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Abstract

We study linear stochastic partial differential equations of parabolic type with special

boundary conditions in time. The standard Cauchy condition at the initial time is replaced

by a condition that mixes the values of the solution at different times, including the terminal

time and continuously distributed times. Uniqueness, solvability and regularity results for

the solutions are obtained.
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1 Introduction

Partial differential equations and stochastic partial differential equations (SPDEs) have fun-

damental significance for natural sciences, and various boundary value problems for them were

widely studied. Usually, well-posedness of a boundary value depends on the choice of the bound-

ary value conditions. For the deterministic parabolic equations, well-posedness requires the cor-

rect choice of the initial condition. For example, consider the heat equation u′t = u′′xx, t ∈ [0, T ].

For this equation, a boundary value problem with the Cauchy condition at initial time t = 0 is

well-posed, and a boundary value problem with the Cauchy condition at terminal time t = T

is ill-posed. It is known also that the problems for deterministic parabolic equation are well-

posed for periodic type condition u(x, 0) = u(x, T ) (see Nakao (1984), Shelukhin (1993), and

Dokuchaev (2004)). Less is known for parabolic equation with more general non-local in time

conditions and for SPDEs.
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Boundary value problems for SPDEs are well studied in the existing literature for the case

of forward parabolic Ito equations with the Cauchy condition at initial time (see, e.g., Alós et

al (1999), Bally et al (1994), Chojnowska-Michalik and Goldys (1995), Da Prato and Tubaro

(1996), Gyöngy (1998), Krylov (1999), Maslowski (1995), Pardoux (1993), Rozovskii (1990),

Walsh (1986), Zhou (1992), and the bibliography there). Many results have been also obtained

for the backward parabolic Ito equations with Cauchy condition at terminal time, as well as

for pairs of forward and backward equations with separate Cauchy conditions at initial time

and the terminal time respectively (see, e.g., Yong and Zhou (1999), and the author’s papers

(1992), (2003)). Note that a backward SPDE cannot be transformed into a forward equation

by a simple time change, unlike as for the case of deterministic equations. Usually, a backward

SPDE is solvable in the sense that there exists a diffusion term being considered as a part of

the solution that helps to ensure that the solution is adapted to the driving Brownian motions.

It is, therefore, interesting to extend the existing theory into the problems with conditions

that mix the solution at different times in one equality, including initial time and terminal time.

The paper investigates these problems for parabolic type SPDEs with the Dirichlet condition

at the boundary of the state domain. The standard boundary value Cauchy condition at the

initial time is replaces by a condition that mixes in one equation the values of the solution at

different times over given time interval, including the terminal time and continuously distributed

times. These conditions include only expected values of the solution (see Condition 2.3). For the

deterministic case, it covers, in particular, the condition of periodicness and some other non-local

boundary value conditions. Uniqueness, existence, and regularity results for the solutions are

obtained in L2-setting. We found that the solution does not require to include a new diffusion

term, in contrast with the case of backward SPDEs, even if the value of the solution at terminal

time is involved.

The case of deterministic parabolic equations is also covered, and the results obtained can

be still interesting for this simpler case as well.

2 The problem setting and definitions

We are given a standard complete probability space (Ω,F ,P) and a right-continuous filtration

Ft of complete σ-algebras of events, t ≥ 0. We are given also a N -dimensional Wiener process

w(t) with independent components; it is a Wiener process with respect to Ft.

Assume that we are given an open domain D ⊂ Rn such that either D = Rn or D is bounded

with C2-smooth boundary ∂D. Let T > 0 be given, and let Q
∆
= D × [0, T ].
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We will study the following boundary value problem in Q

dtu = (Au+ φ) dt+
N∑
i=1

[Biu+ hi] dwi(t), t ≥ 0, (2.1)

u(x, t, ω) |x∈∂D = 0 (2.2)

u(x, 0, ω)− Γu(·) = ξ(x, ω). (2.3)

Here u = u(x, t, ω), φ = φ(x, t, ω), hi = hi(x, t, ω), (x, t) ∈ Q, ω ∈ Ω.

In (2.3), Γ is a linear operator that maps functions defined on Q×Ω to functions defines on

D × Ω. In (2.1),

Av
∆
=

n∑
i=1

∂

∂xi

n∑
j=1

(
bij(x, t, ω)

∂v

∂xj
(x)
)
+

n∑
i=1

fi(x, t, ω)
∂v

∂xi
(x) + λ(x, t, ω)v(x), (2.4)

where bij , fi, xi are the components of b,f , and x respectively, and

Biv
∆
=

dv

dx
(x)βi(x, t, ω) + β̄i(x, t, ω) v(x), i = 1, . . . , N. (2.5)

We assume that the functions b(x, t, ω) : Rn×[0, T ]×Ω → Rn×n, βj(x, t, ω) : R
n×[0, T ]×Ω →

Rn, β̄i(x, t, ω) :R
n×[0, T ]×Ω → R, f(x, t, ω) : Rn×[0, T ]×Ω → Rn, λ(x, t, ω) : Rn×[0, T ]×Ω →

R, hi(x, t, ω) : Rn × [0, T ] × Ω → R , and φ(x, t, ω) : Rn × [0, T ] × Ω → R are progressively

measurable with respect to Ft for all x ∈ Rn, and the function ξ(x, ω) : Rn × Ω → R is F0-

measurable for all x ∈ Rn. In fact, we will also consider functions φ, ξ, and hi from wider

classes. In particular, we will consider generalized functions φ.

We do not exclude an important special case when the functions b, f , λ, φ, and ξ, are

deterministic, and hi ≡ 0, Bi ≡ 0 (∀i). In this case, equation (2.1) is deterministic.

Spaces and classes of functions

We denote by ∥ · ∥X the norm in a linear normed space X, and (·, ·)X denote the scalar product

in a Hilbert space X.

We introduce some spaces of real valued functions.

Let G ⊂ Rk be an open domain, then Wm
q (G) denote the Sobolev space of functions that

belong to Lq(G) together with the distributional derivatives up to the mth order, q ≥ 1.

We denote by | · | the Euclidean norm in Rk, and Ḡ denote the closure of a region G ⊂ Rk.

Let H0 ∆
= L2(D), and let H1 ∆

=
0

W 1
2 (D) be the closure in the W 1

2 (D)-norm of the set of all

smooth functions u : D → R such that u|∂D ≡ 0. Let H2 = W 2
2 (D)∩H1 be the space equipped

with the norm of W 2
2 (D). The spaces Hk and W k

2 (D) are called Sobolev spaces, they are Hilbert

spaces, and Hk is a closed subspace of W k
2 (D), k = 1, 2.
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Let H−1 be the dual space to H1, with the norm ∥ · ∥H−1 such that if u ∈ H0 then ∥u∥H−1

is the supremum of (u, v)H0 over all v ∈ H1 such that ∥v∥H1 ≤ 1. H−1 is a Hilbert space.

We shall write (u, v)H0 for u ∈ H−1 and v ∈ H1, meaning the obvious extension of the

bilinear form from u ∈ H0 and v ∈ H1.

We denote by ℓ̄k the Lebesgue measure in Rk, and we denote by B̄k the σ-algebra of Lebesgue

sets in Rk.

We denote by P̄ the completion (with respect to the measure ℓ̄1 × P) of the σ-algebra of

subsets of [0, T ] × Ω, generated by functions that are progressively measurable with respect to

Ft.

Let Qs
∆
= D × [s, T ]. We introduce the spaces

Xk(s, T )
∆
= L2([s, T ]× Ω, P̄, ℓ̄1 ×P;Hk),

W k,0
2 (Qs)

∆
= L2([s, T ], B̄1, ℓ̄1;H

k),

Zk
t

∆
= L2(Ω,Ft,P;Hk),

Ck(s, T )
∆
= C

(
[s, T ];Zk

T

)
, k = −1, 0, 1, 2.

The spaces Xk(s, T ), W k,0
2 (s, T ), and Zk

t (s, T ) are Hilbert spaces.

In addition, we introduce the spaces

Y k(s, T )
∆
= Xk(s, T )∩ Ck−1(s, T ), k = 1, 2,

with the norm ∥u∥Y k(s,T )
∆
= ∥u∥Xk(s,T ) + ∥u∥Ck−1(s,T ).

For brevity, we shall use the notations Xk ∆
= Xk(0, T ), Ck ∆

= Ck(0, T ), W k,0
2 = W k,0

2 (Q), and

Y k ∆
= Y k(0, T ).

Conditions for the coefficients

To proceed further, we assume that Conditions 2.1-2.3 remain in force throughout this paper.

Condition 2.1 The matrix b = b⊤ is symmetric and bounded. In addition, there exists a

constant δ > 0 such that

y⊤b(x, t, ω) y − 1

2

N∑
i=1

|y⊤βi(x, t, ω)|2 ≥ δ|y|2 ∀ y ∈ Rn, (x, t) ∈ D × [0, T ], ω ∈ Ω. (2.6)

Inequality (2.6) means that equation (2.1) is superparabolic, in the terminology of Rozovskii

(1990).

Condition 2.2 The functions f(x, t, ω), λ(x, t, ω), βi(x, t, ω), and β̄i(x, t, ω), are bounded.
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Condition 2.3 The operator Γ : Y 1 → Z0
0 is linear, continuous, and such that there exists

an integer m ≥ 0, a set {ti}mi=1 ⊂ (0, T ], and linear continuous operators Γ̄0 : L2(Q) → H0,

Γ̄i : H
0 → H0, i = 1, .., N , such that

Γu = E{Γ̄0u+
m∑
i=1

Γ̄iu(·, ti)|F0}.

Moreover, the operators Γ̄0 : L2([0, T ];B1, ℓ1,H
1) → W 1

2 (D) and Γ̄i : H
1 → W 1

2 (D) are contin-

uous.

Condition 2.3 allows to consider Γ such that

Γ̄0u =

∫ T

0
k0(t)u(·, t)dt, Γ̄iu(·, ti) = kiu(·, ti),

where k0(·) ∈ L2(0, T ) and ki ∈ R. It covers also Γ such that

Γ̄0u =

∫ T

0
dt

∫
D
k0(x, y, t)u(y, t)dx, Γ̄iu(·, ti)(x) =

∫
D
ki(x, y)u(y, ti)dy,

where ki(·) are some regular enough kernels.

We introduce the set of parameters

P ∆
=

(
n, D, T, Γ, δ,

ess supx,t,ω,i

[
|b(x, t, ω)|+ |f(x, t, ω)|+ |λ(x, t, ω)|+ |βi(x, t, ω)|+ |β̄i(x, t, ω)|

]
.

Sometimes we shall omit ω.

The definition of solution

Proposition 2.1 Let ξ ∈ X0, let a sequence {ξk}+∞
k=1 ⊂ L∞([0, T ] × Ω, ℓ1 × P; C(D)) be such

that all ξk(·, t, ω) are progressively measurable with respect to Ft, and let ∥ξ − ξk∥X0 → 0. Let

t ∈ [0, T ] and j ∈ {1, . . . , N} be given. Then the sequence of the integrals
∫ t
0 ξk(x, s, ω) dwj(s)

converges in Z0
t as k → ∞, and its limit depends on ξ, but does not depend on {ξk}.

Proof follows from completeness of X0 and from the equality

E

∫ t

0
∥ξk(·, s, ω)− ξm(·, s, ω)∥2H0 ds =

∫
D

dxE

(∫ t

0
(ξk(x, s, ω)− ξm(x, s, ω)) dwj(s)

)2

.

Definition 2.1 Let ξ ∈ X0, t ∈ [0, T ], j ∈ {1, . . . , N}, then we define
∫ t
0 ξ(x, s, ω) dwj(s) as the

limit in Z0
t as k → ∞ of a sequence

∫ t
0 ξk(x, s, ω) dwj(s), where the sequence {ξk} is such as in

Proposition 2.1.
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Definition 2.2 Let u ∈ Y 1, φ ∈ X−1, and hi ∈ X0. We say that equations (2.1)-(2.2) are

satisfied if

u(·, t, ω)− u(·, r, ω)

=

∫ t

r
(Au(·, s, ω) + φ(·, s, ω)) ds+

N∑
i=1

∫ t

r
[Biu(·, s, ω) + hi(·, s, ω)] dwi(s) (2.7)

for all r, t such that 0 ≤ r < t ≤ T , and this equality is satisfied as an equality in Z−1
T .

Note that the condition on ∂D is satisfied in the sense that u(·, t, ω) ∈ H1 for a.e. t, ω. Further,

u ∈ Y 1, and the value of u(·, t, ω) is uniquely defined in Z0
T given t, by the definitions of the

corresponding spaces. The integrals with dwi in (2.7) are defined as elements of Z0
T . The integral

with ds in (2.7) is defined as an element of Z−1
T . In fact, Definition 2.2 requires for (2.1) that

this integral must be equal to an element of Z0
T in the sense of equality in Z−1

T .

3 The main results

Theorem 3.1 There exist a number κ = κ(P) > 0 such that problem (2.1)-(2.3) has an unique

solution in the class Y 1, for any φ ∈ X−1, hi ∈ X0, ξ ∈ Z0
0 , and any Γ such that ∥Γ∥ ≤ κ,

where ∥Γ∥ is the norms of the operator Γ : Y 1 → ZT
0 . In addition,

∥u∥Y 1 ≤ C

(
∥φ∥X−1 + ∥ξ∥Z0

0
+

N∑
i=1

∥hi∥X0

)
, (3.1)

where C = C(κ,P) > 0 is a constant that depends only on κ and P.

Let I denote the indicator function.

Theorem 3.2 Let Γ̄0 in Condition 2.3 be such that there exists τ > 0 such that Γ̄0u =

Γ̄0(I{t≥τ}u). Then

∥u∥Y 1 ≤ C

(
∥φ∥X−1 + ∥u∥X−1 + ∥ξ∥Z0

0
+

N∑
i=1

∥hi∥X0

)
(3.2)

for all solutions u of problem (2.1)-(2.3) in the class Y 1, where C = C(P) > 0 is a constant

that depends only on P.

Starting from now and up to the end of this section, we assume that Condition 3.1 holds.

Condition 3.1 The domain D is bounded. The functions b(x, t, ω), f(x, t, ω), λ(x, t, ω), βi(x, t, ω)

and β̄i(x, t, ω) are differentiable in x for a.e. t, ω, and the corresponding derivatives are bounded.

6



It follows from this condition that there exists modifications of βi such that the functions

βi(x, t, ω) are continuous in x for a.e. t, ω. We assume that βi are such functions.

Theorem 3.3 Let F0 be the P-augmentation of the set {∅,Ω}. Assume that at least one of the

following conditions is satisfied:

(i) the function b is non-random, or

(ii) βi(x, t, ω) = 0 for x ∈ ∂D, i = 1, ..., N .

Further, assume that problem (2.1)-(2.3) with φ ≡ 0, hi ≡ 0, ξ ≡ 0, does not admit non-zero

solutions in the class Y 1. Then problem (2.1)-(2.3) has a unique solution u in the class Y 1 for

any φ ∈ X−1, hi ∈ X0, and ξ ∈ H0. In addition,

∥u∥Y 1 ≤ C

(
∥φ∥X−1 + ∥ξ∥H0 +

N∑
i=1

∥hi∥X0

)
, (3.3)

where C > 0 is a constant that does not depend on φ, hi, and ξ.

Theorem 3.4 Let the functions b, f and λ be non-random and such that the operator A can be

represented as

Av =

n∑
i,j=1

∂2

∂xi∂xj
(bij(x, t)v(x)) +

n∑
i=1

∂

∂xi

(
f̂i(x, t)p(x)

)
+ λ̂(x, t)v(x),

where λ̂(x, t) ≤ 0, and where f̂i are bounded functions. Further, let

Γu = E
{∫ T

0
k0(t)u(·, t)dt+

m∑
i=1

kiu(·, ti)
∣∣∣F0

}
,

where ti > 0, and where ki ∈ R, k0(·) ∈ L2(0, T ) are such that∫ T

0
|k0(t)|dt+

m∑
i=1

|ki| ≤ 1.

Then problem (2.1)-(2.3) has a unique solution u in the class Y 1 for any φ ∈ X−1, hi ∈ X0,

and ξ ∈ H0. In addition, (3.3) holds with a constant C > 0 that does not depend on φ, hi, and

ξ.

The following corollary is a special case of Theorem 3.4 for deterministic parabolic equation

with the boundary condition that covesr the condition of periodicness.
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Corollary 3.1 Under the assumptions of Theorem 3.4, for any k ∈ [−1, 1], the deterministic

boundary value problem

∂u

∂t
= Au+ φ, u|∂D = 0, u(x, 0)− ku(x, T ) ≡ Φ(x)

has a unique solution u ∈ C([0, T ];H0) ∩ L2([0, t],B1, ℓ1,H
1) for any Φ ∈ H0, φ ∈ L2(Q), and

∥u(·, t)∥Y 1 ≤ C(∥Φ∥H0 + ∥φ∥L2(Q)),

where C > 0 is a constant that does not depend on Φ and φ.

The classical result about well-posedness of the Cauchy condition at initial time corresponds to

the special case of k = 0.

Corollary 3.1 is close to Theorem 2.2 from Dokuchaev (2004), where boundary value problems

for deterministic parabolic equations were studied in a setting that corresponds to the special

case when Φ = 0; the cited paper was devoted mostly to the case when T = +∞, and the proofs

there were based on a different approach.

4 Proofs

Let s ∈ [0, T ), φ ∈ X−1 and Φ ∈ Z0
s . Consider the problem

dtu = (Au+ φ) dt+
∑N

i=1[Biu+ hi]dwi(t), t ≥ s,

u(x, t, ω)|x∈∂D = 0,

u(x, s, ω) = Φ(x, ω).

(4.1)

The following lemma represents an analog of the so-called ”the first energy inequality”,

or ”the first fundamental inequality” known for deterministic parabolic equations (see, e.g.,

inequality (3.14) from Ladyzhenskaya (1985), Chapter III).

Lemma 4.1 Assume that Conditions 2.1–2.3 are satisfied. Then problem (4.1) has an unique

solution u in the class Y 1(s, T ) for any φ ∈ X−1(s, T ), hi ∈ X0(s, T ), Φ ∈ Z0
s , and

∥u∥Y 1(s,T ) ≤ c

(
∥φ∥X−1(s,T ) + ∥Φ∥Z0

s
+

N∑
i=1

∥hi∥X0(s,T )

)
, (4.2)

where c = c(P) is a constant that depends on P only.

(See, e.g., Rozovskii (1990), Chapter 3, Section 4.1).
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Note that the solution u = u(·, t) is continuous in t in L2(Ω,F ,P,H0), since Y 1(s, T ) =

X1(s, T )∩ C0(s, T ).

The following lemma represents an analog of the so-called ”the second energy inequality”, or

”the second fundamental inequality” known for the deterministic parabolic equations (see, e.g.,

inequality (4.56) from Ladyzhenskaya (1985), Chapter III).

Lemma 4.2 [Dokuchaev (2005)] Assume that Conditions 2.1-2.3, and 3.1, are satisfied. In

addition, assume that βi(x, t, ω) = 0 for x ∈ ∂D, i = 1, ..., N . Then problem (4.1) has an unique

solution u ∈ Y 2 for any φ ∈ X0, hi ∈ X1, Φ ∈ Z1
0 , and

∥u∥Y 2 ≤ c

(
∥φ∥X0 + ∥Φ∥Z1

0
+

N∑
i=1

∥hi∥X1

)
, (4.3)

where c > 0 is a constant that does not depend on φ, hi, and Φ.

The constant C in (4.3) depends on P and some other parameters related to Condition 3.1 (see

details in Dokuchaev (2005)).

Introduce operators Ls : X−1(s, T ) → Y 1(s, T ) and Ls : Z0
s → Y 1(s, T ), such that u =

Lsφ+ LsΦ +
∑N

i=1Mihi, where u is the solution in Y 1(s, T ) of problem (4.1). By Lemma 4.1,

these linear operators are continuous.

Let X̄k ∆
= L2([0, T ]×Ω, F0 × B1, ℓ̄1×P; Hk), where F0 × B1 is the completion (with respect

to the measure ℓ̄1 ×P) of the σ-algebra of subsets of [0, T ]×Ω, generated by functions that are

measurable with respect to F0.

Let Es : Z0
T → Z0

s be the projector of Z0
T on Z0

s , and let E : X0 → X̄0 be the projector of X0

on X̄0.

Introduce operators Q : Z0
0 → Z0

0 and T0 : X−1 → Z0
0 , Ti : X0 → Z0

0 , i = 1, ..., N , such

that QΦ + T0φ +
∑N

i=1 Tihi = Γu, where u is the solution in Y 1 of problem (4.1) with s = 0,

φ ∈ X−1, hi ∈ X0, and Φ ∈ Z0
0 . It is easy to see that these operators are linear and continuous.

Proof of Theorem 3.1. For brevity, we denote u(·, t) = u(x, t, ω). Clearly, u ∈ Y 1 is the

solution of problem (2.1)-(2.3), if

u = L0φ+
N∑
i=1

Mihi + L0u(·, 0),

u(·, 0)− Γu = ξ.

Since Γu = Qu(·, 0) + T0φ+
∑N

i=1 Tihi, we have

u = L0φ+

N∑
i=1

Mihi + L0u(·, 0),
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u(·, 0)−Qu(·, 0)− T0φ−
N∑
i=1

Tihi = ξ.

Clearly, ∥Q∥ ≤ ∥Γ∥∥L0∥, where ∥Q∥, ∥Γ∥, and ∥L0∥, are the norms of the operators Q : Z0
0 →

Z0
0 , Γ : Y 1 → ZT

0 , and L0 : Z0
0 → Y 1, respectively. Since the operator Q : Z0

0 → Z0
0 is

continuous, the operator (I − Q)−1 : Z0
0 → Z0

0 is continuous for small enough ∥Q∥, i.e. for a

small enough κ > 0. Hence

u(·, 0) = (I −Q)−1(ξ + T0φ+

N∑
i=1

Tihi),

and

u = L0φ+

N∑
i=1

Mihi + L0u(·, 0)

= L0φ+

N∑
i=1

Mihi + L0(I −Q)−1(ξ + T0φ+

N∑
i=1

Tihi). (4.4)

Then the proof of Theorem 3.1 follows. �
Proof of Theorem 3.2. For a real q > 0, set uq(x, t, ω)

∆
= eqtu(x, t, ω). Then uq is the solution

of problem (2.1)-(2.3) with φ is replaced by φ+ q · u, and with λ and Γ replaced by λq and Γ̄q,

where

λq
∆
= λ+ q, Γ̄qu = E0{Γ̄0qu+

m∑
i=1

Γ̄iqu(·, ti)|F0},

with Γ̄0qu = Γ̄0(e
−qtu), Γ̄iqu(·, ti) = Γ̄i(e

−qtiu(·, ti)). By the assumptions on Γ̄0 and by the

choice of ti > 0, we have that ∥Γ̄q∥ → 0 as q → +∞, for the norm of the operator Γ̄q : Y
1 → ZT

0 .

By Lemma 4.1 and Theorem 3.1, it follows that, for a large q > 0,

∥uq∥Y 1 ≤ C

(
∥φ∥X−1 + ∥uq∥X−1 + ∥ξ∥H0 +

N∑
i=1

∥hi∥X0

)
,

where C = C(q,P) is a constant that does not depend on u, φ, hi, ξ. Then the proof of Theorem

3.2 follows. �
Starting from now, we assume that Condition 3.1 is satisfied.

Lemma 4.3 Let F0 be the P-augmentation of the set {∅,Ω}, and let the function b be deter-

ministic. Then the operator Q : Z0
0 → Z0

0 is compact.

Proof of Lemma 4.3. Consider the following auxiliary boundary value problem:

dū

dt
= Ā ū+ η̄, t > s,

ū|x∈∂D = 0, ū(x, s) = Φ(x), (4.5)
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where η̄ ∈ W−1,0
2 , Φ ∈ H0 and

Āv
∆
=

n∑
i,j=1

bij(x, t)
∂2v

∂xi∂xj
(x) +

∂v

∂x
(x)Ef(x, t, ω) + v(x)Eg(x, t, ω).

From the first energy inequality (3.14) from Ladyzhenskaya (1985), Chapter III, it follows that

∥ū(·, T )∥H0 + ∥ū∥
W 1,0

2 (Qs)
≤ C1

(
∥ū(·, s)∥H0 + ∥η̄∥

W−1,0
2 (Qs)

)
, (4.6)

where C1 = C1(P) > 0 is a constant that does not depend on Φ and s.

Introduce operators L̄s : W−1,0
2 (Qs) → W 1,0

2 (Qs) and L̄s : H0 → W 1,0
2 (Qs), such that

ū = L̄sη̄ + L̄sΦ, where ū is the solution of problem (4.5). By (4.6), these linear operators are

continuous.

Let u
∆
= L0Φ, where Φ ∈ H0, and let ū

∆
= Eu. This ū is the solution of problem (4.5) with

η̄ = E

(
∂u

∂x
(x, t, ω)f(x, t, ω) + g(x, t, ω)u(x, t, ω)

)
− ∂ū

∂x
(x, t)Ef(x, t, ω)− ū(x, t)Eg(x, t, ω).

It is easy to see that there exist constants Ci = Ci(P) > 0, i = 1, 2, which do not depend on Φ

and such that

∥η̄∥L2(Qs) ≤ C1∥u∥X1 ≤ C2∥Φ∥H0 .

By the second energy inequality (4.56) from Ladyzhenskaya (1985), Chapter III, it follows

that

∥ū(·, τ)∥H1 + ∥ū∥
W 2,0

2 (Qs)
≤ C∗

(
∥ū(·, s)∥H1 + ∥η̄∥L2(Qs)

)
, τ ∈ [s, T ], (4.7)

where C∗ > 0 is a constant that does not depend on ū, η̄, s, and τ .

We have that ū|t∈[s,T ] = L̄sη̄|t∈[s,T ] + L̄sū(·, s) for all s ∈ [0, T ], and, for τ ∈ {t1, ..., tm},

∥Γ̄iu(·, τ)∥2W 1
2 (D) ≤ C0∥ū(·, τ)∥2H1 ≤ C1

(
inf

t∈[0,τ ]
∥ū(·, t)∥2H1 + ∥η̄∥2L2(Qτ )

)
≤ C1

τ

∫ τ

0
∥ū(·, t)∥2H1dt+ C1∥η̄∥2L2(Q) ≤

C2

τ
∥u∥2X1 ≤ C3

τ
∥Φ∥H0

for constants Ci > 0 that do not depend on Φ. In addition,

∥Γ̄0u∥2W 1
2 (D) ≤ c0

∫ T

0
∥ū(·, t)∥2H1dt ≤ c1∥Φ∥H0

for constants ci = ci(P) > 0 that do not depend on Φ. Hence the operator Q : H0 → H1 is

continuous. The embedding of W 1
2 (D) into H0 is a compact operator (see, e.g., Theorem 7.3

from Ladyzhenskaia (1985), Chapter I). Then the proof of Lemma 4.3 follows. �

Lemma 4.4 Let F0 be the P-augmentation of the set {∅,Ω}, and let βi(x, t, ω)|x∈∂D = 0 for

i = 1, ..., N . Then the operator Q : Z0
0 → Z0

0 is compact.
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Proof of Lemma 4.4. Set u = L0Φ, where Φ ∈ H0. We have that u|t∈[s,T ] = Lsu(·, s) for all

s ∈ [0, T ]. By Lemmas 4.1 and 4.2, we have for τ ∈ {t1, ..., tm} that

∥Γ̄iu(·, τ)∥2W 1
2 (D) ≤ C0∥u(·, τ)∥2Z1

0
≤ C1 inf

t∈[0,τ ]
∥u(·, t)∥2Z1

t
≤ C1

τ

∫ τ

0
∥u(·, t)∥2Z1

t
dt ≤ C3

τ
∥Φ∥2H0 ,

∥Γ̄0u∥2W 1
2 (D) ≤ C4

∫ T

0
∥u(·, t)∥2H1dt ≤ C5∥Φ∥H0

for constants Ci > 0 which do not depend on Φ. Hence the operator Q : H0 → H1 is continuous.

Since the embedding of W 1
2 (D) to H0 is a compact operator, the proof of Lemma 4.3 follows. �

Proof of Theorem 3.3. By the assumptions, the equation QΦ = Φ has the only solution Φ = 0

in H0. By Lemmas 4.3-4.4 and by the Fredholm Theorem, the operator (I +Q)−1 : H0 → H0

is continuous. Then the proof of Theorem 3.3 follows from representation (4.4). �
Proof of Theorem 3.4. It suffices to show that the assumptions of Theorem 3.3 are satisfied.

For η ∈ W−1,0
2 and Φ ∈ H0, consider the problem

dū

dt
= A ū+ η, t > s,

ū|x∈∂D = 0, ū(x, s) = Φ(x). (4.8)

We will use the operators L̄s : W−1,0
2 (Qs) → W 1,0

2 (Qs) and L̄s : H0 → W 1,0
2 (Qs), such

that ū = L̄sη + L̄sΦ, where ū is the solution of problem (4.8). By (4.6), these linear operators

are continuous, as well as the operators L̄s : W−1,0
2 (Qs) → C([s, T ];H0) and L̄s : H0 →

C([s, T ];H0).

Let u = EL0u(·, 0) and ū
∆
= Eu. Then ū = L̄0u(·, 0).

Let

ζ+(x)
∆
= max(0, ū(x, 0)), ζ−(x)

∆
= max(0,−u(x, 0)), ū−

∆
= L̄0ζ

−, ū+
∆
= L̄0ζ

+.

Since ū(x, 0) ≡ ζ+(x)− ζ−(x), we have that ū+ ≥ 0, ū− ≥ 0, and ū = ū+ − ū− a.e..

Let ν±
∆
=
∫
D ζ±(x)dx. If ū(·, 0) ̸= 0 then either ζ+(·, 0) ̸= 0 or ζ−(·, 0) ̸= 0, i.e., either

ν+ ̸= 0 or ν− ̸= 0. Clearly, if ν± ̸= 0, then ū±/ν± can be represented as the probability density

function of a diffusion process being absorbed at ∂D and being killed inside D with the rate

λ̂ ≥ 0. The absorption at ∂D causes that if ζ±(·, 0) ̸= 0 then∫
D
ū±(x, t)dx <

∫
D
ζ±(x)dx, t > 0.

Hence∫
D
|ū(x, t)|dx =

∫
D
u+(x, t)dx+

∫
D
u−(x, t)dx <

∫
D
u+(x, 0)dx+

∫
D
u−(x, 0)dx =

∫
D
|ū(x, 0)|dx

12



for all t > 0. Hence∫
D
|Γū(x)|dx ≤

∫
D

∣∣∣∣∫ T

0
k0(t)ū(x, t)dt+

m∑
i=1

kiū(x, ti)

∣∣∣∣dx
<

(∫ T

0
|k0(t)|dt+

m∑
i=1

|ki|
)∫

D
|ū(x, 0)|dx ≤

∫
D
|u(x, 0)|dx.

Remind that u(x, 0) ≡ ū(x, 0) and Γū = Γu. Therefore, the condition u(x, 0) = Γu fails to be

satisfied for u ̸= 0. Thus, u = 0 is the unique solution of problem (2.1)-(2.3) for ξ = 0, φ = 0,

and hi = 0. Then the proof of Theorem 3.4 follows from Lemma 4.3 and from the Fredholm

Theorem. �
Corollary 3.1 follows immediately from Theorem 3.4.
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