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ABSTRACT

The objective of this study was to investigate the application of multiscale satellite
remote sensing data for assessment of land cover change in the rural-urban fringe.
Inherent in this assessment process was the interpretation of multispectral data collected
by several medium resolution satellite systems and evaluation of the quality of the
resulting change information. Each dataset was acquired for a single date and classified
at two levels of detail using standard classification algorithms. The optimum
classification approach for each date was identified and the changes in land cover
evaluated in several ways. The contribution of spatial and thematic errors and their

propagation through the analysis process was investigated.

Data for this research were acquired over an area approximately 4.5 km square Jocated
in the southern metropolitan area of Perth, Western Australia. At the time of the initial
data acquisition in 1972 the arca was predominantly rural and comprised mostly dense
pine plantations, however by the final stages of data acquisition in 1991, the area was
almost completely given over to urban residential land use. Changes were interpreted
from classified Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper (TM)
and SPOT (Svstem Pour [’Observation de la Terre) High Resolution Visible (HRV)
mulitispectral data, and were compared to reference maps compiled from medium scale
aerial photographs. The geometric properties of high resolution panchromatic IRS1-D

data were also evaluated to test the geometric potential of high resolution satellite data.

Supervised and unsupervised classification algorithms were used for derivation of land
cover maps from each multispectral dataset at two levels of detail. Data were classified
onto four general levels at the broadest (Level I) classification, and into nine levels at
the finest (Level II) classification. The Kappa statistic and its variance were used to
determine the optimum classification approach for each dataset and at each level of
detail. No significant differences were observed between classification techniques at
Level I, however at Level II the supervised classification approach produced
significantly better results for the Landsat TM and SPOT HRV data. Classification at
the more general Level I did not produce substantially higher classification rates
compared to the same data at Level II. Additionally, higher spatial resolution data did

not provide increased accuracy, however this was due mainly to a much greater
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complexity of land covers present at the time the higher resolution Landsat TM and

SPOT HRYV data were recorded.

Land cover changes were assessed separately at Level I for all datasets, and also
between Landsat TM and SPOT HRV data at Level II. Integrated multiscale
assessment of land cover change was undertaken using classified Landsat MSS data at
Level T and Landsat TM data at Level II. This enabled the continuity of change to be
established across classification levels and sensor systems, even though there were

variations in the level of detail extracted from each image.

The sources of spatial and thematic errors in the data were investigated and their effects
on change assessment analysed. The evaluation of high resolution panchromatic
satellite data emphasised the contribution to the analysis of spatial errors contained
within the reference data. The multiscale data also indicated that combined propagation
of spatial and thematic errors requires investigation using appropriate simulation
modelling fo establish the influence of data uncertainty on classification and change

assessment results.

This research provides useful results for demonstrating a process for the integration of
information derived from remotely sensed data at different measurement scales.
Availability of data from an increasing range of remote sensing platforms and
uncertainty of long term data availability emphasises the need to develop flexible
interpretation and analysis approaches. This research adds value to the existing data
archive by demonstrating now historical data may be integrated regardless of the

spectral and spatial characteristics of the sensors.
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Chapter 1

INTRODUCTION

This chapter discusses the concept of remote sensing techniques as an information
source for temporal assessment of land-related development in the rural-urban
fringe. Characteristics of near urban areas and their relationship to remote sensing
techniques are outlined. The problem of the continuity of satellite remote sensing
programs is discussed and the integration of data with a range of spectral and spatial
resolutions is proposed. Image processing approaches for temporal assessment and
analysis issues associated with multiscale assessment of remote sensor data are
introduced. The objectives of the research are stated., as well as significance and
benefits of the research. The chapter concludes with an outline of the methodology and

thesis structure.
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1.1  Background

1.1.1 Remote Sensing for Urban Studies

Remote sensing systems have the potential to detect, measure and assess scene variables
based upon the response of the sensor to reflected or emitted radiation from the target.
The major impetus for the application of remote sensing is to provide information that is
not attainable by other means, or to reduce the cost of provision of the information.
Trotter {1991) indicates that remote sensing can provide a very cost effective data
acquisition and interpretation source for geographical information systems, while at the
same time providing data that are current, sufficiently accurate, comprehensive and

available to a uniform standard over the entire area of interest.

The modern era of digital remote sensing has developed from a sound basis of
interpretation of aerial photographs using the classic parameters of interpretation -
shape, size, pattern, tone, texture, shadow, site and association (Lillesand and Kiefer,
1994). Manual interpretation of analogue data relies upon the familiarity and
adaptability of the human interpreter to consider all available information in the
inductive process of interpreting remotely sensed data, and the deductive process of

relating the interpretation to resource information requirements (Witmer, 1977).

Digital approaches to interpretation rely upon development of analysis techniques that
utilise the unique quantitative characteristics of the digital data. Contrast stretching,
classification and texture analysis emulate their analogue counterparts, while techniques
including artificial intelligence approaches have been devised to facilitate incorporation
of ancillary data and to assist with high level interpretation, and decorrelation strétches
have been devised to reduce interference between multispectral bands. Regardless of
the interpretation approach, features of interest are only detectable because they are
correlated in a strong and predictable manner with their ground level spectral

reflectance characteristics (Duggin and Robinove, 1990),

Correct interpretation may be achieved through assessment of direct or hybrid variables
(Jensen, 1996). Direct interpretation of variables comes about when the remotely
sensed data are able to provide fundamental biological or physical information directly.
Measurement of position and height are common examples. Information regarding

hybrid variables is obtained by measuring one or more biophysical variables, that when



modelled, provide the required information. Mapping of land use is one such hybrid
variable where the final conclusion regarding specific land use classes is based upon
assessment of the land cover classes present in the imagery (Green et al, 1994). It is
only the spectral characteristics of land cover targets that are measurable via the remote
sensor, and from these and other optional ancillary data, specific land use types may be

identified.

Production of spatial interpretations and statistical summaries from remotely sensed
data cannot be seen as an end in themselves. Trotter (1991) indicates that remote sensor
data may form the basis of much input to geographic information systems (GIS) through
the potential to not only lower the cost of the data acquisition and interpretation, but
also to do so while meeting the other essential requirements for data in GIS. To fulfil
this role the data must be current, sufficiently accurate, comprehensive and available to

a uniform standard over the entire area of interest.

Digital interpretation approaches may be broadly categorised as either image
enhancement or feature extraction techniques, depending whether they fulfil a role of
improving the interpretability of the data, or serve to specifically identify features based
upon spectral and/or spatial characteristics (Lillesand and Kiefer, 1994). Land cover
changes were investigated by Byme er al (1980) using Landsat MSS data analysed
through the image enhancement process of Principal Components Analysis (PCA), with
final target identification achieved through manual interpretation of the resultant
images. Beaubien (1994) applied a similar analysis to Landsat TM data using a linear
combination of spectral bands, then used the feature extraction process of multispectral
classification to identify the targets. The specific analysis approach utilised depended
upon an assessment of the target characteristics and sensor system parameters, and how

these affect the clarity and content of the information contained within the data.

Remote sensing in urban and near-urban areas is influenced by a complex assemblage
of disparate land covers which form a heterogeneous agglomeration of targets resulting
from human activities, vegetation types, soils and water bodies (Forghani, 1994). As
with many mapping problems, urban classes are represented by a continuum of cover

classes rather than possessing well-defined boundaries (Forster, 1980b).



Forster (1985) indicates that the application of remote sensing approaches to urban
studies are useful because they can provide regular and rapid updating of land use data,
and are spatially more relevant for reporting urban development than census-type
statistical data. Additional limitations to the application of remote sensing to landuse
mapping of the rural-urban fringe do exist, and include the effects of atmospheric
attenuation, inconsistent interpretation approaches, and temporal variations in the

sensing parameters associated with the solar zenith angle, visibility and solar irradiance.

Assessment of the rural-urban fringe has been widely investigated by utilising a range
of remotely sensed data and digital processing techniques (Barnsley and Barr, 1996;
Forster (1980b}; Haack et al, 1987; Jackson et al, 1980 Martin ef al, 1988 and others).
These studies individually encompass a range of data sources including a variety of
spatial and spectral resolutions. Forster (1985) identified spatial resolution and
temporal frequency as the major factors governing the level of information available

from remote sensor data acquired from satellite platforms.

Digital analysis of remotely sensed data has broad application for interpretation of urban
and near-urban areas. Well established processing techniques are available, and some
sophisticated and innovative approaches have been developed for data integration and
interpretation.  With the launch of commercial remote sensing satellites, data with an
extensive range of spectral and spatial resolutions are becoming available (Fritz, 1996),
and multiscale data integration will become increasingly important. Spatial resolution
has been considered with respect to target size and arrangement, with conflicting results.
Spectral resolution has been investigated, but to date has been constrained by the
limited range of sensing systems carried on remote sensing satellites. One of the
challenges will be to develop techniques to combine the results of interpretation from

these evolving sensor systems to provide coherent change mapping products.

1.1.2 Temporal Assessment

The ability to reliably detect and identify land covers is significantly affected by the
temporal characteristics of the sensor. Foresam and Millette (1997) consider that
although temporal considerations related to diurnal or seasonal timing may be complex,
temporal analysis considerations are often more important than some spectral, spatial

and radiometric factors.



Multitemporal remote sensor data may be analysed in two distinct ways for scene
interpretation.  Firstly, multidate images may be analysed in order to improve the
quality of interpretation by incorporating knowledge of changes within the scene. For
example, the deciduous nature of some trees may be used to separate deciduous from
coniferous vegetation types. Alternatively, temporal variations in multidate images may
be examined to determine actual changes that have taken place in the area of inferest
between imaging dates. This second approach is to be applied in this research and relies
on the principle of change detection. Singh (1989) defines change detection as the
process of identifving differences in the state of an object or phenomenon by observing

it at different times.

The fundamental goals of change detection are to compare point by point spatial
representations in time by controlling variances caused by external factors such as
illumination, sensor calibration and variations in orbital parameters, and to measure
change caused by differences in the variables of interest (Green et af, 1994). Control of
the former will facilitate achievement of the Jatter. Careful assessment of all scene
dependent and acquisition and processing variables is required to optimise the

capabilities for change detection.

Jensen (1996) indicates that while high spectral and spatial resolutions are often
required for object identification, detection of the occurrence of change but without
identifying the specific change, is frequently less demanding. Consequently, there is
potential that even with spatially complex urban and near-urban targets, areas of change

may be identified if not the actual change that has occurred.

While visual interpretation of multitemporal aerial photographs and satellite images
provides useful change information, there is scope for more automated approaches
involving digital analysis. Ridd and Liu {1998) indicate there is a need for change
detection procedures that will automatically correlate and compare multitemporal
images for the purposes of highlighting change. Future availability of imagery acquired
at short time 1ntervals and with consistent image quality should provide adequate raw
data for most short term change detection analyses. However, there is increasing

uncertainty regarding the continuity of present remote sensing programs and sensing



systems, and therefore the potential to undertake long term monitoring using data sets

from similar sensors, such as the Landsat TM, is threatened.

General guidelines for sensor systems utilised for temporal assessment include a
systematic period between overflights, consistent time of overpass to minimise diurnal
sun angle effects, similar scale and look angle geometry, and recording of radiant flux in
a consistent manner and in relevant spectral regions (Jensen, 1996). The objective of
these constraints is to minimise or control variations between epochs of data acquisition.
However, even when using data from temporally adjacent epochs of a sensor such as
SPOT HRYV, variations still remain. Townshend and Justice (1995) state that even
differences between images from the same calender day may be rather complex.
Processing techniques and algorithms must be developed to account for these variables
and to minimise their effect. Commercialisation of remote sensing satellite programs
will lead to a greater variety of sensors and, for long term monitoring, comparison of

data from a range of satellite systems may be necessary.

A wide range of approaches to change detection analysis has been reported (Fung, 1990,
Green et al, 1994; Jeanjean et af, 1996; Jensen et al, 1993; Singh, 1989). Singh (1989)
considers all change detection approaches can be classified into image processing
techniques that utilise simultaneous analysis of multitemporal data, or postclassification

comparisons.

Simultaneous analysis of multiternporal data includes a broad range of techniques,
including image differencing, image ratioing, change vector analysis, multidate image
change detection and image regression (Jensen, 1996). The implementation of each of
these approaches is unique, however they are all designed to minimise differences
between images caused by scene-sensor variations between epochs.  For example,
image regression is designed to account for differences in the mean and variance
between pixel values for different dates so that adverse atmospheric conditions are
reduced. Additionally, these techniques emphasise residual differences between the

images that may then be identified as areas of change.

Postclassification comparison relies upon the comparison of classified images produced

through independent analysis of multidate imagery. Data from each date are processed



using a suitable classification algorithm and classification scheme, and changes are
detected by determining the differences between the resultant land cover maps. Singh
(1989) indicates the method has potential as each land cover map is produced
independently, thus minimising the effects of atmosphere and sensor variations between
epochs. The approach is also relatively straightforward and is able to accommodate

data acquired from different sensors at successive epochs.

Perceived -limitations of both of these approaches include no account of spatial
characteristics of the targets during analysis. A significant component of manual
interpretation of images involves analysis of site, shape, size, pattern, texture and
association, which are related to the spatial characteristics and contextual arrangement
of features.  Artificial intelligence and knowledge-based approaches to image
interpretation and change detection have been investigated by many researchers. In the
context of this discussion, most artificial intelligence and knowledge-based techniques
utilise either of the above techniques of temporal assessment as an integral component
of the analysis system, and therefore rely upon similar fundamental image processing
principles.  An advantage exists in their ability to utilise contextual ancillary data,

however most systems still require significant human intervention (Jensen, 1996},

Change detection will be investigated in this research using postclassification
comparison techniques designed to incorporate the spectral and spatial characteristics of
multisensor and multiscale imagery. Specific approaches to image processing will be

discussed in Chapter 4.

Representation of change areas is important to the overall temporal assessment process
and provides the final measure of land cover transitional processes. Change
representation varies between masking of change/no-change areas, through to explicit
change specification via cross tabulation of successive images where every land cover
transition is represented. A standard date-to-date comparison of n classes results in »°
possible change classes. To overcome this problem Jensen and Toll (1982) proposed
identification of a limited range of change stages for urban development which were
tdentifiable on Landsat MSS imagery. Alternatively, Jensen er al (1993) detail the

concept of a change matrix which uses a full crosstabulation of classes in both images,



but aggregates related changes and only highlights the major change classes within the

change matrix.

Due to the large number of possible transitional classes, change representation may be a
complex issue for production of information products. Consequently, change reporting

and representation of the results of temporal assessment will be considered in Chapter 6.

1.1.3  Multiscale Assessment

Conventional approaches to interpretation of remote sensor data endeavour to apply
statistically based interpretation techniques to the most suitable imagery available. Data
selection i1s based upon the spectral, spatial, radiometric and temporal properties of
available imagery balanced against the corresponding characteristics exhibited by the
target. While researchers acknowledge that improved interpretation results are a
complex function of spatiotemporal characteristics of the terrain, there is much
conjecture as to the precise role of spatial resolution in the accuracy of target
identification. Marceau et al {1994) indicate that finer spatial resolution data do not
necessarily improve the per-pixel classification accuracy because identification varies
according to the inherent spatial structure of the target. In contrast, Townshend and
Justice (1988) state that improved resolution increases the capability for accurate target
identification, and Collins and Woodcock (1996b) contend that resolution should be

sufficiently large that some amount of within-class averaging takes place.

Spatial resolution is understood to have several related and varied effects on the
outcome of the interpretation of remote sensor data. Remote sensing represents a
particular case of an arbitrary and fixed sampling grid with inherent limitations of scale
and aggregation (Marceau er af, 1994). This manifests itself through the information
content of the data being constrained by the spatial resolution of the sensor (Jensen,
1996), and consequently the ability to detect and/or recognise features is limited
(Marceau er al, 1994). For change detection purposes this effect may be more
significant because two or more images are analysed with each contributing to the
overall rate of interpretation error. The effect of spatial resolution on the interpretation
of land cover classes will be considered in Chapters 4 and 5 using images derived from

satellites acquiring data over a range of spatial resolutions.



Singh (1989) indicates that for change detection purposes the spatial resolution and
consequently the registration of component images have direct consequences on the
accuracy of change images where multidate data are combined or compared. Randomly
distributed errors, which develop during registration of component images, and some
residual systematic effects, such as those from sensor operation and relief displacement,
are propagated to the change image and are manifest as apparent increased levels of

change, which may be significant.

Researchers have evaluated the cartographic accuracy of Landsat MSS and Landsat TM
data (Welch and Usery, 1984) and derived methods for error modelling of SPOT HRV
data (Welch, 1985). Singh (1989) suggests that techniques involving the application of
fuzzy boundaries be developed which require less precise registration of images or
perhaps bypass the registration process entirely. However it is anticipated that
registration accuracy will always be an important consideration. Optimum results are
expected where the most accurate possible registration is achieved and geometric
registration 1s minimised as a potential source of change error. The extent of
registration error for various sensors will be investigated in Chapter 3, and its effect on

change measurement will be analysed in Chapter 7.

Jensen (1996} acknowledges that the thematic information content of the data is limited
by the spatial resolution of the sensor, as is the capability to provide accurate geometric
registration. Multiscale change analysis must therefore consider the geometric and

interpretation effects of spatial resolution upon change detection products.

Thematic interpretation of multiscale remote sensor data must also consider the spatial
scale or spatial frequency of the target (Townshend and Justice, 1995). This differs
from the acquisition scale or spatial resolution of the sensor, as it is scene rather than
sensor dependent. Several authors (Atkinson and Curran, 1997; Collins and Woodcock,
1996b; Jeanjean et al, 1996, Marceau et al, 1994) consider spatial scale or frequency of
targets to be important in defining the required spatial resolution of the sensor. From
global to local monitoring scales, the relationship between target structure or spatial
frequency and the spatial resolution of the sensor determine the ability of the sensing
system to identify the target. Marceau er al (1994) demonstrate this concept through

variations in scene statistics by progressively aggregating high resolution airborne



multispectral scanner data. These concepts may be extended to satellite data and will be
significant in the evaluation of the thematic information content of multiscale data for

change detection analysis.

Integration and comparison of interpretations from multiscale analysis must be
considered with respect to different levels of information content and variatiohs in
boundary locations. Townshend and Justice (1988) and Trotter (1991) consider the
issues of data generalisation when dealing with multiscale interpretation, and suggest
approaches for resolving the change measurement and representation problems. The
most significant issues relate to positional variations and the decreasing level of

boundary detail with coarser spatial resolution.

Evaluation of the effects of the spatial scale of the targets and the resultant variations in
land cover boundaries will be investigated in Chapters 6 and 7 when assessing methods

for reporting land cover changes and the effects of error propagation.

1.2 Problem Statement

Landsat | represented the first source of satellite-based remote sensor data suitable for
earth resources assessment that was part of a systematic worldwide data collection
program. Satellites from subsequent programs such as SPOT, National Oceanographic
and Atmospheric Administration (NOAA), Earth Resources Satellite (ERS) and a
number of others have been implemented, and many more are planned within the next
decade. Each system is designed to collect data for identification and analysis of a
range of targets and for specific functions according to particular system specifications,
For change detection purposes, continuity of data collection by a particular system is of
significant interest. Already the Landsat MSS instrument has been discontinued and the

Landsat TM sensor is also under review.,

The long-term viability of many commercial satellite remote sensing programs is not
certain. Consequently, it is likely the future for high quality satellite data may be
characterised by a range of systems which have only a short presence in the market
place. A need exists for a thorough evaluation of the prospects for utilising multiscale

satellite data for multitemporal assessment of land cover information.
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A range of methods is available for change detection, however many rely upon
evaluation of combined datasets derived from multiple epochs. These include PCA,
tasselled-cap analysis, combined classification techniques and image differencing
techniques. The basis of all of the above approaches is the consistent spatial, spectral
and radiometric qualities of the data resulting from sensing with an instrument of
similar specification. Where dissimilar sensors are utilised, substantial differences-exist
in all sensor specificatidns, in particular spatial and spectral resolution, and the above

combined approaches are no longer appropriate.

Due to considerable differences in the spectral, spatial and radiometric characteristics of
the data, analysis must involve separate interpretation of each dataset. Within this
context, postclassification analysis is appropriate for evaluation of land cover changes

from multiscale data.

Processing of multisensor and multiscale data provides for variations in classes derived
from the resulting interpretation that must be accommodated when change analysis is
undertaken. For each data source a discrete range of classes may be identified, however
these classes must be reconciled for comparison of interpretations derived from
different sensors in order for change detection to be effective. A coherent and
consistent land cover classification scheme and change reporting methodology is
required for this purpose, which must make it possible to identify important transitions

that have taken place between epochs.

Accurate geometric registration of mulitidate data has been identified as essential for all
change detection purposes. Registration errors directly affect any assessment of land
cover change and result in many areas of false change recorded in change detection
statistics. Comparison of multiscale data further complicates the process because each
dataset contains errors of location inherent to the sensing system. Classification errors
contributed by the interpretation approach and spatial errors due to the spatial resolution
of the sensor and the sampling interval adopted during rectification are also important.
Modelling and evaluation of these errors is necessary in order to assess the reliability of

change detection statistics derived from multiscale sateilite data.



1.3  Research Objectives

1.3.1 Aims of the Research

The main objective of this research is to investigate the application of change detection
techniques to multiscale remote sensor data. Spectral and spatial properties of the data
are investigated in order to evaluate the potential of change detection using different
satellite sensors. The classification accuracy of each sensor is evaluated against known
land cover distributions derived from aerial photographs, and the spectral separability of
the data is evaluated to optimise the performance of the classifier. The contribution of
thematic and spatial errors caused by sensor sampling and geometric registration is also
evaluated. An analysis of the thematic and spatial accuracy of the final land cover

change detection image is also completed.

The objective of this study is therefore to test the hypothesis:

That multiscale remotely sensed digital data can be processed to accurately determine

land cover changes on the rural-urban fringe.

1.3.2 Significance and Benefits of the Research

This research provides an image processing and change assessment approach that can be
applied to land cover change analysis using multiscale satellite data. Evaluation of the
reliability of the multiscale approach to change detection provides future users with an
alternative to the standard temporal assessment methods, and enables digital data from a
range of sensors to be interpreted for derivation of land cover change statistics. This
will overcome limitations on the assessment of change caused by current approaches,
which rely upon analysis of digital data from the same remote sensing system. The
flexibility afforded will enable users to access a combination of data sources, especially
where weather conditions and reception facilities may restrict access to regular

monitoring information.

Over the next decade many commercial remote sensing satellites are planned which will
acquire data suitable for land cover assessment. It is likely that for long term
monitoring, data from a single sensor may not be consistently available and multiscale

data integration will become increasingly important. The benefit of this research is that
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it identifies the specific issues involved and analyses the contributions of a range of

sensors to land cover change detection.

1.3.3 Research Methodology

This research is designed to investigate the potential to utilise remotely sensed data
from sensors with different spatial and spectral resolutions for temporal assessment of
land cover changes in the rural-urban fringe. An assessment of the suitability of the
approach is based upon an evaluation of the classification accuracy and consistency of
the data derived from various sensors, and the contribution to the results of the
geometric properties of the sensor and the geocoding method applied. The sources of
multiscale satellite infermation used for this research are Landsat MSS, Landsat TM,
SPOT HRV multispectral data and TRS1-D panchromatic data. The first three datasets
are utilised for thematic classification and geometric assessment, while the IRS1-D

panchromatic data are used only for geometric evaluation.

The study comprises the following major components:

(i) Review the use of remote sensing for information extraction applied to temporal
assessment, focusing on the spectral and spatial resolutions of satellite sensors
and how these affect image interpretation. Classification accuracy, spatial and
thematic error propagation and change reporting will also be evaluated;

{i1) Compile relevant Landsat MSS, Landsat TM, SPOT HRV and. IRS1-D satellite
data for the study area in a format suitable for analysis. Interpret aerial
photographs for each satellite image acquisition date for use as reference data;

(iti)  Geocode all satellite data to the Australian Map Grid (AMG) using digital
planimetric data provided by DOLA and MRWA, and evaluate rectification
accuracy using independent control points for verification;

(iv)  Define land cover classes suitable for multiscale assessment based upon a
standard classification system and considering the spectral and spatial
resolutions of the satellite data. Select and refine training sites for image
classification;

(v) Assess the accuracy of each classification of multiscale satellite imagery and

evaluate the allocation of classes considering variations in spatial resolution;



(vi)  Determine land cover changes between epochs and evaluate change
representation for the various spatial resolutions of satellite data by analysing the
change matrices and their accuracy parameters;

(vii) Summarise the changes observed between sensing epochs and develop methods
to compare classifications between datasets at multiple levels of abstraction and
information content;

(viii) Evaluate the effect of combined spatial and thematic errors on change
representation, and investigate appropriate methods for error modelling and

assessment.

1.4  Thesis Structure

This research thesis comprises eight chapters. Chapter 1 considers the concept of
change detection for near urban areas, image processing approaches for temporal
assessment and analysis issues associated with multiscale assessment of remote sensor
data. Problems associated with change detection using multiscale digital data are
introduced and the application of image classification is discussed. The objectives of
the research are stated, as well as the methodology and significance and benefits of the

research.

Chapter 2 presents the study area and describes the physical characteristics of the area to
be analysed. The derivation of ground reference data from aerial photographs taken in
1972/73, 1986 and 1991/92 is discussed, and the observed land cover transitions
between satellite epochs is explained from a remote sensing perspective. The Landsat
MSS data from 1972, Landsat TM data from 1986, SPOT multispectral (SPOT X8) data
from 1991, and IRSI-D data from 1998 are discussed, along with the important
characteristics of the sensors which are relevant to change detection analysis.

Preprocessing of the data prior to analysis is also outlined.

The processes of rectification and resampling are detailed in Chapter 3. This chapter
describes the available techniques for image rectification and outlines relevant factors to
be considered in ground control point {(GCP) selection and analysis of residuals.
Resampling schemes are also considered and discussed with respect to establishing a

common spatial resolution for the multiscale data and maintenance of a spectrally



coherent dataset. The spatial effects of image resampling are investigated and the

precision of the rectified images is evaluated.

Chapter 4 reviews land cover classification strategies in the context of their application
to multiscale analysis. The process of image classification is described and applied to
the study area for each epoch. Detailed analysis of the spatial correlation and spectral
separability of the land covers is performed. Results of the classification of each image

are presented and a qualitative assessment of the classifications is undertaken.

Thematic mapping accuracy assessment methods are discussed in Chapter 5 and an
assessment is made of the classification performance for each resolution of satellite
data. Overall Classification Accuracy and Kappa Coefficient statistics are derived, and
the optimum classification approach for each level of classification and for each image
dataset 1s determined. Factors affecting the classification accuracy are discussed in the

context of target and sensor characteristics.

Change detection techniques are reviewed in Chapter 6. The postclassification
comparison approach is used to derive land cover change maps between epochs.
Summary statistics of change are produced using change matrices and the land cover
changes between dates are investigated. The effectiveness of change detection
techniques using multiscale data is evaluated and the concept of change reporting as a
means of measuring and communicating changes identified using remote sensing is

considered.

Chapter 7 examines the sources of spatial and interpretive error in change maps when
using multiscale remotely sensed data. An analysis of error propagation through image
rectification, reference data collection and map overlay techniques used for the
production of change maps is undertaken. Conclusions and recommendations for future

research are provided in Chapter 8.
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Chapter 2

STUDY AREA AND DATA PREPARATION

hange detection analysis requires a thorough knowledge of the characteristics of
C the study area in order that appropriate image processing techniques are
employed and that interpretation of the results is relevant to the actual land cover
changes that have occurred. An understanding of the specific properties of the satellite
data utilised for change detection is also required, and they must be considered in
conjunction with the image processing requirements. Reliable reference data are needed
to provide guidance for selection of training samples and for comparison of
classification results to evaluate the effectiveness of object identification. This chapter

concentrates on the key characteristics of the satellite and reference data.
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2.1 Introduction

Land cover changes are analysed in this study for an area situated within the City of
Melville, which is located in the southern metropolitan area of Perth, Western Australia.
The study area has undergone significant change over the time span of this study. Land
covers have varied from natural vegetation and plantation forest through to remnant
natural vegetation and medium density housing. Satellite imagery used within- this
study includes Landsat MSS, Landsat TM and SPOT HRV multispectral data, and
IRS1-D panchromatic data. Additional data in the form of aecrial photographs and

analogue and digital maps were required to assist analysis.

Selection of a suitable study area for detailed analysis requires consideration of a range

of important factors, including:

(1) Access to an archive of suitable remotely sensed data for analysis of geometric
and thematic characteristics;

(ii) Convenient access to the study area for field checking of reference data and
verification of image interpretation;

(iii}  GCPs that are readily identifiable in the range of multiscale images investigated
in this research and on the ground, which are suitable for the image rectification
process;

(iv)  Availability of ancillary data such as analogue and digital maps, and aerial

photographs for compilation of reference data.

Compatible reference data are essential for comprehensive analysis of primary remote
sensor information. Multiscale remotely sensed data were selected for this study in
consideration of the limited lifespan of remote sensing systems to date and the
likelihood of a multitude of satellite sensors becoming available in the future, but
without any guarantees for long term data continuity. While future satellite sensors
promise a comprehensive range of higher resolution data, at the time of this research the

first new generation multispectral satellite sensors had only just been commissioned.

Planimetric data necessary for GCP identification and image registration are available
from digital planimetric maps and hard copy topographic maps of the area. Aernal
photographs corresponding to each imaging date provide detailed information regarding

land cover changes within the study area over the duration of the study.
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The study area and specific anniversary dates are important because they provide a
temporal view of the changing land cover over an extended period of time. Location of
the study area within the Perth metropolitan region facilitates access to relevant
reference data in the form of medium scale aerial photography for comparison with the

primary satellite data used to assess land cover change.

22 Characteristics of the Study Area

2.2.1 Location and Environment

The study area (Figure 2.1) comprises parts of the City of Melville municipality, which
falls within the greater Perth metropolitan area. It is located approximately 11 km south
west of the Perth city centre and occupies an area 4 km (E-W) by 4.5 km (N-S). In
1972 the study area was located on the southern fringe of the metropolitan region and
has since been incorporated as part of the dormitory suburbs of Winthrop and Murdoch,

as Perth gradually expands to the north, east and south.

Figure 2.1 Location of the study area. Scale 1:200 000

Perth is a modern city of approximately one million people and is subject to continuing

demands for increased land areas suitable for housing and infrastructure development.
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The study area has undergone significant alteration in land covers during the period of
this study, ranging from large areas of natural and plantation vegetation in 1972 through

to almost complete development for urban land use in the early 1990s.

The study area is part of the Swan Coastal Plain bounded by the Darling Scarp to the
east and the Indian Ocean to the west. The Plain is approximately 80 km wide and
extends over 250 km from Gingin in the north to Dunsborough in the south. The Perth
metropolitan area is situated in the central part of the Plain and in 2000 urban
development extends from the coast to the Darling Scarp, and for approximately 40 km
both to the north and south of Perth. The areas of Murdoch and Winthrop are now

considered near-city suburbs.

The study area is located on the western Bassendean dune system (Seddon, 1972)
formed from leached quartz sands where the soils are considered very infertile and are
very low in calcium, iron and most other minerals. The topography of the area is
characterised by low sand dunes up to 30 m in elevation, which have been stabilised
over time by natural vegetation. The soils of the Bassendean system are excessively
drained and retain little or no moisture. Between the sand ridges lie a series of
interdunal depressions that form the only natural water features within the study area.
Moisture is retained in these locations through an impermeable hard pan, and they are
generally saturated with water for much of the year and maintain a specific range of
vegetation (Seddon, 1972). Many of these areas have been retained today and several

occur within the study area.

The natural vegetation of the Bassendean dune system mainly comprises woodland with
a canopy of banksia species and a diverse understorey of flowering shrubs. Banksias
grow to approximately 5 m and possess a very open canopy structure which, from a
remote sensing perspective, provides a target comprising a complex admixture of plant
and soil components. The Bassendean system has little agricultural value (Seddon,
1972), however considerable areas have been cleared for commercial pine plantations.
A significant proportion of the study area has been put to this use and clearing of the

plantations has been a precursor to subsequent urban development.
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2.2.2 Land Cover Types

Land covers within the study area were surveyed to determine the characteristic surface
features for recognition in the remotely sensed data. Site visits were made and
representative areas identified and correlated with patterns in the aerial photographs to
assist with image interpretation and for reference data compilation. The study area
comprises the following major cover types: -
(i) Woodland,

(ii) Interdunal wetlands and fringing vegetation,

(iii)  Pine plantation,

(iv)  Grassland,

(v) Bare ground,

(vi)  Residential,

(viiy Commercial,

{vii1) Recreation.

Plate 2.1 shows an area of Woodland with banksia trees providing the canopy and a
combination of low flowering shrubs forming the understorey. All plants in this area,
except for some low growing native orchids and introduced grasses, are perennials and

maintain leaf cover throughout the year.

The overall density of vegetation cover of Woodland contrasts with the fringing
vegetation of the interdunal wetlands as indicated in Plate 2.2. Wetlands comprise a
relatively dense vegetation cover formed by a canopy of paperbarks up to 7 m tall, but a
much denser understorey of ti-tree and reeds approximately 1.5 m high. Together these
provide an almost 100 percent ground cover as viewed from a remote sensor. Areas of
open water (Water class) in these wetlands are few in number and generally occur only
in the larger wetlands (Plate 2.3) or due to dredging for water supply within the pine

plantations,

Plates 2.4 and 2.5 show representative samples of Pine plantations similar to those
originally found in the study area. A relatively high density of planting is shown in
Plate 2.4 whereas a thinned pine plantation is shown in Plate 2.5. Mature pine
plantations are almost totally devoid of understorey, although arecas subjected to

extensive thinning have a sparse understorey of shrubs and annual grasses.



Plate 2.1 Woodland of the Bassendean dune system showing banksia canopy and

flowering shrubs of the understorey

Plate 2.2 Wetlands indicating dense vegetation cover without open water
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Plate 2.3 Wetlands indicating extent of open water areas with fringing vegetation

Plate 2.4 High density planting of pine plantation
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Plate 2.5 Pine plantation following thinning operations

Plate 2.6 Grassland area after clearing of pine plantation or woodland, and following

growth of annual grasses
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Plate 2.7 Bare ground following clearing and prior to construction or growth of annual

grasses

Plate 2.8 Partially constructed residential area showing areas of bare ground



Plate 2.9 Residential construction showing clay and concrete roof tiles and

surrounding sparse vegetation

Plate 2.10 Residential construction showing steel roof and surrounding dense

vegetation



Plate 2.11 Commercial site indicating mixture of buildings and paved areas

Plate 2.12 Irrigated area of Recreation class associated with Commercial class and

Jringing trees
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Plate 2.13 Irrigated pasture located within the Murdoch University Veterinary Science

complex

Plate 2.14 Residential, Recreation and Wetland classes in close proximity
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Grassland areas in this region occur largely as a transitional land cover between other
uses. For example, following removal of pine plantations and prior to recreational or
residential development, land left fallow for at least the winter and spring seasons (June
to November) are soon covered by annual grasses that grow actively until early summer.
Plate 2.6 shows an example of temporary grassland development in this transitional
stage. Like Grassland, Bare ground also occurs during a transitional stage. Plate 2.7
shows an area of Bare ground following clearing for residential development, but prior
to the commencement of housing construction. Plate 2.8 indicates a further transitional
phase, where residential construction is well advanced on some lots, but not others, with

the area almost totally devoid of vegetation.

Residential developments within the study area generally comprise detached housing
constructed on allotments varying in area from 500 to 800 sq m. Most structures have a
roof area of approximately 130 to 250 sq m, predominantly of clay or concrete tile
construction, but less frequently made of fibre cement or steel materials. Plates 2.9 and
2.10 indicate variations in the construction materials and adjacent land covers associated
with residential developments. Variations in vegetation type and canopy cover between

the two photographs are particularly worth noting.

Plate 2.11 shows an area typical of the Commercial class in the study area, which is
characterised by large roof areas and surrounded by expansive areas of open space,
generally paved with either asphalt or concrete. Roofing materials are mostly fibre
cement or metal, and compared to residential areas, most commercial sites are almost
totally devoid of vegetation. Factory or warechouse sites have very similar land cover

characteristics to retail sites, and are typical of the example in Plate 2.11.

A number of recreation sites are included in the study area and characteristically contain
a diverse range of large areas of open grassland, which are intensively managed.
Additionally, many recreational areas also contain other vegetation types such as trees
and shrubs. Plates 2,12, 2.13 and 2.14 show examples of the Recreation class that
indicate the mixture of cover types present. The common element is the presence of
large areas of vigorous herbaceous (grass) vegetation grown under irrigated conditions.
Note also that some Commercial (education) development (Plate 2.12) is closely

associated with various categories of the Recreation class, and that developments such
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as sporting pavilions may be included within areas identified as Recreation on the

reference data.

Plate 2.14 indicates the relatively close proximity and complex arrangement of land
covers within the study area. Within a distance of 100 m land covers may change

several times, in this case from Werland to Recreation, and subsequently to Residential.

2.2.3  Transition Sequences

The previous section described the major land cover classes found within the study area
during the period of data acquisition for this research. Given the spatial arrangement of
features and the temporal nature of the research, there are important spatial and
temporal transition sequences that influence the interpretation of remotely sensed data.
Spatial transition sequences result from a continuum of cover classes between which it
is difficult to identify clear boundaries of discrete nominal classes (Forster, 1985).
Temporal transitions result from changes in land cover between sensing epochs,
however due to the low frequency of data acquisition, the measured states of the targets
may not represent adjacent states in the transition sequence (Jensen and Toll, 1982,

Martin and Howarth, 1989),

Natural transitions occur between land cover types such as Wetlands and Woodland. As
is the case with many thematic mapping problems, a hard boundary is placed between
transitional classes that in reality may be spatially separated by a transition zone, rather
than a single line of demarcation. Additionally, an area may be subject to changes in
land cover with several stages occurring in the temporal transition sequence from one
land cover class to another. Recognition of transitional situations by the sensor is
therefore limited by the ability to define a legitimate decision boundary based upon
spectral characteristics., or to temporally recognise a transitional cover class as
belonging to one or other of the substantive land cover classes, and therefore reduce the

mapping confusion.

For example, the spatial transition between Wetlands and Woodland needs to be
considered on the basis of the spectral properties of the targets and whether they are
spectrally separable. Conversely, a change from Pine plantation to Residential may not

occur in a single identifiable stage. Several temporal transition stages including Pine
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plantation, Bare ground, Grassland and engineering construction may precede the
formal recognition of an area as Residential, having previously been categorised as Pine
plantation. For successful interpretation, these transition stages must be uniquely

identifiable or logically grouped into one or other of the land cover classes.

Other more subtle transitions may occur over a longer period of time. Not all
residential areas are similar in appearance. Plates 2.8, 2.9 and 2.10 indicate the
difference between new Residential and mature Residential. New residential contains a
mixture of developed and undeveloped allotments, as well as bare soil and minimal
vegetation. This is in contrast to more established residential areas where construction
has taken place on almost all allotments and vegetation is much more dense. Depending
upon garden design trends, not all established residential areas may reach the stage of

relatively luxuriant vegetation which is observed in Plate 2.10.

Recognition of temporal and spatial transition sequences in the study area is an essential
component for target recognition. Derivation of classification schemes and analysis
techniques requires a thorough understanding of target characteristics relative to the
sensor capabilities. The following section focuses on the spectral and spatial

characteristics of the study area and their effects on recognition by the sensor.

2.2.4 Spectral and Spatial Characteristics

The ability of remotely sensed data to provide information regarding land covers is
influenced by the spectral characteristics of targets and the spatial arrangement of target
components, as well as the ability of the sensor to discriminate these factors.  Sensor
specifications will be discussed in Section 2.3, however it is well established that
spectral resolution, which is determined by the number of spectral bands and their
bandwidths, improves discrimination of targets when increased numbers of bands with
narrower bandwidths are available.  Additionally, sensors with more sensitive
radiometric resolution also provide improved discrimination (Haack er al, 1987).
Wharton (1987) indicates that differentiation of typical urban land covers is better based
upon radiometric differences (contrast), because within class spectral properties are

highly variable.
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The effect of spatial resolution on interpretation performance for urban and near urban
targets is less clear. Many researchers consider finer spatial resolution to be an
advantage (Forster, 1980b; Gastellu-Etchegorry, [990), because pixels contain fewer
subclasses and finer resolution permits improved discrimination of within class
variances.  Alternatively, research results show that finer spatial resolution may
contribute to poorer interpretation results due to increased within class variance, which
is caused by a reduction in the smoothing effect that is present when using data with
large pixel dimensions (Davis and Simonett, 1991; Haack et al, 1987; Martin and

Howarth, 1989: Toll, 1985; Wolter et af, 1995).

Recognition of the spectral characteristics of targets is critical, as is an understanding of
the spatial frequency of features in the scene relative to sensor spatial resolution
{Marceau et al, 1994; Martin et af, 1988; Welch, 1982). The following discussion
considers these factors in the context of the study area and the specific land cover

classes to be identified.

At the spatial resolution of the multispectral sensors considered in this research (20 m to
79 m), the Woodland class comprises a relative uniform mosaic of canopy, understorey
and background components that demonstrate substantial variability over distances of 3
to 5 m. This land cover class occupies relatively large areas of the scene and exhibits a
relatively high spatial frequency compared to the resolution of the sensors, therefore

providing a comparatively uniform response to the satellite sensors.

Within the study area interdunal wetlands vary in size from 1 ha to 10 ha, and with open
water areas from 0.25 ha to 4 ha. In all cases the vegetation cover is dense and of
relative uniform composition with little background soil or leaf litter reflectance. Water
areas are generally small, although one wetland has an open water area of 4 ha, and
within the region there are lakes up to 100 ha. Within this land cover class, the
vegetation components exhibit a high spatial frequency which leads to the measurement
of consistent spectral reflectance values, but due to their relatively small area and
isolated locations, wetland areas are subject to considerable mixed pixel responses and

edge effects, especially for Landsat MSS data.
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The reflectance of Pine plantations measured by satellite-based remote sensors
comprises predominantly interaction of electromagnetic radiation with plant
components and bare soil or fallen pine needles. Where extensive thinning of the trees
has occurred, some shrub and annual grass understorey also affects the response. The
relative proportions of plant and background components largely depend upon the
density of foliar coverage. Pine plantations comprise a relatively consistent mixture of
components that occur at a moderate spatial frequency, and are found in relatively large
areas of homogenous composition. At the spatial resolution of the available sensors, the
spatial distribution of features and edge effects should not be a major factor in

determining spectral response.

Grassland areas within the study area form a potentially complex spatial and temporal
association with Bare ground areas. Spatially, Grassiand and Bare ground may
comprise large or small areas individually or in combination. The location and pattern
may also vary with time, leading to a range of potentially complex targets for
identification by the remote sensing system. While each cover type is spectrally
separable, inconsistent spatial frequencies may result in variations in the ability of each
sensor to identify the specific feature. Both cover types also occur as minor
components in conjunction with targets such as Residential, Commercial and Pine
plantations, but are considered too insignificant in a spatial sense to identify as separate

targets.

From a spectral and spatial viewpoint, Residential and Commercial land cover classes
are potentially the most complex targets in the area. The variety and agglomeration of
target components (clay, concrete, steel and fibre cement roofing, asphalt and concrete
paving, vegetation, bare soil etc), and moderate spatial frequency of objects are
significant factors. Considering the spatial frequency of the components, none of the
sensors are capable of identifying all individual components within the Residential and
Commercial classes, and the degree of smoothing into generalised classes varies from
high for Landsat MSS to moderate for SPOT HRV data. Both classes occupy relatively
large areas and boundary effects should be minimal for SPOT HRV and moderate for

[Landsat MSS.
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The Recreation class includes all forms of intensively managed passive and active
outdoor recreational facilities, as well as areas of irrigated pasture associated with the
Murdoch University School of Veterinary Science. These grassed arcas provide very
high spatial frequency compared to the resolution of the sensor, however they often
occur in conjunction with random groups of trees and associated parking and amenity
buildings. which contribute to the spectral diversity of the target. Recreation areas also
occupy relatively small (<1 ha) areas and are therefore subject to considerable boundary

effects during sensing, especially for coarser resolution sensors such as Landsat MSS.

2.3 Satellite Data

2.3.1  Sensor Characteristics

This research is designed to study the capability of monitoring the rural-urban fringe
using remotely sensed data recorded with a range of spatial and spectral resolutions
from a variety of satellite systems. Data have been acquired from four satellite systems

and their specifications are summarised in Table 2.1.

Landsat MSS Landsat TM SPOT HRVY IRS-1D PAN

Spectral band 1 050-060 |1 045-052 I 050-059 11 0.50-075
numbers and 2 060-070 |2 052-0.60 2 061 -0068
spectral sengitivity | 3 070-0.80 |3 0.63-0.69 3 0.79-0.89
{pum) 4 080-1.10 | 4 076-090

5 1.55-1.75

6 1040125

7 2.08-235
Instantaneous 79 x 79 30 x 30 band 1-5,7 20 x 20 58x58
Field of View 120 x {20 band 6
(IFOY) (m)
Quant. Levels o4 256 256 64
Altitude 919 km 705 km 832 km ~817 km
Swath width 185 km 185 km 60 km 70 km
Revisit capability I8 days 16 days 1-26 days 5 days

Table 2.1 Sensor system characteristics (after Jensen, 1996; Saraf, 1999)

The Landsat remote sensing program was initiated by the National Aeronautical and
Space Administration (NASA) and active data acquisition commenced in 1972 with the

launch of Landsat 1 as the first purpose built land resources sensing satellite. Landsat 1
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was followed by the successful launch of a series of satellites during the following 12
years (Landsat 2 to Landsat 5). Landsat 6 failed during launch in 1993 and Landsat 7

was successfully Jaunched in April 1999.

Landsat 1 through 5 all included the MSS instrument, with Landsat 4 and 5 also
carrying the TM sensor. While no new satellites with MSS sensors wiil be launehed,
Landsat 7 includes the same spectral and spatial band specifications for the visible, near
infrared and middle infrared bands of the TM sensor, while the thermal band has
improved spatial resolution from 120 x 120 m to 60 x 60 m. In addition, a high
resolution (15 m) panchromatic band has also been included (ACRES, 1999). This
development program ensured the continuity of data collection by an identical sensor
from 1972 when the MSS sensor was first commissioned until the demise of Landsat 5,

and similarly for the TM sensor since first being launched in 1982 until the present.

The French SPOT satellite program commenced operation in 1986 with the launch of
SPOT 1, and has continued with SPOT 2 and SPOT 3 being launched in 1990 and 1993,
respectively. SPOT 4 is the most recent in the series having been launched in 1998.
SPOT satellites have a dual capability through the HRV sensor to acquire high
resolution panchromatic data or multispectral data. The first three SPOT satellites used
the multispectral bands listed in Table 2.1, however, SPOT 4 now contains an additional
band in the 1.58 — 1.75 um range. The wavelength range for the panchromatic sensor
has also changed from 0.51 — 0.73 pm for SPOT 1, 2 and 3, to .61 — 0.68 um for SPOT
4. Revisit times may be adjusted and stereoscopic imagery acquired by pointing the
sensor to adjacent orbit paths. A future SPOT 5 satellite is currently under construction
and is likely to carry identical sensors to SPOT 4 to ensure continuity of the data

collection program.

The ISRO has launched a range of imaging and communications satellites as part of the
Indian national space program. The remote sensing program is based upon a series of
satellites denoted IRS, and commenced in 1988 with the Jaunch of IRS-1A. Three
subsequent satellites have been launched with the most recent, IRS-1D, being launched

in September 1997.
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The multispectral imaging systems are based upon linear array sensor technology
(Jensen, 1996) with spatial resolutions of 72 x 72 m, 36.25 x 36.25 m and 23 x 23 m for
the LISS-I, -1I and -1II (Linear Imaging Self Scanning) sensors, respectively. The
various models of the LISS sensor developed by the IRSO operate in the four
multispectral bands almost identical to the visible and near infrared bands of the

Landsat TM sensor.

The IRS-1D carries the PAN (Panchromatic) sensor with a spatial resolution of 5.8 m,
which provided the first long term civilian source of high-resolution satellite data. The
first such data were collected by the MOMS-2 mission flown on the Spaceshuttle in
1993. These data have a similar spatial resolution to the new generation multispectral

sensors, and provide an opportunity to evaluate the geometric properties of such data.

2.3.2 Spectral and Radiometric Factors

Important factors that influence the selection of spectral bands for remote sensing
include sensor design, atmospheric attenuation and energy/surface interactions. The
major spectral ranges applied to earth resources sensing are between 0.4 to 12 pum and
30 to 300 mm (Richards, 1993). The 0.4 to 2.6 um band is particularly significant for
land cover sensing due to the dependence of surface reflection properties on
pigmentation, moisture content and cellular structure of vegetation, and the mineral and

moisture content of soil.

Figure 2.2 illustrates sample spectral reflectance curves for soil, vegetation and water in
the visible and reflective infrared regions of the electromagnetic spectrum. The
potential to separate targets using remotely sensed data relies upon variations in the
radiometric responses of targets in spectral regions that correspond to bands available in
remote sensors. Knowledge of characteristic reflectance responses of targets is essential

to realise this potential.
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Figure 2.2 Spectral reflectance characteristics of soils, vegetation and water in the

visible and near-mid infrared (after Richards, 1993)

The soil curve increases approximately monotonically with wavelength, and shows
water absorption troughs at 1.4, 1.9 and 2.7 um. These troughs vary in intensity
according to the moisture content, and are almost absent in dry soils and sands.
Additionally, clay soils exhibit characteristic absorption bands due to hydroxyl at 1.4

and 2.2 um. Variations in these absorption bands may also be used to differentiate so1l

types.

Vegetation is represented by a similar characteristic reflectance curve. Water
absorption bands occur at 1.4, 1.9 and 2.7 pm as for soils, while reflectance in the
region from 0.7 to 1.3 um is influenced by vanations in plant cell structure. In the
visible region plant pigmentation is significant with chlorophyll absorption bands
dominating at 0.45 and 0.65 wm, and reflectance a maximum in the green portion of the
spectrum (0.55 pm). Variations in plant species and vigour lead to variations in the
water content and structure of cells and pigmentation, which results in variations in
reflected radiance (Gates et al, 1965; Hoffer and Johannsen, 1969; Knipling, 1970).

Where these variations are significant, they may be recorded by the sensor, even at
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orbital altitudes. The capacity of a sensor to record these variations is determined by the
presence of a suitable spectral band and the quantisation level of the sensor. Landsat
MSS uses only 64 levels whereas Landsat TM and SPOT HRV utilise 256 levels, and

are therefore more sensitive to variations in reflected radiation.

Superimposed on the spectral reflectance curves of Figure 2.2 are the spectral
bandwidths of the Landsat MSS, Landsat TM and SPOT HRYV sensors. All three
sensors are primarily designed for sensing land covers containing soils and vegetation,
and concentrate their spectral bands within the visible and near infrared regions.
Spectral regions beyond 3 um are less important because the level of solar energy
irradiating the earth’s surface is small compared to the quantity of energy in the visible

and near infrared regions shown in Figure 2.2,

All Landsat and SPOT multispectral sensors possess spectral bands in the important
visible and near infrared (0.7 — 0.9 um) regions. Landsat TM provides additional bands
in the visible (blue), middle infrared (reflective) and thermal portions of the spectrum
designed specifically to enhance the spectral differentiability of earth surface features
(Lillesand and Kiefer, 1994). This may lead to an improvement in separation of land
cover targets, however the implications of the variations in the spatial resolution of
sensors, especially SPOT HRV, must also be considered. The limited range of spectral
bands, low quantisation level and low spatial resolution generally limit the level of
detail and interpretation accuracy available from Landsat MSS in land cover mapping

apphications.

233  Spatial Factors

The potential effect of spatial resolution on identification of near urban land covers has
been discussed in Section 2.2.4. Some researchers have achieved improved
interpretation of near urban land covers due to the averaging effect of coarser spatial
resolution. This improvement is due to a reduction in the within class variance of pixel
response values which is caused by the inherent variability in the scene reflectance
characteristics, but is suppressed with coarse spatial resolution data. It has been
suggested that at high spatial resolutions (approximately 5 m) where the pixel

dimension is at or below the size of common urban features such as road pavements and
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house roofs, identification of individual components, based upon spectral
characteristics, may be possible (Jensen et al, 1994). At the pixel dimension of data
from the Landsat and SPOT satellites, interpretation must rely primarily upon the
spectral and radiometric resolutions of the sensor, and the manner in which the available
spatial resolution contributes to the effectiveness of these factors for target

discrimination.

The spatial resolution of the Landsat MSS sensor represents the limit of available
civilian scanning technology during the period of sensor development in the late 1960s.
The Landsat TM scanner design incorporates improved spatial and spectral resolution
with the cbjective of providing enhanced image interpretation and geometric accuracy.
The Landsat TM design represents the practical limit of spatial resolution for existing
optical-mechanical scanning technology. At a resolution of 20 m, the SPOT HRV
system is based on a linear array sensor for data collection, and utilises similar imaging
technology to that available for future high resolution satellite sensors. The designers of
the SPOT HRV sensor assumed spatial resolution to be more important for
interpretation than increased spectral resolution, and the system is therefore limited to

three spectral bands in the visible and near infrared regions of the spectrum.

While improved spectral resolution (bandwidth) and increased quantisation levels are
considered to be beneficial in defining the spectral characteristics of land covers,
smaller pixel size permits sensing of targets of more pure composition and reduces the
influence of mixed and boundary pixels in the interpretation process. All future satellite
sensing systems designed for detailed earth surface mapping incorporate multispectral
sensors with spatial resolutions of less than 10 m (Fritz, 1996). It is anticipated that at
this pixel size, the potential of spectral resolution may be realised to an even greater

extent for near urban targets compared to present sensing systems.

2.3.4  Temporal Factors

The purpose of this research is to investigate the potential for land cover change
assessment using data from multiple satellite sensors. Jensen (1996) identifies
atmospheric conditions, soil moisture and vegetation phenology cycles as the most
important factors to be considered when performing land cover change detection

analysis. Where dramatic differences in cloud cover or atmospheric conditions are
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apparent, Jensen suggests that processes to remove atmospheric attenuation in the
imagery should be applied. Data for this research were collected during periods of

cloud-free and clear atmosphere, and atmospheric corrections will not be undertaken.

Most change assessment approaches compare data derived from the same sensor and
therefore direct band to band comparisons are possible. Interpretation approaches that
combine multidate datasets from the same sensor require application of scene
normalisation algorithms in order to standardise pixel response values. In this research
a multisensor approach will be applied with the consequence that each dataset will be
interpreted separately for production of individual thematic classifications of land
covers. Therefore any variations in pixel response caused by sensor or atmospheric
differences will be accommodated because individual images will be analysed

separately.

Temporal changes in land covers observed in this study between image acquisition
dates are likely to be substantial due to the extended periods between sensing epochs.
While these may be relatively easy to identify on aerial photographs, the main purpose
of the analysis is to provide consistent interpretations from multiscale data acquired at
orbital altitudes, with comparable degrees of thematic and geometric accuracy. The
temporal nature of the data will therefore be considered in defining the interpretation
approach, evaluating image registration processes, and developing relevant land cover

change measurement and reporting methods.

2.3.5 Digital Satellite Data

The characteristics of the four satellite systems that supplied data for analysis in this
study were discussed in Section 2.3.1. One scene from each satellite covering the study
area will be analysed to determine the utility of the systems for change detection, and to
evaluate the sources of error associated with change analysis. Details of each satellite

image are shown in Table 2.2.

The data were supplied as bulk path-oriented images that had been corrected for
standard radiometric distortions such as non-uniform detector response and basic
geometric parameters. Image geometry had been corrected in the cross-track direction

only, and included corrections for:



(1) Earth rotation,

(1) Earth curvature distortion,

(iii)

(iv}  Satellite sensor geometry,

(v) Satellite position, velocity and attitude variations.

Panoramic distortion (where applicable for off-nadir pointing angle),

Landsat MSS | Landsat TM | SPOT HRV IRS-1D PAN
Image hbands 1,2,3, 4 1,2,3.4,5,7 1,2,3 Panchromatic
Image date Dec 19, 1972 Oct 28, 1986 Dec 3, 1991 Feb 11, 1998
Row 082 082 414 102
Path 120 112 316 149
No. of columns 1501 1 501 3 000 4320
No. of rows 1201 1 00t 2 001 4 606

Table 2.2 Satellite data utilised in this research

False colour composite images of the Landsat MSS, Landsat TM and SPOT HRV
multispectral data for the study area are shown in Figures 2.3, 2.4 and 2.5, respectively.
For consistency the images are formed using the corresponding green, red and near
infrared bands for each sensor. The images have been rectified to the AMG and
resampled to a common pixel size of 20 m to facilitate comparisons for change analysis.
Superficial examination of each image indicates the relative spatial resolution available
from each sensor, however the differences in spectral resolution are not obvious from
these images. The reduced radiometric resolution available from Landsat MSS data is
also not immediately obvious.

2.3.6  Image Processing

All image processing of satellite imagery in this research was performed using IDRISI
image processing software. IDRISI for Windows Version 2 is an integrated image
processing and raster GIS package developed by the Graduate School of Geography at

Clark University, USA. IDRISI operates within a Windows 95 computing environment.

IDRISI has been primarily developed as an educational package, although it 1s utilised

in a range of government and non-government organisations for commercial purposes.
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Figure 2.3 False colour composite of the study area compiled from Landsat MSS bands
1,2 and 3 (1972) (Scale 1:50 000)

Figure 2.4 False colour composite of the study area compiled from Landsat TM bands
2, 3 and 4 (1986) (Scale 1:50 000)
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Figure 2.5 False colour composite of the study area compiled from SPOT HRV bands
1, 2 and 3 (1991) (Scale 1:50 000)

As a training and development package it has demonstrated significant innovative
functionality in both image processing and GIS, which commercial vendors have

subsequently implemented in their own products.

For this research IDRISI provides an appropriate processing platform for image analysis
and change detection. The basic image processing components of image registration,
multispectral classification and overlay analysis are fundamental components required
for change detection. The ability to import a detailed reference map of land cover
classes and to rasterise the map for comparison with interpreted satellite images is also

important.

Additional evaluation concerning the spatial distribution of the data will be performed
using spatial autocorrelation analysis. This module forms an integral part of the IDRISI

system and is essential to this research.

IDRISI is not ideally suited to the commercial image processing environment or for

large scale image analysis due mainly to the linear approach to processing and the
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quality of its interface with other image processing and GIS packages. A data
management overhead is introduced in IDRISI whereby each processing function
produces an output data file, which then becomes the input file for the next process. In
comparison, most commercial systems permit definition of a user defined algorithm,
which permits several functions to be performed and only the final image is saved to

disk.

While dynamic data access links to other packages are not maintained by IDRISI, the
IDRISI file formats are relatively simple and may be translated to most raster-based
systems. The import and manipulation of vector information is rather more problematic

and limited functionality exists,

2.4 Reference Data

Reference data for the study area are required for derivation of fraining sites for
multispectral classification and for verification of land covers derived from the
classification process. Satellite image acquisition for this study occurred over the
period 1972 to 1998, and aerial photographs form the only detailed and permanent

record of land cover conditions against which the analysis can be compared.

2.4.1  Aerial Photography and Planimetric Maps

Aerial photography relevant to each acquisition date of the multispectral images utilised
in this research were purchased from DOLA, Perth. DOLA generally acquires
photography of the Perth metropolitan area annually, and photography nearest to the
date of satellite overpass (Table 2.3) formed the basis of the detailed land cover map

used as reference data.

A time lapse of up to six months may occur between aerial and satellite image
acquisition, therefore two sets of photographs for each satellite overpass, for which
thematic reference data are needed, were acquired. One set before and one set after the
satellite overpass were compared in order to determine if any significant changes in land
cover had occurred, between sensing by the satellite and reference data collection via

aerial photography.
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Date Scale Emulsion Run (Photo Nos}
May 2, 1972 1:25 000 Panchromatic 12 (5197, 5198)
13 (5161,5162)
June 26, 1973 1:25 Q00 Panchromatic 12 (5278-5280)
13 (5306-5308)
April 19, 1986 1:20 000 Panchromatic 8 (5023, 5024)
9 (5087, 5088)
Dec 20, 1986 1:40 000 Panchromaltic 2 (5198-5200)
Jan 3, 1991 1:20 000 Colour 8 (5061-5063)

9(5126-5128)

Jan 4, 1992 1:20 000 Colour g (5038,5039)
9 (5213,5214)

Table 2.3 Details of aerial photography acquired for reference data compilation

Changes in land cover between sensing epochs are considerable and are representative
of transitions commonly observed in near urban areas. Digital mosaics from each epoch
of aerial photography have been constructed to indicate the degree of change occurring
in the area. Figures 2.6, 2.7 and 2.8 demonstrate the magnitude of changes that have

taken place in the study area over the period 1972 1o 1991.

Planimetric maps were required for image rectification and as a base for reference data
compilation. Ground Control Points (GCPs) were identified and coordinates for
rectification of the Landsat MSS data were extracted from the Perth and Fremantle
1:100 000 topographic map sheets which were compiled from 1976 aerial photgraphy.
GCPs for rectification of the Landsat TM and SPOT HRY data were extracted from the
DOLA StreetExpress Digital Street Directory of Perth. This format provides the most
detailed planimetric information available for identification of suitable GCPs for

rectification of these data.

Rectification of the high resolution IRS1-D satellite data requires determination of GCP
coordinates within two to three metres. Suitable planimetric data from conventional
mapping programs were not available. Survey data for the road centreline network of

the greater Perth metropolitan area were available from MRWA | and proved suitable for




Figure 2.7 Aerial mosaic showing the study area in April, 1986 (Scale 1:50 000)
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Figure 2.8 Aerial mosaic showing the study area in January, 1992 (Scale 1:50 000)

GCP extraction. These data were derived from a range of sources including kinematic

Global Positioning System (GPS), photogrammetric and terrestrial surveys.

A series of 1:5 000 scale orthophotomaps produced by DOLA were utilised as a
planimetric base for reference data compilation. These orthophotomaps maps cover the
map series quadrant Perth BG 34 and include maps 04.05E, 04.06E, 05.05W, 05.06W,
05.05E and 05.06E. These large scale orthophotomaps provide a high level of detail for
transfer of land cover boundaries from the aerial photography. While the satellite data
were recorded over a 19 year time period, the aerial photographs used for the
orthophotomap were acquired in 1984 resulting in sufficient common detail occurring in

each set of aerial photography for the accurate transfer of land cover information.

2.4.2 Identification of Land Cover Types

A description of the land cover types present in the study area has been provided in
Section 2.2.2. These same classes were interpreted from stereoscopic aerial
photography using conventional photointerpretation techniques. Classes were identified

strictly according to the observed spectral and radiometric characteristics of the land
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covers, which are the same interpretive components used to identify the features during
multispectral classification (Martin and Howarth, 1989). A tendency during manual
photointerpretation is to utilise all facets of the image (Lillesand and Kiefer, 1994), and
be distracted by land use rather than land cover classes. While consideration of all
facets of the image assists in obtaining accurate photointerpretation, identified classes
must be consistent between the primary satellite data interpretation and reference-data

collection.

More detailed interpretation of land covers was possible from the aerial photographs
than from the satellite image data, therefore the reference data record a level of detail at
least equivalent to that available from the finest resolution multispectral satellite (SPOT
HRV) data. For interpretations from Landsat MSS and TM data and for change
assessment, aggregations of land cover classes interpreted from the aerial photographs

were formed as required.

Land cover classes were identified on the stereoscopic aerial photography using a mirror
stereoscope and magnifying binoculars. Class boundaries were identified on the aerial
photography within 0.5 mm on the photograph, which represents +10 m in ground units.
This is equivalent to 0.5 pixel at the resampled resolution of the image data, and
corresponds to 0.125 of an MSS pixel, 0.3 of a TM pixel and 0.5 of a SPOT pixel. All
values are within the resampling precision of the corresponding satellite images. IRS
data will only be used for assessment of the geometric properties of the data, for
evaluation of the rectification of high resolution satellite data. Reference data precision

is therefore not relevant to this dataset.

Aerial photographs taken before and after each sensing epoch were compared (o assess
the reliability of land covers in the reference data. Variations may occur because the
sensing date could be up to six months from the date of acquisition of acrial
photography.  Any variations were noted and considered in the context of the

interpretation results achieved from the satellite data.

2.43 Reference Map Production
Reference maps of the study area were created to provide a reliable source of

information for comparison with interpretations derived from the satellite information.
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Reference maps were produced for each sensing epoch, with each epoch represented at
Level 1 and Level 1I of the hierarchical classification scheme (see Chapter 4). The
initial level of land cover interpretation represents a higher level of interpretation than is
achievable from the corresponding satellite data, and classes have been aggregated in
order to permit meaningful comparison of interpretations derived from the three sources

of satellite information. -

Compilation of the reference data comprised a number of distinct phases from
interpretation of the aerial photography through to raster representation for comparison
with the satellited-derived land cover results:

(1) Interpretation of aerial photographs. Overlapping aerial photographs of the
study area were interpreted under a mirror stereoscope.  Conventional
photointerpretation techniques were employed taking care to identify land cover
classes which were also relevant to interpretation of satellite data rather than
land use classes which may not be identifiable in the imagery. Details of land
cover classes were transferred to a 1; 5 000 orthophotmap.

(i1) Digitising. The completed hard copy reference map was digitised using
MicroStation and exported in DXF exchange format.

(iti)  Polygonisation. The land cover boundary vectors were imported to IDRIST and
manipulated in the vector environment to build topology and form logical
polygons representing land cover classes.

(iv)  Vector to raster conversion. Land cover polygons were transformed from vector
to raster form in IDRISI to derive a raster land cover map geographically
coincident with the interpreted satellite data. The pixel resolution of the land
cover map was 20 m and coincides with the resolution of the resampled satellite

data.

Figure 2.9 contains reference data at Level I and Level II interpreted from aerial
photography acquired in 1972 to coincide with the Landsat MSS data. Four classes are
represented at Level I and nine classes at Level II. Level I classes are derived from an
aggregation of the Level II classes according to the hierarchical classification scheme
described in Chapter 4. Figure 2.10 shows reference data for 1986 interpreted to
coincide with the Landsat TM data, and Figure 2.11 represents similar reference data for

1992 that coincides with the SPOT HRYV data.



Land Cover Classes
Urban

Forest

Cpen

Water

(a) Level I reference data map

Land Cover Classes

Residertial
Commercial
Pine plantation
Wetland
Woodland
Grassland
Recrestion
Bare ground
Water

(b) Level I reference data map

Figure 2.9 Reference data derived from interpretation of aerial photographs (1972)
(Scale 1:50 000)
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Land Cover Classes
Urban
Forest
Open
Water

(a) Level I reference data map

Land Cover Classes

Residential
Commetcial
Pine plantation
Wietland
Wioodland
Grassland
Recreation
Bare ground
Wiater

(b) Level II reference data map

Figure 2.10 Reference data derived from interpretation of aerial photographs (1986)
(Scale 1:50 000)
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Land Cover Classes
Urban
Forest
Qpen
Water

(a) Level I reference data map

Land Cover Classes

Residential
Commercial
Pine plantation
Wetland
Woodland
Grassland
Recrestion
Bare ground
Wiater

(b) Level Il reference data map

Figure 2.11 Reference data derived from interpretation of aerial photographs (1992)
(Scale 1:50 000)
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Development of a full raster reference map was undertaken to enable direct comparison
of the satellite-based land cover interpretations. This includes the comparison of

boundary locations as well as for thematic classifications of the polygon areas.

2.5 Summary

The selection of a specific study area must be made in consideration of the overall
objectives of the research. Where the objective is to evaluate that multiscale remotely
sensed data can be used to accurately determine land cover changes in the rural-urban
fringe, an area that demonstrates characteristic changes is required. The
Murdoch/Winthrop study area in the Perth metropolitan region was selected because
during the period under consideration the land covers changed from a mixture of urban

and predominantly rural and non-urban land covers, to mostly urban land covers.

In the study area, rural and non-urban land covers range from wetlands and woodlands
through to pine plantations and open grasslands, while urban land covers include
residential, commercial and recreational areas. Importantly, the area is not only
characterised by some static land covers, but several transition sequences between
otherwise discrete classes were also recognised, which may influence the outcome of

any change analysis.

As the availability of high-resolution commercial multispectral satellite data increases,
the capability to monitor land cover status improves. However, the longevity of these
data acquisition programs is indeterminate and the future of any one program cannot be
guaranteed. A history of data is not available on which to base long term monitoring
using these new generation satellite systems, and integration of disparate datasets from
alternative sensors may be required for any long term monitoring program. While high-
resolution multispectral satellite data were not available at that time, multiple resolution
Landsat MSS, Landsat TM and SPOT HRV data were analysed in this research to test
the utility of multiscale remotely sensed data. Similarly, high-resolution panchromatic
[RS-1D data were investigated to evaluate the geometric aspects of potential future

multiscale data integration.

Geometric rectification of the satellite data is a fundamental requirement for change

analysis.  Analogue and digital planimetric data derived from a combination of
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photogrammetric and GPS sources were important in providing relevant control
information for rectification of the satellite data. Data with a planimetric precision
ranging from +3 m to +50 m were required to rectify imagery which ranges in spatial

resolution from 5.8 x 5.8 mto 79 x 56 m.

Verification of change for evaluation of the utility of the remote sensing systems
requires reliable reference data relevant to the interpretation of land covers. Reference
data were sourced from medium scale aerial photography and interpreted to provide
comparisons of thematic and positional comparisons with the primary satellite data.

Conversion of the reference map to digital form facilitated this evaluation.
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Chapter 3

IMAGE RECTIFICATION AND RESAMPLING

mage rectification and resampling are essential precursors to change detection
Ianalysis using remotely sensed data. Image rectification provides a robust
planimetric base for comparison of data, but must be appropriate to the geometric
characteristics of the satellite imagirng system. The quality and selection of GCPs are
fundamental to the performance of the rectification process. Image resampling is
critical to the maintenance of the spectral and spatial quality of the data. The quality of
the rectification and resampling processes underpin subsequent analysis for the

measurement of change within the study area.
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31 Introduction

Analysis of multiple sources of remotely sensed data is dependent upon the ability to
accurately relate corresponding locations in each image through a system of spatial
referencing. The basic requirement is for a geometric match to be established between
data sources and for relevant brightness values to be transferred according to the derived
geometric relationships. Where data sources comprise multiple images, the geometric
process is termed registration or, alternatively, the process for combining an image and
analogue or digital planimetric data utilising a geographic or geodetic coordinate system
is termed rectification or geocoding (Ehlers, 1997). Transference of individual pixel

brightness values to the registered or rectified image is called image resampling.

Uncertainties associated with information extracted from remotely sensed data are
considered to fall into two categories: thematic and positional (Chrisman, 1991). While
the spectral, spatial and radiometric characteristics of the data Jargely determine the
thematic uncertainty of the land cover information, positional uncertainties are
influenced by the rectification and resampling approach, as well as the geometric

properties and spatial resolution of the sensor.

The requirement for rectification arises from the need to integrate information from a
range of sensors, analyse changes using remotely sensed data from different epochs,
locate points of interest, or to integrate remotely sensed data with GIS (Buiten and van
Putten, 1997; Fonseca and Manjunath, 1996; Kardoulas et al, 1996). Refinements in
rectification accuracy also have potential for tmproving results achieved from some

standard information extraction approaches (Wolter et al, 1995).

The influence of rectification accuracy on change detection is well documented.
Townshend er al (1992) indicate an error of 10 percent in the calculated change in
Normalised Difference Vegetation Index (NDVI) between epochs may be caused by
only a 0.2 pixel rectification error. In a study by Aspinall and Hill (1997), 20 percent of
all changes that were observed between two land cover maps were identified to be due
to geometric limitations, and Martin (1989) indicates that displacements between

images of only 0.5 pixel can introduce unacceptable levels of change error. A focus on
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rectification methods and quality is therefore significant in the development of

appropriate change detection approaches.

The combined processes of rectification and resampling comprise a number of

integrated components (Fonseca and Manjunath, 1996; Welch et al, 1985):

(1) Feature identification. Identifies a set of relevant features in the image for
which ground coordinates may be derived;

(i1) Feature matching. Establishes correspondence between the image and ground
points and derived coordinate values in both systems;

(i) Spatial transformation. Determines the transformation parameters that can
match the image with the map projection using the identified control points
using a least squares solution;

(ivy  Spatial interpolation. Transforms the image to the map projection using the
computed mapping function parameters;

(v) Intensity resampling. Computes new digital values for each rectified pixel from

the original image.

Multiple image data sets have been acquired at a variety of spatial resolutions for this
research. Consideration to each of these components will be given in order to derive the

most appropriate approach for data integration.

These data will be compared for the purpose of change detection, therefore rectification
and resampling represents a critical phase of data preparation for transformation to a
common planimetric base. Image resampling will also be employed to derive a
common pixel resolution and to allocate appropriate digital values to each geocoded
pixel. Information extracted from the remotely sensed data will be compared to
reference data for thematic accuracy assessment, therefore rectification to a common

ground coordinate system (AMG) will be undertaken.

Rignot er al (1991) indicate most rectification algorithms have been developed for
passive sensors operating in the visible and near infrared regions of the spectrum, and
that for integration of multiresolution data with disparate geometric characteristics, a

wide variety of alternative techniques should be considered.  Implementation of



automated rectification techniques have been recommended by several authors (Djamdji
et al, 1993; Ehlers, 1997; Fonseca and Manjunath, 1996; Igbokwe, 1999), however they
mainly emphasise image matching for control point selection rather than the automated

performance of the rectification algorithm.

All data utilised in this research are acquired in the visible and near infrared regions of
the spectrum and have reasonably consistent geometry due to acquisition by near-nadir
pointing sensors. The data range in spatial resolutions from 5.8 m to 79 m, and
alternative rectification techniques for optimisation of the planimetric qualities of the
data will be examined. This is especially relevant due to the development of high
resolution multispectral remote sensing satellites and the increasing requirement for

integration of image data from multiple spatial resolutions.

3.2 Image Rectification Approaches

Image rectification methods may be categorised as either parametric or non-parametric.
Parametric methods are designed to model the nature and magnitude of distortions
inherent within the image and to devise specific correction formulae. Non-parametric
approaches rely upon establishing an analytical relationship between the image pixels

and the corresponding coordinates on the ground (Richards, 1993).

Parametric approaches rely upon knowledge of systematic errors in the satellite orbit
and sensing system. This approach is unable to deal with errors such as those
introduced by changes in the sensor attitude, which either cannot be estimated or it is
not possible to measure them with sufficient precision to be applied to the data (Jensen,

1996).

The selection of an appropriate rectification technique is somewhat spatial resolution
dependent, where the objective is to achieve residual rectification errors of less than 0.5
pixel (Labovitz and Marvin, 1986). Data from aircraft and satellite platforms are
subject to similar geometric distortions, however their magnitude and significance
varies (Ehlers, 1997), which affects the selection of the rectification technique. Satellite
sensors are affected by the systematic effects of earth rotation and earth curvature, but

are generally very stable in their altitude, attitude and velocity. As most current satellite



58

sensors are also of moderate spatial resolution, errors caused by altitude, attitude and
vélocity variations are relatively small and can be accommodated with non-parametric
rectification approaches. For Landsat and SPOT satellite data most systematic errors,
including defects associated with sensor design and operation, are corrected during
preprocessing (Pala and Pons, 1995).

Where high spatial resolution satellite data, such as those available from the IRS1-D
PAN sensor are processed, non-parametric approaches may not provide sufficient
accuracy of rectification (Novak, 1992). Parametric rectification may be required,
which will account for earth curvature and rotation in addition to variations in satellite
altitude, attitude and velocity. It is these latter errors which are considered for

correction of airborne remote sensing devices (Richards, 1993).

Fonseca and Manjunath (1996) consider the extraction of control points from remotely
sensed imagery to be the most difficult component of image rectification, however they
also indicate that multisensor image rectification is a difficult problem and it is

unreasonable to expect a single algorithm to perform satisfactorily for all datasets.

3.2.1 Non-parametric Rectification

Non-parametric rectification depends upon the establishment of a mathematical model
that relates pixel Jocations in remote sensing images and the coordinates of the same
points on the ground. These models do not rely upon any physical relationship between
the image and ground coordinates, and are suitable for correction of image geometry

irrespective of the nature of the distortion (Ehlers, 1997).

Several non-parametric mathematical models have been adapted to image rectification.
The simple polynomial trend model provides a global interpolation over the image and
1$ most common in image processing systems. The polynomial approach is capable of
modelling any errors (Novak, 1992), however its success depends upon control points
of adequate precision and image data of consistent geometry. This applies where the
sensor platform generally has a stable attitude and is subject only to flight conditions
with long periodic fluctuations, as are generally found with spaceborne sensors (Buiten

and van Putten, 1997),
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Where the platform is not so stable, as may be found in aircraft scanners, the in-flight
deviations are too severe or occur with too high frequency, and cannot be modelled with
global polynomials. Ehlers (1997) indicates that a piecewise polynomial approach may
be successful in these cases where the image is broken into a number of subimages and
each is modelled independently. Special attention is required to accommodate
discontinuities at joins between subimages, and generally first order polynomials are

used to minimise complications in extrapolated parts of the individual images.

The general processing method is similar for both the global and piecewise approaches,
except that the piecewise technique requires a set of GCPs for each subimage.
El-Manadili and Novak (1996) indicate the polynomial approach is attractive because of
its simple implementation and is independent of any satellite or sensor calibration
parameters. Limitations are evident due to the requirement for extensive ground
control, the lack of a physical interpretation model, the need to derive a new model for

each image or subimage and strong edge effects outside the envelope of GCPs..

The general polynomial approach (global and piecewise) assumes there exists a function
F, so that pixel coordinates (x, y} can be mapped to the corresponding ground
coordinates (X, Y}):

Fix, y)=(X, Y) (3.1)

The mapping function is generally in the form of a pair of simple polynomials of the

first, second or third degree (Richards, 1993) of the general form:

where

c, and dj; are transformation coefficients
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A polynomial of the second order is of the form:

X =cy 40X ¢,y + X’ + cpxy 4 0,¥ (3.4)

Y=d, +dmx+d”y+dmx2 +4:1721,xy+d_.22y2 (3.5)

A first order polynomial comprises only the first three terms of Equations 3.4 and 3.5,
Values for the transformation coefficients are determined from a set of GCPs that can be
identified in the image and on the ground. First, second and third order polynomials
require three, six and ten control points respectively, for derivation of the transformation
parameters. Generally at least twice this number of GCPs is utilised and least squares

analysis is applied to compute the values.

The GCPs must be well defined and unambiguous so that the transformation

coefficients are reliably determined and the coordinate residuals minimised. The basic

hypothesis of the rectification assumes (Buiten and van Putten, 1997):

(i) Neither local discontinuities nor short-periodic fluctuations are present in the
image;:

(11} The degree of the polynomial model has been selected appropriately;

(i)  There are no gross errors in the determination of the control points.

Issues concerning the selection of control points and analysis of residuals to eliminate
gross errors in the determination of control points and polynomials models will be

addressed in Section 3 .4.

The order of the polynomial to be applied for the purpose of image rectification 1s based
upon an assumption of the nature of errors inherent in the data. Novak (1992) indicates
the polynomial method is independent of sensor geometry, but is influenced by sensor
fluctuations as indicated above, the extent of the image and the amount of relief
variation in the terrain. As the polynomials use a global model they are unable to

account for these localised effects, especially relief displacement (Fonseca and
Manjunath, 1996).



61

Relief displacement has the effect of causing horizontal displacement in the cross-track
direction, and is more significant the further a pixel is from the nadir. Where large
variations in terrain exist, a higher (third) order polynomial will reduce but not
eliminate the effects of relief displacement. Selection of GCPs located at approximately
the mean terrain height minimises the effects of relief displacement, as the maximum
deviation in relief from the datum (mean terrain height) for any point will be minimised

(Welch and Usery, 1984).

Most authors indicate that polynomials of the first or second order are appropriate for
rectification of medium resolution satellite data such as Landsat and SPOT images
(Jensen, 1996; Pala and Pons, 1995; Welch er alf, 1985). The effect of higher order
polynomials and an increased number of GCPs may lead to the polynomial providing a
closer fit to the control, however for independent test points the root mean square error
{(RMSE) may increase, especially at large distances from control points. Welch and
Usery (1984) found that for Landsat MSS data a complete scene rectified using 40
GCPs produced the lowest RMSE with a third order polynomial. A subscene of 256 x
256 pixels was rectified optimally with a first order polynomial using as few as five

GCPs.

Similar analyses by the same authors using full scene Landsat TM data provided
optimum results with second order polynomials. For subscenes up to 1024 x 1024
pixels, first order polynomials provided the optimum rectification using five to ten
GCPs. This improvement in the Landsat TM rectification compared to the Landsat
MSS data occurred because of the enhanced satellite attitude control available on
Landsat 4 and subsequent satellites in the series. Welch and Usery (1984) conclude that
following correction for systematic errors in the data, most residual errors are mainly
due to scaling and translation components, and can be adequately accommodated with

first or second order polynomials.

While the same level of detail is not available for analysis of the rectification of SPOT
HRV data, many authors report results of high quality from global polynomial

rectification using first order polynomials {Cook and Pinder, 1996; Eckhardt et al, 1950;
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Hill and Aifadopoulou, 1990; Treitz et al, 1992). These results are attributable to the

high geometric quality of SPOT HRV data acquired over level terrain.

Results of the polynomial regression for data used in this research are shown in Table
3.1 and indicate the RMSE values computed for first, second and third order
polynomials for each of the data sources. All RMSE values for the Landsat MSS,
Landsat TM and SPOT HRV data are below the 0.5 pixel threshold indicated as
acceptable for rectification of image subsets (Labovitz and Marvin, 1986). For the
IRS1-D image the RMSE for the first order polynomial is considerably larger than the

accepted threshold, however both the second and third order results are less than 0.5

pixel.
MSS T™ SPOT IRS1-D

1 Order 0.417 0.402 0.345 2.479
2™ Order 0.397 0.391 0.335 0.493
3" Order 0.303 0.380 0.310 0.460
No control pts 14 25 26 40
Rows 641 [ 001 1401 4 606
Columns 671 1501 2301 4 320

Table 3.1 RMSE values for first, second and third order polynomial rectification of the
satellite data (RMSE in pixels)

Computation of a third order polynomial for the Landsat MSS data results in a much
lower RMSE compared to the first and second order polynomials. However, the third
order polynomial was derived with only 14 GCPs whereas the minimum GCPs required
are 10, and it is generally recommended that at least 20 points be utilised for reliable
determination of the coefficients, Therefore, a low RMSE may be due more to a small
number of GCPs than a close fit to control. It is therefore not considered highly reliable
and will not be used in further analysis. Lack of detailed reference data for use with the
Landsat MSS image precluded selection of a larger number of GCPs. The area involved
is only 641 x 671 pixels (1/16 scene), over which higher order polynomials are not
normally considered necessary (Welch and Usery, 1984). Comparison of the first and

second order polynomial regression results shows only minimal variations between the




RMSE values and, consequently, a first order rectification will be applied during this

research.

Computation of second and third order polynomials for the SPOT and Landsat TM data
provides incremental improvement in the results compared to the first order polynomial.
In each case at least 25 GCPs were used for derivation of the polynomials and are
therefore considered to provide reliable estimates of the polynomial coefficients. For
both the Landsat TM and SPOT data the change in RMSE when moving from a first to
a third order polynomial is approximately the same as the change in the Landsat MSS
image between the implementation of a first and second order polynomial,
Implementation of other than a first order polynomial for the Landsat TM and SPOT

HRYV data is therefore not considered to offer substantially improved results.

The RMSE for Landsat MSS data decreased from 32.9 m to 31.4 m when a second
order rather than a first order polynomial was applied, and for Landsat TM from 12.0 m
to 11.4 m when a third order compared to a first order polynomial was used. Results for
SPOT HRYV data with the implementation of a third order as compared to a first order
polynomial decreased the RMSE from 6.9 m to 6.2 m. Considering the likely errors
involved in control point selection and determination, these differences are not

considered to be significant.

Implementation of first order polynomial rectification for the Landsat MSS, Landsat
TM and SPOT HRYV data is based upon the results of this investigation and knowledge
of the internal geometric consistency of the Landsat data (Welch, 1983; Welchr and
Usery, 1984). Similar evaluations of the IRS1-D data are not available and results from
Table 3.1 indicate that first order rectification is not appropriate. A total of 105 GCPs
were selected for rectification of the IRS1-D data and after elimination of outliers 70
points were accepted, with 40 points utilised for polynomial determination and the
remainder for check point evaluation. Using a first order polynomial, a stable solution
could not be determined and improvement of the RMSE using a first order rectification

was not possible.
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Implementation of a second or third order polynomial provided a stable solution and
improved the RMSE to an acceptable level of less than 0.5 pixel. The change in RMSE
from a second to third order model was greater than any incremental change observed in
the other datasets, and without confirmation of the geometric integrity of the IRS1-D
data, a third order polynomial was selected for rectification to provide the optimum

solution possible.

The specific area under investigation in this research is less than 5 km x 5 km, which
has been subset from a larger image of approximately 40 km x 45 km. According to
Welch and Usery (1984), rectification of medium resolution satellite data may be
accommodated using first order polynomial rectification and, while for an image area of
this size second order rectification should be considered, it does not offer any advantage

in this case,

Buiten and van Putten (1997) indicate that whenever a first order polynomial does not
meet the specifications for Landsat TM or SPOT data, the reason for the lack of fit 1s
most likely due to errors in GCP measurement or weaknesses in the GCP distribution,
While the third order rectification of the Landsat MSS data has been disregarded, all
other results using first to third order polynomials meet the generally accepted guideline
with RMSE values less than 0.5 pixel. Higher order polynomial rectification did not
appear to offer superior results, therefore all further analyses of the Landsat MSS,
Landsat TM and SPOT images will be undertaken using data rectified with a first order
polynomial. Results for the IRS1-D data were less consistent and indicate that with
potentially lower geometric consistency of higher resolution data, higher order
polynomials or even parametric rectification approaches may be required. However,
quality results have been achieved from these data using a conventional second or third

order polynomial solution.

Evaluation of the RMSE of GCPs has been used to evaluate the consistency of
polynomial modelling procedures for image rectification. Values of independent check
points will be compared to the results of image rectification undertaken through
polynomial modelling to evaluate the geometric quality of the rectification process. A

comprehensive analysis of these results is discussed in Section 3.5.
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3.2.2 Parametric Rectification

The processes of parametric or deterministic rectification are based upon a thorough
knowledge of the physical characteristics and magnitude of the errors and distortions
inherent in the remotely sensed data. Sources of error comprise elements of the sensing
system (sensor aspect ratio and non-linear scan rate), target (earth rotation and earth
curvature) and platform parameters (position, velocity, attitude and altitude). Current
satellite systems cannot provide the detailed data: required for implementation of this
deterministic approach, however with the inclusion of GPS navigation systems accurate
flight path determination is possible, and interpolation of other flight parameters will

assist this process (Ehlers, 1997).

Pala and Pons (1995) indicate the main advantage of deterministic approaches is the
high precision and robust solution available, while the major disadvantages result from
the complexity of implementation and input data requirements, and the computational
intensity of the process. Consequently, the application of orbital (deterministic) models
has currently been restricted to the preprocessing of raw data by satellite ground stations
to provide basic corrections, such as earth curvature and rotation, panoramic distortion

for off-nadir pointing sensors and non-linearity of the sensor movement.

The development of digital photogrammetric systems has encouraged ongoing research
in this area, however the application has been mainly for cartographic mapping from
SPOT XS stereoscopic images. Experience with digital aerial photography indicates
that as the resolution of images increases, so more sophisticated rectification methods
are required (Novak, 1992). Launch of high resolution commercial satellites will result
in further development in this area, however most future satellite data for high precision
mapping will be supplied already geocoded and 1t is expected few commercial image

processing packages will offer deterministic rectification modules for satellite data.

The current research therefore relies upon the application of the global polynomial
approach to rectification, which will be applied to all satellite datasets. While
established as a routine approach for Landsat MSS, Landsat TM and SPOT HRV data,
its application to the rectification of IRS1-D PAN data enables evaluation of the

approach for rectification of high spatial resolution satellite data.
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33 Image Resampling

Image resampling is required as an integral component of the rectification process
whereby new pixel locations are computed based upon the rectification parameters,
extent of the image and the output pixel dimension. Each new pixel is defined by real
number coordinates, which do not necessarily coincide with integer pixel locations of
the input image. Consequently, an interpolation procedure, termed resampling, is
required to allocate brightness values for each of the output pixels. Ehlers (1997) refers
to this as a pixel-filling approach that ensures every output pixel is addressed only once

during the process, and that no gaps occur in the output image.

Important components of resampling are the selection of the resampling algorithm and
specification of the output pixel resolution. Selection of an inappropriate resampling
algorithm can have a deleterious effect on the intensity values of the output pixels of the
rectified image, and specification of an inappropriate pixel resolution may lead to
degradation of the spatial quality of the data. The following sections deal with these

1ssues.

3.3.1 Resampling Methods
Resampling methods that are generally available in image processing systems include
the nearest neighbour, bilinear and cubic convolution interpolation techniques (Dikshit

and Roy, 1996).

Nearest neighbour interpolation is the simplest technique whéreby the value of the
output pixel is allocated the brightness value of the nearest pixel in the input image.
The procedure is computationally simple, however it introduces pixel level geometric
discontinuities (up 0 a maximum of -\/5/2 pixel}, making the image appear visually
disjointed or blocky. Dikshit and Roy (1996) indicate this may significantly affect
extraction of texture (spatial) features, however others (Ehlers, 1997; Richards, 1993)
state that retention of the original values is advantageous for subsequent classification
or other spectral-based processing, or essential if the classes resampled are nominal map

classes.
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Bilinear interpolation is accomplished by interpolation from the nearest four adjacent

neighbouring pixels in the input image using an inverse distance squared weighting
algorithm of the form (Jensen, 1996):
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The bilinear interpolator also acts as a spatial moving filter that subdues extreme
brightness values throughout the output image. It may provide a much more visually

appealing result, but may also degrade some image detail (Ehlers, 1997).

Where an image of high visual quality is required, such as for photointerpretation, or
when the image is to be viewed under magnification, cubic convolution resampling is
recommended (Richards, 1993). The most common form of cubic convolution
algorithm is based upon a sin(x)/x function (Ehlers, 1997). Cubic convolution uses a
4 x 4 matrix of pixels that surrounds the output pixel in the input image to interpolate
the new value. Interpolation is first undertaken in the y-direction for each of the four
vertical lines in the matrix to determine the brightness value equivalent to the x
coordinate of the output pixel. Interpolation is then undertaken in the x direction to

determine the equivalent brightness value of the output pixel.

In this research all resampled images are to be subsequently used for multispectral
classification, consequently maintenance of the original brightness values of the pixels
is important. The radiometric smoothing along boundaries produced by both the
bilinear and cubic convolution interpolation algorithms will also affect the classification
accuracy by increasing the proportion of mixed pixels in the data. Forster and Trinder
(1984) indicate that the specific resampling algorithm applied does not appear to affect
subsequent percentage classification accuracy, however boundary pixels were seen to
move between spatially adjacent classes as a result of changes in resampling strategy.
Marceau et al (1994) also report that the smoothing effect can influence subsequent

scale and aggregation analyses.
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Richards (1993) suggests that for classification purposes images should be resampled
following classification in order for the original pixel values to be preserved, and then
rectified prior to map production or integration within a GIS. Alternatively, where
resampling is completed prior to classification, a nearest neighbour approach should be
applied. The latter approach will be utilised in this study to enable accurate integration
of reference data for training site extraction and thematic accuracy evaluation, but at the

same time minimising radiometric distortion of the data.

3.3.2 Resampling Interval

The resampling interval for image data determines the final dimension of pixels in the
rectified image to be utilised for subsequent processing. The spatial resolution at the
time of image acquisition is independent of the resampliing interval, and resampling to a
finer pixel size does not improve the spatial resolution compared to the original data.
However, there may be implications for the spatial distribution of pixels in the
resampled image when the resampling interval is significantly different to that of the

original data.

Multispectral images have been acquired for change detection in this research with pixel
dimensions ranging from 79 x 56 m to 20 x 20 m. For comparison of multiscale images
for the purpose of change assessment, it is necessary to resample the images to a
common geometric datum and pixel dimension. A suitable resampling interval must be
determined, but at the same time any detrimental spatial or radiometric effects on the

data must be minimised.

The following details the approach to the determination of the resampling interval of
pixels for the multispectral datasets investigated as part of this study. The IRS1-D data
comprise only a single panchromatic band and will not be used for land cover
interpretation, but for assessment of the comparative geometric qualities of the
rectification techniques and investigation of spatial error propagation in high resolution
satellite data. Consequently, consideration of the resampling interval for these data in
the context of the multispectral datasets is not an important issue and will not be

considered further.
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In a study using successive spatial aggregation of airborne MSS data, Marceau et al

(1994) consider the following are important with respect to spatial resolution in

remotely sensed data:

(1) The information content of remotely sensed images is dependent on the
measurement scale determined by the spatial resolution of the sensor;

(ii) Neglecting the resolution and aggregation level when classifying images can
produce unpredictable results having little correspondence in the scene;,

(iii)  There is no unique spatial resolution for the detection and discrimination of all

targets comprising a complex natural scene.

The above comments relate particularly to the relationship between the scene and the
original pixel dimension. However, resampling represents a potential source of
aggregation and reduction in spatial resolution through specification of a resampling
interval significantly larger than the original pixel dimension, which will degrade the
radiometric and spatial information content of the data. The resampling interval must

be established such that these qualities are not degraded.

Atkinson and Curran (1997} indicate the resolution of remotely sensed data should be a
balance between a pixel size sufficiently large to acquire the desired information with
the minimum possible data, but fine enough to capture the variation of interest within
the target. Therefore, the spatial resolution of the sensor should be much finer than the
resolution at which the maximum local variance of the target occurs because, if it is not,
the spatial variation of interest in the target may be lost. In order to retain the
radiometric and spatial qualities of each image it is necessary to resample at least to the
same spatial resolution as the original data. The question whether the spatial
distribution of the pixel values is retained during the resampling process is nevertheless
important, and a pixel resolution finer than that of the original data should be selected.
Conversely, resampling to a larger pixel size will degrade the spatial resolution and

certainly alter the radiometric distribution of the pixels in the image.

In a study that compared Landsat TM and SPOT HRYV images, Hill and Aifadopoulou
{1990) resampled data using nearest neighbour interpolation to the coarsest pixel size of

30 m, on the assumption that all spectral and radiometric qualities of the data would be
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retained. In this situation there will be one third less output pixels than input pixels for
the SPOT data, resulting in the loss of both spatial and radiometric detail. Conversely,
Jakubauskas er al (1990) compared Landsat MSS and Landsat TM imagery and
resampled all data using a nearest neighbour algorithm. They also chose a pixel
dimension of 30 m, but in this case there were at least as many output pixels n both the
Landsat MSS and Landsat TM datasets as there were in the input data, and the spatial

and radiometric contents of the data were maintained.

Lunetta et al (1991) suggest it is possible to resample to such an extent that the
geometric and radiometric attributes of the resampled pixels have a poor relationship to
the original data. The authors provide an example where cubic convolution
interpolation was utilised to resample Landsat MSS (79 x 56 m) data to a 10 x 10 m
pixel suitable for merging with SPOT PAN data at 10 m resolution. Given that cubic
convolution interpolation uses a 4 x 4 kernel, the brightness value for the resampled 10
m pixel was effectively derived from a 316 x 224 m window. This approach was most
likely used for integration of bands for production of a composite image where aesthetic
considerations were important, rather than for analytical purposes. A more feasible
solution for digital analysis could be obtained by applying a nearest neighbour
interpolation that retains exact brightness values with sufficient repetition of pixel

values to populate the more numerous pixel locations of the output image.

This latter approach has been applied in this research to reduce the multiscale satellite
data to a common resolution for analysis purposes. All multispectral image data have
been resampled to a standard 20 m pixel equivalent to the resolution of the SPOT HRV
data. Any changes to the spatial and radiometric quality of the data are most likely to
occur when changes in pixel dimension during resampling are most severe, as is the
case with resampling Landsat MSS data to pixels of 30 m or less. Figure 3.1 illustrates
the effect of resampling Landsat MSS data to pixels of dimension 35, 10, 20 and 60 m.
A maximum pixel size of 60 m was selected as there are approximately the same
number of pixels in the output image as the input image. This enables a near one-to-one
mapping of resampled pixels to occur, and therefore does not result in any loss of

information during resampling. The 20 m pixels were selected to coincide with the
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resolution of the SPOT HRYV data, and 5 and 10 m resolutions to investigate effects of

further reducing the pixel dimension.

{a) 5 m pixel

(c) 20 m pixel (d) 60 m pixel
Figure 3.1 Effect of pixel resampling interval on portion of the Landsat MSS image

Resampling to a 60 m pixel produces images where pixels are constrained to the
orientation of the mapping axes. This is at variance with the actual geometry at
acquisition where the track of the satellite is approximately 9 degrees off the meridian,
resulting in the inclination of scan lines that are rotated from the equator by the same
amount. One-to-many mapping of pixels at finer resampling intervals enables the

resampled images to more closely match the geometric pattern of land surface features
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at observation. This effect is illustrated in Figure 3.1 for the 5, 10 and 20 m resampling

intervals where the data are rotated as they were at observation.

Representation of off-diagonal features by 60 m pixels is constrained because there is
insufficient pixel redundancy in the output image to permit adequate representation of
the actual direction of the linear features. Subsampling of pixels to a smaller size
during rectification permits the resampled images to make an incremental representation
of shape compared to the blocky appearance using a 60 m pixel. While not improving
the primary spatial resolution of the data, resampling to a higher resolution enables the
spatial distribution of pixels in the resampled image to more closely match that of the
original data, and presumably also the ground scene. A similar analogy may be
developed for the Landsat TM and SPOT HRYV data, however these data are recorded at
a higher spatial resolution and the change in pixel dimension, orientation and location

during resampling is a less serious issue.

Dikshit and Roy (1996) and Forster and Trinder (1984) state that the most serious
effects of resampling on the brightness structure of remotely sensed images occurs
along boundaries between spectrally distinct regions. These comments were made in
support of the use of cubic convolution and bilinear interpolation in order to minimise
the effect of resampling on the extraction of texture components in the scene. However,
for the sake of radiometric integrity and to enhance multispectral classification resulis
that do not include texture analysis, a nearest neighbour approach should be adopted to
minimise any deleterious effects on boundary pixels. Additionally, to reduce any
smoothing effects or boundary displacement, a resampling interval at least as small as

the smallest input pixel should be adopted as indicated above.

Landsat MSS data of the study area resampled to 20 m and 60 m resolutions were
subtracted to examine the effect of the resampling interval on individual pixel values.
The resultaﬁt difference image has a mean of 0 and standard deviation of 1.78, with 94.0
percent of pixels changing by less than two standard deviations (three digital numbers).
Figure 3.2 indicates the pattern of differences for the same area shown in Figure 3.1.
Only variations greater than two standard deviations are highlighted. Most variations

are observed along boundaries between spectrally distinct areas and arise due to



73

differential displacement of pixels as a result of variations in the resampling interval.
Based upon the findings above and those by Dikshit and Roy (1996), it is important
when using multiscale data for change detection that an appropriate resampling interval
is selected that permits accurate representation of ground features and minimises the

degradation of spatial and radiometric qualities.

Figure 3.2 Area shown in Figure 3.1 indicating differences (white) between 60 m and

20 m resampling interval

The images under consideration contain a range of targets (see Section 2.2), which all
contain unique radiometric and spatial characteristics and, according to Marceau et al
(1994), may be discernible at different spatial resolutions. In order to maintain the
maximum radiometric content and spatial integrity of the observed data from all
sensors, a uniform resampling interval of 20 m was selected. This sampling interval 1s
equivalent to the spatial resolution of SPOT HRYV, similar to that of Landsat TM, but

significantly smaller than the Landsat MSS sensor.

34  Ground Control Points

34.1 Requirements

Fonseca and Manjunath (1996) indicate the most difficult step in image rectification is
establishment of the transformation relationship between features on the ground and in

the image, but that the computation of the mapping function is relatively
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straightforward. The requirement for carefully selected GCPs of adequate precision is
highlighted by enumeration of the sources of GCP-related error that affect the quality of
image rectification. Important sources of error are considered to include the spatial
resolution of the image, and the precision, number and distribution of GCPs (Kardoulas
et al, 1996; Labovitz and Marvin, 1986; Welch er al, 1985). Image rectification errors
caused by terrain relief variations have been previously discussed, and may be relevant

when selecting individual control points.

The spatial resolution of the image data influences the ability to discern objects that are
used as GCPs, and affects image qualities such as shape and tone. For identification
purposes, control points must be at least the dimension of a pixel and have sufficient
contrast with the background. For coarse resolution data such as Landsat MSS,
relatively large features are required including major roads, railways and land-water
interfaces. The ability to determine the precise coordinates of such features is limited
and may result in random errors of position. Forster (1980a) indicates GCP location on
Landsat MSS for small ground features on uniform backgrounds may be estimated to
the nearest 0.5 pixel with a maximum error of +0.25 pixel. Where high contrast targets
were utilised, similar results were reported by Welch et al (1985) in a rural-urban fringe
area using visual displays of Landsat TM data on a computer screen. However, in the
same study less well defined features could only be identified to +0.5 or +1.0 pixel
depending upon target contrast and shape. Given the nature of most imaging and
display systems, subpixel estimation of GCP locations is problematic (Welch and

Usery, 1984), and heavily dependent upon scene characteristics.

Figure 3.3 shows a sample of image data from this study which has been used for
selection of GCPs. The feature circled is the intersection of two four lane bitumen
roads, Canning Highway and Berwick Street in the Perth metropolitan area. Shown are
representations of the same areal extent for each type of data in order to indicate the
influence of spatial resolution on GCP selection. In general, the same points were not
selected as GCPs in each of the datasets due to decreasing levels of aggregation as the
spatial resolution became increasingly finer. In the higher resolution imagery it was
possible for more precisely defined GCPs to be identified. However, with the complex

range of targets available, consistent identification of GCPs at the subpixel level was
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not feasible in any dataset. In all cases in this research pixel locations of GCPs for the
multispectral data were measured to integer values. Sufficient points were selected for
regression of the rectification parameters to provide an RMSE of GCPs for polynomial

derivation of less than 0.5 pixel, and for check points of 0.5 to 1.0 pixel.

(a) Landsat MSS (b) Landsat TM

{c) SPOT HRV (d) IRS1-D
Figure 3.3 Representation of a typical GCP in multiscale images

More advanced image matching techniques have been developed for digital
photogrammetry, and have also been applied to the determination of GCP locations.
These automated approaches utilise area-based and feature-based registration algorithms

that compare corresponding images and determine a precise match (Fonseca and
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Manjunath, 1996). This approach has received most attention for registration of
multisensor and multidate images where manual methods resulted in an RMSE of 0.87
pixel, compared to an RMSE of 0.32 pixel for the automated image matching algorithm
(Dai and Khorram, 1997). These techniques will be more commonly utilised in the

future, however were not available for this research.

Evaluation of the precision of GCP coordinates extracted from analogue or digital maps
is related to the data compilation standards, map scale and digitising accuracy.
Digitising accuracy is typically +0.25 mm and the standard deviation of planimetry for
most topographic maps is +0.25 mm at map scale. The combined effect at map scale is

given by:

{0252 +025° = 0.35mm (3.7

This value agrees closely with that used by Welch and Usery (1984) and Cook and
Pinder (1996) for rectification of Landsat TM data where GCP coordinates were
extracted from 1:24 000 United States Geological Survey (USGS) maps. Kardoulas ef
al (1996) digitised GCPs for rectification of Landsat MSS, Landsat TM and SPOT PAN
data from 1:100 000 topographic map sheets with an estimated precision of +50 m.
Poor results were achieved, with RMSE values for rectification of the SPOT PAN data
greater than the RMSE values for the Landsat MSS datasets. The limiting factor in the
Kardoulas study appeared to be the precision of the GCPs derived from the reference
data. For Landsat MSS it was equivalent to 0.6 pixel, yet for the SPOT PAN data it was

equivalent to 5 pixel.

GCP precision of approximately 0.5 pixel represents a viable limit for rectification of
satellite data using coordinates extracted from existing maps. Improvements in GCP
positioning are possible using GPS techniques, however the significance of the

inclusion of these high precision data in the rectification process is yet to be determined.

GCP coordinates for this study were extracted from a variety of digital mapping
products. GCPs for rectification of Landsat TM and SPOT HRV data were derived
from the Perth 1998 StreetExpress digital street directory. These data are compiled to a
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planimetric standard of +12.5 m and can be viewed under high zoom on the computer
screen. The pointing accuracy is therefore very high and the precision of extracted
coordinates is equivalent to +12.5 m, which represents just over 0.5 pixel for the SPOT

HRYV data and 0.4 pixel for the Landsat TM data.

GCP coordinates for rectification of the IRS1-D> data were extracted from the MRWA
digital road centreline dataset which is compiled from photogrammetric, GPS and
ground surveys to a precision of between | and 3 m, with most points meeting the 1 m
specification (MRWA, 1999). The precision of these coordinates is equivalent to less

than 0.5 pixel in the [RS1-D dataset, and is therefore suitable for rectification purposes.

Labovitz and Marvin (1986) report on a NASA specification that 90 percent of
randomly selected points on geocoded satellite image products should be within 0.5
pixel of the ground position. There appear to be no standards specific to the production
of satellite products, except where they are compared to topographic maps of particular
scales. For example, Welch and Usery (1984) indicate that an RMSE of 25 m for
Landsat TM data meets the US National Map Accuracy Standard for 1:100 000 scale,
and several researchers indicate rectification results equivalent to 0.5 to 1.0 pixel are
acceptable for change detection (Jensen et al, 1997; Townshend et al, 1992). This value
most likely represents the limit of rectification precision unless sophisticated image
matching approaches are employed. Image rectification undertaken in this study will be
assessed as acceptable if the 0.5 - 1.0 pixel standard for check points is achieved, and its

effect on change detection will be assessed.

GCPs should be well distributed around the edges and generally over the extent of the
image to ensure adequate control of the interpolating polynomials throughout the image
(Richards, 1993). The behaviour of interpolating polynomials also varies with the order
of the interpolation function and the number of control points. These two tssues were
discussed in Section 3.2.1. Labovitz and Marvin (1986) investigated the effect of the
spatial location of control points and concluded the distribution of points was
unimportant provided the points were not all clustered near one edge of the scene.

Common practice is for GCPs to be evenly spread throughout the image, which is less
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significant when using the more rigid first or second order polynomials, and this

approach will be followed in this research.

Figure 3.4 illustrates the distribution of control points in each of the images analysed.
An adequate distribution of control was provided in the vicinity of the study area
indicated on the diagram, although the distribution is not uniform throughout the
rectified area. While the quality of the rectification cannot be guaranteed in areas not
covered by GCPs, analysis in Section 3.5 examines the effect of the number and

distribution of GCPs.

Evaluation of image rectification is usually based upon analysis of GCP residuals
through the computation of the RMSE. Most studies state an RMSE for rectification,
however it is not always clear whether this relates to the a priori RMSE computed from
the GCPs used for interpolation, or the a posteriori RMSE computed from independent
check points. Townshend et al (1992) utilised the same GCPs for computation of the
RMSE, but cautioned that the real (a posteriori) RMSE value is likely to be somewhat

higher.

Kardoulas et al {1996) state that sufficient GCPs must be selected in order to provide
some points for rectification and others as check points for a posteriori consideration of
the quality of the rectification. This permits not only evaluation of the interpolating
polynomials, but also assessment of the complete rectification process including any
effects of relief displacement and other error sources not considered. The major
disadvantage of this assessment is that it is impossible to isolate specific sources of
error contributing to the overall RMSE. Evaluation of all rectification processes in this
research will be undertaken in Section 3.5 using a posteriori computation of the RMSE

from independent check points.

3.4.2 Point Selection

GCPs were extracted from each image according to the considerations discussed in
Section 3.4.1. Control points were required for the final analysis of each dataset in
order to provide sufficient points for formation of the interpolating polynomials and for

computation of the RMSE from independent check points. The minimum number of
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GCPs required for a third order polynomial interpolation is 10, therefore it is desirable
to identify at least 40 points in order to allow for exclusion of some points from the

interpolating process due to excessive residuals.
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Figure 3.4 Distribution of GCPs for rectification of satellite images
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Adequate points were identified for the Landsat TM, SPOT HRV and IRS1-D data,
however due to the relatively small scale of the reference information relating to the

Landsat MSS data, only 22 reliable GCPs were identified.

Figure 3.5 indicates the overall process used for selection and processing of GCPs.
GCPs were initially processed in a single file for identification of outliers. GCPs-were
eliminated from the overall GCP file if the point showed an RMSE greater than 1.0
pixel. When all RMSE values were less than 1.0 pixel, the file was split, with a

majority of points used for interpolation and the balance used as check points.

l Select GCP l

Extract line/pixel Extract ground
coordinates coordinates
> Rectify 1
Divide — Low Examine High Exclude
GCPs RMSE GCPs
h 4

Rectify | > Compute RMSE
for check points

h 4

Compute RMSE
for GCPs

Figure 3.5 Flowchart showing GCP selection and analysis

GCPs were selected with a uniform distribution across the image and were based upon
well defined points identifiable in both the image and the planimetric reference data.
Each dataset was treated independently due to the wide range of spatial resolutions of

the images, therefore a clearly defined point in the SPOT HRV or IRS1-D data may not
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have been visible at all in the Landsat MSS data. As a result there are very few control
points common to all images. Zoom facilities available in the image processing system
were utilised to facilitate optimum determination of the row and column values for each

GCP.

35 Georeferencing

3.5.1 Rectification Results

Rectification of each image was performed and an independent evaluation of the quality
of the rectification undertaken. Table 3.2 details the RMSE values for GCPs utilised to
derive the transformation parameters (a priori), and for independent check points (a
posteriori). The values are provided in units of input pixels for cach dataset, with the
RMSE for check points consistently larger than the corresponding value for derivation
of the transformation parameters. Note that for Landsat MSS, Landsat TM and SPOT
HRYV images a first order polynomial was used while for the IRS1-D image a cubic

polynomial was utilised for rectification.

. MSS ™ SPOT HRV IRS1-D
Potnts NoPts | RMSE | NoPts | RMSE No Pts RMSE | NoPwis | RMSE
GCPs 14 0.417 25 0.402 26 0.345 40 0.460
Check points 8 (0.826 23 0.434 27 0.407 30 0.54%

Table 3.2 Summary of rectification results for polynomial regression and quality

evaluation (RMSE in pixels)

Tables 3.3, 3.4, 3.5 and 3.6 list details of residual values derived from a posieriori
analysis of independent check points in the area covered by the rectification. Input
pixel coordinates were measured to the integer level on the image for Landsat MSS,
Landsat TM and SPOT HRV images. Measurement of GCPs to 0.1 pixel for the
IRS1-D image and computation of rectified values to 0.001 pixel through the
transformation process represents a characteristic of software operation rather than a
requirement for higher precision. Residual values, in pixel terms, are larger for the
Landsat MSS data than for the other datasets, while the residuals for the Landsat TM,
SPOT HRYV and IRS1-D data in pixel units, are all similar.



POINT INPUTX | INPUTY RECTIFIED X RECTIFIED Y RESIDUAL

1 65 492 64.328 491.482 0.849
2 287 523 286.963 522302 0.699
3 466 391 465.217 390.264 1.075
4 544 302 544.483 302.044 0.485
5 546 166 545.391 165.330 0.906
6 421 157 420.335 157.429 0.79
7 405 284 405.513 283.243 0.915
8 58 175 58.584 175.489 0.762

RMSE 0.826

Table 3.3 A posteriori RMSE of Landsat MSS image (RMSE in pixels)

POINT INPUT X | INPUTY RECTIFIED X RECTIFIED Y RESIDUAL

1 944 785 943.792 785.491 0.533
2 831 902 831.226 001.847 0.273
3 774 963 773.686 962.904 0.326
4 701 750 701.294 749.638 0.466
5 77 621 777.256 621.592 0.645
6 752 547 751.697 547.248 0.392
7 832 668 832,222 668.478 0.528
8 868 169 867.716 168.582 0.500
9 1087 219 1087.140 218.619 0.406
10 1069 112 1068.566 111.869 0.453
11 1145 260 1145169 260.102 0.197
12 221 901 221.103 901.008 0.103
13 361 896 360.973 896.191 0.193
14 377 837 376.640 837.023 0.361
15 270 681 269.564 680.864 0457
16 586 881 586.371 880.748 0.448
17 570 718 569.769 717.537 0518
18 434 567 433,795 566.712 0.353
19 549 635 548.944 635.260 0.266
20 471 308 470.814 398.021 0.187
21 388 360 388.000 360.507 0.507
22 402 433 402.205 433.038 0.208
23 520 200 519.167 200.232 {.865
RMSE 0.434

Figure 3.6 illustrates error vectors for the a posteriori residual values derived from the

Table 3.4 A posteriori RMSE of Landsat TM image (RMSE in pixels}

image transformation.

indicating the control point location. The objective of these residual plots is to indicate

g2

All residuals are shown in input pixel units with the cross
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any systematic patterns in the magnitude and distribution of residual values.
Consistently large vectors indicate a poor fit to control or insufficient GCPs in the
transformation. Regions where residuals demonstrate consistent direction may suggest
errors in the GCPs used in the transformation, and indicate sufficient cause for

inspection of the RMSE of the GCP and its coordinates.

POINT INPUT X | INPUTY RECTIFIED X RECTIFIED Y RESIDUAL

1 299 1269 299.226 1269.334 4.403
2 734 1364 734.561 1363.907 (1.568
3 401 1115 401.221 1115.046 0.225
4 402 910 401.960 910516 0.517
5 730 890 729.704 890.213 0.365
6 764 805 764.634 804.968 0.635
7 844 1253 844.423 1252765 0.484
8 1051 1286 1051.268 1285.799 (.335
9 1402 1113 1402.263 1113.293 0.394
10 1119 1051 1118.796 1051.607 0.640
11 1314 1007 1313.856 1006.843 0.213
12 1028 783 1027.968 783.279 0.281
13 912 779 911.793 778.934 0.217
14 834 966 883.526 966.109 0.486
15 1634 727 1633.561 727.076 0.446
16 1459 1093 1459.345 1093.372 0.508
17 432 684 431.788 683.872 0.248
18 680 660 680.468 660.01] (.468
19 945 724 945.202 723.866 (0.243
20 635 366 635.281 366.169 0.328
21 646 167 646,113 167.104 .154
22 786 118 785.684 117.991 0316
23 1025 677 1024.626 677.287 .47}
24 1272 226 1272.043 225.965 0.055
25 1060 436 1059.987 436.438 (0.438
26 1466 372 1465719 372.058 (0.287
27 1712 340 1712.528 340.005 (0528

RMSE .407

Table 3.5 A posteriori RMSE of SPOT HRV image (RMSE in pixels)

3.5.2 Discussion and Analysis

Previous research indicates that for image rectification a priori RMSE values should be
less than 0.5 pixel, and that a posteriori values should be less than 1.0 pixel. Table 3.2
indicates these values have been achieved in this study with all a priori values
substantially less than 0.5 pixel, and in the case of SPOT data, an RMSE as low as

0.345 pixel. From an operational viewpoint, the a posteriori RMSE is of more interest
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because it provides an independent estimate of rectification quality. The a posteriori
RMSE values for the Landsat TM and SPOT HRV data were particularly low at 0.434
and 0.407 pixel respectively, however the Landsat MSS RMSE was substantially higher
at 0.826 pixel.

POINT INPUT X | INPUTY RECTIFIED X RECTIFIED Y RESIDUAL:

1 158.7 39526 158.652 3952381 0.224
2 832.7 4152.0 832.524 4152.138 0.224
3 12204 4470.0 1221.070 4470.033 0.670
4 11564 4039.0 1156.611 4039.154 0.262
5 862.7 3409.6 862.840 3409.257 0.370
6 1363.1 34399 1363.627 3439.920 0.528
7 1305.4 4256.6 1305.278 4256.684 0.148
8 1701.5 34729 1701.345 3472.605 0.333
9 22538 33619 2253.609 3361.127 0.784
10 2538.5 4102.0 2538.024 4102.574 0.746
11 836.4 28955 836.371 2895.619 0.123
12 1416.8 30279 1417.495 3028.098 0.722
13 284.8 1851.4 284.243 1851.726 0.645
14 605.3 216t.1 604.531 2161.109 0.769
15 1511.1 2718.2 1511.212 2717.976 0.250
16 2038.2 2803.5 2038.300 2803.776 0.294
17 2217.8 2474.8 2217.833 24715.230 0.432
18 2384.8 1892.5 2385.233 1891.969 0.683
19 2955.9 2066.5 2955.737 2065.906 0.616
20 480.7 544.4 481.028 543.935 0.569
21 1168.0 348.5 1167.940 348.662 0.173
22 789.0 1398.3 789.505 1398.311 0.505
23 1527.8 1653.5 1528.017 1652.982 0.562
24 17233 5154 1723.966 514.701 0.965
25 2621.2 1113 2621.401 [1:.284 0.202
26 27732 1791.8 2772761 1791.868 0.444
27 2206.5 11427 2207.160 1141.830 1.092
28 29087.6 1652.1 2987.316 1651.819 0.399
29 34393 853.1 3439.670 852.522 0.687
30 3264.2 3394 3264.452 339.350 0.257

RMSE 0.549

Table 3.6 A posteriori RMSE of IRSI1-D image (RMSE in pixels)

The Landsat MSS RMSE results from moderate but uniform residuals for all check
points (Table 3.3), indicating that no gross errors in GCP identification or polynomial
determination are present. Figure 3.4a shows a uniform GCP distribution across the
image, and examination of Figure 3.6a does not indicate any systematic direction or

localised distortion in the residual vectors resulting from the rectification process.
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These results indicate the transformation process was geometrically sound, and a
relatively high a posteriori RMSE is therefore due to the limitations inherent in the

identification and positioning of GCPs for the Landsat MSS dataset.
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Figure 3.6 A posteriori error distribution and residual vectors

All GCPs for rectification of the Landsat MSS data were derived from 1100 000
topographic maps. Estimation of coordinates to £0.35 mm at map scale (see Equation

3.7) or +0.5 pixel is possible, but identification of GCPs on the imagery is much more
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difficult compared to the other data sources. Additionally, fewer GCPs were located for
polynomial determination, therefore higher residuals for check points could be expected

compared to other datasets.

Table 3.4 lists residuals for the Landsat TM data that range from 0.103 to 0.865 pixel,
with no gross errors or inconsistencies apparent. Distribution of GCPs in Figure 3:4b is
affected by the areal extent of the data. The available data did not cover the lower third
of the rectified region, however they were adequate to include the study area and permit
selection of suitable control. Residuals for individual check points within the SPOT
HRYV data are shown in Table 3.5 and range from 0.055 to 0.568 pixel, thus indicating
the consistency of the rectification. The distribution of GCPs is demonstrated in Figure
" 3.4c. No GCPs are located in the lower one third of the rectified area as satellite data

were not available for this region, otherwise a uniform distribution of GCPs is evident.

Examination of residual vectors for Landsat TM and SPOT HRYV data in Figures 3.6b
and 3.6¢ respectively does not indicate any systematic directional distortion, In both
datasets a minimal level of localised distortion is evident in the northeast part of each
image, however examination of Figures 3.4b and 3.4c demonstrates that adequate GCPs
are available in this region for both datasets and GCP distribution is not a contributing
factor. Terrain elevations are relatively uniform in the area of the image and do not
increase apart from the eastern margin of the rectified area. In the most extreme case,
elevation variations across the complete image are less than 150 m and relief
displacement should not contribute significantly to errors in the rectification process
(see Section 3.2.1). The average residual in this area for both datasets is approximately
0.5 pixel and is considered to be well within the 1.0 pixel threshold for the a posteriori

RMSE.

Check point residuals in Table 3.6 indicate variations between 0.123 and 1.092 pixel for
the IRS1-D data, and demonstrate there are no gross errors or inconsistencies in the
rectification. The distribution of GCPs shown in Figure 3.4d is determined by the
available data which only cover the northeastern area of the rectified region, which
restricted GCP selection to this area. A plot of check point residuals in Figure 3.6d does
not indicate any systematic pattern and demonstrates an apparent random distribution of

large and small residuals, both in terms of direction and magnitude. The third order
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polynomial is therefore appropriate for rectification of these high resolution data, and
indicates that current image processing systems have the potential to undertake -

geometric rectification of data from the next generation of satellite scanners.

Welch and Usery (1984) indicate the internal geometric consistency of Landsat MSS to
be good, but the geometric quality of Landsat TM data to be even higher.
Consequently, transformation error is likely to be due more to error in determination of
(GCPs than propagation through the transformation process. They indicate the precision
of rectification is dependent upon the precision of GCP measurement (location) error in
the image, digitising error of the map, and relief displacement effects not taken into

account during the transformation as follows:

\/(locarion error)’ +(digitising error)’ + (relief error)’ (3.8)

For Landsat MSS the maximum location error for a pixel is considered to be equal to
half the diagonal of a 79 x 56 m pixe! (49 m). Digitising error incorporates both the act
of digitising and the precision of map compilation. From Section 3.4.1 this was
determined to be 0.35 mm at map scale, and for a 1:100 000 scale is equivalent o 35 m.
The effect of relief displacement in all data used in this research may be computed

(from Pala and Pons, 1995):

Lz
(H —z)

(3.9)

where
L = distance of the pixel from the satellite path
7 = terrain height of the pixel

H = altitude of the satellite.

With the range of elevations in the area of the Swan Coastal Plain being less than 30 m,
the effect of relief displacement at the edge of a Landsat image is a maximum of 3 m.
From Equation 3.8 the precision of rectification of Landsat MSS due to GCP

measurement errors 1s therefore computed to be:
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J49* +357 43 = 60m (3.10)

This value compares favourably with the a posteriori RMSE of 0.826 pixel, which is
equivalent to 65 m as a proportion of the Landsat MSS ground resolution element.
Similar evaluations for Landsat TM, SPOT HRV and IRS1-D data result in predicted
values of 25, 19 and 5 m, respectively. However, the computed a posteriori RMSvE for

these data are only 13, 8 and 3 m.

The relatively high a posteriori value for the Landsat MSS data is due to lower
geometric consistency of the data and the availability of fewer GCPs for determination
of the transformation parameters. These image data are from 1972 and the only
planimetric reference data available were derived from a 1:100 000 map topographic
sheet produced in 1976. This map provided only generalised detail and therefore
limited the opportunity for selection of control. Welch ez al (1985) conclude the major
influence on the rectification of Landsat TM data is the spatial resolution of the
imagery. This also applies to a greater extent to Landsat MSS and less to SPOT HRV
data, and in each case the contribution of point identification error in the image is the

largest single source of positioning error.

Detailed and up to date digital map data were available for the Landsat TM, SPOT HRV
and IRS1-D data (see Section 3.4.1), and selection of a relatively large number of well
distributed GCPs was possible. In conjunction with improved geometric quality of the
data from these sensors, substantially improved a posteriori RMSE values (13, 8 and

3 m, respectively) were obtained, compared to the predicted values.

Rectification precision as measured by the a posteriori RMSE is important, however
any shift in pixel locations caused by pixel resampling must also be considered in the
comparison of multidate imagery for change assessment. The displacements of pixels
due to resampling are not included in the a posteriori RMSE calculation. Lodwick
(1980) indicates that for nearest neighbour resampling average RMSE translation errors

of 0.289 pixels are expected statistically, and therefore should be included as follows:

\/(RMSE transformation)’ + (RMSE resampling)’ (3.11)
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Combined with the @ posteriori RMSE transformation error, the total estimated RMSE
including spatial displacement due to resampling are 0.875, 0.521, 0.499 and 0.620
pixel for Landsat MSS, Landsat TM, SPOT HRYV and IRS1-D data, respectively. These
vajues will be used in evaluation of the geometry of the imagery for multidate analysis
and provide data for error propagation assessment of the change evaluation process.

3.6 Summary

Comparison of multidate imagery for detection of land cover changes requires the
development of a geometrically coherent dataset in order that spatially coincident
comparisons can be made. The processes of image rectification and pixel resampling

are fundamental to the derivation of these data.

With the development of new generation high resolution satellite sensors with pixel
dimensions of the order of 5 m, achievement of rectification with subpixel precision
requires investigation of appropriate algorithms. All data, including the high resolution
IRS1-D imagery, were rectified using global polynomial rectification techniques. With
improvements in the spatial resolution of future sensors, parametric techniques may be
required, however investigation of polynomial techniques applied to high resolution
IRS1-D data indicate that with sufficient GCPs of suitable precision, acceptable

rectification results can be achieved.

First, second and third order polynomials were evaluated for rectification of each of the
datasets. For Landsat MSS, Landsat TM and SPOT data there were no significant
advantages in using higher order polynomials, and a first order polynomial was applied
in each case. Higher resolution IRS1-D data were evaluated and a first order model was
deemed to be inadequate. A third order polynomial was applied for the rectification of
these data. In all cases, rectification produced a posteriori RMSE values of less than
1.0 pixel and, for Landsat TM, SPOT HRYV and IRS1-D data, where quality reference
material for derivation of GCPs were available, RMSE values of 0.5 pixel were

achieved without the application of specialised processing approaches.

The polynomial rectification approaches utilised in this study have produced
geometrically consistent data that are suitable for change detection analysis. While all

images have been rectified to better than the dimension of one input pixel, the range of
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dimensions of the input pixels means that positional variations will continue to be an

issue in future analyses.

Maintenance of pixel brightness values during rectification and resampling is vital
where spectral analysis such as multispectral classification is to be undertaken following
geometric correction of the data. Cubic convolution and bilinear interpolation were
considered, but nearest neighbour resampling was utilised to maintain radiometric

consistency for subsequent classification.

Change detection analysis is facilitated through resampling all data to a common pixel
dimension. To minimise the loss of radiometric information and to facilitate multiscale
comparisons a 20 m pixel grid was selected so that it is identical to the SPOT HRV

data, which is the smallest pixel in the multispectral dataset.

Resampling of remotely sensed data during rectification can have significant effects on
the spatial location of pixels. Research indicates that resampling Landsat MSS data to a
60 m pixel results in the displacement of many pixels, which may effect the analysis of
data for change detection. Spatial displacement of the Landsat MSS data has been
minimised through utilisation of a resampling interval of 20 m. As differences between
the spatial resolution of sensors increase, further consideration of potential spatial and
radiometric distortions will be required for integration of data for change detection

analysis.



91

Chapter 4

IMAGE PROCESSING

his chapter focuses upon the application of information extraction algorithms for
T identification of a range of land over classes within the study area. Supervised
and unsupervised classification algorithms are used to extract land cover details from
the satellite data. Successful classification of land covers is dependent upon clear
recognition of ground features resulting from analysis of their spectral characteristics.
Spatial autocorrelation and class differentiation analyses are used to define the spatial
patterns of reflectance characteristics and to measure the spectral separability of the land
cover classes for supervised classification. Stratified sampling is used to determine the
optimum grouping of clusters derived from unsupervised classification into relevant
land cover classes. Results from a supervised maximum likelihood classification and
ISODATA unsupervised classification are presented using land cover classes equivalent
to USGS Level T and Level II classifications. These results will be used for temporal
comparison with similar classifications derived from data collected over a range of

spatial resolutions.
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4.1 Introduction

Image processing relates to the range of image enhancement and information extraction
procedures that may be applied to remotely sensed data for feature identification. The
goal of image enhancement is to improve the interpretability of an image by increasing
the apparent distinction between features (Lillesand and Kiefer, 1994).  This
terminology describes processes such as contrast stretching and spatial filtering in
preparation for visual interpretation, or the elimination of pixel dropouts and creation of
principal components images as a precursor to subsequent digital image analysis.
Information extraction may take the form of photointerpretation of hard copy images or
quantitative analysis of digital data using automated classification approaches

(Richards, 1993).

Within this study image enhancement techniques need only be investigated to the extent
necessary to provide data of consistent quality suitable for classification. Data which
occupy relatively small sites with minimal topographic variation are assumed to exhibit
consistent atmospheric and topographic effects (Gong and Howarth, 1992). The
classifications utilised in this study are applied to independent multidate datasets and
are statistically invariant to linear transformations, consequently no radiometric
corrections were made to the data. Destriping corrections were applied to the Landsat
MSS data, but only to the extent of correcting sensor-induced degradation such that
consistent levels of classification could be obtained. Contrast stretching and formation
of colour composite images were also performed as an aid in the identification of

training samples for supervised classification.

Evaluation of the information content of remotely sensed data and its application to land
cover mapping relies upon careful definition of the land cover classes. The
classification scheme must be based upon taxonomically correct definitions of the
classes and be organised according to logical criteria (Jensen, 1996). Analysis of
multiscale data requires further consideration of the hierarchical structure of the data
and classification system. Transformation of the results from spectral classes to
informational classes such as land uses is problematic, and requires careful

consideration of the data spectral characteristics and land surface properties.
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“The approaches applicable to unsupervised and supervised classifications are somewhat
different. In the context of unsupervised classification, techniques are required to assist
with the allocation of spectrally based clusters to land cover classes. In the rural-urban
fringe more than 20 clusters may result from the unsupervised classification, which
must then be summarised by only four land cover classes. An analytical approach to
cluster allocation using sampling techniques would significantly simplify the mapping

process.

Much attention has also been directed towards the collection of training samples for
supervised classification and their relevance for summarising the statistical parameters
of the corresponding land cover classes. Spatial autocorrelation and its relationship to
the scale of observation and the geostatistical concept of support (Atkinson and Curran,
1997; Collins and Woodcock, 1996b) are significant considerations in defining the

manner in which training samples are collected.

Improved definition of statistical parameters for definition of land cover classes leads to
enhanced classifier performance and understanding of sampling procedures. Critical
parameters include the optimum size of training samples to adequately assess class
variance, and assessment of class separability to ensure that spectrally separable land
cover classes are identified. Analytical bases for these assessments are considered in
the form of spatial autocorrelation analysis and statistical evaluation of training class

separations.

4.2 Land Cover Classification Scheme

The primary objective of this research is to investigate the application of multiscale
digital data for the determination of land cover changes on the rural-urban fringe.
Inherent in multiscale approaches is the concept of interpretation of variable levels of
detail from each dataset as discussed in Section 1.1.3. For example, forest cover may be
isolated from pasture in Landsat MSS data, however, within the forest category
discrimination of evergreen and deciduous forests may also be possible from SPOT
HRYV data. The classification scheme must be able to accommodate these various levels
of interpretation. Meaningful comparison of the results of interpretation from

multiscale sources is necessary for the full potential of data collection and analysis
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techniques to be realised. Operational issues and the availability of monitoring data

were considered in Section 1.2.

Standardised land use and land cover data are required to encourage efficient use of data
collection facilities and to enable effective management of resources. Consistent and
robust land use and land cover data are essential for planning and management of
infrastructure development, environmental management, energy and resource
development, urban planning and industrial development. Application of standardised
classification schemes provides a fundamental framework for the establishment of this

information for local, regional and national purposes.

The most widely utilised land use and land cover classification scheme was developed
by the USGS (Anderson et al, 1976) and forms the basis for the approach used in this
study. The USGS classification scheme comprises four levels of land use and land
cover classes arranged in a hierarchical manner. Omly the first two levels have been
defined by Anderson et af (1976) and are shown in Table 4.1. It is intended that classes
at Levels II1 and IV be developed for specific circumstances and particular
combinations of characteristics, with the requirement that these classes may logically be

aggregated to generalised Level I and Level Il classes.

This classification scheme was designed to utilise remotely sensed data as the primary
information source especially at the more generalised levels, and to incorporate
ancillary or collateral data to assist in the understanding of multiple-use arrangements or
for more detailed interpretation at Levels Il and IV. The range of data applicable to the
derivation of each level of interpretation is given in Table 4.2, which indicates that all
satellite data utilised in this research is only useful for interpretation of Level I classes.
A range of studies (Martin et al, 1988; Trietz et al, 1992; Wolter et al, 1995 and others}
have derived Level II information from medium resolution satellite data, however the
success has been dependent upon the target size and heterogeneity, and contrast
characteristics of the objects. While it is not expected that Landsat MSS will provide
reliable and consistent interpretation at Level 1I, all data will be evaluated for

interpretation at both levels.
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The USGS classification system is designed primarily to utilise interpretation of

analogue imagery and does not

satellite data nor the implications

consider the availability of higher spatial resolution

of advanced automated interpretation techniques.

LEVEL I

LEVEL 11

1 Urban or built-up land

2 Agricultural land

3 Rangeland

4 Forest land

5 Water

6 Wetland

7 Barren land

& Tundra

9 Perennial snow or ice

11 Residential -
12 Commercial and services

13 Industrial

14 Transportation, Communications, and utilities

15 Industrial and commercial complexes

16 Mixed urban or built-up land

17 Other urban or built-up land

21 Cropland and pasture

22 Orchards, groves, vineyards, nurseries and ornamental
horticultural areas

23 Confined feeding operations
24 Other agricultural land

31 Herbaccous rangeland

32 Shrub and brush rangeland
33 Mixed rangeland

41 Deciduous forest land

42 Evergreen forest land

43 Mixed forest land

51 Streams and Canals

52 Lakes

53 Reservoirs

54 Bays and estuaries

61 Forested wetland

62 Non-forested wetland

71 Dry salt flats

72 Beaches

73 Sandy areas other than beaches
74 Bare exposed rock

75 Strip mines, quarries and gravel pits
76 Transitional areas

77 Mixed barren land

81 Shrub and brush tundra

82 Herbaceous tundra

83 Bare ground tundra

84 Wet tundra

85 Mixed tundra

91 Perennial snowfields

92 Glaciers

Table 4.1 Generic land use and land cover classification system for use with remote

sensor data {Anderson et al, 1976)
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Higher spatial resolution generally enables more detailed categorisation of land covers,
although in complex urban areas variable results have been achieved (see Section 224
Multispectral classification can provide a robust analysis technique, however most
approaches rely only upon the spectral characteristics of the data and ignore components
such as site, size, texture and pattern, which provide important contextual information
during manual interpretation. The USGS classification scheme utilises land cover as a

surrogate for land use, however contextual data often provide the final decision

criterion.
CLASSIFICATION LEVEL DATA CHARACTERISTICS
1 Medium resolution satellite data (20-100 m IFOV)
Il High altitude aerial photography (smaller than 1:30 00 scale)
114 Medium altitude aerial photography (1:20 000 to 1:80 000 scale)
v Low altitude aerial photography (larger than 1:20 000 scale)

Table 4.2 Data characteristics equivalent to levels of interpretation for remotely sensed

data (after Anderson et al, 1976)

The classification scheme developed as part of this research is designed for use with a
range of medium resolution satellite data to be interpreted using multispectral
classification technigues. Consequently, classes are defined in terms of spectral
separability and minimal intraclass variability (Martin et al, 1988), rather than a
recognition of a specific land use category, as contextual information will not be utilised
to assist with the interpretation process. The characteristics of each class were

described in Section 2.2.2.

Table 4.3 illustrates the land cover classification scheme developed for this study. The
classification is hierarchical with classes at Level I and Level II used to accommodate
the level of detail extracted from the various sources of satellite data. Residential and
Pine plantation have been further subdivided at Level III in recognition of classes
which are clearly identifiable on analogue displays of the data. Classification at Level
ITI will not be attempted, however categories in Level IT and Level I are designed to be

integrated into corresponding classes higher in the hierarchy. These Level 1Il classes
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will be utilised to assist with signature extraction for the supervised classification and

cluster allocation for unsupervised classification.

LEVEL 1 LEVEL II LEVEL 111

1 Urban 11 Residential 111 Established residential
112 Residential under construction

12 Commercial
2 Forest 21 Pine plantation 211 Pine plantation (dense)

212 Pine plantation (low density)
22 Wetland

23 Woodland
3 Open 31 Grassland
32 Recreation
33 Bare ground
4 Water 41 Water

Table 4.3 Land use and land cover classification system developed for the study area

The use of land cover rather than land use classes as the classification objective is
designed to provide categorisation of features based entirely upon spectral
characteristics. Consequently, some categories that are identified as separate Level II
classes within the USGS system are not regarded as separable in the current system.
For example, the more generic Commercial class includes the Level I classes of 12, 13,
14 and 15 shown in Table 4.1. Similarly, due to the spectral similarity of the targets, the
Recreation class includes irrigated recreation reserves as well as some areas of irrigated
pasture associated with the Murdoch University School of Veterinary Science.
Incorporation of ancillary data would be necessary to permit separation of these land

covers into specific land use types.

Residential has been subdivided into Established residential and Residential under
construction at Level III to acknowledge these two distinct land cover types and
associated spectral variations. Cleared land (as a transitional stage between Woodland
and Residential under construction) has not been separately categorised, but is included

in the generic Bare ground class of Level 1L

Similar modified USGS classification systems have been applied elsewhere (Martin et
al, 1988; Trietz et al, 1992) for use with multispectral classification approaches for

medium scale satellite data. Classification to Level 1II has been achieved for some
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specific land cover classes, however acceptable classification even at Level II is often
difficult to achieve. The design of an effective land cover classification scheme relies
upon recognition of the target and sensor characteristics in conjunction with the
interpretation approach to be applied. In this study, multispectral classification without
consideration of contextual data is to be utilised, therefore the land covers defined in the
classification scheme are defined according to their spectral separability, their intraclass

variability and the classification approach.

4.3 Intraclass Variability

A land cover classification scheme applicable to the interpretation of remotely sensed
data was discussed in Section 4.2. The main considerations in determining the relevant
land cover classes to be interpreted for an area are the selection of classes that are
representative of the land covers of the area, and selection of those classes which are
also spectrally separable. The former will be satisfied where the classes are based upon
a well-structured generic classification scheme, and the latter where the interclass
variance is maximised and the intraclass variance is minimised. Interclass variance will
be considered in this research as part of spectral signature development and
classification refinement, while intraclass variance will be examined in this section

using spatial autocorrelation analysis.

Intraclass variance arises from a range of sources related to the specification of class

characteristics and heterogeneity inherent in individual land cover classes. Common

sources of high intraclass variance include:

(1) Class development which includes more than one land cover per class with
different spectral characteristics;

(ii)  Land covers which form a mosaic effect with background features, such as
grasses and bare ground;

(ii1)  Land covers which contain an agglomeration of components with a range of
spectral responses, such as residential areas;

(iv)  Vegetation at different stages of phenological development and vigour resulting
in variable spectral responses;

(¥) Transition areas between otherwise uniform cover classes.
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Land cover classes must be specified based upon aggregation of pixels with similar
spectral characteristics and which also convey useful information related to the
interpretive process. Cover classes in this study have been selected on this basis,
however the interaction of the target with the sensor is also significant, especially
considering the relationship between the spectral and spatial characteristics of the target,

and the spatial resolution of the sensor.

Collins and Woodcock (1996b) consider the spatial resolution of the sensor to represent
the scale of observation, which is defined as the spatial interval over which
observations are made. Importantly, this needs to be considered in the context of the
characteristic scale, which the authors consider to be the range of resolutions over
which that phenomenon may be characterised. Additionally, Atkinson and Curran
(1997) and others, consider the geostatistical concept of support to be important, which
collectively describes the size, geometry and orientation of the space over which
measurements are made. The term support is largely inclusive of the concept of the

scale of observation.

The information contained within remotely sensed data may be gauged by the local
variance of the image data, which is determined by the relationship between the size of
the objects and the spatial resofution of the sensor (Woodcock and Strahler, 1987). The
spatial resolution at which local variance is maximised changes as a function of the
characteristic scale of the scene elements. Based on simulation studies, variance is
maximised when the scale of observations is just less than the size of the objects in the
scene, and declines as the pixel size increases (Woodcock and Strahler, 1987). For data
which have the capacity to be collected with a spatial resolution much finer than the
characteristic scale, as may be the case with airborne multispectral data, a spatial
resolution smaller than the scale at which maximum variance occurs should be chosen
(Atkinson, 1997). However, where such fine resolution data are not available, as is
often the case with satellite data, an amount of averaging of intraclass variation is
desirable (Davis and Simonett, 1991).  Additionally, where scene variance Is
determined to be wavelength dependent as a result of comparing a range of bands of
data, there may be more than one target affecting the reflectance and the optimum

spatial resolution will depend on which object is of prime interest (Atkinson, 1997).



Scene variance analysis may be utilised to determine the optimum spatial resolution for
planning data acquisition or for assessment of the spatial variation of scene radiance to
assist with information extraction. Analysis of intraclass variance using spatial
autocorrelation techniques will be undertaken in this research in order to determine
appropriate dimensions for training sites to enable the extraction of spectral signatures

for implementation of a supervised classification scheme.

4.3.1 Spatial Autocorrelation

Remotely sensed images exhibit a measurable spatial structure due to the characteristics
of the targets and the sensing system employed to acquire the data. Targets from any
class in a scene tend to be spectrally homogenous and separable from other objects and
the background. Consequently, adjacent objects are spectrally similar, and this sparial
autocorrelation is dependent upon the size, spacing and shape of the objects in the
scene (Jupp et al, 1988). Campbell (1981) indicates the design and operation of the
Landsat MSS may also contribute to spatial autocorrelation due to the nature of the scan
pattern and the sampling procedure whereby the IFOV of adjacent pixels overlap.
Additionally, for higher spatial resolution sensors such as Landsat TM and SPOT HRYV,
the pixel to pixel correlation may be further increased due to the smaller spatial
sampling interval relative to the size of the targets (Arai, 1992). However, as discussed
in Section 2.2.4, smaller pixel dimensions often lead to increases in within class

variance and diminished spatial autocorrelation.

While the principle objective of multispectral classification is to identify spectrally
homogenous classes, it is recognised that variations of spectral characteristics within
classes are significant even though the differences are insufficient to justfy
identification of a separate class. The use of contiguous pixels to represent a land cover
class tends to underestimate the variance-covariance matrix derived from the spectral
bands (Campbell, 1981; Congalton, 1988b; Labovitz and Masuoka, 1984).
Consequently, several independent training samples may be required to adequately
describe the mean and variance of each land cover class. Spatial autocorrelation
techniques may be used to determine the areal extent of correlation so that extraction of

independent training statistics may be optimised.
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Spatial autocorrelation represents the concept that within a set of observations separated
by a specific distance x (lag), observations will exhibit a different degree of simularity -
than will the set of observations separated from each other by the distance x+/. The
degree of change in similarity is a measure of spatial autocorrelation, and the distance is
termed the lag (Cliff and Ord, 1981). For objects spaced at uniform distances, changes
in spatial autocorrelation represent changes in the similarity of values at the relevant lag
distance. High positive spatial autocorrelation values indicate there is a close
association between the samples separated by a specified lag. For raster data the value

of x is usually an integer number of pixels.

Several measures of spatial autocorrelation are available, however to explore spatial
dependence in observed radiance values for remotely sensed data, Moran's I 18

appropriate (Bailey and Gatrell, 1995):
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Equation 4.1 determines spatial autocorrelation at lag k where w(’ are the elements of

the (n x n) spatial proximity matrix at spatial lag k. The value of Moran’s I is not
constrained to the range —1 to +1, however for most real datasets exact rescaling 1s not
necessary (Bailey and Gatrell, 1995). Values of Moran’s I approaching +1 represent
strong spatial correlation between adjacent values at a specified lag, while values
approaching -1 indicate adjacent values at the specified lag are dissimilar, Values at
neighbouring lags are highly correlated since the correlation at larger lags is in part a
function of correlations at smaller lags, and direct inferences should not be attributed to
specific  values where there are multiple peaks in I at subsequent lags (Bailey and

Gatrell, 1995).

4,32 Correlation Results
Landsat MSS, Landsat TM and SPOT HRV data for the study area were used to
compute Moran’s I for each of the land cover classes present in the area. The purpose

of the analysis is to guide the determination of the minimum size of training sites in
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order to extract training statistics which provide accurate representation of the variance
present within each land cover type. Gong and Howarth (1992) recommend extraction
of training pixels on the basis of stratified unaligned sampling in order to overcome the
effect of spatial autocorrelation and to record training data which adequately estimates
image class variance. In this research, contiguous pixels defined by irregular polygons
will be defined as training samples, the minimum size of which will be determined

through spatial autocorrelation.

Atkinson (1997) found that where spatial variation was wavelength dependent, a
mixture of features on the ground was generally the cause of variation. Consequently,
only one band of data from each sensor will be analysed (Table 4.4), as this will be
sufficient to guide the correlation analysis based upon spatial variation. For maximum
separation of the urban and near-urban targets characteristic of the study area, data from

the near infrared region of the spectrum bas been used.

Sensor Band Data interval
Landsat MSS 4 (0.80- 1.10 pm) 60 m
Landsat TM 4 (0.76 - 0.90 pm) 30m
SPOT HRV 3(0.79 - 0.89 um) 20m

Table 4.4 Sensor bands utilised for spatial autocorrelation analysis

Land cover boundaries identified from aerial photographs of the study arca were used to
mask the satellite data so that the values of Moran's I were obtained from known areas
of each land cover. The satellite data utilised in the correlation analysis were rectified
using the same parameters applied to the main dataset (Chapter 3) and resampled to a
pixel dimension similar in size to the original data recorded by the satellite as shown in
Table 4.4. Nearest neighbour resampling was applied and no other image enhancements

were undertaken.

IDRISI utilises a modified implementation of Moran's I for lags beyond the first spatial
lag. Equation 4.1 is used to compute Moran's I for all lags, however for second and
higher lags the input matrix must be thinned by the appropriate fraction to expose the

data at the relevant spatial lag. This process results in a substantially reduced dataset for
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higher spatial lags and may produce unstable / values where the initial sample of
radiance values is small. Land cover classes with small pixel numbers, such as Water,
have therefore been excluded from the autocorrelation analysis. The implementation of
Moran's I used in this study applies the king’s (or queen’s) case, where all adjacent
values including diagonals are considered. Analysis of spatial autocorrelation may
alternatively be performed using the rook’s case, but this eliminates diagonal cells-from

the computation and further reduces the quantity of cells evaluated.

Interpretation of spatial autocorrelation within the multisensor radiance data is
accomplished through construction of correlograms where the value of Moran's I'is
plotted against the corresponding spatial lag. Analysis from the first through to the
sixth lag will be undertaken for each data type representing a maximum distance of
360 m and 180 m for the Landsat MSS and Landsat TM data respectively, and 120 m
for the SPOT HRV data. The practical maximum analysis distance is based upon the
Landsat TM and SPOT HRYV data, and the approximate size of each area of the land
covers under analysis. It is anticipated that most significant changes relevant to the
determination of training statistics are likely to occur within these distances. The
maximum lag distance for the Landsat MSS data is well beyond the size of many
contiguous areas of land covers in the study area and consideration of spatial lags

beyond the third may not be relevant.

Spatial autocorrelation values for spatial lags of land cover classes for all resolutions of
satellite data with less than 30 cells were not computed due to the relatively small
sample size. Norcliffe (1977) estimates that for spatial autocorrelation analysis samples
around 20 are considered moderately small and samples of 40 are deemed moderately

large, therefore 30 was considered a reasonable cut-off level for this analysis.

Comparison of corresponding spatial lag values between sensors is not relevant because
at a particular lag each sensor is measuring over a different physical distance, and
variations in lag values between sensors will therefore not be directly comparable.
Evaluation of the spatial autocorrelation of each data set will be undertaken
independently with the objective of identifying the minimum areal extent of training

samples for spectral signature derivation for each resolution of data.
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Results of the spatial autocorrelation analysis for the satellite data are presented in the

correlograms shown in Figures 4.1,4.2 and 4.3.

Each correlogram demonstrates the degree of similarity of the radiance value of a pixel
with its neighbours at varying pixel distances corresponding to the relevant lag values.
For each type of satellite data the actual ground distance corresponding to the lag value

is obtained from the product of the data interval shown in Table 4.4 and the indicated

lag.

Table 4.5 summarises the results of significance testing of the spatial autocorrelation of
land covers calculated using Moran’s I. The significance of the spatial autocorrelation
computed from the satellite data used in this study for each land cover category was
tested against the null hypothesis that no spatial autocorrelation exists at the o= 0.01

level of significance. A one-tailed test was applied with z = 2.33.

Testing was only undertaken on those data included in Figures 4.1, 4.2 and 4.3, and
therefore excluded any comparisons where there were less than 30 pixels available to
compute Moran's 1. For each category, significance testing was not considered beyond
the first lag value where no significant spatial autocorrelation was observed even if data
at subsequent lag values were significant.  As previously discussed, spatial
autocorrelation was only considered to a maximum of six lags and only when n > 30.
Consequently, for some land covers all recorded spatial lag values were significant even
though all six lags were not assessed. While the algorithm used by IDRISI represents a
limitation of the implementation of Moran’s I, these data provide relevant details of the

spatial patterns of radiance values in the near infrared portion of the spectrum.

4.3.3 Correlation Analysis

4.3.3.1 Landsat MSS

Figure 4.1 demonstrates the spatial variability in radiance values for the selected land
covers in Landsat MSS band 4. All land covers show a gradual decrease in [ with
higher spatial lags, except for Bare ground. The Bare ground category shows a very
high spatial correlation for the first lag, but dips for the second and actually increases

again for the third lag. Despite the observed variability, all three lag values for this
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Land Cover Spatial Lag (significant values)
Category Landsat MSS Landsat TM SPOT HRV
Established residential 2 4 6*
Residential under construction 1 2 2
Commercial 2 3 9
Pine plantation (dense) 3 3% 3*
Pine plantation (low density) 3% 3 H#
Wetland 1 3 5
Woodland 2 4 6*
Grassland 2¥ 5 6%
Recreation 1 5 6*
Bare ground 3* 3 3

* all spatial lags computed tested as significant

Table 4.5 Assessment of the significance of spatial autocorrelation for each land cover

category in the study area
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category are considered significant. This effect may result from the presence of some
low vegetation in parts of the area identified as belonging to this class, or due to the
relatively narrow and disjointed nature of the areas within this category. and the
inherent inconsistency of the resulting radiance values. Bailey and Gatrell (1995) state
that values at neighbouring lags of a correlogram are highly correlated and caution
against attributing particular significance to peaks in a correlogram at subsequent lags
(third) if there are also peaks at smaller lags (first). This situation applies for the Bare

ground category and further consideration of the peak at the third lag is not warranted.

The Pine plantation (dense) and Woodland categories occupy relatively large areas
within the scene and demonstrate consistently decreasing spatial correlation. The value
of I for Woodland decreases from a relatively high level (0.61) and Pine plantation
(dense) from a relatively low level (0.38), with both classes showing equivalent levels
by the third lag and low levels of correlation at the sixth lag (-0.1), indicating no spatial
correlation is present. The variability within the Woodland category means only [
values to the second lag are significant, while Pine plantation {dense) maintains
significance to the third spatial lag, thus confirming the higher intraclass variability of
the Woodland category compared to the Pine plantation (dense) category. Woodland
areas characteristically comprise a mixture of trees, understorey and soil which
contribute to a variable reflectance response, whereas Pine plantation (dense) areas
provide a more consistent view to the sensor over relatively large tracts of land

considering the spatial extent of the Landsat MSS pixels.

Pine plantation (low density) shows a relatively high spatial correlation over the first
three spatial lags, indicating significant levels of similarity in spectral characteristics.
While low density pine plantation areas comprise a variable mixture of components
including pine trees, grasses and soil, the pixel averaging effect provides consistent
radiance values. The Commercial category demonstrates a similar pattern of
correlation, however only the first two [ values are considered significant. Additionally,
the strength of the spatial relationship is much lower, confirming the suspected
variability of land covers and their corresponding radiance values. Commercial areas
generally include a wide range of land covers such as roads, carparks and paved areas
{bitumen, concrete and brick paved), reticulated grass and landscaping, various roofing

materials and soil, which lead to this lower spatial correlation.
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Established residential and Residential under construction categories demonstrate
identical correlation for the first two lags. Only the first lag is considered significant for
the Residential under construction category and, due to the low occurrence of this land
cover within the study area, no further lag values were evaluated. Lag values
commence at approximately 0.35 but decreased rapidly to 0.13 by the second lag and to
—0.14 at the sixth lag for Established residential. Only the first two lags are significant
for this category. These results indicate significant variability of measured radiances
within these categories due to the range of component land covers. Common to both
Established residential and Residential under construction are bitumen and concrete
paving, and clay, concrete and steel roof areas. Established residential pixel responses
also include significant components of reticulated vegetation while, for Residential
under construction, pixels also include large areas of highly reflective bare soil. Within
each category these conditions lead to significant variability between pixels and result in

low spatial correlation within the corresponding land cover classes.

The Recreation category within the study area comprises many small areas used for
community recreation, as well as several larger areas of reticulated grassland used for
sporting activities and for pasture related to the activities of the Murdoch University
School of Veterinary Science. These areas of pasture are included in this category due
to the intensive management of reticulation and fertiliser treatments that are more
similar to those applied to sporting facilities than to other grassland areas within the
study area, and consequently are spectrally similar to the Recreation category. Areas of
non-reticulated pasture in the study area have been placed in the Grassland category
because the spectral response varies according to the prevailing seasonal conditions.
Two spatial lags were assessed for Recreation which varied from 0.66 to 0.24. Only the
first spatial lag is significant and indicates there is minimal consistency of response
across the category, although this may be due to the distribution of Recreation across
the study areca where it occurs as a large number of isolated patches within other land

cover classes, and contamination of responses by boundary pixels may be an issue.

The Grassland category also occurs over limited areas. Spatial autocorrelation ranges
from 0.69 to (.38 between the first and second lags, and were the only two lags
assessed. Both values are considered significant thus indicating consistency of response

at least over the area covered by up to five Landsat MSS pixels {centre pixel and two
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pixels each side). Areas of grassland generally comprise a mosaic of native and
introduced grasses and soil, which produces a relatively uniform response when

averaged by the Landsat MSS sensor.

Wetland areas occur over a limited extent within the study area and the two lag values
computed vary between 0.34 and -0.05. Only the first value is considered significant,
with the second value indicating clearly that no spatial correlation exists at that level for
this category. The large difference between the two I values may in part be caused by
the effect of errors in the geometric rectification of the satellite data and the registration
of the reference data. With Wetland occupying a very limited areal extent, some pixels
used in the spatial autocorrelation analysis will be boundary pixels and adjacent land

covers will influence the radiance values.

4,332 Landsat TM

For the Landsat TM data all categories show a gradual decrease in spatial
autocorrelation except Pine plantation (dense). In this case all three spatial lags
assessed were significant, with the first two values around 0.50 and the third at 0.70. As
was the case with the Bare ground category for the Landsat MSS data, the Pine
plantation (dense) category has been reduced to a number of small disjointed areas and,
combined with potential correlation within the correlogram, no particular significance
may be attributed to this pattern. Due to the limited extent of this category, training

samples will necessarily be of limited areal extent.

Most of the spatial autocorrelation information derived from the Landsat TM data from
the remaining land cover categories demonsirates a consistent pattern of results with a

gradual decrease in spatial autocorrelation towards second and subsequent lags.

Established residential shows moderate spatial autocorrelation for the first lag and
relatively low values for all subsequent lags. Despite these low values, spatial
correlation tested significant through to the fourth lag due to the low variance of the
computed I values, thus indicating underlying consistency of radiance values even

though not at a strong level.
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The Residential under construction category indicates significance only to the second
lag with I quickly decreasing to values near zero. The radiometric variability of this
class is characteristic of the variety of land covers present in the category and rapid
change which occurs during development and construction, and is reflected in the low

level of spatial consistency.

Moran's I was significant for the Commercial category to the third lag (I = 0.29), but by
the fourth lag no autocorrelation was evident (/ = 0). The smaller pixel size of the
Landsat TM sensor compared to the Landsat MSS data results in reduced averaging of
the target, which is especially important in heterogenous parts of the scene, such as

commercial areas where sharp changes in spatial autocorrelation may be observed.

Spatial autocorrelation for Pine plantation (low density) tested significant only to the
third spatial lag which is due to variations in the density of pine trees in the area. While
no soil or understorey is visible for the Pine plantation (dense) category, Pine
plantation (low density) incorporates a range of forest densities where the spacing
between trees varies significantly, and understorey and soil are clearly exposed to the
sensor. Consequently, the consistency of responses for low density pine plantation may

vary as indicated by the correlation results for this category.

Wetland areas demonstrate significant spatial autocorrelation through to the third lag.
The fourth lag is not significant and may arise from the variation of vegetation
distribution according to the moisture and waterlogging regime. Moisture conditions
tend to stratify the vegetation in wetland areas and effect the resultant radiometric

responses.

For Landsat MSS data the Woodland category was previously compared with Pine
plantation (dense), and considered as a class demonstrating relatively high spatial
variability. While the reverse is true for data recorded by the Landsat TM sensor, the
extent of dense pine plantation is extremely limited in this image and spatial
autocorrelation results are not as reliable. Comparing land cover classes recorded by the
Landsat TM sensor, the Woodland category shows significant spatial autocorrelation at
the fourth lag, which is less than the extent of significant autocorrelation indicated for

Grassland, Recreation or Bare ground (fifth lag). These classes all represent relatively
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uniform land covers and confirm that comparatively moderate variability exists in the

Woodland category when recorded by the Landsat TM sensor.

The physical characteristics of the Grassland, Recreation and Bare ground categories
were discussed previously in Section 4.3.3.1 when interpreting results from the Landsat
MSS sensor. In the current analysis all three categories exhibit significant levels of
spatial autocorrelation at the fifth lag. This indicates that the radiance values for each of
these land cover categories exhibit relatively uniform responses over a comparatively
large area. The area of each of these land covers has expanded considerably for the
Landsat TM dataset, indicating the areal extent of the corresponding land covers in the
Landsat MSS data may have been a limiting factor in determining reliable spatial

autocorrelation characteristics.

4333 SPOTHRV

Analysis of the SPOT HRV data for spatial autocorrelation shows that with four of the
ten classes analysed, all six spatial lags are significant, thus indicating that spatial
autocorrelation may extend beyond the limits of analysis undertaken in this study. This
contrasts with earlier analyses when classes in which all spatial lags were significant

occurred when a maximum of three lags was computed.

All six spatial lags exhibit significant levels of spatial autocorrelation for the
Established residential and Woodland categories. This contrasts with the results from
the Landsat MSS and Landsat TM data where these categories had been identified as
providing a potentially moderate to high level of spatial variation. With the higher
spatial resolution of the SPOT HRV sensor variability is expected to increase, however
the pixel size of 20 m is still significantly larger than the spatial frequency of the image

components and therefore permits a degree of radiometric averaging of the targets.

Grassiand and Recreation also tested significant for all six spatial lags, however these
land covers are relatively uniform and a high level of spatial correlation is expected.
This also occurred for the Landsat TM data, although for the Landsat MSS data the
arcal extent of each was too limited and the pixels too large for a conclusive result to be

obtained.
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Residential under construction, Pine plantation (dense) and Bare ground are the only
categories which have not demonstrated an increase in the extent of spatial
autocorrelation (in terms of lag values as compared to distance), when comparing the
analysis of Landsat TM and SPOT HRV data with the analysis of Landsat MSS data.
Pine plantation (dense) and Bare ground are both of limited areal extent and are formed
by a number of disjointed areas within the SPOT HRV dataset, which leads to increased
variability. The degree of spatial autocorrelation measured by the number of spatial
lags has not increased for the Pine plantation (dense) category throughout the analysis,
despite the very uniform nature of the target. It is apparent the decrease in the spatial
distribution of this category influences this outcome. Bare ground has exhibited
variable responses for each of the datasets with the maximum spatial autocorrelation
assessed for the Landsat TM data. The total area of this category has not shown great
variation during the period under consideration, and the range of spatial autocorrelation
may be due to undetected changes in surface conditions, perhaps due to the balance

between seasonal herbaceous ground covers and areas of bare soil.

The consistent low level of spatial autocorrelation for the Residential under
construction category highlights the inherent spatial variability of radiometric responses
for this land cover. Results shown in Figure 4.3 indicate that beyond the third spatial
lag no spatial autocorrelation is detectable. The category has moderate areal extent and
is found in well-conditioned clusters, which provide conditions for spatial
autocorrelation to exist. The linear extent of spatial autocorrelation has decreased from
60 m for the Landsat MSS data to 40 m for the SPOT HRV data, indicating the
existence of increased variability within this category, which is enhanced by the finer
spatial resolution of the sensor. This high level of variability may also lead to

significant confusion during the classification process.

Commercial, Pine plantation (low density} and Wetland areas have gradually increased
from low spatial autocorrelation for the Landsat MSS data to significant correlation at
the fifth lag for the SPOT HRYV sensor. Pine plantation {low density) and Wetland
categories are relatively uniform land covers, but are of limited areal extent. The
increase in spatial autocorrelation (by lag) is consistent with the finer spatial resolution
of the sensor. As a result of the radiometric uniformity of the targets, spatial

autocorrelation has not been diminished by the increased sensitivity to spatial variation
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provided by the higher spatial resolution of the SPOT HRYV sensor or by the limited area
occupied by each land cover. The Commercial category extends over a relatively large
area, but the variation in target characteristics for this class has resulted in significant

spatial autocorrelation being limited to the fifth spatial lag.

4.3.4 Multiscale Effects
Evaluation of the autocorrelation analysis in Section 4.3.3 relied upon detailed
consideration of the responses measured by each sensor for the range of land covers
under consideration. Intraclass characteristics are the main focus of the analysis
because assessment of spatial autocorrelation will be used to determine the minimum
areal extent of training sites during the supervised classification. Comparison of spatial
autocorrelation effects between datasets was not undertaken, however for a complete
understanding of the outcome of the spatial autocorrelation analysis, the following
factors are important:

) Spatial resolution. Spatial resolution varies from 79 x 56 m for the Landsat
MSS (resampled to 60 x 60 m for the analysis) to 20 x 20 m for the SPOT HRV
sensor, which produces two opposing effects with respect to spatial
autocorrelation. Firstly, a large spatial resolution provides for greater integration
of surface reflectance to a single value and consequently reduced variance in the
image. Secondly, coarser spatial resolution increases the probability that
adjacent pixels will comprise targets with significantly different radiometric
properties, thereby increasing the variance within the image. These factors have
mutually opposite effects, however no attempt has been made to quantify the
influence on the final results.

(it)y  Sensor quantisation levels. Landsat MSS data are quantised to 64 levels,
whereas Landsat TM and SPOT HRYV data are quantised to 256 levels. The
effect is to reduce the total variance in the Landsat MSS data and therefore
increase the apparent similarity between pixels. Reduced variance has the effect
of increasing the spatial autocorretation of the data, which must be considered in
conjunction with the effects of spatial resolution discussed above. No overall
analysis has been made of these combined effects, however inspection of Table
4.5 shows that in most cases the areal extent (in ground units) of statistically
significant spatial autocorrelation is similar across the three datasets. Pine

plantation (dense) and Bare ground are exceptions, however in both cases the
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area occupied by each in the finer resolution Landsat TM and SPOT HRYV data
has significantly reduced compared to the Landsat MSS data. These spatial
autocorrelation results derived from smaller data samples are considered less
reliable.

(iii)  Support. The concept of support and its interaction with sensor spatial resolution
were discussed in Section 4.3. Support relates not to the overall integration of
scene components as in (i) above, but to the comparative magnitude of the
individual scene elements and the sampling interval of the sensor. Woodcock
and Strahler (1987) indicate image variance reaches a maximum when pixels are
just less than the size of the sensor spatial resolution. Ideally, the sensor spatial
resolution should be selected such that it is smaller than the observation scale

(support) at which maximum variance occurs.

Considering the nature of the targets within the study area, even the finest resolution
data (SPOT HRYV) has a spatial resolution larger than most scene components, which
permits an amount of averaging. Exceptions may be large commercial establishments
sitch as department stores, factories and warehouses, however they represent a minority
of the targets under consideration. Therefore, in all situations considered in this study

the spatial resolution is larger than the support.

Understanding spatial autocorrelation in multiscale satellite data relies upon knowledge
of the scene-image relationships of target size and sensor spatial resolution. Within this
research relative amounts of spatial autocorrelation for multiscale satellite data will not
be utilised to enhance the classification process. However, knowledge of multiscale
influences on spatial autocorrelation are important for the understanding of intraclass
spatial correlation and for guidance in the determination of training site selection and
size for implementation of supervised classification procedures. Values in Table 4.5
will be used to determine the minimum size of training samples for signature
development prior to supervised classification. Training samples for each land cover
class must be larger than a radius defined by the product of the maximum spatial lag
defined in Table 4.5 and the pixel size defined in Table 4.4 which was used for spatial
autocorrelation analysis. This applies independently for each scale of remotely sensed
data and is designed to ensure training samples incorporate an appropriate degree of

intraclass variance.
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4.4 Information Extraction

Processing of remotely sensed data generally involves at least two important phases,
image enhancement and information extraction. Image enhancement performs those
functions that improve the quality or appearance of the data and correct for any defects
which arise during data acquisition and preprocessing. Image enhancement includes
such functions as atmospheric corrections, image destriping, contrast stretching, density
slicing, principal components analysis and spatial filtering. Information extraction,
however, involves the identification and labelling of objects and features with the
objective of producing an information product. The following section deals with the
process of information extraction applied to identification of land covers within the
study area using supervised and unsupervised classification techniques applied at two

levels of interpretation.

4.4.1 Unsupervised Classification

Unsupervised classification procedures utilise spectral similarities within land cover
classes to allow partitioning of multispectral data into a number of spectrally separable
clusters. Analyst intervention is generally restricted to a posteriori labelling of each
cluster with an appropriate land cover class. An advantage of the unsupervised
classification approach is that it establishes the spatial distribution of spectrally similar
pixels and thereby identifies classes based entirely upon spectral separability. The main
disadvantages relate to the requirement to define the number of clusters a priori and the
effort required to identify each of the clusters formed by the analysis and attach
appropriate labels (Deer, 1998). Many approaches to unsupervised classification are
available, however most rely upon an iterative process of clustering designed to
maximise the intercluster spectral separation, yet minimise the intracluster variance.
The ISODATA algorithm is one such approach that will be utilised in this research and

is described in the following section.

4.4.1.1 Theoretical Approach

The Iterative Self-Organising Data Analysis Technique (ISODATA) implemented
within IDRISI is based upon aggregation of pixels into clusters and refinement of
cluster membership on the basis of minimising the sum of the squared error of radiances

of the pixels (Eastman, 1997). The ISODATA algorithm is one of many clustering
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methods available, which include statistical non-supervised learning techniques,

ranking, intrinsic dimensionality determination and graph theory (Jain, 1989).

The parameters on which the general ISODATA routine operates are as follows (Jensen,

1996):

(1)

(ii)

(111)

{iv)

(v)

(vi)

In the

Maximum number of clusters. Usually defined by the analyst, however the- final
number located may be less than this value;

Maximum percentage of pixels. The quantity of pixels whose class assignment
remains unchanged between iterations. When this value is reached the algorithm
terminates;

Maximum number of iterations. Tterations during which the pixels are classified
and the cluster means are recalculated;

Minimum pixels in a cluster. If a cluster contains less than this minimum
percentage it is deleted and the pixels are assigned to other clusters. This also
effects whether a cluster is to be split;

Maximum standard deviation. When the standard deviation exceeds the
maximum value and there are at least twice the minimum number of pixels in a
cluster, the cluster is split into two clusters;

Minimum distance between cluster means. Clusters with a weighted distance

less than this value are merged.

general algorithm the maximum number of clusters (K) is known. For an

iteration (x) the assignment of any pixel (x) to the region (R,) of the K™ cluster is given

by (Jain, 1989):

where

He(n)

xeR o dxpm)= min Kld(x,.,uj(n)J (4.2)

= centre of the K" cluster at the n'™ iteration

d(x,v) = distance measure between the pixel and the cluster cenire.

The cluster centres are recomputed by finding the point that minimises the distance for

elements within each cluster, thus:
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p D Y d(x, g (n+1)=min N d(x,y) k=12 K (4.3)

x e R,

The procedure is repeated for each x,, one at a time, until the clusters and their centres

remain unchanged.

Within the IDRISI implementation only the number of iterations and guantity of
clusters need be specified. The classification is initialised by selection of points in
multispectral space that represent the location of the seed clusters. Most
implementations of the basic algorithm utilise an arbitrary (systematic or random)
approach to cluster seed allocation (Richards, 1993). However in IDRIST, the allocation
is based upon seed clusters formed as part of a separate clustering algorithm using a
histogram peak technique (Eastman, 1997). Seed clusters are derived from a three band
composite image, are more representative than arbitrary allocations and tend to
converge to a solution more rapidly. Additionally, the distance measure used in IDRISI
relies on the maximum likelihood algorithm and makes pixel assignments based upon

Gaussian maximum likelihood evaluations of class membership (see Section 4.4.2.1).

Prior to the actual seeding process the clustering algorithm computes preliminary
clusters and produces a histogram of cluster membership. Significant breaks in the
histogram indicate major changes in the generality of the clusters and one of these
breaks is chosen as the desired level of cluster development. The values used in this

study are shown in Table 4.6.

Satellite data Clusters

Landsat MSS 20
Landsat TM 27
SPOT HRV 20

Table 4.6 Quantiry of clusters applied 1o unsupervised classification
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4.4.12 Class Definition and Refinement

The major advantage of unsupervised classification is the minimal amount of analyst
intervention required for the definition of classes within a multispectral dataset. The
classifier, according to the class definition rules, identifies spectrally separable classes,
however it remains for the analyst to relate these spectral groups to their respective
information classes. According to the classification scheme developed for this-area,
four land cover classes are required at Level I and up to nine classes at Level II (Table
4.3). Typically, there are many more spectral groupings identified by the unsupervised
classification routine than there are land cover classes and it remains for a posteriori

analysis to assign these spectral groups to relevant land cover classes (Jensen, 1996).

Unsupervised classification was applied to an area of approximately 5 200 ha including
the study area and surrounding regions. This larger area was selected in order that, even
for small clusters, sufficient pixels were available for reliable cluster formation. The
surrounding areas included a similar range of land covers to those within the study area,
but not necessarily in the same proportion. Following cluster formation, all subsequent

analyses were undertaken within the specific study area of approximately 1 850 ha.

Spectral classes were identified within the ISODATA routine by first applying a
standard clustering algorithm to a three-band colour composite. The colour composttes
included bands that encompassed the basic image dimensions for each data type, viz
Landsat MSS bands 1, 2 and 4, Landsat TM bands 3, 4 and 5, and SPOT HRV bands 1,
2 and 3. The resulting frequency histogram of clusters for each image provides a guide
to the degree of significance of each cluster, with natural breaks in the histogram
indicating major changes in the generality of clusters within the image. It was
considered that clusters beyond the limits defined in Table 4.6 did not provide any
additional discrimination within the image. The same number of clusters were utilised
for both Level I and Level II mapping because clustering is based primarily upon
spectral separability, with the allocation to land cover classes comprising a subsequent

Process.

Due to the complexity of land cover patterns at the 1986 and 1991 epochs, manual
allocation of clusters to land cover classes proved to be a difficult task. An alternative

approach was employed for determining cluster labels that involved sampling of the
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study area and allocation of clusters to land cover classes on the basis of the land cover
frequency occurring in each cluster. Allocation of clusters was based on sampling of
the detailed reference data that had been prepared from aerial photographs (see Section
2.4). Specification of the sampling design was based upon a priori knowledge of the
extent of land covers derived from the reference data and stratified random sampling
methodologies detailed by Fitzpatrick-Lins (1981). This methodology is further
discussed in Section 5.3 and resulted in the derivation of stratified random samples as

indicated in Table 4.7.

Date Level 1 Level II
1972 717 1451
1986 683 1428
1991 708 1426

Table 4.7 Number of pixels used for stratified random samples derived for

crosstabulation of clusters with land cover classes

Crosstabulation of these samples with the derived clusters was used to guide the
allocation of clusters to land cover classes for the Level I and Level II classification
schemes. The number of samples is based upon the a priori knowledge of the land

covers, with at least 75 samples per class:

Total sample = & (4.4)
Smallest cat./Total pixels

Some clusters were undersampled, however these data were used only to guide the
allocation process and any clusters with fess than 20 samples were also compared with
the aerial photographs and reference data for confirmation of allocation to a specific
land cover class. This approach is straightforward for the allocation of clusters to
Level 1 categories, although the large number of relatively small Level II categories
required significant effort to verify the data with available reference information.
Apparent differences in spatial location between the clusters and reference data also
contributed to the uncertainty of class allocation. Results of the allocation of clusters to

land cover classes are presented in Section 4.5.1.



4.4.2 Supervised Classification

Supervised classification procedures provide an opportunity for significant analyst
intervention and direction of the classification process. A priori selection of
information classes, analysis of training site statistics, and specification of sampling
approaches and training site geometry are all possible using the supervised approach.
The limitations of supervised classification approaches arise from the possibie lack of
validity of the underlying data model and that the data may not be separable into the
desired classes (Deer, 1998). A wide range of classification algorithms is available
which utilise a complex variety of approaches to the labelling of pixels. This study is
concerned only with the application of conventional classification algorithms, and in
particular the maximum likelihood decision rule. Other simple algorithms such as
parallelepiped and minimum distance classification are commonly available, however
the maximum likelihood classifier is the most common approach used by image

processing systems (Richards, 1993).

4.42.1 Theoretical approach '

The maximum likelihood classification algorithm assumes pixels that comprise target
classes are normally distributed, and that each class may be completely described by its
mean vector and covariance matrix for all bands included in the dataset (Lillesand and
Kiefer, 1994). A multivariate application of the normal probability distribution function
is used to model the distribution of pixels in each class, and Bayes’ rule is used to
optimise the allocation of pixels to the available classes (Haralick and Fu, 1983). Pixels
are allocated to the class with the distribution that demonstrates the greatest probability

of membership.

The multivariate application of the normal probability density function is derived from

the univariate algorithm shown below (Swain, 1978):

(x — )u'f)z

1
p(x ; a)r') = m exp{—OS—g—z} (45)

!



where

p(x i) = probability of a pixel at a location x being a member of class @,
y=E [x Ia),,] = mean value of pixels in class |

ol = E[(x — i) co,.] = variance of pixels in class i.

Training samples are used to estimate the values of i, and o’ from the remote sensor

data. It is important at this stage to define unimodal samples in line with the Gaussian
assumption, and to ensure sufficient samples are collected for parameter estimation

{Swain, 1978).

In remote sensing situations data are collected from multispectral systems which require

the implementation of a multivariate probability density function as follows:

p(X @) = expl-0.5(X - U £ (X - U,)] (4.6)

(zx)n/ 2|2f|l/ 2

where

X, = measurement vector containing the value of the unknown pixel i in each band
U. =mean vector for class i

X, = covariance matrix for class i.

Equation 4.6 represents the multivariate probability density function p(X 1@;) which
defines the probability of pixel X being classified over n bands into a class @,. This

function relies upon the covariance matrix being non-singular and requires at least n+/

training sample pixels to be evalnated.

Classification of pixel X into class @, occurs when the probability of belonging to this

class is greater than the probability of belonging to all other classes as follows:

XE @, if plw 1 X)> p(w; | X) for all j#EI 4.7)



Values of p(w. | X) are a posteriori probabilitics and are not available, but may be

estimated from the training data class probabilities - p(X | @,):

p(X 10) p(@) s

1X)=
pw 1 X) (X)

where

p(w,) = probability that class @, occurs in the image

p(X) = probability of finding a pixel from any class at location X.

The value p(@,) is termed the @ priori probability and, when no other information

regarding the distribution of classes is available, takes a value of 1.00 for all classes.

Incorporation of prior probabilities into Equation 4.7 and removal of p(X) as a

common factor results in the classification rule as follows:

Xew if pXlw)pw)>pXlo)pw, for all j#i 49

{

The maximum likelihood decision rule may be stated in terms of discriminant functions

for X in the form:

g (X)=1n[p(X 10,) p(X)]

(4.10)
=Iln p(X @)+ In p(w,)

Therefore, substituting the discriminant functions in Equation 4.9, the maximum

likelihood decision rule is stated as:

Xew if gX)>g X) forall i=j 4.11)

i

The multivariate probability density function defined in Equation 4.6, when operated by

the natural logarithm, is stated as:

In p(X 1@)=-0.5nIn(27) - 05In[Z|-0.5(X - U, ) £ (X -U)) (4.12)
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The constant 0.5 #In(27) may be ignored and for analyses where equal prior

probabilities for all classes are assumed, Equation 4.11 is modified to provide the final

form of the discriminate function for the maximum likelihood classification:
g(X)=—InZ|- (X -U) T (X -U) (4.13)

Each pixel within an image will therefore be classified into one of the target classes for
which training data have been defined, regardless of how small are the actual
probabilities of membership for any class (Richards, 1993). Where the existence of all
target classes has not been recognised, or insufficient training data are available to
accurately estimate the statistics for some classes, a proportion of pixels with the lowest
probability of belonging to any class may be left unclassified. Details of training
statistics derived from the reference data available for the study area are discussed in the

following section.

4.4.2.2 Signature Extraction

The major objective of spectral signature extraction is to summarise the multivariate
spectral characteristics of each land cover class, such that when pixels are compared to
the library of spectral signatures, each pixel will be allocated to the appropriate land
cover class (Jensen, 1996). This approach assumes uniformity of atmospheric and
target characteristics across the image, and relies upon the uniqueness of the derived

spectral signatures to enable identification of targets.

The maximum likelihood classifier assumes that multivariate spectral data for each class
are normally distributed and can be completely described by the mean vector and
covariance matrix derived from training data (Lillesand and Kiefer, 1994). Traming
data which exhibit multimodal distributions may describe more than one spectral class.
These training data should be further subdivided into subsidiary spectral classes and
their separation in spectral space evaluated. Where discrimination is feasible, separate
classes may be allocated or, if clear discrimination is not possible, the limitations of less

than perfect training data must be accepted.
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Spectral stratification of targets within this research has been applied to the derivation
of training statistics for the Residential and Pine plantation classes. In both cases,
subclasses within each global land cover class were identified. Established residential
and Residential under construction were identified as separate classes, as were Pine
plantation (dense) and Pine plantation (low density). Further separation of classes was
also identified for Residential and Pine plantation through the unsupervised
classification process, where six spectral clusters were formed for each of these cover
classes. While classification accuracies of 100 percent are rarely achieved, careful
selection and refinement of training samples can provide results of an acceptable

standard.

Reliable training statistics depend upon inclusion of sufficient samples to provide an
accurate measure of the target mean and covariance. Swain (1978) indicates that 10n
pixels should be used (where n is the number of spectral bands), and Richards (1993)
recommends 100x as an appropriate number. Table 4.8 summarises the number of
training pixels used for each target class within the remotely sensed data analysed for
this research. According to Swain (1978) the minimum number of training pixels per

class for Landsat MSS, Landsat TM and SPOT HRV data are 40, 60 and 30,

respectively.
Class Landsat MSS Landsat TM SPOT HRYV

Established residential 66 515 1748
Residential under construction 20 168 234
Commercial 40 216 690
Pine (dense) 172 65 32
Pine (less dense} 47 113 168
Wertland 42 109 181
Woodland 145 205 433
Grassland 36 425 459
Recreation 4 205 643
Bareground 25 225 137
Water 6 21 123

Table 4.8 Number of pixels in each class used for derivation of training statistics for

maximum likelihood classification
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Acquisition of training data was constrained by the area of each target class and the
spatial resolution of the sensor. With a 79 x 56 m spatial resolution, extraction of
sufficient training pixels from the Landsat MSS data was impossible due to the limited
area occupied by land covers such as Residential under construction, Recreation and
Water. As the proportion of other land covers in the study area changed, and with the
finer spatial resolution of the sensor, the influence of this factor decreased. The ability
to extract sufficient training pixels for Water remained an issue, while the decreasing
frequency of the Pine plantation (dense) class resulted in the minimum of training sites
for this class being available in the Landsat TM and SPOT HRYV data. Inability to
define sufficient training pixels may have a deleterious effect on the supervised
classification results for the Landsat MSS data, however the training site sampling

scheme remains robust for the Landsat TM and SPOT HRV data.

The classification scheme to be applied for Level I and Level II has previously been
discussed in Section 4.2. Four classes for Level I and nine classes for Level 1T will be
utilised throughout this study. Eleven spectral classes have been identified with
Established residential and Residential under construction combining to form the
Residential class. Pine plantation (dense) and Pine plantation (low density) are
combined to form the Pine plantation class. Both of these subgroupings have been
identified as spectrally different and necessary for complete spectral description of each

of the parent classes.

While the spectral structures of the data are utilised to define clusters in an unsupervised

classification, and information classes are defined a posteriori, supervised classification

relies upon a priori knowledge of the information classes for training site selection and

spectral signature definition. Training samples must be selected from each known land

cover class in order to define the information classes of interest. The following process

has been adopted in this study:

(i) Identify the informational classes of interest;

(i) Locate sample sites of the informational classes using reference data for
extraction of training statistics;

(iii)  Identify training samples on the imagery using the largest number of bands
representing maximum variance and minimum band to band correlation in the

data;
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(iv)  Extract training statistics from the multispectral data for each informational

class.

Training sites are usually established according to a number of conflicting objectives.
Firstly, they are selected to incorporate areas only containing a uniform coverage of the
land cover of interest. This is rarely ideal as most land covers comprise a mixture of
components, therefore it is far more useful to select areas which are representative of
the land covers present. Secondly, in order for spectral signatures to be unique and to
maximise separability between classes, class variance must be minimised which again
suggests training samples should be collected from areas of uniform land cover.
However, if representative training statistics are to be obtained, sufficiently large areas
must be sampled in order to assess the natural within class variance. A measure of

sufficient size is therefore required.

The degree of intraclass spectral variability for each land cover class has been assessed
through the computation of spatial autocorrelation (see Section 4.3) as measured by
Moran’s I.  Table 4.5 defines the maximum lag at which spatial autocorrelation is
considered significant for a near infrared band from each of the data sources examined
in this research (Table 4.4). Positive spatial autocorrelation occurs among pixels that
are adjacent or close together (Gong and Howarth, 1992), and small training samples of
contiguous pixels are particularty prone to this effect. Consequently all training
samples were selected with one dimension (x or y) at least equivalent to the product of
2n+1 pixels and the pixel dimension from Table 4.4, where n represents the number of
pixels from Table 4.5 where Moran's I remained significant. The training sites need
only exceed this size in one dimension so that the sample extends beyond the area of
spatial autocorrelation and at least a minimal representation of sample variance is
obtained. Alternative means of extracting reliable training statistics by elimination of
spatial autocorrelation are to sample every n™ pixel or to apply filtering algorithms to
the training data (Labovitz and Masuoka, 1984). Implementation of these approaches
requires the value of n or the filtering parameters to be evaluated from the image
dataset. Spatial autocorrelation must also be determined in this situation otherwise any
sampling approach will be arbitrary in application. Whichever sampling method is
utilised, taking spatial autocorrelation effects into account increases the sample

variance, but results in a more relevant value for spectral signature development.
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Extension of training samples over the boundaries of adjacent land covers is more
prevalent when large training samples are defined or the spatial resolution of the sensor
is large compared to the extent of the land cover. Training samples were defined
according to the results of the spatial autocorrelation analysis detailed above, however
where there was the possibility of samples overlapping adjacent cover classes samples
were limited (visually) to these minimum sizes. For land cover classes that occupy
relatively small or irregularly-shaped areas, training samples were defined by irregular
polygons placed inside the boundaries of land cover classes that were identified from
the satellite imagery or reference data. Several smaller training sites were selected in
order to incorporate the class variance. These strategies were significant in developing

training statistics representative of the land cover classes in the area.

Examination of the spectral independence of each land cover class was undertaken to
identify the presence of any anomalies in the identification of cover classes which may
result in definition of overlapping spectral classes. Tables 4.9, 4.10 and 4.11 summarise
the analysis of the significance of differences between training sample mean values for
all land cover classes for each image dataset. Assessment was undertaken at the 95
percent confidence level and each table indicates the number of bands where a
significant difference was found to exist. The maximum possible values are Landsat

MSS (4), Landsat TM (6) and SPOT HRV (3).

Table 4.9 indicates there are two combinations of land covers where a significant
difference between the training sample means does not exist for any Landsat MSS
bands. The similarity of Residential under construction (Resid con) and Bare ground is
due to the transitional nature of the Residential under construction class, which at
various stages of development has similar spectral characteristics to the Bare ground
class. Pine plantation (low density} and Grassland may appear similar in all bands
when the density of pine trees is sufficiently low that the background of herbaceous
material, such as annual grasses, dominates the scene reflectance. Corresponding
analyses for the Landsat TM and SPOT HRYV data indicate a greater difference between
these classes, therefore no attempt at amalgamation will be made on the basis of the

Landsat MSS results.
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Low differentiation of mean values is evident for Established residential, Pine

plantation (low density) and Bare ground classes. For each of these classes complex

mixtures of scene components, which include indeterminate mixtures of soil and

herbaceous (low shrubs and annual grasses) vegetation, are present. Each class has

recorded no significant difference in one or more bands with at least three other classes,

however a significant difference is still demonstrated in at least one band.
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Table 4.9 Shaded cells indicate the number of spectrally discriminatable Landsat MSS

bands for each pair of land cover classes
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Table 4.10 Shaded cells indicate the number of spectrally discriminatable Landsar TM

bands for each pair of land cover classes

Examination of Table 4.10 indicates that significant differences exist between the mean

values of all bands for most classes. However, between the Commercial class and the
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Established residential, Residential under construction, Pine plantation (low density)
and Woodland classes, not all bands demonstrate a significant difference. These classes
include mixtures of scene components comprising manmade materials or soils, and at
least some vegetation in varying proportions, which cause additional variance in
training data and reduce the discriminating capabilities. Many areas of Pine plantation
(low density) occur in conjunction with Recreation, which leads to low differentration
(four bands) of these classes. Established residential and Grassland are separable in
only three bands in the near and middle infrared parts of the spectrum, which are

responsive to vegetation type and condition.

SPOT HRV data represented in Table 4.11 show that significant differences exist
between class means for all bands in most land cover classes. Comparison of Wetland
and Pine plantation (dense) indicates a significant difference in only one band, which is
caused by the dense nature of the vegetation and inherent similarity of reflectance
characteristics. Overall, based on these analyses the SPOT HRV data indicates a high
level of discrimination between class means compared to the Landsat MSS and Landsat

TM datasets.
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Table 4.11 Shaded cells indicate the number of spectrally discriminatable SPOT HRV

bands for each pair of land cover classes

Analysis of the differences between class means provides an assessment of the
independence of spectral classes and training site statistics, and indicates the
separability to be expected between classes during the classification process. These

comparisons are made on the basis of aggregations at the training site level. Apart from
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the similarities observed between the two pairs of classes in Table 4.9, where no
separation was possible in any band, all classes are separable in one or more bands. The
maximum likelihood classification algorithm determines class membership of each
pixel on the basis of allocation to the class demonstrating maximum membership
probability computed across all bands. Consequently, individual pixels may not adhere
to the exact patterns indicated above. A posteriori analyses of classification accuracy

will be used to make this assessment in Chapter 5.

4.5 Classification Results

The process of developing a classification methodology using unsupervised and
supervised approaches has been discussed in Section 4.4.1 and 4.4.2. A detailed
analysis of classification accuracy will be conducted in Chapter 5. The objective of this
component of the study is to present the classification results and to describe the
specific considerations applied in implementing the classification algorithms for each

dataset.

Variations in sensor parameters and scene characteristics during the period of this study
require that both supervised and unsupervised classification approaches be investigated.
Variations in the spatial, spectral and radiometric resolution of the sensors (see Section
2.3) are important due to the influence of these factors on the discrimination of spectral
and radiometric characteristics of the data. The relative size, shape and distribution of
the scene components have also changed throughout the period covered by the study,

therefore consideration of alternative approaches to information extraction is relevant.

Rectification and resampling of the satellite data were performed as detailed in Chapter
3 in order to reduce all data to a common geometric datum. The Landsat MSS data
were also preprocessed using a destriping algorithm to eliminate persistent sixth line
banding. During this operation the mean and standard deviation for the entire image
and also for each of the six detectors was computed. The output for each detector was
then scaled to match the mean and standard deviation for the entire image. As a result,
the final image demonstrates greatly reduced banding and provides more consistent
radiometric responses. Apart from the elimination of banding in the Landsat MSS data,
both the supervised and unsupervised classifications were performed on the raw satellite

data.
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Following the classification process all output files were filtered using a 3 x 3 modal -
filter to remove speckle and smooth the result. Only two passes were utilised in order to .
reduce scene variation and to minimise generalisation of detail. The increases in the
Kappa Coefficient as a result of smoothing varied from 12.9 percent for Landsat TM
data to 2.2 percent for SPOT at Level I. For Level II classifications the changes were in

the order of 6.6 percent for Landsat TM and 2.4 percent for SPOT HRV (see Chapter 3).

Increasing diversity of land covers in the study area over the period from 1972 to 1991
increased the potential range of spectral classes required to describe the land covers
present. In 1972 the study area comprised mainly large areas of spectrally homogenous
dense pine plantation and some long established residential areas (Figure 2.9) while, by
1991, except for isolated stands of pine trees, most of the pine plantation had been
cleared for urban development. Land covers range from cleared land through to
established residential areas and associated commercial and recreational developments,
which provide a relatively complex mosaic of land covers (Figure 2.11). Both
supervised and unsupervised classification approaches were investigated in order to

develop the highest quality land cover mapping of the area.

4.5.1 Unsupervised Classification

The groups of clusters identified through the processes described in Section 4.4.1.2
were reclassified into land cover classes at Level I and Level II, respectively. Table
4.12 indicates the number of clusters used to describe each land cover class within the
study area. Within Table 4.12 some discrepancies exist for Landsat TM data between
the total number of clusters required to describe classes in Level II compared to their
aggregated counterparts in Level 1. For example, Residential and Commercial (14
clusters) and Grassiand, Recreation and Bare ground (9 clusters) at Level II, should
contain the same number of clusters as the Urban and Open classes respectively, at
Level 1. Allocation of clusters to particular land cover classes based upon stratified
random sampling is not always clear cut. In some instances two or more clusters may
contain similar numbers of random samples and if a different stratified random sample

is defined minor changes in cluster groupings may result.

Evaluation of the number of clusters required to describe each land cover class involves

a complex relationship between the target and sensor characteristics as described in
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Section 4.5. Targets that include Residential areas possess high spectral complexity and
require the largest number of clusters for spectral description at both Level I and Level
II. Most other land covers are capable of description by three or less clusters, thus

indicating a degree of spectral homogeneity.

Land Cover Class Landsat MSS Landsat TM SPOT HRV
Level I Urban 9 i2 14
Forest 9 2 1
Open 1 11 3
Water 1 2
Level IT Residential 6 11 11
Commercial 3 3 3
Pine plantation 6 0 0
Wetland 0 1 0
Woodland 3 1 i
Grassland 0 2 0
Recreation 0 3 3
Bare ground 1 4 0
Water ] 2 2

Table 4.12 Number of clusters required to describe each land cover class at Level I and

Level I1

Within the Landsat MSS data, Forest areas (Level I) are described by nine clusters,
which is necessary as a result of forest density variations and boundary effects caused
by the relatively large pixel dimension of the Landsat MSS sensor. The need for 11
clusters within the Landsat TM data to describe the Open class (level I} does not appear
to have been caused by similar influences. This class comprises moderately sized areas
of grassland, bare ground and recreation land covers. Mixed boundary pixels are
unlikely to be significant in increasing the number of clusters, because the areas are of
regular shape and the pixels are relatively small compared to the size of the area.
Therefore, variations in the spectral response of the component land covers of this class
are most likely the cause of the large number of clusters required to describe the spectral

characteristics.
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45.1.1 Landsat MSS

The results of the Level I unsupervised classification of the Landsat MSS data using the
ISODATA routine are shown in Figure 4.4. The four Level I classes are included, with
Forest and Urban dominating the classification. Comparison with the reference data
(Figure 2.9a) highlights the extensive nature of the Forest class. The Open class does
not appear as extensive as expected compared to the reference data, and substantial
confusion has occurred between Open and both the Urban and Forest classes. Water,

while classified separately, has minimal presence within the study area.

A Level I classification of Landsat MSS data is shown in Figure 4.5. The results
indicate that six of the nine classes from the reference data (Figure 2.9b) are identified.
A qualitative assessment against the Level II reference data indicates reasonable
correspondence. The distribution of land covers occurs in relatively large uniform areas
compared to those in 1986 and 1991, therefore a classification at Level 11 may be
successful even though the spatial resolution of the Landsat MSS sensor is not normaliy

considered suitable for land cover mapping at this level of detail.

4.5.1.2 Landsat TM

Figure 4.6 illustrates unsupervised classification results for the Landsat TM dataset at
Level I. All four Level 1 classes are present in Figure 4.6 with Forest and Water
occupying relatively small regions. Urban and Open cover comparatively large areas,
however classification noise is present due to confusion between these classes.
Reference data (Figure 2.10a) indicate that Urban and Open actually occupy regions of

relatively uniform land covers.

Figure 4.7 indicates that eight of the nine classes from the reference data (Figure 2.10b)
are identified in the Landsat TM data at Level II. At the time of data acquisition all
Jarge stands of pine plantation had been cleared and only small isolated areas remained.
Most confusion appears to have occurred between Grassland, Bare ground and

Residential, which may occur as a result of variations in spectral responses recorded at
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Figure 4.4 Unsupervised classification of Landsat MSS data using Level I categories
(1972) (Scale 1:50 000)
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Figure 4.5 Unsupervised classification of Landsat MSS data using Level II categories
(1972) (Scale 1:50 000)
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Figure 4.6 Unsupervised classification of Landsat TM data using Level I categories
(1986) (Scale 1:50 000)
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Figure 4.7 Unsupervised classification of Landsat TM data using Level Il categories
(1986) (Scale 1:50 000)
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Figure 4.8 Unsupervised classification of SPOT HRV data using Level I
categories(1991) (Scale (1:50 000)
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Figure 4.9 Unsupervised classification of SPOT HRV data using Level Il categories
(1991) (Scale 1:50 000)
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the sensor due to the presence of transitional stages of development from broadacres

(undeveloped) through to urban development.

45.1.3 SPOT HRV

All four Level I 1and cover classes are identified in the SPOT HRV data and are shown
in Figure 4.8. Changes in land cover distribation since the 1972 and 1986 sensing
epochs indicate almost complete conversion of the original pine plantation areas to
urban land uses. At Level I this is indicated by the dominance of the Urban class
interspersed with Open (mostly comprising recreational areas), and remaining areas of
water, wetland, woodland and pine plantation forming lesser areas of the Water and
Forest classes. Comparison of the Level I interpretation may be made with reference

data in Figure 2.11a.

At Level II (Figure 4.9) only the five classes of Residential, Commercial, Woodland.
Recreation and Water are identified from the SPOT HRV data. With increasing
urbanisation the incidence of Pine plantation, Grassland and Bareground have
decreased substantially. While the total area of Werland essentially remained static,
these areas appear to have been identified as Woodland in the unsupervised
classification of the SPOT HRV data. These results may be compared to the

interpretations of reference data in Figure 2.11b.

4.5.2 Supervised Classification

Spectral signatures for all eleven classes and subclasses, which were derived according
to the processes described in Section 4.4.2.2, were used as input to the maximum
likelihood classification. Allocation of pixels to four Level I and nine Level II classes
occurred after classification and smoothing of the results with a modal filter.
Classifications at each level represent an aggregation of individual classes through
postclassification sorting and therefore provide for maximum discrimination based upon
the unique spectral characteristics of the data. Aggregation of spectrally diverse
signatures prior to classification would have decreased the scope for discrimination

between classes and reduced the classification accuracy.

The area occupied by classes, changes in the patterns of land covers and variations in

the spatial resolution of the sensors throughout the study have affected the ability to
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define reliable spectral signatures for classes that occupied relatively small areas at the
time of sensing. Recreation and Water occupy small areas and difficulties exist in
defining training statistics that do not include mixed boundary pixels, especially when
dealing with the larger resolution Landsat MSS$ pixels. Additionally, classes such as
Pine plantation provided large uniform targets in 1972 and enabled reliable extraction
of spectral signatures from the Landsat MSS data. However in 1991, Pine plantation
occupies a very small area, and even with the higher resolution SPOT HRYV data,

accurate definition of targets is difficult.

Consideration must be given to these factors when examining the results of the
supervised classification. Variations between datasets are expected and need to be
accommodated in the change analysis process. These factors will be evaluated in

Chapters 6 and 7.

4.5.2.1 Landsat MSS

Supervised classification results of the Landsat MSS data at Level I using a maximum
likelihood decision rule are presented in Figure 4.10. The Urban and Forest classes are
relatively uniform and the boundaries compare favourably with the reference data
shown in Figure 2.9a. The Open class is distributed throughout each of these classes,
but the nature of the category is such that it naturally occurs within any of these land
covers. Two relatively large areas of Water are indicated, however it is likely the
extreme contrast provided by the water pixels has overestimated the size of these
features. Comparison with the unsupervised results in Figure 4.4 shows the supervised
classification contains more classification noise, the Water classes are much larger, and

substantially more pixels are classified as Open.

Figure 4.11 presents a complex arrangement of land covers resulting from a Level II
supervised classification of the Landsat MSS data. All nine land cover categories were
identified with Residential, Commercial, Pine plantation and Grassland being
dominant. Many areas of Woodland appear to have been excluded and numerous areas
of Wetland are shown throughout the study area, indicating spectral confusion of these
classes. Rotation of east-west linear features caused by the flight path and sampling
process of the Landsat MSS is also evident across the centre of the image, compared to

the reference data in Figure 2.9b.
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Figure 4.10 Supervised classification of Landsat MSS data using Level I categories
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Figure 4.11 Supervised classification of Landsat MSS data using Level Il categories

(1972) (Scale 1:50 000)
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Figure 4.12 Supervised classification of Landsat TM data using Level I categories
(1986) (Scale 1:50 000)
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Figure 4.13 Supervised classification of Landsat TM data using Level II categories
(1986) (Scale 1:50 000)
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Figure 4.14 Supervised classification of SPOT HRV data using Level I categories
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Figure 4.15 Supervised classification of SPOT HRV data using Level II categories
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4.5.2.2 Landsat TM

Figure 4.12 illustrates supervised classification results for the Landsat TM dataset at
Level 1. Urban and Open classes form the largest components of the image, however
significant areas are still occupied by the Forest class that has been broken into small
sections as a result of clearing for urban development. Inspection of the reference data
in Figure 2.10a indicates the increasingly fragmented nature of the land covers i the
area, which leads to a less uniform classification. Similar results were achieved with the
unsupervised classification of Landsat TM data, however the fragmentation almost
exclusively involved the Urban and Open categories, while in the supervised

classification it involves all of the major classes including Urban, Open and Forest.

An emerging characteristic of the supervised classification approach is that at Level 1I
all nine classes are represented in the classification due largely to each class being
explicitly defined through extraction of spectral signatures for every category (Figure
4.13). The corresponding unsupervised classification (Figure 4.7) includes all classes
except Pine plantation. However, a significant area of Figure 4.13 represents the Pine
plantation class and verification with the reference image (Figure 2.10b) indicates that a
substantial area of pine plantation is actually present in this locality. The unsupervised
classification demonstrates that, at the level of clustering applied, Pine plantation is not
spectrally separable. However, explicit identification of the class and derivation of

spectral signatures has enabled identification of this land cover.

4.5.2.3 SPOT HRV

Comparison of Figures 4.14 and 4.15 with the corresponding images produced through
unsupervised classification (Figures 4.8 and 4.9), confirms substantial differences in the
distribution of classes throughout the image. In particular, the distribution of the Open
category shows a large amount of variation in spatial distribution even though both sets

of images have been filtered twice using a 3 x 3 modal filter,

Figure 4.15 again shows considerable fragmentation of classes well in excess of that
present in the reference data (Figure 2.11b) or evident in the corresponding
unsupervised classification (Figure 4.9). Figure 4.9 identifies only five classes
compared to the nine classes identified in Figure 4.15 and contributes to the smoothed

appearance of the classified image.
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4.6 Summary

This chapter has investigated the derivation of an appropriate land cover classification
scheme for an area of the rural-urban fringe that has been subject to substantial change
throughout the duration of this project. It was necessary for the classification scheme to
be hierarchical in structure such that information extracted from remotely sensed data of
different spatial resolutions could be incorporated into the classification scheme (Levels
I and I1), for the purposes of change analysis. Traditional classification schemes are
based upon manual interpretation and rely upon all facets of image interpretation,
whereas the approach adopted in this research is reliant only upon automated
interpretation via standard image classification procedures. Consequently, it was
necessary for class definitions to be based upon spectral characteristics only. The
current classification scheme is a modified form of the classification scheme developed

by Anderson er al (1976).

Extensive evaluation of the spatial autocorrelation of image data at three spatial
resolutions was undertaken. Assessment of these data indicate that at each spatial
resolution significant spatial autocorrelation exists for most targets and, that if not taken
into consideration, may result in an underestimation of the variance within training
sites. Such underestimation results in poor parameterisation of the training data and
potential confusion between classes during supervised classification. Training statistics
were derived from groups of pixels with dimensions in excess of extents considered to
be affected by spatial autocorrelation.  Significant spatial autocorrelation was
determined to exist for some land cover classes up to three pixels (180 m) distant for
Landsat MSS data, up to five pixels (150 m) for Landsat TM data and up to six pixels
(120 m) distant for SPOT HRV data. In all situations these values represent the limit of

the autocorrelation analysis undertaken in this research.

Unsupervised and supervised classification approaches were applied to the multispectral
satellite data in order to determine the optimum classification approach for each image
epoch. Classifications were performed at two levels of detail according to the land
cover classification scheme defined for this area. The results for these analyses have
been assessed qualitatively in this chapter and will be evaluated quantitatively in

Chapter 5.
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Between 20 and 27 clusters were defined for the area using an ISODATA clustering
algorithm, and through stratified random sampling these clusters were merged to form
four land cover classes at Level I and nine classes at Level II.  Unsupervised
classification was used to identify spectrally separable land covers without the
constraints applied by analyst intervention as occurs with the supervised classification
process. At Level I the Urban class was identified as the spectrally most complex land
cover with 14 clusters representing this class in the SPOT data, and at Level II the
Residential class comprised 11 clusters in each of the Landsat TM and SPOT data. At
both levels of interpretation the finer spatial resolution Landsat TM and SPOT HRV
data resulted in a larger number of clusters for the Urban (Level 1) and Residential
(Level II) classes, where only nine and six clusters respectively, were recorded for these
classes in the Landsat MSS data. The lower quantisation of the Landsat MSS system
may be a contributing factor, however the major contribution is due to the degree of

spatial averaging which occurs within these coarse resolution data.

At Level T the Forest class required nine clusters (Landsat MSS) and the Open class 11
clusters (Landsat TM) to describe the respective land covers. All other classes at Level
I and Level II (apart from the spectrally complex Urban and Residenfial classes),
required six or less clusters for representation. However, at the more detailed Level Ti,
some land cover classes were not répresented by any clusters. This result is a
combination of the small area occupied by some land covers at the later sensing dates

and the minimal spectral separability between these classes.

Training statistics were derived for 11 land cover classes which were subsequently
coalesced into the nine classes defined at Level II. Detailed analysis of training data as
part of the supervised classification process indicates that most land cover classes are
spectrally separable at the 95 percent confidence level. The least amount of separation
between the extracted spectral information (11 classes) is evident in the Landsat MSS

data, with progressively greater separation for the Landsat TM and SPOT HRYV data.

At a qualitative level of assessment, unsupervised classification using the ISODATA
algorithm and supervised classification by a maximum likelihood approach produced
results containing substantial spatial variability. Application of two passes of a modal

filter reduced the spatial variability, and from a visual comparison with the reference
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data, more consistent classification results were achieved. Some clear differences in
land cover patterns exist between the classification approaches, and these will be

investigated in the next chapter.
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Chapter 5

CLASSIFICATION ACCURACY ASSESSMENT

ssessment of the classification accuracy of the primary remote sensor data is
Aessential if a thorough evaluation of change detection mapping i1 to be
undertaken. A range of map accuracy and sampling schemes will be investigated for
evaluation of the quality of the classification results. The classification accuracy of
each spatial resolution satellite dataset will be evaluated. The accuracy of the
supervised and unsupervised classifications will be evaluated using land cover classes
equivalent to USGS Level I and Level II to determine the optimum approach to
information extraction for each dataset, which will then be utilised in subsequent change
assessment mapping.  Significant factors contributing to the outcome of the

classification accuracy will also be discussed.
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5.1 Introduction

Integration of geographic information derived from a range of sources including remote
sensing has led to the requirement for increased knowledge of errors and their
contribution to the overall quality of the final product. Error accumulation in remote
sensing and GIS is difficult to menitor and, for remote sensing, variations in the target,
sensor, sensing geometry and ambient environmental conditions create specific
problems (McGwire and Goodchild, 1997). Both quantitative and qualitative errors are
important in remote sensing. Quantitative errors relate to the positional accuracy of
map data, while qualitative errors are concerned with the correctness of labelling or
thematic classification of features within the data (Maling, 1988). It is this latter

category of errors that will be considered in this chapter.

Classification differences between remotely sensed and reference data arise for a range
of reasons {Davis and Simmonett, 1991):

(1) Misregistration of satellite data to the cartographic coordinate system;

(i)  Misregistration of reference data to the cartographic coordinate system;

(iliy ~ Spectral confusion between information classes;

(iv)  Inappropriate classification algorithm;

(v) Poor definition of information classes for training and test data;

(vi)  Information classes containing several spectral classes;

(vii)  Subpixel variations causing mixed pixel and boundary effects.

Error assessment is required to quantify the classification accuracy and to guide the
process of analysis to determine the sources of classification error. Understanding of
the above factors can lead to refinement of the classification approach and
improvements in the quality of classification. Analysis of overall classification
performance and analysis of performance by class will be used to evaluate the
contribution of these factors, and determine the optimum classification approach for
each satellite dataset. Zhang and Foody (1998) take the analysis one step further in
considering the within-class spatial variability of errors using fuzzy membership
approaches. Although these approaches consider the probability of multiple class
membership, both at the class allocation and validation stages of analysis, conventional
hard classification and accuracy analyses are appropriate in this study to provide a

statement of land covers for input to the change analysis stage of the research,
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Site specific and non-site specific methods of accuracy assessment are possible,
however non-site specific methods only provide an assessment of the total area
occupied by a specific land cover without performing any location by location
comparison. If all classification errors between categories in a non-site specific
assessment balance out, it is possible to achieve very high results for the accuracy
assessment, however the results will be misleading. Site specific approaches make a
one to one comparison of samples of the classified data and provide an assessment of
the classification errors with regard for the location of the classified and reference data
(Mead and Szajgin, 1982). Only site specific methods will be considered for analysis of

classification accuracy in this research.

Statistically sound approaches to sample size and sampling design are required to
perform valid assessments of classification accuracy for landscapes of varying spatial
diversity (Congalton, 1991). Consideration of a range of random and systematic
approaches will be made to ensure a robust sampling scheme is implemented for

evaluation of the classified data.

5.2 Accuracy Assessment Approaches

Precision is defined as the degree of detail in reporting of a measurement which is often
determined by the characteristics of the measuring equipment, while accuracy is defined
as a measure of the difference between a measured value and a known or true value
{(McGwire and Goodchild, 1997). From a thematic mapping perspective, precision is
related to the level of detail (or generalisation) inherent tn the thematic mapping
classification system (Janssen and van der Wel, 1994). 1In the context of thematic
mapping quality assessment, accuracy relates to the agreement of the classified image
with a source of reference data of greater accuracy than the primary remote sensing
information. It is often derived from aerial photography or ground-based investigations,

or a combination of both.

Analyses in this study will be directed towards assessment of the classification accuracy
achieved through supervised and unsupervised classification of multiscale satellite data
as derived in Chapter 4. The level of the classification scheme described in the previous
chapter determines the precision of the classification. As the degree of detail increases

from Level I to Level II, the possibility of errors also increases, which may lead to more
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uncertain resuits and, logically, a lower classification accuracy (Janssen and van der

Wel, 1994).

5.2.1 Descriptive Techniques

The advent of standardised land cover classification schemes for remotely sensed data
(Anderson e al, 1976) generated significant interest in approaches to classification
accuracy assessment. Early empirical accuracy assessment techniques relied upon
simple ratios of correctly interpreted points to the total number of samples (Fitzpatrick-
Lins, 1978). Although data were recorded in matrix form for each sampled calegory,
undersampling and oversampling were common place and category-based accuracy
statements were not derived. Large variations in accuracy between categories were
possible, even though the overall result may have been acceptable (Story and

Congalton, 1986).

Application of robust sampling schemes (see Section 5.3) enables acquisition of
representative samples of every land cover class, and provides relevant data for
population of the error matrix. An example of an error matrix (also known as a
confusion matrix or contingency table) is shown in Table 5.3. The Overall
Classification Accuracy is computed by dividing the sum of the diagonals by the total of
samples checked in the accuracy assessment, and provides a measure of the proportion
of all sampled pixels that are classified correctly. The mapping accuracy of each class
may be derived in two ways, either by dividing the number of pixels identified correctly
in the category by the total number in the reference data for that category or from the
number of pixels actually assigned to the category by the classifier. The former
approach provides a measure of accuracy called the Producer’s Accuracy, and the latter
measure is termed the User’s Accuracy (Story and Congalton, 1986). These terms are
related to errors of omission and commission as follows (Janssen and van der Wel,
1994):
(1) Error of commission = 100 — User’s Accuracy,

(31)  Error of omission = 100 — Producer’s Accuracy.

The User’s Accuracy is a measure of the reliability of the classification because it
measures the proportion of pixels that are classified as one category, but actually belong

to other categories. Errors of commission express the severity of this situation. The
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Producer’s Accuracy gauges the proportion of pixels that actually belong to a category,
but have been classified as other features. Errors of omission express the degree to
which this type of error occurs. The User’s and Producer’s Accuracies also permit a
more complete understanding of the between-class confusion for the purposes of
signature refinement in supervised classification, or cluster evaluation in unsupervised

classification.

The greatest significance may be attached to these separate measures of accuracy when
the Producer’s and User’s Accuracies are dissimilar (Story and Congalton, 1986). For
example, if the Producer’s Accuracy for an area of forest is 93 percent it indicates that
nearly all the reference data in the forest class were classified correctly. However, at
the same time the User’s Accuracy may be 49 percent, which means that of the area
classified as forest, only about half is actually forest and the remainder comprises other

classes.

Aronoff (1982) has integrated these values through statistical analysis for comparison of
classifications with thematic map accuracy standards. The User’s Accuracy (risk)
specifies the probability that a map of unacceptable accuracy will pass the accuracy test,
and the Producer’s Accuracy (risk) specifies the probability that a map of some
acceptable accuracy will be rejected. Acceptable levels of risk for the user and producer

are defined as part of the analysis.

5.2.2 Analytical Techniques

Error matrices form the basis of several analytical statistical techniques developed to
evaluate classification accuracy of remotely sensed data. Most approaches utilise
discrete multivariate analysis because remotely sensed data are discrete rather than
continuous. Most data demonstrate properties of binomial or multinomial distributions,

therefore many methods based upon normal probability theory are not appropriate

(Congalton, 1991).

Normalisation of an error matrix facilitates comparison of classification results, both
overall and by category, for classifications by different algorithms or analysts. Without
normalisation the variation in sample parameters (number of pixels) between error

assessments renders direct comparison of error matrices irrelevant. Conversion of pixel
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counts to percentages is possible, however uncertainty exists about whether the divisor
should be the row or column total. An iterative procedure is available (Congalton,
1991) which normalises all rows and columns of the error matrix. Differences in the
number of samples are eliminated and individual cells within the matrix are directly
comparable. Final determination of classification accuracy must still be undertaken

using other accuracy estimation approaches described in this section.

Ginevan (1979) applied the binomial probability density function to define testing
procedures for assessment of thematic maps against map accuracy specifications.
Specification of classification accuracy, confidence intervals, and acceptable User’s and
Producer’s Accuracies enabled determination of the number of samples required and the
permissible error rate. Further development by Aronoff (1985) provided a testing
procedure to determine the actual level of thematic accuracy, rather than simple
assessment of success or failure against a particular benchmark. The index derived by
this method expresses statistically the uncertainty involved in the accuracy assessment,
however the method is limited to a single overall accuracy value for the map or for each

class, rather than using the entire error matrix for assessment (Congalton, 1991).

Accuracy assessments which include all elements of the error matrix may be undertaken
using the Kappa Coefficient of Agreement (Cohen, 1960). The Kappa Coefficient was
developed for comparison of data grouped by different observers {or interpreters or
classification algorithms), according to nominal scales. The overall level of agreement
for an error matrix (Kappa Coefficient) is based upon the difference between the actual
agreement of the classification compared with the reference data (measured by the
matrix diagonal), and the chance agreement, which is indicated by the product of the

row and column margin values.

The application of the Kappa Coefficient to the analysis of classifications of remotely
sensed data was first proposed by Congalton ef al (1983}, and has been widely reported
since (Fitzgerald and Lees, 1994; Fung and LeDrew, 1988; Gong and Howarth, 1990;
Lo and Watson, 1998; Rosenfeld and Fitzpatrick-Lins, 1986). The method may be used
to evaluate an error matrix as a whole or for individual classes, or it may be used to
statistically compare error matrices derived from different interpreters or using a variety

of classification techniques.
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The value of the overall Kappa Coefficient ( K ) is computed from (Congalton, 1991):

N ixg,- - i(xh- *xﬂ)

IE* — i=] - i=] (51)
N2 - Z(xj+*x+[)
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where

r = number of rows/columns in the error matrix

x,; = number of observations in row i and column i
X, = total of row i

x,, = total of column i

N = total rnumber of observations.

A pairwise assessment of the significance of the differences between two independent
error matrices may be undertaken using the normal curve deviate determined from the
corresponding Kappa statistics and their variances (Cohen, 1960). The variance of

Kappa is computed from the following (Bishop et al, 1975):
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The test statistic for significance in large samples (N > 100} is given by:
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An alternative means of measuring the improvement in classification above random
assignment is the Tau coefficient (Ma and Redmond, 1995). Tau is conceptually similar
to Kappa, but the major difference between the two coefficients is that Tau is based on
an adjustment of the Overall Classification Accuracy using a priori probability of class
membership. Tau may be computed using equal probabilities, as occurs with
unsupervised classification and supervised classification with equal a priori class
membership, or using unequal probabilities which occur when supervised classifications
with unequal probabilities of class membership are undertaken. For equal probability of
class membership, as used in this research, the adjustment of Tau is directly
proportional to the number of classes, whereas Kappa utilises the a posteriori
probabilities derived from the actual distribution of pixels over all classes within the

error matrix.

Table 5.1 illustrates examples of comparative values for the Overall Classification
Accuracy, Tau and Kappa parameters derived from data provided by Congalton et al
{1983) and Ma and Redmond (1993), for a range of supervised and unsupervised
classification approaches. These data indicate reasonably consistent variations between
the three parameters across all classifications. The Overall Classification Accuracy is
considered to significantly overestimate classifier performance and has resulted in the
general acceptance of the Kappa statistic (Congalton et al, 1983). Foody (1992) and Ma
and Redmond (1995) consider Kappa to underestimate classifier performance due (o
overestimation of chance agreement. In their assessment, Ma and Redmond (1995)
assume equal probabilities for computation of the Tau coefficient from the results
produced by Congalton er a/ (1983), whereas the Kappa Coefficient was determined
from the chance agreement estimated from the actual classified data which considered
unequal distribution between classes. Consequently, a more relevant comparison is to
compare the Kappa results to those computed for Tau assuming unequal (but unknown)

probabilities of occurrence.

The Kappa statistic provides statistically valid assessments of the quality of
classification and enables tests of significance between classifiers for determination of
optimum algorithm performance (Fitzgerald and Lees, 1994). The Tau coefficient
enables a similar level of evaluation, but the use of a posteriori probabilities by Kappa

that are derived from the complete error matrix is advantageous (McGwire and
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Goodchild, 1997). This may also be significant compared to a general assumption of
equal probability of class membership. ~ While this may lead to underestimation of
classification accuracy, these values are mainly utilised for comparative purposes o
evaluate classifier performance, and the value on an absolute scale is less relevant.
Landis and Koch (1977) have used the qualitative descriptors shown in Table 5.2 to

describe the strength of agreement based upon Kappa statistics.

Accuracy parameter Unsupervised Unsupervised Modified Modified
10 clusters 20 clusters supervised clustering
Owverall Class. Acc. 0.77 0.78 0.7 0.86
Tau 0.69 0.71 0.62 0.81
Kappa 0.60 0.59 0.48 0.72

Table 5.1 Examples of classification accuracy parameters (from Congalton et al, 1983;

Ma and Redmond, 1995)

Kappa Statistic Strength of Agreement
< 0.00 Poor
0.00 - 0.19 Slight
0.20 - 0.39 Fair
0.40-0.59 Moderate
0.60 - 0.79 Substantial
0.80--1.00 Excellent

Table 5.2 Qualitative descriptors for the strength of agreement for the Kappa statistic
(after Landis and Koch, 1977}

The Kappa Coefficient will be used throughout this research for comparison of
classification approaches using statistical analysis. Classifications at Level I and Level
II for satellite data at each spatial resolution will be compared in Section 5.4 to
determine the degree of significance of the observed differences between supervised
and unsupervised classifications. These assessments will be utilised to determine the
Overall Classification Accuracy will be

most appropriate classification approach.

considered where evaluation of the actual rate of correct classification is required.
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5.3 Thematic Accuracy Sampling Design
5.3.1 Sampling Scheme
Assessment of the quantitative or qualitative aspects of map accuracy rely upon a
sampling scheme with a common set of criteria based upon (Ginevan, 1979):
(1) A low probability of accepting a map of low accuracy,
(i1) A high probability of accepting a map of high accuracy,

(iii)  Requiring a minimum number of reference data samples.

The sampling scheme represents the protocol for selecting the sampling units that
constitute the reference sample. A sampling scheme may be developed to estimate the
effectiveness of different accuracy parameters, provide information on land covers of
limited areal extent, evaluate different mapping procedures or assess change detection
accuracy (Stehman, 1999). Important considerations for sampling design are indicated
by Mead and Szajgin (1982) and Stehman (1999):

(1) Satisfies sampling design protocol,

(i) Simple to implement and analyse,

(iliy  Low variance for estimates of high priority accuracy measures,

(iv)  Permits adequate variance estimation,

(v) Provides samples which are spatially well distributed,

{(viy  Cost effectiveness.

The sampling scheme must ensure statistical validity and provide a practical means of
implementation. The actual sampling procedure employed and specification of at least

an adequate number of sample points will determine statistical validity.

Fundamental to the design of a suitable sampling scheme is the selection of reference
data independently of the data used to develop the classification (Mead and Szajgin,
1982). This particularly relates to the selection of independent samples for classifier
training and accuracy assessment, in the same manner that independent samples are

selected for image registration and assessment of positional accuracy.

The quality of classification accuracy assessment is also affected by the thematic and
positional quality of the reference data. Reference data are generally derived from

aerial photographs and are therefore subject to their own sources of error (Congalton,
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1991; Mead and Szagjin, 1982). Processes to correct for reference data-induced errors

have been proposed (Kalkhan er al, 1998), but will not be applied in the sampling

design for this study. Reference data have been derived from medium scale aerial

photography acquired at intervals either side of each sensing date in order to minimise

these errors.

Sampling schemes generally follow simple random or systematic selection protocol and

utilise population, strata or cluster sampling structures. The most relevant approach to

selection protocol and sampling structures are subject to considerable debate and will be

reviewed in the following (Congalton, 1988a; Stehman, 1999).

(i)

(i1)

Simple random sampling. Simple random sampling may be used to sample
pixels in an image and represents a straightforward approach, although location
of the samples in the field may be difficult. The method is adaptable to
augmenting or reducing the sample size if required, and estimation and standard
error formulae are less complex compared to other approaches. The variance in
simple random sampling tends to be large where categories have small samples.
Systematic sampling is more precise and cluster sampling may result in smaller
variances depending on the spatial pattern of classification errors.

Systematic sampling. Systematic sampling may be undertaken on a rectangular
or square grid based upon the random location of the starting pixel. The method
provides good spatial coverage and is easy to implement, and because it is an
equal probability sampling design it shares the same advantages and
disadvantages as simple random sampling, such as small subregions will remain
undersampled. Many authors (Aronoft, 1985; Congalton, 1991; Lo and Watson,
1998: van Genderen and Lock, 1977) consider systematic sampling susceptible
to biased estimates. However, the equal probability sampling characteristic
means that systematic sampling estimates are no more susceptible to bias than
corresponding simple random samples, unless the spatial distribution of the
errors is periodic and the sampling interval of the systematic design is in phase
with this periodicity. Verification of this circumstance may make systematic
sampling a viable (and more desirable) option. Where spatial autocorrelation
(clustering) of errors exist, systematic sampling provides a lower variance of the
accuracy estimate. Systematic unaligned sampling is often applied to avoid the

possibility of periodicity if systematic sampling would otherwise be employed.
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Congalton (1991) indicates a method for introducing random variation into
systematic sampling design. This approach diminishes any potential effect of
periodicity in the errors, but also precludes the full advantage of systematic
sampling being realised when it would otherwise be appropriate.

Stratified random sampling. Each pixel within the population is assigned to a
stratum prior to the application of simple random sampling within each stratum.
Strata may be defined on a category or geographic basis, with each random
sample derived independently for each stratum. Stratified random sampling 1s
used to ensure that each stratum is adequately represented within the random
sample, but care must be taken to ensure the strata remain valid throughout the
apalysis. Where analysis objectives change, such as when land cover classes are
combined, a new stratified random sample should be extracted in order to retain
relevance (Stehman, 1999). When independent classifications at Level 1 and
Level IT were evaluated in this research, such as for unsupervised classifications,
a separate stratified random sample was extracted for each dataset. Samples are
defined in this study by random sampling within a geographic strata (grid),
which provides the spatial distribution advantage of systematic and systematic
unaligned sampling, but is less susceptible to the effects of periodicity in the data
(Stehman, 1999).

Cluster sampling. Cluster sampling employs two sizes of sampling units. The
primary sampling unit which is the cluster itself, and the secondary sampling
unit which is represented by the individual pixels within the cluster. The
location of each cluster may be defined by any of the above sampling schemes,
with each pixel in a cluster forming part of the sample. Cluster sampling is
performed mainly for the purposes of convenience and cost, as only each cluster
need be evaluated rather than individual pixels (Congalton, 1991). It may also
be useful for dealing with uncertainties induced through small misregistration
errors between datasets {Congalton, 1988a). Limitations of cluster sampling
occur when classification errors are spatially correlated (Congalton, 1988b), and
gives rise to greater sarmpling error than for simple random sampling of the same

size that is based on point samples (Lo and Watson, 1998).

Concerns regarding the statistical validity of systematic sampling designs have made

researchers consider stratified random sampling the most suitable approach for
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sampling spatial data for the purpose of accuracy assessment (Aronoff, 1985;
Congalton, 1988a and 1991; Ginevan, 1979; Lo and Watson, 1998; van Genderen and
Lock, 1977). Recent research indicates that systematic sampling in the absence of data
periodicity is the most statistically valid sampling approach to employ (Stehman, 1999).
This applies especially where spatial autocorrelation is present, because it provides for
maximum average spatial separation of samples. Systematic sampling designs also
provide a uniform spatial distribution of samples, a factor which is often used to justify

stratified random sampling.

Experimental evaluation by Lo and Watson (1998) of each of the sampling designs
described above against a total classification of the reference data, determined there was
no significant difference between any of the sampling designs at the 95 percent
confidence level. However, the most similar results were obtained from the stratified
random sample, followed by the systematic unaligned sampling design. Given the
caveat of periodicity applicable to the implementation of systematic sampling, stratified
random sampling is the most reliable approach for general application to classification

accuracy analysis.

Stratified random sampling will be utilised in this research with the strata defined
geographically on the basis of division of the image into uniform rectangular regions
defined by the number of samples required. Subsampling of these regions will be

achieved by random selection of one point within each region.

5.3.2 Sample Size

The major objective of selecting a sample of appropriate size is to provide sufficient
data to enable a reliable estimate of the precision at the required confidence level.
Where error matrices are used as part of the evaluation and large numbers of categories

are sampled, the requirement to adequately sample each category becomes important

(Congalton, 1991).

Determination of the total sample size based on the binomial theorem (Equation 5.4) is
commonly used (Fitzpatrick-Lins, 1981). Equation 5.4 is useful for specifying the
minimum number of sample points for reliable determination of Overall Classification

Accuracy, but may result in inadequate sampling of categories occupying smalier areas.
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N=Zz(’;(Q) (5.4)
where

N = minimum sample size

Z = standard normal deviate for 95 percent confidence level

P = expected percent accuracy

Q=100-P

E = allowable error.

Congalton (1991) suggests the above value as a minimum number of samples overall,
and to augment this amount by selecting at least 50 samples per category and 75
samples where categories occupy large areas. There is considerable variation in the
specification of class sample sizes with Richards (1993) suggesting values between 30
and 60 for most situations. Limitations on sample sizes are usually invoked in order to
economise on fieldwork expenditure. In this research a complete reference map of the
area has been produced, which obviates the need to consider fieldwork costs.
Therefore, assuming » samples to be the minimum number of samples per category and
applying a stratified random sampling scheme, the total number of samples for

evaluation of each classification is determined by:

T:%‘X/AT (5.5)

where

T = Total number of pixels to be sampled
n = number of samples per class

A, = Area of smallest class

Ar= Total area classified.

The computation of 7 was undertaken using only categories that occupy a reasonable
sized area and a minimum of 75 samples per class was selected. For example, the
Water category produces little variability and occupies a relatively small area, and if

included in the sample calculation would indicate collection of an inordinately large
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sample. As a result, Water was ignored in the determination of sample sizes. Due to
the structured nature of the supervised classification a sample of approximately 1 400
pixels was selected to assess each dataset at both Level I and II. The same size sample
was utilised at both levels because generalisation from Level I to Level Il is based upon
postclassification class aggregation derived from classification using the same spectral
signatures. As a result of the variability in the clustering process, samples of
approximately 650 were derived for assessment at Level I, and 1 400 at Level 1I for
unsupervised classification. In this case the clusters were aggregated separately for

each level of classification and the sampling was also undertaken independently.

5.4 C(lassification Accuracy Assessment

Classifications performed using supervised and unsupervised classification algorithms
will be evaluated for each of the multispectral datasets of the study area. Overall
Classification Accuracy and the Kappa Coefficient will be computed to provide
measures of the success of the classification process. Comparative values of Kappa
were discussed in Section 5.2.2 and provide a relevant benchmark for comparison

(Landis and Koch, 1977). The relevant values are (in percent):

@ Fair agreement 20 < K < 39,
(i1) Moderate agreement 40 < K < 59,
(iii)  Excellent agreement 60 <K <79,

The User’s and Producer’s Accuracy, and elements of the error matrix will be evalnated
to assess error patterns within each classification. Assessment of both the most
appropriate level of classification (Level I or Level II) and the optimum classification
approach will also be made in Section 5.4.3, which will be utilised for subsequent

change assessment in Chapter 6.

5.4.1 Unsupervised Classification

5.4.1.1 Landsat MSS

The results of unsupervised classification of the Landsat MSS data are shown in Tables
5.3 and 5.4. The Kappa Coefficients indicate that classification at Levels I and II show
moderate agreement, although at Level I the Kappa value is relatively low at 45.9
percent. This reflects the effect on the detail of the classification of the relatively coarse

spatial resolution of the Landsat MSS data. At 79 x 56 m resolution, significant over]ap
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Classified Reference data User’s Acc.
data Urban Forest Open Water Total %o
Urban 133 23 23 0 179 74.3
Forest 28 400 59 1 488 82.0
Open 6 2 7 0 15 46.7
Water ¢ 0 0 1 I 100.0
Total 167 425 89 2 683
Prod Acc 79.1 94.1 7.9 50.0
Qverall Classification Accuracy (percent) 79.1
Kappa Coefficient (K } (percent) 57.3

Table 5.3 Error matrix for unsupervised classification at Level I using Landsar MSS

data

Classified Reference data User’s
Ace.
data Res | Com | Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot. %
Residential | 201 19 8 l 2 9 8 I8 1 289 69.5
Commerc 4 33 5 1 11 3 1 17 0 75 44.0
Pine plant 2 6 510 42 100 31 1 43 4 739 1 69.0
Wetland 0 0 0 0 0 0 0 0 0 0 -
Woodland 5 7 37 9 76 7 0 17 0 158 48.1
Grassland 0 0 0 0 0] g 0 0 0 0 -
Recreation 0 0 0 0 0] 0 0 0 0 U
Bare grnd 15 10 15 0 25 16 0 24 0 105 | 22.9
Water 0 0 0 0 0 0 0 0 1 ! 100
Total 229 73 375 53 236 66 10 119 6 1367
Prod. Ace. | 87.8 | 434 | 85.7 ] 32.7 0 0 202 | 167
Overall Classification Accuracy (percent) | 6/.6
Kappa Coefficient (K) (percenty | 45.9

Table 5.4 Error matrix for unsupervised classification at Level Il using Landsat MS§

data



between classes is expected, especially for classes that occupy relatively small areas

such as Water.

At Level I the User’s and Producer’s Accuracies for Urban and Forest are relatively
high. These values indicate a high level of agreement with the reference data and
express high confidence in their identification. The Open class shows very poor
accuracy with most of the reference pixels classified as Urban and Forest, and very few
actually identified as Open. The Open category includes the Level II classes of
Grassland, Recreation and Bare ground, and inspection of Table 5.4 indicates that all of
these subclasses demonstrate substantial confusion with Residential, Commercial and
Pine plantation which form parts of the Urban and Forest classes. The extent of Water
is very limited in all data used in this study and detailed analysis of the results for the

Landsat MSS data is not appropriate.

Examination of Table 5.4 shows that no clusters from the ISODATA algorithm were
allocated to the Wetland, Grassland or Recreation land covers. Wetland pixels were
allocated mostly to Pine plantation, Grassland to Pine plantation and Bare ground, and
Recreation to Residential. Wetland comprises native forest and shrubs, and may exhibit
spectral characteristics similar to dense pine forest. Grassland comprises areas of
scattered trees with herbaceous understorey as well as areas without any trees.
Depending upon the season, some areas may appear similar to Jow density pine forest
and in summer, areas without trees may have the appearance of Bare ground.
Recreation areas often contain substantial numbers of trees and, in combination with the
irrigated grass and adjacency to residential areas, confusion with the Residential class is

possible.

Generally, Residential and Pine forest achieved moderate levels of classification
accuracy from a Producer’s and User’s perspective. Comumercial misclassified many
pixels as Residential, and incorrectly included many pixels from Woodland and Bare
ground in the classification. High levels of reflectance from Commercial and Bare
ground and the extent of variability from each of these classes most likely leads to this
degree of confusion. Woodland shows low User’s and Producer’s Accuracies with
mutual confusion with the Pine plantation class. The spectral similarity of these land

covers was not evident on a class basis (see Section 4.4.2.2), but variation between
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individual pixels results in widespread confusion. A very high degree of confusion
exists between Bare ground and the Residential, Commercial, Pine plantation and
Woodland classes from both a Producer’s and User’s perspective. This indicates poor
spectral definition of these land covers and a high degree of within-target variation,
which produces the variable spectral responses. This is a characteristic bought about by
the large spatial resolution element of the Landsat MSS sensor and resultant mixed pixel
effect. This conclusion is supported by the analysis of spectral separability in Section

4.42.2.

5.4.1.2 Landsat TM

The unsupervised classification of Landsat TM data provides almost identical results to
those achieved using Landsat MSS. Tables 5.5 and 5.6 show moderate agreement with
Kappa values of 58.7 percent and 46.9 percent for Levels I and II, respectively. While
improved classification results were expected due to the enhanced spectral and spatial
resolution of the Landsat TM data, the data have been collected 14 years apart and the
patterns of land covers and their spatial complexity have changed to a great extent. The
main objective of this research is to evaluate the potential for multiscale data integration
for change assessment, and does not focus on the comparative information extraction

capability of the sensors.

At Level I, the Urban, Open and Water classes all show high Producer’s and User’s
Accuracies that provide confidence in the consistency of the classification. Forest
indicates a high User’s Accuracy, but confusion of the Forest reference data with the
Urban and Open classes reduces the Producer’s Accuracy to 44.6 percent. Areas of
Pine plantation are reasonably extensive, however Figure 2.10 shows many areas of this
land cover type are of linear form. Any minor misregistration with the reference data
results in a high level of apparent misclassification with adjacent areas such as

Grassland.

The Level II classification indicates a high Producer’s Accuracy (89.4 percent) for
Residential, but confusion with all other classes results in a User’s Accuracy of 57.1
percent. A broadly defined spectral signature causes this effect for Residential which
incorporates characteristics from all other classes except Water. The Commercial class

demonstrates the opposite situation. Commercial land covers have been described in a
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Classified Reference Data User’s Acc.
Data Urban Forest Open Water Total o
Urban 192 15 38 0 245 78.4
Forest i 37 5 0 43 86.0
Open 44 30 173 0 247 70.0
Water 0 1 0 3 4 75.0
Total 237 83 216 3 539
Prod. Acc. 81.0 44.6 79.7 100.0
Overall Classification Accuracy {percent) 75.0
Kappa Coefficient (I% ) (percent} 387

Table 5.5 Error matrix for unsupervised classification at Level [ using Landsat TM

data

Classified Reference data User’s
Acc.
Data Res | Com | Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot. %
Residential | 464 80 37 12 49 89 46 36 0 813 | 371
Commerc 0 26 0 0 0 0 0 0 0 26 100
Pine plant 0 0 0 0 0 ¢ 0 0 0 ] -
Wetland 2 0 4 5 1 1 2 0 1 16 312
Woodland 0 0 23 18 42 6 ] 1 0 9f 46.2
Grassland 38 3 13 2 7 179 11 13 0 266 | 67.3
Recreation 3 3 1 1 2 4 51 0 I a6 77.3
Bare grnd 11 5 2 0 3 13 2 97 0 133 | 72.9
Water 0 0 0 2 0 0 1 0 4 7 57.1
Total 518 117 80 40 o4 | 292 114 147 6 1418
Prod. Acc. | 89.4 | 22.0 0 125 1 400 | 61.3 | 447 | 660 | 66.7
Overall Classification Accuracy (percent) | 67.2
Kappa Coefficient (I% ) (percent) | 46.9

Table 5.6 Error matrix for unsupervised classification at Level IT using Landsat TM

data
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narrow range of values indicated by the high User’s Accuracy (100 percent). However,
the spectral range of the clusters is not sufficiently broad to include the range of

radiances encompassed by the reference data for the class, which results in a Producer’s

Accuracy of only 22.0 percent.

No clusters were defined for the Pine plantation class (and therefore no User’s
Accuracy could be computed) and reference data for this class were classified mostly as
Residential and Woodland, providing a Producer’s Accuracy of zero. This outcome
indicates that Pine plantation did not form a unique spectral class based on the decision
rules of the classifier. Moderate class accuracies were recorded for Grassland, Bare
ground and Water with balanced Producer’s and User’s Accuracies between 60 and 80
percent. Grassland is confused mostly with Residential, and Bare ground is contused
mostly with Grassland and Residential, which is largely consistent with the results
shown in Table 4.10. Water is confused with the Wetland class, which may be due to
some Wetland reference data actually containing surface water during seasonal changes
in the water table that were not present in the aerial photographs. Ground investigations

subsequently confirmed the existence of an area of seasonal surface water.

Wetland demonstrates a low User’s Accuracy due to confusion with the Pine plantation
class which contains a similar density of vegetation, and an extremely low Producer’s
Accuracy due to-confusion with the Woodland and Residential classes. In both cases
the observed pixel values are similar to the spectral ranges characteristic of these
classes, probably caused by dense vegetation in the more established residential areas

and densely vegetated native woodland areas.

The Producer’s Accuracy of 40.0 percent for Woodland s very low and shows a high
level of misclassification with the Residential class caused by the similarity of
Woodland pixels to the spectral characteristics of heavily vegetated Residential clusters.
The User’s Accuracy is also low (46.2 percent) with most confusion occurring with
pixels of the heavily vegetated land covers of Pine plantation and Wetland being

erroneously classified as Woodland.

The Recreation class presents a relatively high User’s Accuracy of 77.3 percent, which

indicates the spectral characteristics defined by the clustering are quite dissimilar to
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other land covers. However, with a Producer’s Accuracy of only 44.7 percent, the
Recreation class is too tightly defined and more than half of the Recreation pixels were
not allocated correctly. The major confusion occurred with Residential due to the
similarity to residential gardens and spatial confusion of overlapping pixels. To a much
lesser extent confusion also occurred with Grassland, which would be similar to some

of the less well irrigated areas of the Recreation class.

54.1.3 SPOT HRV
Unsupervised classifications of the SPOT HRV data are shown Tables 5.7 and 5.8, and

indicate moderate agreement at Level 1 (K =504 percent), but only fair agreement at

Level II ( K =369 percent). With reference to Figure 2.11 the pattern of land covers

has now changed to incorporate a very large proportion of the total study area as
Residential, with substantial proportions of Commercial. Moderately sized areas of
Woodland and Grassland still exist, but are less contiguous than in the Landsat MSS or
Landsat TM data. Recreation, Bare ground and Pine plantation now appear in a large
number of smaller isolated locations. Overall, the study area is now a complex
assemblage of land covers dominated by the Residential and Commercial classes with
fragmented areas of all other classes. Although the SPOT HRV data are of relatively
fine spatial resolution, the issues of spectral separability and registration accuracy make

accurate delineation of all land covers a difficult task.

Classified Reference Data User’s Acc.
Data Urban Forest Open Water Total %
Urban 495 30 86 I 612 80.9
Forest 0 43 4 0 52 92.3
Open 1 2 27 0 30 80.0
Water 0 5 0 4 9 44.4
Total 496 g5 117 5 703
Prod. Acc. 99.8 56.5 23.1 80.0
Overall Classification Accuracy {percent) 81.6
Kappa Coefficient (I% ) {percent) 50.4

Table 5.7 Error matrix for unsupervised classification at Level I using SPOT HRV daiu
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At Level I the Residential class shows very high User’s and Producer’s Accuracies
indicating a high class mapping accuracy. Some Forest and Open pixels are included in
the Residential class due to their presence as subclasses within the Residential class.
This situation is more likely to arise given the finer spatial resolution of the SPOT HRV

SENSOr.

Forest and Open show high User’s Accuracies, but moderate and very low Producer’s
Accuracies, respectively. The result for Forest is due to classification of 35 percent of
the Forest reference data into the Urban class, indicating the Forest clusters are too
finely defined. The Open class has extremely low Producer’'s Accuracy due to
classification of 73 percent of the Open reference data into the Urban class. This is due
to the spectral responses of many Open pixels that are similar to some characteristics of

bare ground, and also vacant land parcels that are also found within the Urban class.

Classified Reference Data User’s
Acc.
Data Res | Com | Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot. %
Residential | 864 o8 16 6 40 104 40 32 1 120 | 71.9
Commerc 2 34 0 0 2 0 2 6 0 46 73.9
Pine plant 0] 0 0 0 0 0 0 0 0] 0 -
Wetland 0 0 0 0 0 0 0 0 0 0 -
Woodland 3 1 26 20 39 4 4 0 0 97 40.2
Grassland 0 0 0 0 0 0 0 0 0 0 -
Recreation 1 1 0] t 4 1 51 0 0 59 80.4
Bare grnd 0 0 0 0 0 0 0 0 0 0 -
Water 2 0 0 7 0 0 0 0 11 20 350
Total 872 134 42 34 85 109 97 38 12 1423
Prod. Ace. | 99.0 | 254 0 0 45.4 0 52.6 0 917
Overall Classification Accuracy (percent) | 70./
Kappa Coefficient (IE' ) (percent) | 36.9

Table 5.8 Error matrix for unsupervised classification at Level Il using SPOT HRV

data
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Warer provides a high Producer’s Accuracy, but a low User’s Accuracy in both Level [
and I classifications. This low value is due to inclusion of some Forest pixels as
Water, which may be due to registration issues associated both with the satellite data
and reference data as both Water and Forest occur adjacent to each other. Seasonal

variations in water level as discussed in Section 5.4.1.2 may also be relevant.

The low level of agreement (ﬁ' ) at Level II is due to the classes of Pine plantation,

Wetland, Grassland and Bare ground not being represented by any clusters at the
cluster allocation stage. Further investigation of the reference data suggests the classes
of Pine plantation and Wetland could justifiably be generalised and grouped with the
Woodland class, which would improve the overall result. Evaluation of the Grassland
and Bare ground classes indicates that spectral confusion of these classes occurs mainly
with the Residential class rather than with any structurally similar classes such as
Recreation, and therefore no improvement in classification performance could be
achieved through generalisation of these classes. Generalisation to this level produces a
Kappa Coefficient of 42.9 percent and an Overall Classification Accuracy of 734
percent, which is less than the result achieved for Level I, yet the level of generalisation

is similar.

Residential recorded an extremely high (99 percent) Producer’s Accuracy due to well
defined cluster characteristics, but a moderate User’s Accuracy (71.9 percent), due to
inclusion of pixels from other classes. Considering the spectral variation of pixels
normally experienced in urban areas and the fine spatial resolution of the SPOT HRV
sensor, this level of accuracy represents an excellent result. The reverse situation
occurred for the Commercial class with a User’s Accuracy of 73.9 percent and a
Producer’s Accuracy of 25.4 percent. Only a limited number of pixels from other
classes were classified as Commercial except for Bare ground, which supports the
results shown in Table 4.11 and confirms the separability of Commercial from other
classes. However, within the Commercial reference data, 73 percent of the pixels were
classified as Urban, indicating they showed similarities to the Residential class due to
the spectral characteristics of roof materials, road surfaces, paving and some vegetated

and bare areas.
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Woodland demonstrates very poor separability, both from a Producer’s and User’s
perspective.  Woodland was confused mainly with pixels from similar vegetation
classes such as Pine plantation and Wetland, indicating clusters from all three classes
possess similar characteristics. The Woodland reference data were mainly misclassified
as Residential, which was likely to have been caused by Woodland areas appearing

similar to clusters representing heavily vegetated gardens.

Recreation pixels appear to be well defined with a User’s Accuracy of 86.4 percent and
no major confusion with other classes. The Producer’s Accuracy is 52.6 percent and
indicates classification of Recreation reference pixels into the Residential class as the
main cause of errors. This may be caused by registration errors between the satellite
and reference data, and therefore assessment of some Recreation clusters against the
Residential class, or due to similarities in the cluster characteristics for Recreation and
parts of the Residential class. Residential is a spectrally complex class and comprises
six (Landsat MSS) or 11 (Landsat TM and SPOT HRYV) clusters, whereas Recreation

comprises zero and three clusters respectively, for these data sources.

5.4.2 Supervised Classification

5.4.2.1 Landsat MSS

Tables 5.9 and 5.10 detail the results of supervised classification for the Landsat MSS
data of the study area. The Kappa Coefficients indicate moderate agreement with
values of 56.2 percent and 46.3 percent for Levels T and II, respectively. The largest
classes of Urban and Forest in the Level I classification show reasonably balanced
User’s and Producer’s Accuracies, with the major source of confusion occurring in the
Forest reference data with misclassification into the Open class. This same effect did
not occur for the unsupervised classification (Table 5.3) and indicates the clusters were

more broadly defined than the speciral signatures of the supervised classification.

Open has relatively low User’s and Producer’s Accuracies with 50 percent of the Open
reference data classified as Urban or Foresi, and large proportions of refrence pixels
from these classes being classified as Open. These results indicate the Open class
displays high spectral variability which leads to difficulty in differentiating it from other

classes. Table 4.9 supports this assertion indicating that the Open subclasses of
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Classified Reference Data User’s Acc.
Data Urban Forest Open Water Total %
Urban 260 52 49 0 361 72.0
Forest 19 708 44 3 774 815
Open 38 138 9% 1 271 34.7
Water 0 4 0 3 7 42,9
Total 317 902 187 7 1413
Prod. Acc. 81.8 78.2 50.0 42.9

Overall Classification Accuracy (percent) 75.4
Kappa Coefficient ( K ) {percent) 56.2

Table 5.9 Error matrix for supervised classification at Level I using Landsat MSS data

Classified Reference Data User’s
Acc.
Data Res | Com | Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot. | %
Residential | 202 13 9 0 20 7 4 20 0 275 | 73.4
Commerc 8 37 8 0 15 3 0 15 D 86 43.0
Pine plant 1 1 430 25 40 4 0 15 0 516 | 833
Wetland 0 0 43 7 25 3 0 0 3 81 8.6
Woodland 15 2 39 5 94 4 0 18 0 177 | 33.1
Grassland 7 3 67 6 42 26 0 29 1 181 | 144
Recreation 6 2 0 0 0 1 6 ¢ 0 15 40.0
Bare grnd 8 12 6 0 17 8 0 24 0 75 32.0
Water 0 0 1 3 0 0 0 0 3 7 42.9
Total 247 70 603 46 253 j6 10 127 7 1413
Prod. Acc. | 8.4 | 529 | 751 | 152 | 369 | 464 | 546 | 198 | 42.9
Overall Classification Accuracy (percent} | 584
Kappa Coefficient (I% ) {percent) | 46.3

Table 5.10 Error matrix for supervised classification at Level I using Landsat MSS

data
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Grassland, Recreation and Bare ground show low significant differences with several
Urban and Forest subclasses. Similar low classification results were achieved with the
unsupervised classification of these data (Tables 5.3 and 5.4}, which confirm this result.
However, with the supervised and unsupervised classification of the Landsat TM data,
an improved classification rate for Grassland, Recreation and Bare ground was

achieved. This improvement may be spatially or spectrally related.

The Producer’s and User’s Accuracies for Water are both low, however inspection of
Table 5.9 indicates that most errors result from confusion with Wetland which may have
occurred due to seasonal water level changes or minor misregistration of the satellite or

reference data.

Interpretation of the Level II data indicates the Residential and Pine plantation classes
are well defined with relatively high Producer’s and User’s Accuracies. Consideration
of Table 4.9 indicates that class difference assessment is not a perfect predictor of class
confusion for Residential. However it does provide a useful guide to the outcome in the
case of Pine plantation, where Table 4.9 confirms difficulty in separating Wetland,

Woodland and Grassiand.

The results for all other classes in the supervised classification are of very low quality.
Producer’s Accuracies range from 8.6 percent to 53.1 percent, and User’s Accuracies
from 15.2 percent to 54.6 percent. Some classes are undersampled as a result of the
early stage of rural to urban land cover change, which effects the validity of the

sampling of the Wetland, Recreation and Water classes.

The large IFOV of the Landsat MSS sensor results in a large degree of within-pixel
averaging that restricts the ability of the classifier to clearly identify targets which have
some similar spectral components such as Residential under construction, Grassland,
Pine plantation (low density) and Bare ground. In particular, Table 4.9 confirms the
difficulty in separating Residential under construction and Bare ground, and Pine

plantation (low density) and Grassland.
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5.4.2.2 Landsat TM

Results for supervised classification in Tables 5.11 and 5.12 indicate moderate to
excellent agreement at Level I and Level 11, with Kappa Coefficients of 62.5 percent and
59.1 percent, respectively. The Urban class has high Producer’s and User’s Accuracies
with most confusion occurring with the Open class. Only seven percent of the Urban
reference data are classified as Open, however there is a 14 percent commission rate of
Open pixels in the Urban classification. This indicates the Urban signatures overlap
with the characteristics of Open pixels, and the extent of the variability of the Open
class is not taken into account by the Open spectral signatures. The moderate
Producer’s and User’s Accuracies for Forest indicate it is subject to large variability as
evidenced by the high level of errors of omission and commission with the Urban and
Open classes. Once again, the Water class suffers from confusion with Forest and

inspection of Table 5.12 indicates this is caused specifically with Wetland pixels.

At Level II the Residential class is well defined with Producer’s and User’s Accuracies
of 83.5 and 77.2 percent, respectively. Patterns of omission and commission errors
amongst classes are similar indicating that signature refinement is unlikely to improve
the results. Commercial areas have moderate levels of misclassification with the
Residential, Pine plantation and Woodland classes as predicted in class significance
testing in Table 4.10. High errors of commission and moderate levels of omission for
Pine plantation are mainly caused by confusion with the Grassiland class. Low density
pine forest often represents a transition stage between Grassland and high density pine
forest and, with similar scene components but different proportions, confusion may

result.

The definition of Wetland areas has improved from that achieved with the supervised
classification of the Landsat MSS data, however not to an extent that is considered
reliable. Confusion is distributed amongst all classes, with errors of commission for
Woodland representing the only major source. Woodland often occurs adjacent to
Wetland, therefore rtegistration errors and land cover transition effects may be
significant. Woodland displays relatively low Producer’s and User’s Accuracies, with
the largest errors of omission occurring with Residential, Pine plantation and Wetland,
while most errors of commission occur with Residential and Grassland. A similar level

of misclassification, but with different classes, occurred when an unsupervised approach
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Classified Reference Data User’s Acc.
Data Urban Forest Open Water Total %
Urban 561 37 o8 0 696 80.6
Forest 31 145 65 6 247 59.7
Open 48 32 378 0 458 82.5
Water 1 2 0 4 7 57.1
Total 641 216 541 10 1408
Prod. Acc. 86.4 66.5 69.4 4.0
Overall Classification Accuracy (percent) 77.3
Kappa Coefficient (I% ) (percent) 62.5

Table 5.11 Error matrix for supervised classification at Level I using Landsat TM data

Classified Reference Data User’s
Ace.
Data Res | Com { Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot To
Residential | 444 19 6 2 16 39 11 38 0 575 | 772
Commerc 19 79 4 2 7 6 t 3 0 121 | 653
Pine plant 7 5 44 3 11 35 8 2 0 113 383
Wetland i 0 5 22 15 2 2 0 5 52 42.3
Woodland 12 6 5 3 37 11 4 1 1 80 46.2
Grassland 15 3 11 1 8 190 3 16 0 247 | 76.9
Recreation 7 5 0 3 2 8 55 0 0 80 08.8
Bare grnd 18 0 3 0 4 12 2 92 0 131 70.2
Water 1 0] 0 2 0 0 0 0 4 7 57.1
Total 524 117 78 38 100 303 86 152 ia 1408
Prod. Ace. | 835 | 675 | 564 | 564 | 366 | 625 | 625 | 60.1 | 40.0
Overall Classification Accaracy (percent) | 687
Kappa Coefficient (K) (percent) | 59.1

Table 5.12 Error matrix for supervised classification at Level II using Landsat TM data
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was used. This suggests the spectral characteristics are variable and difficult to specify,
either through clustering or supervised signature extraction, and improvement in the

class accuracy may not be achieved through signature refinement.

Producer’s and User’s Accuracies for Grassland, Recreation and Bare ground are all
similar within the range 60 to 76 percent. Table 4.10 indicates Grassland and
established Residential arcas are difficult to separate and this is bome out by the
classification results. Mutual errors of commission occur with the Residential and
Grassland classes, and signature refinement to decrease omissions would also increase
commissions, and vice versa. The spectral similarity of residential gardens and
Grassland may be the cause of this confusion. Large errors of omission also occur
with Pine plantation and the confusion may result from the similarity of the grasses that
form the understorey of pine forest at low tree densities with the signatures of the
Grassiand class. Recreation has maximum confusion (omission) with Residential,
which may be due to the spectral similarity of mature residential areas and recreation
areas. Recreation areas are also commonly found in isolated patches within the

Residential class and misregistration may be significant.

Table 4.10 indicates almost all Landsat TM bands are significantly different for Bare
ground and Residential, but classification results in Table 5.12 show confusion of Bare
ground pixels with the Residential signatures. High rates of omission and commission
for Bare ground occur for Residential and lesser levels for Grassland. The error rates
for Grassland may be due to the presence or absence of grasses at the time of sensing,
which is the major differentiating factor between Bare ground and Grassland.
Confusion with Residential is most likely due to the transitional nature of new
residential areas between Bare ground, and more established and heavily vegetated

established Residential areas.

5.4.2.3 SPOT HRV

Supervised classification results for SPOT HRV data are reported in Tables 5.13 and
5.14. The Level 1 and Level II Kappa Coefficients are 50.8 and 47.1 percent
respectively, and indicate a moderate level of agreement with the reference data.
Previous comments in Section 5.4.1.3 with respect to the spatial complexity and

distribution of land covers in the context of the spatial resolution of the SPOT HRV
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Classified Reference Data User’s Acc.
Data Urban Forest Open Water Total T
Urban 808 21 50 0 879 91.9
Forest 74 108 14 0 196 551
Open 152 23 152 1 328 46.3
Water 1 1 0 8 10 80.0
Total 1035 153 216 9 1413
Prod. Acc. 77.4 701 69.4 88.9

Overall Classification Accuracy {percent) 75.6
Kappa Coefficient (K) (percent) 50.8

Table 5.13 Error matrix for supervised classification at Level I using SPOT HRV data

Classified Reference Data User’s
Acc.
Data Res | Com | Pine | Wet | Wod | Gras | Rec | Bare | Wat | Tot. | %
Residential | 660 35 6 1 3 23 15 4 0 752 | 87.8
Commerc 32 81 2 3 1 3 1 4 0 127 | 63.8
Pine plant 43 3 25 5 34 7 3 G 0 120 | 209
Wetland 1 0 0 19 2 0 0 0 0 22 86.4
Woodland 20 7 4 4 15 2 2 0 0 54 17.8
Grassland 79 6 4 3 10 59 0 6 0 167 35.3
Recreation 14 5 1 2 2 5 62 0 0 7] 68.1
Bare grnd 46 2 1 0 0 5 0 15 1 70 214
Water 1 0 0 1 0 0 0 0 8 10 80.0
Total 896 | 139 43 38 72 104 83 29 9 1413
Prod.Acc. | 73.F | 574 | 5871 | 50.0 | 205 | 562 | 738 | 500 | 889
Overall Classification Accuracy (percent} | 66.8
Kappa Coefficient ( K ) (percent) | 47.1

Table 5.14 Error matrix for supervised classification at Level Il using SPOT HRV data
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sensor, also apply to the results of the supervised classification. Urban dominates the
Level 1 classification with all Producer’s Accuracies at least 70 percent and User’s
Accuracies varying between 46 and 92 percent. Errors of omission of approximately 15
percent for Urban are classified as Open, and are possibly due to the higher resolution
sensor identifying areas of grass, recreation or bare ground within otherwise Residential
areas. Similar situations arise for the other classes within the classification and it may
represent the limit of classification accuracy for the available level of detail contained
within the reference data. Such a condition also indicates the spatial resolution of the
sensor is approaching the level of the support (10 - 15 m) for some of the urban target

components such as houses and roads (see Section 4.3).

The User’s Accuracy for Urban is very high at 91.9 percent. Approximately five
percent of the errors of commission for the Urban class are pixels from the Open class,
and are again possibly caused by urban-like targets within the Grassland, Recreation or
Bare ground areas. User’s Accuracies for Forest and Open are low at 55.1 and 46.3
percent, respectively. In both cases Urban accounts for at least 40 percent of the errors
of commission, which are the same pixels discussed above as errors of omission for the
Urban class. Refinement of the signatures may not improve the quality of the
classification, as a resolution of 20 m is now capable of detecting individual features
that were of subpixel size for the Landsat MSS data. Signature refinement to make
Urban more inclusive may also result in increased errors of commission with the Open
class because many small Urban areas will also have the characteristics of the Open
class. Alternatively, the detail in the reference data may need to be refined to account
for the increased discriminating power of higher resolution sensors such as Landsat TM

and SPOT HRV.

Apart from Residential and Water, the Producer’s and User’s Accuracies for all classes
at Level II are variable, with values from moderate to very low. Most of the
classification errors are concentrated as errors of omission from the Residential class,
and as commissions of most other classes. The overall number of pixels in the
Residential class is high (63 percent of the study area), therefore even a relatively low
rate of omission translates to high rates of commission and low User’s Accuracy for
classes with comparatively small numbers of reference samples. For example, by

ignoring the errors of omission for Residential, the User’s Accuracy for Grassland
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changes from 35.3 percent to 67.0 percent. No other classification method applied in
this study has produced such consistent errors within a single class, as has Residential
for the supervised classification of the SPOT HRV data. In situations where there are
large discrepancies between the number of pixels in each class the User’s and
Producer’s Accuracies become less relevant as diagnostic measures of classifier

performance.

Comparison of the results in Table 5.14 with those in Table 5.8 derived from the same
data using the ISODATA algorithm, and based upon automated formation of clusters,
indicates the Producer’s Accuracy has decreased from 99.0 percent to 73.1 percent, and
the User’s Accuracy has increased from 71.9 percent to 87.8 percent. Adjustment of
spectral signatures to reduce the rate of errors of omission for Residential may be
undertaken, but this will increase the rate of commission of Residential and

substantially decrease the classification accuracy of all other classes.

5.4.3 Comparison of Classification Results

Results of individual approaches to classification have been analysed in Sections 5.4.1
and 5.4.2. These analyses consider the level of agreement, measured through the
Kappa Coefficient, between the classified data and stratified random sampling of the
reference data. The results provide a comparison at Level I and Level II classifications
for each of the multiscale datasets. The extent of interclass confusion was evaluated
with a view to understanding the patterns of classification error, to assist in the selection
of an appropriate level of detail for classification and to determine the algorithm most
likely to provide a classification accuracy suitable for change assessment.
Consideration of the impact of factors contributing to the outcome of the classification

results will be made in Section 5.5.

The relative importance of the Kappa Coefficient and Overall Classification Accuracy
for assessing the quality of classification results has been discussed in Section 5.2,
Tables 5.15 and 5.16 provide a comparison of the Kappa Coefficient values for each
dataset at Level I and Level II, respectively. The standard normal deviate of the Kappa
Coefficient is used to evaluate whether a significant difference exists between the
results of the supervised and unsupervised classifications and, where none exists, the

classification with the highest Overall Classification Accuracy will be utilised in further
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change detection analyses. Where a significant difference is detected the classification

result with the higher Kappa Coefficient will be used for analysis.

Class-based

comparisons of classification could also have been utilised in the comparison, however

for statistical analysis a single measure such as the Kappa Coefficient is required.

Landsat MSS Landsat TM SPOT HRV
Classification Unsuper Super Unsuper Super Unsuper Super
Overall Class. Acc. 79.1 75.4 75.0 77.3 81.6 75.6
K 57.3 56.2 58.7 62.5 50.4 50.8
6'; 0.000835 | 0.000364 | 0.000928 | 0.000307 | 0.001379 | 0.000495
Lo -k 0.32 1.08 0.09
Significance * NS NS

* N5 = not significant, § = significant

Table 5.15 Comparison of Level I classification results at the 95 percent confidence

level
Landsat MSS Landsat TM SPOT HRV
Classification Unsuper Super Unsuper Super Unsuper Super
Overall Class. Ace. 61.6 58.4 61.2 68.7 70.1 66.8
K 45.9 46.3 46.9 59.1 36.9 47.1
G i 0.000279 | 0.000241 | 0.000296 | 0.000234 | 0.000517 | 0.000337
Zi g, 0.18 5.23 3.49

Significance * S 5

* NS = not significant, § = significant

Table 5.16 Comparison of Level II classification results at the 95 percent confidence

level
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Examination of the classification results at Level I in Table 5.15 indicates that at the 95
percent confidence level all computed values of the standard normal deviate of the
Kappa Coefficient (Equation 5.3) are less than 1.96. Therefore, no significant
differences are detectable between the classification results achieved by the supervised
or unsupervised approaches for any of the datasets. Consequently, for the Landsat MSS
and SPOT HRV data, results of the unsupervised classification will be utilised, while
for the Landsat TM data the supervised classification provides the most favourable

outcome as each has recorded the highest Overall Classification Accuracy.

Classification results for Level IT are shown in Table 5.16 and indicate at the 95 percent
confidence level the standard normal deviate of the Kappa Coefficient is less than 1.96
only for the Landsat MSS data. No significant difference is detectable between the
classification results and only the unsupervised classification will be considered further.
For both the Landsat TM and SPOT HRYV classifications a significant difference was
detected between the results of the two algorithms with the supervised classification

providing superior results in each case.

The main contributing factor to the observed difference between the supervised and
unsupervised classifications of the Landsat TM and SPOT HRV data is the failure of the
clustering process to recognise some land cover classes. In Table 5.6 no clusters were
allocated to the Pine plantation class for Landsat TM data, and in Table 5.8 no clusters
were allocated to Pine plantation, Wetland, Grassland or Bare ground classes during
unsupervised classification of the SPOT HRV data. The selection of reference classes
is based on an a priori determination of land covers present in the area, and failure to
identify pixels sampled from these reference classes results in these pixels being

recorded as errors of omission and commission for other classes.

In both cases for the SPOT HRV data the Kappa value for the unsupervised
classification is less than the value for supervised classification, yet the Overall
Classification Accuracy is substantially higher. The apparent discrepancy in the
variation of these values is caused by the dominance of the Residential class in the
classification. The Residential class unduly influences the Overall Classification
Accuracy, which does not consider class distributions apart from correctly classified

pixels located on the main diagonal of the error matrix. The Kappa Coefficient is
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specifically designed to provide a more comprehensive assessment of classification
accuracy by considering the off-diagonal values and their effect on the classification
result (see Section 5.2.2). Consequently, the Kappa values are substantially lower for
Landsat TM and SPOT HRV data at Level IT compared to the corresponding Overall

Classification Accuracy values.

Due to the capability of the supervised classification of Landsat TM and SPOT HRV
data at Level II to provide significantly higher quality results than the unsupervised

classification, only these data will be considered during subsequent analysis.

5.5 Analysis of Factors Contributing to Classifier Performance

The foregoing analysis provides an assessment of supervised and unsupervised
classifier performance for a range of multiscale data at two levels of classification
detail. Following statistical analysis of the results the optimum classification algorithm
for each dataset at Level I and Level II has been determined. The following section
discusses a range of factors that have contributed to the performance of the algorithms

and represent important considerations relevant to the outcomes of this research.

5.5.1 Radiometric and Spectral Resolution

Examination of classification results in Tables 5.3 to 5.14 demonstrates that Urban and
Residential/Commercial classes at Level I and Level II respectively, have dominated the
classification with large numbers of pixels and relatively high classification accuracies.
Other classes generally contain fewer pixels and achieve lower Producer’s and User's
Accuracies. Discussion of the supervised and unsupervised classifications in Section
5.4 provides a detailed analysis of the patterns of omission and commission relevant to
each algorithm. Consideration of the spectral separation of classes is important to

understand these classification patterns.

Figure 5.1 illustrates the distribution of pixel values for Landsat TM data in bands 3 and
4, and plots the digital ranges of each land cover class derived from the training data of
major land cover types used during supervised classification. Only the major land cover
types are shown in order to preserve clarity in the diagram, and the Residential class is
represented by two sets of training data (viz Established residential and Residential

under construction). Landsat TM data were selected for illustrative purposes as they
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provide the broadest range of spectral sensitivities, and bands 3 and 4 are useful for

identification of urban and vegetation targets (Jensen, 1996).

Within Landsat TM bands 3 and 4 clear differences between most training data can be
observed, except for Commercial and Established residential/Grassland, where
substantial overlap is present. The limits of the training data shown in Figure 5.1 are
represented by the intraclass variances from which class membership probabilities are
computed. Therefore, for a given distance from any class mean, the probability of
belonging to a class is inversely proportional to the class variance. These data must also
be considered in the context of the other four bands of Landsat TM data that will also be
used to compute class membership probabilities for the maximum likelihood

classification.

Spectral Classes
m— Established residential

Residential under construction

m— Commercial
m— \Woodland
— Grassland

—— Bare ground

—— Recreation

— Water

Figure 5.1 Scatter plot of Landsat TM band 4 (y axis) and band 3 (x axis) showing
major class signatures centred on mean value and bounded by two standard deviations

(extents of the scatter plot are normalised to the radiance values in each band)

The rectangle representing the Commercial class overlaps a large proportion of most
other classes and demonstrates a large class variance. Many pixels in this class are
correctly classified and the User’s and Producer’s Accuracies for supervised
classification of the Landsat TM data are both moderately high (65 percent), but due to

the relatively large class variance, there are many errors of omission and commission
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(35 percent). Even though Residential (combination of Established residential and
Residential under construction training data) falls largely within the variance range
defined by Commercial, it displays the highest classification accuracy of any class

because of its low class variance.

Grassland, which has a mean and variance in bands 3 and 4 that is almost coincident
with the Established residential training data, still achieves a classification accuracy at
least as high as the Commercial class due to the independence of the spectral
characteristics in other bands. Plots of training data for Bare ground, Woodland and
Recreation indicate a moderate degree of separation of the classes in these two bands,
however large variances contribute to low classification accuracy for Woodland and
moderate results for Woodland and Recreation. The other bands in the data set
undoubtedly influence these results, however the scatter plot provides a guide to the

understanding of class separation.

The data included in Figure 5.1 also demonstrate the degree of band-to-band correlation
within the Landsat TM data for these land cover classes. Strong correlation between
bands reduces the spectral separability of the classes and suggests that decorrelation of
the data may have improved the results of information extraction. Preprocessing
through PCA reduces the spectral correlation and improves the spectral separability of
targets. These approaches to data preprocessing were not investigated during this

research.

Figure 5.2 summarises the classification uncertainty derived from the maximum
likelihood classification of the corresponding data represented in Figure 5.1. These
results indicate that 33 percent of the classified pixels have a classification uncertainty
(Eastman, 1997) of 50 percent or greater. This high level of uncertainty arises from
class membership probability for pixels being spread across a number of classes, or low
levels of class membership probability in all classes. The result is low classification
accuracy and higher than expected levels of confusion between classes, as observed in
the Level II classification results (Table 5.12). Decreased uncertainty may be achieved
through refinement of training data or structure of the land cover classification system
to identify classes with improved spectral separation. Steele er al (1998) indicate that

misclassification probability estimates (classification uncertainty) may be useful for
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analysing the spatial distribution of misclassification errors in thematic land cover

maps, however this potential has not been explored further.

Direct comparison of classification accuracies achieved across the datasets analysed in
this research is difficult not only due to the range of spatial and spectral sensitivities of
the various sensors, but also due to the variations in spatial diversity of the land cover
patterns and their corresponding spectral complexity. Examination of the data in Tables
5.15 and 5.16 indicates that, for classifications at Level I and II, Kappa Coefficients for
classification of Landsat TM data are greater than those for any of the other datasets.
According to Basham May et al (1997), this is due to the presence of additional infrared
bands, especially compared to the higher spatial resolution SPOT HRV data. Further
research by Basham May et al (1997) also indicates that the higher spectral resolution
of Landsat TM data is more important than higher spatial resolution when compared

with Landsat MSS data.

Percentage
=

Uncertainty

Figure 5.2 Graph of classification uncertainty at Level Il for Landsat TM data using

supervised classification

5.5.2 Spatial Resolution

Contrasting factors associated with the finer spatial resolution of remotely sensed data
and its effect on classification are identified by Irons et al (1985). The two opposing
factors affecting the data are increased within-class spectral (and radiometric) variability

and decreased proportion of mixed pixels. The former situation decreases, while the
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latter tends to increase classification accuracy. Verification in this study of the results
of Irons et al (1985) is difficult due to the change in land cover distribution between
sensing dates. However, improvements of a similar magnitude (10 percent) were
achieved with the Level II supervised classification between Landsat MSS and Landsat
TM data, even though a more complex pattern of land covers was present in the Landsat
TM data (Table 5.16). The same magnitude of improvement was not observed at Level
I or for the unsupervised classification, and no improvement was noted when the SPOT
HRYV data were classified, possibly due to the reduced number of bands availabie for

analysis (see Section 5.5.1).

5.5.3 Reference Data Issues

The influence of reference data quality on the assessment of classification accuracy of
land covers depends on the thematic accuracy of the reference data and the boundary
effects which arise due to the spatial complexity of the land covers contained in the
reference data. Reference data are assumed to be error free, however even for data
collected directly in the field, this is often not the case (Congalton, 1991; Kalkhan ez a/,
1998). Reference data derived from aerial photographs are subject to even greater

errors and may lead to erroneous evaluations of classification accuracy.

Reference data were collected for this study from medium scale panchromatic (1972
and 1986) and colour (1992) aerial photographs, which provide good discrimination of
most land covers. Confusion occurred between Bare ground and Grassland because the
presence/absence of herbaceous vegetation on panchromatic photographs was difficult
to detect. Evaluation of the influence of photointerpretation errors on reference data
quality was not possible as the satellite data were collected as early as 1972, and the
most recent data were recorded in 1991. Aerial photographs represent the most reliable

source of data available for evaluation of the classification results.

Boundary effects in remotely sensed data are mainly related to the interpretation of
mixed pixels, determination of class boundary locations and reference data verification
errors. Specialist image enhancement algorithms that deal with pixel unmixing and
fuzzy classification approaches for pixels that demonstrate multiple class membership
are necessary for resolution of issues related to mixed pixels, and are outside the scope

of this study. Fuzzy classification may also be applied to the determination of class
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boundaries, or it may be achieved through refinement of training data and classification
approaches to provide an optimum level of thematic data extraction and therefore
boundary determination. Uncertainties in the location of boundaries will remain, but
their effect will be measured as part of the classification accuracy assessment process.
This section considers the effect of spatial complexity of reference data boundaries and
its effect on thematic classification assessment. Apparent misclassification may be
recorded where displacements in reference data occur due to misregistration. The effect
is most pronounced when land cover classes are fragmented and the boundaries exhibit

a high degree of complexity (Kalkhan er al, 1998).

Reference data boundary complexity was studied using a shape index known as the
Compactness Ratio, which relates the area of a feature to its perimeter (Haggett et al,
1977). The compactness ratio used in this research compares the area of the polygon
and the area of a circle having the same perimeter as the polygon under examination,

and is defined as follows (Eastman, 1997):

Compactness Ratio = J Polygon area/Circle area with equivalent perimeter  (5.6)

The compactness ratio was computed from the reference data for each sensing epoch as
the classified data contained too many small polygons that produced an artificially low
result (Table 5.17). According to comparisons made by Lo and Watson (1998), the
average compactness ratio derived from the reference data images are all relatively low,
which indicates the land cover patterns are fragmented rather than compact. Values for
1986 and 1991 are lower than those for 1972 and correspond to the increasing spatial
complexity of the land covers in the area. Decreased classification accuracy usually
results from increased fragmentation, however the improved spatial resolution and
increased data quantisation of the Landsat TM and SPOT HRV data counteract these
effects. Substantial improvement in the number and distribution of spectral bands
within the Landsat TM data also offsets against the negative influence of scenc
fragmentation on classification accuracy. It is likely that with a structure of classes
similar to those present in 1972, the Landsat TM and SPOT HRV data could produce

significantly higher rates of classification accuracy than achieved in this study.
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Date Classified Data Compactness Ratio
1972 Landsat MSS 0.2361
1986 Landsat TM 0.1803
1991 SPOT HRV 0.1767

Table 5.17 Average compactness ratio of land cover classes for reference data in 1972,

1986 and 1991

5.5.4 Spatial Autocorrelation of Error Patterns

The pattern of error in classified multispectral images is dependent upon a range of
factors including topographic effects, target spatial, spectral and radiometric variability,
processing approaches, and the spatial, spectral and radiometric resolution of the sensor.
Analysis of error patterns is useful in identifying the source of classification errors and
in the development of strategies to increase the quality of information extraction. Errors
that occur in blocks are likely to represent gross misclassification of pixels related to
errors in spectral class definition or reference data extraction, while fragmented or linear
errors are related to boundary errors caused by misregistration of the remotely sensed or

reference data (Congalton, 1988b).

Error patterns may be measured using spatial autocorrelation analysis. Techniques of
spatial autocorrelation analysis similar to those applied to the assessment of intraclass
variability in Section 4.3 will be applied to difference images derived from a
comparison of the classified image and the reference data. Moran's I will again be used
to assess the degree of spatial autocorrelation (see Section 4.3). Figure 5.3 contains
difference images for each of the datasets classified at Level II using an unsupervised
classification algorithm. The remotely sensed data were collected at a range of spatial
resolutions, but were resampled and analysed at a consistent resolution of 20 m. Values
of Moran's I were computed for each difference image at 20 m intervals to a total of
200 m, and are plotted in Figure 5.4.  Spatial autocorrelation values may be converted
to equivalent spatial lags (in units of original pixels) by dividing by 60 m for Landsat
MSS, 30 m for Landsat TM and 20 m for SPOT HRV. The resulting maximum lags at
200 m are then three (Landsat MSS), six (Landsat TM) and ten (SPOT HRV).
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The full extent (total number of lags) of statistically significant spatial autocorrelation
was not assessed for these data and all lags examined were found to be significant at the
99 percent confidence level. Given the large proportion of classification errors in the
data, and that the errors were not categorised by cover class, this result is not surprising.
Comparison of the degree of autocorrelation between the datasets and in conjunction

with observed patterns of errors in Figure 5.3 is more useful.

(a) Landsat MSS (b) Landsat TM (¢) SPOT HRV

Figure 5.3 Image showing differences between classified and reference data (all data

are resampled to 20 m; White = correct, Black = error) (Scale 1:80 000)
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Figure 5.4 Spatial autocorrelation of classification errors for multiscale satellite data

(lag distances are in metres)
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Examination of Figure 5.4 indicates at equivalent distances, but at lower spatial lags, the
coarser spatial resolution Landsat MSS data have substantially higher levels of spatial
autocorrelation than the other two datasets. This trend is maintained over the complete
“range of spatial autocorrelation measurements for these data. This pattern of response 1$
expected due to the generalisation produced through pixel averaging by the large IFOV
of the Landsat MSS, but also reflects the nature of the classification errors observed in
Figure 5.3a. The classification errors occur in large blocks that represent
misclassification of complete regions, due mainly to the large IFOV of the sensor.
Some of these regions represent classes that occupy areas too small or too narrow to be
identified at this resolution, while some regions represent omission of complete classes.

An investigation of the class composition of these errors has not been undertaken.

The spatial autocorrelation values for the Landsat TM and SPOT HRV data are very
similar despite the IFOV of the Landsat TM being 50 percent larger than the SPOT
HRV sensor. This may be caused by the spatial resolution of both of these sensors
being close to the level of support of the targets (see Section 4.3), especially for urban
targets which dominate the 1986 and 1991 scenes recorded by these two sensors. The
IFOV of the sensors provides sufficient generalisation to enable reasonably consistent
responses, but is not so fine as to increase class variance by identifying individual
objects such as trees and house roofs. The fragmented nature of errors identified in
Figures 5.3b and 5.3c also indicates that most errors occur along boundaries or along
linear features, which are likely to produce lower rates of spatial autocorrelation
(Congalton, 1988b), as evident in Figure 5.4. This pattern of errors indicates occurrence
of mixed pixels along boundaries or the presence of data misregistration are major

factors affecting classification accuracy.

5.6 Summary

Investigations in this chapter have been directed towards the evaluation of supervised
and unsupervised classification approaches for the identification of various land cover
classes that have evolved during the period 1972 to 1991. The impact of changing land
cover patterns and evaluation of information extraction approaches relevant to the
available multiscale data have been important considerations in' determining the

direction of the research.
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Descriptive and analytical accuracy assessment methods are available for evaluation of
classified data. Descriptive methods have been applied over a long period, however
simple statements of Overall Classification Accuracy and User’s and Producer’s
Accuracy are insufficient for comprehensive analysis of classification results.
Analytical approaches such as the Kappa Coefficient provide statistically sound
technigues, which summarise all elements of the error matrix, and compute an accuracy
value and its variance, taking into consideration the probability of chance agreement.
Important in this study is the ability for the Kappa Coefficient to statistically compare

the results of a range of classification algorithms to determine an optimum approach.

Sampling schemes for error assessment are considered an important component of
classification analysis. Most studies indicate that stratified random sampling is the most
robust approach, however research by Stehman (1999) determined that systematic
sampling theoretically provides an optimum solution marginally better than stratified
random sampling, but is contingent upon the absence of periodicity in the data. In the
light of strong empirical evidence by Lo and Watson {1998), and the inherent
difficulties in identifying periodic patterns in the classified data, a stratified random

sampling scheme was adopted for this research.

Overall image sampling rates are determined based on the binomial theorem, but
determination of the level of class sampling rates are subject to conjecture and are
important where class sizes and spatial distribution are variable within the scene.
Research indicates minimum samples between 30 and 75 samples per class are
acceptable, with the exact size determined largely by the logistics of reference data
collection. A value of 75 samples per class was used in this research because a
reference map of the complete study area was compiled using aerial photography, and

sampling was undertaken using automated sampling routines.

Classification of the multiscale satellite data was performed at modified Level I and
Level II (Anderson et al, 1976) using both supervised and unsupervised algorithms. At
Level I no significant difference between the two algorithms was detectable for any of
the datasets. At Level II no significant difference was observed between the supervised
and unsupervised approaches for the Landsat MSS data, however for Landsat TM and

SPOT HRV data, the results of the supervised classification were assessed as
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significantly higher compared to the unsupervised classification. The difference was
caused because not all land cover classes were identified by the unsupervised classifier,
which resulted in the lower classification accuracy for these data. Kappa Coefficient
values for Level I showed moderate to substantial (50.4 to 62.5 percent) levels of
agreement, while for Level Il moderate (46.3 to 59.1 percent) levels of agreement were

achieved.

Classification of the spectrally diverse class of Urban was consistently high at Level I,
with the Forest and Open classes moderately high but variable. In all cases the Water
class was too small to be reliably assessed. At Level Il the Residential class was most
reliably determined in all datasets, with ail other classes showing highly variable results.
On an area basis, Pine plantation dominated the Landsat MSS data, while the
Residential class dominated the Landsat TM and SPOT HRV data. Both classification
approaches accommodated the spectral variability of the Residential class, however
further research may be required to refine the classification of other information classes

in the images.

The characteristics of land cover within the study area underwent substantial
transformation from predominantly rural to predominantly urban during the period
under study, and limited the ability of the higher resolution satellite data to improve the
classification accuracy. Landsat TM and SPOT HRV data normally produce higher
classification accuracies, however no substantial improvements were observed. Landsat
TM produced the highest Kappa Coefficient for both Level I and Level II
classifications, but this is due more to the superior spectral resolution of the data than to

effects of finer spatial resolution.

Evaluation of the patterns of classification errors through spatial autocorrelation and
analysis of the compactness of the land cover classes indicates that spatial complexity
and associated boundary identification are major factors affecting classification in the
Landsat TM and SPOT HRYV images. The substantial increase in spatial complexity of
the land cover patterns mitigated against any improvement in classification accuracy

resulting from finer spatial resolution.
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Analysis of classification uncertainty of the supervised classification established up to
one third of the pixels in the Landsat TM data being classified with an uncertainty of 50
percent or more, indicating low confidence in many class allocations and potential for
misclassification of these pixels. Inability of the unsupervised classification algorithm

to recognise some land cover classes reinforces this finding.
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Chapter 6

MULTISCALE CHANGE ASSESSMENT

Detection of changes in land cover patterns using remote sensing approaches may
be achieved in a number of ways depending on the characteristics of the source
data and the targets, and the processing facilities available. Image processing
approaches to change detection will be discussed to highlight significant considerations
in the process and detail the change detection approach. Evaluation of the quality of
land cover change detection processes will be undertaken through verification against
reference data. Graphical and numerical reporting methods for communicating the
results of land cover change will be investigated and used to develop summarisation
techniques relevant to the representation of rural-urban change.  Quantitative
assessment of the accuracy of land cover change provides an important metric of the

significance and reliability of the measured transitions between classes.
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6.1 Introduction

Singh (1989) defines change detection as the process of identifying differences in the
state of an object or phenomenon by observing it at different times. Change detection
may extend over global or local scales, and be concerned with short or long term
environmental variations. Each spatial resolution provides a different perspective, and
the factors influencing surface patterns as measured at each resolution may reflect
different underlying processes. A challenge exists in remote sensing analysis to develop
relevant nesting of observations at multiple space and time scales in order to satisfy the
multiple objectives of short-term, fine scale measurements and long-term, broad scale

measurements (Davis et al, 1991).

Detection of land cover change in satellite imagery is complicated by many adverse
temporal factors. These include differences in bandpasses and spatial resolutions,
spatial misregistration, variations in the radiometric responses of the sensors,
differences in the distribution of cloud and cloud shadow, variations in solar irradiance
and solar angles, and differences in phenology (Yuan and Elvidge, 1998). The basic
premise in using these data for change detection is that changes in land cover result in
variations in radiance values, and that variations in radiance due to land cover changes
are large with respect fo variations caused by other system and environmental factors

not related to change (Mas, 1999).

Many change evaluation studies suggest imagery be acquired at or near anniversary
dates and similar times of the day in order to minimise varjations caused by illumination
and seasonal factors (Jensen et al, 1997). Vegetation targets that undergo significant
phenological changes, or targets subject to other seasonal variations, such as snowfall,
are especially susceptible. Such control is not always possible and selection of

processing algorithms and data characteristics must attempt to take this into account.

Implementation of change detection techniques using data acquired from different
sensors is more problematic. Hill and Aifadopoulou (1990) indicate the use of data
from different operational satellites may provide a solution to overcome data
availability problems, however the combination of data sources may also complicate or
limit the analysis. Tokola et al (1999) investigated analysis of multisensor Landsat

MSS and Landsat TM data for change detection using image classification followed by
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image differencing, and found the quality of data varied over time. Landsat MSS data
were subject to degradation of the optics, problems with altitude control and coherent
noise in the data, while Landsat TM suffered from uncertaintics in radiometric within-
scene calibration on some bands. Many of these parameters may be controlled through
calibration procedures, but careful assessment of all scene dependent and acquisition
and processing variables is required to optimise the capabilities for change detection in

these circumstances.

Image normalisation in the data preprocessing stage usually improves the results of
change detection (Hall er al, 1991). However, even use of sophisticated calibration
approaches as an attempt to achieve image standardisation may not always result in an
improvement in the radiometric quality of the data -(Collins and Woodcock, 1996a). On
the other hand, reliance on a single sensing system may also lead to compromise.
Specification of a single dataset for the development of the North American Landcover
Characterisation (NALC) program for the period 1972 — 1992 (Lunetta et al, 1998) has
constrained the program to using Landsat MSS data. This occurred even though for half
of this period 30 m resolution Landsat TM data were available, and for six years 20 m

resolution SPOT HRV data were also recorded.

A wide range of approaches to change detection analysis have been reported (Fung,
1990; Green et al, 1994, Jeanjean et al, 1996; Jensen et al, 1993; Singh, 1989; and
others), but four aspects of change detection are considered particularly important when
monitoring the environment (Macleod and Congalton, 1998):

(L Detecting that changes have occurred,

(i1) Identifying the nature of the change,

(1)  Measuring the areal extent of the change,

(iv)  Assessing the spatial pattern of the change.

Evaluation of change detection approaches in Sections 6.2 and 6.3 will mainly consider
detection and identification of the nature of the change, while the extent and

representation of change will be considered in Sections 6.4 and 6.5.
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6.2 Approaches and Processing Techniques

Image processing approaches for the purpose of change detection may be classified in a
variety of ways, however no single taxonomy comprehensively describes all techniques.
The approach used in this section focuses on the main techniques of change detection
and excludes lesser known methods such as change vector analysis and image
regression (Singh, 1989), and combined classification {Muchoney and Haack, 1994).
Processing approaches for change detection are considered in the categories of image

algebra, spectral transformation and postclassification analysis.

6.2.1 Image Algebra

This group of change detection techniques relies upon evaluation of pixel by pixel
comparisons of coregistered multidate images to reveal changes between sensing
epochs. Methods included in this range of techniques are image differencing and image

ratios.

Image differencing is performed by subtracting the digital value of one image date for a
particular band from the digital value of the corresponding pixel in the same band for a
second image date. To eliminate the possibility of negative values a constant is usually
added to the resultant difference image. This algorithm produces a series of new images
with a difference distribution for each band (Singh, 1989). Pixels representing changes
in land cover are located in the tails of the histogram, while unchanged pixels tend to

cluster around the mean.

Image ratios are produced by dividing the digital value of one image date for a
particular band by the digital value of the corresponding pixel in the same band for a
second image date (Singh, 1989). A new ratio image is formed with pixels representing
changes in land cover located in the tails of the histogram, while unchanged pixels tend

to cluster around the mean value of unity.

A critical component of change assessment using image algebra techniques is the
determination of threshold values for the resultant change images that separate change
from no-change, or in some cases identify a range of change classes. Thresholds are
specified on the basis of empirical assessments or deterministic measures of distances

from the mean, generally quantified in units of standard deviation. Change classes
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identified by density slicing the change image at standard deviation intervals as small as
0.1 have been applied Fung (1990), however the range of values must be empirically
verified against reference data for the image area. Evaluation may be undertaken using
standard thematic accuracy assessment approaches such as the Kappa Coefficient or

Overall Classification Accuracy.

Image data utilised as input are generally normalised to reduce temporal atmospheric
and seasonal illumination effects (Lillesand and Kiefer, 1994), and may be masked to
eliminate known areas where change has not occurred, such as upland areas in coastal
wetland studies. Source images may comprise single bands, ratios of bands, or
vegetation indices developed from combinations of image bands. In some cases
methods such as PCA (see Section 6.2.2) may also be utilised to derive images for input

to the differencing or ratioing process (Singh, 1989).

Approaches using image arithmetic are straightforward in concept, easy to implement
and allow for flexible specification of thresholds. Results for image differencing are
reasonable and are often comparable with those achieved from the brightness
component of PCA (Fung, 1990; Muchoney and Haack, 1994). Difficulties arise when
comparing data from different sensing systems, and the imperfect nature of scene
normalisation algorithms is exacerbated by the differences between sensors in terms of

spatial, spectral and radiometric resolution.

6.2.2 Spectral Transformation

Spectral transformations are performed in image processing in order to generate new
bands of data that represent an alternative description of the scene, and may therefore be
more amenable to interpretation (Richards, 1993). The original and derived datasets are
related via a linear operation and generally provide substantially the same information

content in a reduced number of image dimensions.

Spectral transformations for change detection purposes may be implemented in two
ways. Firstly, separate derivation of the spectral transformation of each image then
comparison using either of the methods described in Sections 6.2.1 and 6.2.3 may be
applied. Differencing or ratioing to highlight changes, or classification then comparison

of each transformed image, may all be used to determine areas of change (Richards,
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1984).  Secondly, simultaneous analysis of bands from multiple dates may be
undertaken to highlight change on the premise that multitemporal image data are highly
correlated and that spectral transformations can be used to highlight differences due to

change (Byrne ef al, 1980).

The two most common approaches are PCA and the Kauth-Thomas tasselled cap
transformation. Detailed descriptions of PCA are available in Gonzales and Woods
(1993) and Richards (1993), and details of the Kauth-Thomas transformation are given
in Richards (1993). The advantages of PCA are derived mainly from the ability to
decorrelate the data and provide the majority of the spectral information in only two or
three new spectral bands. This form of data summarisation is particularly important

when separate PCA is undertaken using multidate imagery.

When simultaneous analysis of multidate imagery is undertaken, the first principal
component is related to changes in overall scene brightness with the second component
providing a measure of changes in overall scene greenness (Muchoney and Haack,
1994; Richards, 1984). Subsequent components may be interpreted as representing
changes in features relevant to the particular scene. In a study of forest defoliation
using Landsat TM data Muchoney and Haack (1994) indicate Components 3 and 4 are
related to changes in vegetation cover, and clouds and cloud shadows, respectively. In
an examination of bushfire scars on the landscape using multidate Landsat MSS data,
Richards (1984) states that Components 3 and 4 both highlight recent bushfire scars.
Component 3 also details scars up to one year old which are not evident in the fourth
component, but revegetation since the earlier bushfire is obvious in the fourth

component which is not found in the third.

The Kauth-Thomas transformation was developed initially for Landsat MSS data and i3
used to derive four new bands representing soil brightness, green vegetation, senescent
vegetation and atmospheric effects (Jensen, 1996). Identical interpretations cannot be
made for other sensors, however Hill and Aifadopoulou (1990) indicate that analogous
results that are linearly related may be obtained from Landsat TM and SPOT HRV data.
The method has been applied most successfully in agricultural applications where
interpretations based on the balance between soil and vegetation responses are most

informative.
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The PCA and Kauth-Thomas approaches provide efficient methods of summarising
multidate imagery for analysis as single or separate images, however interpretation by
techniques such as classification is still required to extract the meaning of observed
characteristics from the derived images, and identification of individual image
components may be complex. Integration of combined multisensor and multidate data
into a single interpretation process is not possible, and therefore requires separate

processing and analysis.

6.2.3 Postclassification Analysis

Postclassification analysis of multidate images is conceptually the simplest approach for
assessment of change detection. Each image is independently classified using a
supervised or unsupervised algorithm, and then compared through crosstabulation to
produce a change image. The approach may also be modified to utilise image
enhancement to produce a mask for isolating general areas of change. The mask is used
to eliminate areas of invariant land covers from further consideration and has the effect

of minimising errors of commission for the change classes (Pilon et al, 1988).

The spectral, radiometric and spatial independence of the data processing permits the
comparison of classified images derived from different sensors (Jakubauskas er al,
1990). The need to normalise the data for atmospheric and sensor variations is optional
because each image is treated as an independent dataset (Singh, 1989; Mas, 1999,
unless signature extension between sensing dates is utilised. Due to the independent
nature of the classification of each image, care must be taken in the analysis to ensure
consistency in the classification process in terms of class allocation, signature extraction

and classification quality.

Direct classification of images enables formal identification of information classes
compared to enhancement-based approaches that rely upon density slicing of image
differences, ratio images and forms of spectral transformations, which must then be
related to information classes. Postclassification comparison provides the analyst with a
significant degree of flexibility through selective grouping of classification results for
presentation of customised change detection classes (Singh, 1989). Generalisation of
the data during change detection or identification of particular classes enables specific

change detection objectives to be demonstrated, such as providing change data only for
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woodland or urban classes. All other change detection approaches require a complete
new analysis when interpretation objectives are altered, such as the identification of

only a subset of the original change classes.

Most other change detection techniques are limited to identification of change versus
no-change, or identification of simple changes such as forest defoliation (Muchoney and
Haack, 1994) or transitions between water and eelgrass (Macleod and Congalton, 1998).
Postclassification comparison is amenable to identification of transitions between any
classes identifiable through the classification process. Mas (1999) used
postclassification comparison to successfully monitor changes in an area comprising

forest, natural (woodland) vegetation, urban, pasture and water.

The most significant issue related to change detection derived from postclassification
comparison is concerned with the estimation of the thematic accuracy of the final
product. Past research (Quarmby and Cushnie, 1989; Singh, 1989) suggests that
because each image is subject to thematic classification errors, the final change
detection product contains much larger errors than either of the component images, and
may therefore be less accurate than any other change detection method. In common
with other change detection approaches is the issue of spatial errors related to image
registration. As a result of the influence of spatial factors on the distribution of thematic
errors, the propagation of both of these error components must be considered and are

examined in Chapter 7.

6.3 Change Detection Approach

Section 6.2 has considered the fundamental characteristics of change detection
techniques that may be used to determine the most appropriate processing approach to
apply. While Townshend and Justice {1988} consider the ability to detect changes in
land cover types over time with remote sensing depends on the spatial, spectral,
radiometric and temporal properties of the sensor system, even more fundamental is the
availability of the data itself. The desire to limit analysis to data from a single sensing
system may constrain change detection assessment to a particular time frame or
compromise the potential quality of results by not considering inclusion of higher
quality data. The NALC project has been limited in this manner by a desire to use only
Landsat MSS data for the period 1972 to 1992 (Lunetta et al, 1998).
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Ridd and Liu {1998) used multidate Landsat TM data to determine patterns of land
cover change in a near urban area by image differencing, image regression, Kauth-
Thomas transformation, and a ¥’ transformation developed by the authors. They found
none of the algorithms was clearly superior to the others and concluded that algorithm
selection should be soundly based on environmental conditions and application

objectives.

Davis and Simonett (1991) consider change detection to be considerably more
complicated when more than one sensor system is involved. Failure to understand the
impact of sensor system parameters and environmental characteristics on the change
detection process can lead to inaccurate results (Jensen et al, 1997). For multiple sensor
image processing approaches to be successful, they require radiometrically calibrated
images and a good comprehension of the spectral features that can be computed from
corresponding bands, or from a combination of bands from multiple images (Hill and
Aifadopoulou, 1990). Where multidate images arc combined as part of change
detection, such as image algebra or spectral transformations, inclusion of multiple

sensors significantly complicates the process.

Davis ef al (1991) indicate that comparisons based on more than one sensor convolve
surface changes with instrument noise, atmospheric influences, varying IFOVs and
spectral response characteristics of the sensors. Change detection via postclassification
comparison enables these components to be separated and evaluated individually for

each sensing epoch.

Mas (1999) found image enhancement methods of change detection performed poorly
due to seil moisture and vegetation phenology variations that the image processing
algorithms could not accommodate. Their research determined the posiclassification
comparison method was less sensitive to these variations and enabled the same classes
observed in multidate images with different signatures (for example deciduous trees) to
be labelled similarly. Temporal comparisons based on independent classifications also
provided details of the nature of changes through the enumeration of the class changed

from and the class changed 0.
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The requirement to accommodate multisensor and multiscale data into the change
detection process clearly establishes that postclassification comparison is the only
image processing approach capable of providing coherent change information. Image
algebra and spectral transformation approaches rely on scene and sensor normalisation
techniques that are unable to calibrate the range of data to be processed in this research
in a consistent and accurate manner. Consequently, change assessment will be
undertaken using the results of independent supervised and unsupervised classification

of each dataset derived in Chapters 4 and 5.

Jakubauskas et al (1990) have used postclassification comparison of Landsat MSS and
Landsat TM data for change detection. The study stipulated that comparison could only
be made at a land cover classification level no finer than could be accurately determined
by the lowest resolution sensor and that appropriate generalisation of the finer
resolution Landsat TM classified data be performed using a 3 x 3 modal filter. This
approach was used in order to achieve consistency of the results, however in the process

led to the degradation of the Landsat TM classification.

In the context of the current research, the highest quality of interpretation detail avaiable
from each dataset must be maintained. Even when Landsat TM data are compared with
Landsat MSS data that contain a lower level of detail, the Landsat TM data will
subsequently be compared with SPOT HRV data for change analysis at a finer
resolution. In a hierarchical change evaluation process such as developed in this
research, it is important to preserve the spatial and thematic quality of the data

throughout the change detection process.

The Landsat MSS, Landsat TM and SPOT HRV data have all been classified at Level [
and Level I (Chapters 4 and 5), and will be compared pairwise to evaluate land cover
changes between 1972 and 1991. Comparisons of classified data at Level I are
relatively straight forward as all data have been classified at this level with varying, but
acceptable, degrees of accuracy. However by constraining change detection to
comparison of Level I classes only, the enhanced information content of the finer

resolution Landsat TM and SPOT HRYV data is ignored.
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Effective evaluation of change in multiscale data is contingent on the use of a
hierarchical classification scheme. By using a hierarchical approach, a classitication at
Level I may be derived through generalisation of the Level II classification matrix into
the component Level I classes for a particular sensing epoch. Comparisons between
sensing epochs may then be undertaken on the basis of the common Level I classes, and
subsequent sensing epochs may be compared using Level T classes, or change the
classification level and make all subsequent comparisons on the basis of Level II
classes. Application of this approach to change assessment results in classifications for
each epoch being treated as discrete entities rather than requiring the integration of all

data.

Alternatively, a modified change assessment matrix has been developed for integration
of multiscale data classified at different levels within the classification hierarchy.
Table 6.1 shows a sample modified change matrix for comparison of Landsat MSS data
classified at Level I and Landsat TM data classified at Level II. The major diagonal
values (shaded) indicate classes of no-change, and the off-diagonal values indicate
classes of change. Within the Level I classes, the change matrix illustrates transitions
between Level I classes at the first sensing epoch and the resultant Level I and Level IT
classes at the second sensing epoch. For example, an area of Forest in the Landsat MSS
(1972) data may change to Open in the Landsat TM data (1986) at Level 1. The
elements of the change assessment matrix also indicate the distribution of change pixels
amongst the Level 1I classes of Grassland, Recreation and Bare ground that comprise

the Open class.

The accuracy of change analysis will be investigated using the Kappa Coefficient and
Overall Change Accuracy in Section 6.4, Patterns of change within the multiscale
satellite data will be considered in Section 6.5 and represented using this new change
assessment matrix with the objective of maintaining the integrity and detail contained

within the original classification of the respective satellite datasets.
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From To Landsat TM 1986

Landsat Urban Forest Open Water

MSS 1972 Res Com Pine Wet Wood | Gras Rec Bare | Water

Urban

Forest

Open

Water

Table 6.1 Change assessment matrix format representing land cover changes between

Level 1(1972) and Levels I and II (1986). No-change areas are shaded

6.4 Change Detection Accuracy Assessment

Methods of classification accuracy assessment have been discussed in Chapter 5 and the
evaluation technigues of Overall Classification Accuracy and Kappa Coefficient have
been applied to classifications of multiscale satellite data. Investigation of change
detection accuracy introduces an additional dimension because it is the accuracy of the
comparison of two classifications that is being evaluated, not the accuracy of the
individual classifications. Consequently, change detection accuracy will be assessed by
the Overall Change Accuracy metric, which is directly analogous to the Overall
Classification Accuracy, as well as the Kappa Coefficient. The multiscale nature of
change detection includes classifications at Level I and Level II being directly

compared, which must also be included in the accuracy assessment process,

6.4.1 Approaches to Accuracy Assessment
Detailed change detection accuracy assessment has been performed by a number of

authors (Fung and Le Drew, 1988; Jensen et al, 1993; Macleod and Congalton, 1998;
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Martin and Howarth, 1989; Mas, 1999). However most studies incorporate evaluation
of the interpretatioﬁ accuracy of the component multidate images, but do not proceed (0
a full accuracy assessment of the change image. The emphasis in this research is to
evaluate the effectiveness of multiscale change detection, therefore a comprehensive

evaluation of the change detection error matrices will be undertaken.

The general approach to change detection accuracy assessment involves pixel by pixel
comparison of multidate data using a logical cross-classification approach to identify all
combinations of spatially coincident classes between the two image acquisition dates.
Where each dataset has been allocated into n classes, there is the potential for n” change
classes to result. For change detection involving multiscale data where m classes are
allocated at date 1 and n classes at date 2, there are m x n possible change classes. The
equivalent cross—classification is undertaken with the reference data to produce a
change detection reference dataset. The reference dataset includes the complete image
or can be represented by samples as determined by the sampling scheme employed for

the accuracy assessment.

Accuracy assessment is performed using standard error matrix approaches with the
computation of values for the Overall Change Accuracy and Kappa Coefficient. The
magnitude of change detection error matrices presents certain logistical problems in the
error assessment process. For Level I comparisons with four land cover classes
represented at each date there are 16 possible change classes, while for Level I
comparisons with nine land cover classes represented at each date, there are 81 possible
change classes. A combined Level I and Level 1I change detection image produces 36
possible change classes. These comparisons produce error matrices of dimension
16 x 16, 36 x 36 and 81 x 81 for Level I, combined Level I and Level I, and Level II
change detection assessments, respectively. Consequently, accuracy assessments will
be undertaken for all Level I and combined Level T and Level II change detection
matrices, but for Level IT a complete error matrix will be computed only for comparison
of the 1986 and 1991 data. For the Level II change detection error assessment of the

1972 and 1986 data, only the Overall Change Accuracy will be computed.
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Generalisation of the change detection error matrix will also be used to analyse error
patterns in the complete change detection error matrices (Macleod and Congalton,
1998). A simplified error matrix representing change/no-change classes will be derived
by aggregating the change detection results into a single class representing land covers
that do not exhibit change between sensing dates, and another class representing land
covers that do change. Measures of Overall Change Accuracy and the Kappa
Coefficient will also be computed for this generalised error matrix. Where the accuracy
in the change/no-change error matrix increases significantly over the full change
detection error matrix, it indicates that general change is being detected, but not the
exact classes of change. If the two matrices produce similar results, then not even the
general changes are being detected by the change assessment approach (Macleod and

Congalton, 1998).

As a result of the logical cross-classification to determine temporal changes in the data,
there are many change classes that comprise small numbers of pixels. Stratified random
sampling procedures discussed in Section 5.3, and applied to the classification accuracy
assessment of individual images in Section 5.4, will not be used to evaluate the change
detection images due to the very large number of pixels required to adequately sample
the large number of small change classes. Complete maps of reference data are
available for all sensing epochs, therefore a total enumeration approach to accuracy
assessment will be utilised and all pixels within the change images will be evaluated

against the equivalent reference data.

6.4.2 Change Statistics

Change statistics for these interpretations are based upon the premise that the reference
data interpreted from the aerial photography are error free. The primary satellite data
and aerial photography have all been obtained from image archives, and there were no
coincident ground data or independent information available to verify the thematic
accuracy of the reference data interpreted from the aerial photography. Errors in the
detection of change by the reference data may occur, however have been minimised
through careful interpretation of the medium scale aerial photography. Discrepancies
are most likely caused by changes in land cover between the acquisition of the satellite

data and exposure of the aerial photography used for compilation of the reference data.



206

It is not possible to quantify these errors in this research, and it is assumed the reference

data contain minimal thematic error.

Diagonal elements of the change error matrix represent pixels in the classified satellite
data that correspond with the same change class present in the reference data, and are
used to compute the Overall Change Accuracy value. Off-diagonal values represent
errors of commission and omission, and are included in the computation of the Kappa
Coefficient. Consequently, the Kappa Coefficient provides a more comprehensive and

reliable assessment of change accuracy.

Interpretation of errors of commission and omission may be made on the basis of
spectral and spatial properties. Spectral properties are important in the allocation of
classes during the classification phase and have been analysed in detail in Chapters 4
and 5 with the objective of defining the optimum classification approach to land cover
mapping using multiscale satellite data. In the change detection phase the class labels
allocated as a result of classification are considered fixed, and only the spatial
distribution of each land cover class is significant because the correspondence of change

labels between the classified data and the reference data is being evaluated.

Table 6.2 details the results of change detection accuracy assessment between 1972 and
1986 using Landsat MSS and Landsat TM data, respectively. At Level I the Overall
Change Accuracy is 64.0 percent and the Kappa Coefficient is 55.0 percent (Table
6.2a). According to Landis and Koch (1977} this represents moderate agreement based
on the value of the Kappa Coefficient. This compares with Overall Classification
Accuracy and Kappa Coefficient values of 79.1 and 57.3 percent for the classification of

Landsat MSS data, and 77.3 and 62.5 percent for the classification of Landsat TM data.

The distribution of change is concentrated in the Forest-Urban and Forest-Open
classes, as indicated by the aerial photographs for each date in Figures 2.6 and 2.7. The
Forest-Urban change class reflects the increasing urban development of the area from
rural land uses, and the Forest-Open class represents a transitional stage of cleared land
between rural and urban land use. Substantial areas of Urban and Forest, and small

areas of Open and Water remain unchanged.
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(a) Change matrix including all classes

Reference data

Classified data

No change  Change

No changel: : 3892 [17258
Change| 7 081 21651 |28732
20647 25343 | 45990

Overall Change Accuracy {percent) 76.6

Kappa Coefficient (percent)] 519

{b) Change matrix including change and no-change classes

Table 6.2 Error matrix for Level I classification between Landsat MSS (1972) and
Landsat TM (1986 ) data. No-change areas are shaded

Errors of omission and commission are concentrated in change classes that include the
Urban, Forest or Open classes. These errors are the result of incorrect identification of
land covers at the classification stage at either date. Inspection of Tables 5.3 and 5.11
shows that Open and Forest achieved only moderate classification accuracies in the
classification of the Landsat MSS and Landsat TM data, respectively. Errors in change
class allocation may also be caused as a result of imperfect geometric registration of the

images and subsequent errors caused by boundary displacement (Wickware and



208

Howarth, 1981), even though the original classification for these pixels may have been

correct. The effect of boundary displacement will be discussed in Chapter 7.

The Urban-Urban class includes substantial commission errors from the Forest-Forest,
Open-Open, Forest-Urban, Forest-Open and Open-Urban classes. Errors of
commission indicate classification errors in one or both satellite datasets, which place
the pixels in the incorrect change class. Additionally, the errors may be due to
discrepancies in the reference data used for change detection comparisons.
Discrepancies are caused by changes in land cover between the acquisition of the
satellite data and exposure of the aerial photography used for compilation of the

reference data, or by errors in the actual interpretation of the reference data.

The explanation of commission errors where the identified change sequence is highly
unlikely to exist is much clearer, such as with Urban-Open. The presence of Urban-
Open reference data for the study area indicates misregistration or interpretation errors
in one date of the reference data. The fact that no change data are recorded for this
transition sequence indicates confidence in the classification of the remotely sensed

data.

For higher spatial resolution data, some changes such as Urban-Forest, may be a result
of the enhanced ability of the sensor to identify small areas of trees that blend with the
more expansive urban structures when recorded in data with lower spatial resolution,
and are therefore not detected. Additionally, where these unlikely transitions occur
along class boundaries they may be the result of edge effects caused by mixed pixels

influencing the classification process.

Commission errors within the no-change classes (viz Urban-Urban, Forest-Forest,
Open-Open) are relatively low, but are comparatively larger with the change classes of
Forest-Urban, Forest-Open, Open-Urban and Open-Forest. For other change classes
such as Urban-Forest, Urban-Open, Forest-Urban and Forest-Open a large proportion
of the commission errors fall within the no-change classes of the reference data. The
cause of these errors is due to a mixture of classification and reference data errors
discussed above, but more importantly, these errors have a detrimental effect on the

accuracy of the generalised change/no-change classes considered below.
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Omission errors follow a similar pattern to the commission errors. Relatively few
omission errors fall within the no-change classes, but substantial omission errors for the
no-change classes are distributed in the change classes, in particular Urban-Forest,
Urban-Open, Forest-Urban and Forest-Open. Omission errors result from change
pixels identified in the reference data being allocated to a different class by the
classified change data. The primary source of these errors is due to classification errors
in each satellite dataset and to a lesser extent the interpretation of the reference data or
registration errors. Many of the omission errors recorded in Table 6.2a fall in the
Urban-Forest and Urban-Open change classes, which are not logical change sequences,

and clearly indicate errors in either or both classifications.

At the generalised level of change/no-change the Overall Change Accuracy increases to
76.7 percent, but the Kappa Coefficient decreases to 51.9 percent (Table 6.2b). An
increased Overall Change Accuracy value is a logical consequence of generalising the
change classes, however the decreased Kappa Coefficient is due to a proportionally
larger increase in errors compared to the increase in correctly identified change pixels
discussed above. This same pattern is reflected in all change comparisons undertaken in
this research and is contributed by classification errors in each dataset, reference data

interpretation errors, and registration errors within the satellite and reference datasets.

Results of change detection accuracy assessment at Level I between the Landsat T™
and SPOT HRYV data are indicated in Table 6.3. The Overall Change Accuracy has
increased to 69.6 percent and the Kappa Coefficient has decreased marginally to 54.0
percent (moderate agreement), compared (o the resuits in Table 6.2 for the Landsat
MSS and Landsat TM data. These changes must be considered in the context of the
improved spatial resolution of the data, but also considering the significantly more
complex spatial arrangement of land covers present in the 1986 and 1991 epochs,

compared to the 1972 satellite data.

The change pattern has shifted substantially compared to the 1972 to 1986 time period.
In the earlier period Forest-Urban and Forest-Open formed the major change classes,
however in the 1986 to 1991 period the change is concentrated in the Open-Urban

transition, which reflects the pattern of development in the region.
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(a) Change matrix including all classes

Reference data
Classified data

No change  Change

No changef 24 2 069 26 334
i E e e

Change 9 290 10 365 19 655
33 555 12 434 45 989
Overall Change Accuracy (percent)] 753
Kappa Coefficient (percent) 47.1

(b) Change matrix including change and no-change classes

< 7 = & = 5 5 £ g E b . £ B c

oh E ¢ § £ & § £ € 2 3 § 28 g & 5 3

ange Class | 5 Iy & 2 w o = 2 9 E S i = =1 [ =

e F 5§ £ : 5 § B E OB o§oz E & § B

E 5 & sz £ 2 £ 5 5 5 & & & 5 2 3
Urban-Urba §% 20 ©54 O 233 55 0 1401 52 18 0O 0 o [21807
Forest-Fores 3 o} o} 3 22 0 0 39 0 Q 0 0 2B75
Open-Open 0 B 0 1 15 0 5 17 0 0 0 G 1490
Water-Wate 0 0 Q ¢} 0 22 0 1} 0 0 0 4] 162
Urban-Forest 0 0 0 0 o} ¢} Q 2 9 0 0 Q 0 173
Urban-Open| 5 11 28 [ 0 4] 0 0 0 0 1] 0] 0 0 0 0 44
Urban-Water| 2 7 0 2 Q 0 0 Q Q V] o] o] G 0 o 0 11
Forest-Urban| 1214 B9 985 8 20 7 0 886 | 142 0] 555 92 ] a 0 1 4803
Forest-Open| 2 30 o ¢} 0 o 0 0 11 0 ¢] 8 o] o 0 0 152
Forest-Water| 8 208 6 113 0 o] Q 0 4] 30 [« o} 6 0 Q 1 378
Open-Urban| 1443 428 34Y3 8 11 19 G 337 1102 o | 7923} 157 18 0 0 0 |13918
Open-Forest{ 3 111 26 0 0 0 o 0 a o} 0 3 ] 0 ] 0 o 146
Open-Water| © 1 3 5 0 0 0 0 4 2 5 o |5 0 0 o 25
Water-Urbanf 3 0 0 o} Q 0 o G 0 0 0 0 4] Q 0 0 3
Water-Forest] 0O 1 0 o} [¢] Q 0 0 o 0 Q 0 0 Q 0 0 1
Water-Open| 0 0 0 0 Q o] 0 0 0 0 0 0 0 0 0 0 0
20927 5027 7348 253 54 88 o] 1560 360 54 9391 377 48 0 0 2 |45989
Overall Change Accuracy (percent)| 69.6
Kappa Coefficient (percent)] 54.0

Table 6.3 Error matrix for Level I change detection between Landsar TM (1986) and

SPOT HRV (1991) data. No-change areas are shaded

The overall pattern of commission and omission error remains similar to that in Table

6.2 with most error occurring amongst the change classes compared to the no-change

classes. This again results in an increased Overall Change Accuracy and decreased

Kappa Coefficient when the data are aggregated into the generalised change/no-change

classes (Table 6.3b).




211

Detailed evaluation of change assessment at Level II between the Landsat MSS (1972)
and Landsat TM (1986) data produced an Overall Change Accuracy of 33.0 percent and
due to this relatively low value a corresponding Kappa Coefficient was not computed.
The Overall Change Accuracy was lower than expected, especially considering that the
individual classification accuracies for the Landsat MSS and Landsat TM data were
61.6 and 68.7 percent, respectively. At an Overall Change Accuracy of 33 percent these

data cannot make a useful contribution to change assessment.

The major contributing factor to the low accuracy relates to the large difference in
spatial resolution between the datasets. The magnitude of change detection errors due
to boundary definition uncertainty when comparing 79 x 56 m resolution Landsat MSS
data and 30 m resolution Landsat TM data is substantial. Compounding this effect is
the generalised nature of the land cover patterns present in the 1972 data compared to
the substantially more complex patterns in the 1986 data: Both factors contribute to

discrepancies in the change data and result in the very low Overall Change Accuracy.

Table 6.4a provides a detailed evaluation of change assessment results for the Landsat
TM and SPOT HRYV change detection data at Level II. An Overall Change Accuracy of
51.4 percent and Kappa Coefficient of 43.9 were achieved indicating a moderate level
of agreement. Inspection of Table 6.4a confirms the cause of the lower Kappa
Coefficient value due to considerable errors of commission and omission for most
change classes. This compares to the Level I change assessments where the errors were
restricted to a few classes. As was the case for the change assessments at Level I,
between-class errors amongst the no-change classes are relatively few in number,
however errors between change and no-change classes are considerable. The increasing
spatial complexity of the classes at the 1986 and 1991 sensing epochs have considerable
influence on this outcome, as well as the increase in within-class variance as pixel

dimensions decrease.

Table 6.4b summarises generalised change at Level II into change/no-change classes.
The Overall Change Accuracy improves to 67.2 percent, but the Kappa Coefficient
decreases to 34.2 percent. This result reinforces the conclusion that high levels of
commission and omission are present in the change assessment, but are not measured by

the Overall Change Accuracy parameter.
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Reference data
Classified data
No change  Change
2 953 23028
Change 070 10 661 22 731
32145 13614 45759
Overall Change Accuracy {percent}] 67.2
Kappa Coefficient (percent){ 34.2

(b) Change matrix including change and no-change classes

Table 6.4 Error matrix for Level II change detection between Landsar TM ( 1986) and
SPOT HRV (1991) data. No-change areas are shaded

Comparative change statistics at Level I, Level II and the generalised change/no-change
classes are summarised for both change sequences in Tables 6.5 and 6.6. Accuracy
results at Level 1 are consistently higher than Level II due to the lower levels of spatial
and thematic detail derived at Level I. The Overall Change Accuracy and Kappa
Coefficient vary consistently for these change assessments at both levels of
generalisation, which indicates that the specific patterns of change identified at Level 11

are consistent with the general patterns identified at Level L.

Change Level 1 Level I1
Period Over. Change Kappa Over. Change Kappa
Accuracy Coefficient Accuracy Coefficient
1972 - 1986 64.0 55.0 33.0 NA
1986 - 1991 69.6 54.0 514 439

Table 6.5 Change statistics (percent) at Level I and Level Il using four and nine land
cover classes, respectively (Kappa Coefficient was not computed at Level II for the

1972 to 1986 data due to low Overall Change Accuracy results)

Aggregation into change/no-change classes has produced conflicting results for the
Overall Change Accuracy and Kappa Coefficient. In all cases the Overall Change
Accuracy has increased, however the Kappa Coefficient has decreased compared to the
full Level I and Level II error matrices. These results are consistent with a study by

Macleod and Congalton (1998), but indicate the contrasting effect of the two types of
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generalisation. Generalisation of classes in a hierarchical manner from Level 1I to
Level I results in an increase in the Overall Change Accuracy and Kappa Coefficient
(Table 6.5). However, when a more comprehensive generalisation from Level I or
Level II change assessments to the equivalent change/no-change classes is made
without consideration of the structural relationships between change classes, the Overall
Change Accuracy increases, however the Kappa Coefficient decreases (Table 6.6).
Results from the hierarchical generalisation of the data reinforce the need to structure
classification schemes according to the established relationships between the targets.
Arbitrary generalisation may not provide the desired quality of results compared to

robust evaluation techniques such as the Kappa Coefficient.

Change Level I Level 11
Period Over. Change Kappa Over. Change Kappa
Accuracy Coefficient Accuracy Coefficient
1972 - 1986 76.6 519 NA NA
1986 — 1991 753 47.1 67.2 342

Table 6.6 Change statistics (percent) at Level I and Level II using change and no-
change classes (change statistics were not computed for 1972 to 1986 Level Il data due

to low Overall Change Accuracy)

Macleod and Congalton (1998) suggest the comparison of the responses between the
full change assessment and the change/no-change assessment provides a measure of the
effectiveness of change class identification. Where the generalised comparisons
produce = significantly higher classification accuracy they indicate that general change
is being detected but not the exact change, and if the two matrices produce similar
results, then not even general changes are being detected. Results in this research, and
those by Macleod and Congalton (1998) and Mas (1999), indicate this conclusion is
only relevant when using the Overall Change Accuracy for comparison because the
Kappa Coefficient produces inconclusive results. Substantially increased values of
Overall Change Accuracy following generalisation to change/no-change classes
confirms that general change in the study area is being identified. Moderate values of
the Kappa Coefficient in the full Level I and Level II classifications (Table 6.5) shows
there is still scope for improvements in change detection accuracy and reduction in

errors of omission and commission.
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Classification results and change statistics at Level I and Level II (Tables 5.15, 5.16 and
6.5) indicate that useful information is available from all datasets analysed at both levels
within this research. Integration of multiscale data for change assessment requires a
combined analysis of the data in order to utilise effectively the information contained
within each dataset. Table 6.1 shows a modified change matrix designed to permit
comparison of multidate classifications. The table compares each Level I class at the
first epoch with the corresponding Level I and Level II class (or classes) of the second

epoch, to determine the distribution of pixels amongst the change classes.

Table 6.7 shows details of the resulting error matrix derived for the assessment of
change detection accuracy of Landsat MSS data at Level I and Landsat TM data at
Level II. The Overall Change Accuracy is 56.3 percent and the Kappa Coefficient is
51.1 percent. This represents a substantial improvement over the equivalent Level I
Overall Change Accuracy for these data (33.0 per¢ent), and is only marginally lower
than the value of the Kappa Coefficient derived from the Level I change assessment for

the same period (55.0 percent).

Unchanged classes are shaded (Table 6.7) and, because the comparisons are made
across levels of the classification hierarchy, the first mentioned class is from Level I and
the second class is from Level II. For example, Urban at Level 1 may be classified as
Residential or Commercial in Level 11, therefore the equivalent unchanged classes are

Urban-Residential and Urban-Commercial.

The individual classifications are derived from the unsupervised Level I classification of
the Landsat MSS data (Table 5.3} and the supervised Level 1T classification of the
Landsat TM data (Table 5.12). Table 6.7 provides an expanded form of Table 6.2a,
where aggregation of the classes in Table 6.7 yields the equivalent classes and pixel
counts included in Table 6.2a. This occurs because the same signatures were used for
supervised classifications at both Level I and Level II, and the classification results were
aggregated postclassification in order to produce data at the required classification level.
The same approach could not be applied to the unsupervised classification because the
allocation of clusters to classes was undertaken independently at each classification

level.
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Table 6.7 Error matrix for evaluation of change between a Level I classification

of Landsat MSS data and a Level II classification of Landsat TM data.
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No-change areas are shaded
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The patterns of change error are similar in Tables 6.2a and 6.7, however the linking of
the Level I classification from 1972 and the Level II classification from 1986 enables
the continuity of change assessment to be maintained across classification levels.
Assessment of change within the study area may now be undertaken using data at all
spatial scales at comparable levels of detail using the combined Level I and Level II
approach described above for the 1972 to 1986 period, followed by the comparison of
Level 1 classifications for the 1986 to 1991 period. This approach minimises the
effects of discontinuities in data acquisition systems and provides for the combination

of multiscale data for temporal assessment.

The change assessments shown in Table 6.7 are necessarily undertaken at different
levels of detail and the quality of information extracted from the lower resolution
Landsat MSS data has not increased as a result. The Kappa Coefficient provides a valid
assessment of the quality of the changes observed between multiscale data by making a

direct comparison with the reference data derived from the aerial photography.

6.5 Change Reporting

A variety of approaches is available for reporting and assessment of land cover change
derived from remotely sensed data. These approaches can be categorised either as area-
based or pixel-based methods, and utilise image or statistical techniques of
representation. Area-based methods rely upon extraction of area statistics for land
covers derived at each sensing epoch and comparisons are made regarding the change in
the area of each land cover. Pixel-based methods provide data derived from a pixel by
pixel comparison of the multidate images and summarisation of the observed change.
Change data from both of these approaches are discussed in the following section and
utilise the representation methods of change summaries, change maps and change

matrices for change reporting.

6.5.1 Change Summaries

Change summaries measure the variation in area occupied by each land cover class
between sensing epochs and provide class by class reports of land cover change by area
and/or percentage (Wickware and Howarth, 1981). Table 6.8 provides details of the
magnitude of land cover change between 1972 and 1991 using the highest quality data

available for each period. The period 1972 to 1986 is assessed at Level I while the



Table 6.10

Land cover class | Area 1972 Change 1972-86 Area 1986 Change 1986-91
Ha Ha Parcent Ha Ha Fercent

Urban 4974 384.2 77.2

Residential 720.4 197.1 27.4
Cammercial 161.2 5.9 3.7
Forest 1316.4 -988.0 -75.0

Pine Plantalion 157.0 -12.3 -7.8
Wetland 69.6 -38.0 -54.4
Woodland 101.6 -24.2 -23.8
Qpen 34.8 588.7 1701.4

Grassland 315.1 -86.5 -2t4
Recreation 126.9 18.3 14.4
Bare ground 181.2 -75.2 -41.5
Water 1.8 4.8 266.7 6.6 10.2 153.6

changes between 1972 and 1991

Area 1972 Galn Loss Unchanged
Land Cover Class Ha Ha  Percent] Ha Percent| Ha Percent
Urban 497.4} 488.8 99.3 1004 20.2 392.5 789
Forest 1316.4 429 3.21 1024.7 78.8] 2856 21.7
Cpen 34.6] 612.0 17688.0 233 67.3 13.1 321
Water 1.8 55 3056 0.8 44.4 1.1 61.1
Total 18580.2| 1149.2 62.1] 1148.2 621 690.3 373

changes berween 1972 and 1986

Area 1986 Gain Loss Unchanged
Land Cover Class Ha Ha  Percent| Ha  Percent| Ha  Percent
Urban 881.6f 749.0 85.01 9.1 101 8723 98.9
Forest 328.4 127 39| 2133 650 1150 35.0
Open 623.3 79 1.3] 5636 90.4 59.6 9.6
Water 6.6 165  250.0f 0.1 1.5 6.5 98.5
Total 1839.91 786.1 42,71 7861 42.7| 10534 57.2

cover changes between 1986 and 1991

Change assessment statistics at Level I representing pixel by pixel land

Area 1986 Gain Loss Unchanged
Land Cover Class Hz Ha Parcent Ha Pearcent Ha Percent
Residential 720.4 404.2 56.1 202.6 23.1 511.9 71
Commercial 161.2 621 385 55.6 34.5 j04.9 65.1
Pine plantation 157.0 96.3 61.3 108.8 €9.3 47.6 303
Wetland 69.8 86 12.3 a6 65.9 23.3 334
Woodand 101.6 54.5 53.6 78.3 774 227 223
Grassiand 3151 149.3 47.4 237.2 75.3 77 247
Recreation 126.9 48.7 38.4 308 241 95.9 75.6
Bare ground 181.2 75.3 41.6 150.2 829 305 16.8)
Water 8.6 10.3 156.1 0 0 8.6 100
Total 1839.8 908.3 49.4 909.2 49.4 92t.1 50.1

cover changes between 1986 and 1991

Table 6.11 Change assessment statistics at Level II representing pixel by pixel land
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Table 6.8 Change assessment statistics at Level I and Level II representing area-based

Table 6.9 Change assessment statistics at Level I representing pixel by pixel land cover
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period 1986 to 1991 is assessed at Level II. In each case the change in area and change
as a percentage of the class present at the commencement of the change period are
listed. These data are computed from the classified images at cach date and show only
the net change in area. In an extreme case no net change may occur, however it is
possible between dates for an amount equal to the area of a complete cover class to
disappear and an equivalent area to appear at the next epoch. No net change is

recorded, yet the location of the whole class has altered between imaging dates.

Where classes experience an increase in area at one location but a decrease in area at
another location, these variations are not reflected in these simple figures. For example,
for the period 1986 to 91 the area of Grassland shows a net decrease of 86.5 ha (Table
6.8), yet from Table 6.10 it increases by 149.3 ha and decreases by 237.2 ha. Minor
differences between areas result because change area summaries are computed using
two methods. The values in Table 6.8 are computed directly from the differences
between arcas identified in each image, and the Gain/Loss areas are derived from the

crosstabulation matrix between dates.

An alterative method of change summarisation by area is shown in Tables 6.9, 6.10 and
6.11. These data are calculated from the change images derived through a pixel by
pixel comparison of each classified image (Green ef al, 1994). Consequently, the data
represent the summation of changes identified in individual pixels for each land cover
class and also the direction of change, which is recorded as a gain or loss. Table 6.9
includes data interpreted at Level I between 1972 and 1986, and Table 6.10 includes
data interpreted for the 1986 to 91 period. Minor discrepancies between area estimates

are due to differences in classification techniques used at Level I and Level IT.

This approach elaborates on the direction of change in terms of gains and losses, but is
limited in the detail provided. While the technique adequately describes the changes in
the area of cach of the land covers, it does not provide any indication of the specific
classes that are affected by the changes, nor doés it provide information regarding the
spatial location of changes in area. Knowledge of the transition sequence (e.g. from
Pine plantation to Open) is useful for interpretation of the significance of observed

changes. Inclusion of the spatial location and distribution of land cover change is also
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an important assessment indicator. The knowledge of whether change occurs as many

isolated pockets or over a limited number of large areas may be significant.

6.5.2 Change Maps

Change maps are used extensively for representation of change (Laba et al, 1997; Riley
et al, 1997) and provide a convenient summary of the overall magnitude and
distribution of change within an area. Figures 6.1 and 6.2 show change maps at Level I
covering the two change periods included in this research. Change maps rely on the
enunciation of all change classes and representation through legends and variable
shading or patterning, which may lead to complex graphical representations. Both maps
are dominated by the unchanged Urban class, with Figure 6.1 containing substantial
unchanged Forest areas and large arcas of the change classes of Forest-Urban and
Forest-Open. The transition class of Open-Urban dominates change in Figure 6.2.
Both change maps also include small areas comprising a large number of classes that
are difficult to identify. The presence of these classes may be significant (such as
Wetland or Water), but in a graphical representation their existence and change status is
difficult to determine. A variation on this approach provides for display of a greyscale
scene as a backdrop and superimposition of selected change classes (Jensen ef al, 1993),
however it represents a loss of overall information content as many change classes are

excluded from the display.

In the Level I change maps shown, only four primary land cover classes were identified,
with a total of sixteen change/no-change classes being represented overall
Interpretation at Level I provides 81 classes overall and, if only those classes where
change is actually recorded are represented, 74 categories would be required. Change
representation through change maps produces complex graphical representations with
many classes. Even at Level II, a map with 81 categories provides a very detailed
information product. Establishment of a priority of classes may be possible, however

without representation of the total dataset a certain amount of information loss occurs.

Change maps provide useful visual assessments of change.distribution and magnitude,
however the overall complexity of the representation and lack of specific area estimates

are drawbacks of this technique.
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Figure 6.1 Level I change map for the period 1972 to 1986 (Scale 1:50 000)
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Figure 6.2 Level I change map for the period 1986 to 1991 (Scale 1:50 000)
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6.5.3 Change Matrix Formulation
Communication of land cover change information is complicated by the large amount of

detail available from the image analysis process. Where n classes are interpreted at

cach sensing epoch, n’change classes result and require interpretation and
representation. Change assessment implies analysis of temporal transition, therefore it
is advantageous to present the outcome of the analysis in a manner that communicates
the results of this process. A change detection matrix (Jakubauskas ef af, 1990; Jensen
et al, 1993; Martin and Howarth, 1989; Pilon et al, 1988) provides a convenient means

of summarising all land cover changes between sensing epochs.

The following change detection matrices represent various levels of change evaluated
throughout this research. Each matrix lists all classes from the first epoch on the left
side and all classes from the second epoch across the top. Each element of the change
matrix then represents a transition sequence, the diagonals representing unchanged
pixels and the off-diagonals representing pixels in transition. Element contents may
contain pixel counts, direct arca measurements, percentages or proportions depending

on the interpretation objective.

Tables 6.12 and 6.13 represent changes in land cover from 1972 to 1991 using the
results of a Level I classification. The magnitude of change in hectares for each cover
class is recorded and it is possible to determine the main change trends, which include
Forest to Urban and Forest to Open in the 1972 to 1986 period and Open to Urban in
the 1986 to 1991 period. The change matrix provides the opportunity to highlight
significant groups of classes and explain the relationship using a typical legend
structure. The important change transitions from any class to Urban and Open, and the
no-change classes have been highlighted, in this case emphasising the groups of New

Urban, New Open and No-Change, respectively.

Table 6.14 provides similar information at both Level I and Level II, and Table 6.15
provides information at Level II. The approach used in Table 6.14 was described in
Section 6.3 and was developed in this research to specifically facilitate the integration of
multiscale data where the data are interpreted at different levels of detail. The modified

change matrix allows comparison of classes at the lower level of detail (Level I) which



223

is common to both datasets, but also permits comparison of the Level I classes from
1972 with the more detailed interpretation at Level II from the 1986 data. Identification
of the major change trends is also possible, with Forest to Residential (as opposed to
Commercial) and Forest to Grassland and Bare ground (but not Recreation),
representing the main transitions. The same legend as was used in Tables 6.11 and 6.12
can also be applied to this matrix to emphasise transitions where major changes are

taking place.

From To 1986

Forest

Open

Water

No-Change

Table 6.12 Change assessment matrix at Level I representing land cover changes

between 1972 and 1986 (measurements are in hectares)

From To 1991

No-Change

Table 6.13 Change assessment matrix at Level I representing land cover changes

between 1986 and 1991 (measurements are in hectares)
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To 1986
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|:! New Urban
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Table 6.14 Change assessment matrix representing land cover changes between Level I

(1972) and Levels [ and H (1986) (measurements are in hectares)

Table 6.15 provides full details of all nine land cover classes derived from the 1986 and
1991 classifications. Major land cover change transitions are identified using the legend
and shading techniques described above, and inspection of the area values permits
identification of change trends. Conversion from Pine plantation, Grassland and Bare
ground to Residential, and from Grassland to Bare ground represent the major trends.
Apparent changes from Residential to Pine plantation and Grassland do not represent

logical transitions and are probably due to classification and registration errors.

Change matrices provide an efficient way of summarising a large quantity of
information derived from the analysis of multidate images. For Level II there are 81
separate change classes represented in the change matrix, and the presentation of the
data means it can effectively be understood. The matrix arrangemeht permits
assessment of change patterns amongst classes, and related change transitions are
grouped via the legend, which facilitates interpretation of the matrix. The change

matrix does not link the change transition classes to the spatial distribution of pixels,
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however the analysis is based upon pixel by pixel analysis rather than area-based
comparison so that recorded changes represent actual transitions from one class to

another.

From To 1991

Wood

Residential 233

Commercial 25.1 5.6

Pine Plant. 47.2 7.5

Wetland 5.7

Woodland 28.8

Grassland 161.0

Recreation 17.8

.Bare Ground | 118.6

Water 0

[:l New Urban

No-Change

Table 6.15 Change assessment matrix at Level Il representing land cover changes

between 1986 and 1991 (measurements are in hectares)

Effective an complete interpretation and communication of quantitative change and
spatial distribution may only be made using change maps in conjunction with a change
matrix. A major shortcoming of all of these techniques is that no reliability measure is
built into the change reporting methods, therefore any reported changes must be
considered in the context of the change detection accuracy assessments computed in

Section 6.4.

6.6 Summary
Research in this chapter has been directed towards establishing an effective approach to
change detection through the implementation of postclassification comparison of

multiscale satellite data and appropriate evaluation and presentation techniques.
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Interpretation of multiscale satellite data was investigated to take advantage of a range
of past and current remote sensing satellites capable of producing continuous data
streams, and to develop an approach for integration of historical satellite data for change
detection. Many change assessment programs are constrained because of the
requirement to utilise data from a single source for the interpretation of land cover
variation. This research has provided a mechanism for integration of multiscale data for

change detection using conventional image processing approaches.

Image algebra, spectral transformation and postclassification comparison approaches to
change detection were investigated. Most research utilises image algebra and spectral
transformation techniques for change detection, without considering the opportunities
provided by multiscale satellite data. This chapter investigated the implications of
utilising multiscale data, and determined that postclassification comparison is the most
appropriate approach to employ with these data. The multisensor approach results in
the incorporation of data with different radiometric response patterns and calibration
standards, a disparate range of spectral bands and significant variations in spatial
resolution.  Posiclassification comparison is the only standard image processing

approach able to accommodate these variations.

Chapter 5 rigorously examined classification accuracy procedures incorporating Overall
Classification Accuracy and Kappa Coefficient evaluation methods. These same
approaches were used for evaluation of change detection accuracy, however due to the
added complexity of the large number of classes resulting from change assessments, the
Kappa analysis was not applied to the Level IT comparison of Landsat MSS and Landsat
TM data.

Change assessments using multiscale satellite data for two periods encompassing
1972 to 1986 and 1986 to 1991 were performed at Level I and Level 1I. Based on the
evaluation of the Kappa Coefficient, change assessments were regarded as moderate for
all assessments at Level I and for the 1986 to 1991 change assessment at Level IL
Values of the Kappa Coefficient in the range of 43 to 55 percent were achieved for these
change detection images, with Overall Change Accuracy values ranging from 51 to 70

percent.
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Development of an approach to integrate multiscale datasets was an important
consideration in the change analysis process. Understanding the importance of
maintaining a hicrarchical classification scheme resulted in the development of a
method for seamless comparison of multidate Level T and Level II classifications.
Integration of the classifications at two levels enabled combined change analysis
involving data from both the Landsat MSS and Landsat TM sensors, while maintaining
the quality and integrity of the individual datasets. Combined analysis provided an
effective means of tracing land cover evolution throughout the period of data collection,
and enabled the effective comparison of multiple datasets observed at spatial resolutions

ranging from 20 m through to 79 m.

A range of change reporting techniques was investigated to provide informative and
effective details of the magnitude and distribution of change identified from the satellite
data. Reporting techniques included area-based change summaries, maps of change
class distribution and change matrices detailing change areas and transition sequences.
No single approach was able to convey all of the required information, and effective
change could only*be communicated via a combination of techniques including change
maps and cﬁange matrices. Change matrices also enabled the incorporation of

multilevel land cover change assessments derived from the multiscale data.
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Chapter 7

ERROR ASSESSMENT AND PROPAGATION

| ssessment of error compenents within the image processing and change detection
A processes, and evaluation of their contribution to the overall quality of the final
assessment represents the final stage of change detection. Benchmarks for the
assessment of change detection accuracy are discussed and the significance of the
spatial and thematic accuracy of the change data considered. The propagation of errors
from the source data through to the final change products is investigated through
consideration of error models appropriate to data used in this research. An evaluation of
the processing components contributing to the spatial and thematic errors is undertaken

and approaches to error propagation are discussed.
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7.1 Introduction

Assessment of errors has been made separately at the image rectification, classification
and change detection stages of this research, but the combined effects and propagation
of the error components have not been considered. Error propagation is important
because processing leads to the combination of errors, such that the resultant error is
significantly larger than any of the component values. MacDougall (1975} claims that
due to the propagation of errors the results of some overlay operations produce maps
little different from random class allocations. Subsequent research has proven this
assertion to be overstated (Newcomer and Szajgin, 1984), however the implications of

error propagation warrant further investigation.

All data within a GIS contain a certain amount of error due to measurement,
classification, recording, generalisation, interpolation or interpretation  errors
(Heuvelink, 1998). Walsh et al (1987) consider errors in spatial data to arise from
inherent and operational sources. Inherent errors are those present in the source
documents while operational errors are due to data capture and manipulation functions
within the GIS. Heuvelink et al (1989) describe operational errors in terms of
processing and modelling errors, and inherent errors as source errors. From the results
of image processing, Hord and Brooner (1976) suggest errors arise mainly from
boundary location, map geometry and data classification. Where GIS analyses are also
involved, this may be extended to include the concepts of error propagation between

these sources.

Many error metrics presently in use provide global characterisation of error within the
data and apply them uniformly to an entire region or image, and do not take into
account localised variability (Edwards and Lowell, 1996). These include RMSE
assessments of image rectification and values of Kappa Coefficients for thematic
accuracy assessment, Local metrics are more common in applications of fuzzy
classifications where individual uncertainties associated with data elements, such as
boundaries and contextual components of class membership, are expressed. The
importance of local characteristics is indicated by Kiiveri (1997) where decision making
that ignores uncertainty may neglect potentially useful areas, and also mistakenty select

areas not having the attributes of interest. Site-specific assessments of error (and
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therefore uncertainty) provide enhanced discriminating capabilities (Openshaw et al,

1991).

Understanding the nature of error in spatial data is necessary to ensure the development
of relevant analysis techniques and provide confidence in the quality of outcomes
(Chrisman, 1991). Openshaw (1989) describes a GIS as an accurate and virtually error-
free environment for manipulating map data, however the data are often of variable
precision and different combinations of operations may produce results of unknown
quality. While error does not need to be eliminated from GIS manipulations, an

understanding of the magnitude and the implications of its presence are essential.

Error is considered to comprise the multiple dimensions of positional accuracy, attribute
accuracy, lineage, logical consistency and completeness (Lanter and Veregin, 1992).
These dimensions are designed to provide labels indicating data characteristics, but it is
for the user to interpret the significance of the information, especially with respect to
error propagation and data quality. This chapter considers aspects of error related to

positional and attribute accuracy.

Veregin (1989) has developed a hierarchy of needs for medelling error m GIS
operations. The hierarchy includes error source identification, error detection and
measurement, error propagation modelling, strategies for error management and, finally,
strategies for error reduction. Error reduction strategies are considered last and have not
received a high priority in the modelling process. Identification, detection and
measurement of errors continue to maintain a high priority and will be considered in
this research. Errors are generally considered to comprise positional or cartographic
errors, and identification, thematic or attribute errors. Within this research the terms
spatial and thematic errors will be used to describe errors in position and attribute

values, respectively.

The process of dealing with error in spatial data may be described in three basic steps
(Forier and Canters, 1996). Identification of the type of error information available for
each data layer is the first step, and will be described in Section 7.3. Whether the error
is local or global in nature affects the method of analysis. The second step is concerned

with defining a conceptual model of error compatible to the type of error identified in
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the first stage (see Section 7.4). A global error model relies on a single statistic, such as
the Overall Classification Accuracy, which assumes the error levels are uniform for all
classes. A local error model considers each class to have specific error characteristics
and includes this information within the error model. The final step requires derivation
of an error propagation function that describes the manner in which the errors are
propagated through the data analysis system. This phase will be considered in Section

7.5.

7.2 Benchmarks of Spatial and Thematic Errors

Comparative assessments of error in mapping are usually restricted to generalised but
unambiguous statements of positional accuracy or presentation of reliability diagrams.
Topographic mapping standards include statements such as 90 percent of all elevations
determined from topographic maps shall have an error not exceeding one third of the
contour interval for well defined points and that, planimetric detail shall be within
0.25 millimetres of true position at map scale (Merchant, 1987). Similar explicit
standards relative to the accuracy of boundaries of discontinuous thematic data such as
soil classes, land use or land cover information are not generally available (Drummond,
1987). Anderson et al (1976) specify that land use and land cover maps derived from
remotely sensed data should achieve a minimum accuracy level of 85 percent in
identifying categories, and that interpretation accuracy across categories should be
about equal. They also indicate that consistent results should be obtainable between
interpreters and from the results of sensing at different times. These standards were
initially regarded as advisory rather than mandatory, and were not subject to rigorous

testing (Fitzpatrick-Lins, 1978).

Continued development of data acquisition and interpretation systems has focused on
the geometric fidelity of the sensing system, and the enhanced capabilities of analogue
and digital interpretation techniques. Enunciation of a coherent spatial and thematic
accuracy standard has not been forthcoming, although several authors have stated
separate guidelines for assessment of the spatial and thematic accuracy of products

derived from remotely sensed data.

Welch (1985) provides specifications of +0.3 pixel for image-image rectification and

+0.5 pixel for geodetic rectification. This value for geodetic rectification is also



reported to represent the NASA standard (Labovitz and Marvin, 1986). Hill and
Aifadopoulou (1990) achieved similar results, but indicate that local misregistration
may still reach 1.0 - 1.5 pixel. Objectives for the NALC program provide for geodetic
rectification with RMSE of 1.0 pixel within and 1.5 pixel outside the United States, and
image-image registration of 0.5 pixel (Lunetta et al, 1998). Riley et al (1997) report
that some scenes supplied for the NALC program have geodetic rectification errors
exceeding 1.0 pixel and Townshend er al (1992) indicate that geodetic rectification
within 0.5 - 1.0 pixel is normally regarded as acceptable, especially for change

assessment.

While no specific rectification standards apply to these images, it is clear that geodetic
rectification within 0.5 pixel is achievable in most cases and is suitable for identification
of thematic classes and change assessment analyses. Where these data are used as input
for topographic mapping programs the relevant mapping standard must be applied to the

data.

Standards for mapping accuracy of thematic classes have also received little attention.
Most guidelines are based upon those proposed by Anderson et al (1976) and vary
between 80 and 90 percent accuracy. The CoastWatch Change Analysis Project (C-
CAP) established guidelines of 90 percent for thematic accuracy of all categories,
however investigation by Jensen et al (1993) recommends it be relaxed to 85 percent
because the higher value was not achievable using Landsat TM data. Guidelines for
thematic accuracy within the NALC were set at 80 percent accuracy with a 75 percent

confidence interval using I.andsat MSS data.

Thematic accuracy standards must be considered within the context of the level of detail
of the classification scheme and the spectral, spatial and radiometric resolution of the
data. The NALC program is interpreted at Level I and is able to achieve the guideline
with medium resolution Landsat MSS data. The C-CAP project uses a Level II
classification and is able to achieve a marginally higher accuracy, but requires the

improved spectral, spatial and radiometric qualities of Landsat TM data.

Table 7.1 summarises results from a range of postclassification comparison change

detection studies extracted from recent literature.  Some authors have not reported
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complete details of accuracy assessments for rectification, single date image
classification or change assessment. Jakubauskas et al (1990) did not provide any
quality assessment details and simply compared proportions of land cover change, while
Laba er al (1997) reported classification accuracies only for data from individual
images. Star et al (1997) suggest that spatial and thematic reliability diagrams need to
be developed for remote sensing and GIS that convey the reliability of information

through the spatial characteristics of uncertainty in information products.

Accuracy
Classification
Author Data Rectification | Thematic
Level
{pixels) (percent)
Jakubauskas et al (1990) Landsat MSS Level 11 - -
Landsat TM 9 classes
Macleod and Congalton (1998) Landsat TM Level II +0.49 30 - 43
2 classes 27*
Jensen et al (1993) Landsat TM Level II +1.0 85 - 90
9 classes 82%
Laba et al (1997) Landsat MSS Level IT +0.7-1.1 73-77
Landsat TM 6 classes
Martin and Howarth (1989) Spot HRV Level 1 <1.0 50*
5 classes
Mas (1999) Landsat MSS Level I <1.0 T1*
7 classes
Muchoney and Haack (1994) SPOT HRV Level I - 31*
2 classes

* Képpa Coefficient for change detection product

Table 7.1 Summary of spatial and thematic accuracies achieved during satellite-based
land cover change detection projects (thematic accuracy represented by Kappa

Coefficient (percent))

Rectification accuracies generally less than one pixel were achieved in these studies,
however it is not clear in all cases whether the accuracy results from a priori or a
posteriori evaluation of the data. Table 3.2 shows the rectification results obtained in
this research with a posteriori RMSE values less than one pixel for all datasets, and

those for the higher resolution Landsat TM, SPOT HRV and IRSt-D data in the order




of 0.5 pixel. These results are consistent with the general rectification standards
indicated in this section and provide a sound basis on which to evaluate the propagation
of spatial and thematic errors in the change detection process. The finer spatial
resolution IRS1-D data provide an indication of the geometric potential of new
generation satellite sensors, which is consistent with the 0.5 pixel level achieved
previously. This is largely due to the geometric integrity of the satellite data and the
high accuracy of the reference data used for control point values. A complete

evaluation of the image rectification process for these data is available in Chapter 3.

The variation in the thematic accuracy achieved for the projects in Table 7.1 represents
a combination of the sensor characteristics and classification scheme discussed above.
Laba et al (1997) and Macleod and Congalton (1998) achieved Kappa Coefficient
values for single date images in the order of 75 and 40 percent, respectively. Both
images were classified at Level II and the higher Kappa value was achieved when
interpreting six classes, with the lower value from interpretation of only two classes.
Similarly, other examples of accuracy assessments for postclassitication change images
listed in Table 7.1 indicate Kappa values ranging from 27 percent (two classes) to 82
percent (nine classes) at Level II, and from 31 percent (2 classes) to 71 percent (7
classes) at Level I. The inverse relationship between Kappa value and the number of
classes is coincidental and an indication of the compound effect of spatial, spectral and

radiometric properties on target separability.

Tables 5.15 and 5.16 detail the accuracies for data classified during this research.
Kappa values between 50.4 percent and 62.5 were achieved at Level I, and at Level 11
Kappa values between 36.9 percent and 59.1 were obtained. Change detection Kappa
values are 55.0 percent and 54.0 percent for Level I, and 43.9 percent for Level II
These results conform to the range of values included in Table 7.1, however the same
extreme high and low values have not been achieved in this study. The decreased
accuracy at Level II and the accuracy of the single date classifications, compared with
the change images, demonstrates that the comparative level of detail included within the
Level T and Level II classification schemes is consistent with the classification

technigues employed.
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No clear benchmarks for thematic accuracy may be universally determined due to
variations in the separability of different combinations of targets, even though they may
be located on the same level of the classification scheme. Specific labelling of the
multiple dimensions of error as suggested by Lanter and Veregin (1992) may enable
users to interpret the significance of the error data and the suitability of the product for a
specific application. In the absence of a single convenient measure of spatial and
thematic accuracy, additional statements of lineage, logical consistency and

completeness provide supporting evidence of data quality.

7.3 Error Sources

Analysis of the image rectification process in Chapter 3, and thematic classification and
change assessment processes in Chapters 5 and 6, confirms the accuracy of change
assessment is subject to a range of interrelated errors. These errors are due to such
factors as image geometry, detail of thematic classification, scale of observation,
boundary definition, target spectral and spatial properties, and sensor characteristics.
Aspinall and Hill (1997) regard these errors to be mainly related to misidentificanon of
classes, positional inaccuracy in boundary location and failure to recognise internal
polygon heterogeneity. Chrisman (1987) describes these factors as resulting in errors of
identification (errors in assigning the correct attribute) and discrimination (errors in
separating adjacent types). In particular, Chrisman (1987) notes that discrimination
errors are another term for describing the fuzzy boundary problem and those errors are
jmpossible to distinguish from spatial error. The effect of these errors is evaluated
through analysis of their spatial and thematic components. The correlation between the
two types of errors is also important (Star et al, 1997), and will be considered. A
taxonomy of errors and their relationship to error modelling is discussed in Section

7.4.2, however in this section errors specific to this research are evaluated.

Propagation of errors will be undertaken to analyse the effects of component variables
on the classification and change assessment estimates. Standard approaches to
propagation of quantitative random errors are applied, assuming the correlation between

arguments z, is zero, according to the following model (Heuvelink ef al, 1989):
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where
y=g(z, 25 z, }is a continuously differentiable function with arguments z,,

Spatially-related errors in both the reference data and primary remote sensing data
contribute substantially towards the total spatial error within change assessment
systems. Reference data are subject to errors of land cover identification, however these
may be minimised through careful ground sampling.  The largest errors in
photointerpretation are derived from boundary identification and are usually of greater
magnitude than the errors induced through the digitising process (Edwards and Lowell,

1996). Table 7.2 details estimated errors for derivation of reference and image data.

Reference Data Image Image-Ref
Sensor Control Photo Int | Digitising Total Rectification Error
Error Error Error Error Error
Landsat MSS 1.25 12.5 5.0 13.5 65 66.4
Landsat TM 1.25 10.0 5.0 11.25 13 17.2
SPOT HRV 1.25 10.0 5.0 11.25 8 13.8
IRS1-D 1.25 1.8 1.25 2.5 32 4.1

Table 7.2 Assessment of boundary error accumulation between reference data and

single date satellite images (all values are in metres)

Additional sources of spatial error in the reference data include error in the digitising
transformation (Control Error) and Digitising Error. The digitising transformation has
a maximum RMSE of 1.25 m (0.25 mm) at a map scale of 1:5 000, and represents the
effects of control point accuracy and differential media distortion. The
Photointerpretation Error is based upon an error of 0.5 mm at the scale of the aerial
photography. This only represents a geometric consideration of error and does not
estimate the error in determination of boundaries caused by separability of class

characteristics. This error is additional but not quantifiable at this stage.
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The Digitising Error is estimated at 1.0 mm at map scale (5.0 m) and represents a
combination of the actual digitising accuracy and the accuracy of boundary transfer
from the aerial photographs at 1:25 000 (1972) or 1:20 000 (1986 and 1992), to the
orthophotmaps at 1:5 000. Some additional uncertainty was introduced in the transfer
of detail between the aerial photographs and the orthophotomaps because the aerial
photographs were available for each image date (1972, 1986 and 1992), whereas the
orthophotmaps were only available for 1984. The total error from these sources 1§
estimated at 13.5 m for the 1972 reference data, and 11.25 m for the 1986 and 1992

data.

Evaluation of image rectification errors has been undertaken in Chapter 3 with the main
contributing factors being GCP location error, GCP digitising error, relief error and
displacement due to image resampling. The resultant Image Rectification Error is
shown in Table 7.2, with an estimate of the combined spatial error (fmage-Ref Error)
between the satellite image data and the reference data indicated. The rectification
RMSE for Landsat MSS data is comparatively large at 65 m, and dominates the
outcome of the analysis. The value is approximately the same magnitude as the original
image pixel (0.875 pixel). Comparative results for the Landsat TM, SPOT HRV and

IRS1-D data provide mage-Ref error values of approximately 0.6 pixel in each case.

Extension of change detection to incorporate high resolution satellite images such as
IRS1-D data requires further evaluation of potential error sources. The scale of aerial
photography is a limiting factor for the collection of reference data and currently
comprises the major source of spatial error. Availability of larger scale aerial
photography for reference data collection will lead to lower combined
photointerpretation boundary transfer error and digitising error because the differential
scale between the aerial photography and orthophotmaps will be substantially reduced.
The relationship between component spatial errors in reference data collection is given
by:

2

(Total ref. data error) = (Control) + (Photointerpretation)2 + (Digirising)  (7.2)
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The total spatial error in the reference data should not exceed the equivalent of 0.5
image pixel, and the RMSE of the Control Error remains at 0.25 mm. The Digitising
Error can be reduced to 0.25 mm at map scale by using larger scale aerial photographs
as discussed above. This has the effect of reducing the transfer error between the
photography and the orthophotomaps caused by the large scale differential. Applying
Equation 7.2, the maximum permissible Photointerpretation Error for the IRS1-D data

is given by:

Photointemretation= ((Total ref. data error)2 - (C'm"a.n"ol)2 - (Di(gfirisimg)2 )0'5 (7.3}

= (25" —1.25* = 1.25° )"

=1.8m

With a maximum spatial error from photointerpretation of 1.8 m, which represents 0.5
mm at photoscale, the aerial photography for reference data collection needs to be at
Jeast 1:3 600 scale or, alternatively, utilisation of GPS data of equivalent standard for

reference sample location.

Similar analysis of errors for change detection purposes requires separate consideration
of errors in the reference data and image data, then combined analysis of the errors for
each change period. Table 7.3 provides an analysis of the errors for the two change
detection periods actually investigated, and hypothetical values for inclusion of IRS1-D
data. Values for Reference Data Error and Image-Image Error are derived from the
application of Equation 7.1 to the corresponding reference data and image data from
Table 7.2. The spatial errors within Landsat MSS data dominate the error estimate for
the change detection assessment incorporating Landsat MSS and Landsat TM data (68.6
m). Errors inherent in the Landsat TM and SPOT HRV data, and the corresponding
reference data, produce an overall change error estimate of 22.0 m. The corresponding

estimate for the SPOT HRV and IRS1-D comparison is 4.4 m.

Each of the RMSE values in Tables 7.2 and 7.3 represents an estimate of the total error
included when comparisons between corresponding satellite and reference data are
made for the purposes of classification accuracy analysis (Table 7.2) or change

assessment (Table 7.3). These data are important when pixel by pixel comparisons are
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made or, more importantly, when comparisons in the vicinity of boundaries are
involved. Pixel by pixel comparisons within areas of uniform cover type ar¢ not
affected by spatial errors between the reference data and primary image data because
spatial displacement within invariant land covers does not alter the outcome. When
pixels close to land cover boundaries are subjected to comparison, the displacement
erTor may cause erroneous comparisons from opposite sides of the boundary to be

made, with the result that thematic classification or change assessment errors are

recorded.
Change Detection Pair Ref. Data Error Image-Image Error Total Error
Landsat MSS - TM 17.6 66.3 68.6
Landsat TM - SPOT HRV 159 15.3 22.0
SPOT HRY -IRS1-D 11.5 8.6 14.4

Table 7.3 Total boundary error between reference data and multidate change images

(all values are in metres)

It is well documented that errors in thematic feature extraction are most prevalent near
boundaries (Dunn et al, 1990; Edwards and Lowell, 1996; MacDougall, 1975;
Middelkoop, 1990; Skidmore and Turner, 1992), and that positional uncertainty implics
the prevalence of attribute errors near boundaries when comparing overlays (Kiiveri,

1997).

The most common approach to boundary error assessment is using the epsilon band,
which is frequently utilised to represent the error in boundaries resulting from the
digitising process (Blakemore, 1984). In the current study the definition of the epsilon
band has been extended to represent the region of error surrounding polygon
boundaries. The dimensions of the epsilon band are derived not only from the errors
inherent in the digitising process, but also include estimates of errors in boundary
location resulting from multiscale digital image rectification (Table 7.2). The concept
of the epsilon band utilised here includes only the spatial considerations in the location
of boundaries and does not include errors caused by boundary pixels that are a mixture

of cover types.
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The definition of the parameters of the epsilon distance may be cast in deterministic or
prababilistic terms (Dunn et af, 1990). The parameters may be represented by a single
value or by the application of fuzzy set theory to define the uncertainty in the width and
shape of fuzzy boundaries (Edwards and Lowell, 1996). Estimates of the width of the
epsilon band made in this research are based on global error assessments of the data,
and provide a deterministic estimation of the epsilon distance. The ability to move from
dependency on aspatial global error assessments (confusion matrices, digitising errors
and rectification errors) will also improve estimation of the shape and width of the

epsilon band.

The epsilon distance as a measure of boundary location error is used in this research to
assess the degree of potential error within the study area for each image dataset. Table
7.4 shows the length of boundaries at Level I and Level II for each image dataset and
the resulting area of the epsilon band when multiplied by the Image-Reference Error
calculated in Table 7.2. Reference data at Level I and Level Il have been used to
determine the lengths of boundaries because of the greater reliability and spatial
consistency of the data. The external boundary of the study area was not considered.
Further generalisation was undertaken with a 7 x 7 modal filter to eliminate narrow and
fragmented classes, and to minimise the overlap of epsilon bands that tend to inflate the

area due to complexity of classes and their boundaries (Chrisman, 1987).

Level 1 Level I
Sensor Bdy Length | Bdy Area | Percentage | Bdy Length | Bdy Area | Percentage
{metres) (hectares) of Area (metres) {hectares) of Area
Landsat MSS 50920 338 18.3 71 260 473 25.6
Landsat TM 66 480 114 6.2 95 700 165 8.9
SPOT HRYV 60 520 83 4.5 80 580 111 6.0

Table 7.4 Percentage of study area occupied by epsilon band derived from planimetric

errors in reference data and multidate images

The data in Table 7.4 provide an estimate of the area of uncertainty and percentage of
the total area included within the epsilon band for each dataset at Level I and Level IL
These parameters have been used elsewhere to estimate the area of uncertainty due to

digitising (Dunn et al, 1990, MacDougal, 1975), and clearly indicate the substantial




uncertainty introduced to the interpretation of the Landsat MSS data due to reference
data and image rectification errors. The land cover classes included within the reference
data for the Landsat MSS data are relatively general, as evidenced by the comparatively
low total boundary lengths compared (o the other datasets at both levels of
interpretation. Although the land cover boundaries are more complex in the Landsat
TM and SPOT HRV data, the comparatively narrow epsilon bands reduce the area of
uncertainty from 25 percent for Landsat MSS data to between four and nine percent of

the total area for Landsat TM and SPOT HRYV data.

Comparison of the boundary areas computed from the epsilon bands with the results of
classification assessment in Tables 5.15 and 5.16 indicates that boundary uncertainty is
only one of the potential factors influencing classification accuracy. While Landsat
MSS data produce lower classification accuracy results, the differences are not entirely
due to the boundary uncertainty indicated by the result in Table 7.4. Other variables
related to the spectral, spatial and radiometric resolution of the data must also have a
considerable influence on classifier performance as the epsilon band area and Kappa
Coefficients do not exhibit consistent variation. The other major factor that is
considered important relates to the increased complexity of land covers in the Landsat

TM and SPOT HRYV data

The spatial distribution of classification errors displayed in Figure 5.3 have also been
investigated to assess the relationship between boundary uncertainty and error patterns
within the land cover classes. Table 7.5 compares the pattern of error cells represented
in Figure 5.3 with the land cover boundaries defined by the reference data. The
boundaries derived for each reference data set have been rasterised and buffered to a
width equivalent to the Image-Ref error computed in Table 7.2. The dimensions are
restricted to integer pixel values and are approximated for Landsat MSS at 130 m,
Landsat TM at 35 m and SPOT HRV at 25 m total width. The percentage of error cells
that coincide with the land cover boundary error bands are tabulated against the overall

classification error derived from the complement of the Overall Classification Accuracy
for a Level Il unsupervised classification. A ¥ * Goodness of Fit test of the proportion

of classification errors occurring in proximity to the land cover boundaries against the

overall proportion of classification errors indicates a significant difference at the 95



242

percent confidence level. Consequently the hypothesis that classification errors are
spread evenly throughout the study area is rejected and therefore, classification errors

occur more frequently in the proximity of boundaries compared to elsewhere.

Percentage Errors Overall Percentage
Sensor
Near Boundary Class Error
Landsat MSS 54.8 41.6
Landsat TM 59.1 388
SPOT HRY 59.4 29.9

Table 7.5 Comparison of near-boundary errors and overall classification error rate

Approximately 60 percent of all classification errors occur within the boundary error
band determined for each dataset. These results indicate that classification errors are
not uniformly distributed throughout the remotely sensed datasets and that the spatial
location of errors is correlated with the location of the land cover boundaries. The
spatial autocorrelation of thematic classification errors at distances up to 200 m was
examined in Chapter 5 and determined to be significant at the 99 percent confidence
level. In conjunction with the results in Table 7.5 it supports the hypothesis that

classification errors are more prevalent in the proximity of class boundaries.

The error band examined above is based upon the global propagation of spatial error
components determined for each satellite dataset and does not account for local
variations on a class by class basis. Consideration of individual thematic class
membership probability or uncertainty of boundary location using fuzzy concepts may
be useful in further analysing the patterns of classification errors (Zhang and Foody,

1998), however this is beyond the scope of this research.

7.4  Error Modelling
74.1 Types of Errors
Error is defined in terms of discrepancies between the interpreted objects and their real
world counterparts. Conventional error theory categorises observation and
measurement errors as systematic, random or gross errors (Mikhail and Gracie, 1981).

Systematic errors occur according to some deterministic process that may be expressed
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by a functional relationship if it is known. Random errors result from observational
errors that have no known functional relationship based on a deterministic model, and
are analysed using probabilistic models. Gross errors are caused by mistakes in
measurement and analysis. Error modelling approaches are based on the control of
systematic errors through careful design of data collection strategies and instrument
calibration procedures. The elimination of gross errors relies upon maintenance of data
collection and analysis quality standards designed to eliminate extraneous and avoidable
error sources. The magnitude of random errors is dependent on the resolution
capabilities of the measurement systemn and subsequent propagation through the error
model. Robust observation and processing systems are designed to take account of
systematic and gross errors, leaving random errors for consideration through error
modelling. However, inappropriate model development or presence of systematic or .

gross errors of unknown magnitude may lead to invalid error evaluations.

With respect to the interpretation of remotely sensed data, the elements of resolution
include the spatial resolution of the sensor, spectral resolution of the multspectral
bands, and the radiometric resolution or quantisation of individual bands. These
clements are convolved with the interpretation system and random errors contained
within the reference data to produce an aggregate of errors in the spatial, thematic and

temporal domains (Veregin, 1993).

GIS models may be categorised as mathematical or logical models (Drummond, 1987),
and are also termed quantitative and qualitative models, respectively. Mathematical
models utilise deterministic processes to evaluate the outcome of component vartables
as an aid in decision making. Error propagation is based upon the general law of
propagation of variances and assumes only random errors are present in the data
(Mikhail and Gracie, 1981). Such an approach was applied in Section 7.3 for analysis

of propagation of spatial errors within the image and reference data.

Logical models use a heuristic approach to evaluate the outcome of analyses, such as a
system of Boolean overlays for land suitability analysis. Logical models do not lend
themselves to the analysis of error propagation through the general law of propagation
of variances (Burrough, 1986), and alternative techniques, such as simulation, must be

investigated (Heuvelink and Burrough, 1993). Within this research multitemporal
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comparison of satellite data for land cover change represents the application of a logical

model.

Logical models are characterised by a number of spatially coincident overlays with each
representing a particular theme or characteristic of the area. In this research separate
overlays contain land cover information interpreted from aerial photographs or
classified from multidate satellite images, or change assessments derived from logical
differences created from corresponding land cover layers. Each layer comprises
nominal data representing land cover or land cover change classes. Error is
conventionally measured in terms of the frequency of differences between the actual

and observed classes over the spatial, temporal and thematic domains (Veregin, 1995).

Within the logical error modelling process, error may be evaluated at the generalised
layer level, at the individual class level within each layer or at the specific pixel level,
depending on the error assessment data available. At the most general level an error
index provides an assessment of an entire layer, however no information concerning
variations in error in the spatial, temporal or thematic domains is available.
Alternatively, at a more specific level the error in each feature in a layer may be
quantified, and variations in error over space, time and theme may be portrayed

(Veregin, 1995).

Definition of geographical entities in terms of space, time and theme results in the
portrayal of the corresponding error in each dimension. The inability to adequately
characterise spatial data with a single index of error arises due to the multidimensional
nature of these errors (Lanter and Veregin, 1992). For example, Hord and Brooner
(1976) acknowledge this issue and suggest the accuracy of land use maps be quantified
in multiple dimensions by adopting separate standards for thematic classification
accuracy, and spatial accuracy of boundaries and control points. A more contemporary
view is that thematic accuracy can be a function of both class membership and spatial
location, and it may not be appropriate to examine spatial and thematic error
independently (Chrisman, 1989; Haining and Arbia, 1993; Mark and Csillag, 1989,
Veregin, 1995).



Central to the issue of error modelling in spatial data is the correlation of errors within
or between thematic classes. Many studies assume random occurrence of errors,
however in practice errors are often correlated (Heuvelink and Burrough, 1993). Where
a random (spatially independent) distribution of errors is assumed, simple probability
may be applied to assess error propagation (Veregin, 1995), however where spatial
autocorrelation is present, more sophisticated simulation modelling is required to
account for the spatial dependence of errors (Heuvelink and Burrough, 1993). Spatial
autocorrelation of errors is manifest in thematic classifications by aggregation of errors
in the proximity of boundaries or the propensity for errors to occur in spatially adjacent
locations. Veregin (1995) indicates that spatial coincidence between layers may either
inflate or deflate the accuracy of derived data, depending on the degree of dependence
and the type of overlay operation. Recognition of the degree and spatial dependence of
errors within the data is essential to the success of error propagation within spatial data
systems. These effects will be considered in conjunction with error propagation in

Section 7.5.

7.4.2  Error Models

The major sources of error within the change assessment process developed in this
research have been identified and their significance evaluated in Section 7.3.
Consideration of suitable error models is required with a view to identifying approaches

suitable for evaluation of error propagation during change assessment.

GIS provides an error-free environment for data manipulation, however the input data
are usually characterised by differing levels of error and uncertainty which need to be
identifiable in the final output {Openshaw, 1989). Error reduction is one part of the
process, but does not provide a complete solution. Development of adequate means of
representing and modelling uncertainty and error in spatial data, and the availability of

GIS techniques for implementation of error models are equally important (Openshaw,
1989).

Generally three types of error models are applicable to categorical data based upon the
type and extent of error information available. Forier and Canters (1996} define error
models as global, thematic or spatial/thematic. Global error models assume that errors

occur uniformly for all classes and that confusion is equal among each pair of classes.
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Statistics such as the Overall Classification Accuracy and Kappa Coefficient are utilised
in global error models to describe error characteristics, but provide no information
beyond their overall magnitude. The spatial distribution and variation of errors by class

are not considered.

Thematic error models rely upon error information that describes the variations in the
level and type of error for each class. Veregin (1995) has developed a thematically
partitioned error model that utilises the complete confusion matrix as a descriptor of the
nature of errors in the data. The advantage of using the confusion matrix is that it is a
crosstabulation of the encoded and actual attribute values of the sampled locations,
which are representative of each class. Error modelling using the entire matrix
maintains important information beyond the percent correctly classified, and includes
the level of omissions and commissions for each class. Subsequent analysis of the
propagated confusion matrix yields correspondingly detailed error information for the

derived layers.

Thematic error models therefore consider the distribution and propagation of errors on a
class by class basis, but take no account of within-class variations or thematic purity of
classes. Additionally, in situations where even a moderate number of classes are subject
to change assessment, detailed modelling using the confusion matrix requires
consideration of a very complex range of interactions. For example, comparisons of
multidate Level 1I classifications in this research, which each comprise nine land cover
classes, results in the derivation of a confusion matrix involving 81 x 81 elements. The
computational overhead using the thematic error model is significant and may not be

justifiable.

Spatial/thematic error models require more specific information on the spatial
distribution of error within each thematic class, and sometimes spatial correlation of
error between data layers (Forier and Canters, 1996). Such conditions may arise when
digitising and boundary definition effects related to reference data and image
classification cause errors to be spatially correlated. Openshaw (1989) indicates that
adequate means of representing and modelling the uncertainty and error characteristics
of spatial data are required, as well as the development of relevant techniques that can

explicitly take error into account during data processing.
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Uncertainty in spatial data may be modelled in a number of ways. Gaussian models
may be applied to describe errors, however they only provide a general context for
description and simulation of errors, instead of a clear model of the processes of error
accumulation (Goodchild et al, 1992). Where specific details of error formation and
distribution are available, individual error models may be applied, such as the effects of
manual digitising on the positional quality of data (Bolstad er af, 1990). Models
considered for the representation of error in digitised line data include rectangular, bell-
shaped and bimodal probability density functions (Dunn er al, 1990). These models
may be applied to representation of boundary uncertainty using fuzzy approaches to
describe the quality of the reference data, as well as to the remotely sensed data (Zhang

and Foody, 1998).

Between these two extremes Goodchild er al (1992) provide a generic model where
nothing is known about the specific processes contributing to the error. The model
defines category error in terms of class heterogeneity (purity) and boundary transition
(sharpness). Heterogeneity is represented by texture, which is defined by the degree of
correlation between adjacent cells and determines the amount of aggregation and
uniformity of each class. Boundary transition defines the distortion in the location of a
boundary between two classes based on spatial dependence. Class heterogeneity and
boundary transitions provide the means to model error (and uncertainty) in thematic

data under different levels of spatial dependence.

Spatial/thematic error models generally utilise one of the above techniques for
managing the magnitude and distribution of errors, but they do not describe processes
for the assessment of the effects of spatial distribution of error during GIS operations.
Probabilistic approaches to error propagation have been applied by Newcomer and
Szajgin (1984), Veregin (1989; 1995) and others, however a new error model must be
derived for each operation, and extension beyond straight forward operators such as
AND, OR and buffer is limited (Goodchild er al, 1992). The lack of theoretical
knowledge of generalised error propagation mechanisms for logical data models has led
to the investigation of alternatives that can be universally applied to any data
transformation function (Veregin, 1994). Monte Carlo simulation has been investigated
as a suitable alternative and can be applied whether or not a formal error model has been

developed for the specific function or operator (Openshaw, 1989).
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The generality and flexibility of Monte Carlo simulation provides significant flexibility
in understanding complex error propagation pathways within GIS (Openshaw.ez al,
1991). Monte Carlo simulation relies upon a large number of repetitions of the GIS
operations under analysis, for which the input data have been subject to random
perturbations based upon known or assumed pattern of errors. The results of the
simulation may be analysed to determine error rates, confidence limits and credibility
regions following propagation of errors. Although the approach is general and flexible
in its application, the results do require interpretation and there is a significant
processing overhead involved (Dean er al, 1997; Podobnikar, 1999), which may limit its

application in real time error propagation analysis (Forier and Canters, 1996).

Error data defined in Section 7.3 may be utilised as input to several of the error modeis
described above. Overall Classification Accuracy and the Kappa Coefficient are
suitable for inclusion in global error modelling, while the complete confusion matrix
may be used for class specific accuracy assessment and pairwise comparison of classes
for establishment of errors of omission and commission, as input to thematic error
modelling. Analysis of spatial errors near the boundaries of reference data through
consideration of digitising errors, photointerpretation errors and control point
determination may be used in spatial/thematic error models. Consideration of the
proportion of classification errors occurring within the epsilon band defined by the
accuracy of the image rectification and reference data also provide data suitable for

spatial/thematic error modelling.

Further development of the error models for the classified data and reference data will
enable detailed modelling of spatial and thematic errors within the change assessment
process. In this initial stage the available error sources and models have been identified,
however only global error modelling will be pursued through analysis of the available

error data.

7.5 Error Propagation

Section 7.4 detailed a taxonomy of errors and the parametric measures required for
describing error models applicable to thematic data. The specific épproach to error
propagation varies depending on the error model applied to the specific error

distribution. Global error models assume random distribution of errors within each
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layer and it is possible to apply a simple probabilistic approach to error propagation.
Thematic error models use class-specific error parameters derived from the confusion
matrix, but must still assume there is a spatially random distribution of errors. On the
other hand, spatial/thematic error models take into account spatial correlation and utilise
simulation approaches to incorporate correlation of errors into the propagation analysis.
Based on the error data available from Section 7.3 the effects of global error modelling

will be evaluated.

The quality of the results of logical operations may be predicted from the error
characteristics of the composite data layers through modelling the analysis process
(Newcomer and Szajgin, 1984). Overlay using the AND operator involves comparison
of two geographically registered datasets with a correct result being achieved where
there are correct values at corresponding locations in each data layer. Change detection
between spatially registered temporal datasets represents an example of the AND
operation. Bayes Theroem may be used to express the probability of a correct result

occurring for the AND operation by the following (Newcomer and Szajgin, 1984):

Pr(E,NE,)
Pr(E, | E )= —2 "% 4
r(E, | E)) e (7.4)
or
P‘r(EI ﬂE2)= Pr(El )Pr(Ez I E}) (7.5}
where

E. = occurrenceof a correctvaluein layer i at a given location fori=123....n

Pr(Ef)z probability that a correctvalue occursin layer i at a given location 0 < Pr(ﬂ) <l

)

E,' = occurrence of an incorrectvaluein layer i at a givenlocation (E{ )
Pr(E!') = probabiliy that an incorrect value occursin layer i at a given location
for 0< PHE)<1 and PHE,)+ PHE/)=1.

Equation 7.5 indicates the probability of event E {(correct in layer 1) and E,(correct in
layer 2) occurring together equals the probability of E,occurring multiplied by the
probability of E, occurring given that E, has occurred. Further derivation provides the

following form of Equation 7.5:
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Pr(E ~E,)=1-[Pr(E)Pr(E, | E')+ Pr(E")Pr(E, 1 E') + Pr(E, )Pr(E, E,)] (7.6)

Equation 7.6 illustrates the progressive decrease in accuracy as a result of overlay
analysis compared to the accuracy of the original data layers, due to the accumulation of
errors. As the number of data layers increases the possible combination of errors
increases rapidly, with the actual accuracy dependent on the spatial coincidence of
erroneous pixels. The highest resultant accuracy is achieved when errors in all layers
coincide, and the lowest when errors in each layer occur at mutually exclusive, disjoint
locations (Newcomer and Szajgin, 1984). The upper bound for the accuracy of the
composite map derived from the AND operation for n layers can be no greater than the

least accurate layer (Veregin, 1989):
PriEENE, . .E ) =min [Pr(E)]  fori=12.... n (7.7)

The lower bound for the accuracy is generally stated as (Newcomer and Szajgin, 1984):
PrE NE,N..E " = [1 - ZPr(E,.')} (7.8)

The importance of spatial coincidence of errors is demonstrated in Table 7.6 where the
Overall Change Accuracy determined in Chapter 6 for each multitemporal comparison

falls between the upper and lower bounds specified above.

If spatial independence of errors is assumed, the expected accuracy may be computed
from the product of the probabilitics of correct classification for each layer. The value
was originally suggested by MacDougall (1975) to represent the maximum mapping
accuracy, but was subsequently clarified by Newcomer and Szajgin (1984), Chrisman

(1987) and Veregin (1995).

The expected accuracy values are computed as follows (Veregin, 1995) and are listed in

Table 7.6 ;
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Pr(E, NE,n...E,)=[] PriE) (7.9)
=1
a on Overall Pr( E NE, )mwr Expected Overall
ass. ange
8 Classification Accuracy Change
Level Dates Accuracy P;v‘(El NE, )”"" (Veregin, 1995) Accuracy
1972 0.79 0.77
0.61 D.64
I 1986 0.77 0.56
1986 0.77 0.77
0. 0.70
! 1991 0.82 0.59 63
1972 0.62 0.62
. 0.33
n 1986 0.69 0.30 042
1986 0.69 0.67
. (.51
1 1991 0.67 0.36 0.46
1972 0.79 0.69
) 0.56
i 1986 0.69 0.48 0.54

Table 7.6 Comparison of predicted and actual change assessment resulls using global

error modelling

The Overall Change Accuracy for all change comparisons, except for Level I between
1972 and 1986, are above the expected value computed from Equation 7.9. This
indicates the presence of spatial correlation of errors because the accuracy is greater
than expected for spatial independence of classification errors between data layers.
These results show that spatial dependency of errors affects the outcome of the change
assessment and, considered in conjunction with the analysis in Section 7.3, indicates

that boundary error effects make a major contribution.

The 1972 to 1986 Level II Overall Change Accuracy is close to the lower bound of
accuracy for these data, however the results were derived from a comparison of
relatively coarse Landsat MSS data and much finer spatial resolution Landsat TM data.
This combination resulted in a poor Overall Change Accuracy. The high rate of change
assessment errors makes it difficult to extract any meaningful conclusions from this
change comparison, and the overall error rate was so high that any spatial dependence in

the location of errors between the two classification dates is not apparent.
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Global error models have been applied to these data, however the aspatial nature of the
analyses limits the specific conclusions that can be derived. While the global error
mode] may be used to predict the Overall Change Accuracy a priori, it cannot provide
any more specific error data, and it is only through a posteriori analysis that an
assessment of the existence of spatial dependence can be made. Spatial/thematic error
models implemented through Monte Carlo simulation are required to develop a more

comprehensive understanding of error distribution.

7.6 Summary

Understanding of error patterns within the classification and change assessment process
provides an important diagnostic capability for evaluation of data quality. Error
modelling provides the logical framework for analysis of error propagation and
determination of aggregated error loads within the analysis system. These important
metrics are useful in identifying critical error sources and facilitate the design of data

collection and analysis approaches to minimise error accumulation.

Previous studies were examined to establish traditional benchmarks used to assess
spatial and thematic accuracy in classified remotely sensed data. Unlike topographic
maps, few general standards have been developed specifically for thematic products,
and most rely upon comparison with relevant topographic mapping standards.
Evaluation of comparable studies of land cover mapping using remotely sensed data
revealed that spatial accuracy in the order of +0.5 - 1.0 pixel is achievable, and
compares favourably with the results obtained within this research. Thematic
accuracies vary considerably, however for those related to large area coherent mapping
programs, thematic accuracies above 80 percent are desirable. Research-based projects
rarely achieve this level of accuracy, and often take an evaluative approach to algorithm

development and attainment of a set standard is not the primary objective.

Valid comparisons of classification and change detection accuracies between studies is
problematic due to the variation within classification schemes and the objects being
identified. While a degree of standardisation is provided through the hierarchical
classification scheme developed by Anderson et al (1976), the contrast between classes
within close proximity has a significant effect on the achievable accuracy in the final

product. For example, classification of sand versus water is likely to result in greater
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classification accuracy than a classification that compares deciduous 10 evergreen

forests, even though all are Level II categories of land cover.

Evaluation of the sources of spatial error was undertaken to assess the relative
contributions of components in the image interpretation and reference data collection
process. Spatial error within the image interpretation process is quantified by the
rectification RMSE when independent check points are used for evaluation. Errors
were within the expected range of 0.5 - 1.0 pixel, with Landsat MSS relatively high at
0.9 pixel and all other data in the range 0.4 - 0.6 pixel.

The contribution of spatial error from the reference data was mainly determined by the
photointerpretation error. For the three epochs evaluated in this study, aerial
photographs at scales of 1:20 000 and 1:25 000 were used for reference data collection,
and with conventional photointerpretation techniques, were limited in boundary
identification to approximately 0.5 mm at photograph scale. For higher resolution data
such as IRS1-D, photography at a scale of approximately 1:3 600 is required to provide
reference data with a spatial accuracy suitable for reliable verification of information

extracted from the satellite images.

When dealing with multiscale and multitemporal data, control of spatial and thematic
errors continues to be an issue due to the wide range in data quality. The data in this
research have been rectified to a high standard, however error propagation between
corresponding reference data and satellite images results in spatial errors for change
detection products in the order of one pixel for the coarsest resolution data in the change
comparison. For example, the Landsat MSS and Landsat TM comparison produced a
total RMSE for the change image of 68.6 m, and the SPOT HRV and IRSI-D
comparison resulted in an RMSE of 14.4 m. This is equivalent to one Landsat MSS and

one SPOT HRV pixel, or two Landsat TM and three IRS1-D pixels, respectively.

Control of these errors and recognition of their presence is essential for effective
application and assessment of the resultant change information. Spatial errors may only
be restricted to these levels through stringent control of error sources at all stages of the
analysis. When dealing with remote sensing imaging systems elimination of errors is

not feasible, but control of their magnitude must be a priority.
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Spatial analysis in GIS involves evaluation of mathematical or logical data models,
however for change assessment, analysis using a logical (Boolean) model is appropriate.
The general law of propagation of errors is not applicable to error analysis of Boolean
data models, and a specific error model must be derived for each Boolean operation.
Spatial correlation of data between layers influences the propagation of errors and must

be considered in the analysis.

Probabilistic and simulation approaches are available for analysis of error propagation
in logical models. Probabilistic models consider spatial correlation, but only permit
global error modelling without consideration of the spatial distribution of themnatic
errors or explicit consideration of the magnitude of spatial errors. Monte Carlo
simulation provides for spatial and thematic perturbations to be introduced to the data,
and enables statistical analysis of the empirical results. Error modelling was undertaken
in this research using a probabilistic approach to global error modelling and the actual

results achieved are consistent with the values predicted by the modelling technique.
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Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

F I Yhis chapter reports on the conclusions developed as a result of the investigations
performed in this research program. Experimental results and analyses are

reviewed in the context of the overall research and recommendations for future work are

proposed.
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8.1 Conclusions

Research in this thesis dealt with the investigation of multiscale digital remote sensing
data for the assessment of change in the rural-urban fringe. The principal objective was
to evaluate data from a range of sensors and develop a change assessment and
representation technique derived from supervised and unsupervised classification

approaches.

Digital image data from Landsat MSS, Landsat TM, SPOT HRV and IRS1-D satellites
were selected for analysis. Geometric evaluation of all datasets was undertaken, and
standard classification techniques were used to extract land cover information from the
Landsat MSS, Landsat TM and SPOT HRV data. Comparisons of supervised and
unsupervised classifications at two levels of detail were evaluated to establish the
optimum classification approach and level of interpretation for each dataset. A method
of integrating multiscale change information was developed to provide continuity of
change information between the various data sources, and investigations were

conducted to establish the extent and distribution of errors in the interpreted data.

The study area for this research comprised parts of the City of Melville municipality,
located approximately |1 km southwest of the city centre of Perth, Western Australia.
The study area is approximately 1 850 ha of gently undulating coastal plain. In 1972
the area was located on the southern fringe of the Perth metropolitan area and has since
been incorporated as portions of the dormitory suburbs of Winthrop and Murdoch as

Perth gradually expands.

Raster-based IDRISI software was used for all image processing and geographic data
analysis, and vector-based Microstation was required for import of reference data

following photointerpretation of land cover boundaries.

The study comprised the following major components:

(1) Review the use of remote sensing for information extraction applied to temporal
assessment, focusing on the spectral and spatial resolutions of satellite sensors
and how these affect image interpretation. Evaluate the classification accuracy,

spatial and thematic error propagation and change reporting;
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(i1) 'Compile relevant Landsat MSS, Landsat TM, SPOT HRV and IRS1-D satellite
data for the study area in formats suitable for analysis. Interpret aerial
photographs for each satellite image acquisition date for use as ground reference
data;

(iii)  Geocode all satellite data to the AMG using digital planimetric data provided by
DOLA and MRWA, and evaluate rectification accuracy using independent
control points for verification;

(iv)  Define land cover classes suitable for multiscale assessment based upon a
standard classification system and considering the spectral and spatial resolution
of the satellite data. Select and refine training sites for image classification;

(v} Assess the accuracy of each classification of the multiscale satellite imagery and
evaluate the allocation of classes considering variations in spatial resolution;

(vi} Determine the land cover changes between epochs and evaluate change
representation for multiscale satellite data by analysing the change matrices and
their accuracy parameters;

(vii) Summarise the changes observed between sensing epochs and develop methods
to compare classifications between datasets at multiple levels of abstraction and
information content;

(viii) Evaluate the effect of combined spatial and thematic errors on change
representation, and investigate appropriate methods for error modelling and

assessment.

8.1.1 Multiscale Assessment

Integration of multiscale data relies upon harmonisation of the spatial and spectral
propertics of the images. Spatial integration is based upon image rectification and
requires spatial coincidence of the separate datasets to be established in order for
comparisons to be made between images collected at different times. Spectral
integration involves the extraction of the required class information from each image for

the assessment of change.

Rectification of images ranging in resolution from 79 x 56 m to 5.8 x 5.8 m was
required. Potential variations in sensor altitude, attitude, stability and calibration affect
the quality of rectification results, however first order polynomial modelling was

appropriate to correct for these influences in all data except the high resolution IRS1-D
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data, which required a third order polynomial rectification model. A priori estimates of
GCP RMSE were in the order of 0.3 - 0.4 pixel at the original resolution of each dataset,
and a posteriori estimates for independent check points varied between 0.4 and 09
pixel. These results meet the established standards of 0.5 - 1.0 pixel and provide a

sound geometric basis for change assessment.

Multiscale comparison required all images to be resampled to the same pixel dimension.
This was implemented using nearest neighbour resampling to the smallest pixel
dimension of the multispectral data, which was equivalent to the 20 m SPOT HRYV data.
Image displacement during resampling was minimised for all datasets by using the 20 m
resampling interval. Resampling to the smallest pixel size maintained the overall
quality of the data, and minimised the spatial degradation of the coarse resolution
Landsat MSS data as it was transformed from the off-meridian imaging geometry to the

map grid oriented resampling grid.

The IRS1-D data were not used in the change assessment process and were resampled
using nearest neighbour techniques to 5 m pixels. A third order polynomial provided an
a posteriori RMSE of 0.55 pixel, indicating that standard polynomial rectification

approaches are also applicable to this high resolution sensor.

At resolutions ranging from 20 m to 79 m the level of detail evident in the images
varied considerably. Resampling of these multiscale images equivalent to the highest
resolution spatial data accommodated these variations and enabled extraction of

information relevant to the scale of data acquisition for each satellite.

8.1.2 Multitemporal Assessment

Interpretation of multiscale satellite data was investigated to take advantage of a range
of current remote sensing satellites capable of producing continuous data streams, and
to develop an approach for integration of historical satellite data for change detection.
Multitemporal assessment normally relies on the comparative analysis of corresponding
images acquired by the same sensor. Maintenance of standard data acquisition
parameters and sensor characteristics are generally the main argument for this
restriction. This study specifically investigated multitemporal analysis of data from

different sensors to develop techniques to overcome these limitations.
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Spectral and radiometric variations limit the scope for direct integration and comparison
of multitemporal data from different sensors. Most research utilises image algebra and
spectral transformation techniques for change detection, without considering the
opportunities provided by multiscale satellite data.  This study investigated the
implications of utilising multiscale data and determined that postclassification
comparison is the most appropriate approach to employ with these data. The
multisensor approach results in the incorporation of data with different radiometric
response patterns and calibration standards, a disparate range of spectral bands and
significant variations in spatial resolution. Postclassification comparison is the only

standard image processing approach able to accommodate these variations.

8.1.3 Reference Data Collection

Collection of reference data is an important component of remote sensing analysis as it
forms the basis on which decisions regarding processing approaches and interpretations
are based. Relevant parameters for reference data collection include the temporal
relationship with the primary remote sensing data, as well as the comparative level of

thematic detail and spatial accuracy.

The primary remote sensing data were collected over a 19 year period from 1972 to
1991. Strong reliance was placed on utilisation of existing sources of reference data.
The reference data were mainly panchromatic and colour medium scale aerial
photographs acquired primarily for topographic mapping purposes. These photographs
have been routinely acquired annually at approximately the same date each year. The
satellite data were selected subject to availability from existing archives, and
discrepancies between the time of reference data collection and satellite data acquisition

of up to six months occurred.

Aerial photographs were acquired from DOLA immediately before and after each
sensing epoch, and compared to establish the nature and magnitude of changes during
the period that the satellite data were acquired. While it was impossible to provide an
interpretation which was correct at the time of satellite overpass, the potential errors in
the reference data were recognised. Additional errors in the interpretation of the
reference data were possible, but because it involved historical land cover data no

independent information was available to verify the accuracy of the reference data. The
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extent of error in historical reference data is often indeterminate and may have a
significant (but unknown) influence on the evaluation of the thematic accuracy of the

interpretation.

Reference data for GCP extraction were obtained from various sources including
1:100 000 topographic maps (Landsat MSS), digital planimetric maps equivalent to
1:25 000 scale (Landsat TM and SPOT HRV) and digital road centreline data equivalent
to approximately 1:10 000 scale planimetric maps (IRS1-D). The use of 1:100 000
topographic maps for extraction of GCPs for Landsat MSS data potentially degraded the
quality of the image rectification, but for all other images the accuracy of reference data
was not a limiting factor. The lower precision of GCPs extracted for the Landsat MSS
data may have adversely affected the rectification of these data as reported in Section

8.1.1.

Derivation of error-free reference data over large areas, at high sampling densities and
from historical information is difficult to achieve, however techniques adopted in this
study were designed to minimise the extent of reference data errors. Where thematic
errors in reference data can be quantified, they should be included within the error

modelling process.

8.1.4 Image Classification

Supervised and unsupervised classification procedures were evaluated in this rescarch
for the purpose of providing an optimum classification of the multiternporal satellite
data. Both techniques were applied as a means of investigating a limited range of
classification algorithms commonly used in practice, whereas the remote sensor data
were derived from a wide range of sensors. Both algorithms provided similar results

with Overall Classification Accuracies in the range of 60 — 80 percent.

Investigation of target characteristics indicated that the selected classes showed least
spectral separation in the Landsat MSS data, with Landsat TM and SPOT HRV showing
progressively greater spectral separation. Supervised classification relied on analyst
guidance for identification of training pixels, while unsupervised classification used the

I[SODATA self organising clustering algorithm to separate the data into discrete
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clusters. Subsequent class identification enabled allocation of clusters to each land

cover class.

As a result of unsupervised classification there were no clusters allocated to some land
cover classes. This indicated that for some classes identified in the reference data and
during supervised training of the classifier, the sclected classes were not spectrally
separable using unsupervised classification. Close attention needs to be paid to the
definition of land cover classes so that they have relevant and identifiable spectral
characteristics. The relationship between spectral characteristics and information

content is a fundamental tenet of image classification systems.

In a similar manner, unsupervised classification of the data revealed that residential and
urban classes were the most spectrally diverse land covers requiring the most clusters
for representation at both Level T and Level I In each case the classification of the
classes was also consistently high. Careful attention needs to be paid to the derivation
of training sites for supervised classification of these complex classes and an adequate
level of clustering must be used in unsupervised classification to provide complete

description of each class.

8.1.5 Classification Accuracy

A stratified random sampling approach was used to assess the correspondence between
the classified satellite image and the land cover map produced from the reference data.
The sampling rate was determined by providing for a minimum number of samples for
cach area and enabled a statistically valid assessment of classification accuracy to be

made,

The objective was to compile a reference map at a level of detail relevant to the satellite
data under investigation and the classification level employed. This required
consideration of the spatial resolution of the sensor when determining the minimum
mapping unit for the reference map. Visual comparison of the Landsat MSS
classification and the corresponding reference data map indicated the level of spatial
detail in the reference data was too high because features such as unmade roads
included in the reference data were too small to be resolved in the satellite data. Further

spatial generalisation of the reference data may be required to resolve this issue.
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Pixel by pixel assessments of classification accuracy were undertaken in preference to
generalised area-based estimates. Analytical techniques such as the Kappa Coefficient
were used in conjunction with descriptive approaches such as the Overall Classification
Accuracy for assessment of classification accuracy. Generally Kappa indicated
moderate to substantial levels of agreement were achieved between the classified
satellite data and the reference data. Kappa provided a more comprehensive analysis of
classification accuracy and enabled the statistical comparison of results of classification

approaches to identify an optimum approach.

Classifications were undertaken on all datasets at both Level I and Level IT using
supervised and unsupervised classification algorithms. ~ Comparisons between
algorithms at Level I indicated that no significant difference existed between the
supervised and unsupervised approaches for any of the datasets. At Level II no
significant difference existed for classification of Landsat MSS data, however
differences between the results achieved from the two algorithms for the Landsat TM
and SPOT HRYV datasets were due largely to the inability of the unsupervised classifier

to allocate any clusters to some land cover classes.

Consideration of classification accuracies between satellite datasets and also between
levels of classification for each dataset indicated that differences were less than
expected.  Evaluation of the pattern of classification errors through spatial
autocorrelation and analysis of the compactness of the land cover classes indicated that
spatial complexity and associated boundary identification were major factors affecting
classification accuracy in the Landsat TM and SPOT HRYV images. The substantial
increase in spatial complexity of the land cover patterns mitigated against any
improvement in classification accuracy expected to result from the finer spatial

resolution of these sensors.

Analysis of classification uncertainty for the supervised classification of the Landsat
TM data established that up to one third of the pixels were classified with an uncertainty
of 50 percent or more, indicating low confidence in many class allocations and high
potential for misclassification of these pixels. Inability of the unsupervised

classification algorithm to recognise some land cover classes reinforced this finding.
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8.1.6 "Change Assessment and Change Representation

The accuracy of change assessment was performed in the same manner as the accuracy
assessment of individually classified images. Stratified random sampling of the change
image and reference change map were compared pixel by pixel and change statistics
computed. The change error matrix increased in size according to the product of the
number of classes in the component images, with the result that evaluation of the Kappa
Coefficient became a significant computational overhead. In the case of the change
accuracy assessment of Level 1I classifications, the Overall Change Accuracy was used
in preference to the Kappa Coefficient due to the large dimension of the change matrix.
The Overall Change Accuracy provided an inferior, but adequate assessment tool in this

situation.

Change representation involves the measurement and communication of changes in land
cover classes between sensing epochs. The methods of change representation that were
investigated included change summaries involving calculation of total areas of land
cover change, change maps that provided a visual assessment of change and change
matrices that demonstrated change areas on a class by class basis. No single method
was universally appropriate, however the combination of change maps and change

matrices provided the most comprehensive statement of temporal change.

Development of an approach to integrate multiscale datasets was an important
consideration in the change analysis process. Understanding the importance of
maintaining a hierarchical classification scheme resulted in the seamless comparison of
multidate Level I and Level II classifications. Integration of the classifications at two
levels enabled combined change analysis involving data from both the Landsat MSS
and Landsat TM sensors, while maintaining the quality and integrity of the individual
datasets. Combined analysis provided an effective means of tracing land cover
evolution throughout the period of data collection, and enabled the effective comparison
of multiple datasets observed at spatial resolutions ranging from 20 m through to 79 m.
Similar approaches could be used to compare classification results obtained from any
pair of sensors regardless of spatial resolution, provided a hierarchical classitication

scheme is utilised.



8.1.7 Spatial and Thematic Error Propagation

Analysis of error modelling and propagation in remotely sensed data involves a
complex consideration of spatial and thematic error components. Both of these
components may be contributed by the primary remote sensing data or by the reference
data. During the change assessment process the propagation of spatial errors within the
component land cover images was analysed using the general law of propagation of
errors. For comparison of Landsat MSS and Landsat TM data a total spatial error of
68.6 m was estimated, while for the SPOT HRV and IRS|-D comparison the error was
estimated to be 14.4 m. At both extremes of the analysis these values represent
significant quantities and, through displacement of the images, can cause substantial

errors in change estimates.

Reference data errors should not be the limiting factor in change analysis, however the
magnitude of photointerpretation errors contributed by the reference data dominated the
error budget. Control of these errors and recognition of their presence is essential for
effective application and assessment of the resultant change information. Spatiat errors
may only be restricted to appropriate levels through stringent control of error sources at
each stage of the analysis. When dealing with remote sensing imaging systems
climination of errors is not feasible, but knowledge and control of their magnitude must

be a priority.

Land cover change assessment was performed using the AND operator, which is a
logical (Boolean) operation. The general law of propagation of errors is not applicable
to analysis of thematic errors in a Boolean model, and a specific error model must be
derived for each Boolean operation. A probabilistic error model was utilised for error
propagation analysis and indicated that errors were spatially dependent between the
classified layers. This conclusion is in line with expectations and supported by the

spatial distribution of errors observed along the class boundaries.

The global approach to error propagation using probabilistic methods was of limited
evaluative and diagnostic application due to the absence of class-specific spatial and
thematic error assessment. The technique relies upon image-wide classification

accuracies such as the Kappa Coefficient, which do not differentiate between the error



265

components of location or class label. More specific approaches such as Monte Carlo

simulation should be investigated.

This research has provided a means for extracting land cover information for the rural-
urban fringe using a range of medium resolution multispectral data and integrating the
results, despite differences in the level of detail available from each dataset. This
approach will be useful as an increasing number of remote sensing satellites are
launched and the data are utilised for a wide variety of applications. The analysis of
spatial and thematic errors provides a detailed understanding of quality issues associated
with spatial data management and will be useful in the assessment of future mapping

and change assessment products.

8.2 Recommendations

The research program was designed to thoroughly investigate the objectives of the
study. The results from the research concluded that this investigation identified a
coherent method of producing change detection information from multiscale satellite
data in a manner that permits meaningful comparisons to be made between
classifications derived from different remote sensing systems. During the

implementation of this research several limitations were identified.

8.2.1 Data Sources

Satellite remote sensing data commonly used for land cover interpretation and
assessment range from low resolution (1.1 km) NOAA Advanced Very High Resolution
Radiometer (AVHRR) through to medium resolution (20 m) SPOT HRYV data. Recent
developments in satellite sensing systems have resulted in the commercial availability
of remotely sensed data with spatial resolutions in the order of one to three metres. A
wide range of data sources is therefore available for interpretation and monitoring, each

with its own spectral and spatial qualities.

Data from these new high resolution satellites should be further investigated to establish
the information content and relevance to assessment of land cover change in the rural-
urban fringe. These satellites are capable of expanding the range of spectral bands,
level of detail (scale) and temporal availability of information. Constant evaluation of

new data sources will ensure the continuity of monitoring data for earth surface features.



The geometric qualities of these data need to be investigated and assessments made of
appropriate approaches to image rectification. Lower orbit paths are subject to
increased disturbance, and smaller pixels with greater sensitivity to geometric distortion
may require more sophisticated techniques beyond the polynomial modelling approach
utilised in this study. Such techniques have been developed for use with aircraft
multispectral scanner data and may be useful for minimising spatial errors in high

resolution satellite data.

The time of acquisition of satellite data was not considered as a serious issue during this
study as independent classification of each sensing epoch was undertaken. Improved
classification results may be achieved if the phenological cycles of land covers such as
Grassland, are considered during data selection. This may enable superior separation of

the Grassland, Recreation and Woeodland classes.

The ability to accurately interpret satellite data is dependent on timely and relevant
reference data. Reference data must be acquired close to the sensing date such that
changes from the date of acquisition are minimised, and at a scale that provides
sufficient information to assist interpretation and minimise the propagation of errors,
but not so detailed as to distract attention from the primary interpretation purpose. The
acquisition of timely and accurale data to specifically provide relevant reference data

should be given serious consideration.

8.2.2 Classification Methods

Standard supervised and unsupervised classification algorithms were applied to the
interpretation of the remotely sensed data. The classification results achieved in this
research were identified as providing moderate to substantial levels of agreement with
the reference data. These represent a level of classification accuracy that is adequate for
change assessment, but improved results are highly desirable. Further research should
be performed to evaluate the wide range of algorithms available for interpretation of

land cover change information.

This research indicated moderate levels of uncertainty in the allocation of pixels to
classes when the maximum likelihood decision rule was implemented for supervised

classification. Many pixels exhibited at least moderate levels of multiple class



membership due to confusion resulting from the definition of the spectral classes, or
because of the spatial complexity of the targets. More sophisticated classification
approaches that include fuzzy membership principles or incorporate the evaluation of

ancillary data to discriminate targets should be investigated.

Unsupervised classification indicated that some classes selected for interpretation were
not spectrally separable in the satellite data, even though they were identifiable in false
colour composite images and formed independent classes when evaluated in the
reference data. Detailed examination of the spectral separability of land cover classes

needs to be undertaken prior to final design of any classification scheme.

8.2.3 Error Modelling

Modelling of errors within remote sensing and GIS analyses is essential for the
evaluation of the quality of interpretation products. Consideration of the spatial and
thematic components of the analysis is required for a complete understanding of error
propagation within the data. This research evaluated the components contributing to
propagation of spatial errors using deterministic techniques, and applied a global error
(probabalistic) propagation approach to the evaluation of thematic errors produced as a

result of logical modelling of the data.

An integrated spatial/thematic approach to error modelling is required that provides a
coherent analysis of the interrelationships between these two distinct sources of error.
With multiscale data the variable impact of correlated errors derived from image
rectification, boundary location and thematic classification, that are convolved through
both the interpretation of the primary remote sensing data and the reference information,
results in a complex combination of error components. It is clear that standard
deterministic and probabilistic approaches, applied separately to spatial and thematic
components, are inadequate for the task, and further research is required to evaluate the
effectiveness of techniques such as the analysis of errors using fuzzy modelling and
Monte Carlo simulation. The models used to introduce the perturbations into the
simulation process also require particular scrutiny to establish their relevance to the

data.
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Investigations should also be made to determine the feasibility of developing
spatial/thematic error modelling as an integral part of GIS software systems and the
potential for real time error modelling. This facility will assume greater importance as
data from disparate sources and with varying levels of reliability are compared as part of

change assessment and other modelling processes.

8.2.4 Interpretation Standards

Planimetric standards for compilation of topographic maps are well established and
clearly defined using straightforward statements of horizontal and vertical accuracy.
Standards for production of thematic products are less well developed. Thematic
standards require a thorough statement of planimetric accuracy, as well as the level of
thematic interpretation and its corresponding nearness to the rruth as derived from the

reference data.

Research in this study highlighted the lack of definitive statements of quality attached to
thematic interpretations. This was indicated by the diverse range of interpretation
results derived from similar datasets at corresponding classification levels, but due to
the inherent low spectral separability and spatial complexity of the land cover classes
present in the area, comparable levels of interpretation quality were not achievable. For
example, a Level 1l classification between Pine plantation and Urban is much easier to
achieve than a Level II classification between Pine plantation and Woodland. Further
research is required to define a thematic classification assessment standard that can
provide a meaningful quality measure relating the level of classification to the spatial

and spectral complexity of the target.

Evaluation standards do not need to be stringent, however benchmarking is required to
establish the credibility of satellite-derived thematic data and to provide a basis for
comparison between analyses, especially where regional and global resource surveys

are involved.

This study has provided an insight into the potential for the combination of data from
various remote sensors in an evolving climate of increased choice of satellite systems,
and increasing uncertainty of a long term data stream from any particular sensor. The

foundation has been established for integration of multiple datasets for land cover
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mapping and change assessment, and the potential for continuous long term monitoring

using established and future data acquisition systems has been shown.
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