, G and B, are obtained by solving equations (8.2)-(8.4)
simultaneously, using the experimental data to determine the other quantities. N, is

the number of crystals in the first size interval and 7 is the mean residence time. The

terms h, and h, are defined by

oo

A, =ILjh(L)n(r,L)dL (8.5)

0

where n(z, L) is the number density. For the CCRSR system, 7, and A, are the

zeroth and third moments, respectively. For the CCCSR system considered here,

h, =2.024,(15.2) - 0.1334,,,(15.2) (8.6)

where g(x) is defined as

iy (x)= ILjn(t, LydL (8.7
Y]

8.3.2 Kinetics Estimates from the Different Precipitator Configurations

Figure 8.5 shows the estimates of f, G and B, as a function of A/A”, for each of the
precipitator configurations considered. The batch system results show that the
kinetics estimates are strongly correlated with supersaturation: the kinetics rates are
fast initially and then decrease steeply as the supersaturation decreases. The evolution
of the experimental CSD in Figure 8.4(a) also reflects such kinetics behaviour.

Figure 8.5 shows good agreement in the f estimates between the constant
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composition systems and the batch system, but greater deviations in the G and the B,
estimates. The maximum differences of 30%, 45% and 100% are obtained for the

estimates of 5, G and B,, respectively.

Given that gibbsite crystal growth is independent of crystal size and suspension
density (Misra and White 1971a), the observed differences in the measured growth
rates are difficult to explain. Estimates of G using the magma density data were
similar to the estimates from the CSD data, which is not surprising given that the
experimental data was mass balance consistent. The estimated values of the G shown
in Figure 8.5(b) agree well with the values predicted by the gibbsite growth
correlation in Equation (2.9). For the operating conditions corresponding to the
constant composition experiments, the correlation predicts values of the G in the
range from 3.6 to 4.3 pm hr'. It is proposed that the observed deviations in the
estimates between the batch and constant composition experiments are the result of

uncertainty in the estimates.

The observed differences for the B, may be an indication of its dependency on the
surface area or solids content, which are different in each precipitator configuration.
The alternative explanation is that there is a large uncertainty in the B, estimates.
This is consistent with the large variability observed for N, discussed in Chapter 7

and the subsequent effect on the uncertainty in the N, term of Equation (8.4)

obtained by numerical differentiation.

The hypothesis that the observed deviations in the estimates between the different
precipitator configurations are due to uncertainty in the estimates is tested in the

following sections by,

(1) dynamic simulation of the precipitators to check the match between the
experimental CSD and that predicted using the estimated kinetics, and hence
checking their validity; and

(2) Monte Carlo simulation to estimate the uncertainties in the kinetics estimates.
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Figure 8.5. Kinetics estimates for the different precipitator configurations.
(a) Agglomeration kernel, 5, (b) growth rate, G; and (c) source term rate, B,.
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8.3.3 Kinetic Parameter Estimates Validation by Dynamic CSD Simulation

The CSDs were simulated by a DPB model, i.e. Equation (3.38). The discretised

agglomeration, growth and source term formulations in equations (3.48), (3.42) and

(5.12) were employed in the CSD simulation. The net-flow term for the CCRSR

system is

N,y _ N,
[?)F = (8.8)

and for the CCCSR system is

W <15.2pm

(8.9)

[dN.] WLy,

T
0 L, >152um

A size discretisation ratio of 2'* was used in the CSD simulations. The CSD

predicted at 120 minutes are shown together with the corresponding experimental

CSD in Figure 8.6. The experimental and simulated CSDs show good agreement in

all three cases, indicating the adequacy of the respective Kinetics estimates.
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Figure 8.6. Comparisons between the experimental and predicted CSDs from the Batch, CCRSR
and CCCSR configurations.
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8.3.4 Uncertainties in the Kinetics Estimates from Monte Carlo Simulation

It is hypothesised that the observed discrepancies in the kinetics estimates between
different precipitator configurations may be explained by the uncertainties associated
with the kinetics estimates. A Monte Carlo simulation was used to determine the
uncertainties in the Kkinetics estimates. It was assumed that the errors in the
experimental data are independent and random. The main sources of variation in N;
are reported in Chapter 6. For each precipitator configuration, 1000 replicates set of
experimental data were generated assuming that the N; are normally distributed with
a standard deviation of 10%. This is based on the unpublished CSIRO reproducibility
data reported in Chapter 6, for a similar experimental configuration, which was found
that the relative standard deviation in N; for most of the size intervals to be within 4-

10%.

Bramley’s method was then applied to determine the kinetics estimates from each
replicate data set. The 95% confidence limits on the relative uncertainties in the
kinetics estimates, defined by Equation (8.10), are tabulated in Table 8.1 together

with the mean kinetics estimates.

5, =1.96% (8.10)

where 8 is a vector containing the mean kinetic parameter values of 5, G andB,.

Table 8.1. The kinetics estimates and their 95% relative uncertainties limits for different
precipitator configurations at the supersaturation ratio of Al4"=2.84.

1.3x10°7 £ 50%

Batch 4.6+ 28% 9.0x10° £ 32%
CCRSR 1.5x107 + 68% 32+ 25% 4.5%10° + 35%
CCCSR 1.7%x107 + 63% 3.6 +22% 6.2x10° + 38%

Table 8.1 shows that the differences in estimates of £ and G for the different
precipitator configurations can be explained by the uncertainties in these estimates,

provided the assumed uncertainty of 10% in N; is not greatly overestimated. The large
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large uncertainty in the £ estimates is attributed to the relatively low values of the
agglomeration kernel under the experimental conditions employed. The differences
in the B, estimates cannot be entirely explained by uncertainties. This result possibly
reflects a dependency of the nucleation rate on solids content or surface area. The
largest value of B, is observed in the batch precipitator, where the solids content, m,

is highest. The lowest is observed in the CCRSR precipitator, where m is lowest.

8.4 PARAMETER ESTIMATE SENSITIVITY TO PRECIPITATOR
CONFIGURATION - CASE STUDY

The influence of the precipitator configurations on the uncertainties in the kinetics
estimates was investigated by applying a Monte Carlo method to the simulated
dynamic CSDs. The CSD simulation were performed by integrating Equation (3.38)
together with the presumed correlations for £, G and B, in Equation (8.11) and the
CSD of the actual seed as an initial condition. The precipitation kinetics used in these

studies are assumed to depend on supersaturation, s = (A-A"), as follows

B =kys*G=k,s*;and B, = k;s’ (8.11)

where &, k, and k, are the rate constants for agglomeration kernel, growth and source
term rates, respectively. In the case of batch simulation, the supersaturation balance,
stated for an isothermal case in Equation (8.12), was also taken into account (L1, Livk

& Ilievski 2000a).
ds Y 72 73
Ep—=-3pk GL'N. —pk LB 8.12
¢ dt pS v Z 1 1 pS ¥ Ll 2] ( )

where £ is the solids free volume fraction (volume of solution per volume of slurry)

and ¢ is the conversion factor from Al,O3 to AI(OH)s.

In this study a case with high agglomeration rate and low nucleation rate was

considered. This case corresponds to gibbsite precipitation at a higher temperature
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and lower agitation rates than reported here. The values of rate constant used in this
study are k,= 1.55x10™, k, = 2.02x10" and k, = 45.8. The value of 70 g L' ALO, was
taken as the initial supersaturation in the batch precipitation simulation. For both
constant composition cases, three different values of s, namely, 41, 52 and 62 g L’

ALO, were employed. Using a standard deviation of 10% for N, 1000 replicates of
the simulated CSD data were generated. Bramley’s method was then used to estimate
the precipitation kinetics for all replicate data sets. It was assumed that in each
replicate experiment data set, the CSD measurements at 7 sampling instants are

available for determining the kinetics rates.

The uncertainties in the kinetic parameters as a function of supersaturation, estimated
from repetitive data sets, are shown for each configuration in Figure 8.7. The points
indicate uncertainties of the kinetics estimates that were evaluated for both constant
composition cases carried out at that particular supersaturation. It is evident from the

plots that the relative uncertainties vary with both supersaturation and configuration.

For the batch configuration, the relative uncertainties in the kinetics estimates
decrease significantly with an increase in supersaturation as a consequence of an
increase in the absolute values of the kinetics. A slightly more sluggish decrease can
be observed for the constant composition cases. In addition, the results show that
while the uncertainties for batch and constant composition configurations are similar
at the high supersaturation value, the constant composition configuration tends to
give smaller uncertainties than the batch one at the lower supersaturation values.
However, deviations from this rule can be observed in the case of the agglomeration
kernel. These are possibly due to factors associated with the evolution of the

functional form of the CSD, which also impacts the values of uncertainties.

Finally, it should be noted that in both constant composition cases, the kinetics for
each repetition were obtained as an average of 7 points from each experiment.
Therefore, when comparing uncertainties of batch and constant composition cases in
Figure 8.7, one should keep in mind that each constant composition case would

demand 3 times as many measurements as the batch one.
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Figure 8.7. The relative uncertainties in kinetics estimates for the Case Study.
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The uncertainties in the rate constants, estimated by applying Equation (8.11) to the
estimated kinetics are presented in Table 8.2. They are consistently smaller than the

uncertainties of the kinetics from which they were recovered.

Table 8.2. The uncertainties of the rate constants recovered from the estimated Kinetics.

Batch 2.7% 31% 4.5%

CCRSR 3.4% 2.3% 3.9%
CCCSR 2.4% 2.4% 4.0%

It can be concluded that the most precise kinetics estimates are obtained under
experimental conditions that promote the kinetics mechanisms, eg. high temperature
and supersaturation. Hence, this factor appears to be a more important experimental

design consideration than the precipitator configuration.

8.5 CONCLUSIONS

Gibbsite precipitation experiments were performed in three differently configured
precipitators but with the same hydrodynamics, seed charge, supersaturation and
temperature. Estimates of the agglomeration kemnel, growth rate and nucleation
source term rate obtained from the three configurations showed some variations. The
differences in agglomeration kernel and growth rate estimates could be explained by
uncertainties in their estimates. The differences between the source term rate
estimates cannot be entirely explained by the uncertainties in the estimates and seem
to be correlated to the differences in the suspension densities in the three
configurations. A Monte Carlo simulation was used to investigate the sensitivity of
uncertainties in the kinetic parameter estimates to the precipitator configuration and
the operating conditions. Precipitator configuration appears to have less impact on

uncertainties in the kinetic estimates than operating conditions, eg. supersaturation.
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CHAPTER Y

THE ACCURACY OF GIBBSITE PRECIPITATION KINETICS
ESTIMATES FROM DIFFERENT
KINETICS ESTIMATION TECHNIQUES

9.1 INTRODUCTION

Precipitation kinetics estimation studies reported in the literature often encountered
difficulties in generating accurate and reproducible kinetics estimates (Tavare 1986a;
Rawlings, Miller & Witkowski 1993; Rohani 1993). As noted in Li, Livk & Ilievski
(2000b), the poor reproducibility of precipitation kinetics estimates may be attributed

to:

(1) random and systematic variations in the experimental data;
(2) differences in experimental design that affect the form and information content of
the experimental data; and

(3) uncertainties associated with the parameter estimation procedures.

The uncertainty in the batch gibbsite precipitation data studied in this research has
been treated in Chapter 7. The influence of precipitator configuration on the
estimated gibbsite precipitation kinetics was investigated in Chapter 8. It was found
that even at the same operating conditions, there were significant differences in the
kinetics estimates. The differences can be explained by the uncertainties in the
kinetics estimates (evaluated by Monte Carlo simulations), which are attributed to the
interplay between the different forms of the data output (i.e. CSD) from the different

configurations, uncertainty in the data, and the kinetic parameter estimation

135



procedure used. In addition, a kinetic parameter sensitivity analysis showed that
operating conditions appears to be a more important factor in determining accurate

kinetics estimates than the precipitator configuration.

The objective of this chapter is to establish whether the different kinetics estimation
techniques when applied to the same gibbsite precipitation data will give the same
results and, if not, which technique is the most reliable and has the lowest confidence

limits on the estimates.
9.2 ESTIMATION OF PRECIPITATION KINETICS

Methods for the simuitaneous determination of the kinetics of agglomeration, growth
and nucleation source term from experimental precipitation data are reviewed in
Chapter 4. The techniques that are based on the PB theory can be divided into two
main categories. The first is referred to as the differential method, and uses directly
the differential form of the PB based model together with the time derivatives of the
precipitation data. The second is the so-called integral method, which uses the
integrated PB based model and experimental precipitation data. The PB model of a
non-stationary, well-mixed, constant volume precipitation system, with simultaneous

agglomeration, growth and nucleation occurring is given by

o 0 1
§;+G§%=BN +BA—DA+§(ZQM%—ZQM%) ©.1)

The underlying prnciple of the kinetics estimation procedures is to identify the
functions of the kinetics that make the PBE (9.1), or its moment form, consistent
with the dynamic experimental data. In this chapter, the differential and integral

methods are considered in the estimation of kinetics.

9.2.1 Differential Methods
Most applications of this approach reported in the literature are based on the method
of moment analysis (Tavare and Garside 1986; Tavare 1995a; Ilievski and White

1996). Four differential methods are considered here and are described below.
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9.2.1.1 Generalised Method of Bramley, Hounslow & Ryall (1996)
The method of Bramley, Hounslow & Ryall (1996) for simultaneous determination
of agglomeration kernel, £, growth rate, G, and source term rate, B,, can be modified

to the precipitator configuration described by Equation (5.1) to give

. 1
#0 = Bu + q)OIB +_‘;(2Qinu0,in _ZQomJuO,omJ (92)

. 1
=@ GATB 4 (Y Outtin ™ Y Ousbn ©3)

J?\"l =®2G + Bu +q)lﬂ+$(zQian,in —ZQOMINI,our] (9-4)

The above system of linear equations is solved at each time instant in order to

determine the values of the kinetic parameters, £, G and B,,.

9.2.1.2 Moments Matching Method

The moments matching method constitutes finding the values of kinetics that
reconcile the moments of the experimental CSD. The moment equations needed for
the simultaneous determination of the f, G and B, are those of the zeroth, third and

sixth moments (see section 4.3.2.5). For the PBE (9.1) considered, these moment

equations are given as

. 1 1
4u0 = Bu —_2-18#3 +V[Z Qinﬂo,m - 2 Qomauo,om ) (95)
. 1
#3 = 3Gﬂ2 + V[ 2 Qimu&in - ZQaurlu},am ) (96)

. 1
nuﬁ = 6Glu5 + 18#32 +?(2Qmu6,fn - ZQauHuﬁ.omJ (97)
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9.2.1.3 Simplified Moments Matching Method (SMM)

This method is a subset of the moments matching method and is only applicable for
dynamic precipitation systems with constant kinetics, eg. constant composition
precipitation system. Under the assumption of constant kinetics, B, and £ can be
estimated from Equation (9.5) with linear regression analysis, similarly, G is

determined from the linear least squares fit of Equation (9.6).

9.2.1.4 A Generalised Differential Method
Livk, Pohar & Ilievski (1999) posed the precipitation kinetics estimation problem as

a non-linear optimisation with the objective function formulated in terms of time
derivatives of measured precipitation properties. In the case where the fand G are all
size independent, they reported that the non-linear optimisation problem reduces to a
sequence of three algebraic equations that can be solved explicitly for G, fand B, at

each time instant. In such case, the technique becomes almost identical to the

Bramley’s method and leads to almost identical results, if the size discretisation

scheme with r =3/2 is used. Although in this work only the Bramley’s method will
be thoroughly analysed, it is worth noting that both methods represent alternative

approaches to the same differential method.

9.2.2 Integral Method
Estimation of precipitation Kinetics using the integral method can be viewed as a
non-linear parameter optimisation problem. The kinetic parameters are estimated by

minimising a least square objective function (see Chapter 4), which is written as
D) = 2 Z w, (N - N(9))° (9.8)

where N;7'and N i’f;f’d"l represent the experimental and model predicted crystal
numbers in the i™ size interval taken at the jth sampling time, respectively. @ is the
weighting function. @1is the vector containing the set of unknown values of G, £, and
B,, at certain time instants during the precipitation run. N[ is calculated using the

1,7
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DPB model of Equation (9.1), i.e. Equation (3.38). In each step of the optimisation
procedure, the DPB model equations are integrated together with the set of values of
@ and initial conditions. The objective function is then evaluated and new set of
values of #is calculated. The high accuracy of this method results from the fact that
the complete course of a process is predicted at each optimisation step. The main
disadvantage of the integral method is the substantial computational effort required

for the successive integration of the model equations (Li, Livk & Ilievski 2000b).

9.2.3 Validation of the Differential Estimation Techniques

The validity of each of the above differential techniques was assessed by applying
them to a simulated CSD, generated using specified values of 8, B, and G. The
hypothetical rates were chosen to be of the same order of magnitude as the estimated
kinetic parameters from experimental precipitation data. A semi-batch, constant
composition precipitator (i.e. constant kinetics) was selected as the test system

because all the differential metheds, including the SMM, can be compared.

The CSD was simulated using the DPB models of Hounslow, Ryall & Marshall
(1988) and Litster, Smit & Hounslow (1995). A discretisation size scheme of g = 2
was used in the simulation. The DPB model was integrated together with the initial
conditions using a fourth-order Runge-Kutta algorithm. A three-point numerical
differentiation scheme was used to estimate the time derivative terms in the
differential methods. Comparisons of the kinctics estimates and the true

(hypothetical) kinetics are presented in Table 9.1.

Table 9.1. Comparisons of agglomeration kernel, source term rate and growth rate estimates
determined from different differential methods.

True Kinetic Rates 1.12x10° 6.00x10* 5.02
Bramley’s Method 1. 12x10° 6.01x10* 5.02
Moments Matching 1.31x10° 8.86x10" 5.04
SMM 1.13%x10° 6.10x10* 5.04
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Table 9.1 shows that the Bramley’s method, and hence, the Livk’s method provides
the closest B, B, and G estimates, followed by the SMM method. This result is
expected as Bramley’s method is based on a DPB model similar to that used to
simulate CSD and the small deviations are primarily due to errors introduced by the
numerical differentiation. The relatively poor quality of the estimates obtained from
the moments matching method is most likely a consequence of the method’s
dependence on higher moments (i.e. 4, and ), and in particular the numerical
differentiation of . The higher moments weight towards the tail of the CSD, where
the information content is relatively low. A relatively accurate estimate of G is
obtained, suggesting that errors introduced by the numerical differentiation of g, are
not significant (provided accurate experimental data is available). The reasonable
estimates obtained by the SMM method also supports the conclusion that it is the
reliance on higher moments that compromises the kinetics estimates from the
moments matching method. It can be concluded that the Bramley’s method is

preferred over the moments matching method.

9.3 GIBBISTE PRECIPITATION KINETICS

9.3.1 Gibbsite Precipitation Data

Gibbsite precipitation data reported here were extracted from the experimental study
of Ilievski, McShane & Rudman (1997), which were generated from experiments
performed in a batch configuration and a semi-batch, constant composition solids
retention configuration (CCSR). These experimental configurations are similar to

those reported in Chapter 5.

The precipitation experiments were conducted in a 4-litre precipitator at 80 °C,
agitated at 600 rpm and a seed charge of 15 g L' (Alcoa C31 gibbsite). Initial
supersaturation A/C ratios of 0.7 and 0.6 were employed in the batch and CCSR
experiments, respectively. Figure 9.1 shows the transient zeroth moment, t, number
of crystals in the first size interval, N,, and the third moment, i, for both batch and

CCSR precipitation experiments.
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Figure 9.1. Transient batch and constant composition experimental data. (a} Total crystal
numbers, £; (b) crystal number in the first size interval, N ; and (c) third moment, g,
(from the data of Ilievski, McShane & Rudman 1997).
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9.3.2 Kinetics Estimates by the Different Techniques

The kinetics estimates and their uncertainty bounds generated from the non-linear
parameter optimisation method (i.e. integral method) presented in the following
sections were determined by Iztok Livk, and his contribution to the discussion in this

chapter is gratefully acknowledged.

9.3.2.1 Batch Kinetics Estimates

The kinetics estimates from the differential and the integral methods are plotted in
Figure 9.2 as functions of A/A". High supersaturation ratio values correspond to the
carly stages of the batch precipitation process. Figure 9.2 shows that Bramley’s
method and the integral method give different but comparable estimates of the
kinetics. The two methods give almost identical estimates of G. The moments
matching method, however, only gives reasonable G estimates and gives negative
values for both £ and B,. The unrealistic estimates of f and B, are a consequence of
the dependence of this method on the fifth and sixth moments of the experimental
CSD, which were observed to show a much larger scatter than the first, second and

third moments.

9.3.2.2 Constant Composition Kinetics Estimates

Averaged kinetic estimates obtained by the differential and integral methods at a
supersaturation of A/A" = 1.69 are shown in Table 9.2. Again the moment matching
method gives poor estimates for £ and B,. The values of § and B, determined by the
other methods are relatively consistent. In the case of G, all the methods give

comparable estimates.

Table 9.2. Averaged agglomeration kernel, source term rate and growth rate estimated by the
different methods from the constant composition precipitation data at A/A” = 1.69.

Integral method 6.8x10" 43x10* 3.6
Bramley’s method 6.8x107 5.6x10" 3.0
Moments matching -4.3x107 -2.2x10° 3.9
SMM 6.9x107 5.6x10° 36
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9.3.3 Evaluation of the Estimation Methods by CSD Simulation

The different parameter estimation techniques were tested by comparing the
experimental CSD with the CSD simulated using the kinetics estimates obtained
from the respective techniques. Figure 9.3 shows that the CSD simulated using
estimates obtained from the moments matching method are in very poor agreement
with the experimental CSD. The estimates from the integral method appear to result

in the best agreement.
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Figure 9.3. Comparisons between the experimental and predicted CSDs using the kinetics estimates
from different techniques in different experimental configurations. (a) Batch; and (b) CCSR.
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The difference between the experimental and predicted CSDs (i.e. SSE) was
quantified using the definition given by Equation (9.8) with @ set to unity. Table 9.3
shows that the lowest SSE values are obtained with kinetics estimates from the
integral method. As expected, the highest SSE was associated with the moments
matching method. The estimates from Bramley’s method give roughly 2-3 times the
SSE values of those from the integral method. It is interesting to note that in the
constant composition system, the estimate determined from the SMM method has a
lower SSE value than the result from Bramley’s method. This may be due to an
additional source of error being introduced through Equation (9.4) in Bramley’s
method. The integral method gives the lowest SSE values is not entirely surprising
since the same comparison is used by the integral method as a criterion in the

estimation of precipitation kinetics.

Table 9.3. SSE between the experimental and predicted CSDs using the kinetics estimates from
different kinetics estimation methods, in the batch and CCSR systems.

integral method 1.6x10

Bramley’s method 4.8%10°
Moments matching 5.0x10"
SMM / 2.2x10°

9.4 UNCERTAINTIES IN THE KINETICS ESTIMATES

9.4.1 Error in the Experimental Data

The kinetics estimation techniques reported here utilise the experimental CSD data
described in section 9.3.1, the solids content and liquor titration data are used for
mass balance consistency checks on g,. It is assumed that the uncertainty estimates in
the experimental data from Chapter 7 can be satisfactorily applied to the precipitation
data here, which was generated under similar operating conditions, but at a higher

agitation rate (i.e. 600 rpm compared to 480 rpm).
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9.4.2 Uncertainties in the Kinetics Estimates from the Differential Methods
9.4.2.1 Uncertainties in Batch Kinetics Estimates from Bramley’s Method

The estimated values of kinetic rates can be considered as random variables and the
probability distributions for each parameter estimate could be generated if sufficient
replicate experiments were available. A Monte Carlo simulation was used to evaluate
the uncertainties associated with the kinetics estimates. Using the experimental data’s
uncertainties from Chapter 7, 1000 computer-generated replicate data sets were
obtained by loading the original data with random normally distributed errors. The

Bramley’s method was then applied to generate the kinetics estimates.

The relative uncertainties of these estimates are given in Figure 9.4 as functions of
precipitation time. These uncertainty estimates, which are themselves random
variables, did show scatter with time and have been smoothed to highlight the
general trends. Figure 9.4 shows that the uncertainties in the agglomeration kernel

estimates, 4, and growth rate estimates, G, are low initially but increase steadily
with precipitation time. The uncertainty in the source term rate estimates, 53,, , on the

other hand, shows a more complicated behaviour with time, i.e. plateaus with time.

30

1.0 15 2.0 25 30

Figure 9.4, The relative uncertainties of the kinetics estimates obtained from a Monte Carlo analysis
of batch precipitation experiments using the differential method
of Bramley, Hounslow & Ryall (1996).
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To explain the above results, two main factors, which determine the uncertainties of
the kinetics estimates must be explored. As discussed in Chapter 7, these are the rate

of change of crystal numbers and volume, and the relative magnitude of the £, G and

B,. The smaller values of & ,and & ;correspond to early stages of the precipitation

run where the rates of change of total crystal numbers and volume are highest (see
Figure 9.1). At these times the error introduced by numerical differentiation is the

smallest. The consistent large G, values observed in Figure 9.4 may due to the large

uncertainty in the crystal numbers in the first size interval as discussed in Chapter 7.
Figure 9.4 is specific to the described experiment and should not be extrapolated to

other conditions.

9.4.2.2 Uncertainties in Constant Composition Kinetics Estimates from the SMM

The uncertainties associated with the kinetic parameter estimates from the constant
composition experiment obtained using the SMM method were estimated using the
linear regression analysis. The corresponding relative uncertainty in £, G and B, were
10%, 16% and 40%, respectively. Although the values of these uncertainties more or
less indicate the deviation from the assumption of constant kinetics, it is noteworthy
that they are in the same order of magnitude as those obtained by the Monte Carlo

analysis in the previous section.

9.4.3 Uncertainties in the Kinetics Estimates from the Integral Method

Li, Livk & Ilievski (2000b) applied Monte Carlo simulation to evaluate the
uncertainties of the estimates from the integral method. The same error structure as
described above was used, but only 50 computer-generated replicate data sets were
generated, due to the intensive computing requirements. The relative uncertainties of
the batch and constant composition kinetics estimates obtained by the integral

method using a Monte Carlo simulation are presented in Figure 9.5.

Again the uncertainties are typically small at the beginning of a precipitation run, and
increasing towards the end. Li, Livk & Ilievski (2000b) suggested that this is mainly
due to the fact that the kinetics values used in the final stage of the simulation have a

lesser impact on the objective function value than the kinetics from the initial stage
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of the simulation. Consequently, the sensitivity of the objective function with regard
to the initial kinetics is larger than that to the kinetics from the final stage. The actual
values of uncertainties also depend on the relative magnitude of the different kinetic

parameters, in a similar manner to that observed with the differential method.
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Figure 9.5. The relative uncertainties of the kinetics estimates obtained from the analysis of batch and
constant composition experiments using the integral method.

9.5 CONCLUSIONS

The differential and integral techniques were employed to estimate gibbsite
precipitation kinetics in batch and constant composition precipitation systems.
Comparison of experimental and predicted CSDs showed that the kinetics estimates
obtained from the integral method lead to better agreement than those obtained by the
differential method. Both methods agree well in the case of growth rate, but deviate

more in the case of agglomeration kernel and source term rate.

Uncertainties in the kinetics estimates have been evaluated for both estimation
techniques using Monte Carlo simulation. It was found that the kinetics estimates
from both the differential and integral methods have significant uncertainties. Both
methods give comparable estimates of uncertainty in the growth rate estimates. The

differential method resulted in lower uncertainty in the aggiomeration kernel
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estimates, but larger uncertainty in the source term rate estimates, than those from the
integral method. The uncertainties of the estimates obtained by both methods

increased toward the end of the precipitation runs.

The uncertainties of kinetics estimates are generally determined by the rate of change
of a property, the relative magnitude of the kinetics rates and the nature of the
optimisation problem. However, the number of replicate sets used (i.e. 50) in Monte
Carlo simulation for the integral method may not be large enough to ensure an
unbiased estimation of uncertainty intervals, compared to 1000 replicate sets used in

the differential method.

The integral method is more accurate, but it requires substantial computational effort
compared to the differential method, which is simple and rapid. Nevertheless, the
differential and integral methods are complementary tools for precipitation kinetics
estimation; differential methods can be used to help improve the efficiency of the
integral method by providing an initial guess of the values of the kinetics rates. The
final choice of what method to use, however, depends on the trade off between the

computing power, accuracy desired and the quality of experimental data.
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CHAPTER 10

MIXING IN PRECIPITATION SYSTEMS: A REVIEW

10.1 INTRODUCTION

In Chapter 11, precipitation kinetics estimation and modelling will be considered in a
poorly-mixed precipitator. For this reason, the role of mixing in precipitation systems
is reviewed. The geometry of a vessel, its internals (eg. baffles and draft tubes) and
the mechanical forces generated by the stirrer, determine the hydrodynamic
conditions in the vessel. In turn the hydrodynamic conditions in a vessel influence the
fluid flow pattern, fluid velocity profile and the rate of mixing. Mixing on the other
hand controls the interaction between fluids at both the macroscopic and microscopic
levels. That is, it determines the spatial homogeneity of supersaturation, temperature,

energy dissipation, and solids suspension in a vessel.

The assumption of “well-mixed” or “ideal-mixed” is commonly made for mixing in a
stirred vessel. However, this assumption is generally only valid for smaller scale
vessels. In precipitation processes, the chemical reactions or the process mechanisms
such as, nucleation and growth are essentially molecular level processes, which
require that the chemical species come in contact with each other and its environment
at molecular level. It has been reported that nucleation is strongly dependent on
supersaturation, if the nucleation time is fast compared to the mixing time, then
nucleation can begin in an inhomogeneous supersaturation field, resulting in local
nucleation. In addition, inhofnogeneous suspension mixing in the vessel also subjects
crystals to different supersaturation zones, which may affect secondary nucleation,

growth and agglomeration kinetics.
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10.1.1 Mixing Process

The mixing process is characterised by two independent mechanisms, known as
macromixing and micromixing. The state of one mechanism does not define a
corresponding level of the other. Micromixing is concerned with the mixing of fluids
on the molecular level. Macromixing is generally defined as all the mixing processes
other than micromixing, and is concerned with mixing due to the fluid velocity field,
which controls macroscopic composition homogeneities in the fluid, and also

determines the environment for micromixing.

10.1.2 Premixed and Unpremixed Systems

Baldyga and Bourne (1986) reported that two distinct systems can arise depending on
how the reactants are fed into the vessel. Firstly, in premixed systems, a single stream
of reactants is fed into the vessel, and mixing occurs between fluid elements of
different age, and hence, different reactant concentrations. In unpremixed systems,
two separate streams of different reactants are introduced into the vessel, and mixing
between different species occurs. Mixing in this case is particularly important,

because it precedes the chemical reaction.

Considerable research effort has been devoted to investigate unpremixed systems,
which are commonly employed in fast chemical reaction systems. The unpremixed
systems studied in the literature include consecutive-competing reactions, reaction
between two miscible reactants from different feed streams, and point feed of one
reactant to another. These include the work of Angst, Bourne & Sharma (1982a;
1982b), Baldyga and Boumne (1988), Bourne and Tovstiga (1988), Tavare (1989;
1994), Baldyga, Bourne & Yang (1993), Bourne, Gholap & Rewatkar (1995), and
Fournier, Falk & Villermaux (1996a; 1996b).

10.2 DEVELOPMENT OF MIXING MODELS IN THE LITERATURE

Models that account for non-ideal mixing systems have been developed since the
1950s. Two branches of mixing models have been developed in parallel; those based
on the chemical reaction engineering viewpoint and those from fluid turbulent theory.

Numerous models based on the residence time distribution concept, and the concepts

151



of degree of segregation and mixing earliness have been developed (Curl 1963; Ng
and Rippin 1965; Becker and Larson 1969; Costa and Trevissoi 1972; Ritchie and
Tobgy 1978; Garside and Tavare 1985; Tavare 1992; 1995b).

Similarly, a large number of mechanistic models based on fluid turbulent theory have
also been developed (Bourne 1983; Pohorecki and Baldyga 1983a; 1983b; 1988;
Villermaux and David 1983; Rohani and Baldyga 1987; Baldyga and Bourne 1989a;
1989b). Others include the network-of-zones model (Mann and Mavros 1982; Knysh
and Mann 1984; Mann 1986; Dudczak 1994; Mann, Ying & Edwards 1994; Mann et
al. 1997) and the computational fluid dynamics models (Sharratt 1990; Mann 1993;
Seckler, Bruinsma & van Rosmalen 1995; Fox 1998).

Mixing models are generally formulated from either the Lagrangian or Eulerian
viewpoints. Tavare (1986b) stated that in the Lagrangian perspective, the changes of
the properties of the elementary volumes or clumps are observed as a function of
time as they progress through the vessel. On the other hand, in the Eulerian view, the
property variation is observed at a fixed point in a stationary coordinate system.
Thus, both approaches result in different problem formulations. The Lagrangian
system includes those models based on the chemical reaction engineering viewpoint
and mechanistic models based on turbulence theory. The Eulerian system is that of

classical statistical turbulence theory and computational fluid dynamics models.

The mixing models developed in the literature can be classified into three groups.
Firstly, the macromixing models where the system is assumed well micro-mixed (i.e.
neglecting micromixing). The second group belongs to that of micromixing models
in which the systemn is assumed well macro-mixed. The third are those models that

incorporate interaction between micromixing and macromixing.

This chapter describes briefly the numerous mixing models reported in the literature.
A more detailed review on mixing models can be found in Baldyga and Bourne
(1986), Villermaux (1983; 1991), Tavare (1986b; 1995b), Baldyga and Pohorecki
(1995), and Kuipers and van Swaaij {1998).
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10.3 MACROMIXING

10.3.1 Residence Time Distribution

Macromixing is characterised by the residence time distribution (RTD) of the fluid.
The RTD concept was introduced by Danckwerts (1953). The term particle 1s used to
represent any conserved entity such as, molecule, elementary fluid volume or clump
(Tavare 1986b). Particles have zero age as they enter a continuous flow vessel and
acquire age equal to the time they spent in the vessel. The age of a particle at its exit
from the vessel is called the residence time. The experimental technique commonly
used for determining the RTD of fluid in the vessel is the stimulus-response
technique using tracer material in the flow. The stimulus may be pulse, step or
periodic injections of tracer, and the response is recorded as the amount of tracer

leaving the vessel (Levenspiel 1972).

10.3.2 Macromixing Models

The two extremes of the macroscopic liquid flow pattern in a vessel are represented
by the plug flow and completely mixed flow. Plug flow has only radial mixing, and is
characterised by an identical residence time for all particles within the vessel. The
completely mixed flow is characterised by an exponential RTD function, and has the
same composition within the vessel and at the exit of the vessel. Most real vessels
exhibit macromixing behaviour between these two extremes. The likely causes of
deviation from these idealised extreme flows as suggested by Tavare (1986b) are
velocity fluctuations due to turbulent diffusion, bypassing and channelling of
suspension, short-circuiting, stagnant regions of fluid or recycling within the vessel.
The non-ideal flows within a vessel have been described by the dispersion model, the
tank-in-series model and the mixed model (Levenspiel 1972; Tavare 1986b;

Villermaux 1991).

10.3.2.1 Dispersion Model

The dispersion model is characterised by the dispersion number, D/ux, that measures
the extent of axial dispersion and the characteristic mixing state in the vessel, where
D is the axial dispersion coefficient, u is the fluid velocity and x is the distance along

the axial direction. D/ux approaching zero indicates negligible dispersion, and the
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vessel will behave like a plug flow vessel. As D/ux approaches infinity, implies large

dispersion, and hence, mixed flow is achieved.

10.3.2.2 Tanks-in-Series Model

Tanks-in-series model has been proposed to model non-ideal flows in crystallisers by
Randolph (1965), Abegg and Balkrishnan (1971) and Nyvlt (1971). The approach is
to divide an imperfectly mixed suspension into a number of equal volume, perfectly
mixed compartments in series. The number of compartments is the model parameter,

if each is assumed to have identical independent attributes (Tavare 1986b).

10.3.2.3 Mixed Model

The dispersion and tank-in-series models can account for non-ideality in flows that
do not deviate greatly from their corresponding ideal flow patterns. For flows that
deviate significantly from the ideal flow pattern, a mixed model is required. The
mixed model considers the vessel as consisting of different regions i.e. plug, mixed
or dead-water, which are interconnected in different arrangements, i.e. bypassing,
cross-flow or recycle. A detailed description of the mixed model is given in

Levenspiel (1972), Ritchie and Tobgy (1978) and Tavare (1986b).

10.4 MICROMIXING

10.4.1 Micromixing - Chemical Reaction Engineering Approach

The concepts of the degrece of segregation and mixing earliness defined by
Danckwerts (1958) and Zwietering (1959) are particularly useful in developing
micromixing models. The degree of segregation is concerned with whether mixing
occurs on macroscopic or microscopic levels. On the other hand, mixing earliness is
concerned with whether the fluid particles of different ages mix with each other early

or late as it flows through the vessel.

10.4.1.1 Degree of Segregation
There are two extremes of the degree of segregation, which represent the limits of
micromixing, and are called the completely segregated and maximum mixedness

states. According to Danckwerts (1958), if individual clumps flow through a vessel
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without mixing on molecular scale (i.e. no micromixing), such system is said to be
completely segregated. In this situation, an individual clump travels through the
vessel according to the RTD. The contents of the vessel are then said to behave as a
macrofluid, and each clump acts as a small batch vessel, with same entering
conditions, but different exit conditions (Tavare 1986b). The other limit corresponds
to the complete molecular mixing, and referred to as the maximum mixedness. In this
case, the entering clump mixes immediately with clumps already in the vessel. The
vessel contents are then said to behave as a microfluid. The fluid is considered
completely segregated as it enters the vessel. If it mixes completely during its time in
the vessel, then 2 maximum mixedness state is achieved, otherwise, it will be either
partially segregated, which is the usual case in large scale vessels, or remain

completely segregated.

Mixing in real systems are generally partially segregated. To describe such state of
micromixing, Danckwerts (1958) defined a measure of the degree of segregation, J,
based on age as

vare, (@, —&)*

J= d
vare (o -wm)?

(10.1)

where a is the age of a molecule, & is the mean age of all molecules in the vessel,
and ¢, is the mean age of the molecules at a point. The value of J lies between Jqyn,
the maximum mixedness state, and J = 1, the completely segregated state. However,
Jmin depends on the RTD, and is zero only for an exponential RTD (i.e. a MSMPR
system). Baldyga and Bourne (1986) stated that this definition is not a useful measure

of the level of partial segregation, because it cannot be directly measured.

Brodkey (1981) utilised the concentration fractions to define the intensity of
segregation. For mixing of two non-reacting species A and B, the intensity of

segregation, I, is

) 2
=2t - S5 (10.2)
A CADCBO CADCBD
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where the concentration fraction fluctuation is defined as C/=C, - C,, and C,and

C, are the instantancous and averaged concentration fractions of species i (where i =

A or B), at any time instant. The intensity has the value of unity for completely
segregated fluid and zero for maximum mixedness (i.e. concentration fluctuation is
zero). Brodkey (1981) further stated that the intensity of segregation is a good
measure of the diffusional process. Hiby (1981) discussed various definitions and

measurements of the degrec of mixing in liquid mixtures.

Villermaux and David (1983} introduced an alternative measure of fluid segregation,

in which a vessel is considered to have a mixture of macrofluid of v fraction and

microfluid of (1-v) fraction. A micromixedness ratio, [, can be defined as a simple

1 Ly

empirical measure of segregation state,

7, =40 (10.3)
(2

The value of © can be determined by reactive or non-reactive tracer systems as

described by Villermaux and David (1983).

10.4.1.2 Micromixing Models

Tavare (1986b) provided a clear description of the notation used in developing the
micromixing models. According to Danckwerts (1958), a point is defined as an
element of a suspension, that is small compared to the volume of the vessel, but large
enough to have an average value of intensive properties such as, concentration and

population density. Zwietering (1959) defined the age, «, and a residual lifetime, A,

for a point in the system as
a+A=6 (10.4)
where & is the dimensionless residence time for a point. A point enters the system

with e¢= 0 and A = 8, and leaves with &= f#and A = 0.
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10.4.1.2.1 Completely Segregated Model

The concepts of the degree of segregation and mixing earliness have been utilised to
develop models to describe the extreme states of micromixing by Zwietering (1959).
In a completely segregated vessel, the mixing between points of different ages takes
place only at the vessel outlet where the points have a residual life, A = 0. The mixing
occurs when a = @ for all points, but different points will have different values of o
= 8. The completely segregated system can be represented schematically by a plug

flow reactor with side exits as shown in Figure 10.1,

— —
c., I T T 111
F—os

(44

o

Figure 10.1. A plug flow representation of the completely segregated system
(following Zwietering 1959).

where Q is the volumetric flow in and out of the reactor and ¢, is the initial
concentration. The age o axis is along the longitudinal direction. The side streams
represent mixing between points with the same age and same attributes. The mixing
between points with different ages is possible only at the vessel outlet, where they

merge to form an outlet stream. The average outlet concentration, ¢

our ?

is given as

oo

Z zfc(a)f(a)da (10.5)

0

where c() is the concentration in a completely segregated point at time ¢, which is

equal to that in a batch reactor after time ¢, and f{@) is the residence time distribution

function.
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10.4.1.2.2 Maximum Mixedness Model

In the maximum mixedness vessel, the mixing between points with different ages
takes place immediately once they enter the vessel. When mixing occurs between two
points with different ages, one of the points will have ¢ = 0 and they have the same
residual life. The maximum mixedness system can be represented with a plug flow

reactor with side entries shown in Figure 10.2.

Q_—>| 0
¢ T T fTTTTT ¢
—

A

Figure 10.2. A plug flow representation of the maximum mixedness system
{following Zwietering 1939).

The side streams represent mixing between points with different ages, but the same

residual life. The product concentration, ¢, can be obtained by solving

de_ A (_c)-R (10.6)

di 1-F(})

where R is the generation term due to reaction, which is a function of concentration

only, and
"1 F ,
F(A) = jﬂ F(A)dA (10.7)

The concentration at the outlet is the value of ¢ for A = 0. The appropriate boundary

condition is

de
—0 10.8
7 (10.8)

A—reo
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10.4.1.2.3 Models for Unpremixed Systems

Models for premixed systems are the aforementioned models, while unpremixed
models will be discussed below. Treleaven and Tobgy (1971) have shown that the
micromixing effect is different in both cases. Consider two feed streams, each
containing a single reactant species fed to the vessel, with a chemical reaction
occurring upon mixing between these two reactants. Clearly, if no mixing occurs
between the reactants, then no reaction takes place. Two terms are used for the
unpremixed feed system, which are known as species mixedness and age mixedness.
Two models for unpremixed systems have been proposed (Garside and Tavare 1985).
The first of these is for the case of maximum species and age mixedness, where all
points with the same residual lifetime mix together as early as possible. The second
model is for the case of maximum species but minimum age mixedness, where each
point entering at the same time and having the same residual lifetime mix
immediately, but does not mix with other points having the same residual lifetime
until they exit the vessel. Thus, total age segregation exists within the points. Garside
and Tavare (1985) showed that there are only small differences in the conversion
between these two unpremixed models, but completely different CSD are obtained.
The maximum species and age mixedness model can be represented schematically as

shown in Figure 10.3.

0
i v v b4y @)

8] 1\ 1\ T Il\ T T | Cq,Cg
CBo - |

Figure 10.3. A plug flow representation of the maximum species and age mixedness system.
{following Treleaven and Tobgy 1971).

Treleaven and Tobgy (1971) showed that the outlet concentration of component i, c;,
is given as

de(X) _, ./ (A, - f,(A),

dt : 1- F(A) (10.9)
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where { refers to component A or B, and j refers to the inlet stream { or 2, and the

average initial concentration of component i, ¢, , is determined from

c, =icw (10.10)
Q+0

‘The appropriate boundary conditions are similar to that in Equation (10.8).

The maximum species and minimum age mixedness model can be represented by the
bundle of parallel tubes structure as shown in Figure 10.4. In this structure, the fluid
is assumed to flow at constant velocity in small tubes whose Iength is proportional to

the residence time in the vessel.
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Figure 10.4. The bundle of parallel tubes representation of maximum species and minimum age
mixedness system (following Treleaven and Tobgy 1971).

Treleaven and Tobgy (1971) reported that the outlet concentration, ¢;, in this case can

be expressed as

oo

¢, = J‘c,-,,,a,ch (A f(A)dA (10.11)

0

where ¢; puei, corresponds to the concentration in a batch reactor with holding time, ¢.
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10.4.1.2.4 Coalescence and Redispersion Model

In the coalescence and redispersion model, fluid clumps are assumed to coalesce
randomly at some characteristic frequency, . This model assumes coalescence
between two clumps is followed by instantaneous homogenisation of concentration,
and then redispersion into separate clumps of the same composition (Villermaux
1991). Between interactions, each clump is assumed to behave as a batch vessel. The
model is described by an integro-differential equation, derived from the material
balance between a concentration interval, ¢ to ¢ + dc, of the concentration frequency

function, p(t,c), as

Iplt,c) . 90p(t,c)) _

1
P o ;[po(r,c)— p(t,0)]

: (10.12)
+ a)|:4J-p(t, c+a)pit,c—a)yda — p(t,c)

0

where r is the rate of production by chemical reaction per unit volume, 7 is mean
residence time, p,(t,c) is the inlet stream frequency function and « is a dummy

variable. However, the resulting integro-partial differential equation is difficult to

solve.

10.4.1.2.5 Environment Models

Environment models assume that the vessel consists of two or more separate
environments (eg. entering and leaving environments) having extreme states of
micromixing (i.e. completely segregated and maximum mixedness). The material is
transferred from the entering environment to the leaving environment through a

transfer function, sometimes referred to as segregation function, 7{ @A), which can be

a function of age, ¢, only or both & and residual life, A.

Several variations of the environment models have been proposed in the literature,
which differ in structure, (i.e. plug flow with side entries or exits or bundle of parallel
tubes), differ in the environment interaction, (i.e. in series or parallel) or in terms of

the transfer rates (Villermaux 1983; 1991).
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The vessel may be modelled by considering the entering environment as completely
segregated, and transferring it to a “maximum mixedness” leaving environment.
Depending on the number of feed streams, various environment models have been
proposed, these include the two environment model (Ng and Rippin 1965), the three
environment model (Ritchie and Tobgy 1979), and the four environment model
(Mehta and Tarbell 1983a; 1983b). Ritchie (1980) extended the coalescence and
redispersion model into a form in which it can be applied as an environment model.

Tavare (1986b) compiled a list of such models reported in the literature.

The single feed two-environment model proposed by Ng and Rippin (1965) is
considered here, other environment models are an extension of this original model.

The residence time distribution, f{t), is defined as

dF(t)

10.13
= (10.13)

fl=

where F(t) is the volume fraction of the fluid entering the vessel that remains in the
vessel between time O to t. Conversely, f{t)dt is the volume fraction of material in the
outlet stream having an age between ¢ and ¢ + dt. Zwietering (1959) showed that the

volume fraction of material in the vessel having age between & + da and residual life

of A + dAis given by

o, A)dodA =L fa+ D)dadh (10.14)
T

where g(A) is a frequency function of & and A.
Ng and Rippin (1965) proposed the rate of transfer of material from the entering
environment to the leaving environment is proportional to the amount of material

remaining in the entering environment. The rate of transfer of material, m, into the

leaving environment is given by

_am_ R (10.15)
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and R, is the constant transfer coefficient. By solving Equation (10.15) with

appropriate initial conditions, gives
m=m, exp(—R.1) (10.16)

where m, is the material at ¢ = 0. From Equation (10.16), the fraction of material of
age ¢« remaining in the entering environment is exp(—R,@). Thus, the fraction in the
leaving environment will be 1-exp(—R,@). Ng and Rippin (1965) determined the

mean outlet concentration, ¢, as

c= J.['l —exp(—R, )¢, +exp(—R,2)c(@)1f (@ + Ada (10.17)
0

A=0

where ¢, is the concentration in the leaving environment, and is determined as a
function of A, its value can be obtained by solving the material balance equation in
the leaving environment. For further details see Ng and Rippin (1965). It should be
mentioned that by setting the values of Ry = 0 (no transfer) and R, = o (maximum
transfer), the expression of the outlet concentration reduces to that of the completely

segregated and maximum mixedness models, respectively.

Mehta and Tarbell (1983a; 1983b) showed that the parameter, R, of the three

environment model is related to turbulence properties as

R =— (10.18)

where 7, is the characteristic turbulent mixing time, which may be estimated

according to the expression derived by Corrsin(1964) and Rosensweig(1964).
10.4.1.2.6 Interaction by Exchange with the Mean Model

Costa and Trevissoi (1972) and Villermaux and Devillon (1972) suggested that it is

the mass transfer between clumps and a fictitious average concentration in the vessel
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that accounts for multiple contacts between clumps. The average concentration of the
vessel contents is determined by summing the product of the age ¢ and concentration
in the clump at any time over all clumps. The basic equation for the change in the

concentration in a clump of age «is

de _T-c
da ¢

m

+R (10.19)

where € is the average concentration of the environment, #,, is the micromixing time
constant and R is the reaction term. If #,, approaches zero, maximum mixedness state

is achieved, and as it approaches infinity, the vessel is completely segregated.

10.4.2 Micromixing - Turbulence Theory Approach

The RTD modelling approach described previously uses the Lagrangian viewpoint. In
contrast, the classical statistical turbulence theory of mixing takes the Eulerian or
fixed frame perspective. Baldyga and Bourne (1986) stated that in the Lagrangian
approach, the history of the fluid element is followed, which enables the elementary
processes (i.e. deformation and molecular diffusion) responsible for micromixing to
be identified, but the spatial distribution in the system is unknown. In the Eulerian
approach, on the other hand, the information on the local mixing and age distribution

is unavailable due to the averaging procedure.

The turbulent theory based micromixing models discussed in the following sections
follow the Lagrangian interpretation. Villermaux (1983) and Baldyga and Bourne
(1986) proposed that mixing mechanisms consist of the following three consecutive

stages:

(1) spatial distribution of the completely segregated blobs;
(2) reduction of the scale of the completely segregated blobs by deformation; and

(3) mixing by molecular diffusion.

Stage 1 is obviously macromixing, stage 2 is sometimes called turbulent diffusion

and stage 3 is molecular diffusion. Hence, a complete mixing model should be able
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to describe all the above stages. In developing micromixing models based on
turbulence theory, perfect macromixing is usually assumed. Hence, the proposed
models describe only the deformation of the completely segregated zone and

molecular diffusion.

10.4.2.1 Modelling of the Decay of the Completely Segregated Zone

Villermaux and David (1983) proposed that the deformation of the completely
segregated zone is by erosive or laminar mixing, while Baldyga and Bourne (1986)
described the deformation process based on the concentration spectral information

available in the fluid mechanics literature.

10.4.2.1.1Erosive Mixing

Villermaux and David (1983) derived the “Shrinking Aggregate” model to describe
erosive mixing. According to them, mixing consists of peeling off small fragments
from the lumps of fluid by turbulent action at their external surface. The peeling off
process is characterised by a mass transfer coefficient, 7. For a spherical shape, they

stated that the erosion rate can be expressed as

— v, =hr (10.20)
da

where V, is the aggregate volume, & is the aggregate age and x is the aggregate

external surface area. They further stated that the rate of shrinking is

— =2h 10.21
o (10.21)

where [ is the diameter of the shrinking aggregate.

According to them a linear decrease of aggregate size with age can be expressed as

t

e

1= 1{1 »—3] (10.22)
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where [, is the initial size of fluid elements and 7, is the characteristic erosion time

constant, given as

=Ly pTieT (10.23)

€ [

where vis the kinematic viscosity, D is the molecular diffusivity and & is the energy

dissipation rate.

10.4.2.1.2 Laminar Mixing

Villermaux and David (1983) suggested that in the absence of turbulent shear, the
volume of the aggregates are gradually stretched out and folded up under the action
of viscous friction, in a process called laminar stretching. The fluid eventually ends
up with a lamellar or striated texture. The thickness of the aggregate decreases with

its age. The characteristic time, #;, for such a process is given as
2 1/2
V
t, 2[——) (10.24)

where &, is the rate of viscous dissipation per unit mass.

10.4.2.1.3 Concentration Spectral Interpretation
Based on the concentration spectral interpretation, Baldyga and Bourne (1986)

proposed that the rate of decrease of the completely segregated fluid volume, V;, as

_dVS __V’i
dt t

&

(10.25)

where 7, is the characteristic time constant. Baldyga and Bourne (1986) reported that

the rate of decay of the completely segregated volume in a batch vessel is

V =V exp(->) (10.26)
f

5
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where V, is the initial volume of fluid considered, and in a well-mixed continuous

stirred reactor, the rate of decrease of the completely segregation volume can be

. 1
V = 10.27
: q"{Hr/tJ ( )

where g, is the volumetric flow from the completely segregated volume to the

expressed as

maximum mixedness zone, and 7is the residence time.

10.4.2.2 Molecular Diffusion

Baldyga and Bourne (1986) reported that when the size of segregated domains is
small enough to cause steep concentration gradients, molecular diffusion can take
place between clumps of different compositions. This is the only process that results

in molecular mixing. The characteristic time for molecular diffusion is expressed as
(10.28)

where I_ is the average segregated domain size at this stage and D is the molecular
diffusivity of the species. In turbulent media, several microscales have been proposed
for I_, namely, the Kolmogorov microscale, 4;, the Batchelor microscale, Ag, and the

Corrsin microscale, A, which are defined as

3 1/4 D2 1/4 D3 1/4
1w=ﬁk=[‘”’—] ;“,:).B:(VE ] ;andlwzic=[—?] (10.29)

10.4.2.3 Engulfment-Deformation-Diffusion Model (EDD)

Following the reduction in the size of completely segregated regions by the
subdivision of turbulent eddies. Baldyga and Bourne (1986) proposed that three
additional mechanisms take place leading to micromixing. The first of these is the
engulfment of fluid from the bulk into vortices. The vortices are generated by the

stretching of fluid particles. Secondly, deformation of the “engulfed fluid” by further
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stretching, produces bursts of vorticity in series at progressively smaller scales, and
gives a “sandwich” of heterogeneous material. Finally, molecular diffusion takes
place when the striated structures resulting from the deformation process are
sufficiently thin (i.e. in the order of Kolmogorov microscale). Baldyga and Bourne
(1986) called this model as the EDD model, which requires the solution of coupled,

non-linear parabolic partial differential equations

2
9% LR (%) (10.30)

dc, dc,
g s Y
tult.x) ox b ox?

ot

where ¢; is the concentration of component i, ¢ is time, u is the shrinkage velocity, x 1s
the Cartesian coordinate, D is the diffusivity coefficient, and R is the specific reaction
rate. This equation describes the unsteady diffusion and reaction within a deforming
vortex. Complete micromixing requires several vortex generations (eg. N times), and

hence, it is necessary to solve the equations N times.

Baldyga and Bourne (1989a; 1989b) found that in the case of a Schmidt number, Sc,
much less than 4000, the engulfment is the rate-determining step in micromixing.
They simplified the EDD model and the micromixing calculations. They considered

[ 138}

the growth of spots of substance “i ™ as

=
I
=

(10.31)

&

where V; is the volume of i rich region, and E is the engulfment rate which is given as

PNE:
E= 0.058(—) (10.32)
v

Baldyga and Bourne (1989a) further stated that in mixing two reactants, the

engulfment of the same fluid elements are ineffective for mixing, thus, Equation

{10.31) can be extended to give,
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W pva-x) (10.33)
dt

I

where X; is the volume fraction of 7 rich region. The concentration of substance i in

this zone changes according to

dCi ;
== E(-Xp{e;) -]+ R-Q (10.34)

where {c;) is the concentration of reagent i in environment, R and Q are the rate of

generation and consumption of component i.

10.4.2.4 Shrinkage Slab Model

Li, Chen & Chen (1996) showed physical pictures of micromixing and macromixing
taken by high-speed microphotography. Instead of a lamellar structure proposed by
Ottino, Ranz & Macosko (1979) or the marble-like structure of Baldyga and Bourne
(1986) generated from eddy engulfment, the fluid exhibits slice-like laminae (2-D)
and stripe-like strands (1-D) during turbulent mixing with Sc >> 1. They proposed

the shrinkage slab model for micromixing,

de,  dc  _d%
a_? = sxa—i + Da—; (10.35)

with

(10.36)

((x.0) = {1 [x] < Ag /2}

O leZ/lkfz

where s is the shrinkage strain rate, D is the molecular diffusivity and x is the spatial

coordinate.
10.5 INTERACTION BETWEEN MACROMIXING AND MICROMIXING

A number of models that account for mixing at various scales have been proposed

recently (Bourne and Dell’ava 1987; David and Villermaux 1987; Ranade and
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Bourne 1991; Thoma, Ranade & Bourne 1991; Ranade 1992, Bakker and van den
Akker 1994; Chen, Zheng & Chen 1996; Li and Chen 1996; Phillips, Rohani &
Baldyga 1999).

Baldyga (1989) stated the importance of both macromixing and micromixing on the
selectivity, and proposed a model to incorporate interaction between macro- and
micromixing. Baldyga and Bourne (1992) and Baldyga (1993) defined the term
mesomixing to describe the disintegration of large eddies and interaction of the
plume of fresh feed with its surroundings, i.e. turbulent dispersion of the plume. The
scale of mesomixing is coarse relative to microscale, but fine relative to the scale of
the vessel. The mesomixing concept is introduced to account for mixing in the region
near the feed inlet; if mesomixing is slower than micromixing, then the reaction

becomes localised.

Baldyga, Podgorska & Pohorecki (1995) and Baldyga, Bourne & Hearn (1997)
considered the interaction between macro, meso and micromixing in precipitation

systems. They derived the following equations to describe such processes,

d—;gi =EE)X.(H1-X.1)] (10.37)

de, (t',1) , p.G
S = Bl - X, e, ¢"\0) c,.j(t,t)]—ﬂAT (10.38)

T

on (L.t 0 on (L.t',t)
J + G J
ar al.

=E(S)knj(L,t',t))—nj(L,t',r)] (10.39)

Equation (10.37) describes the micromixing in the plume of the mixing zone,
equations (10.38) and (10.39) describe the change of concentration and crystal size
distribution in the plume of the mixing zone. The term ¢y is the concentration of
species “i” in the species “/” rich zone, ¢ is the operation time, ¢“is the time of travel
from the feed point. p; is the crystal density, Ar and My are the total crystal surface

area and mass, respectively. Mesomixing affects the environment concentrations,
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{cij), and volume fraction, X;, whereas macromixing convects material through zones
of different energy dissipation, & changing local values of engulfment parameter

E(g).

10.6 COMPARTMENTAL MODELS

The compartmental models have been utilised to account for mixing effects in the
modelling of flocculation systems (Koh 1984; Koh, Andrews & Uhlherr 1984; 1987),
precipitation systems (Bohlin and Rasmuson 1996; Bermingham, Kramer & van
Rosmalen 1998), and suspension polymerisation system (Vivaldolima et al. 1998).
The essence of the compartmental model is to divide the vessel volume into a
number of compartments. The sizes of the compartments depend on the vessel
geometry and operating conditions. Bermingham, Kramer & van Rosmalen (1998)

stated that the compartmentals must be chosen such that

(1) they represent the overall flow pattern within the precipitator;
(2) there is negligible local energy dissipation gradient in each compartment;
(3) there is negligible supersaturation gradient in each compartment; and

(4) uniform distribution of the solids suspension in each compartment.

If particle segregation or a non-uniform distribution of the solids phase exists, then a
classification function needs to be determined. They also stated that the homogeneity
of energy dissipation, supersaturation and solids suspension in the vessel is
determined by the precipitator geometry, material propertics, operating conditions
and precipitation kinetics. Hence, the compartmental model is not universal, and
requires reformulating if there is deviation from above conditions. Bermingham,
Kramer & van Rosmalen (1998) further emphasised that the gradients in the
supersaturation are negligible if the residence time within a compartment is short
compared to the time required to deplete the supersaturation by growth and
nucleation. As a general rule, the residence time should be at least one order of

magnitude lower than the half-life for supersaturation depletion. This type of model
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10.7 NETWORK-OF-ZONES MODEL

The network-of-zones model has been developed to simulate single liquid phase
systems (Kynsh and Mann 1984; Wang and Mann 1992), precipitation systems
(Mann 1993; Wei, Garside & Mann 1996), gas-liquid systems (Mann 1986), and
solid-liquid systems (Brucato and Rizzuti 1988). The basic zone or cell in this model
is assumed to have perfect micromixing, a direct through flow of fluid and lateral
equal and opposite exchange flows between cells adjacent to each other. This is
shown in Figure 10.5. The cell (i,/) has a through flow of g and exchange flow of fg,
and B is the fractional flow factor. The network is constructed of nested flow loops
around foc