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ABSTRACT 

The effect of corrosion on the performance of rock support and reinforcement in Australian 

underground mines has not been widely researched and is generally not well understood. 

This is despite the number of safety concerns and operational difficulties created by 

corrosion in reducing the capacity and life expectancy of ground support. This thesis aims to 

investigate corrosion and relate how the environmental conditions in Australian underground 

hard rock mines impact on the service life of rock support and primarily rock reinforcement. 

 

Environmental characterisation of underground environments was completed at a number of 

mine sites located across Australia. This provided an improved understanding of the 

environmental conditions in Australian underground hard rock mines. Long-term testing on 

the impact of corrosion on the load bearing capacity of reinforcement and support under 

controlled experimental conditions was conducted in simulated underground environments. 

Rock reinforcement elements were examined in-situ by means of overcoring of the installed 

reinforcement and surrounding rock mass. Laboratory testing of the core determined changes 

in load transfer properties due to corrosion damage. These investigations provided an 

excellent understanding of the corrosion processes and mechanisms at work. Corrosion rates 

for a range of underground environments were established through the direct exposure and 

evaluation of metallic coupons in underground in-situ and simulated environments. 

 

It was found that the study of corrosion is challenging due to the time required to gather 

meaningful data. In particular, the wide range of materials that comprise ground support 

systems means that it is impossible to examine all the possible combinations of variables and 

their potential influence on the observed levels of corrosion and measured corrosion rates. 

Despite these challenges, the systematic investigation has resulted in new corrosivity 

classifications for both groundwater and atmospheric driven corrosion processes for various 

reinforcement and support systems used in the Australian underground mining industry. 

Previous corrosivity classifications were not found applicable. Furthermore, these new 

corrosivity classifications are simpler than previous classifications and corrosion rates may 

be predicted from readily obtained measurements of ground water dissolved oxygen and 

atmospheric relative humidity. Different types of reinforcement and surface support systems 

have been rated with respect to their corrosion resistance and estimates have been made for 

the expected service life for various rates of corrosion. 
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CHAPTER 1 INTRODUCTION 

 

The effect of corrosion on the performance of rock support and reinforcement in 

Australian underground mines has not been widely researched and is generally not well 

understood. Corrosion reduces the capacity and life expectancy of ground support 

creating a number of safety concerns and operational difficulties in underground mining. 

It is the purpose of this thesis to present a corrosivity classification for the various 

Australian underground hard rock mining environments, relating how the environment 

impacts on the service life of rock support and reinforcement and ultimately providing 

guidelines for the design of ground support in various underground environments. 

 

No systematic field study on this subject has ever been undertaken in metalliferous, hard 

rock mines in Australia despite the need for a comprehensive study to achieve a more 

complete understanding being recognised since 1995 (Ranasooriya, Richardson & Yap 

1995). Corrosion has been found to be in part responsible for 29% of all rock bolt 

failures and 25% of all cable bolt failures during rock falls within the Australian mining 

industry (Potvin et al. 2001). 

 

In the past two decades, some 45% of fatal accidents and 24% of lost time injuries in 

Western Australian underground mines have been due to rock falls (Harvey 1999). 

Fatalities due to rock falls were more than three times more numerous than the next most 

common cause (Department of Industry and Resources 1997). 

 

The economic impact of rock falls associated with the rehabilitation of mine 

development can run into the tens of millions of dollars as entire sections of ground 

support are replaced due to the uncertainty of their condition. Scheduling and 

productivity conflicts arise due to the loss of personnel and equipment involved in the 

rehabilitation and the restricted mine access. 
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The purpose of rock support and reinforcement is to maintain excavations safe and open 

for their intended lifespan. Failure to achieve this outcome impacts on the safety of 

personnel and equipment and can also significantly influence the economics of a mining 

operation. 

 

Legislative requirements such as the Western Australian Mines Safety and Inspection 

Regulations 1995 (Department of Industry and Resources 2002) that form part of the 

Mines Safety and Inspection Act 1994 ensure that “appropriate measures are taken to 

ensure the proper design, installation and quality control of rock support and 

reinforcement”. Supplementary guidelines further elaborate that “rock reinforcement and 

support should be matched to the ground conditions; anything less could not be said to 

be sound geotechnical engineering practice. Corrosion is an important factor that needs 

to be considered in the design and selection of the rock support and reinforcement” 

(Department of Industry and Resources 1997). 

 

Current geotechnical engineering design methods for underground mining have only a 

minor amount of information regarding corrosion and its effects. While the literature on 

corrosion is exhaustive those publications that relate specifically to the unique 

underground mining environment are limited. Much of the civil engineering guidelines 

and research, the closest engineering field to geotechnical engineering, are impractical to 

employ due to the large disparities in excavation life, design risk and subsequent costs 

between the two disciplines. Design methods for underground mining need to take into 

account the economics of a mining operation, thus employing safe, yet practical 

guidelines. 

 

The types of support and reinforcement required in a particular location are dependent 

upon several factors that include the strength of the rock mass, the geometry of the 

excavation, the stresses present in the rock, the blasting practices, and the weathering 

and corrosion processes applicable at the site (Villaescusa 1999a; Windsor & Thompson 

1993). All these factors impact on the capacity of a ground support scheme; however, 
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Sundholm (1987) suggests that corrosion is one of the major factors determining which 

reinforcement type can be used as permanent support. 

 

The initial step in developing a design criterion is to have a good understanding of the 

corrosion potential of the environment in which the reinforcement and support is being 

installed. The underground mining environment is unique in that it is situated hundreds 

of metres below the surface and the engineering material, the rock mass, is highly 

variable even on a mine scale. Authors that have attempted with varying degrees of 

success to classify the underground mining environment in terms of its corrosivity have 

been Rawat (1976) for the Jharia coal fields in India, Higginson and White (1983) in 

South African Gold Mines, Li and Lindblad (1999) who proposed a corrosivity 

classification for the underground environment based on work in central Europe and 

Robinson and Tyler (1999) for the Mt Isa Mines in Australia. 

 

These classifications along with other internationally recognised classifications for 

surface environments (e.g. DIN 50929-3 1985) were found to be inadequate when 

applied to Australian underground mining environments. This defined a need to develop 

a more representative classification based on measured and observed parameters that 

provide an assessment of the corrosivity and corresponding rates of corrosion within the 

Australian context. 

 

An understanding of the environment in which the support and reinforcement system is 

being installed in is only one part of the research. How the system reacts to that 

environment, specifically the effect corrosion has on its ability to operate as designed is 

a major focus of the research. The mechanisms of corrosion attack, the modes of failure 

and the estimated service life will be examined for the different underground 

environments. 

 

A wide selection of support and reinforcement systems is commercially available for use 

in the mining industry. Some include corrosion protection measures such as zinc 

galvanising, plastic sheathing and application of chemical inhibitors; others require the 
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application of cement or resin grouts. The ability to investigate all current systems in use 

is not realistic, and only the most common types of support and reinforcement and 

corrosion protection methods are included in this study. These include friction rock 

stabilisers, cable bolts, cement grouted elements, resin grouted elements, weld mesh and 

bolt plates. 

 

Regardless of the system used, the impact corrosion has over time on the element’s 

ability to maintain design requirements in a range of environmental conditions is not 

well understood. The final outcomes of this report are new classifications that categorise 

the underground environment based on measured environmental properties and provide 

an estimated rate of corrosion. This will be used in determining rock support and 

reinforcement serviceability design guidelines that provide an approximate service life 

for a range of reinforcement elements and support systems. The subsequent transfer of 

this knowledge to the mining industry will deliver a significant improvement in 

operational safety and cost saving. 

 

 

1.1 Outline of investigations into corrosion of support and 

reinforcement in Australian underground mines 

The organisational structure of the report is provided in the following paragraphs; it 

defines the links between the conducted research and the stated aims. Chapter 2 presents 

an overview of the important corrosion principles that apply to the underground 

environment and a description of the investigated rock support and reinforcement 

systems. The chapter also reviews existing literature regarding the effect of corrosion on 

ground support. The significant gaps in knowledge on the environmental conditions of 

underground mines and the effect corrosion has on support and reinforcement are 

discussed. 

 

Based on the review conducted in Chapter 2 it was considered necessary to have an 

improved understanding of the underground environment and especially the main causes 
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of reinforcement corrosion. This would assist in defining the scope of the future 

experiments. Comprehensive and systematic data collection was carried out at eight 

underground mine sites across Australia collecting data on environmental variables and 

levels of visible corrosion damage to surface support and reinforcement elements. 

Chapter 3 discusses the results of this survey at each mine site and produces a summary 

of environmental conditions that can be considered a suitable cross-section of Australian 

metalliferous underground mines. 

 

Chapters 4 and 5 discuss the development and results from the two principal research 

methods that investigate the effect of corrosion upon the surface support and 

reinforcement elements. The first research method was developed to overcome the 

difficultly and cost associated with ensuring adequate experimental controls for 

extended time periods (years) in the constantly changing nature of a working 

underground mine, in which the local environmental conditions are continually 

modified. This was achieved by simulating the underground environment by the use of 

purpose built corrosion chambers. Chapter 4 describes the requirements and subsequent 

development of the corrosion chambers. The methodology and results for a range of 

experiments conducted within these chambers are presented. 

 

In addition, an overwhelming need to examine the bolts in-situ to complement the 

simulated results led to the development of a purpose built drill rig capable of 

overcoring reinforcement elements within a production mining environment. Overcoring 

programs were conducted at five underground mine sites, collecting data from a range of 

reinforcement elements of various ages and installed conditions. The recovered rock and 

reinforcement element core provides an accurate sample of the rock bolt system/rock 

mass interface allowing detailed analysis. The samples were examined and tested in the 

laboratory to gain a full insight into how corrosion was affecting the reinforcement. This 

work is presented in Chapter 5. 

 

Chapter 6 describes the calculation of corrosion rates by direct testing of coupons. This 

method provides representative corrosion rates for a range of environments, helping to 
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define the main influences on the corrosivity. Chapter 7 reviews published 

classifications and investigates the relationship between the environmental parameters 

and measured corrosion rates discussed in Chapter 6. The outcome is the proposal of two 

new corrosivity classifications for groundwater affected and atmospheric environments 

in Australian underground hard rock mines. 

 

The detrimental effect corrosion causes on the service life of rock reinforcement and 

support is discussed in Chapter 8. This chapter draws on data and analysis from the 

environmental survey, corrosion chamber experiments, overcoring of the reinforcement 

elements and the corrosivity classifications to provide estimated service lives for friction 

rock stabilisers, cable bolts and solid steel bar elements. Modes of failure and the benefit 

of corrosion protection methods are discussed. 

 

Conclusions to the research and analysis conducted are presented in Chapter 9. Also 

discussed are limitations with the data and the subsequent analysis. Recommendations 

for further investigations into the corrosion of rock reinforcement and support are given. 
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CHAPTER 2 CORROSION FUNDAMENTALS AND GROUND 

SUPPORT USED IN AUSTRALIAN UNDERGROUND MINES 

 

2.1 Introduction 

As stated in Chapter 1 the effect of corrosion on the performance of rock support and 

reinforcement in Australian underground mines has not been widely researched. There 

is, however, extensive knowledge on general corrosion principles and to a lesser extent 

on the engineering application of rock support and reinforcement. This chapter provides 

a review and summary for those corrosion and ground support principles that are 

important in order to understand the corrosion of rock reinforcement in underground 

mines. 

 

Section 2.2 provides an overview of iron corrosion principles and the forms of corrosion 

that may occur on support and reinforcement. A description of the underground mining 

environment with emphasis on the environmental factors that control the corrosivity is 

examined in Section 2.3. Section 2.4 discusses common corrosion protection methods. 

Rock support and reinforcement theory is discussed in Section 2.5 with Section 2.6 

describing the main ground support types being investigated including previous related 

research. 

 

 

2.2 Mechanics of corrosion 

Corrosion is the destructive result of a chemical reaction between a metal or metal alloy 

and its environment (D A Jones 1996). The basic cause is the inherent instability of 

metals in their refined forms (CISA 1994). The large amounts of energy needed to 

extract metals from their minerals are emitted during the electrochemical reactions that 

produce corrosion. Corrosion returns the metal to its combined state in chemical 
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compounds that are similar to or even identical to the minerals from which the metals 

were extracted. 

 

The electrochemical corrosion process that occurs in metals at ambient temperatures 

involves the transfer of electronic charge in aqueous solutions and can be described as 

an electrochemical cell. There are four basic components of the cell: 

• An anode 

• A cathode 

• An electrically conducting solution 

• An electrically conducting path (i.e. connection) between the anode and the 

cathode. 

 

For corrosion to take place a common electrolyte must cover both electrodes. The two 

electrodes (anode and cathode) must be in electrical contact, generally through direct 

physical contact. There needs to be a sufficient difference in potential between the two 

electrodes to cause the current to flow and a sustained cathodic reaction must occur 

(CISA 1994). 

 

2.2.1 Iron corrosion 

Iron and various grades of steel are the main components used in support and 

reinforcement elements in underground mines. The mechanisms for the corrosion of iron 

are integral to understanding how different environments will change the rate and type 

of corrosion. A description of how each component of the electrochemical cell operates 

in the corrosion of iron is shown diagrammatically in Figure 2.1. 

 

The anode is the site where the metal is corroded; the electrolyte solution is the corrosive 

mechanism with the cathode forming the other electrode. The cathode is not consumed 

or destroyed by the reaction taking place. The anode and the cathode can be part of the 

same metal surface or two metals in contact with each other; neither is permanently 

placed and can move locations on the metal surface. 
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At the anode the metal in its elemental form is converted into a metal cation and 

dissolved into the electrolyte. The anodic or oxidation reaction for iron (Fe) is: 

 

Fe → Fe2+ + 2e-         (2.1) 

 

The released atoms must be utilised at some other point for the electrochemical reaction 

to occur. The cathodic or reduction reaction takes place at the cathode and is often much 

slower than the anodic reaction and controls the corrosion rate (cathodic control). The 

chemical reaction that occurs is dependent on the characteristics of the electrolyte. 

Within neutral and acid solutions exposed to ambient air the reduction of dissolved 

oxygen is observed (D A Jones 1996) by their respective reactions: 

 

O2 + 2H2O + 4e- → 4OH-        (2.2) 

 

And in acid solutions 

 

O2 + 4H+ + 4 e- → 2H2O        (2.3) 

 

In the absence of all other reduction reactions water will be reduced by 

 

2H2O + 2e- → H2 + 2OH-        (2.4) 

 

For most mining applications the electrolyte solutions (mine groundwater) is near 

neutral and the cathodic reaction 2.2 would be expected to occur and is shown 

schematically in Figure 2.1. Localised environmental conditions may occur however, 

and other reactions such as, 2.3 or 2.4 may take place. 

 

In the most common case involving a neutral solution, the soluble ferrous ions (Fe2+) 

formed at the anode will meet with the hydroxide ions (OH-) formed at the cathode at 

regions away from the electrolytic action to form ferrous oxide: 
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Fe2+ + 2OH- → Fe(OH)2        (2.5) 

 

The ferrous oxide forms the diffusion-barrier layer next to the iron surface through 

which the dissolved oxygen must diffuse. Oxygen supply generally becomes limited by 

the diffusion capacity of the increasing thickness of the corrosion products limiting the 

rate of corrosion. The colour of ferrous oxide is white when pure but is normally green 

to greenish black due to incipient oxidation by air. On the outer surface of the oxide film 

access to the dissolved oxygen converts the ferrous oxide to ferric hydroxide by the 

following reaction: 

 

4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3       (2.6) 

 

Ferric hydroxide is orange to red-brown in colour and is the major constituent of 

ordinary rust. It exists as either magnetic or nonmagnetic Fe2O3 (hematite). Rust films 

normally consist of three layers of iron oxides in different states of oxidation (Roberge 

2000).  
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Figure 2.1 Schematic representation of the electrochemical iron corrosion process 

(Roberge 2000). 

 

2.2.2 Passivity 

In many metals, including iron and zinc, the corrosion rate decreases due to the 

formation of thin, protective, hydrated oxide, corrosion-product surface film that acts as 

a barrier to the anodic reactions. Most commercially available corrosion resistant alloys 
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depend on passive films for their corrosion resistance, with chromium a key alloying 

element. The passive film forms by direct electrochemical reactions generally as an 

oxide, but there is no visible evidence of the film on the surface of the metal. As the 

passive film is extremely thin and fragile, its breakdown can result in unpredictable 

localised forms of corrosion (D A Jones 1996). 

 

2.2.3 Electrode potentials 

The potential difference or driving force between the anode and cathode controls the 

electron flow and consequently has an impact on the corrosion rate. Standard electrode 

potentials of different electrochemical reactions have been measured and are commonly 

found in many reference texts. For a given electrochemical cell, the less reactive or 

noble reaction will be the cathode, while the more reactive reaction will be the anode. 

 

Most steel corrosion occurs on a single metal surface with the cathodic reaction the 

reduction of oxygen in water as described in reaction 2.2. The potentials generated by 

this reaction are: 

O2/OH- +0.401 volts cathode 

Fe2+/Fe  -0.441 volts anode 

The potential difference of 0.842 volts indicates that steel corrosion will occur in aerated 

waters. This indicates only a potential for the reaction to occur; factors such as the 

prevalent environmental conditions will determine the rate at which corrosion takes 

place. 

 

A common coupling of metals is the sacrificial zinc (Zn) coating over steel (Fe). The 

potentials generated are: 

Fe2+/Fe  -0.441 volts cathode 

Zn2+/Zn -0.763 volts anode 

The potential difference of 0.322 volt between the coupled metals means that zinc will 

preferentially corrode for steel. The use of zinc as a corrosion protection method is 

discussed later in this section. 
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2.2.4 Forms of corrosion on support and reinforcement in the underground 

environment 

The nature of the corrosion process will depend upon the interaction between a material 

and its environment. There are various forms of corrosion; however, only three types 

have been identified to be relevant to this research. These are uniform corrosion, pitting 

corrosion and stress corrosion cracking, all shown schematically in Figure 2.2. Other 

corrosion types such as galvanic and crevice corrosion may be present but are not 

considered a significant influence. 

 

 
Figure 2.2 Schematic representation of uniform corrosion, pitting corrosion and stress 

corrosion cracking 

 

Uniform corrosion occurs when the anodic and cathodic areas on the metal surface 

change position continuously, resulting in a regular removal of metal from the surface. 

For this to occur the corrosive environment must have access to all parts of the metal 

surface, and the metal itself must be metallurgically and compositionally uniform. These 

requirements are not always prevalent and some degree of non-uniformity is tolerated 

within the definition of uniform corrosion (D A Jones 1996). This corrosion form is 

relatively predictable and is often incorporated into design. 

 

Pitting corrosion is the highly selective attack of metals at defects in the passive oxide 

layer that results in relatively rapid penetration at small discrete areas. The corrosion 

attack is in the form of pits, which can be shallow, deep or undercut and are usually 

covered by the corrosion products making identification difficult. Pitting usually occurs 

in solutions containing chlorides, and becomes autocatalytic as the anodic reaction 

becomes localised within the pit and cations are liberated into the pit solution creating a 

charge imbalance. As a result, anions such as chloride ions diffuse from the bulk 

Pitting corrosionUniform corrosion Stress corrosion
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electrolyte solution to the pit to equalise the charge. This has the combined effect of 

further simulating corrosion by forming soluble corrosion products (CISA 1994) as well 

as acidification. Pitting is considered to be more dangerous than uniform corrosion as it 

is difficult to detect, predict and design against (Roberge 2000). 

 

Stress corrosion cracking (SCC) is used to describe service failures in materials that 

occur by slow environmentally induced crack propagation (Jones & Ricker 1990).The 

cracking is induced from the combined influences of tensile stress and a corrosive 

environment and crack propagation proceeds slowly until it reaches its critical length 

and rapid fracturing occurs. The required tensile stresses may be in the form of directly 

applied or residual stresses. Usually, most of the surface remains undamaged, with fine 

cracks penetrating into the material and thus is very difficult to detect and damage is not 

easily predicted. SCC is not commonly thought to occur in the hard rock metalliferous 

mines investigated in this project. However, some evidence of stress corrosion cracking 

and corrosion fatigue was observed in failed rock bolts from the Big Bell gold mine 

(Collins 2002). Reinforcement failure by this corrosion form has been investigated in a 

number of Australian coal mines by Hebblewhite et al. (2004) in environmental 

conditions that are not found in hard rock mines. The report concluded that by changing 

the steel grade of the reinforcement elements to a higher fracture toughness the problem 

may be eliminated. 

 

 

2.3 The underground mining environment 

The environment a material is placed in, along with the material properties ultimately 

controls the types and rates of corrosion. Environmental conditions in underground 

mines are never homogenous and are constantly changing; only approximations can be 

made for classifying the environment and such approximations must be constantly 

reviewed. There are three main environmental influences that affect the installed ground 

support in terms of corrosion. These are the atmosphere, the groundwater, and the rock 

mass. 
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2.3.1 Atmospheric variables 

Atmospheric corrosion is the corrosion of materials exposed to air and its pollutants and 

has been reported to account for more failures in terms of cost than any other factor 

(Roberge 2000). Humidity is essential for atmospheric corrosion as it (along with the 

temperature) controls the condensation of water (electrolyte) onto the metal surface (see 

Figure 2.3). The commencement of condensation is referred to as the critical humidity. 

The length of time conditions are favourable for the formation of a surface layer of 

moisture is referred to as the time of wetness (TOW). This is a function of the relative 

humidity and temperature. Below the freezing point of water the corrosion rate is 

negligible, but with increases in temperature the rate of corrosion increases, although the 

TOW is generally reduced. 

 

For iron, the critical humidity appears to be about 60%; at this level, rust slowly begins 

to form. At 75 to 80% relative humidity, there is a sharp increase in corrosion rate that is 

speculated to occur because of the capillary condensation of moisture within the rust 

corrosion product layer. At 90% relative humidity, there is another increase in the 

corrosion rate corresponding to the vapour pressure of ferrous sulphate. The critical 

relative humidity for zinc appears to be between 50 and 70%. 
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Figure 2.3 The influence of temperature and relative humidity on atmospheric corrosion 

(Roberge 2000). 
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The thin film electrolytes are often invisible to the naked eye and tend to form on 

metallic surfaces after the critical humidity is reached. The critical humidity is generally 

accepted to be approximately 60% relative humidity for an atmosphere with no 

pollutants. Corrosion of uncontaminated surfaces, however, is often relatively low in 

unpolluted atmospheres  

 

The level of contaminants often controls the rate of atmospheric corrosion by enhancing 

the electrolytic properties and stability of water films condensing. Pollutants such as 

sulphur dioxide (SO2) mix with the electrolyte producing sulphuric acid which renders 

the corrosion product films non-protective (D A Jones 1996). Sulphur dioxide along 

with other pollutants such as atmospheric chlorides, nitrogen compounds and dust 

particles can also reduce the relative humidity necessary to cause water condensation by 

absorbing water from the atmosphere. In atmospheres containing 0.01% SO2, the 

corrosion rate of carbon steel is as much as six times higher than those with no 

pollutants (Kaesche 1985). The process of blasting and the use of diesel equipment in 

underground mines are the major sources of contaminants in underground mines. These 

can be further concentrated due to restricted ventilation systems. 

 

2.3.2 Groundwater variables 

Groundwater flowing from the rock mass is present in nearly all underground mines. 

The affected elements are not generally submerged but are located at the 

water/atmosphere interface that is analogous to marine splash zones. Marine splash 

zones generally have a higher corrosion rate than areas where the metal is continuously 

submerged (Bardel 2004). The corrosivity of the waters, either fresh or saline, is not 

controlled by one variable, but includes a number of parameters that are interrelated. 

 

Dissolved oxygen is required for corrosion to occur in neutral and alkaline waters. Any 

factors affecting the level of dissolved oxygen will proportionally affect the corrosion of 

steel (D A Jones 1996). The rate of corrosion of iron and steel in aerated waters at a 

constant temperature and salinity is a direct linear function of the dissolved oxygen 

concentration, as shown in Figure 2.4. The solubility of dissolved oxygen decreases with 
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increasing temperature and salinity. However, the effects of dissolved oxygen on the 

corrosion rate are often stronger than those of temperature and salinity. 
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Figure 2.4 Effect of oxygen concentration on the corrosion of low-carbon steel from 

(Uhlig & Revie 1985). 

 

When all other factors are held constant, an increase in temperature increases the 

corrosivity of waters. If the dissolved oxygen concentration is held constant, the 

corrosion rate of low-carbon steel in seawater will approximately double for each 30 °C 

increase in temperature (see Figure 2.5) (Heidersbach 1990), up to a peak of 

approximately 80°C above which dissolved oxygen is lost from the system as the boiling 

point of water is reached. 

 

The concentrations of major ions influence the conductivity of the water, with chlorides 

influencing the breakdowns of passive films. The total salinity is generally referred to as 

the Total Dissolved Solids (TDS) and expressed as parts per million (ppm) with 

individual concentration of anions and cations described in milligrams per litre (mg/L). 

The high conductivity of saline waters means that large areas of exposed cathode surface 

are available to support the relatively small anodic areas at which pitting corrosion takes 
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place. Additionally chloride and sulphate ions play a significant role in the penetration 

and breakdown of any protective film that might have formed on the metal surface. The 

higher the salinity of the water, the more readily the chloride ions succeed in penetrating 

the passive film and initiating localised corrosion (Heidersbach 1990). 
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Figure 2.5 The effect of temperature on the corrosion rate of steel. 

 

The effect of increasing the halite (NaCl) concentration on the relative corrosion rate of 

iron is shown in Figure 2.6. The maximum corrosion rate occurs near 35,000 ppm, the 

approximate salinity of seawater. Further increases in salinity reduce the rate of 

corrosion due to a decrease in the level of dissolved oxygen. For metals that corrode 

uniformly, variations in corrosion rate due to salinity are small compared to those caused 

by changes in oxygen concentration and temperature (Heidersbach 1990). 

 

Waters that contain dissolved calcium and magnesium cations may precipitate a layer of 

water-insoluble, carbonate salt on a metal surface known as scaling. This film 

commonly slows or prevents corrosion by providing a barrier between the metal and the 

electrolyte. The tendency for calcium carbonate to form and provide corrosion resistance 

in fresh water is measured by the saturation index. Its effect in reducing corrosion in 

saline waters is impeded as the deposits formed are more porous and less effective as a 

protective coating. There exists a critical value for chloride concentration; approximately 



Corrosion Fundamentals and Ground Support used in Australian Underground Mines 18

25 ppm, above which the carbonate protective scale is ineffective (Sastri, Hoey & Revie 

1994). 
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Figure 2.6 Effect of NaCl concentration on the corrosion rate of iron in aerated room-

temperature solutions from (Uhlig & Revie 1985). 

 

The control the pH value exerts on the corrosivity of a system depends to a large degree 

on the solubility of the corrosion product (usually the oxide) formed on the metal 

surface. Under normal conditions, the corrosion rate of steel is independent of pH values 

between 4 and 10 as shown in Figure 2.7. Below a pH of 4 the oxide is soluble and 

corrosion increases, due the availability of H+ ions. At pH above 10, corrosion rate is 

low, due to the formation of a passive ferric oxide film. 
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Figure 2.7 The effect of pH on the corrosion rate (CISA 1994). 

 

Micro-organisms within waters can influence corrosion in a variety of ways, from the 

creation of differential aeration cells, to the excretion of corrosive species, to direct 

involvement in the electrochemical process termed microbiologically influenced 

corrosion (MIC) (CISA 1994). While there has been no indication of MIC in hard rock 

groundwaters, Hebblewhite et al. (2004) noted in coal mines bacteria associated with 

corrosion, specifically in pyritic clay bands. 

 

The velocity of the water past a material surface can damage any protective layer 

allowing a high rate of corrosion to continue. The extent of the erosion damage will be 

determined by the hardness of the material, the tenacity and wear resistance of the 

surface layer, the turbulence close to the surface, and the presence of abrasive particles 

in the fluid (CISA 1994). High rates of flow also bring a greater quantity of dissolved 

oxygen in contact with the metal surface thus further influencing the corrosion rate. 

 

2.3.3 Rock mass variables 

The rock mass is the material that the support and reinforcement is installed in and 

indirectly influences the corrosive potential of a mine environment. Rock mass 

structures are primarily important as they provide a conduit for ground and fill water 

flow. Major geological structures such as faults and shears allow the flow of 
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groundwater into the mine from surrounding aquifers. The extent of the area affected by 

the water is increased by the presence of interconnected, dilated geological structures 

(joints), which allow the groundwater to travel and dissipate at significant distances from 

the source. Opening of joints can occur during the initial excavation or subsequently at a 

later date due to blasting or stress changes. 

 

The mineralogy associated with the different rock masses is not expected to influence 

the corrosion potential of an environment. The majority of minerals are generally inert 

and do not enhance the corrosion process in any major way. An exception is for sulphide 

minerals. These reactive minerals oxidise, producing localised acidic conditions when 

exposed to air and water. The oxidation reaction may also create an electrochemical 

corrosion cell with the rock reinforcement, further accelerating corrosion. Such 

occurrences will only occur in specific areas where the sulphide content of the rock mass 

is high. 

 

 

2.4 Protection of steel from corrosion 

The protection of steel from corrosion is often essential for most support and 

reinforcement applications. The chief factors that determine whether steel needs to be 

protected include: the overall economics, environmental conditions, degree of protection 

needed for the projected life of the part, consequences of unexpected service failure, and 

importance of appearance. The final outcome should be the most effective and economic 

method of achieving that protection. The protection of steels is achieved through two 

methods; the first is to separate the metal from the environment, the second to reduce the 

reactivity of the environment (Bryson 1990). 

 

The separation of the metal from the environment can be achieved with metallic, organic 

or inorganic coatings and film-forming inhibitors. Organic coatings such as paint, 

powder coatings, rubber linings and epoxy resins act primarily as a physical barrier 

between the substrate and the corrosive environment. Inorganic coatings include enamel, 
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ceramics and cement. The use of cement and resin grouted reinforcement elements is 

common in underground mining applications. Cement and resin grouts provide a 

physical barrier to the local environment. In addition cement grout inhibits corrosion by 

providing an alkaline environment through which any electrolyte has to pass and allows 

for passivation of the steel. 

 

The major factors that cause steel embedded in cementitious systems to corrode are the 

influences of carbonation and chloride infiltration (Slater 1990). When a concrete 

structure is exposed to water containing salts, chloride ions from these will slowly 

penetrate into the concrete, mostly through the pores in the hydrated cement paste. The 

chloride ions will eventually reach the steel and then accumulate to beyond a certain 

concentration level, at which the protective film is destroyed and the steel begins to 

corrode (Corrosion Doctors 2006). 

 

Carbonation occurs when carbonic acid comes into contact with the cement from 

atmospheric carbon dioxide. The rate of carbonation in concrete is directly dependent on 

the water/cement ratio (w/c) of the concrete; the higher the ratio the greater is the depth 

of carbonation in the concrete. In concrete of reasonable quality, that is properly 

consolidated and has no cracking, the expected rate of carbonation is very low (Virmani 

& Clemena 1998).  

 

Coatings of metallic zinc are generally regarded as the most economical means of 

protecting against corrosion and are common for the protection of support and 

reinforcement. For most reinforcement elements zinc is usually applied by hot dip 

galvanising to a thickness of approximately 85 microns (600 g/m2) and should conform 

to Australian Standard 4680 (1999). For coatings on steel wire Australian Standard 4534 

(2006) is followed with a range of possible coating masses between 80 to 725 g/m2. For 

weld mesh a coating mass of 80 g/m2 is generally used. 

 

Zinc provides a three-fold protection. It operates initially by providing a tough and 

adherent coating, which seals the underlying metal from contact with a corrosive 
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environment. If the coating is breached so that the steel is exposed, the zinc corrodes 

preferentially. Zinc corrosion products then form a barrier on the exposed steel 

protecting the steel and preventing the need for zinc to continue to corrode sacrificially. 

The corrosion rate of zinc is generally much less than steel in most environments. 

Exceptions are for waters with a pH less than 4 and greater than 12.5, and when the 

temperature is greater than 60 °C, when zinc then becomes more noble than steel and 

induces pitting in the steel. 

 

Problems may arise with the use of zinc coatings in cement grout as gas bubbles may 

occur at the cement/zinc interface due to the formation of hydrogen gas when the grout 

is still wet. The gas bubbles result in a weak, spongy interface with a higher 

permeability. This can be avoided by the addition of chromium trioxide to the cement 

(Windsor 2004). Other metallic coatings include cadmium, chromium, nickel and 

aluminium; however, these are not commonly used for the protection of ground support 

products due to the increased costs. 

 

The reactivity of an environment can be reduced through cathodic or anodic protection. 

Cathodic protection is widely used to protect structures buried in soil or immersed in 

seawaters and is achieved by electrochemically connecting a sacrificial anode or by 

using an impressed current that is connected to the structure being protected. 

Environmental conditions in underground mines do not facilitate this style of protection 

as the material is not wholly immersed in an electrolyte. Anodic protection has a limited 

use for the mining industry (CISA 1994) and the chemical treatment of groundwaters is 

not viable. For these reasons cathodic, anodic or chemical treatment of the environment 

is not feasible for the protection of ground support and reinforcement. 

 

Corrosion inhibitors are chemical compounds that when added to a corrosive 

environment in small concentrations, reduces the aggressive nature of the environment 

by a reaction at the metal/solution interface (CISA 1994). There are three major types of 

inhibitors; passivation inhibitors that prevent the anodic corrosion reaction, precipitation 

inhibitors that block the cathodic reaction by deposition at the cathode and absorption 
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inhibitors that provide a chemisorbed layer of organic molecules that protect the metal 

by physically blocking the surface to oxygen. These may provide some benefit in 

reducing corrosion damage of support and reinforcement. 

 

In addition to the active forms of corrosion prevention described, design and material 

selection are as important to the overall corrosion performance. This is generally the 

domain of manufacturers with the end users, being the mining companies, having 

limited input. 

 

 

2.5 Rock support and reinforcement principles 

The purpose of rock support and reinforcement is to maintain excavations safe and open 

for their intended life spans; for mining applications this ranges from months to tens of 

years. There are a wide range of commercially available support and reinforcement 

products; however, it is important to clearly distinguish the difference between support 

and reinforcement. Windsor and Thompson (1993) characterise support as to include all 

methods which essentially provide surface restraint to the rock mass by installation of 

structural elements on the excavation boundary. Reinforcement is considered to include 

methods which modify the interior behaviour of the rock mass by installation of 

structural elements within the rock mass. The term ground support however, describes 

both support and reinforcement installed in the rock mass. 

 

Primary ground support is applied during or immediately after excavation to ensure safe 

working conditions. It may provide part, or may form the whole, of the ground support 

regime. Any additional support or reinforcement applied at a later stage is termed 

secondary. Support or reinforcement may also be classified as being either active or 

passive. Active ground support imposes a predetermined load to the rock surface 

generally through the form of tensioned reinforcement. Passive ground support is not 

installed with an applied loading, but develops its loads as the rock mass deforms (Brady 

& Brown 1993). 
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Support methods work by providing a reactive force at the excavation face and respond 

to inward movement of the surrounding rock. The more complex behaviour of a 

reinforcing system is explained through the load transfer concept. The concept shown 

schematically in Figure 2.8 can be used to understand the stabilising action of all the 

reinforcing devices and their effect on excavation stability. The concept can be 

explained by three individual components (Windsor & Thompson 1993): 

1. Rock movement at the excavation boundary, which causes load transfer from the 

unstable rock, wedge or slab to the reinforcing element. 

2. Transfer of load via the reinforcing element from the unstable surface region to a 

stable interior region within the rock mass. 

3. Transfer of the reinforcing element load to the rock mass in the stable zone. 

 

A supported rock block may fall due to failure of any of the three separate components 

of load transfer due to insufficient steel capacity (rupture of the reinforcing element) or 

inadequate load transfer (slippage). The critical embedment length is the minimum 

length of reinforcement that is needed to mobilise the full capacity or strength of the 

bolt. 
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Figure 2.8 Load transfer and embedment length concepts (Villaescusa & Wright 1997). 
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The load transfer mechanisms for all reinforcing elements and the rock mass can be 

placed within three categories as developed by Windsor and Thompson (1993). The 

categories shown in Figure 2.9 are continuously frictionally coupled (CFC), 

continuously mechanically coupled (CMC) and discrete mechanically and frictionally 

coupled (DMFC). The effect corrosion will have on the load transfer mechanisms will 

be different for each category. 

 

Continuous frictionally coupled (CFC) elements are installed in direct contact with the 

rock mass. Load transfer results from frictional forces between the reinforcement 

element and the borehole wall (Windsor & Thompson 1993). This is achieved by either 

the installation of an oversized element into an undersized borehole e.g. Split Set (R L 

Davis 1979) or by the expansion of an undersized section into an oversized borehole e.g. 

Swellex. 

 

Continuous mechanically coupled elements (CMC) rely on a fixing agent, generally 

cement or resin grout, which fills the annulus between the element and the borehole wall 

for the entire borehole length. The major function of the grout is to provide a mechanism 

for load transfer between the rock and the reinforcing element. The reinforcing element 

is manufactured in a variety of cross-sectional shapes to produce a geometrical 

interference between the element and the grout creating a mechanical key. When the 

geometrical interference extends over the length of the element, it is coupled 

continuously to the rock mass by way of the grout (Windsor & Thompson 1993). 

 

A discrete mechanically and frictionally coupled element (DMFC) transfers the load at 

two discrete points, the borehole collar and the anchor point, with the remaining element 

length being decoupled from the rock mass. The anchor point, which is located at some 

depth in the borehole, is either mechanically (grouted anchor) or frictionally (expansion 

shell) coupled to the rock mass over a relatively short interval usually limited to less 

than 500 mm. This anchor must be strong enough to mobilise the full capacity of the 

element. 
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Figure 2.9 Categories of reinforcing element load transfer types: (a) DMFC, (b) CMC 

and (c) CFC (Windsor & Thompson 1993). 
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2.6 Investigated rock support and reinforcement used in Australian 

underground mines 

Despite the extensive variety of commercially available reinforcement elements and 

their widespread use; estimated at 500,000,000 units annually in civil and mining 

industries worldwide (Windsor & Thompson 1993), all types can be categorised as 

either CFC, CMC or DMFC. The effect of corrosion on the load transfer capacity for 

each category will be somewhat similar despite different commercial names and slight 

variations in design. The following support and reinforcement devices described are 

certainly not inclusive to all that is available, but constitute the main ground support 

observed in Australian underground mines. 

 

2.6.1 Friction rock stabilisers 

The friction rock stabilisers, also known by their commercial names Split Set (R L Davis 

1979), Strata Bolt (Strata Control Systems 2006) and Friction Bolt (DSI 2006b), consist 

of a hollow round tube with a slot along the entire length. When driven into a drilled 

hole of smaller diameter the friction between the steel tube and the rock provides 

support as shown in Figure 2.10. They rely on the load transfer resulting from friction 

between the reinforcement element and the borehole wall. The initial strength per metre 

of embedment length is limited by the radial prestress set up during installation. This is a 

function of the friction rock stabiliser diameter, the borehole diameter and any 

geometrical irregularities occurring in the borehole wall. 

 

Thin-walled, 34 – 47 mm diameter galvanised friction rock stabilisers are extensively 

used as reinforcement for long life excavations. The reinforcement elements generally 

have a nominal wall thickness of 3 mm and are mechanically installed using jumbos. 

They are manufactured using a HA350 grade steel to Australian Standards 1594 (AS 

1594 2002) with chemical composition and mechanical properties shown in Table 2.1. 
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Figure 2.10 The components of a friction rock stabiliser (Hoek, Kaiser & Bawden 1995). 

 
Table 2.1 Chemical composition and mechanical properties of HA350 grade steel for friction rock 

stabilisers. 

Chemical composition (% Max.) 
Steel 

Grade 
Carbon  Silicon  Manganese Phosphorus Sulfer 

Minimum 

upper yield 

stress 

(MPa)  

Minimum 

tensile strength 

(MPa) 

HA350 0.20 0.35 1.60 0.040 0.030 350 430 

 

Such, thin tubular devices have a large surface area susceptible to corrosion attack. 

Despite corrosion remaining one of the prime problems with friction rock stabilisers 

(Hoek, Kaiser & Bawden 1995) there has been only limited investigations into this issue. 

The Department of Minerals and Energy of Western Australia initiated a research 

project focused on the influence corrosion has on the effectiveness of friction rock 

stabilisers (Ranasooriya, Richardson & Yap 1995). It was found that a 30 percent loss of 

tensile strength can be attributed a 10 percent localised mass loss or a 20 percent average 

mass loss. The main forms of corrosion observed were uniform and pitting corrosion and 

severe corrosion can occur in a relatively short period of time. Laboratory testing found 
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that transition element metals such as nickel and copper in ore samples resulted in a two 

to four fold increase in the rate of corrosion (Ranasooriya, Richardson & Yap 1995). 

 

Stimpson (1998) found that corrosion of friction rock stabilisers after 90 days actually 

increased the frictional capacity by 192 percent. He concluded, however that over longer 

periods of time the strength capacity will decline as corrosion increases. In an effort to 

better predict the useful service life of friction rock bolts the US Bureau of Mines 

initiated electrochemical and weight loss testing in selected underground mine waters 

(Jolly & Neumeier 1987; Tilman, Jolly & Neumeier 1985). The majority of mine waters 

precipitated a protective calcium carbonate film lowering the corrosion rate with the 

exception of waters with high chloride content. It was also observed that there was a 

tendency towards pitting corrosion of the metals and that particular attention should be 

given to the pitting of installed bolts. Jolly and Neumeier (1987) concluded that friction 

rock bolts due to their thin wall construction should not be normally recommended for 

long-term use. 

 

2.6.2 Swellex bolts 

The Swellex bolt (Atlas Copco 2007) consists of a collapsed steel tube that has been 

sealed at either end. A small expansion hole is located near the collar of the bolt. The 

element is placed in a borehole and inflated with water at 30 MPa resulting in the 

collapsed tube expanding to conform to the borehole profile, shown in Figure 2.11. 

Depending on hole inclination the water used to inflate the bolt is designed to flow out 

of the expansion hole following installation. The element is coupled to the borehole wall 

due to frictional forces. Three types of Swellex are available based on steel grade; the 

standard Swellex, the manganese Swellex with greater tensile strength and elongation 

and the premium Swellex which has the greatest strength. A rubberised bitumen 

(Plastisol) coating is available for corrosion protection on the outside surface of the 

element (CPI Corrosion LTEE 2003). 

 

Research into the corrosion behaviour of Swellex bolts has determined that a Swellex 

coated in the rubberised bitumen is 1000 times more corrosion resistant than uncoated 
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Swellex in moderately corrosive waters (CPI Corrosion LTEE 2003). Retrieval and 

examination of two coated Swellex bolts from the Kvarntorp Mine in Sweden after a 

service life of nine years in a corrosive environment showed the loss of the coating, but 

minimal corrosion on the element that did not affect the strength of the bolt 

(Korrosionsinstitutet 2002a). Empirical calculations concerning the corrosion due to 

water remaining within the bolt due to expansion and subsequent obstruction of the 

expansion hole preventing water egress based on groundwater from the Kemi Mine in 

Finland concluded the internal corrosion will be less than 0.15 μm after 50 years 

(Korrosionsinstitutet 2002b). However, this groundwater is significantly less saline than 

groundwaters from Australia. 
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Figure 2.11 The components of the Swellex bolt (Hoek, Kaiser & Bawden 1995). 
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2.6.3 Cable bolt systems 

Cable bolt reinforcement is used to stabilise large single blocks or wedges formed in the 

backs and walls of excavations. Cable bolts provide effective reinforcement of very 

large spans where normal rock bolts would prove inadequate geometrically due to their 

short lengths. Cable strands are able to bend around fairly tight radii, with the 

installation of long bolts from confined working places possible (Hutchinson & 

Diederichs 1996). The cable bolt reinforcement system is made up of four components 

(Windsor 2004) shown schematically in Figure 2.12: 

• The rock 

• The Element (Strands) 

• The Internal Fixture (Grout) 

• The External Fixture (Plate and Grips) 
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Figure 2.12 A basic cable bolt assembly (Thompson 2004b). 

 

Cable bolts commonly use a 7-wire, stress relieved, high tensile steel strand with plain 

(round) wires. Six wires are laid helically around a slightly larger diameter central (king) 

wire. The regular 15.2 mm diameter strand can be produced to provide a number of 

grades that offer differing yield and ultimate load qualities. The basic cablebolt is the 

plain strand cable bolt, however, a number of different types of modified cable bolt 

strand have been developed in response to problems encountered with plain strand 

(Hutchinson & Diederichs 1996). The modified strand e.g. bulbed strand (Garford Pty 

Ltd. 1990), generally possess enhanced bond strength and stiffness. 
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When mining in high stresses, on going time-dependent deformations or unexpected 

rock failures due to high stress may be experienced. In order for ground support to 

survive the large displacements and control the rock mass, “yielding” cable bolts have 

been developed in South Africa e.g. (Wojno & Kuijpers 2001), (Ortlepp et al. 2005) and 

Australia e.g. (Garford Ground Support Systems 2002). These cable bolts are designed 

to allow for large displacement of the reinforcement element. This is achieved through 

having a “sliding” internal anchor mechanism and decoupling of a significant length of 

the strand from the grout and rock mass. Decoupling of the strand is used to enable 

tension to be established in the strand and to reduce the cable bolt stiffness in response 

to rock mass displacements. 

 

The result is a cable bolt system constrained only in the toe and collar regions. In the toe 

region, there is an initially fixed anchor that is subsequently able to move at a designed 

force. At the collar, a plate is restrained by a barrel and wedge anchor that is coupled to 

the strand. A schematic representation of a yielding cable bolt is shown in Figure 2.13. 

The system is effectively a point anchored system. Consequently, the performance of the 

plate and barrel and wedge becomes critical for effective reinforcement of the rock. 
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Figure 2.13 Schematic representation of a yielding cable bolt (Thompson 2004b). 

 

A cable bolt element is generally fixed to the rock within the borehole through 

cementitious grouts comprising of Portland grade cement and water. Various water 

cement (w/c) ratios and admixtures are used to improve certain chemical or physical 

properties (Windsor 2004). The external fixture comprises of an assembly of a steel 
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plate, steel barrel and wedge fittings (or grips) and if necessary, bearing washers and 

seats. There are two common types of barrels; flat ended to be used with a flat plate and 

hemispherical ended to be used with a dome plate. These barrels can be used with either 

two-part or three-part wedges. The barrel and wedge anchors are installed and tensioned 

to provide a compressive force against the rock mass surface. 

 

With cable bolt systems stabilising large volumes of rock the consequences of premature 

failure from the effects of corrosion can be significant. Corrosion protection measures 

such as galvanising, epoxy fused coating, and combination sheathing are all available to 

the Australian mining industry, but their implementation is limited due to the associated 

extra cost. Windsor (2004) noted that there are no standards for corrosion protection of 

cable bolts despite Australia being at the forefront in civil engineering applications. 

Furthermore, he suggests that some cable bolt installation practices may actually provide 

conditions that assist corrosion. 

 

Some aspects of reinforcement installation may introduce pre-service faults and defects 

into the reinforcement system that may initiate and accelerate the process of corrosion. 

These include the water cement ratio and the degree of encapsulation of the element by 

the grout. It is recommended that the strand should be clean and free from rust at time of 

installation and water with a low chloride content should be used with a water cement 

ratio of 0.30-0.45 (Windsor 2004). 

 

An extensive worldwide study on the corrosion of ground anchors was carried out by the 

Federation Internationale de la Precontrainte (FIB 1986), which found that corrosion is 

usually localised within the reinforcement length and that the external fixtures are 

particularly vulnerable. This has been confirmed by Thompson (2004b) who 

demonstrated in the laboratory that corrosion of the barrel and wedge fixture causes 

failure at low loads compared to design. 
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2.6.4 Rock bolts and dowels 

Rock bolts generally consist of a plain steel rod with a mechanical or grouted anchor at 

one end and a face plate and a nut at the other. They are always tensioned after 

installation. For short-term applications they are left ungrouted, for permanent ground 

support the gap between the rock and bolt is filled with grout. Dowels, are not pre-

tensioned and consist of a deformed steel bar which is grouted into the rock. As 

tensioning is not possible the load in dowels is generated by movements in the rock mass 

(Hoek, Kaiser & Bawden 1995). 

 

Ungrouted rock bolts are coupled to the rock mass through a short anchor, either 

mechanically or chemically (cementitious or resin), where the anchor strength is limited 

by the strength of the rock around the borehole. These point anchored bolts are not 

consistently reliable beyond three to six months due to rock movement and the effect of 

corrosion (Villaescusa & Wright 1999). Typically, grouting of the element (post 

installation) is undertaken to ensure long-term protection. Two common rock bolt types 

are the CT bolt and the Hollow Groutable Bolt (HGB). 

 

The CT bolt shown in Figure 2.14 has a corrugated polyethylene sleeve and a hollow 

hemispherical washer through which the grout is injected. The grout flows through the 

inside of the sheath, emerging at the top and then subsequently filling the borehole from 

the top down. Long-term protection is achieved through the dual protection of the 

ground and the plastic sheath. The HGB displayed in Figure 2.15 uses a similar concept, 

with the grout being pumped up through a central hole in the element. While this ensures 

that the element is grouted from the top down, the reduction of steel from the element 

make it more susceptible to corrosion damage. 

 

Resin anchored rock bolts and dowels generally have a high speed of installation with 

the full capacity of the bolt being realised after a few minutes due to the quick set nature 

of the resin. The resin product is made up of two components; a resin and a catalyst 

separated within a plastic cartridge. The cartridges are placed in the drill hole ahead of 

the rock bolt which is spun during installation to break the plastic sheath and mix the 
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resin and catalyst (see Figure 2.16). Enough resin needs to be placed in the borehole to 

adequately fill the annulus between the borehole wall and the element. 
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Figure 2.14 The components of a CT bolt. 
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Figure 2.15 The components of the Hollow Groutable Bolt (HGB) (Hoek, Kaiser & 

Bawden 1995). 
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Resin grouted elements may be tensioned or non-tensioned. Tensioning fully 

encapsulated resin rock bolts is achieved by placing a quick set resin at the toe of the 

borehole with slow setting resin cartridges inserted behind. Tensioning can be completed 

after a few minutes once the quick set resin has hardened. Resin grout provides a 

physical barrier protecting the element from the corrosive environment; however, there 

is some uncertainty about the long-term corrosion protection offered by resin grouts and 

also about the reaction of some resins with aggressive groundwaters (Hoek, Kaiser & 

Bawden 1995). 
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Figure 2.16 The components of a resin grouted rock bolt using threaded bar (Hoek, 

Kaiser & Bawden 1995). 

 

Cement grouted dowels are easily installed by grouting a borehole with a thick cement 

grout and pushing the reinforcing bar into the borehole. A simple grouted dowel is 

shown in Figure 2.17. The non-tensioned reinforcement requires ground movement to 

activate its reinforcement potential. The benefits of using cement grouts for long-term 

reinforcement is advocated by Hoek et al. (1995), Brady & Brown (1993) and Satola & 
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Aromaa (2004) among others. Kendorski (2000) has stated that properly installed resin 

bolts are just as effective for long-term support as cement grouted reinforcement. 

 

Cement and resin grouts both provide barrier protection to the installed reinforcement. If 

proper installation standards are maintained, then there should be no uncoated areas of 

the element through which the environment can access the bolt. This however, is not 

always the case in underground mining and installation quality does impact on the long-

term corrosion resistance of ground support. Additionally ground movement will 

fracture the grout and expose the bolt to corrosion. Added benefits of using cement 

grouts is its’ corrosion inhibiting properties and the ability to self-heal cracks within the 

grout column. Carbonation and chloride infiltration of the cement grout may occur after 

a number of years resulting in a lowering of the pH and a subsequent increase in the rate 

of corrosion of the reinforcement element. (Satola & Aromaa 2004). 
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Figure 2.17 Grouted dowel using reinforcement bar inserted into a grout-filled hole 

(Hoek, Kaiser & Bawden 1995). 
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2.6.5 Support Systems 

Support systems include wire mesh, numerous plate varieties, straps, shotcrete, and 

membrane liners. They are used as passive support to provide surface restraint at the 

excavation boundary.  

 

Weld and chain-link mesh is installed to support the small, loose pieces of rock detached 

from within a bolting pattern, and to reinforce shotcrete. Weld mesh commonly uses 5.6 

mm diameter wire spaced at 100 mm centres. Galvanising of the mesh is common, but 

due to the high surface area per volume of metal associated with the mesh, corrosion can 

be a concern. In addition, welding is carried out post-galvanising of the wire. Non-

galvanised mesh is recommended only for temporary excavations such as stope drive 

support (Villaescusa 1999b). 

 

There are numerous plate varieties available that are used with corresponding 

reinforcement. Their steel thicknesses are often considerable, making them somewhat 

resistant to failure by corrosion. There have been limited studies into the corrosion of 

plates and straps with most corrosion related failures being due to the failure of the 

reinforcement element. 

 

Shotcrete is the generic name for cement, sand and fine aggregate concretes, which are 

applied pneumatically and compacted dynamically under high velocity (Hoek, Kaiser & 

Bawden 1995). Shotcrete is reinforced with either steel or plastic fibres. Thin membrane 

liners are either chemically or cementitious based and are applied as a thin coating over 

the rock surface, however, they have not been widely accepted in the Australian mining 

industry as an alternative to shotcrete or mesh. Corrosion is not an issue with either 

product due to their cementitious or chemical composition. Corrosion of the steel fibres 

in shotcrete is thought to be limited due to the protection afforded by the cement. 
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2.7 Discussion and Conclusions 

Knowledge of the mechanisms of corrosion is well documented and the information 

presented in this Chapter directly relates to corrosion in the underground mining 

environment. Similarly, there is a reasonable understanding of rock support and 

reinforcement principles. There is however, a gap in knowledge regarding how the 

mechanics of corrosion influences the load transfer, and ultimately the service life of 

ground support. Current research has only partially achieved this. Corrosion is always 

related to its environment; it is therefore important to have an adequate understanding of 

the underground mining environment, in particular the main environmental influences 

that control the corrosivity of an environment. 
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CHAPTER 3 ENVIRONMENTAL CONDITIONS IN AUSTRALIAN 

METALLIFEROUS UNDERGROUND MINES 

 

3.1 Introduction 

An understanding of the environmental variables within an underground mine is 

required to assess an environment’s corrosivity and ultimately its effect on the various 

reinforcement and support systems installed. A comprehensive data collection survey of 

environmental variables within a number of Australian underground mines was needed 

due to insufficient information being available at individual mine sites and a lack of 

published data that adequately describes environmental conditions in Australian 

underground mines. 

 

Section 3.2 provides an overview of the data collection system and equipment used to 

conduct the surveys. An assessment of the environmental conditions of the eight 

surveyed underground mines is presented in Section 3.3. A summary of the information 

collected from all mine sites and further analysis of the data is presented in Section 3.4 

for atmospheric conditions and Section 3.5 for groundwater conditions. 

 

 

3.2 Corrosion Assessment System for Underground Mines 

The Corrosion Assessment System (CAS) was developed to collect systematic data to 

enable observed corrosion of reinforcement and support systems to be related to the 

various existing conditions within an underground environment. A wide variety of 

information was collected at numerous locations within each underground mine 

providing the full spectrum of possible environmental conditions being experienced by 

that mine. While only specific locations were examined, they were selected to ensure an 

accurate representation of the different environments within a mine. However, because 

environmental conditions in underground mines are never homogenous and are 
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constantly changing, only approximations can be made for classifying the environment 

and hence such approximations must be constantly reviewed. 

 

The CAS data sheet, displayed in Appendix A, is designed to collect the important 

parameters of the rock mass, the groundwater and the atmosphere, as well as the type 

and condition of the support and reinforcement installed in that area. This information 

can be used to provide an assessment of the corrosivity of the area and an evaluation of 

the condition of the installed ground support. 

 

Data collected on the nature of the rock mass includes the rock type, the stresses and the 

overall structure; massive, layered or blocky. The number of joint sets with their 

estimated fracture frequency and joint connectivity were recorded along with the 

condition of the joints (persistence, weathering, profile, roughness, aperture and filling). 

Any major discontinuities such as shears or faults are also examined for their condition 

and likely strength. This analysis is not a rock mass classification, but is meant to 

provide a basic overview of the important parameters pertaining to corrosion. The rock 

mass structures are primarily important, as they provide a conduit for groundwater and 

back fill water to flow. 

 

Atmospheric variables were collected at every site. These included the quality of the 

ventilation; whether it was fresh air or part of the mine exhaust, its flow rate and if there 

was an observable level of particulates. The wet and dry bulb temperatures were 

measured using a hygrometer (see Figure 3.1), from which the relative humidity is 

calculated. 

 

If groundwater was present in sufficient quantities to be collected, it was analysed in-situ 

using a portable TPS 90-FLMV field lab shown in Figure 3.1. This analysis provides 

measurements of groundwater temperature, pH, dissolved oxygen levels and TDS 

concentrations. The source of the water; whether a fault, joint, borehole or a 

combination is noted along with the rate of flow. The flow rate was described 

qualitatively using nomenclature from the Rock Mass Rating classification (Bieniawski 
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1989). The conditions can be approximated by calculating the inflow per 10 m tunnel 

length (l/min) or general conditions can be described as dry (0 l/min), damp (<10 l/min), 

wet (10-25 l/min), dripping (25-125 l/min) or flowing (>125 l/min). Samples of 

groundwater are also collected and assayed in an independent laboratory to determine 

the concentration of dissolved ions. Often the groundwater flow was not sufficient to 

collect an adequate sample. These regions were classified as wet if some water flow was 

occurring or damp if water is present but there are no signs of dripping or actual flow. 

 

  
Figure 3.1 Hygrometer (left) and portable TPS 90-FMLV field lab (right) used to collect 

environmental information. 

 

The installed surface support was visually examined with a qualitative assessment of the 

corrosion damage, if any. For hollow reinforcement elements, such as friction rock 

stabilisers, a borehole camera was used to examine the internal surface of the bolt as 

shown in Figure 3.2. This provided some indication of the level of corrosion damage. It 

was concluded early on in the study that assessing the condition of the surface support 

and extrapolating to include the condition of the reinforcement was not satisfactory. The 

excavation surface and the internal rock mass are two separate environments with 

different rates and forms of corrosion. The only way to adequately examine the 

reinforcement is to overcore the elements. 
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Figure 3.2 Using a Pearpoint borehole camera to inspect the internal surface of a Friction 

Rock Stabiliser. 

 

When conducting a corrosion assessment of an underground mine, an emphasis should 

be placed on areas where groundwater is present. These areas contain only a small 

percentage of the installed ground support, but the greater corrosiveness of the 

environment and the irregularity of corrosion attack mean that a higher priority should 

be placed to inspect such areas. Atmospheric variables by contrast are more homogenous 

throughout a mine and the projection of results throughout the mine can be achieved 

with a high level of confidence. In some specific cases, for example, in inadequately 

ventilated areas, hot, humid conditions can exist that are not observed elsewhere in the 

mine. 

 

3.2.1 Hard Rock Aquifers 

The majority of groundwater encountered by metalliferous underground mining 

activities in Australia occurs from hard rock aquifers in igneous and metamorphic rocks. 

The rock itself is generally impermeable but fractures, joints and weathering allow a 

degree of permeability (water flow). The regolith or weathered zone may increase the 

porosity from virtually nothing to 10 to 35 percent. Within the Yilgarn Craton the 

regolith may extend 100 m below surface with major geological structures such as 
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faults, weathering even deeper. For younger geological terrains in eastern Australia this 

weathering is much less. Groundwater flow is generally restricted to faults, shears and 

joints especially when in unweathered rock. 

 

The high salinities of groundwaters in many of the sampled mines are a result of the 

environmental processes that affect the recharge. In the semi-arid environment over 

much of inland Australia, the rate of evaporation is much higher than the rate of 

precipitation. Dissolved salts tend not to evaporate creating groundwaters with 

concentrated amounts of dissolved salts. These dense saline waters flow downwards 

under gravity with more saline waters found at depth. 

 

Another major source of hard rock aquifer recharge in inland Australia is from 

paleochannels. These ancient river systems contain sediments that have a high porosity 

and permeability and often contain significant quantities of saline and hypersaline 

groundwaters, due to their much higher capacity than the surrounding weathered rock. 

Hard rock aquifers that are recharged by this source tend to have large rates of flow for 

extended time periods. 

 

A simplified profile of a hard rock aquifer, displaying groundwater movements is shown 

in Figure 3.3. This hypothetical model is representative of groundwater recharge in 

semi-arid environments in Australia. The igneous/metamorphic rock mass contains a 

number of large faults which provide storage. Aquifer recharge by different 

environmental processes creates a number of aquifers with dissimilar groundwater 

properties. 

 

Hard rock aquifers in areas of higher rainfall tend to have lower salinities as well as 

higher rates of recharge. Deeper aquifers will also have higher temperatures due to the 

increased rock mass temperature. 
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Figure 3.3 Diagrammatic representation of groundwater recharge into hard rock 

aquifers: (i) Evaporation, leading to saline and dense groundwater; (ii) Downward flow 

of dense groundwater; (iii) Back-flow of saline groundwaters leading to higher salinity 

at depth (D J Gray 2001). 

 

The intersection of mine development with water bearing geological structures will 

create groundwater flow at the excavation boundary. The amount the groundwater will 

spread away from its original source is related to the discontinuity connectivity. Strongly 

jointed rock masses will tend to allow the groundwater to flow distant from its source 

and highly stressed rock masses also crack parallel to the backs and walls. In massive 

rock masses the groundwater flow will be proximal to the source. This concept is 

illustrated diagrammatically in Figure 3.4. 

 

The rate and length of time at which flow occurs is related to the permeability, storage 

capacity and recharge rate of the aquifer. If the recharge rate of the aquifer is large, then 

water may be able to flow at a consistent rate over many years. Often groundwater flow 

is seen to occur for limited time durations. This implies that either the rate of recharge is 
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not sufficient to match the rate of groundwater flow or nearby mining activities, such as 

stoping, redirect the flow. 

 

At depth groundwater becomes less common as there is no weathering and potentially 

water bearing structures are confined by the high ground stresses with the distribution of 

conductive fractures linked to the state of stress (Ingebritsen, Sanford & Neuzil 2006). A 

depth limit is reached below which groundwater is less common. However, mining 

activity as it progresses deeper creates a stress change in the rock mass which can lead to 

unconfining and loosening of the structures allowing groundwater to flow if it is 

connected to an aquifer closer to surface. The potential for groundwater occurrence will 

decrease with depth as it becomes more unlikely that unconfining of structures will 

occur and that they will connect to an aquifer near surface. 

 

An additional mode of groundwater flow at depth occurs in massive excavations such as 

block caving and sub level caving. This mining method creates a highly fractured rock 

mass with a large mining foot print, which is considerably more permeable than the 

surrounding unbroken rock mass. Groundwater will preferentially flow into and down 

the fractured rock until it encounters less permeable, non-fractured rock, which is 

generally where the development excavations are located. The depth of mining does not 

have as significant a control on the groundwater flow as the permeable, broken rock is 

continuous generally from surface to the current mining level. 

 

  
Figure 3.4 Stronger discontinuity connectivity allows the groundwater to interact with 

more reinforcement and support. 
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3.3 Environmental Conditions at Selected Australian Mines 

An assessment of the environmental conditions utilising the framework of the Corrosion 

Assessment System was conducted at eight mine sites within Australia, their locations 

are shown in Figure 3.5. The Argo Mine, the Darlot Mine, the Kanowna Belle Mine, the 

Kundana Mine and the Leinster Nickel Mine are all located within the Yilgarn Craton of 

Western Australia. The Cannington Mine and the Enterprise Mine are located in far 

North Queensland and the Olympic Dam Mine is located in central South Australia. 

 

The following sections provide a summary of the data collected including geological and 

rock mass information, atmospheric and groundwater conditions and the state of the rock 

reinforcement and support that relate to the corresponding environment. 
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Figure 3.5 Location of assessed underground mines. 
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3.3.1 Argo Mine, St Ives Gold 

The Argo mine is separated into two distinct ore bodies with the central decline dividing 

into the North and South. The host geological unit is the Condenser Dolerite, a medium 

jointed (three joint sets), blocky, very strong rock mass intersected with Blag Flag 

Greywackes and minor intrusive Felsic Porphyries. A complete geological description is 

provided by Watchorn (1998). Structurally the area is complex with a number of large 

geological features that intersect the development. These structures as well as geological 

contacts provide a conduit for the groundwater flow into the mine. 

 

The primary reinforcement is the Dwyidag Systems International (DSI) 2.4m length, 

galvanised Friction Rock Stabiliser (FRS) with galvanised dome and butterfly plates. 

Hot dip galvanising complies with AS 1650 – 1989, with a minimum thickness of 84 

microns. Cement grouting of the bolt is conducted for long-term development 

excavations and groundwater affected areas. Major intersections have 6 m long, bulbed 

and fully cement grouted cables with barrel and wedge anchors. The surface support 

consists of plates and galvanised mesh. 

 

Atmospheric environmental conditions at the mine are considered mild in terms of 

corrosivity. The mine atmosphere is fresh and has a relative humidity in the range of 45 

– 82 %, and an average temperature of 20.2°C; the full data is displayed in Table 3.1. A 

total of twenty eight sample readings were collected throughout the mine. The main 

areas of possible corrosion problems at Argo is where groundwater is present. 

 
Table 3.1 Atmospheric variables at Argo Mine 

Dry Bulb Temperature (°C) Relative Humidity (%) 

Range Average Range Average 

16 - 25 20.2 45-82 62 

 

Groundwater is found at numerous localities within the mine; however, its occurrence 

decreases with depth. Analysis of the groundwater from sixteen locations revealed 

similar variables indicating that the groundwater originates from the same aquifer or 

source. This is most likely related to the large paleochannel present at the surface. 
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Within the mine four major structures appear to influence groundwater flow. They are 

the L3 structure, the H1 structure, the mylonite shear as well as an unknown structure 

that runs from the S3 RAW to the S4 stope Access. These structures allow water to flow 

from the aquifer into areas of development. Open discontinuities near the 

development/structure intersection allow the water to spread distally along the opening. 

The presence of groundwater is generally seen by the accumulation of salt crystals. 

 

Measurements of the in situ groundwater analysis are shown in Table 3.2 with level of 

dissolved ions shown in Table 3.3. The near neutral, hypersaline water is high in 

chloride and sulphate ions, the presence of which increases the occurrence of pitting 

corrosion. A controlling factor on the corrosiveness is the low dissolved oxygen 

concentration of an average 1.89 mg/l. In comparison freshwater has 7-8 mg/l of 

dissolved oxygen. Oxygen is essential for the electrochemical corrosion process to 

occur, and the low concentration would limit the rate at which corrosion could take 

place. 

 
Table 3.2 Groundwater variables tested in situ at Argo Mine 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Avg. Range Avg. Range Avg. Range Avg. 

142,000-274,000 203,416 4.62-7.26 6.2 0.72-2.80 1.89 15.4-21.4 19.2 

 
Table 3.3 Groundwater assay of dissolved ions from Argo Mine 

Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

0.5 310 1 50 180,000 24,000 0.2 

 

Examination of the internal surface of six month old Friction Rock Stabiliser (FRS) by 

borehole camera indicated the presence of corrosion products and precipitation of salts 

(see Figure 3.6). However, corrosion has not developed significantly on bolts of older 

age (two years) under similar environmental conditions (see Figure 3.7). The absence of 

any significant visible corrosion damage is a function of the recent age of the mine and 

the low corrosivity of the groundwaters, which is related to the very low dissolved 

oxygen content. It is expected that corrosion will begin to become more developed over 
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time but the indications are the rate of corrosion is sufficiently low that corrosion related 

issues should not be expected for some time. 

 

   
Figure 3.6 External and internal view of FRS from the S/P3 South Decline, 

approximately 6 months age. 

 

  
Figure 3.7 External and internal view of FRS of 2 years age, some steel corrosion is 

evident. 
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3.3.2 Cannington Mine, BHP Billiton 

The Cannington silver-lead-zinc deposit is hosted by a sequence of metamorphosed 

sedimentary rocks within a quartzo-feldspathic gneiss. Different rock types encountered 

within the development include Gneiss, Amphibolite, Pegmatite, Quartzite, Muscovite-

Sillimanite Schist and Mafic rocks. The ore body itself is separated into the Northern 

Zone and the higher grade Southern Zone. The main mineralisation assemblage is 

dominated by galena and sphalerite (Bailey 1998). 

 

The lithology is generally moderately jointed with three to four joint sets creating a 

blocky rock mass. It is not considered that the rock types encountered within the 

development and their associated minerals assist corrosion. However, within the ore 

drives sulphide ore minerals may create localised electrochemical corrosion cells with 

the rock reinforcement and accelerate corrosion of the ground support. 

 

The Northern and Southern Zones are separated by the large Trepell Fault Zone. 

Historically this region had significant water flow but has now receded. The Hamilton 

Fault bounds the southern limit of the deposit. It is a highly sheared zone of 10’s of 

metres that has significant water flow. A number of smaller faults are located between 

these two major structures and are also associated with ground water flow. 

 

Prior to late 1999 Hollow Groutable Bolts (HGB) were used in conjunction with 

galvanised mesh and w-plates at Cannington for the primary support. Black, bulbed, 

unplated cables were installed at intersections. This ground support scheme is installed 

in most of the decline development and older drive access. Current reinforcement 

consists of galvanised friction bolts and galvanised, hollow tube (nominal 3 mm 

thickness), resin anchored jumbolts (Strata Control Systems 2007) used in combination 

with galvanised mesh, dome and w-plates. Black, bulbed cables with barrel and wedge 

anchors are installed at intersections. 

 

The mine atmosphere has temperatures and relative humidity in the range of 25 – 32 °C 

and 66 – 93% respectively (see Table 3.4). This information was collected from fourteen 
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locations throughout the mine. Generally the atmosphere is considered to be mildly too 

moderately corrosive, the latter being more prevalent in the lower regions of the mine 

where the restricted ventilation and higher rock temperatures increase both the 

temperature and humidity. This is particularly noticeable in drives that intersect the 

Hamilton Fault, where the combination of long access drives and the intersection of hot 

flowing water have created a hot, humid atmospheric environment with relative 

humidity above 90%. This local atmosphere has a significantly longer time of wetness 

and is regarded as highly corrosive for atmospheric corrosion. 

 
Table 3.4 Atmospheric variables at Cannington Mine 

Dry Bulb Temperature (°C) Relative Humidity (%) 
Range Average Range Average 

25.0-32.0 28.4 66-93 81 

 

The occurrence of groundwater is dominated by a number of large structures such as the 

Trepell and Hamilton fault regions. These strongly sheared areas allow for easy water 

movement and are characterised by high water flow along a large lateral area of drive. 

Groundwater or evidence of previous groundwater flow was observed at numerous other 

localities throughout the mine. The true extent of the flow was often obscured by the 

application of shotcrete. 

 

Table 3.5 displays the measured in situ variables from eight groundwater tests. The 

controlling factors on the corrosivity of groundwater are the high average temperature of 

30 °C and a dissolved oxygen content of 4.02 mg/l. The slightly saline water (see Table 

3.6), about a magnitude higher in salinity than common tap water, also assists to create a 

highly corrosive groundwater. 

 
Table 3.5 Groundwater variables tested in situ at Cannington Mine. 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Avg. Range Avg. Range Avg. Range Avg. 

1,680-3,980 2,610 7.0-8.3 7.8 3.82-4.20 4.02 26.5-37 30 
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Table 3.6 Groundwater assay of dissolved ions from Cannington Mine. 

Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

<0.05 300 <5 48 1,500 800 1 

 

In all areas affected by groundwater there is the potential for high rates of corrosion, if 

high water flow rates are present then the rates will be even higher. Figure 3.6 displays 

the internal condition of a galvanised FRS after two and four months, installation in a 

high water flow (flowing) shear zone. The galvanising has protected the underlying steel 

for at least two months. However, after four months the galvanising has been stripped 

with significant steel corrosion occurring. This represents a considerable advancement of 

damage over a short time period. In similar environmental areas of greater age 

galvanised weld mesh had been completely corroded. Additionally, steel fibres normally 

embedded in the shotcrete but exposed due to cracking of shotcrete were also entirely 

oxidized. 

 

The benefits of using a reinforcement element with a closed cylinder are shown in 

Figure 3.9. The jumbolts are located in the same ring as the FRS in Figure 3.8, yet they 

display no internal corrosion. While no observation of the external surface could be 

made it is expected that if sufficient resin encapsulation was achieved then the resin 

grout would provide an extra physical barrier to the groundwater. 

 

The earlier ground support scheme involving HGB as the primary reinforcement 

elements are susceptible to the corrosive groundwaters. The thin-walled elements come 

into contact with water due to poor grouting practices or cracking of the grout column 

during rock movement. Previous reports (Laboratory Technical Services Newcastle 

Steelworks 1995; Pascoe 1995) have documented the failure of HGB due to the loss of 

cross sectional area by corrosion attack in groundwater affected areas. 

 

The high corrosivity of the groundwaters combined with the use of thin-walled 

reinforcement, previously HGB and currently FRS and jumbolts, has meant corrosion 
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related failures of reinforcement have occurred. Galvanising of the elements is beneficial 

in corrosive atmospheric conditions, but appears largely ineffective for corrosion control 

in groundwater affected regions, especially those with a high rate of groundwater flow, 

and requires more efficient corrosion protection techniques. 

 

  
Figure 3.8 Internal pictures of a FRS after two months (left) and four months (right) 

installation in a shear associated with high groundwater flow. 

 

  
Figure 3.9 Internal picture a jumbolt after two (left) and four months (right) installation 

in a shear associated with high groundwater flow. 
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3.3.3 Darlot Mine, Barrick Gold 

The Darlot Gold Mine produces from two distinct ore bodies, the Darlot and Century 

deposits. The major geological units intersected by mine development are different for 

each ore body. Development within the Darlot ore body encounters basalt near the 

surface changing to felsic porphyry at depth. The Century ore body and its associated 

development are contained within dolerite; alteration closer to the ore produces a 

magnetic dolerite. Intrusive dykes are found throughout the mine (Krcmarov et al. 

2000). 

 

The lithology regardless of rock type is a moderately jointed, strong to very strong rock 

mass. The Century ore body is bounded by two large reverse faults, the Oval and Lords 

Faults. These are connected by steeply dipping East-West striking cross faults. Many 

other major geological structures intersect development at Darlot. 

 

The earlier reinforcement scheme, located in the upper mine development is 

characterised by HGB. This has been superseded by the use of galvanised FRS in 

conjunction with cement grouted rebar. Surface support consists of galvanised dome and 

butterfly plates and galvanised welded mesh. In addition fully grouted, black, bulbed 

cables with barrel and wedge anchors are used in major intersections. 

 

The mine atmosphere is relatively fresh with low temperatures and relative humidity as 

displayed in Table 3.7, this information was collected from nineteen locations. The 

higher relative humidities were observed in areas of the lower decline and return 

airways. Overall the atmosphere is considered non-corrosive, which combined with the 

widespread use of galvanised ground support suggests few corrosion related issues in 

areas that have not been affected by groundwater. 

 
Table 3.7 Atmospheric variables at Darlot Mine. 

Dry Bulb Temperature (°C) Relative Humidity (%) 
Range Average Range Average 

15.0-23.0 20.2 60-92 75.6 
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Measurements of in situ groundwater variables at the mine established two distinct 

groundwater types. The most commonly tested type with eleven samples, denoted as 

originating from aquifer one is shown in Tables 3.8 and 3.9. The moderately saline water 

with high dissolved oxygen content averaging 5.55 mg/l was found throughout the mine 

and is considered highly corrosive. A number of samples collected were slightly acidic 

in nature; however, the majority were close to neutral. 

 

Three groundwater samples collected near the base of current development showed 

much higher TDS levels between 49,000 to 86,000 ppm and lower dissolved oxygen 

content of 3.05 to 3.50 mg/l, less corrosive than groundwater from aquifer one (see 

Tables 3.10 and 3.11). The different measurements indicate the source is a separate 

aquifer, denoted as aquifer two, and may be linked to a nearby paleochannel. Deeper 

resource drilling by the company has intersected a similar water composition signifying 

that this water type may become more common as mining progresses deeper. All 

groundwater samples were collected in the presence of large geological structures. It was 

also noted that many ‘dry’ faults or shears exhibit salt precipitation indicating previous 

water flow. 

 
Table 3.8 Groundwater variables from aquifer one tested in situ at Darlot Mine 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Avg. Range Avg. Range Avg. Range Avg. 

2,790-6,400 4,540 4.25-8.19 7.39 4.39-7.65 5.55 14.3-23.2 19.7 

 
Table 3.9 Groundwater assay of dissolved ions from aquifer one at Darlot Mine. 

Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

<0.05 50 <1 290 380 170 120 

 
Table 3.10 Groundwater variables from aquifer two tested in situ at Darlot Mine. 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 

Range Range Range Range 

47,000-86,000 6.91-7.07 3.05-3.50 20.5-20.8 
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Table 3.11 Groundwater assay of dissolved ions from aquifer two at Darlot Mine. 
Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

<0.5 1,200 <1 80 22,000 3,900 67 

 

Corrosion damage to reinforcement and support is limited to areas where groundwater 

was or is still present, which is ultimately dictated by the presence of large geological 

structures. There were numerous localities in the mine that displayed deposition of salt 

crystals, an indication of previous groundwater flows, but are currently dry, as shown in 

Figure 3.10. The damage to the installed reinforcement and support ranged from 

moderate to severe and in most cases the galvanising had been removed. The outcome is 

that the support is substantially more at risk from future attack by atmospheric corrosion. 

Numerous examinations of the internal condition of FRS established that the condition 

of the plate and mesh was not comparable to the condition of the reinforcement. As 

Figure 3.11 demonstrates the corrosion environment is different on the excavation 

boundary, which appears dry, as opposed to the inside the rock mass where severe 

corrosion has taken place. Generally, greater corrosion damage was seen at depths of 

0.5–1 m into the rock. A possible explanation is the ventilation is drying out the rock 

mass to that depth with groundwater still present beyond this zone. 

 

Failure of barrel and wedge anchors at low loads, well below design, has been observed 

by mine personnel (L Gray 2003) and attributed to excessive corrosion. These areas 

display dripping groundwater of aquifer one type with samples taken having high 

dissolved oxygen contents of around 6.0 mg/l. 
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Figure 3.10 External (left) and internal (right) view of corrosion damage to a galvanised 

FRS that has been affected by earlier groundwater flow. 

 

  
Figure 3.11 No corrosion of the plate (left), but strong corrosion of the FRS 

reinforcement (rights) at 2.1m depth. 

 

The condition of weld mesh in a number of groundwater affected areas was uncertain, 

which led to the collection and testing of samples as described by Villaescusa (1999b). 

The typical strength that could be expected from the nominal 5.6 mm diameter wire 

mesh is 11 to 12 kN. The results are summarised in Table 3.12 and show a moderate 

level of corrosion (loss of galvanising, uniform steel corrosion) has little impact on the 

load, however, severe corrosion (uniform steel corrosion, significant pitting corrosion) 

reduced the load bearing capacity by approximately 40%. 
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Table 3.12 Results of mesh pull tests at Darlot Mine. 
Location of Sample Failure of Load (kN) Place of Failure Corrosion 

Marsh 1180 Acc #1 7.63 Heat affected zone Severe 

Marsh 1180 Acc #2 7.16 Weld Severe 

Millennium Dec SP7 #1 11.21 Heat affected zone Moderate 

Millennium Dec SP7 #2 11.56 Heat affected zone Moderate 

Federation Dec #1 12.14 Weld Moderate 

Federation Dec #2 12.70 Heat affected zone Moderate 

 

The use of thin-walled FRS in groundwater affected areas is not recommended due to 

the high corrosivity of the water. Wet areas where FRS are installed should be 

monitored. Borehole camera examinations have shown that excavations that are dry on 

the surface may have groundwater present deeper into the rock mass. Problems may also 

arise with fully cement grouted rebar if cracking of the grout column occurs, however 

this reinforcement type is considered significantly more corrosion resistant. As mining 

progresses deeper a more saline, less corrosive groundwater is expected to become 

prevalent but in lower quantities than the upper levels. 

 

3.3.4 Enterprise Mine, Xstrata 

The Enterprise Copper Mine is located between 1200 – 1800 m below surface with two 

distinct ore bodies, the 3000 and 3500 orebodies. Shale and siltstone stratigraphic units 

occur in the immediate vicinity of the ore bodies. The mineralisation is in the form of 

chalcopyrite and is mainly present in and along veins. There is also a substantial network 

of interconnected faults/shears zones throughout the copper ore bodies (T P Davis 2004). 

 

The rock types encountered within permanent development and their associated minerals 

are not considered to assist corrosion. An exception occurs within ore drives where 

sulphide minerals may create an electrochemical corrosion cell with the rock 

reinforcement accelerating corrosion. The presence of groundwater within the mine is 

minimal, despite the network of large scale geological structures. This is most likely due 

to the depth of current mining and dewatering of the aquifer by previous mining above 

the current mine. Some water flow is seen locally near backfilled stopes that are in the 

process of dewatering. 
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The primary support installed within the Enterprise deposit is dependent upon the 

expected life of the excavation. Jumbo installed, 47 mm diameter non-galvanised FRS in 

conjunction with non-galvanised 5.6 mm diameter weld mesh is used in excavations that 

have a required opening life of less than 2 years. In longer term development; from 2 to 

tens of years, black point anchored cement grouted bolts (PAG), 20 mm diameter resin 

anchored rebar, and black mesh are installed. Black, bulbed, grouted cables with barrel 

and wedge anchors are installed on intersections. There is little use of galvanised support 

within the Enterprise mine following cost analysis that recommended the use of 

galvanised mesh and galvanised FRS only where the FRS are used as long term support 

(Beck 1999). 

 

The absence of groundwater in the Enterprise mine is attributed to its considerable depth 

and the effect of previous mining conducted above the deposit, essentially redirecting 

the groundwater flow. Only two groundwater samples were collected from the rock mass 

and their variables are shown in Tables 3.13 and 3.14. This near neutral water has 

comparatively high temperature and dissolved oxygen and a moderate salinity, the 

combination of which makes this water highly corrosive. Fill water flow from the 

dewatering of back filled stopes is common. The affected regions can generally be 

predicted with the fill water flow controlled by the permeability of the rock mass and the 

hydraulic head pushing the water out. The fill water will have a pH ranging from neutral 

to basic with a composition that will somewhat reflect the original water added to the 

paste fill. While the amounts of water flow can be significant the duration is expected to 

last for only months. 

 
Table 3.13 Groundwater variables tested in situ at Enterprise Mine. 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 

Range Range Range Range 

6,730-8,990 7.27-7.73 3.66-4.60 31.3-34.8 
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Table 3.14 Groundwater assay of dissolved ion at Enterprise Mine. 
Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

<0.05 110 <5 82 970 5,000 0.33 

 

A total of twenty measurements were taken of the atmospheric variables. The mine 

atmosphere is hot and humid with temperatures in the range of 30 to 45 °C and a relative 

humidity of 80 to 95% (see Table 3.15). The high temperature and humidity is a function 

of the depth and extent at which mining has and is taking place, the common use of 

secondary ventilation, the high ambient rock temperatures, and the high temperatures 

and humidity of the air already on surface. The high relative humidities contribute to a 

longer time of wetness and correspondingly elevated rates of corrosion compared to 

other underground atmospheres. 

 

The rates of atmospheric corrosion are low compared to those expected from 

groundwater corrosion. However, with the expected life of the mine being several 

decades, and the extensive use of non-coated black steel for the majority of ground 

support, corrosion damage may become a significant issue over time. 

 
Table 3.15 Atmospheric variables at Enterprise Mine. 

Dry Bulb Temperature (°C) Relative Humidity (%) 
Range Average Range Average 

30.0-45.0 35.0 80.0-95.0 86.1 

 

Where groundwater is present the rates of corrosion are expected to be very high with 

previous failures of cable bolts documented (O'Hare 1994). Permanent excavations such 

as decline development, underground workshops and crib rooms that will be open for 

the life of the mine may develop corrosion related issues with the installed reinforcement 

and support from the long-term exposure to atmospheric variables. A number of 

ungrouted point anchored elements have previously failed in these high risk areas due to 

assumed atmospheric corrosion (see Figure 3.12) but the high estimated corrosion rates 

of 0.5 mm/year suggest groundwater may be the cause. 
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Figure 3.12 Failure of a 15 mm diameter point anchored bolt after 15 years of 

installation due to atmospheric corrosion. 

 

3.3.5 Kanowna Belle Mine, Barrick Gold 

The Kanowna Belle gold mine consists of interbedded felsic and conglomerate units. 

These units are often fault bounded, but exhibit conformable contacts. The hanging wall 

sequence is dominated by felsic sandstone. A felsic porphyry intruded along the large 

Fitzroy fault hosts the majority of mineralisation and separates the footwall and hanging 

wall sequences (Beckett et al. 1998). The felsic/conglomerate contacts are often the 

conduit for external groundwater flow. The blocky rock mass generally has an average 

of four joint sets. The mineralogy associated with the different rock types of the 

Kanowna Belle mine is not expected to influence the corrosive potential of an 

environment. 

 

Four types of rock reinforcement elements were observed in the areas studied. They 

included the earlier reinforcement consisting of HGB and the current regime of 

galvanised FRS, CT bolts, and black plain strand cables. The majority of the FRS were 

ungrouted with only a minor proportion grouted in selected areas. The CT bolt, HGB 

and plain strand cable are toe to collar cement grouted bolts and thus theoretically 

should be fully encapsulated within the grout, which provides good protection from 

corrosion. However, quality control issues leading to poor grouting practices can leave 

the elements ungrouted or having only partial encapsulation. Galvanised weld mesh, 
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galvanised dome plates and galvanised W plates are also used as support within the 

mine. 

 

The atmospheric conditions at Kanowna Belle, displayed in Table 3.16 show an average 

temperature of 24.7 °C and a relative humidity of 70%, measured from fifteen locations. 

Attempts to identify the level of sulphur dioxide in the mine using a portable gas 

analyser were unsuccessful as the gas levels are below the detection limit of the 

available equipment. 

 
Table 3.16 Atmospheric variables at Kanowna Belle Mine. 

Dry Bulb Temperature (°C) Relative Humidity (%) 
Range Average Range Average 

20.0-29.0 24.7 50.0-91.0 70.0 

 

Mine groundwater is generally encountered near the occurrence of major structures, 

typically the conglomerate/felsic contact and adjacent to draw points of stopes that have 

been backfilled. Two distinct groundwater types were observed and are distinguished by 

their vertical location. Five groundwater samples collected above the 9860 level (490 m 

below surface) have characteristics shown in Tables 3.17 and 3.18, with four 

groundwater samples collected below the 9860 level displaying variables shown in 

Tables 3.19 and 3.20. The two sources of groundwater, named aquifer one and aquifer 

two respectively, show marked differences in the average TDS, dissolved oxygen and 

temperature. The deeper aquifer two had a TDS twice that of aquifer one as well as 

higher water temperatures, but a lower dissolved oxygen content.  

 

The majority of the mine development is not affected by groundwater; however, its 

occurrence is more common nearer to the surface decreasing with depth. Negligible 

groundwater was encountered below the 9500 level (850 m below surface). Clamping of 

the geological structures due to the high stresses is thought to restrict the flow of 

groundwater at depth. Future stoping of the lower levels will lead to a change in the 

local stress field, possibly leading to unconfining of structures, which allows 
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groundwater to flow. Experience has shown the rate and occurrence of groundwater flow 

generally decreases with depth for all fractured rock aquifers. 

 
Table 3.17 Groundwater variables from aquifer one tested in situ at Kanowna Belle Mine 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Avg. Range Avg. Range Avg. Range Avg. 

30,200-57,800 47,250 6.94-7.62 7.30 3.21-5.58 4.35 20.3-23.1 26.5 

 
Table 3.18 Groundwater assay of dissolved ions from aquifer one at Kanowna Belle Mine. 

Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

0.5 1,200 <1 10 27,900 930 36 

 
Table 3.19 Groundwater variables from aquifer two tested in situ at Kanowna Belle Mine. 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Avg. Range Avg. Range Avg. Range Avg. 

89,000-130,700 97,933 7.25-7.46 7.35 2.57-3.20 2.93 25.0-27.8 26.5 

 

Table 3.20 Groundwater assay of dissolved ions from aquifer two at Kanowna Belle Mine. 
Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

1.4 2,880 <1 28 64,000 2,640 208 

 

Only minor corrosion of the reinforcement and support was observed in areas not 

affected by groundwater indicating the corrosivity of the atmosphere is relatively low. 

The use of galvanised and fully grouted reinforcement is highly beneficial and no 

corrosion related problems are expected. 

 

In areas affected by groundwater various levels of corrosion on reinforcement and 

support were observed, with the amount of damage dictated mainly by the rate of water 

flow and the age of installation. Several cases of unexpected failures of HGB due to 

severe corrosion have been observed in groundwater affected areas of development age 

greater than eight years. 
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Galvanised FRS had ranging levels of corrosion damage that correlated with the age of 

installation. More corrosion was observed on older reinforcement which was generally 

installed in the upper levels of the mine. Loss of galvanising and subsequent steel 

corrosion was observed from borehole camera surveys as early as 3 months following 

installation. 

 

The corrosion resistant CT bolt is currently used for permanent reinforcement and is 

designed to last for many years in a corrosive environment. Static loading by Villaescusa 

and Wright (1999) has shown that even after significant crack opening (50 mm) the 

corrosion protection capability is still provided by the plastic sheath. A disadvantage 

with this long-term reinforcement is the need to post-cement grout the point anchored 

reinforcement to create a fully grouted and corrosion resistant element. Post-grouting 

does not always take place and failure to grout the element, as shown in Figure 3.13, 

makes the bolt highly susceptible to corrosion, especially the mechanical anchor. 

Villaescusa and Wright (1999) state that ungrouted mechanical anchored bolts are not 

consistently reliable beyond three to six months, due to problems with the expansion 

shell, which may be related to corrosion. 

 

 
Figure 3.13 Damage to a CT bolt by mechanised equipment has broken off the plate and 

nut revealing the element and plastic sheath with no evidence of cement grouting. 

 

The variability of groundwater flow through interconnected joint sets away from the 

main conduit can make an assessment of ground support difficult. If the reinforcement 
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happens to intersect water bearing joints, then corrosion is likely to occur. The 

inconsistency of open jointing is shown in Figure 3.14, which displays two FRS located 

within a meter of each other with very different levels of corrosion damage. 

 

Corrosion related issues for reinforcement and support at Kanowna Belle are limited to 

areas where groundwater is present. Commonly, these areas are near backfilled stopes 

and large geological structures, predominately the conglomerate/felsic rock contact. 

Water flow from backfilled stopes is expected to occur over a time frame of months, and 

corrosion related problems are not expected to be significant. Where hollow HGB 

groutable bolts have been installed at or near a geological contact or some other 

groundwater source it is considered a high risk area for possible corrosion failure. 

Another concern is the inadequacy in post-grouting the CT bolts, making them highly 

susceptible to corrosion damage. 

 

 
Figure 3.14 Highly corroded FRS (left) and non-corroded FRS (right) of same age (2 

years) installed within one meter of each other 

 

3.3.6 Kundana Mine, Barrick Gold 

The Kundana Gold Mine consists of deposits of narrow vein auriferous quartz loads 

ranging from 0.2 m to 3 m in width. The main rock types are basalt, dolerite and 

intermediate volcaniclastics (Lea 1998). Data collection was focused on the Strzelecki 

Decline between the 6124 level and the 5760 level which corresponds to a depth below 

surface of 120 m to 484 m. Decline development was completed at a regular rate over 
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eight years from the surface thus providing a constant variation of reinforcement age in 

similar geological and environmental conditions. 

 

The decline was developed in a volcaniclastic, blocky rock mass and with on average 

three observable joint sets. The joints have a low fracture frequency and a moderate 

persistence with an undulating profile, rough surfaces with no filling. Generally jointing 

had a tight aperture, with few open joints in the lower levels. The stress regime ranged 

from low in-situ stresses near the upper level of the decline to high in-situ stresses in the 

lower levels. This is characterised by a change in installed ground support. Galvanised, 

47 mm FRS were installed with galvanised mesh in low to moderate stress conditions. 

Below the 5900 level (344 m below surface) galvanised, 47 mm FRS and yielding, fully 

grouted rock bolts termed cone bolts are used in conjunction with galvanised mesh and 

shotcrete. All FRS have galvanised plates and the cone bolts were installed with non-

galvanised plates. Black, bulbed cable bolts and plates are installed in decline cross-cut 

intersections. 

 

The upper Strzelelcki Decline above the 5900 level is the main exhaust outlet for the 

mine; the atmospheric variables, from nineteen measurements, are shown in Table 3.21. 

The temperature ranged from 21.0°C to 24.4°C with a corresponding relative humidity 

of 77% to 92%. The higher temperature and humidity were observed in the deeper levels 

due to restricted ventilation flow. 

 
Table 3.21 Atmospheric variables at Kundana Mine. 

Dry Bulb Temperature (°C) Relative Humidity (%) 

Range Average Range Average 

21.0-24.4 23.0 77.0-92.0 88.0 

 

A total of twenty three water samples were collected from the rock mass, with all, but 

one sample collected above the 5938 level (306 m). The high in-situ stress regime in the 

lower part of the mine appears to clamp together geological discontinuities restricting 

groundwater flow. Subsequent ore extraction through stoping relieves the stress on the 

surrounding rock mass allowing joints to unclamp and water to flow. Experience from 
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mine personnel (Ross 2003) indicates that groundwater flow increases with nearby 

stoping. 

 

The results from the groundwater sampling conducted in-situ, and shown in Table 3.22, 

indicate a high level of homogeneity, which suggests the water originates from one 

aquifer. The groundwater is near neutral in pH and hypersaline with an average TDS of 

99,396 mg/l. The temperature and dissolved oxygen average 23.0°C and 3.23 mg/l 

respectively. Table 3.23 displays the results from assays of the ion content revealing 

very high concentrations of chloride and sulphate ions. 

 
Table 3.22 Groundwater variables tested in-situ at Kundana Mine. 

TDS (ppm) pH Dissolved Oxygen 
(mg/l) 

Temperature 
(°C) 

Range Average Range Average Range Average Range Average 

84,500–111,800 99,396 4.52-7.48 7.06 2.67-3.89 3.23 21.0-24.4 23.0 

 
Table 3.23 Groundwater assay of dissolved ions from Kundana Mine 

Iron 
Fe 

Calcium 
 Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

0.5 1,600 1 75 69,000 7,800 94 

 

The condition of the rock reinforcement and support was found to be dependent upon 

the presence of groundwater and the age of the installation. In the upper levels of the 

decline rehabilitation had occurred in certain areas due to the perceived strong corrosion 

damage of the original ground support, which had been installed 10 years prior (see 

Figure 3.15). The basis of this analysis was the condition of the plates which were 

uniformly corroded but still retained considerable structural integrity. Borehole camera 

surveys of the reinforcement elements indicated uniform corrosion that increased in 

severity towards the toe of the bolt. The level of corrosion for bolts of similar age is 

controlled by the amount of groundwater present. Areas where water was visibly 

dripping had greater corrosion compared to damp or dry regions. 
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Figure 3.15 Rehabilitation of corroded reinforcement elements. Original reinforcement 

was installed over 10 years prior. 

 

Corrosion was minimal on areas that were only affected by atmospheric corrosion. This 

was true even for elements that had been installed for eight or more years as shown in 

Figure 3.16. The higher humidity in the lower decline had little impact on the galvanised 

support (see Figure 3.16) but the non-galvanised plates and protruding bolts ends have 

experienced some uniform corrosion. 

 

  
Figure 3.16 Condition of support after undergoing corrosion attack from only 

atmospheric variables after eight (left) and three (right) years. 

 

Original 

reinforcement 
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Problems arising from corrosion of ground support are limited to areas affected by 

groundwater, mainly in the upper decline. Groundwater flow is largely controlled by the 

advancement of open stoping, which creates a local stress change and loosening of water 

bearing structures. Based on the reinforcement condition in the upper levels that have 

been installed for up to ten years, the groundwater chemistry is deemed only moderately 

corrosive. However, the use of thin-walled FRS for long-term openings at even mild 

corrosion rates will affect the bolts performance and regular monitoring of their 

condition in wet areas is recommended. 

 

3.3.7 Leinster Nickel Operations, BHP Billiton 

The Leinster Nickel mineralisation is hosted in a regionally extensive ultramafic 

horizon. The ore body is a zone of high-grade massive and disseminated nickel sulphide 

mineralisation situated within an extensive sheet of weak nickel sulphide mineralisation. 

The hanging wall consists of a felsic volcaniclastic succession (Libby et al. 1998). The 

lithology within the hanging wall, which contains the bulk of mine development, is a 

medium jointed (average 3 joints), strong, competent rock mass. The orebody host 

ultramafic rock type is comparably soft and ductile, and experiences extensive 

excavation deformation. The hanging wall rock types and their associated mineralogy do 

not assist corrosion. Within the actual ore and especially regions of massive sulphide, 

the sulphide ore minerals may create localised electrochemical corrosion cells with the 

rock reinforcement and accelerate corrosion of the ground support in addition to creating 

localised acidic conditions. 

 

Current ground support used at Leinster Nickel Operations is dictated by the rock mass 

behaviour. Reinforcement and support within the felsic volcaniclastics consist of 

galvanised 47 mm diameter FRS with galvanised dome and W plates and galvanised 

mesh is used with occasional cement grouted black rebar. Within the ultramafic unit that 

hosts the mineralisation significant ground support is installed to counteract the effects 

of the squeezing rock mass. This involves galvanised FRS with cement/resin debonded 

grouted rebar, galvanised mesh and shotcrete applied from floor to floor. Grouted cables 
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are used in major intersections. Rehabilitation of the ore drives is often necessary to 

repair damage from the large excavation displacements. 

 

Two distinct mine atmospheres, based on their locations within the mine, were 

encountered during this study. The long-term development such as the decline and shaft 

platforms were comparatively fresh with lower temperatures and relative humidities 

compared to the ore drives. The restricted secondary ventilation within the production 

drives creates higher localised temperatures and humidities and is accordingly more 

corrosive. Table 3.24 displays the atmospheric variables, measured from eighteen sites. 

The ventilation return airways also recorded similar readings to the ore drives. 

 
Table 3.24 Atmospheric variables at Leinster Nickel Operations. 

 Dry Bulb Temperature (°C) Relative Humidity (%) 
 Range Average Range Average 

Decline 17.0-23.0 21.0 44.0-76.0 67.0 

Ore Drives 20.0-26.0 24.8 64.0-90.0 78.0 

 

The occurrence of groundwater is found sparsely in the hanging wall permanent 

development but is much more common in the ore drives. The sub-level caving mining 

method appears to have a significant control on the location of groundwater flow. The 

caving process creates a permeable backfill consisting of caved waste that not only 

allows largely unrestrained groundwater flow towards the bottom of the cave but acts as 

a sink for groundwater and could be dewatering the surrounding unbroken rock mass. 

This could explain the absence of groundwater in the hanging wall development. The 

occurrence of groundwater in the ore drives can be correlated with the advance of the 

cave. 

 

Five groundwater samples collected at the ore drives are assumed to originate from the 

sub level cave with their measurements shown in Tables 3.25 and 3.26. The water is 

neutral, of moderate salinity with a moderate to high dissolved oxygen content and high 

temperatures. Two groundwater samples were collected from the return airways which 

are located a distance from the caving operations. It displayed a much higher salinity and 

lower dissolved oxygen content with comparable temperatures (see Table 3.25). 
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Groundwater was also observed at the shaft platforms within 1-2 m of shaft opening, but 

not in large enough quantities to be studied in detail. 

 
Table 3.25 Groundwater variables measured in situ at Leinster Nickel Operations from the sub level cave. 

TDS (ppm) pH Dissolved Oxygen 
(mg/l) 

Temperature 
(°C) 

Range Average Range Average Range Average Range Average 

10,374-14,212 12,260 7.50-8.92 8.30 3.27-3.95 3.53 26.4-29.7 28.6 

 
Table 3.26 Groundwater assay of dissolved ions at Leinster Nickel Operations from the sub-level cave. 
Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

0.05 430 7 10 7,700 170 7 

 
Table 3.27 Groundwater variables measured in situ at Leinster Nickel Operations from the return air way. 

TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 
Range Range Range Range 

48,900-50,600 7.03-7.43 2.35-2.61 27.4-31 

 

A corrosion assessment found only isolated areas of damage limited to either older 

sections of the mine or where groundwater was present. Figure 3.17 displays strongly 

corroded FRS and weld mesh in an excavation 15 years old. The original support was 

not galvanised, which has contributed to its present state. Despite the appearance, tests 

of the weld mesh show it still retains much of its weld strength (see Table 3.28). The 

result of the low corrosivity of the atmosphere in the hanging wall development and the 

corresponding low corrosion rates is depicted in Figure 3.18, which displays a borehole 

camera survey of a non-galvanised FRS of approximately five years’ age that has 

undergone only minor corrosion. The current practice of using galvanised support 

greatly helps in protecting against atmospheric corrosion. 
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Figure 3.17 Corrosion damage to 15 year old surface fixtures at Level 1 platform. 

 

 
Figure 3.18 Minor surface corrosion of black friction bolt at Level 3 access 

approximately five years age. 

 

Corrosion damage was observed on a number of galvanised FRS that are affected by 

groundwater in the ore drives and the return airway. Figure 3.19 shows the level of 

damage which is high, indicating the corrosiveness of both groundwater types. 

Groundwater originating in the shaft also affects the first few metres of level shaft 

platforms. Some corrosion of friction bolts was detected, but generally was only mild to 

moderate. However, the extended life of the shaft access excavations means that 

problematic corrosion may occur over time. 
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Figure 3.19 Corrosion damage to galvanised FRS in the hanging wall development (left) 

and ore drive (right). 

 

A number of mesh samples were collected and tested to determine the loss of strength 

due to corrosion. Their nominal wire diameters are 5.6 mm. The samples taken from the 

Level 1 platform had what appeared to be severe corrosion damage, as shown in Figure 

3.17, with a reduction in strength compared with new mesh samples (11-12 kN) of 

around 26%. Moderately corroded samples from ore drives displayed similar failure 

loads to the non-corroded samples.  

 
Table 3.28 Testing of weld mesh samples collected from Leinster Nickel Operations. 

Sample Location Corrosion Mesh diameter (mm) Failure Load (kN) Region of Failure 

New mesh sample None 5.6 12.53 Weld 

9740 SHWD (ore drive) Moderate 5.6 12.39 Heat affected zone 

Level 1 platform Severe 5.0 9.21 Heat affected zone 

 

The majority of reinforcement and support at Leinster Nickel Operations is unaffected 

by corrosion. This is due to a combination of limited occurrences of groundwater flow 

and a largely non-corrosive atmosphere. Where groundwater is more prevalent and the 

atmosphere more corrosive, in the ore drives, the excavations are expected to be open 

for about two to four years. These same areas also undergo extensive rehabilitation due 

to the significant squeezing nature of the rock mass and as a consequence new ground 

support is installed. This combination means it is unlikely corrosion related problems 

will occur with the ground support. Within the hanging wall development the few areas 

that contain groundwater should be monitored and rehabilitated when necessary. 
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3.3.8 Olympic Dam Operations, BHP Billiton 

The Olympic Dam copper-uranium-gold-silver deposit is hosted by a network of steeply 

dipping hematite rich breccia dykes within a fractured granite host (Smith 1993). The 

competent rock mass is blocky with an average of three joint sets. The immense lateral 

extension of the deposit has created extensive underground development.  

 

The earlier reinforcement and support scheme consisted of CT bolts; galvanised and 

non-galvanised 47 mm diameter FRS and galvanised and non-galvanised weld mesh 

where required. The CT bolt is initially installed as a point anchored system and relies 

on being post cement grouted to become permanent reinforcement. Failure to cement 

grout CT bolts has been documented by Simpson (2005) and this renders the bolt 

susceptible to corrosion. Currently full resin encapsulated bolts are being used as a 

permanent support, with galvanised FRS and weld mesh. 

 

The mine atmosphere despite the extensive underground development is reasonably 

fresh with moderate relative humidity (see Table 3.29) for much of the permanent 

development where the majority (fifteen samples) of measurements were taken. In 

specific areas such as ore drives (five samples) where secondary ventilation is used, 

higher temperatures and humidities were detected. 

 
Table 3.29 Atmospheric variables at Olympic Dam Mine. 

Dry Bulb Temperature (°C) Relative Humidity (%) 
Range Average Range Average 

21.0-28.0 24.0 55.0-85.0 72.0 

 

Groundwater in sufficient quantities to analyse was not commonly found within the 

mine and only two samples were able to be collected and analysed, the results are shown 

in Table 3.30. The wide range of TDS indicates two different aquifer sources. The assay 

of the groundwater taken from the 44 Cyan 19 stope sample is shown in Table 3.31. 
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Table 3.30 Groundwater variables tested in situ at Olympic Dam Mine. 
Location TDS (ppm) pH Dissolved Oxygen (mg/l) Temperature (°C) 

44 Cyan 19 44,000 7.40 3.13 24 

32 Jade 2 97,800 7.03 3.09 20.5 

 
Table 3.31 Groundwater assay of dissolved ions from 44 Cyan 19 at Olympic Dam Mine. 

Iron 
Fe 

Calcium 
Ca 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Chloride 

Cl 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

0.5 910 1 250 23,000 6,000 64 

 

Generally the corrosion condition of the ground support was minimal, due to the 

relatively non-corrosive atmosphere. Corrosion of the reinforcement and support is 

limited to areas that have groundwater or were previously wet; it is distinguished by salt 

deposition. Severe corrosion of non-galvanised FRS was observed at a number of 

locations with their condition similar to the FRS displayed in Figure 3.20. This age of 

installation is approximately six years, suggesting highly corrosive groundwaters. 

Rehabilitation of corrosion affected areas is carried out by the mine using more 

corrosion resistant galvanised FRS (see Figure 3.21). 

 

 
Figure 3.20 Severely corroded FRS at Olympic Dam Mine; the area is damp but 

groundwater flow is minor. 
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Figure 3.21 Rehabilitation of corroded reinforcement at Olympic Dam Mine. 

 

Similar to the other mines studied, the corrosion related problems at Olympic Dam Mine 

were constrained by the presence of groundwater. This occurs in isolated areas 

throughout the mine and affects only a small number of reinforcement elements. Where 

affected, however, rates of corrosion are high and corrosion resistant ground support is 

recommended. Of concern are the apparent deficiencies in grouting of the CT bolts 

which are used for permanent excavations. With the life of the mine being several 

decades it can be assumed that even the very low rate of corrosion from the mild 

atmospheric conditions may create some corrosion related issues in the future. 

 

3.3.9 Other mine site groundwater data 

Information on groundwater quality was also collected at four other Australian 

underground mines and is summarised in Table 3.32. The Raleigh mine is located near 

the Kundana mine with the source of the water being a nearby paleochannel accounting 

for the hypersaline water. The Waroonga mine is located near Leinster and is only 

slightly saline with high dissolved oxygen. The Telfer mine is located in northern 

Western Australia and has saline water. 

 

The Gunpowder mine in northern Queensland is the only mine groundwater tested 

during this research that was acidic. This is attributed to the previous mining method of 

in situ leaching of the ore by acid solutions that lowered the pH of the local 

groundwaters. Environmental issues have not arisen as a consequence of the acid 
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leaching at Gunpowder, but previous documented cases show that aquifers can take up 

to twenty years to return to baseline conditions (Underhill 1998). This creates a strongly 

corrosive groundwater that does not require dissolved oxygen for corrosion to occur and 

dissolves any protective rust layers that may form. Subsequently, significant corrosion of 

the visible support has occurred over short time durations including complete corrosion 

of sections of galvanised weld mesh. The groundwater at Gunpowder Mine cannot be 

considered natural and needs to be examined separately to the other results. 

 
Table 3.32 Groundwater variables measured in situ and assayed for other Australian underground mines. 

  Raleigh Waroonga Telfer Gunpowder 

TDS (ppm) 185,197 4,140 26,000 7,280 

pH pH units 7.38 7.28 6.5 2.83 

Dissolved Oxygen mg/l 2.98 4.42  4.02 

Temperature °C 14.6 27.3  26.9 

Iron, Fe mg/l 0 <0.1 0.6  

Calcium, Ca mg/l 971 320 1,600  

Carbonate, CO3
2- mg/l 0 <1 <1  

Bicarbonate, HCO3
- mg/l 42 95 40  

Chloride, Cl mg/l 82,000 2,100 14,000  

Sulphate, SO4
2- mg/l 14,669 1,120 220  

Nitrate, NO3
2- mg/l  104 <0.2  

 

 

3.4 Atmospheric conditions in Australian metalliferous underground 

mines 

Atmospheric conditions within Australian underground mines show variations with 

temperature and humidity on a local mine wide scale. Higher temperatures and 

humidities were generally encountered in deeper sections of the mine, areas where the 

rate of air flow was restricted or secondary ventilation was in use such as ore drives, and 

return airways. Declines and shafts, often used as the main fresh air intake by contrast 

had lower values. 

 

In general mine sites within the Yilgarn Craton displayed lower temperatures and lower 

humidities than those sampled in northern Queensland, as shown in Table 3.33. The 
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Western Australian mines and Olympic Dam had an average temperature in the low to 

mid twenties and corresponding humidities of below 80%. The exception to this was the 

Kundana mine; however, the majority of measurements were taken in the return airway 

creating a disparity. The mines located in far north-west Queensland (Enterprise and 

Cannington) have average temperature in the high twenties and mid thirties with 

humidities above 80%. The differences between the localities are considered to be a 

combination of higher ambient rock temperatures in Eastern Australia and high surface 

temperatures in far north-west Queensland. Refrigeration of mine air is required in 

Enterprise mine during the summer months. 

 
Table 3.33 Atmospheric measurements at selected Australian underground mine sites. 

 Dry Bulb Temperature (°C) Relative Humidity (%) 
 Minimum Maximum Average Minimum Maximum Average 

Argo 16 25 20.2 45 82 62 

Cannington 25 32 28.4 66 93 81 

Darlot 15 23 20.2 60 92 75.6 

Enterprise 30 45 35 80 95 86.1 

Kanowna Belle 20 29 24.7 50 91 70 

Kundana 21 24 23 77 92 88 

LNO - decline 17 23 21 44 76 67 

LNO - ore drives 20 26 24.8 64 90 78 

Olympic Dam 21 28 24 55 85 72 

 

Atmospheric contaminants such as sulphur dioxide and nitrous oxides may be present in 

varying quantities. Sulphur dioxide is commonly formed from the burning of coal or 

during the processing of some sulphatic ores. In underground mines it may be formed in 

very small quantities from the slow oxidation of pyritic ores. Significant quantities of 

nitrogen dioxide are formed due to blasting of explosives. A small amount is found in 

the exhaust gases of diesel equipment but is generally rapidly diluted by ventilation. 

Concentrations of the gas can occur in poorly ventilated areas (MINEsafe Limited 

2006). Current exposure limits for underground mines for sulphur dioxide and nitrogen 

dioxide are 5.2 mg/m3 and 5.6 mg/m3 respectively. No direct measurements were able to 

be undertaken of either gas type during the data collection. Available gas monitors were 

unable to register a reading below 0.1 ppm or 0.26 mg/m3 for sulphur dioxide and 0.19 
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mg/m3 for nitrogen dioxide implying that the concentrations of these gases were below 

this threshold. 

 

Atmospheric salinity within Australia diminishes with increasing distance from the 

ocean, and is also affected by seasonal prevailing winds. The deposition of chloride salts 

from the airborne chlorides is generally expressed as an annual average to take into 

account the variation with weather. Higher deposition is observed near the southern 

coastal areas and reduces significantly further inland. Australia commonly has low rates 

of salt deposition compared to North America and Europe. 

 

The majority of metalliferous mining is conducted in inland Australia and thus is not 

greatly affected by salt deposition from atmospheric salinity. The average daily chloride 

deposition rates for the majority of inland Australia are 4-8 mg/m2day. Near the far north 

Queensland mines of Enterprise and Cannington they are below 4 mg/m2day (CSIRO & 

IGC 2002). At these rates, and considering the unique ventilation situation in 

underground mines chloride deposition is largely insignificant from the point of view of 

atmospheric corrosion attack. The controlling pollutants are considered to be sulphur 

dioxide and nitrogen oxides, which are in very low concentrations. 

 

 

3.5 Groundwater conditions in Australian metalliferous underground 

mines 

Groundwaters in underground mines display a large range in the values of variables such 

as TDS, pH, dissolved oxygen, temperature and the dissolved ionic species. Table 3.34 

displays the average of the variables that were measured in situ at all mine sites. 

Variability with groundwater quality on a local mine scale is seen and also regional 

trends can be observed. 
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Table 3.34 Average in situ groundwater measurements at Australian underground mines. 
 TDS pH Dissolved Oxygen Temperature 
 mg/l pH units mg/l °C 

Argo 203,416 6.20 1.89 19.2 

Cannington 2,610 7.8 4.02 30.0 

Darlot Aquifer 1 4,540 7.39 5.55 19.7 

Darlot Aquifer 2 66,500 6.99 3.22 20.6 

Enterprise 7,860 7.5 4.13 33.0 

Kanowna Belle Aquifer 1 47,250 7.3 4.35 26.5 

Kanowna Belle Aquifer 2 97,933 7.35 2.93 26.5 

Kundana 99,936 7.06 3.23 23.0 

Leinster Nickel Aquifer 1 12,260 8.30 3.53 28.6 

Leinster Nickel Aquifer 2 49,750 7.23 2.48 29.2 

Olympic Dam Aquifer 1 44,000 7.40 3.13 24.0 

Olympic Dam Aquifer 2 97,800 7.03 3.09 20.5 

Raleigh 185,197 7.38 2.98 14.6 

Waroonga 4,140 7.28 4.42 27.3 

 

3.5.1 Total Dissolved Solids 

Comparison of the TDS at different mines displays a range of groundwater quality from 

brackish (<10,000 mg/l), and saline (10,000 to 100,000mg/l) to hypersaline at (>100,000 

mg/l). Comparatively seawater is generally considered to be 35,000 mg/l and water 

having greater than 1000 mg/l is unacceptable for drinking within Australia. Four mines, 

Argo, Kundana, Kanowna Belle and Raleigh, can be regard as having hypersaline waters 

and are located in the south of the goldfields of Western Australia. Darlot, Leinster 

Nickel, Olympic Dam and a separate aquifer at Kanowna Belle have saline waters. 

Darlot and Leinster Nickel are located in the northern region of the WA goldfields. 

Brackish waters are found in the eastern Australian mines of Cannington and Enterprise 

as well as the northern Goldfields mines of Darlot and Waroonga. Mines including 

Argo, Darlot and Raleigh are thought to have aquifers that are at least partly recharged 

from neighbouring paleochannels. 

 

A noticeable trend of the groundwaters is the salinity increase from the north to the 

south of the Yilgarn Craton. Figure 3.22 shows four regions, Northern, Central, 

Kalgoorlie and Eastern, with the location of the assessed mine site. Gray (2001) suggests 

the salinity change is partially due to climatic changes from primarily winter rainfall in 
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the south, to irregular summer cyclonic rainfall, with high run-off, in the north. A 

difference in the elevations of the regions is large, with the southeast Yilgarn having a 

change in elevation of only 18 m over more than 300 km. The low piezometric head 

differences in the south cause very slow groundwater flow resulting in high salinities 

due to evaporation and concentration of saline waters. Salinities tend to show major 

increases with depth, and are most likely due to back-flow of denser saline water from 

salt lakes. The major origin of the salt appears to be from seawater presumably as 

aerosols, with concentration due to evaporation. 
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Figure 3.22 Location map of Yilgarn Craton, separated into four regions based on TDS 

content, with rainfall (mm) in isohyets (D J Gray 2001). 
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3.5.2 pH 

The pH of the natural mine groundwaters sampled had a pH range of 6.20 to 8.30, which 

varies only slightly from neutral, at pH 7. Acidic waters are considered to have a pH <4 

and basic groundwaters pH>10. Only Gunpowder mine had groundwater that could be 

considered acidic, but this was due to the previous mining technique of in situ leaching 

of the ore using acidic solutions that consequently lowered the pH of the groundwater. 

Water originating from backfill activities involving cement would be expected to have a 

more basic pH due to the alkalinity of the cement; however, this was not directly 

determined in this study. 

 

3.5.3 Temperature 

The temperature of the groundwaters in the sampled Australian mines ranged from 

14.6°C to 33.0°C. Higher temperatures were seen in mines in eastern Australia, due to 

the higher ambient rock temperatures, a product of the younger geological age of the 

region. Generally higher groundwater temperatures were seen with greater depth below 

surface. Both the Raleigh and Argo mine were comparatively shallower and these 

exhibited the lowest water temperatures. 

 

3.5.4 Dissolved Oxygen 

The dissolved oxygen concentration ranged in values from a low of 1.89 mg/l at Argo 

mine to a high of 5.55 mg/l within parts of the Darlot mine. The solubility of oxygen in 

water is a function of temperature and salinity. Both higher temperatures and salinity 

will reduce the dissolved oxygen content. 
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An empirical relationship between the solubility of dissolved oxygen in seawater with 

both temperature and salinity has been developed by Kester (1975) and is calculated: 
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Where: 

DO = dissolved oxygen in ml/l 

T = temperature in °K 

S = salinity in ‰ (parts per thousand) 

A1 = -173.4292 

A2 = 249.6339 

A3 = 143.3483 

A4 = -21.3483 

B1 = -0.033096 

B2 = 0.014259 

B3 = -0.0017000 

 

A comparison between the calculated dissolved oxygen from Equation 3.1; calculated 

from the temperature and salinity of each in situ water sample and the actual measured 

dissolved oxygen for that sample is shown in Figure 3.23. A good correlation is seen 

between the theoretical and actual measurements implying the measured dissolved 

oxygen is a direct product of the water temperature and TDS. 
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Figure 3.23 The calculated dissolved oxygen concentration compared to the actual 

measured concentration. 

 

3.5.5 Dissolved Ions 

Groundwater assays were undertaken to establish the type and concentrations of the 

dissolved ionic species for most groundwater aquifers encountered with the exception of 

Leinster Nickel Aquifer 2 and Olympic Dam Aquifer 2. The combined results in Table 

3.35 show high concentrations of the ionic chlorides and sulphates relative to the TDS. 

Carbonates were not detected in the majority of waters with bicarbonates and nitrates 

generally having low concentrations. Chloride ions are a significant percentage of the 

dissolved ions for all waters. A strong quadratic correlation between the TDS and 

chloride ion concentration is seen in Figure 3.24 suggesting the relationship between 

TDS and chloride content can be approximated by: 
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)(3697.0)(10 26 TDSTDSCl +≈ −−        (3.2) 

 

where: 

Cl-  = chloride ions in mg/l 

TDS  = Total Dissolved Solids in mg/l 

 

It appears, however, this association becomes less conclusive once the TDS is greater 

than 150,000 mg/l. The origins of the chlorides are thought to be due to the deposition of 

airborne salts accumulating over millions of years (D J Gray 2001). 

 

As Figure 3.25 illustrates a weaker relationship, displayed in Equation 3.3, is seen 

between the sulphate ion concentration and the TDS. Possible sources for the sulphate 

ions include sulphatic minerals that are often associated with mineralisation. Some 

operations, such as Enterprise, Cannington and Olympic Dam, which have massive 

sulphide or disseminated sulphide deposits, have elevated sulphate to TDS ratios 

compared to other mines. This however does not hold for all mines containing large 

concentrations of sulphide minerals with Leinster Nickel comprising very low sulphide 

concentrations. Groundwaters from Darlot and Waroonga had relatively high 

concentrations of sulphate ions despite the waters being expected to interact with only 

minor quantities of sulphide minerals. It is reasonable that regional rock types may be 

the origin of sulphate ions in the groundwater rather than localised concentrations of 

sulphide minerals. 

 

)(0087.0)(104 272
4 TDSTDSxSO +≈ −−        (3.3) 

 

where: 

SO4
2-  =  chloride ions in mg/l 

TDS  =  Total Dissolved Solids in mg/l 
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Table 3.35 Average groundwater analysis assays from Australian underground mines. 

 

TDS 
(assay) 

Calcium 
Ca 

Chloride 
Cl- 

Carbonate 
CO3

2- 

Bicarbonate 
HCO3

- 
Sulphate 

SO4
2- 

Nitrate 
NO3

2- 

 mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

Argo 230,000 310 180,000 <1 50 24,000 0.2 

Cannington 4,000 300 1,500 <1 48 800 0.05 

Darlot Aquifer 1 5,400 50 3,570 <1 290 170 120 

Darlot Aquifer 2 47,000 1,200 22,000 <1 80 3,900 67 

Enterprise 6,200 110 970 <1 82 5,000 0.33 

Kanowna Belle Aquifer 1 49,000 1800 27,000 <1 33 1,300 360 

Kanowna Belle Aquifer 2 130,000 3,600 80,000 <1 35 3,300 260 

Kundana 120,000 1,600 69,000 <1 75 7,800 94 

Leinster Nickel Aquifer 1 13,000 430 7,700 7 10 170 7 

Olympic Dam Aquifer 1 44,000 910 23,000 <1 250 6,000 64 

Raleigh 185,197 971 82,424 <1 42 14,669  

Waroonga 4,460 320 2,100 <1 95 1,120 104 
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Figure 3.24 Relationship between the TDS and chloride ion concentrations. 

 

 

Cl- = 10-6(TDS)2 + 0.3697(TDS) 

R2 = 0.9547 
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Figure 3.25 A weak correlation between the TDS and sulphate ion concentrations. 

 

The rate of groundwater flow varied from site to site within a mine with the majority 

classified as either damp or wet with the only flowing water occurring in the Hamilton 

Fault region at Cannington Mine. Some areas showed evidence through salt deposition 

of previous groundwater flow. Using the borehole camera it was observed that some of 

these areas still contain some groundwater away from the excavation boundary and were 

classed as damp. 

 

 

3.6 Discussion and Conclusions 

A comprehensive and systematic data collection has been completed at eight 

underground mine sites across Australia utilising the Corrosion Assessment System. 

This has provided an improved understanding of the environmental conditions in 

underground hard rock mines with the delineation of two separate environments that 

control the rate of corrosion. 

SO4
2- = 4x10-7(TDS)2 + 0.0087(TDS) 

R2 = 0.7652
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The atmospheric variables of temperature, humidity and pollutants affect the majority of 

installed ground support. Variations in the quality of the mine atmospheres were 

observed with the depth of mining below surface and the ambient rock temperatures. 

Areas where secondary ventilation is in use and return airways had measurably higher 

temperatures and humidities. Regardless of the quality of the atmosphere the use of 

galvanised ground support appears to greatly restrict the rate of corrosion. 

 

The main cause of corrosion in underground mines is groundwater. The groundwater 

originates in surrounding aquifers, with large geological structures that intersect mine 

development providing a conduit for water flow. However, only a small percentage of 

installed ground support is affected. The inter-related groundwater variables that 

influence corrosion are the total dissolved solids, the pH, the dissolved oxygen 

concentration and the groundwater temperature. Corrosion of ground support affected by 

groundwater displayed varying levels of corrosion damage that can be related to the 

corrosivity of the water, the rate of groundwater flow, the length of time installed and 

the type of support or reinforcement. Friction Rock Stabilisers appear especially 

susceptible to corrosion damage. 

 

The data presented in this Chapter provides a summary of environmental conditions that 

can be considered a suitable cross-section of Australian hard rock underground mines. 

This provides the initial step in classifying the environment in terms of its corrosivity. 

An understanding of the environmental variables within an underground mine is needed 

to assess an environment’s corrosivity and ultimately its effect on the various 

reinforcement and support systems installed. 
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CHAPTER 4 REINFORCEMENT AND SUPPORT TESTING USING A 

SIMULATED UNDERGROUND ENVIRONMENT 

 

4.1 Introduction 

The environmental conditions that were discussed in Chapter 3 detail the variability and 

changing nature of the local environmental conditions in a working mine. It is 

impossible to maintain consistent environmental conditions for the extended periods of 

time necessary to study the processes and rates of corrosion for different reinforcement 

materials. To overcome this, a series of corrosion chambers were designed and 

developed to simulate the corrosive environments of underground mines. This allowed 

for long-term testing, under controlled experimental conditions to be conducted with a 

high level of confidence. 

 

The development of the corrosion chambers and the environmental conditions that they 

were maintained at is detailed in Section 4.2. Sections 4.3 to 4.5 describe the 

methodology and results from experiments conducted in the corrosion chambers. Section 

4.3 examines the load-displacement response and failure modes of cable strand and rebar 

reinforcement elements to corrosion in various environments. The effect of residual 

installation water in Swellex bolts is discussed and results presented in Section 4.4. 

Section 4.5 examines the force-displacement response and the influence corrosion has 

on the load-bearing capacity of barrel and wedge anchors for cable bolts. 

 

 

4.2 Development of the simulated underground environment 

The testing to be carried out required a large volume of space that could not be provided 

by commercially available corrosion chambers. Therefore, it was decided to construct a 

set of purpose built units. Following site works at land located at Curtin University in 

Kalgoorlie three sea containers were delivered. These were partitioned in half with 
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remaining gaps sealed with a silicone sealant and polyethylene. An anti-bacterial paint 

was applied to the walls and roof. Polypropylene rubber lining was secured onto the 

floor and partly up the walls and a polyethylene sealant applied. Access doors were 

constructed that sealed when closed. The result was a closed system of six chambers 

each with dimensions 2 m width, 2.5 m deep and a height of 2 m that simulate the 

previously described conditions of Argo, Darlot, Enterprise, Kundana, Leinster Nickel 

and Olympic Dam mines. 

 

The temperature of each chamber was initially controlled by 1000W infrared ceramic 

heaters. The high maintenance cost of these units necessitated a change to 275W 

radiation lamps that endured the conditions inside the chamber with better resilience. 

Humidity is created by two Carel steam humidifiers (see Figure 4.1) that have a 

maximum capacity of emitting 1.5kg of steam per hour, a rate which is significantly 

higher than needed. The humidifying units are located on the outside of the chamber 

with piping connecting them to the distribution unit, which is located inside the chamber 

a metre above the floor. 

 

To control the temperature and humidity in each chamber a central Power Line 

Communication (PLC) system with a PC user interface was originally used. This system 

collected information on the atmosphere of each chamber measured from a dual relative 

humidity/temperature sensor located within each chamber. A series of switch relays 

turned the humidifier or heat source on or off maintaining a reasonably constant climate. 

In addition periodic measurements of the temperature and humidity were automatically 

recorded to file. This system while being technically sound had a number of 

maintenance problems and was superseded after 1.5 years of operation to a more robust 

CLIPSAM multi-port instrumentation unit shown in Figure 4.1. 

 

Each chamber has its own independent instrumentation unit, located on the outside of 

the chambers and connected directly to the humidifier and heat lamp. The single sensor 

was replaced by two dedicated humidity and temperature sensors. The required 

temperature and humidity is displayed on the front of the unit with the measured values 
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located below it. Variations in the temperature of ±2°C and humidity ±5% from the set 

average causes the processing unit to either turn on or off the heat lamps and humidifier 

keeping the atmospheric conditions within a set range. Significant variations from the 

required parameters occurred only when the heat lamps malfunctioned and had to be 

replaced. Periodic checks of the chambers ensured this was kept to a minimum. 

 

 
Figure 4.1 CLIPSAM multi-port instrumentation unit (left), heat lamp (top right) and 

humidifier unit (bottom right). 

 

Groundwater was collected directly from the rock masses and transported to the 

corrosion chambers. An electric pump was used to propel the water through a purpose 

built reticulation system. This produced a constant supply of dripping or flowing 

groundwater being applied to the reinforcement and support being tested. The water 

flowed back into the rubber lined sump and was recirculated. The groundwater was 

periodically analysed using a portable water analyser that gave immediate readings of 

the temperature, pH, dissolved oxygen and TDS. When the conditions departed from the 

underground situation the water was changed. Some water loss from each chamber was 

experienced, despite sealing, and water had to be replenished. 
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4.2.1 Environmental Conditions in the Corrosion Chambers 

The required atmospheric conditions for each chamber are shown in Table 4.1. It was 

decided to maintain the identical temperature and humidity of 30°C and 90% in each 

chamber with the exception of the Enterprise mine chamber which, was set for 40°C. 

This was due to the much higher atmospheric and groundwater temperatures observed 

within the Enterprise Mine. Variations up to ±4°C and ±10% are expected from the 

required values due to the nature of the control system. Some seasonal effects were seen 

during the months of December to February that resulted in higher temperatures due to 

the occasional very hot summer day.  

 

Comparisons between the set temperature and humidity and actual measured values was 

conducted by Henley (2002) with the results shown in Figures 4-2 and 4-3. Variation 

with temperature was minor, approximately ±2°C; with the set and measured values 

being the same for extended time periods. Control of the humidity is more complicated, 

as it is partly a function of the temperature. The results showed a greater deviation from 

the set value in the range of ±10%. 

 
Table 4.1 Atmospheric conditions in each corrosion chamber. 

Chamber Dry Bulb Temperature 
(°C) 

Relative Humidity 
(%) 

Argo Mine 30 90 
Darlot Mine 30 90 

Enterprise Mine 40 90 
Kundana Mine 30 90 

Leinster Nickel Operations 30 90 
Olympic Dam Operations 30 90 

 

 



Reinforcement and Support Testing Using a Simulated Underground Environment 94

CHAMBER 4 - Temperature

0

5

10

15

20

25

30

35

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

1/10/2002 2/10/2002 3/10/2002 4/10/2002 5/10/2002 6/10/2002 7/10/2002

Date/ Time

Te
m

pe
ra

tu
re

Measured Temperature

Set TemperatureCHAMBER 4 - Temperature

0

5

10

15

20

25

30

35

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

2:
00

 P
M

10
:0

0 
AM

11
:0

0 
AM

12
:0

0 
PM

1:
00

 P
M

1/10/2002 2/10/2002 3/10/2002 4/10/2002 5/10/2002 6/10/2002 7/10/2002

Date/ Time

Te
m

pe
ra

tu
re

Measured Temperature

Set Temperature

 
Figure 4.2 Monitoring of temperature in the corrosion chambers. 
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Figure 4.3 Monitoring of humidity in the corrosion chambers. 

 

The groundwater of each chamber was monitored approximately every month using the 

TPS water analyser for temperature, pH, dissolved oxygen and TDS. The mean values 

and standard deviations for each constituent over the length of the experiments are 

shown in Table 4.2. The variations in water properties occur for a number of reasons. 
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The temperature of the water is controlled by the atmospheric temperatures; any change 

in it will affect the groundwater, which has a flow on affect to the dissolved oxygen. 

Rises in salinity were observed over time due to evaporation of the water and 

concentration of the dissolved ions. This again subsequently affected the dissolved 

oxygen. Of the measured parameters only the pH had little variation. 

 

Additionally the groundwater collected from the participating mine sites had to be 

replenished as water was lost from the system. As discussed in Chapter 3 groundwater 

from the same aquifer displays variations in constituents, therefore it was expected that 

each batch of supplied groundwater would be marginally different. Before any new 

groundwater was added to the chambers it was first analysed to make sure it was 

comparable. At two mines, Enterprise and Olympic Dam, it was not possible to collect 

groundwater from the same location. At Enterprise Mine a rock fall prevented re-entry 

and at Olympic Dam the area had been mined out and ventilation was not adequate for 

entry (uranium mine). At Darlot Mine it was decided to change the groundwater to an 

aquifer that had recently been intersected in deeper development excavations and was of 

greater interest to the mine. 

 
Table 4.2 Average groundwater measurements for each corrosion chamber. 

Temperature 
°C 

Dissolved Oxygen 
mg/l 

pH 
pH units 

TDS 
mg/l Chamber 

Mean St Dev Mean St Dev Mean St Dev Mean St Dev 
Argo 26.42 3.19 1.72 0.39 7.32 0.22 172,000 8,474 

Darlot 26.28 2.01 3.17 0.50 7.69 0.46 37,644 17,046 
Enterprise 32.68 4.42 3.44 0.67 7.36 0.78 18,630 9,591 
Kundana 26.24 1.92 2.48 0.39 7.27 0.78 79,200 15,651 
Leinster 26.29 2.24 3.76 0.40 7.48 0.49 14,782 2,899 

Olympic Dam 27.10 4.27 2.78 0.54 7.82 0.26 38,005 7,862 
 

The changes in the groundwater properties for the Darlot, Olympic Dam and Enterprise 

Mines are shown in Table 4.3. The new Darlot groundwater was about 7.5 times more 

saline than the previous water, with lower dissolved oxygen content. The new Olympic 

Dam supplied water was more saline, with lower dissolved oxygen value but could still 

possibly be considered from the same aquifer source. The new water from the Enterprise 

Mine was considerably less saline with a much higher dissolved oxygen measurement. 
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Table 4.3 Variations in groundwater properties. 

Chamber Days Temperature 
°C 

Dissolved Oxygen 
mg/l 

pH 
pH units 

TDS 
mg/l 

Darlot (previous) 65 24.71 3.72 8.38 5,943 
Darlot (new) 993 26.76 3.03 7.52 45,187 

Olympic Dam (previous) 562 27.27 2.98 7.89 31,679 
Olympic Dam (new) 570 26.90 2.55 7.74 45,519 

Enterprise (previous) 602 31.79 3.12 7.28 24,640 
Enterprise (new) 235 34.45 4.08 7.53 6,610 

 

 

4.3 Testing of cement grouted cable strand and rebar reinforcement 

elements 

Cement grouted reinforcement is commonly used in Australian underground mines for 

its high load transfer capacity and resistance to corrosion damage. This resistance is 

afforded by the protective alkaline environment of the cement grout and the physical 

barrier it provides from the surrounding environment. The major factors that cause steel 

embedded in cementitious systems such as reinforced steel to corrode are the influences 

of carbonation and chloride infiltration (Slater 1990). However, the time periods over 

which these processes are expected to affect the underlying steel are considerably longer 

than the design life of much cement grouted reinforcement. For example, in concrete 

with a w/c ratio of 0.45 and concrete cover of 25 mm, it will require more than 100 years 

for carbonation to reach the concrete immediately surrounding the steel (Virmani & 

Clemena 1998). Chloride infiltration is generally measured in decades not years. 

 

It is therefore concluded that these phenomenon do not have any significant affect on the 

corrosion damage of installed cables and rebar over short design lives. Instead corrosion 

begins once the cement grout barrier is removed. This occurs by cracking of the grout 

column, or in sections where the element is exposed from inadequate installation. This 

exposes the steel strand or rebar to the surrounding environment. Poor and often 

inadequate installation of cement grouted reinforcement has been documented by 

Sundholm (1987), Kendorski (2000) and Windsor (2004) among others. Poor 

installation practices can include eccentric reinforcement placement in the borehole, 

insufficient encapsulation, slumping of the grout mixture and the presence of air voids. 
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Cracking of the grout column can occur during rock mass movement or as a result from 

the shockwaves of nearby blasting or a combination of both. The rock mass will 

preferentially move along existing fractures and if a grouted reinforcement element 

intersects a dilating geological discontinuity cracking of the grout column can occur in 

this area as the tensile capacity of cement is considerably less than the steel element. 

This concept is shown diagrammatically in Figure 4.4. For resin grouted elements 

similar development will occur with Figure 4.5 displaying actual cracking within a resin 

grouted column. 

 

Cracks within the grout column provide a pathway for gravity assisted water flow to 

interact with the steel element. Cracking preferentially occurs along geological 

discontinuities, which are also the conduit for groundwater flow in hard rock aquifers. 

Without the protection reinforcement elements will undergo corrosion damage. There is 

currently no commercial non-destructive testing method able to determine if cracking of 

the grout column has occurred and whether it has resulted in corrosion damage to the 

element. Overcoring of the element is the only way to ascertain this. 

 

Rock mass 
movement

Cracking of 
the grout 
column

Joint 
dilation

Rock mass 
movement

Cracking of 
the grout 
column

Joint 
dilation

 
Figure 4.4 Cracking of the grout column due to joint dilation. 
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Figure 4.5 Cracking within a resin grouted column, these cracks present a path for the 

surrounding environment to interact with the reinforcement. 

 

In an effort to better understand the response of grouted strand and rebar to corrosion 

attack following cracking of the grout column and infiltration of groundwater, a variety 

of strand and thread bar combinations were placed within the six corrosion chambers. 

These were pull tested at periodic intervals to determine how corrosion affects the 

reinforcement effectiveness with time for different environments. In addition a migrating 

corrosion inhibitor (MCI) grout additive was trialled to establish its effect on reducing 

the corrosion damage. 

 

4.3.1 Reinforcement under investigation 

Cable bolts utilised within the Australian mining industry commonly use a 7-wire, stress 

relieved, high tensile steel strand with plain (round) wires. Six wires are laid helically 

around a slightly larger diameter central (king) wire. The regular 15.2 mm diameter 

strand is produced to provide a number of grades that offer differing yield and ultimate 

load capacities. 
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Standard strand has a minimum yield force capacity of 213 kN and a minimum breaking 

force of 250 kN. For comparison compact strand that is deformed following laying 

results in more steel for the same nominal diameter and results in a minimum yield force 

capacity of 255 kN and a minimum breaking force of 300 kN (AS 1311 1987). Figure 

4.6 shows both grades of cable bolt strand used in Australia. Modifying the geometry of 

the strand through the introduction of bulbs along the strand length will vary the 

stiffness of the cable bolt providing greater load transfer capacity. 

 

 
Figure 4.6 Plain (top) and compact (bottom) cable bolt strands. 

 

A variety of solid bar elements are available to be used with a range of reinforcement 

systems. Modifications to the bar diameter and thread pattern are used to achieve 

different load transfer capacities. This investigation examined a standard 20 mm 

diameter thread bar as shown in Figure 4.7. It has typical yield strength of 170 kN and 

ultimate tensile strength of 200 kN (AS 1442 1992). The thread is continuous along the 

bolt axis and provides good load transfer at the element-grout interface. A galvanised 

version of the thread bar was also tested. Additionally a 20 mm diameter smooth steel 

bar from the CT bolt was tested.  

 

  
Figure 4.7 20 mm diameter thread bar. 
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A migrating corrosion inhibitor (MCI) grout additive was also trialled to observe if it 

protected the steel element from corrosion damage. The Meyco MCI 2006-1 is based on 

amino carboxylate chemistry. It is added as a powder admixture to the grout during 

mixing and upon cement curing the additive diffuses through the concrete migrating to 

the steel surface. There it forms a thin monomolecular protective layer that prohibits a 

chemical reaction between chlorides and steel. Numerous studies have proven the ability 

of MCI to provide corrosion protection for steel in reinforced concrete (Bavarian & 

Reiner 2001; Bjegovic & Miksic 2001; Miksic 1995). Research by Suess et al. (2001) 

found that MCI 2006 tripled the time to the onset of corrosion and once corrosion began 

the corrosion rate was reduced by sixteen fold. Additionally the additive was found to 

increase the compressive strength of concrete by up to 53.1%. To compare a grout mix 

that did not contain the MCI was used. It contained the non-corrosion protecting additive 

Methocel, which improves the workability of the grout mix and accelerates the setting 

time of the grout (Villaescusa, Sandy & Bywater 1992). 

 

4.3.2 Methodology 

The main focus of the testing was on the three reinforcement element types: plain strand 

cables, bulbed strand cables and thread bar. Each element type was grouted with either 

methocel or MCI additive added. A galvanised thread bar was also tested. Table 4.4 

displays a summary of the reinforcement elements under investigation. Two specimens 

for each element were required creating fourteen standard test specimens for each 

chamber. 

 

In addition to the standard tests, two mine sites requested additional elements to be 

examined. The rebar element for the CT bolt, minus the protective sleeve was tested in 

the Olympic Dam chamber and the compact strand was tested in the Argo chamber. 

Both elements were tested with the grout additives. 
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Table 4.4 Summary of standard reinforcement elements tested. 

Reinforcement Element Coatings Grout Additive 
Plain strand None Methocel 
Plain strand None MCI 

Bulbed strand None Methocel 
Bulbed strand None MCI 

Thread bar None Methocel 
Thread bar None MCI 
Thread bar Galvanised Methocel 

 

The methodology used to investigate the load capacity of the reinforcement elements 

under corrosive conditions is the split pipe testing system (Villaescusa, Sandy & 

Bywater 1992). The system shown in Figure 4.8 consists of two 500 mm long, 

galvanised, 68 mm diameter pipes that have been temporarily welded together at the 

split, which simulates a geological discontinuity. A wooden plug was placed on the end 

of the pipe, which also centralised the element. Two separate grout mixes made from 

Portland cement, one that included the Methocel additive (2 g per kg of cement) and the 

second the MCI additive (2.5 g per kg of cement), were mixed and pumped using a 

MBT GP2000A grout pump with a water cement ratio of 0.35. The pipes were placed 

vertically and grouted from the bottom up with the element remaining in a central 

position and identification tags attached to the specimens. 

 

It is important to know that the cables were not constantly loaded in tension during the 

experiment as may occur in actual mining practice. The intricate issues relating to 

loading of the strand, ensuring the strand remains loaded for the duration of the 

experiment, and continuous measurements of the load added a high level of complexity 

and cost that could not be realised by any potential benefits. Hence, variables such as 

stress corrosion cracking were not investigated within this experiment. 
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Figure 4.8 The split pipe testing system. 

 

To examine the effect of corrosion over time each specimen was routinely tested using a 

50 tonne hydraulic Avery machine type 7110 DCJ. The specimen was placed vertically 

in the machine with the upper flange resting at the top and a 25 mm thick plate being 

secured above the lower flange (see Figure 4.9). The hydraulic ram of the testing 

machine pulls down on the plate and the lower flange, while the upper flange remains 

stationary resulting in the two pipes pulling apart. The static testing was conducted at a 

constant increase in load. Transducers located on the machine measured the force being 

applied and the subsequent displacement. An analogue data collector connected to a PC 

utilising the Labview software recorded the load-displacement response. 

 

A maximum load of 170-175 kN for the strand elements and 180-185 kN for the rebar 

elements or a maximum displacement of 10 mm, whichever came first, was applied in 

all tests. These loads are well below the tensile strength of the elements, thus any failure 

could be attributed to the corrosion damage. Over an embedment length of 0.5m the 

plain strand would not be able to utilise its full capacity so a limit was placed on the 

maximum displacement. This was to ensure that the specimens could be re-tested 

Cement Grout 
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following more time under corrosive conditions in the chambers. Similar previous 

experiments by (Villaescusa, Sandy & Bywater 1992; Villaescusa & Wright 1997) using 

the split pipe system proved the validity of the testing method and provided a reference 

for non-corroded tests. In addition to the load-displacement response the open crack 

width of each bolt was measured with callipers before and after testing. If the element 

was visible at the crack the severity of the corrosion was noted. 

 

  
Figure 4.9 The testing set up showing the Avery machine in the background and the PC 

and analogue data collector to the left. A closer view of the split pipe is shown on the 

right. 

 

Following a curing time of 7 days the temporary welds attaching the pipe were removed 

using an angle grinder and an initial slot cut into the grout. The 7 day pull test was 

conducted in order to open up the split that simulates the geological discontinuity. To 

increase the frictional resistance at the pipe/grout interface two sets of three screws were 

installed at equal distances from the split and evenly distributed around the 

circumference of the pipe. This ensured that all displacement originated at the 

element/grout interface. Following the 7 day pull tests all specimens were placed 

horizontally in the corrosion chambers as shown in Figure 4.10. 
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Figure 4.10 A typical WASM corrosion chamber (left) and water flow through simulated 

geological discontinuity (right). 

 

Pull testing of the split pipes was undertaken initially after intervals of 6 months in the 

corrosion chambers. Following the 733 day test due to failure of some elements the 

interval was reduced to 3 months. Pull testing was therefore conducted at 181 days, 361 

days, 546 days, 733 days, 837 days, 922 days, 1034 days and 1132 days. Darlot mine 

was also tested at 1058 days due to a lack of groundwater to continue the experiment. If 

failure of the elements occurred the split pipe was cut open along its axis and examined. 

 

4.3.3 Results 

Failure of several of the plain and bulbed strand elements occurred at the 733 day test 

with failure of the final strand elements taking place at the 1132 day test. Failure of the 

strand was characterised by breaking of one to six of the outside wires. At no stage did 

the king wire fail and it was always the least corroded of the wires. Typical failure of the 

strand elements are shown in Figure 4.11. Breakage of the wires always occurred at the 

simulated discontinuity where the strand is exposed and significant corrosion had taken 

place. 

 

The evolution of corrosion damage from non-corroded to severe corrosion is shown by 

Figure 4.12. The non-corroded state occurs when the crack is initially opened and the 
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grout cover is removed. The application of groundwater to the exposed strand creates 

increasing levels of corrosion damage culminating in failure, generally when severe 

corrosion damage has occurred. Severe corrosion damage is characterised by strong 

pitting corrosion around the circumference of the exposed strand reducing the cross-

sectional area of steel and thus the tensile strength of the element. 

 

 

  
Figure 4.11 Typical failure of the strand elements with plain strand (left) and bulbed 

strand (right). 
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 Non-corroded 
No evidence or only minor evidence 

of corrosion products 

 

Light Corrosion 
Minor surface corrosion of zinc and 

steel. No evidence of pitting 
corrosion. 

 

Moderate Corrosion 
Surface corrosion covers exposed area 

of strand. Minor areas of pitting 
 

 

High Corrosion 
Uniform corrosion covers the exposed 

area of strand. Pitting is irregular 
around the exposed circumference. 

 

Severe Corrosion 
Severe uniform corrosion covers the exposed area of strand. Pitting corrosion is 

consistent around the entire exposed circumference. 

   

 
Figure 4.12 Stages of corrosion damage of strand elements.  
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The results for the plain strand tests are shown in Table 4.5. The first failure occurred at 

the 733 day test with the last specimen failing at the 1132 day test. The corrosion 

damage at failure was classed as either high or severe. The peak load at failure ranged 

from 82.5 kN to 206 kN. There were four cases where the load at failure exceeded 175 

kN owing to the bolts being taken to failure due to the completion of the experiment. 

The crack width, i.e. simulated discontinuity width, at failure ranged from 17 to 75 mm. 

 

Typical load-displacement plots of the testing, for both the methocel and MCI additive 

are shown in Figures 4.13 and 4.14 respectively. Breakage of the strand is characterised 

by a sudden drop in load, however as Figure 4.14 displays sudden strand elongation can 

cause a similar reduction in load as well as an audible cracking noise that is the grout 

breaking in tension. In these cases the load increases indicating failure has not taken 

place. The stiffness of the system increases over time and is a product of increased grout 

strength due to cement curing. The grout with the MCI additive also displayed a higher 

stiffness compared to the methocel additive grout for each time period before 733 days 

indicating an earlier higher strength grout. 
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Figure 4.13 Typical load-displacement plot of single plain strand with methocel additive 

(0.5 m embedment length). 

Failure 
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Table 4.5 Laboratory results of corrosion and failure loads for single plain strand elements. 

Chamber 

Reinforcement 

type Additive 

Service 

time till 

failure 

Crack 

width at 

failure 

Observed 

corrosion at 

failure 

Peak 

failure load 

   (single strand)   (days) (mm)   (kN) 

Argo plain strand methocel 1132 68.64 severe 140.0 
Argo plain strand methocel 922 47.31 high/severe 140.8 
Argo plain strand MCI 1132 58.2 high 206.0 
Argo plain strand MCI 1132 60.38 severe 158.2 
Darlot plain strand methocel 1034 46.78 severe 161.9 
Darlot plain strand methocel 1034 50.12 severe 174.6 
Darlot plain strand MCI 1058 55.63 high 193.0 
Darlot plain strand MCI 1034 44.02 severe 177.4 

Enterprise plain strand methocel 733 23.61 severe 136.7 
Enterprise plain strand methocel 733 17.12 severe 163.0 
Enterprise plain strand MCI 733 21.16 severe 135.7 
Enterprise plain strand MCI 733 18.18 severe 128.4 
Kundana plain strand methocel 922 75.63 severe 134.4 
Kundana plain strand methocel 837 61.21 severe 115.5 
Kundana plain strand MCI 1034 73.74 high 144.8 
Kundana plain strand MCI 1034 57.13 high 169.7 

LNO plain strand methocel 922 31.87 severe 126.2 
LNO plain strand methocel 922 40.52 severe 82.5 
LNO plain strand MCI 733 24.01 severe 164.0 
LNO plain strand MCI 837 28.8 high/severe 153.5 

Olympic Dam plain strand methocel 733 31.06 severe 171.5 
Olympic Dam plain strand methocel 1132 32.18 severe 183.2 
Olympic Dam plain strand MCI 1132 30.41 severe 166.2 
Olympic Dam plain strand MCI 922 30.26 severe 168.7 
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Figure 4.14 Typical load-displacement plot of single plain strand with MCI additive  

(0.5 m embedment length) 

 

The results for the single bulbed strand, shown in Table 4.6, are similar to the single 

plain strand with failures contained between 733 and 1132 days. The peak failure load 

was between 112 kN and 231 kN. Again the few failure loads greater than 175 kN were 

due to the completion of the experiment. The crack width at failure was generally less 

than observed for the plain strand due to the bulb restricting strand slippage and 

elongation. This same process also produces a stiffer element response, which is visible 

on the load-displacement plots. Typical load-displacement plots for the methocel and 

MCI additive specimens are displayed in Figures 4.15 and 4.16. Again failure is 

characterised by a sudden drop in load as the wires break. 

 

 

 

 

 

 

Failure Loss of load 
accompanied by 
audible crack, 

due to cracking of 
grout as strand 

elongates
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Table 4.6 Laboratory results of corrosion and failure loads for single bulbed strand elements. 

Chamber 
Reinforcement 

type Additive 

Service 
time till 
failure 

Crack 
width at 
failure 

Observed 
corrosion at 

failure 

Peak 
failure 
load 

  (single strand)    (days) (mm)   (kN) 
Argo bulbed strand methocel 1132 28.84 high 202.60 
Argo bulbed strand methocel 1132 24.17 high/severe 184.28 
Argo bulbed strand MCI 1132 17.06 severe 180.80 
Argo bulbed strand MCI 1132 27.15 high 203.80 
Darlot bulbed strand methocel 1058 19.04 severe 181.40 
Darlot bulbed strand methocel 1058 14.62 high 190.00 
Darlot bulbed strand MCI 1058 19.12 high 209.60 
Darlot bulbed strand MCI 922 11.53 severe 168.00 

Enterprise bulbed strand methocel 837 11.29 severe 169.25 
Enterprise bulbed strand methocel 733 14.38 severe 147.45 
Enterprise bulbed strand MCI 733 7.6 severe 168.5 
Enterprise bulbed strand MCI 837 10.12 high 231.6 
Kundana bulbed strand methocel 837 47.16 severe 133.35 
Kundana bulbed strand methocel 837 50.97 severe 172.65 
Kundana bulbed strand MCI 922 47.6 severe 142.70 
Kundana bulbed strand MCI 922 57.09 severe 139.45 

LNO bulbed strand methocel 922 13.65 severe 111.85 
LNO bulbed strand methocel 837 13.6 severe 167.40 
LNO bulbed strand MCI 922 15.33 severe 165.10 
LNO bulbed strand MCI 922 8.82 severe 153.60 

Olympic Dam bulbed strand methocel 837  severe 173.50 
Olympic Dam bulbed strand methocel 733 10.67 severe 161.50 
Olympic Dam bulbed strand MCI 837  severe 166.75 
Olympic Dam bulbed strand MCI 922 9.95 severe 151.05 
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Figure 4.15 Typical load-displacement plot of single bulbed strand with methocel 

additive (0.5 m embedment length). 
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Figure 4.16 Typical load-displacement plot of single bulbed strand with MCI additive 

(0.5 m embedment length). 

Failure 

Failure 
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The compact strand was only placed in the Argo chamber and failed at the 1132 day test 

after significant displacement. The results are shown in Table 4.7 and a typical load-

displacement plot is displayed in Figure 4.17. Both the tests from the methocel and MCI 

additive specimens produced similar results. The considerable displacement needed to 

produce a high enough load for failure is attributed to the geometry of the strand which 

has less surface area and less capability for grout interlock than plain strand. There is no 

indication that it differs in corrosion susceptibility compared to the plain strand. 

 
Table 4.7 Laboratory results of corrosion and failure loads for compact strand elements. 

Chamber 

Reinforcement 

type Additive 

Service time 

till failure 

Crack 

width at 

failure 

Observed 

corrosion at 

failure 

Peak 

failure load 

      (days) (mm)   (kN) 

Argo compact strand methocel 1132 106.67 severe 164.80 
Argo compact strand methocel 1132 83.82 severe 156.40 
Argo compact strand MCI 1132 116.67 severe 154.40 
Argo compact strand MCI 1132 89.66 severe 146.20 
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Figure 4.17 Typical load-displacement plot of compact strand with MCI additive (0.5 m 

embedment length). 
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The inspection of the samples following the completion of testing indicated that the 

quality of grouting (see Figure 4.18) was good. There was no evidence for groundwater 

flow down the king wire; however, the samples were placed in a horizontal position 

within the chamber which represents the best case scenario. There was only minor 

migration of corrosion along the bolt axis. As Figure 4.19 displays there is a distinct 

boundary of corrosion damage where the element is protected by the grout. This was the 

case for the grout with and without the corrosion inhibitor. These results were for 

horizontally placed specimens. For vertically placed specimens it is thought that 

migration of water and subsequently corrosion may occur on the down dip section of the 

strand. 

 

 

 
Figure 4.18 Good quality grout was observed for all horizontally placed samples 

inspected. 

 

Methocel Additive Grout

MCI Additive Grout
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Figure 4.19 Migration of corrosion along the bolt axis was not observed. 

 

No thread bar specimens failed during the course of the experiment; however, three 

black thread bars with MCI additive had slippage at the element/grout interface at low 

loads (60-100 kN). The thread bar for each chamber was tested up to the date when the 

last of the cable bolt strand for that chamber failed. Examination of the thread bar 

samples indicated that negligible cracking of the grout had occurred due to insufficient 

elongation of the bar over the 0.5 m embedment length. This greatly restricted the access 

of groundwater to the steel bar and subsequent corrosion damage was minor, which 

meant failure at loads less than design was unlikely to occur. 

 

Typical load-displacement plots for the black thread bar with methocel and MCI, 

galvanised thread bar with methocel and the CT bolt element with methocel are shown 

in Figures 4.20 to 4.23. They all display increasing stiffness of the system as grout 

curing creates a higher strength grout, with 180 kN of load being achieved with 

generally less than 4 mm displacement for the 0.5 m double embedment split-pipe test. 

 

Methocel Additive Grout

MCI Additive Grout
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Figure 4.20 Typical load-displacement plot of black thread bar with methocel additive 

(0.5 m embedment length). 
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Figure 4.21 Typical load-displacement plot of black thread bar with MCI additive (0.5 m 

embedment length). 
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Figure 4.22 Typical load-displacement plot of galvanised thread bar with methocel 

additive (0.5 m embedment length). 
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Figure 4.23 Typical load-displacement plot of CT bolt element with methocel additive 

(0.5 m embedment length). 
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Despite having only very minor cracking of the grout at the simulated discontinuity the 

inspection of specimens following the completion of testing showed some corrosion at 

the fracture. As Figure 4.24 shows the corrosion damage of the black thread bar is minor 

to moderate with some possible migration of corrosion along the bolt axis having 

occurred. The zinc coating of the galvanised thread bar is still intact with some zinc 

corrosion. It is assumed that the groundwater was able to penetrate to the element 

despite only a very small crack; however, as the amount of groundwater that could 

access the bolt was small the amount of corrosion damage is in proportion. 

 

There were three black thread bar samples with the MCI additive that had slippage at the 

element/grout interface at comparably low loads (60-100 kN). A load-displacement plot 

is shown in Figure 4.25. This occurred in the upper 0.5 m embedment length and only 

with samples that used the MCI additive. The crack width of these samples was enough 

to allow direct groundwater contact with the steel. Despite this corrosion damage was 

moderate. Figure 4.26 displays a cut section of one of the three samples. No evidence of 

poor grouting that may have led to the low load transfer between the element and the 

grout is observed. This phenomenon was not experienced with the cable bolts. 

 

 
Figure 4.24 Corrosion of the thread bar elements of same age. 

Black Thread Bar

Galvanised Thread Bar
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Figure 4.25 Load-displacement plot of black thread bar element with MCI additive that 

experienced slippage at low loads. 

 

 
Figure 4.26 A cut section of a black thread bar with MCI additive sample that pulled 

through the top 0.5 m embedment length. 
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During the grout installation of the elements, grout samples were collected, placed in the 

corrosion chambers and tested for their uniaxial compressive strength (UCS) at intervals 

of 7 days, 181 days, 361 days and 1132 days. The results, displayed in Table 4.8 showed 

7 day strength of 51 and 60 kN for methocel and MCI rising to a UCS after 1132 days of 

93 and 100 kN respectively. A higher earlier strength for the MCI additive grout is 

consistent with the stiffness shown by the load displacement plots. 

 
Table 4.8 Uniaxial compressive strength tests of the grout samples. 

 Number of samples 

for each grout type 

Methocel Additive Grout UCS 

(MPa) 

MCI Additive Grout UCS 

(MPa) 

7 days 6 51.0 60.0 
181 days 6 62.0 66.5 
361 days 3 65.0 63.2 

1132 days 3 93.1 100.9 
 

4.3.4 Analysis of Results 

The focus of the experiment was to establish the effect of corrosion on the cement 

grouted strand and thread bar. It was noted that prior to the 181 day test significant 

corrosion had not occurred on the cable strand as demonstrated by Figure 4.27. This was 

a product of insufficient opening of the crack combined with self healing of the grout 

preventing water ingress. The research concluded that at least 2 mm crack width is 

needed before significant corrosion occurs. However, as observed when examining the 

thread bar some corrosion does occur with crack opening less than 2 mm. 

 

The actual service life due to corrosion of the strand is considered to be from the onset 

of corrosion to the time of failure. Accordingly, for the cable strand this will be the time 

of failure minus 181 days. The minimum and maximum service life, that is, the time of 

the first failure and time of the last failure, for the cable strand in each chamber is shown 

in Table 4.9 and will be used in the analysis presented in this section. 
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Figure 4.27 Sufficient opening of crack width to allow for corrosion did not take place 

until after the 181 day test. 

 
Table 4.9 Actual service life of cable strand in the (accelerated) corrosion chamber environments. 

Plain Strand Bulbed Strand 

Chamber Minimum Service 

Life (days) 

Maximum Service 

Life (days) 

Minimum Service 

Life (days) 

Maximum Service 

Life (days) 

Enterprise 552 552 552 656 
Leinster Nickel 552 741 656 741 

Kundana 656 853 656 741 
Olympic Dam 552 951 552 741 

Darlot 853 877 741 877 
Argo 741 951 951 951 

 

There is a variation between the minimum and maximum service life for each chamber 

ranging from 104 days in the Enterprise chamber to 399 days in the Olympic Dam 

chamber. Changes in the groundwater chemistry are not thought to have been a factor; 

the periodic testing of the water characteristics did not show a change in the conditions 

that could have explained the discrepancy. Instead it is thought the position of the strand 

in relation to the water flow direction was the problem. After testing the split pipes they 

were placed back into the chamber, but they were not always placed in the same position 

in relation to the downward water flow. 

 

Before the 

181 day test 

After the 181 

day test 

Bulbed Strand Plain Strand 
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As Figure 4.28 demonstrates those samples that were placed in the same position had 

corrosion damage over only a few wires as the water flow is concentrated in this region. 

If a sample is placed in different positions the same amount of corrosion damage is 

spread over six wires. The strength of the strand in the first scenario is less than scenario 

two despite the same amount of corrosion damage due to stress concentrations in the 

thinner strand. 

 

The large majority of corrosion and more importantly the location of failure were 

located at the simulated discontinuity. As migration of corrosion along the bolt axis or 

king wire was not observed the simulated discontinuity and the exposed strand are all 

that is important from a corrosion perspective. Therefore plain and bulbed strand results 

can be combined as they share exactly the same characteristics at this location. The 

combined data, including both grout mix types, is presented in Figure 4.29. There is no 

statistical variation between the plain and bulbed strand information and all further 

analysis will consider them the same data set. This scenario is for horizontal cables 

intersecting steeply dipping discontinuities. Vertical cables intersecting shallow dipping 

structures were not tested during this experiment and are thought to be more vulnerable 

to corrosion migration along the bolt axis. 

 

     
 

  
Figure 4.28 Variations in time of failure due to water flow being concentrated in one 

area (left) or spread around the circumference of strand (right). 
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Figure 4.29 Comparison of results between plain and bulbed strand (0.5m embedment 

length). 

 

The purpose of the MCI additive was to protect the steel from corrosion. Its ability to 

protect the steel when covered by the grout is inconclusive as migration of corrosion 

along the bolt axis was not readily observed with both grout mixes. This may not be the 

case for vertically placed elements where it is more likely for migration of corrosion to 

occur and the MCI may be of use. For the horizontally placed cable bolt samples the 

main issue was whether it protected the steel once the grout covering had been removed. 

As Figure 4.30 displays there was no increased service life for bolts that contained the 

inhibitor additive over the non-inhibiting additive, with both data sets similar. The thin 

monomolecular protective layer that forms on the strand once the grout is applied would 

be quickly washed away once the grout is removed from the strand. Following this no 

more of the protective layer would be formed. 

 

Additionally it was found that 25% (three samples out of twelve) of the black thread bar 

tested with the MCI additive had slippage at the element/grout interface during testing. 

This is compared with none of the black or galvanised thread bar (twenty four samples 
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in total) experiencing the same problem. While not exhaustive the laboratory evidence 

from this experiment points towards some problems with the overall strength of the MCI 

additive grout mix. 
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Figure 4.30 Comparison of all strand results between the non-inhibitor and inhibitor 

grout mixes (0.5m embedment length). 

 

The results have shown that corrosion detrimentally affects the load bearing capacity of 

the strand; however, the rate at which corrosion damage occurs and hence the timing of 

failure is a product of the environmental conditions. These conditions, kept as constant 

as possible and periodically monitored simulate the conditions of the various mines. A 

summary of all the strand results by corrosion chamber, shown in Figure 4.31, illustrates 

the tendency for failures to occur during similar time periods for specimens from the 

same corrosion chamber. This implies that the different environmental conditions in 

each chamber affect the rate of corrosion differently and therefore failure times. 

 

Comparing the expected service life of the entire cable strand samples in the various 

chamber environments a trend is observed from the most corrosive to the least corrosive 
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(see Figure 4.32). The most corrosive environment is from the Enterprise chamber and 

the least corrosive the Argo chamber. The minimum service life for each chamber is 552 

and 741 days respectively. From Figure 4.32 estimates can be made as to the minimum 

and maximum expected life of cable strand found in similar environments to those 

described earlier in this chapter in Tables 4.2 and 4.3. 
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Figure 4.31 Summary of strand results by corrosion chamber (0.5m embedment length). 
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Figure 4.32 The expected service life of cable strand in the corrosion chamber 

environments. 

 

4.3.5 Discussion of Results 

For the results of the cable strand experiment to be applicable to the underground mining 

environment a number of limitations needs to be placed on the data. Firstly, groundwater 

needs to be present in the rock mass and there has to be a probability that either cracking 

of the grout column has occurred or grout encapsulation is poor. As groundwater flows 

along dilating joints the chances of this are increased. Corrosion will only occur once the 

groundwater can interact directly with the strand, with significant corrosion only 

beginning once a greater than 2 mm crack width is achieved. Once significant corrosion 

damage has commenced the information presented in Figure 4.32 can be used to 

estimate the expected service life of the cable bolt reinforcement. The expected service 

life is defined as having a capacity of less than 17.5 tonnes. As this situation essentially 

leaves the steel itself as the last line of defence the use of a barrier system on the steel, 

such as a metallic or epoxy coating is required to increase the service life. Inhibitors 

within the grout are proved to be ineffectual in preventing or slowing the rate of 

corrosion. 
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The occurrence and extent of cracking of the grout column for well encapsulated thread 

bar reinforcement is considerably less than for cable strand. This is due to its lower 

elongation potential and strong bonding at the element/grout interface. Additionally, the 

higher volume of steel compared to the surface area make thread bar reinforcement more 

corrosion resistant than cable strand. Despite only very small cracks occurring in most 

samples some corrosion of the bar was observed but at a rate that is considerably less 

than if the crack width is greater than 2 mm. Even when the bar is fully exposed to the 

environment the corrosion damage is comparably less than for the high tension steel 

used for the cable strand. 

 

 

4.4 Testing of the Swellex bolt 

Installation of the Swellex bolt requires high pressure water being used for the expansion 

of the element as shown in Figure 4.33. It is inevitable that some water will remain 

inside the bolt after inflation. Furthermore, the inflation hole could also be covered by 

ground support such as shotcrete, trapping water within the bolt. Internal corrosion may 

be an issue due to this water and has been a matter of investigations. Empirical 

calculations by Korrosionsinstitutet (2002b) based on the available oxygen in the water 

and air within the bolt concluded that the total internal uniform corrosion will be less 

than 15 μm after 50 years. However, no physical trials have been conducted and the 

empirical calculations do not investigate any possible changes in the water chemistry, 

primarily the pH. Lowering of the pH would lead to acidic conditions and corrosion may 

occur regardless of the dissolved oxygen concentration. 
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Figure 4.33 Longitudinal and cross sectional view of Swellex bolt during installation 

(Villaescusa, Thompson & Windsor 2006). 

 

4.4.1 Methodology 

A total of eighteen, one metre long standard Swellex bolts, were transported to Leinster 

Nickel Operations where they were expanded using a pneumatic Swellex pump. The 

expansion holes of all samples were sealed and the bolts transported to the corrosion 

chambers in Kalgoorlie. The bolts were placed within the chambers to maintain a 

constant atmosphere but did not interact with any water other than the residual water 

inside the bolts. Three different scenarios were examined: 

1. Following expansion, the water is allowed to drain freely from the expansion 

hole. 

2. Following bolt inflation the expansion hole is covered preventing any water 

egress. This is comparable to applying sprayed ground support immediately after 

reinforcement installation. 

3. Following expansion water is allowed to drain freely for a period of two weeks 

before the expansion hole is covered. This is analogous to the application of 

sprayed ground support some time after initial reinforcement installation. 
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The bolts were placed within a corrosion chamber, which maintained a constant 

temperature and humidity of 30°C and 90% respectively. Three elements for each 

scenario were examined after 3 and 6 months. 

 

Examination of the elements involved removal of the brushing head and upper brushing 

head using a drop saw, leaving the 2 mm thick, 0.9 m long element, which was allowed 

to dry. The residual water for each element was collected and analysed using a portable 

TPS water analyser for dissolved oxygen, temperature, TDS and pH. An initial visual 

examination of each bolt was conducted and the level of corrosion recorded. Each bolt 

was then separated in half using a plasma cutter and cleaned of corrosion products. If 

uniform or pitting corrosion were present the depth was measured using a pit and crack 

depth gauge and the rate of corrosion calculated. 

 

4.4.2 Results 

Complete drainage of the residual water through the expansion hole did not occur during 

the first three months despite the elements being placed at favourable angles for water 

egress. Approximately 10 to 40% of the water drained initially. Complete drainage of 

the water did not occur until after six months. Analysis of the water chemistry, displayed 

in Table 4.10, shows a reduction in the dissolved oxygen content of the residual waters. 

The original measurements of 4.21 mg/l have decreased to between 0.15-0.36 mg/l after 

three months and 0.0-0.17 mg/l after six months with the lowest readings from the 

undrained samples. Similar TDS and temperatures are seen with increases in the pH 

from neutral to moderately basic levels. 

 

Visual assessments of the Swellex bolts revealed only light uniform corrosion with no 

evidence of pitting for all specimens regardless if undrained or left draining. A typical 

section of the Swellex bolt is shown in Figure 4.34. No measurements were able to be 

taken of the uniform corrosion due to its minor occurrence. 
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Table 4.10 Changes in the chemistry of the residual water. 

Time 
(days) 

Scenario Dissolved Oxygen 
(mg/l) 

TDS (ppm) pH Temperature 
(°C) 

Original  4.21 1,202 6.04 23.1 
97 days Free draining 0.36 1,400 9.31 24.5 
97 days Undrained 0.15 1,242 9.09 25.1 
97 days Partially drained 0.31 1,260 8.77 25.1 
189 days Free draining - - - - 
189 days Undrained 0.00 1126 7.84 27.8 
189 days Partially drained 0.17 1361 8.61 27.1 

 

 
Figure 4.34 Internal condition of the Swellex bolt after 97 days. 

 

4.4.3 Discussion of Results 

Corrosion on the internal surface of Swellex bolts due to the residual water from the 

installation expansion is limited by the dissolved oxygen. The dissolved oxygen is 

readily consumed in the corrosion process, thus over time the rate of corrosion will 

reduce proportionally. After 97 days only minor corrosion has taken place and 96% of 

dissolved oxygen has been consumed if the element is not allowed to drain with 91% 

being used if the expansion hole is unobstructed. After 189 days 100% of the oxygen 

had been consumed in the undrained samples. Some diffusion of oxygen is expected 

through the expansion hole if it is open replenishing the dissolved oxygen in the residual 

waters. 

 

As the residual waters show no signs of acidity, it can be concluded that the dissolved 

oxygen controls the amount of corrosion that will take place inside the bolt. Physical 

measurements of corrosion were not able to be taken due to the small occurrence; 
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however, empirical calculations can be computed that provide estimates to the amount of 

corrosion that has, and will continue to take place. The estimates are shown in Table 

4.11 with the full calculations and assumptions in Appendix B. 

 

If the bolt is completely filled with water and the expansion hole blocked, thus not 

allowing water to egress then the expected depth of uniform corrosion is 0.02 µm. If 

water is allowed to drain and replaced by approximately 10-40% by air before sealing of 

the expansion hole the depth of corrosion will be 81 µm. If the expansion is not blocked 

and the water does not drain due to an unfavourable orientation then oxygen from the 

atmosphere will diffuse into the residual water and a continuing rate of corrosion of 0.13 

µm/year will take place. 

 

The depths of calculated corrosion damage are extremely low compared to the 2 mm 

nominal thickness of the Swellex bolt. In the case of the unfavourably angled free 

draining example following 10 years of installation life there will be an average loss of 

steel of 1.32 µm (0.00132 mm), which is equivalent to 0.1% mass loss of steel. The 

empirical calculations are supported by the visual evidence, which observed only very 

minor surface corrosion. It can be concluded therefore that the presence of residual 

water in the Swellex bolt from installation expansion produces only minor amounts of 

corrosion and does not affect the load bearing capacity of the element. 

 
Table 4.11 Calculations of the depth of corrosion for the three scenarios. 

Scenario Calculated depth of uniform 
corrosion from residual water 

and air 
(µm) 

Calculated average corrosion 
rate due to diffusion of oxygen 

from atmosphere 
(µm/year) 

Unfavourable angle for draining 0.02 0.13 
Undrained and sealed 0.02 - 

Partially drained and sealed 0.81 - 
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4.5 Testing of cable bolt barrel and wedge anchors 

Corrosion of barrel and wedge anchors and the consequences for the entire cable bolt 

performance is poorly understood, despite the common use of cable bolts in Australian 

underground mines since the 1970s. The use of barrel and wedge anchors to restrain 

plates, straps and mesh in cable bolt reinforcing applications commenced in the early 

1980s in Australian mines (Thompson 2004b). Recent developments in cable bolt design 

have meant an increased reliance on anchors to be serviceable for long periods of time, 

especially for applications where the strand is decoupled from the cement grout (Garford 

Ground Support Systems 2002; Ortlepp et al. 2005). 

 

Anchor failures after short time durations and under low loads have been observed in 

several underground mines in the Eastern Goldfields of Western Australia (e.g. Figure 

4.35). Failure is often characterised by the barrel and wedge remaining intact after being 

found on the floors of drives with no evidence of strand rupture. In an attempt to better 

understand the behaviour of cable bolt anchors, primarily for yielding cable bolts, 

various barrel and wedge anchor configurations were placed within the Argo corrosion 

chamber. Laboratory pull tests were used to determine the force-displacement response 

and the influence corrosion has on the load bearing capacity of the anchors. 

 

 
Figure 4.35 Anchors with strand receded compared with original position in a WA mine 

(Thompson 2004b). 
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4.5.1 Barrel and wedge anchor systems 

Two basic barrel and wedge anchor configurations are presently used in the Australian 

mining industry. The anchors incorporate either a flat ended barrel to be used with a flat 

plate or a hemispherical ended barrel to be used with a domed plate. These barrels are 

used with either two-part or three-part wedges. In the tests described in this 

investigation, two-part wedges were used with the flat ended barrels and three-part 

wedges were used with the hemispherical based barrels. These anchors are shown in 

Figure 4.36. The three-part wedge and hemispherical anchor is currently used with the 

yielding cable bolt. 

 

Both anchors comprise 45 mm long, 42 mm diameter, hardened steel barrels. The 

hardened steel wedge has sharp teeth formed at the inner surface that makes contact with 

the strand. The inner taper angle of the barrel and the outer taper angle of the wedge are 

approximately equal to 7° (Thompson 2004b). 

 

The three-part wedge is used on strand to ensure a better fit around the circumference of 

its non-prismatic section, while the two-part wedge was originally designed to be used 

with single wire. However, if there is compliance with all other design rules for wedges, 

then a change from the three-part wedge to the two-part wedge is acceptable. Both 

wedge variants include a rubber ‘O’ ring or steel circlip that control wedge alignment to 

prevent ‘stepping’ of the wedges (Windsor 2004). 

 

The process of anchor installation involves pulling the strand while pushing the wedge 

along the strand and the barrel against the bearing plate surface. Tension is developed in 

the decoupled length of strand. After the pulling force is released, the strand pulls the 

wedge into the conical recess and forces the wedge teeth to bite into, and clamp onto, the 

strand outer wires (Windsor 2004), (Thompson & Windsor 1995). At the same time, 

tension in the strand reduces. 
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There are a range of plates available commercially for use with cable bolts. For this 

investigation, a 15 mm thick, flat, steel plate with a central hole was selected for the 

testing, as alignment was not an issue and it would be unlikely to fail during testing. 

 

 
Figure 4.36 Flat end anchor and hemispherical ended anchor. 

 

4.5.2 Methodology 

The main component under investigation was the hemispherical barrel and three-part 

wedge anchor installed in conjunction with compact strand. However, the opportunity 

was taken to concurrently test a number of other anchors commonly used with either 

compact or plain strand. 

 

In addition, a number of corrosion protection methods were trialled. The methods 

included galvanising of the barrel and three simple and commonly found barrier 

corrosion inhibitors; grease, bitumen and wax. Some tests were conducted with 

galvanised strand. The major focus of the testing was to determine the effectiveness of 

the various corrosion protection methods for the hemispherical barrel and three-part 

wedge used with compact strand. Table 4.12 is a summary of the test combinations. 
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Table 4.12 Tested combinations of barrel and wedge anchors 

Barrel and Wedge Anchor Strand Coating 
Hemispherical 3-part compact none 
Hemispherical 3-part compact grease 
Hemispherical 3-part compact bitumen 
Hemispherical 3-part compact wax 
Hemispherical 3-part plain none 
Hemispherical 3-part galvanised plain none 
Hemispherical 3-part plain galvanised 

Flat 2-part compact none 
Flat 2-part plain none 

 

Figure 4.37 is a schematic long-section representation of the testing system used. The 

split pipe consists of two galvanised, 68 mm internal diameter, 500 mm lengths that 

have been temporarily welded together at the split to simulate a geological discontinuity 

(see Page 100). The strand was encapsulated with cement grout within the pipe. In this 

case, cable bolt “bulbs” were located in the anchoring end. The bulbs were needed to 

ensure there was no slippage of the strand during testing. A 0.35 water/cement ratio 

grout was used for encapsulation. One of the 500 mm sections was not grouted and as an 

extra measure, decoupled to allow for tensioning of the anchor (see Figure 4.37). 

 

Following a curing time of 7 days, the plate and barrel and wedge anchors were installed 

and the system loaded to 8 tonnes (~80kN) using a hydraulic jack. Note that the actual 

strand tension is less than this value. Corrosion inhibitors were then applied to the 

appropriate samples. The majority of samples were placed in the Argo Mine corrosion 

chamber with the remainder being tested to provide a non-corroded reference test. 
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Figure 4.37 Schematic representation of split pipe testing system. 
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Testing of the various barrel and wedge anchors was conducted immediately after initial 

anchor installation and at 91 days, 218 days and 297 days of exposure to the conditions 

in the corrosion chambers. Testing involved subjecting the samples to tension loading 

provided by the hydraulic Avery machine located in the Rock Mechanics Laboratory at 

the WA School of Mines (see Figure 4.38). Three tests were conducted for each of the 

combinations summarised in Table 4.12. 

 

 
Figure 4.38 Laboratory testing of the barrel and wedge anchors. 

 

The split on the pipe was initially pulled apart. Subsequent load was then applied onto 

the steel plate and barrel/wedge and wedge/strand interfaces. A maximum force of 200 

kN was applied. Load-displacement data were recorded for each test along with the 

wedge movement. The severity of corrosion on the external anchor was recorded. 

Following the completion of each test the samples were cut to enable examination of the 

conditions of the internal sections of the anchors. 

 

Discontinuity 
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4.5.3 Results 

The initial testing of the non-corroded specimens was completed with all tests being 

taken to 200 kN. This provides a basis with which to compare the subsequent tests that 

had undergone some degree of corrosion. All testing data are summarised in Table 4.13. 

 
Table 4.13 Summary of test results 

Barrel and Wedge Anchor Combination Failure Load 
(kN) 

Anchor Strand Coating 

Initial 
Failure 

Age 
(months) 

Failure Mode 
Min Max 

Hemispherical 3-part compact none 7 Wedge/strand slip 22 111 
Hemispherical 3-part compact grease 10 Wedge/strand slip 27 27 
Hemispherical 3-part compact bitumen No failure    
Hemispherical 3-part compact wax No failure    
Hemispherical 3-part plain none No failure    
Hemispherical 3-part  galvanised none No failure    
Hemispherical 3-part  plain galvanised 3 Wedge/strand slip 21 47 

Flat 2-part  compact none No failure    
Flat 2-part plain none No failure    

 

The hemispherical barrel and three-part wedge with compact strand shown in Figure 

4.39 experienced failure in two of the three samples after 218 days and one sample after 

297 days. Failure occurred at the wedge/strand interface with the strand pulling through 

the anchor and was associated with small wedge movement relative to the barrel. 

Significantly, failure took place at loads ranging from 22 kN to 111 kN that are 

significantly lower than the strand force capacity of 250kN. Figure 4.40 shows the load-

displacement responses for typical failed and non-failed anchors. 

 

  
Figure 4.39 Hemispherical barrel and three-part wedge anchor with compact strand 

before and after placement in corrosion chambers. 
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Figure 4.40 Typical load-displacement plot for hemispherical barrel and three part 

wedge anchor, after 10 months in corrosion chamber. 

 

The internal section of the failed barrel and wedge anchor shown in Figure 4.41 

displayed a build up of corrosion products on the internal surface of the barrel together 

with shearing of the wedge teeth. Anchors that perform properly displayed notably less 

corrosion accumulation (e.g. Figure 4.42). 

 

  
Figure 4.41 Internal condition of failed barrel and three part wedge anchor. Note the 

corrosion on the barrel surface and the shearing of the wedge teeth. 
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Figure 4.42 Internal condition of barrel and three-part wedge anchor that did not fail 

after 297 days in corrosion chamber. 

 

Anchors that were coated with grease, wax or bitumen had significantly fewer instances 

of failure. Of the three inhibitors used only the grease coated anchor failed once after 

297 days. Examination of the sample following testing indicated much higher levels of 

corrosion on the internal barrel surface than the non-failed counterparts. 

 

The bitumen coating (see Figure 4.43) performed best at preventing corrosion occurring 

over the entire anchor. Specifically, corrosion on the critical internal barrel/external 

wedge surface was inhibited. The viscous nature of the coating does not appear to 

detrimentally influence the load bearing capacity of the anchor. 

 

The absence of corrosion products on the non-failed samples strongly suggests that 

corrosion is responsible for failure. Corrosion products on the internal surface of the 

barrel increase the frictional resistance at the barrel/wedge interface and this prevents 

sliding of the wedge relative to the barrel. This in turn prevents the wedge from gripping 

the strand. That is, the increase in normal force that results from wedge slip does not 

occur and this means that load must be transferred by the shear resistance of the wedge 

teeth. This area loaded in shear is very small and the result is shear failure of the teeth. 

This allows the strand to slip at loads significantly less than the design capacity 

associated with the tensile strength of the strand. 
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Figure 4.43 Hemispherical barrel and three-part wedge with compact strand, bitumen 

coating, before and after placement in corrosion chamber. 

 

The hemispherical barrel and three-part wedge with black or galvanised plain strand 

showed no failure of the barrel and wedge anchors with either strand type. Examination 

of the anchor indicated minimal amounts of internal corrosion for both combinations. 

The low levels of observed corrosion with the plain strand combinations compared with 

the compact strand implies that the modified geometry of the compact strand does not 

allow for a “tight” fit between the wedge and barrel and wedge and strand. This permits 

higher levels of corrosion to occur on the internal surfaces of the barrel. 

 

The galvanised hemispherical barrel and three-part wedge with plain strand anchor 

consists of the barrel galvanised to a thickness of 75 µm with the three-part wedge 

remaining uncoated. The galvanised anchor performed extremely poorly in the testing, 

with failure of one sample in the 91 day test and failure of all samples in the 218 and 297 

day tests at very low loads (less than 50 kN). Figure 4.44 shows a load-displacement 

response for typical failed and non-failed anchor. Inspection of the anchors revealed that 

steel corrosion of the anchor was low, but oxidising of the galvanising was noted by the 

presence of zinc carbonate on the barrel surface (see Figure 4.45). 

 

The effectiveness of zinc galvanising to protect steel from corrosion is well known and 

documented. However, zinc metal is considerably softer and provides a rougher surface 
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than the steel it coats. This has the effect of increasing the friction at the barrel/wedge 

interface due to the steel wedge digging into the galvanising. This prevents wedge 

movement and subsequently leads to shearing of the wedge teeth and strand slippage. It 

appears minor levels of zinc corrosion may further increase the problem. 
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Figure 4.44 Typical load displacement plot for galvanised hemispherical barrel and 

three-part wedge after 91 days in corrosion chamber. 

 

 
Figure 4.45 Internal condition of galvanised barrel and wedge after testing. 
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There was no failure of the anchors that used two-part wedges for either the compact or 

plain strand. This is contrary to previous findings elsewhere. Reported test results by 

(Thompson 2004b) showed that anchors with two-part wedges failed by slipping relative 

to the strand after 6 months of exposure to mildly corrosive conditions 

 

Typical load-displacement responses from this investigation after 297 days for the two-

part wedges are shown in Figure 4.46. The anchors with two-part wedges produced 

stiffer responses and less wedge movement than the anchors with three-part wedges. 

This can be attributed to the conditions that resulted immediately after anchor 

installation due to the anchor configuration and the equipment used. The influence of the 

strand on the susceptibility of the anchor to corrosion was again observed with the plain 

strand combinations displaying less corrosion on the internal surface of the barrel than 

the compact strand combinations. 
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Figure 4.46 Typical load-displacement responses for barrels and two part wedge 

following 297 days of exposure in a corrosion chamber. 
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4.5.4 Discussion of results 

The long-term performance of a cable bolt anchor in a corrosive environment is 

controlled by the frictional resistance between the internal surface of the barrel and the 

outside of the wedge. Corrosion and galvanising of this surface increase the frictional 

resistance restricting wedge slip and minimising gripping of the strand, which leads 

ultimately to premature anchor failure, often at low loads. 

 

Another factor that influences the ability of the wedge to slide relative to the barrel is the 

inherent roughness of the contacting surfaces. The smoothness of the inner surface of the 

barrel and the outer surface of the wedge may vary between batches from the different 

suppliers. In some instances, the roughness from machining is clearly visible and easily 

felt by running one’s finger over the surfaces. 

 

Figure 15 summarises the measured wedge movements for each of the 297 day tests. 

Anchor failure can clearly be seen to correlate with minimal wedge movement. The 

movement is initially associated with the teeth embedding in the outer wires of the 

strand and then, secondly, mostly the barrel expanding radially outwards (Thompson 

2004b). The lowest amount of wedge slip without anchor failure occurred with the two-

part wedges. This is consistent with previous comments made in regard to installation 

and their stiffer load-displacement responses. 
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Figure 4.47 Total wedge movement of anchors after 297 days in the corrosion chamber. 

 

The experimental results presented and also in Thompson (2004b) confirm that failure of 

anchors by sliding relative to the strand can occur when slip at the barrel/wedge 

interface is inhibited and the wedge teeth shear off. This mechanism is also reported by 

DSI (2006a). An essential feature of a barrel and wedge anchor is that sliding at the 

barrel/wedge interface is maintained for the life of the anchor so that the wedge teeth 

will embed to their full depth into the strand outer wires in response to rock mass 

movements and the radial force will increase to ensure that the resistance to sliding at 

the wedge/strand interface remains greater than the strand tension. 

 

The current anchor assembly employed with a commercially available yielding cable 

bolt has a predicted anchor life of less than 218 days in a hypersaline groundwater 

affected environment. The service life can be extended to greater than 297 days by the 

application of simple barrier corrosion inhibitors such as bitumen. The anchors with 

two-part wedges demonstrate a greater resistance to corrosion than those with three-part 

wedges. In addition, they also showed a stiffer response when load is applied. The two-

part wedges have fewer pathways for the groundwater to infiltrate the internal section of 
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the barrel, as well as having a closer fit at the barrel/wedge interface. Those anchors 

tested in combination with plain strand display less corrosion on the internal section of 

the anchor than the anchors used with compact strand. The modified geometry of the 

compact strand appears to allow for greater corrosion to occur. This was observed with 

both the three and two part wedges. 

 

Experience from this testing has also shown that the external condition of the barrel does 

not give a conclusive indication to the amount of internal corrosion of the anchor. 

Therefore, a visual assessment system cannot be used to determine the extent in which 

corrosion is influencing the capacity of an anchor. 

 

Finally, and most importantly, it is critical in service that the ability of the wedge to slide 

relative to the barrel is maintained so that more tension can develop in the reinforcement 

to resist rock movement. Galvanising of the anchor is not recommended due to the soft 

zinc galvanising coating increasing the sliding resistance at the barrel/wedge interface. 

This prevents the barrel and wedge anchor from being effective. It is therefore strongly 

recommended that a high quality and long-lived lubricant such as grease is placed at the 

barrel/wedge interface during installation to provide a low friction interface that also 

assists in corrosion protection. 

 

 

4.6 Discussion and Conclusions 

The development of the corrosion chambers provided a resource in which long-term, 

experimentally controlled testing could be conducted on various reinforcement and 

support in an environment that closely simulates the underground hard rock 

environment. By conducting the experiments over similar time frames to what occurs in 

working mines the data collected is directly relevant and no need for interpretation was 

necessary. 
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For cement grouted elements, cracking of the grout column provides a pathway for 

groundwater to reach the exposed steel. Once this occurs corrosion develops and can 

lead to failure of the element below design requirements. This mechanism is thought to 

be the most likely cause of failure of cable strand due to corrosion. A minimum and 

maximum service life has been established for the strand for the six simulated 

underground environments. Service life ranges from 552 to 951 days depending on the 

corrosiveness of the environment. Service life is the time taken from the initial 

origination of a crack greater than 2 mm width in the grout column to failure of the 

strand at less than 17.5 tonnes. Thread bar was found to be less susceptible to this 

mechanism of failure due to the experiment’s inability to form sufficient cracks in the 

grout column. Grout additives that inhibit corrosion were found not to work once a crack 

had been formed. To expand the service life of the elements metallic or epoxy coatings 

are needed. 

 

Water that remains in the internal section of the Swellex box from expansion during 

installation does not pose a problem in terms of corrosion. The oxygen that is available 

inside the bolt is quickly consumed and only minor corrosion damage occurs. Following 

this the groundwater is largely inert and either no further corrosion occurs. 

 

Barrel and wedge anchors are particularly vulnerable to corrosion at the barrel/wedge 

interface. Small amounts of corrosion products in this area drastically reduce the ability 

of the anchor to perform and failure occurs by slippage of the strand through the anchor 

at loads much less than design and as early as 218 days following installation. A number 

of basic barrier corrosion protection methods can increase the expected life with a 

bitumen coating performing best. Galvanising of the anchor is not recommended. 

 

The results presented in this Chapter have been achieved through using a simulated 

underground environment. To confirm and investigate further the corrosion processes 

and mechanisms affecting reinforcement in underground mines examination of the 

reinforcement elements in-situ is required. This can only be achieved through overcoring 

of rock reinforcement. 
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CHAPTER 5 OVERCORING OF ROCK REINFORCEMENT IN 

UNDERGROUND MINES 

 

5.1 Introduction 

To attain a quality understanding of the corrosion processes and mechanisms affecting 

rock reinforcement in the underground hard rock environment it is necessary to examine 

elements in-situ. This can only be adequately achieved through recovery of the installed 

reinforcement and surrounding rock mass by overcoring. This provides an excellent 

opportunity to not only fully examine the reinforcement but to also conduct laboratory 

testing to ascertain its load transfer properties and any changes that may have occurred 

due to corrosion damage. 

 

Overcoring of selected reinforcement was conducted at a number of Australian mine 

sites. The main focus was on friction rock stabiliser elements, the most commonly used 

reinforcement in Australia. Also investigated were hollow groutable bolts, cable bolts, 

cement grouted elements and resin grouted reinforcement. Sections 5.2 and 5.3 in this 

chapter detail the development of the overcoring rig and the laboratory testing 

procedures developed to investigate the recovered reinforcement. Laboratory testing 

included pull and push tests to determine load-displacement responses and 

measurements of the type and rate of corrosion. Overcoring was completed at the 

Kundana, Argo, Leviathan, Leinster and Olympic Dam mine sites with the location and 

environmental conditions where overcoring took place, the observations taken of the 

overcored elements, and the results from the laboratory testing is described in Sections 

5.4 to 5.7. 

 

 



Overcoring of Rock Reinforcement in Underground Mines 147

5.2 Development of the WASM Overcoring Rig 

Development of a purpose built drill rig capable of overcoring reinforcement elements 

within a production mining environment was initiated due to an overwhelming need to 

examine the bolts in-situ. The conventional pull testing programs for quality control 

(Brown 1981) can only be applied to point anchored reinforcement schemes. In many 

cases involving older reinforcement the option of pull testing is unavailable and the only 

method to determine the bolt quality is overcoring.  

 

An initial prototype was designed and developed by Ernesto Villaescusa and Lance 

Fraser at the W.A. School of Mines. A track mounted drill rig was purchased from a 

local mining company and its hydraulics and electrics were completely rebuilt. A 

stationary drill and frame were fitted to the drilling boom and trails were conducted on 

concrete blocks as shown in Figure 5.1. 
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Figure 5.1 Overcoring trials of the prototype overcoring rig. 
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Following the successful development of the prototype AVKO Drilling were approached 

to develop the prototype to industry standards. The current overcoring drill rig, shown in 

Figure 5.2, is operated by a diesel track mounted excavator. A 140 mm diameter, triple 

tube diamond drill bit is mounted onto the excavator boom, which has two hydraulic 

stabilisers fitted to minimise unwanted movement. The triple tube drill casing ensures 

that the cored sample does not rotate with the drilling bit and remains stationary. 

Therefore there is minimal core disturbance. The operating rig requires 1000V of 

electricity to operate the drill with air and water services. 

 

The WASM drill rig is a versatile overcoring system capable of drilling at any 

orientation (360 degrees) and lengths up to 3.0 m. Overcoring of in-situ bolts can be 

undertaken in the walls and backs to a collar height of 7.0m. The operation of the drill 

rig is undertaken by 360 Drilling on behalf of WASM. Safe operating procedures (JSA) 

have been developed by the 360 Drilling company and drilling operations are very quiet, 

with average set-up and penetration rates that, in competent rock masses, allow one 2.4 

m bolt to be recovered after each 12 hours of drilling.  

 

 
Figure 5.2 Overcoring drill rig. 
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Adequate recovery of the overcored elements is dependent on the straightness of the 

initial borehole, alignment of the barrel to the centre of the element and the ability to 

minimise movement of the barrel. Extensive time is taken to ensure the latter two factors 

are controlled; however, the straightness of the bolt is reliant on installation. Elements to 

be overcored were assessed for their potential recovery; this is relatively simple for 

ungrouted friction rock stabilisers, but particularly difficult for grouted bolts. 

 

Careful drilling and suitable penetration rates are chosen, so that the recovered 140mm 

diameter core undergoes minimal disturbance even in very poor rock masses that have 

been reinforced using friction stabilizers (see Figure 5.3). This not only allows the 

recovery of the element, but also provides a clear view of the surrounding rock mass and 

a better understanding of the rock bolt system/rock mass interaction. Bolt overcoring 

provides a range of information including location and frequency of geological 

discontinuities, overall rock mass conditions, bolt encapsulation, likely load transfer 

along the bolt axis and corrosion effects, if any. 

 

 
Figure 5.3 Full recovery from overcoring friction rock stabiliser collars in very poor 

rock mass. 
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5.3 Laboratory Testing of Overcored Samples 

As part of the research project, a laboratory procedure was developed to compare the 

performance of the recovered overcored bolts in terms of encapsulation quality and 

relative load transfer. Following overcoring the samples were transported to WASM 

where each overcore sample is geologically mapped to ascertain fracture frequency and 

the presence of significant structures. The core was then marked and appropriate 

sections were cut from the sample to test the load-displacement characteristics. 

 

Push tests (Aziz 2004) and pull tests are used to determine encapsulation quality and 

relative load transfer along a bolt axis. In general, a load-displacement curve provides an 

indication of stiffness, peak and residual forces as well as the displacement capacity. 

Push tests are expected to provide a different response to the pull tests. During push 

testing, the steel bar is compressed into the sample, while in pull testing the bar is tested 

in tension. An advantage of push testing is that it allows several tests to be carried out 

along a single bolt axis. A disadvantage is that a push test is likely to over-estimate the 

stiffness and peak/residual loads. However, provided the push testing is carried out for 

similar embedment lengths, the results can be used as a relative measure of load transfer 

along the bolt axis. 

 

The typical embedment length used for push/pull tests is 300 mm. The total sample 

length required for a push test is 400 mm (see Figure 5.4); thus, for a 2.4 m long bolt it is 

possible to select up to 5 samples for push testing. This allows the variability of 

encapsulation and relative load transfer along the bolt axis to be well established. On the 

other hand, a typical pull test requires a 0.7 metre long sample; a typical sample will 

have a 300 mm rock-element portion and a 400 mm length of steel exposed (see Figure 

5.4). Consequently, for a 2.4 m long bolt only two samples can be selected for testing. 

This may create a problem if the load transfer variability along the bolt axis needs to be 

determined.  
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Figure 5.4 Samples being prepared for testing. 

 

As described earlier, the relative load carrying capacity of the overcored reinforcement 

elements was mostly determined using short embedment lengths (300 mm) containing 

the elements and the surrounding rock mass. Some of the rock was removed leaving a 

section of the element partly exposed. The remaining rock/element section was then 

confined in a metal jacket to simulate the radial confinement provided by the rock mass 

in situ. The exposed section of the element was then pushed or pulled with a plate used 

to restrict the movement of the rock (see Figure 5.5). This was done in the rock 

mechanics laboratory at the WA School of Mines using the hydraulic Avery machine. 

The load required to push (or pull) the elements through the rock and its displacement 

were digitally recorded and the elements were then inspected and photographed 

following testing (see Figure 5.6).  

 

Push test Pull test 
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Figure 5.5 Testing of overcored samples to determine relative load transfer. 

 

  
Figure 5.6 Two reinforcement elements following push (left) and pull (right) testing 

from 300 mm embedment length. 

 

Following testing the rock was removed from around the samples and the steel elements 

were examined for corrosion damage. If corrosion was extensive the elements were 

cleaned of corrosion products using an acidic solution to ASTM Standard G1-90 (1999). 

This hydrochloric acid solution uses chemical inhibitors to ensure that only the iron 

oxides are dissolved, leaving non-corroded steel. The removal of the corrosion products 

it enables a clearer view of the extent of corrosion damage. Measurements of pitting 

depth and reduction in steel thickness were made using callipers and a pit and crack 

depth gauge (see Figure 5.7). The elements were analysed in 0.5 m sections along the 

bolt axis. 

 

Push test Pull test 
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Figure 5.7 Measurement of maximum pit depth along bolt axis. 

 

For friction rock stabilisers the maximum tensile strength of the element was tested by 

welding two short lengths of solid bar on either end of the friction bolt, which are held 

tight by jaws in the Avery machine and pulled till failure (see Figure 5.8). The load and 

displacement are recorded for each test. A thorough examination around the locality of 

the failure is undertaken to assess if corrosion influenced the failure. 

 

   
Figure 5.8 Friction bolt is prepared for tensile strength testing (left), and tensile testing 

of friction bolt (right). 
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5.4 Overcoring at Kundana Mine 

Fieldwork conducted at the Kundana Mine and described in Section 3.3.6 identified 

similar environmental conditions along the Strzelecki Decline. The decline was initially 

developed in 1995 and has been continuously extended at a constant rate in the 

following six years. Rock reinforcement consists of 47 mm diameter, galvanised friction 

rock stabilisers (FRS) installed along its entire length. This provided a unique 

opportunity to overcore selected FRS from a similar environment with installation ages 

that varied from four to ten years. This approach gives the ability to determine what 

environmental factors predominantly affect the rate of corrosion, how the corrosion 

progresses over time and the impact of corrosion on the load bearing capacity of the 

bolt. 

 

Overcoring was conducted at or near the decline at four locations shown in Figure 5.9. 

These were the 6112 level, the 6039 level, the 5926 level and the 5824 level. The 

environmental conditions at each site were similar to a hypersaline, near neutral 

groundwater with a low flow rate. Inspection of the visible ground support at each 

location with a borehole camera showed significant corrosion at 6112, 6339 and 5926 

level and lower amounts at the 5824. Two bolts from each location were recovered.  
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Figure 5.9 Schematic diagram of the Strzelecki Decline with overcore locations marked 

by grey arrows. 

 

5.4.1 Overcored samples from Kundana Mine 

A total of eight elements were recovered all with lengths greater then 1.85 m from the 

original 2.40 m (see Table 5.1). The host rock in all cases was a highly competent, 

blocky volcanic sediment with a joint spacing averaged around 250 – 300 mm with the 

majority of joints mapped open to some extent, although generally no more than 2 mm. 

The high stress conditions near the excavation boundary would have created a degree of 

crushing. This combined with unloading, experienced when the rock is overcored, 

allows the joints to open. 

 

 

 

 



Overcoring of Rock Reinforcement in Underground Mines 156

Table 5.1 Recovery of overcored elements from Kundana Mine 

Bolt ID Recovered Length 
(m) 

Location Joint spacing 
(mm) 

6112 -1 2.03 Wall 250 
6112 -2 2.30 Wall 250 
6039 -3 2.07 Wall 285 
6039-4 2.40 Wall 250 
5926-5 2.40 Wall 250 
5926-6 1.85 Wall 250 
5828-7 2.03 Wall 285 
5828-8 2.24 Wall 400 

 

5.4.2 Friction rock stabiliser corrosion damage classification 

A corrosion damage classification for galvanised friction bolts was developed to better 

quantify the amount and severity of corrosion. It has been applied to describe the 

corrosion of all overcored FRS samples. A summary is provided in Table 5.2 with a 

more complete description including examples provided in Appendix C. 

 

This classification only describes the level of corrosion experienced by the bolt and does 

not indicate the corrosivity of the environmental conditions acting on the bolt. Time, 

which is integral to the corrosion process, must be taken into account to appropriately 

understand the relationship between the level of corrosion and the corrosivity of the 

environment. A severely corroded bolt may have been in a moderately corrosive 

environment for a long time period or conversely in a severe corrosive environment for a 

short time. 

 
Table 5.2 Corrosion classification for galvanised friction bolts. 

Corrosion 
Classification 

Corrosion Description Average pit 
depth (mm) 

Non-Corroded 
(NC) 

No evidence or only minor evidence of corrosion products 0.0 

Light 
Corrosion (LC) 

Minor uniform surface corrosion of zinc and steel. No evidence of 
pitting 

0.0 

Moderate 
Corrosion (MC) 

Uniform surface corrosion evident of zinc and steel. Minor areas of 
severe corrosion and pitting 

0.0-1.0 

High 
Corrosion (HC) 

Uniform Surface corrosion covers the majority of 
support/reinforcement. Areas of severe corrosion and pitting common 

1.0-2.0 

Severe 
Corrosion (SC) 

Severe uniform surface corrosion covers the majority of 
support/reinforcement. Pitting is very common 

>2.0 

Extreme 
Corrosion (EC) 

Uniform surface corrosion has greatly reduced the original thickness. 
Pitting has created large holes in the steel 

steel thickness 
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5.4.3 Load-displacement and tensile strength results 

A total of eleven pull tests were conducted with embedment lengths ranging from 285 

mm to 506 mm. A summary of results is shown in Table 5.3. The majority of samples 

were tested from the collar region with only two, the 4B and 5B, being tested near the 

toe of the bolt. The embedment lengths varied as they were cut in preference to existing 

geological discontinuities rather than the standard 300 mm described earlier. The peak 

frictional load achieved varied from 7.0 kN at 366 mm embedment length to 51.9 kN for 

498 mm embedment length. In all cases the mode of failure was involved slipping of the 

element along the element/rock interface as shown in Figure 5.10. 

 
Table 5.3 Summary of test results from the Kundana Mine overcoring. 

Bolt ID Bolt 
Age 
(yrs) 

Embedment 
Length (mm) 

Peak 
Load 
(kN) 

Load at 5 mm 
displacement 

Residual load (kN) 

Tensile 
Strength 

(kN) 

Corrosion 

6112-1A 10 325 49.0 46.5 139.6 Moderate 
6112-2A 10 431 24.1 23.1 128.0 High 
6039-3A 8 485 12.8 12.2 116.6 High 
6039-4A 8 366 7.0 6.7 172.0 High 
6039-4B 8 285 11.8 11.3 152.4 High 
5926-5A 6 498 51.9 49.4 186.2 Moderate 
5926-5B 6 506 44.0 42.0 188.2 Moderate 
5926-6A 6 410 18.6 17.6 187.6 Moderate 
5828-7A 4 310 24.6 23.7 130.8 High 
5828-8B 4 436 19.3 18.7 158.8 Severe 

 

 

 
Figure 5.10 Slippage of the FRS at the element/rock interface. 
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Figures 5.11 and 5.12 display the load-displacement graphs over embedment lengths 

from 250–300 mm and 400– 500 mm respectively. Figure 5.12 clearly shows a loss of 

load bearing capacity due to corrosion; the moderately corroded elements generally have 

twice the load bearing capacity as their highly and severely corroded counterparts. 
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Figure 5.11 Load displacement plot of galvanised 47 mm diameter friction bolts (250-

300 mm embedment lengths). 

 

The combined data displaying peak frictional strength over the various embedment 

lengths are shown in Figure 5.13. The peak frictional strength of the friction bolt for 

various embedment lengths decreases with increasing levels of corrosion. This is in part 

due to the corrosion products providing a plane of slip along which the friction bolt 

slides and in part due to a loss of radial confinement as steel is converted into corrosion 

products. 

 



Overcoring of Rock Reinforcement in Underground Mines 159

0

10

20

30

40

50

60

0 2 4 6 8 10 12
Displacement (mm)

Lo
ad

 (k
N

)

6112-1A

6039-3A

5926-5A

5926-5B

5926-6A
5828-8A

Corrosion Rate
Severe
High
Moderate
Light

Severe
High
Moderate
Light

Corrosion RateCorrosion Rate
Severe
High
Moderate
Light

Severe
High
Moderate
Light

Corrosion Rate

 
Figure 5.12 Load displacement plot of galvanised 47 mm diameter friction bolts (400-

500 mm embedment lengths) 
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Figure 5.13 Relationship between the peak frictional strength and the embedment length 

for galvanised 47 mm diameter friction bolts. 

Corrosion increases
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Normalising the results to a frictional capacity per metre of embedment length allows for 

comparison within this data set and with other data. Normalised results for the pull test 

data is given in Table 5.4. Values ranging from 19.2 to 150.7 kN/m with an average 65.4 

kN/m, approximately 6.7 tonnes/meter were determined. This is higher than published 

results from in-situ testing of approximately 4 – 5 tonnes/metre (Villaescusa & Wright 

1997) despite quite strong corrosion damage. As Figure 5.14 indicates, there is a 

decrease in frictional capacity with increasing levels of corrosion damage. However, a 

level of variability in these results due to the influence of borehole diameter and rock 

mass quality is evident. 

 
Table 5.4 Normalised results for pull test data from Kundana Mine. 

Bolt ID Bolt 
Age 
(yrs) 

Embedment 
Length 
(mm) 

Peak 
Load 
(kN) 

Force per 
Length 
(kN/m) 

Force per length at 5 
mm displacement 

(kN/m) 

Corrosion 

6112-1A 10 325 49.0 150.7 143.2 Moderate 
6112-2A 10 431 24.1 55.9 53.7 High 
6039-3A 8 485 12.8 26.4 24.15 High 
6039-4A 8 366 7.0 19.2 18.3 High 
6039-4B 8 285 11.8 41.5 39.8 High 
5926-5A 6 498 51.9 104.2 99.2 Moderate 
5926-5B 6 506 44.0 86.9 83.0 Moderate 
5926-6A 6 410 18.6 45.4 430 Moderate 
5828-7A 4 310 24.6 79.3 76.5 High 
5828-8B 4 436 19.3 44.2 43.0 Severe 

 

The tensile strength of the elements ranged from 116 kN to 188 kN. Manufacturer’s 

specifications indicate that the typical tensile strength for a 47 mm diameter, galvanised 

friction bolt is 180 kN (DSI 2006b). When the bolt is only moderately corroded (i.e. it 

has only undergone minor pitting corrosion) the ultimate tensile strength is relatively 

unchanged from this value. However, increases in penetration rate result in up to a 30% 

reduction of the ultimate tensile strength of the steel. Failure of the bolt almost 

exclusively originated at a pit (see Figure 5.15). 



Overcoring of Rock Reinforcement in Underground Mines 161

0

20

40

60

80

100

120

140

160

6112-
1A

5926-
5A

5926-
5B

5926-
6A

6112-
2A

6039-
3A

6039-
4A

6039-
4B

5828-
7A

5828-
8A

Fo
rc

e 
pe

r l
en

gt
h 

(k
N

/m
)

Corrosion Rate
Moderate
High
Severe
High

Corrosion Rate
Moderate
High
Severe
High

Corrosion Rate
Moderate
High
Severe
High

 
Figure 5.14 Normalised results of pull tests. 

 

 

 
Figure 5.15 Failure of friction bolt during tensile testing within pitted region. 
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5.4.4 Evaluation of damage due to corrosion and analysis of results 

Corrosion damage was observed on all overcored samples. The reliability of calculating 

the uniform corrosion rate is deemed to be poor due to the unknown original thickness of 

the bolt at the time of installation and the uneven nature of the corrosion. However, 

relative comparisons in the steel thickness of corroded bolts can be established. 

High/severely corroded bolts had a reduction in wall thickness of 7-18% compared too 

moderately and lightly corroded elements. The rates determined for the pitting corrosion 

are judged to be more precise; however, the reported results do not take into account the 

loss of the pit depth due to uniform corrosion. 

 

Corrosion is not homogeneous along a bolt axis nor is the rates the same for the internal 

and external areas of the bolt. In nearly all instances it was found that the pitting rates 

along the external area of the bolt were higher than for the internal area of the bolt at the 

corresponding section by about a factor of two. The maximum corrosion penetration 

rates for each overcored element at 0.5 m intervals are shown in Table 5.5. The pitting 

rate ranged from 0.04-0.82 mm/yr with an average of 0.21 mm/yr. The variability of 

corrosion along the bolt axis was profound and is a product of the heterogeneous nature 

of the environment; primarily controlled by the open discontinuities which provide a 

conduit for groundwater flow. Bolt 5828-7A is a key example displaying no pitting 

corrosion at the toe and collar of the bolt, but severe corrosion in the middle section. It 

was found that the older the age of the bolt, the greater the amount of corrosion. Bolts 

over eight years of age displayed an average of high to severe corrosion along their 

entire bolt axis. Bolts of four years age are on average moderately corroded with 

sections of high to severe corrosion. 

 

It is apparent that there is an increase in both the rate of uniform and pitting corrosion 

(see Figure 5.16) at the toe of the element to greater than double the rate than near the 

collar of the bolt. This is thought to be due to drying out the bolt near the collar 

interrupting the electrochemical corrosion process. The drying out occurs due to a 

combination of ventilation flow and stress or blast induced fractures allowing the 

groundwater to dissipate. 
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Higher rates of corrosion of the element within the toe or stable anchor region affect the 

element’s ability to mobilise the full reinforcing capacity of the system by decreasing the 

total available frictional resistance of the element in the area where it is most critical. 

Subsequent loss of frictional resistance in the unstable region is less of a problem due to 

lower corrosion rates which is also compensated by the presence of the faceplate. This 

may provide enough resistance to mobilise the element capacity in the unstable region. 

 
Table 5.5 Maximum penetration rates for overcored elements at 0.5m intervals along the bolt axis. 

Maximum Penetration Rate (mm/yr) 
Depth Along Bolt Axis (m) 

Bolt ID Bolt Age 
(yrs) 

Average 
Corrosion 

Description (0.0-0.5) (0.5-1.0) (1.0-1.5) (1.5-2.0) 
FB 1 10 High 0.09 0.17 0.26 0.20 
FB 2 10 High 0.06 0.07 0.20 0.16 
FB 3 8 Severe 0.25 0.32 0.44 0.44 
FB 4 8 High 0.06 0.13 0.17 0.22 
FB 5 6 Moderate 0.06 0.04 0.07 0.11 
FB 6 6 Light 0.00 0.07 0.00 NA 
FB 7 4.083 Moderate 0.00 0.23 0.82 0.00 
FB 8 4.083 High 0.20 0.40 0.33 0.04 
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Figure 5.16 Maximum penetration rates due to pitting along bolt axis for severely, 

highly and moderately corroded bolts. 
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Evidence of how open jointing results in areas of strong corrosion is provided in Figure 

5.17. Severe pitting corrosion has occurred where an open joint along which 

groundwater flowed contacted the steel element. The level of corrosion is less along the 

bolt axis distal from the joint due to smaller interaction with groundwater, especially on 

the ‘up dip’ side of the joint. Where open jointing was not present, high or severe 

corrosion of the reinforcement did not occur. Therefore, one of the main factors in the 

corrosion of rock reinforcement is the presence and persistence of open discontinuities 

in areas where groundwater is present. 

 

A direct correlation between the maximum tensile strength of the corroded friction bolt 

sections and the maximum pit depth is shown in Figure 5.18. A greater pit depth 

corresponds to more severe pitting corrosion which lowers the tensile strength of the 

element. Pitting of FRS can only reach 3 mm depth before it has corroded through the 

thickness of the steel. Following this the pits expand outwards joining up with proximal 

pits creating large sections where metal loss is complete, thus continuing the loss of 

tensile strength. This has further implications as severe pitting generally originates at or 

near open discontinuities, which often correspond to the boundary between stable and 

unstable rock regions. Thus the area of the bolt where load transfer occurs from the 

unstable to stable regions is also the area most prone to pitting corrosion. 

 

  
Figure 5.17 Open joints (left) have allowed groundwater to flow and interact with the 

steel element. The same section (right) but with the rock removed displaying severe 

pitting. 
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Figure 5.18 Relationship between maximum tensile strength and maximum pit depth. 

 

A basic chemical analysis was undertaken to determine the chemical make up of the 

corrosion products along the internal and external surfaces of a bolt. Generally steel 

corrosion products are made up of iron oxides with varying amount of other elements, 

depending of the steel grade and the environment. The analysis undertaken (see Table 

5.6) showed a higher concentration of zinc on the internal surface. This is likely a result 

of stronger corrosion along the external surface diluting the zinc content, which is 

thought to have been initially less than the internal surface due to stripping of the 

galvanising during installation. A study by Tyler (1999) into the damage of galvanising 

on friction bolts during installation found that there was an average of 33% loss in the 

external thickness of the hot dip galvanised zinc coating due to the interaction with the 

rock borehole walls. 

 
Table 5.6 Chemical analysis of corrosion products. 

Element Internal Surface External Surface 
Fe (%) 37.48 41.86 
Zn (%) 9.18 2.49 

Ca (ppm) 2,335 1,808 
Na (ppm) 9,115 9,696 
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Overcoring at Kundana Mine established that corrosion adversely affects the frictional 

capacity of friction rock stabilisers with a relationship observed between the extent of 

damage and peak frictional load. The loss of frictional resistance is due to a loss of radial 

confinement and corrosion products providing a plane of slip. The tensile strength of the 

elements was much higher than the frictional strength, with failure occurring at pits and 

a correlation between the tensile strength and the level of pitting corrosion. Corrosion 

damage was not homogenous along the bolt axis with greater damage at the external 

surface and increased corrosion towards the toe of the bolt. 

 

 

5.5 Overcoring at Argo Mine 

Fieldwork conducted at the Argo Mine and detailed in Section 3.3.1 established that 

corrosion of the main installed reinforcement, the 47 mm diameter galvanised FRS, was 

occurring as early as 6 months after installation. The aim of the overcoring was to 

evaluate the level of corrosion on the grouted and ungrouted FRS that were affected by 

hypersaline groundwater. The impact, if any, on the frictional and tensile load bearing 

capacity of the bolt was also investigated. In addition, any benefits from the corrosion 

control methods of galvanising and cement grouting were examined 

 

Overcoring was conducted at three sites, the N1 Access Drive, N3 Access Drive and the 

N12 Access Drive. These locations had reinforcement ages of 24 months, 12 months and 

6 months respectively. Grouted FRS were recovered from the backs and ungrouted FRS 

from the walls in the N1 and N3. Cement grouting of the elements had not occurred in 

the N12 at the time of overcoring limiting recovery to ungrouted FRS from the backs. 

 

The environmental conditions at each site were similar with low groundwater flow and 

strong white salt precipitation at the N1 and N3 sites. The absence of precipitation in the 

N12 is due to its more recent development. Figure 5.19 shows the environmental 

conditions at each location. Analysis of the groundwater at each site is consistent with 

those shown in Tables 2 & 3 in Section 3.3.1. Inspection of the overcoring areas 
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revealed only minor corrosion of the surface support in the N1 and N3, even when 

covered with salt crystallisation. The N12 showed no evidence of corrosion. 

 

 

 
Figure 5.19 Overcoring conditions at the N1 Access Dive (top left), N3 Access Drive 

(top right) and N12 Access Drive (below centre). 

 

5.5.1 Overcored samples from the Argo Mine 

Five bolts were recovered from the N1 Access two of which two were cement grouted, 

six from the N3 Access of which three were cement grouted, and one from the N12 

Access. The total length of recovered bolts is shown in Table 5.7. In all cases the host 

rock was the Condenser Dolerite. 

 

N1 Access N3 Access 

N12 Access
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Table 5.7 Recovery of overcored elements from Argo Mine. 

Bolt ID Recovered Length (m) Cement Grout Location Joint Spacing (mm) 
N1-1 2.40 None Wall 77 
N1-2 2.37 None Wall 82 
N1-3 1.57 Grouted Backs 83 
N1-4 1.38 None Wall 167 
N1-5 0.67 Grouted Backs 143 
N3-7 0.53 Grouted Backs 200 
N3-8 2.40 None Wall 84 
N3-9 2.27 Partially grouted Backs 117 
N3-10 2.10 None Wall 55 
N3-11 1.40 None Wall 56 
N3-12 0.60 Grouted Backs 71 
N12-6 2.40 None Backs 333 

 

 

Geological mapping of the core illustrated a highly fractured rock mass; the majority of 

samples had an average discontinuity spacing of less than 200 mm, and the jointing and 

fracturing was open. A number of highly broken shear zones were also detected. Figure 

5.20 displays the discontinuity spacing from the walls and backs. All ungrouted 

elements were recovered normal to the wall excluding the N12 samples which were 

recovered normal to the backs along with the grouted samples. The rock mass is more 

highly fractured normal to the wall than normal to the back. This is possibly due to a sub 

vertical dominant joint set(s) and/or intact rock fracturing due to stress redistribution or 

blast related fractures. 
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Figure 5.20 Graph of the average discontinuity spacing showing the differences between 

the rock mass in the walls and the backs. 

 

 

5.5.2 Load-displacement and tensile strength laboratory results 

A total of thirteen laboratory pull tests were completed with the grout quality and a 

visual assessment of the corrosion along the bolt axis documented. The results are 

summarised in Table 5.8. Four samples were prevented from being tested by the very 

broken nature of the surrounding rock mass. The embedment lengths of all tests were 

300 mm. In all cases the mode of failure involved slipping of the element along the 

element/rock interface. Tensile strength tests were conducted on a number of samples 

following the pull testing. 

 

 

 

 

 

Normal to wall Normal to backs 

Grouted FRS
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Table 5.8 Summary of test results from the Argo Mine overcoring. 

Bolt ID 
  

Bolt Age 
(years) 

Tested 
Length 

(m) 

Peak 
Load 
(kN) 

Load at 5 mm 
displacement – 
residual load 

Tensile 
Strength 

(kN) 

Cement  
Grout 

  
Corrosion 

  
N1-1A 2 0.60-0.90 10.65 8.65 222.20 - Light 
N1-1B 2 1.30-1.60 21.50 20.65 212.80 - Light 
N1-2A 2 0.65-0.95 10.80 10.05 - - Light 
N1-2B 2 1.35-1.65 13.15 10.15 181.40 - Light 
N1-3A 2 0.50-0.80 44.50 42.75 - Grouted Light 
N1-4A 2 0.20-0.50 8.40 7.29 - - Light 
N1-5 2 Not tested Insufficient recovery - Grouted Light 
N3-7 1.5 Not tested Insufficient recovery - Grouted Light 

N3-8A 1.5 0.75-1.05 2.91 2.61 - - Light 
N3-8B 1.5 0.82-2.13 Pulled out by hand before test 192.80 - Light 
N3-9A 1.5 0.42-0.72 Rock mass broke apart during test - Partially Light 
N3-9B 1.5 1.12-1.42 24.54 22.47 - Partially Light 

N3-10A 1.5 0.69-0.99 8.22 8.13 189.80 - Light 
N3-10B 1.5 1.50-1.80 8.85 7.95 194.40 - Light 
N3-11A 1.5 0.70-1.00 1.86 1.74 - - Light 
N3-12 1.5 Not tested Insufficient recovery - Grouted Light 

N12-6A 0.5 1.10-1.40 5.45 5.25 - - None 
N12-6B 0.5 1.50-1.80 3.80 3.10 -  - None 
 

 

A summary of the load-displacement results for the N1 Access Drive is shown in Figure 

5.21. Load transfer for the ungrouted elements ranged from 8.40 kN to 21.50 kN with 

the better results occurring in more competent rock masses. The rock mass was 

generally poor and this had a direct impact on the load transfer. One bolt with a good 

quality grouting was tested and this achieved the largest peak frictional load capacity of 

any bolt tested in the mine. Corrosion of the elements was overall light, with uniform 

corrosion where the galvanising had been breached and isolated areas of pitting 

corrosion. 
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Figure 5.21 Summary of load-displacement results for all pull tests from the N1 Access 

Drive (300 mm embedment length). 

 

 

A summary of the load-displacement results for all the N3 Access Drive pull tests is 

shown in Figure 5.22. The highest load transfer occurred for the only grouted bolt tested. 

While grout quality was poor the partial grouting was able to provide a higher frictional 

load by preventing the friction bolt deforming under load. It is clearly seen that grouting 

of the element (see Figure 5.23), even poorly, will significantly increase the load transfer 

available (Villaescusa & Wright 1997). The remaining ungrouted tests had less than 

50% to only 8% of the frictional capacity of the grouted bolt. The rock mass was 

generally poor with small discontinuity spacing which contributed to the low load 

transfer experienced. 
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Figure 5.22 Summary of load-displacement results from pull tests for the N3 Access 

Drive (300 mm embedment length). 

 

 

 
Figure 5.23 Good grouting of sample N1-3A (top) and poorer grouting of sample N3-9B 

(bottom). 

 

The load-displacement results for the element recovered from the N12 are shown in 

Figure 5.24 with little variation in peak frictional load between sections A and B. The 

rock mass condition is good with a discontinuity spacing of 333 mm. The element had 

no corrosion damage with the galvanising intact. With an installation age of 6 months it 
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can be assumed that galvanising protects the bolt from corrosion for approximately this 

length of time in this environment. 
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Figure 5.24 Load-displacement results from pull tests of N12 Access Drive 6A and 6B 

(300 mm embedment length). 

 

 

The combination of all pull test results is shown in Figure 5.26. The frictional capacity 

of the ungrouted specimens varied greatly, ranging from 1.86 – 21.50 kN with an 

average 8.69 kN for 300 mm embedment length. The two grouted elements had much 

higher peak loads of 44.50 kN and 24.52 kN.  
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Figure 5.25 Combination of pull test capacities for all FRS tests (300 mm embedment 

length). 

 

Normalised results from the pull test data are shown in Table 5.9 and plotted for 

comparison in Figure 5.26. The frictional capacity per meter of embedment length for 

ungrouted elements ranged from 6.2 to 71.7 kN/m with an average of 30.8 kN/m or 

approximately 3 tonnes per metre. The benefits of grouting in increasing the load 

transfer capacity of friction bolts is clearly seen with a maximum capacity of 148.3 

kN/m. The poorly grouted sample 9B still had a higher peak frictional load capacity than 

any of the ungrouted elements. 

 

Examining the samples tested near the collar regions (A samples) and those nearer to the 

toes region (B samples) it is observed there is a slight increase in load capacity for 

elements tested near the toe region, which could be a function of a more competent rock 

mass as it is more distal from the development opening and less prone to blast damage. 
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Table 5.9 Normalised results for the peak load and residual load. 

Bolt ID 
  

Tested 
Length 

(m) 

Peak Load 
(kN) 

Force per length 
(kN/m) 

Force per length 
at 5 mm 

displacement – 
residual 
(kN/m) 

Grout 
  

Corrosion 
  

N1-1A 0.60-0.90 10.65 35.50 28.83 - Moderate 

N1-1B 1.30-1.60 21.50 71.67 68.83 - Moderate 
N1-2A 0.65-0.95 10.80 36.00 33.50 - Moderate 
N1-2B 1.35-1.65 13.15 43.83 33.83 - Moderate 
N1-3A 0.50-0.80 44.50 148.33 142.5 Grouted Moderate 
N1-4A 0.20-0.50 8.40 28.00 24.30 - Moderate 
N1-5 Not tested Insufficient recovery  Grouted Moderate 
N3-7 Not tested Insufficient recovery  Grouted Light 

N3-8A 0.75-1.05 2.91 9.70 8.70 - Moderate 
N3-8B 0.82-2.13 Pulled out by hand before test  - Moderate 
N3-9A 0.42-0.72 Rock mass broke apart during test  Partially Light 
N3-9B 1.12-1.42 24.54 81.80 74.90 Partially Light 

N3-10A 0.69-0.99 8.22 27.40 27.1 - Moderate 
N3-10B 1.50-1.80 8.85 29.50 26.5 - Moderate 
N3-11A 0.70-1.00 1.86 6.20 5.80 - Light 
N3-12 Not tested Insufficient recovery  Grouted Light 

N12-6A 1.10-1.40 5.45 18.17 17.5 - None 
N12-6B 1.50-1.80 3.80 12.67 10.33  - None 
 

0

20

40

60

80

100

120

140

160

180

N1-
1A

N1-
2A

N1-
3A

N1-
4A

N3-
8A

N3-
10A

N3-
11A

N12-
6A

N1-
1B

N1-
2B

N3-
9B

N3-
10B

N12-
6B

Fr
ic

tio
na

l c
ap

ac
ity

 p
er

 le
ng

th
 (k

N
/m

)

 
Figure 5.26 Frictional capacity per metre of embedment length of collar (A) and toe (B) 

samples normalised from pull tests of 300 mm embedment length. 
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The tensile strength test results ranged from 181 to 222 kN with all tested elements 

recording a higher strength than manufacturer’s specifications (180 kN). Compared with 

the pull test loads, which are a measure of the frictional capacity, the tensile strength of 

the element is considerably higher. Hence, a considerable loss of metal would need to 

occur before tensile failure would occur before slippage. 

 

5.5.3 Evaluation of damage due to corrosion 

The corrosion condition of the overcored elements ranged from none, as was observed at 

the N12 access, to minor amounts of moderately corroded bolt sections in the N1 and N3 

access drives. Generally corrosion does not impact on the bolt load transfer abilities till 

it becomes highly corroded. The maximum measured penetration rate along the bolt axis 

for each sample is shown in Table 5.10. In all cases the maximum rate was measured 

from pitting on the external surface. The start of pit development is assumed to be the 

installation age minus the minimum six months of protection galvanising provides. 

 

The occurrence of pitting is isolated but highly aggressive, a consequence of the high 

chloride content of the groundwater. Corrosion in the short-term causes little actual 

damage, which is favourable for the installed reinforcement. Of all the bolts analysed 

only two recorded any pitting on the internal surface. Corrosion predominately occurs on 

the external surface of the bolt. The maximum penetration rates measured are 

aggressive, when compared to a nominal bolt thickness of 3 mm. The average pitting 

rate for both the N1 and N3 was 0.40 mm/yr indicating that once pitting originates it 

stabilises and continues at a near constant rate. The range of measured rates equates to a 

local reduction in wall thickness of about 13% per year up to a maximum of 34% per 

year. 

 

The ultimate tensile strength of the tube is detrimentally affected by corrosion. As 

shown in Section 5.4.3 a correlation exists between the maximum tensile strength and 

pitting corrosion. The relationship for the Argo data, shown in Figure 5.27, fits this 

trend. However, the data set range is small and pitting has not progressed to have caused 

large metal loss. 
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Table 5.10 Pitting rate of overcored elements along bolt axis. 

Maximum Penetration Rate (mm/yr) 
Depth Along Bolt Axis (m) Bolt 

ID 

Bolt 
Age 

(years) 

Cement 
Grouting 

Average 
Corrosion 

Description 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.4 
N12-6 0.5   None - 0 0 0 0 
N3-7 1.5 Grouted Light 0 - - - - 
N3-8 1.5  Moderate 0.34 0.52 0.50 0.29 - 
N3-9 1.5 Partially grouted Light 0 0 0.63 - - 
N3-10 1.5  Moderate 0.45 0.20 0.28 0.20 0.20 
N3-11 1.5  Light 0 0 - - - 
N3-12 1.5 Partially grouted Moderate 0.76 - - - - 
N1-1 2  Moderate 0 0 0 0.25 0.37 
N1-2 2  Moderate 0.46 0.18 0.43 0.37 0.24 
N1-3 2 Grouted Moderate 0.41 1.03 - - - 
N1-4 2  Moderate 0 0.25 - - - 
N1-5 2 Partially grouted Moderate 0.31 - - - - 
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Figure 5.27 Maximum tensile strength and the rate of penetration due to pitting 

corrosion. 
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It was not possible to measure the uniform corrosion rate due to its small occurrence; 

however, another indication of overall corrosivity is seen by examining the loss of 

galvanising along the bolt axis. Table 5.11 documents the loss of galvanising as a 

percentage along 0.5 m sections of the bolt axis, with 100% showing total loss of 

galvanising. Galvanising protects the underlying steel by providing a barrier from the 

surrounding environment. It will also corrode sacrificially in favour of steel. Over time 

the galvanising layer is breached and then corrosion of the steel occurs. 

 

Neither corrosion nor loss of galvanising was seen on bolts of 6 months age. However, 

data from the earlier CAS did show some damage on bolts of just over 6 months age. It 

can be concluded that galvanising completely protects the element in wet conditions for 

at least 6 months after installation. Those bolts that had been installed for 2 years still 

retained some galvanising, mainly near the collar of the bolt.  

 

 
Table 5.11 Loss of galvanising along bolt axis. 

Galvanising Loss (%) 
Depth Along Bolt Axis (m) 

0.0 - 0.5 0.5 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.4 Bolt ID 
Bolt 
Age 

(years) Ext. Int. Ext. Int. Ext. Int. Ext. Int. Ext. Int. 
N12-6 0.5 - - 0 0 0 0 0 0 0 0 
N3-7 1.5 100 20 - - - - - - - - 
N3-8 1.5 80 80 80 80 100 80 100 80 - - 
N3-9 1.5 75 5 75 10 75 10 - - - - 
N3-10 1.5 80 80 80 80 80 90 100 100 100 100 
N3-11 1.5 60 40 60 40 - - - - - - 
N3-12 1.5 80 10 - - - - - - - - 
N1-1 2 60 50 60 50 60 50 80 100 80 100 
N1-2 2 50 50 50 50 100 100 100 100 100 100 
N1-3 2 100 5 100 5 - - - - - - 
N1-4 2 60 90 95 95 - - - - - - 
N1-5 2 100 20 - - - - - - - - 
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5.5.4 Cement grouting to prolong reinforcement life 

Cement grout not only provides a physical barrier separating the steel from the 

environment but also is a corrosion inhibitor. Examination of the overcored elements 

clearly showed that cement grouting of the bolt protects the internal surface. Areas 

where grout adhered adequately to the bolt surface exhibit no corrosion and still contain 

galvanising. Loss of galvanising and minor corrosion did occur when voids were left in 

the grouting due to inadequate grouting (see Figure 5.28). 

 

Cement grouting does not protect the external surface of the element where the majority 

of corrosion is occurring. The highest penetration rate recorded was for the N1-3 bolt on 

its external surface despite it being grouted internally. It can be concluded that due to the 

lesser quantity of corrosion on the internal surface of the bolts the amount of protection 

offered by cement grouting is limited. 

 

 

 
Figure 5.28 Overcored friction bolts with grout removed. Grout protected the element 

with galvanising still present. Voids in the grout have allowed some corrosion to occur. 

 

5.5.5 Analysis of results 

The normalised frictional capacity of the ungrouted specimens varied greatly with an 

average of 30.8kN/m. Villaescusa and Wright (1997) have stated an average strength for 

a correctly installed 46 mm diameter FRS to be 4 tonnes per meter, equivalent to 39.2 

kN/m. In-situ pull tests by (Tomory, Grabinsky & Curran 1998) in a range of different 

rock masses produced similar results. The average value of the pull tests from 

overcoring is lower than published data with four tests less than 20 kN/m. Corrosion has 

Corrosion 
due to void 
in grout 
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not developed enough to influence the frictional or tensile capacity of the element to a 

significant degree due to the recent development of the mine and the low corrosivity of 

the environment. Therefore, it is concluded that the borehole size, the rock mass quality 

and installation practices such as twisting of the bolt are considered the primary effects 

on the element capacity in the Argo Mine. 

 

It is known that highly fractured or sheared rock will provide little frictional force on the 

bolt. Geological mapping of the overcore showed a highly fractured rock mass with 

large, broken shear zones. Figure 5.29 plots the discontinuity spacing and the peak 

frictional load. No relationship is indicated from the information. 
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Figure 5.29 Comparison between the discontinuity spacing and the peak frictional load 

from pull testing. 

 

The borehole diameter of each pull tested sample was calculated through the back 

analysis of the measured slot width. When a friction bolt is installed into a borehole of a 

smaller diameter there are resulting changes to the dimensions as shown schematically 

in Figure 5.30. The hole diameter can be approximated by the following equation: 

Partially grouted 

Grouted 
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Where 

r1 – initial radius of friction bolt 

r2 – current radius of friction bolt 

d1 – initial slot width 

d2 – current slot width 
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Figure 5.30 Schematic representation of the friction bolt dimensions before (left) and 

after (right) installation. 

 

Figure 5.31 compares the calculated hole diameter with the frictional capacity. 

Manufacturer’s installation specifications suggest a hole diameter range between 43 mm 

and 45.5 mm for a 47 mm diameter bolt. Two samples fall outside this range; the N1-1A 

installed in a smaller than recommended hole and the N3-11A installed in a larger than 

recommended hole. The N3-11A sample also recorded the lowest frictional capacity of 

any test with 1.86 kN for a 300 mm embedment length. For those bolts installed within 

the specified borehole diameter range no trend can be determined  
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Figure 5.31 Calculated hole diameter compared to the tested peak frictional load. 

 

The quality of the rock mass and the size of the borehole diameter both control the initial 

bond strength; however, no clear relationships can be determined from this data based 

on estimates of borehole diameter. What can be seen is the significant increase in load 

transfer capacity by cement grouting of the bolt. Villaescusa and Wright (1997) 

presented in-situ pull test results that indicated cement grouting of friction bolts are 

likely to provide up to three times the initial bond strength per meter of embedment 

length. The laboratory pull tests conducted provide similar result, as well as additionally 

showing that even partial grouting of the element provides significant extra load transfer. 

 

While partial grouting does offer some benefits it is strongly recommended that good 

quality control of grouting be a priority and that full grouting of the bolt axis be 

achieved. Due to gravity grout will tend to accumulate grout near the collar of the bolt, 

giving the indication of a fully grouted column. In-situ pull testing of the bolt may not 

indicate a problem as the design capacity may be reached over the short grouted length. 

The remaining ungrouted section would have a much lower frictional capacity. 

 

Grouted 

Partially grouted 
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Corrosion occurred on the majority of overcored reinforcement but the level of damage 

is not sufficient for it to be detrimental at this stage. This implies that the corrosivity of 

the groundwater affected environments is low. It was found that galvanising provides 

full protection for a minimum of 6 months in the wet environments investigated. 

Damage due to corrosion was more prevalent on the external bolt surface, which had 

more direct contact with the groundwater than the internal surface. The amount of 

corrosion protection afforded by cement grouting of the FRS is therefore limited. 

 

 

5.6 Overcoring at Leviathan Mine 

The Leviathan underground mine comprising of the Sirius, Victory and Defiance 

deposits was initially mined by Western Mining Corporation (WMC) until 1999 

(Watchorn 1998). Following the abandonment of mining much of the workings flooded 

due to the close proximity of Lake Lefroy. Dewatering and re-entry of the Leviathan 

workings by Goldfields St Ives occurred in 2005. Questions were raised about the 

corrosion condition of the previously installed reinforcement, primarily Hollow 

Groutable Bolts (Villaescusa, Sandy & Bywater 1992), and if there was a need to 

rehabilitate. Little research has been conducted previously into the corrosion of rock 

reinforcement and support in flooded mines. 

 

Two areas of particular interest to the mine are the Conqueror Link and the Jade 

Decline. Both areas had been submerged for 6 years with rock reinforcement being 

installed greater than 2 years prior. The main reinforcement element installed is the 

hollow groutable bolt (HGB), a smooth, hollow tubular bar of 2.4 m length with an 

outside diameter of 25.5 mm and an internal diameter 18.5 mm leaving a 3.5 mm steel 

ring (see Figure 5.32). It is installed initially as a mechanical point anchor bolt. As point 

anchored systems are susceptible to corrosion and rock movement, post cement grouting 

is conducted to create a permanent reinforcement. Even when grouted the HGB is 

known to be susceptible to corrosion due to its thin steel wall. Other reinforcement 
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elements installed include ungrouted point anchored rebar, friction rock stabilisers and 

cable bolts. 

 

 
Figure 5.32 Grouted HGB displaying thin steel wall and internal grout. 

 

Environmental conditions at the two sites varied significantly over the life of the 

reinforcement and can be classified into three stages, pre-flooding, flooding and post 

flooding. Pre-flooding conditions are assumed to be similar to post-flooding conditions; 

however there are no records from this time. It is assumed to be a dry rock mass, and 

with adequate ventilation. This environment produces only minor corrosion. During 

flooding groundwater from local hard rock aquifers recharged from Lake Lefroy 

submerged the development with local air pockets; this is evident from crystal growth on 

the walls and backs. An analysis of groundwater collected from a perched stope, shown 

in Table 5.12, is thought to reflect the composition of the flood water. It shows neutral, 

hypersaline water high in sulphide and chloride ions. 

 

 
Table 5.12 Analysis of groundwater taken from a perched stope. 

pH 7.02 
Dissolved Oxygen (mg/L) 1.49 

Total Dissolved Solids (mg/L) 233,220 
Total Suspended Solids (mg/L) 2,761 

Sulphate ions SO42- (mg/L) 13,608 
Carbonate (mg/L) 0 

Bicarbonate (mg/L) 54 
Chloride ions Cl- (ppm) 25,420 
Sodium ions Na (ppm) 44,353 
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Inspection of the two areas showed high to severe corrosion of the face plates and 

protruding bolt ends (see Figure 5.33). The corrosion damage was sufficient that in 

places the original steel had been completely converted to corrosion products. These 

sections would have been in direct contact with the groundwater. Corrosion attack of the 

element within the rock mass would only occur if the element had not been properly 

grouted or along open discontinuities, through which groundwater could move. 

 

  
Figure 5.33 Severe corrosion of a HGB face plates due to flooding of mine workings. 

 

5.6.1 Overcored samples from the Leviathan Mine 

A total of five HGB, two cable bolts, an ungrouted point anchored twisted rebar and a 

friction rock stabiliser were overcored at the two sites. The rock mass in both areas was 

good, as seen in Figure 5.34, with the majority of jointing present open to some extent. 

Joint spacing ranged from 77 mm to 125 mm for the Conqueror Link and 91 mm to 500 

mm for the Jade Decline. The total length of the recovered bolts is shown in Table 5.13. 

The ungrouted point anchor twisted rebar drilled at the Conqueror Link was mistaken for 

a HGB. The rebar was still in reasonable condition; however, the anchor was not 

overcored and the plate is severely corroded. Two cable bolts and a friction bolt were 

overcored from the Jade Decline. The friction rock stabiliser showed extreme corrosion, 

similar in extent to the surface support. 
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Figure 5.34 Overcored HGB samples from the Leviathan Mine. 

 
Table 5.13 Recovery of overcored elements from Leviathan Mine. 

Bolt type Overcore location Recovered length (m) Joint spacing (mm) 
HGB 1 Jade Decline 0.87 91 
HGB 2 Jade Decline 0.65 - 
HGB 3 Jade Decline 2.40 500 
FRS 1 Jade Decline 1.18 167 

Plain Cable 1 Jade Decline 1.27 91 
Plain Cable 2 Jade Decline 0.84 250 

HGB 4 Conqueror Link 1.35 77 
HGB 5 Conqueror Link 0.96 125 

Point Anchor 1 Conqueror Link 1.14 200 
 

5.6.2 Load-displacement results 

From the five recovered overcored HGB samples, two each from the Jade Decline and 

Conqueror Link were suitable for load-displacement testing. Eleven samples of 300 mm 

embedment length were prepared for push testing. These samples were taken from along 

the entire bolt axis. In addition two overcored plain strand samples were pull tested. A 

summary of the results is displayed in Table 5.14. The results show a range in load 

transfer of the HGB samples from 21.00 kN (~2.1 tonne) to 142.90 kN (~14.6 tonne) a 

difference of 85%. Examination of the sample before and after testing indicated that 

encapsulation quality and not corrosion is the major factor in determining peak load. 

Poor encapsulation such as shown in Figure 5.35 is typified by longitudinal voids and 

this combined with the smooth bolt exterior led to low load transfers. 

 

Similar results were observed for the two tests conducted on the plain strand cables. 

Sample 1-A being poorly encapsulated had a peak load about half that of the well 

Collar Region Middle Region Toe Region 
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encapsulated sample 2-A. Figure 5.36 displays the difference in the quality of the 

grouting prior to testing. 

 
Table 5.14 Summary of pull and push testing results. 

Bolt ID Location from 
collar (m) 

Embedment 
Length (mm) 

Peak 
Load 
(kN) 

Encapsulation 
quality Corrosion 

HGB 1-A 0.05-0.35 300 59.85 good minor 
HGB 1-B 0.35-0.65 300 69.95 good minor 
HGB 3-A 0.00-0.30 300 115.35 good minor 
HGB 3-B 0.40-0.70 300 142.90 good minor 
HGB 3-C 0.80-1.10 300 115.35 good minor 
HGB 3-D 1.20-1.50 300 120.10 good minor 
HGB 4-A 0.00-0.30 300 67.85 poor minor 
HGB 4-B 0.30-0.60 300 21.00 poor minor 
HGB 4-C 0.70-1.0 300 25.45 poor minor 
HGB 5-A 0.00-0.30 300 59.60 poor minor 
HGB 5-B 0.30-0.60 300 25.85 poor minor 

Plain Cable 1-A 0.40-0.70 300 36.35 poor minor 
Plain Cable 2-A 0.07-0.37 300 74.15 good minor 

 

  
Figure 5.35 Poor grouting leading to low load transfers for sample HGB 4-C. 

 

  
Figure 5.36 Encapsulation quality for plain cable samples 1-A (left) and 2-A (right). 
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A composite for all HGB push tests is shown in Figure 5.37. The wide range of values is 

a function of the grout encapsulation quality and not related to damage due to corrosion. 

Even elements that had good grout encapsulation still showed varying values due to 

gravity settling of the grout particles. The load-displacement values are considered 

relative values, as they were calculated from push testing, which is expected to 

overestimate the actual pull out strength. A summary of the peak load and residual load 

(taken at 10 mm displacement) is shown in Table 5.15. 

 

A plot of the peak and residual load for each push test along the bolt axis from the collar 

region to the anchor region is displayed in Figure 5.38. As a general rule the collar 

region exhibits higher values compared to sections closer to the toe of the bolt (anchor). 

However, the varying quality of grout encapsulation makes comparison complicated. 
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Figure 5.37 Combination of relative push test capacities for all HGB tests (embedment 

length 300 mm). 
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Table 5.15 Summary of relative push tests capacities for HGB tests. 

Bolt ID 
Peak 
Load 
(kN) 

Displacement at 
Peak Load (mm) 

Load at 10 mm 
displacement (kN) – 

residual load 

Maximum 
Displacement 

(mm) 

Load at 
Maximum 

Displacement 
(kN) 

HGB 1-A 59.85 2.50 45.55 15.28 45.75 
HGB 1-B 65.95 2.76 41.45 16.84 43.50 
HGB 3-A 120.20 16.10 111.10 16.10 120.20 
HGB 3-B 142.90 4.86 112.00 15.18 101.35 
HGB 3-C 115.35 5.48 96.25 14.28 82.55 
HGB 3-D 81.00 3.58 65.70 15.42 56.20 
HGB 4-A 67.85 2.50 36.45 15.10 35.20 
HGB 4-B 21.00 1.70 17.95 10.32 17.80 
HGB 4-C 25.45 1.30 16.45 15.04 17.20 
HGB 5-A 59.45 2.52 42.80 16.14 47.50 
HGB 5-B 25.85 1.18 15.85 15.52 15.50 
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Figure 5.38 Peak and residual load for relative push test of HGB along bolt axis. 
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5.6.3 Evaluation of damage due to corrosion and analysis of results 

Corrosion damage to the HGB reinforcement consisted of light uniform surface 

corrosion in areas where it was fully grouted, most likely occurring before grouting of 

the element, ranging to isolated areas of stronger uniform corrosion in less well 

encapsulated regions (see Figure 5.39). This level of corrosion did not affect the 

reinforcements’ load transfer capabilities nor was it sufficient to reduce the tensile 

strength despite the thin-walled nature of the element. 

 

Despite the common occurrence of longitudinal voids in the grout column these areas 

did not undergo any significant corrosion, even when intersected by an open joint, as 

illustrated in Figure 5.40. The bolt in this example would have been highly susceptible 

to corrosion attack by groundwater but a build-up of solids at the void/joint boundary 

and in the joint itself occurred effectively prevented any groundwater flow. The 

deposition of suspended solids and precipitation of dissolved solids would have occurred 

relatively quickly after flooding as there is little corrosion damage to the element. This 

process originates as the groundwater was effectively stagnant, compared to the usual 

scenario of gravity assisted water flow. This allowed for deposition and precipitation of 

solids to occur. 

 

      

 
Figure 5.39 Light surface corrosion in fully grouted areas (top) with isolated areas of 

stronger surface corrosion where grout encapsulation was not as good (bottom). 
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Figure 5.40 Minor corrosion of bolt even when open joint intersect exposed element. 

 

An additional benefit of cement grouting is its migration along open discontinuities into 

the rock mass. As shown in Figure 5.41 a large crack had formed before bolt installation, 

during which cement grout migrated into, not only providing a larger barrier to potential 

groundwater flow but also assisting in interlocking of the rock mass. 

 

 
Figure 5.41 Corrosion protection due to migration of grout preventing groundwater 

interaction with bolt. 
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An initial assessment of the visible support noted uniform high to severe corrosion of all 

plates and exposed bolt ends as is expected for steel exposed underwater for extended 

periods. While direct testing was not conducted on the support it is assumed that their 

load bearing capacity would be greatly diminished. An evaluation of the overcored FRS, 

seen in Figure 5.42, observed extreme corrosion along its entire axis including total loss 

of metal due to extensive pitting in some areas. There was also a build-up of compact 

mud along the first 0.5m of the bolt due to the deposition and precipitation of suspended 

and dissolved solids. Pull testing of the bolt proved problematic due to the extensive 

corrosion and results were not obtainable. However, it can be concluded that all surface 

support and ungrouted reinforcement that had direct contact with the groundwater has 

significant corrosion damage that renders it ineffective and rehabilitation is necessary. 

 

   
Figure 5.42 Severe corrosion of friction bolt and deposition of solids. 

 

 

5.7 Overcoring at Other Mines 

Overcoring was also conducted at the Leinster Nickel Mine and the Olympic Dam Mine. 

These overcoring projects were focused on the performance of grouted reinforcement in 

terms of installation and encapsulation quality rather than the evaluation of corrosion 

damage to the reinforcement. Despite this, useful data was collected about the 

implications of grouted elements to corrosion attack. Additionally a number of corroded 

friction rock stabilisers were selected and overcored from each site to provide 

supplementary data for the previous overcoring campaigns. 

 



Overcoring of Rock Reinforcement in Underground Mines 193

5.7.1 Overcoring at Leinster Nickel Mine 

Overcoring at the Leinster Nickel Mine was limited to one location, the 9965 level cross 

cut 27. Located in the felsic volcaniclastic hanging wall near the geological boundary 

with the ultramafic the area had groundwater with environmental characteristics as 

described in Section 3.3.7. The age of the reinforcement was approximately three years. 

The rock mass was highly fractured near the excavation boundary which made recovery 

of the whole element and rock section difficult. 

 

Two 47 mm galvanised friction rock stabilisers were recovered, however due to the 

broken rock conditions only one was able to be tested for its load-displacement 

response. In addition a resin anchored rebar and two cement grouted thread bar were 

recovered. 

 

Load-displacement results of the tested friction rock stabiliser, shown before testing in 

Figure 5.43, provided a peak load of 40.2 kN. The load-displacement plot is shown in 

Figure 5.44. The corrosion damage of the element was moderate to high with a 

maximum tensile strength of 142 kN. The other recovered friction bolt had a tensile 

strength of 180 kN. Both elements failed in tension in areas of strong pitting corrosion. 

Measurements of pitting rate were between 0.22 – 1 mm/year. 

 

 

 
Figure 5.43 Recovered 47 mm galvanised friction rock stabiliser. 
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Figure 5.44 Load-displacement plot of a galvanised 47 mm diameter friction rock 

stabiliser (300 mm embedment length). 

 

 

The cement grouted solid bars had significant migration of the cement into the broken 

rock mass as shown in Figure 5.45. This not only allowed a degree of rock mass 

interlocking, it also provided a greater level of protection of the element from the 

surrounding environment. An assessment of the corrosion on the elements indicated 

little corrosion damage. 

 



Overcoring of Rock Reinforcement in Underground Mines 195

 
Figure 5.45 Cement grout migration interlocking a broken rock mass. 

 

5.7.2 Overcoring at Olympic Dam Operations 

Overcoring of resin encapsulated bolts at Olympic Dam was done at a wide variety of 

locations. Galvanised, 47 mm diameter FRS were recovered from two areas the 31 

Scarlet 1 and the 32 Jade 2. Both areas were located in the hematite rich breccia and 

appeared damp with only minor groundwater flow. The installation age at the 31 Scarlet 

was approximately four years and the 32 Jade six years. The rock mass was highly 

competent with few fractures. Additionally a CT bolt was recovered. 

 

The recovered friction rock stabilisers had extreme corrosion damage with significant 

loss of steel as can be seen in Figure 5.46. This level of damage would impact on the 

ability of the element to perform as intended to such as extent that the reinforcement 

would be rendered ineffective. Only one sample was able to be pull tested, with the load-

displacement plot shown in Figure 5.47. It reached a peak load of 16.5 kN after which 

the element broke into two pieces in an area of very extreme corrosion damage 

characterised by a significant loss of steel. 
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The level of corrosion damage indicates a highly corrosive environment. At the time of 

overcoring there was only minor water flow; this may not have always been the case, 

however, previous environmental information is not available. It appears that areas of 

strong pitting corrosion grow until it consumes the thickness of the bolt, then spreads 

outwards, joining up with other pits creating large localised areas with no steel 

remaining. These areas have a very low tensile strength and fail at very low loads, as 

seen with the tested sample. 

 

 
Figure 5.46 Extremely corroded friction rock stabilisers recovered from Olympic Dam 

Mine. 

 

The recovered CT bolt was found to be fully cement grouted inside of the polyethylene 

tube but had little or no grout on the outside of the tube (see Figure 5.48). This meant 

any load transfer would involve just the mechanical anchor at the toe of the bolt, making 

it a point anchored system rather than a fully mechanically coupled, corrosion resistant 

system as per design. The implications are that the expected design life would be 

considerably less than originally planned. 
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Figure 5.47 Load-displacement plot of galvanised friction rock stabiliser from Olympic 

Dam operations (300 mm embedment length). 

 

 
Figure 5.48 Overcored CT bolt with cement grout on the inside of the tube (top) but not 

outside (bottom). 

 

A number of resin encapsulated elements were overcored and Villaescusa et al. (2006) 

have documented their quality and performance. It was found that there were significant 

lengths along the bolt axis where resin was not present or poorly mixed as shown in 
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Figure 5.49. There was no resin encapsulation in 80% of lengths in the collar region, 

31% in the middle region and 30% in the toe region. These areas along the bolt are at a 

greater risk from corrosion damage as they are not protected from the surrounding 

environment. It was also observed that resin grout did not migrate into open joints and 

shears as seen with cement grout. No significant corrosion was seen on the exposed 

sections but overcoring was not conducted in high corrosion risk areas and the bolt age 

was less then 1.5 years. With highly corrosive environments already observed at 

Olympic Dam corrosion related issues may arise in the future. 

 

 
Figure 5.49 Poor encapsulation of a resin bolt from Olympic Dam Mine. 

 

 

5.8 Discussion and Conclusions 

The ability to examine reinforcement in-situ through overcoring provides unparalleled 

detail in the mechanics relating among the rock mass, the element and the influence of 

corrosion. For FRS increasing levels of corrosion damage were found to reduce the 

frictional capacity, thus lowering the load transfer. This is thought to be mainly due to 

the removal of steel lowering the radial stress the bolt provides against the rock mass. 

Additionally, corrosion products may provide a plane of slip reducing frictional 

resistance. The frictional capacity is still well below the tensile strength of the element 

except in the cases of extreme corrosion. Failure by loss of tensile load appears 

controlled by the prevalence and severity of pitting corrosion and the interaction of those 

pits. Generally, corrosion does not appear to impact significantly on the bolt load 

transfer capacity till it becomes highly corroded. 

 

The extent of corrosion damage was found to be greater on the external surface of the 

element and more evident near the toe of the bolt. This has implications with the transfer 
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of load from the unstable section of the rock to the stable section in which the more 

corroded section of the element is located. Observation from the excavation boundary 

may fail to detect significant corrosion damage. Additionally the collar (unstable) region 

has the extra benefit of a plate. Cement grouting of the element protects only the internal 

surface with the majority of corrosion damage still occurring on the exterior. 

 

Grouted reinforcement provides the best protection of the reinforcement types 

investigated by providing a barrier to the outside environment. In particular cement 

grout appears to provide the best encapsulation quality and the grout also migrates into 

open discontinuities and broken rock masses creating a thicker barrier to any potential 

groundwater flow. Resin grouted reinforcement assemblies were found to have problems 

with encapsulation of the element, with significant lengths of the bolt ungrouted. Aside 

from the issues associated with reduced load transfer in these areas they are also at much 

greater risk of corrosion damage than the encapsulated regions. 

 

Fully cement grouted reinforcement in mines that have been previously submerged did 

not exhibit major corrosion damage for sections located within the rock mass. This is 

opposed to the bolt ends that protrude from the rock, unenclosed reinforcement such as 

friction rock stabilisers, and surface support which were severely to extremely corroded. 
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CHAPTER 6 CALCULATION OF CORROSION RATES BY DIRECT 

TESTING OF COUPONS 

 

6.1 Introduction 

A large variety of methods exist to determine the corrosion susceptibility of a given 

material under specific environmental conditions. These include an array of 

electrochemical and accelerated corrosion tests; however, the most widely used and 

simplest method of corrosion monitoring involves the exposure and evaluation of the 

corrosion in actual test coupons (Dean & Sprowls 1987). This method is cost effective 

and easy to replicate, and provides the opportunity to test in the environmental 

conditions under consideration over real time periods. In this study test coupons were 

placed in the corrosion chambers and underground mining environments, allowing for 

comparison of the corrosivity of each environment as well as providing practical and 

relevant corrosion rates. 

 

A benefit of having representative corrosion rates for various environments is the ability 

to compare between the properties of each environment, helping to define the main 

influences on the corrosivity. By providing the rates of damage, service lives of 

reinforcement and support can be estimated. An overview of the aim of the testing, 

detailing the advantages and limitations, is provided in Section 6.2. The methodology 

used to prepare, place, clean and evaluate the coupon specimens is described in Section 

6.3. The results, including corrosion rates calculated for the specimens placed in the 

corrosion chambers, are given in Section 6.4, and similarly Section 6.5 provides the 

results for the coupons placed in the underground environment. 
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6.2 Aim of testing 

The purpose of direct testing of coupons is to establish the corrosivity of various 

environments and to establish a corrosion rate for a given material. The results from the 

testing not only allow the comparison of various atmospheric environments or those 

affected by groundwater but they also provide applicable rates of corrosion. Two types 

of testing were carried out; the first can be classified as long-term laboratory testing and 

involves using the test materials in simulated conditions, utilising the corrosion 

chambers, so that the tests can be closely controlled and unintentional disturbances can 

be avoided. The second, service tests, places the test materials in the actual service 

environment, the underground mine. 

 

A limitation with coupon testing is that it is unable to detect rapid changes in corrosivity. 

This is not thought to be a problem as the environmental properties under investigation 

are generally slow changing. However, the long exposure times, hundreds of days, can 

be a disadvantage due to the constantly changing nature of underground mines that may 

alter the surrounding environment, restrict access to previous development and in some 

cases destroying the samples. The main advantage is that actual corrosion rates are 

established and are not estimated as in the case of laboratory accelerated tests. The 

longer the time of exposure the closer the rates of corrosion are to the actual long-term 

rates. 

 

The material used for the coupons is a HA300 grade steel and is not the same as the 

HA350 grade used in the manufacture of friction rock stabilisers, although its properties 

are similar. It was chosen as it was the closest available grade in sheet form. Coupons 

were placed in all corrosion chambers for up to 282 days. The placements of samples in 

underground mines were tailored to suit each individual site, and differed in terms of 

environments investigated and time of exposure. As already discussed some samples 

placed at the mine sites were damaged or were unable to be collected. 
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6.3 Methodology 

The preparation, placement, cleaning and evaluation of the corrosion coupon specimens 

was conducted to ASTM standard G4 that was designed to provide guidance for this 

type of testing (ASTM G1-90 1999). The coupons were obtained from a hot-rolled sheet 

of carbon steel grade HA300, with a chemical composition shown in Table 6.1. The 

1000x2000x0.6 mm sheet was guillotined into rectangular test specimens of 120x30x0.6 

mm dimensions. Two 2 mm diameter holes were drilled in the upper left and right 

corners for the identification tags to be attached following measuring and weighing. To 

ensure an exact and reproducible finish, each coupon was sand blasted using silica grit 

(see Figure 6.1). The coupons were then rinsed with distilled water, followed by acetate, 

cleaned with tissue paper and allowed to dry on paper towels. 

 

Following the drying process each coupon was measured to the third significant figure 

and weighed to the fifth significant figure. The identification tags, which were uniquely 

designed to survive the corrosive conditions, were attached to the coupon with cable ties. 

The tags consisted of a plastic key ring which had an identification code melted into it 

by a soldering iron. Each code described the proposed location of the coupon and an 

identification number. The corrosion coupons were then placed in an airtight sealed 

plastic bag ready to be placed. 

 

 
Table 6.1 Chemical composition and mechanical properties of HA300 grade steel. 

Chemical composition (% Max.) 
Steel 

Grade 
Carbon  Silicon  Manganese Phosphorus Sulfer 

Minimum upper 

yield stress 

(MPa)  

Minimum 

tensile 

strength 

(MPa) 

HA300 0.20 0.35 1.60 0.040 0.030 300 400 
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Figure 6.1 Coupon following sand blasting (left) and fitted with identification tag (right). 

 

Placement of the coupons occurred as soon after preparation as possible; in the case of 

the WASM corrosion chambers it was immediately after. For some mine sites a time 

lapse of 2-4 weeks was experienced before placement, however, as the bags were 

airtight no corrosion occurred. In the corrosion chambers the coupons were attached to 

the dripping reticulation by a cable tie. At the mines, locations were selected based on 

the environmental conditions with areas that were more concealed preferred to prevent 

interference with the experiment. The coupons were placed by cable ties to available 

surface support such as weld mesh as shown in Figure 6.2. As the coupons were placed 

at the excavation boundary and not inside the rock mass they may underestimate the 

actual corrosion rate. 

 

 
Figure 6.2 Placement of corrosion coupons in an underground environment. 
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Three coupon specimens were collected from each location for each time period. The 

cleaning and evaluating were conducted as soon as possible but as some specimens were 

mailed from the mine sites some delay was inevitable. In these cases the mine personnel 

were instructed to ensure the coupons were completely dry before sending. Collected 

corrosion coupons from two different mining environments are shown in Figure 6.3. To 

clean the coupons they were firstly mechanically cleaned of any loose corrosion or salt 

products and the identification tag removed. They were then placed in an acidic solution 

treated with antimony trioxide and stannous chloride that removed any corrosion 

products and left intact the remaining non-corroded steel. The cleaned specimens were 

then washed with distilled water and acetate, wiped clean and allowed to dry. The 

coupons were then re-weighed to determine the mass loss. 

 

  
Figure 6.3 Corrosion coupons collected from Enterprise Mine after 213 days in an 

atmospheric environment (left) and from Cannington Mine after 354 days in a 

groundwater affected environment (right). 
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To calculate the corrosion rate the initial total surface area of the specimen and the mass 

loss during the tests are determined. The average corrosion rate may then be obtained as 

follows: 

 

( ) ( ) ( )DTAWKmm/yrRateCorrosion ×××= /      (6.1) 

 

Where: 

K = constant to derive appropriate units, for millimetres per year use 8.76x104, 

W = mass loss of coupon in grams, 

A = area of original coupon in cm2, 

T = time of exposure in hours, and 

D = density of the steel in g/cm3 (7.86 g/cm3). 

 

 

6.4 Results from the Corrosion Chambers 

The coupons placed in the corrosion chambers provide a very good assessment of the 

corrosivity of the respective groundwaters. As each chamber maintained relatively 

consistent environmental conditions, including flowing water the only significant 

difference was in the groundwater conditions that were being measured. These 

conditions, shown in Table 6.2, differ slightly from those in Section 4.2.1 as they were 

averaged from measurements taken only during the duration of the coupon testing. 

Strong water flow is considered the worst case scenario for corrosive conditions. The 

coupons were completely covered by the flowing water for the entire duration of the test 

and are more indicative of worst case conditions inside the rock mass with strongly 

flowing water than the coupons tested in the field on the excavation boundary. The 

coupons were tested for mass loss at 94 days, 180 days and 282 days. The corresponding 

rates of corrosion are shown in Table 6.3. Due to the high rates of corrosion experienced 

by some chambers the coupons were completely oxidised by the 180 or 282 day test and 

no results could be obtained. 
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The reduction in the rate of corrosion over time for each chamber is seen to be 

reasonably constant. On average a reduction in the corrosion rate from the 94 day to the 

180 day test by a factor of 1.34 and from the 94 day to the 282 day test a reduction of 

2.26 is seen. These reduction factors are used to extrapolate data from the Enterprise, 

Leinster and Darlot chambers to provide estimates of corrosion rates for the 282 day test 

and from the Enterprise and Leinster chambers for the 180 day test. These estimated 

results are shown in italics in Table 6.3 and denoted by dashed lines in Figure 6.4. 

 

The most corrosive environment was for the Enterprise chamber. This was followed in 

descending order of corrosivity by the Leinster, Darlot, Kundana, Olympic Dam and 

Argo chambers. This order of corrosivity was observed, where results were obtainable, 

for the 180 and 282 day test. Also observed is a reduction in the corrosion rate for the 

later tests. It can be assumed that the 282 day corrosion rate calculation is close to the 

long-term corrosion rate. 

 
Table 6.2 Groundwater conditions in the corrosion chambers for the duration of the coupon testing. 

Chamber Dissolved Oxygen 
(mg/l) 

TDS 
(ppm) 

pH 
pH units 

Temperature 
(°C) 

Enterprise 4.10 6,720 7.50 35.2 
Leinster 3.74 13,200 7.32 27.4 
Darlot 3.20 43,837 7.50 26.7 

Kundana 2.44 86,612 7.40 26.9 
Olympic Dam 2.45 46,044 7.90 27.0 

Argo 1.73 171,000 7.22 27.4 
 

Table 6.3 Rates of corrosion for coupons in the corrosion chambers. 

Corrosion Rate (mm/yr) Chamber 94 days 180 days 282 days 
Groundwater flow 

Enterprise 1.32 0.99 0.58 strongly flowing 
Leinster 1.19 0.90 0.53 strongly flowing 
Darlot 0.85 0.67 0.38 strongly flowing 

Kundana 0.41 0.31 0.20 strongly flowing 
Olympic Dam 0.33 0.24 0.12 strongly flowing 

Argo 0.08 0.05 0.04 strongly flowing 
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Figure 6.4 Corrosion rates for each WASM chamber over time. 

 

 

6.5 Results from Testing in Underground Mines 

The calculation of corrosion rates by the coupon method does not exactly replicate the 

conditions of rock reinforcement as the coupons are not located within the rock mass. 

However, these are the closest results to actual rates of corrosion in such environments 

that were studied. A brief description of the actual environmental conditions where the 

coupons were placed is provided in this Section. A more detailed discussion on the 

environmental conditions, including the groundwater and atmospheric quality has 

already been summarised in Chapter 3. A number of issues also arose when conducting 

the experiments in a working mine that meant some or no coupons were recovered or 

recovered intermittently. Mining activities are such that access is limited and in some 

cases it can be lost during the experiment. 
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6.5.1 Argo Mine 

Five sites were selected on or near the South decline. The results are presented in Table 

6.4 and Figure 6.5. The three sites with groundwater were wet and the remaining two 

were located in dry ventilation with low temperatures and humidities. The groundwater 

affected regions had rates of corrosion between 0.015-0.034 mm/yr after 445 days, 

which is taken to be the long-term corrosion rate. Over the same time period the 

determined atmospheric corrosion rate ranged between 0.003-0.004 mm/yr. Generally 

the rates of corrosion stayed relatively constant. 

 
Table 6.4 Rates of corrosion in selected environments at Argo Mine. 

Corrosion Rate (mm/yr) 
Location Environment 97 

days 
253 
days 

349 
days 

445 
days 

Groundwater 
flow 

South decline #1 Damp, wet area, salt deposition 0.022 0.021 0.030 0.034 wet 

South decline #2 Damp, wet area, salt deposition, 
coupon bent 90º 0.070 0.017 0.024 0.027 wet 

Sump 2 Damp/wet area 0.004 0.014 0.011 0.015 wet 
South S/P 3 Dry atmosphere no groundwater 0.012 0.008 0.004 0.004 dry 

Sump 3 Dry, relatively fresh atmosphere 0.004 0.004 0.006 0.003 dry 
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Figure 6.5 Corrosion rates from coupons for each location at the Argo Mine. 

 



Calculation of Corrosion Rates by Direct Testing of Coupons 209

6.5.2 Cannington Mine 

Three locations were chosen that had groundwater flow, with two, the 550 51XC and the 

520 Va 53 located on the surface of the Hamilton Fault, with large volumes of flowing 

water. The 296 sf66 monitoring site had a lower rate of flow and can be termed dripping. 

The long-term rate of corrosion is calculated to be 0.151 mm/yr for the Hamilton fault 

region and 0.133 mm/yr for the 296 sf66. Corrosion rates for two different atmospheres 

were calculated. The hot and humid atmosphere had rate of 0.17 mm/yr, more than 

double that of the fresher atmosphere (0.008 mm/yr). The full results are shown in Table 

6.5 and Figure 6.6. 

 
Table 6.5 Rates of corrosion in selected environment at Cannington Mine. 

Corrosion Rate (mm/yr) 
Location Environment 116 

days 
223 
days 

354 
days 

620 
days 

Groundwater 
flow 

550 51XC Hot, humid & high groundwater flow - 0.283 0.125 0.151 flowing 
520 Va 53 Hot, humid & high groundwater flow 0.184 - - - flowing 
295 sf66 Hot, humid with groundwater - - - 0.133 dripping 
295 sf66  Hot and humid atmosphere 0.044 0.040 0.023 0.017 dry 

475 Ug 53 Fresh, moderately dry atmosphere 0.002 0.002 0.008 - dry 
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Figure 6.6 Corrosion rates from coupons at each location at Cannington Mine. 
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6.5.3 Enterprise Mine 

Due to an absence of groundwater and the long expected mine life the testing at the 

Enterprise Mine concentrated on a range of atmospheric environments ranging from 

very hot (>35°C) and humid (90%), fresh ventilation and return airways. The results 

presented in Table 6.6 and Figure 6.7 show a variation in long term atmospheric 

corrosion rates from 0.0035 to 0.0175 mm/yr. The greater corrosion as expected 

occurred in the hot, humid atmospheres located in secondary ventilation. Surprisingly, 

the lowest rate took place in the area of assumed highest pollutants, the return air way. 

This area has high air flow velocities and subsequent low air temperatures and more 

importantly low humidity.  

 
Table 6.6 Rates of corrosion in selected environments at Enterprise Mine. 

Corrosion Rate (mm/yr) Location Environment 
111 days 213 days 371 days 

30A Hot and humid atmosphere 0.0524 0.0253 0.0175 
26B Very hot (35*C) and humid (90%) atmosphere 0.0254 0.0165 - 

29E S705 Hot and humid atmosphere 0.0015 0.0034 0.0075 
28D Hot and humid atmosphere 0.0126 0.0094 0.0066 

21C WS Fresh ventilation, low pollutants 0.0009 0.0034 0.0059 
31C Return Air Way, high pollutant content 0.0069 0.004 0.0035 
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Figure 6.7 Corrosion rates from coupons for each location at Enterprise Mine. 
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6.5.4 Olympic Dam Mine 

Only one time period was tested at the Olympic Dam mine due to problems with access 

to the sites. The results of the 357 day test, shown in Table 6.7, can be considered the 

long-term corrosion rate. Rates between 0.026 to 0.048 mm/yr were calculated for the 

groundwater affected environments, with the higher rates in the wet areas. A rate of 

0.003 mm/yr was measured for coupons placed in a well ventilated, low humidity and 

moderate temperature drive. 

 
Table 6.7 Rates of corrosion in selected environments at Olympic Dam Mine. 

Corrosion Rate (mm/yr) Location Environment 
357 days 

Groundwater 
flow 

31 Yellow 10 Dripping groundwater 0.048 wet 
34 Cyan 19 Dripping groundwater 0.040 wet 
26 Jade 302 Damp/dripping groundwater 0.026 damp 

41 Amber 137 Fresh ventilation 0.003 dry 
 

 

6.6 Discussion and Conclusions 

Rates of corrosion have been calculated for a range of atmospheric and groundwater 

affected environments. This is thought to be the first time this has been achieved for 

Australian underground hard rock mines. In general there is a reduction in the rates over 

time as the products of corrosion, the iron oxides, protect to some extent the underlying 

steel from further corrosion. This reduction becomes less pronounced with increasing 

exposure times and long-term corrosion rates can be established. The length of time 

needed to establish the long-term rate is dependent on the environment, but 

approximately 200-300 days are required. 

 

For atmospheric environments the corrosion rates ranged from 0.003 mm/yr for low 

temperature and humidity ventilation (fresh atmospheres), through to a peak of 0.0175 

mm/yr for hot and humid conditions. Similar rates were observed in different mines with 

comparable temperatures and humidities. Rates measured in return air ways, expected to 

contain the highest levels of pollution, were comparable to the fresh atmospheres. It is 
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concluded that air temperature and humidity influence the corrosivity of an atmosphere 

significantly more than the level of pollutants.  

 

For the field testing conducted in groundwater affected areas the rates ranged from 0.015 

mm/yr to 0.151 mm/yr. It is likely that the field tests conducted on the excavation 

boundary underestimated the actual corrosion rates, as they were not located inside the 

rock and would have had less interaction with any water available. This is more 

pronounced for the flowing rock masses as the volumes of water are much greater. 

Despite being a simulated environment it is considered the corrosion chamber results are 

representative of a flowing rock mass as they were continually immersed in flowing 

water for the entire test duration. 

 

The irregularity of the groundwater properties and flow rate observed during the 

underground in-situ tests provided a range of results but difficulty in ascertaining which 

variables influence the corrosivity. Fortunately, the controlled environments in the 

corrosion chambers with the periodic analyses of the water properties has meant that the 

results from the chamber tests can be used to establish the links between the measured 

water properties and the corrosivity. 
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CHAPTER 7 CORROSIVITY CLASSIFICATIONS FOR AUSTRALIAN 

UNDERGROUND MINES 

 

7.1 Introduction 

The completion of a systemic field study of environmental conditions combined with the 

direct measurements of corrosion rates has provided the information with which to 

classify the underground mining environment corrosivity in terms of its environmental 

properties. Two environments are of interest, those that are influenced by groundwater 

and those that are affected only by atmospheric variables. A major aim of this study is to 

classify an underground environment in terms of its properties and establish an 

approximate corrosion rate. 

 

This chapter describes the analyses of the data collected in this project to establish a 

corrosivity classification for both groundwater-affected and atmospheric environments. 

Current published classifications are reviewed to ascertain their relevance. Relationships 

between the main environmental properties and the measured corrosion rates are 

determined and new classifications for both groundwater- affected and atmospheric 

environments are proposed. 

 

 

7.2 Groundwater corrosivity classification 

The main cause of corrosion in underground mines has been established by this study to 

be due to the influence of groundwater. The inter-related groundwater properties, 

primarily pH, TDS, dissolved oxygen and temperature, control the corrosivity of the 

water. Large variations in their concentrations occur across the investigated underground 

mines. For environments with groundwater the influence of atmospheric variables is 

negligible and they are not considered. Additionally, the amount of corrosion damage 
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sustained by support and reinforcement is further influenced by the rate of groundwater 

flow and the period of time it is installed in the environment.  

 

A variety of published corrosivity classifications are available. The main classifications 

have been reviewed and the relevance of each to the underground mining environment is 

determined from the data collected by the coupon tests. By inputting the environmental 

conditions of the corrosion chambers into the classifications and comparing their 

proposed corrosivity with the actual measured 94 day corrosion chamber corrosion rates 

from Chapter 6, the practicability of each classification is established. To provide a clear 

understanding of the principles at work relationships between the groundwater 

properties and the measured corrosion rates from the corrosion chambers are also 

investigated to develop an appropriate corrosion classification for groundwater affected 

hard rock mining environments in Australian underground mines. 

 

7.2.1 Soil corrosion classifications 

The probability of corrosion of metals in soil has been widely researched with numerous 

classifications (AWWA C105 1998; DIN 50929-3 1985). Parameters that are usually 

examined include groundwater, degree of aeration, pH, redox potential, resistivity, 

soluble ionic species, the horizontal and vertical homogeneity (i.e. the difference in soil 

structure), and microbiological activity. Despite some similarities in the controlling 

parameters the different material and chemical properties of soil means soil corrosivity 

classifications are not practical to be used in hard rock environments. 

 

7.2.2 Saturation indices 

Water saturation indices relate the solubility of dissolved ions to their tendency to 

precipitate. One of the most notable is the Langelier Saturation Index (LSI), which is an 

indicator of the degree of saturation of water with respect to calcium carbonate. The LSI 

is defined as the difference between the measured pH, and the calculated pH at 

saturation of calcite or calcium carbonate (see Appendix D). If LSI is negative, then 

there is no potential to scale, as the water will dissolve the calcium carbonate. If the LSI 
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is positive, then scale can form and calcium carbonate precipitation may occur 

protecting the metal from corrosion attack. 

 

LSI values for the sampled mine groundwaters shown in Table 7.1 indicates that only 

three mines show the potential for scale to form, thus the potential to protect the metal. 

An example of the calculation of the LSI values is shown in Appendix D. When 

compared with the measured corrosion chamber corrosion rates, shown in Figure 7.1, no 

relationship between the LSI and the measured corrosion rate could be established for 

the hard rock environmental data studied here. The LSI parameter is related to the 

stability of scale formation, not an indicator of corrosivity. It omits all other factors 

associated with water corrosivity including dissolved oxygen, temperature, dissolved 

ions and rate of flow. The potential for carbonate scale is also ineffective above a critical 

value of chloride concentration, approximately 25 ppm (Sastri, Hoey & Revie 1994). It 

must be noted that all mine groundwaters analysed had chloride contents well above this 

low value. Protective carbonate scaling will not form in Australian underground mine 

groundwaters regardless of the LSI and should not be included in any classification 

scheme. 

 
Table 7.1 LSI ratings for studied Australian underground mine groundwaters. 

Chamber LSI rating Potential to Scale 

Enterprise -0.42 No potential to scale 

Leinster -0.87 No potential to scale 

Darlot 0.36 Scale can form 

Kundana 0.33 Scale can form 

Olympic Dam 1.14 Scale can form 

Argo -0.76 No potential to scale 

 

7.2.3 Groundwater corrosion classification – DIN 50929-3 

The German originated DIN 50929 classification (DIN 50929-3 1985) assesses the 

corrosive potential of water based on the water type, its location relative to the water/air 

interface, the chloride and sulphate content, acidity, calcium ion content, and pH (see 

Appendix D). Each parameter is given a positive or negative numerical rating based on 

the effect it has on the corrosivity. The ratings are then summed to obtain the probability 
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of corrosion for either unalloyed iron (W1) or galvanised steel (WL). The more negative 

the number, the more corrosive the water. The classification is separated into four 

corrosivity levels with the most corrosive group having a W1 less than -8 with a 

qualitative corrosion description and assessment on the coating quality. 

 

The calculated ratings for the groundwaters, shown in Table 7.2, depict W1 values that 

all fall in the same maximum corrosion category, described as medium corrosion, 

despite the input parameters having a wide range of values. Many of the ratings are 

much lower, by a factor of two to three, than the -8 boundary. This classification does 

not distinguish between the different mine groundwaters and groups all environments in 

the same category. Additionally, when comparing the ratings with the corrosion chamber 

corrosion rates (see Figure 7.2) no correlation is observed. Appendix D provides an 

example of the calculation of the W1 and WL values. 

 

As well as being unable to distinguish between the corrosivity of the mine groundwaters 

the classification also takes into account parameters that are not relevant to the waters 

under investigation. Protective scaling due to calcium carbonate formation is not 

expected to influence the corrosivity of the waters. In addition the classification does not 

account for the effect of temperature or dissolved oxygen, both of which appear to 

control to some extent the corrosion potential of mine groundwaters in Australia. On a 

positive side, the classification does consider if the water is flowing, but not the rate at 

which it flows. 

 
Table 7.2 DIN 50929 corrosion classification ratings for Australian underground mine groundwaters. 

Chamber W1 General corrosion WL Quality of coatings 
Enterprise -12 Medium -6 Satisfactory 
Leinster -18 Medium -8 Satisfactory 
Darlot -16 Medium -8 Satisfactory 

Kundana -16 Medium -8 Satisfactory 
Olympic Dam -12 Medium -7 Satisfactory 

Argo -22 Medium -10 Not adequate 
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Figure 7.1 Comparison between the calculated LSI rating and the corrosion chamber 

corrosion rates. 
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Figure 7.2 Comparison between the calculated DIN rating and the corrosion chamber 

corrosion rates. 
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7.2.4 Wet underground rock corrosion classification – Li and Lindblad (1999) 

Li & Lindblad (1999) have proposed a corrosivity classification for the underground 

environment with relation to the corrosion of steel rock bolts in wet conditions. The 

main corrosion-related parameters used are pH, dissolved oxygen and resistivity. The 

ambient temperature, rock mass quality and precipitation of calcium carbonate are 

termed influencing parameters and have less effect on the final rating which is expressed 

as Wwet. The value is graded into four classes ranging from 2 to 10, with values greater 

than 10 being placed in the very severe corrosion category (see Appendix D). 

 

The ratings for the classification when applied to the corrosion chamber data are shown 

in Table 7.3. All groundwaters fall in the very severe corrosion category. When 

comparing the ratings with the corrosion chamber corrosion rates, as displayed in Figure 

7.3, no association is observed. The temperature of the water, despite being described as 

an influencing factor, has a strong weighting on the final rating. The groundwater with 

the highest rating, Enterprise, also had the highest temperatures. The remaining waters 

had similar temperatures and subsequently similar ratings. 

 

The Li & Lindblad (1999) corrosion classification was developed for Northern European 

conditions where the average water temperature is much less than the conditions 

experienced in Australia. Thus it tends to substantially overestimate the influence of 

temperature on the corrosivity of the groundwater. Despite the shortcomings of the 

classification it does take into account the rock mass quality through the use of the rock 

mass classification, Rock Mass Rating (RMR). 

 
Table 7.3 Li and Lindblad (1999) corrosion classification ratings for Australian underground mine 

groundwaters. 

Chamber Wwet Corrosion Description Corrosion Rate (mm/yr) 
Enterprise 28.7 Very severe corrosion >0.30 
Leinster 14.6 Very severe corrosion >0.30 
Darlot 13.9 Very severe corrosion >0.30 

Kundana 14.1 Very severe corrosion >0.30 
Olympic Dam 14.2 Very severe corrosion >0.30 

Argo 12.5 Very severe corrosion >0.30 
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Figure 7.3 Comparison between the calculated Li & Lindblad (1999) rating and the 

corrosion chamber corrosion rates. 

 

7.2.5 The main groundwater properties and the measured corrosion rate 

A review of the existing corrosion classifications revealed that none adequately fit the 

experimental data and could not be readily used to predict the corrosivity of groundwater 

affected environments examined in this study. It was therefore necessary to examine 

each of the main groundwater properties individually to ascertain their influence. As 

previously stated in Chapter 2 corrosion of steel is independent of pH values between 4 

and 10. All the natural groundwaters sampled had a pH in the range of 6.2 to 8.3. 

Therefore it can be assumed that pH has limited effect within this study. The remaining 

properties; temperature, TDS and dissolved oxygen, were examined using the same data 

used with the previously described classifications. 

 

No relationship between the corrosion chamber 94 day corrosion rate and the average 

temperature, shown in Figure 7.4, was observed. A good exponential relationship exists 

between the TDS of the water and the corrosion rate (see Figure 7.5). The higher TDS 

Increasing Corrosivity 
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waters result in a lower corrosion rate presumably as the higher TDS waters reflect a 

lowering dissolved oxygen concentration. This is confirmed when observing the very 

good direct linear relationship that exists between the dissolved oxygen and the 

measured corrosion rates displayed in Figure 7.6. The higher dissolved oxygen content 

results in increased rates of corrosion as oxygen is essential for the electrochemical 

reaction to take place. 

 

There is a clear indication shown by the correlation with the experimental values from 

the corrosion chamber coupon testing that the corrosivity of the groundwaters can be 

directly estimated from the dissolved oxygen concentration of the water. This theorem is 

further reinforced when it is considered that the dissolved oxygen content has already 

been shown in Chapter 3 to be directly related to the temperature and salinity of the 

water. Thus with one parameter all three are taken into account. The good correlation 

with the TDS and the corrosion rates is partly due to the temperature values being 

similar and having a comparable effect on the corrosion rate. 

 

The measurement of the dissolved oxygen content can be used to establish the corrosive 

potential of groundwater in Australian underground mines. However, by itself it cannot 

be used to determine a rate of corrosion. Two other factors need to be considered; the 

influence of time and the rate of groundwater flow. 
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Figure 7.4 Relationship between the corrosion chamber corrosion rates and the 

temperature of the groundwater. 
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Figure 7.5 Relationship between the corrosion chamber corrosion rates and the TDS of 

the groundwater. 

CR = 1.3447e-2E-05(TDS) 

R 2= 0.90 
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Figure 7.6 Relationship between the corrosion chamber corrosion rates and the dissolved 

oxygen content of the groundwater. 

 

7.2.6 The influence of time 

In general there is a reduction in the rate of corrosion over time as corrosion products 

partly inhibit further corrosion. This rate becomes constant after a certain period of time, 

dependent upon the environmental conditions. The information presented in Figure 7.7 

is of the coupon test data from the corrosion chambers against the dissolved oxygen 

content, which remained more or less constant for the duration of the test. The Argo 

chamber had a decrease of 50% in the rate of corrosion from the 94 day test to the 282 

day test with the Kundana chamber showing a 51% decrease and Olympic Dam chamber 

a 64% decrease over the same time period. This represents a relatively constant 

reduction for the different groundwater types. Coupon results that were not obtainable 

from these tests due to high corrosion rates fully consuming the steel have been 

estimated in Chapter 6. The 282 day rate is more representative of the long-term 

corrosion rate than any calculated for previous time periods. 

 

CR = 0.5528(DO2) – 0.9267 

R2 = 0.988
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Figure 7.7 Comparison of the coupon tests results for the corrosion chambers over time. 

 

The data collected from the coupon tests on mine sites, previously discussed in Chapter 

6, showed a greater variability in time taken for corrosion rates to become constant. 

However, after approximately 300 days the rate of corrosion becomes reasonably 

regular. It is therefore concluded that the long-term corrosion rate can be taken from 

coupon tests results of a minimum of 250-300 days. Any corrosion rate used in design 

should only be the long-term corrosion rate. 

 

7.2.7 The influence of the groundwater flow rate 

The rate of groundwater flow affects the corrosion rate by two processes. Increases in 

the flow rate simultaneously increase the rate at which dissolved oxygen is brought in 

contact with the steel surface. This provides more available oxygen for the 

electrochemical process and thus higher rates of corrosion occur. Higher flow rates also 

increase the level of physical erosion of the corrosion products and reduce the thickness 

of the partially protective cover increasing the corrosion rate. 
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To investigate the effect of flow rate the coupon test results conducted at the mine sites, 

which had various rates of flow, are compared with those of the chambers. The water 

properties are comparable and a similar time of exposure periods is examined. Coupons 

from the Argo chamber (flowing) had a higher corrosion rate by a factor of 3.5-4 times 

that of the mine site results (wet). Similarly the Olympic Dam chamber results (flowing) 

had a higher corrosion rate by a factor of 2.5-3 compared with the field results for a wet 

rock mass and 4.5 time increase compared to a damp rock mass. 

 

The expected increase in corrosion rates with increasing water flow is observed in the 

experimental data. If all the long-term corrosion rates, for both the chamber and field 

tests are plotted against dissolved oxygen they can be grouped based on their respective 

groundwater flow conditions as shown in Figure 7.8. Despite the small data set, changes 

in the corrosion rate can be seen for dissimilar groundwater conditions. 

 

The evaluation of groundwater flow conditions is qualitative, thus a range of variability 

with the results is expected. This is seen by comparing the flowing conditions in the 

chambers with the flowing conditions in the field. Those coupons in the chambers had 

much higher rates of corrosion. This is attributed to not only the qualitative measure of 

groundwater flow but also the positioning of the coupons in the field on the excavation 

boundary where the actual flow over the coupons is less than in the rock mass. This 

issue affects all field test results but is believed more pronounced for flowing conditions 

due to the greater volumes of water. 

 

Therefore, the coupon results from the mine sites will tend to underestimate the actual 

corrosion rates and this is required to be taken into account. By contrast the results from 

the corrosion chambers were in ideal conditions and are considered to be from the upper 

end of corrosion rates for a flowing rock mass while those from the field are considered 

to be from the lower end of expected rates. Following the evaluation of the coupon data 

and re-evaluating the groundwater flow conditions at the mine sites it is considered 

necessary to divide the flowing groundwater section into strongly flowing and flowing. 
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Figure 7.8 Corrosion coupon test data from the field and chambers grouped by water 

velocity. 

 

7.2.8 Corrosivity Classification for Underground Hard Rock Environments 

Currently available classifications have been shown to be inadequate for the 

groundwater affected, hard rock conditions found in Australian underground mines. A 

new classification is proposed based on the comprehensive data collection survey and 

the calculation of corrosion rates by coupon testing undertaken as part of this study. The 

corrosivity classification for groundwater affected, hard rock environments is shown in 

Figure 7.9, with Table 7.4 presenting the information in tabulated form. The 

classification considers two factors in determining the corrosivity; the groundwater 

dissolved oxygen content as measured in-situ from a dissolved oxygen probe and the 

groundwater flow conditions as described in Table 7.5. Uniform corrosion rates for 

HA300 grade steel can then be estimated for different environments. 
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Figure 7.9 Corrosivity classification for groundwater affected, Australian hard rock 

environments. 
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Table 7.4 Range of maximum expected corrosion rates for HA300 grade steel in groundwater affected, 

Australian hard rock environments. 

Strongly Flowing 
Dissolved Oxygen (mg/l) 1-2 2-3 3-4 4-5 
Corrosion Rate (mm/yr) <0.120 0.120-0.360 0.360-0.580 0.580-0.80 

     
Flowing 

Dissolved Oxygen (mg/l) 1-2 2-3 3-4 4-5 
Corrosion Rate (mm/yr) <0.090 0.090-0.225 0.225-0.365 0.365-0.500 

     
Dripping 

Dissolved Oxygen (mg/l) 1-2 2-3 3-4 4-5 
Corrosion Rate (mm/yr) <0.060 0.060-0.105 0.105-0.160 0.160-0.200 

     
Wet 

Dissolved Oxygen (mg/l) 1-2 2-3 3-4 4-5 
Corrosion Rate (mm/yr) <0.040 0.040-0.075 0.075-0.100 0.100-0.120 

     
Damp 

Dissolved Oxygen (mg/l) 1-2 2-3 3-4 4-5 
Corrosion Rate (mm/yr) <0.020 0.020-0.030 0.030-0.040 0.040-0.050 

 
Table 7.5 Descriptions of groundwater flow conditions (Bieniawski 1989) 

Groundwater conditions Description 
Damp Rock mass is discoloured from dry rock mass. Very minor drips.  
Wet Rock mass discoloured. Dripping from fractures moderately common.  

Dripping Numerous drips and trickling of water from fractures. 
Flowing Water flows from fractures. 

Strongly Flowing Large continuous water flow from many fractures. 
 

The classification provides a range of possible corrosion rates for a specific dissolved 

oxygen content and groundwater flow. As the groundwater condition is from qualitative 

observation rather than quantitative assessment this variation in values is necessary. 

Projection of the corrosion rates for measurements of dissolved oxygen less than 1.5 and 

greater than 4.5 is uncertain due to insufficient data. The given corrosion rates are for 

uniform corrosion only; it is however appropriate to assume that pitting corrosion will 

increase with higher rates of uniform corrosion. The classification does not take into 

account the rock mass quality. It is assumed that if the classification is to be applicable, 

the reinforcement will intersect water bearing discontinuities. In addition, the rock mass 

damage from the stress re-distribution is expected to increase the permeability within the 

zones where reinforcement is utilised. 
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7.3 Atmospheric Corrosivity Classification 

The majority of reinforcement and support in underground mines is affected by 

atmospheric variables; the temperature, the humidity and the level of pollutants. 

Variations in the atmospheric properties are due to the depth of mining below surface, 

the ambient rock temperatures and the interaction of primary and secondary ventilation. 

The main pollutants, sulphur dioxide and nitrogen oxides are thought to occur in very 

small concentrations and do not impact significantly on the corrosivity of the 

atmosphere. By investigating published classifications and examining the relationship 

between the atmospheric properties using the field results from the coupon testing, an 

atmospheric classification for Australian underground mines can be developed. 

 

7.3.1 Atmospheric corrosion classification – ISO 9223 

The ISO 9223:1992 (ISO 9223 1992) standard, located in Appendix E, classifies the 

corrosivity of an atmosphere based on measurements of time of wetness (TOW), and 

pollution categories, sulphur dioxide (P) and airborne chlorides (S). The corrosivity of 

the atmosphere is divided into five categories ranging from very low (C1) to very high 

(C5) with corresponding rates of corrosion for carbon steel and zinc. This standard is 

widely used throughout the world to classify the atmospheric corrosion potential in 

many different environments; however, it often needs to be modified and calibrated to 

that specific environment. 

 

The TOW is estimated as the length of time when the relative humidity is greater than 

80% at a temperature greater than 0 °C. The classification states that the calculated time 

does not necessarily correspond with the actual time of exposure to wetness, because 

wetness is influenced by: the type of metal, the shape, mass and orientation of the object, 

the quantity of corrosion product, the nature of pollutants on the surface and other 

factors which the standard does not take into account. However, this criterion is usually 

sufficiently accurate for the characterisation of most atmospheres. There are five broad 

categories of TOW which range from less than 0.1% of the year (i.e. indoors climate 

controlled) up to greater than 60% of the years (i.e. outdoors in damp climates). 
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The calculation to determine the TOW of a climate uses the annual mean low and high 

temperatures, in addition to the highest temperature with a relative humidity greater than 

95%. This data is generally sourced using continuous measurements which were beyond 

the scope of the project. The assessment of the atmospheres within the mines took place 

over only a few days which represent about 1% of the total year. The underground 

environment also has no wetting of surfaces due to dew or rainfall. All condensation is 

due to the humidity. 

 

Based on the data collected the majority of mining environments can be placed into the 

τ3 category, which has a TOW of between 250 to 2,500 hours per annum, which equates 

from 3 to 30% of the year. The deposition of pollution, airborne salinity and sulphur 

dioxide, is minor and the lowest category was chosen for both. The resulting corrosivity 

category is C2 which has a corresponding corrosion rate between 0.0013 to 0.025 mm/yr 

and is regarded as low corrosivity. Comparing this with the result from the coupon 

testing, which ranged from 0.004 to 0.017 mm/yr, it is seen that the wide variety of 

corrosion rates calculated for the underground atmospheric environments fit well into 

the C2 corrosion category. 

 

7.3.2 Dry underground rock corrosion classification – Li & Lindblad (1999) 

Li and Lindblad (1999) proposed a second classification for dry rock conditions in 

underground mines (see Appendix E). The parameters included are deposition rate of 

sulphur, nitrogen oxides and chloride, as well as the relative humidity and ambient 

temperature. The final rating, Wdry, is classed into three sections ranging from no or little 

corrosion (Wdry 0-6) to severe corrosion (Wdry >10), all with corresponding corrosion 

rates. This classification differs from the ISO 9223 by introducing nitrogen dioxides, a 

by-product of blast gases, and using a separate temperature and relative humidity factor 

in place of the time of wetness. 

 

The classification ratings shown in Table 7.6 all fall into the same category predicting 

little or no corrosion with an estimated corrosion rate of less than 0.05 mm/yr. When the 

ratings are compared with atmospheric corrosion rates measured from the coupons 
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placed at mine sites (see Figure 7.10) a reasonable correlation is observed. However, the 

corrosion rates predicted from this classification are not sensitive to changes observed in 

practice being more than double the highest measured rate. 

 
Table 7.6 Li and Lindblad (1999) dry rock ratings for various underground environments. 

Location Temperature 
(°C) 

Humidity 
(%) 

Air Flow 
rate 

Wdry 
rating 

Classification 
corrosion rate 

(mm/yr) 
Cannington 475 Ug53 30 74 medium 2.00 <0.05 
Cannington 295 sf66 32 93 medium 4.59 <0.05 

Enterprise 30A 35 90 medium 5.66 <0.05 
Enterprise 29E 31 80 medium 4.29 <0.05 
Enterprise 28D 30 80 medium 4.00 <0.05 
Enterprise 31C 25 70 medium 1.41 <0.05 
Argo sump 2 21 76 high 1.07 <0.05 

Argo stockpile 3 20 66 high 1.00 <0.05 
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Figure 7.10 Relationship between corrosion rates and Wdry rating. 

 

Increasing Corrosivity 

CR = 0.0023(Wdry) + 0.0017 

R2 = 0.5863
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7.3.3 The main atmospheric properties and the measured rates of corrosion 

The two reviewed classifications for atmospheric corrosion classed all atmospheres 

tested in Australian underground mines into a singular category. This is despite the 

coupons being placed in a variety of environments that was representative of the range 

of atmospheres surveyed. It is concluded that compared to other atmospheric 

environments such as urban and industrial, those found in underground metalliferous 

mines in Australia are similar in properties that cause corrosion and have a low 

corrosivity. The low corrosivity is a product of the enclosed nature and strong air flow of 

the underground environment. With no rain or dew, low level of pollutants and strong 

ventilation flows, even in the hotter, humid areas the effective time of wetness is low. 

Without water the electrochemical corrosion process cannot proceed. These statements 

are true for the significant majority of atmospheres surveyed; however some locations 

were observed that do not have adequate ventilation and are assumed to have a much 

higher TOW and subsequently higher rates of corrosion. These environments were 

isolated cases and were not covered in this study. 

 

To further refine the corrosivity of the atmospheres the measured corrosion rates are 

compared with the atmospheric properties of dry bulb temperature and relative humidity. 

These plots shown in Figures 7.11 and 7.12 both compare against already known 

responses to atmospheres with low pollutants from Roberge (2000). Similarities are 

observed for both the dry bulb temperature and humidity plots. A good linear correlation 

is seen between the measured relative humidity and the measured corrosion rates. There 

is only a minor difference when compared to the expected relationship as predicted by 

Roberge (2000). Thus a simpler humidity rating would be appropriate when classifying 

the underground atmospheric environment. 
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Figure 7.11 Relationship between the corrosion rate and temperature from a) Roberge 

(2000) and b) from the site coupon rates and measured temperature. 
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Figure 7.12 Relationship between coupon corrosion rates and relative humidity from a) 

Roberge (2000) and b) from the site coupon rates and measured humidity. 

 

CR = 0.0008(TºC) – 0.0125 

R2 = 0.55 

a) b) 

a) b) 

CR = 0.0005(RH%) – 0.0334 

R2 = 0.82 



Corrosivity Classifications for Australian Underground Mines 233

7.3.4 Corrosivity classification for atmospheric environment in hard rock 

underground mines 

The narrow range of atmospheric environments in Australian underground hard rock 

mines has eliminated the need to use multipart classifications. Instead a basic 

classification is proposed that employs only the relative humidity, which is partially a 

product of the temperature, to predict a range of corrosion rates for HA300 grade steel. 

This classification is based on the information collected from the comprehensive survey 

of Australian underground mines and the results of the coupon testing. It assumes there 

is adequate ventilation flow for the majority of the excavation life. The classification 

shown in Table 7.7 has three categories of relative humidity and associated rates of steel 

corrosion. Approximate corrosion rates for zinc galvanising are included that were 

derived from the ISO 9223 standard (ISO 9223 1992) for similar environments. This 

classification is suggested for use in all Australian underground hard rock mines. 

 
Table 7.7 Corrosivity classification for underground, hard rock, metalliferous atmospheric environments. 

Relative Humidity (%) <60 60-90 90-100 
Corrosion Rate for steel (mm/yr) <0.002 0.002-0.010 0.010-0.020 
Corrosion rate for zinc (μm/yr) <0.100 0.100-0.350 0.350-0.700 
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CHAPTER 8 CORROSION OF ROCK SUPPORT AND 

REINFORCMENT 

 

8.1 Introduction 

The information collected in this research project: the observations from the field study, 

the measurements and results of the corrosion chamber experiments, the descriptions of 

corrosion damage and laboratory results from the overcored elements provide a 

comprehensive study of the effect of corrosion on reinforcement elements. This chapter 

applies this knowledge in conjunction with the newly developed corrosion 

classifications to make available guidelines for the design of friction rock stabilisers 

(FRS), cable bolts and grouted solid bar elements in underground hard rock mines. 

Additionally corrosion protection methods are discussed. While not a major focus of this 

study a summary of support systems are provided. 

 

 

8.2 Corrosion Protection Methods 

There are two widely utilised corrosion protection methods for rock support and 

reinforcement in underground hard rock mines. The first one consists of cement grouting 

of reinforcement elements so that a barrier between the steel and the outside 

environment is created and the second consists of zinc galvanising of the steel. 

 

When the grout column stays intact it should protect the underlying steel for many years, 

even in flooded mines. The length of time needed for corrosion to occur through the 

cement grout by the processes of carbonation and chloride infiltration is longer than the 

operational life of most mines. This is especially true if cement grout migrates into open 

joints and fractures in the rock mass. No information was found for similar effects with 

resinous grouts. Corrosion of fully encapsulated strand/bar is unlikely to occur unless the 

steel is exposed directly to the surrounding environment. This is thought to take place 
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when cracks in the low tensile strength grout column occur due to rock movement 

and/or blast vibrations. Groundwater is then able to interact directly with the steel. Due 

to the self-healing properties of cement grout a minimum of 2 mm width cracks is 

required for unimpeded corrosion attack. 

 

This project did not directly investigate the effect of poor installation practices, 

particularly the effects of inadequate grout encapsulation on the service life of the 

reinforcement, but it is considered that it would greatly increase the likelihood of failure 

due to corrosion damage as the steel is immediately exposed to the surrounding 

environment. Cement grout provides greater protection than resinous grouts as it is a 

corrosion inhibitor and also has some degree of crack self healing. Evidence of poor 

encapsulation was observed for both grout types. Corrosion inhibitors can be added as 

an admixture to cement grouts. They are ineffectual in preventing corrosion once a crack 

has formed. 

 

Zinc galvanising is commonly applied to many support and reinforcement systems to 

increase the service life. No direct measurements were taken to establish its 

effectiveness in various environments; however, qualitative observations were made. In 

atmospheric environments deterioration of hot dipped zinc coatings were not seen, even 

for elements of many years age, unless the coating was damaged during installation. 

Therefore, it can be concluded that hot dip galvanising will provide corrosion protection 

for many years, even the life of the mine, in atmospheric conditions if undamaged. In 

groundwater affected environments the zinc coating lasted a minimum of two months 

for groundwater with a high dissolved oxygen and high flow rate. In less corrosive 

conditions; low dissolved oxygen and low flow rate, the galvanising fully protected the 

element for over 6 months with some protection for up to two years. 

 

 



Corrosion of Ground Support 236

8.3 Rock Reinforcement Systems 

The relative corrosion resistance of various reinforcement systems in similar corrosive 

environments is displayed in Table 8.1. Fully cement encapsulated bar elements are the 

most corrosive-resistant, with additional protection of a plastic sheath providing the 

highest longevity. Failure to grout considerably increases susceptibility to corrosion 

attack. Resin encapsulated elements are not as corrosion resistant as the resin grout has 

no inherent corrosion protection qualities and provides only barrier protection to the 

environment. Cable strand is less corrosion resistant again due to it comprising of small 

diameter strands entwined to create the element. Corrosion damage to a single strand can 

seriously weaken the entire cable bolt system. By comparison similar damage to a bar 

element will not create the same loss in load bearing capacity. 

 

Swellex are more corrosion resistant than FRS as they are full enclosed. Corrosion from 

the residual inflation water is not an issue. FRS are the least corrosion resistant of any 

reinforcement investigated. The thin-walled elements have a large surface area 

susceptible to corrosion attack. Grouting of the internal bolt section provides only 

limited protection. Zinc galvanising increases the expected service life of all 

reinforcement elements. 

 
Table 8.1 Relative longevity of reinforcement systems subjected to similar corrosive environments. 

Cement Grouted Sheathed Bar 
Cement Grouted Galvanised Bar More Corrosion Resistant 

Cement Grouted Black Bar  
Resin Grouted Black Bar  

Cement Grouted Galvanised Strand  
Cement Grouted Black Strand  

Ungrouted Sheathed Bar  
Cement Grouted Galvanised Friction Rock Stabiliser  

Galvanised Friction Rock Stabiliser  
Black Swellex Bolt  

Cement Grouted Black Friction Rock Stabiliser 
Black Friction Rock Stabiliser Less Corrosion Resistant 

 

8.3.1 Friction Rock Stabilisers 

Friction rock stabilisers (FRS) are the most widely used form of reinforcement in 

Australian underground mines. Overcoring and subsequent laboratory testing of FRS has 
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provided an excellent insight into the effect of corrosion damage on the load transfer 

capacity of the element. Two modes of failure have been observed to occur. 

 

As corrosion progresses the original thickness of the FRS is reduced as the steel is 

converted to corrosion products. This rust provides no structural integrity and the 

frictional capacity is reduced. The frictional resistance against the borehole wall is a 

function of the springiness of the element. By reducing the steel thickness the 

springiness and thus radial stresses acting on the rock mass surface are lowered. This 

reduces the pull out strength of the bolt. Additionally corrosion products may reduce the 

friction between the two surfaces by providing a plane of slip. 

 

The normalised pull tests results discussed in Chapter 5 indicated a loss of frictional 

resistance with increasing levels of corrosion. Those elements with moderate corrosion 

damage displayed frictional capacities of 45-150 kN/m; this is compared to 19-79 kN/m 

for elements with high or severe corrosion damage, a decline in capacity of 45-50%. 

Estimates of the reduction of wall thickness between the moderately corroded and the 

high/severe corroded bolts range from 0.20-0.35 mm, approximately a 7-18% reduction. 

The small reduction in thickness is thought responsible for the large decrease in 

frictional capacity. The borehole diameter was not measured for these tests; however, 

the slot width was large indicating larger boreholes.  

 

It is apparent that a small loss in steel thickness results in a relatively large decrease in 

the pull out strength. This is explained by examining the section modulus of the FRS. 

The section modulus is the ratio of the moment of inertia of the cross section of the 

element undergoing flexure to the greatest distance of an element of the beam from the 

neutral axis. It has a cubic relationship with the wall thickness, thus small changes in the 

thickness are amplified (Thompson 2007). An approximate 20% reduction in the steel 

thickness will result in an estimated 50% decrease in pull out strength. 

 

The time taken for a 20% reduction of the FRS wall thickness under various corrosive 

conditions can be estimated. As has been stated previously the internal rate of corrosion 
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is approximately half of the external rate. Using an external rate of corrosion based on 

the environmental conditions calculated using the corrosion classification provided in 

Chapter 7 with an internal corrosion rate of half of that rate, the time taken for the FRS 

frictional capacity to be reduced by 50% can be calculated and is shown in Figure 8.1 

and Table 8.2. This estimate assumes constant uniform corrosion over the FRS section 

and does not take into account variations in the borehole profile and the influence pits 

will have on the stiffness and springiness of the bolt. 
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Figure 8.1 The estimated time taken for a 20% reduction in steel thickness of a 47 mm 

diameter, nominal 3 mm thickness FRS corresponding to a 50% decrease in pull out 

strength. 

 
Table 8.2 Estimated time taken for a 20% reduction in steel thickness of a 47mm diameter, 3mm thickness 

FRS corresponding to a 50% decrease in pull out strength. 

Corrosion Rate (mm/yr) 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time till 50% loss of frictional capacity (years) 8.0 4.0 2.0 1.33 1.0 0.8 0.7 0.6 
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The tensile strength of the FRS is also detrimentally affected by corrosion as steel is 

consumed. In this failure mode pitting corrosion has been shown to play a major role 

with initial failure originating in the structural weakness of the pits. A relationship 

between the maximum pit depth and tensile strength was observed with strong pitting 

generally confined to localised areas often in the vicinity of open joints. Once the pit has 

oxidised through the FRS wall it continues to grow and spreads outwards joining up 

with nearby pits. 

 

In all but one test the tensile strength of the element was much higher than the frictional 

strength. At some point however, related to the spread of pitting corrosion, the tensile 

capacity becomes less than the frictional capacity. If corrosion is occurring all over the 

element then the frictional capacity will be reducing along with the tensile capacity and 

it is expected that the loss of frictional resistance is the most likely mode of failure. 

However, due to the heterogeneous nature of corrosion it will differ along the bolt axis 

with higher levels of corrosion found towards the toe of the bolt. This has implications 

for load transfer from the unstable section to the stable section, with the latter located in 

the area of greater corrosion and not having the added benefit of a plate. If corrosion 

occurs only at a discrete point then the frictional capacity of the element will be largely 

unaffected but the tensile strength will be reduced at that point and tensile failure is more 

likely to occur. The prediction of pit evolution and subsequently the time taken till 

tensile failure was not achieved in this study. 

 

8.3.2 Cable bolts 

Cable bolt systems are used to reinforce large blocks or wedges often in long life 

excavations. Premature failure of these reinforcement systems due to corrosion can 

cause significant safety and operational issues. It is strongly recommended that best 

practice installation requirements such as those detailed by (Windsor 2004) are followed 

to minimise the potential for corrosion damage to occur. 

 

Approximate minimum and maximum service lives have been measured from the 

corrosion chamber experiments described in Chapter 4. The service life is estimated as 
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the material loss required to cause failure of the strand loaded to 175 kN or 

approximately 17.5 tonnes, a 30% decrease in the original capacity of 250 kN. 

Groundwater is assumed to be present and it is assumed that either cracking of the grout 

column has occurred or grout encapsulation is poor. Comparing the measured service 

lives to the corresponding corrosion rates of the simulated environment calculated using 

the corrosion classification, estimates can be made to the expected minimum and 

maximum service lives (<17.5 kN) of 15.2 mm diameter black strand across a range of 

corrosion rates, shown in Figure 8.2 and in Table 8.3. This provides estimates for 

horizontally placed elements; for vertical cables migration of corrosion down the bolt 

axis may occur. 

 

It is estimated that even in the most corrosive conditions observed in underground mines 

(corrosion rate 0.15 mm/yr) cable strand will last at least one year once cracks have 

formed. This figure is much higher than the expected life of uncoated barrel and wedge 

anchors, found to be approximately 7 months at comparatively corrosive conditions 

(corrosion rate 0.06 mm/yr). It is recommended that barrel and wedge corrosion 

protection systems such as a long life lubricant at the barrel/wedge interface and barrier 

coatings are applied following installation. 
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Figure 8.2 Service life estimates for cable strand in strong groundwater flow 

environments. 

 
Table 8.3 Service life estimates for cable strand in strong groundwater flow environments. 

Corrosion Rate 

(mm/yr) 

Estimated Minimum Service Life 

(days) 

Estimated Maximum Service Life 

(days) 

0.05 740 1125 
0.10 705 1090 
0.15 670 1055 
0.20 635 1020 
0.25 600 985 
0.30 565 950 
0.35 530 515 
0.40 495 880 
0.45 460 845 
0.50 425 810 
0.55 390 775 
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8.3.3 Cement and resin grouted rock bolts 

Cement and resin grouted elements are commonly used as reinforcement for long life 

excavations. Their capacity to resist corrosion damage is therefore extremely important. 

The results from the corrosion chamber experiments proved inconclusive in determining 

service life, however, analytical calculations can be used to estimate service lives of 

solid circular bar elements following the exposure of the steel to the surrounding 

environment. The material loss required to cause failure of a reinforcement element 

loaded to a specified stress level is calculated by the following equations (Thompson 

2004a). If a solid circular bar with area A0 and radius r0 is stressed to a working stress σw 

and the material has a yield strength σy and ultimate strength σu then: 

 

y

w
ycr rr

σ
σ

0=           (8.1) 

 

u

w
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σ
σ

0=           (8.2) 

 

Where: 

rycr is the critical radius for yield strength, and 

rucr is the critical radius for ultimate strength. 

 

The service life (t) can be estimated by calculating the required material loss from 

equations 8.1 and 8.2 and dividing it by the expected rate of corrosion: 
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Where: 

t is the estimated service life in years, and 

ICorr is the corrosion rate calculated from the corrosion classification in Chapter 7. 

 

Service lives till yield and ultimate failure of 20 mm and 25 mm diameter thread bar 

have been calculated for a range of working stresses and are shown in Figures 8-3 to8 8-6. 

The working stresses are 50%, 66%, 75% or 90% of the yield strength of the bolt as 

taken from manufacturer’s specifications. For a 20 mm diameter thread bar the yield and 

ultimate strength are typically 170 and 200 kN (DSI 2007a). For a 25 mm diameter 

thread bar the strengths are 260 and 305 kN (DSI 2007b). The service lives estimated are 

for black steel reinforcement that is in direct contact with the environment. Corrosion 

rates are established by using the appropriate corrosion classifications provided in 

Chapter 7. 

 

Based on the most corrosive conditions observed in the corrosion chambers with a 

corrosion rate of 0.58 mm/yr the estimated service lives till ultimate failure for a 20 mm 

diameter bar range from 2.1 years with a working stress of 90% to 6.0 years with a 50% 

working stress. For a 25 mm diameter bar the corresponding service lives range from 2.6 

to 7.5 years. There is a significant increase in service life by a factor of two to three that 

can be achieved by reducing the effective working stress of the element. The expected 

service lives are also higher than those seen for cable strand in the same environment. 
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Figure 8.3 Estimated service life to yield failure for 20 mm thread bar due to corrosion at 

various working stresses (percentage of yield strength). 
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Figure 8.4 Estimated service life to ultimate failure for 20 mm thread bar due to 

corrosion at various working stresses (percentage of yield strength). 
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Figure 8.5 Estimated service life to yield failure for 25 mm thread bar due to corrosion at 

various working stresses (percentage of yield strength). 
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Figure 8.6 Estimated service life to ultimate failure for 25 mm thread bar due to 

corrosion at various working stresses (percentage of yield strength). 
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8.4 Rock Support Systems 

The relative corrosion resistance of support systems are shown in Table 8.4. Shotcrete 

and mesh combinations provide the greatest impediment to corrosion damage. Shotcrete 

is a cement based product and thus provides corrosion protection for steel fibres or mesh 

it is used in conjunction with. For support that is not coated by shotcrete the steel 

thickness and galvanising controls the susceptibility to corrosion. Straps and plates are 

more corrosion resistant than mesh. 

 
Table 8.4 Relative longevity of support systems subjected to similar corrosive environments. 

Shotcrete and Synthetic Fibres 
Shotcrete and Galvanised Mesh More Corrosion Resistant 

Steel Fibrecrete  
Shotcrete and Black Mesh  

Galvanised Strap  
Black Strap  

Galvanised Plate  
Black Plate  

Galvanised Weld Mesh  
Galvanised Mesh Strap  

Black Weld Mesh 
Black Mesh Strap Less Corrosion Resistant 

 

8.4.1 Plates 

It was generally observed that steel plates were more corrosion resistant than FRS 

elements in most environments. This may not be the case for fully encapsulated bolts, 

especially in mines that have been previously flooded. It is thought that drying out of 

groundwater affecting the plate, especially at low groundwater flow rates, takes place 

due to the ventilation flow in the drive. This reduces the effective corrosion rate acting 

on the plates. Table 8.5 displays a qualitative assessment for the longevity of black 

plates assuming corrosion attack from both plate surfaces. For atmospheric 

environments, the expected plate life extends for decades, however this may decrease to 

years and months in highly corrosive environments. Thicker plates are notably more 

corrosion resistant. 
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Table 8.5 Qualitative assessment for longevity of black plates in a range of corrosive environments. 

Corrosion Rate Plate Thickness (mm) 
(mm/yr) 1.9 4.0 7.0 10.0 

Atmospheric decades decades decades decades 
0.1-0.2 years years decades decades 
0.2-0.3 years & months years years decades 
0.3-0.4 years & months years years years 
0.4-0.5 months years & months years years 
0.5-0.6 months years & months years years 

 

8.4.2 Weld Mesh 

Severe corrosion damage to weld mesh occurred in high water flow environments. 

However, for most other environments weld mesh appeared to perform well in terms of 

corrosion resistance compared to its nominal 5.6 mm diameter. Testing the tensile 

strength of corroded weld samples collected from underground locations showed a 

reduction of strength between 26% and 40% for highly corroded samples with failure 

occurring in the weld and heat affected zones. Only at two mine sites, Cannington and 

Gunpowder, was weld mesh observed to be completely corroded. The limited data 

collected by this study has not allowed conclusions or predictions on mesh corrosion. 

 

8.4.3 Shotcrete 

Corrosion of the reinforcing steel fibres in shotcrete can occur when cracks form in the 

shotcrete groundwater interacts with the fibres. Due to their small thickness they are 

quickly consumed. Synthetic fibres do not have this problem. It is not known how the 

loss of the steel fibres affects the strength of the shotcrete as they are localised in an area 

that has already failed. 
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CHAPTER 9 CONCLUSIONS 

 

The purpose of this thesis is to investigate corrosion and relate how the environmental 

conditions in Australian underground hard rock mines impact on the service life of rock 

support and primarily rock reinforcement. The investigations have resulted in the 

development of corrosion classifications for the Australian underground hard rock 

mining environments and guidelines have been provided for the design of reinforcement; 

principally friction rock stabilisers, cable bolts and solid bar elements. This has been 

achieved through the completion of environmental characterisation of a number of 

underground mines, laboratory testing using a simulated underground environment, 

examination of reinforcement elements in-situ and the exposure and evaluation of test 

coupons to obtain corrosion rates for the underground mining environment. 

 

The improved understanding of environmental conditions in underground hard rock mines 

led to the delineation of two separate environments; namely, atmospheric and groundwater 

affected. Uniform corrosion rates have been established for a range of atmospheric and 

groundwater affected environments with atmospheric corrosion rates being found to be 

much less than groundwater affected. Atmospheric corrosion is controlled by the relative 

humidity of the atmosphere. Corrosion by groundwater is controlled by the dissolved 

oxygen content of the water; this was found to be a function of the total dissolved solids, 

the water temperature and the flow rate of the groundwater. Two corrosion classifications 

have been proposed for Australian underground hard rock mines; one for atmospheric 

environments and another for groundwater affected environments. 

 

The relative corrosion resistance of rock reinforcement systems from the most resistant 

to the least resistant is: fully cement grouted solid bars, fully resin grouted solid bars, 

cable bolts, galvanised friction rock stabilisers, black Swellex bolts and black friction 

rock stabilisers. Galvanising protects the reinforcement for decades in atmospheric 

conditions. In groundwater affected environments, galvanising protects reinforcement 

for a minimum of 2 months in highly corrosive conditions to greater than 6 months in 
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low corrosive conditions. Full encapsulation by cement grout protects the underlying 

steel elements for many years, even in completely flooded mines, unless the steel is 

exposed directly to the surrounding environment. This results either from poor 

encapsulation during installation or after installation from cracks forming in the grout 

column due to ground movement and/or blast vibrations. 

 

Friction rock stabilisers suffer from two modes of failure; the loss of frictional resistance 

and the loss of tensile strength. A large loss of frictional resistance due to a relatively 

small reduction in wall thickness was measured. An estimated 50% decrease in pull out 

strength results from an approximate 20% reduction in the steel thickness. The loss of 

tensile strength is related to the level of pitting corrosion. Corrosion damage is not 

homogeneous along the bolt axis with greater damage on the external element surface 

and towards the toe of the borehole. If corrosion occurs all over the internal and/or 

external element surfaces, failure of the bolt is expected due to loss of frictional 

resistance and sliding. If corrosion occurs at a discrete location, tensile failure is 

expected. Cement grouting provides corrosion protection that is mainly restricted to the 

internal surface of the steel element. 

 

Cable bolts and solid bar elements suffer corrosion damage when the element is exposed 

to the surrounding environment. Service lives for solid bar elements have been estimated 

using analytical solutions. Cable bolt steel strand was tested in six simulated 

groundwater affected underground environments. Service life for cable bolts was 

defined as a 30% reduction in strand capacity to approximately 17.5 tonnes. With this 

criterion, the service life for horizontally placed single cables is estimated to be between 

552 and 951 days. Service lives for cable bolt strand in different underground 

environmental conditions can be estimated using the information provided in this study 

project. The long-term effective performance of barrel and wedge cable bolt anchors is 

controlled by the frictional resistance between the internal surface of the barrel and the 

outside surface of the wedge. Corrosion increases the frictional resistance at the interface 

between these two surfaces. Testing showed that anchor failure by sliding relative to the 

strand at low loads resulted after 218 days in groundwater affected environments. 
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Corrosion protection methods can be used to increase the service life of barrel and 

wedge anchors. 

 

The relative corrosion resistance of rock support systems from the most resistant to the 

least resistant is: shotcrete, shotcrete and mesh combinations, strap, plate and mesh. 

Plates were observed to be more corrosion resistant than the accompanying friction rock 

stabilisers. Galvanised weld mesh was seen to be relatively corrosion resistant in most 

underground environments. 

 

9.1 Limitations and recommendations for future work 

The complex interaction between the hard rock environment and corrosion processes 

and the methodology used to obtain data has meant that there are certain limitations with 

the findings of this study. 

 

There is a high level of confidence that common underground environmental conditions 

have been quantified in this study; however, there may be specific underground 

environmental conditions that were not examined. The period of time over which the 

environmental assessments were conducted is small compared with the life of mines. 

Atmospheric conditions are expected to have some seasonal variation and groundwater 

properties may also vary during the life of a mine. 

 

The simulated environments and the experiments conducted were designed to be as 

close as possible to observed conditions. However, as they were only simulated the 

results may not directly reflect actual underground hard rock environmental conditions. 

The cable bolt strand experiments were conducted for strongly flowing water conditions 

and the barrel and wedge anchor experiments were conducted for flowing ground water 

conditions. Other groundwater conditions were not examined. The cable bolt 

experiments were performed on horizontal strand that was not tensioned. In practice, 

strand will be installed in near vertical boreholes and will be expected to be loaded. The 

possible influence of stress related corrosion was not investigated. 
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Overcoring of rock reinforcement was conducted for a statistically small number of bolts 

compared with the number that are installed. Information was not available for the 

environmental conditions since bolt installation at the overcoring locations. It was 

therefore necessary to assume that the conditions at the time of overcoring were 

representative of the conditions since the time of installation. The original conditions of 

the bolt elements were also unknown. 

 

The long term rates of corrosion calculated from the coupon testing for the corrosion 

chambers and used in the corrosivity classification were not available for every time 

period as the coupons become completely oxidised before the completion of the 

experiment and corrosion rates could only be estimated. For coupons placed at mine 

sites they were located on the outside rock surface and not inside the rock mass where 

environmental conditions can be expected to be slightly different. The environmental 

conditions were assumed to remain reasonably constant for the duration of these tests. 

The creation of the groundwater affected corrosivity classification was completed on the 

basis of a small number of data points, especially for the flowing, dripping, wet and 

damp conditions. The groundwater flow conditions could only be described 

qualitatively. 

 

The findings of this thesis have contributed significantly to an improved understanding 

of corrosion mechanisms that affect the serviceability of rock reinforcement in 

underground hard rock mines. However, a number of opportunities for future 

investigation have been identified. The areas for future study include: 

• Refinement of the current corrosivity classifications. This would involve 

continued investigations of the corrosion rates of groundwater affected 

environments, the placement of coupons within boreholes in the rock mass and a 

quantitative characterisation of the ground water flow rate. 

• Corrosion resistance of resin encapsulated steel reinforcement elements. 

• Corrosion of surface support components such as mesh, plates and shotcrete steel 

fibres. 
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Appendix A 

Corrosion Assessment Data Sheet 



 261

 
 



 262

 
 



 263

 
 



 264

Appendix B 

Empirical calculations to determine internal Swellex corrosion 

 

 

1.0 m 

Ø 45 mm 

Expansion Hole Ø 3 mm 

 
Dimensions of the Swellex bolt under investigation. 

 

Known: 

Inner surface area:     0.141 m2 

Inner volume:      0.00159 m3 

Molecular weight oxygen, Mo   16.0 

Molecular weight iron, MFe    55.85 

Density of Iron, ρFe     7.9x106 g/m3 

Original dissolved oxygen content of water  4.21 g/m3 

 

 
Scenario 1 – Undrained then sealed 

The bolt is assumed to be completely filled with residual water and sealed from the 

outside environment. The water contains 4.21 g/m3 dissolved oxygen, which equates to 

0.00669g O2 for the full volume of the bolt. The corrosion half equations are: 

Fe → Fe2+ + 2e- 

½O2 + H2O +2e- → 2OH- 

Thus 

1 mol O2 corresponds to 2 mol Fe2+ 
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0.00669g O2 equals 2.09x10-4 mol O2. 

 

The oxygen in the trapped water can reduce: 

= 2 x 2.09x10-4 x 55.85 

= 0.023 g Fe 

 

The depth of corrosion associated with this mass loss:  

= weight of reduced iron/inner surface volume/density of iron 

= 0.023/0.141/7.9x106 

= 2.09x10-8 m 

= 0.02 µm 

 

The average corrosion will be 0.02 μm due to oxygen in the residual water. 

 

 
Scenario 2 – Partially drained then sealed 

The water inside the bolt is allowed to drain for approximately 14 days before being 

sealed from the outside environment. The approximate loss of water during this time is 

0.59 l, which is replaced by 0.00059 m3 of air leaving the percentage of water at 63%. 

This equates to an inner surface area affected by the residual water of 0.089 m3. Air 

contains 8.52 mol O2/m3. 

 

The moles of oxygen in the trapped air 

= 0.00059 x 8.52 

= 5.03x10-3 mol O2 

 

The oxygen in the trapped air can reduce: 

= 2 x 5.03x10-3 x 55.85 

= 0.56 g Fe 
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The depth of corrosion associated with this mass loss:  

= weight of reduced iron/inner surface volume (affected by water)/density of iron 

= 0.56/0.089/7.9x106 

= 8.0x10-7 m 

= 0.80 µm 

 

Total depth of corrosion (air and residual water) 

= 0.80 + (0.63%x 0.02) 

= 0.81 µm 

 

The average corrosion will be 0.81 µm. 

 

 
Scenario 3 - Free draining but placed at unfavourable angle 

The Swellex element has been installed at an angle that is unfavourable for water to 

drain. The expansion hole is open and air can diffuse through the expansion hole into the 

residual water. We assume the bolt is completely filled with water. The diffusion 

constant for water at 20 °C is 1.97x10-9 m2/s. The expansion hole diameter and depth is 

0.003m and its surface area is 7.07x10-6 m2. 

 

If we assume the dissolved oxygen content of the water to be zero (the oxygen having 

already been used up) the rate of oxygen diffusion is: 

= 7.07x10-6 x 1.97x10-9 x (8.52/0.003) 

= 3.96x10-11 mol/s O2 

Equivalent per year 

= 1.25x10-3 mol/year O2 

 

 

Corrosion due to diffused oxygen 

= 1.25x10-3 x 2 x 55.85 

= 0.14 g/year Fe 
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The depth of corrosion associated with this mass loss:  

= weight of reduced iron/inner surface volume/density of iron 

= 0.14/0.141/7.9x106 

= 1.26x10-7 m/year 

= 0.13 µm/year 

 

The average corrosion due to residual water is 0.02 µm; this will increase by 0.13 

µm/year due to oxygen diffusion from the atmosphere into the residual water. 

 

After 10 years 

= 0.02 + (0.13 x 10) 

= 1.32 µm 

 

The average corrosion after 10 years will be 1.32 µm or 0.00132 mm. 
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Appendix C 

Galvanised Friction Rock Stabiliser corrosion damage classification  

 
Non-corroded (NC) 

No evidence or only minor evidence of corrosion products 

Average pit depth: 0.0 mm 

 
 

 
Light Corrosion (LC) 

Minor uniform surface corrosion of zinc and steel. No evidence of pitting 

Average pit depth: 0.0 mm 
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Moderate Corrosion (MC) 

Uniform surface corrosion evident of zinc and steel. Localised areas of severe corrosion 

and pitting. 

Average pit depth: 0.0 – 1.0 mm 

 

 
 

High Corrosion (HC) 

Uniform surface corrosion covers the majority of the support/reinforcement. Areas of 

severe corrosion and pitting common. 

Average pit depth: 1.0 – 2.0 mm 
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Severe Corrosion (SC) 

Strong uniform surface corrosion covers all the support/reinforcement. Pitting is very 

common 

Average pit depth: >2.0 mm 

 

 
 

 
Extreme Corrosion (EC) 

Uniform surface corrosion has greatly reduced the original thickness of the 

support/reinforcement. Pitting has consumed the steel thickness creating large holes in 

the support/reinforcement. 

Average pit depth: steel thickness 
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Appendix D 

Groundwater Corrosivity Classifications 

Langelier Saturation Index (LSI) 

 

spHpHLSI −=  

Where: 

pH is the measured water pH, and 

pHs is the pH at saturation in calcite or calcium carbonate and is defined as: 

 

pHs = (9.3 + A + B) – (C + D) 

Where: 

A = (Log10 [TDS] – 1)/10, 

B = -13.12 x Log10 (ºC + 273) + 34.55, 

C = Log10 [Ca2+ as CaCO3] – 0.4, and 

D = Log10 [alkalinity asCaCO3]. 

 

 
Langelier Index Calculation for Enterprise Mine 

 

pH = 7.5, TDS = 6,720, Water Temperature = 35.2 ºC, Calcium = 110 mg/l, 

Alkalinity = 82 mg/l 

 

A = (Log10 [6,720] – 1)/10 = 0.28 

B = -13.12 x Log10 (35.2 + 273) + 34.55 = 1.90 

C = Log10 110 – 0.4 = 1.64 

D = Log10 82 = 1.91 

 

pHs = (9.3 + 0.28 + 1.90) – (1.64 + 1.91) = 7.92 

 

42.093.75.7 −=−=LSI  

No tendency to scale 
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DIN 50929-3 classification 

 

Free corrosion under water is estimated by: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++=

4

3
654310 N

N
NNNNNW  

Corrosion at the water/air interface is estimated by: 

32101 NNNWW ×+−=  

Quality assessment of hot dip galvanised steel at the water/air interface is estimated by: 

265431 MMMMMMWL +++++=  

 
Information relating to the assessment of water for the DIN 50929 classification. 
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Estimating the probability of corrosion of steel and zinc in water for the DIN 50929 

classification. 

 

 
DIN 50929 calculations for Enterprise Mine 

 

Type of water   Flowing   N1 = 0  M1 = -2 

Location of structure  Water/air interface  N2 = 1  M2 = -6 

c(Cl-)    27.4 mol/m3 

2c(SO4
2-)   4.2 mol/m3   N3 = -6  M3 = -2 

Acidity   CO3
2- = 0.02 mol/m3 

HCO3
- = 1.34 mol/m3  N4 = 2  M4 = 1 

c(Ca2+)    Ca2+ = 2.74 mol/m3  N5 = 1  M5 = 3 

pH value   pH = 7.5   N6 = 0  M6 = 0 

 

( ) 12610
2
6012601 −=−×+−⎟
⎠
⎞

⎜
⎝
⎛ −

++++−=W  

High pitting corrosion, medium general corrosion 

 

6603122 −=−+++−−=LW  

Satisfactory quality of coating 
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Li and Lindblad (1999) Corrosivity classification for wet underground rock conditions 

 

The corrosion in wet underground rock conditions is estimated by: 

( ) RtROpHwet KKNNNW ++=
2

 

 

 
Rating system for the parameters for Li & Lindblad’s (1999) corrosivity classification 

for wet underground rock conditions. 
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Li & Lindblad’s (1999) calculations for Enterprise Mine 

 

pH    7.5   NpH = 2 

Dissolved Oxygen 4.1 ppm  4
2
=ON  

Resistivity  Ω-cm   NR = 2 

Temperature  35.2ºC   Kt = 2.87 

Rock mass quality good   KR = 1.25 

 

( ) 7.2825.187.2242 =××++=wetW  

Very severe corrosion predicted, >0.30 mm/yr. 
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Appendix E 

Atmospheric Corrosion Classifications 

ISO 9223 Atmospheric corrosivity classification 

 

 
Derivation of corrosivity of atmospheres for carbon steel from ISO 9223 standard. 

 

 
Atmospheric corrosion rates of metals for different corrosivity categories 

.
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Li & Lindblad (1999) Corrosivity classification for dry underground conditions 

 

The corrosion in dry underground rock conditions is estimated by: 

trhOxdry KNNW =  

 

 
Ratings system for the parameters for Li & Lindblad’s (1999) corrosivity classification 

for dry underground rock conditions. 

 

 
Li & Lindblad’s (1999) calculations for Cannington 475 Ug53 

 

NaClNOSO x ++2   low  OxN = 1 

Relative Humidity  74%  Nrh = 1 

Temperature   30ºC  Kt = 30 

 

2211 =××=dryW  

No or very little corrosion, <0.05 mm/yr. 
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