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Abstract: The optimal control literature is dominated by standardcbfgms in which the system cost functional is expressed
in the well-known Bolza form. Such Bolza cost functionalsisist of two terms: a Mayer term (which depends solely on
the final state reached by the system) and a Lagrange integnal(which depends on the state and control values over the
entire time horizon). One limitation with the standard Bolzost functional is that it does not consider the cost of rabnt
changes. Such costs should certainly be considered whamatespractical control strategies, as changing the cbisignal

will invariably cause wear and tear on the system’s acutatéwccordingly, in this paper, we propose a new optimal aintr
formulation that balances system performance with contaolation. The problem is to minimize the total variationtbe
control signal subject to a guaranteed-cost constraitethsures an acceptable level of system performance (asiraddsy a
standard Bolza cost functional). We first apply the contesbmeterization method to approximate this problem by asmooth
dynamic optimization problem involving a finite number otdgon variables. We then devise a novel transformationgutare

for converting this non-smooth dynamic optimization pehlinto a smooth problem that can be solved using gradiesgeba
optimization techniques. The paper concludes with nurabexamples in fisheries and container crane control.
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1 Introduction general algorithm is developed in [4] for solving consteain
optimal control problems in which the cost functional ex-

The standard optimal control problem is well-known to plicitly penalizes control changes. An alternative altfori

researchers in control theory. This problem involves choosfor solving the same class of problems is given in [5]. The

ing a control input S|gnal fora given (_lenam|c system s th.atalgorithms in [4, 5] are based on the concept of control pa-
the system evolves in the best possible manner. One limita-

. ; . : rameterization, whereby the control signal is approximate
tion with the standard optimal control framework is that the : vhereby . !9 PP
; ) : : by a linear combination of basis functions [6, 7].
cost of changing the control signal is usually ignored. For : .
: . : In references [4, 5, 7], the cost functional consists of two
example, in the classical Mayer optimal control problem,

) . arts: the traditional Mayer/Bolza cost and a total vaoiati
where the system cost is expressed solely as a function C{?
a

! erm that measures the cost of control changes. The rela-
the final state reached by the system, two control laws thaf.” . . : : S
) . . ive importance of each term is adjusted via a weighting fac-
drive the system to the same final state will have the sam

. . r; however, precise rules for ch ing this weightin
cost—even if one of them is constant and the other fluctu—0 ; however, precise rules for choosing this weightingdac

) . hav vel . Inthi r, we aim ircum-
ates wildly. Thus, the standard optimal control framework ave yet to be developed this paper, we aim to circu

T . vent this difficulty by exploring an alternative formulatian
does not distinguish between these two controls, despite th_ . y by exploring an att .
. : o which the control variation is minimized subject to an upper
constant control law being preferred in applications.

o . bound on the traditional Bolza cost. Thus, we seek a con-
Whether it is wear and tear on mechanical components - o e .
. . . “trol of minimal variation that satisfies a given performance
losses in workforce productivity due to company policy

. 7 . requirement on the system (in the traditional Bolza sense).
changes, or transaction costs in investment portfolicaeth : . )
. : . . . The paper is organized as follows. In Section 2, we de-
is always a cost associated with changing the control action

Thus, it is important to consider such costs when designin fine the problem under consideration. In Section 3, we ap-
" P P 9 gpIy the control parameterization method to obtain a class of
an optimal control strategy. Indeed, an “optimal” strateg

y . .
S LT . . . non-smooth roxim roblems. In ion 4, w -
that is highly volatile will be of little use in practice. on-smooth approximate problems Section 4, we de

: . velop a transformation technique for converting the approx
We are only aware of several references in the optimal P d 9 PP

. ) imate problems in Section 3 into smooth problems that can
control literature that consider the cost of control change P P

: . o .~ be solved using conventional dynamic optimization meth-
References [1, 2] discuss theoretical conditions for sgjvi . 'hg con y P
. . . : . ods. Finally, in Section 5, we apply the proposed approach
optimal control problems in which the cost functional in-

- . to example problems in fisheries and container crane control
cludes a total variation term to penalize control changes.

Reference [3] presents an algorithm for solving a simple2 Problem Statement
class of optimal control problems in which the control sig-

nal can assume only two possible values, and there is a cost
associated with changing from one value to another. A more z(t) = f(x(t),u(t)), te][0,T], 1)

.’B(O) = mO, ()

Consider the following nonlinear control system:

This work was supported by the National Natural Science Hation
of China (International Young Scientists Research Fund0130208) and . . .
the State Key Laboratory for Industrial Control TechnolaatyZhejiang Wherea’(ﬁ) € R" is the state at time, u(t) € R" is the
University, China (Open Research Project ICT1301). control at timet, 2° € R” is a given initial state7” > 0 is



a given terminal time, angf : R™ x R" — R™ is a given  Let F denote the set of ath € U/ satisfying (6). We now
continuously differentiable function. state our optimal control problem as follows.
Let w; : [0,7] — R denote theith component of the

vector-valued control signak : [0,7] — R. Then the Problem P. Chooseu € F to minimize the total variation

total variationof u; is defined by T
T m J(u) = \/u
Vi =sup Y |uilty) —uilt; 1)), ®3) 0
0 j=1

Note that it is possible to include additional constraints
where the supremum is taken over all finite partitions within the framework of Problem P—for example, path con-
{tj}7o C [0, T] satisfying straints on the state variables. However, we ignore such con

straints for simplicity.
O=to<ti < - <tmo1 <tym=1T.

Clearly, the total variation defined in (3) is always non- 3 Control Parameterization

negative. Moreover, the total variation is zero if and only The major difficulty with Problem P is that there is no

if u; is constant. closed-form analytical formula for computing the totalivar
The total variation of the vector-valued control signal ation of w. In this section, we will apply the control pa-

u: [0,T] — R" is defined as the sum of the total variations rameterization method [6] to approximaieby a piecewise-

of its components: constant function in which the heights and discontinuity
T - points are decision variables to be selected optimally. As w
\/ w— Z \/ u;. will see, under.thls approximation scheme, the total vmn_at
0 N reduces to a simple formula that can be computed easily.

Letp > 2 be a given integer. We approximate the control

Note that the total variation measures the extent to whieh th signal as follows:

control signal changes during the time horizon—the more

change, the higher the total variation. If the total vaoatbf ult) muP(t) =oF, tem1,m), k=1,....p, (7)
u is finite, then we say that is of bounded variation
We impose the followindpound constrainten u: wherec* is the approximate value of the control signal on

the subintervalr;,_1, 7). Both the control values* and

i <ui(t) <b;, t ), i=1,...,r 4 _ . - .
a; < uift) < €1, 7 " ) the subinterval end-points, are decision variables. The

whereq; andb;, i = 1,...,r, are given constants. Any func- subinterval end-points satisfy the following constraints
tionw : [0,7] — R” of bounded variation that satisfies the
bound constraints (4) is called admissible control Let/ Te —Th—12€ k=1,....p, (8)

denote the class of all such admissible controls.

We assume throughout this paper that for each admissibl&/herero = 0, 7, = T, ande > 0 is a constant. LeT denote
controlu € U, system (1)-(2) admits a unique Carathéodorythe setof allr = [ry, ..., 7,1]T € RP~" satisfying (8).
solution. Letz(-|u) denote this solution. Define

Consider the following well-knowBolza cost functional L T T .
o=(c",...,o")=["),....(e")"] eR". (9)

T
g(u) = ‘<I>(m(T|u))/+/0 Ll(tlu),ut)dt,  G) |5 view of (4), the control values in (9) must satisfy

Final cost

Running cost

aigafgbi, i=1,....,7, k=1,...,p. (10)

where® : R® — Randf : R" x R" — R are given

continuously differentiable functions. Such cost funatio LetS denote the set of alr = (o, .., 07) € RP" satisfy-

als are commonly used in the optimal control literature toing the bound constraints (10).

evaluate system performance. The standard optimal control For eachr € T, define

problem involves choosing an admissible contioE U to

minimize (5). However, this standard problem does not con- Ti(r) = {[Tk1,7k), ifk=1,...,p—1,

sider the cost of control changes; thus, the “optimal” caintr [Tk—1,7k), ifk=p.

could be a volatile control strategy that is difficult—and po

tentially dangerous—to implement in practice. Then the approximate control in (7) can be written as
We propose a new approach in this paper. Instead of min-

imizing (5), we minimize the total variation of the control pie p B P & 11
signal subject to an upper bound on (5). In other words, we ul(t) = u(t|T,0) = Y 0 xz,(n) (1), (11)
seek a control ofuaranteed-coghat has the smallest pos- k=1

sible total variation. wherer € T, o € S, andxz, (-) : R — Ris the character-

Let A" denote the maximum Bolza cost. Then our isiic function defined by
guaranteed-cost constrairg expressed as follows:
T = 1, ifteZy(r),
B((T|u)) + /0 Cla(tlu), u(t)dt < A", (6) Xz ® =90 Cherwise



It follows from Theorem 3.1 in [7] that

\/up(-|7',0')
0

wheres” denotes théth component o&”. This implies that
u?(-|T, o) is an admissible control for Problem P.

Sincee > 0, it follows from (8) that{r.}}_, is a valid
partition of [0, T'] satisfying

r p—1

SHITEE

i=1 k=1

aﬂ < 00, (12)

O=mo<m < <Tp1 <71 =T.

Thus, in view of equation (3),

\/u?(.lT’U) = Z |uf (i) — uf (1))
0

k=1
p—1

=2 ot =],
k=1

whereu? (-|7, o) is theith component ofs” (|7, o). Hence,

T r p—1

\/ (|7, 0) ZZ ‘U’”l ai . (13)
0 i=1 k=1

Combining (12) and (13) yields
T r p—1
\/up(-|T,0'):ZZ‘UfH—Uﬂ. (14)
0 i=1 k=1

Substituting the piecewise-constant control (11) intodize
namic system (1)-(2) yields

p

Zf

z(0) = a:o.

XIk(T)( ) € [O’T]v (15)

(16)

Let 2?(-|T, o) denote the solution of (15)-(16) correspond-

ingto(r,0) € T x S.
The guaranteed-cost constraint (6) becomes

(2(T|7,0))

+ Z/ L(zP(t|7,0),0")dt < A*.
Tk—1

LetT" denote the set of all paifs-, o) € 7 xS such that (17)

(17)

is satisfied. Then based on equation (14), Problem P can be Lety(|

approximated by the following finite-dimensional optimiza
tion problem.

Problem Q. Choose a paifr, o) € I' to minimize

T r p—1

P(|r, o) ZZ‘UfH O‘i .

0 i=1 k=1

JP(1,0) =

Let (7*,0*) € T be an optimal solution of Problem Q.
Thenw?(-|7*,0*) is a suboptimal control for Problem P.

Various convergence results are available to show that the
cost of the suboptimal control generated by control parame-

4 Problem Transformation

There are two main challenges with solving Problem Q:
(i) the cost function/? is non-smooth; and (ii) the dynamic
equations in (15) have discontinuities at the variable time
pointsty, k = 1,...,p — 1. Itis well-known that numerical
optimization algorithms struggle to optimize variable ¢im
points [6]. Thus, in this section, we will develop a trans-
formation procedure for converting Problem Q into a new
problem that is easier to solve.

Let O denote the set of al = [0y,...,6,]" € R? such
that
9/@26; kzla"'7pa
h+--+0,=T,

wheree > 0 is the minimum duration between control
switches and” > 0 is the terminal time. Define

¢=(y,v!, .. 0P Lwt, . wP) e REPTUT D (18)
wherevy € R”, v¥ € R", w* € R", and the round bracket

notation has the same meaning as in (9). Furthermore, define

functionsy® : R2P—Dr  R" k=1,...,p, as follows:
p—1
k C):’Y+Z(vl_wl)7 :15 Dy
=k

where( is as defined in (18). LeE denote the set of aff
defined by (18) with
oF >0, wF>0, i=1,...,n

) 3

and

a; <YFC) <bi, i=1,...
wherey¥(¢) denotes théth component ofy* (¢).

Consider the following dynamic system on the new time
horizon|0, p|:

P
)= S W(s), ¥ (O))xpp-10(s),  (19)
k=1
y(0) = z°, (20)
where(60,¢) € O x Z is a given pair.
6. ¢) denote the solution of (19)-(20) correspond-

ing to (6, C) € O x Z. Furthermore, leE denote the set of
all (8,¢) € O x Z satisfying the following constraint:

p k
By(pl6.0) + > / BLL(y(s16, ¢), w*(C))ds < A”.
k=17k-1

We now define a new optimization problem as follows.
Problem R. Choose a pai(6, ¢) € = to minimize

r p—1

= ZZ(UZC + wf)

i=1 k=1

terization converges to the true optimal cost as the nuntber o

subintervals approaches infinity. See [7] for the latestkwor

in this area.

Unlike in Problem Q, the cost function in Problem R is
differentiable. Moreover, the discontinuities in the dymes



(19) occur at the fixed integess=1,...,p — 1, notat vari-  Combining (23) and (24) gives
able time points. Thus, Problem R is much easier to solve
than Problem Q. In fact, Problem R can be solved readily
using the dynamic optimization techniques described in [6]

We now prove that any solution of Problem R can be used to

(k|0

var()+ Y [

i1 uk-116)

L(P(t),$"(¢))dt

construct a corresponding solution of Problem Q.
First, for eachd € O, define

Ls]

(s 0)229l+9LSJ+1(5_ [s]), € [0, p],
I=1
wheref, 1 is arbitrary. Clearly,
u(k|6) = Zol, =0,...,p. (21)
For eachd € O, define
- T _
7(6) = [1(1]6),...,p(p - 1|0)] € RP".
From (21), we obtain
((k|0) — p(k —1|0) =0p 2 ¢, k=1,...,p.

This shows that the components#(f) satisfy (8). Hence,
7(0) € T foreachd € O.
Now, for each{ € Z, let

a(¢) = ('(C), .

PP(C)) € R,

where the round bracket notation has the same meaning as

in (9). We immediately see that(¢) € S. Thus, each pair
in O x Z generates a corresponding pairfinx S through
the relation(8,¢) — (7(0),6(¢)). Solving the dynamic
system (15)-(16) withr = 7(0) ando = &(¢) yields the
state trajectorg?(-|7(0), &(¢)). Our next result reveals the
relationship between?(-|7(0),(¢)) and the solution of
the new system (19)-(20).

Theorem 4.1. Foreach(0,¢) € O x Z,
Y(516,¢) = 27 (t17(0),5(C))| _ (10 5 € 105

Proof. Similar to the proof of Theorem 4.1 in [5].

s €

(22)
O

Theorem 4.1 shows how(-|@) links the dynamic system

in Problem Q with the dynamic system in Problem R. The

next result links the feasible regions of these two problems

Theorem 4.2. Let(0,¢) € O x Z be a given pair. Then
(6,¢) e Eifand only if(7(0),6(¢)) € T.

Proof. We writex?(-) instead ofz?(-|7(0),

(C)) andy(-)

instead ofy(-|@, ¢). Note thatu(p|@) =61 +---+ 6, =T.
Thus, it follows from Theorem 4.1 that
(¥ (T)) = (" (1))],_, 0 = WD) (23)

Moreover, using the substitutian= p(s|0),
/uwe)
w(k—110)

k
/,H9k£<mp<u<s|e>>,¢k<c»ds

L(@P (1), 9"(¢))dt

k
/kil 0k L(y(s), 9" (¢))ds. (24)

P (C))ds.

+Z/ 0, L(y

The result follows immediately from this equation. O
Our next result characterizes the solution of Problem R.

Theorem 4.3. Let (0*,¢*) € = be an optimal solution of
Problem R, where

1,%

Cr=(yr, ol P L wP ). (25)
Then

kyx  kyx .

v, w" =0, i=1,...,r, k=1,...,p—1. (26)

Proof. Suppose that (26) is violated for somandkz. Let
J1 denote the set of paifg, k) such thatv “w,”" >0, and

let 7> denote the set of pairg, k) such thah)f *wf* =0.

Sincev”* andw!"* are both non-negative,
leJQ - {1;--'7T} X {177p_1}
Define
k max{v* —w®* 0}, if (i,k) € T,
[ A—
‘ vk, if (i,k) € Ja,
k max{w™* —o¥* 0}, if (i,k) € T,
w; =
o wh, if (i,k) € Ja.
Furthermore, define
é:(7*7ﬁ157ﬁp7151‘b17 N 7’lbp71),
whered® = [0k, ... o%]T andw® = [@F,...,@F]T. We
have
oF —f =P —wP =1, k=1, p—1
Hence, foreackh = 1,...,p,
p—1
SR
I=k
p—1
=7+ =9"(¢").
=k
It follows immediately that € Z. Furthermore,
y(s167,{) = y(sl6",¢"), s €[0,p].
Thus, sincé6*, ¢*) is feasible for Problem Rp*, {) is also

feasible for Problem R

Now, recall thatv!* and w/>* are both non-negative.
Hence, if(i, k) € Ji, thenv®* > 0 andw®* > 0. This
implies that

w0} + max{w™* — vF*, 0}

Uk,* + ’LUf7*

k
max{v, "
_ ’ kv

Ui

of + 0




Consequently, we have the following implication:

(i,k)eh = oF4aFf <ol 4w

Thus, by our assumption thaf # 0,
r p—l
=1 k:l
= @F +af)+ > (O w)
(i,k)ET1 (i,k)ET2
r p—1
=1 k:l

But since(8*,¢) € E, this contradicts the optimality of
(6*,¢*). Thus, our assumption thaf; # 0 is false. It
follows that equation (26) must hold for alandk. O

We now prove our main result: that a solution of Prob-
lem R can be used to generate a solution of Problem Q.

Theorem 4.4. Let (0*,¢*) € = be an optimal solution of
Problem R, wherg™ is as defined in equatio(25). Then
(7(0%),a(¢*)) is an optimal solution of Problem Q.

Proof. Theorem 4.3 implies that for each index péirk),

eitherv}”* = 0 orw>* = 0. If v}"* = 0, then sinces} ™ is
non-negative,
k, k% k% k, k,
|wi™ = o] = || = w = o W
Similarly, if w}”* = 0, then
k% k% k, k,* *
Jwi" = = | = =0 = +tw
Thus, foreachi=1,...,randk =1,...,p— 1,
|¢f+1(C*) 71/}5(41*)‘ _ ‘wi,* o i,* _ vi,* +wi’
It follows that
r p—1
TP(F(07),6(C) =D D [ (¢ — v (<)
i=1 k=1
r p—1
k,* k,* *
= (0" +w; ") =G(¢T). (27)
1=1 k=1

Now, let (7,5) € T be an arbitrary feasible pair for Prob-

lem Q, wherer = [7,...,7,-1]" and
g=(c'...,a").
Defined = [6;,...,0,]T € RP as follows:
ék:%k_%k—l, k=1,....p,

where7y = 0 and7, = T. Then clearly,d € O and
7(0) = 7. For eachk, definev® = [of,...,9%]" and
" = [wh, ..,k by

oF = max{cF — _k"'l,()}, i=1,...,7

wF = max{cFT —5¥ 0}, i=1,...,r

Furthermore, define

¢=(a",o,..., 0" L w', ... wP™) e RZPT,
Foreach =1,...,randk=1,...,p—1,
of — of = max{aF — 55,0} — max{aF*! — 5% 0}
=o; — o/ (28)
and
of +wf = max{aF — 77,0} + max{aF* — & 0}
|O’ — O’k+1‘ = |O’k+1 _f| (29)
Using (28), we obtain, foreadh=1,...,p,
p—1
PR ="+ ) (v — @)
=k
p—1
=+ (6! &'t =a"
=k

This shows tha& ({) = &. Hence( € Z.

Since(7,5) = (7(0),5(¢)) is feasible for Problem Q,
it follows from Theorem 4.2 thatd, ¢) is feasible for Prob-
lem R. Thus, (29) implies

r p—1

S [ok - of| = e

i=1 k=1

,0).

(30)

By combining (27) and (30), and recalling th{& ¢) is fea-
sible for Problem R, we obtain

JH(T(07),6(¢7)) = G(¢) < G(C) =

Since(7,6) € T was chosen arbitrarily, this shows that
(7(6*),6(¢*)) is optimal for Problem Q. O

Theorem 4.4 indicates that a solution of Problem Q can
be obtained by solving Problem R, a smooth dynamic opti-
mization problem. The resulting solution can then be used
to generate a suboptimal control for Problem P, our original
optimal control problem. Note that Problem R is a standard
problem that can be solved using existing techniques [6].

JP(7,5).

5 Numerical Examples

For numerical testing, we wrote a Fortran program that
solves Problem R by combining the optimization software
FFSQP [8] with the dynamic optimization techniques dis-
cussed in reference [6]. This program was used to solve two
example problems: one in fisheries and the other in container
crane control. The results are reported below.

5.1 Optimal Fishery Harvesting

Consider the fishery harvesting problem in reference [4].
The state equations for this problem are given below:

(1) = ao{(1 — u(t))z(t) — 2(1)*},
z(0) = zp,

tef0,1, (31)

(32)



wherez(t) denotes the fish population at timéas a fraction

of the carrying capacity of the environment);t) denotes . - 0.2100
the harvesting effort at time, 2o > 0 denotes the initial R 09105
population level, and, is a given constant. — Ruin= 0.2200
The harvesting effort (the control function for this prob- 0.9 ]
lem) is subject to the following bound constraint: \Un
0<u(t) <1, telo,1]. (33) =08l
So
In addition, the following state constraint is imposed te-pr
vent overfishing:
0.7t
$(t) 2 Tmin, € [07 1]7 (34)
wherex,,;, > 0 is a given constant.
The total revenue obtained from harvesting is given by 0.6; 02 0z 06 08 1
t
1
R= by (1 + ba(1 — =) )u(t)a(t
/0 € { 1( * 2( c ))u( )x( ) (a) Optimal fishing policy
— cru(t) — cou(t)? }dt,
o 0.45 ; ‘ ; ;
wheregy, <2, b1, b2, ¢1, ande, are constants. For the fishing — Ry = 0.2190
operation to be viable, a minimum amount of revenue must o.4al — Ruyin=0.2195 |
be obtained. Thus, we impose the followiggaranteed- — Bmin=0.2200
revenue constraint
0.43t
1
e b (1 + ba(1 — e M) u(t)x(t =
| et b - e uet) @9  Sod
—cu(t) — CQu(t)2}dt > Ruin,
0.41r
whereR,in is the minimum revenue threshold.
Our optimal control problem is defined as follows: o4l
Choose the harvesting functiar [0, 1] — R to minimize '
\1/ 0-3% 02 04 06 0.8 1
J(u)=\/u : Ty T '
0
subject to the dynamic systegBil)-(32) and the constraints (b) Fish population level
(33)(35). Fig. 1: Numerical results for Example 5.1.

Note that (34) is a continuous inequality constraint im-
posed at every point in the time horizon. Such constraints
were not included in the original problem formulation in
Section 2. Nevertheless, by using tt@nstraint transcrip- 5.2 Optimal Control of a Container Crane
tion method6], the techniques described in Sections3and 4 110 following dynamic equations describe the motion of

can be readily extended to handle problems with continuous, ge4 container being transported via crane in the Japanese
inequality constraints. Our Fortran program is based o thi port of Kobe [9, 10]:

approach.
We choose the following values for the model constants:

i1(t) = xa(t 36
do = 0.5, 20 = 0.45, Touin = 0.4, &1 = 1, &3 = 5, £1lf) = 24(d) (59)
La(t) = w5 (1), (37)
b1 == 14, bQ = 025, c1 = 02, Coy = 0.1. .
&3(t) = (1), (38)
Usingp = 10 for the number of subintervals ard= 10~° a(t) = ui(t) + onas(t), (39)
for the minimum subinterval duration, we solved the above .
: : . 5(t) = ua(?), (40)
optimal control problem for the following values &,,;,,:
. . ul(t) + Oégwg(ﬁ) + QIQ(ﬁ)IG (t) a1
Runin = 0.2190,  Rypin = 0.2195,  Rpin = 0.2200. wo(t) = - Ty ;o (41)
The optimal values for the total variation af in order of
increasinglyin, are wherez; is the container’s horizontal position; is the con-
J* =0, J*=0.05367, J*=0.15442. tainer’s vertical positiongs is the container’s swing angle,

x4 IS the container’s horizontal speed, is the container’s
As expected, the guaranteed-revenue constraint (35)@act vertical speed, ands is the container’s swing velocity. Fur-
at each optimal solution. The optimal fishing policies and thermoreu; andus are control functions for the crane, and
corresponding state trajectories are shown in Figure 1. a1 = 17.2656 anday = 27.0756 are model constants.



The initial conditions for (36)-(41) are

1'1(0) = 0, T2 (0) = 22, 1'3(0) = 0, (42)
$4(0) = 0, 1'5(0) = —1, 1'6(0) =0. (43)

Moreover, the terminal conditions are

21(9) =10, x2(9) =14, x3(9) =0, (44)

where the terminal time hereTs= 9. The control functions

uy andus are subject to the following bound constraints:

—2.83374 < uy(t) <2.83374, t€[0,9],  (45)
— 0.80865 < us(t) < 0.71265, te€[0,9.  (46)

There are also bound constraints on the container’s horizon

tal and vertical speeds:

lza(t) < 2.5, |zs(t)| <1, te[0,9.  (47)

In references [9, 10], the following Bolza cost functioral i

used to measure system performance:

9
g(ug,ug) = %/0 {mg(t)2 + xﬁ(t)Q}dt. (48)

This cost functional, which penalizes large container gijn ~
is motivated by safety considerations. Based on the Bolza 3
cost functional (48), we impose the following guaranteed-

cost constraint:

9
%/0 {wa(t)? + o (t)* }dt < A*, (49)

whereA* is the maximum allowable system cost. The op-

timal control problem is defined as follow&hoose control
functionsu; : [0,9] — R andus : [0,9] — R to minimize

9 9
J(ul,ug) = \/u1 +\/U2.
0 0

subject to the dynamic systgB86)-(43) and the constraints

(44)-(47)and (49).
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Fig. 2: Optimal control functions for Example 5.2.
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