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ABSTRACT 

 

The largest wool exporter in the world is Australia, where wool being a major 

export is worth over AUD $2 billion per year and constitutes about 17 per cent of 

all agricultural exports.  Most Australian wool is sold by auctions in three 

regional centres.  The prices paid in these auction markets are used by the 

Australian production and service sectors to identify the quality preferences of 

the international retail markets and the intermediate processors.  One ongoing 

problem faced by wool growers has been the lack of clear market signals on the 

relative importance of wool attributes with respect to the price they receive at 

auction.  The goal of our research is to model the structure of Australian wool 

auction prices.  We aim to optimise the information that can be extracted and 

used by the production and service sectors in producing and distributing the raw 

wool clip. 

 

Most of the previous methods of modelling and predicting wool auction prices 

employed by the industry have involved multiple-linear regressions.  These 

methods have proven to be inadequate because they have too many assumptions 

and deficiencies.  This has prompted alternative approaches such as neural 

networks and tree-based regression methods.  In this thesis we discuss these 

alternative approaches.  We observe that neural network methods offer good 

prediction accuracy of price but give minimal understanding of the price driving 

variables.  On the other hand, tree-based regression methods offer good 

interpretability of the price driving characteristics but do not give good 

prediction accuracy of price.  This motivates a hybrid approach that combines the 

best of the tree-based methods and neural networks, offering both prediction 

accuracy and interpretability. 

 

Additionally, there also exists a wool specifications problem.  Industrial sorting 

of wool during harvest, and at the start of processing, assembles wool in bins 

according to the required wool specifications.  At present this assembly is done 

by constraining the range of all specifications in each bin, and having either a 

very large number of bins, or a large variance of characteristics within each bin.  
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Multiple-linear regression on price does not provide additional useful 

information that would streamline this process, nor does it assist in delineating 

the specifications of individual bins. 

 

In this thesis we will present a hybrid modular approach combining the 

interpretability of a regression tree with the prediction accuracy of neural 

networks.  Our procedure was inspired by Breiman and Shang’s idea of a 

“representer tree” (also known as a “born again tree”) but with two main 

modifications: 1) we use a much more accurate Neural Network in place of a 

multiple tree method, and 2) we use our own modified smearing method which 

involves adding Gaussian noise.  Our methodology has not previously been used 

for wool auction data and the accompanying price prediction problem.  The 

numeric predictions from our method are highly competitive with other methods.  

Our method also provides an unprecedented level of clarity and interpretability 

of the price driving variables in the form of tree diagrams, and the tabular form 

of these trees developed in our research.  These are extremely useful for wool 

growers and other casual observers who may not have a higher level 

understanding of modelling and mathematics.  This method is also highly 

modular and can be continually extended and improved.  We will detail this 

approach and illustrate it with real data. 

 

The more accurate modelling and analysis helps wool growers to better 

understand the market behaviour.  If the important factors are identified, then 

effective strategies can be developed to maximise return to the growers. 

 

In Chapter 1 of this thesis, we present a brief overview of the Australian wool 

auction market.  We then discuss the problems faced by the wool growers and 

their significance, which motivate our research. 

 

In Chapter 2, we define the predictive aspect of the modelling problem and 

present the data that is available to us for our research.  We introduce the 

assumptions that must be made in order to model the auction data and predict the 

wool prices. 
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Chapter 3 discusses neural networks and their potential in our wool auction 

problem.  Neural networks are known to give good results in many modern 

applications resolving industrial problems.  As a result of the popularity of such 

methods and the ongoing development of them, our research partner, the 

Department of Agriculture and Food, Government of Western Australia, 

performed a preliminary investigation into neural networks and found them to 

give satisfactory predictions of wool auction prices.  In our Chapter 3, we 

perform an analysis and assessment of neural networks, specifically, the 

generalised regression neural networks (GRNN).  We look at the strengths and 

weaknesses of GRNN, and apply them to the wool auction problem and 

comment on their relevance and usability in our wool problem.  We detail the 

problems we face, and why neural networks alone may not be the best approach 

for the wool auction problem, thus laying the foundation for the development of 

our hybrid modular approach in Chapter 5.  We also use the numerical prediction 

results from GRNN as the benchmark in our comparisons of different modelling 

methods in the rest of this thesis. 

 

Chapter 4 details the tree-based regression methods, as an alternate approach to 

neural networks.  In analysing the tree-based methods with our wool auction 

data, we illustrate the tree methods’ advantages over neural networks, as well as 

the trade-offs, with our auction data.  We also demonstrate how powerful and 

useful a tree diagram can be to the wool auction problem.  And in this Chapter, 

we improve a typical tree diagram further by introducing our own tabular form of 

the tree, which can be of immerse use to wool growers.  In particular, we can use 

our tabular form to solve the wool specification problem mentioned earlier, and 

we incorporate this tabular form as part of a new hybrid methodology in Chapter 

5.  In Chapter 4 we also consider the ensemble methods such as bootstrap 

aggregating (bagging) and random forests, and discuss their results.  We 

demonstrate that, the ensemble methods provide higher prediction accuracies 

than ordinary regression trees by introducing many trees into the model.  But this 

is at the expense of losing the simplicity and clarity of having only a single tree.  

However, the study of assemble methods do end up providing an excellent idea 

for our hybrid approach in Chapter 5. 
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Chapter 5 details the new hybrid approach we developed as a result of our work 

in Chapters 3 and 4 using neural networks and tree-based regression methods.  

Our hybrid approach combines the two methods with their respective strengths.  

We apply our new approach to the data, compare the results with our earlier 

work in neural networks and tree-based regression methods, then discuss the 

results. 

 

Finally, we conclude our thesis with Chapter 6, discussing the potential of our 

new hybrid approach and the directions of possible future works. 
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Chapter 1 

 

Introduction 

 

Australian wool auction, worth over $2 billion per year, is an on-going process.  

The prices paid in this auction market are used by the Australian production and 

service sectors to identify the quality preferences the international retail markets 

and the intermediate processors.  The aim of our research is to optimise the 

information that can be extracted and used by these sectors in the production and 

distribution of the raw wool clip. 

 

In this introductory chapter we will present a brief overview of the Australian 

wool auction market.  We will then discuss the problems faced by the wool 

growers and their significance, which motivate our research.  At the end of this 

chapter we will present an overview of the rest of our thesis. 

 

 

1.1 Australian Wool 

 

70% of world trade in apparel wool is Australian wool.  Unlike other 

commodities, each farm lot of wool is laboratory tested for its 

measurements/specifications, and each farm lot has an individual price.  About 

450,000 farm lots of wool are sold in Australia raw wool auctions each year.  

Raw wool is one of Australia’s largest export commodities and is worth over 

AUD $2 billion annually.  It constitutes around 17 per cent of all farm exports in 

Australia.  Hence, Australia continues to be the largest exporter of wool in the 

world. 

 

The auction centres for wool in Australia are located in three regions: Northern 

(Sydney, Newcastle, Goulburn), Southern (Melbourne, Geelong, Adelaide, 

Launceston) and Western (Fremantle).  Auctions are held almost every week in 

the year, with breaks during the Easter period, a period in July, and the Christmas 
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period.  Depending on the volume of wool sale lots in each auction, the auction 

can be spread over 1 to 3 days. 

 

 

Figure 1.1: Auction Centres for Wool in Australia 

 

 

The auctions are conducted using the greasy price for the raw wool, expressed in 

cents per kilogram.  This can be converted to a clean price estimate by 

multiplying greasy price by 100 and dividing by the yield.  The response variable 

is the clean price, which is the base price less the total discount in c/kg clean.  

The base price for wool for a given style and fibre diameter (micron), assuming 

there are no faults for strength, length, vegetable matter or colour is expressed in 

c/kg clean. 

 

 

1.2 Wool Prices and Market Reporting 

 

Before being put up for auction, each bale or sale lot of wool is submitted for 

third party laboratory testing, measuring the wool quality characteristics.  This 

information is then made available to potential buyers for their considerations.  

The laboratory testing procedure is paid for by the wool grower and he/she can 

select which attributes are to be reported or withheld to maximise the 
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attractiveness of the sale lot to be auctioned.  The most typical wool quality 

characteristics to be laboratory tested that are well accepted by the industry to be 

significant price-driving variables are: fibre diameter, proportion of break 

(middle), staple length, staple strength, vegetable matter content, and yield.  They 

are described in Table 1.1 below.  Of these, it is commonly accepted that the 

fibre diameter (measured in microns) is the most dominant.  Micron is the unit of 

length equivalent to one millionth of a metre or 0.001 mm.  As the diameter 

determines the type of product the wool can be turned into, it is very often the 

first and arguably the most important characteristic an auction buyer would take 

into account. 

 

Table 1.1: Descriptions of Significant Wool Characteristics 

Variables Label Description 

Diameter 

 

 

 

DIAMETER 

 

 

 

The fibre diameter of wool.  Micron is often used 

generically in the wool trade to describe the 

diameter: unit of length equivalent to one 

millionth of a metre or 0.001 mm. 

Proportion 

of Breaks 

(middle) 

 

POBMID 

 

 

 

Measure of the percent of staples that broke in 

the middle third of the staple.  Position of break 

is determined from the weight of the two ends of 

the broken staple. 

Staple 

Length 

SL 

 

Measurement of the average length of wool 

staples. 

Staple 

Strength 

 

SS 

 

 

Measure of the strength of a wool staple.  

Computed from peak force to break divided by 

linear density of the staple. 

Vegetable 

Matter 

Content 

 

VMB 

 

 

 

Vegetable matter base is the dry weight of 

vegetable matter (burr, seed, hard heads etc.) 

expressed as a percentage of the weight of the 

greasy sample tested. 

Yield 

 

 

YIELD 

 

 

As applied to greasy wool, yield is the estimate 

of the clean fibre either after washing/scouring or 

processing. 



 4 

Each bale of wool that goes through the auction system, whether sold or not, has 

its information recorded and archived by the Australian Wool Exchange 

(AWEx).  Further, the sale lots that are sold also have their sale prices recorded.  

Table 1.2 below gives an idea of the data recorded.  Once recorded, the prices 

paid in this auction market can potentially be used by the Australian production 

and service sectors to identify the quality preferences of the international retail 

markets and the intermediate processors.  Auction price indicators and some 

premium and discount tables are released each week by the Australian Wool 

Exchange (AWEx) for the local market participants and for the international 

sectors that rely on their raw wool supplies from Australia.  AWEx prepares 

market reports, which contain price tables.  However, these tables are often 

sparse when several quality characteristics are combined. 

 

Table 1.2: An Example of Data Recorded 

Sale Lot 
ID 

DIAMETER 
(micron) 

POBMID 
 

SL 
 

SS 
 

VMB 
 

YIELD 
 

CPRICE 
(cents/kg) 

1 20.1 64 73 29 1.2 59.8 602.01 

2 20.2 53 65 37 2.0 52.0 576.92 

3 19.0 57 72 26 4.3 54.6 961.54 

4 20.3 59 77 26 0.8 70.5 567.38 

5 21.8 60 76 26 1.2 55.8 498.21 

6 23.1 38 84 22 1.9 54.0 461.11 

7 20.4 37 70 32 3.7 47.3 505.29 

8 19.7 49 65 34 2.2 56.4 721.63 

9 23.1 50 87 36 3.0 55.4 476.53 

10 18.9 61 64 33 2.4 59.8 953.18 

.        

.        

.        

 

 

The most commonly used tool for assessing the wool price and the effects of 

changes in quality on the wool price was “Pricemaker” (available from the 

Woolmark Company), and later Woolcheque.  The data used in such software 

packages was supplied by AWEx. 

 

The wool characteristics that were taken into account by the Pricemaker were: 

fibre diameter, staple strength, vegetable matter content, staple length, 

unscourable colour and style.  The relative importance of these characteristics 

appeared to change over time, but there have been few attempts to identify the 



 5 

relative importance or separate the effects of supply changes from changes in 

market demand.  The only observation was that diameter dominates.  Stanton 

(1993, 1994), Stanton and Coss (1995) and Stanton, et al. (1997) attempted to 

isolate these changes with the objective of achieving a fully informed auction 

market for Australian wool. 

 

When using the Pricemaker application, the grower may choose to use those 

prices prevailing at Australian wool auctions during the previous selling season 

or during the most recent month. 

 

Not much other work has been done on wool auction prices.  There have been a 

number of studies involving agricultural forecasting (Allen 1994; Bessler 1994; 

Freebairn 1994; Tomek 1994), and very few involve the wool market and 

auctions (Graham-Higgs et al. 1999; Jones et al. 2004; Kemp and Willetts 1996; 

Simmons and Hansen 1997).  In the past, Kemp and Willets (1996) have studied 

the remembering power of farmers or brokers in the Canterbury wool industry in 

New Zealand.  They found that there is a general tendency to underestimate more 

recent and overestimate 14-year-old prices.  On the other hand, Simmons and 

Hansen (1997) developed a theoretical model of the wool market that could 

distinguish between large and small buyers.  The model forecasts that “large” 

buyers possess cost advantage, which will increase grower prices providing there 

is competition from periphery of small, relative high cost buyers.  Graham-Higgs 

et al. (1999) found that the futures wool market is efficient for up to a six-month 

spread, but no further into the future.  Because futures market prices can be used 

to predict prices up to six months in advance, wool growers can use the futures 

price to assess when they market their clip, but not for longer-term. 

 

 

1.3 Problems Faced by the Wool Industry 

 

The lack of clear market signals on the relative importance of wool attributes 

with respect to the price they receive at auction, has been an ongoing problem 

faced by wool growers.  If the structure of Australian wool auction prices can be 

modelled adequately, then we can optimise the information that can be extracted 
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and used by the production and service sectors in the production and distribution 

of the raw wool clip.  The more accurate modelling and analysis would help 

wool growers to better understand the market behaviour.  If the important factors 

are identified, then effective strategies can be developed to maximise return to 

the growers. 

 

Pricemaker (and later Woolcheque), like most wool price estimation systems 

being employed in the industry, is based on a series of multiple-linear and non-

linear regressions.  However, these regression systems have numerous 

assumptions and problems including non-linearity, non-normal distributions, 

interactions in causing price changes, correlations between characteristics and 

prediction resulted with negative price.  The prediction from Pricemaker also 

have range limitations for given independent variables.  In particular, prediction 

was limited within the range of 18.5 and 24.5 microns in fibre diameter.  In 

addition, as the complexity of the regression models are increased, the problems 

of sparse data, and the need for aggregation of data over time to complete the 

datasets, became limiting. 

 

There is also an industry assumption that all the measured characteristics (listed 

above) are relevant to all lots.  Hence variables such as vegetable matter content 

are included as discounts in all sale lots, but at the same time the industry 

acknowledged that price discounts were relevant for only part of the population 

of sale lots. 

 

The use of regression systems also have the assumption that the regression will 

pass through the average price, and that premiums and discounts are applied 

equally above and below the average.  Prices from auctions do not present 

normally distributed observations above and below the average price.  Elements 

of auction theory suggest that the distribution will be asymmetrical, or even a 

compound distribution, which has high frequencies of observations below the 

theoretical frontier price (the maximum expected price for a sale lot), and price 

tapering off as the technical inefficiencies accumulate within the sale lot. 
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So there is a need to explore the Australian wool price and its hedonic modelling 

relating changes in quality to changes in price.  This needs to be undertaken with 

dual objectives of addressing the information needs of the industry participants, 

and addressing and overcoming the limitations of the current regression systems. 

 

Additionally, there also exists a wool specifications problem.  Industrial sorting 

of wool during harvest, and at the start of processing, assembles wool in bins 

according to the required wool specifications.  At present this assembly is done 

by constraining the range of all specifications in each bin, and having either a 

very large number of bins, or a large variance of characteristics within each bin.  

Multiple linear regression on price does not provide additional useful information 

that would streamline this process, nor does it assist in delineating the 

specifications of individual bins. 

 

 

1.4 Summary of Our Research, and Overview of This Thesis 

 

In this thesis, we address the problems faced by the Australian wool growers as 

presented in Section 1.3.  We will present our search for alternative means to 

model the structure of Australian wool auction prices, as well as an approach that 

would provide useful information in streamlining the wool specifications process 

as detailed at the end of Section 1.3. 

 

The more accurate modelling and analysis helps wool growers to better 

understand the market behaviour.  If the important factors are identified, then 

effective strategies can be developed to maximise return to the growers. 

 

In Chapter 1, we presented a brief overview of the Australian wool auction 

market.  We discussed the problems faced by the wool growers and their 

significance, which motivated our research. 

 

In Chapter 2, we define the predictive aspect of the modelling problem and 

present the data that is available to us for our research.  We introduce the 
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assumptions that must be made in order to model the auction data and predict the 

wool prices. 

 

Chapter 3 discusses neural networks and their potential in our wool auction 

problem.  Neural networks are known to give good results in many modern 

applications resolving industrial problems (Cheng and Titterington, 1994, Frost 

and Karri, 1999).  We perform an analysis and assessment of neural networks, 

specifically, the generalised regression neural networks (GRNN).  We look at 

their strengths and weaknesses, and apply GRNN to the wool auction problem 

and comment on their relevance and usability in our wool problem.  We find that 

Neural Networks such as GRNN work well with our wool auction data and give 

excellent prediction results with good accuracies.  However, they do not provide 

any clear picture to the understanding of the interactions between the various 

price-driving wool variables.  As such, we continue to investigate alternative 

methods which would provide a clear picture and better interpretability of the 

wool variables. 

 

Chapter 4 details the tree-based regression methods, as an alternate approach to 

neural networks.  We find that a regression tree provides a very clear picture of 

the relative importance of each price-driving wool variable at various levels, in 

the form of a single tree diagram.  Further, we develop an alternative tabular 

representation of the tree diagram, which solves the wool specification first 

discussed in Section 1.3, and is of immerse use to wool growers.  However, we 

find that the prediction accuracies of regression trees are relatively poor 

compared to GRNN.  We investigate the ensemble methods of improving the 

prediction accuracies of trees such as bagging and random forests.  While such 

methods do improve the prediction accuracies when applied on our wool auction 

data, they bring complexity to the interpretability of the wool variables by 

introducing multiple tree diagrams.  We can certainly combine and average the 

numerical outputs from multiple tree diagrams, but we cannot combine and take 

average of the tree diagrams themselves.  The simplicity and clarity of working 

with only a single tree is lost from the ensemble methods.  Hence, we need to 

develop a method which provides prediction accuracies comparable to those of 

GRNN, but at the same time retain the same level of interpretability of a single 
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tree.  Although the ensemble methods are not ideal, they lead to an excellent idea 

for our work in Chapter 5. 

 

Chapter 5 details the new hybrid approach we developed as a result of the work 

we did in Chapter 3 and 4 using neural networks and tree-based regression 

method.  Our hybrid approach combines the two methods with their respective 

strengths.  We apply our new approach to the data, compare the results with our 

earlier work in neural networks and tree-based regression methods, and discuss 

the results.  We find that our new hybrid approach is the best balance between 

prediction accuracies and interpretability that we can currently achieve.  It 

provides solutions to the various aspects of our initial wool auction problem, as 

well as the wool specifications problem discussed in Section 1.3. 

 

Finally, we conclude our thesis with Chapter 6, discussing the potential of our 

new hybrid approach and the directions of possible future works. 
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Chapter 2 

 

Data and Assumptions 

 

In this chapter we will define the predictive aspect of the modelling problem and 

present the data that is available to us for our research.  We will introduce the 

assumptions that must be made in order to model the auction data and predict the 

wool prices. 

 

 

2.1 Prediction 

 

There are two aspects of modelling: predictive and descriptive.  They are both 

required to be satisfied for our wool auction price problem.  The predictive (and 

fitting) aspect is quantitative and can be directly compared across different 

models with relative ease.  The descriptive aspect, however, is qualitative and 

cannot be compared numerically across different models.  We will comment on 

the descriptive aspect of different models individually in their respective 

chapters.  In the following, we first define the typical problem of prediction. 

 

A predictive problem (or regression) is easy to state but difficult to solve in 

general.  Say a quantifiable attribute y (called the “output” or “response” 

variable) is assumed to be dependent on a vector of 

attributes/characteristics/properties x = (x1, x2, …, xn) (often called “input” 

variables).  In other words, there exists an underlying but unknown function f 

between x and y: 

 

 y = f(x1, x2, …, xn) = f(x) (2.1) 

 

The goal then is to find, construct, or fit a predictor function f̂  that most closely 

approximates f from a training set of size N: {(x(n), y(n)) : n = 1, …, N}, a finite 
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set of possibly noisy measured/observed values of x and the associated values of 

y.  With f̂  we can compute/predict (estimate) ŷ  (the most probable value of y) 

for each value of x : 

 

 y ~ ŷ  = f̂ ( x) (2.2) 

or 

 y = f̂ ( x) + (noise and error) (2.3) 

 

The problem then is to find a “good” predictor or “best fit” such that the overall 

error is minimised.  Often the root mean square error can be used to represent 

this overall error. 

 

Our problem differs from typical problems of a statistics nature.  In statistics, 

most often a small sample is used for reaching some form of conclusion about a 

much larger population that is too large to be worked on.  Our problem is closer 

to data mining in nature, where we attempt to model all data (if available) in a 

single period and use the conclusion to predict outcomes for the next period;  i.e. 

we build a model with the current week’s wool auction data to predict the prices 

in next week’s auction. 

 

 

2.2 Assumptions 

 

Since the buyers in a wool auction make their bidding/purchasing decisions 

based on the laboratory measured wool quality characteristics released to them, it 

makes sense for us to use these as the input variables in our model to predict the 

price.  There exists a large set of wool characteristics, and we shall consider a 

subset that is most widely accepted in the industry as the most significant, 

namely: the fibre diameter, proportion of break (middle), staple length, staple 

strength, vegetable matter content, and yield.  We make our first assumption that 

the price of wool (y) can be expressed as an unknown function f, such that: 

 

 y = f(x1, x2, …, x6) = f(x) (2.4) 
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where 

 x1 = DIAMETER 

 x2 = POBMID 

 x3 = SL 

 x4 = SS 

 x5 = VMB 

 x6 = YIELD 

 

Now, knowing the auctions are held frequently and almost weekly, one would 

expect the auctions that are held close together (say within a few weeks) would 

have their price structures/patterns affected by mostly the same factors, more so 

than auctions that are further apart (say two months or more) which would be 

much more different due to market changes over the longer period of time.  One 

would expect the difference in price structure/pattern between two consecutive 

auctions to be relatively small and almost negligible.  Hence, if we are to predict 

the prices of wool in a particular auction, we can assume it would be sufficient to 

build a predictive model from data from a selection of past auctions that are 

reasonably close to the one being predicted. 

 

We shall apply the above assumptions for all models within this thesis. 

 

Of course, auction prices, like share and oil prices, depend not only on the 

product specifications and historical behaviour but also on intangible factors such 

as speculations, international market influences, and unexpected social and 

political events.  To make our predictions as accurate as possible, ideally the 

intangible factors should be identified and captured in our models, and their 

influences analysed.  For our research, we make the decision to focus on building 

models from the limited data that is readily available to us.  Considerations of the 

intangible factors will certainly strengthen our models and should be considered 

in future research. 
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2.3 Data Considered 

 

Our research partner, the Department of Agriculture and Food, Government of 

Western Australia, has kept an extensive data collection of wool that were 

offered in auctions from the late 1960s to the present.  Figure 2.1 shows the 

average price per kilogram of clean wool from Fremantle auction data between 

July 1998 and December 2002.  Series 1 represents wool having a fibre diameter 

of 19 microns, Series 2 represents wool having a fibre diameter of 21 microns, 

while Series 3 represents wool having a fibre diameter of 23 microns. 

 

 

Figure 2.1: Three Periods of Interest 

 

As mentioned in Section 1.2, the fibre diameter (measured in microns) is well 

regarded by the industry as the most important price-driving wool characteristic.  

This is reflected in the majority of Figure 2.1, where finer wool was sold for a 

higher average price.  However, it can be seen that this price difference starts to 

diminish sometime around August 2001. 

 

For our research, the Department of Agriculture and Food provided us data of 

Merino fleece wool from Fremantle auctions in the three separate periods as 

shown in Figure 2.1: July 2000 – December 2000 (Period A), August 2001 – 

January 2002 (Period B), and July 2002 – December 2002 (Period C).  Period A 
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is of interest to the department because the price difference due to diameter was 

the greatest.  Period B is interesting because this was when the price difference 

began to diminish.  And finally in Period C the price difference due to diameter 

was minimal. 

 

As mentioned in Section 1.1, auctions are held almost every week in the year, but 

with breaks during the Easter period, a period in July, and the Christmas period.  

Depending on the volume of wool sale lots in each auction, the auction can be 

spread over 1 to 3 days.  To avoid the breaks and to have some form of 

uniformity when comparing the three periods, we shall only consider the months 

August to December in each of the three periods.  The details are given in Table 

2.1. 

 

Table 2.1: Weekly Auctions Held in the Three Periods 

 Period A (2000) Period B (2001) Period C (2002) 

August 

Week 1 

Week 2 

Week 3 

5 Days in 3 Weeks: 

16/8 ,17/8 

23/8 

30/8, 31/8 

6 Days in 3 Weeks: 

14/8, 15/8, 16/8 

22/8, 23/8 

29/8 

6 Days in 3 Weeks: 

14/8, 15/8 

21/8, 22/8 

28/8, 29/8 

September 

Week 1 

Week 2 

Week 3 

Week 4 

8 Days in 4 Weeks: 

6/9, 7/9 

13/9, 14/9 

20/9, 21/9 

27/9, 28/9 

5 Days in 4 Weeks: 

5/9 

13/9 

19/9 

26/9, 27/9 

8 Days in 4 Weeks: 

4/9, 5/9 

11/9, 12/9 

18/9, 19/9 

25/9, 26/9 

October 

Week 1 

Week 2 

Week 3 

Week 4 

7 Days in 4 Weeks: 

5/10 

11/10, 12/10 

18/10, 19/10 

25/10, 26/10 

8 Days in 4 Weeks: 

9/10, 10/10, 11/10 

17/10, 18/10 

24/10, 25/10 

31/10 

9 Days 4 Weeks: 

8/10, 9/10, 10/10 

16/10, 17/10 

23/10, 24/10 

30/10, 31/10 

November 

Week 1 

Week 2 

Week 3 

Week 4 

8 Days in 4 Weeks: 

1/11, 2/11 

8/11, 9/11 

21/11, 22/11, 23/11 

29/11 

5 Days in 3 Weeks: 

7/11, 8/11 

21/11, 22/11 

28/11 

6 Days in 3 Weeks: 

6/11, 7/11 

20/11, 21/11 

27/11, 28/11 

December 

Week 1 

Week 2 

3 Days in 2 Weeks: 

6/12 

13/12, 14/12 

3 Days in 2 Weeks: 

5/12 

12/12, 13/12 

4 Days in 2 Weeks: 

4/12, 5/12 

11/12, 12/12 
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2.4 Model Comparisons 

 

As illustrated in Table 2.1, the number of auctions varies in a month across the 

three periods.  To maintain some form of uniformity, we shall only model the last 

week worth of auction data from each month, then use the model to predict the 

price outcomes in the first week of the next month. 

 

 

Table 2.2: Number of Sale Lots in Our Data 

 Period A (2000) Period B (2001) Period C (2002) 

Last week of 

August 

1503 1236 1344 

1st week of 

September 

1847 1406 1321 

Last week of 

September 

1890 2216 1461 

1st week of 

October 

1302 2632 2895 

Last week of 

October 

1806 1050 1293 

1st week of 

November 

2157 1581 1607 

Last week of 

November 

1160 922 903 

1st week of 

December 

1042 863 1252 

 

 

To compare how “good” or how accurate a model is against another, we will use 

the typical measures of: 

- root mean square error, 

- mean absolute error, and 

- standard deviation of absolute error 
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in the rest of this thesis. 

 

In the next chapter, we will discuss neural networks and specifically, the 

generalised regression neural networks (GRNN), which has been found to give 

satisfactory predictions of wool auction prices by our research partner, the 

Department of Agriculture and Food, WA.  We will look at the strengths and 

weaknesses of neural networks, and use the results from GRNN as the 

benchmark in our comparisons of different modelling methods in the rest of this 

thesis. 
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Chapter 3 

 

Neural Networks 

 

In this chapter, we will discuss artificial neural networks as alternate methods in 

modelling and predicting the Australian wool auction prices.  Neural networks 

are known to give good results in many modern applications resolving industrial 

problems (Cheng and Titterington, 1994, Frost and Karri, 1999).  As a result of 

the popularity of such methods and the ongoing development of them, our 

research partner, the Department of Agriculture and Food, Government of 

Western Australia, performed a preliminary investigation into neural networks 

and found them to give satisfactory predictions of wool auction prices. 

 

In the following sections, we will perform an analysis and assessment of neural 

networks, specifically, the generalised regression neural networks (GRNN).  We 

will look at the strengths and weaknesses of GRNN, and apply GRNN to the 

wool auction problem and comment on their relevance and usability in our wool 

problem.  We will detail the problems we face, and why neural networks may not 

be a good choice for the wool auction problem.  We will also use the numerical 

prediction results from GRNN as the benchmark in our comparisons of different 

modelling methods in the rest of this thesis. 

 

This chapter concludes that Neural Networks such as GRNN work well with our 

wool auction data and give excellent prediction results with good accuracies.  

However, they do not provide any clear picture to the understanding of the 

interactions between the various price-driving wool variables.  As such, we 

continue to investigate alternative methods which would provide a clear picture 

and better interpretability of the wool variables.  We will use the prediction 

results from GRNN as a benchmark when comparing the prediction accuracies 

across various methods, and investigate the feasibility of integrating GRNN into 

some of these methods, if such possibility arises. 
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3.1 Why Neural Networks? 

 

The relationships between the price and price-driving wool attributes are non-

linear, interactive and very complex.  Neural networks can readily handle non-

linearity with ease and without restrictions, and thus are much more attractive 

than earlier multiple-linear models mentioned in Section 1.3.  Also, there exist 

other issues such as the price and wool attribute relationships being dynamic over 

time, and the wool data set available in a given period could be incomplete and 

imprecise.  The flexibilities and ongoing developments of neural networks allow 

researchers to explore and make continual advancements in the handling of such 

issues. 

 

 

3.2 Neural Networks Basics 

 

There is no universally accepted definition of a neural network.  However, most 

researchers concede that a neural network is a network composed of a large 

number of simple processors (neurons) that are massively interconnected, operate 

in parallel, and learn from experience (examples).  These are the primary known 

characteristics of biological neural systems that are the easiest to exploit in 

artificial neural systems. 

 

The inspiration for neural nets comes from the structure of the brain.  A brain 

consists of a large number of cells, referred to as "neurons".  A neuron receives 

impulses from other neurons through a number of "dendrites".  Depending on the 

impulses received, a neuron may send a signal to other neurons, through its 

single "axon", which connects to dendrites of other neurons.  Like the brain, the 

structure of an artificial neural net consists of connected units referred to as 

"nodes" or "neurons".  Each neuron performs a portion of the computations 

inside the net: a neuron takes some numbers as inputs, performs a relatively 

simple computation on these inputs, and returns an output.  The output value of a 

neuron is passed on as one of the inputs for another neuron, except for neurons 

that generate the final output values of the entire system. 
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Neurons are arranged in layers.  The input layer neurons receive the inputs for 

the computations, like the diameter, proportion of breaks (middle), staple length, 

staple strength, vegetable matter content, and yield of an individual wool sale lot.  

These values are passed to the neurons in the first hidden layer, which perform 

computations on their inputs and pass their outputs to the next layer.  This next 

layer could be another hidden layer, if there is one.  The outputs from the 

neurons in the last hidden layer are passed to the neuron or neurons that generate 

the final outputs of the net, like the auction price of the wool sale lot. 

 

Training a net is the process of fine-tuning the parameters (weights) of the 

computation, where the purpose is to make the net output approximately correct 

values for the given inputs.  This process is guided by training data on the one 

hand, and the training algorithm on the other.  The training algorithm selects 

various sets of computation parameters, and evaluates each set by applying the 

net to each training case to determine how good the answers given by the net are.  

Each set of parameters is a "trial"; the training algorithm selects new sets of 

parameters based on the results of previous trials.  In other words, neural 

networks "learn" from examples, as children learn to distinguish dogs from cats 

based on examples of dogs and cats.  If trained carefully, neural networks may 

exhibit some capability for generalisation beyond the training data, that is, to 

produce approximately correct results for new cases that were not used for 

training. 

 

We have investigated the use of neural networks with the Department of 

Agriculture and Food, WA in predicting wool prices for the industry.  In 

particular, GRNN (Generalized Regression Neural Networks) has been 

considered because of its availability and speed. 

 

GRNN (Specht 1991) is a memory-based network that provides estimates of 

continuous variables and converges to the underlying (linear or nonlinear) 

regression surface.  This type of neural network is a one-pass learning algorithm 

with a highly parallel structure.  Even with sparse data in a multidimensional 

measurement space, the algorithm provides smooth transitions from one 
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observed value to another.  The algorithm form can be used for any regression 

problem in which an assumption of linearity is not justified.  The parallel 

network form has found use in applications such as learning the dynamics of a 

plant model for prediction or control. 

 

With GRNN there is no need for the user to make decisions about the structure of 

a net.  These nets always have two hidden layers of neurons, with one neuron per 

training case in the first hidden layer (the Pattern Layer), and two neurons in the 

second layer (the Summation Layer).  A GRNN for p independent numeric 

variables is structured as shown in the graph displayed in Figure 3.1. 

 

 

 

Figure 3.1: GRNN for p Independent Numeric Variables (Specht 1991) 
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The Pattern Layer contains one node for each training case.  Presenting a training 

case to the net consists here of presenting p independent numeric values.  Each 

neuron in the pattern layer computes its distance from the presented case.  The 

values passed to the two nodes in the Summation Layer (Numerator and 

Denominator Nodes) are functions of the distance and the dependent value.  The 

Numerator and Denominator Nodes in the Summation Layer sum its inputs, 

while the Output Node divides them to generate the prediction. 

 

The distance function computed in the Pattern Layer neurons uses "smoothing 

factors"; every input has its own "smoothing factor" value.  With a single input, 

the greater the value of the smoothing factor, the more significant distant training 

cases become for the predicted value.  With 2 inputs, the smoothing factor relates 

to the distance along one axis on a plane, and in general, with multiple inputs, to 

one dimension in multi-dimensional space. 

 

Training a GRNN consists of optimizing smoothing factors to minimize the error 

on the training set, and the Conjugate Gradient Descent optimization method is 

used to accomplish that.  The error measure used during training to evaluate 

different sets of smoothing factors is the Mean Squared Error.  However, when 

computing the Squared Error for a training case, that case is temporarily 

excluded from the Pattern Layer.  This is because the excluded neuron would 

compute a zero distance, making other neurons insignificant in the computation 

of the prediction. 

 

Advantages of GRNN include: 

- Train fast. 

- Does not require topology specification (numbers of hidden layers and 

nodes). 

 

Disadvantages of GRNN include: 

- Bigger in size than some neural nets such as MLF (Multi-Layer Feed-

forward), thus slower to make predictions. 
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- Less reliable outside the range of training data (for example, when the 

value of some independent variables falls outside the range of values for 

that variable in the training data); though note that prediction outside the 

range of training data is still risky with other neural nets. 

- Lower capability of generalising from very small training sets. 

 

GRNN is a universal approximator for smooth functions, so it should be able to 

solve any smooth function-approximation problem given enough data. 

 

 

3.3 Applying Neural Networks to the Wool Auction Data 

 

In this section we provide an assessment of the neural networks’ ability to model 

auction data and predict wool prices.  We consider GRNN in particular because 

of its availability and speed.  In our entire thesis, all GRNN neural nets used are 

generated from the commercially available software package from Palisade 

called NeuralTools.  This is the same software packaged used by the Department 

of Agriculture and Food.  NeuralTools is available as an Excel add-on package 

under the Windows environment.  However, the version of Excel used in this 

project (Excel 2003) has a limitation of allowing 65536 rows of data in a file.  

While this does not affect our work in the current chapter, we will comment on 

this limitation in other chapters of our thesis. 

 

The network topology follows the standard GRNN as shown in Figure 3.1.  As a 

standard package, NeuralTools follows Specht (1991) closely in determining 

both the network topology and the weights of the links in the background.  By 

default, 80% of a data set is used for training and the remaining 20% is used for 

testing.  The tolerance for bad predictions is set at 30% for both training and 

testing. 

 

In the following, we assess GRNN’s ability to model (or fit) the data, as well as 

the accuracy in prediction.  We use the data introduced in Section 2.3, with the 

three periods described by Figure 2.1: August to December 2000 (Period A), 

August to December 2001 (Period B), and August to December 2002 (Period C), 
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covering the dates listed in Table 2.1.  We model the last week worth of auction 

data from each month, then use the model to predict the price outcomes in the 

first week of the following month.  For example, we first generate a GRNN 

neural net to model (fit) the data of the last week in August 2000.  Then we use 

this net to predict the auction price outcomes from the data of the first week of 

September 2000.  We repeat this for all months available to us across the three 

periods.  Our results follow. 

 

Tables 3.1, 3.2 and 3.3 show the results from modelling (fitting) the last week of 

each month in Periods A, B and C with GRNN.  In the same tables we also show 

the results generated from typical multiple linear regression (labelled MLR) for 

comparison.  The Department of Agriculture and Wool, WA found our 

accuracies of fitting with GRNN to be very acceptable.  Figures 3.2 to 3.13 on 

the following pages show the fitted price vs. actual price in the weeks we 

selected.  The more accurate a fitting is, the more each plot appears as a straight 

line.  It can be observed that the fittings in the three periods are very good in 

general with GRNN. 
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Table 3.1: Fitting for Period A with GRNN 

   MLR GRNN 

     

Period 
A Fitting last week of Root Mean Square Error 101.9485 28.29091354 

 Aug 2000 Mean Absolute Error 71.97585 15.26685036 

  
Std. Deviation of Abs. 
Error 72.22491 23.82596829 

     

 Fitting last week of Root Mean Square Error 132.8114 33.47677404 

 Sep 2000 Mean Absolute Error 97.1946 16.33235456 

  
Std. Deviation of Abs. 
Error 90.53411 29.23013271 

     

 Fitting last week of Root Mean Square Error 167.2928 35.59787003 

 Oct 2000 Mean Absolute Error 121.3715 20.77791974 

  
Std. Deviation of Abs. 
Error 115.1659 28.9127874 

     

 Fitting last week of Root Mean Square Error 140.6487 53.14404304 

 Nov 2000 Mean Absolute Error 105.0392 17.53775253 

  
Std. Deviation of Abs. 
Error 93.57544 50.1885246 

 

 

Table 3.2: Fitting for Period B with GRNN 

   MLR GRNN 

     

Period 
B Fitting last week of Root Mean Square Error 97.37026 35.52785964 

 Aug 2001 Mean Absolute Error 73.29277 19.05397627 

  
Std. Deviation of Abs. 
Error 64.1285 29.99838122 

     

 Fitting last week of Root Mean Square Error 89.59667 43.38224682 

 Sep 2001 Mean Absolute Error 60.11147 18.91764899 

  
Std. Deviation of Abs. 
Error 66.45425 39.04907165 

     

 Fitting last week of Root Mean Square Error 55.50737 29.53830859 

 Oct 2001 Mean Absolute Error 39.87708 16.2291678 

  
Std. Deviation of Abs. 
Error 38.63041 24.6922348 

     

 Fitting last week of Root Mean Square Error 55.29734 21.18334939 

 Nov 2001 Mean Absolute Error 36.27066 11.16225224 

  
Std. Deviation of Abs. 
Error 41.76275 18.01361591 

 

 



 25 

Table 3.3: Fitting for Period C with GRNN 

   MLR GRNN 

     

Period 
C Fitting last week of Root Mean Square Error 53.13123 27.4876211 

 Aug 2002 Mean Absolute Error 34.05608 15.47762742 

  
Std. Deviation of Abs. 
Error 40.79644 22.72436108 

     

 Fitting last week of Root Mean Square Error 74.73919 39.05447769 

 Sep 2002 Mean Absolute Error 50.48061 25.27669893 

  
Std. Deviation of Abs. 
Error 55.13379 29.78166889 

     

 Fitting last week of Root Mean Square Error 50.63217 33.21652489 

 Oct 2002 Mean Absolute Error 36.25862 19.23416188 

  
Std. Deviation of Abs. 
Error 35.35387 27.09155177 

     

 Fitting last week of Root Mean Square Error 42.94687 33.74128347 

 Nov 2002 Mean Absolute Error 29.83724 21.64586617 

  
Std. Deviation of Abs. 
Error 30.90681 25.89736289 
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Figure 3.2: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2000 with GRNN 
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Figure 3.3: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2000 with GRNN 
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Figure 3.4: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2000 with GRNN 
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Figure 3.5: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2000 with GRNN 
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Figure 3.6: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2001 with GRNN 
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Figure 3.7: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2001 with GRNN 
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Figure 3.8: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2001 with GRNN 
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Figure 3.9: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2001 with GRNN 
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Figure 3.10: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2002 with GRNN 
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Figure 3.11: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2002 with GRNN 
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Figure 3.12: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2002 with GRNN 
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Figure 3.13: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2002 with GRNN 

 

 

After fitting the last week of a month with GRNN, we can now look at using the 

fitted model to predict the price outcomes in the first week of the following 

month.  Tables 3.4, 3.5 and 3.6 on the following pages show the results from 

predicting the last week of each month in Periods A, B and C with the fitted 

model of the last week of previous month.  We have found the errors of these to 

be acceptable for predictions.  And Figures 3.14 to 3.25 that follow show the 

predicted price vs. actual price in the weeks we selected.  It can be observed that 

the plots all follow straight lines and the predictions can be considered to be 

reasonably accurate. 
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Table 3.4: Predictions for Period A with GRNN 

   MLR GRNN 

     

Period 
A Using last week of Root Mean Square Error 124.9364 47.88411498 

 Aug 2000 Mean Absolute Error 83.78764 27.49475198 

 to predict 1st wk of Sep 2000 
Std. Deviation of Abs. 
Error 92.70047 39.21427868 

     

 Using last week of Root Mean Square Error 209.4786 135.7182532 

 Sep 2000 Mean Absolute Error 115.9219 29.63332056 

 to predict 1st wk of Oct 2000 
Std. Deviation of Abs. 
Error 174.5473 132.4945037 

     

 Using last week of Root Mean Square Error 188.5797 69.12056444 

 Oct 2000 Mean Absolute Error 141.316 35.6166384 

 to predict 1st wk of Nov 2000 
Std. Deviation of Abs. 
Error 124.8972 59.2514565 

     

 Using last week of Root Mean Square Error 203.728 64.7849604 

 Nov 2000 Mean Absolute Error 118.1895 34.43145383 

 to predict 1st wk of Dec 2000 
Std. Deviation of Abs. 
Error 166.0204 54.90408942 

 

 

Table 3.5: Predictions for Period B with GRNN 

   MLR GRNN 

     

Period 
B Using last week of Root Mean Square Error 110.5063 58.66584341 

 Aug 2001 Mean Absolute Error 83.0728 32.43893849 

 to predict 1st wk of Sep 2001 
Std. Deviation of Abs. 
Error 72.89942 48.8988455 

     

 Using last week of Root Mean Square Error 105.0846 89.2013982 

 Sep 2001 Mean Absolute Error 86.1434 74.55923056 

 to predict 1st wk of Oct 2001 
Std. Deviation of Abs. 
Error 60.19528 48.97674904 

     

 Using last week of Root Mean Square Error 57.24911 38.35475621 

 Oct 2001 Mean Absolute Error 42.80339 27.41881763 

 to predict 1st wk of Nov 2001 
Std. Deviation of Abs. 
Error 38.02954 26.82817574 

     

 Using last week of Root Mean Square Error 84.60831 66.14964581 

 Nov 2001 Mean Absolute Error 60.50812 54.72642547 

 to predict 1st wk of Dec 2001 
Std. Deviation of Abs. 
Error 59.17255 37.18058425 
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Table 3.6: Predictions for Period C with GRNN 

   MLR GRNN 

     

Period 
C Using last week of Root Mean Square Error 47.72842 38.60712508 

 Aug 2002 Mean Absolute Error 34.57202 27.09162225 

 to predict 1st wk of Sep 2002 
Std. Deviation of Abs. 
Error 32.91804 27.51594552 

     

 Using last week of Root Mean Square Error 77.06622 67.49464254 

 Sep 2002 Mean Absolute Error 52.55659 42.78633291 

 to predict 1st wk of Oct 2002 
Std. Deviation of Abs. 
Error 56.37468 52.20917584 

     

 Using last week of Root Mean Square Error 60.4721 53.65067084 

 Oct 2002 Mean Absolute Error 44.47539 38.96359524 

 to predict 1st wk of Nov 2002 
Std. Deviation of Abs. 
Error 40.98609 36.89281363 

     

 Using last week of Root Mean Square Error 53.04425 41.68142591 

 Nov 2002 Mean Absolute Error 36.6779 28.36965042 

 to predict 1st wk of Dec 2002 
Std. Deviation of Abs. 
Error 38.33533 30.54913432 
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Figure 3.14: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of September 2000 with GRNN 
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Figure 3.15: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of October 2000 with GRNN 
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Figure 3.16: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of November 2000 with GRNN 
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Figure 3.17: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of December 2000 with GRNN 
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Figure 3.18: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of September 2001 with GRNN 
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Figure 3.19: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of October 2001 with GRNN 
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Figure 3.20: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of November 2001 with GRNN 
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Figure 3.21: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of December 2001 with GRNN 
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Figure 3.22: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of September 2002 with GRNN 
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Figure 3.23: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of October 2002 with GRNN 
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Figure 3.24: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of November 2002 with GRNN 
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Figure 3.25: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the first week of December 2002 with GRNN 

 

 

3.4 Discussions on Neural Networks 

 

From the results in Section 3.3 we find the plots of fitted/predicted price vs. 

actual price to follow straight lines, thus we find the modelling (fitting) capacity 

and prediction accuracies of neural networks (GRNN) to be excellent.  Neural 

networks satisfy the fitting/predictive aspect of modelling, and we shall use the 

results from Section 3.3 as our “benchmarks” in comparing the goodness of fit 

and prediction accuracies with other modelling methods in the rest of this thesis.  

However, being a “black box” method, neural networks can provide no further 

interpretation or actual understanding of the price-driving variables.  Because of 

this, we need to investigate alternative methods that would satisfy the descriptive 

aspect of modelling and give us a better interpretation of the interaction between 

the wool quality characteristics and final price.  We will also investigate the 

feasibility of integrating GRNN into some of these methods, if such possibility 

arises.  In the next chapter, we will present our investigation of tree-based 

regression methods and explore their abilities to model the wool auction data. 
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Chapter 4 

 

Tree-based Regression Methods 

 

In this chapter, we will detail the tree-based regression methods, first with simple 

regression trees.  We will illustrate their advantages over neural networks, as 

well as the trade-offs, in modelling the wool auction data.  We will then consider 

the ensemble methods such as bootstrap aggregating (bagging) and random 

forests, and discuss their results. 

 

This chapter concludes that a regression tree provides a very clear picture of the 

relative importance of each price-driving wool variable at various levels, in the 

form of a single tree diagram.  Further, within this chapter we develop an 

alternative tabular representation of the tree diagram, which solves the wool 

specification first discussed in Section 1.3.  However, we find that the prediction 

accuracies of regression trees are relatively poor compared to GRNN.  We 

investigate the ensemble methods of improving the prediction accuracies of trees 

such as bagging and random forests.  While such methods do improve the 

prediction accuracies when applied on our wool auction data, they bring 

complexity to the interpretability of the wool variables by introducing multiple 

tree diagrams.  We can certainly combine and average the numerical outputs 

from multiple tree diagrams, but we cannot combine and take average of the tree 

diagrams themselves.  The simplicity and clarity of working with only a single 

tree is lost from the ensemble methods.  Hence, we need to develop a method 

which provides prediction accuracies comparable to those of GRNN, but at the 

same time retain the same level of interpretability of a single tree. 

 

 

4.1 Regression Tree and Its Advantages 

 

Trees have a universal simplicity.  It is appealing to try and find tree 

representations of more complex relationships in a difficult problem.  Cheng et 
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al. (2002) proposed to model the Australian wool auction prices by using tree-

based regression.  They initially modelled data between July 2000 and December 

2000 in Fremantle using regression trees and compared the results with those 

from older industry methods.  They found that regression trees had the clear 

advantage of being able to detect interaction between parts of levels or parts of 

the numeric range of independent variables.  Figure 4.1 below gives an example 

of a regression tree. 

 

 

Figure 4.1: Example of a Regression Tree 

 

 

The biggest advantage of a regression tree over neural networks is the tree 

diagram that is exclusive to the tree method.  A tree diagram can be interpreted 

and give us better understanding of the price-driving variables, satisfying the 

descriptive aspect of modelling.  The diagram can show us the order of 

importance of the wool quality variables and their influences in driving the price 

at various levels. 

 

The automatic construction of a decision tree was first used in the social sciences 

field by Morgan and Sonquist (1963).  Tree-based method (Breiman et al., 1984) 

is an alternative means to generalised linear (Watters and Deriso, 2000) and 

additive models for regression problems and to linear logistic and additive 

logistic models for classification problems.  These types of models are fitted by 
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binary recursive partitioning of a dataset into increasingly homogeneous subsets 

until it is infeasible to continue.  Their use in other fields such as social science 

(Morgan and Sonquist, 1963, Morgan and Messenger, 1973), statistics (Breiman 

et al., 1984) and machine learning (Quinlan, 1979, 1983 and 1986) has been 

widespread. 

 

Tree-based models are defined by the algorithm used to fit them and belong to 

statistical classification techniques.  The algorithm partitions the space of 

independent variables (X) into homogeneous regions such that, within each 

region, the conditional distribution of y given x, f(y|x), does not depend on x.  

Independent variables can be of several types: factors and numeric. 

 

The deviance of a regression tree is the usual scaled deviance for a linear model, 

namely: 

 
j

jjyD 2)( , (4.1) 

where yj ~ N(0, σ
2
), i = 1, …, N, is the response and μj = ρ(xj).  The split that 

gives the largest reduction in deviance will be chosen. 

 

For reasons having to do with ease of computations, this “average squared error” 

is the measure of accuracy classically used in regression.  The methodology 

revolving about this measure is the least squares (LS) regression.  Alternatively, 

Breiman et al. (1984) also considered the use of least absolute deviation (LAD) 

regression, and they found LAD regression to work well with certain data sets. 

 

The tree-based regression is fitted using binary recursive partitioning whereby 

the data are successively split along coordinate axes of the predictor variables so 

that at any node, the split that maximally distinguishes the response variable in 

the left and the right branches is selected.  Splitting continues until nodes are 

pure or data are too sparse; terminal nodes are called leaves, while the initial 

node is called the root.  If the response variable is numeric, the tree is called a 

regression tree.  The model used for regression assumes that the numeric 

response variable has a normal (Gaussian) distribution. 
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There are many advantages to tree-based models over classical linear models.  

Tree-based regressions are easier to interpret and discuss in contrast to linear 

models when analysing a set of independent variables that contain a mixture of 

numeric variables and factors.  In addition, they do not predict or grow nodes 

when there is insufficient data.  Tree-based regression is known to be robust to 

monotonic behaviour of independent variables, so that the precise form in which 

these appear in the model is irrelevant.  The standard linear model does not allow 

interactions between independent variables unless they are in multiplicative 

form.  Tree-based models can detect interaction between parts of levels or parts 

of the numeric range of independent variables. 

 

In growing a tree, the binary partitioning algorithm recursively splits the data in 

each node until either the node is homogeneous or the node contains too few 

observations.  The minimum node deviance and the minimum number of 

observations in fitting a tree-based regression for small datasets varies according 

to the software and algorithms used.  Robust method to determine the two 

mentioned criteria is still unknown.  For huge dataset, it will result with 

inaccurate and brushy tree. 

 

 

4.2 Construction of a Tree - Recursive Partitioning 

 

In general, a regression tree model is fitted/trained on a training set using a 

binary recursive partitioning.  In most cases the model follows Breiman et al. 

(1984) quite closely.  A recursive partitioning package called „rpart‟ was written 

for the software package R, a statistical programming environment.  We utilise 

„rpart‟ for our wool auction problem.  This is an iterative process of splitting the 

data (the initial node) into binary partitions hence branching into two new nodes, 

and then splitting each new node further.  Initially all of the records in the 

training set are together in the initial node.  The algorithm then tries breaking up 

the data in the node, using every possible binary split on every input variable, 

splitting along coordinate axes of the these variables.  From these splits, a single 

split is chosen to partition the data into two parts such that it minimises the sum 

of the squared deviations from the mean output in the separate parts. 
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jjyD
:

2)(  (4.2) 

These two parts form the new nodes. 

 

In the case of data of each wool auction sale lot there are six variables: 

DIAMETER, POBMID, SS, SL, VMB and YIELD.  To illustrate the recursive 

partitioning, we consider the following example of wool dataset of size 10 (10 

auction sale lots), whose output response CPRICE has a mean of 632.38: 

 

Table 4.1: Example of Wool Auction Data of 10 Sale Lots 

  

Input Variables 

        
Output 
Response (Wool Characteristics) 

Sale Lot 
ID DIAMETER POBMID SL SS VMB YIELD CPRICE 

1 20.1 64 73 29 1.2 59.8 602.01 

2 20.2 53 65 37 2.0 52.0 576.92 

3 19.0 57 72 26 4.3 54.6 961.54 

4 20.3 59 77 26 0.8 70.5 567.38 

5 21.8 60 76 26 1.2 55.8 498.21 

6 23.1 38 84 22 1.9 54.0 461.11 

7 20.4 37 70 32 3.7 47.3 505.29 

8 19.7 49 65 34 2.2 56.4 721.63 

9 23.1 50 87 36 3.0 55.4 476.53 

10 18.9 61 64 33 2.4 59.8 953.18 

      Mean: 632.38 

 

In this example we have 10 wool sale lots in the data, so the initial node is of size 

10, with an average CPRICE of 632.38. 

 

 

Figure 4.2: Initial Node 

 

Node 1 
n = 10 

mean = 632.38 
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We then try breaking up the data in the node, using every possible binary split on 

every input variable, splitting along coordinate axes of the these variables.  We 

consider the first variable DIAMETER.  First we sort the data according to 

DIAMETER in an ascending order. 

 

Table 4.2: Wool Auction Data Sorted according to DIAMETER 

  

Input Variables 

        
Output 
Response (Wool Characteristics) 

Sale Lot 
ID DIAMETER POBMID SL SS VMB YIELD CPRICE 

10 18.9 61 64 33 2.4 59.8 953.18 

3 19.0 57 72 26 4.3 54.6 961.54 

8 19.7 49 65 34 2.2 56.4 721.63 

1 20.1 64 73 29 1.2 59.8 602.01 

2 20.2 53 65 37 2.0 52.0 576.92 

4 20.3 59 77 26 0.8 70.5 567.38 

7 20.4 37 70 32 3.7 47.3 505.29 

5 21.8 60 76 26 1.2 55.8 498.21 

6 23.1 38 84 22 1.9 54.0 461.11 

9 23.1 50 87 36 3.0 55.4 476.53 

      Mean: 632.38 

 

 

Here in this data of size 10 we have a total of 9 unique DIAMETERs.  If we take 

the mid-point of DIAMETERs 18.9 and 19 as 18.95, and the mid-point of 

DIAMETERs 19 and 19.7 as 19.35 etc, there exists 8 possible mid-points (or 

splits) at DIAMETER: 18.95, 19.35, 19.9, 20.15, 20.25, 20.35, 21.1 and 22.45.  

If we take the first split at DIAMETER = 18.95 then the data would be divided 

into left and right as such: 

 

 

 

 

 

 

 

 

 

 



 46 

Table 4.3: Splitting at DIAMETER = 18.95, part 1. 

Left (DIAMETER < 18.95):      

  

Input Variables 

        
Output 
Response (Wool Characteristics) 

Sale Lot 
ID DIAMETER POBMID SL SS VMB YIELD CPRICE 

10 18.9 61 64 33 2.4 59.8 953.18 

      Mean: 953.18 

Right (DIAMETER > 18.95):      

  

Input Variables 

        
Output 
Response (Wool Characteristics) 

Sale Lot 
ID DIAMETER POBMID SL SS VMB YIELD CPRICE 

3 19.0 57 72 26 4.3 54.6 961.54 

8 19.7 49 65 34 2.2 56.4 721.63 

1 20.1 64 73 29 1.2 59.8 602.01 

2 20.2 53 65 37 2.0 52.0 576.92 

4 20.3 59 77 26 0.8 70.5 567.38 

7 20.4 37 70 32 3.7 47.3 505.29 

5 21.8 60 76 26 1.2 55.8 498.21 

6 23.1 38 84 22 1.9 54.0 461.11 

9 23.1 50 87 36 3.0 55.4 476.53 

      Mean: 596.74 

 

 

The mean outputs in the left and right partitions are noted: 953.18 and 596.74.  

Then the squared deviations of CPRICE from mean and their sum in each 

partition are calculated: 

 

Table 4.4: Splitting at DIAMETER = 18.95, part 2. 

Left (DIAMETER < 18.95):      

 Input Variables Output Response  Deviation from Squared 

 (Wool Characteristics)    the left mean Deviation 

Sale Lot ID DIAMETER … CPRICE  953.18   

10 18.9 … 953.18  0 0 

  Mean: 953.18  Sum: 0 

Right (DIAMETER > 
18.95):      

 Input Variables Output Response  Deviation from Squared 

 (Wool Characteristics)    the right mean Deviation 

Sale Lot ID DIAMETER … CPRICE  596.7356   

3 19.0   961.54  364.8044 133082.2503 

8 19.7   721.63  124.8944 15598.61115 

1 20.1   602.01  5.2744 27.81929536 

2 20.2   576.92  -19.8156 392.6580034 

4 20.3 … 567.38  -29.3556 861.7512514 

7 20.4   505.29  -91.4456 8362.297759 

5 21.8   498.21  -98.5256 9707.293855 

6 23.1   461.11  -135.6256 18394.30338 

9 23.1   476.53  -120.2056 14449.38627 

  Mean: 596.74  Sum: 200876.3712 
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The same procedure is then repeated for the next split at DIAMETER = 19.35 to 

get the left and right sums of squared deviations: 

 

Table 4.5: Splitting at DIAMETER = 19.35 

Left (DIAMETER < 19.35):      

 Input Variables Output Response  Deviation from Squared 

 (Wool Characteristics)    the left mean Deviation 

Sale Lot ID DIAMETER … CPRICE  957.36   

10 18.9 … 953.18  -4.18 17.4724 

3 19.0   961.54  4.18 17.4724 

  Mean: 957.36  Sum: 34.9448 

Right (DIAMETER > 
19.35):      

 Input Variables Output Response  Deviation from Squared 

 (Wool Characteristics)    the right mean Deviation 

Sale Lot ID DIAMETER … CPRICE  551.135   

8 19.7   721.63  170.495 29068.54503 

1 20.1   602.01  50.875 2588.265625 

2 20.2   576.92  25.785 664.866225 

4 20.3 … 567.38  16.245 263.900025 

7 20.4   505.29  -45.845 2101.764025 

5 21.8   498.21  -52.925 2801.055625 

6 23.1   461.11  -90.025 8104.500625 

9 23.1   476.53  -74.605 5565.906025 

  Mean: 551.14  Sum: 51158.8032 

 

 

And we repeat for all possible splits within the variable DIAMETER to get the 

following table: 

 

Table 4.6: All possible splits with DIAMETER 

Split 
candidate 

Mean 
CPRICE 
on left of 
split 

Mean 
CPRICE 
on right of 
split 

Sum of 
squared 
deviation 
of 
CPRICE 
from 
mean on 
left of split 

Sum of 
squared 
deviation 
of 
CPRICE 
from 
mean on 
left of split 

Sum of 
squared 
deviation 
on both 
sides  

18.95 953.18 596.74 0 200876.4 200876.4  

19.35 957.36 551.14 34.9448 51158.8 51193.75 min 

19.90 878.78 526.78 37080.7 17937.61 55018.31  

20.15 809.59 514.24 94533.31 11334.55 105867.9  

20.25 763.06 501.70 137841.6 6620.008 144461.6  

20.35 730.44 485.29 169749.2 1228.336 170977.5  

21.10 698.28 478.62 213201.2 694.7363 213895.9  

22.45 673.27 468.82 248225.2 118.8882 248344.1  
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The split candidate 19.35 has the lowest corresponding sum of squared deviation 

at 51193.75, hence the best split for DIAMETER is 19.35. 

 

After DIAMETER, we repeat the same procedure for POBMID (Table 4.7).  

This then leads us to Table 4.8. 

 

Table 4.7: Wool Auction Data Sorted according to POBMID 

  

Input Variables 

        
Output 
Response (Wool Characteristics) 

Sale Lot 
ID DIAMETER POBMID SL SS VMB YIELD CPRICE 

7 20.4 37 70 32 3.7 47.3 505.29 

6 23.1 38 84 22 1.9 54.0 461.11 

8 19.7 49 65 34 2.2 56.4 721.63 

9 23.1 50 87 36 3.0 55.4 476.53 

2 20.2 53 65 37 2.0 52.0 576.92 

3 19.0 57 72 26 4.3 54.6 961.54 

4 20.3 59 77 26 0.8 70.5 567.38 

5 21.8 60 76 26 1.2 55.8 498.21 

10 18.9 61 64 33 2.4 59.8 953.18 

1 20.1 64 73 29 1.2 59.8 602.01 

      Average: 632.38 

 

 

Table 4.8: All possible splits with POBMID 

Split 
candidate 

Mean 
CPRICE 
on left of 
split 

Mean 
CPRICE 
on right of 
split 

Sum of 
squared 
deviation 
of 
CPRICE 
from 
mean on 
left of split 

Sum of 
squared 
deviation 
of 
CPRICE 
from 
mean on 
left of split 

Sum of 
squared 
deviation 
on both 
sides  

37.5 505.29 646.50 0 297277.23 297277.23  

43.5 483.20 669.68 975.9362 258611.13 259587.07  

49.5 562.68 662.25 38875.179 255526.19 294401.37  

51.5 541.14 693.21 44441.116 215284.38 259725.5  

55.0 548.30 716.46 45465.282 199057.28 244522.56 min 

58.0 617.17 655.20 187774.12 123979.47 311753.59  

59.5 610.06 684.47 189899.01 113697.5 303596.52  

60.5 596.08 777.60 200845.07 61660.184 262505.26  

62.5 635.75 602.01 314198.93 0 314198.93  

 

 

And we get the best split for POBMID which is at 55 with a sum of squared 

deviation at 244522.56.  We repeat the procedure for all the remaining input 

variables (SL, SS, VMB and YIELD) and compare them: 
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Table 4.9: The best split with each input variable 

 Best Split 

Sum of 
squared 
deviation  

DIAMETER 19.35 51193.748 optimal 

POBMID 55 244522.56  

SL 72.5 191275.61  

SS 24 282631.07  

VMB 4 194838.97  

YIELD 54.3 255610.13  

 

 

Splitting DIAMETER at 19.35 gives the minimum sum of squared deviation, 

hence it is the candidate that best partition the initial node so we choose it as our 

split for the initial node. 

 

 

Figure 4.3: First split at DIAMETER = 19.35 

 

 

Then, for each new node, the splitting procedure is performed exactly the same 

as for the initial node. 

 

The process of splitting each node into new ones continues until nodes are pure 

(homogeneous), data are too sparse (too few observations), or each node reaches 

a user-specified minimum node size and becomes a terminal node.  The 

minimum node deviance and the minimum number of observations in fitting a 

tree-based regression for small datasets varies according to the software and 

algorithm used.  In the software package „rpart‟, we can define the minimum 

Node 1 
n = 10,  632.38 

DIAMETER < 19.35 

Node 2 

n = 2,  957.36 

Node 3 

n = 8,  51.135 
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number of observations in a node before attempting a split.  Robust methods to 

determine these criteria are still to be determined and are being investigated.  The 

terminal nodes are called leaves, while the initial node is called the root.  Since 

the response variable is numeric, the tree is called a regression tree.  The model 

used for regression assumes that the numeric response variable has a normal 

(Gaussian) distribution. 

 

 

4.3 Pruning of a Tree 

 

With “noisy” data, it is quite possible to grow a tree which fits the training set 

well, but which has adapted too well to the features of this subset.  Regression 

trees can be too elaborate and over-fit the training data.  Say we have built a 

complete tree, possibly quite large and/or complex, and must now decide how 

much of that model to retain. 

 

The established methodology is cost-complexity pruning, first introduced by 

Breiman et al. (1984).  They considered rooted subtrees of a tree T grown by the 

construction algorithm, that is the possible results of snipping off terminal 

subtrees on T.  The pruning process chooses one of the rooted subtrees.  Let Ri be 

a measure evaluated at the leaves (terminal nodes), such as the deviance, and let 

R be the value of the tree, the sum over the leaves of Ri.  Let the size of the tree 

be the number of leaves i.e. define |T| = number of terminal nodes. 

 

Now let α be some number between 0 and ∞ which measures the “cost” of 

adding another variable to the model; α will be called a complexity parameter.  

Let R(T0) be the measure for the zero split tree.  Define 

 

 Rα(T) = R(T) + α|T| (4.3) 

 

to be the cost for the tree, and define Tα to be that subtree of the full model which 

has minimal cost.  Obviously T0 = the full model and T∞ = the model with no 

splits at all. 

 



 51 

The following results are established by Breiman. 

 

Result 1. If T1 and T2 are subtrees of T with Rα(T1) = Rα(T2), then either T1 

is a subtree of T2 or T2 is a subtree of T1; hence either |T1| < |T2| or 

|T2| < |T1|. 

Result 2. If α > β then either Tα = Tβ or Tα is a strict subtree of Tβ. 

Result 3. Given some set of numbers α1, α2, …, αm; both 
1

T , 
2

T , …, 
m

T , 

and R(
1

T ), R(
2

T ), …, R(
m

T ) can be computed efficiently. 

 

Using the first result, we can uniquely define Tα as the smallest tree T for which 

Rα(T) is minimised. 

 

Since any sequence of nested trees based on T has at most |T| members, Result 2 

implies that all possible values of α can be grouped into m intervals, m ≤ |T| 

 I1 = [0, α1] 

 I2 = (α1, α2] 

   

 Im = (αm – 1, ∞] (4.4) 

where all α  Ii share the same minimising subtree. 

 

Breiman et al. (1984) showed that the set of rooted subtrees of T which minimise 

the cost-complexity measure Rα(T) is itself nested.  That is, as we increase α we 

can find the optimal trees by a sequence of snip operations on the current tree 

(just like pruning a real tree).  This produces a sequence of trees from the size of 

T down to just the root node, but it may prune more than one node at a time.  The 

tree T is not necessarily optimal for α = 0. 

 

We need a good way to choose the degree of pruning.  If a separate validation set 

is available, we can predict on that set, and compute the deviance versus α for the 

pruned trees.  This will often have a minimum, and we can choose the smallest 

tree whose deviance is close to the minimum. 
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If no validation set is available we can make one by splitting the training set.  

Suppose we split the training set into 10 (roughly) equally sized parts.  We can 

then use 9 of these parts to grow the tree and use the remaining part to test this 

tree.  This can be done in 10 ways, and we can average the results. 

 

In actual practice, we may use instead the 1-SE rule.  A plot of β versus R often 

has an initial sharp drop followed by a relatively flat plateau and then a slow rise.  

The choice of β among those models on the plateau can be essentially random.  

To avoid this, both an estimate of R and its standard error of the achieved 

minimum is marked as being equivalent to the minimum (i.e. considered to be 

part of the flat plateau).  Then the simplest model, among all those “tied” on the 

plateau, is chosen. 

 

In Monte-Carlo trials, this method of pruning has proven very reliable for 

screening out “pure noise” variables in the data set. 

 

 

4.4 Additional Advantage of Regression Tree Over Neural Networks and 

Other Methods 

 

In Section 1.3, we mentioned the existence of the additional wool specifications 

problem.  Industrial sorting of wool during harvest, and at the start of processing, 

assembles wool in bins according to the required wool specifications.  At present 

this assembly is done by constraining the range of all specifications in each bin, 

and having either a very large number of bins, or a large variance of 

characteristics within each bin.  Neither neural networks nor older multiple linear 

regression on price could provide additional useful information that would 

streamline this process, nor did they assist in delineating the specifications of 

individual bins. 

 

However, we have found a solution from the regression tree.  Table 4.10 is 

derived directly from Figure 4.4 below, where the decisions (branching points in 

the regression tree) for each end point are extracted and condensed by removal of 

redundant decisions.  The table shows results for a small but complete number of 
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bins, and for each bin, the ranges for fibre diameter (the most dominant 

characteristic of the raw wool) and supplementary characteristics where they are 

needed.  The irregular occurrence of these supplementary terms, and the 

differences in the values at which they are used in the various bins demonstrate 

the complexity of the interactions that exist in the market. 

 

 

 

Figure 4.4: Another Example of a Regression Tree 

 

 

Table 4.10: Fitting for Period A with Regression Tree 

DIAMETER DIAMETER POBMID POBMID SL SL SS SS VMB VMB YIELD YIELD PRICE 
min Max Min max min max min max min max min max Average 

13.72 17.40           1760 

17.40 18.23           1442 

18.23 18.75   74.47        1235 

18.23 18.75    74.47       1138 

13.66 13.72           1101 

18.75 19.27        1.99   1090 

18.75 19.27       1.99    973 

19.27 19.66        5.59   892 

19.66 19.86           770 

 13.66           745 

28.69            744 

19.27 19.66       5.59    699 

19.86 20.06           691 

20.06 20.33           619 

20.33 21.33           558 

21.33 28.69           503 

 

 

For example, from Table 4.10 we can conclude that during the period of this 

table, wool with DIAMETER between 18.23 and 18.75 and SL greater than 

74.47 would give a price of about 1235, or vice versa.  On the other hand, wool 

with DIAMETER between 19.27 and 19.66 and VMB less than 5.59 would give 
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a price of about 892.  Thus the wool growers can use this as a guideline when 

assembling their wool into bins. 

 

The algorithm to achieve this is quite simple and we illustrate this with Figure 

4.4.  The tree diagram has 16 end nodes, thus representing the average prices of 

16 different groups of wool with similar wool specifications in each group (i.e. 

16 different price levels).  Say we accept that the 16 average prices represent a 

good variation in price levels and hence we would like to have the same partition 

in our table representation.  Then we can backtrack from each end node.  For 

example, say we wish to find the wool specifications for the end node with 

CPRICE = 1235.  Backtracking from this end node to the top of the tree (Figure 

4.4b) and we obtain the following information: SL>74.47, DIAMETER<18.75, 

DIAMETER>18.23 and DIAMETER<19.27.  Combining the information gives 

us the summary that this particular group of wool has a DIAMETER between 

18.23 and 18.75, and SL greater than 74.47.  Thus we can then repeat the 

backtracking for each end node, and come up with the table shown in Table 4.10. 

 

 

Figure 4.4b: Back Tracking from end node with CPRICE=1235 

 

The number of CPRICE levels in the table (or in other words, how finely we 

wish to partition the CPRICE into different levels) depends on the number of end 

nodes in the tree diagram.  Thus, if we wish to have a finer partitioning with 

many CPRICE levels, we can continue the recursive partitioning procedure on 
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each end node as detailed in Section 4.2, and grow a larger tree with many more 

end nodes.  One the other hand, if we wish to have a smaller table with less 

CPRICE levels, then we can do the opposite by pruning the tree to make it 

smaller with a smaller number of end nodes. 

 

So we can now come up with tabular representations of tree diagrams, which are 

useful in streamlining the process of assembling wool into bins and assist in 

delineating the specifications of individual bins. 

 

 

4.5 Applying Regression Tree to the Wool Auction Data 

 

In this section we assess regression tree‟s ability to model auction data and 

predict wool prices.  All trees were generated using the „rpart‟ package 

developed for the R statistical computation environment.  The package was 

originally written for the S-PLUS statistical package by Terry M Therneau and 

Beth Atkinson.  It was later ported to R by Brian Ripley.  „rpart‟ follows the 

algorithm of Breiman et al. (1984) quite closely.  We use „rpart‟ to generate a 

tree model and we store this model in memory.  We assume „CPRICE‟ to be 

some unknown function of „DIAMETER‟, „POBMID‟, „SL‟, „SS‟, „VMB‟ and 

„YIELD‟, as described in Section 2.2.  We can then use the tree model stored in 

memory to predict the outcome for another dataset.  As mentioned in Section 4.2, 

In „rpart‟, we can define the minimum number of observations in a node before 

attempting a split.  But since we can always prune back a large tree using cost-

complexity pruning, we can always allow a tree to grow to its furthest reach then 

prune it afterwards.  So we simply set 2 as the minimum number of observations 

in a node before attempting a split. 

 

Again, we use the three periods introduced in Section 2.3 to assess regression 

tree‟s ability to model (or fit) the data, as well as the accuracy in prediction.  We 

model the last week worth of auction data from each month, then use the model 

to predict the price outcomes in the first week of the following month.  Our 

results follow. 
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On the following pages, Tables 4.11, 4.12 and 4.13 show the results from 

modelling (fitting) the last week of each month in Periods A, B and C with 

regression tree, while Tables 4.14, 4.15 and 4.16 show the results from predicting 

the last week of each month with those fitted models.  We find that regression 

tree, with its advantage over neural networks (Section 3.4), unfortunately offers 

much poorer fitting and prediction accuracies than neural networks.  This is a 

rather large problem that needs to be addressed.  We also find that conventional 

pruning method offers no advantage in improving predictions, in the case of our 

data.  We will consider some methods that can improve the accuracies in the next 

section. 
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Table 4.11: Fitting for Period A with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Fitting last week of Root Mean Square Error 28.29091354 44.50163 48.94125 

Aug 2000 Mean Absolute Error 15.26685036 23.3963 29.59593 

 
Std. Deviation of Abs. 
Error 23.82596829 37.86769 38.99152 

     

Fitting last week of Root Mean Square Error 33.47677404 43.89331 50.47487 

Sep 2000 Mean Absolute Error 16.33235456 23.13326 31.38879 

 
Std. Deviation of Abs. 
Error 29.23013271 37.31235 39.53838 

     

Fitting last week of Root Mean Square Error 35.59787003 60.89278 75.55599 

Oct 2000 Mean Absolute Error 20.77791974 29.00816 46.43321 

 
Std. Deviation of Abs. 
Error 28.9127874 53.55414 59.62074 

     

Fitting last week of Root Mean Square Error 53.14404304 62.8968 90.33876 

Nov 2000 Mean Absolute Error 17.53775253 30.5585 54.50748 

 
Std. Deviation of Abs. 
Error 50.1885246 54.99812 72.07291 

 

 

Table 4.12: Fitting for Period B with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Fitting last week of Root Mean Square Error 35.52785964 50.75957 58.57987 

Aug 2001 Mean Absolute Error 19.05397627 27.20509 34.81702 

 
Std. Deviation of Abs. 
Error 29.99838122 42.87078 47.12932 

     

Fitting last week of Root Mean Square Error 43.38224682 49.15919 61.59324 

Sep 2001 Mean Absolute Error 18.91764899 21.53069 34.98672 

 
Std. Deviation of Abs. 
Error 39.04907165 44.20336 50.70322 

     

Fitting last week of Root Mean Square Error 29.53830859 35.49992 46.65728 

Oct 2001 Mean Absolute Error 16.2291678 19.29468 28.82508 

 
Std. Deviation of Abs. 
Error 24.6922348 29.81285 36.70558 

     

Fitting last week of Root Mean Square Error 21.18334939 35.87093 44.41908 

Nov 2001 Mean Absolute Error 11.16225224 19.22255 27.81427 

 
Std. Deviation of Abs. 
Error 18.01361591 30.30203 34.65145 
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Table 4.13: Fitting for Period C with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Fitting last week of Root Mean Square Error 27.4876211 44.38823 53.55512 

Aug 2002 Mean Absolute Error 15.47762742 23.93032 31.71296 

 
Std. Deviation of Abs. 
Error 22.72436108 37.39913 43.17204 

     

Fitting last week of Root Mean Square Error 39.05447769 58.038 72.75251 

Sep 2002 Mean Absolute Error 25.27669893 33.16222 46.31056 

 
Std. Deviation of Abs. 
Error 29.78166889 47.64693 56.12857 

     

Fitting last week of Root Mean Square Error 33.21652489 39.58191 47.87815 

Oct 2002 Mean Absolute Error 19.23416188 24.98678 31.93046 

 
Std. Deviation of Abs. 
Error 27.09155177 30.71022 35.68961 

     

Fitting last week of Root Mean Square Error 33.74128347 38.34854 42.66919 

Nov 2002 Mean Absolute Error 21.64586617 23.98833 29.06492 

 
Std. Deviation of Abs. 
Error 25.89736289 29.93598 31.25656 

 

 

Table 4.14: Predictions for Period A with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Using last week of Root Mean Square Error 47.88411498 65.63687 68.37046 

Aug 2000 Mean Absolute Error 27.49475198 34.04639 38.86008 

to predict 1st wk of Sep 2000 
Std. Deviation of Abs. 
Error 39.21427868 56.13152 56.26836 

     

Using last week of Root Mean Square Error 135.7182532 136.596 137.7818 

Sep 2000 Mean Absolute Error 29.63332056 36.90987 41.17625 

to predict 1st wk of Oct 2000 
Std. Deviation of Abs. 
Error 132.4945037 131.5653 131.5357 

     

Using last week of Root Mean Square Error 69.12056444 96.05168 102.1285 

Oct 2000 Mean Absolute Error 35.6166384 48.66818 58.60488 

to predict 1st wk of Nov 2000 
Std. Deviation of Abs. 
Error 59.2514565 82.82823 83.65973 

     

Using last week of Root Mean Square Error 64.7849604 83.60047 104.3844 

Nov 2000 Mean Absolute Error 34.43145383 45.3864 63.93187 

to predict 1st wk of Dec 2000 
Std. Deviation of Abs. 
Error 54.90408942 70.24136 82.5552 
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Table 4.15: Predictions for Period B with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Using last week of Root Mean Square Error 58.66584341 69.7189 72.83096 

Aug 2001 Mean Absolute Error 32.43893849 36.92937 40.31417 

to predict 1st wk of Sep 2001 
Std. Deviation of Abs. 
Error 48.8988455 59.15603 60.6773 

     

Using last week of Root Mean Square Error 89.2013982 93.72725 101.1088 

Sep 2001 Mean Absolute Error 74.55923056 73.82104 79.49163 

to predict 1st wk of Oct 2001 
Std. Deviation of Abs. 
Error 48.97674904 57.76261 62.49446 

     

Using last week of Root Mean Square Error 38.35475621 44.31331 48.19521 

Oct 2001 Mean Absolute Error 27.41881763 30.44673 31.49233 

to predict 1st wk of Nov 2001 
Std. Deviation of Abs. 
Error 26.82817574 32.20748 36.49457 

     

Using last week of Root Mean Square Error 66.14964581 71.31696 76.90712 

Nov 2001 Mean Absolute Error 54.72642547 57.22881 60.07254 

to predict 1st wk of Dec 2001 
Std. Deviation of Abs. 
Error 37.18058425 42.5802 48.04862 

 

 

Table 4.16: Predictions for Period C with Regression Tree 

   Regression Regression 

   Tree Tree 

   (without (with 

  GRNN pruning) pruning) 

     

Using last week of Root Mean Square Error 38.60712508 49.9932 53.07456 

Aug 2002 Mean Absolute Error 27.09162225 32.91185 35.77446 

to predict 1st wk of Sep 2002 
Std. Deviation of Abs. 
Error 27.51594552 37.64576 39.22068 

     

Using last week of Root Mean Square Error 67.49464254 77.1083 83.63511 

Sep 2002 Mean Absolute Error 42.78633291 49.20164 55.48768 

to predict 1st wk of Oct 2002 
Std. Deviation of Abs. 
Error 52.20917584 59.38102 62.58836 

     

Using last week of Root Mean Square Error 53.65067084 60.417 62.70145 

Oct 2002 Mean Absolute Error 38.96359524 43.58813 45.70082 

to predict 1st wk of Nov 2002 
Std. Deviation of Abs. 
Error 36.89281363 41.84948 42.94245 

     

Using last week of Root Mean Square Error 41.68142591 46.99935 48.9866 

Nov 2002 Mean Absolute Error 28.36965042 32.1573 34.00197 

to predict 1st wk of Dec 2002 
Std. Deviation of Abs. 
Error 30.54913432 34.28974 35.27815 
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4.6 Ensemble Methods 

 

To improve both the fitting and the prediction results from regression trees, some 

authors (Breiman 1996, 1998, 1999, 2000, 2001) have observed that combining a 

multiple set of predictors, all constructed using the same data, can lead to 

dramatic decreases in test error.  One of the most promising methods is bagging 

(as in bootstrap aggregating) (Breiman 1996).  In its application, we take 

multiple bootstrap samples from the learning set of data (sampling with 

replacement), then grow a tree from each bootstrap sample.  The predictions 

from these trees can then be averaged to give us an overall prediction, which is a 

much improved prediction than a single ordinary regression tree.  In essence, the 

bootstrap procedure introduced randomness which reduced variance in the data, 

so the model built from it can be more accurate. 

 

The study of bagging then led to random forests (Ho 1995, Breiman 2001) which 

introduced even more randomness in the process.  When generating a tree from 

each bootstrap sample, instead of choosing an optimal split from all variables at 

each node (Section 4.2), only a random selection of the variables is considered.  

In essence, this refinement improves on bagging by “de-correlating” the trees.  

Other variants of these methods also exist and they are all based on the same 

model averaging approach (Barutcuoglu and Alpaydin 2003; Breiman 1996, 

1998, 1999; Frank and Pfahringer 2006; Freund and Schapire 1995; Friedman et 

al 2000; Friedman 2001).  Figure 4.5 on the following page shows a summary of 

the ensemble methods in general. 

 



 61 

 
                      

      Ensemble 
Methods 

      

             

        Modelling        Predicting   

                     

        Original 
Data (x, y) 

        New x   

        │        │   

        │        │   

        Bootstrap 
Aggregating 

       │   

        │        │   

  ┌─── ────── ───┬─── ───┴─── ────── ────── ───┐  │   

  │   │       │  │   

  ▼   ▼       ▼  │   

  Bootstrap 
Sample #1 

  Bootstrap 
Sample #2 

      Bootstrap 
Sample #n 

 │   

  │   │       │  │   

  │   │       │  │   

  Recursive 
Partitioning 

  Recursive 
Partitioning 

      Recursive 
Partitioning 

 │   

  │   │       │  │   

  ▼   ▼       ▼  │   

  Tree Model 
#1 

  Tree Model 
#2 

      Tree Model 
#n 

 │   

                  │   

  ┌─── ────── ───┬─── ────── ────── ────── ───┬─── ────── ───┘   

  │   │       │       

  │   │       │       

  ▼   ▼       ▼       

  y 
predictions 
#1 

  y 
predictions 
#2 

      y 
predictions 
#n 

      

  │   │       │       

  └─── ────── ───┴─── ─────── ────── ────── ───┘       

        │             

        Average             

        │             

        ▼             

        Final  y 
predictions 

            

                      

 

Figure 4.5: Diagrammatic Summary of Ensemble Methods 

 

 

In the tables and plots that follow, we present the alternate results from bagging 

and random forests, and compare them with the earlier results from both GRNN 

and regression tree.  Bagging was performed using the „bagging‟ package and the 
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random forests were generated using the „randomForest‟ package.  Both software 

packages, just like the earlier „rpart‟ package, are also packages developed for 

the R statistical computation environment.  The number of trees used in each 

procedure of bagging was 25 (default setting), while the number of trees used in 

each random forest was 100 by default. 

 

We observe that both bagging and random forests are in general, relatively poor 

in fitting the data, even poorer than simple regression tree.  This is possibly due 

to the regression tree over-fitting the data and showing better numbers.  

However, bagging really shines through when we look at the predictions.  While 

the results from fitting are poor, the results from predictions are on par with those 

from GRNN in Periods A, B and C.  Random forests, on the other hand, give 

poorer results than bagging in general.  For our wool auction data, we find 

random forests to be not as computational economical as bagging, considering 

that 25 trees were used in bagging in each case but 100 trees were used in 

random forests. 

 

Another popular ensemble method in the literature: “boosting” (Friedman et al 

2000) would also be a logical candidate for considerations after bagging and 

random forests.  However, the boosting packages from R appear to perform 

poorly with the wool data that is available to us.  It would be computational 

expensive for boosting to achieve similar results to bagging and random forests.  

The number of trees required is impractical when compared to other methods, 

thus we decided to omit boosting in our comparisons. 
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Tables 4.17, 4.18 and 4.19 show the results in fitting using Ensemble Methods: 

 

Table 4.17: Fitting for Period A with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Fitting last week of Root Mean Square Error 28.29091354 44.50163 50.39427 52.97568 

Aug 2000 Mean Absolute Error 15.26685036 23.3963 25.70137 28.17591 

 
Std. Deviation of Abs. 
Error 23.82596829 37.86769 43.36212 44.87628 

      

Fitting last week of Root Mean Square Error 33.47677404 43.89331 50.58865 59.96171 

Sep 2000 Mean Absolute Error 16.33235456 23.13326 26.0236 31.0208 

 
Std. Deviation of Abs. 
Error 29.23013271 37.31235 43.39332 51.32748 

      

Fitting last week of Root Mean Square Error 35.59787003 60.89278 64.65287 76.3059 

Oct 2000 Mean Absolute Error 20.77791974 29.00816 32.8266 37.83955 

 
Std. Deviation of Abs. 
Error 28.9127874 53.55414 55.71469 66.28115 

      

Fitting last week of Root Mean Square Error 53.14404304 62.8968 82.35355 82.01819 

Nov 2000 Mean Absolute Error 17.53775253 30.5585 32.94694 40.16307 

 
Std. Deviation of Abs. 
Error 50.1885246 54.99812 75.50842 71.54246 

 

 

Table 4.18: Fitting for Period B with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Fitting last week of Root Mean Square Error 35.52785964 50.75957 58.01292 59.49253 

Aug 2001 Mean Absolute Error 19.05397627 27.20509 31.84648 33.15729 

 
Std. Deviation of Abs. 
Error 29.99838122 42.87078 48.50984 49.4159 

      

Fitting last week of Root Mean Square Error 43.38224682 49.15919 58.10737 57.9892 

Sep 2001 Mean Absolute Error 18.91764899 21.53069 27.37857 27.32785 

 
Std. Deviation of Abs. 
Error 39.04907165 44.20336 51.26467 51.15776 

      

Fitting last week of Root Mean Square Error 29.53830859 35.49992 44.13764 41.61895 

Oct 2001 Mean Absolute Error 16.2291678 19.29468 24.34452 23.20486 

 
Std. Deviation of Abs. 
Error 24.6922348 29.81285 36.83433 34.56602 

      

Fitting last week of Root Mean Square Error 21.18334939 35.87093 42.29404 44.65671 

Nov 2001 Mean Absolute Error 11.16225224 19.22255 22.56911 22.9732 

 
Std. Deviation of Abs. 
Error 18.01361591 30.30203 35.78841 38.31509 
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Table 4.19: Fitting for Period C with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Fitting last week of Root Mean Square Error 27.4876211 44.38823 54.82166 47.84726 

Aug 2002 Mean Absolute Error 15.47762742 23.93032 28.40097 26.17418 

 
Std. Deviation of Abs. 
Error 22.72436108 37.39913 46.90882 40.06829 

      

Fitting last week of Root Mean Square Error 39.05447769 58.038 67.73973 65.07719 

Sep 2002 Mean Absolute Error 25.27669893 33.16222 40.58841 39.37019 

 
Std. Deviation of Abs. 
Error 29.78166889 47.64693 54.25188 51.835 

      

Fitting last week of Root Mean Square Error 33.21652489 39.58191 48.19551 47.27497 

Oct 2002 Mean Absolute Error 19.23416188 24.98678 30.47481 29.50627 

 
Std. Deviation of Abs. 
Error 27.09155177 30.71022 37.352 36.95077 

      

Fitting last week of Root Mean Square Error 33.74128347 38.34854 46.43959 44.55623 

Nov 2002 Mean Absolute Error 21.64586617 23.98833 28.34224 27.48117 

 
Std. Deviation of Abs. 
Error 25.89736289 29.93598 36.80834 35.0914 

 

 

Tables 4.20, 4.21 and 4.22, and Figures 4.6 to 4.29 show the results in predicting 

using Ensemble Methods: 

 

Table 4.20: Predictions for Period A with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Using last week of Root Mean Square Error 47.88411498 65.63687 50.9104 60.12618 

Aug 2000 Mean Absolute Error 27.49475198 34.04639 26.91575 30.97925 

to predict 1st wk of Sep 2000 
Std. Deviation of Abs. 
Error 39.21427868 56.13152 43.22526 51.54495 

      

Using last week of Root Mean Square Error 135.7182532 136.596 132.3349 148.8892 

Sep 2000 Mean Absolute Error 29.63332056 36.90987 29.8902 36.99417 

to predict 1st wk of Oct 2000 
Std. Deviation of Abs. 
Error 132.4945037 131.5653 128.9646 144.2755 

      

Using last week of Root Mean Square Error 69.12056444 96.05168 74.725 84.0915 

Oct 2000 Mean Absolute Error 35.6166384 48.66818 37.72461 45.26432 

to predict 1st wk of Nov 2000 
Std. Deviation of Abs. 
Error 59.2514565 82.82823 64.51828 70.88619 

      

Using last week of Root Mean Square Error 64.7849604 83.60047 69.56963 94.32711 

Nov 2000 Mean Absolute Error 34.43145383 45.3864 37.52524 44.5789 

to predict 1st wk of Dec 2000 
Std. Deviation of Abs. 
Error 54.90408942 70.24136 58.60961 83.16829 
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Figure 4.6: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2000 with Bagging 
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Figure 4.7: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2000 with Random Forest 
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Figure 4.8: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2000 with Bagging 
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Figure 4.9: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2000 with Random Forest 
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Figure 4.10: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2000 with Bagging 
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Figure 4.11: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2000 with Random Forest 
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Figure 4.12: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2000 with Bagging 
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Figure 4.13: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2000 with Random Forest 
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Table 4.21: Predictions for Period B with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Using last week of Root Mean Square Error 58.66584341 69.7189 58.85238 63.08733 

Aug 2001 Mean Absolute Error 32.43893849 36.92937 30.61869 32.26526 

to predict 1st wk of Sep 2001 
Std. Deviation of Abs. 
Error 48.8988455 59.15603 50.27818 54.23151 

      

Using last week of Root Mean Square Error 89.2013982 93.72725 88.41392 85.0301 

Sep 2001 Mean Absolute Error 74.55923056 73.82104 72.65839 72.55067 

to predict 1st wk of Oct 2001 
Std. Deviation of Abs. 
Error 48.97674904 57.76261 50.38595 44.35385 

      

Using last week of Root Mean Square Error 38.35475621 44.31331 39.72906 38.51702 

Oct 2001 Mean Absolute Error 27.41881763 30.44673 26.51407 26.55256 

to predict 1st wk of Nov 2001 
Std. Deviation of Abs. 
Error 26.82817574 32.20748 29.59656 27.91083 

      

Using last week of Root Mean Square Error 66.14964581 71.31696 66.97028 67.96612 

Nov 2001 Mean Absolute Error 54.72642547 57.22881 55.07718 52.90601 

to predict 1st wk of Dec 2001 
Std. Deviation of Abs. 
Error 37.18058425 42.5802 38.12095 42.69028 
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Figure 4.14: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2001 with Bagging 
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Figure 4.15: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2001 with Random Forest 
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Figure 4.16: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2001 with Bagging 
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Figure 4.17: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2001 with Random Forest 
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Figure 4.18: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2001 with Bagging 
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Figure 4.19: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2001 with Random Forest 
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Figure 4.20: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2001 with Bagging 
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Figure 4.21: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2001 with Random Forest 

 

 

Table 4.22: Predictions for Period C with Ensemble Methods 

   Regression   

   Tree   

   (without  Random 

  GRNN pruning) Bagging Forest 

      

Using last week of Root Mean Square Error 38.60712508 49.9932 38.81197 38.20277 

Aug 2002 Mean Absolute Error 27.09162225 32.91185 26.6451 26.55978 

to predict 1st wk of Sep 2002 
Std. Deviation of Abs. 
Error 27.51594552 37.64576 28.23138 27.47001 

      

Using last week of Root Mean Square Error 67.49464254 77.1083 66.68828 65.17472 

Sep 2002 Mean Absolute Error 42.78633291 49.20164 42.83662 42.84812 

to predict 1st wk of Oct 2002 
Std. Deviation of Abs. 
Error 52.20917584 59.38102 51.11999 49.11839 

      

Using last week of Root Mean Square Error 53.65067084 60.417 53.29528 50.8611 

Oct 2002 Mean Absolute Error 38.96359524 43.58813 39.29378 37.70949 

to predict 1st wk of Nov 2002 
Std. Deviation of Abs. 
Error 36.89281363 41.84948 36.01656 34.14046 

      

Using last week of Root Mean Square Error 41.68142591 46.99935 40.80626 41.99026 

Nov 2002 Mean Absolute Error 28.36965042 32.1573 28.09967 28.62148 

to predict 1st wk of Dec 2002 
Std. Deviation of Abs. 
Error 30.54913432 34.28974 29.60168 30.73675 
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Figure 4.22: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2002 with Bagging 
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Figure 4.23: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2002 with Random Forest 
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Figure 4.24: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2002 with Bagging 
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Figure 4.25: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2002 with Random Forest 
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Figure 4.26: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2002 with Bagging 
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Figure 4.27: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2002 with Random Forest 
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Figure 4.28: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2002 with Bagging 
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Figure 4.29: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2002 with Random Forest 
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They can be interpreted and give us better understanding of the price-driving 

variables, satisfying the descriptive aspect of modelling.  It is possible to tell the 

order of importance of the wool quality variables and their influences in driving 

the price at various levels. 

 

Section 4.4 showed another huge advantage of the tree models: their ability to 

provide helpful information to solve the wool specifications problem introduced 

in Section 1.3.  This huge advantage is exclusive to the tree models and not 

available from neural networks or other existing methods. 

 

However, from the results presented in Section 4.5 we can observe that 

regression tree‟s accuracies in both fitting and predictions are quite poor when 

compared to methods such as neural networks.  To rectify this we introduce the 

ensemble methods in Section 4.6 and apply them to the wool auction data.  We 

found that by averaging the numeric price outputs from multiple trees we can 

produce much better results with accuracies on par with those from neural 

networks. 

 

However, while a prediction is numeric and can be obtained by averaging the 

output from each tree, the actual trees themselves cannot be “added” and 

“averaged” numerically.  Here, we lose the simplicity of having only one tree, 

and the advantages hence attractiveness that comes with them.  So, finding a 

single tree that is the equivalent to an “average” of multiple trees becomes an 

interesting problem.  And we shall explore this concept in the next chapter. 
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Chapter 5 

 

A Hybrid Approach 

 

In the previous chapter, we learnt that we could improve the prediction results 

from tree predictors by averaging the outputs from multiple predictors, all 

constructed using the same data.  In the application of bagging, we can take 

multiple bootstrap samples from the learning set of data, then grow a tree from 

each bootstrap sample.  The predictions from these trees can then be averaged to 

give us an overall prediction, which is a much improved prediction than a single 

ordinary regression tree.  In essence, the bootstrap procedure introduced 

randomness which reduced variance in the data, so the model built from it can be 

more accurate.  There exist variants of the bagging method such as random 

forests which also yield similar results.  However, while a prediction is numeric 

and can be obtained by averaging the output from each tree, the actual trees 

themselves cannot be “added” and “averaged” numerically.  Here, we lose the 

simplicity of having only one tree, and the advantages hence attractiveness that 

comes with them.  So, finding a single tree that is the equivalent to an “average” 

of multiple trees becomes an interesting problem. 

 

Attempting to provide a solution to the above problem, Breiman and Shang 

(1997) introduced the idea of a “representer tree” (also known as a “born again 

tree”).  Unlike multiple tree methods where you make a specified number (say 

10) of bootstrap samples of the same dataset then use these to build 10 trees, their 

idea involved manufacturing an artificial dataset that is 10 times the size of the 

original and used the new set to build a single tree.  Their study showed that this 

alternate approach gave prediction accuracy comparable to those of the multiple 

tree models. 

 

As a result of our work in Chapter 3 and Chapter 4, we will develop and apply a 

new procedure to the wool auction problem in this chapter.  Our procedure is 

inspired by Breiman and Shang’s idea but with two main modifications: 1) using 
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a much more accurate Neural Network in place of a multiple tree method, and 2) 

using our own modified smearing method which involves adding Gaussian noise. 

 

This chapter concludes that our new hybrid approach is the best balance between 

prediction accuracies and interpretability that we can currently achieve.  It 

provides solutions to the various aspects of our initial wool auction problem, as 

well as the wool specifications problem discussed in Section 1.3. 

 

 

5.1 The Method 

 

Keeping the ideas and terminologies from Chapter 2 in mind, let us consider the 

following data set: 

 

Table 5.1: Example Data Set 

 Variable x1 Variable x2 Variable x3 … Variable xn Price y 

Data 1 x11 x12 x13  X1n y1 

Data 2 x21 x22 x23  X2n y2 

Data 3 x31 x32 x33 … X3n y3 

Data 4 x41 x42 x43  X4n y4 

Data 5 x51 x52 x53  X5n y5 

. 

. 

. 

      

 

 

Say we have built a predictive model  from the data.  Breiman and Shang (1997) 

considered multiple tree predictors such as bagging, but here we will use neural 

networks such as GRNN instead.  While both bagging and GRNN offered similar 

prediction accuracy, we observed in Section 4.5 that bagging is relatively poor in 

fitting while GRNN give consistently good results.  As a result we have decided 

to use GRNN in our approach instead. 

 

To grow a single regression tree from the data, we need to generate a new set of 

artificial data that is much bigger in size than the original, but with the same 

underlying multivariate distribution of the original.  The problem of 

manufacturing a large amount of artificial data was earlier considered by Craven 
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and Shavlik (1996).  Their approach involved constructing a kernel density 

estimate for each input variable separately, then sampled from the product of the 

density estimates. 

 

Later, Breiman and Shang (1997) grew a much bigger data set by smearing the 

original data, which gave them better results.  First they randomly picked a row 

of data. For each variable in this row, a random number was generated that was 

between 0 and 1.  If this random number was greater than 0.5 (the palt) then they 

did not change the value of the variable.  If the random number was less than 0.5 

then the value of the variable was replaced with one from the same column but in 

another random row, hence “smearing” the data.  This was done for every 

variable in each row.  And they generated as many new rows this way as needed.  

The Price y could then be given by a multiple tree predictor f   A typical example 

of smearing is displayed in Table 5.2 below.  Say the original data set only has 5 

rows, and we take the first 5 rows of data from Table 5.1 as a demonstration.  If 

we want to generate an artificial data set that is 10 times as big then we would 

pick a random row from the original 5 rows and do this 50 times. 

 

Table 5.2: Example of 50% Smearing. 

 Variable x1 Variable x2 Variable x3 … Variable xn Price y 

Row 3 x31 (no change) x52 (smeared) x43 (smeared)   (x31, x52, x43, …) 

Row 5 x11 (smeared) x42 (smeared) x53 (no change)   (x11, x42, x53, …) 

Row 1 x11 (no change) x32 (smeared) x13 (no change)   f x11, x32, x13, …) 

Row 3 x41 (smeared) x32 (no change) x33 (no change)   f x41, x32, x33, …) 

Row 2      . 

Row 5      . 

Row 4      . 

Row 4    … …  

. 

. 

. 

      

 

 

We could also use a number other than 0.5 as our palt number.  Breiman and 

Shang (1997) called this a 0.5 palt a “50% smearing”; a 0.25 palt is “25% 

smearing”. 

 

The above smearing method was designed allowing any variable to be numeric 

or categorical.  However, since the wool data we are using consists of purely 
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numeric variables, we are free to make the following modifications when 

applying the method to our wool data.  When we smear the value of a variable, 

instead of replacing it with one from another row, we keep the old value but add 

Gaussian noise to it.  So 

 

 smeared value = original value of the variable + p * N(0, σ
2
) (5.1) 

 

Here σ
2
 is the variance of the variable (the column) and “p” is a parameter we 

can set to determine how far we want to smear the value.  We will demonstrate in 

the next section that our modification with a p value of about 0.5 in makes the 

underlying multivariate distribution even closer to that of the original data than 

Breiman and Shang’s original 50% smearing. The tree grown from the artificial 

data smeared this way also gives better results in predictions. 

 

The underlying multivariate distribution of the artificial set very closely mimics 

the distribution of the original data set. Of course, this also depends on how good 

f f. 

 

Using the variables Staple Length and Staple Strength from a particular day of 

our wool data as an illustrative example, Figures 5.1, 5.2 and 5.3 demonstrate the 

effects and differences from the two smearing methods.  The figures clearly 

show that our modified smearing method can retain the “shape” of the 

distribution between two wool variables, making our artificially manufactured 

data a more realistic representation of the original data. 

 

Once we have this much bigger set of data then we can grow a single regression 

tree from it. This “representer tree” would be much more accurate than one 

grown directly from the original data set. 
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Figure 5.1: Original Data 
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Figure 5.2: 50% Smearing (Note that this smearing mimics the proportion of 

density distribution, but does not retain the shape of original data.) 
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Figure 5.3: An example of our Modified Smearing using Gaussian Noise (Here, 

the modified method preserves the proportion of density distribution as well as 

the shape.) 
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5.2 Comparisons of Algorithms: Neural Networks vs. Regression Tree vs. 

Ensemble Methods vs. Hybrid Approach 

 

In this section we present diagrammatic summaries of the algorithms used in 

regression tree, bagging, and our hybrid approach. 

 

          

   Neural Networks    

       

  Modelling     

        

  Original Data (x, 

y) 

 

 

  

  │     

  │     

  Black Box 

Training 

    

  │     

  ▼     

  Black Box Model 

(No Picture) 

 Predicting   

          

  ┌─────── ────────────── New x   

  │       

  │     

  ▼     

  y predictions     

          

 

Figure 5.4: Diagrammatic Summary of Neural Networks 
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   Regression Tree    

       

  Modelling     

        

  Original Data (x, 

y) 

 

 

  

  │     

  │     

  Recursive 

Partitioning 

    

  │     

  ▼     

  Black Box Model 

(Nice Picture) 

 Predicting   

          

  ┌─────── ────────────── New x   

  │       

  │     

  ▼     

  y predictions     

          

 

Figure 5.5: Diagrammatic Summary of Regression Tree 
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      Ensemble 
Methods 

      

             

        Modelling        Predicting   

                     

        Original 
Data (x, y) 

        New x   

        │        │   

        │        │   

        Bootstrap 
Aggregating 

       │   

        │        │   

  ┌─── ────── ───┬─── ───┴─── ────── ────── ───┐  │   

  │   │       │  │   

  ▼   ▼       ▼  │   

  Bootstrap 
Sample #1 

  Bootstrap 
Sample #2 

      Bootstrap 
Sample #n 

 │   

  │   │       │  │   

  │   │       │  │   

  Recursive 
Partitioning 

  Recursive 
Partitioning 

      Recursive 
Partitioning 

 │   

  │   │       │  │   

  ▼   ▼       ▼  │   

  Tree Model 
#1 

  Tree Model 
#2 

      Tree Model 
#n 

 │   

                  │   

  ┌─── ────── ───┬─── ────── ────── ────── ───┬─── ────── ───┘   

  │   │       │       

  │   │       │       

  ▼   ▼       ▼       

  y 
predictions 
#1 

  y 
predictions 
#2 

      y 
predictions 
#n 

      

  │   │       │       

  └─── ────── ───┴─── ─────── ────── ────── ───┘       

        │             

        Average             

        │             

        ▼             

        Final  y 
predictions 

            

                      

 

Figure 5.6: Diagrammatic Summary of Ensemble Methods 
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     Hybrid 
Approach 

     

           

      Modelling      Predicting   

                 

    Original 
Data (x, y) 

        New x   

  │     │    │   

  │     │    │   

  Training     Smearing    │   

  │     │    │   

  │     ▼    │   

  │     Artificial x    │   

  │   │   │  │   

  ▼   │   │  │   

    Neural 
Network 
Model 

│   │  │   

      │   │  │   

      ▼   │  │   

      Artificial y   │  │   

      │   │  │   

      └─── ─────── ───┘  │   

        │    │   

        Combine    │   

        │    │   

        ▼    │   

        Artificial 
Data (x, y) 

   │   

        │    │   

        │    │   

        Recursive 
Partitioning 

   │   

        │    │   

        ▼     │   

          Tree 
Model 

  │   

        │   

        ▼   

         y 
predictions 

  

                  

 

Figure 5.7: Diagrammatic Summary of Hybrid Approach 
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5.3 Applying Our Hybrid Approach to the Wool Auction Data 

 

Before comparing the hybrid approach to the earlier methods such as GRNN, 

regression tree, and ensemble methods, we will first determine a reasonable p 

value to be used in our modified smearing. 

 

The tables that follow show the results from representer trees (with or without 

pruning as explained in Section 4.3) generated with Breiman and Shang’s 

original 50% smearing, as well as our own modified smearing with some 

different p values.  From these tables, we find our modified smearing with a p 

value of 0.5 (and without pruning the tree) gives the best results in both fitting 

and predictions.  We shall use a hybrid approach with this particular smearing for 

comparison with the earlier modelling methods. 
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Table 5.3: Fitting for Period A with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Fitting last 
week of 

Root Mean 
Square Error 32.14784 32.43423 28.85759 29.51178 29.46676 30.15601 30.81464 32.60011 

Aug 2000 
 

Mean Absolute 
Error 18.05 18.70416 15.60698 16.56492 16.29405 17.344 17.05616 19.04959 

 
Std. Deviation 
of Abs. Error 26.61113 26.50662 24.28116 24.43248 24.56004 24.67743 25.67232 26.46406 

          

Fitting last 
week of 

Root Mean 
Square Error 40.52424 41.09794 33.95739 34.81306 35.64119 36.27338 37.63739 39.78697 

Sep 2000 
 

Mean Absolute 
Error 20.21789 21.29925 16.98274 18.2082 18.18383 19.15071 19.35314 21.74229 

 
Std. Deviation 
of Abs. Error 35.12982 35.15731 29.41342 29.67957 30.66171 30.81413 32.28902 33.32962 

          

Fitting last 
week of 

Root Mean 
Square Error 41.70309 42.68297 36.31789 37.40157 37.0496 38.71816 39.33116 43.05612 

Oct 2000 
 

Mean Absolute 
Error 23.84127 25.00416 21.23019 22.68594 21.78662 23.47373 22.66546 26.71006 

 
Std. Deviation 
of Abs. Error 34.22557 34.60189 29.47456 29.74417 29.97521 30.79943 32.15259 33.77919 

          

Fitting last 
week of 

Root Mean 
Square Error 53.91381 54.61658 53.43675 53.69071 53.72859 54.26177 54.62545 55.87569 

Nov 2000 
 

Mean Absolute 
Error 19.72541 21.43055 17.88617 18.68215 18.38907 19.94024 19.44443 22.48246 

 
Std. Deviation 
of Abs. Error 50.1974 50.25813 50.37617 50.35729 50.50547 50.48687 51.06958 51.17508 
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Table 5.4: Fitting for Period B with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Fitting last 
week of 

Root Mean 
Square Error 40.0757 40.65163 36.11205 36.45528 37.23485 37.59594 38.58073 39.83728 

Aug 2001 
 

Mean Absolute 
Error 22.1232 22.80188 19.56654 20.31361 20.17789 21.10055 21.35856 22.99529 

 
Std. Deviation 
of Abs. Error 33.42948 33.66818 30.36407 30.28343 31.30622 31.12885 32.14218 32.54354 

          

Fitting last 
week of 

Root Mean 
Square Error 48.2608 48.79781 44.28918 44.70897 46.90276 47.48962 46.36615 47.38853 

Sep 2001 
 

Mean Absolute 
Error 22.23308 23.37491 19.81226 20.89538 21.067 22.33507 21.79332 23.51032 

 
Std. Deviation 
of Abs. Error 42.84418 42.8447 39.61962 39.53455 41.91472 41.91899 40.93442 41.15461 

          

Fitting last 
week of 

Root Mean 
Square Error 32.683 33.01007 29.78828 30.03139 30.35766 30.67092 31.81951 32.82703 

Oct 2001 
 

Mean Absolute 
Error 18.39031 19.04518 16.45713 16.89795 17.10047 17.87151 17.48543 18.80197 

 
Std. Deviation 
of Abs. Error 27.03093 26.97478 24.84133 24.83811 25.09504 24.93806 26.59727 26.92192 

          

Fitting last 
week of 

Root Mean 
Square Error 22.37742 23.18776 21.57403 21.7966 21.66333 22.4787 22.87607 24.16405 

Nov 2001 
 

Mean Absolute 
Error 12.64958 13.98992 11.51276 12.18102 11.73037 13.05542 12.6078 14.58006 

 
Std. Deviation 
of Abs. Error 18.46909 18.50204 18.25531 18.08505 18.22247 18.30878 19.09853 19.28021 
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Table 5.5: Fitting for Period C with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Fitting last 
week of 

Root Mean 
Square Error 32.67029 33.38364 28.32042 28.46928 29.73316 30.90868 31.1653 33.09808 

Aug 2002 
 

Mean Absolute 
Error 18.60128 19.59546 16.03741 16.79665 16.89491 18.43153 18.1521 20.15263 

 
Std. Deviation 
of Abs. Error 26.86778 27.03756 23.35065 22.99491 24.47587 24.82103 25.34275 26.26533 

          

Fitting last 
week of 

Root Mean 
Square Error 43.50797 44.63964 40.10445 40.9717 41.50845 43.32336 44.16638 47.67187 

Sep 2002 
 

Mean Absolute 
Error 29.42514 30.72236 26.16641 27.54871 27.30787 29.6761 29.08741 32.90743 

 
Std. Deviation 
of Abs. Error 32.05945 32.39679 30.40262 30.33775 31.27141 31.57411 33.24678 34.50395 

          

Fitting last 
week of 

Root Mean 
Square Error 35.79199 36.16242 33.79716 34.1464 35.54239 35.7953 37.40348 38.44765 

Oct 2002 
 

Mean Absolute 
Error 22.32846 22.84543 19.86391 20.44141 20.85458 21.5572 22.33803 23.79862 

 
Std. Deviation 
of Abs. Error 27.98414 28.04309 27.35419 27.36247 28.79217 28.58711 30.01215 30.2085 

          

Fitting last 
week of 

Root Mean 
Square Error 34.39373 34.64131 33.72553 33.95238 34.26232 34.54748 34.6122 34.78557 

Nov 2002 
 

Mean Absolute 
Error 22.40636 22.57759 21.79123 22.0425 21.98507 22.28514 22.33603 22.6841 

 
Std. Deviation 
of Abs. Error 26.10821 26.2876 25.75438 25.83857 26.29313 26.41351 26.45527 26.38634 
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Table 5.6: Predictions for Period A with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Using last 
week of 

Root Mean 
Square Error 51.25978 51.29458 51.4169 51.54048 51.44226 51.60238 52.15323 52.65016 

Aug 2000 
to predict 

Mean Absolute 
Error 29.59563 29.66381 29.04302 29.18406 29.27836 29.65777 30.00095 30.42627 

1st wk of 
Sep 2000 

Std. Deviation 
of Abs. Error 41.86422 41.85858 42.44027 42.49341 42.30902 42.23965 42.67186 42.98001 

          

Using last 
week of 

Root Mean 
Square Error 136.3895 136.5583 129.6546 129.7598 137.4913 137.2228 138.683 138.8697 

Sep 2000 
to predict 

Mean Absolute 
Error 32.14405 32.39875 29.77496 30.16947 31.72107 31.95903 32.19726 33.46321 

1st wk of 
Oct 2000 

Std. Deviation 
of Abs. Error 132.5985 132.7103 126.2379 126.2524 133.8334 133.5005 134.9455 134.8294 

          

Using last 
week of 

Root Mean 
Square Error 78.87132 79.48225 74.0424 74.8116 74.80524 75.22768 75.5165 76.69695 

Oct 2000 
to predict 

Mean Absolute 
Error 39.77801 39.9867 37.49623 38.14071 38.46077 38.39608 38.14695 39.94294 

1st wk of 
Nov 2000 

Std. Deviation 
of Abs. Error 68.12156 68.70721 63.86079 64.37378 64.17556 64.70615 65.18836 65.49024 

          

Using last 
week of 

Root Mean 
Square Error 63.68896 63.68942 61.89901 62.19532 67.32929 67.59487 69.49303 70.11804 

Nov 2000 
to predict 

Mean Absolute 
Error 35.32574 35.53997 35.34225 35.70845 35.59939 36.12464 36.31719 37.01193 

1st wk of 
Dec 2000 

Std. Deviation 
of Abs. Error 53.01956 52.87661 50.84185 50.94757 57.17565 57.15953 59.2766 59.5824 
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Table 5.7: Predictions for Period B with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Using last 
week of 

Root Mean 
Square Error 62.76642 62.90683 60.49215 60.55243 61.75273 61.86352 64.29749 64.34594 

Aug 2001 
to predict 

Mean Absolute 
Error 32.98242 33.08886 32.53699 32.63289 33.21945 33.41471 33.73901 33.87366 

1st wk of 
Sep 2001 

Std. Deviation 
of Abs. Error 53.4211 53.52041 51.01466 51.02493 52.07492 52.08149 54.7538 54.72755 

          

Using last 
week of 

Root Mean 
Square Error 90.3927 90.78546 88.2915 88.31937 88.71597 88.70276 90.1795 90.1926 

Sep 2001 
to predict 

Mean Absolute 
Error 75.65191 75.99116 74.36393 74.39752 74.61819 74.63262 75.6311 75.43891 

1st wk of 
Oct 2001 

Std. Deviation 
of Abs. Error 49.48291 49.68181 47.60521 47.60442 47.99505 47.94814 49.12427 49.44294 

          

Using last 
week of 

Root Mean 
Square Error 39.64384 39.69916 38.57505 38.63218 39.7991 39.97535 39.81026 39.95935 

Oct 2001 
to predict 

Mean Absolute 
Error 28.17994 28.23021 27.5051 27.6752 27.76045 27.81856 28.24166 28.14621 

1st wk of 
Nov 2001 

Std. Deviation 
of Abs. Error 27.89296 27.92081 27.05489 26.96273 28.52789 28.71721 28.06714 28.37341 

          

Using last 
week of 

Root Mean 
Square Error 67.54468 67.53837 67.10482 67.31418 68.69376 68.6115 66.99243 67.12219 

Nov 2001 
to predict 

Mean Absolute 
Error 55.169 55.14255 54.33174 54.48521 55.41919 55.36777 55.03672 55.03495 

1st wk of 
Dec 2001 

Std. Deviation 
of Abs. Error 38.99265 39.01916 39.40709 39.55215 40.6135 40.54445 38.2183 38.44808 
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Table 5.8: Predictions for Period C with Hybrid Approach 

  Hybrid        

  Approach        

  (50% (50% (modified (modified (modified (modified (modified (modified 

  smearing, smearing, smearing smearing smearing smearing smearing smearing 

  
not 
pruned) pruned) 

with p = 
0.5, 

with p = 
0.5, 

with p = 
1, 

with p = 
1, 

with p = 
2, 

with p = 
2, 

    
not 
pruned) pruned) 

not 
pruned) pruned) 

not 
pruned) pruned) 

          

Using last 
week of 

Root Mean 
Square Error 40.77929 40.94638 37.54829 37.85197 39.1553 39.2452 40.52794 40.58294 

Aug 2002 
to predict 

Mean Absolute 
Error 28.53668 28.66426 26.72926 26.94496 27.82388 27.95006 28.46229 28.65281 

1st wk of 
Sep 2002 

Std. Deviation 
of Abs. Error 29.14191 29.25088 26.38082 26.59467 27.55982 27.56003 28.86248 28.75096 

          

Using last 
week of 

Root Mean 
Square Error 69.41525 69.53204 70.79193 71.07181 69.46349 69.79886 69.92595 70.16682 

Sep 2002 
to predict 

Mean Absolute 
Error 43.89225 44.09121 44.81895 44.99941 43.73547 43.93878 45.11562 45.14456 

1st wk of 
Oct 2002 

Std. Deviation 
of Abs. Error 53.78611 53.77424 54.80691 55.02092 53.97584 54.2428 53.43413 53.72475 

          

Using last 
week of 

Root Mean 
Square Error 53.65864 53.75014 54.94735 55.02297 53.77958 53.95523 55.10207 55.47436 

Oct 2002 
to predict 

Mean Absolute 
Error 39.68634 39.77412 40.15709 40.27475 39.17491 39.3886 40.30198 40.57747 

1st wk of 
Nov 2002 

Std. Deviation 
of Abs. Error 36.12557 36.16506 37.5166 37.50129 36.85669 36.88565 37.58813 37.83867 

          

Using last 
week of 

Root Mean 
Square Error 42.97271 43.07623 43.63672 43.63281 44.14822 44.26322 43.52 43.62062 

Nov 2002 
to predict 

Mean Absolute 
Error 29.20839 29.33403 29.51306 29.43977 29.1324 29.20404 29.11515 29.32562 

1st wk of 
Dec 2002 

Std. Deviation 
of Abs. Error 31.53281 31.55743 32.15539 32.21725 33.18507 33.27523 32.35946 32.3048 
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On the following pages we shall compare our hybrid approach with the earlier 

modelling methods.  As the hybrid approach is a combination of neural networks 

(GRNN) and regression tree, its implementation also utilises the software 

packages used in our previous chapters, namely: “NeuralTools” and “rpart”. 

 

Specifically, we use NeuralTools to first construct a GRNN model from our data 

in an initial period.  Then we write a simple Visual Basic script on the initial data 

to implement the “smearing” technique to generate a large set of artificial inputs 

(wool characteristics).  This set of artificial inputs is then fed through the GRNN 

model to obtain a set of outputs (wool prices) predicted by the GRNN.  The set 

of artificial inputs (wool characteristics), together with the outputs (wool prices) 

predicted by the GRNN, now form a complete set of artificial data (wool 

characteristics + prices).  We can now use the rpart package to construct a single 

regression tree from the complete artificial set.  And we shall use this regression 

tree to predict wool prices for the next period. 

 

The tables on the following pages compare our hybrid approach with the earlier 

modelling methods.  Our hybrid approach matches the accuracies of those of 

neural networks closely, and clearly a major leap from the more conventional 

single regression trees.  This is a very attractive trade-off in getting a single tree 

representation considering a single tree is easy for causal observers to interpret 

and understand, as demonstrated in Chapter 4. 

 

And of course the representer trees generated from our hybrid approach can also 

be expressed in the tabular form described in Section 4.4.  After growing 

representer trees using our new hybrid approach, we can now come up with 

tabular representations of these trees using the method in Section 4.4, which 

streamline the process of assembling wool into bins and assist in delineating the 

specifications of individual bins. 
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Table 5.9: Fitting for Period A – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Fitting last 
week of 

Root Mean 
Square Error 28.29091354 44.50163 50.39427 52.97568 28.85759 

Aug 2000 
 

Mean Absolute 
Error 15.26685036 23.3963 25.70137 28.17591 15.60698 

 
Std. Deviation 
of Abs. Error 23.82596829 37.86769 43.36212 44.87628 24.28116 

       

Fitting last 
week of 

Root Mean 
Square Error 33.47677404 43.89331 50.58865 59.96171 33.95739 

Sep 2000 
 

Mean Absolute 
Error 16.33235456 23.13326 26.0236 31.0208 16.98274 

 
Std. Deviation 
of Abs. Error 29.23013271 37.31235 43.39332 51.32748 29.41342 

       

Fitting last 
week of 

Root Mean 
Square Error 35.59787003 60.89278 64.65287 76.3059 36.31789 

Oct 2000 
 

Mean Absolute 
Error 20.77791974 29.00816 32.8266 37.83955 21.23019 

 
Std. Deviation 
of Abs. Error 28.9127874 53.55414 55.71469 66.28115 29.47456 

       

Fitting last 
week of 

Root Mean 
Square Error 53.14404304 62.8968 82.35355 82.01819 53.43675 

Nov 2000 
 

Mean Absolute 
Error 17.53775253 30.5585 32.94694 40.16307 17.88617 

 
Std. Deviation 
of Abs. Error 50.1885246 54.99812 75.50842 71.54246 50.37617 
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Figure 5.8: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2000 with Hybrid Approach 
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Figure 5.9: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2000 with Hybrid Approach 
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Figure 5.10: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2000 with Hybrid Approach 
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Figure 5.11: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2000 with Hybrid Approach 

 

 

Table 5.10: Fitting for Period B – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Fitting last 
week of 

Root Mean 
Square Error 35.52785964 50.75957 58.01292 59.49253 36.11205 

Aug 2001 
 

Mean Absolute 
Error 19.05397627 27.20509 31.84648 33.15729 19.56654 

 
Std. Deviation 
of Abs. Error 29.99838122 42.87078 48.50984 49.4159 30.36407 

       

Fitting last 
week of 

Root Mean 
Square Error 43.38224682 49.15919 58.10737 57.9892 44.28918 

Sep 2001 
 

Mean Absolute 
Error 18.91764899 21.53069 27.37857 27.32785 19.81226 

 
Std. Deviation 
of Abs. Error 39.04907165 44.20336 51.26467 51.15776 39.61962 

       

Fitting last 
week of 

Root Mean 
Square Error 29.53830859 35.49992 44.13764 41.61895 29.78828 

Oct 2001 
 

Mean Absolute 
Error 16.2291678 19.29468 24.34452 23.20486 16.45713 

 
Std. Deviation 
of Abs. Error 24.6922348 29.81285 36.83433 34.56602 24.84133 

       

Fitting last 
week of 

Root Mean 
Square Error 21.18334939 35.87093 42.29404 44.65671 21.57403 

Nov 2001 
 

Mean Absolute 
Error 11.16225224 19.22255 22.56911 22.9732 11.51276 

 
Std. Deviation 
of Abs. Error 18.01361591 30.30203 35.78841 38.31509 18.25531 
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Figure 5.12: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2001 with Hybrid Approach 
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Figure 5.13: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2001 with Hybrid Approach 
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Figure 5.14: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2001 with Hybrid Approach 
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Figure 5.15: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2001 with Hybrid Approach 

 

 

F
itted

 P
rice

 
F

itted
 P

rice
 

Actual Price 

Actual Price 



 102 

Table 5.11: Fitting for Period C – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Fitting last 
week of 

Root Mean 
Square Error 27.4876211 44.38823 54.82166 47.84726 28.32042 

Aug 2002 
 

Mean Absolute 
Error 15.47762742 23.93032 28.40097 26.17418 16.03741 

 
Std. Deviation 
of Abs. Error 22.72436108 37.39913 46.90882 40.06829 23.35065 

       

Fitting last 
week of 

Root Mean 
Square Error 39.05447769 58.038 67.73973 65.07719 40.10445 

Sep 2002 
 

Mean Absolute 
Error 25.27669893 33.16222 40.58841 39.37019 26.16641 

 
Std. Deviation 
of Abs. Error 29.78166889 47.64693 54.25188 51.835 30.40262 

       

Fitting last 
week of 

Root Mean 
Square Error 33.21652489 39.58191 48.19551 47.27497 33.79716 

Oct 2002 
 

Mean Absolute 
Error 19.23416188 24.98678 30.47481 29.50627 19.86391 

 
Std. Deviation 
of Abs. Error 27.09155177 30.71022 37.352 36.95077 27.35419 

       

Fitting last 
week of 

Root Mean 
Square Error 33.74128347 38.34854 46.43959 44.55623 33.72553 

Nov 2002 
 

Mean Absolute 
Error 21.64586617 23.98833 28.34224 27.48117 21.79123 

 
Std. Deviation 
of Abs. Error 25.89736289 29.93598 36.80834 35.0914 25.75438 
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Figure 5.16: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of August 2002 with Hybrid Approach 
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Figure 5.17: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2002 with Hybrid Approach 
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Figure 5.18: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2002 with Hybrid Approach 
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Figure 5.19: Fitted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2002 with Hybrid Approach 

 

 

Table 5.12: Predictions for Period A – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Using last 
week of 

Root Mean 
Square Error 47.88411498 65.63687 50.9104 60.12618 51.4169 

Aug 2000 
to predict 

Mean Absolute 
Error 27.49475198 34.04639 26.91575 30.97925 29.04302 

1st wk of 
Sep 2000 

Std. Deviation 
of Abs. Error 39.21427868 56.13152 43.22526 51.54495 42.44027 

       

Using last 
week of 

Root Mean 
Square Error 135.7182532 136.596 132.3349 148.8892 129.6546 

Sep 2000 
to predict 

Mean Absolute 
Error 29.63332056 36.90987 29.8902 36.99417 29.77496 

1st wk of 
Oct 2000 

Std. Deviation 
of Abs. Error 132.4945037 131.5653 128.9646 144.2755 126.2379 

       

Using last 
week of 

Root Mean 
Square Error 69.12056444 96.05168 74.725 84.0915 74.0424 

Oct 2000 
to predict 

Mean Absolute 
Error 35.6166384 48.66818 37.72461 45.26432 37.49623 

1st wk of 
Nov 2000 

Std. Deviation 
of Abs. Error 59.2514565 82.82823 64.51828 70.88619 63.86079 

       

Using last 
week of 

Root Mean 
Square Error 64.7849604 83.60047 69.56963 94.32711 61.89901 

Nov 2000 
to predict 

Mean Absolute 
Error 34.43145383 45.3864 37.52524 44.5789 35.34225 

1st wk of 
Dec 2000 

Std. Deviation 
of Abs. Error 54.90408942 70.24136 58.60961 83.16829 50.84185 
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Figure 5.20: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2000 with Hybrid Approach 
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Figure 5.21: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2000 with Hybrid Approach 
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Figure 5.22: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2000 with Hybrid Approach 
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Figure 5.23: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2000 with Hybrid Approach 
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Table 5.13: Predictions for Period B – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Using last 
week of 

Root Mean 
Square Error 58.66584341 69.7189 58.85238 63.08733 60.49215 

Aug 2001 
to predict 

Mean Absolute 
Error 32.43893849 36.92937 30.61869 32.26526 32.53699 

1st wk of 
Sep 2001 

Std. Deviation 
of Abs. Error 48.8988455 59.15603 50.27818 54.23151 51.01466 

       

Using last 
week of 

Root Mean 
Square Error 89.2013982 93.72725 88.41392 85.0301 88.2915 

Sep 2001 
to predict 

Mean Absolute 
Error 74.55923056 73.82104 72.65839 72.55067 74.36393 

1st wk of 
Oct 2001 

Std. Deviation 
of Abs. Error 48.97674904 57.76261 50.38595 44.35385 47.60521 

       

Using last 
week of 

Root Mean 
Square Error 38.35475621 44.31331 39.72906 38.51702 38.57505 

Oct 2001 
to predict 

Mean Absolute 
Error 27.41881763 30.44673 26.51407 26.55256 27.5051 

1st wk of 
Nov 2001 

Std. Deviation 
of Abs. Error 26.82817574 32.20748 29.59656 27.91083 27.05489 

       

Using last 
week of 

Root Mean 
Square Error 66.14964581 71.31696 66.97028 67.96612 67.10482 

Nov 2001 
to predict 

Mean Absolute 
Error 54.72642547 57.22881 55.07718 52.90601 54.33174 

1st wk of 
Dec 2001 

Std. Deviation 
of Abs. Error 37.18058425 42.5802 38.12095 42.69028 39.40709 
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Figure 5.24: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2001 with Hybrid Approach 
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Figure 5.25: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2001 with Hybrid Approach 
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Figure 5.26: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2001 with Hybrid Approach 
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Figure 5.27: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2001 with Hybrid Approach 

 

 

Table 5.14: Predictions for Period C – Comparison of the Various Methods 

      Hybrid 

      Approach 

   Regression   (modified 

   Tree   smearing 

   (without  Random 
with p = 
0.5, 

  GRNN pruning) Bagging Forrest 
not 
pruned) 

       

Using last 
week of 

Root Mean 
Square Error 38.60712508 49.9932 38.81197 38.20277 37.54829 

Aug 2002 
to predict 

Mean Absolute 
Error 27.09162225 32.91185 26.6451 26.55978 26.72926 

1st wk of 
Sep 2002 

Std. Deviation 
of Abs. Error 27.51594552 37.64576 28.23138 27.47001 26.38082 

       

Using last 
week of 

Root Mean 
Square Error 67.49464254 77.1083 66.68828 65.17472 70.79193 

Sep 2002 
to predict 

Mean Absolute 
Error 42.78633291 49.20164 42.83662 42.84812 44.81895 

1st wk of 
Oct 2002 

Std. Deviation 
of Abs. Error 52.20917584 59.38102 51.11999 49.11839 54.80691 

       

Using last 
week of 

Root Mean 
Square Error 53.65067084 60.417 53.29528 50.8611 54.94735 

Oct 2002 
to predict 

Mean Absolute 
Error 38.96359524 43.58813 39.29378 37.70949 40.15709 

1st wk of 
Nov 2002 

Std. Deviation 
of Abs. Error 36.89281363 41.84948 36.01656 34.14046 37.5166 

       

Using last 
week of 

Root Mean 
Square Error 41.68142591 46.99935 40.80626 41.99026 43.63672 

Nov 2002 
to predict 

Mean Absolute 
Error 28.36965042 32.1573 28.09967 28.62148 29.51306 

1st wk of 
Dec 2002 

Std. Deviation 
of Abs. Error 30.54913432 34.28974 29.60168 30.73675 32.15539 
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Figure 5.28: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of September 2002 with Hybrid Approach 
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Figure 5.29: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of October 2002 with Hybrid Approach 
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Figure 5.30: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of November 2002 with Hybrid Approach 
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Figure 5.31: Predicted Price (vertical axis) vs. Actual Price (horizontal axis) 

in the last week of December 2002 with Hybrid Approach 

 

 

5.4 Discussions on the Hybrid Approach 

 

For fitting, tables 5.9 – 5.11 show that GRNN and the hybrid approach perform 

best for all periods, giving very similar results.  In tables 5.12 – 5.14, the hybrid 

approach does not perform significantly better than other methods.  This is not 
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unexpected, as the prediction component of our hybrid approach is built on the 

GRNN but with some errors/noise introduced when the “smearing” procedure is 

applied.  It is thus expected that the hybrid approach would “mimic” the 

predictions and accuracy of GRNN, but never surpass it.  The hybrid approach, 

however, still performs significantly better than an ordinary regression tree, 

given that both are the only methods that can generate a single tree required for 

interpretability.  Given the handicaps, we consider that the hybrid approach still 

performs reasonably close to GRNN, with the slight decrease in accuracy a 

necessary trade-off. 

 

It is debatable, if the phenomenon known as overfitting applies in our results.  In 

our case, a data set to be predicted does not belong in the same week as the data 

set used for fitting.  We only assume that the new week would share more or less 

very similar distributions and behaviours to the current week in our initial 

assumptions, but they should still be considered separate “populations”. 

 

In general, the hybrid approach detailed in this chapter has combined the best of 

both worlds: the accuracy of neural network methods and the superior 

interpretability of tree-based regression methods.  The representer tree generated 

using this hybrid approach can also be expressed in tabular form in the same way 

describe in Section 4.4.  This offers a very good solution to the wool 

specifications problem introduced in Section 1.3, and at the same time gives a 

much higher prediction accuracy than an ordinary regression tree. 

 

The accuracy of our hybrid approach depends on three main factors: 

(1) the data itself, 

(2) the smearing method used, and 

(3) the particular prediction model chosen as the function . 

 

There is not much we can do if the data given is rather limited.  However, we can 

certainly make further improvements with factors (2) and (3).  If a new predictive 

tool more accurate than GRNN comes along one day, then we can use this to 

replace GRNN in our procedure.  Such is the advantage of our hybrid approach, 

which is highly modular and can be continually improved. 
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Chapter 6 

 

Conclusion and Future Work 

 

6.1 Summary of the Thesis 

 

In this thesis, we developed and applied a new hybrid modular approach to the 

wool auction problem.  Firstly, we presented a brief overview of the Australian 

wool auction market and discussed motivation and significance of our research.  

We defined the predictive aspect of the modelling problem and presented the 

data that was available.  We also introduced the assumptions that must be made 

in order to model the auction data and predict the wool prices.  We then 

examined neural networks and the family of tree-based regression methods and 

compared them as options for modelling and predicting the Australian wool 

auction prices. 

 

We observed that neural network methods offered good prediction accuracy of 

price but gave minimal understanding of the price driving variables.  On the 

other hand, tree-based regression methods offered good interpretability of the 

price driving characteristics but did not give good prediction accuracy of price.  

This motivated our hybrid approach that combined the best of the tree-based 

methods and neural networks, offering both prediction accuracy and 

interpretability. 

 

Additionally, there also exists the wool specifications problem described in 

Section 1.3.  Industrial sorting of wool during harvest, and at the start of 

processing, assembles wool in bins according to the required wool specifications.  

At present this assembly is done by constraining the range of all specifications in 

each bin, and having either a very large number of bins, or a large variance of 

characteristics within each bin.  After growing representer trees using our hybrid 

approach developed in Chapter 5, we can now come up with tabular 

representations of these trees using the method in Section 4.4, which streamline 
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the process of assembling wool into bins and assist in delineating the 

specifications of individual bins. 

 

Before this thesis, such methodology has not previously been used for wool 

auction data and the accompanying price prediction problem.  Not only are the 

numeric predictions from our method comparable to other methods, our method 

also provides a clearer and better picture than ever before for a wool grower and 

other casual observers who may not have a higher level understanding of 

modelling and mathematics.  This method is also highly modular and can be 

continually extended and improved. 

 

 

6.2 Current Issues, Suggestions and Future Work 

 

As mentioned at the end of Chapter 5, the accuracy of our hybrid approach 

depends on three main factors: 

(1) the data itself, 

(2) the smearing method used, and 

(3) the particular prediction model chosen as the function . 

 

There is not much we can do if the data given is rather limited.  However, we can 

certainly make further improvements with (2) and (3).  If a new predictive tool 

more accurate than GRNN comes along one day, then we can use this to replace 

GRNN in our procedure.  Such is the advantage of our hybrid approach, which is 

highly modular and can be continually improved. 

 

Therefore, future work should concentrate on finding a modelling 

method/prediction tool that works well with our wool data and gives better 

predictions than GRNN (Goulermas et al. 2007), with the method’s own 

interpretability no longer an important issue for consideration.  This is because 

we are now able to integrate any such method into our hybrid modular approach 

and we can gain interpretability in the form of trees and tables from any method. 
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Besides regression tree, there also exist other more modern nonparametric 

regression techniques such as kernel regression and nonparametric multiplicative 

regression (NPMR) which also make very few model assumptions.  Kernel 

regression estimates the continuous dependent variable from a limited set of data 

points by convolving the data points' locations with a kernel function, while 

NPMR is a smoothing technique based on multiplicative kernel estimation that 

can be cross-validated and applied in a predictive way.  Both techniques are 

worth examining as future work on the wool auction problem. 

 

We should also be able to improve the results in our hybrid approach further in 

another direction.  The smearing procedure in our Section 5.3 was implemented 

using some coding in a copy of Excel 2003 that was available for us to use.  The 

limitation of Excel 2003 is that each data file can only handle 65536 rows of data 

at a time, so we only generated up to 65535 rows of artificial data (sans heading) 

each time we performed our hybrid approach.  This limitation has since been 

resolved with the release of Excel 2007 and Excel 2010.  It is worth having a 

more detailed investigation into the effect of increasing the amount of artificial 

data use and at what level will the improvement to the results stop.  Also, with 

more artificial data available, we will be able to have an even more in-depth look 

at the different variations of smearing and their differences in producing results 

at a much larger scale. 

 

Another investigation worth looking into would be the possible integration of a 

time series component into our hybrid approach.  Such a component was 

considered but not added as part of our project due to time and resource 

constraints.  However, some preliminary ideas already exist and it would be 

interesting to investigate them. 

 

And as briefly mentioned in Section 2.2, auction prices, like share and oil prices, 

depend not only on the product specifications and historical behaviour but also 

on intangible factors such as speculations, international market influences, and 

unexpected social and political events.  To make our predictions as accurate as 

possible, ideally the intangible factors should be identified and captured in our 
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models, and their influences analysed.  Considerations of the intangible factors 

will certainly strengthen our models and should be considered in future research. 



 117 

References 

 

Allen, P.G. (1994), Economic forecasting in agriculture, International Journal of 

Forecasting, 10, 81–135. 

 

Barutcuoglu Z. and E. Alpaydin (2003), A Comparison of Model Aggregation 

Methods for Regression, Proc. of 13 Int. Conf. on Artificial Neural Networks 

(ICANN), 

http://www.cmpe.boun.edu.tr/~ethem/files/papers/27140076.pdf 

 

Bessler, D.A. (1994), Economic forecasting in agriculture: Discussion, 

International Journal of Forecasting, 10, 137–138. 

 

Breiman, L. (1996), Bagging Predictors, Machine Learning, 26(2), 123-140. 

 

Breiman, L. (1996), Out-of-bag estimation, 

ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps 

 

Breiman, L. (1998), Arcing classifiers (discussion paper), Annals of Statistics, 

26, 801-824. 

 

Breiman, L. (1998), Randomizing outputs to increase prediction accuracy, 

Technical Report 518, May 1, 1998, Berkeley, CA: Statistics Department, 

University of California at Berkeley (in press, Machine Learning). 

 

Breiman, L. (1999), Using adaptive bagging to debias regressions, Technical 

Report 547, Berkeley, CA: Statistics Department, University of California at 

Berkeley. 

 

Breiman, L. (2000), Some infinity theory for predictor ensembles. Technical 

Report 579, Berkeley, CA: Statistics Department, University of California at 

Berkeley. 

 



 118 

Breiman, L. (2001), Random forests, Machine Learning, 45(1), 5-32. 

 

Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone (1984), Classification 

and Regression Trees, Wadworth and Brooks/Cole, Monterey. 

 

Breiman, L., and N. Shang (1997), Born again trees, Technical Report, Berkeley, 

CA: Statistics Department, University of California at Berkeley. 

ftp://ftp.stat.berkeley.edu/pub/users/breiman/BAtrees.ps 

 

Caccetta L., C. Chow, T. Dixon, and J. Stanton (2005), Modelling the Structure 

of Australian Wool Auction Prices, Conference Proceedings, International 

Congress on Modelling and Simulation (MODSIM05), (Editors: A. Zerger and 

R.M. Argent), Melbourne, Australia, December, 2005. 

http://www.mssanz.org.au/modsim05/papers/caccetta_1.pdf 

 

Caccetta L., C.N. Chow, K. Curtis, and J. Stanton (2007), Modelling the 

Structure of Australian Wool Auction Prices: A Hybrid Approach Combining 

Regression Tree and Neural Networks, Proceedings, The 7th International 

Conference on Optimization: Techniques and Applications (ICOTA7), (Editors: 

Masao Fukushima et al.), Kobe, Japan, December, 2007. ISBN 978-4-946443-

15-2. 

 

Caccetta L., C.N. Chow, and J. Stanton (2009), Modelling the Structure of 

Australian Wool Auction Prices: A Hybrid Approach Combining Regression 

Tree and Neural Networks, Conference Proceedings, The 20th National 

Conference of Australian Society for Operations Research (ASOR Conference 

2009), Gold Coast, Australia, September, 2009. 

 

Cheng B. and D.M. Titterington (1994), Neural Networks: A Review from a 

Statistical Perspective, Statistical Science, Vol. 9, No. 1. (Feb., 1994), pp. 2-30. 

http://links.jstor.org/sici?sici=0883-

4237%28199402%299%3A1%3C2%3ANNARFA%3E2.0.CO%3B2-A 

 



 119 

Cheng, Y.W., J. Stanton, and L. Caccetta, (2004), Predicting the Australian wool 

auction price by tree-based regression, in Proceeding of Industrial Optimisation 

Symposium, Curtin University of Technology, Western Australia. 

 

Craven, M., and W. Shavlik (1996), Extracting tree-structured representations of 

trained networks, Advances in Neural Information Processing Systems, 8, 24-30. 

Freebairn, J. (1994), The agricultural commodity market forecasting game, 

International Journal of Forecasting, 10, 139–142. 

 

Frank E. and B. Pfahringer (2006), Improving on Bagging with Input Smearing, 

Advances in Knowledge Discovery and Data Mining, Lecture Notes in Computer 

Science, 2006, Volume 3918/2006, 97-106, DOI: 10.1007/11731139_14, 

http://www.cs.waikato.ac.nz/~eibe/pubs/FrankAndPfahringer.pdf 

 

Freebairn, J. (1994), The agricultural commodity market forecasting game, 

International Journal of Forecasting, 10, 139–142. 

 

Freund Y. and R.E. Schapire (1995), A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting, 

http://dnkweb.denken.or.jp/boosting/papers/FreSch97.ps.gz 

 

Friedman, J.H. (2001), Greedy Function Approximation: A Gradient Boosting 

Machine,  The Annals of Statistics, Vol. 29, No. 5, pp. 1189-1232. 

http://links.jstor.org/sici?sici=0090-

5364%28200110%2929%3A5%3C1189%3AGFAAGB%3E2.0.CO%B2-N 

 

Friedman J., T. Hastie and R. Tibshirani (2000), Additive Logistic Regression: a 

Statistical View of Boosting, The Annals of Statistics, Vol. 28, No. 2, pp. 337–

407. 

 

Frost, F. and V. Karri (1999), Performance Comparison of BP and GRNN 

Models of the Neural Network Paradigm Using a Practical Industrial 

Application, Proc. 6th International Conference on Neural Information 

Processing (ICONIP), Nov. 1999, Perth., pp. 1069-1075. 



 120 

 

Goulermas J.Y., P. Liatsis, X.J. Zeng and P. Cook (2007), Density-Driven 

Generalized Regression Neural Networks (DD-GRNN) for Function 

Approximation, IEEE Transactions on Neural Networks, Vol. 18, No. 6, 

November 2007. 

 

Goulermas J.Y., X.J. Zeng, P. Liatsis and J.F. Ralph (2007), Generalized 

Regression Neural Networks With Multiple-Bandwidth Sharing and Hybrid 

Optimization, IEEE Transactions on Systems, Man, and Cybernetics – Part B: 

Cybernetics, Vol. 37, No. 6, December 2007. 

 

Graham-Higgs, J., A. Rambaldi, and B. Davidson (1999), Is the Australian wool 

futures market efficient as a predictor of spot prices?, Journal of Futures 

Markets, 19(5), 565–582. 

 

Ho, T.K. (1995). Random Decision Forests. 3rd Int'l Conf. on Document 

Analysis and Recognition. pp. 278–282. 

http://cm.bell-labs.com/cm/cs/who/tkh/papers/odt.pdf 

 

Jones, C., F. Menezes, and F. Vella (2004), Auction price anomalies: evidence 

from wool auctions in Australia, The Economic Record, 80(250), 271–288. 

 

Kemp, S., and K. Willetts (1996), Remembering the price of wool, Journal of 

Economic Psychology, 17, 115–125. 

 

Morgan, J.N., and R.C. Messenger (1973), THAID: A sequential search program 

for the analysis of nominal scale dependent variables, Technical report, Survey 

Research Center, Institute for Social Research, University of Michigan, 

Michigan. 

 

Morgan, J.N., and J.A. Sonquist (1963), Problems in the analysis of survey data, 

and a proposal, Journal of the American Statistical Association, 58, 415–434. 

 



 121 

Quinlan, J.R. (1979), Discovering rules by induction from collections of 

examples, in Expert Systems in the Microelectronic Age, ed. D. Michie, 

Edinburgh University Press, Edinburgh. 

 

Quinlan, J.R. (1983), Learning efficient classification procedures and their 

application to chess end-games, in Machine Learning, eds R.S. Michalski, J.G. 

Carbonell, and T.M. Mitchell, Tioga, 463–482, Palo Alto. 

 

Quinlan, J.R. (1986), Induction of decision trees, Machine Learning, 1, 81–106. 

Quinlan, J.R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann, 

San Mateo, CA. 

 

Scott, C.D., R.M. Willett, and R.D. Nowak (2003), CORT: Classification or 

regression trees, in Proceeding of IEEE International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP). 

 

Simmons, P., and P. Hansen (1997), The effect of buyer concentration on prices 

in the Australian wool market, Agribusiness, 13(4), 423–430. 

 

Specht, D.F. (1991), A general regression neural network, IEEE Transactions on 

Neural Networks, Vol. 2, No. 6, November 1991. 

 

Stanton, J.H. (1993), Analyses of auction prices from Fremantle and their 

comparison with Eastern State prices, Wool Processing Research Opportunities, 

Department of Agriculture WA. 

 

Stanton, J.H. (1994), Western Australian wool production. Part 1: Analysis by 

weight and characteristics, Department of Agriculture WA. 

 

Stanton, J.H., and L.R. Coss (1995), Characteristics of wool from shires in the 

Northern Region, Rural Research for Farm Profit, Department of Agriculture 

WA, 157–158. 

 



 122 

Stanton, J.H., K. Curtis, and L.R. Coss (1997), Application of auction 

information to wool processing, IWTO Conference, Boston. 

 

Tomek, W.G. (1994), Economic forecasting in agriculture: Comment, 

International Journal of Forecasting, 10, 143–145. 

 

Watters, G., and R. Deriso (2000), Catches per unit of effort of bigeye tuna: a 

new analysis with regression trees and simulated annealing, Inter-American 

Tropical Tuna Commission, 21(8), 531–571. 

 

 

Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been 

omitted or incorrectly acknowledged. 


	Kyle's Thesis Part 1 of 12
	Kyle's Thesis Part 2 of 12
	Kyle's Thesis Part 3 of 12
	Kyle's Thesis Part 4 of 12
	Kyle's Thesis Part 5 of 12
	Kyle's Thesis Part 6 of 12
	Kyle's Thesis Part 7 of 12
	Kyle's Thesis Part 8 of 12
	Kyle's Thesis Part 9 of 12
	Kyle's Thesis Part 10 of 12
	Kyle's Thesis Part 11 of 12
	Kyle's Thesis Part 12 of 12

