
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 512127, 16 pages
doi:10.1155/2012/512127

Research Article
Positive Solutions of Eigenvalue
Problems for a Class of Fractional Differential
Equations with Derivatives

Xinguang Zhang,1 Lishan Liu,2
Benchawan Wiwatanapataphee,3 and Yonghong Wu4

1 School of Mathematical and Informational Sciences, Yantai University, Yantai, Shandong 264005, China
2 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China
3 Department of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
4 Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia

Correspondence should be addressed to Xinguang Zhang, zxg123242@sohu.com
and Benchawan Wiwatanapataphee, scbww@mahidol.ac.th

Received 2 January 2012; Accepted 15 March 2012

Academic Editor: Shaoyong Lai

Copyright q 2012 Xinguang Zhang et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

By establishing a maximal principle and constructing upper and lower solutions, the existence
of positive solutions for the eigenvalue problem of a class of fractional differential equations is
discussed. Some sufficient conditions for the existence of positive solutions are established.

1. Introduction

In this paper, we discuss the existence of positive solutions for the following eigenvalue
problem of a class fractional differential equation with derivatives

−Dt
αx(t) = λf

(
t, x(t),Dt

βx(t)
)
, t ∈ (0, 1),

Dt
βx(0) = 0, Dt

γx(1) =
p−2∑
j=1

ajDt
γx
(
ξj
)
,

(1.1)

where λ is a parameter, 1 < α ≤ 2, α − β > 1, 0 < β ≤ γ < 1, 0 < ξ1 < ξ2 < · · · < ξp−2 < 1,
aj ∈ [0,+∞) with c =

∑p−2
j=1 ajξ

α−γ−1
j < 1, and Dt is the standard Riemann-Liouville derivative.
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f : (0, 1) × (0,+∞) × (0,+∞) → [0,+∞) is continuous, and f(t, u, v) may be singular at
u = 0, v = 0, and t = 0, 1.

As fractional order derivatives and integrals have been widely used in mathematics,
analytical chemistry, neuron modeling, and biological sciences [1–6], fractional differential
equations have attracted great research interest in recent years [7–17]. Recently, ur Rehman
and Khan [8] investigated the fractional order multipoint boundary value problem:

Dt
αy(t) = f

(
t, y(t),Dt

βy(t)
)
, t ∈ (0, 1),

y(0) = 0, Dt
βy(1) −

m−2∑
i=1

ζiDt
βy(ξi) = y0,

(1.2)

where 1 < α ≤ 2, 0 < β < 1, 0 < ξi < 1, ζi ∈ [0,+∞) with
∑m−2

i=1 ζiξ
α−β−1
i < 1. The Schauder fixed

point theorem and the contraction mapping principle are used to establish the existence and
uniqueness of nontrivial solutions for the BVP (1.2) provided that the nonlinear function f :
[0, 1]×R×R is continuous and satisfies certain growth conditions. But up to now, multipoint
boundary value problems for fractional differential equations like the BVP (1.1) have seldom
been considered when f(t, u, v) has singularity at t = 0 and (or) 1 and also at u = 0, v = 0.
We will discuss the problem in this paper.

The rest of the paper is organized as follows. In Section 2, we give some definitions and
several lemmas. Suitable upper and lower solutions of the modified problems for the BVP
(1.1) and some sufficient conditions for the existence of positive solutions are established in
Section 3.

2. Preliminaries and Lemmas

For the convenience of the reader, we present here some definitions about fractional calculus.

Definition 2.1 (See [1, 6]). Let α > 0 with α ∈ R. Suppose that x : [a,∞) → R. Then the αth
Riemann-Liouville fractional integral is defined by

Iαx(t) =
1

Γ(α)

∫ t
a

(t − s)α−1x(s)ds (2.1)

whenever the right-hand side is defined. Similarly, for α ∈ R with α > 0, we define the αth
Riemann-Liouville fractional derivative by

Dαx(t) =
1

Γ(n − α)
(
d

dt

)(n) ∫ t
a

(t − s)n−α−1x(s)ds, (2.2)

where n ∈ N is the unique positive integer satisfying n − 1 ≤ α < n and t > a.

Remark 2.2. If x, y : (0,+∞) → R with order α > 0, then

Dt
α(x(t) + y(t)) = Dt

αx(t) +Dt
αy(t). (2.3)
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Lemma 2.3 (See [6]). One has the following.

(1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dt
σIνx(t) = Iν−σx(t), Dt

σIσx(t) = x(t). (2.4)

(2) If ν > 0, σ > 0, then

Dt
νtσ−1 =

Γ(σ)
Γ(σ − ν) t

σ−ν−1. (2.5)

Lemma 2.4 (See [6]). Let α > 0. Assume that x ∈ C(0, 1) ∩ L1(0, 1). Then

IαDt
αx(t) = x(t) + c1tα−1 + c2tα−2 + · · · + cntα−n, (2.6)

where ci ∈ R (i = 1, 2, . . . , n), and n is the smallest integer greater than or equal to α.

Let

k1(t, s) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tα−β−1(1 − s)α−γ−1 − (t − s)α−β−1
Γ
(
α − β) , 0 ≤ s ≤ t ≤ 1,

tα−β−1(1 − s)α−γ−1
Γ
(
α − β) , 0 ≤ t ≤ s ≤ 1,

k2(t, s) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(t(1 − s))α−γ−1 − (t − s)α−γ−1
Γ
(
α − β) , 0 ≤ s ≤ t ≤ 1,

(t(1 − s))α−γ−1
Γ
(
α − β) , 0 ≤ t ≤ s ≤ 1,

(2.7)

and for t, s ∈ [0, 1], we have

ki(t, s) ≤ (1 − s)α−γ−1
Γ
(
α − β) , i = 1, 2. (2.8)

Lemma 2.5. Let h ∈ C(0, 1); If 1 < α − β ≤ 2, then the unique solution of the linear problem

−Dt
α−βy(t) = h(t), t ∈ (0, 1),

y(0) = 0, Dt
γ−βy(1) =

p−2∑
j=1

ajDt
γ−βy

(
ξj
) (2.9)

is given by

y(t) =
∫1

0
K(t, s)h(s)ds, (2.10)
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where

K(t, s) = k1(t, s) +
tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

ajk2
(
ξj , s
)

(2.11)

is the Green function of the boundary value problem (2.9).

Proof. Applying Lemma 2.4, we reduce (2.9) to an equivalent equation:

y(t) = −Iα−βh(t) + c1tα−β−1 + c2tα−β−2, c1, c2 ∈ R. (2.12)

From (2.12) and noting that y(0) = 0, we have c2 = 0. Consequently the general solution of
(2.9) is

y(t) = −Iα−βh(t) + c1tα−β−1. (2.13)

Using (2.13) and Lemma 2.3, we have

Dt
γ−βy(t) = −Dt

γ−βIα−βh(t) + c1Dt
γ−βtα−β−1

= −Iα−γh(t) + c1
Γ
(
α − β)

Γ
(
α − γ) t

α−γ−1

= −
∫ t
0

(t − s)α−γ−1
Γ
(
α − γ) h(s)ds + c1

Γ
(
α − β)

Γ
(
α − γ) t

α−γ−1.

(2.14)

Thus,

Dt
γ−βy(1) = −

∫1

0

(1 − s)α−γ−1
Γ
(
α − γ) h(s)ds + c1

Γ
(
α − β)

Γ
(
α − γ) , (2.15)

and for j = 1, 2, . . . , p − 2,

Dt
γ−βw

(
ξj
)
= −
∫ ξj
0

(
ξj − s

)α−γ−1
Γ
(
α − γ) h(s)ds + c1

Γ
(
α − β)

Γ
(
α − γ) ξ

α−γ−1
j . (2.16)

Using Dt
γ−βy(1) =

∑p−2
j=1 ajDt

γ−βy(ξj), (2.15), and (2.16), we obtain

c1 =

∫1
0 (1 − s)α−γ−1 h(s)ds −

∑p−2
j=1 aj

∫ ξj
0

(
ξj − s

)α−γ−1
h(s)ds

Γ
(
α − β)

(
1 −∑p−2

j=1 ajξ
α−γ−1
j

) . (2.17)
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So the unique solution of the problem (2.9) is

y(t) = −
∫ t
0

(t − s)α−β−1
Γ
(
α − β) h(s)ds +

tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

×
⎧
⎨
⎩
∫1

0

(1 − s)α−γ−1
Γ
(
α − β) h(s)ds −

p−2∑
j=1

aj

∫ ξj
0

(
ξj − s

)α−γ−1
Γ
(
α − β) h(s)ds

⎫
⎬
⎭

= −
∫ t
0

(t − s)α−β−1
Γ
(
α − β) h(s)ds +

∫1

0

(1 − s)α−γ−1tα−β−1
Γ
(
α − β) h(s)ds

+
tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

aj

∫1

0

(1 − s)α−γ−1ξα−γ−1j

Γ
(
α − β) h(s)ds

− tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

aj

∫ ξj
0

(
ξj − s

)α−γ−1
Γ
(
α − β) h(s)ds

=
∫1

0

⎛
⎝k1(t, s) +

tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

ajk2
(
ξj , s
)
⎞
⎠h(s)ds

=
∫1

0
K(t, s)h(s)ds.

(2.18)

The proof is completed.

Lemma 2.6. The function K(t, s) has the following properties.

(1) K(t, s) > 0, for t, s ∈ (0, 1)

(2) tα−β−1M(s) ≤ K(t, s) ≤ M(1 − s)α−γ−1, for t, s ∈ [0, 1],

where

M(s) =

∑p−2
j=1 ajk2

(
ξj , s
)

1 −∑p−2
j=1 ajξ

α−γ−1
j

, M =
1 +
∑p−2

j=1 aj
(
1 − ξα−γ−1j

)

Γ
(
α − β)

(
1 −∑p−2

j=1 ajξ
α−γ−1
j

) . (2.19)

Proof. It is obvious that (1) holds.
From (2.11), we obtain

K(t, s) ≥ tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

ajk2
(
ξj , s
)
= tα−β−1M(s). (2.20)
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From (2.8), we have

K(t, s) = k1(t, s) +
tα−β−1

1 −∑p−2
j=1 ajξ

α−γ−1
j

p−2∑
j=1

ajk2
(
ξj , s
)

≤ (1 − s)α−γ−1
Γ
(
α − β) +

∑p−2
j=1 aj

1 −∑p−2
j=1 ajξ

α−γ−1
j

(1 − s)α−γ−1
Γ
(
α − β)

≤
⎛
⎝1 +

∑p−2
j=1 aj

1 −∑p−2
j=1 ajξ

α−γ−1
j

⎞
⎠ (1 − s)α−γ−1

Γ
(
α − β) .

(2.21)

The proof is completed.

Consider the modified problem of the BVP (1.1):

−Dt
α−βy(t) = λf

(
t, Iβy(t), y(t)

)
,

y(0) = 0, Dt
γ−βy(1) =

p−2∑
j=1

ajDt
γ−βy

(
ξj
)
.

(2.22)

Lemma 2.7. Let x(t) = Iβy(t) and y(t) ∈ C[0, 1]; then problem (1.1) is turned into (2.22).
Moreover, if y ∈ C([0, 1], [0,+∞)) is a solution of problem (2.22), then the function x(t) = Iβy(t) is
a positive solution of the problem (1.1).

Proof. Substituting x(t) = Iβy(t) into (1.1) and using Definition 2.1 and Lemmas 2.3 and 2.4,
we obtain

Dt
αx(t) =

dn

dtn
In−αx(t) =

dn

dtn
In−αIβy(t)

=
dn

dtn
In−α+βy(t) = Dt

α−βy(t),

Dt
βx(t) = Dt

βIβy(t) = y(t).

(2.23)

Consequently, Dt
βx(0) = y(0) = 0. It follows from Dt

γx(t) = dn/dtnIn−γx(t) =
(dn/dtn)In−γ Iβy(t) = (dn/dtn)In−γ+βy(t) = Dt

γ−βy(t) that Dt
γ−βy(1) =

∑p−2
j=1 ajDt

γ−βy(ξj).
Using x(t) = Iβy(t), y ∈ C[0, 1], we transform (1.1) into (2.22).

Now, let y ∈ C([0, 1], [0,+∞)) be a solution for problem (2.22). Using Lemma 2.3,
(2.22), and (2.23), one has

−Dt
αx(t) = − d

n

dtn
In−αx(t) = − d

n

dtn
In−αIβy(t) = − d

n

dtn
In−α+βy(t) = −Dt

α−βy(t)

= λf
(
t, Iβy(t), y(t)

)
= λf

(
t, x(t),Dt

βx(t)
)
, 0 < t < 1.

(2.24)
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Noting

Dt
βx(t) = Dt

βIβy(t) = y(t), Dt
γx(t) = Dt

γ−βy(t), (2.25)

we have

Dt
βx(0) = 0, Dt

γx(1) =
p−2∑
j=1

ajDt
γx
(
ξj
)
. (2.26)

It follows from the monotonicity and property of Iβ that

Iβy ∈ C([0, 1], [0,+∞)). (2.27)

Consequently, x(t) = Iβy(t) is a positive solution of the problem (1.1).

Definition 2.8. A continuous function ψ(t) is called a lower solution of the BVP (2.22), if it
satisfies

−Dt
α−βψ(t) ≤ λf

(
t, Iβψ(t), ψ(t)

)
,

ψ(0) ≥ 0, Dt
γ−βψ(1) ≥

p−2∑
j=1

ajDt
γ−βψ

(
ξj
)
.

(2.28)

Definition 2.9. A continuous function φ(t) is called an upper solution of the BVP (2.22), if it
satisfies

−Dt
α−βφ(t) ≥ λf

(
t, Iβφ(t), φ(t)

)
,

φ(0) ≤ 0, Dt
γ−βφ(1) ≤

p−2∑
j=1

ajDt
γ−βφ

(
ξj
)
.

(2.29)

By Lemmas 2.5 and 2.6, we have the maximal principle.

Lemma 2.10. If 1 < α − β ≤ 2 and y ∈ C([0, 1], R) satisfies

y(0) = 0, Dt
γ−βy(1) =

p−2∑
j=1

ajDt
γ−βy

(
ξj
)
, (2.30)

and −Dt
α−βy(t) ≥ 0 for any t ∈ (0, 1), then y(t) ≥ 0, for t ∈ [0, 1].

Set

G(t) = tα−β−1, L(t) = IβG(t) = 1
Γ
(
β
)
∫ t
0
(t − s)β−1sα−β−1ds = Γ

(
α − β)

Γ(α)
tα−1. (2.31)
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To end this section, we present here two assumptions to be used throughout the rest
of the paper.

(B1) f ∈ C((0, 1) × (0,∞) × (0,∞), [0,+∞)) is decreasing in u and v, and for any (u, v) ∈
(0,∞) × (0,∞),

lim
σ→+∞

σf(t, σu, σv) = +∞ (2.32)

uniformly on t ∈ (0, 1).

(B2) For any μ, ν > 0, f(t, μ, ν)/≡ 0, and

∫1

0
(1 − s)α−γ−1f(s, μL(s), μG(s))ds < +∞. (2.33)

3. Main Results

The main result is summarized in the following theorem.

Theorem 3.1. Provided that (B1) and (B2) hold, then there is a constant λ∗ > 0 such that for any
λ ∈ (λ∗,+∞), the problem (1.1) has at least one positive solution x(t), which satisfies x(t) ≥ L(t),
t ∈ [0, 1].

Proof. Let E = C[0, 1]; we denote a set P and an operator Tλ in E as follows:

P =
{
y ∈ E : there exists positive number ly such that y(t) ≥ lyG(t), t ∈ [0, 1]

}
, (3.1)

(
Tλy
)
(t) = λ

∫1

0
K(t, s)f

(
s, Iβy(s), y(s)

)
ds, for any y ∈ P. (3.2)

Clearly, P is a nonempty set since G(t) ∈ P . We claim that Tλ is well defined and
Tλ(P) ⊂ P .

In fact, for any ρ ∈ P , by the definition of P , there exists one positive number
lρ such that ρ(t) ≥ lρG(t) for any t ∈ [0, 1]. It follows from Lemma 2.6 and (B2)
that

(
Tλρ
)
(t) = λ

∫1

0
K(t, s)f

(
s, Iβρ(s), ρ(s)

)
ds ≤ λM

∫1

0
(1 − s)α−γ−1f

(
s, Iβρ(s), ρ(s)

)
ds

≤ λM
∫1

0
(1 − s)α−γ−1f(s, lρL(s), lρG(s)

)
ds < +∞.

(3.3)
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Setting B = maxt∈[0,1]ρ(t) > 0, from (B2), we have f(t, B/Γ(β + 1), B)/≡ 0. By the
continuity of f(t, u, v) on (0, 1)× (0,∞)× (0,∞), we have

∫1
0 M(s)f(s, B/Γ(β+1), B)ds > 0. On

the other hand,

IβB =
1

Γ
(
β
)
∫ t
0
(t − s)β−1Bds = Btβ

βΓ
(
β
) ≤ B

Γ
(
β + 1

) ,

M(s) =

∑p−2
j=1 ajk2

(
ξj , s
)

1 −∑p−2
j=1 ajξ

α−γ−1
j

≤
∑p−2

j=1 aj(1 − s)α−γ−1

Γ
(
α − β)

(
1 −∑p−2

j=1 ajξ
α−γ−1
j

) .
(3.4)

From (3.3), one has

0 <
∫1

0
M(s)f

(
s,

B

Γ
(
β + 1

) , B
)
ds ≤

∫1

0
M(s)f

(
s, IβB, B

)
ds ≤

∫1

0
M(s)f

(
s, Iβρ(s), ρ(s)

)
ds

≤
∑p−2

j=1 aj

Γ
(
α − β)

(
1 −∑p−2

j=1 ajξ
α−γ−1
j

)
∫1

0
(1 − s)α−γ−1f

(
s, Iβρ(s), ρ(s)

)
ds < +∞.

(3.5)

It follows from Lemma 2.6 and (3.3) that

(
Tλρ
)
(t) ≥ λG(t)

∫1

0
M(s)f

(
s, Iβρ(s), ρ(s)

)
ds = l′ρG(t), (3.6)

where

l′ρ = λ
∫1

0
M(s)f

(
s, Iβρ(s), ρ(s)

)
ds. (3.7)

Using (3.3) and (3.6), we know that Tλ is well defined and Tλ(P) ⊂ P .
Next we will focus on the upper and lower solutions of problem (2.22). From (B1) and

(3.2), we know that the operator Tλ is decreasing in y. Using

∫1

0
K(t, s)f(s,L(s),G(s))ds ≥ G(t)

∫1

0
M(s)f(s,L(s),G(s))ds, ∀t ∈ [0, 1], (3.8)

and letting

λ1 =
1∫1

0 M(s)f(s,L(s),G(s))ds
, (3.9)
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we have

λ1

∫1

0
K(t, s)f(s,L(s),G(s))ds ≥ G(t), ∀t ∈ [0, 1]. (3.10)

On the other hand, letting b(t) =
∫1
0 K(t, s)f(s,L(s),G(s))ds, since f(t, u, v) is

decreasing with respect to u and v, for any λ > λ1, we have

∫1

0
K(t, s)f

(
s, λIβb(s), λb(s)

)
ds ≤

∫1

0
K(t, s)f

(
s, λ1I

βb(s), λ1b(s)
)
ds

≤
∫1

0
K(t, s)f(s,L(s),G(s))ds ≤M

∫1

0
(1 − s)α−γ−1f(s,L(s),G(s))ds

< +∞.

(3.11)

From (3.2), (3.3), and (B1), for all (u, v) ∈ (0,∞) × (0,∞), we have

lim
μ→+∞

μf
(
t, μu, μv

)
= +∞ (3.12)

uniformly on t ∈ (0, 1). Thus there exists large enough λ∗ > λ1 > 0, such that, for any t ∈ (0, 1),

λ∗f(s, λ∗L(s), λ∗G(s)) ≥ 1∫1
0 M(s)ds

. (3.13)

From Lemma 2.6, one has

λ∗
∫1

0
K(t, s)f(s, λ∗L(s), λ∗G(s))ds ≥

∫1
0 K(t, s)ds
∫1
0 M(s)ds

≥
∫1
0 G(t)M(s)ds
∫1
0 M(s)ds

= G(t), ∀t ∈ [0, 1].

(3.14)

Letting

φ(t) = λ∗
∫1

0
K(t, s)f(s,L(s),G(s))ds = λ∗b(t),

ψ(t) = λ∗
∫1

0
K(t, s)f

(
s, λ∗Iβb(s), λ∗b(s)

)
ds,

(3.15)
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and using Lemmas 2.3 and 2.7, we obtain

φ(t) = λ∗
∫1
0 K(t, s)f(s,L(s),G(s))ds ≥ G(t), t ∈ [0, 1],

φ(0) = 0, Dt
γ−βφ(1) =

p−2∑
j=1
ajDt

γ−βφ
(
ξj
)
,

ψ(t) = λ∗
∫1
0 K(t, s)f

(
s, λ∗Iβb(s), λ∗b(s)

)
ds ≥ G(t), t ∈ [0, 1],

ψ(0) = 0, Dt
γ−βψ(1) =

p−2∑
j=1
ajDt

γ−βψ
(
ξj
)
.

(3.16)

Obviously, φ(t), ψ(t) ∈ P . By (3.16), we have

G(t) ≤ ψ(t) = (Tλ∗φ
)
(t), G(t) ≤ φ(t), ∀t ∈ [0, 1], (3.17)

which implies that

ψ(t) =
(
Tλ∗φ

)
(t) = λ∗

∫1

0
K(t, s)f

(
s, Iβφ(s), φ(s)

)
ds

≤ λ∗
∫1

0
K(t, s)f(s,L(s),G(s))ds = φ(t), ∀t ∈ [0, 1].

(3.18)

Consequently, it follows from (3.17)-(3.18) that

Dtψ(t) + λ∗f
(
t, Iβψ(t), ψ(t)

)
= Dt

(
Tλ∗φ

)
(t) + λ∗f

(
t, Iβ
(
Tλ∗φ

)
(t),
(
Tλ∗φ

)
(t)
)

≥ Dt
(
Tλ∗φ

)
(t) + λ∗f

(
t, Iβφ(t), φ(t)

)

= −λ∗f
(
t, Iβφ(t), φ(t)

)
+ λ∗f

(
t, Iβφ(t), φ(t)

)
= 0,

(3.19)

Dtφ(t) + λ∗f
(
t, Iβφ(t), φ(t)

)
= −λ∗f(t,L(t),G(t)) + λ∗f

(
t, Iβφ(t), φ(t)

)

≤ −λ∗f(t,L(t),G(t)) + λ∗f(t,L(t),G(t)) = 0.
(3.20)

From (3.16) and (3.18)–(3.20), we know that ψ(t) and φ(t) are upper and lower solutions of
the problem (2.22), and ψ(t), φ(t) ∈ P .

Define the function F and the operator Aλ∗ in E by

F
(
t, y
)
=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

f
(
t, Iβψ(t), ψ(t)

)
, y < ψ(t),

f
(
t, Iβy(t), y(t)

)
, ψ(t) ≤ y ≤ φ(t),

f
(
t, Iβφ(t), φ(t)

)
, y > φ(t),

(
Aλ∗y

)
(t) = λ∗

∫1

0
K(t, s)F

(
s, y(s)

)
ds, ∀y ∈ E.

(3.21)
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It follows from (B1) and (3.21) that F : (0, 1)× [0,+∞) → [0,+∞) is continuous. Consider the
following boundary value problem:

−Dt
α−βy(t) = λ∗F

(
t, y
)
, t ∈ [0, 1],

y(0) = 0, Dt
γ−βy(1) =

p−2∑
j=1

ajDt
γ−βy

(
ξj
)
.

(3.22)

Obviously, a fixed point of the operator Aλ∗ is a solution of the BVP (3.22). For all y ∈ E, it
follows from Lemma 2.6, (3.21), and ψ(t) ≥ G(t) that

(
Aλ∗y

)
(t) ≤ λ∗M

∫1

0
(1 − s)α−γ−1F(s, y(s))ds

≤ λ∗M
∫1

0
(1 − s)α−γ−1f

(
s, Iβψ(s), ψ(s)

)
ds

≤ λ∗M
∫1

0
(1 − s)α−γ−1f(s,L(s),G(s))ds

< +∞.

(3.23)

SoAλ∗ is bounded. From the continuity of F(t, y) andK(t, s), it is obviously thatAλ∗ : E → E
is continuous.

From the uniform continuity of K(t, s) and the Lebesgue dominated convergence
theorem, we easily get that Aλ∗(Ω) is equicontinuous. Thus from the Arzela-Ascoli theorem,
Aλ∗ : E → E is completely continuous. The Schauder fixed point theorem implies that Aλ∗

has at least one fixed point w such that w = Aλ∗w.
Now we prove

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1]. (3.24)

Let z(t) = φ(t) −w(t), t ∈ [0, 1]. Since φ(t) is the upper solution of problem (2.22) and w is a
fixed point of Aλ∗ , we have

w(0) = 0, Dt
γ−βw(1) =

p−2∑
j=1

ajDt
γ−βw

(
ξj
)
. (3.25)

From (3.17), (3.18), and the definition of F, we obtain

f
(
t, Iβφ(t), φ(t)

)
≤ F(t, y(t)) ≤ f

(
t, Iβψ(t), ψ(t)

)
, ∀y ∈ E,

f(t,L(t),G(t)) ≥ f
(
t, Iβψ(t), ψ(t)

)
, ∀t ∈ [0, 1].

(3.26)
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So

f
(
t, Iβφ(t), φ(t)

)
≤ F(t, y(t)) ≤ f(t,L(t),G(t)), ∀y ∈ E. (3.27)

From (3.18) and (3.20), one has

Dt
α−βz(t) = Dt

α−βφ(t) −Dt
α−βw(t)

= −λ∗f(t,L(t),G(t)) + λ∗F(t,w(t))

≤ 0, ∀t ∈ [0, 1].

(3.28)

By (3.27), (3.28), and Lemma 2.10, we get z(t) ≥ 0 which implies that w(t) ≤ φ(t) on [0, 1]. In
the same way, we have w(t) ≥ ψ(t) on [0, 1]. Thus we obtain

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1]. (3.29)

Consequently, F(t,w(t)) = f(t, Iβw(t), w(t)), t ∈ [0, 1]. Thenw(t) is a positive solution of the
problem (2.22). It thus follows from Lemma 2.7 that x(t) = Iβw(t) is a positive solution of the
problem (1.1).

Finally, by (3.29), we have

w(t) ≥ ψ(t) ≥ G(t). (3.30)

Thus,

x(t) = Iβw(t) =
1

Γ
(
β
)
∫ t
0
(t − s)β−1w(s)ds ≥ 1

Γ
(
β
)
∫ t
0
(t − s)β−1G(s)ds = L(t). (3.31)

Corollary 3.2. Suppose that condition (B1) holds, and that for any μ, ν > 0, f(t, μ, ν)/≡ 0, and

∫1

0
f
(
s, μL(s), μG(s))ds < +∞. (3.32)

Then there exists a constant λ∗ > 0 such that for any λ ∈ (λ∗,+∞), the problem (1.1) has at least one
positive solution x(t), which satisfies x(t) ≥ L(t), t ∈ [0, 1].

We consider some special cases in which f(t, u, v) has no singularity at u, v = 0 or
t = 0, 1.
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We give the following assumption.
(B∗1) f ∈ C((0, 1) × [0,∞) × [0,∞), (0,+∞)) is decreasing in u, v.

Then, f(t, u, v) is nonsingular at u = v = 0 and for all u, v ≥ 0, f(t, u, v) > 0, t ∈ (0, 1), which
implies that f(t, 0, 0) > 0, t ∈ (0, 1). Thus

lim
μ→+∞

μf(t, 0, 0) = +∞, uniformly for t ∈ (0, 1) (3.33)

naturally holds; we then have the following corollary.

Corollary 3.3. If (B∗1) holds and
(B∗2)

∫1

0
(1 − s)α−γ−1f(s, 0, 0)ds < +∞, (3.34)

then there exists a constant λ∗ > 0 such that for any λ ∈ (λ∗,+∞), the problem (1.1) has at least one
positive solution x(t), which satisfies x(t) ≥ L(t), t ∈ [0, 1].

Proof. In the proof of Theorem 3.1, we replace the set P by

P1 =
{
y ∈ E : y(t) ≥ 0, t ∈ [0, 1]

}
(3.35)

and the inequalities (3.18)–(3.20) by

0 ≤ ψ(t) = Tλ0, 0 ≤ φ(t) = Tλψ(t) ≤ Tλ0 = ψ(t). (3.36)

Since Tλ0, Tλψ(t) ∈ P , we have

Dt
α−βTλ0 + f

(
t, IβTλ, Tλ0

)
= −f(t, 0, 0) + f

(
t, IβTλ0, Tλ0

)
≤ 0,

Dt
α−β Tλψ(t) + f

(
t, IβTλψ(t), Tλψ(t)

)
= −f

(
t, Iβψ(t), ψ(t)

)
+ f
(
t, IβTλψ(t), Tλψ(t)

)
≥ 0

, t ∈ [0, 1].
(3.37)

The rest of the proof is similar to that of Theorem 3.1.

If f(t, u, v) is nonsingular at u = 0, v = 0 and t = 0, 1, we have the conclusion.

Corollary 3.4. If f(t, u, v) : [0, 1] × [0,∞) × [0,∞) → (0,+∞) is continuous and decreasing
in u and v, the problem (1.1) has at least one positive solution x(t), which satisfies x(t) ≥ L(t),
t ∈ [0, 1].
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Example 3.5. Consider the existence of positive solutions for the following eigenvalue
problem of fractional differential equation:

−Dt
3/2x(t) =

λ

et(1 − t)1/8
(
x−1/2(t) +

(
Dt

1/8x(t)
)−1/8)

,

Dt
1/8x(0) = 0, Dt

3/8x(1) = 2Dt
3/8x

(
1
2

)
−Dt

3/8x

(
3
4

)
.

(3.38)

Let

f(t, u, v) =
1

et(1 − t)1/8
(
u−1/2 + v−1/8

)
, (t, u, v) ∈ (0, 1) × (0,+∞) × (0,+∞). (3.39)

Then f ∈ C((0, 1) × (0,+∞) × (0,+∞), (0,+∞)) is decreasing in u and v, and for any (u, v) ∈
(0,∞) × (0,∞),

lim
σ→+∞

σf(t, σu, σv) = lim
σ→+∞

σ1/2u−1/2 + σ7/8v−1/8

et(1 − t)1/8
= +∞, (3.40)

uniformly on t ∈ (0, 1). Thus (B1) holds.
On the other hand, for any μ, ν > 0 and t ∈ (0, 1),

f
(
t, μ, ν

)
=

1

et(1 − t)1/8
(
μ−1/2 + ν−1/8

)
/≡ 0,

L(t) =
∫ t
0

(t − s)−7/8s3/8
Γ(1/8)

ds =
Γ(11/8)
Γ(3/2)

t1/2.

(3.41)

thus we have

∫1

0
(1 − s)α−γ−1f(s, μL(s), μG(s))ds =

∫1

0
(1 − s)1/8

[
1

es(1 − s)1/8
(
μ−1/2L−1/2(s)

+μ−1/8G−1/8(s)
)]

≤
∫1

0

[
μ−1/2

(
Γ(11/8)
Γ(3/2)

t1/2
)−1/2

+ μ−1/8s−3/64
]
ds

=
∫1

0

[
μ−1/2

(
Γ(11/8)
Γ(3/2)

t−1/4
)
+ μ−1/8s−3/64

]
ds < +∞,

(3.42)
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which implies that (B2) holds. From Theorem 3.1, there is a constant λ∗ > 0 such that for any
λ ∈ (λ∗,+∞) the problem (3.38) has at least one positive solution x(t) and

x(t) ≥ L(t) =
Γ(11/8)
Γ(3/2)

t1/2 ≈ 1.003t1/2, t ∈ [0, 1]. (3.43)
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